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Crossiella, a Rare Actinomycetota Genus, Abundant
in the Environment
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† These authors contributed equally to this work.

Abstract: The genus Crossiella contains two species, C. equi, causing nocardioform placentitis in
horses, and C. cryophila, an environmental bacterium. Apart from C. equi, which is not discussed here,
environmental Crossiella is rarely reported in the literature; thus, it has not been included among “rare
actinobacteria”, whose isolation frequency is very low. After C. cryophila, only five reports cover the
isolation of Crossiella strains. However, the frequency of published papers on environmental Crossiella
has increased significantly in recent years due to the extensive use of next-generation sequencing
(NGS) and a huge cascade of data that has improved our understanding of how bacteria occur in the
environment. In the last five years, Crossiella has been found in different environments (caves, soils,
plant rhizospheres, building stones, etc.). The high abundance of Crossiella in cave moonmilk indicates
that this genus may have an active role in moonmilk formation, as evidenced by the precipitation
of calcite, witherite, and struvite in different culture media. This review provides an overview of
environmental Crossiella, particularly in caves, and discusses its role in biomineralization processes
and bioactive compound production.

Keywords: Crossiella; biofilms; caves; moonmilk; biomineralization; rhizosphere; soils; bioactive compounds

1. Introduction

The first strain included in the genus Crossiella has a long history of transfers and
amendments. Takahashi et al. [1] studied the soil isolate Nocardiopsis mutabilis, capable of
producing novel antibiotics, and classified it as a new subspecies: Nocardiopsis mutabilis
subsp. Cryophilis based on its growth at low temperatures (8–33 ◦C). This strain was
subsequently transferred by Labeda and Lechevalier [2] to the genus Saccharothrix as
Saccharothrix cryophilis because its morphological and chemotaxonomical properties were
more typical of the genus Saccharothrix than Nocardiopsis. In another study, Labeda [3]
erected the genus Crossiella to accommodate the species Saccharothrix cryophilis, which was
misplaced within the genus Saccharothrix. The genus only contained the species Crossiella
cryophila, which was soon accompanied by Crossiella equi, responsible for causing abortion
cases in horses with equine nocardioform placentitis in Kentucky [4].

In the last 20 years, no other species of Crossiella have been described, with scarce
reports on the isolation of Crossiella strains in the literature. Sánchez-Moral [5] isolated a
few strains of Crossiella from Altamira Cave, Spain. Adeyemo and Onilude [6] described
a strain of Crossiella isolated from Nigerian soil with a broad spectrum of antimicrobial
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activity. Cimermanova et al. [7] isolated nine actinobacteria collected from different heavy
metal-contaminated soils and found that one strain could represent a new species within
the genus Crossiella; however, they did not provide any characterization or description
other than its position in the phylogenetic tree and that the strain differed from Crossiella
cryophila in several biochemical properties. González-Riancho [8] isolated three Crossiella
strains from white and grey biofilms from Altamira Cave. Finally, Gonzalez-Pimentel
et al. [9] studied the genomes of two Crossiella strains selected from 13 strains previously
isolated from Altamira Cave (unpublished report).

The isolation of Crossiella strains on only five occasions in the last 10 years included
this genus within the so-called “rare actinobacteria”. Oren and Garrity [10] considered Acti-
nobacteria a synonym of Actinomycetota. They presented the names and formal descriptions
of 42 phyla to effect valid publication in their names based on genera as nomenclatural
types. However, in this paper, we maintained the original names, as previously published
by each author, to avoid mistakes.

“Rare actinobacteria” are non-Streptomyces actinobacteria whose isolation frequency is
much lower than Streptomyces strains, commonly isolated by conventional methods [11,12].
Tiwari and Gupta [13,14] reported 120 new genera of “rare actinobacteria” in the first
decade of the 21st century. A total of 40 out of 120 genera were isolated from soils with com-
paratively lower percentages from other environments: marine and freshwater sediments,
marine animals, plants, buildings, etc. A few reports included the rare genera Actinomadura,
Nonomuraea, Micromonospora, Streptosporangium, Nocardiopsis, and Pseudonocardia as most
frequent in diverse environments [15–20]. It is noteworthy that an abundance of “rare
actinobacteria” is in extreme environments, as exemplified in Atacama [18] and other
deserts [21–24]. However, Crossiella has not been included among “rare actinobacteria”
thus far. We have found that Crossiella is an abundant genus in most studied Spanish
caves, whether they are gypsum, karstic, or volcanic [9,25–27], and in other terrestrial and
aquatic environments.

In this paper, we review the occurrence of environmental Crossiella, its relative abun-
dance in Spanish caves and other subterranean environments, as well as its involvement in
caves’ mineral precipitation. The interest in Crossiella lies in its role in biomineralization
and potential use in biotechnological processes (stone bioconsolidation, enzyme sources,
bioactive compounds, etc.).

2. The Genus Crossiella in Caves

Table 1 shows the occurrence of Crossiella in different Spanish caves. The high relative
abundance of this genus is in moonmilk (Figure 1), either from karstic (Pindal) or volcanic
(Fuente de la Canaria and Bucara II) caves, as well as in coloured biofilms (Pindal, Altamira,
Castañar, Covadura) is remarkable [27–31]. The relative humidity is near 100% in these
caves. In addition, other mineral/biological formations, such as a pink formation in Bucara
II, exhibit high relative abundance (38.9%). Similarly, formations such as mucous formations
or brown deposits also reach relatively high abundances (6.7–12.8%) [29]. Interestingly, low
percentages of Crossiella found in the sediments under the moonmilk indicate an aerobic
behaviour for this genus [3]. Crossiella was also found in phototrophic biofilms from Nerja
Cave [30].

Table 1. Occurrence and relative abundance (>1%) of Crossiella in Spanish karstic environments, as
reported in NGS studies.

Cave Relative Abundance Genus Type of Sample References

Pindal
16.0–27.1 Crossiella Moonmilk

[26,28,31]1.4–1.7 Crossiella Sediment under moonmilk
11.3–11.7 Crossiella Top-layer sediments
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Table 1. Cont.

Cave Relative Abundance Genus Type of Sample References

6.0–9.0 Crossiella Sediments
5.3–7.9 Crossiella Yellow biofilm
2.0–8.0
7.0–8.0

Crossiella
Crossiella

Grey biofilms
Pink biofilms

Fuente de la Canaria
12.6–12.8 Crossiella Mucous formations

[29]12.3 Crossiella Moonmilk
6.7 Crossiella Brown and yellow deposits

Bucara II 38.9
24.9

Crossiella
Crossiella

Pink deposit
Moonmilk [29]

Nerja 0.1–1.5 Crossiella Phototrophic biofilms [30]

Castañar 15.0 Crossiella Grey biofilm [31]

Altamira
>20.0
27.0
38.0

Crossiella
Crossiella
Crossiella

Grey biofilms
White biofilms
Yellow biofilms

[8]

Covadura
26.4–54.1
21.8–51.9
4.5–19.7

Crossiella
Crossiella
Crossiella

White biofilm
Yellow biofilm

Sediments
Unpublished data

Yeso 1.3–13.3 Crossiella Sediments Unpublished data

Thyssen Museum
basement

16.6
64.2

2.8–7.4

Crossiella
Crossiella
Crossiella

White biofilm
Grey biofilm

Sediment
[32]

 

Figure 1. Scanning electron micrographs of moonmilk deposits in Pindal Cave, Spain. (a) Lon-
gitudinal view of sediment covered by moonmilk. (b,c) Crystalline calcite fibres (red arrow) and
Actinomycetota filaments (blue arrow). (d) Scanning electron micrographs and EDX spectra of crys-
talline calcite fibres. Note the swelling of filaments in (c), similar to those reported for Crossiella
cryophila [3].
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Crossiella, at a relative abundance of 15.0%, was found in grey biofilms from Castañar
Cave [31]. Similar grey biofilms were observed in Altamira Cave [8] and the Thyssen
Museum, reaching a relative abundance of 64.2% [32]. Data from a geomicrobiological
study of a Roman nymphaeum located in the archaeological basement of the Thyssen
Museum in Malaga, Spain, were also included in Table 1 due to its interest.

The environmental conditions of this archaeological basement are special because they
mix the characteristics of an environment heavily influenced by the natural underlying
karst system with those of an enclosure located in an urban building. Apart from caves,
it was remarkable that a subterranean environment, the Roman mortar pavement in the
archaeological basement, was colonized by grey biofilms with a high relative abundance of
Crossiella. This environment is characterized by permanent darkness, the absence of visits,
and high relative humidity.

Table 1 shows the occurrence of Crossiella in moonmilk, grey, yellow, pink and white
biofilms, and sediments from different caves and subterranean environments. Crossiella is
abundant in different types of rocks, either in volcanic (Fuente de la Canaria, Bucara II),
karstic (Pindal, Nerja, Castañar, Altamira) or gypsum (Covadura, Yeso) caves.

In addition to the studies in Table 1, authors have reported the occurrence of Crossiella
using methodological approaches other than NGS. Stomeo et al. [33] found metaboli-
cally active Crossiella in white biofilms from Ardales Cave, Malaga, Spain. Portillo and
Gonzalez [34] identified Crossiella as a major metabolically active bacterium in the black
crust of a shelter located in Aragon, Spain, and Sanchez-Moral [5] reported Crossiella in
Altamira Cave.

Table 2 shows the widespread occurrence of Crossiella in caves in the USA, France and
China. Less frequent records were found in caves in Italy, Pakistan, Portugal, Serbia, and
Thailand, among other countries [35–57].

Table 2. Occurrence and relative abundance (>1%) of Crossiella in caves all over the world.

Karstic Caves
Relative

Abundance%
Genus Type of Sample (Method) References

Heshang n.d. Crossiella Weathered rocks (NGS) [35]

Laugerie-Haute 4.0 Crossiella Salt efflorescences (clones) [36]

Sorcerers 30.0 Crossiella Salt efflorescences (NGS) [37]

Pillier n.d. Crossiella Wall rock (NGS) [38]

Yixing Shanjuan 3.9 Crossiella Speleothem (NGS) [39]

Shuanghe 9.5 Crossiella Rock (NGS) [40]

Manao-Pee 4.1 Crossiella Soil (NGS) [41]

KN14 27.1–52.3 Crossiella Rock/Clay (NGS) [42]

RN5 1.0–17.9 Crossiella Rock/Clay/Mud (NGS) [42]

Maijishan Grottoes n.d. Crossiella Walls paintings (NGS) [43]

Heshang n.d. Crossiella Weathered rocks (NGS) [44]

Kashmir and Tiser 11.9–36.6 Crossiella Soil (NGS) [45]

Zhijin 4.1 Crossiella Wall rock (NGS) [46]

Rouffignac ~70.0 Crossiella Wall rock (NGS) [47]

Stiffe 9.9 Crossiella Biofilms (NGS) [48]

Heshang n.d. Crossiella Weathered rocks (NGS) [49]

Cave Church 0.1–4.9 Crossiella Fresco (NGS) [50]

Volcanic Caves

Azorean caves 18.6 Crossiella Biofilms (clones) [51]

4
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Table 2. Cont.

Karstic Caves
Relative

Abundance%
Genus Type of Sample (Method) References

Hawaiian caves n.d. Crossiella Biofilms (NGS) [52]

Californian caves n.d. Crossiella Biofilms (NGS) [53]

Idahoan caves n.d. Crossiella Biofilms (NGS) [54]

Sicilian caves 62.5–77.6 Crossiella Biofilms (NGS) [55]

Other Cave Types

Carlsbad Cavern n.d. Crossiella Rocks (clones) [56]

Imawarì Yeuta n.d. Crossiella Patina/Speleothems (NGS) [57]

n.d. Not determined.

Apart from the high abundance in Spanish caves, the high relative abundance of
Crossiella in Italian caves is also remarkable. In this regard, Nicolosi et al. [55] recorded
high relative abundances in four Etna volcano caves. One of them ranged from 62.5 to 77.6%.
Other notable abundances were found in the salt efflorescences of a French shelter [37] and
in caves in the USA [42], France [47], Pakistan [45], and the Azores, Portugal [51].

Crossiella has been identified as one of the dominant bacterial phylotypes, with an in-
creasing prevalence when global humidity conditions rise, in a research covering 1050 cave
microbiomes worldwide (manuscript in preparation).

3. Crossiella in the Environment

Supplementary Table S1 lists papers in the literature that use the keyword “Crossiella”,
including Crossiella misspelling [58–146]. The occurrence of the genus Crossiella in different
environments is significant. Papers reporting Crossiella equi and its involvement in animal
diseases [4] were excluded.

The papers listed in Supplementary Table S1 rely on molecular methods, except for
five articles describing the properties of isolated strains [5–9]. The genus Crossiella shows a
ubiquitous and extensive geographical distribution on all continents, including Antarctica,
but not in Australia/Oceania, likely due to a lack of relevant studies.

Fewer reports locate Crossiella in mines and reclaimed mine soils [7,120–124]. How-
ever, the number of studies on its presence in soils and the rhizospheres of diverse
plants is considerable. Several Crossiella findings in stones and building stones were
also confirmed [125–138]. Finally, a few records in sea sediments and freshwaters were
significant [139–146] because they included aquatic environments among Crossiella habitats.

From Supplementary Table S1, we can conclude that Crossiella, in addition to caves,
is relatively abundant in diverse environments, namely soils, plant rhizospheres, mines,
building stones, and other occasional habitats, but is rarely isolated.

Considering the abundance of reports on Crossiella in soils [58–96] and plant rhizo-
spheres [97–119], the presence of this genus in caves and other subterranean environments
could be attributed to its transport to the subsurface via percolation waters. In this regard,
Crossiella in percentages <1% have been found in drip waters from Pindal Cave [28]. It may
be possible that once transported to the caves, the environmental conditions favour and
increase the colonization and growth of Crossiella on different mineral substrata.

4. Crossiella Isolates

Only five reports shed light on Crossiella isolates. A screening of Nigerian soils
resulted in the isolation of Crossiella sp. strain EK18. The 16S rRNA nucleotide sequence
showed 98% similarity to C. equi. This strain grew well in different culture media and
exhibited broad-spectrum antimicrobial activity [6]. The authors studied the effects of pH,
temperature, carbon and nitrogen sources, sodium chloride concentration, and incubation
time on antimicrobial activity. In addition, they reported a list of 12 so-called antimicrobial

5
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metabolites, including alkanes, alkenes, commonly synthesized by bacteria, and phthalates,
which are contaminants from materials and impurities from products used in culture media.
Therefore, no conclusive data on the real bioactive compounds produced by the Crossiella
strain can be derived from this study.

Cimermanova et al. [7] isolated Crossiella sp., strain S2, from mining wastes, with a
16rRNA gene sequence similarity of 99.1% to C. cryophila. The authors suggested that it
may represent a novel, never described species, based on its location in the phylogenetic
tree. The strain also exhibited high heavy metal resistance.

González-Riancho [8] found relative abundances of Crossiella >20% in white, yellow,
and grey biofilms from Altamira Cave. She isolated two strains from white and one
strain from grey biofilms with similarities of 99.0–100.0 to C. cryophila using the medium
Actinomycete Isolation Agar (AIA).

Gonzalez-Pimentel et al. [9] studied two of the thirteen Crossiella strains previously
isolated from grey biofilms colonizing Altamira Cave, Spain (unpublished report). In vitro
and in silico analyses showed the inhibition of pathogenic bacteria and fungi. The exclusive
combination of gene clusters involved in the synthesis of lanthipeptides, lasso peptides,
nonribosomal peptides and polyketides indicates that these two strains represent a source
of new bioactive compounds. The taxonomical distance of both strains from their closest
relative, C. cryophila, suggests that they represent a new species of Crossiella, which will be
described in future works.

So far, the low number of isolated Crossiella strains indicates that most of the culture
media used are inadequate to reproduce their growth in the laboratory. The environmental
conditions of their ecological niche should also be considered when designing specific
culture media, which are superior to conventional ones.

5. Biomineralization in Caves Induced by Crossiella

Biomineralization or crystal formation is a general phenomenon caused by soil bacteria,
as reported by Boquet et al. [147]. These authors isolated 210 bacteria that could form
calcite crystals in a medium with calcium acetate and stated that their occurrence depended
on the composition of the medium used.

The role of bacteria in speleogenesis has been discussed for decades. Barton and
Northup [148] stated that in the 1960s, a few authors proposed that microbes played a role
in forming cave deposits. Banks et al. [149] confirmed the link between calcium metabolism
in bacteria and calcification using cave isolates. They suggested that the toxicity of Ca2+

ions to bacteria promoted the need to remove Ca2+ ions from the cell via calcification as a
detoxification mechanism.

Further evidence of biomineralization has been reported in recent decades that sheds
light on microbially induced mineral precipitation [150–153]. This precipitation has been
attributed to several causes: the modulation of environmental pH, nucleation sites on cell
surfaces, or enzymatically driven processes involving carbonic anhydrase, urease, etc. [154].

Grey biofilms from Altamira Cave were studied, and scanning electron microscopy
(SEM) revealed an abundance of bioinduced calcite crystals in addition to moonmilk [152].
The biofilms mainly comprised Actinomycetota filaments promoting carbon dioxide uptake
and formation of calcite deposits. A model for bioinduced calcite formation, supported by
scanning and transmission electron microscopy data, was proposed by Cuezva et al. [152].

Apart from the precipitation of calcite by Crossiella, another experiment (Figure 2)
with two strains of Crossiella isolated from Altamira Cave [9] revealed that both strains
induced the formation of different crystals when incubated in a culture medium with
barium acetate, yeast extract, and agar (Ba1). Two crystal types were identified on the
plates: witherite (barium carbonate) and struvite (magnesium ammonium phosphate),
with distinct abundances that were higher for witherite and scarcer for struvite. Witherite
precipitation is due to an abundance of barium in the medium. Occasional struvite crystals
can be derived from the amino acids and minor amounts of phosphorus and magnesium in
the yeast extract [155].
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Figure 2. Scanning electron micrographs and EDX spectra of barium carbonate and phosphate
crystals from two strains of Crossiella sp. (Cross-1 and Cross-2) [7]. (a) Witherite (barium carbonate)
crystals and Crossiella filaments in culture medium Ba1 (Cross-1). (b) Witherite crystals in culture
medium Ba1 (Cross-2). (c) Struvite (magnesium ammonium phosphate) crystals in culture medium
Ba1 (Cross-1). (d) Crossiella filaments without crystal formation in tryptic soy agar medium (Cross-2).
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Baryte (barium sulphate) precipitation by bacteria was previously reported by
Joubert et al. [156]. Sanchez-Moral et al. [157] found that baryte was associated with
filamentous bacteria in altered volcanic rocks. Agromyces spp., Bacillus spp., Lysobacter
spp., Ralstonia sp., Stenotrophomonas maltophilia, and Streptomyces sp. were isolated from
the volcanic rocks and precipitated witherite or calcite/vaterite in media with barium or
calcium acetate, respectively. The occurrence of baryte, but not witherite, in volcanic rocks
was due to the presence of sulphate ions that easily transform witherite into barite. This
transformation was not produced on the Crossiella plates without sulphate ions.

Struvite precipitation is not as widespread as calcite or witherite in bacteria. Sanchez-
Moral et al. [158] tested eight bacteria isolated from the Roman catacombs of St. Callixtus
and Domitilla and reported that Agromyces ramosus precipitated calcite, magnesium calcite,
witherite, and struvite, depending on the media composition. Other bacteria precipitating
struvite were Bacillus sp. and Ralstonia metallidurans.

Rivadeneyra et al. [159] found that only 20.8% of the tested bacterial isolates pre-
cipitated struvite and that calcium acetate appeared to inhibit struvite precipitation in
culture media, whereas ammonium ions triggered it [160]. Manzoor et al. [161] stated that
urease-producing bacteria play a key role in struvite precipitation, controlling nucleation,
and modulating crystalline phases and crystal shapes. Urease is present in the strain type
of Crossiella, C. cryophila [3], and urease genes have been identified in the genomes of the
two Crossiella strains from Altamira Cave [9].

Sánchez-Román et al. [162] reported that carbon and phosphorus cycles are interrelated
during biomineralization. They also demonstrated the co-precipitation of carbonate and
struvite, which we also found in Crossiella strains.

The data reported show that biomineralization by Crossiella is an active process in the
presence of different ions, confirming its role in moonmilk formation. Crossiella strains’
ability to induce carbonate precipitation, which is used to consolidate cultural heritage
stones and buildings, should be explored.

6. Moonmilk Formation

Moonmilk formation has been discussed in the literature for a long time [150,163–168].
The question: Is moonmilk an abiotic process driven physicochemically, or is it biotic,
mediated by microorganisms? A biological origin currently prevails; even a combination of
physicochemical and biogenic processes is being considered [166]. Cañaveras et al. [150,165]
indicated that bacteria influenced the physicochemistry of calcite precipitation. They ob-
served that cave moonmilk comprises a network of calcite crystals and active filamentous
bacteria. They also found that hydromagnesite and needle-fibre aragonite deposits were
associated with bacteria in Altamira Cave, predominantly Streptomyces, for which they
demonstrated their ability to precipitate calcite/vaterite in the laboratory. The association
between bacteria and mineral crystals was reported in other papers and described using
SEM [152,153,165,168–170]. In addition, different bacterial genera such as Agromyces, Amy-
colatopsis, Brachybacterium, Nocardioides, Nocardiopsis, Paenibacillus, and Rothia precipitated
vaterite/calcite and Mg-calcite [171].

Maciejewska et al. [153] found that all the Streptomyces strains tested could promote
calcification and biomineralization. The metabolic activities involved in the precipita-
tion were amino acids ammonification and ureolysis, which increased environmental pH.
Sanchez-Moral et al. [169] stated that microbial activity induces carbonate precipitation in
the early stages of deposition. However, as carbonate accumulates, a progressive decline
in microbial activity occurs, as deduced from the RNA/DNA ratio, which is used as a
marker of metabolic activity. The decreased metabolic activity is due to the progressive
accumulation of carbonate and bacterial entrapment in mineral deposits.

The high relative abundance of Crossiella in moonmilk from different caves indicates
that this genus is active in moonmilk formation (Table 1). Enzymatic processes induce
this mineralization, and several enzymes have been linked to Crossiella activity in moon-
milk. Martin-Pozas et al. [26] suggested that moonmilk formation is related to syntrophic
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relationships between Crossiella and nitrifying bacteria, and Cuezva et al. [27] associated
Crossiella with the ability to capture CO2 from the atmosphere and precipitate calcium
carbonate as a by-product of carbonic anhydrase action, as observed in cave moonmilk.

7. Is Moonmilk a Source of Bioactive Compounds?

Caves and moonmilk are colonized by complex bacterial communities.
Maciejewska et al. [153] reported that Proteobacteria was the dominant phylum of moonmilk
from a Belgian cave, followed by Actinobacteria, Acidobacteria, Chloroflexi, Nitrospirae, Gem-
matimonadetes, and Planctomycetes. These seven phyla accounted for 85.8–90.2% of the total
community. Martin-Pozas et al. [26] investigated the moonmilk composition from Pindal
Cave in Spain. They found that Proteobacteria and Actinobacteria dominated the community
with over 30% of relative abundance for each phyla, followed by Acidobacteria, Chloroflexi,
Planctomycetes, Gemmatimonadetes, and Nitrospirae. These phyla accounted for 93.1–93.9% of
the total community. The similarities between the phyla compositions of moonmilk from
two different caves are remarkable. Moonmilk from a geographically distant cave [172] and
another subterranean environment [173] also showed relatively similar phyla compositions.

Moonmilk has been a promising reservoir for novel bacteria producing bioactive
compounds, and a few novel species have been isolated, namely Streptomyces lunaelac-
tis [174], Pseudomonas karstica, and Pseudomonas spelaei [175]. Several studies have stressed
the great diversity of unknown bacteria inhabiting moonmilk and the isolates’ production
of bioactive compounds [176–178].

The high abundance of Actinomycetota (=Actinobacteria) and Pseudomonadota (=Pro-
teobacteria) in moonmilk has prompted researchers to test a series of strategies to isolate
hard-to-culture “rare actinobacteria” and discover novel bioactive compounds [13,14].
Adam et al. [176] obtained 40 isolates represented by Agromyces, Amycolatopsis, Kocu-
ria, Micrococcus, Micromonospora, Nocardia, Streptomyces, and Rhodococcus species. Strep-
tomyces isolates displayed strong inhibitory activities against Gram-positive and Gram-
negative bacteria and fungi [177–179]. Genome mining of Streptomyces lunaelactis revealed
42 biosynthetic gene clusters [180] and the production of the antibiotics bagremycins and
lunaemycins [180,181]. The genome of Crossiella, abundant in moonmilk [26], showed the
presence of a combination of gene clusters involved in synthesising different bioactive com-
pounds [9]. The data suggest the possibility of finding other moonmilk bacteria involved
in synthesising bioactive compounds.

8. Conclusions

The genus Crossiella is widely distributed in all environments, reaching a relative
abundance of up to 78% in a Sicilian cave. Its occurrence in soils, plant rhizospheres and
caves is especially important. The last case is probably due to its transport to the subsurface
by percolating waters. Despite this abundance, the strains isolated were scarce.

The data suggest that more environmental Crossiella species are waiting to be described,
apart from Crossiella cryophila and Crossiella equi. The increasing number of metagenomic
sequence data from all environments offers clear opportunities to guide the isolation and
cultivation of Crossiella. Therefore, further efforts are required to design suitable isolation
culture media. They should consider the environmental conditions of the niches where
Crossiella thrives, namely alkaline pH and high mineral concentrations.

Crossiella has an important role in carbon sequestration in subterranean environments.
Metagenomic studies and isolating more Crossiella strains and/or species are the only way
to advance knowledge of Crossiella functions in different ecosystems. Furthermore, its role
in biomineralization and moonmilk formation is also apparent.

Finally, Crossiella appears to be a promising source of active compounds, and the isolated
strains deserve more attention regarding their potential use in biotechnological processes.
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Abstract: Infestations of stored-product pests cause significant losses of agricultural produce every
year. Despite various environmental and health risks, chemical insecticides are now a ready-to-use
solution for pest control. Against this background and in the context of Integrated Pest Management
research, the present study focuses on the potential insecticidal effect of caffeic acid at five different
concentrations (250, 500, 750, 1500 and 3000 ppm), and their combination with Cydia pomonella
Granulovirus (CpGV), Bacillus thuringiensis subsp. tenebrionis and Beauveria bassiana strain GHA
on three major insect stored-product beetle species, Tribolium confusum (Coleoptera: Tenebrionidae),
Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) and Trogoderma granarium Everts (Coleoptera:
Dermestidae). Treatment efficacy was expressed as mortality in relation to exposure time and adult
species number. Compared to the control, the results showed a clear dose-dependent pesticidal
activity, expressed as significant adult mortality at a high-dose application, although some of the
combinations of caffeic acid concentrations with the other substances acted positively (synergistically
and additively) and some negatively. Based on our results, bioinsecticides can be combined with plant
compounds such as caffeic acid and be integrated with other modern IPM tools in storage facilities.

Keywords: caffeic acid; biopesticides; Cydia pomonella Granulovirus; Bacillus thuringiensis subsp.
tenebrionis; Beauveria bassiana; interactions; stored pests

1. Introduction

Storage pests can cause significant economic losses by contaminating stored products,
resulting in both quantitative and qualitative deterioration. The deterioration of stored
commodities is caused not only by the consumption of the product, but also by the con-
tamination of dead skin, excreta and dead insects, that can be dangerous for human health
because they cause allergic reactions [1,2]. Moreover, the presence of insect populations in
stored products can considerably increase relative humidity, which promotes secondary
fungal infestations [3]. Most agricultural products can be affected by such infestations,
resulting in annual losses of 9–20% [4].

Practices such as sanitation, aeration cooling, drying and controlled atmospheres
are implemented, but are not sufficient to effectively control insect infestations in storage
facilities [3]. Until now, fumigation with synthetic insecticides such as phosphine was
primarily applied in storage facilities for disinfestation, but the increasing hazards to human
health and the environment restricted their use [5,6]. Needless to say, the overreliance on
these substances all these years has led to resistance development, [7] and the neglect of
research into alternative control methods [6].

Due to the above facts, new investigations have recently emerged aimed at finding
more ecological methods for the management of storage pests, by utilizing natural plant
compounds or more specific products of plants’ secondary metabolism such as essential

Appl. Biosci. 2023, 2, 211–221. https://doi.org/10.3390/applbiosci2020015 https://www.mdpi.com/journal/applbiosci18



Appl. Biosci. 2023, 2

oils. Apart from the fact that they do not pollute the environment, they are very effective
against insects due to their volatility [8]. Substances derived from metabolic reactions of
plants can be bioactive towards insects, as they are part of their natural defense mechanisms
and include compounds such as terpenes, flavonoids, alkaloids, polyphenols, quinones,
and others [9]. Plant extracts and essential oils can exert a wide range of actions against
insects, such as toxicity, repellency, inhibition of respiration, oviposition, growth or feeding
and a reduction in adult emergence and abnormalities in larvicidal transitions [10–12].

Phenolic acids such as salicylic, coumaric, caffeic and chlorogenic acids are ubiqui-
tously present in plants and mostly participate in plant defense mechanisms [13]. Some of
these substances have already been investigated to utilize the natural immunity of plants
in the concept of biological control in agriculture. Caffeic acid (CA) is an early interme-
diate of phenylpropanoid metabolism, and a precursor for structural polyphenols and
many biologically active secondary compounds that are important in the plant defense
mechanisms [14,15]. This specific phenolic compound has been attributed to antifungal,
antibacterial and insecticidal properties [15].

Another promising aspect of insect biological control is the use of entomopathogens.
This approach has been thoroughly investigated lately as they offer a great alternative in
the context of integrated pest management (IPM). Viruses, bacteria and fungi have been
described as effective against various insect species [16–18]. These insect pathogens are not
hazardous as they already exist in nature and so have a very low environmental impact
and low mammalian toxicity [19,20]. There have been some studies that investigated
the synergistic effect of insect pathogens with biopesticides, and the results have varied
between a lesser, zero or enhanced efficacy against arthropods.

In this context, the present study aimed to investigate the efficacy of CA, in combina-
tion with commercially available biopesticides (fungal, viral and bacterial) on three major
insect stored-product beetle species. All tested species are globally distributed stored-
product pests and cause serious quantitative and qualitative losses in a vast range of com-
modities. Our results are discussed in the context of enhancing the use of insect pathogens
as a key component of integrated pest management against stored-product pests.

2. Materials and Methods

2.1. Insect Rearing

Three important stored-product beetle species were selected for experimentation. The
insect species tested were T. confusum, C. ferrugineus and T. granarium. Insects were reared
in incubators (PHC Europe/Sanyo/Panasonic Biomedical MLR-352-PE) at 27.5 ◦C and 75%
relative humidity (r.h.). T. granarium was kept on whole wheat, C. ferrugineus on rolled oats
with 5% brewer’s yeast, and T. confusum on whole wheat flour with 10% brewer’s yeast.
Adults of uniform age (<2 weeks old) and mixed sex were used for experimentation.

2.2. Caffeic Acid Solution and Biopesticides

The solution was obtained for Karvelas AVEE with lot number 15038821. The composi-
tion of the tested solution was natural caffeic acid at 1120 mg/kg, conductivity 97.9 mS/cm,
pH 4.62 and density 1.215 g/cm3.

Biopesticides tested during the present study were commercial formulations obtained
from the market. Specifically, we used Madex® (Cydia pomonella granulovirus (CpGV)
(Hellafarm, Athens, Greece), Novodor® FC (Bacillus thuringiensis subsp. Tenebrionis 3%)
(BIOFA Germany, Bad Boll, Germany) and Botanigard® 10.7SC (Beauveria bassiana strain
GHA 10.735%) (K&N Efthymiadis Single Member S.A., Thessaloniki, Greece).

2.3. Experimental Procedure

500 g of wheat (var. Mexa) were divided into separate lots and filled into 0.45 L
cylinder jars. Since it is difficult for these species to reproduce on intact grains, the wheat
used had 5% broken kernels. The wheat was stored for 28 days under ambient conditions
to adjust the moisture content (m.c.) to 12%.
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Experimentation included five concentrations of CA solution (Karvellas AVEE, Thiva,
Greece) (250 ppm, 500 ppm, 750, ppm, 1500 ppm and 3000 ppm) and one (3000 ppm) for
commercial biopesticides. The solvent used to prepare all solutions was distilled water.
Twenty 10 g wheat samples were taken from the jars and placed in 9 cm Petri dishes.
Following this, ten adult beetles of each species, of uniform age (<2 weeks old) and mixed
sex, were transferred to each Petri dish. The inner “neck” of the Petri dish was covered with
fluon to prevent insect escape (Northern Products, Woonsocket, RI, USA). A Potter spray
tower (Burkard Manufacturing Co., Ltd., Rickmansworth, Hertfordshire, UK) was used to
apply the solutions to the products at a rate of 1 kgf cm2. For separate doses testing, the
experimental adults were sprayed once with 2 mL of the CA or biopesticide. Conversely,
for the combined treatments, spraying was performed twice, once with 2 mL of the CA
solution and once with 2 mL of the biopesticide solution, each 2 s apart. The Petri dishes
were then transferred to Toshiba incubators (PHC Europe/Sanyo/Panasonic Biomedical
MLR-352-PE) and set at 27.5 ◦C and 75% relative humidity. The beetles were observed
daily, and mortality was recorded 7, 14, 21, and 28 days after treatment.

The entire procedure was repeated twenty times by preparing new batches of treated
and untreated grains at each replicate (separate treatments: 9 × 3 × 20 = 540 Petri dishes
for each dose × insect species × replicate, combined treatments: 15 × 3 × 20 = 900 Petri
dishes for each dose × insect species × replicate).

2.4. Mathematical Estimation and Statistical Analysis

The interaction between the CA and the biopesticides was estimated using the formula
of Robertson and Preisler:

PE = P0 + (1 − P0) × (P1) + (1 − P0) × (1 − P1) × (P2),

where: PE is the expected mortality induced by the combined treatment; P0 is the mor-
tality of the control; P1 is the mortality caused by the CA; P2 is the mortality caused by
the biopesticide.

Distribution was determined by the chi-square formula: x2 = (L0 − LE)2/LE + (D0 − DE)2/
DE where L0 is the number of living adults, D0 is the number of dead larvae, LE is the
expected number of live larvae, and DE is the expected number of dead larvae. The formula
was used to test the hypothesis independent–simultaneous relationship (1 df, p = 0.05).
If x2 < 3.84, the ratio is defined as additive (A); if x2 > 3.84 and the observed mortality
is higher than expected, the relationship is defined as synergistic (S). On the contrary, if
x2 > 3.84 and the observed mortality is less than expected, the relationship is defined as
competitive (C).

The general linear model of SPSS (version 23.0, IBM Corp., Armonk, NY, USA) was
then used to evaluate the data using a three-way ANOVA (IBM 2014). The Bonferroni test
was used to compare means in cases where there were substantial F values.

3. Results

The results of the laboratory bioassays on adults of T. granarium, C. ferrugineus, and
T. confusum showed that separate treatments with CA and all pathogens caused varying
degrees of time-, treatment- and dose-dependent mortality. Adult mortality of T. granarium
was 57–73%, of C. ferrugineus was 43–67%, and of T. confusum was 27–67% twenty-eight
days after treatment with CA solution at the highest dose (3000 ppm). After twenty-eight
days, the application of B. thuringiensis caused 67% mortality in T. granarium adults, 73%
in C. ferrugineus, and 69% in T. confusum. After twenty-eight days of CpGV treatment, the
observed mortality of adults of T. granarium, C. ferrugineus, and T. confusum was 70%, 43%,
and 47%, respectively. The mortality of T. confusum, C. ferrugineus, and T. granarium after
twenty-eight days of treatment with B. bassiana was 93%, 77%, and 93%, respectively. In all
of the tested insects, the control mortality was less than 3%.

According to results of the combined bioassays, all combinations tested induced vari-
ous levels of time- and dose-dependent mortality (Table 1). The results of the combined
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treatments showed a distinct interaction between treatments, as follows: for T. granarium
adults, the interaction between the pathogens was additive in nine combinations the first
seven days, synergistic in two and antagonistic in five. The following fourteen days, the
interactions proved to be additive in seven combinations, synergistic in one and antago-
nistic in six. After twenty-one days, the interaction was additive in eight combinations
and competitive in seven (Table 1). Finally, twenty-eight days later, the interaction was
characterized as additive in seven combinations and competitive in eight (Table 1). Adult
T. granarium mortality was between 37 and 100% (F: 19.764; df: 654.2360; p: <0.001) (overall
15 treatments).

Interactions between treatments on T. confusum for seven days were additive in ten
combinations, synergistic in four combinations and competitive in one combination. For
fourteen days, the interactions between treatments were all additive. At twenty-one days,
the interaction between treatments was additive in fourteen combinations and synergistic in
one combination (Table 2). As for the twenty-eighth day, the interaction between treatments
was additive in fourteen combinations and synergistic in one combination (Table 2). Adult
T. confusum mortality ranged from 27 to 100% (F: 20.764; df: 654.2360; p: <0.001) (overall
15 treatments).
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Overall, all the main effects of examined factors (insect species, exposure time, treat-
ment) and their interactions proved to be significant as was demonstrated by a 3-way
analysis of variance (Table 4).

Table 4. An analysis of variance (3-way ANOVA) for the main effects and interactions for the mortality
of T. granarium, T. confusum and C. ferrugineus adults exposed to separate and combined treatments
with CA and biopesticides.

Separate Treatments Combined Treatments

Source df F Sig. df F Sig.

Exposure time 3 11.838 <0.001 3 8.142 <0.001

Insect species 2 10.099 <0.001 2 6.499 <0.001

Treatment 3 16.476 <0.001 4 3.702 <0.001

Exposure time * Insect species 6 11.109 <0.001 6 7.288 <0.001

Exposure time * Treatment 9 11.540 <0.001 12 11.534 <0.001

Insect Species * Treatment 6 13.829 <0.001 8 5.420 <0.001

Exposure time * Insect species * Treatment 16 14.950 <0.001 24 9.946 <0.001

Error 210 380

Total 280 400

Corrected total 279 399

4. Discussion

As chemical insecticides are being more and more neglected, many studies now focus
on alternatives, investigating compounds derived from nature. Plant chemicals can act
as insecticides by preventing insects from feeding or by demonstrating repellent and
growth inhibition effects [21,22]. The insecticidal potential of phenolic plant compounds
such as CA has been well documented [23–28]. In our bioassays, adult beetles treated
only with CA showed noteworthy mortality (up to 70%). The lethal effect of CA on
insects has been also verified for the tobacco cutworm, Spodoptera litura (Fabricius) [29]
and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) [30].
Apart from mortality effects, various studies have demonstrated that CA and other plant
phenolic compounds may have negative effects on insect feeding, larval growth rate and
reproduction [31–35]. Pacifico et al. [35] investigated the effect of CA on the larvae of
Phthorimaea operculella and recorded sublethal effects and anti-nutrient action as it inhibited
larval growth.

A possible explanation for these results may lie in the interaction of the phenolic
compounds with digestive proteins of the insects leading to a decrease in nutritional
quality. The way phenolic compounds affect the interaction of plants with bacteria and
fungi has already been investigated even though little is known about the toxicity of
phenolics against insects [36].

As expected, separate treatments with biopesticides caused high mortality in all tested
species. There are several main factors that can influence the efficacy of biopesticides, such
as the type of biopathogen, the dose applied, temperature, relative humidity and the type
of product [20,37–43]. Moreover, the insecticidal efficacy of biopesticides can be highly
influenced by a host’s physiology, morphology and behavior, the population density, age,
nutrition, and genetic information [39].

Our original hypothesis was that the interaction between CA and biopesticides either
leads to additional efficacy or plays only a supporting role. Based on our results, the interac-
tion was additive in T. confusum in most combinations. On the other hand, it was negative in
four treatments in some combinations for T. granarium and C. ferrugineus adults, especially
in the first 7 days of the experiment when the bacterial insecticide was applied. A negative
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interaction refers to the competitive relationship between CA and the pathogen. The nature
of this competition is not precisely known. Entomopathogenic microorganisms have also
shown increased efficacy when applied in combination treatments not only with other
entomopathogens but also with synthetic insecticides [44]. Regarding their coexistence with
plant extracts, entomopathogenic microorganisms have shown both an inhibitory effect [45]
and a positive interaction as Neem seed cake improved the pathogenicity of the fungus
Metarhizium anisopliae against the Black Vine Weevil [46]. The entomopathogenic fungus M.
anisopliae has been successfully combined with plant extracts for the control of ticks [47],
whereas other plant extracts showed compatible capacity with entomopathogenic bacteria
against aphids [48]. To the best of our knowledge, there are no data available concerning
the interaction of CA or other plant phenolic metabolites with entomopathogens.

In general, combinations of feeding stimulants and deterrents affect the feeding re-
sponse of phytophagous insects [49,50]. It has been suggested that the Colorado potato
beetle selects its hosts among solanaceous plants based on the presence of deterrents such as
alkaloid glycosides rather than on the presence of feeding stimulants [51,52]. Various types
of sesquiterpene lactones are present in Asteraceae and deter numerous phytophagous
insects from feeding on the plants [53]. Caffeic acid derivatives play an important role
in plant defense [54]. Chlorogenic acid has been reported to inhibit larval development
of some Lepidoptera, such as H. armigera, the corn earworm Heliothis zea (Boddie), and
the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) [55–58] and
deters feeding in leaf beetles Lochmaea caprea (L.) [59], and Agelastica alni (L.) (Coleoptera:
Chrysomelidae) [60,61].

To conclude, the interactions between tested insecticidal agents could be positive or
negative, acting synergistically (increasing host mortality compared to single pathogen
infections) [20,62,63] or antagonistically (reducing the observed host mortality compared to
single pathogen infections) [64]. Needless to say, pest mortality can be affected by genotype,
dose and sequence of infection [65,66].

5. Conclusions

Based on our results, the combined application of plant extracts and entomopathogenic
microorganisms may become an effective strategy for eco-friendly pest management in
storage facilities. However, special attention should be paid to the selection of the combined
agents as the additive or synergistic effect is not always valid. Our study has shown the
significant insecticidal action of CA alone or in combination with biopesticides. Further
research is needed to clarify the effects of various factors, such as pest species, storage
environment, application dose, time interval, stored product type, etc., and to enhance the
use of plant compounds in stored-product IPM.
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Abstract: Lomandra species are an important understory component of many Australian native
ecosystems, contributing to the floristic richness and stabilizing soils. However, a limited under-
standing of their germination biology currently hinders their efficient use in seed-based restoration
and ornamental plant production. The present study investigated Lomandra longifolia and L. hystrix
diaspore morpho-anatomy and evaluated different mechanical and/or chemical treatments (nicking,
leaching, smoke water and gibberellic acid [GA3]) and under light or dark conditions to enhance
germination. Embryos of both species were small and linear with a low embryo to seed ratio (<0.45).
Germination rates of both species were significantly hastened by leaching seeds in running water
for 36 h as compared to a non-leached seed. The results suggest that pre-treating both Lomandra
species by leaching could maximize the effectiveness of seed used by resulting in faster, more uniform
and, therefore, reliable germination of these species. Finally, seeds of L. longifolia had low final
germination (<40%), with a high presence of viable but dormant seeds. The ecological cues that
promote germination in nature for both species should be further examined.

Keywords: direct seeding; Australian native seed; seed-based restoration; seed dormancy; seed ecology;
seed pre-treatments

1. Introduction

Lomandra is a genus within the family Asparagaceae [1] that generally consists of small
perennial herbs with a rhizomatous growth habit that often form tussocks [2]. Lomandra
longifolia Labill. (spiny-head mat-rush) is one of the most widely distributed species in Aus-
tralia [3] (Figure 1) and is particularly common in the south-east region of Australia [4]. It is
highly adaptable and can grow in a wide range of habitats, such as on hillsides of dry forests,
alongside creeks and coastal headlands. Lomandra hystrix (R.Br.) L.R. Fraser and Vickery
(creek mat-rush) has a more confined natural distribution than L. longifolia and is found
in the coastal regions of Queensland and New South Wales. Both species are commonly
used as ornamental plants as well as for seed-based restoration projects [5]. These species
are important understory components of many Australian ecosystems, providing shelter,
breeding sites and food resources for native wildlife [4]. They have multiple benefits for
seed-based restoration, which include their contribution to floristic richness and their ability
to stabilize soils to prevent erosion due to their fibrous root system [6]. Large quantities of L.
longioflia seeds are used annually to restore degraded Australian bushlands and disturbed
plant communities due to human activity such as mining and construction [6]. Both species
can be propagated using freshly produced diaspores (seed encased within the pericarp;
hereafter, referred to as seeds) when sown in autumn conditions in Australia.

Even though Lomandra spp. are an important ecological, ornamental and restoration
component in Australia, their seed biology has been poorly studied, hindering efficient
seed use. It is well known that many Australian native species have diverse dormancy
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mechanisms [7], which manipulates germination through time and space. The most com-
mon form of dormancy in dryland Australian natives is physiological dormancy (PD) [7,8].
Physiologically dormant seeds are permeable to water and have fully developed embryos,
but the embryo has low growth potential and cannot overcome the mechanical constraints
of its covering layers [9]. For this reason, they usually take >28 days to germinate [10]. Lo-
mandra seeds often have very slow germination, taking up to 60 days to germinate [11–13].
Grant et al. [13] reported that although germination of L. longifolia was very low after
28 days of imbibition, there was a significant increase (63%) in germination after this period.
Plummer et al. [2] suggested that this delay in germination is due to dormancy mechanisms,
possibly within the pericarp. Further, they found that Lomandra sonderi (F.Muell.) Ewart.
and Lomandra drummondii (Benth.) Ewart. reached full water imbibition within 24 h and
concluded that Lomandra spp. do not possess water-impermeable seed coats and, therefore,
do not present physical dormancy (PY).

 

Figure 1. Natural distribution of Lomandra longifolia Labill. (light grey) and Lomandra hystrix (R.Br.)
L.R. Fraser and Vickery (dark grey) in Australia (Source: Atlas of Living Australia).

Identifying the mechanisms that control dormancy and germination, together with
finding new ways to hasten seed germination and seedling emergence, could be of great
importance to achieve cost-effective usage of Lomandra seeds. For example, studies have
shown that a combination of smoke water and stratification can increase seed germination
to 50% in Lomandra preisii (Endl.) Ewart. [7], which could be associated with an over-
coming of PD. Moreover, leaching of inhibitors from L. longifolia seeds with five cycles of
soaking and rinsing combined with warm stratification significantly improved its germi-
nation [14]. Similarly, leaching seeds with running tap water or pericarp removal could
overcome dormancy in L. sonderi and could achieve germination of ca. 20% of the seeds.
Similar treatments increased germination from 40 to 80% in L. drummondii [2]. The authors
related the increases in germination with the removal of germination-inhibiting chemicals
found in the tissues surrounding the embryo. Gibberellic acid (GA3) and smoke water
have also been used successfully in promoting germination in L. sonderi [2]. Gibberellic

30



Appl. Biosci. 2023, 2

acid is known to stimulate endosperm weakening and stimulate embryo germination [15];
smoke water has been shown to promote germination in a wide range of Australian na-
tive species [7,16,17]. Furthermore, scarification and seed nicking (a small cut through
the tissues surrounding the embryo) of the pericarp and seed coat can be effective in
overcoming PD or morpho-physiological dormancy (MPD) for several species. These treat-
ments can relieve mechanical restrictions of the fruit tissues and/or seed coat, allowing
embryo growth [18,19]. This can be particularly helpful in seeds that have a low embryo
growth potential.

Microscopic investigation of seed internal morpho-anatomy is useful to characterize
the seed and help elucidate germination biology aspects. Such analysis can determine
embryo size, shape and location within the seed to determine the embryo to seed ratio (E:S)
and size of the endosperm and/or cotyledons [10]. Documentation of embryo characteris-
tics can also be used in determining the presence of morphological dormancy (MD) or MPD
associated with embryo development [20]. Underdeveloped embryos have differentiated
organs and tend to have low E:S ratios [21]. Embryos in seeds with MD need to undergo a
growth period prior to radicle protrusion [10] (for example, in [22]). There are few studies
that focus on morpho-anatomy characterization of L. longifolia and L. hystrix seed (such
as [5,6]). This information could provide helpful insights into explaining the dormancy and
slow germination rates observed for both species.

The current study describes the seed morpho-anatomy of both Lomandra species and
determines methods for elevating seed germination to enable a more cost-efficient use of
these seeds in seed-based restoration projects and ornamental plant production. Thus, the
objectives were to (1) identify relationships between germination, seed fill and seed morpho-
anatomical structures (embryo and seed size); and (2) develop methods to speed up the
rate and increase the final seed germination by investigating chemical and mechanical seed
treatments to overcome possible PD at optimum alternating temperatures in light or dark
conditions. This information will provide an understanding of the dormancy mechanisms
that are preventing germination and will help in developing improved seed germination
protocols for L. longifolia and L. hystrix. Improved germination would also lead to increased
use of these highly beneficial species in land regeneration projects and reduce the costs
associated with seed wastage.

2. Materials and Methods

2.1. Seed Lots

Lomandra longifolia and L. hystrix seeds were obtained from a commercial seed supplier
(Native Seeds and Land Repair, Maleny, QLD, Australia). Lomandra longifolia seeds were
collected from the suburb of Redlands, part of the Brisbane metropolitan area in south-east
Queensland during December 2017, while L. hystrix seeds were collected from the suburb
of Caloundra, Sunshine Coast Region in south-east Queensland during January 2017. Both
seed batches had >90% viability as determined by the supplier. After delivery, seeds were
stored in a seed storage cabinet at 15 ± 1 ◦C temperature and 15 ± 3% relative humidity
until used. Seed age was 16 months for L. longifolia and 27 months for L. hystrix when used.

2.2. Seed Fill, Weight and Morpho-Anatomy

Seeds of both species were examined by using an X-ray machine (Faxitron MX-20
Imaging system, Lincolnshire, IL, USA) to determine seed fill percentage. Seed samples
(5 replicates of 25 seeds per species) were exposed to 18 Kv of X-ray tube voltage for 20 s and
images were captured using Bioptics software (Olympus, Tokyo, Japan) at 2× magnification
of resolution. The percentage of filled seeds was determined by counting the number of
seeds that had a full-sized endosperm and embryo. Filled seeds had a white color, and
damaged or unfilled seeds were indicated by black areas inside the seed. The percentage of
filled, partially filled (seeds with parts of their endosperm and/or embryo missing) and
unfilled seed was determined. Partly filled and unfilled seeds were considered non-viable.
Filled seeds with intact and healthy-looking embryos were considered viable. To determine
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the 100-seed mean weight, 5 samples of 100 seed from each species were randomly selected
and weighed.

Seed anatomical structure was determined by photographic analysis by using a light
microscope (Olympus SZX7, Mornington, TAS, Australia) with a digital camera attached.
Seed and embryo size—specifically, length, width and area—were measured using CellSens
software. To determine the E:S ratio, seeds were dissected longitudinally, and the embryo
length was divided by seed length [23]. Embryo development was classified based on
its anatomy (size and shape) according to Martin [21]. The presence of a developed or
underdeveloped embryo was evaluated to identify if MD was present [24].

2.3. Germination Stimulation Using Mechanical and Chemical Treatments

Eight mechanical and/or chemical treatments were used viz. seed leaching, seed nick-
ing, chemical treatment with smoke water at three different concentrations (Regen 2000
Smokemaster, batch no. 11957R, Tecnica, Bayswater, VIC, Australia), GA3 (90% gibberellin
A3, Sigma-Aldrich, lot BCBD6798V, St. Louis, MO, USA) or a combination of treatments
(Table 1). Prior to treatments, all seeds were surface sterilized in 2% (v/v) sodium hypochlo-
rite (NaOCl) solution for 10 min [25] with two drops of Tween 20 (Labchem, Zelienople,
PA, USA) added as a surfactant. Seeds were then washed four times with sterile water
and blotted dry. To undertake leaching, seeds of each species were transferred to several
mesh ball infusers (diameter of 5 cm) and placed individually into 250 mL glass beakers
for 36 h under running, turbulent cold tap water (ambient from main town water supply).
To nick seeds, a small cut on the embryo end of the seed was undertaken using a scalpel
blade (Figure 2). Chemical treatments (5 mL) were applied to each Petri dish (9 cm diameter)
containing two Whatman No. 1 filter papers.

Table 1. The germination stimulant treatments applied to seeds of Lomandra longifolia Labill. and
Lomandra hystrix (R.Br.) L.R. Fraser and Vickery consisted of both mechanical and chemical methods
involving leaching, nicking, smoke water (SW) and gibberellic acid (GA3).

Treatment Type

Leaching Mechanical
Nicking Mechanical

SW1: Smoke water (50 mL L−1) Chemical
SW2: Smoke water (100 mL L−1) Chemical
SW3: Smoke water (200 mL L−1) Chemical
GA3: gibberellic acid (289 μM) Chemical

Nicking + SW2 Combination
Nicking + GA3 Combination

Previcure® (2% v/v; Bayer Crop Science) was added to the Petri dishes to inhibit
fungi growth [19,26]. Then, following the addition of seed, each Petri dish was sealed with
Parafilm to prevent evaporation of solutions. This was undertaken in a laminar air flow
hood to reduce possible microbial contamination. All treatments were applied under light
(with a 12/12 h day/night photoperiod) or dark conditions to simulate the seed being
placed on the soil surface (light) or seed burial (dark). For seeds imbibed under light, the
12/12-h photoperiod used had a light intensity of 100 μmol m−2 s1 (produced by cool white,
fluorescent tubes). Dark conditions were achieved by wrapping the Petri dishes with two
layers of aluminum foil. Petri dishes were placed in an incubator (TRIL-750 Illuminated
Refrigerator Incubator, Thermoline, Wetherill Park, NSW, Australia) using a matching
12/12-h thermoperiod of 20/10 ± 1 ◦C. The thermoperiod was selected from earlier studies
carried out on both Lomandra species (unpublished data) and from the published literature
(maximum germination for L. longifolia was at 20 ◦C and for L. hystrix it was at 15 ◦C [1]).
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Figure 2. Location where seed nicking was applied to seed (pericarp + seed) of Lomandra hystrix
(R.Br.) L.R. Fraser and Vickery to help relieve mechanical pressure on the embryo by the surrounding
tissues. A small nick was formed by applying gentle pressure with a scalpel blade (marked as a black
line in the image), resulting in a cut through the pericarp.

2.4. Data Collection and Analysis

For both species, each treatment was replicated 4 times, and each replication had
25 seeds per Petri dish. A completely randomized design was used. All seed germination
tests were run for 60 days. Petri dishes were examined for germination twice weekly. Ger-
minated seeds (radicle protrusion ≥ 2 mm) were recorded and removed. Seeds germinated
under dark conditions were observed under a green safety light (Lion 24 LED Magnetic
work lamp, covered with a green plastic sheet) in a dark room. Cumulative germination
over time for the different seed treatments for each species was determined using a non-
linear regression model fitted with the drm function in package drc [27] using R software,
version 3.5.3 [28]. A three-parameter log-logistic model was used [29]. The germination
rate index (GRI) was determined according to Maguire [30] (Equation (1)). Germination
data (final germination percentage, percentage of dormant seeds and GRI) for each species
were analyzed using a two-way factorial analysis of variance (ANOVA). When significant
differences were identified, a Tukey’s honest significance difference (HSD) test was used as
a post-hoc analysis to identify significant differences between treatment means.

Equation (1): Germination rate index (GRI; Maguire [30])

GRI
(

%d−1
)
=

∑(Gi − Gi−1)

i
(1)

i: Day of germination count
Gi: Percentage of seeds germinated in day i
Gi−1: Percentage of seeds germinated the previous count day

3. Results

3.1. Seed Fill and Seed Morpho-Anatomy

Lomandra longifolia had a 100% and L. hystrix had a 99% seed fill (Figure 3a,b, respec-
tively). The seed cross-sectional area was 7.5 mm2 for L. longifolia and 11.8 mm2 for L.
hystrix (Table 2). Embryos of both species were fully differentiated and seemed to be fully
developed. They were small and linear and located in the basal part of the seed (Figure 4).
Both species had a large proportion (>70%) of the seed consisting of endosperm tissue
surrounding the embryo (Figures 3c and 4). The E:S ratio was 0.4 for both L. hystrix and L.
longifolia (Table 2). The 100-seed weight was 900 mg for L. hystrix and 860 mg for L. longifolia.

33



Appl. Biosci. 2023, 2

Table 2. Seed characteristics as determined from 10 randomly selected seeds of Lomandra longifolia
Labill and Lomandra hystrix (R.Br.) L.R. Fraser and Vickery. An endosperm was present in both
species, and the embryo type was linear. The E:S ratio, seed and embryo length, area, perimeter and
width were measured. Mean ± SE.

Tissue Lomandra longifolia Lomandra hystrix

E:S ratio 0.4 ± 0.03 0.4 ± 0.04
Seed length (mm) 3.9 ± 0.1 4.9 ± 0.8
Seed width (mm) 2.3 ± 0.2 2.5 ± 0.4
Seed area (mm2) 7.5 ± 0.6 11.8 ± 5.2

Embryo length (mm) 1.4 ± 0.1 2.2 ± 0.5
Embryo area (mm2) 0.3 ± 0.0 0.6 ± 0.1

100 seed weight (mg) 860 ± 20 900 ± 20

 
Figure 3. X-ray images (Faxitron MX-20) showing seed fill of (a) Lomandra longifolia Labill. (100 ± 0%
seed fill); (b) Lomandra hystrix (R.Br.) L.R. Fraser and Vickery (99 ± 1% seed fill); (c) seed endosperm
(en; white tissue) can be distinguished from the seed pericarp (pe; grey border area) surrounding the
seed in L. hystrix. Seed fill was calculated by averaging the results of 5 replicates of 25 seeds from
each species. All seeds shown are considered filled.

Figure 4. Light microscope images of longitudinal sections of seed (pericarp + seed) of (a) Lomandra
longifolia Labill; and (b) Lomandra hystrix (R.Br.) L.R. Fraser and Vickery. In image (b), the embryo of
L. hystryx is not shown in full as it sinks into the endosperm. Seeds had a small, linear basal embryo
(em). The endosperm (en) filled a large proportion of the seed. Seed coat (sc) and pericarp (pe) are
indicated with arrows. Magnification × 160.

3.2. Germination Enhancement Using Mechanical and Chemical Treatments

Leaching significantly increased (p ≤ 0.001) the GRI for both species in comparison to
untreated seeds and other pre-treatments regardless of light conditions (Table 3). Leached
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seeds were also the first to start germination (Figure 5). For L. longifolia, seeds leached in
darkness had a higher GRI (1.0 ± 0.1% day−1) as compared to leached seeds under light
(0.5 ± 0.1% day−1). Leached seeds for L. hystrix incubated under light conditions had GRI
of 3.7 ± 0.1% day−1 as compared to control of 1.7 ± 0.2% day−1 (Table 3). However, the
GRI for leached seeds incubated under light was significantly higher (p < 0.0001) than in
darkness (2.4 ± 0.2% day−1).

 

Figure 5. Mean germination percentage during 60 days of incubation (20/10 ◦C, 12/12-h thermope-
riod, light [12/12-h photoperiod] or dark) incorporating chemical and/or mechanical treatments
applied to (a) Lomandra longifolia Labill; and (b) Lomandra hystrix (R.Br.) L.R. Fraser and Vickery. Four
replications per treatment, with twenty-five seeds per replicate per species were used.

Leaching or nicking (mechanical treatments) did not improve the final germination
percentage for either species when compared to the untreated seeds (Figure 5). Lomandra
longifolia had a maximum germination of 37.0 ± 1.9% (Figure 5a; leached seeds incubated
in darkness). Furthermore, untreated L. longifolia seeds under darkness had a significantly
higher final germination percentage (26.0%) as compared to seeds exposed to light (9%;
p ≤ 0.01). In L. longifolia, the germination percentages for leached seeds were significantly
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higher as compared to nicked seeds (7% higher under light and 13% higher under darkness;
p ≤ 0.01). Lomandra hystrix had a maximum of 86.0 ± 2.6% germination (Figure 5b; leached
seeds incubated under illuminated conditions), and unlike L. longifolia, no significant
differences (p > 0.05) were observed for untreated seeds of L. hystrix incubated under light
or dark conditions. In L. hystrix, untreated seeds, leached seeds and nicked seeds had
significantly higher final germination percentages (>53%) than for the remainder of the
treatments (<40%; p ≤ 0.05).

Table 3. Germination rate index (GRI) for Lomandra hystrix (R.Br.) L.R. Fraser and Vickery and
Lomandra longifolia Labill. incubated under complete darkness (24 h) or light/dark (12/12-h photope-
riod) conditions following chemical and/or mechanical treatments. All seeds were incubated for
60 days at 20/10 ◦C with a 12/12-h matching thermoperiod. Treatments were as follows: leaching
with running tap water for 36 h, nicking (small cut through pericarp and seed testa), smoke water
(SW)—SW1:50, SW2:100, SW3:200 mL L−1; gibberellic acid—GA3: 289 μM; SW2 + nicking, GA3 +
nicking and control (untreated seeds). Means ± SEM were calculated using 4 replications, 25 seeds
per replication. Treatments that had a significantly higher GRI than the control are in bold, and
treatments that resulted in zero germination are denoted by a dash.

Treatment
Lomandra longifolia Lomandra hystrix

Light Dark Light Dark

Leaching 0.5 ± 0.1 1.0 ± 0.1 3.7 ± 0.1 2.4 ± 0.2
Nicking 0.2 ± 0.1 0.7 ± 0.0 2.2 ± 0.3 1.6 ± 0.4

SW1 - - 0.3 ± 0.0 -
SW2 - - 0.5 ± 0.1 -
SW3 - - - -
GA3 - 0.3 ± 0.1 - 1.2 ± 0.2

SW2 + nicking - - 0.9 ± 0.3 -
GA3 + nicking - 0.1 ± 0.0 0.4 ± 0.1 1.7 ± 0.1

Control 0.2 ± 0.1 0.5 ± 0.1 1.7 ± 0.2 1.2 ± 0.1

Treatment with smoke water, at all three concentrations (SW1:50, SW2:100 and
SW3:200 mL L−1) and in combination with nicking, gave a significantly lower final germi-
nation percentage for both species in light and dark conditions when compared to untreated
seeds (≤37% for L. hystrix and ≤1% for L. longifolia; p ≤ 0.05). Lomandra hystrix and L.
longifolia seeds treated with a combination of GA3 and nicking had significantly higher final
germination in darkness as compared to light conditions (p ≤ 0.05; Figure 6). Under light,
GA3 and SW3 gave a significantly lower final germination of <3% than other treatments for
L. hystrix and L. longifolia (p ≤ 0.005). In L. longifolia, significantly higher (p ≤ 0.05) final
germination percentage occurred in dark conditions as compared with light conditions, for
leaching, nicking, GA3 and the control (24, 18, 18, 17% higher, respectively).

After 60 days, ≥50% of L. longifolia seeds remained ungerminated (Figure 6a). These
seeds were considered dormant as they were filled (determined by X-ray) and firm. No sig-
nificant differences were observed in dormant seeds of L. longifolia between treatments and
control (p ≥ 0.05). For L. hystrix (Figure 6b), the number of dormant seeds was significantly
higher for seeds treated with smoke water (≥80% dormant seeds in all concentrations), SW2
+ nicking (≥63%) and GA3 + nicking (>40%) (Figure 6). Moreover, for GA3 and nicking
+ GA3 treatments in this species, dormancy was significantly higher in light conditions
when compared to darkness (98 vs. 56% and 87 vs. 41% respectively: p ≤ 0.005) (Figure 6).
Seed death occurred mostly in L. longifolia, with the highest number observed in SW2 +
nicking (51% dead seeds in light conditions) and GA3 + nicking (>40% for light and dark
conditions) (Figure 6). In contrast, a few seeds (≤8%) of L. hystrix were dead at the end of
the experiment.
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Figure 6. Percentage of germinated (white), dormant (black) and dead (grey) seeds for (a) Lomandra
longifolia Labill. and (b) Lomandra hystrix (R.Br.) L.R. Fraser and Vickery and Lomandra longifolia
Labill. germinated under dark or light (12/12-h photoperiod) conditions following chemical and/or
mechanical treatments. All seeds were incubated for 60 days at 20/10 ◦C with a 12/12-h matching
thermoperiod. Treatments were as follows: leaching with running tap water for 36 h, nicking (small
cut in through the pericarp and seed coat), smoke water—SW1:50; SW2:100; SW3:200 mL L−1;
gibberellic acid—GA3:289 μM, Control: untreated seed. Means of 4 replications with 25 seeds each
per species, per treatment are shown.

4. Discussion

This study aimed to characterize seed morpho-anatomy and to determine seed treat-
ments that could enhance the germination of two Australian native Lomandra species. The
seed traits that influence germination of L. longifolia and L. hystrix had not been addressed
in detail previously and there is a lack of published protocols on how to improve ger-
mination for both important seed-based restoration and ornamental species. The current
study showed that seeds of both species had PD at the time of sowing, probably due to
tissues surrounding the small embryo imposing a mechanical constraint to its protrusion
and/or the presence of chemical inhibitors (as shown to occur in other Lomandra species).
Further results indicate that germination rates of both Lomandra species can be significantly
improved by leaching seeds under running tap water. Having a deep understanding of
seed biology is crucial for seed-based restoration success [31]: it enables seed treatments to
be optimized for improving seed performance [32] and can result in faster, more uniform
and, therefore, reliable germination. Additionally, understanding seed germination timing
will be crucial for seed use under future climate change [33].

4.1. Seed Morpho-Anatomy

The seed fill percentage in both seed lots studied was 100%, suggesting that other fac-
tors besides seed viability or seed fill are limiting germination. Both species presented small
(E:S = 0.4), linear and basal embryos (Figure 4) surrounded by a thick layer of endosperm.
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Even though the embryos were small, microscopic evaluation showed that embryos in this
current study were fully differentiated and seemed to be fully developed, consisting of
a well-defined primary axis and cotyledon. In contrast, Ruiz-Talonia et al. [14] identified
MPD in L. longifolia due to the presence of an underdeveloped embryo. In their study, a
combination of leaching and warm stratification was needed to overcome dormancy and
improve germination. This present study evaluated the use of stored seeds of L. Longifolia
and L. hystrix (for 27 and 16 months, respectively). Seed age can influence seed dormancy
status as seeds can undergo after-ripening, dormancy cycling [10] or overcome MD or MPD
during storage. Therefore, there is a possibility that embryo growth occurred during stor-
age, overcoming MD. Although, it is important to note that Baskin et al. [22] proposed that
a seed with a small embryo in relation to the endosperm does not strictly mean that the em-
bryo is underdeveloped. Some species, such as in the genus Nymphaea (Nymphaeaceae [18])
and Drosera anglica (Huds.) LePage and W.Bldw. (Droseraceae [22]), have small embryos
with low E:S ratios (e.g., 0.24 ± 0.01 for D. anglica). However, these embryos did not exhibit
growth inside the seed before germination could occur. Therefore, MD was not present.
Consequently, to identify the presence of MD or MPD in both of our study species, further
studies should be undertaken with freshly collected seeds to determine whether embryo
growth occurs within the seed prior to them becoming germinable.

4.2. Seed Germination Ecology and Enhancement

In L. longifolia, seeds incubated in the dark had a significantly higher final germination
percentage than those imbibed in light conditions (37 vs. 13%; Figure 5). This suggests
that L. longifolia can germinate to a higher extent if buried in the soil. On the other hand,
there was no significant difference between light and dark treatment in L. hystrix, although
marginal improvements in germination were observed under light. Seeds of many species
are sensitive to light intensity and quality, which is a mechanism to avoid plant compe-
tition [34]. Therefore, light detection by seeds can be an important germination cue [35].
In L. longifolia, germination inhibition by light could be related to the avoidance of germi-
nation near or at the soil surface, ensuring seeds are positioned at sufficient depth where
moisture is more reliably obtained. This is a common seed adaptation to environments
where moisture is limited [36], such as those where L. longifolia naturally grows. Moreover,
temperature is moderated at greater soil depths [35], which may be an adapdation of L.
longifolia to enable germination to occur in a wide range of climates (Figure 1). However,
burial at depth does not appear to be a requirement of L. hystrix seeds, possibly because
this species has adapted to growing along watercourses and in rainforests, where water is
usually more abundant and temperature fluctuations are less extreme.

Leaching significantly improved the GRI of both species (Figure 5). The positive effects
of leaching in this study are consistent with previous observations made for L. longifolia [14]
and L. sonderi. Plummer et al. [2] suggested that water-soluble germination inhibitors located
in the pericarp and embryo could inhibit germination in L. sonderi; germination inhibition
was successfully overcome by removing the pericarp or by leaching seeds for 24 h in running
tap water. This may be an adaptation to regions where occasional, but heavy, rainfall can
leach out seed germination inhibitors and break down the seed coat tissues [26,37]. This
mechanism ensures that conditions are suitable for germination and seedling establishment.
On the other hand, Baskin et al. [18] suggested that leaching can also act as a stratifica-
tion treatment. Periods of warm or cold stratification have been shown to alleviate PD
in seeds [38]. For example, stratification at 26/13 ◦C or 33/18 ◦C for 4- or 8-weeks allevi-
ated dormancy in L. preisii when seeds were germinated at 18/7 ◦C [7]. Moreover, warm
stratification achieved >80% germination in Acanthocarpus preisii Lehm. (Asparagaceae)
as compared with <20% when seeds were not stratified [39]. Further studies should be
directed at identifying if the use of stratification treatments or wet/drying cycles [40] could
be involved in overcoming dormancy of Lomandra seeds in the soil seedbank.

The improvement in germination of seeds with non-deep PD after scarification has
been related to overcoming a mechanical barrier to embryo growth imposed by the tissues
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surrounding the embryo [10,41]. Likewise, seed nicking has also been shown to relieve
embryo growth restrictions [19]. Although in this study, nicking did not significantly
promote germination, a positive trend was observed (Figure 5). In seeds presenting PD,
the fully developed embryo has a low growth potential; therefore, it cannot overcome the
mechanical constraints imposed by its surrounding tissues [10]. Once treatments such as
nicking are performed, the embryo can gain sufficient expansive force to protrude through
the surrounding tissues. In nature, embryos with low growth potential need cues from the
environment to initiate internal chemical signaling which promote certain covering tissues
to breakdown and increase the growth potential [10]. However, this resistance can also be
weakened over time in the seeds’ natural environment by the production of tissue-softening
enzymes released by the embryo or by weakening through physical biotic factors such
as temperature, fire, animal ingestion, seed burial and saprophytic fungi [37,42]. Embryo
germination resistance also varies according to imbibition conditions such as temperature
and light/dark interactions [10], and further studies could be undertaken to determine the
influence these parameters can have on endosperm resistance.

Constant exposure to smoke water throughout the incubation period significantly
inhibited germination of both species, with ≤1% final germination for L. longifolia and
≤20% final germination for L. hystrix (Figure 6). This contrasts with the findings of Merritt
et al. [43], where smoke water was reported to promote germination in other Lomandra
species. For example, imbibing seeds in smoke water (1:10 [v/v]) for 24 h enhanced seed
responses to warm stratification providing the highest germination for L. preisii seeds
(ca. 50% [7]). In contrast, Vening et al. [44] reported that smoke water used in an agar-based
germination medium at 1:10 (v:v) had no significant effect on germination in Australian
native forbs from fire prone environments. However, seed sensitivity to smoke water can
be a complex process [7], as active constituents of smoke water (such as karrikins) can vary
between different stock solutions and species react differently [45]. Furthermore, Adkins
et al. [45] found that caryopsis of wild oats (Avena fatua L.) had greater germination when
exposed to smoke water for 7 days prior to incubation with distilled water as compared to
caryopsis that received smoke water before and during incubation.

Considering the above, constant exposure of Lomandra seeds to smoke water in this
current study could have caused germination inhibition. This may be due to the dual
effect of smoke water on the seed germination process reported by Light et al. [46] for
‘Grand Rapids’ lettuce (Lactuca sativa L.). This study proposed that smoke water had an
inhibitory component that enters the seed and a promotor component that remains in
the seed, inactive until sufficient rainfall has leached out the inhibitor. Additionally, it is
important to note that smoke has been proposed to act as a germination enhancer, rather
than a dormancy breaker [7,47]. Therefore, smoke water effects might only act to enhance
germination after dormancy has been overcome. Further studies on both Lomandra species
could be undertaken by applying smoke water as a pre-treatment prior to incubation, but
after seeds have been treated for dormancy.

Although leaching improved the GRI for L. longifolia, the final germination percentage
achieved in all treatments was low (≤37% germination). This low germination percentages
of L. longifolia, even when exposed to GA3, could suggest the presence of a deeper level of
PD. In many species with intermediate or non-deep PD, germination is stimulated by GA3,
while those with deep PD fail to germinate in GA3 treatments that would normally promote
germination [48]. To alleviate PD in L. sonderi, the pericarp needed to be removed from the
seed (presumably to remove germination inhibition imposed by these tissues); then, GA3
(145 μM) was applied (to relieve embryo dormancy [2]). Further studies on L. longifolia
seeds should be undertaken such as excision of the pericarp and seed coat [42] and excision
of the embryo [10]; and then, applying GA3 to identify if the pericarp or endosperm are
preventing GA3 from reaching the embryo. Although GA3 did not improve germination
in both Lomandra species, there was a significant interaction between GA3 and darkness,
where seeds treated with GA3 had higher germination in the dark as compared to light.
This could be related to GA3 interacting with the phytochrome system within seeds [37].
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5. Conclusions

This study is one of the first to investigate techniques to enhance germination of
the Australian native species L. longifolia and L. hystrix. The innate slow and initially
low germination of both Lomandra seeds requires a significantly large number of viable
seeds to be sown to achieve the plant density required for ornamental plant production
or seed-based restoration projects. Results from this study show that both species had
small, linear embryos and a high proportion of endosperm tissue. Slow germination of both
species is most likely associated with the presence of at least one mechanism of PD present
in the seed. Leaching seeds prior to incubation was the only treatment to significantly
hasten seed germination in both Lomandra species. To determine the mechanisms by which
leaching functioned on hastening germination and to correctly classify dormancy in both
species, further studies are now needed on freshly collected seeds. Future areas of research
include measuring embryo growth during incubation to test for MPD, undertaking warm
stratification prior to germination incubation, and seed treatments with GA3. Understanding
the factors that influence seed germination and pre-treating seeds accordingly, or ensuring
these requirements are met in the natural environment (in the case of seed-based restoration),
is crucial for the success and cost-efficient use of these seeds. It is also important to consider
the scaling-up of treatments for large restoration projects or ornamental plant production
and how that could affect seed tissues and the overall cost-effectiveness of the treatment.
Moreover, the possibility of providing similar effects naturally in the field by sowing seeds
when long periods of rain are forecasted should also be examined.
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Abstract: The global demand for packaging materials and energy is constantly increasing, requiring
the exploration of new concepts. In this work, we presented a bioeconomic concept that uses steam
explosion and phase separation to simultaneously generate fibers for the packaging industry and
biogas substrate for the energy sector. The concept focused on fiber-rich residues and fiber-rich
ecological energy crops from agriculture. Feasibility of the concept in the laboratory using feedstocks,
including Sylvatic silphia silage, Nettle silage, Miscanthus, Apple pomace, Alfalfa stalks, and Flax
shives was confirmed. Our results showed that we were able to separate up to 26.2% of the methane
potential while always extracting a smaller percentage of up to 17.3% of organic dry matter (ODM).
Specific methane yields of 297–486 LCH4 kgODM

−1 in the liquid and 100–286 LCH4 kgODM
−1 in the

solid phase were obtained. The solid phases had high water absorption capacities of 216–504% due
to the steam explosion, while the particle size was not significantly affected. The concept showed
high potential, especially for undried feedstock.

Keywords: renewable energy; bioeconomy; biowaste; residuals; silage; liquid–solid separation

1. Introduction

The United Nations Development Programme identified 17 Sustainable Development
Goals (SDGs) that outline a blueprint for a sustainable future. Five of these SDGs are
particularly relevant to agriculture and biogas production, namely Zero Hunger, Affordable
and Clean Energy, Industry, Innovation and Infrastructure and Climate Action [1]. Biogas
is a renewable energy carrier produced through the anaerobic digestion of organic matter.
The biogas technology was proven to be relevant for the reduction in greenhouse gases
while simultaneously producing clean energy. Despite its potential, fossil fuels still account
to approximately 79% of the global energy consumption [2].

Germany is one of the worldwide market leader for biogas and the sector grew over the
last twenty years to roughly 9600 plants in Germany today [3]. The number of biogas plants
was growing mainly because the Renewable Energy Sources Act (EEG), in its 2004 and 2009
versions, guaranteed high remunerations for electricity for twenty years [4]. Biogas plants
in Germany generated an average electricity revenue of 23.4 EUR -ct/kWhel [5]. However,
operation without high legal remuneration is not economically viable. The current version
of the EEG (2023) limits the guaranteed remuneration for electricity in a tender procedure
to a maximum of 18.03 EUR -ct/kWh for existing biogas plants and 16.07 EUR -ct/kWh
for new biogas plants [6]. At the same time, the production costs are 18.9 EUR -ct/kWhel
in Germany [5] and the cost increased according to higher costs expected due to stricter
regulations, higher feedstock prices, and the advanced age of existing plants. Therefore,
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operation modes based on only continuous energy generation is not economically feasible
for future business models of biogas plants [5].

Alternative products such as the electricity generation on demand, heat sale, produc-
tion of biomethane or chemicals as well as the generation of fibers must be considered.

Another approach is the reduction in production costs through the use of other energy
crops and residues that are cheaper and more ecological than the commonly used maize
silage (70% of the energy crops used in German biogas plants [7]).

The use of alternative energy crops that can grow on marginal land also has a positive
impact on public acceptance of the biogas technology because these energy crops are not in
direct conflict with food production and are characterized with lower CO2 emission [4,8,9].
Nevertheless, most alternative feedstocks have lower methane potentials and slower anaer-
obic digestion rates compared to maize silage due to their high fiber content, which has
high resistance to microbes during anaerobic digestion [10]. For this reason, the use of these
feedstocks is still more expensive than the use of maize silage.

To solve this problem of expensive biogas plant feedstocks, a bioeconomy concept was
developed in which energy crops and residual materials are thermo-chemically pretreated
via steam explosion (SE) followed by a solid–liquid separation. The solid fraction mainly
consists of fibers (hardly digestible in the biogas process), while the liquid fraction contains
components that are rapidly and easily degradable in an anaerobic digestion process.
Thus, the liquid will be used in a biogas plant for electricity and heat production, while
the solid fraction will be used as fiber material in various processes, e.g., for packaging
material production.

Lignocellulose is the most abundant organic biomass in the world and an important
feedstock for bioenergy technologies, biodegradable materials, and bio-based chemicals in
biorefineries [11]. Its complex structure comprises hemicellulose linked cellulose microfib-
rils embedded in a matrix of lignin, cross-linked polysaccharide networks, and glycosylated
proteins [12]. However, the resistance of lignocellulosic substrates to biological degrada-
tion in anaerobic digestion, known as biomass recalcitrance, hinders the conversion of
the structural polysaccharides of the cell wall into fermentable sugars for use as fuel or
chemicals [13]. To tackle this issue, various pretreatment methods were developed, in-
cluding physical, physicochemical, chemical, and biological methods [14]. Among them,
SE is a promising physicochemical approach that simultaneously modifies the biomass
chemically, fractures the cell wall, removes hemicellulose, and increases the accessible
surface area of cellulose without significant cellulose degradation [15]. Additionally, SE is
effective in autocatalytically removing acetic- and uronic-groups forming their respective
acids and depolymerizing hemicellulose, making it an attractive method for pretreating
lignocellulosic materials [16,17]. SE is usually operated at a temperature of 160–220 ◦C
with a pressure of 0.6–1.0 MPa. Boiling and rapid depressurization break down the lignin
structure and degrade the hemicellulose to oligomers and sugars. Pressure around 0.5 MPa
depolymerize the hemicellulose but not the cellulose [15,18,19]. Furthermore, after SE, a
separation of a liquid and solid phase is easily possible. The pretreatment of fiber-rich
substrate to increase biogas production was already investigated in several studies [20–22].

The fibers produced as part of the bioeconomic concept can be used to produce several
different products such as paper, packaging, or flower pots. Because of this, the fibers can
close the production cycle for these products locally and significantly reduce transport
distances and, thus, CO2 emissions, as they replace wood from Eucalyptus spp. or Pinus
spp. in Germany, which is mainly produced in South America and especially in Brazil [23].
In the case of flower or plant pots, conventional plastic- or peat-based products can be
substituted [24]. The production of paper and packaging also holds great potential. The
growing popularity of e-commerce led to an increased demand for packaging materials,
exacerbating the environmental impact of the packaging industry in terms of CO2 emissions
and energy consumption [25–27]. Kim et al. (2022) reported that due to increasing online
trade, the amount of packaging in Germany is 4.8 times higher compared to offline trade
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and Järvinen et al. (2020) predicted that the demand for paper will almost be doubled
by 2050 [28,29].

This study investigates the suitability of various residual materials and ecological
energy crops with variable properties (e.g., dry matter (DM)) for the use in the bioeconomy
concept with coupled fiber and biogas production by processing the fiber-rich biomass
in a SE followed by solid–liquid separation (Figure 1). To investigate the potential of the
concept, a wide range of residual materials and ecological energy crops were investigated.
The following crops were considered: the silage of the whole plant of Silphium perfoliatum
L. (sylvatic silphia silage), Urtica dioica (nettle silage), and Miscanthus sinensis (miscanthus
whole plant), as well as the hop grubbing chaff of Humulus lupulus (hop bine chaff), the
straw of Miscanthus sinensis (miscanthus straw), the stalks of Medicago sativa (alfalfa stalks),
the shives of Linum usitatissimum (flax shives), and the pomace of Malus (apple pomace).
The aim was to evaluate the developed bioeconomy concept and to check what kind of
substrate can be used for this concept.

Figure 1. The investigated feedstocks sylvatic silphia silage (a), nettle silage (b), hop grubbing chaff (c),
miscanthus whole plant (d), miscanthus straw (e), apple pomace (f), alfalfa stalk (g), flax shives (h).

2. Materials and Methods

2.1. Substrates and Sampling

Silvatic silphy silage was taken from stored silage (Ostrach, Germany) on 3 September
2021 (see Figure 1). Nettle silage (Ostrach, Germany) was harvested, pressed, and stored as
silo bales on 6 September 2021. The silo was open on the day of further treatment steps. Hop
grubbing chaff was taken from stored silage (Hallertau, Germany) in January 2021. Mis-
canthus was harvested as whole plant on 20 October 2021, and as straw on 2 February 2021
(Unterer Lindenhof, Eningen unter Achalm, Germany). Both were chopped before be-
ing treated with SE. Apple pomace was taken from juice extractor (Kelterei Widemann,
Bermatingen, Germany). Alfalfa stalks were harvested in September 2021 (Futtertrocknung
Lamerdingen eG, Lamerdingen, Germany). Flax was harvested at different locations in
France. The flax shives were sorted during the production process of flax and were then
sent to the authors (Terre de Lin, Saint-Pierre-le-Viger, France). All fresh samples were
immediately after harvesting stored in compressed condition in 20 L barrels and at 4 ◦C for
several days prior to testing. Compression was performed by hand.
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2.2. Steam Explosion (SE)

All substrates were pretreated using the SE unit at the Department of Yeast Genetics
and Fermentation Technology of Hohenheim University (Stuttgart, Germany). The treat-
ment was carried out in a gastight and double-walled laboratory reactor with a volume
of 20 L (H & K GmbH Behälter und Edelstahltechnik, Kehl, Germany). The steam was
supplied indirectly by heating the substrate–water mixture.

Before SE, the samples were crushed by blades in a Thermomix (Vorwerk, Wuppertal,
Germany) for 30 s and mixed with water to obtain a similar water content (Table 1). SE
was performed in a gastight and double-walled laboratory reactor with a volume of 20 L
(H & K GmbH Behälter und Edelstahltechnik, Kehl, Germany) at 160 ◦C and 0.5 MPa (see
Figure 2). The reactor was heated by steam. A change in temperature and pressure was
not possible. All reaction times were set to 10 min, resulting in a severity factor of 2.77,
excluding the alfalfa stalks (30 min with a severity factor of 3.54) [30–32].

Table 1. Substrate-to-water ratio for steam explosion and overall water content of different trails.

Sample
Substrate: Water Ratio
Substrate: Fresh Water

Water Content
%

Sylvatic silpiha silage 3:2 85.8
Nettle silage 2:1 79.7
Hop grubbing chaff 3:2 84.9
Miscanthus whole plant 3:2 74.5
Miscanthus straw 1:2 75.1
Apple pomace 3:1 85.3
Alfalfa stalks 2:1 65.8
Flax shives 1:2 71.1

Figure 2. Overall flow chart of methodology used.

2.3. Solid–Liquid Separation

Solid–liquid separation was carried out using a DPH2/5 hydraulic tincture press
(Doninger, Achern, Germany) with a sample volume of 2 L under a pressure of 10 MPa.
The separated solid and liquid phases were measured using a Kern PCB precision scale
(Kern & Sohn GmbH, Balingen, Germany). The separation process was performed in
triplicate for all tests. Untreated flax shives were soaked in water for 24 h prior to the
separation process, to ensure sufficient moisture content for successful separation, as low
water content would hinder the separation process.

2.4. Biogas Potential Determination

The biogas potential of the liquid and solid phase was determined by Hohenheim
biogas yield test (HBT). The HBT is a batch-test performed in 100 mL syringes. These
syringes are closed gastight through a hose clamp and silicone. Each syringe was stored in
a motor-driven plate to ensure mixing. This plate was stored in a heating cabinet (Memmert,
Schwabach, Germany) at 37 ◦C for 35 days.

The test was carried out with an organic dry matter (ODM)-inoculum-to-substrate ratio
of 2.25 and the whole procedure was executed according to VDI 4630 [33]. The substrate
was utilized without undergoing additional crushing. The inoculum was taken from a
400 L laboratory reactor that was fed continuously with a broad spectrum of nutrients with
a low organic loading rate, to obtain a low specific methane yield of the inoculum. The
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inoculum was also fermented alone and its methane yield subtracted from the total methane
formation. A positive control was performed with concentrated feed and hay as standard
feedstock. Further information on the method can be found in the literature [34–36].

2.5. Analytic Parameters Determined for Solid and Liquid Fractions

DM and ODM were measured according to DIN EN 12880 and DIN EN 12879.
A DM/ODM correction (with regard to results of the HBT experiments) was performed for
all samples according to Weißbach et al. [37,38]. The organic acids were determined by a
gas chromatograph GC 2010plus with an AOC-20i autoinjector (Shmiadzu, Jyoto, Japan).
The alcohols were determined by Rio detector, the column BioRad Aminex (Hercules, CA,
USA), HPLC column HPX-87H (7.8 × 300 mm; part. Size: 5.0 μm) (Sigma-Aldrich, St.
Louis, MO, USA), and BioRad–pre-column HPX-87H (Hercules, CA, USA). The concen-
tration of the volatile fatty acids, acetic acid, propionic acid, iso-butyric acid, n-butyric
acid, iso-valeric acid, n-valeric acid, and caproic acid was summed up as one cumulative
parameter (SUM-VFA). The pH value was determined using a pH meter Type 211 (HANNA
Instruments, Woonsocket, RI, USA). All chemical measurements were carried out at least
in duplicate.

Due to the low number of replicates, no statistical analysis was performed.

2.6. Characterization of Solid-Phase Specific Properties

The particle size of the solid fraction after SE was determined in triplicate with Anal-
ysette 3 SPARTAN (Fritsch GmbH, Idar-Oberstein, Germany). Eight sieves according
to ISO 3310-1 (diameter 200 mm, height 50 mm) were used. The mesh sizes used were
0.063 mm, 0.125 mm, 0.25 mm, 0.5 mm, 1 mm, 2 mm, 4 mm, and 8 mm.

Furthermore, water adsorption capacity of the solid fraction after separation was
analyzed according to DIN 53923. The samples were first dried at 105 ◦C for 24 h. After-
wards, 5 gDM of the samples were distributed on a mesh size 0.063 mm sieve (Retsch, Haan,
Germany) and placed in a water bath for 6 s at a depth of 20 mm with a temperature of
20 ± 1 ◦C. To avoid air bubbles, the sieve was inserted at an angle of around 20◦. Finally,
the sieve was submerged for 120 s and weighed.

3. Results and Discussion

3.1. Mass Balance

The origin and nature of the feedstocks used in this study varied, which resulted in a
significant difference in the DM content of the substrates before solid–liquid separation,
ranging between 19.6 and 86.8%, as shown in Table 2. However, the DM content of the
solid phases after SE and tincture press showed only minor variations, with a value range
between 42.6 and 50.0% for most of the substrates investigated. Only the solid phase of
apple pomace exhibited a DM content of 37.1%. Zhao et al. (2022) showed that water
holding capacity of apple pomace with SE pretreatment is high due to its stable hydrogen
bonds [39]. This could explain the lower DM content observed in the solid fraction of
apple pomace. Additionally, apple pomace contains a high amount of dietary fiber, e.g.,
lignocellulosic compounds, which complicate solid/liquid separation [40].

In contrast to the solid phase, the liquid phase of the different biomasses after SE
and tincture press showed a huge variation between DM contents (3.5–10.6%), which was
due to both the DM variation of the substrate and the changing water to substrate ratio
before SE. The DM contents of liquid phases were in the range of manure, and, from
a technical perspective, the liquid phases can be considered pumpable with auxiliaries
present at biogas plants [41,42]. Nevertheless, low DM concentration of the liquid phase
would require a large reactor volume compared to an energy crop fed biogas plant with
identic hydraulic retention time and methane production, which increases investment and
operating costs. Therefore, dilution should be as low as possible to ensure the function of
SE [43] and reduce the water input. Further research to optimize this parameter would
be useful.
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Table 2. Distribution of ODM in the respective phases after SE, dry matter (DM) and organic dry
matter (ODM) of input substrates prior and solid and liquid fractions after steam explosion with
solid–liquid separation.

Substrate Phase
Distribution of

ODM after Phase
Separation

DM ODM

% % %DM

Sylvatic silphia silage
Substrate 23.7 ± 0.1 88.4 ± 0.1
Solid 86.2 47.1 ± 0.9 92.4 ±0.0
Liquid 13.8 6.0 ± 0.1 58.9 ± 0.1

Settle silage
Substrate 30.5 ± 0.2 79.2 ± 0.0
Solid 86.9 46.6 ± 1.2 90.3 ±0.4
Liquid 13.1 7.4 ± 0.5 74.2 ± 0.5

Hop grubbing chaff
Substrate 25.2 ± 1.1 80.1 ± 5.5
Solid 82.7 48.0 ± 2.6 89.8 ± 1.3
Liquid 17.3 10.1 ± 0.5 81.8 ± 0.2

Miscanthus whole plant
Substrate 42.6 ± 0.1 96.3 ± 0.1
Solid 93.9 42.6 ± 1.6 96.1 ± 0.2
Liquid 6.1 4.5 ± 0.3 77.6 ± 1.3

Miscanthus straw
Substrate 74.6 ± 0.4 96.1 ± 0.1
Solid 97.3 47.6 ± 0.0 97.1 ± 0.1
Liquid 2.7 3.5 ± 0.0 77.7 ± 0.5

Apple pomace
Substrate 19.6 ± 0.1 97.8 ± 0.0
Solid 92.1 37.1 ± 0.4 99.1 ± 0.1
Liquid 7.9 7.7 ± 0.0 87.9 ± 1.1

aAfalfa stalk
Substrate 51.3 ± 0.8 92.5 ± 0.7
Solid 88.8 49.8 ± 1.0 95.0 ± 0.2
Liquid 11.2 11.0 ± 0.1 76.8 ± 0.4

Flax shives
Substrate 86.8 ± 0.7 84.5 ± 1.9
Solid 95.3 50.0 ± 2.8 96.7 ± 0.9
Liquid 4.7 5.4 ± 0.0 90.0 ± 0.4

Regarding the distribution of ODM, the majority remained in the solid phase after SE
and separation, with a range of 82.7% to 97.2%. Only a small proportion of ODM migrated
into the liquid phase, ranging from 2.7% to 17.3%. (Table 2, Figure 3). This proportion
was independent from the added water in the observed range of substrate/water ratios.
The bioeconomic concept generates new revenue through the recovery of fibers. However,
substantial potential is lost for biogas production or as fertilizer if the products are not
returned to the field at the end of the lifecycle. In terms of nutrients, it is advantageous
to cycle them back to the fields in the form of digestate. Other compounds such as sand
or heavy metals could also be accumulated in the liquid phase [44,45]. This may cause
problems such as induced phytogenic and/or genotoxic effects in crops and potential
health risks for humans and should be further investigated [44,45].

Comparing the ODM ratio of the liquid phase with the fiber (acid detergent lignin
(ADL) and neutral detergent fiber (NDF)) content of the feedstock, it was noticeable that
a high content of these substances seemed to be associated with a low ODM ratio of the
liquid (Figure 4). High fiber content as well as high ADL and NDF content are expected in
straw and other late-harvested materials.
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Figure 3. Proportion of organic dry matter (ODM) and methane yield (MY) portion after SE in solid
and liquid phase for all investigated substrates.

Figure 4. Percentage of organic dry matter (ODM) in liquid phase respective to ODM in the solid
fraction (acid detergent lignin (ADL) and neutral detergent fiber (NDF)) after SE.

3.2. Energy Balance

Specific methane yield (SMY) based on ODM and FM were calculated both for solid
and liquid phases, as presented in Table 3. The SMY of the solid phases were in the
range of 100–287 LCH4 kgODM

−1 and the SMY of the liquid phases were in the range of
297–486 LCH4 kgODM

−1. Based on the results and the kinetics, no inhibition in anaerobic
digestion was to be expected.

The SMY of the liquid phases after SE and tincture press were in range or even higher
than the SMY of maize silage (355 L kgoTS

−1 [46]). This suggests that there were less
anaerobically hard-to-digest or non-digestible components such as fibers in the liquid. The
aim of the bioeconomic concept, which is to separate easily degradable cell contents for
the biogas process and upcycle poorly degradable fiber constituents, was thus achieved.
Furthermore, SE leads to hydrolysis of the substrate, which results in acid generation
and, therefore, a reduction in the pH value especially in the liquid phase (Table 4) [17].

49



Appl. Biosci. 2023, 2

High concentrations of SUM-VFAs found in the liquid phase of this study supported
this observation (Table 4). Taking into account the mass dependent methane yield, it is
observable that the methane yield of the liquid fraction (10–33 L kgFM

−1; Table 3) was
much lower than that of maize silage (118 L kgFM

−1) but in the range of cow manure
(17 L kgFM

−1) [46]. This suggests an economic use of the liquid phase in a biogas plant,
but transport distances should be kept short due to the highwater content. Recirculating
the liquid phase instead of adding fresh water could reduce production costs and increase
methane yield by enriching the liquid with organics in each circulation step. It is also
useful to reduce the required tank volume of the biogas plant through an optimized plant
design. Nevertheless, the addition of water is necessary and needs to be adjusted optimally
because the moisture content ratio increases the efficiency of SE pretreatment by increasing
the mechanical force produced by the expanding gas (water vapor) [31,47].

Table 3. Specific methane yield (SMY) in solid–liquid fractions of the substrates examined in this
study. SMY based on organic dry matter (ODM) and fresh matter (FM). Proportion of Methane yield
in solid and liquid phase.

Substrate Phase SMY Methane Yield
Proportion of

Methane Yield
LCH4 kgODM

−1 LCH4 kgFM
−1 %

Sylvatic silphia silage Solid 208 ± 6 91 ± 3 78.6
Liquid 340 ± 10 12 ± 0 21.4

Nettle silage Solid 217 ± 20 91 ± 8 79.7
Liquid 334 ± 70 18 ± 4 20.3

Hop grubbing chaff Solid 179 ± 24 77 ± 10 73.8
Liquid 336 ± 2 28 ± 0 26.2

Miscanthus whole plant Solid 280 ± 25 115 ± 10 90.0
Liquid 391 ± 64 14 ± 2 10.0

Miscanthus straw
Solid 192 ± 10 89 ± 5 95.5
Liquid 354 ± 4 10 ± 0 4.5

Apple pomace Solid 287 ± 17 106 ± 6 87.3
Liquid 486 ± 53 33 ± 4 12.7

Alfalfa stalk
Solid 184 ± 3 85 ± 1 82.3
Liquid 344 ± 23 28 ± 2 17.7

Flax shives
Solid 100 ± 8 48 ± 4 92.3
Liquid 297 ± 5 14 ± 0 7.7

As expected, the SMY of the solid phases were lower than that of the liquid phases
and, e.g., for sylvatic silphia silage, also lower than the expected methane yield of the
substrates according to KTBL (2021) [46]. These results highlight the effective separa-
tion of the fiber into the solid phase. Nonetheless, the methane yield of the solid phase
(100–287 L kgFM

−1; Table 3) was still high and, for example, in the range of stored solid
cow manure (180 L kgoTS

−1 [46]). Based on fresh matter, the SMY of the solid phases
were even higher than the literature value of grass silage, a commonly used substrate in
German biogas plants (81 L kgFM

−1 [46]). It can be assumed that the solid phase contained
other components besides the fibers, which have to be washed out at great expense and
are of no benefit to the industry. This assumption is supported by the results of the acid
concentrations and the Weender-van-Soest analysis, revealing the presence of SUM-VFA
(Table 4), raw protein, and raw fat (1.0–1.9% and 0.5–1.2%) in all samples.
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Table 4. pH, volatile fatty acids (SUM-VFA), acetic acid, and butyric acid concentration of solid and
liquid phase after SE and separation; standard deviation of all values are <0.0 g kg−1.

Substrate Phase pH SUM-VFA Acetic Acid Butyric Acid
g kgFM

−1 g kgFM
−1 g kgFM

−1

Sylvatic silphia silage solid 5.7 10.6 5.4 0.2
liquid 5.3 25.0 13.9 0.5

Nettle silage solid 5.2 7.7 5.7 2.1
liquid 5.0 16.0 12.2 4.1

Hop grubbing chaff solid 5.2 16.4 8.6 3.0
liquid 5.2 29.9 17.4 5.0

Miscanthus whole plant solid 4.8 1.1 1.0 0.1
liquid 4.3 4.8 4.8 0.1

Miscanthus straw
solid 6.0 0.4 0.4 0.0
liquid 5.2 3.2 3.1 0.1

Apple pomace solid 3.7 1.2 1.1 0.2
liquid 3.5 1.8 1.6 0.2

Alfalfa stalk
solid 6.0 1.6 1.3 0.3
liquid 5.0 6.2 5.8 0.4

Flax shives
solid 4.3 3.1 2.9 0.2
liquid 4.2 7.7 7.4 0.4

The comparison of the methane yield ratio of solid–liquid phase underlines the fact
that a high methane yield is not fully exploited, if the solids are not digested (Figure 3). In
any case investigated in this study, more than 70% of the methane yield was contained in the
solid phase and was, therefore, lost for energy production in the bioeconomy concept. For
each kg of substrate, only a maximum of 4.8 LCH4 kgFM,substrate

−1 was produced, revealing
that biogas and energy production were only by-products and the main income must be
generated by the fiber utilization. Alternatively, further optimization of the bioeconomy
concept may be necessary.

It is important to note that butyric acid has an unpleasant odor for humans and could
decrease the quality of the fiber by limiting its potential applications, such as in packaging
materials, especially for food, as butyric acid is already detectable at concentrations of
0.06 mg m−3. Even the low concentration of up to 3.0 g kgFM

−1 can, therefore, produce a
bad smell, as observed for sylvatic silphia silage, nettle silage, and hop grubbing chaff in
this study (Table 4). Based on the data, it was not possible to observe when the butyric acid
is generated. Therefore, further research is needed to investigate the inhibition of butyric
acid production or the reduction in its concentration especially in the solid phase through
optimization of storage, such as in silage, SE parameters, and fiber washing.

The methane yield ratio of the liquid phase was found to be particularly low for flax
shives and miscanthus straw, which were dry substrates, with values below 10%, resulting
in a maximum production of only 0.7–0.8 LCH4 per kg of feedstock. Based on this, it makes
sense to harvest miscanthus earlier with higher content of separable cell contents, to get a
better separation and to achieve a higher SMY of the liquid phase. According to Tarabanko
et al., (2022), flax shives have a similar structure to lignin-rich soft woods [48], in which
lignin accounting for up to 25% of the total lignocellulose compound [49,50].

In contrast, sylvatic silphia silage, nettle silage, hop rubbing chaff, and alfalfa stalks
(wet substrates) exhibited the best separation of the biogas potential observed in this
study, resulting in the highest methane yields in the liquid phases per each kg of feed-
stock (2–5 LCH4 kgFM,substrate

−1). This observation is consistent with the finding that these
substrates also had the highest SUM-VFA concentrations (Table 4). Despite the possibility
of inhibition due to the high SUM-VFA concentration, it was not observed during the
experiments because the inoculum used had a high buffer capacity [51–55].
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By comparing the combined methane yield per kg of fresh matter of both liquid and
solid fractions after SE and separation with the methane yield reported in the literature
for the substrates, it was found that the methane yields for sylvatic silphia silage (80 to
59 LCH4 kgFM

−1 [46]) and hop grubbing chaff (69 to 46 LCH4 kgFM
−1 [56]) increased by

36–50% after SE. In a recent study, the utilization of lignin-rich macrophytes by semi-
continuous anaerobic digestion with SE pretreatment at a severity factor of 4.4, and, there-
fore, a bit higher value than used in this study, showed an increase in methane yield of up
to 90% [57]. Overall, it can be observed that the proportion of methane yield in the solid
fraction was always lower than the proportion of ODM and, therefore, vice versa in the
liquid fraction (Figure 3).

In order to achieve a higher methane yield and fiber quality additional pretreatment,
separation or anaerobic digestion seems to be reasonable when applying the bioeconomy
concept. Furthermore, attention should be given to SE operation conditions, as they were
not modified or optimized in this work.

Due to the high SUM-VFA concentration in the liquid fraction, it could be interesting
to use this fraction to obtain other value-added products before the energy production [58].

3.3. Characterization of Solid Fraction

The range of water absorption capacities observed for the substrates varied from 216%
to 504%. In addition, the calculated average particle sizes for the substrates were found to
range from 388 μm to 1857 μm (Table 5).

Table 5. Water absorption capacity and average particle size of investigated substrates.

Substrate Water Absorption Capacity Average Particle Size
%FM μm

Sylvatic silphia silage 340 1575
Nettle silage 440 1857
Hop grubbing chaff 409 1540
Miscanthus whole plant 401 748
Miscanthus straw 417 756
Apple pomace 216 388
Alfalfa stalk 318 1207
Flax shives 504 520

Both the water capacity and particle size were the lowest for apple pomace. The
highest water absorption capacity was observed for flax shives. When the fibers are used
in the paper or packaging industry, they are ground by mills to cut the fibers. Low fiber
length, as apple pomace fibers in this study, can reduce the additional energy required.
Similarly, a low water absorption capacity can reduce the cost of subsequent drying of the
paper/packaging material [59]. However, for apple pomace, the dry matter content after
separation was the lowest like explained before. The high values of flax shives probably
occurred by a multi-porous structure and the high fiber content [60].

The average particle size and water adsorption capacity did not exhibit a dependence.
The same behavior was observable on a study on hammer milled palm lignocellulosic
by-products [61]. In contrast to the referenced particles (water absorption between 100 and
300%), that were not pretreated with SE, it is observable that the SE pretreated particles
showed a higher water absorption captivity with 216–504%. No reason could be found
so far.

Particle size was not significantly affected by SE pretreatment for all substrates, as
shown in Figure 5 in case of miscanthus (whole plant), because of missing mechanical
treatment during the SE pretreatment. According to this, the particle size depends only on
the cutting length during harvesting. Particle size should be chosen to optimize storage
and SE treatment. The impact on both needs to be considered in future experiments. In the
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case of SE, several studies suggest large particles for high glucose and xylose concentration.
Small particles do not optimize the degradation according to their research [62,63].

Figure 5. Sum curve of particle size distribution by weight of none pretreated and SE pretreated
miscanthus whole plant.

4. Conclusions

In this study, we presented a bioeconomic concept for lignocellulosic feedstock that
combined SE, solid–liquid separation, and anaerobic digestion of the liquid fraction. Our
results demonstrated that this process effectively separated the easily anaerobically di-
gestible fractions of ODM into a liquid phase while leaving behind fibers with high water
adsorption capacity, resulting in a significant separation of SMY. The concept showed par-
ticularly high potential for undried feedstocks, with more methane yield being recovered
in the liquid phase of undried substrates than for dried ones. However, butyric acid was
detected in some of the samples, with levels of up to 3.0 g/kg in the solid phase. This is a
major problem for the bioeconomic concept, as it reduces the application range of the fibers.
Further investigation into the silage conditions is needed to address this issue. To further
develop the bioeconomic concept, it is necessary to optimize the SE operating parameters,
the anaerobic digestion process, and search for other biomass types such as biowaste to
evaluate the influences on the separation of methane yield and fiber quality, as well as the
economic aspects.

Author Contributions: Conceptualization. B.H., M.F. and H.O; methodology. B.H. and H.O.; soft-
ware. B.H.; validation. B.H., M.B., G.S., K.D., Elviliana and H.O.; formal analysis. B.H. and
Elviliana; investigation. B.H.; resources. B.H. and H.O.; data curation. B.H., Elviliana and L.L.;
writing—original draft preparation. B.H. and Elviliana; writing—review and editing. B.H., L.L.,
Elviliana, M.B., G.S., K.D. and H.O; visualization. B.H.; supervision. B.H. and H.O.; project adminis-
tration. B.H. and H.O.; funding acquisition. B.H. and H.O. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Ministry of Rural Affairs, Food and Consumer Protection
Baden-Wuerttemberg, Germany. Project “MLRFaser”, grant number 54-8214.07-FP20-106/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

53



Appl. Biosci. 2023, 2

References

1. UNDP. Sustainable Development Goals. Available online: https://www.undp.org/sustainable-development-goals (accessed on
21 February 2023).

2. Bilgen, S. Structure and environmental impact of global energy consumption. Renew. Sustain. Energy Rev. 2014, 38, 890–902.
[CrossRef]

3. BMEL. Biogas. Available online: https://www.bmel.de/DE/themen/landwirtschaft/bioeokonomie-nachwachsende-rohstoffe/
biogas.html (accessed on 21 February 2023).

4. Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. The Future Agricultural
Biogas Plant in Germany: A Vision. Energies 2019, 12, 396. [CrossRef]

5. Pohl, M.; Barchmann, T.; Liebetrau, J.; Hülsemann, B.; Oechsner, H.; Zhou, L.; Nägele, H.-J.; Mächtig, T.; Moschner, C.;
Kliche, R.; et al. Biogas-Messprogramm III; Fachagentur Nachwachsende Rohstoffe: Gülzow, Germany, 2021; ISBN 978-3-942147-42-
2.

6. Renewable Energy Source Act (EEG). 2023. Available online: https://www.gesetze-im-internet.de/eeg_2014/ (accessed on
26 May 2023).

7. FNR. Basisdaten Bioenergie Deutschland 2020. 2020. Available online: https://www.fnr.de/fileadmin/Projekte/2020
/Mediathek/broschuere_basisdaten_bioenergie_2020_web.pdf (accessed on 9 September 2021).

8. Höller, M.; Lunze, A.; Wever, C.; Deutschle, A.L.; Stücker, A.; Frase, N.; Pestsova, E.; Spiess, A.C.; Westhoff, P.; Pude, R. Meadow
hay, Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. as potential non-wood raw materials for the pulp and paper
industry. Ind. Crops Prod. 2021, 167, 113548. [CrossRef]

9. Filippa, F.; Panara, F.; Leonardi, D.; Arcioni, L.; Calderini, O. Life Cycle Assessment Analysis of Alfalfa and Corn for Biogas
Production in a Farm Case Study. Processes 2020, 8, 1285. [CrossRef]

10. Patinvoh, R.J.; Osadolor, O.A.; Chandolias, K.; Sárvári Horváth, I.; Taherzadeh, M.J. Innovative pretreatment strategies for biogas
production. Bioresour. Technol. 2017, 224, 13–24. [CrossRef] [PubMed]

11. Kamm, B.; Kamm, M. Biorefineries--multi product processes. Adv. Biochem. Eng. Biotechnol. 2007, 105, 175–204. [CrossRef]
12. Sticklen, M.B. Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nat. Rev. Genet. 2008,

9, 433–443. [CrossRef] [PubMed]
13. Foston, M.; Ragauskas, A.J. Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance. Ind. Biotechnol.

2012, 8, 191–208. [CrossRef]
14. Zhao, X.; Zhang, L.; Liu, D. Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic

digestibility of lignocellulose. Biofuels Bioprod. Bioref. 2012, 6, 561–579. [CrossRef]
15. Kabel, M.A.; Bos, G.; Zeevalking, J.; Voragen, A.G.J.; Schols, H.A. Effect of pretreatment severity on xylan solubility and enzymatic

breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 2007, 98, 2034–2042. [CrossRef]
16. Shaw, M.D.; Karunakaran, C.; Tabil, L.G. Physicochemical characteristics of densified untreated and steam exploded poplar wood

and wheat straw grinds. Biosyst. Eng. 2009, 103, 198–207. [CrossRef]
17. Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition.

Bioresour. Technol. 2000, 74, 25–33. [CrossRef]
18. Garrote, G.; Domínguez, H.; Parajó, J.C. Mild autohydrolysis: An environmentally friendly technology for xylooligosaccharide

production from wood. J. Chem. Technol. Biotechnol. 1999, 74, 1101–1109. [CrossRef]
19. Garrote, G.; Domínguez, H.; Parajó, J.C. Interpretation of deacetylation and hemicellulose hydrolysis during hydrothermal

treatments on the basis of the severity factor. Process Biochem. 2002, 37, 1067–1073. [CrossRef]
20. Bauer, A.; Lizasoain, J.; Theuretzbacher, F.; Agger, J.W.; Rincón, M.; Menardo, S.; Saylor, M.K.; Enguídanos, R.; Nielsen, P.J.;

Potthast, A.; et al. Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresour. Technol. 2014,
166, 403–410. [CrossRef]

21. Steinbach, D.; Wüst, D.; Zielonka, S.; Krümpel, J.; Munder, S.; Pagel, M.; Kruse, A. Steam Explosion Conditions Highly Influence
the Biogas Yield of Rice Straw. Molecules 2019, 24, 3492. [CrossRef]

22. Menardo, S.; Bauer, A.; Theuretzbacher, F.; Piringer, G.; Nilsen, P.J.; Balsari, P.; Pavliska, O.; Amon, T. Biogas Production from
Steam-Exploded Miscanthus and Utilization of Biogas Energy and CO2 in Greenhouses. Bioenerg. Res. 2013, 6, 620–630. [CrossRef]

23. Maximo, Y.I.; Hassegawa, M.; Verkerk, P.J.; Missio, A.L. Forest Bioeconomy in Brazil: Potential Innovative Products from the
Forest Sector. Land 2022, 11, 1297. [CrossRef]

24. Saepoo, T.; Sarak, S.; Mayakun, J.; Eksomtramage, T.; Kaewtatip, K. Thermoplastic starch composite with oil palm mesocarp fiber
waste and its application as biodegradable seeding pot. Carbohydr. Polym. 2023, 299, 120221. [CrossRef]

25. Pålsson, H.; Pettersson, F.; Winslott Hiselius, L. Energy consumption in e-commerce versus conventional trade channels—Insights
into packaging, the last mile, unsold products and product returns. J. Clean. Prod. 2017, 164, 765–778.

26. Kim, R.Y. The Impact of COVID-19 on Consumers: Preparing for Digital Sales. IEEE Eng. Manag. Rev. 2020, 48, 212–218.
[CrossRef]

27. Taylor, K. The Retail Apocalypse Is Far from over as Analysts Predict 75,000 More Store Closures; Business Insider: New York, NY,
USA, 2019.

28. Kim, Y.; Kang, J.; Chun, H. Is online shopping packaging waste a threat to the environment? Econ. Lett. 2022, 214, 110398.
[CrossRef]

54



Appl. Biosci. 2023, 2

29. Järvinen, J.; Lamberg, J.-A.; Nokelainen, T.; Tikkanen, H. Global Demand for Paper Products: 2006–2050. In The Evolution of Global
Paper Industry 1800–2050; Lamberg, J.-A., Ojala, J., Peltoniemi, M., Särkkä, T., Eds.; Springer: Dordrecht, The Netherlands, 2012;
pp. 307–343. ISBN 978-94-007-5430-0.

30. Jung, J.Y.; Ha, S.Y.; Yang, J.-K. Effect of Water-impregnation on Steam Explosion of Pinus densiflora. J. Korean Wood Sci. Technol.
2019, 47, 189–199. [CrossRef]

31. Liu, L.-Y.; Qin, J.-C.; Li, K.; Mehmood, M.A.; Liu, C.-G. Impact of moisture content on instant catapult steam explosion
pretreatment of sweet potato vine. Bioresour. Bioprocess. 2017, 4, 675. [CrossRef]

32. Ziegler-Devin, I.; Chrusciel, L.; Brosse, N. Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical
and Experimental Approaches. Front. Chem. 2021, 9, 705358. [CrossRef]

33. VDI-Fachbereich Energietechnik. Fermentation of Organic Materials—Characterisation of the Substrate, Sampling, Collection of Material
Data, Fermentation Tests, VDI 4630; VDI-Gesellschaft Energie und Umwelt: Düsseldorf, Germany, 2016.

34. Hülsemann, B.; Zhou, L.; Merkle, W.; Hassa, J.; Müller, J.; Oechsner, H. Biomethane Potential Test: Influence of Inoculum and the
Digestion System. Appl. Sci. 2020, 10, 2589. [CrossRef]

35. Mittweg, G.; Oechsner, H.; Hahn, V.; Lemmer, A.; Reinhardt-Hanisch, A. Repeatability of a laboratory batch method to determine
the specific biogas and methane yields. Eng. Life Sci. 2012, 12, 270–278. [CrossRef]

36. Helffrich, D.; Oechsner, H. Hohenheimer Biogasertragstest. Landtechnik 2003, 58, 148–149. [CrossRef]
37. Weißbach, F. On Assessing the Gas Production Potential of Renewable Primary Products. Landtechnik 2008, 63, 356–358. [CrossRef]
38. Weißbach, F. Degree of utilization of primary renewable products in biogas production. Landtechnik 2009, 64, 18–21. [CrossRef]
39. Zhao, Y.; Yu, K.; Tian, X.; Sui, W.; Wu, T.; Wang, S.; Jin, Y.; Zhu, Q.; Meng, J.; Zhang, M. Combined Modification of Soluble

Dietary Fibers from Apple Pomace by Steam Explosion and Enzymatic Hydrolysis to Improve its Structural, Physicochemical
and Functional Properties. Waste Biomass Valorization 2022, 13, 4869–4879. [CrossRef]

40. Sobczak, P.; Nadulski, R.; Kobus, Z.; Zawiślak, K. Technology for Apple Pomace Utilization within a Sustainable Development
Policy Framework. Sustainability 2022, 14, 5470. [CrossRef]

41. Liu, Z.; Wang, X. Manure treatment and utilization in production systems. In Animal Agriculture; Elsevier: Amsterdam, The
Netherlands, 2020; pp. 455–467. ISBN 9780128170526.

42. Irfan Sohail, M.; Arif, M.; Rauf, A.; Rizwan, M.; Ali, S.; Saqib, M.; Zia-ur-Rehman, M. Organic Manures for Cadmium Tolerance
and Remediation. In Cadmium Tolerance in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–67. ISBN 9780128157947.

43. Olugbemide, A.D.; Likozar, B. Assessment of Liquid and Solid Digestates from Anaerobic Digestion of Rice Husk as Potential
Biofertilizer and Nutrient Source for Microalgae Cultivation. Processes 2022, 10, 1007. [CrossRef]

44. Laura Mastellone, M. Exploitation of Digestate in a Fully Integrated Biowaste Treatment Facility: A Case Study. In Biogas—Recent
Advances and Integrated Approaches; El-Fatah Abomohra, A., Elsayed, M., Qin, Z., Ji, H., Liu, Z., Eds.; IntechOpen: London, UK,
2021; ISBN 978-1-83962-668-5.
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Abstract: The metabolic diversity of soil microbiota embodies diverse functional capabilities that
support ecosystem resilience, driving essential biogeochemical processes and facilitating the op-
timization of sustainable agricultural systems. Integrating cover crops into agricultural systems
cultivates a diverse array of metabolic activities among soil microbes, synergistically enhancing
ecosystem services and bolstering soil health for sustainable and productive farming practices. In
an effort to gain deeper insights and expand our knowledge, we conducted a study examining the
effects of cover crops and fertilizer sources, thereby shedding light on their combined impacts on
the metabolic activity dynamics of soil microbial communities. In this investigation, we employed
a split-plot design with two factors: (a) cover crop with three solo cover crop species—Cereal rye
(Secale cereale), wheat (Triticum aestivum), hairy vetch (Vicia villosa), and one mixture of mustard
(Brassica rapa) and cereal rye (Secale cereale) (CC-mix), (b) Fertilizer source includes poultry litter,
chemical fertilizer, and no-fertilizer treatments. We assessed the metabolic potential of soil microbiota
by using carbon substrates utilizing Biolog EcoPlates. The findings revealed that the plots with
CC-mix treatment exhibited greater metabolic diversity compared to the other treatments, while
among the fertilizer sources, poultry litter demonstrated higher metabolic activity. Furthermore,
both treatment factors predominantly metabolized carbohydrates and polymers compared to other
carbon substrate categories. The principal component analysis accounted for 46.4% of the variance,
collectively represented by PC1 and PC2, emphasizing the substantial contributions of carbohydrates,
amino acids, and carboxylic acids to the observed metabolic diversity. Canonical correspondence
analysis revealed that pH had positively correlated with microbial functional diversity, whereas total
carbon (TC), total nitrogen (TN), and water-stable aggregates (WSA) showed a negative correlation.
In conclusion, cover cropping and type of fertilizer source had a notable impact on soil microbial
functional diversity, with the cover crop mixture exhibiting a more pronounced influence than the
individual cover crop treatments.

Keywords: microbial communities; soil microbiota; fertilization; poultry litter; Shannon diversity;
Simpson diversity; principal component analysis; canonical correspondence analysis; cover cropping;
living mulch; microbial functional diversity; catabolic diversity

1. Introduction

Soil is a highly diverse, intricate, and dynamic ecosphere that comprises numerous
living and non-living elements persistently communicating with each other. Soil health
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can undergo changes over time as a result of both natural occurrences and human ac-
tivities. Soil health is improved through effective management and land-use choices
that consider the diverse functions of soil [1]. Unsustainable soil management practices
worsened soil erosion, a deterioration in soil microbiome activity, and a consequent re-
duction in nutrient availability for plant uptake [2]. Nature-based solutions (NBS) strate-
gies, such as reduced soil tillage, soil covering with crop residuals or cover crops, soil
amendments, and crop rotation to achieve microbial diversity, have been suggested as a
substitution for conventional agriculture for improving soil health characteristics [3]. The
association between soil biology and agricultural sustainability is paramount, as microbes
play a pivotal role in facilitating the decomposition of intricate organic compounds into
plant-available forms [4].

Over the past few years, our comprehension of soil microbial communities in dryland
ecosystems has broadened, as these organisms play a vital role in maintaining soil health
and ecosystem functions [5]. For instance, the soil microbiome mediates various essential
ecosystem services, such as nitrogen incorporation [6], organic carbon decomposition,
carbon capture [7], bio-remediation of environmental pollutants [3], and resistance to
biotic and abiotic stresses [8,9]. Nonetheless, such ecosystem services are compromised by
intensive farming systems and tillage practices [10] due to excessive synthetic fertilizers
and monoculture cropping systems [10]. This lowers soil microbial functional diversity,
which significantly influences crop performance [11]. Expanding diversified cropping
systems promotes sustainable agriculture, potentially improving ecosystem functioning by
enhancing soil microbial diversity as observed in natural ecosystems [12,13]. The objective
is to enhance the functional diversity of soil microbiota by promoting microbial diversity,
thereby boosting its capacity to metabolize a broad range of organic substances. Introducing
diversity in organic matter residues in agricultural systems, e.g., cover crop mixtures, is
anticipated to enhance functional diversity [14,15]. Integration of cover crops and organic
amendments alters the abundance, diversity, and metabolic activities of microoganisms
present in the agricultural soils, and these altered microbial groups have various effects on
their soil ecosystem services [16], which require further exploration.

A large body of literature specifies that, different cover crops with varying crop
rotations and periods have diverse impacts and roles on soil health properties and mi-
croorganisms [17,18]. The legume cover crops are potent nitrogen fixers (i.e., symbiotic
association with Rhizobium) and can transform atmospheric nitrogen into available forms
(NH3 and NH4) [19]. Legumes generate residue with a comparatively higher nitrogen con-
tent that is readily degradable and accessible to crops and soil microbes. Grass species with
their root system have strong nutrient scavenging capability, specifically for N, and hence
have been used to reduce N leaching [20]. Brassicaceous species cover crops have a deep
root system, can provide an allelopathic effect to control weeds, and have bio fumigation
properties for the suppression of soil pathogens [21,22]. Cover crops are characterized
by their rapid growth rate and exhibit a range of C:N ratios, leading to the production of
residues that possess a stoichiometry that differs from microbial biomass [23]. Winter cover
crops such as cereal rye and hairy vetch are widely utilized due to their ability to withstand
low temperatures, incorporate substantial biomass [24], N fixing [25], and stimulate soil
biological activity [26]. Three-year research conducted by Buyer et al. (2010) reported
that incorporating vetch and rye into crop rotations significantly enhanced soil microbial
biomass and metabolic activity [27]. In addition, cover crops, compost, and manure are
recognized as vital factors in sustainable farming as they supply vital nutrients to plants,
enhance soil structure and quality, and add organic matter [28].

Single-cover crop species cannot deliver all the benefits for soil health [29]. Therefore,
multifunctional cover crops, such as combining legumes and grasses or integrating multi-
species mixture into crop production systems, can be more advantageous for improving
soil health since they can expand the variety of substrates available to the ecosystem and
provide a number of ecosystem services [29,30]. The inclusion of plant mixtures with
varying C:N ratios can provide diverse substrate options for the soil system, which might
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expand the niche breadth of the soil microbiota, thus enhancing its metabolic potential [31].
For instance, a combination of oats, radish, and vetch showed significant enhancement in
the abundance of gram-positive bacteria, and phosphatase function using phospholipid
fatty acid analysis more effectively than a combination of oats and radish [32]. Given that
different cover crop species have chemically different root exudates, Housman et al. (2021)
reported that higher microbial biomass and improved enzymatic activity in multiple cover
crops compared to solo species also differed effects between species [33]. Moreover, ele-
vated soil microbial functional activity was observed in cover crop mixture plots compared
to solo treatments [30].

The biological variation of microbial community composition is being studied from
three perspectives, viz., species diversity, genetic diversity, and functional diversity [34,35].
The functional diversity of soil microbiome is a component of biodiversity that comprises
a broad range of metabolic behaviors that can affect many elements of ecosystem func-
tions, such as ecological stability, nutrient cycling, ecosystem dynamics, and so on [36].
Identifying the functional microbial diversity in soils entails selecting the most appropriate
approaches for examining the maximum diversity present in the samples.

Cultivation-dependent approaches require the preparation of cell suspensions, dilu-
tion, inoculation on solid media, and phenotypic examination of microbial species. The
majority of research on the structure of heterotrophic microbial communities has used
isolate-based techniques [37]. The isolation of microbial samples varies among species,
and cell type (cell, spore, or mycelium) generates bias. Furthermore, designing nutrient
media and appropriate conditions for all members of microbial communities presents a
significant challenge, which are major disadvantages of these approaches [36]. Microbial
lipid-based techniques without actual culturing of the microorganisms, namely, PLFA
and fatty acid methyl ester (FAME), have been extensively used for the examination of
microbiome metabolic and compositional changes due to agricultural practices [38]. These
techniques, however, unquestionably have drawbacks, including complicated operational
protocols, time-consuming assays, poor precision, and inconsistent repeatability [39,40].

Community-Level Physiological Profiling (CLPP) offers an alternative approach, com-
paring and categorizing microbial communities based on their utilization of carbon sub-
strates. The Biolog® EcoPlatesTM (Biolog Inc., Hayward, CA, USA) has been specifically
designed to examine the functional diversity of microbial communities. This plate has
31 separate carbon source wells, each with three replications, representing six different
types of carbon compound families: carbohydrates, carboxylic acids, amino acids, polymers,
amines, and phenolic compounds, with a blank well as a control [41]. The principle behind
this assay involves the reduction reaction of water-soluble colorless triphenyl tetrazolium
chloride to purple triphenyl formazan [41]. This technique is straightforward to implement,
as it does not necessitate the use of isolated cultures and preserves the metabolic traits of
microbial communities at optimal levels [42].

Soybean (Glycine max L.) is a legume oil seed crop known to fix atmospheric nitrogen
through symbiotic interactions with soil bacteria [43]. It has numerous applications, in-
cluding the production of soy milk, soy sauces, tofu, edible oil, economically recoverable
phytohormones, and biodiesel. Traditional soybean monoculture has been coupled with
numerous ecological concerns, especially regarding soil health parameters, such as loss
of organic matter [44] and available phosphorus [45]. Soil conservation and sustainable
agriculture approaches such as cover cropping, crop rotations, and organic fertilizers have
widely been recognized as substitutes for soybean monocropping with positive influences
on soil organic carbon, aggregate soil stability, nutrient cycling, N fixation, and high-water
holding capacity [46–48].

The ecosystem services of different cover crops with fertilizer sources vary, which
allows us to evaluate cover crop-mediated soil health promotion processes specific to
microbial functional diversity and to correlate soil physicochemical characteristics such as
pH, organic carbon, active carbon (POXC), total nitrogen, and glomalin in dryland soybean
production systems. Overall, the objective of this experiment was to examine the effect of
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cover crops and different types of fertilizer sources (organic and inorganic) on microbial
community composition, functional diversity, and soil health parameters.

In this experiment, we executed of two-year field study in which cover crop solo
and mixture species were integrated into dryland soybean production systems to test the
following hypotheses:

• Soil microbial functional diversity and soil health characteristics were positively affected
by cover crop mixtures and organic amendments in dryland soybean production systems.

• Cover crop mixture leads to higher microbial functional diversity compared to solo
cover crop treatments.

2. Materials and Methods

2.1. Description of the Experimental Sites

The study area was situated at the Pontotoc Ridge-Flatwoods Branch Experimental
Station in Pontotoc, MS, USA (34◦09′ N, 88◦58′ W). The soil type at the research location
belongs to the Atwood silt loam series, characterized as a semi-active, mixed soil with
fine-silty texture, thermic Typic Paleudalf, situated on a moderate 3% slope. The soil
here consists of 13.9% clay, 17.6% sand, and 68.5% silt (Soil Survey, Natural Resources
Conservation Service (NRCS)). The investigation was carried out under rainfed and zero
tillage conditions, with initial soil characterization at the experimental site revealing 1.57%
organic matter and a pH of 6.67. Prior to this study, the experimental site had been planted
with corn and soybeans for 2016 and 2017, respectively. Cover crops were established in
2016 and maintained until 2019, while soybeans were cultivated from 2017–2019. The study
site has an average January temperature of 5.4 ◦C, an average July temperature of 23 ◦C,
and an annual average rainfall of 1483 mm [49].

2.2. Experimental Design and Field Methods

The study was arranged in a split-plot arrangement with a randomized block design
and three replications each. In this experiment, two factors—cover crops as a primary factor
and fertilizer source as a secondary factor were taken into consideration. The experimental
design comprised 15 whole plots of 167.2 m2 each, with 45 sub-plots of 74.3 m2 designated
for the different cover crop and fertilizer source treatments.

Cover crops included cereal rye (Secale cereale) (CR), wheat (Triticum aestivum) (WT),
vetch (Vicia villosa) (VT), mustard (Brassica juncia) + cereal rye (CC-mix), and native vege-
tation (NV) (no cover crop with natural weeds) as a control. Sub-factor fertilizer sources
contained poultry litter (PL) as an organic amendment, inorganic fertilizer (P, K, and S;
CL), and no fertilizer (NO) as a control. Detailed information regarding cover crop plant-
ing dates, management practices, fertilizer source chemical composition, and application
dosages was described by Pokhrel et al. (2021) [50].

2.3. Soil Sampling and Analysis of Physicochemical Properties

At each plot, soil samples were collected at rhizosphere region 1–15 cm depth after
the termination of cover crops. Roughly 500 g of soil was collected into a Ziplock bag
and preserved at a −20 ◦C freezer used for estimation of the metabolic diversity of mi-
crobial species. Soil physicochemical characters such as total C, active carbon (POXC),
total nitrogen, glomalin (EE-GRSP), water stable aggregate (WSA), and soil pH were es-
timated from samples that were air-dried overnight, grounded, and passed through a
2.0 mm sieve. Detailed protocols for estimating these soil parameters were described in our
previous studies [16,50].

2.4. BiologTM EcoPlates

The community-level physiological profiling of soil microbiota was analyzed using
BiologTM EcoPlates. Each plate consists of 31 wells with different carbon sources and
one control well. All these are replicated three times to control variation in the sample
inoculum. The consumption of carbon substrates in wells by microbial communities results
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in the color development of their respective wells. This color development is quantified
spectrophotometrically using a plate reader. Firstly, 10 g of soil was measured and placed in
a 250 mL conical flask, then added 100 mL of sterilized NaCl solution (0.85%), later agitated
at 150 rpm for 30 min, and then left undisturbed in a refrigerator for 30 min. The clear
suspension was transferred to a petri dish, and with the help of a multi-channel pipette,
samples were loaded into a Biolog EcoPlate. The inoculated sample plates were placed in
the dark during incubation at 25 ◦C, and absorbance was measured using a BioTek 800 TS
(AgilentTM, Santa Clara, CA, USA) microplate reader every 24 h for five days.

2.5. Soil Microbial Communities Catabolic Profiling
2.5.1. Quantification of Average Well Color Development in Biolog EcoPlates Wells

The metabolic process of soil microbial populations in individual wells of Biolog
EcoPlate leads to the formation of formazan, thus change in color of the tetrazolium dye is
induced [42]. The absorbance values of individual wells at 590 nm wavelength represent
metabolic activity and are expressed as average well color development (AWCD) [37].

AWCD =

31

∑
i

Ci − R
n

(1)

Here, Ci represents the absorbance value (OD) of each well containing a carbon
source; R represents the absorbance value of a blank well (without carbon substrate); and n
represents the total number of wells with carbon substrates.

2.5.2. Determination of Diversity Indices of Microbial Populations:

Average well-color development estimated from Biolog EcoPlates can be utilized to
estimate microbial metabolic diversity indices proposed by Yan (2011) [51]. Absorbance
measurements and optical density (OD) at 96 h were employed to estimate the average
well-color development and metabolic diversity parameters. This time point was selected
as it exhibited an ideal range of absorbance values for the analysis. The following functional
diversity parameters were calculated:

(1) Shannon Diversity Index (H′):

H′ =
31

∑
i=1

Pi(lnPi) (2)

Here, Pi represents the ratio between (Ci − R) and the total absorbance of the total
plate wells. ln denotes the natural logarithm with respect to Pi. The Shannon diversity index
(H′) is used to measure the microbial communities’ heterogeneousness based on the concept
of uncertainty. Higher uncertainty refers to greater diversity present in communities, and it
gives microbial species diversity and evenness within the community.

(2) Shannon Evenness Index (E):

E =
H′
lnS

(3)

This method centers on the uniformity of absorbance values at each well for all utilized
carbon substrates [41]. In this equation, S represents the total absorbance value of 31 wells.
The Shannon evenness index (E) identifies the evenness of microbial-type abundance in
the communities.

(3) Inverse Simpson Diversity Index (1/D):

D = ∑ni × (ni − 1)

N × (N − 1)
(4)
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The Simpson Diversity Index accounts for both the overall number of species and
the proportional representation of each individual species [52]. In this formula, ni denotes
the relative absorbance value in each ith well; N is the sum of the absorbance values of
31 wells [23]. The inverse Simpson diversity index (1/D) defines the species diversity by
estimating the probability of one species encountering another [53].

(4) McInthosh Index (U):

U =

√
∑(

n2
i
)

(5)

The McInthosh index was calculated according to [54]. Where, ni is corrected absorbance
value with blank, i.e., (Ci − R). It measures the microbial communities’ homogeneity [55].

(5) Substrate richness (SR):

Substrate richness (R) refers to the count of carbon substrates that are utilized by soil
microorganisms. It was estimated as the sum of oxidized wells, which had to be at least
0.5 after 96 h incubation [56].

(6) Statistical analysis:

Diversity parameters were calculated using Microsoft Excel Version 16.74 (Microsoft
Corporation 2023, Redmond, WA, USA). Analysis of variance (ANOVA) and LSD (least
significant differences) for two factors was performed for the cover crop and fertilizer
source factors using JMP®, Version 17.0. SAS Institute Inc., Cary, NC, 1989–2021. The
plots were generated using the ‘ggplot2’ package Wickham (2016) within the R program-
ming language (R Core Team, 2023) [57] and Sigma Plot, Version 15 (Systat Software Inc.,
San Jose, CA, USA).

To assess the functional composition of the bacterial community, we conducted a
Principal Component Analysis (PCA) on the corrected values of Biolog absorbance. The
Biolog absorbance values were adjusted by subtracting the absorbance values from the
control well of the Biolog EcoPlate. PCA is a widely used statistical technique that simplifies
complex multidimensional data into a smaller set of interpretable variables called principal
components [37]. This analysis enabled us to examine whether the measured variables
could effectively differentiate the soil management treatments based on their principal
components. PERMANOVA is a multivariate statistical method that allows for the analysis
of dissimilarities in microbial community composition based on categorical or continuous
variables. It helps to determine whether there are significant differences in community
structure between different treatments or groups [58]. In addition to PCA, Canonical
Correspondence Analysis (CCA) was applied to explore and visualize the relationships
between microbial communities and environmental variables. CCA helped us identify
the key environmental factors that influenced the composition of microbial communities,
providing valuable insights into the ecological processes that shape the dynamics of the
microbial community [59].

The PERMANOVA (Permutational Multivariate Analysis of Variance) test, CCA
(Canonical Correspondence Analysis), and PCA (Principal Component Analysis) were
performed using a vegan package in R programming language [60].

3. Results

3.1. Differences in AWCD over Time in Soils with Cover Crops and Fertilizer Source Treatment

Generally, the amount of carbon substrate utilization is directly proportional to the
metabolic ability of the respective microbial communities, as determined by AWCD [37].
Our results showed that AWCD values increased over time, indicating that soil microbiome
has a greater ability to utilize carbon substrates when there is a longer interaction with the
substrate (Figure 1A,B). The results revealed that the AWCD values from 0 to 24 h for all
treatments were small, indicating a noticeable lag phase in the first 24 h. After 24 h, the
metabolic activity of microbial populations rapidly increased for all treatments, indicat-
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ing soil microbes were at their growth phase and capable of utilizing carbon substrates
in plates.

(A)                                                     (B) 

Figure 1. Changes in average well color development (AWCD) of the soil microbial communities in
cover crop (A) and fertilizer source (B) treatments with incubation time.

Cereal rye treatment consistently exhibited the lowest AWCD at all incubation periods.
Native vegetation treatment had significantly higher AWCD after 24, 48 h, and 72 h than
other cover crop treatments followed by CC-mix (p < 0.05) (Figure 1A). After 96 h of
incubation, both native vegetation and CC-mix had similar AWCD, which was higher than
the remaining cover crop treatments. In regard to fertilizer source treatments, AWCD was
highest with PL (Poultry litter) treatment, followed by chemical fertilizer. The fertilizer
treatment exhibited the lowest AWCD after a 96-h incubation period (Figure 1B). During
the entire incubation period, the AWCD values for each cover crop followed the following
pattern NV > CC-mix > VT > WT > CR. These results suggest that the metabolic activity of
soil microbial communities in utilizing carbon substrates differs among cover crops and
fertilizer sources.

3.2. Influence of Cover Cropping and Fertilizer Source Treatments on Microbial Metabolic
Diversity Indices

Absorbance measured as OD values at 96 h were used for the estimation of func-
tional diversity parameters and average well-color development since these indicated
the optimal range of absorbance. The influence of cover crops and fertilization on func-
tional diversity indices such as the Shannon diversity index (H′), Shannon evenness index
(E), McIntosh index (U), substrate richness (R), and inverse Simpson index (1/D) of soil
microbial communities is shown in Table 1.

All the functional diversity indices except 1/D demonstrated significant differences
(p < 0.05). The H′, E, R, and 1/D indices were most pronounced in the CC-mix treatment,
succeeded by native vegetation and vetch treatments, whereas the values observed in the
cereal rye treatment were considerably lower. Additionally, the native vegetation treatment
demonstrated the highest AWCD and U values.

In the poultry litter treatment, the highest values were observed across all functional
diversity indices, including AWCD, and were closely followed by the chemical fertilizer
treatment (Table 1). Notably, significant differences were observed between fertilizer source
treatments for diversity indices, with the exception of 1/D.
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Table 1. Main effects of cover crop and fertilizer source on soil microbial community diversity indices.

AWCD 1 H′ E U R 1/D

Cover Crop

Cereal rye 0.76 (0.04) d 3.14 (0.02) d 0.91 (0.006) d 5.15 (0.27) d 16.55 (1.00) d 67.79 (3.60)
CC-mix 2 1.32 (0.04) a 3.31 (0.009) a 0.96 (0.002) a 8.03 (0.26) a 25.6 (0.37) a 71.88 (3.70)

Native vegetation 1.34 (0.07) a 3.29 (0.016) a 0.96 (0.004) a 8.25 (0.40) a 25.33 (0.78) a 66.30 (2.72)
Vetch 1.05 (0.03) b 3.24 (0.004) b 0.94 (0.001) b 6.77 (0.19) b 21.44 (0.92) b 84.41 (7.46)
Wheat 0.95 (0.07) c 3.20 (0.01) c 0.93 (0.003) c 6.23 (0.44) c 19.88 (1.67) c 84.00 (8.83)

CC*FT 3 s* s* s* s* s* ns

Fertilizer Source

CL 1.11 (0.054) a 3.21 (0.019) b 0.93 (0.005) b 7.13 (0.26) a 22.46 (0.58) a 72.02 (2.12)
None 0.99 (0.07) b 3.22 (0.024) b 0.94 (0.007) b 6.32 (0.39) b 20.46 (1.54) b 77.67 (6.10)

PL 1.15 (0.08) a 3.27 (0.011) a 0.95 (0.003) a 7.21 (0.47) a 22.4 (1.21) a 74.97 (5.53)

1 Variable in column with no letters is not significant at the 0.05 level using Fisher’s protected LSD; Standard
error in parenthesis. 2 CC-mix =Cereal rye and mustard; 3 CC*FT = Interaction between cover crop and fertilizer
source (ns = non-significant, s* = significant. AWCD = Average color development; H′ = Shannon Diversity Index;
E = Shannon evenness index; U = Mcinthosh Index; R = Substrate richness; 1/D = Inverse Simpson Diversity,
CL = Chemical fertilizer, PL = Poultry litter.

The microbial functional diversity indices also exhibited significant variations, which
were influenced by the interaction between cover crop and fertilizer source treatments.
Notably, the CC-mix + PL treatment demonstrated the highest values for all the di-
versity indices, followed by CC-mix + CL treatment for AWCD, U, and R indices and
NV + NO for H′ and E. The soil samples under CR + NO treatment, on the other hand,
displayed lower values for all the diversity indices. These results generally align with the
patterns observed for the main effects of cover crop, except for the WT + PL treatment,
which displayed higher values compared to the vetch treatment in combination with other
fertilizer sources (Table 2).

Table 2. Combined effects of cover crop and fertilizer source on soil microbial community diversity indices.

Treatment 2 AWCD 1 H′ E U R

MX +PL 1.57 (0.036) a 3.33 (0.018) a 0.97 (0.0032) a 9.47 (0.28) a 27 (0.83) a
MX + CL 1.47 (0.038) ab 3.32 (0.012) a 0.967 (0.0032) a 8.87 (0.29) ab 26.33 (1.03) ab
NV + NO 1.34 (0.047) bc 3.32 (0.0134) a 0.968 (0.0023) a 8.09 (0.28) bc 26 (0.93) ab
NV + PL 1.32 (0.074) bc 3.31 (0.0324) ab 0.964 (0.0093) ab 8.05 (0.23) bc 26.33 (1.22) ab
WT + PL 1.23 (0.048) cd 3.26 (0.0284) bcd 0.95 (0.0042) bcd 7.76 (0.31) c 25 (0.73) abc
MX + NO 1.17 (0.083) cd 3.30 (0.0173) abc 0.963 (0.0024) abc 7.17 (0.32) cd 24.67 (0.69) abc
NV + CL 1.12 (0.037) de 3.23 (0.0182) d 0.943 (0.0043) d 7.18 (0.35) cd 22.67 (0.73) cde
VT + NO 1.12 (0.028) de 3.24 (0.0284) cd 0.943 (0.0032) cd 7.15 (0.29) cd 23.67 (0.83) bcd
VT + CL 1.10 (0.047) de 3.24 (0.0482) cd 0.944 (0.0024) cd 7.12 (0.23) cd 22.67 (0.93) cde
WT + CL 0.94 (0.058) ef 3.17 (0.0284) ef 0.923 (0.0032) ef 6.26 (0.32) de 21 (1.02) de
VT + PL 0.93 (0.057) ef 3.24 (0.0138) cd 0.944 (0.0023) cd 6.04 (0.29) e 18 (1.10) fg
CR + CL 0.91 (0.075) fg 3.11 (0.0324) fg 0.905 (0.0024) fg 6.22 (0.28) de 20 (1.12) ef
CR + PL 0.73 (0.036) gh 3.23 (0.0231) de 0.940 (0.043) de 4.76 (0.23) f 16.33 (1.11) gh
WT + NO 0.70 (0.037) h 3.19 (0.2842) de 0.931 (0.0024) de 4.69 (0.24) f 13.67 (1.03) hi
CR + NO 0.63 (0.048) h 3.07 (0.0124) g 0.894 (0.0036) g 4.47 (0.25) f 13.33 (1.20) i

1 Variable in column with no letters are not significant at the 0.05 level using Fisher’s protected LSD; Standard Error
in parenthesis. 2 Treatment = CR + CL = Cereal rye + Chemical fertilizer; CR + NO = Cereal rye + No fertilizer;
CR + PL = Cereal rye + Poultry litter; MX + CL = CC-mix + Chemical fertilizer; MX + NO = CC-mix + No fertilizer;
MX + PL = CC-mix + Poultry litter; NV + CL = Native vegetation + Chemical fertilizer; NV + NO = Native
vegetation + No fertilizer; NV + PL = Native vegetation + Poultry litter; VT + CL = Vetch + Chemical fertilizer;
VT + NO = Vetch + No fertilizer; VT + PL = Vetch + Poultry litter; WT + CL = Wheat + Chemical fertilizer; WT +
NO = Wheat + No fertilizer; WT+PL = Wheat + Poultry litter.

3.3. Classification of Carbon Substrate Utilization Categories in Biolog EcoPlate

The Biolog EcoPlate comprises 31 carbon substrates, which are classified into six
distinct categories: carbohydrates, carboxylic acids, amino acids, polymers, amines, and
phenolic acids (Table 3).
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Table 3. Carbon substrates present in Biolog EcoPlates related to PC1 and PC2.

Carbon Substrate PC1 PC2

Polymers

Tween 40 0.96179268 −0.03904354
Tween 80 0.34211498 0.03092762

Alpha-Cyclodextrin −0.83462371 −0.41750008
Glycogen −0.63170406 −0.23706666

Carbohydrates

Glucose-1-Phosphate −0.25453698 0.58790260
D-L-Alpha-Glycerol Phosphate 0.19979821 −0.74993661

D-Cellubiose −0.45806275 0.15852001
Alpha-D-Lactose −0.50881668 0.77378681

Beta-Methyl-D-Glucoside −0.70499935 0.02685358
D-Xylose −0.74269362 0.35992147

I-Erythritol −0.56968692 0.59688337
D-Mannitol 0.85824297 −0.38592539

N-Acetyl-D-Glucosamine 0.58653954 −0.02068943

Carboxylic acids

Pyruvic Acid Methyl Ester 0.42378445 −0.26569367
D-Glucosaminic acid 0.52295150 −0.39975288

D-Galactonic Acid-Gamma-Lactone 0.63099447 −0.06814916
D-Galacturonic acid 0.92169910 −0.40273613

Gamma-Amino-Butyric Acid 0.75517974 −0.05258175
Itaconic Acid −0.23717004 −0.45819712

Beta-Keto Butyric Acid −0.65735782 −0.34116388
D-Malic Acid 0.93858412 −0.04106865

Amino acids

L-Arginine 0.60169520 0.39097528
L-Asparagine 1.00149965 0.01168636

L-Phenylalanine −0.58543371 −0.02388333
L-Serine 0.08844583 0.36381245

L-Threonine −0.62958879 −0.42939563
Glycyl-L-Glutamic Acid −0.78420635 −0.36112807

Amines

Phenythyl-Amine −0.52359729 0.15857889
Putrescine 0.84357073 0.29691745

Phenolic acids

2-Hydroxy Benzonic Acid −0.18237857 −0.16476193
4-Hydroxy Benzonic Acid 0.23406065 0.47218892

The metabolic activity of soil microbial populations on these six different categories
of carbon substrates distinctly varies among cover crops and fertilizer source treatments.
Figure 2A,B showed that the relative utilization of different carbon group substrates signifi-
cantly differs with treatments (p < 0.001).

In the CC-mix treatment, higher utilization of carbon substrates in the polymer and
carboxylic acid groups was observed, while the microbial communities from native vegeta-
tion treatment showed the highest consumption of carbohydrates, amino acids, amines, and
phenolic compounds. Among fertilizer source treatments, the chemical fertilizer treatment
showed greater carbon substrate utilization across all carbon groups except polymers, while
the highest consumption of polymer group carbon substrates was evident in the poultry
litter treatment. Collectively, both treatments indicated that carbohydrates and polymers
were the primary carbon substrate groups harnessed by soil microbial communities residing
within their respective treatments.
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Figure 2. Utilization of carbon substrate categories by soil microbial communities from the cover
crop (A) and fertilizer source (B) treatments. Bars with letters denotes significance at the level
0.05 level using Fisher’s protected LSD. (CR = Cereal rye; CC-mix = Cereal rye and mustard;
NV = Native vegetation; VT = Vetch; WT = Wheat, CF = Chemical fertilizer; PL = Poultry litter; and
NO = No fertilizer).

3.4. Analysis of Carbon Substrate Utilization by Soil Microbial Communities Using Principal
Component Analysis (PCA)

To establish the degree of separation of treatments in relation to carbon substrate
utilization, each of the cover crop and fertilizer treatments was subjected to principal
component analysis and Bray–Curtis ordination. Principal components—PC1 and PC2
scores for 31 carbon substrates are given in Table 3. The higher loading scores represent
larger effects of carbon substrate on the principal components. The first and second
principal components described 34.4% and 12% variation, respectively. As shown in
Figure 3A, there were distinct differences in the utilization of soil microbial communities
from different cover crop treatments (PERMANOVA, p = 0.009).

The results from the principal component analysis showed that PC1 was positively
correlated to carbon sources, including L-Asparagine, Tween 40, D- Malic acid, D- Galactur-
onic acid, D-Mannitol, Putrescine, Gamma-Amino-Butyric acid, N-Acetyl-D-Glucosamine,
L-Arginine, and D-Glucosaminic acid, as evidenced by their high loading scores exceeding
0.5 (Table 3). On the other hand, PC2 showed a positive correlation with Glucose-1-
Phosphate, Alpha-D-Lactose, and I-Erythritol. Collectively, these results highlight the
significant contribution of carbohydrates, amino acids, and carboxylic acids to the two
principal components.

3.5. Association between Soil Microbial Metabolic Diversity and Soil Physicochemical
Characteristics

The effects of cover crops and fertilizer source treatments on soil physicochemical
characteristics are given in Table 4.

A canonical correspondence analysis (CCA) was carried out on the soil physicochemi-
cal properties and carbon substrate groups (Figure 4). The initial two CCA axes accounted
for 79.5% and 12.1% of the variability in data, respectively. The cumulative amount of
interpretation of the first 2 CCA axes reached 92.06 %, which could reflect the association
between microbial community species based on carbon group utilization and soil param-
eters. The soil pH = 0.7367 indicated a substantial positive correlation with the major
axis of the CCA, whereas total carbon TC = −0.28704, total nitrogen TN = −0.31267, and
POXC = −0.25727 displayed a negative association.
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Figure 3. (A) Bray Curtis ordination and (B) Principal component analysis (PCA) of carbon substrate
utilization of soil microbial communities from cover crops and fertilizer source treatments. (Category—CR
+ CL = Cereal rye + Chemical fertilizer; CR + NO = Cereal rye + No fertilizer; CR + PL = Cereal rye +
Poultry litter; MX + CL = CC-mix + Chemical fertilizer; MX + NO = CC-mix + No fertilizer; MX + PL
= CC-mix + Poultry litter; NV + CL = Native vegetation + Chemical fertilizer; NV + NO = Native
vegetation + No fertilizer; NV + PL = Native vegetation + Poultry litter; VT + CL = Vetch + Chemical
fertilizer; VT + NO = Vetch + No fertilizer; VT + PL = Vetch + Poultry litter; WT + CL = Wheat +
Chemical fertilizer; WT + NO = Wheat + No fertilizer; WT + PL = Wheat + Poultry litter.).

Table 4. Main effects of cover crops and fertilizer source treatments on soil physicochemical characteristics.

TC 1 (%) TN (%) WSA (%) EEGSP (mg/kg) POXC (mg/kg) pH

Cover crop

Cereal rye 1.66 (0.104) 0.160 (0.006) ab 52.11 (2.67) 82.55 (2.86) 550.77 (21.39) 5.64 (0.12) ab
CC-mix 2 1.70 (0.07) 0.173 (0.009) ab 49.11 (2.38) 89.88 (3.42) 569.33 (28.61) 5.56 (0.08) ab
Native vegetation 1.58 (0.08) 0.156 (0.006) ab 56.77 (2.89) 85.77 (2.43) 521.11 (18.94) 5.75 (0.09) a
Vetch 1.72 (0.10) 0.178 (0.01) a 55 (3.08) 83.11 (3.34) 561 (40.02) 5.48 (0.07) b
Wheat 1.52 (0.07) 0.153 (0.005) b 46.44 (2.63) 79.88 (0.44) 503.22 (1.67) 5.76 (0.06) a
CC*FT 3 ns ns ns ns ns ns

Fertilizer source

Mineral 1.58 (0.06) 0.15 (0.005) 49.73 (2.12) 81.2 (2.57) 537.13 (22.53) 5.48 (0.063) b
None 1.60 (0.06) 0.16 (0.006) 52.2 (2.84) 82.4 (2.52) 530 (21.60) 5.766 (0.08) a
Poultry litter 1.72 (0.07) 0.17 (0.007) 53.73 (1.66) 89.13 (2.20) 555.46 (21.34) 5.68 (0.04) a

1 Variable in column with no letters are not significant at the 0.05 level using Fisher’s protected LSD; Standard
Error in parenthesis. 2 CC-mix =Cereal rye and mustard; 3 CC*FT = Interaction between cover crop and fer-
tilizer source (ns = non-significant). TC = Total carbon; TN = Total nitrogen; WSA = Water-stable aggregate;
EEGSP = Easily extractable soil glomalin; POXC = Permanganate oxidizable carbon.

The CCA also revealed a strong positive correlation between carbon substrate groups
and primary axes, such as carbohydrates (0.94), polymers (0.67), and a bit less to carboxylic
acids (0.39) and amino acids (0.23).

67



Appl. Biosci. 2023, 2

Figure 4. Canonical Correspondence Analysis (CCA) ordination plot revealing the relationship
between cover crop treatments and soil physicochemical properties.

4. Discussion

This is one of the few experiments investigating the synergistic effects of cover crop-
ping and fertilizer sources on both the physicochemical properties of the soil and the
functional diversity of the microbial community. We hypothesized that the synergistic
effects of cover crops and fertilizer sources would cause significant differences in the
metabolic diversity and distribution of soil microbial populations. The results showed
that different cover crop and fertilizer source treatments exerted different impacts on the
metabolic activities of soil microorganisms in soybean fields.

AWCD is proportional to the number and species diversity of soil microbes that can me-
tabolize carbon substrates, and it indicates the carbon source catabolic activity of microbial
communities to utilize the carbon substrates [37,61]. In the present investigation, AWCD of
soil microbial populations from cover crop and fertilizer source treatments exhibited classic
microbial growth over time as the duration of incubation increased (Figure 1A,B), and these
results were in accordance with other findings [40,53]. In this experiment, during the entire
incubation period, native vegetation and cover crop mix (cereal rye + mustard) exhibited
higher AWCD values than wheat, vetch, and cereal rye. Elevated values of average well-
color development (AWCD) indicate a higher level of metabolic activity exhibited by soil
microbial populations [62]. Additionally, plots with cover crop mix treatment showed high
Shannon diversity and substrate richness, whereas native vegetation showed high U and
E. Drost et al. (2020) reported multiple cover crop species results in elevated amounts of
substrate niches that increased the functional diversity of soil microbial populations [30].

Incorporating a mix of two or more species in cover cropping can provide additional
benefits by promoting both the abundance of beneficial soil microbial populations and the
diversity of the soil microbiota [63]. The quality of the residue from cover crops, such as
cereal rye, mustard, vetch, and wheat, differed significantly. Additionally, different types
of fertilizer sources were used in our two-year study. Despite these variations, our findings
showed that the community-level physiological profiling using the Biolog EcoPlates exhibited
convergence in diversity indices between cover crop mix and native vegetation treatments.
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Studies have shown that mixed cover crops favor the release of certain allelochemicals, primary
metabolites, and secondary metabolites significantly alter the soil microbial abundance and
their functions [53]. However, cover crop biomass, quality, different soil types, C:N ratio
of residues, environmental circumstances, and their interactions significantly influence the
abundance and functional diversity of soil microbial populations [64]. Consistently, the cereal
rye treatment exhibited the lowest average well-color development (AWCD) values, as well
as lower diversity index values, which is consistent with previous findings [28]. The AWCD
of the vetch cover crop was moderate relative to other treatments, as were the indexes of
microbial functional diversity. Vetch, being a leguminous cover crop, has a low C: N ratio and
decomposes rapidly, leading to the availability of more nitrogen in the soil. This is reflected
in the significant differences observed in the soil’s physicochemical properties compared to
other treatments (p = 0.0018, Table 4).

The AWCD values of fertilizer source treatments were also significantly different.
Plots with poultry litter treatment showed higher AWCD than chemical fertilizer and no
fertilizer (Table 1); these findings are similar to the other discoveries. Many researchers
reported application of organic amendments results in elevated soil microbiological activity
as determined by dehydrogenase function, which reflects the complete range of oxidative
activity of microbial populations [65,66]. The utilization of organic amendments has been
widely recognized for its beneficial impact on the structure and functioning of soil microbial
communities [67–70]. A study conducted by Marinari et al. (2000) [67], it was found that the
application of organic fertilizers resulted in enhanced soil microbial activity. The researchers
attributed this effect to a synergistic interaction between the microbial populations present
in the soil and the organic materials used as fertilizers.

The combined effects of fertilizer source and cover crop demonstrated significant
differences in functional diversity parameters. Specifically, the soil samples from the CC-
mix + poultry litter treatment plot exhibited higher values across all functional diversity
indices. This outcome is likely attributed to the synergistic benefits derived from the
combination of mixed cover crop species and the application of poultry litter as a fertilizer.
Furthermore, it is interesting to note that the soil samples from the wheat + poultry litter
treatment plot also displayed higher values compared to the main effects of wheat and
even outperformed the main effects of the vetch treatment. This suggests that the addition
of poultry litter to the wheat plot might have a greater contribution to the microbial
communities in that specific plot.

Additionally, our observations revealed that cereal rye, as a cover crop in the main
effects analysis, displayed lower values in the functional diversity indices. Interestingly,
this pattern persisted when examining the combined effects of cereal rye with different
fertilizer sources. The consistently lower values suggest that the influence of cover crops, as
a collective factor, exerts a stronger impact on the functional diversity indices compared to
individual cover crop effects alone. This finding highlights the significance of considering
the combined effects of cover crops and fertilizer sources in shaping microbial functional
diversity in the soil.

A total of 31 carbon substrates are classified into six categories, and the metabolism
patterns of these six categories were significantly different among treatments (p < 0.001). Cover
crop mix had a higher metabolism rate of polymers and carboxylic acids, whereas microbial
communities under native vegetation treatment showed higher utilization of carbohydrates,
amines, and phenolic compounds. Overall, both cover crop and fertilizer source treatments
showed that carbohydrates and polymers were mainly used by the microbial populations in
the soil. These results were in accordance with Lan et al. (2019) [53].

Nivelle et al. (2016) reported higher metabolism of phenolic compounds and carbohy-
drates under no-tillage with oats, phacelia, and flax [71]. Many researchers have reported a
high degree of carbohydrate utilization by soil microbial communities in the uppermost soil
layer (0–10 cm) [28,72], owing to the presence of sugars and organic matter generated by the
decomposition process and rhizodeposits. This abundance of carbohydrates in the topsoil
may offer greater accessibility to soil microbial communities. The higher utilization of
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polymers (Glycogen, alpha-cyclodextrin, tween-80, and tween-40) was observed by CC-mix
treatment. Generally, these carbon substrates are more stable or recalcitrant; specifically,
tween-40 and tween-80 don’t represent plant-derived products [73]; furthermore, they are
often found in processed organic matter [74]. The microbial communities also exhibited
better utilization of amines which includes phenylethylamine and putrescine. Addition-
ally, phenylethylamine was discovered in fermented soybean, whereas putrescine was
produced in a variety of soybean plant material, including immature roots [75,76]. These
results infer that the major crop also has a role in structuring metabolic patterns of soil
microbial populations.

Fertilizer source treatments also exhibited significant differences among the utilization
of carbon groups. Poultry litter had higher consumption of polymers, whereas chemical
fertilizer had higher utilization of carbohydrates, carboxylic acids, amino acids, amines,
and phenolic compounds. Guanghua et al. (2008) reported chemical fertilizer treatment
metabolized more polymers, whereas chemical fertilizer + FYM showed higher utilization
rates in carboxylic acids, which contradicted our findings [77].

Through CCA analysis, it was determined that total carbon, total nitrogen, and POXC
had a negative correlation with carbon substrate categories, indicating that these parameters
have an effect on the metabolism of different carbon substrate categories in different cover
crops and fertilizer sources. The soil characters’ pH and EEGSP positively correlated with
the primary axis. Similar results were reported by Lan et al. (2019) [53]; however, they
conducted an investigation in forest soils of Eucalyptus trees.

The present investigation revealed varying utilization patterns of the six categories of
carbon substrates among the soil microbial communities subjected to different treatments
(Figure 2A,B); this may be attributed to the varied structures of soil microbial communities
resulting from the different treatments involving cover crop and fertilizer source. However,
carbohydrates were found to be the dominant carbon substrate utilized across all treatments,
as indicated by the results of principal component analysis (PCA). The PCA results further
indicated that carbohydrates made the largest contribution to both PC1 and PC2, followed
by amino acids and carboxylic acids. Polymers are also highly metabolized by soil microbial
populations in CC-mix treatment; however, PCA didn’t reveal in the first two components.

Treatments strongly influenced microbial functional diversity distribution in both
ordination plots; the differences in utilization of carbon substrates across cover crop and
fertilizer source plots significantly influenced microbial functional diversity distribution
(Figure 3A,B). The PCA separation suggests the significant combined effects of cover
cropping and fertilizer sources on soil microbial metabolic activity and functional diversity
(Figure 3B). The Bray–Curtis ordination plot clearly shows the grouping of wheat, cover
crop mix, and native vegetation, whereas vetch and cereal rye formed separate groups.
These results infer that grass species cover crops harboring soil microorganisms with similar
catabolic profiles, whereas vetch, which is leguminous species distributed separately. The
effect of fertilizer sources on vetch and cereal rye is also evident in the PCA ordination plot
(Figure 3B). The use of different fertilizer sources with cereal rye resulted in the formation of
three separate groups, indicating that the application of poultry litter, chemical fertilizer, or
no fertilizer creates distinct microbial communities with unique catabolic profiles. Similarly,
vetch with poultry litter and no fertilizer formed a single group, while vetch with chemical
fertilizer formed a separate group. These results infer that combined impacts of cover
cropping and fertilizer source significantly influence the metabolic activity and community
structure of soil microbiota. To further confirm our findings, we conducted PERMANOVA,
which revealed that both cover crops and fertilizer sources significantly influenced the
metabolic patterns of soil microbial communities (p = 0.0012 (PCA), p = 0.009 (Bray–Curtis)).
Our results are consistent with previous studies by Nair and Ngouajio (2012), Bucher and
Lanyon (2005), and Gomez et al. (2005) that investigated the impact of organic manures such
as compost, dairy manure, and FYM on the metabolic activity of soil microbiota [28,78,79].

Recent breakthroughs in plant-microbe interaction studies have demonstrated that
plants may alter their rhizosphere microbial communities [80,81]. In addition to this, several
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primary metabolites, including sugars and organic acids, are secreted by soybean into the
rhizosphere [82,83]. In addition to soybean root exudates, the root system of cover crops
may supply alternate carbon pools that impact soil microorganisms’ metabolic activity and
community structure in soybean fields.

5. Conclusions

Our study demonstrated that the Biolog EcoPlates approach utilizing community-
level physiological profiling methodology was capable of detecting short-term changes
resulting from management techniques. Our results showed that organic amendment
considerably enhanced microbial functional diversity. We also demonstrated how the
implementation of cover cropping impacted the functional diversity and metabolic capacity
of the soil microbiota. Soil microbes occur in the active/labile portion of soil organic matter
participating in various soil ecological services; thus, soil microbial metabolic activities may
respond more rapidly than physicochemical properties of soils to changes in management
techniques such as the use of cover crops, organic amendments application, and tillage
operations or environmental circumstances [78]. Our results also demonstrated that cover
cropping with multispecies can enhance and alter the metabolic diversity of soil microbial
communities and the association between cover crop species and microbial communities’
metabolic patterns. Our findings suggest that the incorporation of cover crops, especially
muti-species, could potentially benefit dryland soybean production through enhanced
soil microbial metabolic diversity. However, it is important to note that these results only
reflect a portion of the entire microbial communities in the soil to a limited extent; some
microbial species don’t metabolize carbon substrates in the Biolog EcoPlates, and some
might be in a dormant state and couldn’t be accounted for the overall metabolic diversity
of microbial communities. Novel approaches like soil metagenomics (amplicon sequencing
and shotgun metagenomics) should be utilized to further explore how carbon substrate
associated with management practices affect the abundance, species diversity, and in-depth
metabolic patterns of soil microbial populations.
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Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye
after a 50-Year Period. Plants 2022, 11, 431. [CrossRef] [PubMed]

3. Norris, C.E.; Congreves, K.A. Alternative Management Practices Improve Soil Health Indices in Intensive Vegetable Cropping
Systems: A Review. Front. Environ. Sci. 2018, 6, 50. [CrossRef]

4. Friedel, J.K.; Gabel, D.; Stahr, K. Nitrogen Pools and Turnover in Arable Soils under Different Durations of Organic Farming:
II: Source-and-Sink Function of the Soil Microbial Biomass or Competition with Growing Plants? J. Plant. Nutr. Soil Sci. 2001,
164, 421–429. [CrossRef]

5. Lüneberg, K.; Schneider, D.; Siebe, C.; Daniel, R. Drylands Soil Bacterial Community Is Affected by Land Use Change and
Different Irrigation Practices in the Mezquital Valley, Mexico. Sci. Rep. 2018, 8, 1413. [CrossRef] [PubMed]

6. Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants
2020, 9, 97. [CrossRef]

7. Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil
Sci. Soc. Am. J. 2006, 70, 555–569. [CrossRef]

8. Enebe, M.C.; Babalola, O.O. The Impact of Microbes in the Orchestration of Plants’ Resistance to Biotic Stress: A Disease
Management Approach. Appl. Microbiol. Biotechnol. 2019, 103, 9–25. [CrossRef]

9. Selvakumar, G.; Panneerselvam, P.; Ganeshamurthy, A.N. Bacterial Mediated Alleviation of Abiotic Stress in Crops. In Bacteria in
Agrobiology: Stress Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 205–224, ISBN 978-3-
642-23465-1.

10. Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Sharma, S.; Khare, P.K.; Khan, M.L. Soil Microbiome: A
Key Player for Conservation of Soil Health under Changing Climate. Biodivers Conserv. 2019, 28, 2405–2429. [CrossRef]

11. Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.;
Bardgett, R.D.; Brady, M.V.; et al. Intensive Agriculture Reduces Soil Biodiversity across Europe. Glob. Chang. Biol. 2015,
21, 973–985. [CrossRef]

12. Fierer, N.; Strickland, M.S.; Liptzin, D.; Bradford, M.A.; Cleveland, C.C. Global Patterns in Belowground Communities. Ecol. Lett.
2009, 12, 1238–1249. [CrossRef]

13. Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil Biodiversity and Soil Community Composition Determine
Ecosystem Multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [CrossRef]

14. Baumann, K.; Marschner, P.; Smernik, R.J.; Baldock, J.A. Residue Chemistry and Microbial Community Structure during
Decomposition of Eucalypt, Wheat and Vetch Residues. Soil Biol. Biochem. 2009, 41, 1966–1975. [CrossRef]

15. Hättenschwiler, S.; Tiunov, A.V.; Scheu, S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annu. Rev. Ecol. Evol.
Syst. 2005, 36, 191–218. [CrossRef]

16. Kodadinne Narayana, N.; Kingery, W.L.; Shankle, M.W.; Ganapathi Shanmugam, S. Differential Response of Soil Microbial
Diversity and Community Composition Influenced by Cover Crops and Fertilizer Treatments in a Dryland Soybean Production
System. Agronomy 2022, 12, 618. [CrossRef]

17. Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of Cover Crops in Improving Soil and Row Crop Productivity. Commun. Soil Sci.
Plant Anal. 2005, 36, 2733–2757. [CrossRef]

18. Balota, E.; Calegari, A.; Nakatani, A.; Coyne, M. Benefits of Winter Cover Crops and No-Tillage for Microbial Parameters in a
Brazilian Oxisol: A Long-Term Study. Agri. Ecosyst. Environ 2014, 197, 31–40. [CrossRef]

19. Somenahally, A.; DuPont, J.I.; Brady, J.; McLawrence, J.; Northup, B.; Gowda, P. Microbial Communities in Soil Profile
Are More Responsive to Legacy Effects of Wheat-Cover Crop Rotations than Tillage Systems. Soil Biol. Biochem. 2018,
123, 126–135. [CrossRef]

20. Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Moorman, T.B.; Singer, J.W. Effectiveness of Oat and Rye Cover Crops in Reducing Nitrate
Losses in Drainage Water. Agric. Water Manag. 2012, 110, 25–33. [CrossRef]

21. Haramoto, E.R.; Gallandt, E.R. Brassica Cover Cropping for Weed Management: A Review. Renew. Agric. Food Syst. 2004,
19, 187–198. [CrossRef]

22. Kruger, D.H.M.; Fourie, J.C.; Malan, A.P. Cover Crops with Biofumigation Properties for the Suppression of Plant-Parasitic
Nematodes: A Review. S. Afr. J. Enol. Vi. 2013, 34, 287–295. [CrossRef]

23. Xu, W.; Ge, Z.; Poudel, D.R. Application and Optimization of Biolog EcoPlates in Functional Diversity Studies of Soil Microbial
Communities. MATEC Web Conf. 2015, 22, 04015. [CrossRef]

24. Lundquist, E.J.; Jackson, L.E.; Scow, K.M.; Hsu, C. Changes in Microbial Biomass and Community Composition, and Soil
Carbon and Nitrogen Pools after Incorporation of Rye into Three California Agricultural Soils. Soil Biol. Biochem. 1999,
31, 221–236. [CrossRef]

25. Abdul-Baki, A.A.; Teasdale, J.R.; Korcak, R.; Chitwood, D.J.; Huettel, R.N. Fresh-Market Tomato Production in a Low-Input
Alternative System Using Cover-Crop Mulch. HortScience 1996, 31, 65–69. [CrossRef]

26. Carrera, L.M.; Buyer, J.S.; Vinyard, B.; Abdul-Baki, A.A.; Sikora, L.J.; Teasdale, J.R. Effects of Cover Crops, Compost, and Manure
Amendments on Soil Microbial Community Structure in Tomato Production Systems. Appl. Soil Ecol. 2007, 37, 247–255. [CrossRef]

72



Appl. Biosci. 2023, 2

27. Buyer, J.S.; Teasdale, J.R.; Roberts, D.P.; Zasada, I.A.; Maul, J.E. Factors Affecting Soil Microbial Community Structure in Tomato
Cropping Systems. Soil Biol. Biochem. 2010, 42, 831–841. [CrossRef]

28. Nair, A.; Ngouajio, M. Soil Microbial Biomass, Functional Microbial Diversity, and Nematode Community Structure as Affected
by Cover Crops and Compost in an Organic Vegetable Production System. Appl. Soil Ecol. 2012, 58, 45–55. [CrossRef]

29. Chu, M.; Jagadamma, S.; Walker, F.R.; Eash, N.S.; Buschermohle, M.J.; Duncan, L.A. Effect of Multispecies Cover Crop Mixture on
Soil Properties and Crop Yield. Agric. Environ. Lett. 2017, 2, 170030. [CrossRef]

30. Sytske, M.D.; Rutgers, M.; Wouterse, M.; Wietse de Boer, P.; Bodelier, L.E. Decomposition of Mixtures of Cover Crop Residues
Increases Microbial Functional Diversity. Geoderma 2020, 361, 114060. [CrossRef]

31. Redin, M.; Recous, S.; Aita, C.; Dietrich, G.; Skolaude, A.C.; Ludke, W.H.; Schmatz, R.; Giacomini, S.J. How the Chemical
Composition and Heterogeneity of Crop Residue Mixtures Decomposing at the Soil Surface Affects C and N Mineralization. Soil
Biol. Biochem. 2014, 78, 65–75. [CrossRef]

32. Chavarría, D.N.; Verdenelli, R.A.; Serri, D.L.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S. Effect of Cover Crops
on Microbial Community Structure and Related Enzyme Activities and Macronutrient Availability. Eur. J. Soil Biol. 2016,
76, 74–82. [CrossRef]

33. Housman, M.; Tallman, S.; Jones, C.; Miller, P.; Zabinski, C. Soil Biological Response to Multi-Species Cover Crops in the Northern
Great Plains. Agric. Ecosyst. Environ. 2021, 313, 107373. [CrossRef]

34. Bowles, T.M.; Acosta-Martínez, V.; Calderón, F.; Jackson, L.E. Soil Enzyme Activities, Microbial Communities, and Carbon and
Nitrogen Availability in Organic Agroecosystems across an Intensively-Managed Agricultural Landscape. Soil Biol. Biochem. 2014,
68, 252–262. [CrossRef]

35. Bundy, J.G.; Davey, M.P.; Viant, M.R. Environmental Metabolomics: A Critical Review and Future Perspectives. Metabolomics
2009, 5, 3–21. [CrossRef]

36. Prosser, J.I. Molecular and Functional Diversity in Soil Micro-Organisms. In Diversity and Integration in Mycorrhizas; Smith, S.E.,
Smith, F.A., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 9–17, ISBN 978-90-481-5933-8.

37. Garland, J.L.; Mills, A.L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of
Community-Level Sole-Carbon-Source Utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [CrossRef]

38. Miura, T.; Makoto, K.; Niwa, S.; Kaneko, N.; Sakamoto, K. Comparison of Fatty Acid Methyl Ester Methods for Characterization
of Microbial Communities in Forest and Arable Soil: Phospholipid Fraction (PLFA) versus Total Ester Linked Fatty Acids
(EL-FAME). Pedobiologia 2017, 63, 14–18. [CrossRef]

39. Kim, J.-W.; Rehmann, L.; Ray, M.B. Development of Microalgal Bioassay Based on the Community Level Physiological Profiling
(CLPP). Algal Res. 2017, 25, 47–53. [CrossRef]

40. Ge, Z.; Du, H.; Gao, Y.; Qiu, W. Analysis on Metabolic Functions of Stored Rice Microbial Communities by BIOLOG ECO
Microplates. Front. Microbiol. 2018, 9, 1375. [CrossRef]

41. Sofo, A.; Ricciuti, P. A Standardized Method for Estimating the Functional Diversity of Soil Bacterial Community by Bi-
olog®EcoPlatesTM Assay—The Case Study of a Sustainable Olive Orchard. Appl. Sci. 2019, 9, 4035. [CrossRef]

42. Preston-Mafham, J.; Boddy, L.; Randerson, P.F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon-Source
Utilisation Profiles—A Critique. FEMS Microbiol. Ecol. 2002, 42, 1–14. [CrossRef]

43. Gresshoff, P.M.; Hayashi, S.; Biswas, B.; Mirzaei, S.; Indrasumunar, A.; Reid, D.; Samuel, S.; Tollenaere, A.; van Hameren, B.;
Hastwell, A.; et al. The Value of Biodiversity in Legume Symbiotic Nitrogen Fixation and Nodulation for Biofuel and Food
Production. J. Plant Physiol. 2015, 172, 128–136. [CrossRef] [PubMed]

44. Crop Rotations and Nitrogen Fertilization to Manage Soil Organic Carbon Dynamics—Studdert—2000—Soil Science Society of
America Journal—Wiley Online Library. Available online: https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/sssaj2000.64
41496x?casa_token=1K9nk6ndXnMAAAAA%3Ah-zsB8QZf6qSdNskQBnm21ylLKSzeoTDor686VzO4EwZS6cHQX78UbjNq9
5WtJli_P927aW69lnldo (accessed on 24 November 2022).

45. Fernandez-Gnecco, G.; Smalla, K.; Maccario, L.; Sørensen, S.J.; Barbieri, P.; Consolo, V.F.; Covacevich, F.; Babin, D. Microbial
Community Analysis of Soils under Different Soybean Cropping Regimes in the Argentinean South-Eastern Humid Pampas.
FEMS Microb. Ecol. 2021, 97, fiab007. [CrossRef] [PubMed]

46. McDaniel, M.D.; Grandy, A.S. Soil Microbial Biomass and Function Are Altered by 12 Years of Crop Rotation. SOIL 2016,
2, 583–599. [CrossRef]

47. Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The Impact of Crop Rotation on Soil Microbial Diversity: A Meta-Analysis. Pedobiologia
2016, 59, 215–223. [CrossRef]

48. Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural Diversification
Promotes Multiple Ecosystem Services without Compromising Yield. Sci. Adv. 2020, 6, eaba1715. [CrossRef] [PubMed]

49. IPS—Record of Climatological Observations—Select Month|IPS|National Climatic Data Center (NCDC). Available on-
line: https://www.ncdc.noaa.gov/IPS/coop/coop.html?_page=2&state=MS&foreign=false&stationID=227111&_target3
=Next+%3E (accessed on 18 April 2023).

50. Pokhrel, S.; Kingery, W.L.; Cox, M.S.; Shankle, M.W.; Shanmugam, S.G. Impact of Cover Crops and Poultry Litter on Selected Soil
Properties and Yield in Dryland Soybean Production. Agronomy 2021, 11, 119. [CrossRef]

51. Zak, J.C.; Willig, M.R.; Moorhead, D.L.; Wildman, H.G. Functional Diversity of Microbial Communities: A Quantitative Approach.
Soil Biol. Biochem. 1994, 26, 1101–1108. [CrossRef]

73



Appl. Biosci. 2023, 2

52. Simpson’s Diversity Index. Available online: https://geographyfieldwork.com/Simpson%27sDiversityIndex.htm (accessed on
25 November 2022).

53. Lan, X.; Du, H.; Peng, W.; Liu, Y.; Fang, Z.; Song, T. Functional Diversity of the Soil Culturable Microbial Community in
Eucalyptus Plantations of Different Ages in Guangxi, South China. Forests 2019, 10, 1083. [CrossRef]

54. Zhen, T.; Fan, W.; Wang, H.; Cao, X.; Xu, X. Monitoring Soil Microorganisms with Community-Level Physiological Profiles Using
Biolog EcoPlatesTM in Chaohu Lakeside Wetland, East China. Eurasian Soil Sc. 2020, 53, 1142–1153. [CrossRef]

55. YaNan, T.; HongQi, W. Application of biolog to study of environmental microbial function diversity. Environ. Sci. Technol. 2011,
34, 50–57.

56. Németh, I.; Molnár, S.; Vaszita, E.; Molnár, M. The Biolog EcoPlateTM Technique for Assessing the Effect of Metal Oxide
Nanoparticles on Freshwater Microbial Communities. Nanomaterials 2021, 11, 1777. [CrossRef]

57. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed; Use R! Springer: Cham, Switzerland, 2016; ISBN 978-3-319-24277-4.
58. Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel Test in the Face of Heterogeneous Dispersions: What

Null Hypothesis Are You Testing? Ecol. Monogr. 2013, 83, 557–574. [CrossRef]
59. Ter Braak, C.J.F. The Analysis of Vegetation-Environment Relationships by Canonical Correspondence Analysis. Vegetatio 1987,

69, 69–77. [CrossRef]
60. Oksanen, J. Vegan: Community Ecology Package. 2010. Available online: http://CRAN.R-project.org/package=vegan (accessed

on 6 June 2023).
61. Choi, K.-H.; Dobbs, F.C. Comparison of Two Kinds of Biolog Microplates (GN and ECO) in Their Ability to Distinguish among

Aquatic Microbial Communities. J. Microbiol. Methods 1999, 36, 203–213. [CrossRef]
62. Wang, Y.; Ouyang, Z.; Zheng, H.; Wang, X.; Chen, F.; Zeng, J. Carbon Metabolism of Soil Microbial Communities of Restored

Forests in Southern China. J. Soils Sediments 2011, 11, 789–799. [CrossRef]
63. Wortman, S.E.; Francis, C.A.; Bernards, M.L.; Drijber, R.A.; Lindquist, J.L. Optimizing Cover Crop Benefits with Diverse Mixtures

and an Alternative Termination Method. Agron. J. 2012, 104, 1425–1435. [CrossRef]
64. Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial Diversity in Soil: Selection Microbial Populations by Plant and Soil Type and

Implications for Disease Suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [CrossRef]
65. Perucci, P. Enzyme Activity and Microbial Biomass in a Field Soil Amended with Municipal Refuse. Biol. Fertil. Soils 1992,

14, 54–60. [CrossRef]
66. Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Influence of Organic and Mineral Fertilisers on Soil Biological and Physical

Properties. Bioresour. Technol. 2000, 72, 9–17. [CrossRef]
67. Bulluck, L.R.; Brosius, M.; Evanylo, G.K.; Ristaino, J.B. Organic and Synthetic Fertility Amendments Influence Soil Microbial,

Physical and Chemical Properties on Organic and Conventional Farms. Appl. Soil Ecol. 2002, 19, 147–160. [CrossRef]
68. Naidu, R. Influence of Lime, Fertilizer and Manure Applications on Soil Organic Matter Content and Soil Physical Conditions: A

Review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137.
69. Melero, S.; Porras, J.C.R.; Herencia, J.F.; Madejon, E. Chemical and Biochemical Properties in a Silty Loam Soil under Conventional

and Organic Management. Soil Tillage Res. 2006, 90, 162–170. [CrossRef]
70. Marschner, H. Ion Uptake Mechanisms of Individual Cells and Roots. In Mineral Nutrition of Higher Plants; Elsevier: Amsterdam,

The Netherlands, 1995; pp. 6–78, ISBN 978-0-12-473542-2.
71. Nivelle, E.; Verzeaux, J.; Habbib, H.; Kuzyakov, Y.; Decocq, G.; Roger, D.; Lacoux, J.; Duclercq, J.; Spicher, F.; Nava-Saucedo, J.-E.;

et al. Functional Response of Soil Microbial Communities to Tillage, Cover Crops and Nitrogen Fertilization. Appl. Soil Ecol. 2016,
108, 147–155. [CrossRef]

72. Wu, Y.; Lyu, T.; Yue, B.; Tonoli, E.; Verderio, E.A.M.; Ma, Y.; Pan, G. Enhancement of Tomato Plant Growth and Productivity in Organic
Farming by Agri-Nanotechnology Using Nanobubble Oxygation. J. Agric. Food Chem. 2019, 67, 10823–10831. [CrossRef] [PubMed]

73. Nunan, N.; Lerch, T.Z.; Pouteau, V.; Mora, P.; Changey, F.; Kätterer, T.; Giusti-Miller, S.; Herrmann, A.M. Metabolising Old Soil
Carbon: Simply a Matter of Simple Organic Matter? Soil Biol. Biochem. 2015, 88, 128–136. [CrossRef]

74. Grandy, A.S.; Neff, J.C. Molecular C Dynamics Downstream: The Biochemical Decomposition Sequence and Its Impact on Soil
Organic Matter Structure and Function. Sci. Total Environ. 2008, 404, 297–307. [CrossRef]

75. Chen, Y.-H.; Liu, X.-W.; Huang, J.-L.; Baloch, S.; Xu, X.; Pei, X.-F. Microbial Diversity and Chemical Analysis of Shuidouchi,
Traditional Chinese Fermented Soybean. Food Res. Int. 2019, 116, 1289–1297. [CrossRef]

76. Eller, M.H.; Warner, A.L.; Knap, H.T. Genomic Organization and Expression Analyses of Putrescine Pathway Genes in Soybean.
Plant Physiol. Biochem. 2006, 44, 49–57. [CrossRef]

77. Guanghua, W.; Junjie, L.; Xiaoning, Q.; Jian, J.; Yang, W.; Xiaobing, L. Effects of Fertilization on Bacterial Community Struc-
ture and Function in a Black Soil of Dehui Region Estimated by Biolog and PCR-DGGE Methods. Acta Ecol. Sin. 2008,
28, 220–226. [CrossRef]

78. Gomez, E.; Ferreras, L.; Toresani, S. Soil Bacterial Functional Diversity as Influenced by Organic Amendment Application.
Bioresour. Technol. 2006, 97, 1484–1489. [CrossRef]

79. Bucher, A.E.; Lanyon, L.E. Evaluating Soil Management with Microbial Community-Level Physiological Profiles. Appl. Soil Ecol.
2005, 29, 59–71. [CrossRef]

80. Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012,
17, 478–486. [CrossRef]

74



Appl. Biosci. 2023, 2

81. Kanasugi, M.; Sarkodee-Addo, E.; Ansong Omari, R.; Mohammad Golam Dastogeer, K.; Fujii, Y.; Oppong Abebrese, S.; Bam, R.;
Asuming-Brempong, S.; Okazaki, S. Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria
and Fungi In Six Tropic Savanna Regions in Ghana. Sustainability 2020, 12, 5835. [CrossRef]

82. Tawaraya, K.; Horie, R.; Shinano, T.; Wagatsuma, T.; Saito, K.; Oikawa, A. Metabolite Profiling of Soybean Root Exudates under
Phosphorus Deficiency. Soil Sci. Plant Nutr. 2014, 60, 679–694. [CrossRef]

83. Timotiwu, P.B.; Sakurai, N. Identification of Mono-, Oligo-, and Polysaccharides Secreted from Soybean Roots. J. Plant Res. 2002,
115, 0077–0085. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

75



Citation: Irwin, J.; Bingham, E.

Review of Partial Hybrids between

Herbaceous Medicago sativa and

Woody Medicago arborea and Their

Potential Role in Alfalfa

Improvement. Appl. Biosci. 2023, 2,

373–383. https://doi.org/10.3390/

applbiosci2030024

Academic Editor: Jakub Sawicki

Received: 4 May 2023

Revised: 3 July 2023

Accepted: 7 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Communication

Review of Partial Hybrids between Herbaceous
Medicago sativa and Woody Medicago arborea and Their
Potential Role in Alfalfa Improvement

John Irwin 1,* and Edwin Bingham 2

1 School of Agriculture and Food Sciences, University of Queensland, Brisbane QLD 4072, Australia
2 Agronomy Department, University of Wisconsin, Madison, WI 53706, USA; ebingham@wisc.edu
* Correspondence: j.irwin@uq.edu.au

Simple Summary: Partial hybrids between Medicago sativa (alfalfa) and Medicago arborea, named
Alborea, are the result of reproductive abnormalities in the M. sativa seed parent. These hybrids have
the potential, through the addition of traits outside the alfalfa gene pool, to increase the productivity
and utilisation of alfalfa.

Abstract: Medicago sativa (2n = 4x = 32) and M. arborea (2n = 4x = 32) were thought to be reproductively
isolated until hybrids (Alborea) were produced by sexual reproduction for the first time in 2003 in
Wisconsin. The hybrids were asymmetric, at or near 2n = 4x = 32, and with a predominance of the
alfalfa genome. Only M. sativa seed parents with reproductive abnormalities, including unreduced
eggs, have produced hybrids; where M. arborea has been used as the seed parent, no hybrids have
resulted. Pedigree selection within derivatives of the two original M. sativa seed parents (MB and M8)
has been successful in increasing the frequency of hybrids produced. While Alborea individuals more
closely resemble M. sativa, a number of M. arborea-specific traits have been observed across different
hybrid individuals. These include single-coil flat pods, large seeds, yellow flowers, indeterminate
growth, a minimal crown, lodging, frost resistance, and anthracnose resistance. These M. arborea traits
have the potential to restructure alfalfa to increase its versatility and utilisation. There is emerging
evidence from North and South America and Australia that some Alborea selections have the capacity
to complement adapted alfalfa cultivars for yield. Work is continuing to introgress M. arborea traits of
value into alfalfa.

Keywords: partial hybrids; interspecific hybrids; unreduced gametes; reproductive abnormalities;
plant breeding

1. Introduction

Alfalfa (Medicago sativa L.) is the world’s oldest known cultivated forage species;
historical records date back to 1300 BC in Turkey [1]. Alfalfa is grown in over 80 countries,
and the world area is in the range of 30–35 m ha, of which 70% is collectively located in
the USA, former USSR, and Argentina [2]. Alfalfa’s wide usage is driven by it possessing
valuable agronomic traits, including a high feeding value, its perenniality, and its ability
to fix atmospheric nitrogen [3]. Also, the deep rootedness of alfalfa makes it suitable for
reducing nitrate leaching and preventing the expansion of salt-degraded soils. Cultivated
alfalfa is autotetraploid (2n = 4x = 32) [4] as well as being subject to outbreeding and very
subject to inbreeding depression. Because of this, alfalfa breeding methodologies leading
to commercialisation as synthetic cultivars have remained largely unchanged over several
decades [5]. This has contributed to a yield stagnation, which has developed in both North
America [6,7] and Australia [8].

In alfalfa breeding, two subspecies have been extensively exploited; the purple-
flowered M. sativa subspecies sativa and the yellow-flowered M. sativa subspecies falcata.
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Other taxa in the above subspecies complex include M. sativa subspecies glomerata, M. sativa
subspecies varia, M. sativa subspecies caerulea, and M. sativa subspecies × hemicycla. Both
2n = 4x = 32 and 2n = 2x = 16 exist, except for M. sativa subspecies × hemicycla, subspecies
caerulea, and subspecies glutinosa; all of which are 2n = 2x = 16 [9]. Until now, the above
subspecies within the M. sativa complex have provided the gene pool for alfalfa cultivar
improvement. However, despite the breeding of multiple disease- and pest-resistant culti-
vars over the last 100 years as well as winter hardiness, alfalfa yields and persistence levels
appear to have plateaued.

High levels of genetic diversity exist within the M. sativa subspp. Intermating between
multiple alfalfa germplasms over the entire subspp. complex has been extensively practised
since 1950 in an attempt to ingress multiple agronomically valuable traits [10]. However,
there are traits not present in the M. sativa subspecies complex that would increase the
utilisation of alfalfa; these include a larger seed size, increased drought tolerance, and
increased tolerance to salinity [11]. All of these traits and others are known to exist in
Medicago arborea. In this paper, we review research undertaken to generate hybrids between
M. sativa and M. arborea, with the aim of introgressing traits unique to M. arborea such as a
larger seed size into the alfalfa gene pool.

2. Phylogenetic Relationships between M. sativa subspp. and M. arborea

The genus Medicago has received extensive revision since it was first comprehensively
monographed by Urban [12], where 46 species were recognised. Small and Jomphe [13] pro-
vided a comprehensive revision of the genus based on morphology, and defined 83 species
spread across 12 sections of the genus. The perennial species M. arborea and M. strasseri
were placed in section Dendrotelis and Medicago sativa subspp. in section Medicago; the
distinction is based on section Dendrotelis having ligneous branches and section Medicago
having herbaceous to lignescent branches. Within Dendrotelis, three species have been
recognized; M. arborea, M. strasseri (both 2n = 4x = 32), and M. citrina (2n = 6x = 48). The
main distinction between M. arborea and M. strasseri was the fruit size, with the fruit and
seed diameter twice as large in M. arborea.

Molecular Phylogenies

Steele et al. [14] used plastid and nuclear DNA sequences to reassess phylogeny and
character evolution in Medicago. Medicago sativa subspp. and relatives in section Medicago
formed a weakly to strongly supported monophyletic group, which was referred to as
the section Medicago clade [14]. Medicago arborea and its close relatives (previously placed
in section Dendrotelis) always resolved within the Medicago clade. Steele et al. [14], based
on an analysis of all molecular markers employed, concluded that M. arborea was part
of a group with other species of section Medicago, although it often resolved as part of a
basal polytomy within that group. They also proposed that the common ancestor of these
shrubby polyploid species was a herbaceous perennial in section Medicago; woodiness is a
derived character state of these species. It was also concluded that hybridisation is difficult
to accomplish between species in section Medicago.

3. Early Attempts to Hybridise M. sativa and M. arborea

Several previous attempts have been made to generate hybrids between M. sativa
and Medicago spp. outside the M. sativa subspecies complex using sexual reproductive
processes [15,16]. In the work of Fridriksson and Bolton [15], pollination of M. sativa stig-
mas from highly self-incompatible clones with a range of annual and perennial Medicago
spp., including M. arborea, failed to produce mature embryos. However, following pol-
lination with M. arborea, the early stages of embryonic growth were initiated, indicating
fertilisation had taken place. Interspecific hybrids were obtained by crossing 2x M. sativa
with a range of diploid perennial Medicago spp., including M. papillosa [17]. Ovule em-
bryo culture was necessary for the recovery of hybrids with balanced genomes of the
two species. Only tetraploid hybrids were fertile in M. sativa × M. papillosa. These showed
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only disomic segregation patterns, indicating little or no exchange between the homologous
genomes [18].

Somatic hybrids were generated between M. sativa and M. arborea through the symmet-
rical fusion of mesophyll protoplasts of M. sativa with callus protoplasts of M. arborea [11].
While considerable genomic rearrangements were evident in the resulting hybrids, their
morphology was generally intermediate to the parents, and about half of the species-specific
RFLP bands of both parents was present in them. These somatic hybrids did not flower
during the first 2 years after generation, even though several floral buds were observed. The
authors noted that flowering may only have been delayed because M. arborea takes about
2 years to flower after seeding and the paper was written only 2 years after generating the
hybrids. Mizukami et al. [19] used the electrofusion of protoplasts of the annual species
M. rugosa and M. scutellata with 4x M. sativa to produce somatic hybrids. These hybrids
were unstable and chromosomes were rapidly lost during vegetative growth.

4. Generation of Alborea and Its Characteristics

Alfalfa and M. arborea were considered to be reproductively isolated until relatively
recently. McCoy and Echt [20] stated that it was possible to obtain hybrids between alfalfa
and all other species of the subgenus Medicago, with the exception of M. arborea. The
paper by Nenz et al. [11], where sterile somatic hybrids were reported between M. sativa
and M. arborea, rekindled interest in hybrids between the two species in Wisconsin, and
screening of male sterile alfalfa seed parents commenced in 1998.

Over the period 1998–2002 in Wisconsin, 5 alfalfa seed parents yielded no hybrids after
pollinating at least 200 florets per plant per year. In 2003, the first hybrids were produced
after pollinating clone MB (obtained from Magnum 111 X Blaser XL). Over the period
2002–2013, MB produced a hybrid for every 250 florets pollinated. A progeny of MB, WA
2071, yielded a hybrid at the rate of one for every 420 florets pollinated [21]. MB and
its derivatives represented the first level of weakening the hybridisation barrier between
M. sativa and M. arborea. The hybrids were described as a new cultigen, Alborea [22].
Another alfalfa genotype, M8, was discovered in Wisconsin, which was a more efficient
hybridiser with M. arborea than MB and its derivatives [21]. M8 was derived from crossing
M. sativa subspecies sativa, caerulea, and falcata in a three-way x three-way cross. M8 pro-
duced a hybrid for every 85 florets pollinated [21]. An S1 plant of M8 tested in Queensland,
WA2570, yielded a hybrid for every 38 florets pollinated [23]. Both MB and M8 produce
small amounts of pollen; both have been shown to possess the reproductive abnormalities
of unreduced eggs and pollen [23].

The reciprocal cross M. arborea × M. sativa has failed to produce hybrids despite
pollinating hundreds of M. arborea florets over 5- and 4-year periods in Wisconsin and
Queensland, respectively [21]. This indicates that in the M. arborea seed parents, the
hybridisation barrier is complete as it appears to be in several alfalfa plants from commercial
cultivars pollinated with M. arborea.

4.1. Morphological Characterization

Morphologically, the hybrids exhibit traits of both parents (Table 1 and Figure 1), with
the greatest resemblance being to the M. sativa parent. Either purple- or cream-flowered
M. sativa have always been used as the seed parent. The hybrids can be identified by
variegated flowers, with the yellow pigment coming from M. arborea. Another diagnostic
character of hybrids is a 1–1.5-coil flat seed pod; alfalfa parents had 3-coil round pods
and M. arborea had a 1–1.5-coil flat pod. Other M. arborea traits found in some hybrids
include winter activity, no crown, a branched root system, an erect growth habit, and large
dark-green leaves [24]. M. arborea has seeds four times the size of alfalfa, and some hybrids
exhibit seeds approaching the size of M. arborea. Complementation for forage yield has also
been observed in other Alborea × alfalfa crosses [24–26]. Anthracnose (Colletotrichum trifolii)
resistance has been transferred from M. arborea to Alborea [27] and used in alfalfa breeding.
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Figure 1. (a) Yellow/orange flowers of M. arborea; (b) co-expression of purple and yellow pigments
in Alborea; (c) purple flower of M. sativa cv Sequel; (d) 1–1.5-coil immature flat pods of M. arborea ca.
1 cm in diameter; (e) immature 3-coil pods of M. sativa cv Sequel with tight coiling; (f) mature pods
and seeds, generated in Wisconsin, of (left to right) alfalfa, Alborea, and M. arborea. Reproduced with
permission from Ref. [24]. Copyright 2016 Australian Institute of Agricultural Science and Technology.
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Table 1. Medicago arborea traits and other traits observed in Alborea in Wisconsin and Queensland.

Trait Observations

Observed in greenhouses and fields

Flower colour Yellow flowers per se and variegated flowers

Indeterminate growth Plants grow up to 4 m in height

Minimal crown Observed in ca. 20% of plants

Large leaves Leaves larger than in both parents in some plants

M. arborea pod shape and size 1- to 1.5-coil flat pods ca. 1 cm in diameter observed in ca. 20% of plants

Large seeds Seeds twice the size of alfalfa and half the size of M. arborea

Short racemes 5–6 florets versus 15–25 in alfalfa

Fewer seeds per pod 0–50% of alfalfa, although 8–9 per pod observed in one plant

Pollen quantity 0–25% of alfalfa

Autogamy Full seed set not observed; 10–25% of cross-fertility level

Crossability Low frequency of Alborea plants that do not cross well with alfalfa but cross with Alborea

Observed in fields

Lodging resistance About 25% of Alborea plants resist lodging after rain and wind

Frost resistance Low frequency of Alborea plants (ca. 5–10%) stay green down to −8 ◦C

Solid stem About 5% of Alborea plants have a solid stem above the base like M. arborea; alfalfa has
hollow stems

Heterosis in crosses About 25% have heterosis for vigour in crosses with alfalfa

Branching roots Some plants show absence of a tap root like M. arborea

Winter activity Around 65% of plants with a group 9 dormancy level

Late flowering May take some plants 2 years to flower, as for M. arborea

4.2. Genomic Characterisation

The root-tip chromosome number has been determined for Alborea and was found
to be near tetraploid (2n = 4x = 30–32) [21,27]. An AFLP analysis was conducted on
five hybrids and parents in Australia [27]. An MB derivative, WA2071, was used as the
seed parent. The work confirmed the asymmetric genomic composition of the hybrids,
with up to only 4% of the M. arborea-specific AFLP bands present in any hybrid. Of the
bands, 27% was monomorphic in both the parents and the hybrid, so more than 4% of
the M. arborea genome was possibly transferred. In total, 7% of the total number of bands
was unique to the hybrid, indicating possible chromosomal rearrangements due to the
introgression of fragments of M. arborea chromosome/s contributing to new alleles at the
sites of introgression [27].

The presence of around 4% of M. arborea-specific alleles in the hybrid could indicate the
transfer of a whole chromosome or the introgression of several smaller parts as, theoretically,
each M. arborea chromosome constitutes an average of 1/32, or 3.1%, of the genome.

M. arborea introgression into 7 hybrids generated in Wisconsin [28] was investigated
using the marker profiles generated by 46 SSR primers of known M. sativa genomic locations
covering all 8 linkage groups [29–31]. Introgression of M. arborea-specific alleles was
found from linkage groups 1, 6, and 7, with two hybrids showing introgression from all
three linkage groups [32]. Test crosses were made between the hybrids and M. sativa, and
the transmission of M. arborea-specific alleles was demonstrated in the test cross-progeny.
Whether the introgressed M. arborea genome represents a chromosome, an arm, or several
small pieces of chromosome/s remains unresolved, with the latter most likely.
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5. Similarities between Alborea and Other Asymmetric Plant Hybrids

De Wet et al. [33] reported what they described as “counterfeit” hybrids between
Tripsacum austral (2n = 2x = 36) and Zea mays (2n = 2x = 20). Hybrids were characterised by
18 or 36 Tripsacum and 10 or rarely 20 Zea chromosomes, with those containing 36 Tripsacum
and 20 Zea chromosomes most likely deriving from the fertilisation of unreduced eggs
and pollen. However, some hybrids resembled true hybrids in phenotype, but lacked Zea
chromosomes and were characterised by 36 Tripsacum chromosomes. These individuals
were named counterfeit hybrids. To explain the origin of counterfeit hybrids, it was sug-
gested that genes had been transferred from the genome of Zea sperm to the genome of an
unreduced egg during the fertilisation process. The situation described above is similar in
many ways to what was observed with F1 Alborea hybrids. They are near tetraploid, phe-
notypically more closely resemble the alfalfa egg parent, but demonstrate some M. arborea
phenotypic traits and only contain around 5% of M. arborea-specific alleles [27]. Unreduced
eggs and pollen have been reported in Alborea parents [23,34], which were also produced
in Tripsacum [33].

The example described above was referred to as introgressive hybridisation by Allard [35].
Here, one species is enriched to a small degree with genes derived from another, thus broad-
ening its base of variability and increasing the variety of recombination products that may
be secured from it. Allard used as an example the introgression of Tripsacum genes into corn
by repeated natural backcrossing. As noted by Allard [35], the issue was highly speculative
at that time, but there is now unequivocal evidence for introgressive hybridization [36].

Li and Heneen [37] generated intergeneric hybrids between diploid Brassica campestris
(2n = 20) and Orychophragmus violaceus (2n = 24). The hybrid was mixoploid (2n = 23–42)
and cells 2n = 34 were frequent. The partial separation of parental genomes during mitosis,
leading to the addition of O. violaceus chromosomes to the B. campestris complement, was
proposed to explain the partial hybrids.

Tu et al. [38] studied intertribal hybrids between Brassica rapa (2n = 2x = 20) and
Isatis indigotica (2n = 2x = 14). One hybrid closely resembled the seed parent, B. rapa,
and was 2n = 22. Genomic in situ hybridisation (GISH) of this F1 individual revealed
two chromosomes from I. indigotica; the remainder were from B. rapa. An AFLP analysis
confirmed I. indigotica-specific bands in the hybrid. Some of the introgressions were
mitotically stable. While Alborea has not been subjected to GISH analysis, the process of
formation of the partial hybrids appears to be similar to what is described above.

6. Importance of Reproductive Abnormalities in Generating Interspecific Hybrids

In the generation of Alborea, it is when only certain alfalfa genotypes are used as the
seed parent that hybrids result. Repeated pollination of M. arborea with M. sativa has failed to
produce hybrids [21]. It has been established that alfalfa seed parents and their derivatives
that produce hybrid also produce unreduced male and female gametes [23,34]. Alfalfa parent
MB had a lower frequency of 2n eggs than the other parent M8; MB is a less efficient hybridiser
than M8 [34]. The production of 2n eggs, arising from second division restitution [39] by the
MB or M8 parents, would appear to be integral to hybrid generation. Fertilisation of the 2n egg
by a 2x gamete of M. arborea, followed by the subsequent loss of some M. arborea chromosomes
due to differences in the timing of mitotic events between the two species, provides an
explanation for the near 4x hybrids with a predominance of alfalfa DNA. Unreduced eggs are
produced by M8 and MB at a frequency similar to that with which they produce hybrids [34].
Unreduced gamete formation in plants and their use in breeding was reviewed by Brownfield
and Kohler [40]. Cheng et al. [41] reported that unreduced female gametes may have been
involved in the generation of partial hybrids between B. napus (2n = 38) and Orychophragmus
violaceous (2n = 24). The suspected hybrids were 2n = 38 and contained chromosome fragments
of O. violaceous. Asynchronous mitotic cell cycles were thought to be responsible for the loss
of O. violaceous chromosomes after fertilisation.

In the production of counterfeit hybrids between Tripsacum and Zea, it was reported
that the parthenogenetic development of non-reduced female gametes was involved in all
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cases [33] and that Zea sperm had successfully reached the embryo sac at the time of normal
fertilisation. The non-random transfer of Zea genes or the non-random incorporation
of selected Zea DNA fragments into specific positions of the Tripsacum genome were
suggested. For such events to occur, reproductive abnormalities in the egg parent would
seem to be essential. Seed parents of F1 Alborea show much-reduced pollen and produce
2n pollen [21]. The genetic control of the absence of cytokinesis after restitutional meiosis in
2x alfalfa eggs was studied by Baraccia et al. [42] and five genes were proposed to control
the production of an unreduced gamete among members of the M. sativa subspp. complex.
Chromosome doubling by unreduced gametes has undoubtedly played an important role in
the evolution of autoploidy in alfalfa, but its role in facilitating hybrid embryo development
between different species in the genus Medicago has been undetermined until the work
with Alborea [23,34].

Another cultivated autotetraploid with a large number of related wild and culti-
vated species at different ploidy levels is the potato, Solanum tuberosum (2n = 4x = 48).
Sexual polyploidisation through unreduced gametes has been a significant factor in its
evolution [43]. Boyes and Thompson [44] and Valentine [45] established that as well as 2n
gametes, the need for a balance of chromosome sets between maternal tissue, the embryo,
and endosperm was required for successful interploidy crosses. It would appear that the
endosperm of M8 and MB Alborea hybrids are able to tolerate an unbalanced genome
dosage. The Endosperm Balance Number (EBN) hypothesis, developed in the early 1980s
and reviewed by Carputo et al. [46], postulates that each species has a genome-specific
ploidy, the EBN, which must be in a 2:1 maternal-to-paternal ratio in the hybrid endosperm
for normal endosperm development. With unreduced 4x eggs in M8 and MB and normal re-
duced 2x M. arborea pollen, it could be anticipated that the Alborea endosperm could be 10x
(4:1 EBN ratio) compared with 6x (2:1 EBN ratio) from a normal 4x × 4x cross. These EBN
values are only theoretical; the actual EBN of the Alborea hybrids remains undetermined.
However, the postulated higher maternal-to-paternal genome ratio may have facilitated
endosperm development, which is a necessary precursor to embryo development.

7. Use of Alborea in Alfalfa Breeding

Nine distinct germplasm sources have been recognised and analysed within the
M. sativa subspp. complex [47]. Since 1971, the alfalfa cultivars released in North America
typically include genetic variations from all nine germplasm sources [47]. Kidwell et al. [48]
conducted an RFLP evaluation of these nine germplasm sources and only two, M. sativa
subsp. falcata cv WISFAL and Peruvian, formed distinct clusters; the remaining seven
sources were not clearly discriminated by the analysis. Recent molecular marker stud-
ies showed that 4x alfalfa populations maintained high levels of within-cultivar genetic
diversity [49]; however, alfalfa yields have stagnated in North America and Australia [6–8].
This has provided the impetus to attempt to introduce new traits from other Medicago
species into the M. sativa subspp. complex, which will enhance alfalfa productivity and
persistence. M. arborea is one such species that has many traits that would increase the
versatility of alfalfa (Table 1). It can grow to 4 m in height, has a shrubby growth habit, is
drought- and salt-tolerant, and is the longest-lived of all the Medicago species. In addition,
its seeds are four times larger than alfalfa (100 per gram versus 400 per gram) [3].

In a test of transmission of a single M. arborea trait from a yellow-flowered Alborea
plant, yellow pigment was backcrossed into the alfalfa cultivar Pegesis (Bingham, un-
published data). Pegesis alfalfa has a purple flower colour; the addition of the yellow
pigment resulted in variegated flowers due to the co-expression of purple and yellow. The
variegated plants that were selected backcrossed three generations and did not express
other M. arborea traits, indicating the gene for yellow pigment was likely carried on a short
segment of M. arborea chromatin. The pollen and seed production of variegated plants was
normal. The behaviour of yellow in the backcross was consistent with yellow incorporated
in an alfalfa chromosome.
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Some M. arborea accessions were shown to be resistant to races 1 and 2 of Col-
letotrichum trifolii [50] and to Phytophthora medicaginis (Irwin, unpublished data). Armour
et al. [27] reported a transfer of resistance to C. trifolii race 2 from M. arborea to M. sativa.
The resistance in the Alborea hybrid was successfully transferred to testcross progeny
(Alborea x susceptible M. sativa clone), with 35% of the testcross progeny resistant. The
resistant testcross plants were polycrossed and the resistance was again transferred to the
polycross progeny. This indicated that the anthracnose resistance from M. arborea was stable
and transmissible through at least two generations. It has subsequently been utilised in
developing experimental alfalfa synthetics.

Alborea and Alborea × alfalfa crosses have been agronomically evaluated in a range
of experiments conducted across locations in different continents. Irwin et al. [32] reported
yield increases of up to 42% over adapted cultivars in the subtropics at Gatton, Queensland.
Humphries et al. [25] tested selections of Alborea 101 in a Mediterranean environment in
South Australia. One selection, CTA 033, had an estimated 23–30% higher yield than the
commercial control cultivars. In field evaluations in Mediterranean environments in South
Australia and Chile, an Alborea hybrid derived from the cross M. sativa cv Genesis x Alborea
showed one of the highest dry matter yields and persistence levels [26]. Based on the above,
evidence is emerging that Alborea has the capacity to enhance alfalfa productivity and
persistence, at least in subtropical and Mediterranean environments.

Tani et al. [51] researched responses to salt shock and stress in seedlings of alfalfa,
M. arborea, and their hybrid (Alborea). The two parental species appeared to regulate
different components of the salt-tolerance mechanism. The Alborea population studied
was more sensitive to all salt treatments than its parents, except the low dose (50 mM
NaCl). This was most likely due to no selection for salt tolerance being undertaken during
the development of the Alborea population. However, it should be possible to pyramid
salt-tolerance genes in individual plants by cycles of selection for salt tolerance.

8. The Future

While each Alborea plant contains less than half of the M. arborea genome, it has
been shown that introgressions have occurred from at least three of the M. arborea chromo-
somes [32,52]. Thus, so long as Alborea populations generated from several different hybrid
individuals are used in breeding, it should be possible to transfer most of the M. arborea
traits to alfalfa. The use of DNA marker technology, as described in Reference [53] and
specific to the M. arborea genome, would facilitate the identification of the partial hybrids.
Currently, only two alfalfa seed parents (MB and M8) and their progeny have been suc-
cessfully used to generate hybrids [21,23]. The genome of MB codes for winter dormancy
and low yields; its derivatives were relatively low yielding in Australia [32]. However,
it should be possible to breed higher-yielding alfalfa seed parents by crossing M8 or MB,
for example, with adapted genotypes and selecting for the reproductive abnormalities
of both unreduced eggs and pollen. Unreduced pollen, due to its much-increased size,
can be readily identified, and it provides an effective screening methodology to identify
seed parents that also produce unreduced eggs, which appears to be essential for hybrid
development. MB, M8, and all Alboreas examined produce unreduced eggs and pollen,
and it is easier to screen for unreduced pollen than for unreduced eggs [23].

Having being derived from alfalfa parents with reproductive abnormalities, Alborea
plants vary in the amount of pollen they produce, from a trace to about 25% of normal
alfalfa [23,27]. Female fertility is expressed at a high level when pollinated with 4x normal
M. sativa. This indicates that Alborea lines, when used as seed parents, could be useful in
semi-hybrid development, as proposed by [54,55]. In Wisconsin and Queensland, work
continues to identify adapted alfalfa cultivars/lines that complement Alborea selections
for yield and persistence. Recent work has demonstrated the capacity for Alborea crosses
with alfalfa to enhance alfalfa yield and persistence in Mediterranean environments, which
are characterised by drought in summer [25,26]. Kang et al. [56] identified traits in alfalfa
that provided tolerance to drought. These traits included lower-leaf wilting, delayed
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senescence, and leaf tolerance to desiccation under stress, smaller leaves, lower early root
and shoot growth, and lower stomata density. Screening Alborea for the above traits,
which exist in M. arborea, and their use in breeding may facilitate the development of more
drought-tolerant alfalfas. Del Pozo [57] recently reported two Alborea selections to be
the most drought-tolerant and productive entries in an alfalfa diversity panel tested in a
Mediterranean environment in central Chile.

It has been shown that specific M. arborea alleles and traits can be transferred from the
hybrids to alfalfa [21,25–27,32], indicating a degree of stability for the alleles/traits studied.
However, as no genomic in situ hybridisation (GISH) studies have been performed on
partial hybrids, it is not known whether chromosome fragments from M. arborea become
integrated into the alfalfa genome or if a chromosome from M. arborea is transferred.
It could be expected that a univalent would not be meiotically stable. Stability has been
demonstrated for several traits, including anthracnose resistance, winter activity, and flower
colour, and work is continuing for the other traits listed in Table 1. The results suggest that
fragments of the M. arborea chromosomes have introgressed into the chromosomes of the
M. sativa seed parent, providing meiotic stability. The high proportion (7%) of AFLP bands
that were unique to the hybrid [27] was indicative of genome rearrangement, as could be
expected with the integration of fragments of M. arborea chromosomes, which are more
likely to be meiotically stable than univalents. Future research should utilise GISH studies
to increase the understanding of the cytogenetic basis of partial hybridity. Pyramiding
M. arborea traits from Alborea into adapted alfalfa cultivars may provide opportunities to
increase the productivity, persistence, and utilisation of this important forage legume.

9. Conclusions

The importance of reproductive abnormalities, including unreduced eggs, in the
M. sativa seed parents to the generation of partial hybrids between M. sativa and M. arborea,
with a predominance of the M. sativa genome, was experimentally established. Although
each hybrid contained about 5% of the M. arborea-specific alleles, it was possible to transfer
a range of M. arborea-specific traits to the hybrids, which might have value in alfalfa
improvement. Such traits included a larger seed size, indeterminate growth, frost tolerance,
and heterosis for productivity and persistence in crosses with alfalfa. It is possible to
conclude that the reviewed research conducted over the last 20 years has demonstrated
the potential of the interspecific partial hybrids to enhance alfalfa improvement through
long-term breeding activities.
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Abstract: Rapid and accurate pathogen identification is crucial in effectively combating infectious
diseases. However, the current diagnostic tools for bacterial infections predominantly rely on century-
old culture-based methods. Furthermore, recent research highlights the significance of host–microbe
interactions within the host microbiota in influencing the outcome of infection episodes. As our
understanding of science and medicine advances, there is a pressing need for innovative diagnos-
tic methods that can identify pathogens and also rapidly and accurately profile the microbiome
landscape in human samples. In clinical settings, such diagnostic tools will become a powerful
predictive instrument in directing the diagnosis and prognosis of infectious diseases by providing
comprehensive insights into the patient’s microbiota. Here, we explore the potential of long-read
sequencing in profiling the microbiome landscape from various human samples in terms of speed
and accuracy. Using nanopore sequencers, we generate native DNA sequences from saliva and
stool samples rapidly, from which each long-read is basecalled in real-time to provide downstream
analyses such as taxonomic classification and antimicrobial resistance through the built-in software
(<12 h). Subsequently, we utilize the nanopore sequence data for in-depth analysis of each microbial
species in terms of host–microbe interaction types and deep learning-based classification of uniden-
tified reads. We find that the nanopore sequence data encompass complex information regarding
the microbiome composition of the host and its microbial communities, and also shed light on the
unexplored human mobilome including bacteriophages. In this study, we use two different systems
of long-read sequencing to give insights into human microbiome samples in the ‘slow’ and ‘fast’
modes, which raises additional inquiries regarding the precision of this novel technology and the
feasibility of extracting native DNA sequences from other human microbiomes.

Keywords: diagnostic for bacterial infection; long-read sequencing; human microbiome; nanopore
Flongle; native DNA; antimicrobial resistance; taxonomic classification

1. Background

Rapid and accurate identification of pathogens is crucial for effectively treating and
managing infectious diseases. Traditional diagnostic methods for bacterial infections,
such as culture-based techniques, have been largely unchanged in clinical practice for
several decades [1,2]. However, these methods often take several days for identification
and susceptibility testing of bacterial pathogens and are prone to false-negative results
during antimicrobial therapy. For example, a recent study showed that the median time to
pathogen identification for bloodstream infections using traditional culture-based methods
takes around three days [3]. This delay in diagnostic procedures can result in inappropriate
antibiotic therapy, which can negatively affect patient outcomes and lead to antibiotic
resistance development [1]. Furthermore, culture-based techniques may not detect all
bacterial infections, particularly if the patient is undergoing antimicrobial therapy.
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Recent evidence suggests that it is important to have a comprehensive view of the
microbial communities in which the pathogen resides to predict the progress of infection in
clinical settings [4]. The human microbiota, consisting of a vast array of microorganisms,
including bacteria, viruses, fungi, and protozoa, colonizes many different niches within
the human body. Host–microbe interactions within the host microbiota play a vital role in
determining the growth and establishment of pathogenic microbes. These interactions can
range from beneficial to commensal to pathogenic, and a subtle shift in the balance of these
interactions can have profound effects on the host’s health, including inflammatory bowel
disease (IBD) [5] and neurological disorders [6]. Recent research has highlighted the role of
the host microbiota in shaping the host’s immune response to pathogenic microorganisms,
both through direct interactions with the immune system and through modulation of the
host’s innate and adaptive immune responses [7]. Studies have demonstrated that the
host microbiota can provide colonization resistance against invading pathogens, limiting
their growth and preventing their establishment within the host [8]. Furthermore, the
host microbiota can also impact the virulence of pathogenic microorganisms through a
variety of mechanisms, including competition for nutrients, secretion of antimicrobial
compounds, and modulation of the expression of virulence factors [9]. Alterations in
the composition of the host microbiota, such as those caused by antibiotics or changes
in diet, can disrupt these finely balanced host–microbe interactions, leading to increased
susceptibility to infections [10].

Understanding the intricate interactions between the host microbiota and pathogenic
microorganisms is critical for the development of effective treatments for infectious dis-
eases. This knowledge can inform the development of novel therapeutics that target specific
bacterial species or modulate the host’s immune response to promote the restoration of
healthy microbiota and reduce the risk of disease [11]. Alterations in the composition of the
microbiota can disrupt these interactions, leading to increased susceptibility to infections.
Currently, we are in need of novel diagnostic methods that can both identify pathogens
and profile the microbiome landscape in human samples rapidly and accurately. Given
the expanding knowledge of the role of the microbiome in human health, this feature
is a substantial advancement to traditional diagnostic methods that focus primarily on
pathogen identification, such as culture-based diagnosis and MALDI-TOF mass spectrome-
try fingerprinting [1].

Molecular-based diagnostic methods, such as polymerase chain reaction (PCR) and
next-generation sequencing (NGS), can detect a wider range of bacterial pathogens with
greater sensitivity and specificity [12]. In recent years, the development of such technolo-
gies has enabled the rapid and accurate identification of pathogens. Particularly, NGS
can generate vast amounts of sequence data in a short amount of time, providing rapid
and accurate results for pathogen identification that enables clinicians to make informed
decisions about antimicrobial treatments [13]. Several studies have shown the potential of
NGS in clinical settings for the rapid identification of bacterial infections, such as the rapid
identification of a bacterial outbreak in a neonatal intensive care unit [14] and in patients
with sepsis [15]. Despite the potential of NGS, the technology is still not widely available
in clinical settings, and there are several challenges related to quality control measures that
need to be overcome. These challenges include the need for standardized protocols for sam-
ple preparation, sequencing, and data analysis, particularly since these methods produce
short-read DNA sequences in metagenomic samples that require elaborate bioinformatic
reconstructions [16].

Most recently, long-read sequencing technologies are revolutionizing genomics re-
search by producing high-throughput sequencing of DNA reads longer than those obtained
by traditional short-read sequencing methods. Nanopore sequencing is one of the long-read
sequencing technologies, in which a DNA molecule is passed through a nanopore, and
the electrical signal generated by the movement of the nucleotides through the pore is
used to determine the sequence of the DNA molecule [17]. The development of long-read
sequencing has had a significant impact on genomics research and has enabled the study of
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complex genomes, structural variation, and epigenetic modifications with unprecedented
accuracy and resolution [18,19]. Long-read sequencing has the potential to further en-
hance the field of metagenomics by enabling the identification and characterization of
unculturable microbes and the study of host–microbe interactions in complex microbial
communities [20]. A recent study demonstrated the potential of nanopore sequencing as the
clinical diagnosis of bacterial lower respiratory infections by directly sequencing sputum
samples, providing comparable results to culture-based methods, but with significantly
faster turnaround times [21,22].

In this study, we investigate the potential of long-read sequencing as a futuristic
diagnostic tool to rapidly profile the microbiome landscape of diverse human samples. We
use two different modes to sequence long-read native DNA sequences from diverse human
microbiomes, including saliva and stool samples. The first part consists of a ‘fast’ mode,
which aims to generate a biological interpretation of nanopore sequencing within 12 h
from sampling to data analysis (Figure 1). This fast mode is aimed at providing ultrarapid
analysis of nanopore sequence data such as pathogen identification and antimicrobial
resistance (AMR) under a clinical scenario of tight time constraints where the streamlined
pipeline of a diagnostic tool is essential for effective treatment. This mode is fast and
automatic, and it enables clinicians to make quick identifications and decisions on antibiotic
therapy based on the pathogen and its related microbes without much investment of
time and effort. A ‘slow’ mode is aimed at providing deeper insight into the microbiome
landscape of a patient for prognostic purposes, during which the microbial communities are
analyzed more rigorously. This mode is slow and deliberate, and it engages the researchers
to predict the long-term trajectory of an infection outcome using complex information such
as host–microbe interactions and deep learning-based classification of unknown organisms.
Overall, we aim to provide a comprehensive and insightful view of long-read sequencing
as an innovative diagnostic tool for bacterial infections by rapidly profiling the microbiome
landscape from various human samples.

Figure 1. Experimental setup and process of nanopore sequencing. 1. The sample collection of human
microbiome is collected with a sterile specimen swab. 2. Native DNA of the metagenomic sample is
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extracted with a commercial kit with minimum shearing to obtain high molecular weight DNA. 3. The
extracted DNA is ligated with a library kit provided by Oxford Nanopore that has been optimized
for sequencing native and long-read DNAs in Flongle flow cells. 4. Flongle flow cells are fitted with
an adaptor to a nanopore sequencer for rapid and cost-effective tests, running for at least 12 h to
maximize yield per sample. 5. Basecalling is conducted in real-time for a fast sequencing mode,
during which results can be obtained using cloud-based software tools for taxonomic classification
and AMR analysis. 6. For a slow sequencing mode, user-developed tools can be used to conduct
exploratory analysis on the same nanopore data, including host–microbe interaction assessment and
deep learning-based classification of unidentified reads.

2. Results

2.1. Native DNA Could Be Extracted and Sequenced from the Saliva and Stool Samples

We used the QIAamp DNA Microbiome Kit to extract the native DNA of various
human samples from healthy volunteers (Figure 1). The minimum DNA quantity needed
for native DNA direct sequencing using Flongle flow cells is 500 ng according to the
manufacturer’s protocol, and the lowest DNA concentration achieved for the saliva and
stool samples was 20.5 ng/μL, yielding sufficient quantities for nanopore sequencing
(Table S1). However, the same kit was found to be ineffective for extracting native DNA
from urine, nasal, and vaginal samples sourced from healthy volunteers, failing to provide
the minimum DNA quantities required for nanopore sequencing (Table S1). These findings
suggest that the QIAamp DNA Microbiome Kit may have limited utility for extracting
native DNA from certain human microbiome sources, and alternative DNA extraction
methods may need to be explored for these sample types.

Another disadvantage of using the QIAamp DNA Microbiome Kit to extract native
DNA from various microbiome samples comes from the fragmentation of DNAs during
the extraction step (Figure 1). Fragmentation of DNA during extraction can be caused by a
variety of factors, including mechanical and enzymatic shearing. The QIAamp DNA Micro-
biome Kit uses a bead-beating step to lyse cells, which can result in excessive mechanical
shearing of DNA. Due to the DNA fragmentation, the shortest and the longest estimated
N50 values are 378 bases and 1090 bases, respectively (Table S2, Figure S1). N50 is a statisti-
cal measure commonly used in DNA sequencing to describe the quality of an assembly,
and in the context of long-read sequencing, it is defined as the length of the shortest read
within the set of the longest reads that constitute at least 50% of the sample [23]. Previously,
it was shown that nanopore sequencers can produce long reads of around 10–30 kilobases
(kb) reads in a typical sequencing experiment, while ultralong reads were shown to be
around 3 megabases (Mb) with the N50 value of more than 100 kb [24].

2.2. Fast Sequencing Shows Oral and Gut Microbiomes Have Diverse Microbial Species

In this study, we ran one Flongle flow cell with each sample replicate for at least 12 h,
to exhaust the capacity of nanopores to obtain as many DNA reads in each run as possible
(Figure S2). Depending on the sample, nanopore sequencing using Flongle flow cells was
saturated as early as 3 h (Figure S2; Saliva3_R2) and as late as 20 h (Figure S2; Stool1_R2).
The recommended hours of sequencing for nanopore Flongle can vary depending on the
desired experimental output. For example, a recent study reported using Flongle flow cells
with a sequencing time of 24 h to generate high-quality, near-complete bacterial genomes
of Mycoplasma bovis [25]. Similarly, another study utilized Flongle flow cells in a similar
timeline to achieve high-quality, near-complete SARS-CoV-2 genome assemblies [26].

In this study, we used the high-accuracy basecalling program integrated into the
MinKNOW software (v.4.5.4; 2021; Oxford Nanopore Technologies, Oxford, UK) in real-
time, with a minimum Q-score of 9. The Phred score and Quality score (Q-score) are
both measures of the quality of sequencing data, where the Phred score is a logarithmic
measure of the error probability originated to identify fluorescently labeled DNA bases
by comparing observed and expected chromatogram peak shapes and resolution [27],
widely used in Sanger sequencing and Illumina sequencing. For nanopore sequencing,
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per-nucleotide quality scores are based on the outputs of the neural networks used to
produce the basecall. Q-scores are per-read quality scores, calculated by averaging the per-
nucleotide quality scores and by expressing on the Phred scale [28]. Importantly, Q-scores
consider that the error rate in nanopore sequencing is not constant across the read and can
vary depending on factors such as the sequence context and the quality of the signal.

After a complete sequencing run, we used the basecalled output for the quantitative
and real-time identification of microbiome species from these metagenomic samples using
the cloud-based data analysis platform (Table S3). This data analysis platform leverages
long-read sequencing to enable the comparison of each read against databases containing
reference genomes of bacteria, archaea, viruses, and fungi, achieved by constructing an
indexing scheme that facilitates efficient searches of sequenced reads [29]. It rapidly
classified and identified diverse species in each microbiome sample, even to the resolution
of different strains of bacterial species (Table S3). The data analysis platform also rapidly
determined the most reliable placement of these organisms in the taxonomy tree, assigning
a score to each taxonomic placement (Figure S3).

The gut microbiomes contained the greatest number of species, while the oral micro-
biome contained varying amounts of microbial species (Table S3). For example, the Stool1
and Stool2 samples had more than 1000 and 500 known microbial species present, respec-
tively. The most abundant species consists of Lactobacillus ruminis in Stool1 and Megamonas
funiformis in Stool2. Among these abundant species, it was notable that the gut microbiome
from Stool1 contained most bacteria species widely known to be beneficial [30], whereas
that from Stool2 had most bacterial species recently found to be commensal [31]. For the
saliva samples, both the diversity and number of microbial species were lower and the role
of each species in the host–microbe interaction was less obvious (Table S3). The most abun-
dant bacterial species include Haemophilus parainfluenzae in Saliva1 and Saliva2, whereas
Rothia mucilaginosa in Saliva3. It was notable that the saliva microbiome from Saliva1 and
Saliva2 contained most bacteria species widely known to be beneficial [32], whereas that
from Saliva3 had most bacterial species recently found to be harmful [33]. Another notable
observation includes the presence of viruses in these microbiome samples despite the use
of an extraction kit that was not optimized for viral DNA extraction. The DNA reads that
were classified as bacteriophage were of particular interest as the role and impact of these
biological entities are just starting to get noticed in microbiome studies [34,35]. The most
abundant virus species include Faecalibacterium phage in Stool1, crAss-like phage [36] in
Stool2, Streptococcus phage in Saliva1 and Saliva2, and Shigella phage in Saliva3 (Table S3).
These first analyses show the diversity and abundance of microbial communities in human
samples could be rapidly profiled—however, we conducted more in-depth analyzes of the
host–microbe interaction types subsequently (see below).

In the saliva and stool samples, varying amounts of human DNAs were present despite
the host DNA depletion step of the QIAamp DNA Microbiome Kit. In the stool samples,
the microbiome DNA was enriched compared to the human DNA, with almost 100% of
reads classified as bacterial species in Stool1 (Table 1). However, the saliva samples tend to
have a lower percentage of the microbiome DNA in the sequencing output, with almost
90% of reads classified as eukaryotic species in Saliva1 and Saliva2 (Table 1). The third
saliva sample diluted with 1000 μL of PBS solution had a better percentage content of the
microbiome DNA, which shows that the quantity of a sample does not always correlate
with the quality of reads in long-read sequencing. We studied these human DNA reads
to assess if they could provide valuable information about the host, such as some genetic
markers that could give alternative insight into the host–microbe interactions, but the yield
output of a Flongle flow cell with a maximum 2.8 Gb was not enough to generate any
significant coverage. However, more high-throughput flow cells such as MinION and
PromethION with a maximum output of 50 Gb and 290 Gb per flow cell, respectively, may
be utilized to generate genomic data of the host and microbiome simultaneously, which may
provide the most comprehensive view of the host–microbe interactions, given the recent
findings of the interdependence of microbiome genomes and human genomes [37,38].
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Table 1. The real-time analysis of nanopore reads with the cloud-based platform (EPI2ME) and
its integrated software for sequence similarity-based taxonomic classification (WIMP). For each
microbiome replicate, the data retrieved (Yield Data) in megabases, the average quality score from
EPI2ME, the average sequence length, the total number of reads, and the number of reads classified
into any operational taxonomic unit (OTU) are reported. The Superkingdom column gives the
percentage of reads that have been classified into the kingdoms - Eukaryota, Bacteria, and Viruses.

Sample_Replicate
Yield Data
(Mbases)

Average
Quality Score

Average
Sequence

Length
Total Reads

Reads
Classified

Superkingdom

Saliva1_R1 33.1 11.56 734 45,079 43,820
Eukaryota: 89%

Bacteria: 11%
Viruses: <1%

Saliva1_R2 25.0 11.12 847 29,462 29,059
Eukaryota: 95%

Bacteria: 5%
Viruses: <1%

Saliva2_R1 223.2 12.40 729 306,111 293,219

Eukaryota: 81%
Bacteria: 19%
Viruses: <1%
Archaea: <1%

Saliva2_R2 66.1 10.92 672 98,330 94,121
Eukaryota: 86%

Bacteria: 14%
Viruses: <1%

Saliva3_R1 22.8 11.29 497 45,827 33,609

Bacteria: 89%
Eukaryota: <11%

Viruses: <1%
Archaea: <1%

Saliva3_R2 10.7 11.47 445 24,099 17,798
Bacteria: 90%

Eukaryota: <10%
Viruses: <1%

Stool1_R1 37.3 11.70 428 87,146 50,254

Bacteria: 100%
Eukaryota: <1%

Viruses: <1%
Archaea: <1%

Stool1_R2 58.3 11.63 451 129,091 74,810

Bacteria: 100%
Eukaryota: <1%

Viruses: <1%
Archaea: <1%

Stool2_R1 15.9 11.21 431 36,832 22,744

Bacteria: 97%
Viruses: 2%

Archaea: <1%
Eukaryota: <1%

Stool2_R2 21.1 11.04 566 37,172 22,425

Bacteria: 98%
Viruses: <1%
Archaea: <1%

Eukaryota: <1%

2.3. Slow Sequencing Shows Complex Host–Microbe Interaction Types

We investigated the microbial species from these microbiomes further by assigning
each microbial species or strain as a harmful, beneficial, or commensal organism in the
oral or gut microbiome (Tables S4 and S5). This assessment of the host–microbe interaction
was initially conducted by matching the name of each organism to the list generated
by the previous studies to have a positive, negative, or neutral impact on the human
host [32,39–45]. The ten most abundant species in each microbiome sample are shown
with the host–microbe interaction type as beneficial, harmful, or commensal in Table
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S4. This curated list shows that the ten most abundant species are consistently present
in most replicates of the saliva samples. For example, the most abundant species of
beneficial bacteria are found to be Haemophilus parainfluenzae in all the saliva replicates. In
contrast, the most abundant species of harmful bacteria are found to be Neisseria subflava
in Saliva1_R1, whereas Prevotella melaninogenica in Saliva1_R2 and Saliva2. In Saliva3, the
most abundant harmful bacteria are found to be Rothia mucilaginosa in both replicates.
Despite the difference in order, the ten most abundant species mostly match between two
replicates of the microbiome sample. However, there was much more variation in the ten
most abundant species in the stool samples. For example, the most abundant species of
beneficial bacteria is Lactobacillus ruminis in both replicates of Stool1, whereas Akkermansia
muciniphila in Stool2_R1. Bifidobacterium adolescentis is found in all stool samples as one
of the most abundant beneficial bacteria. In both replicates of Stool1, the most abundant
harmful bacteria is found to be Acidaminococcus intestini, which has been isolated from
different clinical samples [46]. In both replicates of Stool2, the most abundant harmful
bacteria is found to be Desulfovibrio piger, which are sulfate-reducing bacteria that may
contribute to gastrointestinal diseases such as IBDs due to the production of hydrogen
sulfide that is toxic to the gut epithelium [47].

Due to the extensive list of microbial species in the nanopore dataset, there were
many microbes that were missing from the initial list of host–microbe interaction types,
particularly in the gut microbiome which contained thousands of species. Thus, we further
searched the most recent scientific literature to assess the impact of each microbial organism
in these microbiomes (Table S5). In cases when there is contradicting evidence, we flagged
the organisms as inconclusive. Furthermore, if the assessment level was higher than that
of the genus, it was immediately assessed as inconclusive (as there is too much diversity)
unless there was overwhelming evidence otherwise (Table 2).

Table 2. Assessment of host–microbe interaction types for each microbe species per microbiome
replicate. Each read in the microbiome replicate was classified in the taxonomical level of genus,
species, and strain for prokaryotes and virus for mobile genetic elements. These microbiomes were
categorized as beneficial, harmful, commensal, and inconclusive depending on the type of host–
microbe interaction defined in the previous literature. The number sign, #, is used to abbreviate the
word “number”.

Sample_Replicate # Genus # Species # Strain # Virus Reads Length Beneficial Harmful Commensal Inconclusive

Saliva1_R1 125 164 105 5 135 1597 31 101 52 146

Saliva1_R2 57 105 56 1 154 2767 16 75 35 62

Saliva2_R1 285 424 250 10 403 717 57 226 103 370

Saliva2_R2 134 198 127 3 249 790 36 135 56 164

Saliva3_R1 327 467 270 8 56 532 61 231 122 404

Saliva3_R2 227 285 184 3 43 470 47 174 87 250

Stool1_R1 514 686 426 9 76 485 82 115 246 705

Stool1_R2 702 921 603 8 82 526 92 144 275 1057

Stool2_R1 283 338 207 2 64 456 49 71 161 287

Stool2_R2 359 416 266 6 50 662 66 92 184 392

The comprehensive assessment of the host–microbe interaction types in the micro-
biome community is summarized in the bar chart of relative diversity (Figure 2). It shows
that the oral microbiome tends to contain more diverse organisms that are known to be
harmful than the gut microbiome. Moreover, a significant number of microbes exhibit
inconclusive roles within the gut and oral microbiomes, underscoring the imperative to
explore the impact of these microbes on microbiome communities in order to comprehen-
sively map the landscape of the human microbiome. A bacterial species that have been
isolated from a human gut may be beneficial or pathogenic depending on the individual or
the health condition of the individual, leading to conflicting or inconclusive information
about the host–microbe interaction type. Furthermore, one species may have many strains
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with completely different characteristics. In our dataset, there are some bacterial species
such as Escherichia coli with dozens of strains, with a huge diversity in their genomic and
functional characteristics. Therefore, even if one sequenced species was considered as one
interaction type, there is no guarantee that the actual strain that was sequenced possesses
the same interaction type.

Figure 2. Stacked bar and pie charts of host–microbe interaction types in each microbiome replicate.
(a) The stacked bars visually depict the species diversity within each replicate, with classification
into beneficial, harmful, or commensal categories in the host microbiome based on existing literature.
Any microbial species that have missing or conflicting information is categorized as inconclusive.
(b) The pie charts depict the same classification of host–microbe interaction, with mean percentages
for each interaction type within the saliva and stool samples. Components may not sum to totals
because of rounding.

We found some microbes whose presence in the gut and oral microbiomes was par-
ticularly intriguing (Tables S4 and S5) [48]. Cellulolytic bacteria (in Caldicellulosiruptor)
were sequenced in the microbiomes of Stool1 and Stool2_R2. No evidence was found
for its host–microbe interaction type, but cellulolytic bacteria are important for mammals
including humans, as they allow the digestion of plant materials and gain nutrients from
plants. A previous study even shows the potential for these microbes to have antibacterial
properties against pathogenic bacteria [49], which makes it difficult to assess their host–
microbe interaction type as commensal or beneficial (list of cellulolytic bacteria includes
Caldicellulosiruptor bescii DSM 6725, Caldicellulosiruptor changbaiensis, Caldicellulosiruptor
obsidiansis OB47, and Caldicellulosiruptor saccharolyticus DSM 8903). We also found some
plant bacteria, both beneficial and pathogenic to plants, whose role in human health has not
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been investigated. However, a plant pathogen that is also pathogenic to humans was found
in Stool2_R1, such as Pantoea ananatis, whose presence is uncommon in the human micro-
biome [50]. There are some zoonotic bacteria found in the sample, including Pasteurella
multocida [51]. Some bacteria have a natural affinity towards antimicrobial resistance, in-
cluding Clostridium boltae, which is a commensal in the human gastrointestinal tract but
also acts as a reservoir for antimicrobial resistance [52].

During the assessment, we noticed that defining the host–microbe interaction types as
harmful, beneficial, or commensal is only a vague indicator of the microbial characteristics
and should not be considered as an absolute measure. For example, Corynebacterium
matruchotii, an oral microbe that is crucial in biofilm structure and may aid in the prevention
of caries, has also been hypothesized to cause supragingival calculus formation if present
in the oral microbiome [53]. The formation could lead to periodontal diseases, highlighting
the dual nature of the host–microbe interaction as both beneficial and harmful. Many of the
microbes that are commensal can also be harmful to immunocompromised patients [54],
and the microbial pathogenicity or virulence can undergo changes due to the changes
in the microbial DNA, the antimicrobial resistance, the surrounding environment, or the
susceptibility of humans to particular diseases [55–57]. For example, Acinetobacter baumannii
was pathogenic since the 1990s but its pathogenicity level has now increased to a critical
level [55]. Furthermore, the composition of the microbiota is as important as the type, since
the interplay between different microbes also changes the extent of beneficial or harmful
effects [58].

2.4. Oral and Gut Microbiomes Have Numerous AMR Genes

We found numerous and diverse antibiotic resistance genes in all the microbiome
samples, summarized in Table S6 and shown as a heatmap in Figure S4. There are several
genes that are attributed to the antimicrobial resistance to a wide range of antibiotics, includ-
ing beta-lactam, aminoglycoside, tetracycline, macrolide, and fluoroquinolone (Table S7).
Bacteria can develop resistance against these antibiotics through multiple mechanisms.
These antimicrobial resistance genes can be categorized into four Comprehensive Antibiotic
Resistance Database (CARD) models depending on the type of resistance mechanisms: pro-
tein variant model, protein homolog model, protein wild type model, and rRNA mutation
model (Figure S5).

One of the antibiotics, named aminoglycoside, is widely used to fight against bacteria,
especially aerobic Gram-negative bacteria. Aminoglycoside inhibits peptide elongation at
30S ribosomal subunit, resulting in inaccurate mRNA translation which can halt protein
synthesis or alter amino acid compositions at certain points [59]. However, when some
mutations occur in the 30S ribosomal subunit, aminoglycosides no longer interact with the
target [60]. In all the microbiome samples, the AMR genes conferring resistance to amino-
glycoside were the most prevalent (Figure 3a). For instance, at least 60% of the AMR genes
are related to the resistance against aminoglycoside in Saliva3_R2 (Table S6). Particularly,
we found Mycobacterium tuberculosis in one of the saliva samples (Saliva3_R2), which is
known to cause tuberculosis and it had 16S rRNA variant genes that confer multidrug
resistance to streptomycin and amikacin, which belong to the family of aminoglycoside,
posing a potential threat as these antibiotics are commonly used to treat tuberculosis [61].
In one of the stool samples (Stool1_R1), Campylobacter jejuni, known to cause gastroenteritis
was found. It had ant(6)-Ib genes, which encode a family of aminoglycoside nucleotidyl-
transferase named ANT(6)-Ib. The expression of ant(6)-Ib can exacerbate the antimicrobial
resistance in Campylobacter jejuni, as aminoglycosides and macrolides are the effective way
to treat this disease [62].
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Figure 3. The Comprehensive Antibiotic Resistance Database (CARD) resistance ontology in each
microbiome replicate based on (a) antibiotic category and (b) taxon conferring resistance to antibiotics.
Antibiotics are classified based on their mechanism of action, spectrum of activity, or chemical
structure. The antibiotic category shows all resistance pathways linking the gene to antibiotic
molecules. The heatmap scale shows the number of alignments to the antibiotic category or the taxon
conferring resistance to antibiotics.

As shown in our microbiome samples, many conventional antibiotics as well as
some newer antibiotics are no longer effective in certain types of bacteria due to the
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spread of antimicrobial resistance. Recently, the World Health Organization (WHO) has
designated antimicrobial resistance as one of the top threats against public health and
published a list of pathogens that are in urgent need of novel antibiotics [2]. The WHO
list is divided into three levels of priority (critical, high, and medium) according to the
severity of antimicrobial resistance and the urgency for novel antibiotics. We compared the
WHO list with the microbial species present in each microbiome sample, and we found
three bacterial species (Neisseria gonorrhoeae, Shigella flexneri, Streptococcus pneumoniae) that
matched the list (Table 3). In all the saliva samples, we found Neisseria gonorrhoeae included
in the high-priority category (Table 3), which are found to be resistant to cephalosporin
or fluoroquinolone (Table S5). Fluoroquinolones are one of the most important antibiotics
listed by the WHO, as they inhibit DNA replication by preventing the ligase activity of
the bacterial DNA gyrase and topoisomerase IV [63]. In Gram-negative bacteria, plasmid-
mediated resistance genes produce proteins that can bind to the bacterial DNA gyrase,
protecting it from the action of quinolones [64].

Table 3. The AMR-conferring taxa and their characteristics in the oral and gut microbiome of the
human samples. Multidrug therapy implies that this pathogen requires multiple antibiotics to treat
the related disease. N/A is used to abbreviate the phrase “not applicable”.

Gram-Positive

Phylum Taxon Colony Spore Respiration Disease
Antimicrobial

Therapy

Actinomycetota Bifidobacterium
bifidum Rod No Anaerobic N/A N/A

Actinomycetota Bifidobacterium
longum Rod No Anaerobic N/A N/A

Actinomycetota Cutibacterium
acnes Rod No Anaerobic Skin infections Benzoyl

peroxide

Actinomycetota Mycobacterium
leprae Rod No Aerobic Hansen’s

disease
Multidrug

therapy

Actinomycetota Mycobacterium
smegmatis Rod No Aerobic N/A N/A

Actinomycetota Mycobacterium
tuberculosis Rod No Aerobic Tuberculosis Multidrug

therapy

Actinomycetota Mycobacteroides
abscessus Rod No Aerobic Lung disease Macrolide

Actinomycetota Mycobacteroides
chelonae Rod No Aerobic Skin infections Macrolide

Actinomycetota Streptomyces
cinnamoneus Filamentous Yes Aerobic N/A N/A

Actinomycetota Streptomyces
rishiriensis Filamentous Yes Aerobic N/A N/A

Bacillota Clostridioides
difficile Rod Yes Anaerobic Colon

infections Glycopeptide

Bacillota Enterococcus
faecium Cocci No Facultative anaerobic Urinary tract

infections Glycopeptide

Bacillota Enterococcus
faecium Rod No Facultative anaerobic N/A N/A

Bacillota Lactobacillus
reuteri Rod No Anaerobic N/A N/A

Bacillota Staphylococcus
aureus Cocci No Facultative anaerobic Skin infections Oxazolidinone
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Table 3. Cont.

Bacillota Streptococcus
agalactiae Cocci No Facultative anaerobic

Group B
Streptococcal

(GBS) infections
Ampicillin

Bacillota Streptococcus
pneumoniae Diplococci No Facultative anaerobic Pneumonia Multidrug

therapy

Bacillota Streptococcus
pyogenes Cocci No Facultative anaerobic

Group A
Streptococcal

(GAS)
Infections

Amoxicillin

Bacillota Streptococcus
suis Cocci No Facultative anaerobic Zoonotic

disease Aminopenicillin

Gram-Negative

Phylum Taxon Colony Spore Respiration Disease
Antimicrobial

therapy

Bacteroidota Bacteroides
fragilis Rod No Anaerobic Inflammatory

bowel disease Nitroimidazole

Bacteroidota Bacteroides
vulgatus Rod No Anaerobic Inflammatory

bowel disease Nitroimidazole

Bacteroidota Capnocytophaga
ochracea Rod No Facultative anaerobic Capnocytophaga

infection
Multidrug

therapy

Bacteroidota Parabacteroides
distasonis Rod No Anaerobic N/A N/A

Bacteroidota Prevotella
intermedia Rod No Anaerobic Periodontal

infections Nitroimidazole

Campylobacterota Campylobacter
jejuni Rod No Microaerophilic Gastroenteritis Macrolide

Campylobacterota Helicobacter
pylori Helical No Microaerophilic Stomach ulcers Multidrug

therapy

Chlamydiota Chlamydia
psittaci Cocci No Anaerobic Psittacosis Macrolide

Pseudomonadota Escherichia coli Rod No Facultative anaerobic Escherichia coli
infection Tetracycline

Pseudomonadota Haemophilus
parainfluenzae Cocci No Facultative anaerobic Pneumonia Cephalosporin

Pseudomonadota Klebsiella
pneumoniae Rod No Facultative anaerobic

Klebsiella
pneumoniae

infection
Carbapenem

Pseudomonadota Neisseria
gonorrhoeae Diplococci No Anaerobic Gonorrhea Cephalosporin

Pseudomonadota Neisseria
meningitidis Diplococci No Anaerobic Meningitis Cephalosporin

Pseudomonadota Pasteurella
multocida Cocci No Facultative anaerobic Subcutaneous

infection Aminopenicillin

Pseudomonadota Salmonella
enterica Rod No Facultative anaerobic Salmonellosis Fluoroquinolone

Pseudomonadota Shigella flexneri Rod No Facultative anaerobic Shigellosis Fluoroquinolone

Pseudomonadota Vibrio cholerae Rod No Facultative anaerobic Cholera
infection Tetracycline

Spirochaetota Borrelia
burgdorferi Helical No Anaerobic Lyme disease Tetracycline
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In some microbiome samples, we found some bacteria of a medium priority category
from the WHO list, including Shigella which are also resistant to fluoroquinolone (Table S5).
One of the stool samples (Stool2_R1) contains the same genus of bacteria named Shigella
flexneri (Table 3). The point mutations in the DNA gyrase (gyrA) give rise to fluoroquinolone
resistance, and we found the gyrA genes that confer resistance to fluoroquinolone in these
bacteria (Table S6). It is intriguing to observe that the saliva and stool microbiomes all
had these genes because they are known to cause cross-resistance to fluoroquinolones.
For instance, recent research shows the Mycobacterium tuberculosis strain with the gene
variant gyrA exhibits cross-resistance to six different fluoroquinolones, whereas the strain
which does not have mutations in gyrA shows resistance specifically to the particular
fluoroquinolones [65]. Another bacteria that matched the medium priority category is
Streptococcus pneumoniae (Table 3), which is no longer susceptible to penicillin (Table S5).
Bacteria can acquire resistance by synthesizing an enzyme such as beta-lactamase that
attacks the beta-lactam ring of penicillin molecules. There are also other ways to become
penicillin-resistant through mechanisms that decrease the binding affinity of the antibiotics.
In all the saliva microbiome samples, Streptococcus pneumoniae has mutated variants of
PBP1a, PBP2b, and PBP2x (Table S4). These penicillin-binding proteins (PBPs) are targeted
by beta-lactam antibiotics [66], thus these mutations in the PBPs can lead to resistance
against penicillin.

In the AMR analysis, we noticed that a wide variety of nonpathogenic bacteria have
numerous and diverse AMR-related genes (Figure 3b). For example, Mycobacterium smeg-
matis are nonpathogenic bacteria but they are one of the most abundant bacteria that confer
resistance to antibiotics in both the oral and gut microbiomes. Haemophilus parainfluenzae
and Bacteroides fragilis are other examples of nonpathogenic bacteria that are present across
all the microbiomes. These nonpathogenic bacteria are potential reservoirs for AMR-related
genes through horizontal gene transfer, which is the primary mechanism for the spread
of antibiotic resistance in bacteria [67]. Nonpathogenic bacteria which are in the same
genus as pathogenic bacteria are of particular concern as their horizontal gene transfer
is facilitated. For example, both Mycobacterium tuberculosis and Mycobacterium smegma-
tis with AMR-related genes are present in both the oral and gut microbiomes with high
abundance [68].

2.5. Deep Learning-Based Classification of Unidentified Microbes Predicts Mobilome

The fast-sequencing mode of the nanopore data involves the taxonomic classification
of metagenomic sequences in real time. This fast mode is enabled by a cloud-based platform
integrated into the sequencing software, and it utilizes the benefits of long reads to enable
rapid species identification and quantification from metagenomic samples based on the
sequence similarity algorithm [29]. However, this sequence similarity-based approach does
not fully exploit the potential of nanopore sequencing to produce long-read DNAs that
can be regarded as a long stretch of DNA from a microbe, or even an individual. During
the fast sequencing analysis, we noticed that there were many ‘unclassified’ reads in the
classification results based on the sequence similarity algorithm. On average, the oral
microbiome had around 10,000 unclassified reads and the gut microbiome had around
40,000 unclassified reads. We assumed that these unclassified reads are unidentifiable as un-
explored organisms in the human microbiome, and we had a hypothesis that many of these
unidentified reads are from mobile genetic elements such as bacteriophages and lasmids.

To test this hypothesis that these unidentified reads derive from mobile genetic ele-
ments, we searched for a different type of taxonomic algorithm that can classify a sequence
without the presence of similar sequences in the search database. We found that deep
learning-based algorithms can place de novo sequences in taxonomic categories with high
accuracy when trained with a huge diversity and quantity of genetic sequences, exploiting
the fact that different species have their specific patterns and characteristics engraved
in their genetic information [69]. For example, eukaryotic genomes tend to have more
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noncoding regions compared to prokaryotic genomes, whereas bacteriophages are recently
found to adapt alternative genetic coding to increase fitness and evolvability [70,71].

In the slow sequencing mode, we analyzed each unidentified read using a deep
learning-based approach to assign taxonomic classification at the superkingdom level
(Figure 4). The heatmaps show the predicted phylum of all the samples for each superk-
ingdom, revealing the stool samples have more diversity in the four superkingdoms than
the saliva samples as expected (Figure S6). The heatmap of the virus superkingdom is of
particular interest, which is labeled with the predicted host phylum of each read. According
to the deep learning-based approach, the oral and gut microbiomes are expected to have
diverse viruses against archaea, bacteria, and eukaryotes, including against Actinobacteria,
Crenarchaeota, and Arthropoda. Another interesting observation is that many DNA reads
are still unknown even after the deep learning-based classification that does not utilize
any database for inference. This reveals that some de novo reads in these microbiomes
are completely devoid of any known patterns and characteristics, which is an intriguing
observation to be investigated further.

Figure 4. Superkingdom of unidentified reads predicted by the deep learning-based algorithm
(BERTax) in each microbiome sample (a) Saliva1, (b) Saliva2, (c) Saliva3, (d) Stool1, and (e) Stool2.
The two replicates per sample were combined for this exploratory analysis. Components may not
sum to totals because of rounding.

Followingly, the predicted classification of unidentified reads from each microbiome
sample is separated into four superkingdoms of archaea, bacteria, eukaryotes, and viruses,
and summarized into the bar charts at the genus level (Figures S7–S12). The deep learning-
based classification of this dataset at the genus level shows an intriguing range of diversity
in the classification. Particularly, the diversity at the genus level of the eukaryotic organisms
was rich in all the microbiome samples, but this may be due to the training dataset of
the deep learning-based approach having a bias towards eukaryotic genomes [69]. The
statistical summary of this analysis shows that many of the unidentified reads are classified
into the virus category according to the deep learning-based algorithm (Table S8). This
number is overrepresented as compared to the previous taxonomic classification of viruses
based on sequence similarity (Table S3). The bar chart of the predicted virus at the genus
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level (Figure S12) is particularly interesting as they reveal the unexplored territory of
mobilome in the human microbiome that is yet to be discovered for novel therapeutic tools
and bacteriophage therapy [72–75]. We noticed some inconsistencies in the prediction at
the different levels of superkingdom, phylum, and genus, thus this deep learning-based
approach should be regarded more as an exploratory tool rather than a diagnostic tool.

3. Discussion

The development and implementation of rapid and accurate diagnostic tools for bac-
terial infections are essential in combating the current crisis of antimicrobial resistance
(AMR) effectively. This requires a shift away from traditional culture-based techniques
towards molecular-based diagnostic methods, which can provide faster and more accurate
results, leading to better patient outcomes. Here, we focused on the ability of nanopore
sequencing to generate long-read native DNAs from metagenomic samples of various hu-
man microbiomes. Nanopore sequencing enables direct analysis of DNA/RNA sequences
by sensing changes in an electric current as they pass through a protein nanopore [76].
This new sequencing technology is revolutionizing genomics, as it can produce long-read
DNA/RNA sequences allowing genomic analysis of microbes at individual levels. We
explored the potential of nanopore sequencing as a futuristic diagnostic tool in clinical
and laboratory setting [76,77], which could provide ultrarapid profiling of the human
microbiome through real-time analysis such as species identification and antimicrobial
resistance [2].

We further explored the potential of nanopore sequencing to be utilized in two dif-
ferent modes as a diagnostic tool: fast sequencing and slow sequencing. The fast mode
enables real-time analysis of pathogen identification, metagenomic analysis of microbial
communities, and antimicrobial resistance analysis. This mode is rapid and direct, requir-
ing minimal inputs of human expertise and curation. In this fast analysis, we classified
thousands of microbial species in the saliva and stool samples, with the most cost-effective
but a lower-yield and single-use version of nanopore flow cells [78]. Furthermore, we
rapidly identified the ten most abundant species that are known to be beneficial, harmful,
or commensal in the oral and gut microbiome using the previously curated list. The slow
mode enables in-depth analysis of host–microbe interactions and deep learning-based
classification of unidentified reads. This mode is deliberate and exploratory, requiring the
most advanced bioinformatic skills and expertise in microbiome research. A thorough
exploration of host–microbe interaction types underscore the existing knowledge gaps
regarding the impact of numerous microbes identified within the oral and gut microbiomes.
Additionally, we evaluated a largely unexplored dataset of unclassified DNA reads from
the sequence similarity-based analysis by utilizing a deep learning-based algorithm that
does not require a match in the database to predict the superkingdom, phylum, and genus
of these reads. The analysis further uncovers the potential existence of diverse organisms
belonging to bacteria, archaea, and eukaryotes, with a significantly higher proportion of
reads predicted to originate from virus genomes.

In this study, we aim to provide an exploratory application of nanopore sequencing
as a future diagnostic tool for bacterial infection, which has resurfaced in the scientific
community as an urgent global health issue due to the uncontrolled spread of antimicrobial
resistance [79]. Nevertheless, it is important to acknowledge several caveats that were
encountered during this exploratory application. Firstly, there are still debates about the
accuracy of nanopore sequencers at simplex sequencing, which depends on the nanopore
version, chemistry, and basecalling algorithms. According to the manufacturer, we used the
flow cell version and chemistry (R9.4.1 and SQK-LSK110, respectively) with the expected
raw-read accuracy of 98.3% modal. Regarding the accuracy of read classification, a recent
study investigated that the taxonomic classification of long-read DNAs is satisfactory
through controlled experiments using mock microbial communities [80]. This study further
demonstrated that the expected microbial species corresponded at anticipated abundances,
with the limit of detection observed at 4 reads and 5000 bp in length. However, we still
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had difficulties in determining the confidence level of very rare species, despite setting
a high Q-score threshold while using the high-accuracy basecalling. Since the current
state-of-the-art sequencing technologies cannot provide ground truth about the presence of
these rare species in metagenomic samples, we utilized two replicates per sample to build
confidence in the results of species identification.

Secondly, we used a specialized microbiome kit for extracting native DNA from
different human microbiomes. While the kit was successful in extracting sufficient amounts
of DNA from saliva and stool samples, it was not effective for extracting DNA from urine,
nasal, and vaginal samples (Table S1). Alternative extraction methods that can extract small
quantities of microbial DNA more efficiently may be necessary for these types of samples.
Finally, the extracted DNA from some saliva samples using this kit still had a substantial
fraction of human DNA despite having a host DNA depletion step. We suggest using other
methods of human DNA depletion to enrich the microbiome DNA against the human
DNA [81]. Adaptive sampling has emerged as a cutting-edge approach for selectively
reducing host DNA content in human samples [82]. Adaptive sampling is a technique in
nanopore sequencing that allows for selective sequencing of specific genomic regions of
interest, optimizing the sequencing process by focusing on relevant regions and reducing
sequencing time and cost [83]. It involves real-time analysis of the sequencing data and
adjustment of the sequencing parameters to increase the coverage of targeted regions.

Lastly, our data exhibited some limitations, including instances where certain species
were not consistently detected across samples or replicates, as well as the identification of
species without established associations with the human microbiome. These discrepancies
may be attributed to the current limitations in detection thresholds and error rates inherent
in this particular version of the nanopore sequencing platform. It is anticipated that future
advancements in long-read sequencing technology will enhance the detection threshold
and accuracy of species identification. Additionally, incorporating validation through
alternative sequencing methods such as next-generation sequencing (NGS) or polymerase
chain reaction (PCR) can help mitigate the potential for false-negative results, particularly
in identifying rare species. In future studies, it is important to account for other factors
that contribute to variation in human microbiome compositions, including gender, age,
medication usage, and dietary supplements. Considering these additional sources of
variation will provide a more comprehensive understanding of the factors influencing the
human microbiome and its relationship with health and disease [84].

4. Conclusions

In conclusion, rapid and accurate pathogen identification and microbial profiling
are essential in combating infectious diseases effectively, and the development of new
technologies, such as nanopore sequencing, offers great promise as innovative diagnostic
tools. The main advantages of nanopore sequencing as a diagnostic tool include a cost-
effective sequencer ($1000) and flow cell ($100 per sample) and flexible adaptation of
downstream analysis as a fast mode (<12 h to pathogen identification) and a slow mode
(several weeks) depending on the type of information needed. Nevertheless, addressing the
existing challenges and ensuring the extensive utilization of these technologies in clinical
settings necessitates further efforts and advancements.

5. Methods

5.1. Preparation of Non-Invasion Human Microbiome Sample

Human microbiomes were obtained from female healthy volunteers who provided
written informed consent between March 2022 and July 2022. For the saliva samples
(Saliva1_R1, Saliva1_R2, Saliva2_R1, Saliva2_R2, Saliva3_R1, and Saliva3_R2), saliva col-
lected with sterile medical swabs were transferred to 1000 μL of PBS solution (P5119; Sigma-
Aldrich, Darmstadt, Germany). For the stool samples (Stool1_R1, Stool1_R2, Stool2_R1,
Stool2_R2), stool collected with sterile medical swabs was transferred to 1000 μL of PBS
solution. For the urine, nasal, and vaginal samples (Urine1_R1, Urine1_R2, Nasal1_R1,
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Nasal1_R2, Vaginal1_R1, and Vaginal1_R2), each sample was collected with sterile medical
swabs and transferred to 1000 μL of PBS solution.

5.2. Microbiome DNA Extraction and Quality Control

Microbiome DNAs were extracted from the human samples on the same day of col-
lection using the microbiome-specific kit (QIAamp DNA Microbiome Kit; Qiagen, Hilden,
Germany). The DNA extraction was performed according to the manufacturer’s protocol.
The only modification to the protocol was to conduct all the centrifuge steps at the speed
of 12,300× g instead of 20,000× g. The extracted DNA samples were quantified for the
quantity (ng/μL) and quality (A260/A280 and A260/A230) using a spectrophotometer
(NanoDrop 2000; Thermo Scientific, Waltham, MA, USA). The A260/A280 acceptable ratio
was kept at 1.8–2.0, and the A260/A230 acceptable ratio was kept at 2.0–2.2 for the quality
control for nanopore sequencing (Table S1). The quality-controlled DNA samples were
kept at 4 ◦C until further treatment or analysis was performed.

5.3. Preparation of Sequencing Library Using Native DNA Ligation

The library ligation step was PCR-free without the need of primer choices, as we
aimed to sequence native DNA from human microbiome samples to fully take advantage
of long-read sequencing. The sequencing library was prepared from at least 500 ng of
high molecular weight genomic DNA extracted from the human microbiome samples
using the native DNA ligation kit (SQK-LSK110; Oxford Nanopore Technologies, Oxford,
UK) according to the manufacturer’s protocol. For Flongle flow cells, an expansion kit
(EXP-FSE001; Oxford Nanopore Technologies, Oxford, UK) was additionally needed to
prepare the sequencing mix. The NEBNext FFPE Repair Mix (M6630) and NEBNext Ultra
II End repair/dA-tailing Module (E6056) reagents were prepared in accordance with the
manufacturer’s instructions. The sample purification was performed using magnetic beads
(Agencourt AMPure XP; Beckman Coulter, Orange County, CA, USA) and a magnetic
separator (DynaMagTM-2 Magnet; Thermo Fischer Scientific, Waltham, MA, USA).

5.4. Nanopore Sequencing Using MinION and Flongle Adapter and Flow Cell

A Flongle flow cell (FLO-FLG001; Oxford Nanopore Technologies, Oxford, UK) was
used for each sample, which was inserted into the Nanopore MinION sequencer (Mk1B
MIN-101B; Oxford Nanopore Technologies, Oxford, UK) using the Flongle adapter (ADP-
FLG001; Oxford Nanopore Technologies, Oxford, UK). Flongle flow cells were first checked
for the minimum number of pores (at least 50 pores) before being primed with 119 μL of the
priming mix prepared in accordance with the manufacturer’s instructions. In the priming
step, some liquid was left in the P200 pipette tip to ensure no air bubble was inserted. A
total of 29 μL of the sequencing mix was loaded onto the Flongle flow cell immediately
afterward, following the manufacturer’s protocol. Finally, Flongle flow cells were sealed
using the adhesive on the seal tab and the platform lid, and nanopore sequencing was
performed for at least 12 h to obtain a maximum read output.

5.5. Real-Time High-Accuracy Basecalling and Cloud-Based EPI2ME Analysis

The MinKNOW software was used for raw data acquisition. The raw signal data
in FAST5 files were basecalled real-time into the DNA reads in FASTQ files using the
high-accuracy mode of the Guppy basecaller (v.5.1.13), integrated within the MinKNOW
software.

For the rapid downstream analysis, a cloud-based analysis platform providing rapid
analysis workflows called EPI2ME was used. Using the EPI2ME platform (v.3.5.7; Oxford
Nanopore Technologies, Oxford, UK), species identification with the WIMP workflow
(v.2021.11.26) such as fungi, bacteria, viruses, or archaea, was conducted in real-time based
on the Centrifuge classification engine [29,84]. Next, antimicrobial resistance analysis was
conducted in real-time with the ARMA workflow (v.2021.11.26.) to identify the genes
responsible for antibiotic resistance in the DNA reads, based on the CARD database.
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5.6. In-Depth Microbiome Analysis of Classified Reads

The WIMP workflow utilizes long reads from nanopore sequencing to rapidly identify
and quantify microbial species from metagenomic samples. The WIMP results from each
sample were downloaded as CSV files, which were processed into classified and unclas-
sified categories. The classified reads from the WIMP workflow were saved separately,
and the identified species were further categorized into four host–microbe interaction
types (beneficial, commensal, harmful, and inconclusive). The initial list of host–microbe
interaction types for several microbial species was curated by pooling a number of studies
on the oral microbiome [32,39–41] and the gut microbiome [43,44]. However, many of
the microbial species in the oral and gut microbiomes were missing from this curated
list, which further required an extensive literature review on each microbial species to
determine the host–microbe interaction type. When assessing these bacteria into different
interaction types, the exact region in the human body was considered. For example, a
commensal in the human gut may be assessed as a pathogen in the human skin.

5.7. In-Depth Microbiome Analysis of Unclassified Reads

The unclassified reads from the WIMP workflow based on the sequence similarity
search were saved separately and analyzed with other methods. These latest algorithms
for species identification include the BERTax taxonomic classification [85]. The BERTax
taxonomic classification is a deep learning approach based on natural language process-
ing [86] to classify the superkingdom and phylum of DNA sequences taxonomically. It
achieves the assignment of unknown sequences to biological clades with shared ancestry in
data-dependent training without the need for a genome similarity search of large genome
databases. BERTax was shown to perform comparably to the state-of-the-art methods for
sequences with close relatives in the database and superior for new species [69]. The un-
classified reads from the human microbiome samples were run with the BERTax algorithm
to assign the superkingdom, phylum, and genus given the patterns of DNA sequences.
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Determination of Target Crop Loads for Maximising Fruit
Quality and Return Bloom in Several Apple Cultivars
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Abstract: In apple (Malus domestica), the level and timing of crop load have a major impact on the
final fruit size and can also play a role in optimising internal fruit quality. Ideal crop loads vary with
cultivar, but very few cultivars have recommended crop load targets that consider the effect of crop
load on both return bloom and fruit quality. To address this issue, studies examining a range of crop
loads and thinning times were undertaken on several apple cultivars. Return bloom and multiple fruit
quality parameters were examined. The results of these studies demonstrate positive effects for early
thinning, not only on fruit size but also on firmness and soluble solids content. Early-thinned fruit
showed higher sugar levels than late-thinned fruit. Previously undemonstrated positive relationships
between fruit sugar content and weight and between fruit firmness and weight in both ‘Fuji’ and
‘Delicious’, as well as between fruit sugar content and fruit firmness in ‘Delicious’, indicate that early
thinning is a valuable tool in improving fruit quality. The current target crop load recommendations
of 4–6 fruit cm−2 trunk cross-sectional area (TCSA) for ‘Fuji’ and 2–4 fruit cm−2 TCSA for ‘Delicious’
are confirmed by this study. New recommendations are proposed for the other cultivars in this
study taking into account the impact of crop load on both fruit quality and return bloom. Both ‘Pink
Lady’ and ‘Gala’ can support crop loads of up to eight fruit cm−2 TCSA without impacting return
bloom, but fruit quality is compromised; hence, lower targets in the range of 4–6 fruit cm−2 TCSA are
recommended. Large fruit size and good return bloom can be maintained in ‘Jonagold’ at crop loads
of eight fruit cm−2 TCSA, while crop loads of four fruit cm−2 TCSA are suggested for ‘Braeburn’ to
sustain regular bearing and good fruit size.

Keywords: thinning; fruit weight; total soluble solids; firmness; fruit shape; biennial bearing; hand
thinning; crop load management

1. Introduction

In commercial apple production, crop load is managed through the cultural practice of
removing (thinning) excess flowers/fruitlets during the flowering and post-bloom periods.
While mechanical thinning devices are being developed, chemicals are most often used for
thinning; regardless of the thinning method employed, there is normally a need to follow
up with hand thinning. This is usually undertaken after the second wave of natural fruit
drop that occurs around 8–10 weeks after flowering. Crop load is commonly expressed as
the number of fruit per square centimetre of trunk cross-sectional area (fruit cm−2 TCSA) [1].
The effect of crop load on fruit weight and size and on return bloom has been examined
in multiple studies [2–6], but there is limited information available on the impact of crop
load and time of thinning on other fruit quality attributes, such as fruit shape, skin colour,
soluble solids content, and flesh firmness. Fruit soluble solids levels have been reported to
be dependent on the leaf/fruit ratio [7]; hence, factors that result in an increase in leaf area
and thus increased photosynthesis, such as lower crop loads, will aid in the accumulation
of sugars in the fruit. Flesh firmness is determined by the number and size of cells within
the cortex, with a large cell size resulting in softer fruit [6] and higher numbers of smaller
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cells producing firmer fruit [8]. Reducing crop load early in the season before the major
period of cell division allows for a greater increase in cell number than later thinning [9].

Most studies relating crop load to fruit quality have involved the use of thinning
chemicals as this is the most economical way of reducing crop load. Multiple reports
demonstrate that thinning chemicals can also impact fruit quality [10–17], thus clouding
the understanding of the impact of reducing crop load on fruit quality. As there are many
situations where growers are loath to apply chemicals, particularly on younger trees or
high-value cultivars, further examination of the impact of crop load on fruit quality is
warranted. In commercial orchards, hand thinning may be undertaken either to comple-
ment inadequate chemical (or mechanical) thinning or in preference to the application of
chemicals, but it is often not completed until 8–12 weeks after flowering. To investigate
the effects of crop load on fruit quality independent of any possible direct influences of
chemical thinners, the trials presented in this study examined the effects of the time and
level of thinning performed without chemicals on fruit quality for several apple cultivars
and, where available, different rootstocks.

The objective of this study was to evaluate the impact of different crop loads and
thinning times on both return bloom and fruit quality in several apple cultivars to enable
recommendations for ideal crop load targets for each cultivar, on the assumption that
different cultivars would respond differently and, thus, the ideal crop load would vary
between cultivars.

2. Materials and Methods

Eight trials were undertaken on six different cultivars over a four-year period. All
trials were conducted in the Huon Valley, Tasmania (43◦07′ S, 147◦01′ E) on mature regular
bearing trees. Details of cultivar, rootstock, tree age, height, and planting spacings are
provided in Table 1.

Table 1. Details of apple cultivars used in each trial.

Trial Cultivar Rootstock Height (m) Age (Years) Row Spacing (m) Tree Spacing (m)

1 Naga-Fu No. 2 ‘Fuji’ MM106 2.5 9 4 3

2 Naga-Fu No. 2 ‘Fuji’ MM106 2.5 10 4 3

3 Oregon spur ‘Delicious’ MM106 2.0 8 4 2.5

4 Oregon spur ‘Delicious’ MM106 2.2 10 4 2.5

5 ‘Pink Lady’ M26
MM106

2.0
3.0 7 3 2

6 ‘Jonagold’ M26
MM106

2.0
3.0 7 3 2

7 ‘Braeburn’ M26
MM106

2.0
3.0 7 3 2

8 Royal ‘Gala’ M26 2.0 6 3 1.5

Trees in all trials were trained to a central axis system. Apart from thinning, all trees
were subjected to standard commercial orchard management practices.

In all trials, trees were selected in early spring based on uniformity of size and vigour,
trunk girths were measured 10 cm above the graft union, and trunk cross-sectional areas
(TCSA) calculated. Blossom clusters were counted on each tree and blossom density
(number of blossom clusters cm−2 TCSA) was calculated. Trees were blocked according
to blossom density and treatments were allocated at random to single-tree plots within
each block.
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To confirm that the results were not affected by seasonal conditions, the same design
and treatments in trial 1 were repeated the following season in the same orchard block but
on different trees (trial 2). Details of full bloom (FB) dates, number of replicates, time of
thinning, and crop load level are provided in Table 2.

Table 2. Details of treatments (thinning time and crop load level), date of full bloom, and number of
replicates in hand-thinning trials conducted over four seasons. AFB, after full bloom; TCSA, trunk
cross-sectional area.

Trial Season Cultivar Rootstock
Thinning Time
(Weeks AFB)

Crop Load Levels
(Fruit cm−2 TCSA)

Full Bloom
Date

Replicate
Number

1 1 ‘Fuji’ MM106 6 2, 4, 6, 8, 10 17 Oct 5

2 2 ‘Fuji’ MM106 6 2, 4, 6, 8, 10 14 Oct 5

3 1 ‘Delicious’ MM106 6 2, 4, 6, 8, 10 21 Oct 5

4 2 ‘Delicious’ MM106 1, 2, 4, 8, 12, 16 3, 6 18 Oct 3

5 3 ‘Pink Lady’ M26, MM106 2, 6, 10, 14 4, 6, 8 6 Oct 4

6 3 ‘Jonagold’ M26, MM106 2, 6, 10, 14 4, 6, 8 12 Oct 4

7 3 ‘Braeburn’ M26, MM106 2, 6, 10 2, 4, 6, 8 8 Oct 4

8 4 ‘Gala’ M26 2, 6, 10, 14 3, 6, 9 11 Oct 4

Crop loads were set by hand thinning and the retention of larger fruit was preferred
over small and/or damaged fruit. Where possible, clusters were thinned to a single fruit,
but if there was insufficient clusters on the tree to allow this, clusters were thinned to two
or three fruit.

2.1. Assessments
2.1.1. Fruit Set Counts

Fruit set counts were completed in each trial in December after natural fruit drop and
used to calculate the crop load variable, number of fruit cm−2 TCSA [18].

2.1.2. Fruit Weight and Size

Fruit was harvested by hand at normal commercial harvest time for each cultivar,
based on measurements of the maturity indices total soluble solids (TSS) content, starch
levels and skin background colour. Fruit from each tree were counted and weighed, and
the mean fruit weight was calculated. Fruit was graded on a commercial size grader
into increments of 5 mm in diameter ranging from 50 to 95 mm, and the percentage of
fruit ≥ 75 mm in diameter was determined for trials 1–5 and 7. As ‘Jonagold’ produce
large fruit, the percentage of fruit ≥ 85 mm in diameter was determined for trial 6, while
the percentage of fruit ≥ 65 mm in diameter was used for ‘Gala’ in trial 8 as ‘Gala’ are a
genetically small apple and the fruit size for this season was small. For laboratory quality
assessments, samples of 28 fruit per replicate were collected from the grader by taking seven
fruit at random from each of the 60, 65, 70, and 75 mm fruit sizes. These fruit were placed
into labelled plastic bags and put into a cold storage room at 0 ◦C and 90–95% humidity
for quality assessments in the laboratory the following day.

2.1.3. Fruit Quality

Fruit was assessed for length (L), diameter (D), TSS, and flesh firmness in all trials.
Starch levels and fruit background skin colour were also assessed for ‘Gala’ in trial 8.
Fruit shape was determined by measuring the length and diameter of the fruit using a
Vernier calliper and calculating L/D ratios. Flesh firmness was measured on pared flesh
with a Mecmesin AFG250 force gauge fitted with an Effegi 11 mm penetrometer probe
connected to a Mecmesin 2500E motorised stand operating at a speed of 0.65 cm/second.
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Juice expressed from the apples during the firmness measurements was collected and
TSS concentration (◦Brix) was assessed with an Atago PR-1 digital refractometer. For the
determination of the starch pattern index (SPI), the cut surface of the calyx half of each fruit
was dipped in iodine solution (10 g/L iodine and 40 g/L potassium iodide). The area of
blue/black colouration was assessed according to the six-point index for the starch-staining
pattern as described by Little [19]; the higher the starch index, the lower the percentage
of starch present. Fruit background skin colour was measured visually using the scale
presented by Frappell and O’Loughlin [20] (Supplementary Table S1).

2.1.4. Return Bloom

Return bloom was determined for all cultivars, except for ‘Fuji’ in trials 1 and 2,
by counting blossom clusters on each tree during the spring following treatment and
calculating blossom density (number of blossom clusters cm−2 TCSA).

2.2. Data Analysis

Data were subjected to analysis of variance using Genstat release 17.1 (VSN Interna-
tional Ltd., Hemel Hempstead, Hertfordshire, UK). Tests were performed within Genstat to
check all data for normality and homogeneity of variance—all data were found to be nor-
mally distributed. Linear regressions were undertaken using the Simple Linear Regression
option in Genstat.

Data are presented as mean values for each treatment combination. Results described
as significant were at a probability level (p) of ≤0.05 and Fisher’s least significant differ-
ence (LSD) (p = 0.05), calculated after Steel and Torrie [21], was used for comparison of
treatment means.

Regressions were plotted where appropriate to illustrate linear responses to crop load
or relationships between measured variables in trials 1, 2, and 3. In all cases, regressions
shown are for treatment means and error bars are standard errors of the mean. Graphs
were plotted using SigmaPlot 13.0 (Systat Software Inc., Palo Alto, CA, USA).

3. Results

The crop loads obtained in trials 1–3 were relatively close to the target crop loads
(Supplementary Table S2). In trial 4, the final crop loads were higher than the target in all
but one treatment. The mean crop loads achieved in trials 5–8 were within 0.8 fruit cm−2

TCSA of the target, with the exception of the 6 wAFB treatment in trial 8 where crop loads
were higher.

3.1. Trial 1: ‘Fuji’

A significant linear regression (R2 = 0.76) was observed between crop load and mean
fruit weight (Figure 1a), with a reduction of 15.25 g for every unit increase in crop load.
The regressions between fruit size, represented as percentage of fruit ≥ 75 mm in diameter,
and crop load (Figure 1b), as well as between fruit TSS and crop load (Figure 1c), were also
significant (R2 = 0.75 and 0.86, respectively).

Fruit with a significantly higher L/D ratio were produced at a crop load of two fruit
cm−2 TCSA compared to other treatments, but there was no significant difference in the
L/D ratio between higher crop loads (Table 3).

There was a significant regression between mean fruit weight and fruit sugar content
(Figure 2a) and between mean fruit weight and fruit shape, represented by the fruit L/D
ratio (Figure 2b) (R2 = 0.87 and 0.90, respectively).
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(a)  

Figure 1. The effect of crop load on (a) mean fruit weight, (b) fruit size and (c) fruit soluble solids
content of ‘Fuji’ apple (trial 1). Error bars represent the standard error of the mean (n = 700).

(a)  

Figure 2. The effect of fruit weight on (a) fruit sugar content and (b) fruit shape (length/diameter
ratio) of ‘Fuji’ apple (trial 1). Error bars represent the standard error of the mean (n = 700).
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Table 3. The effect of crop load on fruit shape (length/diameter ratio) and flesh firmness of ‘Fuji’
apples hand-thinned 6 weeks after full bloom (Trial 1). TCSA, trunk cross-sectional area.

Crop Load Length/Diameter Ratio Flesh Firmness (kg)

Two fruit cm−2 TCSA 0.920 b 12.11 bc
Four fruit cm−2 TCSA 0.896 a 12.28 c
Six fruit cm−2 TCSA 0.893 a 11.74 a
Eight fruit cm−2 TCSA 0.891 a 11.95 ab
Ten fruit cm−2 TCSA 0.886 a 12.36 c

Means within each column with the same letter are not significantly different at the 5% level.

3.2. Trial 2: ‘Fuji’

As with trial 1, in trial 2, there was a significant linear regression between crop load
and mean fruit weight (Figure 3a), with a reduction of 11 g for every unit increase in crop
load (R2 = 0.90). There was also an inverse correlation between crop load and percentage of
fruit ≥ 75 mm in diameter (Figure 3b) and a significant linear regression between crop load
and fruit TSS (Figure 3c) (R2 = 0.83 and 0.85 respectively).

(a)  

Figure 3. The effect of crop load on (a) mean fruit weight, (b) fruit size and (c) fruit soluble solids
content, and (d) the relationship between fruit weight and sugar content of ‘Fuji’ apple (trial 2). Error
bars represent the standard error of the mean (n = 700).

There was a significant linear regression between fruit weight and fruit sugar con-
tent (Figure 3d), with an increase of 0.014 ◦Brix for every gram increase in fruit weight
(R2 = 0.87).
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The fruit L/D ratio was highest at the two lower crop loads of two and four fruit cm−2

TCSA (Table 4).

Table 4. The effect of crop load on fruit shape (length/diameter ratio) and flesh firmness of ‘Fuji’
apples hand-thinned 6 weeks after full bloom (Trial 2). TCSA, trunk cross-sectional area.

Crop Load Length/Diameter Ratio Flesh Firmness (kg)

Two fruit cm−2 TCSA 0.854 bc 8.25 c
Four fruit cm−2 TCSA 0.859 c 7.60 ab
Six fruit cm−2 TCSA 0.839 a 7.78 b
Eight fruit cm−2 TCSA 0.843 ab 7.82 b
Ten fruit cm−2 TCSA 0.841 a 7.51 a

Means within each column with the same letter are not significantly different at the 5% level.

Trees with a crop load of two fruit cm−2 TCSA produced significantly firmer fruit
compared to heavier crop loads. Fruit was significantly softer in trees with a crop load of
10 fruit cm−2 TCSA than in trees with crop loads of 6 or 8 fruit cm−2 TCSA.

3.3. Trial 3: ‘Delicious’

As for ‘Fuji’, there was a significant negative linear regression between crop load and
fruit weight (R2 = 0.85), with a reduction of 10.45 g for every unit increase in crop load
(Figure 4a), and between crop load and fruit size (Figure 4b) (R2 = 0.97).

(a)  (b)

(c)  

Figure 4. The effect of crop load on (a) mean fruit weight, (b) fruit size and (c) fruit soluble solids
content of ‘Delicious’ apple (trial 3). Error bars represent the standard error of the mean (n = 700).
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A significant negative regression was observed between fruit TSS and crop load
(Figure 4c), with a reduction of 0.109 ◦Brix for every unit increase in crop load (R2 = 0.69).

Fruit flesh firmness decreased with increasing crop load from two to six fruit cm−2

TCSA (Table 5). Increasing crop load had no significant effect on the fruit L/D ratio.

Table 5. The effect of crop load on fruit shape (length/diameter ratio) and flesh firmness of ‘Delicious’
apples hand-thinned 6 weeks after full bloom (trial 3). TCSA, trunk cross-sectional area.

Crop Load Length/Diameter Ratio Flesh Firmness (kg)

Two fruit cm−2 TCSA 0.984 11.18 c
Four fruit cm−2 TCSA 0.983 10.64 b
Six fruit cm−2 TCSA 0.969 10.25 a
Eight fruit cm−2 TCSA 0.973 10.47 ab
Ten fruit cm−2 TCSA 0.977 10.28 a

Means within each column with the same letter are not significantly different at the 5% level.

There was a significant positive linear regression between fruit weight and fruit sugar
content (Figure 5a), between fruit weight and flesh firmness (Figure 5b), and between fruit
sugar content and firmness (Figure 6) (R2 = 0.97, 0.90 and 0.98, respectively).

(a)  

Figure 5. The effect of fruit weight on (a) fruit soluble solids content and (b) fruit firmness of
‘Delicious’ apple (trial 3). Error bars represent the standard error of the mean (n = 700).

Figure 6. The relationship between fruit firmness and sugar content of ‘Delicious’ apple. Error bars
represent the standard error of the mean (n = 700).
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3.4. Trial 4: ‘Delicious’

There were no significant interactions between crop load and time of thinning for
mean fruit weight and return bloom (results not presented), but there were significant
interactions for other parameters (Table 6).

Table 6. The interaction between crop load and time of thinning on fruit size (% fruit ≥ 75 mm in
diameter), shape (length/diameter ratio), soluble solids content and flesh firmness of ‘Delicious’
apples. TCSA, trunk cross-sectional area; wAFB, weeks after full bloom; TSS, total soluble solids.

Crop Load (Fruit
cm−2 TCSA)

Thinning Time
(wAFB)

% Fruit ≥ 75 mm
Diameter

Length/Diameter
Ratio

TSS Content
(◦Brix)

Flesh Firmness
(kg)

3 1 67 f 0.971 ab 13.43 f 8.58 f
6 1 63 f 0.994 de 13.23 de 8.01 cd
3 2 67 f 0.997 de 13.17 cd 7.88 bc
6 2 25 c 1.003 e 13.07 bc 7.57 a
3 4 59 ef 0.989 cde 13.90 h 8.32 ef
6 4 23 bc 0.984 abcd 12.70 a 7.79 abc
3 8 43 de 0.987 bcde 13.33 ef 8.44 ef
6 8 8 ab 0.969 a 13.03 b 8.25 de
3 12 43 de 0.998 de 14.13 i 8.59 f
6 12 17 abc 0.974 abc 13.73 g 7.72 ab
3 16 33 cd 0.999 de 13.77 g 9.47 h
6 16 6 a 0.984 abcd 13.00 b 8.90 g

Means within each column with the same letter are not significantly different at the 5% level.

Fruit size (% fruit ≥ 75 mm in diameter) was significantly higher at a crop load of
three fruit cm−2 TCSA than at six fruit cm−2 TCSA at all thinning times, with the exception
of 1 wAFB (Table 7). The treatments that produced the highest number of fruit ≥ 75 mm in
diameter were the two 1 wAFB treatments and three fruit cm−2 TCSA thinned 2 or 4 wAFB.

Table 7. The effect of crop load and time of thinning on mean fruit weight and return bloom of
‘Delicious’ apples (trial 4). TCSA, trunk cross-sectional area; wAFB, weeks after full bloom.

Mean Fruit Weight (g)
Return Bloom

(Buds cm−2 TCSA)

(i) Crop load
Three fruit cm−2 TCSA 170 b 14.1
Six fruit cm−2 TCSA 144 a 13.3

(ii) Time of thinning
1 wAFB 172 b 16.7 b
2 wAFB 161 ab 15.4 b
4 wAFB 164 ab 17.9 b
8 wAFB 147 a 10.5 a
12 wAFB 153 a 10.6 a
16 wAFB 149 a 11.3 a

Means within each column with the same letter are not significantly different at the 5% level.

The fruit L/D ratio was significantly lower in the three fruit cm−2 TCSA treatment
at 1 wAFB than the higher crop load (Table 7). At 8 and 12 wAFB, the fruit L/D ratio was
significantly lower at the higher crop load than the lower crop load.

Fruit TSS was significantly lower at the higher crop load compared with the lower
crop load at all thinning times, except for 2 wAFB. At all thinning times, except for 8 wAFB,
fruit firmness was significantly higher at three fruit cm−2 TCSA than at six fruit cm−2

TCSA. Trees thinned 16 wAFB produced significantly firmer fruit than all other treatments.
Mean fruit weight was significantly higher at three fruit cm−2 TCSA than at six fruit cm−2

TCSA (Table 7). The time of thinning also influenced mean fruit weight, with the later
thinning times of 8, 12, or 16 wAFB producing significantly smaller fruit than the trees
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thinned 1 wAFB (Table 7). Crop load had no significant effect on return bloom (Table 7).
The time of thinning showed a significant effect, with thinning at or later than 8 wAFB
resulting in a lower return bloom than earlier thinning.

3.5. Trial 5: ‘Pink Lady’

No interactions were observed between crop load, time of thinning, and rootstock for
mean fruit weight, size, or return bloom (results not presented). All three factors had a
significant effect on both mean fruit weight and percentage of fruit ≥ 75 mm in diameter,
while rootstock and time of thinning, but not crop load, had a significant effect on return
bloom (Table 8).

Table 8. The effect of rootstock, crop load, and time of thinning on mean fruit weight, size
(% fruit ≥ 75 mm in diameter), and return bloom of ‘Pink Lady’ apples. TCSA, trunk cross-sectional
area; wAFB, weeks after full bloom.

Mean Fruit Weight
(g)

% Fruit ≥ 75 mm
in Diameter

Return Bloom
(Buds cm−2 TCSA)

(i) Rootstock
M26 166 b 30 b 13.9 b
MM106 156 a 24 a 5.3 a

(ii) Crop load
Four fruit cm−2 TCSA 167 b 32 b 9.7
Six fruit cm−2 TCSA 164 b 28 b 10.3
Eight fruit cm−2 TCSA 151 a 20 a 8.8

(iii) Time of thinning
2 wAFB 169 b 36 b 10.7 b
6 wAFB 165 b 33 b 11.4 b
10 wAFB 156 a 18 a 8.8 a
14 wAFB 153 a 20 a 7.4 a

Means within each column with the same letter are not significantly different at the 5% level.

Trees on M26 rootstock produced significantly heavier fruit than those on MM106
(Table 8). Fruit weight was significantly reduced at crop loads of eight fruit cm−2 TCSA
compared with lower crop loads, while trees thinned at 10 and 14 wAFB produced sig-
nificantly lighter fruit than earlier-thinned trees (Table 8). Similar patterns were observed
in the percentage of fruit ≥ 75 mm in diameter for all three factors. Return bloom was
significantly higher in trees on M26 rootstock than on MM106. Crop load had no significant
effect on return bloom, but earlier thinning (2 or 6 wAFB) resulted in a higher return bloom
than later thinning times.

Significant interactions were observed between the thinning treatments for fruit L/D
ratio, TSS and firmness (Table 9). Although there were significant differences between
treatments in the L/D ratio, the results showed no clear pattern with no consistent effects
of rootstock, crop load or time of thinning.

Fruit TSS decreased with increasing crop load on M26 rootstocks on trees thinned
2 wAFB, and on MM106 rootstocks thinned at 6 wAFB. TSS levels were significantly higher
on M26 rootstocks than in the corresponding MM106 treatments.

Fruit firmness was significantly higher in the four and six fruit cm−2 TCSA 6 wAFB
treatments on M26 than all other treatments. Increasing crop load resulted in a decrease
in firmness at all thinning times on M26 rootstocks, but there were no distinct trends for
MM106 stocks. Firmness was significantly higher on M26 rootstocks than in the correspond-
ing MM106 rootstocks, except for the eight fruit cm−2 TCSA 2 and 6 wAFB treatments.
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Table 9. The effect of rootstock, crop load and time of thinning on fruit shape (length/diameter ratio),
sugar content and flesh firmness of ‘Pink Lady’ apples. TCSA, trunk cross-sectional area; wAFB,
weeks after full bloom; TSS, total soluble solids.

Rootstock
Crop Load (Fruit

cm−2 TCSA)
Thinning Time

(wAFB)
Length/Diameter

Ratio
TSS (◦Brix)

Flesh Firmness
(kg)

M26 4 2 0.936 efghi 15.96 lm 8.96 hi
M26 6 2 0.906 ab 15.45 j 8.98 i
M26 8 2 0.941 ghi 15.18 gh 7.99 abcd
M26 4 6 0.946 i 15.88 kl 9.60 j
M26 6 6 0.934 defghi 16.35 o 9.53 j
M26 8 6 0.942 hi 15.53 j 8.64 gh
M26 4 10 0.964 j 16.07 mn 9.10 i
M26 6 10 0.930 cdefghi 16.30 o 8.98 i
M26 8 10 0.934 defghi 16.18 no 8.56 fg
M26 4 14 0.916 bc 15.40 ij 8.92 def
M26 6 14 0.917 bcd 15.23 hi 8.55 fg
M26 8 14 0.923 bcdef 15.45 j 8.24 def
MM106 4 2 0.924 cdefg 15.16 gh 8.18 de
MM106 6 2 0.916 bc 14.05 c 8.06 bcde
MM106 8 2 0.897 a 14.35 de 8.04 bcd
MM106 4 6 0.923 bcdef 15.23 hi 7.98 abcd
MM106 6 6 0.921 bcde 15.00 g 8.15 cde
MM106 8 6 0.917 bcd 14.58 f 8.38 efg
MM106 4 10 0.920 bcde 14.50 ef 8.30 def
MM106 6 10 0.938 fghi 13.70 a 7.83 abc
MM106 8 10 0.929 cdefghi 14.38 de 7.75 ab
MM106 4 14 0.914 abc 13.99 b 8.00 abcd
MM106 6 14 0.925 cdefgh 14.23 cd 7.81 ab
MM106 8 14 0.918 bcd 14.36 de 7.68 a

Means within each column with the same letter are not significantly different at the 5% level.

3.6. Trial 6: ‘Jonagold’

There were no interactive effects between crop load, time of thinning and rootstock
for mean fruit weight (p = 0.315), size (p = 0.269) or return bloom (p = 0.198) (results not
presented). However, analysis of the main effects showed that mean fruit weight was
influenced by crop load and time of thinning, percentage of fruit ≥ 85 mm in diameter was
affected only by the crop load, and return bloom was affected by rootstock but not by crop
load or time of thinning (Table 10).

Table 10. The effect of rootstock, crop load and time of thinning on fruit weight, size and return
bloom of ‘Jonagold’ apples. TCSA, trunk cross-sectional area; wAFB, weeks after full bloom.

Mean Fruit Weight
(g)

% Fruit ≥ 85 mm
Diameter

Return Bloom
(Buds cm−2 TCSA)

(i) Main effects—rootstock
M26 229 33 6.7 a
MM106 231 41 11.9 b

(ii) Main effects—crop load
Four fruit cm−2 TCSA 259 c 49 b 10.6
Six fruit cm−2 TCSA 223 b 36 a 9.0
Eight fruit cm−2 TCSA 207 a 27 a 8.3

(iii) Main effects—time of thinning
2 wAFB 242 b 42 11.4
6 wAFB 240 b 37 8.4
10 wAFB 226 ab 41 7.7
14 wAFB 211 a 29 9.6

Means within each column with the same letter are not significantly different at the 5% level.
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Mean fruit weight decreased significantly with increasing crop load (Table 10). Thin-
ning at 2 and 6 wAFB produced heavier fruit than later thinning. The percentage of
fruit ≥ 85 mm in diameter was significantly higher at the lower crop load compared with
the two higher crop loads.

Return bloom was influenced by rootstock, with trees on MM106 rootstocks having a
significantly higher return bloom than trees on M26 rootstocks.

Although the interactions between thinning treatments were significant for the fruit
L/D ratio, no distinct trends were discernible (Table 11). On the M26 rootstocks, TSS levels
decreased significantly with increasing crop load on trees thinned 6 and 14 wAFB, and at 2
and 14 wAFB on MM106 rootstocks.

Table 11. The effect of rootstock, crop load and time of thinning on fruit shape and total soluble solids
(TSS) content of ‘Jonagold’ apples. TCSA, trunk cross-sectional area; wAFB, weeks after full bloom;
TSS, total soluble solids.

Rootstock
Crop Load (Fruit

cm−2 TCSA)
Thinning Time

(wAFB)
Length/Diameter

Ratio
TSS (Brix)

M26 4 2 0.920 de 13.70 b
M26 6 2 0.911 bcde 15.10 ij
M26 8 2 0.917 cde 13.65 b
M26 4 6 0.924 e 15.83 k
M26 6 6 0.916 cde 14.25 ef
M26 8 6 0.899 ab 13.75 bc
M26 4 10 0.905 bcd 14.45 fg
M26 6 10 0.898 ab 14.20 ef
M26 8 10 0.899 ab 14.13 def
M26 4 14 0.912 bcde 15.70 k
M26 6 14 0.905 bcd 14.65 gh
M26 8 14 0.911 bcde 13.85 bcd
MM106 4 2 0.899 ab 16.33 l
MM106 6 2 0.911 bcde 14.68 gh
MM106 8 2 0.904 bc 13.52 b
MM106 4 6 0.910 bcde 15.20 j
MM106 6 6 0.909 bcde 14.25 ef
MM106 8 6 0.916 cde 14.80 hi
MM106 4 10 0.910 bcde 15.20 j
MM106 6 10 0.905 bcd 14.80 hi
MM106 8 10 0.909 bcde 14.94 hij
MM106 4 14 0.921 e 15.68 k
MM106 6 14 0.902 bc 14.05 cde
MM106 8 14 0.885 a 13.15 a

Means within each column with the same letter are not significantly different at the 5% level.

3.7. Trial 7: ‘Braeburn’

There were no significant interactions between crop load, time of thinning and root-
stock for mean fruit weight (p = 0.732), fruit size (p = 0.237), return bloom (p = 0.568) or
fruit L/D ratio (p = 0.076) (results not presented). Analysis of the main effects showed
that the mean fruit weight, percentage of fruit ≥ 75 mm in diameter, return bloom and
fruit shape (L/D ratio) were all influenced by rootstock and crop load but not by time of
thinning (Table 12).
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Table 12. The effect of crop load and time of thinning on fruit weight, size, return bloom and fruit
shape of ‘Braeburn’ apples. TCSA, trunk cross-sectional area.

Mean Fruit Weight
(g)

% Fruit ≥ 75 mm
Diameter

Length/Diameter
Ratio

Return Bloom
(Buds cm−2 TCSA)

(i) Main effects—rootstock
M26 220 b 70 b 0.907 a 20.2 b
MM106 196 a 45 a 0.920 b 7.4 a

(ii) Main effects—crop load
Two fruit cm−2 TCSA 244 c 76 c 0.926 c 23.5 c
Four fruit cm−2 TCSA 218 b 67 c 0.916 b 15.9 b
Six fruit cm−2 TCSA 191 a 51 b 0.904 a 9.4 a
Eight fruit cm−2 TCSA 179 a 37 a 0.907 a 6.3 a

Means within each column with the same letter are not significantly different at the 5% level.

The fruit from M26 rootstocks was significantly heavier than those from MM106 root-
stocks (Table 12), while increasing crop load from 2 to 6 fruit cm−2 TCSA resulted in lower
fruit weight (Table 12(ii)). M26 rootstocks produced significantly more fruit ≥ 75 mm in di-
ameter than MM106 rootstocks. There was no difference between two and four fruit cm−2

TCSA in the percentage of fruit ≥ 75 mm in diameter, but increasing the crop load from
four to eight fruit cm−2 TCSA resulted in a decrease in fruit ≥ 75 mm in diameter.

Return bloom was significantly higher on M26 rootstocks compared to MM106 root-
stocks. Return bloom was reduced significantly with increasing crop load from two to six
fruit cm−2 TCSA. MM106 rootstocks produced fruit with a significantly higher L/D ratio
than the M26 rootstocks. Increasing crop load from two to six fruit cm−2 TCSA resulted in
a significant reduction in L/D ratio. Time of thinning had no effect on fruit weight, size, or
shape, or on return bloom (results not presented).

The treatment interactions were significant for fruit TSS (Table 13). The level of TSS
decreased with increasing crop load for the M26 rootstocks at all thinning times, but no
distinct pattern emerged for the MM106 rootstocks.

Table 13. The effect of crop load and time of thinning on total soluble solids content (Brix) of
‘Braeburn’ apples on two different rootstocks, M26 and MM106. TCSA, trunk cross-sectional area;
wAFB, weeks after full bloom; TSS, total soluble solids.

Crop Load (Fruit
cm−2 TCSA)

Thinning Time
(wAFB)

TSS (Brix)
M26 MM106

2 2 15.60 j 13.82 de
4 2 14.26 f 14.05 ef
6 2 13.95 e 13.65 d
8 2 13.06 c 12.43 b
2 6 15.25 i 12.15 a
4 6 14.87 g 12.53 b
6 6 12.50 b 13.00 c
8 6 12.65 b 13.20 c
2 10 15.20 i 15.13 hi
4 10 14.93 gh 15.15 hi
6 10 13.88 de 12.03 a
8 10 13.25 c 13.12 c

Means within each column with the same letter are not significantly different at the 5% level.

3.8. Trial 8: ‘Gala’

There were significant interactions between treatments for all the parameters assessed
in ‘Gala’ (Tables 14 and 15).
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Table 14. The effect of crop load and time of thinning on mean fruit weight, size (% fruit ≥ 65 mm
in diameter), shape (length/diameter ratio) and return bloom of ‘Gala’ apples. TCSA, trunk cross-
sectional area; wAFB, weeks after full bloom.

Crop Load (Fruit
cm−2 TCSA)

Thinning Time
(wAFB)

Mean Fruit
Weight (g)

% Fruit ≥ 65 mm
Diameter

Length/Diameter
Ratio

Return Bloom
(Buds cm−2 TCSA)

3 2 148 e 37 d 0.928 efg 19.7 e
6 2 138 de 16 c 0.929 fg 9.1 abc
9 2 118 bc 2 ab 0.915 def 10.6 abc
3 6 140 de 11 bc 0.934 g 18.5 de
6 6 125 cd 4 ab 0.933 g 11.5 bc
9 6 95 a 0 a 0.908 cd 8.2 abc
3 10 133 cde 7 abc 0.942 g 12.1 cd
6 10 94 a 1 ab 0.904 bcd 5.0 ab
9 10 98 a 0 a 0.894 abc 7.9 abc
3 14 104 ab 0 a 0.913 de 5.4 abc
6 14 95 a 0 a 0.887 a 7.7 abc
9 14 88 a 0 a 0.892 ab 3.9 a

Means within each column with the same letter are not significantly different at the 5% level.

Table 15. The effect of crop load and time of thinning on fruit sugar content, flesh firmness, starch
index and background skin colour of ‘Gala’ apples. TCSA, trunk cross-sectional area; wAFB, weeks
after full bloom; TSS, total soluble solids; SPI, starch pattern index.

Crop Load (Fruit
cm−2 TCSA)

Thinning Time
(wAFB)

TSS (◦Brix)
Flesh Firmness

(kg)
SPI

Background
Skin Colour

3 2 15.38 g 8.16 a 4.0 f 4.5 d
6 2 14.50 c 8.67 bc 3.4 e 4.5 d
9 2 14.50 cd 8.40 ab 3.6 e 4.1 c
3 6 15.15 f 9.26 e 2.9 d 4.2 cd
6 6 14.69 e 8.85 cd 3.4 e 4.5 d
9 6 14.18 b 9.60 fg 3.6 e 3.6 b
3 10 14.44 c 9.17 de 2.7 cd 4.5 d
6 10 13.90 a 9.28 ef 2.9 d 4.2 b
9 10 15.20 f 9.73 g 2.9 d 3.3 d
3 14 14.23 b 10.20 h 1.9 a 4.5 d
6 14 14.60 de 9.63 g 2.3 b 3.2 a
9 14 13.85 a 9.47 ef 2.4 bc 4.2 cd

Means within each column with the same letter are not significantly different at the 5% level.

At 2 and 6 wAFB, mean fruit weight was significantly higher with crop loads of three
or six fruit cm−2 TCSA than with nine fruit cm−2 TCSA (Table 14). At 10 wAFB, a crop load
of three fruit cm−2 TCSA produced significantly heavier fruit than crop loads of either six
or nine fruit cm−2 TCSA. There was no significant difference in mean fruit weight between
the different crop loads at 14 wAFB.

Fruit size (the percentage of fruit ≥ 65 mm in diameter) was significantly larger in
the early-thinned lowest crop load trees than any other treatment. At 2 wAFB, there was a
significant reduction in fruit size with increasing crop load.

Crop load had no significant effect on fruit shape (L/D ratio) at the earliest thinning
time. However, the lightest crop load resulted in higher L/D ratios than the heaviest
crop loads. Return bloom was significantly higher at the lowest crop load than the other
treatments at 2, 6 and 10 wAFB.

Reducing crop load to three fruit cm−2 TCSA produced fruit with the highest TSS
compared with other treatments for the two earlier times (Table 15). TSS levels decreased
significantly from three to six fruit cm−2 TCSA at all thinning times except for 14 wAFB.
Fruit firmness was significantly lower in fruit thinned 2 wAFB than later-thinned fruit.
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The starch levels were lower in the early thinned trees with the lowest crop load, but
this pattern was reversed at 6 and 14 wAFB. The general trend was for starch levels to be
higher with later thinning.

There were significant differences between treatments in fruit background skin colour,
with fruit from the highest crop load treatments at 2, 6 and 10 wAFB being greener than the
two lighter crop loads at these times.

4. Discussion

The trials reported here demonstrate that both crop load and time of thinning play
an important role in determining external and internal fruit quality parameters at harvest;
however, between cultivars, there were differences in the optimum crop load and effect of
thinning time.

Similar trends were observed in the two ‘Fuji’ trials conducted in consecutive years,
but there were marked differences in the actual figures obtained for each parameter studied.
This suggests that while crop load has a major influence, climatic differences between years
(Supplementary Data, Figures S1–S5) can result in a shift in actual values obtained, most
likely through variations in the date and spread of flowering, pollination, and early growth
of fruit.

4.1. Fruit Weight and Size

The reduction in fruit weight with increasing crop load observed with all cultivars
in this study is in line with the observation by Costa et al. [22] that there is an inverse
relationship between the final fruit size and number of fruit per tree. For ‘Fuji’, weight
reductions of 15.25 g and 11.00 g were observed for every unit increase in crop load in
consecutive years, and for ‘Delicious’, the reduction was 10.45 g.

Weights of 200 g per fruit were achieved at crop loads of four fruit cm−2 TCSA in ‘Fuji’
in trial 1; however, in the following year, this fruit weight was only achieved at the lower
crop load level of two fruit cm−2 TCSA. Jones et al. [6] suggested that weights of 200 g per
fruit were readily achievable with crop loads of 4–6 fruit cm−2 TCSA; however, they also
recommended thinning at blossom time rather than post-bloom. Setting target crop loads
of 5–7 fruit cm−2 TCSA, Bound et al. [15] obtained fruit weights of around 200 g per apple
with more than 40% of the fruit larger than 80 mm in diameter following chemical thinning
with ethephon and BA within 3 weeks of FB. However, BA has been demonstrated to
increase fruit size even in the absence of any thinning [23,24]. The lower weights achieved
in this study at four or six fruit cm−2 TCSA are most likely the result of delaying thinning
to 6 weeks after flowering, leading to a loss of fruit size through competition with fruit that
was later removed. According to Jones et al. [6], delaying thinning can result in a loss of
as much as 10 g per fruit for every week’s delay in thinning. Koike et al. [25] concluded
that the primary thinning of ‘Fuji’ should be performed within 28 dAFB to ensure a good
fruit size. For ‘Fuji’, crop loads of 4–6 fruit cm−2 TCSA are considered appropriate to
avoid biennial bearing [1], and this study showed that large fruit of 200 g or more can
be produced at these crop load levels, but if thinning is delayed, the crop load should be
reduced in order to maximise the fruit size.

In ‘Delicious’, weights of at least 150 g per fruit were achieved at crop loads of
2–4 fruit cm−2 TCSA. However, crop loads of 6–10 fruit cm−2 TCSA produced fruit weights
in the order of 125–145 g. These results confirm the conclusions of Koen et al. [26] that
2–4 fruit cm−2 TCSA is an ideal target range crop load for ‘Delicious’.

Recommendations for target crop loads for ‘Pink Lady’, ‘Jonagold’, ‘Braeburn’ and
‘Gala’ are lacking. Data from this study suggest that in both ‘Pink Lady’ and ‘Gala’, fruit
weight and size start to decline with crop loads greater than six fruit cm−2 TCSA. However,
in large-fruited cultivars such as ‘Jonagold’, crop loads of eight fruit cm−2 TCSA will still
produce fruit of 200 g or heavier without affecting return bloom. A good fruit weight and
size were achieved in ‘Braeburn’ at crop loads of up to eight fruit cm−2 TCSA; however,

123



Appl. Biosci. 2023, 2

return bloom was reduced by increasing the crop load. Hence, the desire for large fruit
should be carefully considered against the risk of pushing trees into biennial bearing.

Fruit weight and size were also heavily influenced by time of thinning, confirming the
postulation by Link [27] that the supply of carbon available to the fruit may be limited by
competition from other fruits; hence, a marked influence of time of thinning on fruit size
would be expected.

The results of this study support the conclusion of Jones et al. [6] and McArtney et al. [28]
that earlier thinning can result in considerable increase in fruit weight. Working with
the cultivar ‘Empire’, Lakso et al. [29] concluded that effective hand thinning for size
increases could be performed as late as 20 dAFB, but earlier application of the chemical
thinning agents NAA, BA and carbaryl at 15 dAFB inhibited fruit growth too much to allow
maximum response to crop reduction. This finding reinforces the negative impact that
thinning chemicals can have on fruit quality, despite thinning relatively early in the season.
In a comparison of hand thinning at 5 weeks AFB with artificial bud extinction (ABE), a
thinning practice that reduces the number of floral buds prior to bud burst, at similar crop
loads on the cultivar ‘Scilate’, Sidhu et al. [30] reported increased fruit weights of up to 70 g
per fruit in ABE-managed trees, again demonstrating the importance of earlier removal of
excess floral buds to reduce competition for, and wastage of, carbohydrate resources. This
also agrees with the conclusions of Robinson et al. [31]: that leaving too many floral buds
when pruning results in a lower crop value than pruning to the optimum bud load. High
fruit weights can be achieved for most cultivars at relatively high crop loads if thinning is
completed early in the season, preferably before or during flowering. If thinning is delayed,
crop loads need to be reduced in order to achieve these weights, resulting in reduced yield,
which is a function of the number and size of the fruit on the tree.

Rootstocks affect apple fruit quality by influencing both tree vigour and crop load. At
similar crop loads, trees on M26 rootstocks in this study produced larger, heavier fruit than
on the more vigorous MM106 rootstocks for both ‘Pink Lady’ and ‘Braeburn’, but there
was no rootstock effect on the triploid cultivar ‘Jonagold’. The increased fruit size on the
weaker M26 rootstock conflicts with the findings of Fallahi and Simons [32] and Riesen and
Husistein [33]. However, these authors were comparing a range of dwarfing rootstocks
and did not include any semi-vigorous or vigorous rootstocks in their studies.

4.2. Fruit Shape

In this study, fruit shape was influenced by thinning in some cultivars but not others.
In those cultivars where there was an effect, higher crop loads generally produced flatter
fruit. This is in agreement with the conclusions of Link [27] that thinning normally favours
fruit development. However, it appears from the present study that fruit shape may also be
influenced by the time of thinning in some cultivars, particularly ‘Delicious’, where thinning
close to bloom reversed this trend towards flatter fruit. From a marketing perspective, fruit
shape and typiness are important attributes in ‘Delicious’ and management practices that
flatten the fruit impact on marketability [34,35].

4.3. Total Soluble Solids

For most cultivars, fruit soluble solids content decreased with increasing crop load.
This is in agreement with the findings of Koike et al. [25] who reported a 14% increase
in sugar levels in ‘Fuji’ fruit from hand-thinned trees compared with unthinned trees. A
similar effect was also observed for hand-thinned ‘Cox’s Orange Pippin’ [36]. In the ‘Fuji’
and ‘Delicious’ trials that were thinned at 6 wAFB, the positive correlation between sugar
content and fruit weight suggests that early thinning can maintain fruit sugar levels in
larger fruit.

A rootstock effect was observed in ‘Pink Lady’, with lower soluble solids on the more
vigorous MM106 rootstocks. Fallahi and Simons [32] also reported that soluble solids at
harvest were lower in fruit from trees on M26 rootstocks compared with the more dwarfing
M27 and M9 rootstocks. These trends suggest that the rootstock effect may be related to
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tree vigour, with higher soluble solids in less vigorous trees. This leads to the assumption
that less assimilate is used for vegetative growth in the more dwarfing trees. It is important
to note, however, that this trend was reversed in the triploid cultivar ‘Jonagold’, with TSS
levels higher on MM106 rootstocks than on M26.

4.4. Firmness

While this study did not include fruit firmness results for ‘Braeburn’ and ‘Jonagold’
due to equipment breakdown, fruit firmness in the cultivars ‘Fuji’, ‘Delicious’ and ‘Pink
Lady’ decreased with increasing crop load, supporting the results of Garriz et al. [37], who
found that fruit flesh firmness was significantly lower in ‘Braeburn’ trees carrying high
crop loads than in trees with moderate or low crop loads. Jones et al. [38] also reported
increased firmness with reduced crop load following chemical thinning of ‘Pink Lady’
and ‘Jonagold’ with ethephon and BA. Link [27] suggested that the reduced firmness
often observed in heavily cropped trees could be due to carbohydrate supply for cell wall
synthesis becoming limited. In this study, ‘Gala’ showed no clear trends relating firmness
to crop load, but there was an effect with time of thinning, with thinning close to bloom
producing softer fruit than trees thinned from 6 weeks after bloom. A possible explanation
for this result is that early thinning causes fruit to mature earlier than later thinning, as
noted by Johnson [36]—the increased soluble solids observed in early-thinned fruit also
lends support to this explanation.

An unanticipated finding from this work was the positive relationship in both ‘Fuji’
and ‘Delicious’ between fruit firmness and mean fruit weight, and between sugar content
and firmness in early-thinned fruit. This study provides evidence that early thinning has a
major role to play in fruit quality considerations. Previous correlations of fruit softness and
high TSS in large fruit are based on concepts of the contrast between vigorously growing
off-year trees compared with less vigorous on-year trees in a biennial bearing cycle. The
leaf/fruit ratio in off-year trees is higher than in on-year trees, as off-year trees tend to
be more vigorous [39]. Hence, more resources are available to each fruit in off-year trees,
enabling a greater expansion of cells, regardless of cell number, potentially resulting in
larger cell size with larger intercellular spaces, and consequently, softer fruit. In this study,
early-thinned regular bearing trees produced large fruit that were firmer and with higher
TSS than later-thinned fruit. Not only does this finding conflict with current thoughts on
firmness, sugar content and fruit size, but it demonstrates additional advantages for early
thinning beyond fruit size. However, caution may be needed with early thinning in areas
prone to late spring frosts. These results also show that large fruit can be of better quality
than small fruit, providing it is from regular bearing or on-year trees where the excess fruit
was thinned early.

Rootstock influenced fruit firmness in ‘Pink Lady’. While no relationship was observed
between firmness and crop load on MM106 rootstocks, M26 rootstocks produced firmer
fruit than did MM106. Differences in firmness for ‘Arlet’ and ‘Fiesta’ fruit from trees
with different rootstocks were also observed by Riesen and Husistein [33]. These authors
suggested that the softer fruit, which also had higher sugar levels, were the result of
advanced fruit maturity on some rootstocks. While this is a logical conclusion, ‘Pink Lady’
in this study produced softer fruit with a lower sugar content on MM106 rootstocks. As
these fruits were also smaller than fruit from M26 rootstocks, this result is difficult to
explain, as the expectation would be that fruit from MM106 rootstocks should be firmer.
If fruit from MM106 rootstocks contained fewer and larger cells that those from M26
rootstocks, this would explain the difference in fruit firmness between the two rootstocks.

4.5. Starch and Background Skin Colour

Starch levels were examined in only one cultivar, ‘Gala’. The increase in starch
hydrolysis with increasing crop load at the earliest thinning time of 2 wAFB in this study
agrees with the findings of Sidhu et al. [30], who reported slower conversion of starch to
sugar at higher crop loads in the cultivar ‘Scilate’. This slower conversion of starch to sugar

125



Appl. Biosci. 2023, 2

combined with a greener skin colour with increasing crop load observed in this study, and
as also observed by Sidhu et al. [30], indicate a retardation of fruit maturity at higher crop
loads. Serra et al. [40] also reported that crop load can affect fruit maturity, with advanced
fruit ripeness in low-crop-load trees.

However, time of thinning did influence starch levels, with earlier thinning resulting
in lower starch levels, indicating increased hydrolysis of starch to sugar. This is most likely
associated with fruit maturity, particularly when examined in conjunction with fruit soluble
solids content, as earlier-thinned fruit also had higher soluble solids than later-thinned fruit.
Johnson [36] suggested that early thinning can advance fruit maturity by up to 16 days.

4.6. Return Bloom

The effect of crop load and time of thinning on return bloom varied between cultivars.
In ‘Delicious’, ‘Gala’, ‘Pink Lady’ and ‘Jonagold’, return bloom reduced once a particular
level of cropping was reached, while in ‘Braeburn’, return bloom decreased with increasing
crop load. These results demonstrate that different cultivars have different crop load
thresholds and suggest that, if regular bearing is to be maintained, ‘Braeburn’ should not be
cropped at levels higher than four fruit cm−2 TCSA, while both ‘Pink Lady’ and ‘Jonagold’
can maintain crop loads of at least eight fruit cm−2 TCSA. However, other factors such as
fruit size should also be borne in mind if trees are to be cropped at these levels.

Time of thinning had no influence on return bloom in ‘Braeburn’ or ‘Jonagold’, but
was important in the three cultivars ‘Delicious’, ‘Pink Lady’ and ‘Gala’, with thinning later
than 6 weeks after bloom reducing return bloom. Although return bloom was not assessed
on ‘Fuji’ in this study, Jones et al. [6] reported a decline in return bloom at 8 weeks after
bloom, and Koike et al. [25] demonstrated the importance of thinning before 4 wAFB to
ensure the return bloom of ‘Fuji’.

Williams and Edgerton [41] noted that the two factors of greatest influence on annual
bearing, and thus return bloom, are the number of flowering spurs and the amount of
initial fruit set. These authors suggest that, for thinning to be most effective, all fruit should
be removed from about half of the fruiting spurs rather than reducing the fruit load to
one fruit per spur. According to Costa et al. [22], fruit thinning performed after fruit set is
normally ineffective in eliminating biennial bearing, but fruit thinning performed before
fruit set may prevent or overcome biennial bearing. The importance of time of thinning
on return bloom is reinforced by studies on the impact of artificial bud extinction (ABE).
In a study of ABE on Fiero ‘Fuji’ and three strains of ‘Gala’, Bound [42] reported that
ABE-managed trees showed no signs of biennial bearing, with sufficient return bloom to set
a crop load of six fruit cm−2 limb cross-sectional area based on a single fruit per bud, unlike
the conventional trees in which bud numbers varied between seasons. Breen et al. [43]
found that as floral bud density was reduced, the proportion of buds failing to set fruit
declined and the proportion setting multiple fruit increased, concluding that the early
removal of competitive sinks through thinning improves the initiation and development
of new floral buds, thus improving return bloom. This information, combined with the
results of this study, shows the importance of reducing crop load early in the season.

In the three cultivars where rootstock effects were also examined, rootstock had an
influence on return bloom. In both ‘Pink Lady’ and ‘Braeburn’ return bloom was tripled on
trees with M26 rootstocks compared with the more vigorous MM106 rootstocks. However,
the effect was reversed for ‘Jonagold’, with MM106 rootstocks producing twice as much
return bloom as M26 rootstocks. While it is difficult to find an explanation for this differing
effect of rootstock on ‘Jonagold’, its triploid genetic make-up may be one reason why this
cultivar behaves differently to most other cultivars.

5. Conclusions

Optimum crop loads vary with cultivar, but large fruit can be obtained at higher crop
loads by thinning during flowering or the early phase of fruit development, regardless
of the method of thinning, whether by hand, chemical or mechanical. Seasonal weather
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patterns during early spring should be considered when determining final crop loads as
climatic differences between years can also impact on fruit size and quality.

Early thinning also had a positive effect on fruit quality. Fruit sugar levels were higher
in early-thinned fruit than in late-thinned fruit. The positive relationship demonstrated
between fruit firmness and weight and between fruit firmness and sugar content with
early thinning illustrate additional advantages for early thinning beyond those already
established in relation to fruit size. Large fruit can be of better quality than small fruit,
providing that it is from regular bearing early-thinned trees. While caution may be required
in areas prone to late spring frosts, reducing fruit numbers at or soon after flowering has
the effect of reducing competition for resources between fruit, allowing individual fruit to
develop greater cell numbers, thus maintaining fruit firmness, even in larger fruit.

For ‘Fuji’, target crop loads of 4–6 fruit cm−2 TCSA are considered appropriate to avoid
biennial bearing [1,6], and this study showed that large fruit of 200 g or more can be pro-
duced at these crop load levels, but if thinning is delayed, the crop load should be reduced
to maximise fruit size. The current target crop load recommendation by Koen et al. [26]
of 2–4 fruit cm−2 TCSA for ‘Delicious’ is confirmed by this study. While return bloom
was adequate at crop loads of eight fruit cm−2 TCSA in both ‘Pink Lady’ and ‘Gala’, a
decline in fruit size at crop loads above six fruit cm−2 TCSA suggests that the recommended
target crop load for both these cultivars should be in the range of 4–6 fruit cm−2 TCSA.
Large fruit size and good return bloom can be maintained in ‘Jonagold’ at crop loads of
eight fruit cm−2 TCSA. However, crop loads of four fruit cm−2 TCSA are more realistic in
‘Braeburn’ to sustain regular bearing and good fruit size.

The positive relationships between fruit sugar content and weight and between fruit
firmness and weight in both ‘Fuji’ and ‘Delicious’, and between fruit sugar content and
fruit firmness in ‘Delicious’ have not been demonstrated previously and demonstrate that
early thinning is a valuable tool in improving fruit quality. Early thinning also means that
photosynthates produced by the tree are directed into the fruit that will remain on the tree,
maximising resources during the cell division period in the first six weeks after bloom.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/applbiosci2040037/s1, Figure S1: Minimum monthly temperatures
for Huon Valley trial sites; Figure S2: Maximum monthly temperatures for Huon Valley trial sites;
Figure S3: Number of rain days for Huon Valley trial sites; Figure S4: Average monthly rainfall for
Huon Valley trial sites; Figure S5: Cumulative rainfall over the growing season for trial sites; Table S1:
Rating scales used for background fruit colour (Frappell and O’Loughlin 1962); Table S2: Mean crop
loads (±standard deviation) obtained for each treatment in Trials 1–8.
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Abstract: The chaperone system (CS) is emerging as a key multistage participant in carcinogenesis.
The CS chief components are the molecular chaperones (some of which are named heat shock proteins
or Hsp), which are typically cytoprotective but if abnormal in structure, location, or quantity, can
become etiopathogenic and cause diseases, known as chaperonopathies, including some cancers. For
example, abnormal Hsp90 expression is associated with tumorigenesis and poor prognosis. Hsp90 is
positioned at the center of several key oncogenic pathways by stabilizing and activating oncogenic
kinases responsible for driving cell proliferation and survival. Consequently, inhibition of Hsp90 is
being investigated as a possible anti-cancer strategy and some results are encouraging. However,
the 5-year survival rate for patients suffering from salivary gland carcinomas is still unsatisfactory.
Because of the rarity of these malignancies, they may have been overlooked and understudied and,
thus, novel therapies (e.g., inhibition of CS components like Hsp90 and others) are urgently needed.
In this review, we also summarize the histopathological quantitative patterns and the intra- and
extra-cellular location characteristics of Hsp90 in tumors of salivary glands, pointing to their potential
for differential diagnosis, prognostication, and patient monitoring.

Keywords: molecular chaperones; Hsp90; chaperone system; salivary gland tumors; carcinoma;
diagnosis; prognosis; Hsp90 inhibition; salivary gland cancer treatment

1. Introduction

Salivary glands are part of the body’s exocrine system because they secrete their
biological product, the saliva, through a system of ducts. The salivary glands are in the
oral cavity and are classified into two groups: major and minor. The major salivary glands
occur in pairs and are grouped based on their anatomical location in the oral cavity and on
their size, with the parotid gland (PG) being the largest followed by the submandibular
gland (SMG) and the sublingual being the smallest [1–3]. Despite being smaller than the
parotid, the submandibular gland accounts for 70% of the saliva output. The minor glands
consist of hundreds of small clusters of glands scattered throughout the mucosa of the
aerodigestive tract being more concentrated along the buccal, labial, and lingual mucosae,
soft and hard palates, and mouth floor [2,4]. The acini are the secretory units of the salivary
glands, containing secretory granules that produce the saliva (Figure 1). Although saliva
is formed in the acini, it undergoes several physiological and chemical processes along
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its passage through the ductal system to become the final product that is secreted in the
buccal cavity.

Figure 1. Histological structure of salivary glands. Hematoxilin and eosin staining of adult human
(upper panel) and adult mouse (lower panel) submandibular gland. Acini (short arrow) and ducts
(long arrow) are featured in both human and mouse submandibular glands. (A,C) Bar 50 μm. (B,D)
Bar 20 μm.

Saliva is composed of 99.5% water and 0.5% glycoproteins, mucus, electrolytes, en-
zymes, immunoglobulins, and antibacterial composites [5]. Saliva composition is detailed
in Table 1. As food enters the mouth, digestion is initiated by salivary α-amylase that
catalyzes the breakdown of starch into glucose and maltose. Saliva has other physiolog-
ical functions including: (1) mouth lubrication for facilitating speech and mastication,
(2) protection of teeth from cavities, (3) antibacterial activity, (4) enhancing taste sensation,
(5) hormonal activity, and (6) generation of the food bolus, enabling its swallowing for
further processing [1–3,6,7].

Table 1. Saliva composition.

Water 99.5%

Solid constituents 0.5%

Organic solid constituents 0.3%: mucin, serum albumin, serum globulin, amino acids, amylase,
lysozyme, IgA, IgG, glucose, citrate, lactate, ammonia, urea, uric acid, creatinine, cholesterol,
cyclic nucleotides: cyclic adenosine monophosphate (cAMP) and cyclic guanosine
monophosphate (cGMP)

Inorganic solid constituents 0.2%: NaCl; KCl; NaHCO3; Na2; HPO4; CaCO3; KSCN

Hsp90 (Heat shock protein 90) is recognized as a crucial player in various aspects
of cellular function, including protein folding, stabilization, and degradation. Its role in
cancer, including salivary gland tumorigenesis, has been an area of active research.

Hsp90 functions as a chaperone protein, assisting in the correct folding and maturation
of other proteins that are involved in key signaling pathways regulating cell growth,
survival, and proliferation [8]. In cancer, the overexpression and increased activity of
Hsp90 have been observed in several tumor types, including salivary gland tumors [8].
This increased expression is thought to support the folding and stabilization of oncogenic
client proteins, enabling the survival and proliferation of cancer cells.

Researchers in many laboratories (including ours) have explored Hsp90 as a potential
therapeutic target for cancer treatment. By inhibiting Hsp90’s activity, the stabilization of
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oncogenic proteins could be disrupted, leading to the degradation of these proteins and
impairing tumor growth [8]. Several Hsp90 inhibitors have been investigated in preclinical
studies and clinical trials for various cancers, including some types of salivary gland
tumors [8].

2. Salivary Glands Cancer: Epidemiology and Pathogenesis

The epidemiology and pathogenesis of salivary gland cancer have been subjects of
ongoing research. Here is an overview of the general understanding to date. Salivary
gland cancer can occur at any age, but it is most commonly diagnosed in individuals
between the ages of 50 and 70. Salivary gland tumors are very heterogenous and histo-
logically diverse; more than 30 distinct pathological types of salivary gland tumors have
been categorized [9]. Typically, salivary gland tumors are classified based on cytologic,
histopathologic, and immunohistochemical characteristics. Although these established
parameters for identifying and classifying salivary glands tumors are still considered the
gold standard, lately genetic features have been added to their definition [10]. In their
latest edition of the classification of tumors of head and neck published in 2022, the world
health organization (WHO) has added six new entities [10]. Salivary gland cancers are a
heterogeneous group of tumors that can arise from different cell types within the salivary
glands. The exact pathogenesis can vary depending on the specific subtype of salivary
gland cancer. Some common subtypes include: (1) mucoepidermoid carcinoma (MUC): this
is the most common subtype and is believed to arise from ductal or glandular cells. Genetic
alterations, such as gene fusions involving MAML2 and CRTC1 genes, have been impli-
cated in the development of mucoepidermoid carcinoma. (2) Adenoid cystic carcinoma
(ACC): this subtype is thought to arise from the myoepithelial cells of the salivary glands.
Chromosomal translocations involving the MYB and NFIB genes have been identified in
many cases of adenoid cystic carcinoma. (3) Acinic cell carcinoma: this subtype arises from
the acinar cells of the salivary glands. Specific genetic alterations, including rearrangements
of the genes ETV6 and NTRK3, have been associated with acinic cell carcinoma. (4) Poly-
morphous adenocarcinoma: the pathogenesis of this subtype is not fully understood, but it
is believed to originate from the terminal duct cells of the salivary glands. Research into
the molecular and genetic basis of salivary gland cancer has advanced our understanding
of its pathogenesis, and ongoing studies aim to identify potential therapeutic targets for
these tumors.

Despite being considered rare, a significant increase in salivary gland tumors incidence
has occurred. Salivary gland cancers accounted for 6.3% of all head and neck carcinomas
(HNC) in 1974–1976 and increased to 8.1% in 1998–1999 [11]. Statistical studies conducted
in Europe in 2013 estimate that salivary gland malignancies represent 8.5% of all HNC [4].
Major salivary gland malignant neoplasia increased by 54% from 1973 to 2009 [12]. The
etiology of salivary gland tumors remains largely unknown, although several risk factors
have been established, with irradiation being the most dangerous. Advances in the medical
field and the use of modern tools for diagnosis and for routine screening at medical and
dental clinics have increased our daily exposure to ionizing radiation and may have played
a role in the increase of salivary gland tumor occurrence [11]. Other risk factors have
been associated with salivary gland cancer development, including: (1) gender: certain
subtypes of salivary gland cancer, such as mucoepidermoid carcinoma and adenoid cystic
carcinoma, tend to have a higher incidence in females. (2) Age: the risk of salivary gland
cancer tends to increase with age. (3) Occupational exposures: occupational exposure to
certain substances, such as asbestos and nickel refining, has been suggested as a potential
risk factor for salivary gland cancer. (4) Prior benign tumors: some benign salivary gland
tumors, such as pleomorphic adenomas, may have an increased risk of developing into
malignant tumors.
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3. Salivary Gland Cancer Treatment and Patient Management

Salivary gland cancer treatment and patient management depend on various factors,
including the tumor type, stage, location, and the patient’s overall health. The management
often involves a multidisciplinary approach, with a team of specialists collaborating to
create a personalized treatment plan. The primary treatment options for salivary gland
cancer include surgery, radiation therapy, and in some cases, chemotherapy or targeted
therapy. Here is a summary of the common treatment approaches and patient management
strategies:

(1) Surgery: Surgery is the primary treatment for most salivary gland cancers. The extent
of surgery depends on the tumor size, location, and whether it has spread to nearby
lymph nodes or other tissues. The goal of surgery is to remove the tumor while
preserving as much healthy tissue and salivary gland function as possible.

(2) Radiation therapy: Radiation therapy may be used as the primary treatment for small
tumors, in combination with surgery, or after surgery to destroy any remaining cancer
cells. External beam radiation delivers focused radiation to the tumor site while
sparing surrounding healthy tissues.

(3) Chemotherapy: Chemotherapy is not commonly used for all types of salivary gland
cancer but may be considered for certain aggressive or advanced cases. It involves the
use of drugs to kill cancer cells or stop their growth.

(4) Targeted therapy: Targeted therapy is a newer approach that focuses on specific
molecular targets within cancer cells. It is used in some salivary gland cancers that
have specific genetic mutations or alterations.

(5) Immunotherapy: Immunotherapy is being explored in clinical trials for some salivary
gland cancers. It involves boosting the patient’s immune system to recognize and
attack cancer cells more effectively.

(6) Adjuvant and neoadjuvant therapies: Adjuvant therapy refers to additional treatment
after the primary treatment (surgery or radiation) to reduce the risk of cancer recur-
rence. Neoadjuvant therapy is given before the main treatment to shrink the tumor
and improve the chances of successful surgery or radiation.

(7) Palliative care: For advanced or metastatic cases where a cure may not be possible,
palliative care focuses on improving the patient’s quality of life. It aims to manage
symptoms, alleviate pain, and provide emotional and psychological support to both
the patient and their family.

(8) Patient management also includes regular follow-up visits with the medical team
to monitor treatment response, assess for any recurrence, and manage potential
side effects. Supportive care, including speech and swallowing therapy, nutrition
counseling, and psychological support, is vital for patients dealing with the effects of
treatment on salivary gland function and overall well-being.

Overall, the treatment and management of salivary gland cancer require a comprehen-
sive and individualized approach to optimize the chances of successful outcomes while
minimizing potential side effects and maintaining the patient’s quality of life. As research
continues to advance, more targeted and personalized treatments are likely to emerge,
improving the outlook for patients with this rare form of cancer.

The rarity of salivary gland tumors and their variety are probably the reason of the
scarcity of pertinent animal models and cell lines, which in turn slows down progress in
the understanding of carcinogenic mechanisms and, consequently, blocks development
of efficacious treatments. Therefore, no protocol for salivary gland tumor treatment and
management has yet been standardized [13,14]. Generally, salivary gland tumors are surgi-
cally excised, which may be accompanied by adjuvant radiotherapy (RT) or chemotherapy
(CT) [13]. Because of its low efficiency, CT is usually considered the last resort, palliative,
in locally recurrent or metastatic salivary gland cancers that are not amenable to further
surgery and irradiation [13]. For diagnosis, ultrasound-guided fine needle aspiration
cytology or core biopsy is applied. [15]. For benign tumors, excision of the SMG in a
supracapsular plane is the recommended therapeutic approach, while for PG, a partial or
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radical excision with the facial nerve is usually recommended. RT is not recommended in
most benign tumor cases, especially for younger patients, except for intra-operative tumor
spillage, where it may be considered after a long-term follow up. For malignant tumors
of SMG, wide excision is recommended with a 2 cm margin of healthy tissue, with neck
dissection for patients with clinical metastasis in the neck. Elective neck dissection should
be considered in high-grade tumors of SMG more than 4 cm in size in addition to a 6-week
post-operative adjuvant RT. Primary radiotherapy should be considered for specific cases
in which surgical treatments cannot be applied. For malignant tumors of PG, conserva-
tive or partial parotidectomy is recommended as the method of treatment, the latter for
low-grade tumors (<1.5 cm). If the facial nerve is properly functioning pre-operatively, it
is recommended that a direct microsurgical repair or primary nerve graft be performed
within a year of the surgery. Neck dissection should be performed if clinical or radiological
evidence of nodal diseases is found. In high-grade tumors, a selective/prophylactic neck
dissection may be applied and, finally, radiotherapy may be applied to tumors that are >4
cm in size [15].

4. Hsp90 in Cancer

Recent advances in cancerology have encompassed various areas of research, includ-
ing genetic inheritance, RNA varieties and roles (including diagnostic and therapeutic
applications), drug design and delivery, extracellular vesicles, and chaperonology [16].
The latter pertains to the study of the chaperone system (CS), a physiological system akin
to other systems, e.g., the immune system [17]. The CS is composed of molecular chap-
erones, chaperone co-factors, co-chaperones, chaperone interactors, and receptors. The
molecular chaperones are the chief components of the CS and are typically cytoprotective,
under physiologically normal conditions and under stress. However, when abnormal,
molecular chaperones or any of the other CS components can become etiopathogenic and
cause diseases, i.e., chaperonopathies [18,19]. These diseases have been classified like many
other disorders into genetic and acquired, with the former caused by a change in a gene
encoding a CS member, and the latter caused by post-transcriptional or post-translational
modifications of the gene’s product. Molecular chaperones are the chief members of the CS,
but they typically do not act alone and form teams and networks. This is exemplified by
the chaperone Hsp90, which forms teams and networks with various other components of
the CS [8,18]. Hsp90 represents a group of molecular chaperones that have been named
heat shock proteins (Hsp) accompanied by a number which is its molecular weight (e.g.,
90 kDa for Hsp90). We have been studying the CS in the salivary glands, mapping some of
its components in normal and pathological, including cancerous, tissues [8,20–23]. Heat
shock proteins are molecular chaperones that maintain protein integrity and function to
counteract the effects of stressors such as a heat shock, irradiation, inflammation, heavy
metals, antibiotics, alcohols, oxidation, pH change, osmotic alteration, and mechanical
trauma [8,22]. Under physiological conditions, molecular chaperones maintain protein
homeostasis by promoting folding of newly synthesized proteins into their functional
conformation [22]. Thus, the canonical role of the CS is maintaining protein homeosta-
sis, which, for some functions requires interaction with the ubiquitin–proteasome system
(UPS) and/or with the chaperone-mediated autophagy (CMA) machinery. Apart from
their canonical role, molecular chaperones have other non-canonical functions and for
this they may interact with the immune system [23–25]. For instance, some Hsp mediate
immune reactions by binding to antigenic peptides and chaperone them towards MHC
class I molecules at the cell surface for presentation to lymphocytes, a process known as
cross-presentation [23]. As tumors develop and grow, protein synthesis is increased and
thus the demand for molecular chaperones, including Hsp90, increases and neoplasms
become “chaperone addicted” [8].

Hsp90 is the master regulator of various growth, inflammation, and survival path-
ways [8]. Pronounced expression of Hsp90 in several cancer types has been reported [26–30].
Hsp90 has been proposed as a potential biomarker because its increased expression in
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neoplastic tissue correlates with clinically advanced stages and poor prognosis [31–36]. As
reported for other Hsp, Hsp90 pattern of expression can be tissue-specific as shown by a
decrease in Hsp90 tissue levels in infiltrative lobular carcinoma [37].

Hsp90-targeted therapy has gained considerable attention as a non-invasive alterna-
tive/adjuvant intervention for cancer treatment [8]. Several natural and synthetic com-
pounds have been assessed for their efficacy against cancer. For instance, Hsp90 inhibitors
are considered promising candidates for use to abate cancer progression and some of them
have entered stage III clinical trials [8].

5. Hsp90 in Salivary Gland Tumors

Studies have revealed that Hsp90 is often overexpressed in salivary gland tumors,
promoting the correct folding, stability, and activity of oncogenic client proteins [38–40].
This activity allows cancer cells to survive, proliferate, and resist apoptosis (cell death),
leading to tumor growth and progression. The overexpression of Hsp90 has been associated
with more aggressive tumor behavior and poorer prognosis in some cases.

Researchers have investigated Hsp90 as a potential therapeutic target for salivary
gland tumors. By inhibiting Hsp90’s chaperone function, it is possible to disrupt the
stabilization of oncogenic proteins, leading to their degradation and hindering tumor
growth. Hsp90 inhibitors have been studied in cell models as a potential treatment strategy
for salivary gland cancers as an initial step that precedes preclinical models and clinical
trials with the hope of improving patient outcomes and developing more effective therapies.

Hsp90 histopathological expression and role in pathophysiology has been studied
in a range of cancers but not as much in those of the salivary glands. In this section, we
present findings retrieved from the literature about Hsp90 in salivary glands tumors. A
study investigated the pattern of distribution and expression of a panel of Hsp (Hsp27,
Hsp60, Hsp84, and Hsp86) in 81 specimens of salivary gland tumors [38]. Benign tumors
encompassed adenolymphoma, mixed tumors and others while malignant tumors included
ACC, MUC, and others. The spatial distribution of Hsp84 and Hsp86, members of the
Hsp90 family, was mainly confined to the cytoplasmic portion of the epithelium of the
tumors and partly expressed in the nucleus [38]. Semi-quantitative analysis showed that
Hsp84 and Hsp86 levels were pronounced in both malignant and benign tumors while
being higher in malignant tumors [38]. In benign tumors, Hsp84 and Hsp86 showed higher
levels in mixed tumors than in adenolymphoma [38]. Hsp86 immunopositivity intensity
was positively correlated with neural invasion, metastasis, malignant grading, tumor site,
and proliferation index [38]. Two similar studies assessed the immunohistochemical levels
of Hsp27 and Hsp60 as well as Hsp10 and Hsp90 in 20 and 66 cases of salivary gland
tumors, respectively [20,21]. Illustrative images of chaperone Hsp90 in tumor tissues from
salivary glands are shown in Figure 2. Warthin’s tumor (WT) and pleomorphic adenoma
(PA) represent the benign tumors while ACC, MUC and ex-pleomorphic adenoma (EX-PA)
illustrate the malignant lesions. The panel of the aforementioned molecular chaperones
was distributed in the cytoplasmic portion of the epithelium in all specimens [20]. The
results reported corroborate the findings that were discussed in the previous study [38].
Hsp90 levels, unlike Hsp10, Hsp27, and Hsp60, were significantly increased in ACC,
MUC, and EX-PA and significantly diminished in WT and PA when compared to healthy
salivary glands [20]. In the previous study [38], a comparison of the Hsp90 levels in the
tumors with those in healthy salivary glands was not reported, therefore, insights on
the clinical applicability of Hsp90 measurements as a diagnostic marker to differentiate
between healthy and neoplastic salivary glands and also to differentiate between benign
and malignant tumors were not obtained. Another group examined Hsp90 molecular
expression in benign and malignant tumors of the salivary glands and their findings are in
accordance with the immunohistological data highlighted above as Hsp90 mRNA levels
are prominent in both tissue types [39].
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Figure 2. Hsp90 tissue levels help discern between different physiological and pathological states
of salivary glands. (A) Healthy tissue from the periphery of a Warthin’s tumor. Benign tumors
pleomorphic adenoma (PA) (B) and Warthin’s tumor (WT) (C). Hsp90 tissue levels assessed by
immunohistochemistry show the highest signal intensity and cellular positivity (arrowhead) in
the malignant epithelial cells of mucoepidermoid carcinoma (MUC) (D), adenoid cystic carcinoma
(ACC) (E), and ex-pleomorphic adenoma (EX-PA) (F) when compared with A, B, and C. Hsp90 levels
confined to the ducts of healthy salivary glands show a higher positivity and intensity than the
neoplastic epithelium of both PA and WT. Bar 20 μm. Image (B) was reproduced from Ref. [20] under
the terms and conditions of the Creative Commons Attribution License (CC BY 4.0).

Hsp90 plays a major role in promoting the activity of the PI3K-Akt proliferation path-
way and the NF-kB inflammatory pathway, both pathways being upregulated in cancer,
Figure 3 [8]. Hsp90 inhibition in ACC has been assessed in vitro for its potential anti-cancer
properties. Hsp90 inhibition via ganetespib, the most potent second generation Hsp90
inhibitor, diminished cellular viability, proliferation, and migration while exacerbating
apoptosis [20]. Hsp90-targeted inhibition further altered the activation of PI3K-Akt and
NF-kB pathways by up-regulating the activity of Akt and down-regulating NF-kB protein
levels [20]. Although ganetespib promoted cytotoxicity in ACC cells via apoptosis, cleaved
caspase-3 levels were not altered, suggesting that in this instance apoptosis may not be
mediated through the mitochondrial pathway. Oncogenic kinases are intrinsically unsta-
ble [40]. Hsp90 interaction with its co-chaperone, Cdc37, is essential for the stabilization
of the targeted kinases and is required for their oncogenic activity. C-myc is an oncogene
prevalent in many cancers [40]. C-myc was expressed in vivo in rodents, using a mouse
mammary tumor virus-c-myc (MMTV-c-myc) transgenic mouse model. Mammary ade-
nocarcinomas formed after ectopic expression of c-myc [40]. The introduction of double
transgenic MMTV-Cdc37/c-myc mice increased the number of mammary adenocarcinomas
and simultaneously induced salivary gland adenocarcinomas formation [40]. Despite their
anti-cancer effect, no Hsp90 inhibitor has yet been FDA approved, because they trigger a
regulatory feedback loop in the form of a “heat shock response” (HSR) promoting cellular
survival [41,42]. This brings the need for higher doses to maintain the inhibitory effect
of the drug which is accompanied by increased toxicity. Efforts are being re-directed into
exploring isoform-specific Hsp90 inhibition. This is expected to circumvent the drawback of
HSR and potentially offer less toxicity than conventional Hsp90 “pan” inhibitors [41,43,44].
One of those drugs, Pimitespib (TAS-116), has recently entered phase III clinical trials [44].
Although, as this is a rather new area of research, more time is needed for novel drugs to
be synthesized and tested. Isoform-specific Hsp90 inhibitors may prove to be potent drugs
for cancer treatment, especially for salivary glands as chemotherapy in this case has not
been effective.
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Figure 3. Hsp90 molecular mechanisms and regulation of the NF-kB signaling pathway in cancer. This
diagram captures the various signal transduction cascades through which Hsp90 modulates NF-kB
activity in tumorous cells and tissue to promote growth, progression, invasion, and metastasization.
For the detailed figure caption, please refer to Ref. [8]. This figure is reproduced from Ref. [8] under
the terms and conditions of the Creative Commons Attribution License (CC BY 4.0).

As research in this field continues, a deeper understanding of the specific mechanisms
by which Hsp90 influences salivary gland tumorigenesis is likely to emerge. Targeting
Hsp90 and its associated signaling pathways may offer promising avenues for novel and
targeted therapies to combat these rare tumors.

6. Conclusions

Diagnosis, treatment, and patient follow up of benign and malignant tumors, includ-
ing those of the salivary glands discussed here, can now benefit from the advances in
our understanding of the chaperone system (CS) and its participation in carcinogenesis.
Differential patterns of expression of Hsp90 (a major component of the CS) in salivary
gland tissue may be used in clinical pathology to discern between healthy, benign, and
malignant specimens. Hsp90 tissue levels could be used by pathologists as markers to
enhance diagnosis and identification of salivary gland tumors. Interaction of Hsp90 with
another member of the CS, Cdc37, is emerging as a driving factor behind salivary gland
tissue transformation and progression via stabilizing and activating oncogenic kinases.
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Abstract: The purpose of this literature review is to provide a fundamental synopsis of current
research pertaining to artificial intelligence (AI) within the domain of clinical practice. Artificial
intelligence has revolutionized the field of medicine and healthcare by providing innovative solutions
to complex problems. One of the most important benefits of AI in clinical practice is its ability to
investigate extensive volumes of data with efficiency and precision. This has led to the development
of various applications that have improved patient outcomes and reduced the workload of healthcare
professionals. AI can support doctors in making more accurate diagnoses and developing person-
alized treatment plans. Successful examples of AI applications are outlined for a series of medical
specialties like cardiology, surgery, gastroenterology, pneumology, nephrology, urology, dermatology,
orthopedics, neurology, gynecology, ophthalmology, pediatrics, hematology, and critically ill patients,
as well as diagnostic methods. Special reference is made to legal and ethical considerations like
accuracy, informed consent, privacy issues, data security, regulatory framework, product liability,
explainability, and transparency. Finally, this review closes by critically appraising AI use in clinical
practice and its future perspectives. However, it is also important to approach its development and
implementation cautiously to ensure ethical considerations are met.

Keywords: artificial intelligence; clinical practice; machine learning; neural networks; clinical decision;
personalized medicine

1. Introduction

Artificial intelligence (AI) refers to the emulation of human intelligence in machines
designed to exhibit cognitive abilities and acquire knowledge akin to human beings [1,2].
The ancient Greeks attributed a distinctiveness to human beings by virtue of their posses-
sion of faculties of reasoning. The notion of the soul was introduced by various religious
scholars, who posited it as an enduring and intrinsic essence bestowed upon humanity
by a divine creator [3]. According to Plato, it is conceivable for an individual to possess
intelligence while simultaneously lacking substantial knowledge about the external world
or, more significantly, one’s self. Aristotle, the student of Plato, pioneered the formulation
of a distinct set of principles that govern the logical aspect of human cognition. In 1936,
Alan Turing authored a scholarly article wherein he elucidated the concept of “Entschei-
dungsproblem” and put forth the notion of “effective calculability” as a means to address
this quandary. The authors established the groundwork for computational models known
as algorithms [4]. The initial development of an artificial neural network (ANN) composed
of electrical circuits occurred in 1943, with the aim of simulating the interactions between
neurons in the brain [5]. The inception of AI took place in 1956 at Dartmouth College.
After a span of three years, the initial computer research using an ANN was successfully
conducted, utilizing models referred to as “Adaline” and “Madaline” [6]. Computer-aided
diagnosis was initially implemented in the examination of pulmonary nodules identified
in chest radiographs in 1963 [7]. Researchers made a significant observation regarding AI’s
applicability in the bioscience field approximately fifteen years after its inception. This
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observation was particularly evident in the Dendral experiments [8]. Nevertheless, the
utilization of AI in the field of medicine was constrained by technological limitations until
1998, when the United States Food and Drug Administration (FDA) granted approval
for the first mammography computer-aided detection (CAD) system [9]. A schematic
representation of some important milestones in the evolution of AI is depicted in Figure 1.

Figure 1. The progression of concepts in artificial intelligence and significant milestones.

Today, as stated by the expert group on AI within the European Commission’s digital
strategy, AI systems refer to software and potentially hardware systems. These systems are
designed to operate in either physical or digital conditions, with the ability to perceive their
surroundings through data acquisition. In recent years, there has been significant progress
in AI, leading to its widespread adoption across various industries such as healthcare,
finance, transportation, drug discovery, and quite recently in pharmacokinetics [10–22].
Over the past few years, notable progress has been made in the field of AI, character-
ized by the emergence of algorithms and computer programs that exhibit human-like
cognitive abilities.

One area where AI has shown great promise is in clinical practice [23]. The incorpora-
tion of AI into clinical settings introduces a range of advantages and challenges, accompa-
nied by notable implications for ethical and legal considerations [1]. AI holds the potential
to enhance diagnostic precision, streamline administrative tasks, and personalize treatment
plans. Through the analysis of extensive medical data, AI systems can discern patterns
and correlations that may elude human observation, leading to more accurate and timely
interventions [1,2]. Moreover, AI has the capacity to contribute to cost-effective healthcare
solutions, ultimately improving overall patient outcomes. The integration of AI technology
facilitates informed clinical decision-making processes, thereby promising advancements
such as quicker and more accurate diagnoses, personalized treatment plans, and reduced
healthcare costs. While the potential benefits of AI in clinical practice are substantial,
ethical and legal complexities emerge. The utilization of AI in clinical decision-making
raises concerns about transparency, accountability, and the potential bias within algorithms.
Safeguarding patient privacy and ensuring data security becomes crucial, necessitating
robust ethical guidelines and legal frameworks. Achieving a delicate equilibrium between
fostering innovation and protecting patient rights requires thoughtful consideration of the
ethical implications of AI in clinical practice, coupled with the development of adaptable le-
gal frameworks capable of keeping pace with technological advancements in the healthcare
sector. Addressing AI integration’s ethical and legal challenges in clinical practice mandates
a comprehensive approach encompassing legal frameworks and regulations, transparent
and explainable AI, ethical guidelines and standards, regular audits and assessments,
incentives for ethical practices, and international collaboration.

This literature review aims to provide a fundamental synopsis of current research
on AI within the domain of clinical practice. Apart from the widespread role of AI in
diagnostic methods, the applications of AI in several medical specialties like cardiology,
anesthesiology, surgery, pneumology, neurology, urology, gynecology, hematology, and
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pediatrics are also discussed. It should be emphasized that the purpose of this review is
not solely to provide a synopsis of a specific field (e.g., specialty) but rather to attempt to
offer an overview of the current applications of AI in medicine.

2. Materials and Methods

The scope of this investigation was confined to articles written in English and subjected
to peer review that fulfilled at least one of the following prerequisites: (a) being published
within the timeframe of the last ten years and (b) being seminal papers in the field of AI
that built what we know today as artificial intelligence.

A literature search was conducted utilizing the PubMed and Scopus databases from
14 July 2023 to 31 August 2023. Additionally, textbooks on AI were consulted. Two sets
of keywords were utilized to recognize terms within the title, abstract, and keywords of
the articles.

a. The initial set of keywords encompassed terms associated with artificial intelli-
gence, such as “artificial intelligence”, “machine learning”, and “deep learning”.
Nevertheless, it is highly probable that research using these methodologies will incor-
porate terms such as “artificial intelligence” or “machine learning” in their abstracts
or keywords;

b. The subsequent set of keywords encompassed concepts associated with the appli-
cation in clinical practice and the legal status. In this case, composite searches were
performed using the terms “Artificial intelligence” AND the medical specialty: “car-
diology”, “surgery”, “anesthesiology”, “gastroenterology and hepatology”, “pneu-
monology”, “nephrology”, “urology”, “dermatology”, “orthopedics”, “neurology”,
“gynecology, “ophthalmology”, “pediatrics”, “hematology”, “intensive care unit”,
“diagnostic methods”, “legal status”, “liability”, “regulatory framework”.

Following the elimination of duplicate entries, a thorough assessment of the titles
and abstracts of the identified articles was made in order to ascertain their suitability
for inclusion:

The selection criteria for the evaluation of studies were systematically applied. After
eliminating duplicate articles, the author assessed each study based on the following
criteria: (i) journal, (ii) authorship, (iii) publication date, (iv) study design, (v) methods
of analysis, (vi) results, and (vii) conclusions. The eligibility criteria encompassed articles
written in English pertinent to the review objectives. An initial screening of abstracts was
conducted, excluding studies that did not align with the eligibility criteria. To enhance data
quality, all studies meeting the inclusion criteria underwent a comprehensive evaluation,
focusing on aspects such as rationale, method design, results, discussion, and conclusions.
Studies exhibiting any bias in methodology, results, or data interpretation that could impact
the overall outcome were subsequently excluded.

The exclusion criteria encompassed the following: (a) studies that exclusively fo-
cused on the advancement and verification of clinical AI algorithms without any tangible
implementation and (b) AI applications that predominantly provided automation function-
alities, such as the automated delivery and monitoring of insulin, as opposed to offering
decision support.

3. Results

3.1. General

Artificial intelligence has revolutionized the field of medicine and healthcare by pro-
viding innovative solutions to complex problems [1,5]. There are various types of AI,
including deep learning (DL), machine learning (ML), and natural language (Figure 2).
DL is a subset of artificial intelligence that focuses on training neural networks to learn
and make decisions in a manner similar to the human brain (Figure 3). DL algorithms
are designed to learn and improve from experience automatically, without the need for
explicit programming [24–26]. This ability to analyze large amounts of data and extract
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meaningful patterns has made DL a powerful tool in fields such as image recognition and
autonomous driving.

Figure 2. The interconnectedness among artificial intelligence, machine learning, and deep learning.

Figure 3. Schematic representation of an artificial neural network.

Machine learning primarily focuses on advancing algorithms and models that em-
power computers to acquire knowledge and generate predictions or decisions autonomously
without the need for explicit programming [2]. ML can be broadly classified into several
categories, such as supervised, unsupervised, and reinforcement learning (refer to Table 1).
In supervised learning, an algorithm learns from labeled data to make predictions or deci-
sions [2]. This approach trains the algorithm on a dataset comprising input variables and
their corresponding output variables. The goal is to enable the algorithm to understand the
relationship between the input and output variables, thereby facilitating precise predictions
for novel and unobserved data instances. Various supervised learning algorithms are
commonly used, including linear regression, logistic regression, support vector machines,
and decision trees.

Table 1. A common classification of machine learning algorithms.

Supervised Unsupervised Reinforcement

Linear regression Principal component analysis Q-learning

Logistic regression K-means clustering SARSA

Linear discriminant analysis KNN (k-nearest neighbors) Policy iteration

Decision trees Hierarchal clustering Monte Carlo tree search

Naive Bayes Anomaly detection Bellman equations

Support vector machines Neural networks Markov decision process
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Unsupervised learning represents a distinct subfield within machine learning, where
the algorithm functions without the presence of labeled data [2,24,27,28]. Instead, its
purpose is to autonomously identify patterns, structures, or relationships within the data.
This learning type proves highly advantageous when a definitive target variable is absent
or when the goal is to extract valuable insights from the data without predetermined
predictions. Unsupervised learning algorithms include various methods, such as clustering
algorithms like k-means and hierarchical clustering, as well as dimensionality reduction
techniques like PCA and factor analysis.

The primary objective of reinforcement learning is to train autonomous agents to
effectively make a series of decisions within a given environment, aiming to optimize the
total cumulative reward obtained [29]. Unlike supervised learning, where the agent is
provided with labeled data, or unsupervised learning, where the agent learns patterns
and structures from unlabeled data, reinforcement learning operates on the principle of
trial and error. Examples of reinforcement learning approaches include the value-based
methods (e.g., Q-learning and SARSA), the policy-based methods (e.g., policy gradient and
reinforce), and model-based methods (e.g., Monte Carlo tree search).

Natural language processing (NLP) is a field of study that centers on examining and
understanding the interplay between computer systems and human language [2]. The
field of study pertains to the advancement of algorithms and methodologies that facilitate
machines in comprehending, interpreting, and producing human language in a manner
that possesses significance and utility. NLP has become increasingly important in our
digital age, as it allows computers to process and analyze vast amounts of text data, such as
emails, social media posts, and news articles, to extract valuable insights and information.

One of the primary advantages of AI in clinical practice is its ability to rapidly and
accurately analyze extensive volumes of data. This capability has given rise to a variety of
applications that have not only improved patient outcomes but also lessened the workload
on healthcare professionals [30]. In this section, we will explore some of the most promis-
ing applications of AI in clinical practice. The evolution of AI has undergone significant
changes over the last few decades. The advent of machine learning (ML) and deep learning
(DL) has expanded applications in the field of artificial intelligence in medicine, paving the
way for personalized medicine rather than relying solely on algorithmic approaches. The
use of predictive models holds promise for applications in disease diagnosis, forecasting
therapeutic response, and potentially advancing the field of preventive medicine in the
coming years. AI has the potential to enhance diagnostic precision, optimize the workflow
of healthcare providers and clinical operations, facilitate more effective monitoring of dis-
eases and therapies, improve the precision of medical procedures, and ultimately enhance
patient outcomes.

3.2. Cardiology

The application of sophisticated computational algorithms and machine learning
techniques in the field of cardiology is commonly referred to as AI. This approach aims to
analyze and interpret cardiac data in a more advanced and efficient manner. It involves the
development of intelligent systems that can learn from data, make predictions, and offer
valuable insights to assist in diagnosing, treating, and managing cardiovascular diseases.

At present, two distinct positions for AI exist in the domain of cardiovascular imag-
ing [31]. Automation refers to the process of replacing human involvement in various tasks,
including but not limited to image segmentation and the assessment of structural and
functional parameters. Another significant aspect is the identification of insights that hold
clinical significance. The majority of documented applications were primarily centered
around the implementation of task automation. Furthermore, there have been reports on
developing algorithms capable of acquiring cardiac measurements.

AI has significantly impacted various facets of cardiovascular imaging, covering the
entire spectrum from initial data acquisition to the final reporting phase [32,33]. Examples
of this impact include the use of AI in advancing computed tomography and magnetic
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resonance imaging techniques for measuring lumen diameter, recognizing coronary calcium
score, and identifying obstructive coronary disease. Furthermore, AI has been instrumental
in automating processes such as acquisition, segmentation, and report generation [34,35].
In contrast to the methodologies mentioned earlier, a notable concern arises regarding the
substantial observer variability observed in the interpretation of echocardiograms. AI holds
the potential to address this issue by mitigating inter-observer variability and enhancing
diagnostic precision within the field of echocardiography.

In recent years, numerous studies have been conducted to investigate cardiomyopathy
screening, with a particular focus on the utilization of AI in conjunction with electrocar-
diography (ECG) for enhanced diagnostic capabilities [36,37]. The feasibility of the joint
use of AI/ECG screening for amyloidosis, cardiomyopathy, and dilated cardiomyopathy
remains intact, even in cases of mild left ventricular dysfunction [38,39]. The application
of AI/ECG in regular clinical practice has increased the identification of left ventricular
systolic dysfunction. In imaging, AI is utilized to automatically evaluate the thickness
and properties of the myocardium to distinguish between different types of cardiomy-
opathies [39,40]. However, there is currently a lack of research investigating the prognostic
potential of this AI technology. AI is also being utilized in cardiomyopathy genomics,
particularly for predicting the pathogenicity of genetic variants and determining their
clinical relevance [41–43].

3.3. Surgery

The application of AI and ML models holds significant potential in the field of surgery.
These models demonstrate promising applications in both the preoperative phase, accu-
rately diagnosing pancreatic conditions, and the postoperative phase, evaluating prognosis
and predicting complications [44–46]. AI has also proven beneficial in assisting bariatric
surgeries. The increasing integration of AI technologies in various healthcare subspecialties
has led to promising developments in their application within bariatric surgery [47,48].
The management of patients who are candidates for bariatric surgery is a complex subject.
The evaluation process requires the involvement of a multidisciplinary team comprising
professionals from various fields, including internists, psychiatrists, general surgeons, and
anesthesiologists. Physicians across various medical specialties engage in the compre-
hensive assessment of patients before, during, and after surgical procedures, a task that
presents considerable difficulties due to the intricate nature of individuals afflicted with
obesity [49].

Numerous potential applications of AI exist during the intraoperative period. It
has the potential to be utilized in the management of pharmacotherapy, hemodynamic
optimization, neuromuscular block monitoring, and anesthesia depth assessment [50].
One of the most notable reports pertains to predicting the early distribution kinetics of
propofol. Indeed, the volume of drug distribution in individuals with obesity is subject
to modification. Specifically, there is an increase in blood volume and cardiac output,
alongside alterations in plasma transport proteins. A study utilized AI to handle the
induction phase’s kinetics effectively [51]. This was achieved through the utilization of
a comprehensive pharmacokinetic dataset with high resolution. A comparative analysis
was undertaken to evaluate the performance of a traditional four-compartment model,
a recirculatory model, and a gated recurrent unit neural network. The study concluded
that both a recirculatory model and a gated recurrent unit ANN demonstrated similar
performance, surpassing a compartmental model in accurately representing high-resolution
pharmacokinetic data of propofol [51].

In the same context, plastic surgeons frequently encounter clinical scenarios that
lack definitive solutions. Achieving an ideal treatment approach necessitates utilizing
a comprehensive decision model that effectively incorporates various influential factors,
including clinical and demographic data. Before the advent of AI, the decision tree analysis
technique was commonly used for constructing such models. The localization of significant
anatomical landmarks in medical imaging plays a crucial role in preoperative planning
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and postoperative outcome evaluation [52]. Nevertheless, the current identification pro-
cess is carried out either manually or by running the inserted auxiliaries, resulting in a
time-consuming and imprecise procedure. In order to enhance the precision of landmark
localization on the distal femur surface, scientists devised an algorithm that initially trans-
formed three-dimensional images into three distinct sets of two-dimensional images [52].
Subsequently, the algorithm acquired the ability to recognize landmarks within these
images and subsequently integrated these outcomes to accurately determine the spatial
coordinates of the identified landmarks in three dimensions.

3.4. Anesthesiology

The application of AI has yielded remarkable outcomes in anesthesia and operating room
management [53,54]. Throughout each phase of the perioperative process—specifically
the preoperative [55–57], intraoperative [16–20], and postoperative phases [42,44]—distinct
tasks can be executed using diverse techniques. The effectiveness of a neural network
designed to identify esophageal intubation becomes unnecessary in the presence of con-
tinuous capnography [58,59]. In this case, a reliable clinical examination has revealed a
previously concealed and highly detrimental complication. The use of video laryngoscopy
requires the adjustment of an ML model designed to predict challenging intubation based
on patient appearance. The expansion of airway management technology has resulted in
an increased spectrum of acceptable outcomes in terms of laryngeal visualization.

Since the 1950s, the concept of an algorithm autonomously regulating the depth of
anesthesia using EEG recordings has been a subject of ongoing research. Anesthesiologists
have explored this possibility for a considerable period, but it continues to be an active area
of investigation.

3.5. Gastroenterology and Hepatology

The field of gastroenterology and hepatology is witnessing significant growth in the
potential implementation of AI and ML techniques. In recent years, there has been a
burgeoning body of research focusing on examining AI applications in various medical
contexts, particularly involving the utilization of computer-aided diagnosis (CAD). These
applications encompass the use of CAD in diagnosing premalignant and malignant gas-
trointestinal lesions, predicting treatment response in patients with inflammatory bowel
disease, conducting histopathological analysis of biopsy specimens, assessing the sever-
ity of liver fibrosis in individuals with chronic liver disease, developing models for liver
transplant allocation, and exploring other related areas [60].

The domain of esophageal cancer prevention and early detection shows significant
potential for advancements through the utilization of AI. Substantial research advancements
have been made in this field, with a notable portion of esophageal cancer research in the
United States dedicated to investigating technologies, including those involving AI, aimed
at enhancing the early detection and treatment of Barrett’s esophagus and esophageal
adenocarcinoma [61,62].

AI possesses the capacity to assume a significant role in the decision-making pro-
cess for the treatment of inflammatory bowel disease by accurately predicting treatment
response at an earlier stage and providing guidance for personalized therapy selection.
Within the field of inflammatory bowel disease, researchers have made advancements
in the development of AI/ML computer vision tools. These tools have been specifically
designed to assess the severity of diseases through endoscopic examination. The main
goals of their study involve the differentiation of colitis from neoplasia and the distinction
between sporadic adenomas and non-neoplastic lesions. AI algorithms have undergone
training to forecast the response to treatment and assess the likelihood of disease recur-
rence [63,64]. There are numerous potential applications for AI and ML in the domain of
hepatology. The objectives above encompass the assessment of hepatic fibrosis progression,
the identification of non-alcoholic fatty liver disease, the recognition of individuals at risk
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for hepatocellular carcinoma development, and the enhancement of protocols for organ
transplantation [65,66].

The prevention and control of colorectal cancer represent significant public health
endeavors undertaken by gastroenterologists. The progress made in the field of ML has
resulted in the utilization of computer vision techniques to assist in the detection of polyps
during colonoscopy procedures. Empirical evidence has demonstrated the efficacy of CAD
systems in enhancing the adenoma detection rate [67–70].

3.6. Pneumonology

AI, specifically the utilization of DL and ML algorithms for pattern recognition, holds
significant promise for various applications within the field of pulmonary medicine. These
applications encompass image analysis, decision-making processes, and the prediction
of prognoses [5–7]. Lung cancer is a prevalent malignant neoplasm characterized by
significant clinical morbidity and mortality rates [71]. Lung nodules are the prevailing
imaging manifestations observed during the initial phase of lung cancer, posing challenges
to manual film interpretation. AI recognition technology can conduct multi-parameter
cluster analysis and streamline image processing, thereby assisting medical professionals
in the early detection of lung cancer [72]. In recent years, reports have indicated that AI
systems have demonstrated the capability to identify malignant pulmonary nodules by
analyzing chest computed tomography (CT) images [73]. The model has been developed
using DL technology, and AI is utilized for the analysis of CT films in order to support
medical professionals in enhancing the accuracy of lung cancer screening. Another study
constructed a predictive model by applying logistic regression analysis, integrating specific
tumor markers into the model [74]. The study’s results demonstrated that the developed
predictive model showed significantly better performance when compared to the basic
combined detection strategy involving tumor markers.

Research has demonstrated that AI can potentially enhance surgical risk prediction,
thereby facilitating the selection of the most optimal surgical approach [75,76]. An example
of a cognitive computing system, IBM Watson for Oncology, utilizes AI techniques for
data analysis and image conversion. Its primary objective is to assist medical professionals
in efficiently identifying crucial information within patients’ medical records, presenting
pertinent evidence, and facilitating the exploration of potential treatment options [77]. The
application of deep neural networks in the identification of respiratory illnesses, specifically
in chest radiographs and CT scans, has resulted in a noteworthy enhancement in diagnostic
precision compared to subjective characteristics like tumor speculation, as well as objective
characteristics such as shape and texture acquired through image analysis software [78].

3.7. Nephrology

The concept of progressive immunoglobulin refers to the gradual development and
maturation of immunoglobulins and IgA nephropathy (IgAN) is an acknowledged etiology
of renal failure. However, the ability of the nephrologist to anticipate the occurrence of
kidney failure among patients at the time of diagnosis is challenging. Nevertheless, the
capacity to discern these individuals would prove advantageous in terms of prognosti-
cation and treatment purposes. It has been postulated the existence of a function that
establishes a relationship between clinical and biological parameters, such as age, sex,
blood pressure, proteinuria, serum creatinine level, and anti-hypertensive treatments, at
the time of IgAN diagnosis and the likelihood of developing progressive IgAN [79]. The
researchers devised and executed the development of an ANN with the purpose of approx-
imating the aforementioned function. The findings indicated that the ANN demonstrated
superior accuracy in predicting the onset of progressive IgAN compared to experienced
nephrologists [79]. Specifically, the ANN achieved correct predictions in 87% of cases,
whereas the nephrologists achieved a lower accuracy rate of 69.4%. Furthermore, the ANN
exhibited a higher sensitivity of 86.4% compared to the nephrologists’ sensitivity of 72%,
indicating its ability to correctly identify true positive cases. Similarly, the ANN displayed
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a higher specificity of 87.5% compared to the nephrologists’ specificity of 66%, indicating
its capacity to accurately identify true negative cases. These approaches can potentially
be used in a wide range of progressive diseases, thereby aiding clinicians in the process of
patient staging and management.

AI models have been applied for various purposes, including predicting the rate of
decline in glomerular filtration rate in individuals with autosomal dominant polycystic
kidney disease, enhancing anemia management in hemodialysis patients, estimating an
appropriate duration for dialysis to achieve the desired level of urea removal, determining
the optimal dry weight in patients undergoing hemodialysis, and identifying specific
pathogens responsible for bacterial infections in patients with Parkinson’s disease [80–83].

3.8. Urology

AI is predominantly used in the field of urology, particularly in the domain of gen-
itourinary malignancies. In a study, AI was utilized to predict the outcomes of prostate
biopsies, with a specific focus on prostate cancer. ML algorithms were applied to analyze
recurrence-free probability and diagnostic evaluation for bladder cancer. There have been
anecdotal reports concerning the staging and prediction of disease recurrence in cases of
kidney and testis cancer. Recently, AI has found application in non-oncological diseases,
specifically in areas such as stones and functional urology.

In recent decades, numerous scholarly investigations have examined the utilization
of AI in the management of prostate cancer. These studies align with the contemporary
paradigm of precision medicine and surgery [84]. Prostate cancer diagnosis encompasses a
broad range of applications, which have experienced numerous advancements in recent
years [85]. A seminal study was conducted in 1994 to determine the potential utility of
ANN in predicting biopsy outcomes in males displaying abnormal prostate-specific antigen
levels. Additionally, the study aimed to assess the effectiveness of ANN in predicting
treatment outcomes following radical prostatectomy [85,86]. A study demonstrated the
predictive accuracy of two distinct AI systems [87]. These systems were specifically de-
signed using Vienna-based multicenter European referral database data. These AI systems
aim to facilitate the early detection of prostate cancer in males. Another study found that a
DL survival model exhibited the ability to predict the timeframe for urinary continence
recovery after Robot-Assisted Radical Prostatectomy [88]. This prediction was achieved
by incorporating Anatomical Pathology Markers (APMs) and patient-related factors. Fur-
thermore, this particular model has successfully identified APMs of top surgeons that
can effectively classify surgeons, surpassing the predictive ability of surgeon experience
alone. The APMs were able to differentiate surgeons based on the quality of urinary conti-
nence recovery observed in their patients, distinguishing between those with superior and
inferior outcomes.

In a seminal study twenty years ago, the authors conducted a comparative analysis
of AI and Cox regression models to predict disease recurrence following surgery [89].
The results of the study demonstrated that Cox regression models exhibited superior
performance in this regard. In conjunction with the increasing range of surgical indications
for metastatic kidney cancer, a study was conducted to assess the predictive capacity of AI
in determining the prognosis of patients with metastatic renal cell carcinoma who initiate
systemic therapy [90]. The researchers provided their AI system with a dataset consisting
of information from 175 patients who had undergone nephrectomy of the primary tumor
prior to receiving systemic therapy. The objective of this study was to forecast the overall
survival rate three years after initiating the initial treatment, utilizing parameters that are
accessible at the commencement of first-line therapy. AI has demonstrated the potential to
achieve a prediction accuracy of 95% in forecasting overall survival rates. This performance
surpasses regression models, indicating the potential future application of AI as a risk
stratification tool.

A urinary tract infection is a common bacterial infection that affects the urinary system,
including the bladder and urethra. A notable study focused on urinary tract infections
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where an AI system was developed to assist in the diagnosis of such infections [91]. The
study involved individuals diagnosed with either cystitis or nonspecific urethritis. Subjects
underwent various procedures, including a medical history assessment, physical examina-
tion, analysis of urine samples, and the use of ultrasonography. The findings demonstrated
the efficacy of AI in diagnosing urinary tract infections based solely on erythrocyte values
in conjunction with symptoms such as suprapubic pain, pollakiuria, and urinalysis results.
The AI model exhibited a remarkably high accuracy rate of 98.3%, suggesting it could serve
as a cost-effective alternative to expensive laboratory and ultrasound tests.

Functional urology refers to the branch of urology that focuses on studying and
managing the urinary tract. The exploration of AI potential applications has also extended
to the domain of functional urology. A study compared an AI model and multiple linear
regression in terms of their effectiveness in replacing preoperative urodynamic evaluation
in women diagnosed with pelvic organ prolapse [92]. A total of 804 women diagnosed
with pelvic organ prolapse were subjected to examination, revealing that both multivariate
logistic regression and AI were determined to be less effective than urodynamic studies
in evaluating urinary dysfunction. A kidney transplant is a surgical procedure in which
a healthy kidney from a donor is transplanted into a recipient. Over the past few years,
there has been a growing interest in utilizing AI predictive tools in kidney transplantation.
Similarly, the potential application of AI in identifying risk factors and co-variates that
contribute to the failure of renal transplantation has been explored [93]. The AI approach
was compared with the traditional logistic regression model. The AI method demonstrated
superior accuracy compared to logistic regression, as evidenced by data analysis from
378 patients.

3.9. Dermatology

Identifying skin diseases primarily relies on the apparent attributes exhibited by the
lesions. However, dermatology encompasses a vast collection of over 2000 distinct types of
dermatological diseases. Certain skin lesions associated with various diseases may exhibit
similarities, posing challenges in accurate diagnosis and treatment [94,95]. Notably, there is
a significant shortage of dermatologists, particularly in developing countries and remote
regions, where increased medical resources, professional consultations, and clinical support
are urgently needed [96,97].

The convergence of rapid iteration in big data, advancements in image recognition
technology, and the global proliferation of smartphones present transformative potential
for diagnosing and treating skin diseases [98,99]. AI, in particular, has the capacity to offer
prompt diagnoses, facilitating a wider range of treatment options and enhancing acces-
sibility, especially for marginalized regions and individuals with limited resources [100].
The integration of AI technology and algorithms has the potential to establish itself rapidly
as a standard approach in the field of diagnosis and evaluation. The examination of the
structure and form of a skin abnormality is a fundamental aspect of dermatological diagno-
sis. Advancements in AI have led to significant improvements in facial recognition and
aesthetic analysis, rendering them more dependable [101].

The inception of AI in the field of dermatopathology can be traced back to 1987 when
a text-based system known as TEGUMENT was utilized on a personal computer. The
system was specifically developed with the purpose of classifying 986 histopathological
diagnoses based on light microscopic images. It demonstrated a diagnostic accuracy of
91.8% compared to the assessments made by a qualified dermatopathologist [102]. During
that particular time frame, the absence of necessary equipment and technologies for whole
slide imaging led to the belief that the notion of human-independent image analysis was
not viable. In recent years, the accurate classification of routine diagnoses by machine-based
systems has become a tangible reality [103].

In a research study, 11 DL algorithms were developed to identify and classify whole
slide images of dermal nevus, seborrheic keratoses, and nodular basal cell carcinoma [104].
The visual representations underwent a process of pixelation, resulting in the disintegra-
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tion of the images, which were subsequently subjected to data analysis. A DL algorithm
was developed for pathology that incorporates whole slide imaging. The algorithm effec-
tively categorizes these images into four distinct diagnostic groups: basaloid, squamoid,
melanocytic, and other. The implemented system utilizes a series of three consecutive
convolutional neural networks to determine the diagnosis with the highest probability.

Distinguishing between malignant and benign lesions holds the highest importance
for dermatopathologists due to the consequential divergence in therapeutic decisions. In
this context, a study used a sample of 695 melanocytic neoplasms to distinguish between
melanoma and nevus by means of classification [105]. The study included a comprehensive
representation of all stages of melanoma, as well as various types of nevi. In the present
investigation, it was observed that the convolutional neural network exhibited a statistically
significant superiority over the pathologists in terms of accurately diagnosing nevi and
melanoma through histopathological analysis. The observed discordance rate of 25–26%
among dermatopathologists was found to be comparable to the aforementioned similarity.

In another research study, the objective was to assess the precision of a DL algorithm
in diagnosing three dermatopathological conditions through the utilization of whole-slide
imaging [106]. The study’s findings indicated that the AI system demonstrated high accu-
racy, correctly classifying several types of carcinomas. In contrast to the straightforward
binary classification involved in diagnosing melanoma and distinguishing it from pig-
mented nevi, the diagnosis of non-melanoma skin cancers presents a more challenging task.
This challenge stems from the intricate categorization of these conditions and the inclusion
of various benign and malignant diseases, along with inflammatory dermatoses, within the
differential diagnoses. A study was conducted to assess the effectiveness of convolutional
neural networks in precisely detecting and diagnosing non-pigmented lesions [107]. The
findings were compared with the diagnoses rendered by a cohort of 95 clinicians, which
included 62 dermatologists with appropriate qualifications. Convolutional neural networks
did not exhibit superior accuracy in diagnosing medical conditions compared to human
experts. However, they demonstrated greater accuracy in diagnosing prevalent skin can-
cers. Conversely, convolutional neural networks exhibited lower accuracy than clinicians
in diagnosing uncommon non-pigmented malignancies, specifically amelanotic melanoma.

3.10. Orthopedics

Supervised ML can be applied to classify individuals into pain phenotypes based on
brain MRI, considering the high prevalence of long-standing pain in the UK, estimated to
be between 30% and 50% [108]. The absence of tissue pathology that corresponds to pain,
as well as the dependence on self-reported measures for subgroup classification, pose a
significant challenge in identifying the neural correlates of pain and provide a comprehen-
sive overview of ML applications used in the context of chronic pain, which encompasses
pain conditions beyond musculoskeletal disorders [109]. The authors specifically high-
light using ML techniques to classify individuals into distinct pain phenotypes based on
predictive models.

Another study established a correlation between frontal plane knee biomechanics
and the ability to predict the risk of knee injuries [110]. In this study, inertial sensor data
were used to categorize the performance of single-leg squats based on the extent of knee
valgus [111]. The study sample consisted of 14 participants, and a total of 140 images were
analyzed. Additionally, the researchers sought the opinions of three expert raters regarding
the potential risk associated with the observed performances. Supervised learning was
applied to perform classification among three distinct classes, namely “poor”, “moderate”,
and “good”. The study’s findings indicate that the accuracy levels were observed to be
significantly high when performing a 2-class classification task. However, when the com-
plexity of the classification task was increased to a 3-class classification, the accuracy levels
experienced a notable reduction of approximately 30%. There is a scarcity of instances
where unsupervised learning techniques have been utilized within the domain of muscu-
loskeletal research. According to a study, the chronic pain challenge assesses the likelihood
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of chronic pain based on assigned weights for various health behaviors [112]. The study
included both supervised and unsupervised methods to demonstrate the precise prediction
of pain levels, as measured by the visual analog scale and the Oswestry Disability Index.
These predictions are made based on the corresponding scores for depression, nutrition,
and physical activity. Nevertheless, although this emphasizes the potential of ML to cate-
gorize the risk of chronicity using patient-reported data, the effectiveness of unsupervised
learning by itself has not been confirmed.

3.11. Neurology

Neuroimaging plays a pivotal role in clinical practice and scientific inquiry, facilitating
the examination of the brain in various states of well-being and pathology. Similar to several
other domains, neuroimaging is enhanced by the utilization of sophisticated analysis
methodologies in order to harness imaging data effectively to investigate the brain and
its functionality. In recent times, ML has made significant contributions. Additionally, it
has played a crucial role in the prompt identification of acute conditions like stroke and
in monitoring imaging changes over time. As our capacity to visualize and examine the
brain progresses, so does our comprehension of its complex interconnections and their
significance in making therapeutic decisions.

Despite being in the early stages of development, AI’s utilization in neuro-oncology
exhibits considerable potential. It is highly probable that AI algorithms will enhance
our comprehension of brain tumors and play a pivotal role in fostering advancements
in the field of neuro-oncology. The field of neuro-oncology has experienced a growing
emphasis on the integration of molecular markers for the purpose of guiding therapeutic
interventions [113]. AI algorithms have demonstrated notable efficacy in the noninvasive
identification of significant molecular markers from diagnostic imaging, exhibiting remark-
able accuracy. In various institutional datasets, AI algorithms have successfully determined
the mutational status of several markers [114,115]. Moreover, it has been demonstrated that
algorithms based on AI can effectively identify investigational molecular markers, even in
smaller cohorts of patients [116].

The utilization of AI for the analysis of diagnostic imaging has proven to be beneficial
in the clinical management of brain tumors. The utilization of AI to automate labor-
intensive tasks holds great potential in the field of neuro-oncology. Multiple studies have
demonstrated the efficacy of DL techniques in identifying brain metastases measuring in the
millimeter range through MRI imaging. Furthermore, it has been observed that comparable
DL models have demonstrated significant efficacy in the automated segmentation of tumors,
thereby enhancing the efficiency of radiation therapy treatment planning [117–119]. AI
has demonstrated potential in accurately differentiating various central nervous system
malignancies without the need for invasive procedures, achieving comparable results to
those of expert neuroradiologists [120,121]. The extensive application of these AI algorithms
could prove to be highly beneficial in resource-constrained environments that lack access
to specialized neuroradiologists.

3.12. Gynecology

Despite encountering various obstacles, the integration of AI in obstetrics and gy-
necology has exhibited remarkable progress. The utilization of AI in various domains
has proven to be highly effective in addressing persistent issues related to diagnosis and
treatment. According to a study, AI has the potential to enhance knowledge and provide
assistance to medical professionals in the fields of gynecology and obstetrics [122]. The
latest applications of AI models in gynecology involve identifying endometrial carcinoma,
in vitro fertilization, uterine sarcoma, cervical intraepithelial neoplasia, and advancing
anticancer medication [123,124].

The integration of AI technology into ultrasonography has the capacity to enhance the
adoption of medical ultrasound in various clinical environments, facilitating its broader
application by healthcare professionals. Therefore, the utilization of AI in the field of ultra-
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sonography for prenatal care has the potential to assist medical professionals in efficiently
prioritizing and accurately diagnosing the anatomical structures of pregnant individuals.
In certain medical applications such as obstetric pelvic and echocardiography ultrasonogra-
phy, where visual analysis and measurement play a crucial role, the utilization of video
clips can provide a comprehensive set of structured data. This enables spatiotemporal
analysis and enhances the advantages of ANNs [125]. A study investigated the efficacy
of AI algorithms in ultrasonic diagnosis for pregnant patients with brain tumors. They
specifically focused on evaluating the accuracy rate of this diagnostic approach [126]. The
diagnostic accuracy achieved through the utilization of AI was recorded at 94.50%. Another
research study was conducted, which involved a prospective and descriptive approach. The
study focused on a sample of approximately 244 pregnant women in their first pregnancy
trimester. The registered female participants were specifically queried regarding their
utilization of iron, folic acid, potassium iodide, and multivitamin supplements throughout
their pregnancies. The utilization of an ANN model that incorporates variables related to
pregnancy checks, intake of iodized salt, iodized supplements, and iodine-rich foods can
be used to predict iodine deficiency during the early stages of pregnancy. This predictive
model can assist experts in making a more feasible diagnosis [127]. In their study, Sakai
et al. utilized a newly developed DL-based explainable graph chart diagram representation
to aid in fetal cardiac ultrasound screening. This screening process is known to have a
relatively low rate of detecting congenital heart disease during the second-trimester stages,
primarily due to the challenges associated with mastering the technique [128]. Conse-
quently, the utilization of AI in the second and third trimesters of pregnancy for diagnostic
purposes, specifically using diagram representation, enhances screening performance. The
accuracy rate for experts increases from 96% to 97.50%, while non-experts improve from
82% to 89% [129].

3.13. Ophthalmology

The utilization of AI in diagnosing and managing ocular disease has become increas-
ingly popular due to research findings emphasizing its potential to enhance personalized
medicine and improve healthcare outcomes [130]. Numerous AI algorithms are currently
under development for managing patients diagnosed with diabetes mellitus [131].

Due to advancements in the management of diabetes mellitus, there has been an
enhancement in the monitoring of patients, resulting in a higher incidence of diabetic
retinopathy and diabetic macular edema. The primary cause of significant visual impair-
ment and blindness among individuals of working age is the presence of diabetic macular
edema that has not been diagnosed or treated [132]. Hence, it is imperative to conduct
extensive screening for diabetic retinopathy on a large scale in order to identify potentially
detrimental alterations at an early phase, thereby facilitating effective management and
treatment strategies.

Considering the prevailing patterns of population growth and the significant inci-
dence of diabetic retinopathy and diabetic macular edema within the community, it is
inevitable that automated screening and diagnosis will become increasingly prevalent in
ophthalmic healthcare settings. Efforts have been made to explore automated retinal screen-
ing techniques for the diagnosis of diabetic retinopathy to enhance patient management and
mitigate the societal impact. Various AI, ML, and DL methodologies have been used for the
automated diagnosis and grading of diabetic retinopathy. The most efficacious automated
systems have been developed based on comprehensive investigations conducted within the
last three years. Recent research on diabetic retinopathy has shown that AI techniques have
exhibited significant accuracy, sensitivity, and specificity in identifying and diagnosing
diabetic retinopathy [133].

Automated application systems have the potential to enhance doctors’ comprehension
of diabetic retinopathy predictions and enhance the practicality of intelligent diagnostic
models in real-world clinical settings [133]. Based on the aforementioned studies, it was
observed that the automated analysis of retinal images exhibited a high level of accuracy,
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validity, sensitivity, and specificity in detecting diabetic retinopathy. Furthermore, the diag-
nostic performance of AI techniques was deemed clinically acceptable and demonstrated
high reproducibility when applied to the validation data set.

Age-related macular degeneration is a chronic ocular condition that is recognized
as a prominent contributor to visual impairment [134]. Prognostications AI algorithms
exist to generate personalized predictions in age-related macular degeneration. These
algorithms can make predictions regarding the presence of drusen beneath the retina in
individuals with age-related macular degeneration. The AI algorithms offer automated
detection capabilities for identifying drusen, fluid, and geographic atrophy in relation to
age-related macular degeneration lesions. These algorithms leverage fundus images and
spectral-domain optical coherence tomograph to enhance the diagnosis and treatment [135].
The utilization of AI in the automated detection of drusen holds promise for enhancing the
diagnostic capabilities of ophthalmologists in the early and efficient assessment of fundus
images [136]. The application of AI techniques in diagnosing and grading age-related
macular degeneration has been extensively explored. Recent studies have shown that these
automated approaches exhibit notable efficacy, demonstrating high accuracy, sensitivity,
and specificity levels in detecting age-related macular degeneration [137].

Glaucoma, which ranks as the second most prevalent factor leading to visual impair-
ment on a global scale, is distinguished by the gradual degeneration of retinal ganglion cells
and the permanent depletion of axons within the optic nerve. The timely identification and
management of glaucoma is of paramount significance in the prevention of preventable
visual impairment. AI techniques have demonstrated exceptional efficacy in efficiently
classifying glaucomatous and healthy eyes. Ophthalmologists have the ability to utilize
these automated results as a reference point, enabling them to enhance their decision-
making process within clinical practice. The utilization of automated AI applications has
demonstrated significant efficacy and holds promise in addressing the imminent challenge
of diabetic retinopathy, age-related macular degeneration, and glaucoma screenings in both
developed and developing nations [138].

3.14. Pediatrics

Imaging techniques play a paramount role in the management of pediatric neurologic,
neurosurgical, and neuro-oncological conditions [139]. Multi-parametric MRI techniques
are gaining popularity, particularly when combined with radiogenomic analyses that es-
tablish connections between imaging features and molecular biomarkers associated with
diseases. Nevertheless, incorporating this approach into regular clinical practice continues
to be challenging. AI techniques can model extensive datasets related to childhood neu-
rologic disease, including radiologic, biological, and clinical data. This capability enables
the integration of such information into prognostic modeling systems at an early stage.
Consequently, AI techniques offer a viable solution to address this issue [139].

In certain applications within the field of pediatric neuroradiology, ANNs have demon-
strated notable efficacy in a focused manner. This concept is most effectively demonstrated
through the utilization of ventricular size determination to categorize children into ei-
ther a normal or hydrocephalic group. In a recent study, an analysis was performed on
hydrocephalus and controls [140]. They achieved an accuracy score of 94.6% for hydro-
cephalus and 85.6% for controls using a training set of T2-weighted MRI images from
around 399 children. Previous studies have reported comparable achievements in the field
of pediatric hydrocephalus through the implementation of evolutionary modifications in
ANN methodologies [141].

The application of a support vector machine for the categorization of children into nor-
mal or hypoxic-ischemic brain injury groups, based on the measurement of corpus callosum
widths, yielded a classification accuracy of 95% [142]. Another study utilized a comparable
methodology to examine a group of adolescents who had experienced traumatic brain
injury. Specifically, they utilized edge-density imaging and support vector machines to clas-
sify the participants into two categories: normal and mild traumatic brain injury [143]. The

153



Appl. Biosci. 2024, 3

aforementioned method, which achieved a precision rate of 94%, demonstrated superior
performance compared to neurocognitive testing in this aspect [25]. Support vector ma-
chines have demonstrated successful classification of various magnetic resonance imaging
abnormalities in the fetal brain. These abnormalities encompass functional connectivity,
brain maturity, and severe fetal abnormalities. The classification accuracies achieved by
support vector machines in these studies range from 79% to 84% [144].

Support vector machines (SVMs) have been utilized in magnetic resonance imaging
texture analysis to examine brain tumors. This machine learning application aims to quan-
titatively analyze imaging data to generate an image texture that is generally imperceptible
to human visual perception [145]. Texture analysis in clinical practice is advantageous for
clinicians because it can incorporate comprehensive imaging data of the entire tumor. This
approach takes into consideration the presence of intra-tumor heterogeneity, which may
not be adequately represented by a single biopsy site or even multiple biopsy sites [145].

A study expanded on the application of texture analysis by integrating both linear
discriminant analysis and a probabilistic neural network [146]. Their objective was to
categorize posterior fossa tumors, specifically medulloblastoma, pilocytic astrocytoma,
and ependymoma. The combined techniques achieved an accuracy ranging from 86%
to 93% through a validation process. The utilization of AI in diagnosis offers a potential
enhancement to the effectiveness of diagnoses.

Decision trees have also been used in another significant capacity within the field
of ML in the context of pediatric neuroimaging. Specifically, they have been utilized
for the purpose of data analysis in order to provide insights and information regarding
neuroimaging in clinical trials. An instance can be observed in a study where a decision tree
classifier was used within a randomized controlled trial conducted on children diagnosed
with autism who were undergoing treatment with simvastatin [147]. The study utilized a
random forest classifier to effectively categorize children from the control group who had
undergone simvastatin treatment [147]. The classifier achieved a classification accuracy of
79%. This observation suggests the potential benefits that such applications may offer in
the future.

3.15. Hematology

AI has been used to examine various types of medical data, including hematopatholog-
ical, radiographic, laboratory, genomic, pharmacological, and chemical data. The purpose
of using AI in these analyses is to enhance the accuracy and effectiveness of diagnosis,
outcome prediction, and treatment planning and to expand our understanding of benign
and malignant hematology.

Recent advancements in CNN-based models have shown the ability to effectively
differentiate between various types of leukocytes on peripheral smears, indicating their
potential for automating routine pathology practices [148]. Ongoing research is being
conducted in the field of automated interpretation of bone marrow specimens [149]. CNNs
have also exhibited their usefulness in characterizing qualitative and quantitative variations
within specific cell lineages, such as the morphology of erythrocytes and the textural alter-
ations observed in sickle cell disease [150]. The aforementioned achievements encompass
the differential diagnosis of various diseases, as evidenced by the capacity of models to
accurately diagnose acute myeloid leukemia, distinguish between different causes of bone
marrow failure, and function as a screening tool for lymphoma in settings with limited
resources [151].

AI has been applied in various domains to enhance diagnostic processes’ dependability,
convenience, and efficacy. Previous studies have shown that CNN methods have proven
effective in diagnosing multiple myeloma solely using mass spectrometry data obtained
from peripheral blood [152,153]. Personalized models have been shown to possess a
high diagnostic capability when distinguishing between challenging conditions, such
as different causes of bone marrow failure, is difficult. This is achieved by integrating
patient demographics, laboratory data, and fundamental genetic information. Previous
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studies have also utilized similar methods to differentiate between peripheral leukemia
and lymphoma [154].

The task of prognosis is widely recognized as challenging, and even commonly used
clinical prognostication tools exhibit notable variability within different risk categories [155].
AI, possessing advanced capabilities in processing nonlinear and intricate data, promises
to deliver more sophisticated and individualized prognostications. The aforementioned
methodologies have been used within the field of benign hematology to enhance the
accuracy of risk assessment for central catheter thrombosis. These methodologies have
successfully identified individuals with a low risk of developing thrombosis [155]. AI
has been utilized to categorize patients undergoing hematopoietic stem cell transplants
into low and high-risk groups for acute graft-versus-host disease. This classification has
important implications for making informed decisions regarding the administration of
immunosuppressive treatments to these individuals [156]. Previous studies have also been
conducted in the field of autologous transplants for multiple myeloma. AI has been utilized
in the field of malignant hematology to enhance the initial assessment of risk stratification
for acute myeloid leukemia and myelodysplastic syndromes [157,158]. In post-treatment
scenarios, where minimal residual disease is considered a negative prognostic factor, AI
has exhibited the capability to attain performance comparable to that of humans. This
achievement has the potential to simplify and establish a consistent approach to handling
and analyzing this kind of data [159].

3.16. Intensive Care Unit

ML models have been applied within the intensive care unit (ICU) setting to anticipate
pathologies such as acute kidney injury, identify symptoms such as delirium, and suggest
appropriate therapeutic interventions such as vasopressors and fluid administration in cases
of sepsis. The timely identification and management of sepsis is of paramount importance
due to its potential to significantly decrease mortality rates. Although the management of
early sepsis involves source control and the administration of broad-spectrum antibiotics,
the detection of sepsis during this phase of the illness poses considerable challenges [159].
Identifying sepsis becomes increasingly feasible as the condition advances, while the
treatment poses considerable challenges. Due to the diverse nature of sepsis, the existing
diagnostic and prognostic methods pose a significant challenge in early sepsis detection
and accurate prognosis estimation. This difficulty further complicates determining an
appropriate treatment strategy for individual patients [160]. AI prediction models have
the potential to provide significant value for patients diagnosed with sepsis. AI models
possess the capacity to enhance the timely identification of individuals requiring antibiotic
treatment. Certain AI prediction models appear to outperform existing diagnostic methods;
however, these models exhibit notable limitations, such as including predictor variables like
blood pressure in the present sepsis definition. The assessment of AI models’ performance
is exaggerated in this context. These models exhibit limited generalizability. The existence
of unresolved concerns has resulted in a significant disparity between the advancement of
algorithms and their practical implementation in clinical settings.

The growing utilization of Electronic Health Records within the ICU is driving the
dissemination of data science and ML techniques in the critical care setting. Hemodynamic
data derived from monitors, infusion data obtained from infusion pumps, and respiratory
data collected from ventilators generate substantial data volumes. These datasets can
be compared to other sources of big data, such as omics data encompassing genomics
or proteomics. A study devised a computational model utilizing reinforcement learning
techniques to propose optimal treatment strategies dynamically for adult ICU patients [161].
A study was conducted wherein pervasive monitoring and ML techniques were applied
to continuously evaluate delirium and agitation in a cohort of 22 patients admitted to an
ICU [162]. The patients were categorized based on the Confusion Assessment Method
for the ICU scale. The researchers utilized cameras and accelerometers to capture and
document facial expressions and movements. Three accelerometers were strategically
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positioned on the patient’s wrist, ankle, and arm to discern and classify their posture. The
researchers applied a pre-existing neural network model to perform facial recognition and
detect facial expressions using individual facial features.

3.17. Diagnostic Methods

AI has the capability to fundamentally transform the methodologies applied in disease
diagnosis and treatment. Through the examination of patient data, including medical
history, symptoms, and test results, AI algorithms can provide clinicians with more precise
and tailored diagnoses for individual patients. This has the potential to facilitate the
identification of diseases at an earlier stage and enhance the efficacy of treatment strategies.
Additionally, AI can assist in identifying potential drug interactions and adverse reactions,
ensuring that patients receive the safest and most effective treatments.

Ultrasound (US) has gained widespread global adoption as a primary imaging modal-
ity in various clinical domains, owing to the continuous advancements in ultrasonic tech-
nologies and the established digital health infrastructure. Breast cancer is widely recognized
as a prevalent form of cancer among women globally and continues to be the second most
significant contributor to cancer-related mortality [163]. The predominant utilization of DL
in breast US, as observed in the surveyed literature, pertains to diagnosing and categorizing
breast masses [164]. The utilization of DL techniques for the analysis of abdominopelvic
imaging has various applications within the United States. A significant portion of these
applications have been specifically directed towards the examination of the liver [165].
Their research revealed that this approach exhibited superior accuracy compared to two-
dimensional shear wave elastography and certain biomarkers in the evaluation of advanced
fibrosis and cirrhosis in patients infected with the hepatitis B virus. In a study, the authors
devised a CNN approach to predict the METAVIR score, a semi-quantitative measure of
liver fibrosis [166]. The training dataset consisted of several thousands of US images ob-
tained from two tertiary academic referral centers. This approach demonstrated a notable
level of precision in forecasting the METAVIR score, surpassing radiologists’ diagnostic
capabilities in identifying liver fibrosis. In their study, Ta et al. developed a computer-
aided diagnosis system for the classification of malignant and benign focal liver lesions
using contrast-enhanced ultrasound cine recordings [167]. The researchers found that the
accuracy of this method was comparable to that of an expert reader.

Deep learning algorithms have been utilized in various applications, including iden-
tifying muscle diseases [168], determining cone positioning, and segmentation of muscle
imaging [169]. The diagnostic accuracy for neuro-muscular diseases was improved by using
a CNN-based method, which enhanced the assessment and classification of inflammatory
muscle diseases [168]. The progress in the field of AI/ML tools for the interpretation of
imaging is experiencing rapid acceleration. This can be attributed to several factors, includ-
ing the availability of extensive digitized image datasets, the accessibility of open-source
algorithms, advancements in computing power, the emergence of cloud services, and the
continuous development of DL techniques [170].

The utilization of automation in tasks frequently performed by radiologists, such as
identifying rib fractures and lung nodules using CT scans, reassessing pleural effusion size
via sequential chest radiographs, or conducting mammographic screening, shows potential
as a favorable strategy. This has the potential to enable radiologists to dedicate additional
time to more advanced interpretive tasks that may not be amenable to automation, as well
as participate in endeavors such as multidisciplinary team meetings. The utilization of AI
in the triage procedure demonstrates a notable ability to efficiently assign priority to critical
cases that require immediate reporting. These cases may include CT scans that unveil
the presence of pulmonary embolism, chest radiographs that indicate pneumothorax, or
head CTs that reveal hemorrhage. The aforementioned methodology possesses the capacity
to reduce patient morbidity and expedite the duration of hospitalization in emergency
departments. The utilization of DL systems in synthetic MRI enables the post-processing
and reconstruction of MR image data, reducing image acquisition time without signifi-
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cant deterioration in image quality. This advancement can potentially enhance efficiency,
decrease expenses, and enhance accessibility [171].

CNNs are a fundamental element within networks utilized in orthopedic and muscu-
loskeletal radiology [172]. In recent times, the concept of generative adversarial networks
(GANs) has been introduced. GANs are models designed to generate novel data closely
resembling the original dataset. These models comprise two distinct networks that engage
in a competitive game-like training process. A total of 12 enhanced GAN models incorpo-
rating CNNs have been successfully utilized in the domain of radiographic images [173].

Extensive research has been conducted in the field of oral and maxillofacial radiology
to investigate the potential of AI in the diagnosis of various conditions. The aforemen-
tioned conditions encompass dental caries, periodontal disease, osteosclerosis, odontogenic
cysts, and tumors, as well as ailments that impact the maxillary sinus or temporomandibu-
lar joints.

AI has been used in the field of dentistry for image analysis, encompassing a range
of tasks, including tooth segmentation and localization, assessment of bone quality for
osteoporosis, determination of bone age through hand-wrist radiographs, and localization
of cephalometric landmarks [172]. DL systems utilizing CNN architectures have been
successfully applied in the domain of dentistry. Notably, a novel system has been developed
that incorporates both three-dimensional cone beam computed tomography images and
two-dimensional images [172].

The application of DL techniques has been used to identify and categorize teeth within
both cone beam computed tomography images and panoramic images. The utilization of
classification systems for teeth enables dentists to make clinical decisions and streamline
their charting process by using automated computer-aided design outputs. These outputs
facilitate the automatic completion of digital patient records [174].

4. Discussion

4.1. General

The aim of this literature review is to provide a comprehensive overview of existing
research on AI in clinical practice. In addition to its extensive use in diagnostic techniques,
AI integration has been explored in various medical disciplines, including cardiology,
anesthesiology, surgery, pneumology, neurology, urology, gynecology, hematology, and
pediatrics. Given the continuous influx of new articles and the exponential increase in pub-
lished papers, this review focuses on indicative articles to illustrate AI’s robust penetration
and wide-ranging applications in clinical practice.

One of the major advantages of AI in clinical practice is its ability to improve diag-
nostic accuracy and treatment outcomes [10–22]. With AI-powered algorithms, healthcare
providers can analyze large amounts of patient data and identify patterns that may not
be immediately apparent to human clinicians. This can help to identify diseases earlier,
resulting in expedited medical intervention and improved prognoses for individuals. Addi-
tionally, AI can predict which treatments are likely to be most effective for a given patient,
allowing for personalized medicine that considers individual patient characteristics. AI
can help reduce healthcare costs by streamlining administrative processes and reducing
unnecessary tests [23].

In a study, ML techniques were applied in the analysis of high-throughput genome
sequencing data, aiming to enhance comprehension of disease processes and the develop-
ment of therapeutic modalities [175]. In this study, cutting-edge ML algorithms, including
random forest, support vector machine radial kernel, adaptive boost, averaged neural net-
work, and gradient boosting machine, were applied. The goal was to stratify patients with
head and neck squamous cell carcinoma into early and late clinical stages and to predict
the risk based on the expression profiles of miRNAs [175]. Also, quite recently, variational
autoencoders (i.e., a type of neural network) were introduced as a method to effectively aug-
ment the sample size of clinical studies, thereby mitigating costs, time constraints, dropouts,
and ethical considerations [176]. In a study, the efficacy of variational autoencoders in the
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context of data augmentation was demonstrated through the utilization of simulations
encompassing multiple scenarios [176]. Also, in the field of bioequivalence studies, several
ML methods were utilized to solve the old problem of defining the appropriate absorption
rate metric [20–22]. Through the joint utilization of ML algorithms, non-linear mixed effect
modeling, and Monte Carlo simulations, a new metric termed “average slope” was defined
and introduced. It was proven that the currently used Cmax (i.e., the maximum observed
plasma concentration) is unsuitable for expressing the absorption rate. On the contrary, the
newly defined measure (average slope) comprises the desired properties of absorption rate,
has the appropriate units of measurement (i.e., concentration units per time), exhibits ease
of estimation directly from the concentration-time data of the drug, and all ML algorithms
showed its supremacy over all other metrics used or proposed in bioequivalence [20–22].

Although the advantages of AI in clinical practice are evident, a number of obstacles
exist that necessitate attention and resolution [177]. One of the foremost considerations
revolves around the possibility for AI to sustain and propagate bias within the healthcare
sector. If the algorithms used in AI systems are trained on biased data, they may produce
biased results, leading to disparities in healthcare outcomes for certain patient popula-
tions. Also, there is a lack of transparency, interpretability, and explainability of the AI
algorithms since the latter can be considered as a black box. This issue will be discussed
later. Additionally, there is a risk that AI could dehumanize healthcare, with patients
feeling disconnected from their care providers and reduced to a set of data points. There
are also fears around the ethical implications of using AI in healthcare, particularly. The
impact of integrating AI technologies into the field of medicine will be most pronounced
among present and prospective medical trainees. Consequently, it is imperative for medical
schools and graduate medical education programs to modify their curriculum in order to
instruct current and future generations of physicians on the conscientious utilization of
these potent and transformative technologies [178]. Integrating AI in medicine introduces
several legal and ethical considerations, including medical liability issues such as training
and competence, transparency/traceability, explainability, personal health data, regulatory
compliance, product liability, and malpractice insurance. The fundamental aspects of these
issues are delineated below.

4.2. Training of Healthcare Professionals

Healthcare professionals using AI systems need appropriate training to ensure com-
petence in their use. Failure to properly understand and operate AI systems may lead to
medical errors and subsequent liability. Furthermore, prospective medical students will
be required to develop new skills, encompassing the concept of “knowledge capture, not
knowledge retention”. This implies a shift from a curriculum focused on rote memorization
to one that prioritizes critical thinking. The field of AI places significant emphasis on two
primary domains: collaboration and management of AI applications, as well as a deeper
comprehension of probabilities and their consequential application in clinical decision-
making involving patients and families. The aforementioned domains aim to acquire
knowledge pertaining to the efficient and ethical utilization of AI, while also promoting the
practical application of AI technologies in the healthcare field [179].

4.3. Transparency, Traceability, and Explainability

Drawing inspiration from various disciplines, the domains of transparency and trace-
ability in the context of healthcare and individual patients necessitate adherence to more
rigorous criteria [180]. From a legal standpoint, it is necessary for data to adhere to all
applicable laws, regulations, and additional legal obligations throughout its entire lifecy-
cle, including acquisition, storage, transfer, processing, and analysis. Furthermore, it is
imperative for the law, its interpretation, and its implementation to continually adjust in
response to the ever-changing advancements in technology [181]. Numerous AI algorithms,
particularly those based on deep learning models, function as enigmatic “black boxes”,
rendering it difficult to clarify the rationale behind their decisions. In situations where
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the validity of a medical decision generated by an AI system is scrutinized, the absence of
transparency can give rise to legal complications. Even when meeting all of these apparent
prerequisites, the question persists as to whether the utilization of AI-driven solutions and
tools necessitates the need for explainability. In essence, doctors and patients must possess
knowledge regarding the outcomes presented and an understanding of the qualities and
attributes upon which these outcomes are founded, as well as the corresponding underlying
assumptions. Furthermore, the inclusion of additional stakeholders may necessitate a com-
prehensive comprehension and explication of algorithms and models. From a Western legal
standpoint, three fundamental areas have been identified for the purpose of elucidating the
concept of explainability [182]. These areas include (a) informed consent, (b) certification
and approval in accordance with the regulations set forth by the FDA and the Medical
Device Regulation (MDR), and (c) Liability.

4.4. Liability and Regulatory Framework

The certification and approval bodies responsible for medical devices have been rela-
tively sluggish in implementing regulations pertaining to explainable AI and its impact on
developing and marketing such products. The FDA significantly promotes the continuous
development and enhancement of AI-based medical products through its comprehensive
total product lifecycle approach. The concept of explainability is not explicitly referenced;
however, there is a requirement for an appropriate level of transparency and clarity in the
output and algorithm intended for users [183,184]. The primary focus of this inquiry per-
tains to the functionalities of the software and the alterations it has undergone throughout
its evolution. The MDR does not explicitly address the requirement for explainability in
relation to medical devices utilizing AI and ML, specifically. In this context, it is important
to emphasize the significance of accountability and transparency [185]. Specifically, these
requirements pertain to the provision of information that enables the tracing, transparency,
and explication of the development process of ML and DL models that contribute to medical
treatment. There is a strong probability that in forthcoming times, a more refined delin-
eation of these prerequisites will emerge, necessitating manufacturers of AI-driven medical
devices/software to furnish exhaustive details pertaining to the training and evaluation of
the models, the data utilized, and the overarching methodologies used in their creation.

The integration of AI in healthcare frequently entails the utilization of highly sensitive
patient data. Suppose a data security or privacy breach results in unauthorized access
or use of patient information; healthcare providers and AI developers may face legal
repercussions. This underscores the critical importance of robust data protection measures
and adherence to privacy regulations in developing and deploying AI applications within
the healthcare sector [185]. The processing of personal health data is permissible under
the law only when the individual has provided explicit consent for its utilization. The
current standard for utilizing patient data in AI applications is informed consent, as there is
a lack of overarching legislation governing the use of personal data and information [185].
Healthcare organizations and AI developers must comply with various data protection
regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) in
the United States or the General Data Protection Regulation (GDPR) in Europe [186,187].
Failure to comply with these regulations can lead to legal consequences and fines. Clear
policies should be established regarding data ownership and patient consent. Patients
should be informed about how their data will be used, who will have access to them, and
for what purposes. Obtaining informed consent is essential for ethical and legal reasons.
Implementing robust encryption methods for both data in transit and data at rest helps
protect patient information from unauthorized access. Encryption adds an extra layer of
security to prevent sensitive data from being intercepted or accessed by unauthorized
parties. Access to healthcare AI systems and the data they process should be restricted
and monitored. Role-based access controls should be implemented to ensure that only
authorized personnel can access sensitive information. Also, healthcare AI systems should
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use secure methods for storing and transmitting data, while periodic security audits and
assessments help identify vulnerabilities in the system.

The legal framework concerning AI in healthcare is still in a state of evolution. New
laws and regulations may be introduced to address issues related to liability specifically,
and healthcare professionals must stay informed about these changes. As the field of AI
continues to advance, legal frameworks are likely to adapt to ensure that ethical, transpar-
ent, and responsible practices are followed in developing and deploying AI technologies
in healthcare. Staying abreast of these evolving regulations is crucial for healthcare pro-
fessionals to navigate the complex legal terrain and uphold accountability and patient
care standards. Nevertheless, even to this day, disparities persist in international guid-
ance between Europe and the United States regarding the legal challenges that may arise
from the use of AI in healthcare. These regions adopt distinct approaches to addressing
these challenges. The European Union (EU) has emerged as a leading force in the field
of medical AI innovation and has acknowledged the specific difficulties that AI poses to
current liability frameworks. In order to establish coherence in liability principles and
ensure legal clarity, the European Commission has introduced the Artificial Intelligence Act,
which represents one of the initial legal frameworks dedicated specifically to AI [186]. The
European Commission endeavors to advance the secure utilization of AI in sectors with
significant consequences, such as healthcare, while concurrently enhancing technological
innovation. The United States lacks a comprehensive legal framework that specifically
regulates AI, resulting in limited legal precedent concerning liability and medical AI. The
regulatory aspect of AI in healthcare has been acknowledged by the FDA, which aims to
facilitate the secure implementation of AI by developing a strategic plan to ensure ongoing
supervision of AI as a medical device [187]. In order to foster a patient-centric approach, the
FDA endeavors to enhance transparency by requesting manufacturers to provide detailed
descriptions of the operational mechanisms of their AI devices. This initiative is aimed
at facilitating a comprehensive comprehension of the advantages and potential hazards
associated with such devices. The FDA also endeavors to address potential bias that may
arise from training AI algorithms on specific populations or historical datasets [187]. The
FDA has recently published a discussion paper entitled “Proposed Regulatory Framework
for Modifications to Artificial Intelligence/Machine Learning-Based Software as a Medical
Device” with the aim of guaranteeing the safety of medical software that utilizes AI and
ML technologies.

In addition, as the use of AI in healthcare becomes more prevalent, malpractice
insurance considerations evolve to address potential risks associated with these technolo-
gies [188]. Given the unique risks associated with AI in healthcare, malpractice insurance
policies may need to be tailored to address liabilities arising from the use of AI technologies
specifically. This could include coverage for errors or malfunctions in AI algorithms that
lead to adverse patient outcomes. Insurers may face challenges in underwriting policies
related to AI, as the field is rapidly evolving, and assessing risks associated with emerging
technologies can be complex. Insurers may need to adapt their underwriting processes
to account for the specific risks posed by AI in healthcare [189]. Malpractice insurance
policies related to AI must align with evolving legal and regulatory frameworks governing
the use of AI in healthcare. Insurers may need to stay informed about changes in laws and
regulations to ensure that their policies remain relevant and compliant. Also, insurers may
require healthcare organizations to implement monitoring and reporting mechanisms for
AI-related incidents. Timely reporting adverse events can facilitate a proactive response
and help mitigate potential liabilities.

In the same vein, product liability in the context of AI refers to the legal responsibility
of those involved in the design, development, manufacturing, distribution, and deployment
of AI systems for any harm or damages caused by the AI product [190,191]. If the design
of an AI system is inherently flawed and leads to harmful consequences, the designers
and developers may be held liable. AI design defects could include biased algorithms,
inadequate testing, or a lack of robust safety features. Manufacturing defects pertain to
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issues arising during an AI system’s production or deployment. These defects may lead to
malfunctions, security vulnerabilities, or other problems that could result in harm. Manu-
facturers may be held responsible for these defects. If AI products come with inadequate
warnings or instructions regarding their proper use, healthcare professionals or end-users
may be unaware of potential risks. Failure to provide clear guidance on the limitations
and risks of an AI system could result in liability. In cases where third-party vendors
provide AI components or services, liability may extend to these vendors if their products
or services contribute to harm. Determining the chain of responsibility and liability in
complex AI ecosystems can be challenging. Rigorous testing and validation of AI systems
are essential to identify and address potential issues before deployment. If inadequate
testing contributes to harm, the parties responsible for the testing and validation process
may be held liable. Maintaining detailed records of the design, development, testing,
and deployment processes is important for demonstrating due diligence in the event of
a product liability claim. Clear documentation can provide evidence of compliance with
industry standards and best practices.

4.5. Overall

This literature review discusses the current applications of AI in various medical
specialties in clinical practice. AI possesses the capacity to fundamentally transform clinical
practice and enhance patient outcomes. The potential for further advancements in AI
technology is vast, and the impact on patient outcomes could be significant.

Certainly, not all aspects and bibliographic references could have been included,
as this literature review aims to offer a comprehensive overview of the applications of
AI in as many medical specialties as possible. Consequently, it was unavoidable that
some important contributions in each field could not be discussed. As an example, there
has been a substantial rise in the utilization of biomarkers as early warning systems for
assessing disease risk over the past decade, with extensive application evident during
the recent COVID-19 pandemic [192]. In the same context, in dermatology, which is one
of the fields with the widest use of AI, quite recently, a research paper has underscored
the capability of machine learning to serve as a biomarker for differentiating among
individuals with psoriasis, psoriatic arthritis, and those in good health [193]. Also, several
investigations have been carried out, uncovering notable molecular biomarkers through
miRNA expression that can differentiate between early and late stages of carcinomas [175].

It should also be emphasized that despite the concerns discussed in this review, the
potential benefits of AI in healthcare cannot be ignored. AI has the ability to improve
diagnosis accuracy, personalize treatment plans, and reduce healthcare costs. In the future,
AI will likely become a standard tool in clinical practice, with healthcare providers working
alongside AI systems to provide the best possible care for patients [185,186]. Nevertheless,
to guarantee the ethical and efficient utilization of AI in the healthcare sector, we must
confront these apprehensions and establish explicit protocols for advancing and integrating
AI systems. The complete realization of AI’s potential to enhance healthcare outcomes
can only be achieved under such circumstances. Overall, it is considered that AI has the
potential to greatly improve healthcare outcomes, but it is important to address ethical
concerns and establish clear guidelines for its development and implementation.

5. Conclusions

Integrating AI into clinical practice brings forth many benefits and challenges with sig-
nificant implications for ethical and legal considerations. AI holds the promise of improving
the precision of diagnostic accuracy, streamlining administrative tasks, and personalizing
treatment plans. By analyzing vast amounts of medical data, AI systems can identify
patterns and correlations that might escape human observation, leading to more precise
and timely interventions. Additionally, AI can contribute to cost-effective healthcare solu-
tions and improve overall patient outcomes. This integration of AI technology facilitates
informed clinical decision-making processes. Thus, AI has the potential to enhance patient
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outcomes, offering faster and more accurate diagnoses, personalized treatment plans, and
reduced healthcare costs. While there is still much to be explored and developed in the field
of AI in clinical practice, it is crucial that we continue to invest in research and development
to unlock its full potential. This approach can improve our understanding of how AI can
enhance healthcare and lead to the developing of new tools and technologies that benefit
patients and healthcare professionals alike. Nevertheless, it is important to approach its
development and implementation cautiously and collaborate with healthcare professionals
to ensure ethical considerations are met.

However, these advancements come with ethical dilemmas and legal complexities.
The use of AI in clinical decision-making raises concerns about transparency, accountability,
and the potential for bias in algorithms. Ensuring patient privacy and data security becomes
paramount, demanding robust ethical guidelines and legal frameworks. Striking the right
balance between innovation and safeguarding patient rights requires careful consideration
of the ethical implications of AI in clinical practice, alongside the development of legal
frameworks that can adapt to the rapid pace of technological evolution in the healthcare
sector. To overcome the ethical and legal challenges associated with the integration of ai
in clinical practice, a multi-faceted approach is essential that includes legal frameworks
and regulations, transparent and explainable AI, ethical guidelines and standards, regular
audits and assessments, incentives for ethical practices, and international collaboration.
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