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Article

Reconstruction of Higher-Order Differential Operators by Their
Spectral Data

Natalia P. Bondarenko 1,2

1 Department of Applied Mathematics and Physics, Samara National Research University, Moskovskoye
Shosse 34, Samara 443086, Russia; bondarenkonp@info.sgu.ru

2 Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83,
Saratov 410012, Russia

Abstract: This paper is concerned with inverse spectral problems for higher-order (n > 2) ordinary
differential operators. We develop an approach to the reconstruction from the spectral data for a
wide range of differential operators with either regular or distribution coefficients. Our approach is
based on the reduction of an inverse problem to a linear equation in the Banach space of bounded
infinite sequences. This equation is derived in a general form that can be applied to various classes of
differential operators. The unique solvability of the linear main equation is also proved. By using
the solution of the main equation, we derive reconstruction formulas for the differential expression
coefficients in the form of series and prove the convergence of these series for several classes of
operators. The results of this paper can be used for the constructive solution of inverse spectral
problems and for the investigation of their solvability and stability.

Keywords: inverse spectral problems; higher-order differential operators; distribution coefficients;
constructive solution; method of spectral mappings

MSC: 34A55; 34B09; 34B05; 34E05; 46F10

1. Introduction

This paper is concerned with the inverse spectral theory for operators generated by
the differential expression

�n(y) :=y(n) +
�n/2�−1

∑
k=0

(τ2k(x)y(k))(k)

+
�(n−1)/2�−1

∑
k=0

(
(τ2k+1(x)y(k))(k+1) + (τ2k+1(x)y(k+1))(k)

)
, x ∈ (0, 1), (1)

where the notation �a� means rounding down, and the functions {τν}n−2
ν=0 can be either

integrable or distributional. Various aspects of spectral theory for such operators and
related issues have been intensively studied in recent years (see, e.g., [1–9]). However,
the general theory of inverse spectral problems for (1) with arbitrary n > 2 has not been
created yet. This paper aims to develop an approach to the reconstruction of the coefficients
{τν}n−2

ν=0 from the spectral data for a wide class of differential operators.

1.1. Historical Background

Inverse problems of spectral analysis consist in the recovery of differential operators
from their spectral information. Such problems arise in practice when one needs to deter-
mine certain physical parameters of a system from some measured data or to construct a
model with desired properties. The majority of physical applications are concerned with
linear differential operators of form (1) with n = 2, 3, 4.

Mathematics 2022, 10, 3882. https://doi.org/10.3390/math10203882 https://www.mdpi.com/journal/mathematics1
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For n = 2, expression (1) turns into the Sturm–Liouville (Schrödinger) operator

− �2(y) = −y′′ + q(x)y, (2)

which models string vibrations in classical mechanics, electron motion in quantum mechan-
ics, and is widely used in other branches of science and engineering. The third-order linear
differential operators arise in the inverse problem method for integration of the nonlinear
Boussinesq equation (see [10,11]), in mechanical problems of modeling the thin membrane
flow of viscous liquid and elastic beam vibrations (see [12] and references therein). Inverse
spectral problems for the fourth-order linear differential operators attract much attention
from scholars because of their applications in mechanics and geophysics (see [13–20] and
references therein).

The classical results of the inverse problem theory were obtained for the Sturm–
Liouville operator (2) with integrable potential q(x) in the 1950s by Marchenko, Levitan, and
their followers (see [21,22]). They developed the transformation operator method, which
reduces the nonlinear inverse Sturm–Liouville spectral problem to the linear Fredholm
integral equation of the second kind. However, the transformation operator method
appeared to be ineffective for the higher-order differential operators

y(n) +
n−2

∑
k=0

pk(x)y(k), n > 2. (3)

Note that the differential expression (1) can be transformed into (3) in the case of sufficiently
smooth coefficients {τν}n−2

ν=0.
Thus, the development of inverse spectral theory for the higher-order operators (3)

required new approaches. Relying on the ideas of Leibenson [23,24], Yurko created the
method of spectral mappings. This method allowed him to construct inverse problem
solutions for the higher-order differential operators (3) with regular (integrable) coefficients
on the half-line x > 0 and on a finite interval x ∈ (0, T) (see [25,26]). The case of Bessel-type
singularities also was considered [27,28]. Later on, the ideas of the method of spectral map-
pings were applied to a wide range of inverse spectral problems, e.g., to inverse problems
for the first-order differential systems [29], for differential operators on graphs [30], and for
quadratic differential pencils [31]. This method is based on the theory of analytic functions
and mainly on the contour integration in the complex plane of the spectral parameter. The
method of spectral mappings reduces a nonlinear inverse problem to a linear equation in a
suitable Banach space. This space is constructed in different ways for different operator
classes. In particular, for differential operators on a finite interval, the main equation is
usually derived in the space m of infinite bounded sequences. It is also worth mentioning
that an approach to inverse scattering problems for higher-order differential operators (3)
on the full line was developed by Beals et al. [32,33].

During the last 20 years, the inverse problems have been actively investigated for the
second-order differential operators with distributional potentials (see, e.g., [34–43]). In
particular, Hryniv and Mykytyuk [34–36] transferred the transformation operator method to
the Sturm–Liouville operators (2) with potential q(x) of class W−1

2 (0, 1) and so generalized
the basic results of inverse problem theory to this class of operators. Note that the space W−1

2
contains the Dirac δ-function and the Coulumb potential 1

x , which are used for modeling
particle interactions in quantum mechanics [44]. The method of spectral mappings has
been extended to the Sturm–Liouville operators with potentials of W−1

2 in [37,43,45]. This
opens the possibility of constructing the inverse spectral theory for higher-order differential
operators with distribution coefficients. However, till now, only the first steps have been
taken in this direction. In [9,46], the uniqueness of recovering the higher-order differential
operators with distribution coefficients on a finite interval and on the half-line has been
studied. The goals of this paper are to derive the linear main equation of the inverse
problem to prove its unique solvability and to obtain reconstruction formulas for the
coefficients {τν}n−2

ν=0 of various classes.
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1.2. Problem Statement and Methods

Our treatment of the differential expression (1) is based on the regularization approach.
Namely, we assume the differential equation

�n(y) = λy, x ∈ (0, 1), (4)

where λ is the spectral parameter, can be equivalently transformed into the first-order
system

Y′(x) = (F(x) + Λ)Y(x), x ∈ (0, 1), (5)

where Y(x) is a column vector function of size n, Λ is the (n× n)-matrix whose entry at
the position (n, 1) equals λ and all the other entries are zero, and F(x) = [ fk,j(x)]nk,j=1 is a
matrix function with the following properties:

fk,j(x) ≡ 0, k + 1 < j, fk,k+1(x) ≡ 1, k = 1, n− 1,
fk,k ∈ L2(0, 1), k = 1, n, fk,j ∈ L1(0, 1), k > j, trace(F(x)) = 0.

(6)

We denote the class of (n× n) matrix functions satisfying (6) by Fn.
By using any matrix F ∈ Fn, one can define the quasi-derivatives

y[0] := y, y[k] = (y[k−1])′ −
k

∑
j=1

fk,jy[j−1], k = 1, n, (7)

and the domain
DF = {y : y[k] ∈ AC[0, 1], k = 0, n− 1}.

Definition 1. A matrix function F(x) ∈ Fn is called an associated matrix of the differential
expression �n(y) if �n(y) = y[n] for any y ∈ DF. We call a function y a solution of Equation (4) if
y ∈ DF and y[n] = λy, x ∈ (0, 1).

For a function y ∈ DF, introduce the notation�y(x) = col(y[0](x), y[1](x), . . . , y[n−1](x)).
Obviously, y is a solution of Equation (4) if and only if Y = �y satisfies (5).

The associated matrices for various classes of differential expressions �n(y) have been
constructed, e.g., in [1,3,46–48] (see also Sections 4.3–4.5 of this paper). For example, for the
differential expression �2(y) = y′′ − τ0y, τ0 ∈ W−1

2 (0, 1), that is, τ0 = σ′0, σ0 ∈ L2(0, 1), the
associated matrix has the form (see [49]):

F(x) =
[

σ0(x) 1
−σ2

0 (x) −σ0(x)

]
.

For the regular case τν ∈ L1(0, 1), ν = 0, n− 2, the construction of associated matrix
F(x) is well-known (see [50] and Section 4.4 of this paper). The regularization of even-order
(n = 2m) differential operators (1) with distribution coefficients τ2k+j ∈ W−(m−k−j)

2 (0, 1),
k = 0, m− 1, j = 0, 1, has been obtained by Mirzoev and Shkalikov [1]. Later on, the case of
odd-order n was considered in [47]. Vladimirov [51] suggested a more general construction
which, in particular, includes both cases [1,47]. It is worth mentioning that, in [1,47,51], the
differential expressions of more general form than (1) were studied, with the coefficients
at y(n) and y(n−1) not necessarily equal 1 and 0, respectively. However, in this paper, we
confine ourselves to the form (1), which is natural for studying the inverse problems [9,46].

In this paper, we assume that �n(y) is any differential expression that has an associated
matrix in terms of Definition 1. We do not impose any additional restrictions on {τν}n−2

ν=0,
since we are interested in formulating the abstract results which can be applied to various
classes of differential operators. Certain restrictions on {τν}n−2

ν=0 are imposed below when
necessary.

3
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Let us proceed to the inverse problem formulation. Suppose that we have a differ-
ential expression of form (1) and an associated matrix F(x) = [ fk,j]

n
k,j=1. By using the

corresponding quasi-derivatives (7), define the linear forms

Us,a(y) := y[ps,a ](a) +
ps,a

∑
j=1

us,j,ay[j−1](a), s = 1, n, a = 0, 1, (8)

where ps,a ∈ {0, . . . , n − 1}, ps,a �= pk,a for s �= k, and us,j,a are some complex numbers.
In addition, introduce the matrices Ua = [us,j,a]

n
s,j=1, us,j,a := δj,ps,a+1 for j > ps,a, a = 0, 1.

Here, and below, δj,k is the Kronecker delta. We call the triple (F(x), U0, U1) by the problem
L. Below, we introduce various characteristics related to the problem L.

Denote by {Ck(x, λ)}n
k=1 the solutions of Equation (4) satisfying the initial conditions

Us,0(Ck) = δs,k, s = 1, n. (9)

Equivalently, the (n × n)-matrix function C(x, λ) := [�Ck(x, λ)]nk=1 is the solution of the
system (5) with the initial condition C(0, λ) = U−1

0 . Therefore, the solutions {Ck(x, λ)}n
k=1

are uniquely defined. Moreover, their quasi-derivatives C[j]
k (x, λ) are entire in λ for each

fixed x ∈ [0, 1], k = 1, n, j = 0, n− 1.
It has been proved in ([9], Section 4) that, for all λ ∈ C except for a countable set,

Equation (4) has the so-called Weyl solutions {Φk(x, λ)}n
k=1 satisfying the boundary

conditions
Us,0(Φk) = δs,k, s = 1, k, Us,1(Φk) = 0, s = k + 1, n, (10)

Define the matrix function Φ(x, λ) = [�Φk(x, λ)]nk=1. The columns of the matrices C(x, λ)
and Φ(x, λ) form fundamental solution systems of (5). Consequently, the following relation
holds:

Φ(x, λ) = C(x, λ)M(λ) (11)

where the matrix function M(λ) is called the Weyl matrix of the problem L (see [9]).
The notion of Weyl matrix generalizes the notion of Weyl function for the second-order

operators (see [21,26]). Weyl functions and their generalizations play an important role
in the inverse spectral theory for various classes of differential operators. In particular,
Yurko [25–28] has used the Weyl matrix as the main spectral characteristics for the re-
construction of the higher-order differential operators (3) with regular coefficients. The
analogous inverse problem for the differential expression of form (1) can be formulated
as follows.

Problem 1. Given the Weyl matrix M(λ), find the coefficients {τν}n−2
ν=0 .

The uniqueness of Problem 1’s solution has been proved in [9] for the Mirzoev–
Shkalikov case: n = 2m, τ2k+j ∈ W−(m−k−j)

2 (0, 1) and n = 2m + 1, τ2k+j ∈ W−(m−k−j)
1 (0, 1),

j = 0, 1. In [46], the uniqueness of recovering the boundary condition coefficients from the
Weyl matrix has been studied.

It has been shown in ([9], Section 4) that the Weyl matrix M(λ) = [Mj,k(λ)]
n
j,k=1 is unit

lower-triangular, and its nontrivial entries have the form

Mj,k(λ) = −
Δj,k(λ)

Δk,k(λ)
, 1 ≤ k < j ≤ n, (12)

where Δk,k(λ) := det[Us,1(Cr)]ns,r=k+1 and Δj,k(λ) is obtained from Δk,k(λ) by the replace-

ment of Cj by Ck. The functions C[s]
r (1, λ), r = 1, n, s = 0, n− 1 are entire analytic in λ, and

so are the functions Δj,k(λ), 1 ≤ k ≤ j ≤ n. Hence, M(λ) is meromorphic in λ, and the
poles of the k-th column of M(λ) coincide with the zeros of Δk,k(λ). At the same time, the

4
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zeros of the entire functions Δj,k(λ), 1 ≤ k ≤ j ≤ n coincide with the eigenvalues of some
boundary value problems for Equation (4), and the inverse problem by the Weyl matrix
(Problem 1) is related to the inverse problem by n(n+1)

2 spectra (see [9] for details).
We say that the problem L belongs to the class W if all the zeros of Δk,k(λ) are simple

for k = 1, n− 1. Then, in view of (12), the poles of M(λ) are simple. In general, the function
Δk,k(λ) can have at most a finite number of multiple zeros. The latter case can be treated
by developing the methods of Buterin et al. [52,53], who considered the non-self-adjoint
Sturm–Liouville operators (n = 2) with regular potentials. However, the case of multiple
zeros is much more technically complicated, so, in this paper, we always assume that
L ∈ W.

Denote by Λ the set of the Weyl matrix poles. Consider the Laurent series

M(λ) =
M〈−1〉(λ0)

λ− λ0
+ M〈0〉(λ0) + M〈1〉(λ0)(λ− λ0) + . . . , λ0 ∈ Λ.

Denote
N (λ0) := [M〈0〉(λ0)]

−1M〈−1〉(λ0), λ0 ∈ Λ, (13)

We call the collection {λ0,N (λ0)}λ0∈Λ the spectral data of the problem L. Obviously, the
spectral data are uniquely specified by the Weyl matrix M(λ), so Problem 1 can be reduced
to the following problem:

Problem 2. Given the spectral data {λ0,N (λ0)}λ0∈Λ, find the coefficients {τν}n−2
ν=0 .

It is more convenient to study the reconstruction question for Problem 2. It is worth
mentioning that, in fact, the Weyl matrix and the spectral data can be constructed according
to the above definitions for any matrix function F(x) of class Fn, not necessarily associated
with any differential expression of form (1). However, in general, the matrix F(x) is not
uniquely specified by the Weyl matrix (see Example 4.5 in [46]). Therefore, in this paper,
the solution of Problem 2 is divided into the two steps:

{λ0,N (λ0)}λ0∈Λ
(1)→ {Φk(x, λ)}n

k=1
(2)→ {τν}n−2

ν=0.

The recovery of the Weyl solutions {Φk(x, λ)}n
k=1 from the spectral data is studied for

a matrix F(x) of general form, and then reconstruction formulas are derived for {τν}n−2
ν=0 of

certain classes.
For a fixed F ∈ Fn, we define the quasi-derivatives (7), the expression �n(y) := y[n],

the problem L = (F(x), U0, U1), its spectral data {λ0,N (λ0)}λ0∈Λ as above, and focus on
the following auxiliary problem.

Problem 3. Given the spectral data {λ0,N (λ0)}λ0∈Λ, find the Weyl solutions {Φk(x, λ)}n
k=1.

Let us briefly describe the method of solution. Along with L, we consider another
problem L̃ = (F̃(x), Ũ0, Ũ1) of the same form but with different coefficients. Similarly to
Φ(x, λ), define Φ̃(x, λ) for L̃. An important role in our analysis is played by the matrix of
spectral mappings:

P(x, λ) = Φ(x, λ)[Φ̃(x, λ)]−1.

For each fixed x ∈ [0, 1], the matrix function P(x, λ) is meromorpic in λ with poles
at the eigenvalues Λ ∪ Λ̃. The method is based on the integration of some functions by a
special family of contours enclosing these eigenvalues. Applying the Residue theorem, we
derive an infinite system of linear equations. Furthermore, that system is transformed into
a linear equation in the Banach space m of infinite bounded sequences. The main equation
of the inverse problem has the form

(I− R̃(x))ψ(x) = ψ̃(x), x ∈ [0, 1],

5
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where, for each fixed x ∈ [0, 1], ψ(x) and ψ̃(x) are elements of m, R̃(x) is a linear
compact operator in m, and I is the unit operator. The element ψ̃(x) and the operator
R̃(x) are constructed by the model problem L̃ and by the spectral data {λ0,N (λ0)}λ0∈Λ,
{λ̃0, Ñ (λ̃0)}λ̃0∈Λ̃ of the two problems L, L̃, respectively, while the unknown element ψ(x)
is related to the desired functions {Φk(x, λ)}n

k=1. We prove that the operator (I− R̃(x))
has the bounded inverse, and so the main equation is uniquely solvable (see Theorem 1).
This implies the uniqueness of the solution for Problem 3. Using the main equation, we
obtain a constructive procedure for solving Problem 3 (see Algorithm 1). These results can
be applied to a wide range of differential operators (1) with associated matrices of class Fn.

Furthermore, by using the solution of the main equation, we derive reconstruction
formulas for {τν}n−2

ν=0. We describe the general idea and then apply it to the certain classes
of operators:

(i) n = 3, τ1 ∈ L2(0, 1), τ0 ∈ W−1
2 (0, 1).

(ii) n is even, τν ∈ L2(0, 1), ν = 0, n− 2.
(iii) n is even, τν ∈ W−1

2 (0, 1), ν = 0, n− 2.

We obtain the uniqueness theorems and constructive algorithms for solving Problem 2
for the cases (i)–(iii). Note that, although the functions τν in the case (ii) are regular, this
case has less smoothness than the one considered by Yurko [26].

The reconstruction formulas have the form of series, and the main difficulties in our
analysis are related to studying the convergence of those series. These difficulties increase
for the case of nonsmooth and/or distribution coefficients. In order to prove the series
convergence, we use the Birkhoff-type solutions constructed by Savchuk and Shkalikov [2]
and the precise asymptotic formulas for the spectral data obtained in [54]. For the cases
(ii) and (iii), we reconstruct the functions τν step-by-step for ν = n− 2, n− 3, . . . , 1, 0. The
similar approach can be used in the case of odd n, which requires technical modifications.

By using the reconstruction formulas, one can develop numerical methods for solving
inverse spectral problems (see [55] for the second-order case). However, this issue requires
an additional work. In this paper, we obtain theoretical algorithms, which in the future can
be used for the investigation of existence and stability of the inverse problem solution.

It is worth mentioning that our method of inverse problem solution is the first one
for higher-order differential operators with distribution coefficients. The obtained main
equation and reconstruction formulas generalize the results of [45] for the Sturm–Liouville
operators with distribution potential. The other methods which applied to the second-order
operators (see, e.g., [34,39]), to the best of the author’s knowledge, appear to be ineffective
for higher orders.

The paper is organized as follows. In Section 2, we provide preliminaries and study
the properties of the spectral data. Section 3 is devoted to the contour integration and
to the derivation of the main equation of the inverse problem in a Banach space. The
unique solvability of the main equation is also proved. As a result, an algorithm for
solving the auxiliary Problem 3 is obtained for arbitrary F ∈ Fn. In Section 4, we derive
the reconstruction formulas for the coefficients {τν}n−2

ν=0 and study the convergence of the
obtained series. Section 5 contains a brief summary of the main results.

2. Preliminaries

Throughout the paper, we use the following notations.

1. I is the (n× n) unit matrix, ek is the k-th column of I, k = 1, n.
2. The sign T denotes the matrix transpose.

3. δk,j =

{
1, k = j,
0, k �= j.

4. J := [(−1)k+1δk,n−j+1]
n
k,j=1, Ja := [(−1)p�k,a δk,n−j+1]

n
k,j=1, where p�k,a := n − 1− pk,a,

a = 0, 1.

6
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5. If for λ → λ0

A(λ) =
p

∑
k=−q

ak(λ− λ0)
k + o((λ− λ0)

p),

then
[A(λ)]

〈k〉
|λ=λ0

= A〈k〉(λ0) := ak.

6. The notations �x� and x� are used for rounding a real number x down and up,
respectively.

7. The binomial coefficients are denoted by Ck
n =

n!
k!(n− k)!

.

8. Along with L, we consider the problems L̃, L�, L̃� of the same form but with different
coefficients. We agree that, if a symbol γ denotes an object related to L, then the
symbols γ̃, γ�, γ̃� denote the analogous objects related to L̃, L�, L̃�, respectively. Note
that the quasi-derivatives for the problems L̃, L�, L̃� are defined by using the matrices
F̃(x), F�(x), F̃�(x), respectively, which may be different from F(x).

9. The notation y[k] is used for quasi-derivatives defined by (7) (or analogously by using
the entries of F̃(x), F�(x), or F̃�(x)). The notation �y(x) is used for the column vector
of the quasi-derivatives y[0](x), y[1](x), . . . , y[n−1](x).

10. In estimates, the symbol C is used for various positive constants independent of x, l,
k, etc.

11. a
i f (condition)

× b =

{
ab, if (condition) holds,
a, otherwise.

.

In Section 2.1, we define an auxiliary problem L� = (F�(x), U�
0 , U�

1 ) and study its
properties. In Section 2.2, the properties of the spectral data {λ0,N (λ0)}λ0∈Λ are investi-
gated.

2.1. Problems L and L�

For a matrix F ∈ Fn, define the matrix F�(x) = [ f �k,j(x)]nk,j=1 as follows:

f �k,j(x) := (−1)k+j+1 fn−j+1,n−k+1(x). (14)

Obviously, F� ∈ Fn.
Let F(x) be a fixed matrix function of class Fn. Suppose that y ∈ DF and z ∈ DF� ;

the quasi-derivatives for y are defined via (7) by using the elements of F(x), and the
quasi-derivatives for z are defined as

z[0] := z, z[k] = (z[k−1])′ −
k

∑
j=1

f �k,jz
[j−1], k = 1, n, (15)

and
DF� := {z : z[k] ∈ AC[0, 1], k = 0, n− 1}.

Define

�n(y) := y[n], ��n(z) := (−1)nz[n], 〈z, y〉 :=
n−1

∑
j=0

(−1)jz[j]y[n−j−1].

Lemma 1. The following relation holds:

d
dx
〈z, y〉 = z�n(y)− y��n(z). (16)

7
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Proof. Differentiation implies

d
dx
〈z, y〉 =

n−1

∑
j=0

(−1)j(z[j])′y[n−j−1] +
n−1

∑
j=0

(−1)jz[j](y[n−j−1])′. (17)

From (7) and (15), we obtain

(z[j])′ = z[j+1] +
j+1

∑
s=1

f �j+1,sz[s−1], (y[n−j−1])′ = y[n−j] +
n−j

∑
s=1

fn−j,sy[s−1].

Substituting the latter relations into (17), we obtain

d
dx
〈z, y〉 =

n−1

∑
j=0

(−1)jy[n−j]z[j] +
n−1

∑
j=0

(−1)j
n−j

∑
s=1

fn−j,sy[s−1]z[j]

+
n−1

∑
j=0

(−1)jy[n−j−1]z[j+1] +
n−1

∑
j=0

(−1)j
j+1

∑
s=1

f �j+1,sy[n−j−1]z[s−1].

Note that

n−1

∑
j=0

(−1)jy[n−j]z[j] +
n−1

∑
j=0

(−1)jy[n−j−1]z[j+1] = y[n]z + (−1)n−1yz[n],

n−1

∑
j=0

(−1)j
n−j

∑
s=1

fn−j,sy[s−1]z[j] = ∑
1≤s≤j≤n

(−1)s+1 fn−s+1,n−j+1y[n−j]z[s−1],

n−1

∑
j=0

(−1)j
j+1

∑
s=1

f �j+1,sy[n−j−1]z[s−1] = ∑
1≤s≤j≤n

(−1)j+1 f �j,sy[n−j]z[s−1].

Taking (14) into account, we arrive at (16).

If y and z satisfy the relations �n(y) = λy and ��n(z) = μz, respectively, then (16)
readily implies

d
dx
〈z, y〉 = (λ− μ)yz. (18)

Define �y(x) = col(y[0](x), y[1](x), . . . , y[n−1](x)) and �z(x) = col(z[0](x), z[1](x), . . . ,
z[n−1](x)) by using the corresponding quasi-derivatives (7) and (15), and the matrix J :=
[(−1)k+1δk,n−j+1]

n
k,j=1. Then,

〈z, y〉|x=a = [�z(a)]T J�y(a). (19)

For a = 0, 1, let Ua = [us,j,a]
n
s,j=1 be an (n × n) matrix such that us,j,a = δj,ps,a+1 for

j > ps,a, where ps,a ∈ {0, . . . , n− 1}, and ps,a �= pk,a for s �= k. The matrices Ua define the
linear forms Us,a via (8).

Along with Ua, consider the matrices

U�
a := [J−1

a U−1
a J]T , a = 0, 1, (20)

where Ja = [(−1)p�k,a δk,n−j+1]
n
k,j=1, p�k,a := n − 1 − pn−k+1,a. The matrices U�

a , a = 0, 1,
generate the linear forms

U �
s,a(z) = z[p

�
s,a ](a) +

p�s,a

∑
j=1

u�
s,j,az[j−1](a), s = 1, n, a = 0, 1.

8



Mathematics 2022, 10, 3882

The matrices U�
a are chosen is such a way that the following relation holds:

〈z, y〉|x=a =
n

∑
s=1

(−1)p�s,aU �
s,a(z)Un−s+1,a(y) (21)

for any y ∈ DF, z ∈ DF� . Indeed, the right-hand side of (21) can be represented in the
matrix form

[U�
a�z(a)]T JaUa�y(a),

Taking (19) and (20) into account, we arrive at (21).
Consider the problems L = (F(x), U0, U1) and L� = (F�(x), U�

0 , U�
1 ). For L, the

matrix functions C(x, λ), Φ(x, λ), and M(λ) were defined in the Introduction. For L�,
similarly denote by {C�

k (x, λ)}n
k=1 and {Φ�

k (x, λ)}n
k=1 the solutions of equation ��n(z) = λz,

x ∈ (0, 1), satisfying the conditions

U �
s,0(C

�
k ) = δs,k, s = 1, n,

U �
s,0(Φ

�
k ) = δs,k, s = 1, k, U �

s,1(Φ
�
k ) = 0, s = k + 1, n. (22)

Put C�(x, λ) := [�C�
k (x, λ)]nk=1, Φ�(x, λ) := [�Φ�

k (x, λ)]nk=1. Then, the relation

Φ�(x, λ) = C�(x, λ)M�(λ) (23)

holds, where M�(λ) is the Weyl matrix of the problem L�.

Lemma 2. The following relations hold:

[M�(λ)]T J0M(λ) = J0, (24)

[Φ�(x, λ)]T JΦ(x, λ) = J0. (25)

Proof. The initial conditions (9) are equivalent to U0C(0, λ) = I. Using (11), we obtain
M(λ) = U0Φ(0, λ). Similarly, M�(λ) = U�

0 Φ�(0, λ). Hence,

A(λ) := [M�(λ)]T J0M(λ) = [U�
0 Φ�(0, λ)]T J0U0Φ(0, λ), A(λ) = [Ak,j(λ)]

n
k,j=1,

Ak,j(λ) = [U�
0
�Φ�

k (0, λ)]T J0U0�Φj(0, λ) =
n

∑
s=1

(−1)p�s,0U �
s,0(Φ

�
k )Un−s+1,0(Φj). (26)

On the one hand, using (10), (22), and (26), we obtain Ak,j(λ) = 0 if k + j > n + 1

and Ak,j(λ) = (−1)p�k,0 if k + j = n + 1. On the other hand, (21) and (26) imply Ak,j(λ) =
〈Φ�

k , Φj〉|x=0. It follows from (18) that 〈Φ�
k , Φj〉 does not depend on x. Consequently,

〈Φ�
k , Φj〉|x=0 = 〈Φ�

k , Φj〉|x=1 =
n

∑
s=1

(−1)p�s,1U �
s,1(Φ

�
k )Un−s+1,1(Φj).

Using the boundary conditions (10) and (22) at x = 1, we conclude that Ak,j(λ) = 0 if
k + j < n + 1. Thus, A(λ) = J0 and (24) is proved.

Using the relation Ak,j(λ) = 〈Φ�
k , Φj〉 for k, j = 1, n and (19), we obtain

A(λ) = [Φ�(x, λ)]T JΦ(x, λ).

This implies (25).

2.2. Spectral Data

Consider the Weyl matrix M(λ) of the problem L = (F(x), U0, U1), where F ∈ Fn.
Recall that the poles of the k-th column of M(λ) coincide with the zeros of Δk,k(λ) =

9
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det[Us,1(Cr)]ns,r=k+1. One can easily show that the zeros of Δk,k(λ) coincide with the eigen-
values of the following boundary value problem Lk:

�n(y) = λy, x ∈ (0, 1), Us,0(y) = 0, s = 1, k, Us,1(y) = 0, s = k + 1, n.

By virtue of Theorem 1.1 in [54], the spectrum of Lk is a countable set of eigenvalues
Λk := {λl,k}l≥1 having the following asymptotics (counting with multiplicities):

λl,k = (−1)n−k

(
π

sin πk
n
(l + χk +κl,k)

)n

, (27)

where {κl,k} ∈ l2 and χk are constants which depend only on n, k, and {ps,a}. Hence, for a
fixed k ∈ {1, . . . , n− 1} and sufficiently large l, the eigenvalues λl,k are simple.

Assume that L ∈ W, that is, all the zeros of Δk,k(λ) are simple for k = 1, n− 1. Then,
in view of (12) and (24), the poles of M(λ) and M�(λ) are simple. It follows from (11) and
(23) that the matrix functions Φ(x, λ) and Φ�(x, λ) for each fixed x ∈ [0, 1] also have only
simple poles.

Denote Λ :=
⋃n−1

k=1 Λk. Similarly to N (λ0), denote

N �(λ0) := [M�
〈0〉(λ0)]

−1M�
〈−1〉(λ0), λ0 ∈ Λ. (28)

For λ0 �∈ Λ, we mean that N (λ0) = N �(λ0) = 0.
Let us study some properties of the matrices N (λ0) and N �(λ0). Denote by φ(x, λ)

the first row of the matrix function Φ(x, λ): φ(x, λ) = eT
1 Φ(x, λ) = [Φk(x, λ)]nk=1.

Lemma 3. The following relations hold for each λ0 ∈ Λ: N 2(λ0) = 0,

[N �(λ0)]
T = −J0N (λ0)J−1

0 , (29)

Φ〈−1〉(x, λ0) = Φ〈0〉(x, λ0)N (λ0), Φ�
〈−1〉(x, λ0) = Φ�

〈0〉(x, λ0)N �(λ0), (30)

�n(φ〈0〉(x, λ0)) = λ0φ〈0〉(x, λ0) + φ〈0〉(x, λ0)N (λ0). (31)

Proof. The relation (24) implies

[M(λ)]−1 = J−1
0 [M�(λ)]T J0, (32)

M(λ)J−1
0 [M�(λ)]T = J−1

0 . (33)

It follows from (33) that

M〈−1〉(λ0)J−1
0 [M�

〈−1〉(λ0)]
T = 0, (34)

M〈0〉(λ0)J−1
0 [M�

〈−1〉(λ0)]
T + M〈−1〉(λ0)J−1

0 [M�
〈0〉(λ0)]

T = 0. (35)

Using (13), (28), and (35), we obtain (29). Multiplying (29) by N (λ0) and using (34), we
derive

N (λ0)J−1
0 [N �(λ0)]

T = −N 2(λ0)J−1
0 = 0.

Hence N 2(λ0) = 0.
Using (11) and (32), we obtain

C(x, λ) = Φ(x, λ)[M(λ)]−1 = Φ(x, λ)J−1
0 [M�(λ)]T J0.

Since C(x, λ) is entire in λ for each fixed x ∈ [0, 1], then we obtain

Φ〈0〉(x, λ0)J−1
0 [M�

〈−1〉(λ0)]
T J0 + Φ〈−1〉(x, λ0)J−1

0 [M�
〈0〉(λ0)]

T J0 = 0, λ0 ∈ Λ. (36)

10
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Using (36) and (28), we derive

Φ〈0〉(x, λ0)J−1
0 [N �(λ0)]

T J0 + Φ〈−1〉(x, λ0) = 0.

Taking (29) into account, we arrive at the first relation in (30). The second one is similar.
It follows from the relation �n(φ(x, λ)) = λφ(x, λ) that

�n(φ〈−1〉(x, λ0)) = λ0φ〈−1〉(x, λ0),

�n(φ〈0〉(x, λ0)) = λ0φ〈0〉(x, λ0) + φ〈−1〉(x, λ0).

Using (30), we arrive at (31).

Consider the entries of the matrix N (λ0) = [Nk,j(λ0)]
n
k,j=1. Since M(λ) is unit lower-

triangular, we have Nk,j(λ0) = 0 for all k ≤ j, λ0 ∈ Λ. The structural properties of N (λ0)
are described by the following lemma.

Lemma 4. (i) If λ0 �∈ Λk, then Ns,j(λ0) = 0, s = k + 1, n, j = 1, k.
(ii) If λ0 ∈ Λs for s = ν + 1, k− 1, λ0 �∈ Λν, λ0 �∈ Λk, 1 ≤ ν + 1 < k ≤ n, then

Nk,ν+1(λ0) �= 0. (Here Λ0 = Λn = ∅).

Proof. This lemma is proved similarly to Lemma 2.3.1 in [26], so we outline the proof
briefly. If λ0 �∈ Λk, then Φk,〈−1〉(x, λ0) = 0. On the other hand, it follows from (30) that

Φk,〈−1〉(x, λ0) =
n

∑
s=k+1

Ns,k(λ0)Φs,〈0〉(x, λ0).

Applying the linear forms Us,0 to this relation for s = k + 1, n, we conclude that Ns,k(λ0) =
0, s = k + 1, n. Thus, the assertion (i) is proved for j = k. The proof for j = k− 1, . . . , 2, 1
can be obtained by induction.

In order to prove (ii), we suppose that Δν,ν(λ0) �= 0, Δs,s(λ0) = 0 for s = ν + 1, k− 1.
Then, it can be shown that Us,1(Φs,〈0〉(x, λ0)) �= 0, s = ν + 2, k− 1 and Φν+1,〈−1〉(x, λ0) �≡ 0.
Suppose that Nk,ν+1(λ0) = 0. Consequently, (30) implies

Φν+1,〈−1〉(x, λ0) =
k−1

∑
s=ν+2

Ns,ν+1(λ0)Φs,〈0〉(x, λ0).

Applying the linear forms Us,1 for s = ν + 2, k− 1, we conclude that Ns,ν+1(λ0) = 0,
s = ν + 2, k− 1, and so Φν+1,〈−1〉(x, λ0) ≡ 0. This contradiction yields (ii).

In view of the asymptotics (27), we have λl,k �= λr,k+1 for sufficiently large l and r.
Therefore, Lemma 4 implies the following corollary.

Corollary 1. For sufficiently large |λ0|, λ0 ∈ Λ, all the entries of N (λ0) equal zero except
Nk+1,k(λ0), k = 1, n− 1.

Define the weight numbers βl,k := Nk+1,k(λl,k). It is worth considering βl,k only for
sufficiently large l. It follows from (13) and (12) that

βl,k = Mk+1,k,〈−1〉(λl,k) = −Δk+1,k(λl,k)
d

dλ Δk,k(λl,k)
.

Consequently, Theorem 6.2 from [54] yields the asymptotics

βl,k = ln−1+pk+1,0−pk,0(β0
k +κ

0
l,k), {κ0

l,k} ∈ l2, k = 1, n− 1, (37)

where the constants β0
k depend only on n, k, and {ps,a}.

11
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3. Main Equation

This section is devoted to the constructive solution of the auxiliary Problem 3, that is,
to the recovery of the Weyl solutions {Φk(x, λ)}n

k=1 from the spectral data {λ0,N (λ0)}λ0∈Λ.
We consider this problem for L = (F(x), U0, U1) ∈ W with an arbitrary F ∈ Fn. Thus, the
results of this section can be applied to a wide class of differential expressions (1) with the
associated matrix of Fn.

Along with L, we consider another problem L̃ = (F̃(x), Ũ0, Ũ1) of the same form
but with different coefficients. Assume that F̃ ∈ Fn, ps,a = p̃s,a, s = 1, n, a = 0, 1. The
quasi-derivatives for L̃ are defined by the matrix F̃(x), so they are different from the quasi-
derivatives of the problem L. The problem L̃� is defined similarly to L�. For simplicity,
we assume that L̃ ∈ W. The case L̃ ∈ W requires technical modifications (see Remark 1).
Denote I := Λ ∪ Λ̃.

In Section 3.1, we reduce the studied problem to the infinite system (68) of linear
equations with respect to some entries of φ〈0〉(x, λ0), λ0 ∈ I . Our technique is based on the
contour integration in the λ-plane and on the Residue theorem. In Section 3.2, the system
(68) is transformed into the main Equation (80) in the Banach space m of infinite bounded
sequences. The unique solvability of the main equation is proved. Finally, we arrive at the
constructive Algorithm 1 for finding {Φk(x, λ)}n

k=1 by the spectral data. This algorithm is
used in the next section for solving the inverse spectral problem.

3.1. Contour Integration

In order to formulate and prove the main lemma of this subsection (Lemma 6), we
first need some preliminaries. Introduce the notations

D(x, μ, λ) := (λ− μ)−1[Φ(x, μ)]−1Φ(x, λ), D̃(x, μ, λ) := (λ− μ)−1[Φ̃(x, μ)]−1Φ̃(x, λ), (38)

D〈α〉(x, λ0, λ) := [D(x, μ, λ)]
〈α〉
|μ=λ0

, α ∈ Z. (39)

and similarly define D̃〈α〉(x, λ0, λ).

Lemma 5. The following relations hold:

D〈−1〉(x, λ0, λ) = −N (λ0)D〈0〉(x, λ0, λ), (40)

[D(x, μ, λ)]
〈−1〉
|λ=λ0

= [D(x, μ, λ)]
〈0〉
|λ=λ0

N (λ0), (41)

[(λ− λ0)I +N (λ0)]D〈0〉(x, λ0, λ) = J−1
0 〈[φ�

〈0〉(x, λ0)]
T , φ(x, λ)〉, (42)

D′(x, μ, λ) = J−1
0 [φ�(x, μ)]Tφ(x, λ). (43)

Proof. Using (25) and (38), we obtain

D(x, μ, λ) = (λ− μ)−1 J−1
0 [Φ�(x, μ)]T JΦ(x, λ). (44)

It follows from (44) and (39) that

D〈−1〉(x, λ0, λ) = (λ− λ0)
−1 J−1

0 [Φ�
〈−1〉(x, λ0)]

T JΦ(x, λ), (45)

D〈0〉(x, λ0, λ) = (λ− λ0)
−1 J−1

0 [Φ�
〈0〉(x, λ0)]

T JΦ(x, λ) + (λ− λ0)
−2 J−1

0 [Φ�
〈−1〉(x, λ0)]

T JΦ(x, λ). (46)

Using (45) and (46) together with Lemma 3, we derive (40). The relation (41) is proved
similarly.

It follows from (19) that

[Φ�(x, μ)]T JΦ(x, λ) = 〈[φ�(x, μ)]T , φ(x, λ)〉. (47)

12
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Using (45), (46), and (47), we obtain

(λ− λ0)D〈0〉(x, λ0, λ) = J−1
0 〈[φ�

〈0〉(x, μ)]T , φ(x, λ)〉+ D〈−1〉(x, λ0, λ).

Taking (40) into account, we arrive at (42).
In order to prove (43), we combine (44), (47), and (18):

D′(x, μ, λ) = (λ− μ)−1 J−1
0

d
dx
〈[φ�(x, μ)]T , φ(x, λ)〉 = J−1

0 [φ�(x, μ)]Tφ(x, λ).

Put N̂ (λ0) := N (λ0)− Ñ (λ0). Below, in this section, we suppose that x ∈ [0, 1] is
fixed.

Lemma 6. The following relations hold:

φ(x, λ) = φ̃(x, λ) + ∑
λ0∈I

φ〈0〉(x, λ0)N̂ (λ0)D̃〈0〉(x, λ0, λ), (48)

D(x, μ, λ)− D̃(x, μ, λ) = ∑
λ0∈I

[D(x, μ, ξ)]
〈0〉
ξ=λ0

N̂ (λ0)D̃〈0〉(x, λ0, λ), (49)

where the series converge in the sense

∑
λ0∈I

= lim
R→∞

∑
λ0∈IR

, IR := {λ ∈ I : |λ| < R},

uniformly by λ, μ on compact sets of (C \ I).

Proof. In this proof, a crucial role is played by the matrix of spectral mappings

P(x, λ) = Φ(x, λ)[Φ̃(x, λ)]−1. (50)

It follows from (25) and (50) that

P(x, λ) = Φ(x, λ)J−1
0 [Φ̃�(x, λ)]T J. (51)

The proof consists of three steps.

STEP 1. REGIONS AND CONTOURS. Choose a circle C∗ := {λ ∈ C : |λ| < λ∗} of
sufficiently large radius λ∗. Choose the n

√
λ branch so that arg( n

√
λ) ∈

(
− π

2n , 3π
2n

)
. Then, it

follows from the asymptotics (27) that the roots ρ0 := n
√

λ0 of the eigenvalues λ0 ∈ (I \ C∗)
lie in the two strips

Sj := {ρ : Re (εjρ) > 0, |Im(εjρ)| < c}, εj := exp(−2πij/n), j = 0, 1, (52)

for an appropriate choice of the constant c. More precisely, n
√

λl,k ∈ S0 if (n− k) is even
and n

√
λl,k ∈ S1 otherwise. For j = 0, 1, denote by Ξj the image of Sj in the λ-plane under

the mapping λ = ρn. Put Ξ := Ξ0 ∪ Ξ1 ∪ C∗. Clearly, I ⊂ Ξ.
Furthermore, fix a sufficiently small δ > 0 and define the regions

Sj,δ := {ρ ∈ Sj : ∃ρ0 ∈ Sj ∩ I s.t. |ρ− ρ0| < δ}, j = 0, 1.

For j = 0, 1, denote by Ξj,δ the image of Sj in the λ-plane under the mapping λ = ρn. Put

Hδ := C \ (Ξ1,δ ∪ Ξ2,δ ∪ C∗).

13
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Let λ = ρn, Θ(ρ) := diag{1, ρ, . . . , ρn−1}. It can be shown in the standard way (see, e.g.,
the relation (2.1.37) in [26], and the proof of Theorem 2 in [9]) that

P(x, λ) = Θ(ρ)(I + o(1))[Θ(ρ)]−1, |λ| → ∞, (53)

uniformly with respect to λ ∈ Hδ.
For sufficiently large values of R > 0, define the regions (see Figure 1):

ΞR := {λ ∈ Ξ : |λ| < R}, Ξ±R := {λ : |λ| < R, λ �∈ Ξ, ±Imλ > 0},

and their boundaries γR := ∂ΞR, γ±R := ∂Ξ±R with the counter-clockwise circuit. Below, we
consider only such radii R that γR ⊂ Hδ.

ΞR

Ξ+
R

Ξ−R

Figure 1. Contours.

STEP 2. CONTOUR INTEGRATION. In view of (51), the matrix function P(x, λ) is
meromorpic in λ with the poles I . Hence, P(x, λ) is analytic in Ξ±R . Let P1(x, λ) be the
first row of P(x, λ). The Cauchy formula implies

P1(x, λ)− eT
1 = − 1

2πi

∮
γ±R

P1(x, ξ)− eT
1

λ− ξ
dξ, λ ∈ Ξ±R ,

P(x, λ)−P(x, μ)

λ− μ
= − 1

2πi

∮
γ±R

P(x, ξ)

(λ− ξ)(ξ − μ)
dξ, λ, μ ∈ Ξ±R .

Consequently,

P1(x, λ) = eT
1 +

1
2πi

∮
γR

P1(x, ξ)

λ− ξ
dξ − 1

2πi

∮
|ξ|=R

P1(x, ξ)− eT
1

λ− ξ
dξ, (54)

P(x, λ)−P(x, μ)

λ− μ
=

1
2πi

∮
γR

P(x, ξ)

(λ− ξ)(ξ − μ)
dξ − 1

2πi

∮
|ξ|=R

P(x, ξ)

(λ− ξ)(ξ − μ)
dξ. (55)

Using (38), (50), (54), and (55), we derive

φ(x, λ) = P1(x, λ)Φ̃(x, λ) = φ̃(x, λ) +
1

2πi

∮
γR

P1(x, ξ)Φ̃(x, λ)

λ− ξ
dξ + ε1

R(x, λ), (56)

D(x, μ, λ)− D̃(x, μ, λ) =
[Φ(x, μ)]−1(P(x, λ)−P(x, μ))Φ̃(x, λ)

λ− μ

14
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=
1

2πi

∮
γR

[Φ(x, μ)]−1Φ(x, ξ)

ξ − μ

[Φ̃(x, ξ)]−1Φ̃(x, λ)

λ− ξ
dξ + ε2

R(x, μ, λ)

=
1

2πi

∮
γR

D(x, μ, ξ)D̃(x, ξ, λ) dξ + ε2
R(x, μ, λ), (57)

where

ε1
R(x, λ) :=− 1

2πi

∮
|ξ|=R

(P1(x, ξ)− eT
1 )Φ̃(x, λ)

λ− ξ
dξ,

ε2
R(x, μ, λ) :=− 1

2πi

∮
|ξ|=R

[Φ(x, μ)]−1P(x, ξ)Φ̃(x, λ)

(λ− ξ)(ξ − μ)
dξ.

It follows from (53) that

lim
R→∞

γR⊂Hδ

ε1
R(x, λ) = 0, lim

R→∞
γR⊂Hδ

ε2
R(x, μ, λ) = 0. (58)

STEP 3. RESIDUES. Using the first row of (51):

P1(x, λ) = φ(x, λ)J−1
0 [Φ̃�(x, λ)]T J

and the Residue theorem, we obtain

1
2πi

∮
γR

P1(x, ξ)Φ̃(x, λ)

λ− ξ
dξ = ∑

λ0∈IR

Res
ξ=λ0

φ(x, ξ)D̃(x, ξ, λ). (59)

Using (56), (58), and (59), we obtain

φ(x, λ) = φ̃(x, λ) + ∑
λ0∈I

(φ〈−1〉(x, λ0)D̃〈0〉(x, λ0, λ) + φ〈0〉(x, λ0)D̃〈−1〉(x, λ0, λ)). (60)

It follows from (30) that
φ〈−1〉(x, λ0) = φ〈0〉(x, λ0)N (λ0). (61)

Substituting (40) for D̃〈−1〉(x, λ0, λ) and (61) into (60), we derive the relation (48).
It remains to prove (49). Using Lemma 5, we derive

Res
ξ=λ0

D(x, μ, ξ)D̃(x, ξ, λ) = [D(x, μ, ξ)]
〈−1〉
|ξ=λ0

D̃〈0〉(x, λ0, λ) + [D(x, μ, ξ)]
〈0〉
|ξ=λ0

D̃〈−1〉(x, λ0, λ)

= [D(x, μ, ξ)]
〈0〉
|ξ=λ0

N̂ (λ0)D̃〈0〉(x, λ0, λ).
(62)

Combining (57), (58), and (62) all together and applying the Residue theorem, we arrive at
(49).

Now, (48) and (49) are proved only for λ, μ ∈ (C \ Ξ). Using analytic continuation, we
conclude that these relations hold for λ, μ ∈ (C \ I).

Our next goal is to obtain an infinite system of linear equations with respect to some
entries of φ〈0〉(λ0), λ0 ∈ I . Introduce the ordered set

V := {(l, k, ε) : l ≥ 1, k ∈ {1, . . . , n− 1}, ε ∈ {0, 1}.

For v = (l, k, ε), v0 = (l0, k0, ε0) and v, v0 ∈ V, we mean that v < v0 if l < l0 or (l =
l0 and k < k0) or (l = l0, k = k0 and ε < ε0). Denote

λl,k,0 := λl,k, λl,k,1 := λ̃l,k, N0(λ0) := N (λ0), N1(λ0) := Ñ (λ0), (63)
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ϕl,k,ε(x) := Φk+1,〈0〉(x, λl,k,ε), ϕ̃l,k,ε(x) := Φ̃k+1,〈0〉(x, λl,k,ε), (64)

P̃l,k,ε(x, λ) := eT
k+1Nε(λl,k,ε)D̃〈0〉(x, λl,k,ε, λ), (65)

G̃(l,k,ε),(l0,k0,ε0)
(x) := [P̃l,k,ε(x, λ)]

〈0〉
λ=λl0,k0,ε0

ek0+1, (66)

and similarly define Pl,k,ε(x, λ), G(l,k,ε),(l0,k0,ε0)
(x). Using these notations, we obtain the

following corollary of Lemma 6.

Corollary 2. The following relations hold:

φ(x, λ) = φ̃(x, λ) + ∑
(l,k,ε)∈V

(−1)ε ϕl,k,ε(x)P̃l,k,ε(x, λ), (67)

ϕl0,k0,ε0(x) = ϕ̃l0,k0,ε0(x) + ∑
(l,k,ε)∈V

(−1)ε ϕl,k,ε(x)G̃(l,k,ε),(l0,k0,ε0)
(x), (68)

G(l0,k0,ε0),(l1,k1,ε1)
(x)− G̃(l0,k0,ε0),(l1,k1,ε1)

(x) = ∑
(l,k,ε)∈V

(−1)εG(l0,k0,ε0),(l,k,ε)(x)G̃(l,k,ε),(l1,k1,ε1)
(x), (69)

where x ∈ [0, 1], (l0, k0, ε0), (l1, k1, ε1) ∈ V.

Proof. Taking Lemma 4 on the structure of N (λ0) and Ñ (λ0) into account, we rewrite (48)
in the form

φ(x, λ) = φ̃(x, λ) + ∑
(l,k,ε)∈V

(−1)εΦk+1,〈0〉(x, λl,k,ε)eT
k+1Nε(λl,k,ε)D̃〈0〉(x, λl,k,ε, λ).

Using (64) and (65), we arrive at (67). Taking the (k0 + 1)-th entry in the relation (67),
putting λ = λl0,k0,ε0 , and using (64) and (66), we readily obtain (68).

Analogously, we represent (49) as follows:

D(x, μ, λ)− D̃(x, μ, λ) = ∑
(l,k,ε)∈V

(−1)ε[D(x, μ, ξ)]
〈0〉
ξ=λl,k,ε

ek+1eT
k+1Nε(λl,k,ε)D̃〈0〉(x, λl,k,ε, λ).

Passing from D(x, μ, λ) and D̃(x, μ, λ) to Pl0,k0,ε0(x, λ) and P̃l0,k0,ε0(x, λ), respectively, we
derive

Pl0,k0,ε0(x, λ)− P̃l0,k0,ε0(x, λ) = ∑
(l,k,ε)∈V

(−1)ε[Pl0,k0,ε0(x, ξ)]
〈0〉
ξ=λl,k,ε

ek+1P̃l,k,ε(x, λ).

Using (66) and the analogous relation for G(l,k,ε),(l0,k0,ε0)
(x), we finally arrive (69).

The relations (68) can be considered as an infinite linear system with respect to ϕl,k,ε(x),
(l, k, ε) ∈ V. However, it is inconvenient to use (68) as the main equation system for the
inverse problem, because the series in (68) converges only “with brackets”:

∑
(l,k,ε)∈V

= ∑
(l,k)

(
∑

ε=0,1
(. . . )

)
.

Therefore, in the next section, we transform the system (68) to a linear equation in a suitable
Banach space. The relation (69) is used to prove the unique solvability of the main equation.

Remark 1. If L̃ �∈ W, that is, the poles of M̃(λ) are not necessarily simple, then this influences the
calculation of the residues in (59). Consequently, we obtain the following relation instead of (48):

φ(x, λ) = φ̃(x, λ) + ∑
λ0∈I

[
φ〈0〉(x, λ0)(N (λ0)D̃〈0〉(x, λ0, λ) + D̃〈−1〉(x, λ0, λ))
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+

mλ0
−1

∑
k=1

φ〈k〉(x, λ0)D̃〈−(k+1)〉(x, λ0, λ)

]
, (70)

where mλ0 is the multiplicity of λ0 ∈ Λ̃. Using (70), one can derive an infinite system analogous to
(68), containing not only entries of the vectors φ〈0〉(x, λ0) but also of φ〈k〉(x, λ0) for k = 1, mλ0 − 1.

3.2. Linear Equation in a Banach Space

Define the numbers {ξl}, which characterize “the difference” of the two spectral data
sets {λ0,N (λ0)}λ0∈Λ and {λ̃0, Ñ (λ̃0)}λ̃0∈Λ̃:

ξl :=
n−1

∑
k=1

(
|λl,k − λ̃l,k|+

n

∑
j=k+1

|Nj,k(λl,k)− Ñj,k(λ̃l,k)|lpk,0−pk+1,0

)
l1−n, l ≥ 1. (71)

Taking Corollary 1 into account, we reduce (71) to the following form for all sufficiently
large values of l:

ξl =
n−1

∑
k=1

(
|λl,k − λ̃l,k|+ |βl,k − β̃l,k|lpk,0−pk+1,0

)
l1−n. (72)

Relation (72), together with the asymptotics (27) and (37), implies {ξl} ∈ l2.

Lemma 7. The following estimates hold for (l, k, ε), (l0, k0, ε0) ∈ V:

|ϕl,k,ε(x)| ≤ Cwl,k(x), |ϕl,k,0(x)− ϕl,k,1(x)| ≤ Cwl,k(x)ξl ,

|G(l,k,ε),(l0,k0,ε0)
(x)| ≤ C

|l − l0|+ 1
· wl0,k0(x)

wl,k(x)
,

|G(l,k,0),(l0,k0,ε0)
(x)− G(l,k,1),(l0,k0,ε0)

(x)| ≤ Cξl
|l − l0|+ 1

· wl0,k0(x)
wl,k(x)

,

|G(l,k,ε),(l0,k0,0)(x)− G(l,k,ε),(l0,k0,1)(x)| ≤ Cξl0
|l − l0|+ 1

· wl0,k0(x)
wl,k(x)

,

|G(l,k,0),(l0,k0,0)(x)− G(l,k,0),(l0,k0,1)(x)− G(l,k,1),(l0,k0,0)(x) + G(l,k,1),(l0,k0,1)(x)| ≤
Cξlξl0

|l − l0|+ 1
· wl0,k0(x)

wl,k(x)
,

where
wl,k(x) := l−pk+1,0 exp(−xl cot(kπ/n)),

and the constant C does not depend on x, l, ε, k, l0, ε0, k0.

The proof of Lemma 7 repeats the technique of ([26], Section 2.3.3), so we omit it. The
similar estimates are valid for ϕ̃l,k,ε(x) and G̃(l0,k0,ε0),(l,k,ε)(x).

Put θl := ξ−1
l if ξl �= 0 and θl = 0 otherwise. Introduce the notations[

ψl,k,0(x)
ψl,k,1(x)

]
:= w−1

l,k (x)
[

θl −θl
0 1

][
ϕl,k,0(x)
ϕl,k,1(x)

]
, (73)

[
R(l0,k0,0),(l,k,0)(x) R(l0,k0,0),(l,k,1)(x)
R(l0,k0,1),(l,k,0)(x) R(l0,k0,1),(l,k,1)(x)

]
:=

wl,k(x)
wl0,k0(x)

[
θl0 −θl0
0 1

][
G(l,k,0),(l0,k0,0)(x) G(l,k,1),(l0,k0,0)(x)
G(l,k,0),(l0,k0,1)(x) G(l,k,1),(l0,k0,1)(x)

][
ξl 1
0 −1

]
. (74)
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For brevity, put ψv(x) := ψl,k,ε(x), Rv0,v(x) := R(l0,k0,ε0),(l,k,ε)(x), v = (l, k, ε), v0 =

(l0, k0, ε0), v, v0 ∈ V. The functions ψ̃v(x) and R̃v0,v(x) are defined analogously.
Using (68) and (69), and the above notations, we obtain

ψv0(x) = ψ̃v0(x) + ∑
v∈V

R̃v0,v(x)ψv(x), v0 ∈ V, (75)

Rv1,v0(x)− R̃v1,v0(x) = ∑
v∈V

R̃v1,v(x)Rv,v0(x), v1, v0 ∈ V. (76)

Lemma 7 yields the estimates

|ψv(x)| ≤ C, |Rv0,v(x)| ≤ Cξl
|l − l0|+ 1

, v, v0 ∈ V, (77)

and the similar estimates for ψ̃v(x), R̃v0,v(x). Consequently, the Cauchy—Bunyakovsky-
Schwarz inequality

∑
l

ξl
|l − l0|+ 1

≤
(

∑
l

ξ2
l

)1/2(
∑

l

1
(|l − l0|+ 1)2

)1/2

< ∞, (78)

implies the absolute convergence of the series in (75) and (76).
Consider the Banach space m of bounded infinite sequences α = [αv]v∈V with the

norm ‖α‖m = ∑
v∈V

|αv|. Obviously, ψ(x), ψ̃(x) ∈ m for each fixed x ∈ [0, 1]. Define the linear

operator R(x) = [Rv0,v(x)]v0,v∈V acting on an element α = [αv]v∈V ∈ m by the following
rule:

[R(x)α]v0 = ∑
v∈V

Rv0,v(x)αv, v0 ∈ V. (79)

The operator R̃(x) = [R̃v0,v(x)]v0,v∈V is defined similarly. It follows from (77) and (78) that
the operators R(x), R̃(x) are bounded from m to m for each fixed x ∈ [0, 1]. Denote by I the
unit operator in m.

Using the introduced notations, we obtain the following theorem on the main equation
and its unique solvability.

Theorem 1. For each fixed x ∈ [0, 1], the linear operator R(x) is compact in m and can be
approximated by finite-rank operators: R(x) = lim

N→∞
RN(x). The same properties are valid for

R̃(x). Furthermore, the following relation holds

(I− R̃(x))ψ(x) = ψ̃(x), x ∈ [0, 1], (80)

which is called the main equation of the inverse problem. The operator (I + R̃(x)) has a bounded
inverse of form

(I− R̃(x))−1 = I + R(x). (81)

Thus, the main Equation (80) is uniquely solvable in m for each fixed x ∈ [0, 1].

Proof. For N ∈ N, define the index set VN := {v = (l, k, ε) ∈ V : l ≤ N} and the finite-rank
operator RN(x):

[RN(x)α]v0 = ∑
v∈VN

Rv0,v(x)αv. (82)

Using (77)–(82), we show that

‖R(x)− RN(x)‖m→m = sup
v0∈V

∑
v∈(V\VN)

|Rv0,v(x)| ≤ sup
l0

∑
l≥N

Cξl
|l − l0|+ 1

→ 0, N → ∞.

Hence, the operator R(x) is compact.
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According to our notations, the relations (75) and (76) take the form (80) and

R(x)− R̃(x) = R̃(x)R(x),

respectively. The latter relation implies (81), which completes the proof.

Thus, we arrive at the following algorithm for solving Problem 3.

Algorithm 1: Suppose that the spectral data {λ0,N (λ0)}λ0∈Λ of the problem L ∈ W
are given. We have to find the Weyl solutions {Φk(x, λ)}n

k=1.

1. Choose an arbitrary model problem L̃ ∈ W with p̃s,a = ps,a, s = 1, n, a = 0, 1. In
particular, one can take F̃(x) = [δk+1,j]

n
k,j=1, Ũa = [δj,ps,a+1]

n
s,j=1.

2. For the problem L̃, find the matrix function Φ̃(x, λ) and then D̃(x, μ, λ) by (38).
3. Using Φ̃(x, λ), D̃(x, μ, λ), the spectral data {λ0,N (λ0)}λ0∈Λ, {λ̃0, Ñ (λ̃0)}λ̃0∈Λ̃,

and the notations (63), find ϕ̃l,k,ε(x), P̃l,k,ε(x, λ), and G̃(l,k,ε),(l0,k0,ε0)
for

(l, k, ε), (l0, k0, ε0) ∈ V via (64), (65), and (66), respectively.
4. Construct the infinite sequence ψ̃(x) and the operator R̃(x) by using (73) and (74)

(with tilde), respectively.
5. Find ψ(x) by solving the main Equation (80).
6. Find {ϕl,k,ε(x)}(l,k,ε)∈V from (73):[

ϕl,k,0(x)
ϕl,k,1(x)

]
= wl,k(x)

[
ξl 1
0 1

][
ψl,k,0(x)
ψl,k,1(x)

]
7. Construct φ(x, λ) = [Φk(x, λ)]nk=1 by (67).

4. Reconstruction Formulas

In this section, we use the solution ψ(x) of the main Equation (80) to obtain the solution
of Problem 2 for some classes of differential operators. We derive the reconstruction
formulas in the form of series for the coefficients {τν}n−2

ν=0 of the differential expression (1).
In Section 4.1, the general approach to obtaining reconstruction formulas is described.

However, for certain classes of the coefficients {τν}n−2
ν=0, the convergence of the obtained

series has to be studied in the corresponding spaces. Therefore, in Section 4.2, we prove an
auxiliary lemma on the series convergence. In Sections 4.3–4.5, we study the three classes
of operators:

(i) n = 3, τ0 ∈ W−1
2 (0, 1), τ1 ∈ L2(0, 1);

(ii) n is even, τν ∈ L2(0, 1), ν = 0, n− 2;
(iii) n is even, τν ∈ W−1

2 (0, 1), ν = 0, n− 2.

For each case, we provide the uniqueness theorem of the inverse problem solution in
an appropriate statement, obtain reconstruction formulas, and prove the convergence of
the series, and so obtain constructive algorithms for solving Problem 2. For the cases (ii)
and (iii), we recover the coefficients τn−2, τn−3, . . . , τ1, τ0 one-by-one in order to achieve
the convergence estimates for the corresponding series. The even order in (ii) and (iii)
is considered for definiteness. Similar ideas can be applied to the odd-order differential
operators. For simplicity, in all the three cases, we choose such boundary conditions that
their coefficients cannot be uniquely recovered from the spectral data and so do not consider
their reconstruction. However, for other types of boundary conditions, the recovery of their
coefficients also can be studied similarly to the regular case (see Lemma 2.3.7 in [26]).

Let us introduce some notations used throughout this section. Note that the collection
{λl,k,ε}(l,k,ε)∈V may contain multiple eigenvalues for a fixed ε ∈ {0, 1}: λl,k,ε = λl0,k0,ε,
(l, k) �= (l0, k0). In order to exclude such values, we define the set

V′ := {(l, k, ε) ∈ V : � ∃(l0, k0, ε) ∈ V s.t. (l0, k0) < (l, k) and λl0,k0,ε = λl,k,ε}.
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In this section, we use the following notations for an index v = (l, k, ε) ∈ V′:

λv := λl,k,ε, φv(x) := φ〈0〉(x, λv), P̃v(x, λ) := (−1)εNε(λv)D̃〈0〉(x, λv, λ), (83)

cv := (−1)εNε(λv)J−1
0 , g̃v(x) := [φ̃�

〈0〉(x, λv)]
T . (84)

Additionally, define the scalar functions

η̃l,k,ε(x) := (−1)εeT
k+1Nε(λl,k,ε)J−1

0 [φ̃�
〈0〉(x, λl,k,ε)]

T , v ∈ V. (85)

4.1. General Approach

In terms of the notations (83), the relation (48) can be rewritten as

φ(x, λ) = φ̃(x, λ) + ∑
v∈V′

φv(x)P̃v(x, λ).

Formal calculations show that

�n(φ(x, λ)) = �n(φ̃(x, λ)) + ∑
v∈V′

�n(φv(x)P̃v(x, λ)).

Recall that
�n(φ(x, λ)) = λφ(x, λ), �̃n(φ̃(x, λ)) = λφ̃(x, λ),

and, by virtue of (31),
�n(φv(x)) = λvφv(x) + φv(x)N0(λv).

Define �̂n(y) := �n(y)− �̃n(y). Consequently,

λ(φ(x, λ)− φ̃(x, λ))− ∑
v∈V′

�n(φv(x))P̃v(x, λ) = ∑
v∈V′

φv(x)[(λ− λv)I −N0(λv)]P̃v(x, λ)

= �̂n(φ̃(x, λ)) + ∑
v∈V′

�n(φv(x)P̃v(x, λ))− ∑
v∈V′

�n(φv(x))P̃v(x, λ). (86)

Using (83) and (42), we derive

[(λ− λv)−N0(λv)]P̃v(x, λ) =(−1)εNε(λv)J−1
0 〈[φ̃�

v(x)]T , φ̃(x, λ)〉
+ (−1)ε+1[Nε(λv)N1(λv) +N0(λv)Nε(λv)]D̃〈0〉(x, λ0, λ).

The summation yields

∑
v∈V′

φv(x)[(λ− λv)I −N0(λv)]P̃v(x, λ) = ∑
v∈V′

φv(x)cv〈g̃v(x), φ̃(x, λ)〉, (87)

where cv and g̃v(x) are defined by (84). Combining (86) and (87) together, we obtain

∑
v∈V′

φv(x)cv〈g̃v(x), φ̃(x, λ)〉 = �̂n(φ̃(x, λ)) + ∑
v∈V′

�n(φv(x)P̃v(x, λ))− ∑
v∈V′

�n(φv(x))P̃v(x, λ). (88)

Suppose that the differential expression y[n] = �n(y) has the form (1). Then, �n(y) can
be formally represented as

�n(y) = y(n) +
n−2

∑
s=0

ps(x)y(s), (89)

where

ps =
min{s,�n/2�−1}

∑
k=s/2�

Cs−k
k [τ

(2k−s)
2k + τ

(2k−s+1)
2k+1 ] +

min{s,�(n−1)/2�}−1

∑
k=(s−1)/2�

2Cs−k−1
k τ

(2k+1−s)
2k+1 . (90)
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(We assume that τn−1(x) ≡ 0). Suppose that �̃n(y) has a form similar to (89) with the
coefficients p̃s(x), so

�̂n(y) :=
n−2

∑
s=0

p̂s(x)y(s), p̂s := ps − p̃s. (91)

Using (89), we derive

�n(φvP̃v) = �n(φv)P̃v +
n

∑
k=1

Ck
n ∑

v∈V′
φ
(n−k)
v P̃(k)

v +
n−2

∑
k=1

pk

k

∑
r=1

Cr
k ∑

v∈V′
φ
(k−r)
v P̃(r)

v . (92)

The relations (43) and (83) imply

P̃′v(x, λ) = cvg̃v(x)φ̃(x, λ). (93)

Substituting (92) into (93) and grouping the terms at φ̃(s)(x, λ), we obtain

�n(φvP̃v)− �n(φv)P̃v =
n−1

∑
s=0

tn,sφ̃(s) +
n−3

∑
s=0

n−2

∑
k=s+1

pktk,sφ̃(s), (94)

where

tk,s(x) :=
k−1

∑
r=s

Cr+1
k Cs

r Tk−r−1,r−s(x), Tj1,j2(x) := ∑
v∈V′

φ
(j1)
v (x)cvg̃(j2)

v (x). (95)

Combining (88), (91), and (94) all together, we arrive at the relation

∑
v∈V′

φv(x)cv〈g̃v(x), φ̃(x, λ)〉 =
n−2

∑
s=0

p̂s(x)φ̃(s)(x, λ) +
n−1

∑
s=0

tn,s(x)φ̃(s)(x, λ)

+
n−3

∑
s=0

n−2

∑
k=s+1

pk(x)tk,s(x)φ̃(s)(x, λ) (96)

For definiteness, suppose that p̃s(x) = 0, s = 0, n− 2. Then, y[s] = y(s), s = 0, n, for the
problem L̃, and so

〈g̃v(x), φ̃(x, λ)〉 =
n−1

∑
s=0

(−1)n−s−1 g̃(n−s−1)
v (x)φ̃(s)(x, λ).

Therefore, combining the terms at φ̃(s)(x, λ), we obtain the formulas for finding the
coefficients

ps = (−1)n−s−1 ∑
v∈V′

φv(x)cvg̃(n−s−1)
v (x)− tn,s(x)−

n−2

∑
k=s+1

pk(x)tk,s(x), (97)

where s = n− 2, n− 1, . . . , 1, 0. These formulas coincide with the ones for the regular case
(see ([26]), Lemma 2.3.7).

Using the relations (90) and (97), one can find τν for ν = n− 2, n− 3, . . . , 1, 0. However,
the Formulas (97) have been obtained by formal calculations. They can be used for recon-
struction if the coefficients {τν}n−2

ν=0 are so smooth that the series in (95) and (97) converge.
If the coefficients {τν}n−2

ν=0 are nonsmooth or even distributional, then the convergence of
the series is a nontrivial question, which should be investigated separately for different
classes of operators. For some classes, this question is considered in Sections 4.3–4.5.

4.2. Series Convergence

In this subsection, we prove the following auxiliary lemma.

21



Mathematics 2022, 10, 3882

Lemma 8. Suppose that j1, j2 ∈ {0, 1, . . . , n − 1} and {l(j1+j2)ξl} ∈ l2. Then, there exist
constants {Av}v∈V′ , such that the series

∑
v∈V′

(φ
[j1]
v (x)cvg̃[j2]v (x)− Av) (98)

converges in L2(0, 1). Moreover, if {l(j1+j2)ξl} ∈ l1, then the series

∑
v∈V′

φ
[j1]
v (x)cvg̃[j2]v (x) (99)

converges absolutely and uniformly on [0, 1].

Here, and below, the quasi-derivatives for φv(x) are generated by the matrix F(x)
and for g̃v(x), by F̃�(x). In order to prove Lemma 8, we need to formulate preliminary
propositions.

Consider the sector Γ1 =
{

ρ ∈ C : 0 < arg ρ < π
n
}

. Denote by {ωk}n
k=1 the roots of the

equation ωn = 1, numbered so that

Re (ρω1) < Re (ρω2) < · · · < Re (ρωn), ρ ∈ Γ1.

In addition, define the extended sector

Γ1,h :=
{

ρ ∈ C : ρ + h exp
( iπ

2n
)
∈ Γ1

}
, h > 0.

In the proof of Lemma 8, we need the following proposition on the Birkhoff-type
solutions of Equation (4) with certain asymptotic behavior as |ρ| → ∞.

Proposition 1 ([2]). For some ρ∗ > 0, Equation (4) has a fundamental system of solutions
{yk(x, ρ)}n

k=1 whose quasi-derivatives y[j]k (x, ρ), k = 1, n, j = 0, n− 1 are continuous for x ∈
[0, 1], ρ ∈ Γ1,h, |ρ| ≥ ρ∗, analytic in ρ ∈ Γ1,h, |ρ| > ρ∗ for each fixed x ∈ [0, 1], and satisfy the
relation

y[j]k (x, ρ) = (ρωk)
j exp(ρωkx)(1 + ζ jk(x, ρ)),

where
max
j,k,x

|ζ jk(x, ρ)| ≤ C(Υ(ρ) + |ρ|−1), ρ ∈ Γ1,h, |ρ| ≥ ρ∗,

and Υ(ρ) fulfills the condition {Υ(ρl)} ∈ l2 for any noncondensing sequence {ρl} ⊂ Γ1,h.

Consider the strip S0 defined by (52). Clearly, for a suitable choice of h and c, we
have S0 ⊂ Γ1,h and λl,k,ε = ρn

l,k,ε, ρl,k,ε ∈ S0 for even (n − k) and for sufficiently large l.
Furthermore, in this section, we confine ourselves to considering even (n− k), since the
case of odd (n− k) is similar.

Proposition 2. Suppose that k ∈ {1, 2, . . . , n− 1} and (n− k) is even. Then, the Weyl solution
can be expanded as

Φk+1(x, λ) =
n

∑
s=1

bs,k+1(ρ)ys(x, ρ), λ = ρn, ρ ∈ S0,

where the coefficients bs,k+1(ρ) are analytic in ρ ∈ S0, |ρ| ≥ ρ∗ and fulfill the estimate

bs,k+1(ρ) = O

(
ρ−pk+1,0

i f s>k+1
× exp(ρ(ωk+1 −ωs))

)
. (100)

Proof. The properties of the coefficient bs,k+1(ρ) follow from the certain formulas for these
coefficients obtained in the proof of Lemma 3 in [9].
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Proposition 3. Let z be a nonzero complex with Re z ≤ 0, and let {κl}l≥1 ∈ l2. Then, the series
∑

l≥1
κl exp(zlx) converges in L2(0, 1).

Proof of Lemma 8. Let j1, j2 ∈ {0, 1, . . . , n− 1} be fixed. In order to prove the convergence
of the series (98) and (99), it is sufficient to consider their terms for v = (l, k, ε) with
sufficiently large l. For technical simplicity, let us assume that λl1,k1,ε �= λl2,k2,ε for any
sufficiently large l1, l2, such that l1 �= l2. In view of Corollary 1, we have

∑
v: l is fixed

φ
[j1]
v (x)cvg̃[j2]v (x) =

n−1

∑
k=1

(−1)n−1−pk,0Zl,k(x), (101)

Zl,k(x) := ∑
ε=0,1

(−1)εβl,k,ε ϕ
[j1]
l,k,ε(x)ϕ̃

�[j2]
l,n−k,ε(x),

where

ϕ
[j1]
l,k,ε(x) = Φ[j1]

k+1(x, λl,k,ε), ϕ̃
�[j2]
l,n−k,ε(x) = Φ̃�[j2]

n−k+1(x, λl,k,ε), βl,k,0 := βl,k, βl,k,1 := β̃l,k,

Fix k ∈ {1, 2, . . . , n− 1} such that (n− k) is even. Then, by Proposition 2, we have

Φ[j1]
k+1(x, λl,k,ε) =

n

∑
s1=1

bs1,k+1(ρl,k,ε)y
[j1]
s1 (x, ρl,k,ε),

Φ̃�[j2]
n−k+1(x, λl,k,ε) =

n

∑
s2=1

b̃�n−s2+1,n−k+1(ρl,k,ε)ỹ
�[j2]
n−s2+1(x, ρl,k,ε). (102)

Using the above relations and Proposition 1, we obtain

Zl,k(x) =
n

∑
s1=1

n

∑
s2=1

Zl,k,s1,s2(x),

Zl,k,s1,s2(x) = ∑
ε=0,1

αl,k,s1,s2,ε exp(ρl,k,ε(ωs1 −ωs2)x)(1 + ζs1,j1(x, ρl,k,ε))(1 + ζ̃�n−s2+1,j2(x, ρl,k,ε)),

αl,k,s1,s2,ε := βl,k,εbs1,k+1(ρl,k,ε)b�n−s2+1,n−k+1(ρl,k,ε)(ωs1)
j1(−ωs2)

j2 ρ
j1+j2
l,k,ε . (103)

Consider the sums

Zl,k,s1,s2(x) = Z1
l,k,s1,s2

(x) + Z2
l,k,s1,s2

(x) + Z3
l,k,s1,s2

(x) + Z4
l,k,s1,s2

(x),

Z1
l,k,s1,s2

(x) := ∑
ε=0,1

αl,k,s1,s2,ε exp(ρl,k,ε(ωs1 −ωs2)x),

Z2
l,k,s1,s2

(x) := ∑
ε=0,1

αl,k,s1,s2,ε exp(ρl,k,ε(ωs1 −ωs2)x)ζs1,j1(x, ρl,k,ε),

Z3
l,k,s1,s2

(x) := ∑
ε=0,1

αl,k,s1,s2,ε exp(ρl,k,ε(ωs1 −ωs2)x)ζ̃�n−s2+1,j2(x, ρl,k,ε),

Z4
l,k,s1,s2

(x) := ∑
ε=0,1

αl,k,s1,s2,ε exp(ρl,k,ε(ωs1 −ωs2)x)ζs1,j1(x, ρl,k,ε)ζ̃
�
n−s2+1,j2(x, ρl,k,ε).

Thus, it is sufficient to study the convergence of the series ∑
l≥l0

Zν
l,k,s1,s2

(x) for fixed k, s1, s2,

and ν = 1, 4.
The asymptotics (27) and (37) imply

|ρl,k,ε| ≤ Cl, |βl,k,ε| ≤ Cln−1+pk+1,0−pk,0 . (104)

23



Mathematics 2022, 10, 3882

Using (103) together with the estimates (100) and (104), we obtain

|αl,k,s1,s2,ε| ≤ Clj1+j2
i f s1>k+1
× exp(Re (ωk+1 −ωs1)rkl)

i f s2<k
× exp(Re (ωs2 −ωk)rkl),

where rk := π

sin πk
n

. The relation (72) yields

|ρl,k,0 − ρl,k,1| ≤ Cξl , |βl,k,0 − βl,k,1| ≤ Cξl ln−1+pk+1,0−pk,0 .

Since the functions bs,k+1(ρ) are analytic and satisfy (100), we obtain

|bs,k+1(ρl,k,0)− bs,k+1(ρl,k,1)| ≤ Cξl l−pk+1,0
i f s>k+1
× exp(Re (ωs −ωk)rkl).

It follows from (103) that

αl,k,s1,s2,0 − αl,k,s1,s2,1 = (βl,k,0 − βl,k,1)bs1,k+1(ρl,k,0)b�n−s2+1,n−k+1(ρl,k,0)(ωs1)
j1(−ωs2)

j2 ρ
j1+j2
l,k,0

+ βl,k,1(bs1,k+1(ρl,k,0)− bs1,k+1(ρl,k,1))b�n−s2+1,n−k+1(ρl,k,0)(ωs1)
j1(−ωs2)

j2 ρ
j1+j2
l,k,0

+ βl,k,1bs1,k+1(ρl,k,1)(b�n−s2+1,n−k+1(ρl,k,0)− b�n−s2+1,n−k+1(ρl,k,1))(ωs1)
j1(−ωs2)

j2 ρ
j1+j2
l,k,0

+ βl,k,1bs1,k+1(ρl,k,1)b�n−s2+1,n−k+1(ρl,k,1)(ωs1)
j1(−ωs2)

j2(ρ
j1+j2
l,k,0 − ρ

j1+j2
l,k,1 ).

Consequently, we estimate

|αl,k,s1,s2,0 − αl,k,s1,s2,1| ≤ Clj1+j2 ξl
i f s1>k+1
× exp(Re (ωk+1 −ωs1)rkl)

i f s2<k
× exp(Re (ωs2 −ωk)rkl).

Suppose that {l j1+j2 ξl} ∈ l2. Consider the cases:

1. If s1 = s2 �∈ {k, k + 1}, then the terms of the series ∑
l≥l0

Z1
l,k,s1,s2

(x) decay exponentially,

so the series converges absolutely.
2. If s1 = s2 ∈ {k, k + 1}, then the series ∑

l≥l0
(αl,k,s1,s2,0 − αl,k,s1,s2,1) does not necessarily

converge.
3. If s1 �= s2, then

Z1
l,k,s1,s2

(x) =((αl,k,s1,s2,0 − αl,k,s1,s2,1)

+ αl,k,s1,s2,1[(ρl,k,0 − ρl,k,1)(ωs1 −ωs2)x + O(ξ2
l )]) exp(ρl,k,0(ωs1 −ωs2)x).

Consequently, the series ∑
l≥l0

Z1
l,k,s1,s2

(x) converges in L2(0, 1) by virtue of Proposition 3.

Using Proposition 1, we show that

|ζs1,j1(x, ρl,k,ε)| ≤ C(Υ(ρl,k,ε) + l−1),

|ζs1,j1(x, ρl,k,0)− ζs1,j1(x, ρl,k,1)| ≤ Cξl(Υ(ρ
∗
l,k,0) + l−1),

where Υ(ρ∗l,k,0) = max
|ρ−ρl,k,0|≤δ

Υ(ρ). Note that {Υ(ρ∗l,k,0)} ∈ l2. Consequently, the series

∑
l≥l0

Z2
l,k,s1,s2

(x) converges absolutely and uniformly on [0, 1]. The proof for Z3 and Z4 is

analogous. Thus, the regularized series ∑
l≥l0

(Zl,k(x)− Al,k) converges in L2(0, 1) with the

constants
Al,k = ∑

s=k,k+1
(αl,k,s,s,0 − αl,k,s,s,1).
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Using the arguments above, we obtain the estimate

|Zl,k(x)| ≤ Clj1+j2 ξl .

Hence, in the case {l j1+j2 ξl} ∈ l1, the series ∑
l≥l0

Zl,k(x) converges absolutely and uniformly

with respect to x ∈ [0, 1]. Taking (101) into account, we arrive at the assertion of the
lemma.

4.3. Case n = 3

Consider the differential expression

�3(y) = y(3) + (τ1(x)y)′ + τ1(x)y′ + τ0(x)y, x ∈ (0, 1),

where τ1 ∈ L2(0, 1) and τ0 ∈ W−1
2 (0, 1), that is, τ0 = σ′0, σ0 ∈ L2(0, 1). The associated

matrix has the form (see, e.g., [47]):

F(x) =

⎡⎣ 0 1 0
−(σ0 + τ1) 0 1

0 (σ0 − τ1) 0

⎤⎦, (105)

so, y[1] = y′, y[2] = y′′ + (σ0 + τ1)y, y[3] = �3(y).
Suppose that ps,0 = s − 1, ps,1 = 3− s, s = 1, 3, in the linear forms (8). Using the

technique of [54], we obtain the eigenvalue asymptotics

λl,k = (−1)k+1

(
2π√

3

(
l +

1
6
+

(−1)k

π2l

∫ 1

0
τ1(t) dt +

κl,k

l

))3

, {κl,k} ∈ l2, l ≥ 1, k = 1, 2. (106)

Assume that L ∈ W. It can be easily shown that, if Λ1 ∩Λ2 = ∅, then the spectral data
{λ0,N (λ0)}λ0∈Λ do not depend on the boundary condition coefficients us,j,a. Therefore,
let us assume that U0 = I, U1 = [δk,4−j]

3
k,j=1. Consider the following inverse problem.

Consider the problems L = (F(x), U0, U1) ∈ W and L̃ = (F̃(x), U0, U1) ∈ W, where
F̃(x) is the matrix function associated with the differential expression �̃3(y) having the
coefficients τ̃1 ∈ L2(0, 1) and τ̃0 = σ̃′0 ∈ W−1

2 (0, 1). Under the above assumptions, the
following uniqueness theorem for solution of Problem 2 is valid.

Theorem 2. If Λ = Λ̃ and N (λ0) = Ñ (λ0) for all λ0 ∈ Λ, then τ1(x) = τ̃1(x) and σ0(x) =
σ̃0(x) + const a.e. on (0, 1). Thus, the spectral data {λ0,N (λ0)}λ0∈Λ uniquely specify τ1 ∈
L2(0, 1) and τ0 ∈ W−1

2 (0, 1).

In order to prove Theorem 2, we need the following auxiliary lemma, which is valid
for n not necessarily equal to 3.

Lemma 9. If L, L̃ ∈ W, Λ = Λ̃ and N (λ0) = Ñ (λ0) for all λ0 ∈ Λ, then the matrix of spectral
mappings P(x, λ) defined by (50) does not depend on λ.

Proof. It follows from (25) and (50) that

P(x, λ) = Φ(x, λ)J−1
0 [Φ̃�(x, λ)]T J.

Using (29) and (30), we derive for λ0 ∈ Λ:

P〈−2〉(x, λ)J−1 = Φ〈−1〉(x, λ0)J−1
0 [Φ̃�

〈−1〉(x, λ0)]
T

= Φ〈0〉(x, λ0)N (λ0)J−1
0 [N∗(λ0)]

T [Φ̃�
〈0〉(x, λ0)]

T = 0,

P〈−1〉(x, λ)J−1 = Φ〈−1〉(x, λ0)J−1
0 [Φ̃�

〈0〉(x, λ0)]
T + Φ〈0〉(x, λ0)J−1

0 [Φ̃�
〈−1〉(x, λ0)]

T
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= Φ〈0〉(x, λ0)(N (λ0)J−1
0 + J−1

0 [N �(λ0)]
T)[Φ̃�

〈0〉(x, λ0)]
T = 0.

Hence, P(x, λ) is entire in λ. Using the asymptotics (53) and Liouville’s theorem, we
conclude that P(x, λ) ≡ P(x), x ∈ [0, 1].

Proof of Theorem 2. This proof is similar to the proof of Theorem 2 in [9], so we outline it
briefly. By Lemma 9, P(x, λ) ≡ P(x). Furthermore, P(x) is a unit lower-triangular matrix.
One can easily show that

P′(x) + P(x)F̃(x) = F(x)P(x), x ∈ (0, 1), (107)

where the matrix functions F(x) and F̃(x) have the form (105). In the element-wise form,
(107) implies P2,1 = P3,2 = P′3,1 = 0, P3,1 = σ̂0 ± τ̂1. Hence, τ̂1 = 0, σ̂0 = const in L2(0, 1),
which concludes the proof.

Now, suppose that the spectral data {λ0,N (λ0)}λ0∈Λ of the problem L =
(F(x), U0, U1) are given. Using the asymptotics (106), one can find the number τ̃1 :=∫ 1

0 τ1(t) dt. Put

F̃(x) =

⎡⎣ 0 1 0
−τ̃1 0 1

0 −τ̃1 0

⎤⎦, (108)

and L̃ := (F̃(x), U0, U1). Clearly, F̃�(x) = F̃(x). Consequently, in our case,

〈g̃v, φ̃〉 = g̃′′v φ̃− g̃′vφ̃′ + g̃vφ̃′′ + 2τ̃1 g̃vφ̃.

Hence, the relation (88) takes the form

T0,0φ̃′′ − T0,1φ̃′ + (T0,2 + 2τ̃1T0,0)φ̃

= τ̂1φ̃′ + (τ̂′1 + τ̂0)φ̃ + T0,0φ̃′′ + (3T1,0 + 2T0,1)φ̃
′ + (3T2,0 + 3T1,1 + T0,2 + 2τ1T0,0)φ̃,

where Tj1,j2 were defined in (95). Grouping the terms at φ̃′(x, λ) and φ̃(x, λ), we derive the
formulas

τ1 = τ̃1 −
3
2 ∑

v∈V′
(φ′vcvg̃v + φvcvg̃′v),

τ0 = −τ̂′1 − 3
d

dx

(
∑

v∈V′
φ′vcvg̃v

)
− 2τ̂1 ∑

v∈V′
φvcvg̃v.

By virtue of Corollary 1.3 and Theorem 6.4 from [54] and (72), we have {lξl} ∈ l2.
Applying Lemma 8 to prove the series convergence in suitable spaces and using the
notations (85), we arrive at the following reconstruction formulas for τ1 and τ0.

Theorem 3. Let L and L̃ be the problems defined above in this section. The following relations
hold:

τ1 = τ̃1 −
3
2 ∑

(l,k,ε)∈V
(ϕ′l,k,εη̃l,k,ε + ϕl,k,εη̃

′
l,k,ε), (109)

τ0 = −τ̂′1 − 3
d

dx

⎛⎝ ∑
(l,k,ε)∈V

ϕ′l,k,εη̃l,k,ε

⎞⎠− 2τ̂1 ∑
(l,k,ε)∈V

ϕl,k,εη̃l,k,ε. (110)

The series in (109) converges in L2(0, 1). In (110), the series in brackets converges in L2(0, 1) with
regularization, and the second series converges absolutely and uniformly with respect to x ∈ [0, 1],
so the right-hand side of (110) belongs to W−1

2 (0, 1).
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Following the proof of Lemma 8, one can easily show that the regularization constants
Av for the series in (109) equal zero. The regularization constants in (110) are omitted
because of the differentiation. Finally, we arrive at the following Algorithm 2 for solving
Problem 2.

Algorithm 2: Suppose that the spectral data {λ0,N (λ0)}λ0∈Λ of the problem
L = L(F(x), U0, U1) ∈ W are given. Here, F(x) is defined by (105), U0 = I,
U1 = [δk,4−j]

3
k,j=1. We have to find τ1 and τ0.

1. Find τ̃1 =
∫ 1

0 τ1(x) dx from the eigenvalue asymptotics (106).
2. Take the model problem L̃ = L(F̃(x), U0, U1), where F̃(x) is defined by (108).
3. Implement the steps 2–6 of Algorithm 1 to obtain {ϕl,k,ε(x)}(l,k,ε)∈V .
4. Using the problem L̃ and the spectral data {λ0,N (λ0)}λ0∈Λ, {λ̃0, Ñ (λ̃0)}λ̃0∈Λ̃,

construct the functions {η̃l,k,ε(x)}(l,k,ε)∈V by (85).
5. Construct τ1(x) and τ0(x) by (109) and (110), respectively.

4.4. Case of Even n, τν ∈ L2(0, 1)

Consider the differential expression (1) with even n and τν ∈ L2(0, 1), ν = 0, n− 2.
The associated matrix F(x) = [ fk,j(x)]nk,j=1 is given by the relations

fn−k,k+1 = −τ2k, k = 0, �n/2� − 1,

fn−k−1,k+1 = fn−k,k+2 = −τ2k+1, k = 0, �n/2� − 2,

and all the other elements are defined by fk,j = δk,j−1. For instance,

�6(y) = y(6) + (τ4y′′)′′ + [(τ3y′′)′ + (τ3y′)′′] + (τ2y′)′ + [(τ1y)′ + τ1y′] + τ0y,

and the corresponding associated matrix is

F(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −τ3 −τ4 0 1 0
−τ1 −τ2 −τ3 0 0 1
−τ0 −τ1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

Suppose that U0 = I, U1 = [δk,n−j+1]
n
k,j=1, L = (F(x), U0, U1) ∈ W and L̃ =

(F̃(x), U0, U1), where F̃(x) is constructed in the same way as F(x) by different coeffi-
cients τ̃ν ∈ L2(0, 1), ν = 0, n− 2. The following uniqueness theorem is proved similarly to
Theorem 2.

Theorem 4. If Λ = Λ̃ and N (λ0) = Ñ (λ0) for all λ0 ∈ Λ, then τν(x) = τ̃ν(x) a.e. on
(0, 1), ν = 0, n− 2. Thus, the spectral data {λ0,N (λ0)}λ0∈Λ uniquely specify τν ∈ L2(0, 1),
ν = 0, n− 2.

Furthermore, we need the following proposition, which is an immediate corollary of
Theorems 1.2 and 6.4 from [54] for the problems L, L̃ defined above in this subsection and
the sequence {ξl} defined by (71) (see also Example 5.2 in [54]).

Proposition 4 ([54]). Suppose that ν0 ∈ {1, 2, . . . , n − 1}, τν(x) = τ̃ν(x) a.e. on (0, 1) for
ν = ν0, n− 2, and

∫ 1
0 τ̂ν0−1(x) dx = 0. Then, {ln−ν0 ξl} ∈ l2.

We construct the solution of Problem 2 step-by-step.
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STEP 1. Take the model problem L̃ = L̃(1) := (F̃(1)(x), U0, U1), where F̃(1)(x) is
the associated matrix for the differential expression l̃(1)n (y) with the coefficients τ̃n−2 :=∫ 1

0 τn−2(x) dx, τ̃ν := 0, ν = 0, n− 3. The coefficient
∫ 1

0 τn−2(x) dx can be found from the
eigenvalue asymptotics similarly to the case in Section 4.3. Using the terms of (88) at
φ̃(n−2)(x, λ), we derive the reconstruction formula

τn−2 = τ̃n−2 − tn,n−2 − T0,1 = τ̃n−2 − n ∑
v∈V′

(φ′vcvg̃v + φvcvg̃′v).

By virtue of Proposition 4, {lξl} ∈ l2. Therefore, Lemma 8 implies that the obtained series
converges in L2(0, 1) with the regularization constants Av = 0.

STEP 2. Take the model problem L̃ = L̃(2) := (F̃(2)(x), U0, U1), where F̃(2)(x) is the
associated matrix for the differential expression l̃(2)n (y) with the coefficients τ̃n−2 := τn−2,
τ̃n−3 :=

∫ 1
0 τn−3(x) dx, τ̃ν := 0, ν = 0, n− 4. The coefficient

∫ 1
0 τn−3(x) dx can be found

from the eigenvalue asymptotics. Using the terms of (88) at φ̃(n−2)(x, λ), we show that
T′0,0(x) = 0. One can easily show that T0,0(0) = 0, so T0,0(x) ≡ 0. Consequently, grouping
the terms of (88) at φ̃(n−3)(x, λ), we obtain

2τn−3 = 2τ̃n−3 − tn,n−3 + T0,2

= 2τ̃n−3 − ∑
v∈V′

(
n(n−1)

2 φ′′v cvg̃v + n(n− 2)φ′vcvg̃′v + [ (n−1)(n−2)
2 − 1]φvcvg′′v

)
.

By virtue of Proposition 4, {l2ξl} ∈ l2. Lemma 8 implies that the series converges in L2(0, 1)
with the zero regularization constants.

STEP s. Take the model problem L̃ = L̃(s) := (F̃(s)(x), U0, U1), where F̃(s)(x) is the
associated matrix for the differential expression l̃(s)n (y) with

τ̃ν := τν, ν = n− s, n− 2, τ̃n−s−1 :=
∫ 1

0
τn−s−1(x) dx, τ̃ν := 0, ν = 0, n− s− 2. (111)

For this model problem, we have Tj1,j2(x) ≡ 0 for all j1 + j2 ≤ s− 2. Grouping the terms of
(88) at φ̃(n−s−1)(x, λ), we obtain

τn−s−1 = τ̃n−s−1 − (tn,n−s−1 + (−1)s+1T0,s)
i f s is even
× 1

2

= τ̃n−s−1 − ∑
v∈V′

(
n

∑
r=n−s

Cr
nCn−s−1

r−1 φ
(n−r)
v cvg̃(r−n+s)

v + (−1)s+1φvcvg̃(s)v

)
i f s is even
× 1

2

= τ̃n−s−1 − ∑
v∈V′

(
n

∑
r=n−s

Cr
nCn−s−1

r−1 φ
[n−r]
v cvg̃[r−n+s]

v + (−1)s+1φvcvg̃[s]v

)
i f s is even
× 1

2 (112)

Proposition 4 implies that {lsξl} ∈ l2. Therefore, it follows from Lemma 8 that the series in
(112) converges in L2(0, 1). The regularization constants equal zero because

n

∑
r=n−s

Cr
nCn−s−1

r−1 (−1)r + (−1)s+1 = 0.

Note that all functions {τν} necessary for computation of the quasi-derivatives φ
[n−r]
v in

(112) are computed at the previous steps, so the formula (112) can be used for finding
τn−s−1. In terms of the notations (85), the relation (112) can be written as follows:

τn−s−1 = τ̃n−s−1 − ∑
(l,k,ε)∈V

(
n

∑
r=n−s

Cr
nCn−s−1

r−1 ϕ
[n−r]
l,k,ε η̃

[r−n+s]
l,k,ε + (−1)s+1 ϕl,k,εη̃

[s]
l,k,ε

)
i f s is even
× 1

2 (113)
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Thus, we obtain the following Algorithm 3 for solving Problem 2 in the considered
case.

Algorithm 3: Suppose that the spectral data {λ0,N (λ0)}λ0∈Λ of the problem
L = (F(x), U0, U1) ∈ W are given. Here, F(x) is the matrix associated with the
differential expression �n(y), n is even, τν ∈ L2(0, 1), ν = 0, n− 2, U0 = I, and
U1 = [δk,n−j+1]

n
k,j=1. We have to find {τν}n−2

ν=0. For simplicity, assume that the

values
∫ 1

0 τν(x) dx are known. In fact, they can be found from the eigenvalue
asymptotics.

For s = 1, 2, . . . , n− 1, we find τn−s−1 implementing the following steps:
1. Take the model problem L̃ = L̃(s) = (F̃(s), U0, U1) induced by the differential

expression �̃
(s)
n (y) with the coefficients (111).

2. Implement steps 2–6 of Algorithm 1 to find {ϕl,k,ε(x)}(l,k,ε)∈V .
3. Using the problem L̃ and the spectral data {λ0,N (λ0)}λ0∈Λ, {λ̃0, Ñ (λ̃0)}λ̃0∈Λ̃,

construct the functions {η̃l,k,ε(x)}(l,k,ε)∈V by (85).
4. Construct τn−s−1(x) by (113).

4.5. Case of Even n, τν ∈ W−1
2 (0, 1)

Suppose that n is even and τν ∈ W−1
2 (0, 1) in (1) for ν = 0, n− 2, that is, τν = σ′ν,

where σν ∈ L2(0, 1), and the derivative is understood in the sense of distributions. Put
m := �n/2�, and define the matrix function

Q(x) = [qr,j(x)]mr,j=0 :=
n−2

∑
ν=0

(−1)�(ν−1)/2�χνσν(x),

where χν := [χν;r,j]
m
r,j=0,

χ2k;k,k+1 = χ2k;k+1,k = 1, χ2k+1;k,k+2 = −χ2k+1;k+2,k = 1,

and all the other entries χν;r,j equal zero. The associated matrix F(x) = [ fk,j(x)]nk,j=1 for
�n(y) is defined as follows (see [46] for details):

fm,j := (−1)m+1qj−1,m, j = 1, m, fk,m+1 := (−1)k+1qm,2m−k, k = m + 1, 2m,

fk,j := (−1)k+1qj−1,2m−k + (−1)m+kqj−1,mqm,2m−k, k = m + 1, 2m, j = 1, m,

and fk,j = δk,j−1 for all the other indices. Clearly, F ∈ Fn. For example, if n = 4, then

Q(x) =

⎡⎣ 0 −σ0 σ1
−σ0 0 σ2
−σ1 σ2 0

⎤⎦, F(x) =

⎡⎢⎢⎣
0 1 0 0
−σ1 −σ2 1 0

−σ0 − σ1σ2 −σ2
2 σ2 1

−σ2
1 σ0 − σ1σ2 σ1 0

⎤⎥⎥⎦
Consider Problem 2 for L = (F(x), U0, U1), U0 = I, U1 = [δk,n−j+1]

n
k,j=1. Let L̃ =

(F̃(x), U0, U1), where F̃(x) is the associated matrix for the differential expression l̃n(y) with
the coefficients τ̃ν = σ̃′ν ∈ W−1

2 (0, 1), ν = 0, n− 2. The following uniqueness theorem is
proved analogously to Theorem 2.

Theorem 5. If Λ = Λ̃ and N (λ0) = Ñ (λ0) for all λ0 ∈ Λ, then σν(x) = σ̃ν(x) + const a.e. on
(0, 1) for ν = 0, n− 2. Thus, the spectral data {λ0,N (λ0)}λ0∈Λ uniquely specify τν ∈ W−1

2 (0, 1),
ν = 0, n− 2.
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The functions {σν}n−2
ν=0 are specified uniquely up to a constant, so for simplicity we

assume that
∫ 1

0 σν(x) dx = 0, ν = 0, n− 2.
Theorems 1.2 and 6.4 of [54] (see also Example 5.3 in [54]) readily imply the following

proposition for the problems L and L̃ of the considered form and the sequence {ξl} defined
by (71).

Proposition 5 ([54]). Suppose that ν0 ∈ {1, 2, . . . , n− 1} and σν(x) = σ̃ν(x) a.e. on (0, 1) for
ν = ν0, n− 2. Then, {ln−ν0−1ξl} ∈ l2.

The algorithm of recovering the coefficients {τν}n−2
ν=0 from the spectral data is similar

to Algorithm 3. At STEP s, we take the model problem L̃ = L̃(s) induced by the coefficients
σ̃ν := σν, ν = n− s, n− 2, and σ̃ν := 0, ν = 0, n− s− 1. Note that the series in (112) has the
form

a0Ts,0 + a1Ts−1,1 + . . . + asT0,s = (b0Ts−1,0 + b1Ts−2,1 + . . . + bs−1T0,s−1)
′,

where

aj := Cs−j
n Cj

n−s+j−1

i f j=s
+ (−1)s+1,

s

∑
j=0

aj = 0,

bj :=
j

∑
i=0

(−1)j−iai, j = 0, s− 1.

Using this idea, we derive

τn−s−1 = − d
dx ∑

v∈V′

(
s−1

∑
j=0

bjφ
[s−j−1]
v cvg̃[j]v

)
i f s is even
× 1

2 . (114)

In view of Proposition 5, we have {ls−1ξl} ∈ l2. Hence, by virtue of Lemma 8, the series
in (114) converges in L2(0, 1) with some regularization constants. Because of the differ-
entiation, we omit these constants. Thus, Formula (114) induces a function of W−1

2 (0, 1),
and σn−s−1 can be found uniquely up to a constant. This constant is chosen so that∫ 1

0 σn−s−1(x) dx = 0. Taking s = 1, 2, . . . , n − 1, we step-by-step construct all the coeffi-
cients τn−2, τn−3, . . . , τ1, τ0.

Note that the algorithms of this section are valid for L̃ ∈ W. However, the case
L̃ �∈ W requires only technical modifications due to Remark 1, which do not influence the
convergence of the series.

5. Conclusions

Let us briefly summarize the results of this paper. We studied the inverse spectral
problem, which consists in recovering the coefficients {τν}n−2

ν=0 of the differential expression
(1) from the spectral data {λ0,N (λ0)}λ0∈Λ. An approach to the constructive solution of the
inverse problem is developed. Our approach can be applied to a wide class of differential
expressions �n(y), which admit regularization in terms of associated matrix.

The inverse problem solution consists of the two steps. First, we consider the auxiliary
problem of finding the Weyl solutions {Φk(x, λ)}n

k=1 by using the spectral data. This
problem is reduced to the linear Equation (80) in the Banach space m of bounded infinite
sequences. Theorem 1 on the unique solvability of the main Equation (80) is proved.
Second, by using the solution of the main equation, we derive reconstruction formulas for
the coefficients {τν}n−2

ν=0 and investigate the convergence of resulting series.

Let us mention the most important advantages of our approach:

1. The obtained results can be applied to a wide range of differential operators of
arbitrary order with either integrable or distributional coefficients of various classes.
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2. Our approach does not require self-adjointness.
3. Our method is constructive.
4. The results of this paper can be used for studying the existence and stability of the

inverse problem solution as well as for developing numerical methods.
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from spectral characteristics, while the coefficients in the remaining part of the domain are known a
priori. Usually, partial inverse problems require less spectral data than complete inverse problems.
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1. Introduction

This paper contains an overview of results pertaining to partial inverse spectral prob-
lems for ordinary differential operators. Such problems consist in the recovery of differential
expression coefficients on some part of the domain (a finite interval or a geometric graph)
from spectral characteristics, while the coefficients on the remaining part of the domain are
known a priori. Usually, partial inverse problems require fewer spectral data than complete
inverse problems. In the literature, partial inverse problems are also called half-inverse
problems, Hochstadt–Lieberman-type problems, inverse problems with mixed data, and
incomplete inverse problems.

We begin with some classical results regarding complete inverse spectral problems. The
greatest success in inverse spectral theory has been achieved for the second-order Sturm-
Liouville (one-dimensional Schrödinger) equation (see the monographs [1–5] and the refer-
ences therein):

−y′′ + q(x)y = λy, x ∈ (0, 1), (1)

where the function q(x) is usually called the potential, and λ is the spectral parameter. In 1946,
Borg [6] proved that the potential q(x) is uniquely specified by the two spectra {λn,j}n≥1 and
j = 0, 1 of the boundary value problems for Equation (1) subject to the boundary conditions

y(0) = y(j)(1) = 0, j = 0, 1.

In their seminal paper [7], Gelfand and Levitan developed a constructive method
for solving the inverse Sturm-Liouville problem. This method allowed the authors to
obtain the necessary and sufficient conditions of the inverse problem’s solvability. Since
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then, inverse spectral theory has been developing all over the world for various classes of
differential operators with applications in classical and quantum mechanics, geophysics,
nanotechnology, acoustics, electronics, and other fields of science and engineering.

In 1978, Hochstadt and Lieberman [8] proved that, if the potential q(x) of the Sturm-
Liouville (Schrödinger) Equation (1) is known a priori on the half-interval

(
1
2 , 1

)
, then,

in contrast to the Borg problem, the spectrum {λn,0}n≥1 alone is sufficient for the unique

specification of q(x) on
(

0, 1
2

)
. Thus, knowledge of the potential on part of the interval

reduces the amount of spectral data needed for the operator reconstruction. The Hochstadt–
Lieberman problem was the first partial inverse problem. Later on, various generalizations
of this problem were considered by Hald [9], Gestezy and Simon [10], Horváth [11,12],
and other scholars. Constructive methods and solvability conditions for the Hochstadt–
Lieberman problem have been obtained by Sakhnovich [13], Hryniv and Mykytyuk [14],
Buterin [15,16], and Martinyuk and Pivovarchik [17,18].

In recent years, considerable attention has been paid by mathematicians and physi-
cists to the inverse transmission eigenvalue problem, which has applications in acoustics.
In [19], McLaughlin and Polyakov presented an inverse transmission problem statement,
which generalized the Hochstadt–Lieberman problem. The investigation of the McLaughlin–
Polyakov problem continued in [20–23] and other studies, offering a series of new results
in the theory of partial inverse problems.

A variety of partial inverse problems arise for differential operators on geometrical
graphs, also called quantum graphs. Such operators are used to model various processes
in graph-like structures and networks in organic chemistry, mesoscopic physics, nanotech-
nology, hydrodynamics, waveguide theory, and other applications (see, e.g., the mono-
graphs [24,25] and the references therein). A basic introduction to quantum graphs can be
found in [26]. There is an extensive literature on inverse spectral problems for differential
operators on graphs (see the survey [27] on this topic). In this review, we focus on partial
inverse problems. Such problems on graphs arise when differential operator coefficients
(for example, Sturm-Liouville potentials) are known a priori for part of the graph. These
coefficients can be obtained by either measurements or a reconstruction method. In the
second case, the solution of partial inverse problems can be used as an auxiliary step in
solving complete inverse problems on graphs.

The first results on partial inverse problems on graphs were obtained by Pivovarchik [28],
Yurko [29], and Yang et al. [30–32]. However, the results of these papers were limited
to uniqueness theorems for the Sturm-Liouville (Schrödinger) operators on graphs of an
elementary structure (star-shaped graphs and simple graphs with loops). Later on, Bon-
darenko developed a constructive method to solve partial inverse problems on graphs of
various types. Using this method, a number of new results have been obtained for differen-
tial operators and pencils on star-shaped graphs [33–36], simple graphs with cycles [37,38],
tree graphs (graphs without cycles) [39], and even graphs of an arbitrary geometrical struc-
ture [40,41]. These results included not only uniqueness theorems but also constructive
algorithms for the solution, solvability, and stability of partial inverse problems.

Following the investigation of partial inverse problems on graphs, a unified approach
to various classes of partial inverse problems arose [41–44]. This approach was based on the
reduction of a partial inverse problem on either an interval or a graph to an inverse problem
for a differential operator on an “unknown” interval with entire analytic functions in one
of the boundary conditions. In [41–44], an inverse problem theory was created for Sturm-
Liouville operators with entire functions in a boundary condition. This theory included
the necessary and sufficient conditions of uniqueness, constructive methods for a solution,
global solvability, local solvability, and stability. These results have been applied to the
Hochstadt–Lieberman problem, the inverse transmission eigenvalue problem, and partial
inverse problems on graphs. Later on, this approach was developed in [45] for differential
pencils and in [46] for Sturm-Liouville operators with polynomial boundary conditions.
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In addition, it is worth mentioning that partial inverse problems have been consid-
ered for other types of operators, in particular, for integro-differential operators [47–49],
functional-differential operators with a constant delay [50–52], higher-order differential
operators [53,54], and matrix Sturm-Liouville operators [55,56].

The goal of this review was to summarize classical and recent work on partial inverse
problems. Below, we describe some features of this review. Since the amount of literature
on partial inverse problems is enormous, this review includes only the results of selected
papers, which, in the author’s opinion, could help the reader to form a general picture.
Most attention was paid to partial inverse problems on geometrical graphs and the unified
approach, which has been investigated by the author in recent years. However, we also
paid attention to classical results and different modern directions of research. In view
of the huge amount of information available, we focused on describing the results of the
selected papers. Unfortunately, we could not provide a full description of the methods by
which these results were obtained. Nevertheless, the reader can find more details in the
referenced literature. In this review, we compare the results for different problems and
establish connections between them.

The paper is organized as follows. In Section 2, we consider the Hochstadt–Lieberman
problem and its generalizations on intervals. Section 2.1 is devoted to the uniqueness
theorems, and Section 2.2 focuses on constructive methods and solvability conditions.
Section 2.3 is concerned with the inverse transmission eigenvalue problem (mostly the
McLaughlin–Polyakov problem). In Section 3, we describe the known results on partial
inverse problems for differential operators on graphs. Star-shaped graphs are considered
in Section 3.1, simple graphs with loops in Section 3.2, and graphs of a general structure
in Section 3.3. Section 4 is concerned with the unified approach to various classes of partial
inverse problems. In Section 4.1, the inverse spectral theory of the Sturm-Liouville problem
with entire functions in a boundary condition is presented. In Section 4.2, this theory is
applied to partial inverse problems. In Section 5, we consider partial inverse problems for
classes of operators other than Sturm-Liouville operators and pencils. Section 6 contains
the conclusions.

Here, we present a few remarks about notations. When describing the results, we
mostly preserve the notations of the original papers. Therefore, the notations included
throughout the review can have different meanings. The symbol λ usually denotes the
spectral parameter, unless stated otherwise. In the formulations of the uniqueness theorems,
along with one problem (e.g., problem L), we often consider another problem (e.g., L̃) of
the same form but with different coefficients. If a symbol α denotes an object related to
the problem without a tilde, then the symbol α̃ denotes the analogous object related to the
problem with a tilde. In addition, all the boundary value problems in this review were
considered on finite intervals or compact graphs, so their spectra are countable sets of
eigenvalues.

2. Hochstadt–Lieberman Problem and Generalizations

2.1. Uniqueness Theorems

Let us begin with the famous result of Hochstadt and Lieberman [8]. They considered
the Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, 1),

y(0) cos α + y′(0) sin α = 0, y(1) cos β + y′(1) cos β = 0,

⎫⎬⎭ (2)

where q ∈ L1(0, 1) and α, β ∈ [0, π). The Hochstadt–Lieberman problem is
formulated as follows:

Problem 1 ([8]). Suppose that the potential q(x) on
(

1
2 , 1

)
and the constants α and β are known

a priori. Given the spectrum {λn}n≥1 of the problem (2), find q(x) on
(

0, 1
2

)
.
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Hochstadt and Lieberman proved the following uniqueness theorem for Problem 1:

Theorem 1 ([8]). Let {λn}n≥1 be the spectrum of the problem (2), and let {λ̃n}n≥1 be the spectrum
of a similar problem with an integrable potential q̃(x). Suppose that q(x) = q̃(x) on

(
1
2 , 1

)
, and

λn = λ̃n, n ≥ 1. Then, q(x) = q̃(x) a.e. on (0, 1).

Hald [9] generalized Hochstadt and Lieberman’s findings to the Sturm-Liouville
problem with discontinuity. In addition, Hald showed that the coefficient in the left
boundary condition is also uniquely specified by the spectrum.

Theorem 2 ([9]). Consider the eigenvalue problem

−y′′ + q(x)y = λy, x ∈ (0, π),

with the boundary conditions

y′(0)− hy(0) = y′(π) + Hy(π) = 0

and the jump conditions

y(d+) = ay(d−), y′(d+) = a−1y(d−) + by(d−),

where q is an integrable function; 0 < d < π
2 ; a > 0; and |a− 1|+ |b| > 0. Let {λn}n≥0 be the

eigenvalues. Consider the eigenvalue problem with a, b, d, h, H, λ, and q replaced by ã, b̃, d̃, h̃, H̃, λ̃,
and q̃, respectively. If λn = λ̃n, H = H̃, and q = q̃ a.e. on

(
π
2 , π

)
, then a = ã, b = b̃, d = d̃,

h = h̃, and q = q̃ a.e. on (0, π).

Gesztesy and Simon [10] investigated a case where the potential q(x) on an interval
(0, a), a > 1

2 is known. Then, the potential is uniquely determined by a fractional part
of the spectrum.

Theorem 3 ([10]). Let σ(H) denote the spectrum of the operator H = − d2

dx2 + q in L2(0, 1) with
the boundary conditions

y′(0) + h0y(0) = 0, y′(1) + h1y(1) = 0, h0, h1 ∈ R.

Then, q on
[
0, π

2 + α
2
]

for some α ∈ (0, 1); h0; and a subset S ⊆ σ(H) satisfying

#{λ ∈ S : λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) : λ ≤ λ0}+
α

2
(3)

for all sufficiently large λ0 ∈ R uniquely determine h1 and q on [0, 1].

The uniqueness of recovering the Sturm-Liouville potential from parts of spectra
described by conditions analogous to (3) was also investigated in [57–59].

Horváth [11] noticed that, to recover the potential q(x), one can use eigenvalues of
several spectra σj = σ(q, αj, β), j = 1, . . . , N of the Sturm-Liouville problems

−y′′ + q(x)y = λy, x ∈ (0, π),

y(0) cos αj + y′(0) sin αj = 0, y′(π) cos β + y(π) sin β = 0.

⎫⎬⎭ (4)

The following main result of [11] generalized Theorem 3 of Gestezy and Simon.

Theorem 4 ([11]). Suppose that λ
(j)
n ∈ σj is known for n ∈ Sj and let

nj(t) = #{n ∈ Sj : λ
(j)
n < t2}, t ≥ 0.
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Let 0 ≤ a < π, 0 ≤ γ ≤ 1, and suppose that there exist t0 > 0 and δ > 0 such that, for
t ≥ t0,

N

∑
j=1

nj(t) ≥

⎧⎨⎩ 2(1− a
π )

{
γ[t + 1

2 ] + (1− γ)([t] + 1
2 )

}
+ O(t−δ), if sin β �= 0,

2(1− a
π )

{
γ[t + 1

2 ] + (1− γ)([t] + 1
2 )

}
− 1 + O(t−δ), if sin β = 0.

Then, q on (0, a) and the eigenvalues
{

λ
(j)
n : n ∈ Sj

}
, j = 1, . . . , N, determine q

a.e. on (0, π).

An analogous result was obtained in [11] for Dirac operators.
The disadvantage of Theorems 3 and 4 is that their conditions are sufficient but not

necessary for the unique specification of the potential by part of the spectrum. In [12],
Horváth obtained the necessary and sufficient conditions for the uniqueness of a solution
for the following inverse problem in terms of closed exponential systems.

Problem 2 ([12]). Given the eigenvalues {λn}n≥1, where each λn belongs to the spectrum
σ(q, αn, β) of the Sturm-Liouville problem (4), find the potential q.

For definiteness, we provide the results of [12] for sin β = 0.

Theorem 5 ([12]). Let 1 ≤ p ≤ ∞, q ∈ Lp(0, π), and 0 ≤ a < π, and let λn ∈ σ(q, αn, 0) be
real numbers with λn �→ −∞. Then, β = 0, q on (0, a) and the eigenvalues λn determine q in
Lp(0, π), and

e(Λ) =
{

e±2iμx, e±2i
√

λnx : n ≥ 1
}

(5)

is closed in Lp(a− π, π − a) for μ �= ±
√

λn. Note that, if the sequence e(Λ) is closed for at least
one μ �= ±

√
λn, then it is closed for any such value of μ.

Furthermore, in [12], Horváth noticed that Problem 2 was closely related to the recon-
struction of the potential q(x) from the values of the Weyl function at a countable set of
points. Let v(x, λ) denote the solution to the following initial value problem:

−v′′ + q(x)v = λv, x ∈ (0, π), v(π, λ) = sin β, v′(π, λ) = − cos β.

Then, the Weyl function is defined as follows:

mβ(λ) =
v′(0, λ)

v(0, λ)
.

According to the classical results [1,6], the Weyl function mβ(λ) uniquely specifies the
potential q(x). Horváth [12] obtained the following necessary and sufficient conditions for
the uniqueness of the potential reconstruction using the values {mβ(λn)}n≥1.

Problem 3 ([12]). Given the values {mβ(λn)}n≥1, find q.

Theorem 6 ([12]). Let 1 ≤ p ≤ ∞ and λn, n ≥ 1 be different arbitrary real numbers with
λn �→ −∞. Let β = 0, q, q̃ ∈ Lp(0, π) and consider the Weyl functions m0(λ), and m̃0(λ),
defined by q and q̃, respectively. Then, the relation

m0(λn) = m̃0(λn), n ≥ 1 (6)

implies that m0(λ) ≡ m̃0(λ) if and only if the system e(Λ) defined by (5) is closed in Lp(−π, π).

Note that both sides of (6) are allowed to be infinite. Results analogous to
Theorems 5 and 6 for the case sin β �= 0 can also be found in [12].

37



Mathematics 2023, 11, 2408

The results of Horváth [11,12] motivated the further study of Problem 2 and its analogs.
In particular, Horváth and Kiss [60,61] investigated the stability of the problem. Horváth
and Sáfár [62] obtained the necessary and sufficient conditions for the uniqueness of the
potential reconstruction on a subinterval by some of the eigenvalues and norming constants.

Note that the Hochstadt–Lieberman problem and the abovementioned generalizations
deal with cases in which the potential is known on the right-hand (left-hand) subinterval,
as in Figure 1. Naturally, the following question arises: if the potential is known on either
the middle subinterval, as in Figure 2, or the boundary subintervals, as in Figure 3, then is
the potential on the remaining part of the interval uniquely specified by the spectrum or
any other spectral data?

0 1aunknown known

Figure 1. Hochstadt–Lieberman-type problems.

0 1knownunknown unknown

Figure 2. When q(x) is known on the middle subinterval.

0 1unknownknown known

Figure 3. When q(x) is unknown on the middle subinterval.

The question regarding the case in Figure 2 was answered by Guo and Wei [63]. Let
us formulate their result. Let L denote the Sturm-Liouville operator −y′′ + q(x)y subject to
the boundary conditions

y′(0)− hy(0) = 0, y′(1) + Hy(1) = 0,

where q ∈ L1(0, 1) is a real-valued function, and h, H ∈ R. Let σ(L) = {λn}n≥0 be
the spectrum of L, and let ψ(x, λ) be the solution of the Sturm-Liouville equation under
the initial conditions ψ(1, λ) = 1, ψ′(1, λ) = −H. For a set A = {xn}n≥0 of positive
reals, define

NA(t) := {n ∈ N∪ {0} : xn ≤ t}.

Theorem 7 ([63]). Let [a1, a2] ⊂ [0, 1] with a1 ≤ 1
2 and a1 + a2 ≥ 1, where the two equalities do

not occur simultaneously. Then, q on [a1, a2] together with the subset S of σ(L) and the interior

spectral data
ψ(a2, λn)

ψ′(a2, λn)
for λn ∈ S′, S′ ⊂ S, where the subsets S and S′ satisfy

NS(t) ≥ 2a1Nσ(t)− a1, NS′(t) ≥ 2(1− a2)Nσ(t) + a2 − 1

for all sufficiently large values of t, uniquely determine h, H, and q a.e. on [0, 1].

Thus, given the potential q(x) on an interior subinterval [a1, a2], some part of the
spectrum together with additional spectral data related to the point a2 uniquely spec-
ify the operator. It is interesting that, in Theorem 7, [a1, a2] can be an arbitrarily small
interval containing 1

2 .
The case in Figure 3, to the best of the author’s knowledge, remains an open problem.

2.2. Solvability Conditions and Constructive Solution

The results of the previous subsection were concerned only with the uniqueness
theorems. In this subsection, we consider constructive methods for solving the Hochstadt–
Lieberman problem and the existence of its solution.
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The first results in this direction were obtained by Sakhnovich [13]. He considered the
Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ [0, 1], (7)

y(0) = y(1) = 0, (8)

where the potential q(x) is real-valued and continuous. Let y(x, λ) denote the solution
of Equation (7) satisfying the initial conditions y(0, λ) = 0, y′(0, λ) = 1. The main result
of [13] was the following theorem, which provided sufficient conditions for solvability of
the Hochstadt–Lieberman problem.

Theorem 8 ([13]). Let the given functions h(t), t ∈ [0, 1], and p(x), x ∈ [0, 1
2 ] satisfy the

following conditions:

1. The function h(t) has a bounded derivative, and h(0) = 0.
2. The function p(x) is bounded on the segment [0, 1

2 ].
3. The following inequality holds:

sup
0≤t≤1

|h′(t)|+ 1
4

sup
0≤x≤ 1

2

|p(x)| < 1
2

. (9)

Then, there exists a bounded function q(x), x ∈ [0, 1], such that

q(x) = p(x), x ∈ [0, 1
2 ], (10)

and the corresponding function y(1, λ) has the form

y(1, λ) =
sin

√
λ√

λ
+

∫ 1

0

sin
√

λt√
λ

h(t) dt. (11)

It is important to note that y(1, λ) is the characteristic function of the problem (7)–(8),
that is, the zeros of y(1, λ) coincide with the eigenvalues {λn}n≥1 of (7)–(8). Using the
eigenvalues {λn}n≥1, one can construct the function y(1, λ) using Hadamard’s factorization
theorem and then find the function h(t) satisfying (11) using the Fourier transform. Thus,
Theorem 8 provides the sufficient conditions for the existence of the potential q(x) that
satisfies (10) and has the given spectrum {λn}n≥1.

Theorem 8 is proved by a constructive method that finds the potential q(x) from
p(x) and h(x) via approximations. For the convergence of these approximations, the
inequality (9) is crucial. Thus, the result of [13] has a local nature.

The necessary and sufficient conditions for the Hochstadt–Lieberman problem’s solv-
ability, to the best of the author’s knowledge, were obtained for the first time by Hryniv
and Mykytyuk [14]. They considered the Sturm-Liouville equation (Equation (1)) with the
potential q of class W−1

2 (0, 1). In this case, it is convenient to write the Sturm-Liouville
differential expression −y′′ + q(x)y as �σ(y) = −(y[1])′ − σy′, where q = σ′, σ ∈ L2(0, 1),
and y[1] := y′ − σy is the quasi-derivative. Let us use the notation Re L2(0, a) for the class
of real-valued functions of L2(0, a), a > 0. For σ ∈ Re L2(0, 1) and h ∈ R, let Tσ,h denote
the operator in L2(0, 1) that acts as Tσ,hy = �σ(y) on the domain

dom Tσ,h =
{

y ∈ W1
1 (0, 1) : y[1] ∈ W1

1 (0, 1), �σ(y) ∈ L2(0, 1), y[1](0) = 0, y[1](1) = hy(1)
}

.

The operator Tσ,h is self-adjoint, and its spectrum is a countable set of real simple
eigenvalues {λ2

n}n≥0 satisfying {(λn − n)}n≥0 ∈ l2. Using the shift σ(x) := σ(x) + cx,
h := h− c, one can achieve the positivity λn > 0, n ≥ 0. In [14], the following analog of the
Hochstadt–Lieberman problem was considered:
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Problem 4 ([14]). Given a function σ0(x), x ∈ (0, 1
2 ) and reals {λn}n≥0, find a function σ ∈

Re L2(0, 1) and h ∈ R such that σ(x) = σ0(x) a.e. on (0, 1
2 ) and the spectrum of Tσ,h coincides

with {λ2
n}n≥0.

In order to formulate the results of [14], one needs some additional definitions. Let
L denote the set of all strictly increasing sequences Λ = {λn}n≥0, in which λn > 0 and
{(λn − πn)}n≥0 ∈ l2. Let us fix an arbitrary Λ = {λn} ∈ L and denote by ΠΛ the set of all
real-valued functions ψ ∈ L2(0, 1) of the form

ψ(x) =
∞

∑
n=0

(αn cos(λnx)− cos(πnx)) +
1
2

, (12)

where {αn}n≥0 is a sequence of positive numbers such that {(αn − 1)}n≥0 ∈ l2.
For σ0 ∈ Re L2(0, 1

2 ), let y0(x, λ) denote the solution of the initial value problem

�σ0(y0) = λ2y0, x ∈ (0, 1
2 ), y0(0, λ) = 1, y[1]0 (0, λ) = 0.

Let K(x, t) be the transformation operator kernel (see the details in [14]):

cos λx = y0(x, λ) +
∫ x

0
K(x, t)y0(t, λ) dt.

The necessary and sufficient conditions for the solvability of Problem 4 are provided
by the following theorem:

Theorem 9 ([14]). Assume that Λ = {λn}n≥0 ∈ L, σ0 ∈ Re L2(0, 1
2 ) and

φ0(2x) := −1
2

σ0(x) +
∫ x

0
K2(x, t) dt, x ∈ (0, 1

2 ).

1. Problem 4 is solvable for the mixed spectral data (σ0, Λ) if and only if φ0 ∈ ΠΛ.
2. If φ0 ∈ ΠΛ, then the solution of Problem 4 is unique, that is, there exists a unique σ ∈

Re L2(0, 1) and a unique h ∈ R such that σ is an extension of σ0 and the spectrum of Tσ,h
coincides with Λ2 = {λ2

n}n≥0.

As corollaries of Theorem 9, Hryniv and Mykytuyk [14] also obtained some results
for the case of the regular potential q ∈ L2(0, 1). The proof of Theorem 9 is based on the
transformation operator method (see [1,2]). Note that the numbers αn in Expansion (12) for
φ0(x) equal the weight numbers ‖yn‖−2

L2(0,1), where {yn(x)}n≥0 are the eigenfunctions of the

operator Tσ,h corresponding to the eigenvalues {λ2
n}n≥0. Hence, the requirement φ0 ∈ ΠΛ

means that the weight numbers are positive and have the asymptotics {(αn − 1)}n≥0 ∈ l2,
which is valid by necessity. Roughly speaking, the method of [14] reduced Problem 4 to the
classical inverse problem using the spectral data {λ2

n, αn}n≥0 and required the necessary
and sufficient conditions for the solvability of the latter problem. Such conditions in the
case of a singular potential of class W−1

2 (0, 1) were obtained in [64].

Theorem 10 ([64]). For the numbers {λ2
n, αn}n≥0 to be the spectral data of a positive Sturm-

Liouville operator Tσ,h with σ ∈ Re L2(0, 1) and h ∈ R, it is necessary and sufficient that
Λ = {λn}n≥0 ∈ L, αn > 0 for n ≥ 0 and {(αn − 1)}n≥0 ∈ l2.

An alternative approach to the solution of the Hochstadt–Lieberman problem was
developed in parallel by Buterin [15,16] and by Martinyuk and Pivovarchik [17]. In [15],
Buterin considered the Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, π), (13)

y′(0)− hy(0) = 0, y′(π) + Hy(π) = 0, (14)
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where q ∈ L1(0, π).
Let S(x, λ), ϕ(x, λ), and ψ(x, λ) denote, respectively, the solutions of Equation (13)

satisfying the initial conditions

S(0, λ) = 0, S′(0, λ) = 1, ϕ(0, λ) = 1, ϕ′(0, λ) = h, ψ(π, λ) = 1, ψ′(π, λ) = −H.

Then, the eigenvalues {λn}n≥0 of the boundary value problem (13)–(14) coincide with
the zeros of the characteristic function Δ(λ) = ϕ′(π, λ) + Hϕ(π, λ). Thus,

Δ0(λ) = ψ(0, λ), Δ1(λ) = −ψ′(π/2, λ), Δ0
1(λ) = ψ(π/2, λ),

Θ(λ) = ϕ(π/2, λ), Ξ(λ) = ϕ′(π/2, λ). (15)

The main idea of [15] consists in the fact that, if the potential q(x) on (0, π/2) is
known, then the functions Θ(λ) and Ξ(λ) can be found. Thus, using the following relations
between the characteristic functions,

Δ0
1(λ) = Δ0(λ)Θ(λ)− Δ(λ)S(π/2, λ),

− Δ1(λ) = Δ0(λ)Ξ(λ)− Δ(λ)S′(π, λ),

one can find Δ0
1(λ) and Δ1(λ) by the interpolation of entire functions and recover the

potential q(x) and the coefficient H from the Weyl function M(λ) = −Δ1(λ)

Δ0
1(λ)

for the

interval (π/2, π). Indeed, the zeros of the functions Δ1(λ) and Δ0
1(λ) are the two spectra

of the Borg problem on this interval.
Let {ξn}n≥0 and {θn}n≥0 denote the zeros of the entire functions Ξ(λ) and Θ(λ),

respectively. If these zeros are simple, the Hochstadt–Lieberman problem can be solved by
the following constructive algorithm:

Method 1 ([15]). Suppose that the spectrum {λn}n≥0, the coefficient h, and the potential q(x) on
the interval (0, π/2) are given. We must find q(x) on (π/2, π) and H.

1. Find Δ(λ) by the formula

Δ(λ) = π(λ0 − λ)
∞

∏
n=1

λn − λ

n2 .

2. Construct the functions Θ(λ) and Ξ(λ) using (15) and find their zeros θn, ξn, n ≥ 0.
3. Calculate the numbers

d(ξn) = Δ(ξn)S′(π/2, ξn) +
√

ξn sin(
√

ξnπ/2),

d0(θn) = −Δ(θn)S(π/2, θn)− cos(
√

θnπ/2).

4. By interpolation, find the functions

d(λ) =
∞

∑
n=0

d(ξn)
Ξ(λ)

(λ− ξn)Ξ′(ξn)
, d0(λ) =

∞

∑
n=0

d0(θn)
Θ(λ)

(λ− θn)Θ′(θn)
.

5. Let Δ1(λ) = −
√

λ sin(
√

λπ/2) + d(λ), Δ0
1(λ) = cos(

√
λπ/2) + d1(λ).

6. Recover q(x) on (π/2, π) and H from the Weyl function M(λ) = −Δ0
1(λ)

Δ1(λ)
.

Note that Method 1 does not require the self-adjointness of the problem (13)–(14) and
so works for complex-valued potentials q(x), h, and H. The last step of Method 1 in the
non-self-adjoint case can be implemented by an algorithm presented in [65]. Method 1 is
also valid for multiple eigenvalues {ξn} and {θn} after minor modifications.
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In [16], Buterin generalized Method 1 to quadratic differential pencils of the form

y′′ + (ρ2 − 2ρq1(x)− q0(x))y = 0, x ∈ (0, π),

y′(0)− (h1ρ + h0)y(0) = 0, y′(π) + (H1ρ + H0)y(π) = 0,

where ρ is the spectral parameter; qj(x) ∈ Wj
1[0, 1] are complex-valued functions; hj, Hj ∈ C;

j = 0, 1; h1 �= ±i; and H1 �= ±i. The half-inverse problem of [16] consists in the recovery
of the coefficients q0, q1, H0, and H1 from the spectrum {ρn}, while q0 and q1 on (0, π/2),
h0, and h1 are known a priori. A similar problem for the quadratic differential pencil with
another type of boundary conditions was investigated in [66].

An analogous approach was used by Martinyuk and Pivovarchik [17] to obtain the
necessary and sufficient conditions of the Hochstadt–Lieberman problem’s solvability. They
considered the Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, a), y(0) = y(a) = 0

in the following equivalent form:

−y′′j + qj(x)yj = λ2yj, x ∈ [0, a/2], j = 1, 2, (16)

yj(0) = 0, j = 1, 2, y1(a/2) = y2(a/2), y′1(a/2) + y′2(a/2) = 0. (17)

The boundary value problem (16)–(17) can be treated as the Sturm-Liouville problem
on a two-edge star-shaped graph with the standard matching conditions in the interior
vertex (see Figure 4). In the Hochstadt–Lieberman problem, the potential q1 on the first edge
is known, and the potential q2 on the second edge must be recovered from the spectrum
{λk}k∈Z0 of the boundary value problem (16)–(17), Z0 := Z \ {0}.

a/2

00

known unknown

Figure 4. Two-edge graph.

The authors of [17] assumed that qj ∈ L2(0, a/2) and denoted by sj(λ, x), j = 1, 2 the
solutions of the corresponding Equation (16) satisfying the initial conditions sj(λ, 0) = 0,
s′j(λ, 0) = 1.

Theorem 11 ([17]). Let a real-valued function q1 ∈ L2(0, a/2) be given, together with a set
{λk}k∈Z0 of numbers that satisfy the conditions:

1. λk = −λk,
2. −∞ < λ2

1 < λ2
2 < · · · < λ2

k < . . . ,

3. λk =
πk
a

+
K
πk

+
βk
k

.

Here, K ∈ R, and {βk}k∈Z0 ∈ l2.

If the function
s2(
√

λ, a/2)
s′2(
√

λ, a/2)
belongs to the Nevanlinna class, then there exists a real-valued

function q2(x) ∈ L2[0, a/2] such that the spectrum of the problems (16) and (17) generated by q1
and q2 coincides with {λk}k∈Z0 .

It is supposed in Theorem 11 that the functions s2(λ, a/2) and s′2(λ, a/2) are recovered
from q1 and {λk}k∈Z0 by a procedure analogous to Method 1. Note that the conditions
of Theorem 11 are not only sufficient but also necessary. Indeed, the conditions 1–3 are

the standard properties of Sturm-Liouville eigenvalues, and the function
s2(
√

λ, a/2)
s′2(
√

λ, a/2)
is
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the Weyl function of the Sturm-Liouville problem on the second edge, which belongs to
the Nevanlinna class by necessity. In fact, Martinyuk and Pivovarchik [17] reduced the
Hochstadt–Lieberman problem to the classical inverse problem using the Weyl function on a
subinterval corresponding to the second edge and then imposed an additional requirement
of belonging to the Nevanlinna class. Analogous results for the Robin boundary conditions
were obtained in [18].

Thus, both Theorems 9 and 11 pertaining to the necessary and sufficient conditions pro-
posed by Hryniv and Mykytyuk [14] and by Martinyuk and Pivovarchik [17], respectively,
contain some a posteriori conditions, which have to be checked after the implementation
of several steps of a constructive procedure for solution. It seems that such conditions are
unavoidable for Hochstadt–Lieberman-type problems.

Additionally, numerical techniques for solving the Hochstadt–Lieberman problem
were developed by Rundell and Sacks [67]. An overview of some other work on the
Hochstadt-Leiberman problems on an interval can be found in [68].

2.3. McLaughlin–Polyakov Problem

In this section, we consider the so-called transmission eigenvalue problem

−y′′ + q(x)y = λy, x ∈ (0, 1), (18)

y(0) = 0, y(1) cos ρa− y′(1)
sin ρa

ρ
= 0, ρ =

√
λ, (19)

where q is a real-valued potential of L2(0, 1) and a ≥ 0. The boundary condition at x = 1
has a non-linear and even non-polynomial dependence on the spectral parameter λ.

The problem (18)–(19) arise in connection with the investigation of the acoustic inverse
scattering problem in a non-homogeneous medium (see [19]). Transmission eigenvalues are
the eigenvalues k2 of the boundary value problem

Δu + k2n(x)u = 0, x ∈ B1,
Δv + k2v = 0, x ∈ B1,
u(x) = v(x), x ∈ ∂B1,
∂
∂r (u(x)− v(x)) = 0, x ∈ ∂B1,

(20)

where B1 is the ball in R3 of radius 1 centered at the origin, ∂B1 is its boundary, n(x) > 0 is
the refractive index, and ∂

∂r is the normal derivative. The inverse transmission eigenvalue
problems consist in the recovery of the function n(x) (related to the speed of sound in acous-
tics) from the transmission eigenvalues. In spherically symmetric cases, the problem (20)
can be reduced to the one-dimensional form (18)–(19) using the separation of variables and
subsequent transforms (see [19]).

Difficulties in the investigation of the problem (18)–(19) are caused by the non-
regularity of its boundary conditions in the Birkhoff and Stone senses (see [69]). Therefore,
the transmission problem involves more complex spectral behavior than the classical
Sturm-Liouville problems.

McLaughlin and Polyakov [19] showed that, for a �= 1, the transmission eigenvalue
problem has a subspectrum {λn}n≥1 with the asymptotics

√
λn =

πn
1− a

+
ω0

πn
+

κn

n
, ω0 :=

1
2

∫ 1

0
q(x)dx, n ≥ 1, (21)

Furthermore, λn ∈ R for a sufficiently large n. Buterin and Yang [70] suggested
that an eigenvalue sequence {λn}n≥1 possessing these properties should be called an
almost real subspectrum. Note that a finite number of the first eigenvalues in an almost real
subspectrum may be complex and/or multiple. Since the potential q(x) is real-valued, then,
without a loss of generality, we can assume that an almost real subspectrum is symmetrical
with respect to the real axis, that is, values λ and λ are only contained in the sequence
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{λn}n≥1 simultaneously and have the same multiplicity. An almost real subspectrum can
be non-unique. The results of this section are valid for any almost real subspectrum.

In [19], an investigation of the following inverse transmission eigenvalue problem was
initiated.

Problem 5 ([19]). Given an almost real subspectrum {λn}n≥1 and the potential q(x) on the
interval (α, 1), where α := min{|a− 1|/2, 1}, find q(x) on (0, α).

We call Problem 5 the McLaughlin–Polyakov problem. Obviously, if a = 0, then the
McLauglin-Polyakov problem coincides with the Hochstadt–Lieberman problem, and an
almost real subspectrum coincides with the whole spectrum. McLaughin and Polyakov [19]
proved the uniqueness theorem for the solution of Problem 5.

Theorem 12 ([19]). Suppose that a ≥ 0, a �= 1. If λn = λ̃n for n ≥ 1 and q(x) = q̃(x) a.e. on
(α, 1), then q(x) = q̃(x) a.e. on (0, α).

Note that, for a ≥ 3, an almost real subspectrum uniquely specifies the potential on
the whole interval (0, 1), and some part of an almost real subspectrum is sufficient for
a > 3. The investigation of Problem 5 was continued by McLauglin et al. in [20] for a ≥ 3
and in [21] for a ∈ (0, 1) ∪ (1, 3). The authors of [20,21] developed numerical methods for
reconstructing the potential based on the ideas of Rundell and Sacks [67]. However, they
did not study the existence and stability of the solution.

In [22], Bondarenko and Buterin proved the following theorem on the local solvability
and stability of the McLaughlin–Polyakov problem:

Theorem 13 ([22]). Fix a ∈ [0, 1) ∪ (1, 3]. For any real-valued potential q ∈ L2(0, 1), there exists
δ > 0 such that, for any sequence {λ̃n}n≥1 symmetric with respect to the real axis and an arbitrary
real-valued function q1 ∈ L2(α, 1) satisfying∫ 1

α
q1(x) dx =

∫ 1

α
q(x) dx,

the closeness

Λ :=

√
∞

∑
n=1

|λn − λ̃n|2 ≤ δ, Q := ‖q− q1‖L2(α,1) ≤ δ

implies the existence of a unique function q̃(x) ∈ L2(0, 1) such that q̃(x) = q1(x) a.e. on (α, 1)
and {λ̃n}n≥1 is an almost real subspectrum of the boundary value problems (18) and (19) with q(x)
replaced by q̃(x). Moreover, the following estimate holds:

‖q− q̃‖L2(0,α) ≤ C(Λ + Q),

where C does not depend on {λ̃n}n≥1 and q1(x).

Theorem 13 represents the first existence result for the inverse transmission eigenvalue
problem. Furthermore, for a = 0, it provides the first full stability result for the Hochstadt–
Lieberman problem, in which perturbations of both the spectrum and the potential on
(1/2, 1) are taken into account. In addition, Theorem 13 implies the minimality of the
McLaughlin–Polyakov data in the case a ∈ [0, 1) ∪ (1, 3]. For a > 3, the stability does not
hold, since Problem 5 is overdetermined. The proof of Theorem 13 is constructive. Later
on, by relying on the ideas of [22], a unified approach to partial inverse problems was
developed (see Section 4).

In [23], the methods of Bondarenko and Buterin [22] were used to obtain further
stability results for Problem 5. It is worth mentioning that inverse transmission eigenvalue
problems were studied using statements other than the McLaughlin–Polyakov statement
in [69–74] and other papers.

44



Mathematics 2023, 11, 2408

3. Partial Inverse Problems on Graphs

In this section, we consider generalizations of the Hochstadt–Lieberman problem on
metric graphs. We treat the boundary value problems on graphs as differential systems.
The geometrical graph structure is used only for defining the matching conditions. In
interior graph vertices, the problems in this section mostly feature the standard matching
conditions, which, from a physical viewpoint, express Kirchoff’s law in electrical circuits,
the balance of tension in elastic string networks, etc.

3.1. Star-Shaped Graphs

The majority of results on partial inverse problems for metric graphs have been
obtained for star-shaped graphs. We start with the complete inverse problem statement for
the Sturm-Liouville equations on such a graph.

Let G be a star-shaped graph containing m ≥ 3 edges {ej}m
j=1 of equal lengths π.

Each edge ej joins the internal vertex v0 with the boundary vertex vj. For each edge ej, we
introduce the parameter xj ∈ [0, π]. The value xj = 0 corresponds to the boundary vertex
vj, and the value xj = π corresponds to the internal vertex v0 (see Figure 5).

v0

v4

v3

vm

v1

v2

e4

e3

em

e1

e2

...

0

π π

0

π

0

π

0

π

0

Figure 5. Star-shaped graph.

On the graph G, consider the Sturm-Liouville equations

−y′′j (xj) + qj(xj)yj(xj) = λyj(xj), xj ∈ (0, π), j = 1, m, (22)

with real-valued potentials qj ∈ L2(0, π), j = 1, m, and the standard matching conditions at
the internal vertex:

y1(π) = yj(π), j = 2, m,
m

∑
j=1

y′j(π) = 0. (23)

Let Λ and Λk, k = 1, m, denote the spectra of the boundary value problems L and Lk,
k = 1, m, respectively, for Equation (22), subject to the matching conditions (23) and the
following boundary conditions:

L : yj(0) = 0, j = 1, m, (24)

Lk : y′k(0) = 0, yj(0) = 0, j = 1, m \ k.

The spectra Λ and Λk, k = 1, m, are countable sets of real eigenvalues.
The complete inverse Sturm-Liouville problem on graph G is formulated as follows:

Problem 6 ([75]). Given the spectra Λ and Λk, k = 1, m− 1, find the potentials {qj}m
j=1.
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Problem 6 is a special case of the well-studied inverse spectral problems for Sturm-
Liouville operators on trees (see [27,75]). In [75], the uniqueness of the inverse problem
solution was proved, and a constructive algorithm for its solution based on the method
of spectral mappings [4] was developed. Note that, for the recovery of the potentials on
the whole graph, a sufficiently large amount of spectral data must be used (m spectra). To
the best of the author’s knowledge, the minimality of these data is an open question. In
addition, the following question arises:

Can the amount of spectral data for reconstruction be reduced if the potentials on some edges
are given a priori?

The first partial inverse problems on graphs were considered by Pivovarchik [28]. He
studied the Sturm-Liouville problem (22)–(24) on a three-edge star graph (m = 3) with
real-valued non-negative potentials qj ∈ L2(0, π), j = 1, 2, 3. In addition, for j = 1, 2, 3,
the spectrum of the Sturm-Liouville Equation (22) on the edge ej subject to the boundary
conditions yj(0) = yj(π) = 0 is denoted by Sj. The main results of [28] were concerned
with the following inverse problem:

Problem 7 ([28]). Given the spectra Λ and Sj, j = 1, 2, 3, find qj for j = 1, 2, 3.

A disadvantage of Problem 7 is that the spectra Sj, which carry information not from
the whole graph but from the separate edges, are used for reconstruction. Nevertheless, as
a corollary of the main results, the uniqueness of the solution was proved in [28] for the
following partial inverse problem:

Problem 8 ([28]). Given the potentials q1 and q2 and the spectrum Λ, find q3.

In fact, Problem 8 is overdetermined. Yang [30] showed that, for the unique recovery of
the potential on one edge, the fractional part 2

m of the spectrum is sufficient if the potentials
on all the other edges are supposed to be known. In [30], a Sturm-Liouville problem on a
star-shaped graph G with general boundary conditions was considered:

yj(0, λ) cos αj + y′j(0, λ) sin αj = 0, αj ∈ [0, π), j = 1, m.

For simplicity, we formulate the results of Yang [30] for the Dirichlet boundary
conditions (24).

Consider the Sturm-Liouville problem L presented by (22)–(24) with real-valued po-
tentials of class L1(0, π). For each j = 1, m, let Sj(xj, λ) denote the solution of Equation (22)
satisfying the initial conditions Sj(0, λ) = 0, S′j(0, λ) = 1. The eigenvalues of L coincide
with the zeros of the characteristic function

Δ(λ) :=
m

∑
j=1

S′j(π, λ)
m

∏
k=1
k �=j

Sk(π, λ) (25)

and can be denoted as {λnk}n≥1, k=1,m (counting with multiplicities), so that the following
asymptotic relations hold:

√
λn1 = n− 1

2
+ O

(
n−1

)
, (26)√

λnk = n + O
(

n−1
)

, k = 2, m. (27)

The partial inverse problem of [30] is formulated as follows:

Problem 9 ([30]). Suppose that the potentials {qj}m
j=2 are known a priori. Given a subspectrum

Ω := {λnk}n≥1, k=1,2, find q1.
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In view of symmetry, one can replace the potential q1 with an arbitrary qj, j = 2, m,
and the eigenvalues {λn2}n≥1 with a sequence {λnk}n≥1 containing an arbitrary fixed
k = 3, m in the problem statement. Note that the subspectrum Ω can contain a finite
number of multiple eigenvalues. Furthermore, Ω is not uniquely determined by the
asymptotics (26) and (27), so any suitable subspectrum can be considered. Obviously, in the
case m = 2, Ω is the whole spectrum, and Problem 9 turns into the Hochstadt–Lieberman
problem.

In [30], the following uniqueness theorem for Problem 9 was proved:

Theorem 14 ([30]). Let Ω = {λnk}n≥1, k=1,2 be a subspectrum of problem L satisfying the
asymptotics (26)–(27) and the condition Ω ∩Sj = ∅ for j = 2, m. If qj(x) = q̃j(x) a.e. on (0, π)

for j = 2, m and Ω = Ω̃, then q1(x) = q̃1(x) a.e. on (0, π).

The condition Ω ∩Sj = ∅ is crucial for the uniqueness. Suppose that this condition
is violated, that is, there exist j ∈ {2, . . . , m} and λ0 such that λ0 ∈ Ω ∩Sj. Obviously,
λ0 ∈ Sj implies Sj(π, λ0) = 0. Taking (25) into account, we conclude that Si(π, λ0) = 0,
and so λ0 ∈ Si for some i �= j. Thus, λ0 is the eigenvalue of the two Dirichlet problems for
separate edges ei and ej. If i �= 1, this eigenvalue carries no information about the potential
q1. In [42], the validity of Theorem 14 was proved for complex-valued potentials {qj}m

j=1

and the condition Ω∩Sj = ∅, j = 2, m, replaced by the following less restrictive condition:

Condition 1. For every λnk ∈ Ω, there do not exist indices i and j such that 2 ≤ i, j ≤ m, i �= j
and Si(π, λnk) = Sj(π, λnk) = 0.

It is worth mentioning the paper by Yurko [29] in which uniqueness was studied for
the following partial inverse problem.

Problem 10 ([29]). Suppose that {qj}m
j=2 are known a priori and q1 is known on the subinterval

(b, π), where b < π. Given part of the spectrum Λ of the problem (22)–(24), find q1 on (0, b).

The investigation of Problem 9 was continued by Bondarenko [33]. In [33], a con-
structive algorithm for solution was developed, and the local solvability and stability
were proved. In order to formulate the results of [33], we needed the following precise
eigenvalue asymptotics:

Theorem 15 ([76]). The eigenvalues {λnk}n≥1, k=1,m (counting with multiplicities) of the bound-
ary value problem L with real-valued potentials qj ∈ L2(0, π), j = 1, m, can be numbered so that

√
λn1 = n− 1

2
+

ω̂

πn
+

κn1

n
, (28)√

λnk = n +
zk−1
πn

+
κnk
n

, k = 2, m, (29)

where {κnk}n∈N ∈ l2, k = 1, m, ω̂ = 1
m

m
∑

j=1
ωj, ωj =

1
2

π∫
0

qj(x) dx and {zk}m−1
k=1 are the roots of

the characteristic polynomial

P(z) =
d
dz

m

∏
k=1

(z−ωk).

In [33], the following theorem regarding the local solvability and stability of Problem 9
was proved.

Theorem 16 ([33]). Suppose that the boundary value problem L of the forms (22) and (24) with
potentials qj ∈ L2(0, π), j = 1, m and its subspectrum {λnk}n≥1, k=1,m satisfy the following
assumptions:
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1. All the eigenvalues {λnk}n∈N, k=1,2 are distinct;
2. λnk > 0, n ∈ N, k = 1, 2;
3. Sj(π, λnk) �= 0, j = 1, m, n ∈ N, k = 1, 2;
4. z1 �= ωj, j = 1, m;
5. S1(π, 0) �= 0, S′1(π, 0) �= 0.

Then, there exists ε0 > 0 such that, for arbitrary real numbers {λ̃nk}n∈N, k=1,2 satisfying(
∞

∑
n=1

∑
k=1,2

(
n
(
λ1/2

nk − λ̃1/2
nk

))2
)1/2

< ε, ε ≤ ε0,

there exists a unique real function q1 ∈ L2(0, π), which is the solution of Problem 9 for
{λ̃nk}n∈N, k=1,2 and qj, j = 2, m. Moreover, the following estimate holds:

‖q1 − q̃1‖L2(0,π) < Cε,

where the constant C depends only on L and ε0.

Let us show that Theorem 16 implies the minimality of the spectral data of Problem 9.
Suppose that problem L and the subspectrum Ω = {λnk}n≥1, k=1,2 satisfy the hypothesis
of Theorem 16 and exclude one eigenvalue: Ω− := Ω \ {λ11}. Then, the subspectrum
Ω− does not uniquely specify q1 if {qj}m

j=2 are fixed. Indeed, for any real number λ̃11

sufficiently close to λ11, Problem 9 with the data Ω− ∪ {λ̃11} has a solution q̃1 �= q1. Thus,
there are two potentials, q1 and q̃1, corresponding to the subspectrum Ω−.

In [34], the boundary value problem (22)–(23) on a star-shaped graph G was considered
with complex-valued potentials qj ∈ L2(0, π) and conditions of different types (Robin and
Dirichlet) in the boundary vertices:

y′j(0)− hjyj(0) = 0, j = 1, p, yj(0) = 0, j = p + 1, m, (30)

where 1 ≤ p < m and {hj}p
j=1 are complex constants.

In [34], the following asymptotic formulas were obtained for the eigenvalues
{λnk}n∈N, k=1,m of the boundary value problem (22), (23), and (30):√

λn1 = n− 1 +
α

π
+

σ

πn
+

κn1

n
, {κn1} ∈ l2,√

λn2 = n− α

π
+

σ

πn
+

κn2

n
, {κn2} ∈ l2,√

λnk = n− 1
2
+

zk
πn

+
κnk
n

, k ∈ I3, κn3 = o(1),√
λnk = n +

tk
πn

+
κnk
n

, k ∈ I4, κn4 = o(1),

where α, σ, zk, and tk are certain constants, and I3 and I4 are fixed sets of indices such that
I3 ∪ I4 = 3, m, I3 ∩ I4 = ∅, |I3| = p− 1, and |I4| = m− p− 1. To be precise, we assumed
that 3 ∈ I3 and 4 ∈ I4 if these sets are nonempty.

The author of [34] was concerned with the following partial inverse problem for all
possible cases depending on p and 1 ≤ k1 < k2 ≤ 4:

Problem 11 ([34]). Let the potentials qj, j = 2, m, the coefficients hj, j = 2, p, and the sequence
{λnk}n∈N, k∈{k1,k2} of the eigenvalues of L be given. Find the potential q1 and the coefficient h1.

The results of [34] included:

• Eigenvalue asymptotics;
• Uniqueness;
• A constructive solution.
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The proof technique of [34] was derived from the study of the Riesz basis property for
the sequences {sin(n + β)t}n≥1 and {1} ∪ {cos(n + β)t}n≥1 [77].

In [35], the Sturm-Liouville problem L with singular potentials was considered on a
star-shaped graph with different edge lengths {dj}m

j=1:

�jyj = −(y[1]j )′ − σj(xj)y
[1]
j − σ2

j (xj)yj, xj ∈ (0, dj), σj ∈ L2(0, dj), j = 1, m, (31)

with standard matching conditions

y1(d1) = yj(dj), j = 2, m,
m

∑
j=1

y[1]j (dj) = 0,

and Dirichlet boundary conditions

yj(0) = 0, j = 1, m.

Fix an integer p, 1 ≤ p < m. Let {λn}n∈T , T ⊆ N be some subset of the spectrum.

Problem 12 ([35]). Given the potentials {σj}m
j=p+1, the subspectrum {λn}n∈T, and the sequence

{ωk}k≥1, find {σj}p
j=1.

The numbers {ωk}k≥1 are defined as follows. For j = 1, m, let Sj(xj, λ) be the solution

of Equation (31) on the edge ej satisfying the initial conditions Sj(0, λ) = 0, S[1]
j (0, λ) = 1,

and let {λnj}n≥1 be the zeros of Sj(dj, λ). Since the function σj is real-valued, then the zeros
of {λnj}n≥1 are real and distinct as the eigenvalues of the corresponding operator.

Assume that the functions Sj(dj, λ) and j = 1, p do not have any common zeros.

Let {μk}k≥1 denote the union
p⋃

j=1
{λnj}n≥1 by arranging the numbers in increasing order:

μk < μk+1, k ∈ N. In view of our assumption, for every k ∈ N, there exists exactly one index
j =: ωk ∈ {1, . . . , p}, such that μk ∈ {λnj}n≥1. The sequence {ωk}k≥1 is used as additional
data for the partial inverse problem.

Using a subspectrum {λn}n∈T , it is possible to recover only the sum of the Weyl

functions
p
∑

j=1
Mj(λ) for separate edges {ej}p

j=1. In order to find Mj(λ) separately, one also

needs {ωk}k≥1.
Impose the assumptions:
(A1) Sj(dj, λn) �= 0, j = 1, m, n ∈ T.
(A2) The functions Sj(dj, λ) and j = 1, p do not have any common zeros.
(A3) λn �= λk, n �= k, n, k ∈ T.
(A4) λn > 0, n ∈ T.
(A5) λnj > 0, n ∈ N, j = 1, p.
In [35], three approaches to uniqueness for the solution of Problem 12 were suggested.

The first approach was based on the estimate of the infinite product

ΔT(λ) := ∏
n∈T

(
1− λ

λn

)
.

Theorem 17 ([35]). Suppose that σj = σ̃j in L2(0, dj) for j = p + 1, m, {λn}n∈T = {λ̃n}n∈T̃ ,
and ωk = ω̃k, k ≥ 1. Moreover, let the assumptions (A1)–(A5) hold for both problems L and L̃
and the corresponding subspectra, and let the estimate

|ΔT(λ)| ≥ C|λ|(1−2p)/2 exp(2l|Im
√

λ|), |λ| ≥ λ∗, arg λ = ϕ, (32)
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be valid, where ϕ ∈ (0, 2π) and λ∗ > 0 are fixed numbers, l :=
p
∑

j=1
dj. Then, σj = σ̃j in L2(0, dj)

for j = 1, p.

The second approach relied on the ideas of Gesztesy and Simon [10] and
generalized Theorem 3.

Theorem 18 ([35]). Suppose that σj = σ̃j in L2(0, dj) for j = p + 1, m, {λn}n∈T = {λ̃n}n∈T̃ ,
and ωk = ω̃k, k ∈ N. Moreover, let the assumptions (A1)–(A5) hold for both problems L and L̃
and the corresponding subspectra, and for all sufficiently large t > 0, we have

#{n ∈ T : λn < t} ≥ α#{n ∈ N : λn < t}+ β,

where

L =
m

∑
j=1

dj, α =
2l
L

, β =
1
2
(α(m− 1)− 2p + 1).

Then, σj = σ̃j in L2(0, dj) for j = 1, p.

The third approach of [35] was based on the construction of a special sequence of
vector functions in the Hilbert space L2(0, l)⊕ L2(0, l). The completeness of this sequence
implies the uniqueness of the partial inverse problem solution.

3.2. Simple Graphs with Loops

The study of partial inverse problems on graphs with loops began with [31,32] for
graph G presented in Figure 6. Graph G has the vertices {vj}r

j=0 and the edges {ej}r+r1
j=1 ,

where ej = [vj, v0] for j = 1, r are boundary edges and ej for j = r + 1, r1 are loops.

v0

v1

v2vr

er+1

er+r1

e1

e2

er

...

...

Figure 6. Graph with loops.

The Sturm-Liouville problem on G is given by the equations

−y′′j + qj(x)yj = λyj, x ∈ (0, 1), j = 1, r + r1,

subject to the matching conditions in the internal vertex v0:

yj(1) = yi(0), j = 1, r + r1, i = r + 1, r1 + 1,
r+r1

∑
j=1

y′j(1) =
r+r1

∑
i=r+1

y′i(0),

and the boundary conditions in the vertices vj, j = 1, r. In [31], the Robin boundary
conditions y′j(0)− hjyj(0) = 0, j = 1, r were considered and, in [32], the Dirichlet boundary

conditions yj(0) = 0, j = 1, r. The potentials {qj}r+r1
j=1 were assumed to be real-valued

and integrable.
In [31,32], the uniqueness theorems for the solution of the following partial inverse

problem were proved:
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Problem 13 ([31,32]). Suppose that the potentials {qj}r+r1
j=2 on (0, 1) and the potential q1 on the

subinterval (b, 1), b < 1 are known a priori. Given a subspectrum, find q1 on (0, b).

In [31], the constants {hj}r
j=2 of the boundary conditions were assumed to be known,

and h1 had to be recovered together with q1 on (0, b). Problem 13 was studied under a
separation condition and the completeness condition of a cosine system. These conditions
guaranteed the uniqueness of the solution.

Yang and Bondarenko [37] investigated a partial inverse problem on a lasso
graph (see Figure 7).

e1e2
l1 00

l2

Figure 7. Lasso graph.

In [37], the following Sturm-Liouville problem on a lasso graph with singular poten-
tials qj = W−1

2 (0, lj), qj = σ′j , j = 1, 2 was considered:

�jyj = −(y[1]j )′ − σj(xj)y
[1]
j − σ2

j (xj)yj = λyj, σj ∈ L2(0, lj), j = 1, 2,

y1(0) = 0, y1(l1) = y2(0) = y2(l2), y[1]1 (l1)− y[1]2 (0) + y[1]2 (l1) = 0,

where y[1]j = y′j − σjyj, j = 1, 2, l1 = m ∈ N, l2 = 1.

Problem 14 ([37]). Given the function σ1, the subspectrum Λ, and the signs Ω, find the func-
tion σ2.

The signs Ω in the problem statement are defined as follows. Let S2(x, λ) and C2(x, λ)

be the solutions of equation �2y2 = λy2 under the initial conditions S2(0, λ) = C[1]
2 (0, λ) =

0, S[1]
2 (0, λ) = C2(0, λ) = 1. Define

h(λ) := S2(1, λ), H(λ) := C2(1, λ)− S[1]
2 (1, λ), d(λ) := C2(1, λ) + S[1]

2 (1, λ)− 2.

The zeros {νn}n≥1 of h(λ) are the eigenvalues of the Dirichlet boundary value problem:

�2y2 = λy2, y2(0) = y2(1) = 0.

The zeros {μn}n∈Z of d(λ) are the eigenvalues of the periodic problem:

�2y2 = λy2, y2(0) = y2(1), y[1]2 (0) = y[1]2 (1).

Let ωn := sign H(νn) and Ω := {ωn}n≥1. The partial inverse problem on the lasso
graph (Problem 14) is reduced to the following periodic inverse problem on a finite interval:

Problem 15 ([37]). Given the sequences {νn}n≥1 and {μn}n∈Z and the sequence of signs Ω,
construct the function σ2.

In [37], the solution of Problem 15 was obtained for the case of singular potentials
q ∈ W−1

2 (0, 1). Thus, [37] contained the following results for the partial inverse problem:

• Eigenvalue asymptotics;
• Uniqueness;
• Algorithm;
• The solution of the inverse periodic problem with a singular potential.
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Bondarenko and Shieh [38] studied partial inverse problems for a quadratic differential
pencil on the graph with a cycle presented in Figure 8.

vm

v1

v2

vm−1

e1
e2

em−1

em

Figure 8. Graph with a cycle.

In [38], the following boundary value problem with nonlinear dependence on the
spectral parameter λ was considered:

−y′′j + qj(xj)yj + 2λpj(xj)yj = λ2yj, xj ∈ (0, π), j = 1, m,

yj(0) = 0, j = 1, m− 1,

ym(0) = yj(π), j = 1, m, y′m(0) =
m

∑
j=1

y′j(π),

where pj ∈ AC[0, π] and qj ∈ L1(0, π), j = 1, m, are complex-valued functions. The
following two partial inverse problems were studied.

Problem 16 ([38]). Given the functions {pj}m
j=2 and {qj}m

j=2 and a subspectrum Λ, find p1

and q1.

Problem 17 ([38]). Let the functions {pj}m−1
j=1 and {qj}m−1

j=1 , a subspectrum Λ, and the sequence
of signs Ω be given. Find pm and qm.

In Problem 17, Ω is the sequence of signs for the auxiliary periodic problem
(see [38] for details). The results of [38] included:

• Eigenvalue asymptotics;
• Uniqueness;
• A constructive solution.

In [38], methods of working with multiple eigenvalues and vector-functional se-
quences containing exponents were developed. An important role in the proofs was played
by the Riesz basicity of exponential systems {exp(iλkt)} in L2(−π, π). Later on, these
methods were generalized to graphs of an arbitrary structure (see [40]).

3.3. Graphs of a General Structure

The analysis of partial inverse problems on star-shaped graphs and simple graphs
with loops showed that such problems present specific features for each case. Therefore, it
is difficult to obtain results for graphs of a general structure. Until now, only the following
cases have been studied:

• The reconstruction of the potentials on an arbitrary tree graph (graph without cycles)
by several spectra, while the potential on one edge is known a priori (see [78]).

• The reconstruction of the potential on one boundary edge of an arbitrary graph
using part of the spectrum, while the potentials on all other edges are known a
priori (see [40,41]).

• For a tree graph, the reconstruction of the potentials on a connected subtree from
parts of several spectra, while the potentials on the remaining edges are known a
priori (see [39]).

In this section, we briefly describe these results.
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Proceeding to the statement of the Sturm-Liouville problem on a graph of a general
structure, let G be a graph with a set of vertices V and edges {ej}m

j=1 with the corresponding
lengths {Tj}m

j=1. The graph may contain cycles, loops, and multiple edges. For each edge

ej, j = 1, m, introduce the parameter xj ∈ [0, Tj]. Let us denote the ends of ej as w2j−1
and w2j so that xj = 0 corresponds to w2j−1 and xj = Tj to w2j. Every vertex v of the
graph G can be considered as the equivalence class of all the ends wj incident to this vertex:
v = {wj1 , wj2 , . . . , wjr}. The number of elements in this class is called the degree of the vertex.
We assume that the graph G does not have vertices of degree 2. Otherwise, the two edges
incident to such vertices could be merged into one edge. The vertices of degree 1 are called
the boundary vertices, and the others are called the internal vertices. An edge incident to a
boundary vertex is called a boundary edge. Let ∂G and intG denote the sets of the boundary
vertices and the internal vertices, respectively, V = ∂G ∪ intG.

A function on the graph G is a vector function y = [yj]
m
j=1 with components yj = yj(xj),

xj ∈ [0, Tj]. A function y belongs to a class A (G) if yj ∈ A [0, Tj] for j = 1, m, where
A = L1, AC, etc. In order to define matching and boundary conditions, one needs the
following notations:

y|w2j−1
= yj(0), y|w2j

= yj(Tj),
y′|w2j−1

= −y′j(0), y′|w2j
= y′j(Tj),

j = 1, m.

For v ∈ ∂G, we write y(v) and y′(v) for y|wk
and y′|wk

, respectively, where wk ∈ v.
Bondarenko and Shieh [78] considered the Sturm-Liouville equations

−y′′j + qj(xj)yj = λyj, xj ∈ (0, Tj), j = 1, m, (33)

on a tree graph G (a graph without cycles) with the potential q = [qj]
m
j=1 ∈ L1(G) and the

standard matching conditions

y|wj
= y|wk

, wj, wk ∈ v (continuity conditions)

∑
wj∈v

y′|wj
= 0 (Kirchhoff’s condition)

⎫⎬⎭ v ∈ intG. (34)

Let L0 and Lk, vk ∈ ∂G, be the boundary value problems for the system (33) with the
matching conditions (34) and the following conditions in the boundary vertices:

L0 : y(vi) = 0, vi ∈ ∂G,

Lk : y′(vk) = 0, y(vi) = 0, vi ∈ ∂G\{vk}.

The problems Lk have discrete spectra, which are the countable sets of eigenvalues
Λk = {λks}s≥1, k = 0 or vk ∈ ∂G.

Fix a vertex vr ∈ ∂G as a root of the tree G. Let er be the edge incident to vr. Then, the
uniqueness theorem for the complete inverse problem on the tree is formulated as follows:

Theorem 19 ([75]). The spectra Λ0 and Λk, k ∈ ∂G \ {vr}, uniquely determine the potential q on
the whole tree G.

Thus, if the number of boundary vertices is b, then b spectra are required for the
recovery of the potentials. Bondarenko and Shieh [78] assumed that the potential q f is
known a priori on one edge e f and proved that the remaining potentials can be uniquely
recovered from (b− 1) spectra. If an internal edge e f is removed, then the tree G splits into
two parts. Let us denote them by P1 and P2 and their sets of boundary vertices by ∂P1 and
∂P2, respectively.

Theorem 20 ([78]). Let the potential q f on an edge e f ( f �= r) be known.
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1. If e f is a boundary edge, the spectra Λ0 and Λk, vk ∈ ∂G \ {v f , vr}, uniquely determine the
potential q on the whole graph G.

2. If e f is an internal edge, the spectra Λ0 and Λk vk ∈ ∂G \ {vr1, vr2}, where vr1 ∈ ∂P1 and
vr2 ∈ ∂P2, uniquely determine the potential q on the whole graph G.

Theorem 20 was proved by a constructive method, developing from the ideas of [75].
The case of the internal edge e f is the most difficult. It is crucial that the two end vertices of
the internal edge e f have degrees of at least 3. Consequently, Theorem 20 cannot be applied
to an interval with the potential given on a middle subinterval.

Bondarenko [39] investigated another type of partial inverse problem on a tree G.
The edge lengths Tj in [39] were assumed to be equal π. The Sturm-Liouville equation
presented in Equation (33) was considered with the singular potentials qj ∈ W−1

2 (0, π),
j = 1, m. Therefore, Equation (33) was represented in the form

−(y[1]j )′ − σj(xj)y
[1]
j − σ2

j (xj)yj = λyj, x ∈ (0, Tj), j = 1, m, (35)

where qj = σ′j , σj ∈ L2(0, Tj), y[1]j = y′j − σjyj, j = 1, m.
Let {γj}m

j=1 be some real constants. In order to define the matching conditions, one
uses the following notations:

y|w2j−1
= yj(0), y|w2j

= yj(Tj),

y[1]|w2j−1
= −y[1]j (0), y[1]|w2j

= y[1]j (Tj) + γjyj(Tj),
j = 1, m. (36)

For v ∈ ∂G, y(v) and y[1](v) are written for y|wk
and y[1]|wk

, respectively, where wk ∈ v.
Let us divide the set of the boundary vertices into two disjoint subsets:

∂G = VD ∪ VN , VD ∩ VN = ∅.

Thus, in [39], the boundary value problem L for the Sturm-Liouville equation pre-
sented in Equation (35) was considered subject to the matching conditions

y|wj
= y|wk

, wj, wk ∈ v

∑
wj∈v

y[1]|wj
= 0

⎫⎬⎭ v ∈ intG (37)

and the boundary conditions

y(v) = 0, v ∈ VD, y[1](v) = 0, v ∈ VN . (38)

Let the tree G be divided into two subtrees Gknown and Gunknown with a common vertex
w ∈ intG (see Figure 9). Let Eknown and Eunknown denote the edge sets of Gknown and
Gunknown, respectively. Let {vk}b

k=1 denote the boundary vertices ∂Gunknown \ {w}. For
each k = 1, b, let Lk denote the boundary value problem (35), (37) with the boundary
conditions (38) for v ∈ ∂G \ {vk} and y(vk) = 0 if vk ∈ VN , or y[1](vk) = 0 if vk ∈ VD. In
other words, if the problem L has the Dirichlet boundary condition in vk, then Lk has the
Neumann boundary condition, and vice versa.
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w

Gunknown

Gknown

Figure 9. Tree graph.

Problem 18 ([39]). Suppose that the functions σj on the edges ej ∈ Eknown and the constants
{γj}m

j=1 are known a priori. Given some subspectra of the problems L and Lk for k = 1, b− 1, find
σj for all ej ∈ Eunknown.

Note that, in view of Theorem 19, the full spectra of L and Lk for k = 1, b− 1 determine
the potentials on the whole tree G. Strictly speaking, Yurko [75] proved Theorem 19 for
regular potentials qj ∈ L2(0, Tj). For singular potentials qj ∈ W−1

2 (0, Tj), similar results
were obtained by Vasiliev [79].

In [39], it was shown that, if the potentials σj are known on Eknown, then only part of
the spectra can be used for reconstruction. Sufficient conditions for the uniqueness were
formulated in terms of completeness for some special vector functional sequences, which
were constructed using the known functions σj and the given subspectra. Furthermore, the
uniqueness conditions in terms of the eigenvalue asymptotics were obtained. In addition,
in [39], a constructive algorithm for solving Problem 18 was developed. This algorithm
allows one to reduce the partial inverse problem to a complete inverse problem for the
“unknown” subtree.

Proceeding to general graphs containing cycles, for such graphs, partial inverse prob-
lems were investigated only for case in which a potential is unknown on one edge. Let
G be a graph of an arbitrary structure with arbitrary edge lengths {Tj}m

j=1. In [40], Sturm-
Liouville differential equations with quadratic dependence on the spectral parameter λ
were considered on the graph G:

−y′′j (xj) + (qj(xj) + 2λpj(xj)− λ2)yj(xj) = λyj(xj), xj ∈ (0, Tj), j = 1, m, (39)

where y = [yj]
m
j=1, p = [pj]

m
j=1, and q = [qj]

m
j=1 are complex-valued functions on G, y ∈

W2
2 (G), p ∈ AC(G), q ∈ L1(G).

Let γjk be some complex numbers, defined for the ends wj ∈ v, v ∈ intG, k = 1, 4,
γjk �= 0 for k = 1, 2. Define the linear forms

Uj(y) := y′|wj
+ (λγj3 + γj4)y|wj

.

Thus, in [40], the differential pencil L given by Equation (39) subject to the following
conditions was considered:

γj1y|wj
= γk1y|wk

, wj, wk ∈ v, v ∈ intG,

∑
wj∈v

γj2Uj(y) = 0, v ∈ intG,

y|wj
= 0, wj ∈ v, v ∈ ∂G.

For certainty, we assume that e1 is a boundary edge.

Problem 19 ([40]). Suppose that {pj}m
j=2, {qj}m

j=2, and {γjk} are known a priori. Given a
subspectrum Λ′ of the pencil L, find p1 and q1 (see Figure 10).
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unknown

known

Figure 10. Graph of an arbitrary structure.

In [40], Problem 19 was studied under a separation condition, which generalized Con-
dition 1 for a star-shaped graph. For a general graph, the separation condition had a compli-
cated technical formulation, so we omit it here. The results of [40] for Problem 19 included:

• Uniqueness in the general case;
• A constructive solution for rationally dependent edge lengths.

In particular, the recovery of the coefficients p1 and q1 from the whole spectrum Λ
of the pencil L was investigated. The characteristic function of L satisfies the following
asymptotic relation:

Δ(λ) = λr(Δ0(λ) + O
(
|λ|−1 exp(M|Im λ|)

)
), |λ| → ∞,

where r ∈ Z, M =
m
∑

j=1
Tj, and Δ0(λ) is a polynomial of cos(λTj) and sin(λTj), j = 1, m,

Δ0(λ) = O(exp(M|Im λ|)). In [40], the following regularity condition was imposed:

|Δ0(iτ)| ≥ C exp(M|τ|), τ ∈ R, |τ| ≥ τ∗, (40)

for some τ∗ > 0. Under the conditions in (40) and the separation condition, the
spectrum Λ uniquely specifies p1 and q1 if T1 < M/2 or T1 = M/2, r = −2
(see Theorem 2 in [40] for details). In other words, the length of the “unknown” edge has
to be less than or equal to the total length of the graph for the unique determination of the
pencil coefficients on this edge by the spectrum.

In the case of rationally dependent edge lengths Tj = πnj, nj ∈ N, j = 1, m, the
spectrum Λ of the regular pencil L contains subsequences of eigenvalues {λnk}n∈Z, k = 1, s,
satisfying the asymptotic relation

λnk = 2n + βk + o(1), |n| → ∞.

It was shown in [40] that one can choose a certain number of such subsequences to
uniquely recover p1 and q1. The constructive method of [40] developed the ideas of [33,38]
and other papers. This method was based on the reduction of the partial inverse problem
(Problem 19) to a complete inverse problem for the Sturm-Liouville quadratic pencil on the
interval (0, T1).

The most complete results for a partial inverse problem on an arbitrary graph were
obtained in [41] for the boundary value problem given by (35), (37), and (38):

−(y[1]j )′ − σj(xj)y
[1]
j − σ2

j (xj)yj = λyj, x ∈ (0, Tj), j = 1, m,

y|wj
= y|wk

, wj, wk ∈ v, ∑
wj∈v

y[1]|wj
= 0, v ∈ intG,

y(v) = 0, v ∈ VD, y[1](v) = 0, v ∈ VN ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (41)

where y|wk
are defined by (36), with γj = 0. The edge lengths were assumed to be rationally

dependent: Tj = 2πnj, nj ∈ N, j = 1, m.
For certainty, assume that v1 is a boundary vertex corresponding to the end

w1 ∼ x1 = 0 of the edge e1 and v1 ∈ VD.
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Problem 20 ([41]). Suppose that the functions {σj}m
j=2 are known a priori. Given a subspectrum

Λ, find σ1 (see Figure 10).

In [41], the following results were obtained for Problem 20:

• A uniqueness theorem;
• A constructive solution;
• Sufficient conditions for global solvability;
• Local solvability and stability.

Let us formulate a uniqueness theorem for Problem 20. For this purpose, one first needs
to construct the characteristic function of the Sturm-Liouville problem on an arbitrary graph.
For each fixed j = 1, m, introduce the solutions Cj(xj, λ) and Sj(xj, λ) of Equation (35)
satisfying the initial conditions

Cj(0, λ) = S[1]
j (0, λ) = 1, C[1]

j (0, λ) = Sj(0, λ) = 0.

Every solution [yj]
m
j=1 of system (35) can be represented in the form

yj(xj, λ) = aj(λ)Cj(xj, λ) + bj(λ)Sj(xj, λ), j = 1, m, (42)

with some coefficients aj(λ) and bj(λ) independent of x. Substituting (42) into (37) and (38),
one obtains the system of linear equations S with respect to aj(λ) and bj(λ), j = 1, m. The
determinant Δ(λ) of this system is the characteristic function of L, that is, the spectrum of
the problem (41) coincides with the zeros of Δ(λ).

The characteristic function can be represented in the form

Δ(λ) = S1(T1, λ)ΔK(λ) + S[1]
1 (T1, λ)ΔΠ(λ), (43)

where ΔK(λ) and ΔΠ(λ) are the determinants of the linear systems obtained from S

by the replacements S1(T1, λ) �→ 1, S[1]
1 (T1, λ) �→ 0 and S1(T1, λ) �→ 0, S[1]

1 (T1, λ) �→ 1,
respectively. Note that our construction defines the functions Δ(λ), ΔΠ(λ), and ΔK(λ)
uniquely up to the sign, which depends on the order of equations and variables in the
system S . However, it is possible to fix such signs so that Formula (43) is valid. Clearly,
the functions Δ(λ), ΔK(λ), and ΔΠ(λ) are entire, and ΔK(λ) and ΔΠ(λ) do not depend on
σ1.

The separation condition for Problem 20 reads as follows:

Condition 2. For each λ ∈ Λ, ΔΠ(λ) �= 0 or ΔK(λ) �= 0.

Condition 2 is essential, since otherwise, if ΔΠ(λ) = ΔK(λ) = 0, then (43) readily
implies Δ(λ) = 0, but such an eigenvalue λ is related to the “known” part of the graph
(see Figure 10) and carries no information on σ1.

The spectrum of the problem (41) consists of eigenvalue subsequences with the asymptotics√
λnk = n + rk +κnk, {κnk} ∈ l2, (44)

where k = 1, N, N := 2
m
∑

j=1
nj, nj =

Tj
2π , n ∈ N or n ∈ N ∪ {0} depending on k, and

{rk}N
k=1 ⊆ [0, 1). Furthermore, for each rk �= 0, there exists rs = 1 − rk. The numbers

{rk}N
k=1 depend on the graph structure and not on {σj}m

j=1. The asymptotics (44) are
obtained by the reduction of the Sturm-Liouville problem to the matrix form.

Let us impose the following condition on the subspectrum Λ in Problem 20:

Condition 3. Λ = {λnk}n≥0, k∈K, where λnk satisfies the asymptotics in (44) and a subset
K ⊆ {1, . . . , N} fulfills the following conditions:
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1. All the values {rk}k∈K from (44) are distinct.
2. rk �∈ {0, 1

2}, k ∈ K.
3. For each k ∈ K, there exists s ∈ K such that rk + rs = 1.
4. |K| = 4n1.

Note that Λ is non-uniquely determined by K, and any finite number of eigenvalues
in Λ can be chosen arbitrarily. In particular, Λ can contain a finite number of multi-
ple eigenvalues. The condition |K| = 4n1 connects the length of the “unknown” edge
T1 = 2πn1 with the “size” of the subspectrum, which is used for the reconstruction. The
following theorem asserts the uniqueness of the solution to Problem 20.

Theorem 21 ([41]). Let Λ be a subspectrum of the problem in (41) satisfying Conditions 2 and 3.
If σj = σ̃j in L2(0, Tj) for j = 2, m and Λ = Λ̃ (with respect to multiplicities), then σ1 = σ̃1
in L2(0, T1).

The proof of Theorem 21, the constructive solution, and the study of the solvability
and stability of the partial inverse problem in [41] were based on the unified approach,
which is described in the next section.

4. Unified Approach

In this section, we describe a unified approach to partial inverse problems on intervals
and graphs that was developed in [41–44] and subsequent studies. This approach allows
one to reduce a partial inverse problem to a complete inverse problem on an “unknown”
part of an interval or graph. The central role in the reduction technique is played by a special
vector functional sequence {vn}n≥0 in the Hilbert space H = L2(0, l)⊕ L2(0, l), where l is
the length of an “unknown” subinterval. The completeness and the Riesz basis property of
this sequence imply uniqueness and a constructive solution to the corresponding partial
inverse problem, respectively. The unified approach also allows one to obtain the solvability
conditions and stability of partial inverse problems.

The initial ideas behind this approach appeared in [22,33], studies of the inverse
transmission eigenvalue problem and a partial inverse Sturm-Liouville problem on a
star-shaped graph, respectively. Later on, Bondarenko [42,43] noticed that partial inverse
problems for various classes of differential operators can be represented as Sturm-Liouville
problems with entire analytic functions in one of the boundary conditions, and an inverse
spectral theory for such problems was created. As corollaries of this general theory, both
well-known and novel results for the Hochstast-Lieberman problem and its generalizations
have been deduced.

In Section 4.1, we provide the inverse spectral theory of the Sturm-Liouville equation
with entire functions in a boundary condition, mostly based on the results of [42,43].
In Section 4.2, applications to partial inverse problems are discussed.

4.1. Sturm-Liouville Problem with Entire Functions in a Boundary Condition

Consider the following Sturm-Liouville problem R(q, f1, f2):

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, π), (45)

y(0) = 0, f1(λ)y′(π) + f2(λ)y(π) = 0, (46)

where q(x) is a complex-valued potential of L2(0, π), and f1(λ) and f2(λ) are entire analytic
functions of the spectral parameter λ.

Let S(x, λ) denote the solution of Equation (45) satisfying the initial conditions
S(0, λ) = 0, S′(0, λ) = 1. The spectrum of R(q, f1, f2) consists of the eigenvalues, which
coincide with the zeros of the entire characteristic function

Δ(λ) := f1(λ)S′(π, λ) + f2(λ)S(π, λ). (47)
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Depending on the functions f1(λ) and f2(λ), the spectrum can be at most count-
able or coincide with the whole complex plane. If there is no additional informa-
tion on f1(λ) and f2(λ), then one cannot study specific properties of the spectrum
(e.g., eigenvalue asymptotics). However, one can consider the following inverse problem:

Problem 21 ([42,43]). Suppose that the functions f1(λ) and f2(λ) are known a priori. Given
a subspectrum {λn}n≥1 of the problem R(q, f1, f2) and the number ω := 1

2

∫ π
0 q(x) dx,

find the potential q.

In [42,43], Problem 21 was studied under certain restrictions on {λn}n≥1 that guaran-
teed the uniqueness and existence of the solution, etc. Note that, in applications to partial
inverse problems, the number ω can usually be found from the eigenvalue asymptotics.
However, in general cases, it has to be given.

Introduce the notations

s(x, λ) =
√

λ sin(
√

λx), c(x, λ) = cos(
√

λx).

Then, the sine-type solution S(x, λ) can be represented in terms of the
transformation operator:

S(x, λ) =
s(x, λ)

λ
+

1
λ

∫ x

0
K (x, t)s(t, λ) dt. (48)

Let η1(λ) := S(π, λ) and η2(λ) := S′(π, λ). Applying differentiation and integration
by parts in (48), one can easily obtain the following standard relations:

η1(λ) =
s(π, λ)

λ
− ωc(π, λ)

λ
+

1
λ

∫ π

0
K(t)c(t, λ) dt, (49)

η2(λ) = c(π, λ) +
ωs(π, λ)

λ
+

1
λ

∫ π

0
N(t)s(t, λ) dt, (50)

where
K(t) = Kt(π, t), N(t) = Kx(π, t), K, N ∈ L2(0, π). (51)

The pair of functions {K, N} from (49) and (50) is called the Cauchy data of the potential
q. This name was chosen because the eigenvalue problem for Equation (45) with the
boundary conditions y(0) = y(π) = 0 is related to the initial value (Cauchy) problem

utt − uxx + q(x)u = 0, 0 ≤ |t| ≤ x ≤ π,

u(π, t) = K (π, t), ux(π, t) = Kx(π, t), −π ≤ t ≤ π,

where K (x, t) = −K (x,−t) for t < 0. This problem has the unique solu-
tion u(x, t) ≡ K (x, t). The initial data of the Cauchy problem are the functions
{K (π, t), Kx(π, t)}, which are related to K(t) and N(t) by (51).

The method of [42,43] was based on the reduction of Problem 21 to the following
auxiliary inverse problem.

Problem 22. Given the Cauchy data {K, N}, find the potential q.

Problem 22 is equivalent to classical inverse spectral problems. Indeed, using the
Cauchy data, one can construct S(π, λ) and S′(π, λ) via (49) and (50) and the Weyl function

M(λ) := −S′(π, λ)

S(π, λ)
, which uniquely specifies q (see, e.g., [4]). Thus, the uniqueness of

Problem 22’s solution follows from the classical result obtained by Borg [6]. Its constructive
solution can be obtained by the standard methods (see [4]). Some numerical techniques for
the reconstruction of the potential using the Cauchy data are described in [67].
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For simplicity, we assume that λn �= 0 for n ≥ 1 and the eigenvalues {λn}n≥1 are
simple, that is, λn �= λm for n �= m. In [42,43], results were provided for the general case of
multiple eigenvalues.

Introduce the complex Hilbert space of vector functions

H := L2(0, π)⊕ L2(0, π) =
{

h = [h1, h2] : hj ∈ L2(0, π), j = 1, 2
}

with the following scalar product and norm:

(g, h)H :=
∫ π

0
(g1(t)h1(t) + g2(t)h2(t)) dt, ‖h‖H =

√
(h, h)H,

g, h ∈ H, g = [g1, g2], h = [h1, h2].

Substituting the representations (49) and (50) into (47) and letting λ = λn, one derives
the relation

(u, vn)H = wn (52)

for n ≥ 1, where

u(t) := [N(t), K(t)], vn(t) = v(t, λn), wn = w(λn), n ≥ 1, (53)

v(t, λ) := [ f1(λ)s(t, λ), f2(λ)c(t, λ)], (54)

w(λ) := − f1(λ)(λc(π, λ) + ωs(π, λ))− f2(λ)(s(π, λ)−ωc(π, λ)). (55)

Since the function S(π, λ) is analytical at λ = 0, one obtains an additional relation of
the form (52) for n = 0 from (49) with

v0(t) := [0, 1], w0 := ω. (56)

In [42], the following conditions were introduced:
(COMPLETE)—the sequence {vn}n≥0 is complete in H.
(BASIS)—the sequence {vn}n≥0 is an unconditional basis in H.
Clearly, the condition (BASIS) implies (COMPLETE). It was shown in [42]

that the condition (COMPLETE) is necessary and sufficient for the uniqueness of
Problem 21’s solution.

Theorem 22 ([42]). Let {λn}n≥1 and {λ̃n}n≥1 be subspectra of the problems R(q, f1, f2) and
R(q̃, f1, f2), respectively. Suppose that R(q, f1, f2) and {λn}n≥1 satisfy the condition (COM-
PLETE), and let λn = λ̃n, n ≥ 1, ω = ω̃. Then, q = q̃ in L2(0, π).

Theorem 23 ([42]). Let {λn}n≥1 be a subspectrum of the problem R(q, f1, f2). Suppose that the
sequence {vn}n≥0 is incomplete in H. Then, there exists a complex-valued function q̃ ∈ L2(0, π),
q̃ �= q such that ω = ω̃, and {λn}n≥1 is a subspectrum of R(q̃, f1, f2).

Under the condition (BASIS), the following constructive algorithm for solving
Problem 21 was obtained in [42]:

Method 2 ([42]). Let the functions fj(λ), j = 1, 2, the subspectrum {λn}n≥1, and the number ω
be given. One must construct the potential q.

1. Using fj(λ), j = 1, 2, {λn}n≥1, and ω, construct the vector functions {vn}n≥0 and the
numbers {wn}n≥0 using Formulas (53)–(56).

2. For the basis {vn}n≥0, find the biorthonormal basis {v∗n}n≥0, that is, (vn, v∗k )H = δnk,
n, k ≥ 0.

3. Construct the element u ∈ H satisfying (52) using the formula

u =
∞

∑
n=0

wnv∗n.
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4. Using the elements of u(t) = [N(t), K(t)], solve Problem 22 with the Cauchy data and find q.

It is worth noting that, in the case of simple eigenvalues {λn}n≥1, Problem 21 is a
special case of Problem 2, which was studied by Horváth [12]. Indeed, the numbers {λn}n≥1
can be treated as the eigenvalues of different boundary value problems for Equation (45)
subject to the boundary conditions

y(0) = 0, y′(π) cos βn + y(π) sin βn = 0, βn := arctan
f2(λn)

f1(λn)
.

On the other hand, using the given data of Problem 21, one can easily find the values
of the Weyl function in the points {λn}n≥1:

M(λn) = −S′(π, λn)

S(π, λn)
=

f2(λn)

f1(λn)
.

Thus, Problem 21 is closely related to the problem of potential reconstruction from
the values {M(λn)}n≥1 (see Problem 3). The uniqueness of this problem solution was
studied by Horváth [12]. A constructive solution is provided by Method 2 with necessary
modifications. Namely, in the definitions of vn and wn, one should replace f1(λn) with 1 and
f2(λn) with M(λn). Thus, to the best of the author’s knowledge, a constructive algorithm
for the recovery of the potential q from the values {M(λn)}n≥1 of the Weyl function at a
countable set of points was obtained for the first time in [42]. Effective numerical algorithms
for this reconstruction were developed by Kravchenko and Torba [80]. The technique of [80]
was based on the representations of the Sturm-Liouville equation solutions as Neumann
series of Bessel functions. The methods of [80] can be applied to various classes of partial
inverse problems.

Proceeding with the results of [42], in applications to partial inverse problems, it can
be difficult to verify the conditions (COMPLETE) and (BASIS). Therefore, the following
easily verified conditions are introduced (for convenience, let λ0 = 0):

(COMPLETE C)—the sequence {cos(
√

λnt)}n≥0 is complete in L2(0, 2π).
(BASIS C)—the sequence {cos(

√
λnt)}n≥0 is a Riesz in L2(0, 2π).

(SEPARATION)—for every n ≥ 1, there exists f1(λn) �= 0 or f2(λn) �= 0.
(ASYMPTOTICS)—Im ρn = O(1), n → ∞, and {ρ−1

n }n≥n0 ∈ l2, where ρn :=
√

λn,
arg ρn ∈

[
−π

2 , π
2
)
.

Theorem 24 ([42]).

1. (SEPARATION) and (COMPLETE C) together imply (COMPLETE).
2. (SEPARATION), (ASYMPTOTICS), and (BASIS C) together imply (BASIS).

Thus, one can replace the condition (COMPLETE) in Theorem 22 with (SEPARATION)
and (COMPLETE C) and the condition (BASIS) in Method 2 with (SEPARATION),
(ASYMPTOTICS), and (BASIS C). The results remain valid.

The investigation of Problem 21 was continued in [43], which studied the solvability
and stability of the inverse problem. In particular, the following sufficient conditions for
the global solvability of Problem 21 were obtained:

Theorem 25 ([43]). Let fj(λ), j = 1, 2, be entire functions, and let {λn}n≥1 and ω be complex
numbers such that the sequence {vn}n≥0 constructed by them satisfies the condition (BASIS) and{

wn
‖vn‖H

}
∈ l2. Then, following Method 2, one can construct the functions K, N ∈ L2(0, π). If the

zeros {θnj}n≥1, j = 1, 2, of the corresponding functions ηj(λ), j = 1, 2, defined by (49) and (50)
are real and interlace in the sense

θn2 < θn1 < θn+1,2, n ∈ N, (57)
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then there exists a unique real-valued function q ∈ L2(0, π) such that the sequence {λn}n≥1 is a
subspectrum of R(q, f1, f2) and 1

2

∫ π
0 q(x) dx = ω.

Note that the interlacing property (57) appears from the necessary and sufficient
conditions for the solvability of the classical Borg problem:

Theorem 26 ([4]). For sequences {θnj}n≥1, j = 1, 2, of real numbers to be the spectra of the
corresponding problems Lj(q), j = 1, 2, for Sturm-Liouville Equation (45) with a real-valued
potential q ∈ L2(0, π) subject to the boundary conditions y(0) = y(j−1)(π) = 0, it is necessary
and sufficient to have the asymptotics√

θnj = n− j− 1
2

+
ω

πn
+

κnj

n
, n ∈ N, j = 1, 2, {κnj} ∈ l2,

and the interlacing property (57).

In fact, Problem 21 is reduced to the Borg problem by Method 2, and then the a
posteriori condition (57) is imposed. Analogous a posteriori conditions appeared in the
papers of Hryniv and Mykytyuk [14] and Martinyuk and Pivovarchik [17] for the Hochstadt–
Lieberman problem (see Theorems 9 and 11). As already mentioned in Section 2.2, such
conditions seem to be unavoidable for the solvability of partial inverse problems.

Furthermore, in [43], the local solvability and stability of Problem 21 were obtained.
In order to formulate these results, one needs the following additional condition:

(ESTIMATES)—there exist constants aj > 0, j = 1, 2, 3, and {αn}n≥1 such that

| f j(ρ
2)| ≤ a1|ρn|αn+j−1, j = 1, 2, |ρ− ρn| ≤

a2

|ρn|
,

|w(ρ2)| ≤ a1|ρn|αn+1, |ρ− ρn| ≤
a2

|ρn|
,

| f1(λn)|2 + |λn|−1| f2(λn)|2 ≥ a3|λn|αn , n ≥ 1.

Although these estimates look complicated, they naturally appear in applications
involving partial inverse problems on graphs, the inverse transmission eigenvalue prob-
lem, etc.

Theorem 27 ([43]). Let R(q, f1, f2) be a fixed boundary value problem of the form (45) and (46),
and let {λn}n≥1 be a fixed subspectrum of R(q, f1, f2). Suppose that the conditions (BASIS),
(ASYMPTOTICS), and (ESTIMATES) are fulfilled. Then, there exists ε > 0 (depending on
R(q, f1, f2) and {λn}n≥1) such that, for every complex sequence {λ̃n}n≥1 satisfying the estimate

Ξ :=

(
∞

∑
n=1

(|ρn|+ 1)−2|ρn − ρ̃n|2
)1/2

≤ ε, ρ̃n :=
√

λ̃n, (58)

there exists a complex-valued function q̃ ∈ L2(0, π) such that ω = ω̃, and {λ̃n}n≥1 is a subspec-
trum of the corresponding problem R(q̃, f1, f2). Moreover,

‖q− q̃‖L2(0,π) ≤ CΞ, (59)

where the constant C depends only on R(q, f1, f2), {λn}n≥1 and not on {λ̃n}n≥1.

Note that here, Theorem 27 was formulated for simple eigenvalues {λn}n≥1. However,
in [43], it was proved for the general case of multiple eigenvalues. The multiplicities in the
sequences {λn}n≥1 and {λ̃n}n≥1 may be distinct, since the groups of multiple eigenvalues
in {λn}n≥1 may split into smaller groups under a small perturbation. This effect was taken
into account in [43]. The proof of Theorem 27 relies on Method 2 and the local solvability
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and stability of Problem 22 using the Cauchy data, which was proved in [42]. In addition,
note that Theorem 27 contains no a posteriori conditions of the type (57).

Thus, for Problem 21, the following results have been obtained:

• The necessary and sufficient conditions of uniqueness;
• A constructive solution;
• Simple sufficient conditions for uniqueness and the algorithm;
• Sufficient conditions for the global solvability;
• Local solvability and stability.

Below, we discuss the studies on inverse problems with entire functions in the
boundary conditions for other types of operators. The Sturm-Liouville problem anal-
ogous to (45) and (46) with the Robin boundary condition y′(0) − hy(0) = 0 was
considered in [44]. However, in [44], proofs were provided only for simple eigenvalues.
Moreover, in the proof of the local solvability and stability theorem, reduction to the Borg
problem by the two spectra was used. Unfortunately, the application of the Borg theorem
in [44] allows us to obtain only the stability estimate ‖q − q̃‖ ≤ CΞ1/p, where p is the
maximal eigenvalue multiplicity in the Borg problem (see [44] for details). The reduction
to the inverse problem using the Cauchy data allows us to obtain a better estimate (59)
without the power 1/p.

In [41], the inverse problem analogous to Problem 21 was studied for a singular
potential q ∈ W−1

2 (0, π), and the results were applied to a partial inverse problem on an
arbitrary graph (see Section 3.3 for details).

Kuznetsova [45] studied the inverse problem for the differential pencil

−y′′ + q(x)y + 2λp(x)y = λ2y, x ∈ (0, π),

y(0) = 0, f1(λ)y[1](π) + f2(λ)y(π) = 0,

where q ∈ W−1
2 (0, π), p ∈ L2(0, π), y[1] = y′ − σy, q = σ′, σ ∈ L2(0, π). The results

of [45] included:

• Uniqueness;
• A constructive solution;
• Simple sufficient conditions for uniqueness and the algorithm;
• Application to Hochstadt–Lieberman-type problems.

Bondarenko and Chitorkin [46] investigated the inverse problem for the Sturm-
Liouville equation (45) subject to the boundary conditions

p1(λ)y′(0) + p2(λ)y(0) = 0, f1(λ)y′(π) + f2(λ)y(π) = 0,

where p1(λ) and p2(λ) are relative prime polynomials of the spectral parameter λ, and
f1(λ) and f2(λ) are entire functions. In [46], the uniqueness of the inverse problem solu-
tion was studied, and the results were applied to Hochstadt–Lieberman-type problems
with polynomial dependence on λ not only in the boundary conditions but also in the
discontinuity conditions inside the interval.

4.2. Applications to Partial Inverse Problems

In this subsection, we show how partial inverse problems can be reduced to Problem 21
with entire functions in the boundary conditions. As examples, we consider the following
partial inverse problems:

• The Hochstadt–Lieberman problem (Problem 1);
• The McLaughlin–Polyakov problem (Problem 5);
• A partial inverse problem on a star-shaped graph (Problem 9);
• A partial inverse problem on a graph of an arbitrary structure (Problem 20).
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We start with the application to the Hochstadt–Lieberman problem, which is described
in [42]. Consider the following eigenvalue problem:

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, 2π), (60)

y(0) = y(2π) = 0, (61)

with a complex-valued potential q ∈ L2(0, 2π). Let {λn}n≥1 denote the eigenvalues of
the problems presented in (60) and (61), counted with their multiplicities and numbered
according to their asymptotics√

λn =
n
2
+

ω2π

πn
+ o

(
n−1

)
, n → ∞, (62)

where ω2π := 1
2

∫ 2π
0 q(x) dx. The Hochstadt–Lieberman problem in this case is formulated

as follows:

Problem 23 ([42]). Suppose that the potential q(x) is known a priori for x ∈ (π, 2π). Given the
spectrum {λn}n≥1 (counting with multiplicities), find the potential q(x) for x ∈ (0, π).

Let us show that Problem 23 can be reduced to Problem 21 with entire functions in the
boundary condition. Let S(x, λ) and ψ(x, λ) denote the solution of Equation (60) satisfying
the initial conditions

S(0, λ) = 0, S′(0, λ) = 1, ψ(2π, λ) = 0, ψ′(2π, λ) = −1.

The eigenvalues of (60) and (61) coincide with the zeros of the characteristic function

Δ(λ) = ψ(π, λ)S′(π, λ)− ψ′(π, λ)S(π, λ). (63)

Comparing (63) with (47), one can conclude that the eigenvalue problems presented
in (60) and (61) are equivalent to the problem R(q, f1, f2) given by (45) and (46) with

f1(λ) := ψ(π, λ), f2(λ) := −ψ′(π, λ). (64)

Note that these functions f j(λ), j = 1, 2, are entire in the λ-plane and can be constructed
by the known part of the potential q(x), x ∈ (π, 2π). The constant ω can also be found
using the given data of Problem 23 by the formula

ω = ω2π −
1
2

∫ 2π

π
q(x) dx,

where ω2π can be determined from the asymptotics in (62). Thus, Problem 23 is reduced
to Problem 21.

Suppose that the eigenvalues {λn}n≥1 of the problem (60)–(61) are simple. Then,
one can easily show that the conditions (BASIS C), (SEPARATION), (ASYMPTOTICS), and
(ESTIMATES) of the previous subsection hold. Therefore, Theorems 22 and 24 imply the
following corollary:

Corollary 1 ([42]). Let {λn}n≥1 and {λ̃n}n≥1 be the spectra of the boundary value problems of
the form (60) and (61) with potentials q and q̃, respectively. Suppose that q(x) = q̃(x) a.e. on
(π, 2π) and λn = λ̃n for all n ≥ 1. Then, q(x) = q̃(x) a.e. on (0, π). In other words, the solution
of Problem 23 is unique. This solution can be found using Method 2, taking (64) into account.

Obviously, the uniqueness of Corollary 1 is similar to the Hochstadt–Lieberman
theorem (Theorem 1) for complex-valued potentials. Method 2 generalizes the algorithms
of Buterin [16,65] (see Method 1) and Martinyuk and Pivovarchik [17] for solving the
Hochstadt–Lieberman problem.
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Theorem 27 implies the following corollary on the local solvability and stability of the
Hochstadt–Lieberman problem:

Corollary 2. For any complex-valued function q ∈ L2(0, 2π), there exists ε > 0 such that, for
any complex sequence {λ̃n}n≥1 close to the spectrum {λn}n≥1 of the problem (60)–(61) in the
sense (58), there exists a complex-valued function q̃ ∈ L2(0, 2π) such that q(x) = q̃(x) a.e. on
(π, 2π) and {λ̃n}n≥1 is the spectrum of the problem (60)–(61) with the potential q̃. Moreover,
‖q− q̃‖L2(0,π) ≤ CΞ, where the constant C depends only on q.

It is worth noting that, since the potential q(x) in (60) is complex-valued, a finite
number of eigenvalues can be multiple. In this case, Corollaries 1 and 2 remain valid,
and Method 2 is also valid with necessary technical modifications (see [42,43] for details).
Therefore, to the best of the author’s knowledge, Theorem 27 provides the first results on
the local solvability and stability of the Hochstadt–Lieberman problem in the general case
of a complex-valued potential with eigenvalues that are not necessarily simple. Theorem 25
can also be transferred to the Hochstadt–Lieberman problem.

An analogous reduction can be applied to Hochstadt–Lieberman-type inverse prob-
lems with the discontinuity conditions

y(d+) = ay(d−), y′(d+) = a−1y(d−) + by(d−),

and/or polynomial dependence on the spectral parameter in the boundary conditions
(see, e.g., [9,81]). If all the discontinuities and the polynomial dependence lie on the
“known” part of the interval, then such a partial inverse problem can be similarly reduced
to Problem 21 for (45) and (46). The opposite case requires a separate investigation, which
can be implemented analogously.

Proceeding to the McLaughlin–Polyakov problem (Problem 5), the reduction of this
problem to Problem 21 was briefly described in [43]. We present it here in more detail.

Suppose that a ∈ [0, 1) ∪ (1, 3]. Let yj(x, λ), j = 1, 2, denote the solutions of
Equation (18) satisfying the initial conditions

y1(1, λ) = y′2(1, λ) = 0, −y′1(1, λ) = y2(1, λ) = 1.

Obviously, the function

ξ(x, λ) := y2(x, λ)
sin ρa

ρ
− y1(x, λ) cos ρa. (65)

for each λ ∈ C is the only solution (up to a constant multiplier) of Equation (18) sat-
isfying the boundary condition (19) at x = 1. Therefore, for every eigenvalue λn of
the boundary value problem (18)–(19), the corresponding eigenfunction has the form
S(x, λn) = cnξ(x, λn), where cn is a constant. Consequently, the transmission eigenvalues
coincide with the zeros of the characteristic function

Δ(λ) :=
∣∣∣∣ S(x, λ) ξ(x, λ)
S′(x, λ) ξ ′(x, λ)

∣∣∣∣.
For x = α, we have

Δ(λ) = S(α, λ)ξ ′(α, λ)− S′(α, λ)ξ(α, λ).

Comparing this relation with (47), one can conclude that the transmission eigenvalue
problem can be represented as a Sturm-Liouville problem on the interval (0, α) with the
entire functions

f1(λ) := −ξ(α, λ), f2(λ) := ξ ′(α, λ) (66)
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in the right-hand boundary condition. The only difference from the problem (45)–(46) is
the interval length α instead of π. With this technical difference in mind, the McLaughlin–
Polyakov problem is equivalent to Problem 21 with the functions f j(λ), j = 1, 2, defined
by (66) and with an almost real subspectrum {λn}n≥1. The number ω = 1

2

∫ α
0 q(x) dx can

be found using the asymptotics (21) and the known potential q on the subinterval (α, 1):

ω = lim
n→+∞

((1− a)
√

λn − πn)πn− 1
2

∫ 1

α
q(x) dx.

It can be shown that, in the case of the simple subspectrum {λn}n≥1, the conditions
(BASIS C), (SEPARATION), (ASYMPTOTICS), and (ESTIMATES) of Section 4.1 hold. For the
case of multiple eigenvalues, all the results are valid with some technical modifications.
Consequently, the uniqueness theorem of McLaughlin and Polyakov (Theorem 12) can
be easily deduced as a corollary of Theorems 22 and 24. The solution of the McLaughlin–
Polyakov problem can be found using Method 2, taking the relation (66) into account and
replacing π with α. Theorem 25 implies the following corollary on the global solvability of
the McLaughlin–Polyakov problem:

Corollary 3. Let numbers a ∈ [0, 1) ∪ (1, 3], ω ∈ R, and a real-valued function q̃ ∈ L2(α, 1)
be fixed. For a sequence {λn}n≥1 to be an almost real subspectrum of the transmission eigen-
value problem (18)–(19) with a potential q ∈ L2(0, 1) such that q(x) = q̃(x) a.e. on (α, 1) and
1
2

∫ 1
0 q(x) dx = ω0, the following conditions are necessary and sufficient:

1. {λn}n≥1 satisfies the asymptotics (21).
2. The zeros {θnj}n≥1, j=1,2 of the functions ηj(λ), j = 1, 2, defined by (49) and (50) using the

functions K, N ∈ L2(0, α), which are constructed by Method 2, are real and interlace in the
sense of (57).

Note that the global solvability of the inverse transmission eigenvalue problem was
also investigated by Buterin et al. [69]. However, in [69], another problem statement was
considered. The potential was not assumed to be known a priori on the subinterval (α, 1).

In addition, one can apply Theorem 27 to obtain the local solvability and stability of
the McLaughlin–Polyakov problem. However, this result would be weaker than that of
Theorem 13 proposed by Bondarenko and Buterin [22], because Theorem 27 does not allow
one to take perturbations of the potential q(x) on (α, 1) into account.

It is worth mentioning that the transmission eigenvalue problem (18)–(19) can be
represented as the following boundary value problem on the three-edge graph in Figure 11:

−y′′j (xj) + qj(xj)yj(xj) = λyj(xj), xj ∈ (0, Tj), j = 1, 2, 3,

y1(0) = 0, y1(T1) = y2(0), y′1(T1) = y′2(0),

y2(T2) = y3(0), y′2(T2) = −y′3(0), y3(T3) = 0,

T1 := α, T2 := 1− α, T3 := a, q1(x) := q(x), q2(x) := q(x + α), q3(x) := 0.

0 α 1unknown known q = 0

e3e2e1

Figure 11. Graph representation of the transmission eigenvalue problem.

In order to model the condition y′(1) cos ρa− y′(1)
sin ρa

ρ
= 0, one can add a dummy

edge of length a with a zero potential. Note that the matching conditions at the vertex
joining e2 and e3 are non-standard and irregular. Nevertheless, the methods for partial
inverse problems on graphs can also be used for the McLaughlin–Polyakov problem.
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Next, consider Problem 9 for the Sturm-Liouville problem L of the form (22)–(24) on a
star-shaped graph. In contrast to [33], we suppose that the potentials {qj}m

j=1 are complex-
valued. Recall that the characteristic function of problem L is given by Formula (25):

Δ(λ) :=
m

∑
j=1

S′j(π, λ)
m

∏
k=1
k �=j

Sk(π, λ).

Comparing (25) with (47), one can easily see that the eigenvalue problem L on the
star-shaped graph is equivalent to the problem (45) and (46) with q = q1 and with the
following entire functions in the boundary condition:

f1(λ) :=
m

∏
k=2

Sk(π, λ), f2(λ) :=
m

∑
j=2

S′j(π, λ)
m

∏
k=2
k �=j

Sk(π, λ).

Suppose that a subspectrum Ω = {λnk}n≥1, k=1,2 satisfying the asymptotics (28) and (29)
and Condition 1 is given together with the potentials {qj}m

j=2. Then, Condition 1 implies
the separation condition f1(λnk) �= 0 or f2(λnk) �= 0 for n ≥ 1, k = 1, 2. The number
ω = ω1 can be found from the asymptotics (28). The functions f1(λ) and f2(λ) can be
constructed using the potentials {qj}m

j=2. Thus, Problem 9 is reduced to Problem 21 by the
subspectrum Ω. In [43], the results of Section 4.1 were applied to this problem, and so
the results of [30,33] were generalized to the case of complex-valued potentials. Certain
other conditions of [30,33] were weakened. In particular, the local solvability and stability
theorem (generalizing Theorem 16) was proved in the following form:

Theorem 28 ([43]). Let {qj}m
j=1 be fixed complex-valued functions of L2(0, π), and let

{λnk}n≥1, k=1,2 be eigenvalues of the problem L satisfying the asymptotic relations (28) and (29).
Suppose that Condition 1 holds and z2 �= ωj, j = 2, m. Then, there exists ε > 0 (depending on
{qj}m

j=1 and {λnk}n≥1, k=1,2) such that, for any sequence {λ̃nk}n≥1, k=1,2 satisfying the estimate

Ξ :=

(
∞

∑
n=1

2

∑
k=1

(|λnk|+ 1)|
√

λnk −
√

λ̃nk|2
)1/2

≤ ε,

there exists a unique complex-valued function q̃1 ∈ L2(0, π) such that {λnk}n≥1, k=1,2 is a subspec-
trum of the problem L̃ with q̃1 instead of q1. Moreover, ‖q1 − q̃1‖L2(0,π) ≤ CΞ, where the constant
C depends only on {qj}m

j=1 and {λnk}n≥1, k=1,2.

An analogous reduction was applied to Problem 20 on an arbitrary graph with an
unknown potential on a boundary edge in [41]. The characteristic function for the corre-
sponding boundary value problem in (41) is given by Formula (43):

Δ(λ) = S1(T1, λ)ΔK(λ) + S[1]
1 (T1, λ)ΔΠ(λ).

Consequently, the problem in (41) can be represented in the form

−(y[1](x))′ − σ(x)y[1](x)− σ2(x)y(x) = λy(x), x ∈ (0, T),

y(0) = 0, f1(λ)y[1](T) + f2(λ)y(T) = 0,

⎫⎬⎭ (67)

where σ := σ1, y[1] = y′ − σy, T := T1, f1(λ) := ΔΠ(λ), f2(λ) := ΔK(λ).
In [41], an inverse spectral theory for the problem (67) was created analogously to

the theory in Section 4.1. Consequently, the results for the partial inverse problem on an
arbitrary graph (Problem 20), which were described in Section 3.3, were obtained.
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5. Other Types of Operators

This section deals with partial inverse problems for other classes of operators different
from Sturm-Liouville differential operators and pencils. Namely, we consider the known
results for the following types of operators:

• Integro-differential operators;
• Functional differential operators with a constant delay;
• Higher-order differential operators;
• Matrix Sturm-Liouville operators.

The most complete results in this direction have been obtained for integro-differential
operators with an integral term in the form of convolution. Wang and Wei [47] studied a
partial inverse problem for the integro-differential equation

−y′′ + q(x)y +
∫ x

0
M(x− t)y(t) dt = λy, x ∈ (0, π), (68)

with the Robin boundary conditions

y′(0)− hy(0) = 0, y′(π) + Hy(π) = 0, (69)

where q(x) and M(x) are real-valued functions of L2(0, π), and h and H are real constants.
The spectrum of the problem (68)–(69) is denoted by σ(L) = {λn}n≥0.

The following Gestezy–Simon-type uniqueness theorem was proved
for the problem (68)–(69):

Theorem 29 ([47]). Suppose that a ∈ [0, π), h = h̃, M(x) = M̃(x) a.e. on (0, a),
and q(x) = q̃(x) on (0, π). Then, for any ε > 0, if a subspectrum S ⊆ σ(L) ∩ σ(L̃) satisfies

#{λn ∈ S : |λn| ≤ t} ≥
(

1− a
π

)
#{λn ∈ σ(L) : |λn| ≤ t}+ a

2π
− 1

2
+ ε,

where t ≥ t0, t0 is a positive constant, then H = H̃ and M(x) = M̃(x) a.e. on (a, π).

However, the results of [47] are limited to uniqueness. Later on, Buterin and Sat [48]
studied not only uniqueness but also reconstruction and subspectrum characterization
for an integro-differential operator half-inverse problem. In [48], the integro-differential
Equation (68) was considered subject to the Dirichlet boundary conditions

y(0) = y(π) = 0. (70)

The functions q(x) and (π − x)M(x) were assumed to be complex-valued and belong
to L2(0, π).

Buterin and Sat [48] studied the following inverse problem:

Problem 24 ([48]). Given the even subspectrum {λ2n}n≥1, find the function M(x) on (π/2, π),
provided that M(x) on (0, π/2) and the potential q(x) are known.

Buterin and Sat also proved the following theorem, which provides the uniqueness of
the solution and the even subspectrum characterization of Problem 24.

Theorem 30 ([48]). Let arbitrary complex-valued functions q(x) ∈ L2(0, π) and
f (x) ∈ L2(0, π/2) be given and fixed. Then, for any sequence of complex numbers {μn}n≥1
of the form

μn =

(
2n +

A
2n

+
κn

n

)2
, A =

1
2π

∫ π

0
q(x) dx, {κn} ∈ l2, n ≥ 1, (71)
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there exists a unique (up to a set of measure zero) function M(x) such that (π − x)M(x) ∈
L2(0, π), M(x) = f (x) on (0, π/2), and {μn}n≥1 is the even subspectrum (i.e., λ2n = μn) of the
boundary value problem (68)–(70).

Moreover, Buterin and Sat [48] provided a constructive algorithm for solving
Problem 24. The method of [48] was based on the technique created by Buterin for solving
inverse problems for integro-differential operators (see [82] and the references therein).

The results of [48] showed the principal difference between differential and integro-
differential operators. In half-inverse problems for integro-differential operators, the given
mixed data (eigenvalues and operator coefficients on a subinterval) are independent of
each other. In Problem 24, one can take arbitrary numbers satisfying the eigenvalue
asymptotics (71) and an arbitrary function M(x) on (0, π/2) and reconstruct M(x) on
(π/2, π). In Hochstadt–Lieberman-type problems for differential operators, the spectrum
and the potential q(x) on a subinterval are related to each other. This relationship implies
hard-to-verify conditions in the characterization theorems (see, e.g., Theorems 9 and 11).

It is worth mentioning that Sat and Yilmaz [49] attempted to study a partial inverse
problem of another kind for the integro-differential operator (68)–(70). Namely, they
assumed that the kernel M(x) is known on (0, π) and the potential q(x) is known on the
half-interval (π/2, π) and investigated the recovery of q(x) on the interval (0, π/2) from
the spectrum. However, the results of [49] were wrong, and the proofs contained mistakes.
Namely, the estimate O

(
1
ρ2

)
after Formula (2.10) in [49] was incorrect. Therefore, the

problem of recovering q(x) on a subinterval while M(x) is known remains open.
Bondarenko and Yurko [50] studied the following partial inverse problem for a Sturm-

Liouville-type operator with a constant delay. Let {λn,j}n≥1, j = 0, 1, denote the eigenvalues
of the corresponding boundary value problems

−y′′(x) + q(x)y(x− a) = λy(x), 0 < x < π, (72)

y(0) = y(j)(π) = 0, (73)

where a ∈
[

π
3 , π

2
)
, q(x) is a complex-valued potential of L2(0, π), and q(x) = 0 a.e. on (0, a).

Problem 25 ([50]). Assume that q(x) is known a priori for x ∈
[ 3a

2 , π − a
2
]
. Given subspectra

{λnk ,j}k≥1, j = 0, 1, find q(x) on (a, π) (see Figure 12).

0 πa 3a
2

π − a
2

q = 0 unknown known unknown

Figure 12. Partial inverse problem with delay.

Note that Problem 25 is different from the Hochstadt–Lieberman problem, since the
potential q(x) is given on an interior subinterval. However, for differential operators with
a constant delay, the statement of Problem 25 appears to be natural.

Bondarenko and Yurko [50] proved the following uniqueness theorem and obtained a
constructive algorithm for finding the solution of Problem 25.

Theorem 31 ([50]). Suppose that the sequences {cos nkx}k≥0 (n0 := 0) and
{

sin
(

nk − 1
2

)
x
}

k≥1

are complete in L2(0, π − a), q(x) = q̃(x) a.e. on
[ 3a

2 , π − a
2
]

and λnk ,j = λ̃nk ,j, k ≥ 1, j = 0, 1.
Then, q(x) = q̃(x) a.e. on (a, π).

Djurić and Vladičić [51] considered the boundary value problem (72)–(73) in the case
a ∈

(
π
3 , 2π

5
)

and noticed that the two full spectra {λn,j}n≥1, j = 0, 1, uniquely specify the
potential on not only the boundary subintervals

(
a, 3a

2
)

and (π− a
2 , π), but also the interior
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subinterval (π − a, 2a) (see Figure 13). In this case, knowledge of the potential on the
subintervals

( 3a
2 , π − a

)
and (π − a, 2a) is unnecessary.

0 πa 3a
2

π − a
2

π − a 2aq = 0

Figure 13. The potential recovered by Djurić and Vladičić.

Theorem 32 ([51]). The spectra {λn,j}n≥1, j = 0, 1, uniquely determine the potential q(x) on the
set

(
a, 3a

2
)
∪ (π − a, 2a) ∪

(
π − a

2 , π
)
.

Moreover, the following uniqueness theorem for a partial inverse problem was proved.

Theorem 33 ([51]). Assume that the potential is known on the set
( 3a

2 , π
2 + a

4
)

as well as the
integral

∫ π−a
π/2+a/4 q(x) dx. Then, the spectra {λn,j}n≥1, j = 0, 1, uniquely determine the potential

q(x) on (a, π).

In [52], Buterin et al. conducted a comprehensive study of inverse spectral problems
for quadratic differential pencils with delays of the form

y′′(x) + ρ2y(x) = q0(x)y0(x− a0) + 2ρq1(x)y1(x− a1), x ∈ (0, π), (74)

where ρ is the spectral parameter, a0 ∈
[

π
3 , π

)
, a1 ∈

[
π
2 , π

)
, a0 + a1 ≥ π, qν ∈ Wν

2 [aν, π],
qν(x) = 0 on (0, aν), and

∫ π
a1

q1(x) dx = 0. Let {ρn,j} denote the spectra of the boundary

value problems for Equation (74) subject to the boundary conditions y(0) = y(j)(π) = 0,
j = 0, 1. In particular, Buterin et al. [52] generalized Theorem 32 to the pencil in (74).

Theorem 34 ([52]). Let both spectra {ρn,j}, j = 0, 1, be specified. Then, the function q0(x) is

uniquely determined a.e. on
(

a, 3a0
2

)
∪ (π − a0, 2a0) ∪

(
π − a0

2 , π
)
, while q1(x) is uniquely

determined on [a1, π].

Theorem 33 was also generalized (see [52] for details).
Next, let us consider the higher-order differential equation

y(n) +
n−2

∑
k=0

pk(x)y(k) = λy, n > 2, x ∈ (0, T), (75)

on a finite interval (T < ∞) and the half-line (T = ∞). The general theory of inverse spectral
problems for Equation (75) was created by Yurko [53]. In Section 4 of [53], Yurko considered
partial inverse problems that consisted in the recovery of part of the coefficients {pκj}N

j=1

(κ = {κj}N
j=1 ⊆ {0, 1, . . . , n− 2}) from the Weyl functions {Mi(λ)}N

i=1, which were defined
using suitable boundary conditions (see [53] for details). The other coefficients {pk}k �∈κ
were assumed to be known a priori and integrable on either the finite or infinite interval
(0, T). The unknown coefficients {pk}k∈κ were assumed to be piece-wise analytic functions.
The partial inverse problem was considered under a specific information condition, which
guaranteed its unique solvability. The solution was constructed by the method of standard
models.

Recently, Chen et al. [54] attempted to study the Hochstadt–Lieberman-type inverse
problem for the fourth-order differential equation
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y(4) + q(x)y = λ4y, x ∈ (0, 1), q ∈ L1(0, 1), (76)

subject to the boundary conditions

y(0) = y′(0) = 0, y(1) = y′(1) = 0. (77)

The inverse problem of [54] consists in the recovery of the potential q(x) on the half-
interval (1/2, 1) from the eigenvalues {λk} of (76) and (77), while the potential q(x) on
(0, 1/2) is known a priori. However, the main result of [54] (Theorem 1.1) was wrong. In
particular, the authors of [54] asserted that, for any sequence {λk}k∈Z\{0} satisfying the
conditions λ−k = λk, 0 < λ4

1 ≤ λ4
2 ≤ · · · ≤ λ4

N < λ4
N+1 < . . . , and the asymptotics

λk =

(
k− 1

2

)
π + βk, {βk} ∈ l2, (78)

there exists a corresponding potential q of class L1. However, the asymptotics (78) are not
precise. For example, Polyakov [83] recently obtained more precise eigenvalue asymptotics,
implying that not every sequence satisfying (78) together with the other conditions of [54]
can be a spectrum of the problem (76) and (77) with potential q ∈ L1(0, 1). This was not
the only mistake of [54]. Furthermore, it is surprising that, in the Hochstadt–Lieberman-
type theorem in [54], the eigenvalues {λk} and the potential q(x) on (0, 1/2) are not
related to each other. For the second-order case, there is such a relationship (see, e.g.,
Theorems 9 and 11). Nevertheless, the problem stated in [54] is a challenging issue for
future investigation.

Malamud [55,56] proved the following analog of the Hochstadt–Lieberman theorem
for the matrix Sturm-Liouville equations

−y′′ + Q(x)y = λ2y, −ỹ′′ + Q̃(x)ỹ = λ2ỹ, x ∈ (0, 1), (79)

where Q(x) and Q̃(x) are (n× n) matrix functions. Let In denote the (n× n) unit matrix.

Theorem 35 ([55,56]). Let the entries of Q(x) and Q̃(x) be complex-valued functions of L1(0, 1),
and let Q(x) = Q̃(x) for a.a. x ∈ [1/2, 1]. Let Y(x, λ) and Ỹ(x, λ) be the (n × n) matrix
solutions of the initial value problems

Y(0, λ) = Ỹ(0, λ) = In, Y′(0, λ) = H1, Ỹ′(0, λ) = H̃1

for the first and second equations in (79), respectively. If

Y′(1, λ) + H2Y(1, λ) = Ỹ′(1, λ) + H2Ỹ(1, λ) = 0, λ ∈ C,

for some (n× n) complex matrix H2, then H1 = H̃1 and Q(x) = Q̃(x) for a.a. x ∈ [0, 1].

Theorem 35 shows that the monodromy matrix Y′(1, λ) + H1Y(1, λ) uniquely deter-
mines the matrix potential Q(x) on the half-interval [0, 1/2] if Q(x) is known on [1/2, 1].

6. Conclusions

In this review, we considered selected results on partial inverse spectral problems for
differential operators.

The most complete results were obtained for the Hochstadt–Lieberman problem.
Several constructive methods were developed that allowed researchers to obtain numerical
algorithms for solutions and the necessary and sufficient conditions for the solvability
of half-inverse problems. The uniqueness of the inverse problem solution was studied
fairly completely for cases in which the potential is known a priori on a subinterval (0, a).
Some results have also been obtained for the known potential on an interior subinterval
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(a, b) ⊂ (0, 1). However, cases in which the potential is unknown on an interior subinterval
and is known on some boundary subintervals remain open.

For differential operators on geometrical graphs, the most simple situation occurs
when the potential is unknown only on a boundary edge or even on part of a boundary
edge. Such partial inverse problems can be reduced to inverse problems on an interval
with entire functions in a boundary condition using the unified approach. These entire
functions are constructed by the operator coefficients on the “known” part of the graph.
Therefore, for this kind of problems, uniqueness, constructive solutions, global solvability,
local solvability, and stability have been obtained even on graphs of an arbitrary geometrical
structure. Analogous ideas can be applied to cases in which the potential is unknown on a
boundary subgraph. Cases in which the potential is known on some interior edges of the
graph have also been considered. For the unknown potential on an interior part of a graph,
the question is open, as with the case of the interval.

In addition, there have been several attempts to study partial inverse problems for non-
local operators, higher-order differential operators, and differential systems. However, the
results of these studies are fragmentary, and they do not form a general picture. Some ideas
are easily transferred from Hochstadt–Lieberman problems for differential operators to
other types of operators. However, for functional differential operators with a delay, higher-
order differential operators, and other types of operators, fundamentally new problem
statements appear to be natural and, consequently, different methods are required for
their investigation.

In conclusion, we formulated several open problems.

Problem 26. Determine the potential q(x) of the Sturm-Liouville equation −y′′ + q(x)y = λy
on an interior subinterval (a, b) ⊂ (0, 1) from fewer spectral data than are used for the complete
inverse problem, while q(x) is known on (0, 1) \ (a, b) (see Figure 3).

Problem 27. Investigate the solvability and stability of the inverse Sturm-Liouville partial in-
verse problem on the interval (0, 1) in the case of a known potential on an interior subinterval
(see Figure 2) using the spectral data of Guo and Wei [63] or any other spectral data.

Problem 28. Study partial Sturm-Liouville inverse problems on graphs in case where the potentials
are known on an interior subgraph. Determine the spectral data that are sufficient for the unique
reconstruction of the potentials on the whole graph. This problem is open even for simple graphs
(star-shaped graphs, lasso graphs, and trees).

Problem 29. Investigate the solvability and stability of partial inverse problems on graphs for cases
in which the potentials are known on a boundary part of the graph. These issues have been studied
only for an unknown potential on one edge.

Problem 30. Construct an inverse problem theory for the Sturm-Liouville equation with
entire analytical functions in one of the boundary conditions (45)–(46) and discontinuity
conditions of the form

y(d+) = ay(d−), y′(d+) = a−1y(d−) + by(d−)

at one or several points inside the interval. Note that the investigation of this problem will open up the
possibility of studying a wide class of partial inverse problems with discontinuities. Inverse Sturm-
Liouville problems with discontinuities in interior points appear in electronics when constructing
the parameters of heterogeneous electric lines with desirable technical charateristics [84] and in
geophysical models of the Earth’s oscillations [9].

Problem 31. Study the reconstruction of the potential q(x) of the integro-differential equation

−y′′ + q(x)y +
∫ x

0
M(x− t)y(t) dt = λy
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on a half-interval from spectral data under the assumption that M(x) is known.

Problem 32. Suppose that the coefficients {pk}n−2
k=0 of the higher-order differential equation

y(n) +
n−2

∑
k=0

pk(x)y(k) = λy, n > 2, x ∈ (0, 1),

are known on the half-interval (0, 1/2). How many spectral data are sufficient for the unique
specification of these coefficients on (1/2, 1)? In particular, one can study this half-inverse problem
for the fourth-order differential equation

y(4) − (p(x)y′)′ + q(x)y = λy. (80)

Note that this equation is important for mechanical applications, since the Euler-Bernoulli
equation (a(x)u′′)′′ = μb(x)u, which describes beam vibrations, can be reduced to the form of (80)
(see [85]).

Thus, the theory of partial inverse spectral problems still poses many challenges.
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Abstract: In this paper, we study a three-dimensional second-order elliptic operator with a point
interaction in an arbitrary domain. The operator is supposed to be self-adjoint. We cut out a small
cavity around the center of the interaction and consider an operator in such perforated domain with
the Robin condition on the boundary of the cavity. Our main result states that once the coefficient in
this Robin condition is appropriately chosen, the operator in the perforated domain converges to that
with the point interaction in the norm resolvent sense. We also succeed in establishing order-sharp
estimates for the convergence rate.
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1. Introduction

Operators with singular point interactions are a popular model in modern mathemati-
cal physics, which have attracted a lot of attention. They have been used to model physical
systems, in which an interaction is supported in a small area [1]. While for one-dimensional
operators such operators look rather simple, the two- and three-dimensional cases are more
delicate. In the pioneering work [2], Berezin and Faddeev provided a method of dealing
with such cases. After that, there appeared many works devoted to operators with point
interactions. Here, we mention only a famous monograph [3] and refer to many references
provided therein.

One of the directions of studying operators with point interactions is a corresponding
perturbation theory. Namely, there is a natural question of how to approximate such
operators by the ones with regular coefficients in the norm resolvent sense. A usual method
is to use operators with regular coefficients and to suppose that some of these coefficients
are located in a small area and are large in the area. The results of such kind are discussed
in much detail in [3]; see also [4,5].

In our recent works [6,7], we suggested a completely new alternative approach to
approximating two-dimensional operators with point interactions via an appropriate geo-
metric perturbation. In [6], we considered differential operators with a fixed differential
expression and the perturbation was a small cavity about the center of the interaction,
which was cut out from the domain. On the boundary of the cavity, a special Robin bound-
ary condition was imposed. The coefficient in this condition was large and depended on
a small parameter, which governed the size of the cavity. Once the cavity shrank to the
center of the interaction, we showed that, in the sense of the norm resolvent convergence,
the perturbed operator converges to an operator with a point interaction and the latter is
determined by the shape of the cavity and the coefficient in the Robin condition. However,
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it turned out that in this way, we could approximate not all values of the coupling constant,
and the admissible values of such coupling constant should satisfy a certain upper bound.
At the same time, an important feature of our result is that it was established for an operator
with a general differential expression and not just for the Laplacian, which has been treated
in many previous works. To the best of our knowledge, a general definition of operators
with point interaction on manifolds with arbitrary differential expressions was given for
the first time in a very recent work [8].

In [7], we succeeded in dealing with non-self-adjoint operators, but the boundary
condition on the boundary of the cavity was non-local. Such non-locality as well as non-self-
adjointness allowed us to omit the aforementioned upper bound from [6] for the admissible
values of the coupling constant.

It should be noted that small cavities are a very classical example in singular perturba-
tion theory. The case of classical boundary conditions has been studied many times. Here,
we mention only some books [9–12] as well as many references therein. Typical results
show a convergence of the solutions for given right hand sides and the convergence is either
weak or strong in appropriate Sobolev spaces. Once the right-hand sides in a problem are
smooth enough, it is also possible to construct asymptotic expansions for the solutions, and
this has been performed in many situations in a series of works. We also mention some
recent results on norm resolvent convergence for problems in perforated domains [13–19].
However, in all these works, the boundary conditions were not too singular and could not
produce point interactions in the limit.

In this present paper, we extend the approach of [6,7] to the three-dimensional case.
Namely, we consider an arbitrary second-order differential operator in an arbitrary three-
dimensional domain with varying coefficients. As in [6], we suppose that this operator is
self-adjoint. Then, we add a point interaction to this operator and show how to approximate
it by cutting out a small cavity. On the boundary of this cavity, we, again, impose a Robin
condition with an appropriately scaled coefficient. Then, we show that once the coupling
constant satisfies an appropriate upper bound, the operator on the domain with the cavity
approximates the operator with the point interaction in the resolvent sense. Moreover, we
succeed in providing estimates for the convergence rate and show that they are order-sharp.
The established norm resolvent convergence implies the convergence of the spectrum and
of the associated spectral projections.

Our technique generally follows the lines of [6,7]. However, the three-dimensional case
turns out to be much more difficult. The main difficulty is due to the completely different
behavior of the fundamental solution of the Laplace operator in comparison with the two-
dimensional case. Such difference destroys certain crucial local estimates from [6,7], and this
is why, instead, we have to analyze a special Steklov problem corresponding to the considered
cavity. Such analysis turns out to be an independent problem, which we solve in Section 4.1,
and nothing like this is needed in the two-dimensional case.

2. Problem and Results

In the three-dimensional space R3, we choose an arbitrary non-empty domain, which
is either bounded or unbounded, and we denote this domain by Ω. The situation in
which Ω coincides with the entire space is possible. Once the boundary of the domain
Ω is non-empty, we suppose that its smoothness is C2. We use x0 to denote an arbitrary
fixed point in Ω, while ω is a bounded simply connected domain in R3 containing the
origin; the boundary of ω is C3-smooth. We introduce a small cavity around the point x0
as ωε :=

{
x : (x− x0)ε

−1 ∈ ω
}

, where x = (x1, x2, x3) are the Cartesian coordinates in R3

and ε is a small positive parameter.
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Let Aij = Aij(x), Aj = Aj(x), and A0 = A0(x) be real functions defined on the closure
Ω possessing the following smoothness: Aij ∈ C4(Ω), Aj ∈ C3(Ω), A0 ∈ C2(Ω). The
functions Aij obey the standard ellipticity condition

Aij = Aji,
3

∑
i,j=1

Aij(x)ξiξ j � c0(ξ
2
1 + ξ2

2 + ξ2
3)

for all ξi ∈ R and x ∈ Ω with a fixed positive constant c0 independent of x and ξ.
We consider a self-adjoint, scalar second-order differential operator Hε with the differ-

ential expression

Ĥ := −
3

∑
i,j=1

∂

∂xi
Aij

∂

∂xj
+ i

3

∑
j=1

(
Aj

∂

∂xj
+

∂

∂xj
Aj

)
+ A0

in Ωε := Ω \ωε subject to boundary conditions

Bu = 0 on ∂Ω, (1)
∂u
∂n

+ α(x, ε)u = 0 on ∂ωε, (2)

where

α(x, ε) := α0(x− x0) + α1
(
(x− x0)ε

−1), (3)

∂

∂n
:=

3

∑
i,j=1

Aijνi
∂

∂xi
− i

3

∑
j=1

νj Aj,

and ν = (ν1, ν2, ν3) stands for the unit normal on ∂ωε directed inside ωε. B denotes an
arbitrary boundary operator. The only restriction for this operator is that it should obey
implicit assumptions, which we impose in what follows. Particular examples for the
operator B are the ones corresponding to the Dirichlet, Neumann, Robin, or quasi-periodic
boundary conditions. If ∂Ω is empty, then boundary condition (1) is not needed. The
function α0 is introduced as

α0(x) := −|A− 1
2

0 x|ν ·A0∇x|A− 1
2

0 x|−1 =
ν · x

|A− 1
2

0 x|2
, (4)

where ν is the unit normal on ∂ω directed inside ω and A0 := A(0),

A(x) :=

⎛⎝A11(x) A12(x) A13(x)
A21(x) A22(x) A23(x)
A31(x) A32(x) A33(x)

⎞⎠.

The function α1 = α1(s) is supposed to be real and continuous on ∂ω, and it will be
fixed later.

This paper aims to study the behavior of the resolvent of the operator Hε for a small
ε. Before formulating our main result, we need to introduce additional notation. Br(a)
denotes the open ball of radius r centered at a point a. The definition of the cavity ωε

implies the chain of inclusions

ωε ⊂ BR1ε(x0) ⊂ B2R1ε(x0) ⊂ BR2(x0) ⊂ B2R2(x0) ⊂ Ω0 ⊂ Ω

with some fixed positive constants R1, R2 independent of ε.
LetHΩ be the operator in L2(Ω) with the differential expression Ĥ subject to boundary

condition (1); the associated sesquilinear form is denoted by hΩ. We make the following
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assumptions on the operator HΩ and its form hΩ, which are, in fact, implicit assumptions
for the coefficients Aij, Aj, and A0 and for the boundary operator B. The operator HΩ is
self-adjoint and is lower semi-bounded, while the form hΩ is closed and symmetric, and
its domain D(hΩ) is a subspace of W1

2 (Ω). The domain Ω contains a subdomain Ω0 such
that x0 ∈ Ω0 and the restriction of each function from the domain D(HΩ) to Ω0 belongs to
W2

2 (Ω0). The estimate

hΩ(u, u)− hΩ0(u, u) + c1‖u‖2
L2(Ω\Ω0)

� c2‖u‖2
W1

2 (Ω\Ω0)
(5)

holds for all u ∈ D(hΩ) with constants c1, c2 independent of u, and the constant c2 is strictly
positive. Given an arbitrary subdomain Ω̃ ⊂ Ω on W1

2 (Ω̃), we introduce an auxiliary form:

hΩ̃(u, v) :=
3

∑
i,j=1

(
Aij

∂u
∂xj

,
∂v
∂xi

)
L2(Ω̃)

+ i
3

∑
j=1

(
∂u
∂xj

, Ajv

)
L2(Ω̃)

− i
3

∑
j=1

(
Aju,

∂v
∂xj

)
L2(Ω̃)

+ (A0u, v)L2(Ω̃).

We suppose that for bounded subdomains Ω̃ such that ∂Ω̃ ∩ ∂Ω = ∅, this auxiliary form
satisfies the lower bound

hΩ̃(u, u) + c1‖u‖2
L2(Ω̃)

� c2‖u‖2
W1

2 (Ω̃)
(6)

with the constants c1, c2 from (5).
Rigorously, we introduce the operator Hε in terms of the operator HΩ in the same

way as in the two-dimensional case in [6]. Namely, we first introduce an auxiliary infinitely
differentiable cut-off function χ with values in [0, 1] equal to the ones in B2R2(x0) and
vanishing outside Ω0. Then, Hε is the operator in L2(Ωε) with the differential expression
Ĥ on the domain D(Hε), which consists of the functions u satisfying condition (2) and

(1− χ)u ∈ D(HΩ), χu ∈ W2
2 (Ω0 \ωε).

On this domain, the operator Hε acts as follows:

Hεu := HΩ(1− χ)u + Ĥχu.

It is proven in Section 3 in Lemma 3 that the boundary value problem

(Ĥ+ c1)G = 0 in Ω \ {x0}, BG = 0 on ∂Ω, (7)

where c1 is the constant from (5) and (6), possesses a unique solution in the space W2
2 (Ω \

Bδ(x0)) ∩ C2(Ω0 \ {x0}) for some δ > 0 with the differentiable asymptotic at x0:

G(x) = G−1(x− x0) + G0(x− x0) + a0 + O(|x− x0|), x → x0, (8)

G−1(x) := |A− 1
2

0 x|−1,

G0(x) :=
3

∑
i,j=1

aij(x)
∂2

∂xi∂xj
|A− 1

2
0 x|+

3

∑
i,j,k=1

aijk
∂3

∂xi∂xj∂xk
|A− 1

2
0 x|3 +

3

∑
j=1

aj
∂

∂xj
|A− 1

2
0 x|,
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where aij are homogeneous polynomials of order 1 with real coefficients; aijk, a0 are real
constants; and aj are complex constants. We denote

β0 :=
3

∑
j=1

∫
∂ω

xjG−1(x)ν · ∂A
∂xj

(x0)∇G−1(x) ds +
3

∑
j=1

∫
∂ω

G−1(x)ν ·A0∇Re G0(x) ds

−
3

∑
j=1

∫
∂ω

Re G0(x)ν ·A0∇G−1(x) ds.

(9)

It is shown in Lemma 3 that this constant is real.
We consider an auxiliary eigenvalue problem

divξ A0∇ξψ = 0 in R3 \ω, λν ·A0∇ξψ + α0ψ = 0 on ∂ω,

ψ(ξ) = C|A− 1
2

0 ξ|−1 + O(|A− 1
2

0 ξ|−2), ξ → ∞,
(10)

where C is some constant depending on the choice of the function ψ. We show in Section 4.1
that this problem has at most countably many eigenvalues, each of these eigenvalues is
real, and the greatest eigenvalue is equal to 1 and is simple. κ denotes the distance from 1
to the next closest eigenvalue of problem (10).

We let

β := a0 −
1

4π
(

det A0
) 1

4

⎛⎝β0 +
∫

∂ω

α1(s)G2
−1(x) ds

⎞⎠ (11)

and assume that β �= a0. We also impose the condition

β0 +
∫

∂ω

α1(s)G2
−1(x) ds < κ‖G‖2

L2(Ω). (12)

H0,β denotes the operator in L2(Ω) with the differential expression Ĥ and a point
interaction at the point x0. The domain of this operator and its action read as follows:

D(H0,β) :=
{

u = u(x) : u(x) = v(x) + (β− a)−1v(x0)G(x), v ∈ D(HΩ)
}

(13)

H0,βu = HΩvs.− c1(β− a)−1v(x0)G. (14)

Here, the constant c1 comes from (5) and (6), ‖ · ‖X→Y denotes the norm of a bounded
operator acting from a Hilbert space X into a Hilbert space Y, while σ( · ) stands for a
spectrum of an operator.

Our main result is as follows.

Theorem 1. The operators Hε and H0,β are self-adjoint and satisfy the estimates

‖(Hε − λ)−1 − (H0,β − λ)−1‖L2(Ω)→L2(Ωε) � Cε
1
2 , (15)∥∥χΩ̃

(
(Hε − λ)−1 − (H0,β − λ)−1)∥∥

L2(Ω)→D(hΩ)
� Cε

1
2 . (16)

Here, Ω̃ is an arbitrary fixed subdomain of Ω, the closure of which does not contain the point x0,
while χΩ̃ is an infinitely differentiable cut-off function equal to one on Ω̃ and vanishing outside
some larger fixed domain, the closure of which also does not contain the point x0. The symbol C
denotes positive constants independent of ε but depending on λ and additionally on the choice of Ω̃
in (16). These estimates are order-sharp.

The convergence of the resolvents established in the above theorem implies the con-
vergence of the spectrum and spectral projections. Such convergence can be established by
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a literal reproduction of the proof of Theorem 2.2 in [6]. This gives our second main result;
in the following theorem, σ( · ) denotes the spectrum of an operator.

Theorem 2. The spectrum of the operator Hε converges to that of H0,β as ε → +0. Namely,
if λ /∈ σ(H0,β), then λ /∈ σ(Hε) provided ε is small enough. If λ ∈ σ(H0,β); then, there exists a
point λε ∈ σ(Hε) such that λε → λ as ε → +0. For any �1, �2 /∈ œ(H0,β), �1 < �2, the spectral
projection of Hε corresponding to the segment [�1, �2] converges to the spectral projection of H0,β
corresponding to the same segment in the sense of the norm ‖ · ‖L2(Ω)→L2(Ωε).

For each fixed segment J := [�1, �2] of the real line, the inclusion

σ(Hε) ∩ J ⊂
{

λ ∈ J : dist(λ, σ(H0,β) ∩ J) � Cε
1
2 }

holds, where C is a fixed constant independent of ε but depending on Q. If λ0 is an isolated eigenvalue
of H0,β of multiplicity n, there exist exactly n eigenvalues of the operator Hε, counting multiplicities,
which converge to λ0 as ε → +0. The total projection Pε associated with these perturbed eigenvalues
and the projection P0,β onto the eigenspace associated with λ0 satisfy estimates similar to (15) and (16).

Let us briefly discuss our problem and the main results. First of all, we stress that the
operators we consider are rather general, namely, they have general differential expressions
with variable coefficients and these coefficients can have a rather arbitrary behavior outside
the domain Ω0. Namely, once it is possible to define properly the operator HΩ, our scheme
works, and we can introduce the operators Hε and H0,β. Such approach worked perfectly for
two-dimensional operators in [6,7], and, here, we extend it to three-dimensional operators.

Our first main result, Theorem 1, states that a general three-dimensional operator with
a point interaction can be approximated by cutting out a small hole around the center of the
point interaction and by imposing a special Robin condition on its boundary. This condition
is given by (1), and in view of the definition of the function α0 in (4), we immediately
see that

α(x, ε) = ε−1α0

(
x− x0

ε

)
+ α1

(
x− x0

ε

)
,

which means that the coefficient in this Robin condition grows as ε tends to zero. Under an
appropriate choice of the function α1, Theorem 1 states the convergence of the resolvent
of Hε to that of H0,β in the operator norm ‖ · ‖L2(Ω)→L2(Ωε) (see (15)). The convergence

rate is O(ε
1
2 ), which is shown to be order-sharp. The second convergence expressed in

estimate (16) means that once we consider the restriction of the resolvent of the operator
Hε to a subdomain of Ω separated from the point x0, then the convergence also holds a
stronger ‖ · ‖L2(Ω)→D(hΩ̃)-norm. The mentioned subdomain is controlled by the cut-off
function. We also stress that both estimates (15) and (16) are order-sharp, and in Section 6,
we adduce examples proving this statement. We also note that the norm ‖(Hε − λ)−1 −
(H0,β − λ)−1‖L2(Ω)→W1

2 (Ωε)
does not go to zero as ε → 0 since an example from Section 6

shows that we only have

‖(Hε − λ)−1 − (H0,β − λ)−1‖L2(Ω)→W1
2 (Ωε)

= O(1), ε → 0. (17)

The constant β describing the point interaction in the operator H0,β cannot take all
values on the real line because of assumption (12). This condition is, in fact, an upper bound
for β, and it involves the constant κ, which is an implicit characteristic of the cavity ω. At
the same time, we a priori know that κ > 0, and to obey (12), it is sufficient to suppose that

β0 +
∫

∂ω

α1(s)G2
−1(x) ds < 0.

A more gentle sufficient condition for (12) could be given once we have a lower bound for
κ expressed in some geometric characteristics of the boundary ∂ω. Unfortunately, we fail in
trying to find such lower bound. A possible way of getting it could be based on using a nice
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formula for the eigenvalues of (10), which we establish in this work (see (53)), and trying
to obtain an appropriate minimax principle on its base. However, we fail in trying to find
an appropriate set of functions over which we can take such minimax. We also mention
that in the two-dimensional case, for self-adjoint operators, we have an upper bound for
admissible values of β (see [6]).

Comparing our results with the ones established in [6,7] for the two-dimensional case,
we mention the following important differences. The first of them is that the convergence
rates in estimates (15) and (16) are now powers of ε, while in [6,7], similar rates are powers
of | ln ε|−1. This means that for the three-dimensional operators, our approximation is
better. A deep reason explaining this situation is a difference between the fundamental
solutions of the Laplace operator in two and three dimensions. Due to the same reason,
we to modify quite essentially a part of our proof for the three-dimensional operator, and
this is the second important difference. Namely, one of the key ingredients is a lower-
semiboundedness of the form associated with the perturbed operator, and we do need an
explicit lower bound for this form. In the two-dimensional case, such lower bound is based
on certain local estimates similar to the ones in Lemma 5 below. In the three-dimensional
case, these local estimates are not enough, and we have to analyze an auxiliary Steklov
problem; see Section 4.1 below.

Once we have the resolvent convergence stated in Theorem 1, it is possible to prove the
convergence of the spectrum and the associated spectral projections. This can be performed
by a literal reproduction of the proof of a similar theorem from [6], and it leads us to
Theorem 2. This is why we do not provide the proof of Theorem 2 in this paper.

3. Auxiliary Statements

Here, we establish several lemmas, which are important ingredients in the proof
of Theorem 1.

Lemma 1. The identities∫
∂ω

α0(s)

|A− 1
2

0 x|
ds =

∫
∂ω

ν · x

|A− 1
2

0 x|3
ds = 4π

(
det A0

) 1
4 , (18)

∫
∂ω

α0(s)

|A− 1
2

0 x|2
ds = −

∫
R3\ω

dx

|A− 1
2

0 x|4
(19)

hold true.

Proof. We begin with an obvious equation:

div A0∇x|A− 1
2

0 x|−1 = 0, x ∈ R3 \ {0}.

We integrate by parts this equation over ω \ {x : |x| < δ} with a sufficiently small δ:

0 =−
∫

∂ω

ν ·A0∇x|A− 1
2

0 x|−1 ds +
∫

{x: |x|=δ}

x
|x| ·A0∇x|A− 1

2
0 x|−1 ds

=
∫

∂ω

ν · x

|A− 1
2

0 x|3
ds−

∫
{x: |x|=δ}

|x|
|A− 1

2
0 x|3

ds =
∫

∂ω

ν · x

|A− 1
2

0 x|3
ds−

∫
{x: |x|=1}

ds

|A− 1
2

0 x|3
.

(20)

Since the matrix A0 is positive definite and Hermitian, there exists an orthogonal matrix
reducing A0 to its diagonal form. Performing the change of the variables with this matrix
in the latter integral, then passing to the spherical coordinates, and denoting with Λj the

eigenvalues of the matrix A− 1
2

0 , we obtain the following:
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∫
{x: |x|=1}

1

|A− 1
2

0 x|3
ds =

∫
{x: |x|=1}

(
3

∑
j=1

Λjx2
j

)− 3
2

ds

=

2π∫
0

dφ

π
2∫

− π
2

cos ϑ dϑ(
(Λ1 cos2 φ + Λ2 sin2 φ) cos2 ϑ + Λ3 sin2 ϑ

) 3
2

=

2π∫
0

sin ϑ

(Λ1 cos2 φ + Λ2 sin2 φ)
(
(Λ1 cos2 φ + Λ2 sin2 φ) cos2 ϑ + Λ3 sin2 ϑ

) 1
2

∣∣∣∣ϑ= π
2

ϑ=− π
2

dφ

=
2√
Λ3

2π∫
0

dφ

Λ1 cos2 φ + Λ2 sin2 φ
=

8√
Λ3

π
2∫

0

dφ

Λ1 cos2 φ + Λ2 sin2 φ

=
8√

Λ1Λ2Λ3
arctan

√
Λ2√
Λ1

tan φ

∣∣∣∣φ= π
2

φ=0
= 4π

(
det A0

) 1
4 .

This formula and (20) imply an identity (18).
Similar to the above calculations, we integrate by parts as follows:

0 = lim
R→+∞

∫
BR(0)\ω

|A− 1
2

0 x|−1 divx A0|A− 1
2

0 x|−1 dx

=
∫

∂ω

|A− 1
2

0 x|−1ν ·A0∇x|A− 1
2

0 x|−1 ds−
∫

R3\ω

A0∇x|A− 1
2

0 x|−1 · ∇x|A− 1
2

0 x|−1 dx

=−
∫

∂ω

α0(s)

|A− 1
2

0 x|2
ds−

∫
R3\ω

dx

|A− 1
2

0 x|4
,

and this proves (19). The proof is complete.

With Z+ we denote the set of non-negative integral numbers, that is, Z+ := N∪ {0}.

Lemma 2. For each m ∈ Z+, each polynomial P = P(x), and each multi-index γ ∈ Z3
+, the equa-

tion

3

∑
i,j=1

Aij(x0)
∂2u(x)
∂xi∂xj

= P(x− x0)
∂γ

∂xγ
|A− 1

2
0 (x− x0)|2m−1, x ∈ R3 \ {x0},

possesses a solution of the form

u(x) = ∑
θ∈Z3

+
|θ|�deg P

Qθ(x− x0)
∂γ+θ

∂xγ+θ
|A− 1

2
0 (x− x0)|2m+1+2|θ|, (21)

where Qθ are some polynomials with degrees obeying the inequality

deg Qθ � deg P− |θ|.

Proof. It is sufficient to study only the case when A0 coincides with the unit matrix E
and x0 = 0, since the general case is reduced to the one mentioned by the linear change

y = A− 1
2

0 (x− x0). This is why we provide only the proof of the particular mentioned case.
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We prove the lemma by induction in the degree of the polynomial P. We first consider
the case deg P = 0, that is, P is a constant. Then, it is straightforward to confirm that
the equation

Δu = P
∂γ

∂xγ
|x|2m−1, x ∈ R3 \ {0}, (22)

possesses a solution

u(x) =
P

(2m + 1)(2m + 2)
∂γ

∂xγ
|x|2m+1.

Suppose that Equation (22) possesses a solution of the form in (21), with A0 = E and
x0 = 0 for all γ and all polynomials P with deg P � k for some k ∈ Z+. We then consider
Equation (22) with a polynomial P such that deg P = k + 1 and seek its solution as

u(x) =
P(x)

(2m + 1)(2m + 2)
∂γ

∂xγ
|x|2m+1 − ũ(x) (23)

and for ũ, we then obtain the equation

Δu =
2

(2m + 1)(2m + 2)

3

∑
i=1

∂P
∂xi

∂

∂xi

∂γ

∂xγ
|x|2m+1 + ΔP

∂γ

∂xγ
|x|2m+1.

The degrees of the polynomials ∂P
∂xi

and ΔP are at most deg P− 1 and deg P− 2, respectively,
and by the induction assumption, the above equation possesses a solution of the form in (21),
namely,

ũ = ∑
θ∈Z3

+
|θ|�k

Qθ(x)
∂γ+θ

∂xγ+θ
|x|2m+3+2|θ|

with some polynomials Qθ of degrees deg Qθ � k− |θ|. Substituting this formula into (23),
we arrive at (21) for deg P = k + 1. The proof is complete.

Estimates (5) and (6) show that the spectrum of the self-adjoint operator HΩ is a subset
of the half-line [c2 − c1, ∞). Then, the positivity of the constant c2 implies that the resolvent
(HΩ + c1)

−1 is well-defined.
We introduce an auxiliary sesquilinear form

gε(u, v) :=hΩ
(
(1− χ)u, (1− χ)v

)
+ hΩ0\ωε

(
χu, (1− χ)v

)
+ hΩ0\ωε

(
(1− χ)u, χv

)
+ hΩ0\ωε

(χu, χv)
(24)

on the domain

D(gε) :=
{

u : (1− χ)u ∈ D(hΩ), χu ∈ W1
2 (Ω0 \ωε)

}
. (25)

It is clear that this form is symmetric.

Lemma 3. The boundary value problem (7) possesses a unique solution in W2
2 (Ω \ B2R2(x0)) ∩

C2(Ω0 \ {x0}) with a differentiable asymptotic (8). The identity(
∂G
∂n

+ α0G, G
)

L2(∂ωε)
= β0 + O(ε) (26)

holds true, where β0 is introduced in (9), and this constant is real.
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Proof. We expand the coefficients Aij, Aj, and A0 of the differential expression Ĥ by the
Taylor formula about the point x0, and using Lemma 2, we see that there exists a function
G1(x) of the form

G1(x) = G0(x) + ∑
j,θ

Pj,θ(x)
∂θ

∂xθ
|A− 1

2
0 (x)|j, (27)

where the sum is finite and is taken over j ∈ Z+ and θ ∈ Z3
+, and Pj,θ are some polynomials,

where

∑
j,θ

Pj,θ(x)
∂θ

∂xθ
|A− 1

2
0 (x)|j = O(1), x → 0, (28)

such that
(Ĥ+ c1)(G−1(x− x0) + G1(x− x0)) = F0(x),

where F0 is continuous; the Lipschitz in B2R2(x0) is infinitely differentiable in B2R2(x0) \
{x0}, and

F0(x) = O(|x− x0|), x → x0.

We seek the solution to the boundary value problem (7), (24) as

G(x) = G2(x) + G3(x), G2(x) :=
(
G−1(x− x0) + G1(x− x0)

)
χ(x), (29)

and the unknown function G2 should solve the equation

(HΩ + c1)G3 = F2, F2 := −χF0 + F1, (30)

and F1 is a certain polynomial expression of the derivatives of G0 and χ up to the second
order. This yields F2 ∈ L2(Ω) ∩ Cγ(Ω0) for each γ ∈ (0, 1).

Since the point −c1 is outside the resolvent set of the operator HΩ, Equation (30) is
uniquely solvable in D(HΩ). The standard Schauder estimates [20] imply that this solution
belongs to C2+γ(Ω0). Therefore, the function G3 satisfies the Taylor formula

G3(x) = a0 + O(|x− x0|), x → x0,

with some constant a0. Now, recovering the function G by Formula (29), we conclude
that problem (7), (24) is uniquely solvable in W2

2 (Ω \ B2R2(x0)) ∩ C2(Ω0 \ {x0}), and the
solution satisfies asymptotics (8).

We confirm that the constant a0 is real. We proceed as in the proof of Lemma 3.2 in [6],
namely, as in Equations (3.9)–(3.12) in [6], and we obtain the following:

hΩ(G3, G3) + c1‖G3‖2
L2(Ω) −

(
(Ĥ+ c1)G2, G2

)
L2(Ω)

= −
(
(Ĥ+ c1)G2, G

)
L2(Ω)

and, denoting Ωδ := Ω \ Bδ(x0),

((HΩ + c1)G2, G2)L2(Ω) −
(
(Ĥ+ c1)G2, G

)
L2(Ω)

= lim
δ→+0

(
3

∑
i,j=1

(
Aij

∂G2

∂xj
,

∂G2

∂xi

)
L2(Ωδ)

− 2 Im
2

∑
j=1

(
Aj

∂G2

∂xj
, G2

)
L2(Ωδ)

+ ((A0 + c1)G2, G2)L2(Ωδ) −
∫

∂Bδ(x0)

G
∂G2

∂n
ds

)
.

(31)
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We let

bδ(x) :=
3

∑
j=1

νj Aj(x0), x ∈ ∂Bδ(x0),

G4(x) := G−1(x− x0) + Re G0(x− x0), G5(x) := Im G0(x− x0),

where x0,i are the coordinates of the point x0, and we observe that the functions bδ and
G5 are odd with respect to each of the variables xi − x0,i, i = 1, 2, 3. Then, it follows from
asymptotics (8) and Formulas (27)–(29) that, as δ → +0,

∫
∂Bδ(x0)

G
∂G2

∂n
ds =

∫
∂Bδ(x0)

(G2 + a0)
∂G2

∂n
ds

=− 1
δ

∫
∂Bδ(x0)

(G2 + a0)
3

∑
i,j=1

Aij(xi − xi,0)
∂G2

∂xi
ds

− i
∫

∂Bδ(x0)

bδ|A
− 1

2
0 (x− x0)|−2 ds + o(1)

=− a0

δ

∫
∂Bδ(x0)

3

∑
i,j=1

Aij(x0)(xi − xi,0)
∂

∂xi
G−1(x− x0) ds

− 1
δ

∫
∂Bδ(x0)

G4

3

∑
i,j=1

Aij(x)(xi − xi,0)
∂

∂xi
G−1(x− x0) ds

− i
δ

∫
∂Bδ(x0)

G5

3

∑
i,j=1

Aij(x0)(xi − xi,0)
∂

∂xi
G−1(x− x0) ds + o(1)

=4πa0
(

det A0
) 1

4 − 1
δ

∫
∂Bδ(x0)

G4

3

∑
i,j=1

Aij(x)(xi − xi,0)
∂

∂xi
G−1(x− x0) ds + o(1).

We substitute this identity into (31), and this leads us to a formula for a0, which implies
that this constant is real.

We proceed to proving (26). We first represent the function G as G = χG + (1− χ)G,
and we see that the function (1− χ)G is the solution of the equation

(HΩ + c1)(1− χ)G = −(Ĥ+ c1)χG. (32)

Hence,

hΩ((1− χ)G, (1− χ)G) + c1‖(1− χ)G‖2
L2(Ω) =−

(
(Ĥ+ c1)χG, (1− χ)G

)
L2(Ω0)

=− hΩ0\ωε

(
χG, (1− χ)G

)
L2(Ω0)

− c1
(
χG, (1− χ)G

)
L2(Ω0)

.

(33)

We then consider Equation (32) pointwise in Ωε, multiply it by χG in L2(Ω0), and integrate
it once by parts. This gives the following:(

(HΩ + c1)(1− χ)G, χG
)

L2(Ω0\ωε)
= −

(
(Ĥ+ c1)χG, χG

)
L2(Ω0\ωε)

,

hΩ0\ωε
((1− χ)G, χG) = −hΩ0\ωε

(χG, χG
)

L2(Ω0\ωε)
−

(
∂G
∂n

, G
)

L2(∂ωε)
.

(34)
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Summing this identity with (33) and taking into consideration definition (24) of the form gε,
we find that

gε(G, G) + ‖G‖2
L2(Ωε)

=

(
∂G
∂n

, G
)

L2(∂ωε)
. (35)

In view of asymptotics (8) and definition (4) of the function α0, we then see that

gε(G, G) + ‖G‖2
L2(Ωε)

+ (α0G, G)L2(∂ωε) =

(
∂G
∂n

+ α0G, G
)

L2(∂ωε)
= β̃0 + O(ε),

where

β̃0 :=
3

∑
j=1

∫
∂ω

xjG−1(x)ν · ∂A
∂xj

(x0)∇G−1(x) ds +
3

∑
j=1

∫
∂ω

G−1(x)ν ·A0∇G0(x) ds

−
3

∑
j=1

∫
∂ω

G0(x)ν ·A0∇G−1(x) ds− i
3

∑
j=1

νj Aj(x0)
∫

∂ω

G2
−1(x) ds.

Since the initialexpression in the above formulas is real due to Formula (35), the same is
true for the constant β̃0, and identity (26) holds true. Moreover, since the constant β̃0 is real,
we immediately see that β̃0 = Re β̃0 = β0, and this completes the proof.

We let Πε := B2R2(x0) \ωε.

Lemma 4. These estimates hold:

‖v‖2
L2(∂ωε)

� Cε‖v‖2
W1

2 (Πε)
, v ∈ W1

2 (Πε), (36)

‖v‖2
L2(ωε)

� Cε2‖v‖2
W1

2 (B2R2 (x0))
, v ∈ W1

2 (B2R2(x0)), (37)

where C is a fixed constant independent of ε and v.

Estimates (36) and (37) are proven in Lemmas 2.1 and 2.2 in [14]. Using these estimates
and reproducing the proof of Lemmas 3.4 and 3.5 in [6] with obvious minor changes, we
arrive at the following statement.

Lemma 5. For all v ∈ W1
2 (Πε) satisfying the condition∫

∂ωε

v ds = 0 (38)

the inequality
‖v‖2

L2(∂ωε)
� Cε‖∇v‖2

L2(Πε)
(39)

holds, where C is a constant independent of ε and v. If, in addition, the function v is defined on the
entire ball B2R2(x0) and v ∈ W2

2 (B2R2(x0)), then

‖v‖2
L2(∂ωε)

� Cε3‖v‖2
W2

2 (B2R2 (x0))
, (40)

where C is a constant independent of ε and v.
For all ϕ ∈ C1(∂ω) and all v ∈ W2

2 (B2R2(x0)), the inequality∣∣∣∣ε−2
∫

∂ωε

ϕ

(
x− x0

ε

)
v(x)ds− c(ϕ)v(x0)

∣∣∣∣ � Cε
1
2 ‖v‖W2

2 (B2R2 (x0))
, c(ϕ) :=

∫
∂ω

ϕ(x)ds, (41)

holds true, where C is a constant independent of ε and v.
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Proof. For each function v ∈ W1
2 (Πε), we let ṽ(ξ) := v(x0 + εξ). The latter function is an

element of W1
2 (BR1(0) \ω), and ∫

∂ω

ṽ ds = 0.

Hence,
‖ṽ‖2

L2(∂ω) � C‖∇ξ ṽ‖2
L2(BR1 (0)\ω),

where C is a fixed constant independent of ṽ. Rewriting the obtained inequality in terms of
the function v, we obtain

‖v‖2
L2(∂ωε)

� Cε‖∇v‖2
L2(BR1ε(x0)\ωε)

, (42)

where C is a constant independent of ε and v. This proves (39). If, in addition, v ∈
W2

2 (B2R2(x0)), then we apply estimate (37) with v replaced by its derivatives and ωε

replaced by BR1ε(x0) to the right hand side of (42), and this leads us to (40).
We proceed to proving (41). The boundary value problem

ΔξY = 0 in ω \ {0},
∂Y
∂ν

= ϕ on ∂ω, Y(ξ) = − c(ϕ)

4π|ξ| + O(1)

is solvable and possesses a unique solution, such that∫
ω

Y(ξ) dξ = 0.

By the standardSchauder estimates, the function Y + c(ϕ)
4π| · | belongs to C2+γ(ω) for each

γ ∈ (0, 1).
Let v ∈ C2(B2R2(x0)), then the function ṽ(ξ) := v(x0 + εξ) is an element of C2(ω).

Using the above definition of the function and integrating by parts, we easily find that

0 = lim
r→+0

∫
ω\Br(0)

ṽΔξY ds = −
∫

∂ω

ṽϕ ds + c(ϕ)ṽ(0) +
∫

∂ω

Y
∂ṽ
∂ν

ds +
∫
ω

YΔξ ṽ ds.

Returning back tothe function v, we obtain

ε−2
∫

∂ωε

vϕ

( · − x0

ε

)
ds− c(ϕ)v(x0) = ε−1

∫
∂ωε

Y
( · − x0

ε

)
∂v
∂ν

ds + ε−1
∫
ω

Y
( · − x0

ε

)
Δv ds.

Using the aforementionedsmoothness of the function Y and estimating the right-hand side
of the obtained identity, in view of (36), we obtain∣∣∣∣∣∣ε−2

∫
∂ωε

vϕ

( · − x0

ε

)
ds− c(ϕ)v(x0)

∣∣∣∣∣∣ �Cε−1
∥∥∥∥∂v

∂ν

∥∥∥∥
L2(∂ωε)

∥∥∥∥Y
( · − x0

ε

)∥∥∥∥
L2(∂ωε)

+ Cε−1‖v‖W2
2 (ωε)

∥∥∥∥Y
( · − x0

ε

)∥∥∥∥
L2(ωε)

�Cε
1
2 ‖v‖W2

2 (B2R2 (x0))
,

where the Cs are some constants independent of ε and v. Since the space C2(B2R2(x0)) is
dense in W2

2 (B2R2(x0)), the above estimate also holds for all v ∈ W2
2 (B2R2(x0)), and we

arrive at (41). The proof is complete.
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4. Lower Semi-Boundedness and Self-Adjointness

In this section, we establish the self-adjointness of the operators Hε and H0,β. In addi-
tion, we show that the operator Hε is lower semi-bounded, and this is a key ingredient in
proving estimates (15) and (16).

We introduce a sesquilinear form

hε(u, v) := gε(u, v) + (αu, v)L2(∂ωε) (43)

on the domain D(hε) := D(gε), and we recall that the form gε and its domain are introduced
in (24) and (25). The form hε is symmetric. Literally reproducing Equations (4.4)–(4.7)
from [6], we see that the form hε is associated with the operator Hε. Proceeding, then, as in
inequalities (4.16)–(4.18) from [6], we also obtain

gε(u, u) + c1‖u‖2
L2(Ωε)

� c2‖u‖2
W1

2 (Ωε)
(44)

for all u ∈ D(gε).
The proof of the self-adjointness of the operator Hε is based on the lower semi-

boundedness of its form hε. In order to prove the latter, we need to study an auxiliary
operator similar to a Neumann-to-Dirichlet map and an associated Steklov problem.

4.1. Auxiliary Operator

We first establish the closedness of the form gε.

Lemma 6. The form gε is closed.

Proof. We recall that, by our assumptions, the form hΩ is closed. Let un ∈ D(gε) be a
sequence such that gε(un − um) → 0 as n, m → +∞ and un → u in L2(Ωε). Then, by
inequality (44), we immediately conclude that u is an element of W1

2 (Ωε) and un → u in
the norm of this space. Hence,

hΩ0\ωε

(
χ(un − u), (1− χ)(un − u)

)
+ hΩ0\ωε

(
(1− χ)(un − u), χ(un − u)

)
+ hΩ0\ωε

(
χ(un − u), χ(un − u)

)
→ 0, n → +∞,

and, therefore, by definition (43) of the form gε, we see that

hΩ
(
(1− χ)(un − u), (1− χ)(un − u)

)
→ 0 as n → +∞.

The closedness of the form hΩ then implies that (1− χ)u ∈ D(gε), and by the definition of the
cut-off function, we conclude that u = (1− χ)u + χu ∈ D(gε) and hΩ(un − u, un − u)→ 0
as n → +∞. The proof is complete.

We equip the linear space D(gε) with the scalar product

( · , · )gε := gε( · , · ) + c1( · , · )L2(R3\ω)

and owing to the symmetricity and closedness of the form, as well as to inequality (44),
this makes the space D(gε) a Hilbert one. Since by (44) we have W1

2 (Ωε) ⊆ D(gε), each
u ∈ D(gε) possesses a trace on ∂ωε. The operator, which maps u ∈ D(gε) into its trace on
∂ωε, is well-defined as a bounded one from D(gε) into L2(∂ωε); we denote this operator
by Tε. In view of inequalities (36) and (44) and the compactness of the trace operator
from W1

2 (Πε) into L2(∂ωε), the operator Tε : D(gε) → L2(∂ωε) is compact and satisfies
the estimate

‖Tε‖D(gε)→L2(∂ωε) � Cε
1
2 , (45)

where C is a constant independent of ε.
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For each φ ∈ D(gε), we consider the boundary value problem

(Ĥ+ c1)u = 0 in Ωε, Bu = 0 on ∂Ω,
∂u
∂n

= −αφ on ∂ωε. (46)

The solution isunderstood in the generalized sense, namely, a solution is a function u ∈
D(gε) such that

(u, v)gε + (αφ, v)L2(∂ωε) = 0 for all v ∈ D(gε). (47)

Since gε is the scalar product on the Hilbert space D(gε), boundary value problem (46) is
uniquely solvable for each φ ∈ L2(∂ωε). By A0

ε , we denote the operator mapping φ into
the solution of problem (46). This operator is bounded as acting from L2(∂ωε) into D(gε).
Moreover, by estimates (36), (44) we easily find that

‖u‖2
gε

= −(αφ, u)L2(∂ωε) � Cε−
1
2 ‖φ‖L2(∂ωε)‖u‖W1

2 (Πε)
� Cε−

1
2 ‖φ‖L2(∂ωε)‖u‖gε , (48)

where the Cs are constants independent of ε, u, and φ. Hence,

‖A0
ε‖L2(∂ωε)→D(gε) � Cε−

1
2 , (49)

where C is a constant independent of ε. It also follows from the symmetricity of the form gε

and the identity (47) that the operator Aε := A0
εTε acting on D(gε) is self-adjoint. Since the

operator Tε is compact, the same is true for Aε. Estimates (45) and (49) imply that

‖Aε‖D(gε)→D(gε) � C,

where C is a constant independent of ε. The spectrum of the operator Aε consists of discrete
eigenvalues, which can accumulate only at zero, and the latter is the only possible point of
the essential spectrum.

It is possible to construct an asymptotic expansion for the operator Aε as ε → 0 on the
base of the classical method of matching asymptotic expansions similarly to Chapter III in [10]
and Chapter II, Section 2.3.4 in [12]. The application of this technique shows that

‖Aε −Lε‖D(gε)→D(gε) → 0, ε → 0, Lε := ζεS−1
ε LSεTε + ε(1− ζε)GCSεTε, (50)

(Sεu)(ξ) := u(εξ), ξ ∈ R3 \ω, Cu :=
1

4π
(

det A0
) 1

4

∫
∂ω

α0(ξ)u(ξ) ds.

Here, ζε(x) = ζ(|x|ε− 1
2 ), and ζ = ζ(t) is an infinitely differentiable cut-off function equal

to one as t < 1 and vanishing as t > 2. By L, we denote an operator from L2(∂ω) into
W1

2 (BR1(0) \ω) ∩ C∞(R3 \ω) mapping each function φ ∈ L2(∂ω) into the unique solution
U = U(ξ) of the boundary value problem

divξ A0∇ξU = 0 in R3 \ω, ν ·A0∇ξU + α0φ = 0 on ∂ω,

U(ξ) = C(φ)|A− 1
2

0 ξ|−1 + O(|A− 1
2

0 ξ|−2), ξ → ∞,

and the above asymptotic for U is differentiable. Since the operator Tε is compact and C is a
linear functional, it follows from the definition of the operator Lε in (50) that this operator
is compact. Hence, its spectrum consists of eigenvalues of finite multiplicities, which
can accumulate only at zero, and the latter is the only possible point of the continuous
spectrum.

Let T : W1
2 (BR1(0) \ ω) → L2(∂ω) be the operator of taking the trace on ∂ω; this

operator is obviously compact. Then, the operator T L : L2(∂ω)→ L2(∂ω) is compact as
well. The eigenvalues of this operator coincide with those of the operator Lε, counting
the multiplicities. Indeed, let λ �= 0 be an eigenvalue of the operator T L. This means
that there exists a non-trivial solution of boundary value problem (10). Hence, λ is an
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eigenvalue of the operator Lε, and the associated eigenfunction is ζεS−1
ε ψ + ελ−1(1 −

ζε)GC(ψ). Furthermore, vice versa, let λ �= 0 be an eigenvalue of the operator Lε and ψ be
an associated eigenfunction. Then, we consider the eigenvalue equation Lεψ = λψ as the
identity for two functions defined for x ∈ B

ε
1
2
\ωε, and we see immediately that ψ solves

problem (10) and, hence, λ is an eigenvalue of the operator T L.
Since the operator T L is compact, its spectrum consists of discrete eigenvalues, which

can accumulate only at zero, and the latter is the only possible point of the essential
spectrum. Since the eigenvalues of the operator T L coincide with those of the operator Lε,
in view of the convergence in (50), we conclude that the eigenvalues of T L are the limits of
the eigenvalues of Lε as ε → 0, counting the multiplicities, and, hence, the eigenvalues of
T L are real.

Let λ �= 0 be an eigenvalue of the operator T L, then problem (10) possesses a non-
trivial solution. We multiply the equation in (10) by ψ in L2(R

3 \ω) and integrate once by
parts using the boundary condition in (10). This gives

λ = −
(α0ψ, ψ)L2(∂ω)

(A0∇ξψ,∇ξψ)L2(R3\ω)
. (51)

We represent ψ as

ψ(ξ) = E(ξ)Ψ(x), E(ξ) := |A− 1
2

0 ξ|−1. (52)

Since the function E is non-zero on R3 \ω, the above representation for ψ is well-defined,
and in view of the asymptotic at infinity in problem (10), the function Ψ(ξ) possesses the
following differentiable asymptotic at infinity:

Ψ(ξ) = λ−1C(ψ) + O(|A− 1
2

0 ξ|−1), ξ → ∞.

We substitute representation (52) into the denominator of (51) and integrate by parts
using the definition of E and α0:

(A0∇ξψ,∇ξ ψ)L2(R3\ω) =(A0E∇ξΨ, E∇ξΨ)L2(R3\ω) + (A0Ψ∇ξ E, Ψ∇ξ E)L2(R3\ω)

+ (A0Ψ∇ξ E, E∇ξΨ)L2(R3\ω) + (A0E∇ξΨ, Ψ∇ξ E)L2(R3\ω)

=(A0E∇ξΨ, E∇ξΨ)L2(R3\ω) +
∫

∂ω

ΨEν ·A0Ψ∇ξ E ds

−
∫

R3\ω

E div A0|Ψ|2∇ξ E dξ + (A0Ψ∇ξ E, E∇ξΨ)L2(R3\ω)

+ (A0E∇ξΨ, Ψ∇ξ E)L2(R3\ω)

=(A0E∇ξΨ, E∇ξΨ)L2(R3\ω) − (α0EΨ, EΨ)L2(∂ω),

and the final expression is positive since the same is true for the initial scalar product
(A0∇ξ ψ,∇ξψ)L2(R3\ω). Substituting these identities and representation (52) into (51),
we obtain

λ =
−(α0EΨ, EΨ)L2(∂ω)

(A0E∇ξΨ, E∇ξΨ)L2(R3\ω) − (α0EΨ, EΨ)L2(∂ω)
. (53)

Since the denominatorof the obtained quotient is positive, we immediately conclude that
λ < 1 once Ψ is not identically one. It is straightforward to confirm that λ = 1 is an
eigenvalue of the operator T L, and the corresponding non-trivial solution of problem (10)
is ψ = E. Identity (53), then, implies that λ = 1 is a simple eigenvalue of the operator T L.

In view of the established facts on the eigenvalues of the operator T L and the con-
vergence in (50), the greatest eigenvalue of the operator Aε is simple and converges to
1 as ε → 0. We denote the next eigenvalue of the operator Aε by λ̃ε. This eigenvalue
converges to the next eigenvalue of the operator T L, which is strictly less than one. Let
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ψε be a normalized eigenfunction, in D(gε), of the operator Aε associated with its greatest
eigenvalue. Then, by the minimax principle applied to the operator Aε, we find

(Aεu, u)gε

‖u‖2
gε

� λ̃ε for all u ∈ D(gε) such that (u, ψε)gε = 0. (54)

In view of identity (47), we can rewrite this inequality as

−(Aεu, u)gε = (αu, u)L2(∂ωε) � −λ̃ε‖u‖2
gε

(55)

for all u ∈ D(gε) obeying the orthogonality condition from (54).
We also need asymptotics for the eigenvalue λε and the associated eigenfunction ψε;

let us find them. It follows from problem (7), (24); the definition (4) of the function α0; and
Lemma 3 that the function G solves the following boundary value problem

(Ĥ+ c1)G = 0 in Ωε, BG = 0 on ∂Ω,
∂G
∂n

= −αG + ε−1hε on ∂ωε,
(56)

where hε is a continuous function in ∂ωε bounded uniformly in the spatial variables in ∂ωε

and the small parameter ε. Uε denotes the solution of the problem

(Ĥ+ c1)Uε = 0 in Ωε, BUε = 0 on ∂Ω,
∂Uε

∂n
= hε on ∂ωε, (57)

and in view of the uniform boundedness of h, similarly to (48), we immediately obtain the
following:

‖Uε‖gε = O(ε
3
2 ). (58)

Lemma 3 also implies that

‖G‖L2(Ωε) = ‖G‖L2(Ω) + O(ε
1
2 ), ‖G‖gε = ‖G2

−1‖L2(R3\ω)ε
− 1

2 + O
(
ε

1
2 | ln ε|

)
, (59)

where C is a positive constant independent of ε.
Comparing problems (46) and (56), we see that G = AεG + ε−1Uε and, hence,

Gε = AεGε + Uε, Gε :=
G

‖G‖gε

, Vε :=
ε−1Uε

‖G‖gε

, ‖Vε‖gε = O(ε). (60)

We apply the resolvent (Aε − 1)−1 to the obtained equation and employ standard results
on the behavior of the resolvents of the self-adjoint operators near the isolated eigenvalues
(see Chapter V, Section 3.5 in [21]). This gives the identity

Gε =
(Vε, ψε)gε

1− λε
ψε +RεVε, (61)

where Rε is the reduced resolvent at the point 1, and this is an operator in D(gε) bounded
uniformly in ε and acting into the orthogonal complement to ψε in D(gε). Hence,

‖RεVε‖gε = O(ε). (62)

This estimate and identity (61) imply that

‖Gε − cεψε‖gε = O(ε), cε :=
(Vε, ψε)gε

1− λε
= (Gε, ψε)gε . (63)
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Calculating the scalarproduct in D(gε) of both sides of identity (61) with Gε, in view of
identity (62), we immediately see that

1 = |cε|2 + O(ε). (64)

Calculating the scalarproduct in D(gε) of both sides of identity (61) with cεψε, by (58), (62),
and (63), the definition of Vε in (60), and the normalization of Gε and ψε in D(gε), we see that

λε − 1 = − 1
ε‖G‖gε

(Uε, cεψε)gε

(Gε, cεψε)gε

= − (Uε, G)gε

ε‖G‖2
gε

(
1 + O(ε)

)
. (65)

Let us find the scalar product (Uε, G)gε . In order to do this, we write the definition of
the generalized solution of problems (56), (57) with G as the test function:

(G, G)gε + (αG, G)L2(∂ωε) − ε−1(hε, G)L2(∂ωε) = 0, (Uε, G)gε − (hε, G)∂ωε
= 0.

Hence,
ε−1(Uε, G)gε = ε−1(hε, G)L2(∂ωε) = ‖G‖2

gε
+ (αG, G)L2(∂ωε).

It also follows from asymptotics (8) and the definition of the function α that

(αG, G)L2(∂ωε) =ε−1(α0G−1, G−1)L2(∂ω) + 2 Re(α0G0, G−1)L2(∂ω)

+ (α1G−1, G−1)L2(∂ω) + O(ε).

This identity and (11), (26) yield

ε−1(Uε, G)gε = β0 + (α1G−1, G−1)L2(∂ω) +O(ε) = −4π
(

det A0
) 1

4 (β− a0) +O(ε), ε → 0.

The obtained formula and (59), (19) allow us to rewrite (65) as

λε − 1 = ε
4π(β− a0)

(
det A0

) 1
4

‖G2
−1‖2

L2(R3\ω)

+ O(ε2| ln ε|).

4.2. Lower Semi-Boundedness

In this subsection, we prove the lower-semiboundedness of the form hε. We represent
each function u ∈ D(gε) as

u = u⊥ + (u, ψε)D(gε)ψε, (u⊥, ψε)D(gε) = 0.

Then, by (55), for all u ∈ D(gε), we have the following:

hε(u, u) + c1‖u‖2
L2(Ωε)

=(u−Aεu, u)gε

=(u⊥ −Aεu⊥, u⊥)gε + (1− λε)|(u, ψε)D(gε)|2

�(1− λ̃ε)‖u‖2
gε
+ (1− λε)|(u, ψε)D(gε)|2

=(κ + c3(ε))‖u‖2
gε
+ (1− λε)|(u, ψε)D(gε)|2.

As it is established in the previous section, the eigenvalue λ̃ε converges to the second
eigenvalue of the operator T L, and this is why 1− λ̃ε = κ + c3(ε), where c3(ε) → 0 as
ε → +0. This allows us to the rewrite the above estimate as

hε(u, u) + c1‖u‖2
L2(Ωε)

� (κ + c3(ε))‖u‖2
gε
+ (1− λε)|(u, ψε)D(gε)|2. (66)

For each u ∈ D(gε), the function

u⊥ := u− (u, ψε)gε ψε (67)
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satisfies the orthogonality condition in (54), and in view of (66), we have

hε(u, u) + c1‖u‖2
L2(Ωε)

=(u−Aεu, u)gε = (u⊥ −Aεu⊥, u⊥)gε + (1− λε)|(u, ψε)gε |2

�(κ + c3(ε))‖u⊥‖2
gε
+ (1− λε)|(u, ψε)gε |2

�(κ + c3(ε))‖u⊥‖2
gε

− ε

⎛⎝4π(β− a0)
(

det A0
) 1

4

‖G2
−1‖2

L2(R3\ω)

+ Cε| ln ε|

⎞⎠|(u, ψε)gε |2

(68)

where C is some constant independent of ε and u.
For further purposes, it is more convenient to introduce another representation similar

to (67): we let

u⊥ := u− (u, Gε)gε Gε, ψε,⊥ := ψε − (ψε, Gε)gε Gε,

(u⊥, Gε)gε = (ψε,⊥, Gε)gε = 0.
(69)

Comparing the above definition of ψε,⊥ with (63), (64), we immediately see that

‖ψε,⊥‖gε = O(ε), ψε,⊥ = ψε − cεGε. (70)

It follows from (67), (69) that

u⊥ = u⊥ + (u, Gε − cεψε)gε Gε − (u, ψε)gε ψε,⊥

and in view of the orthogonality conditions in (69), we find

‖u⊥‖2
gε

= ‖u⊥ − (u, ψε)gε ψε,⊥‖2
gε
+ |(u, Gε − cεψε)gε |2. (71)

By the Cauchy–Schwarz inequality and (70), we obtain

‖u⊥ − (u, ψε)gε ψε,⊥‖2
gε

�‖u⊥‖2
gε
(1− | ln ε|−1)− (| ln ε| − 1)||(u, ψε)gε |2‖ψε,⊥‖2

gε

�‖u⊥‖2
gε
(1− | ln ε|−1)− Cε2| ln ε||(u, ψε)gε |2,

(72)

where the Cs are some positive constants independent of ε and u. It also follows from the
Cauchy–Schwarz inequality and (63), (64) that

|(u, ψε)gε |2 =|cε|−2|(u, cεψε)gε |2 = |cε|−2|(u, Gε)gε − (u, Gε − cεψε)gε |2

�(1− | ln ε|−1)|(u, Gε)gε |2 − (| ln ε| − 1)|(u, Gε − cεψε)gε |2,
(73)

|(u, ψε)gε |2 � 2|(u, Gε)gε |2 + 2|(u, Gε − cεψε)gε |2.

Substituting the latter inequality and (72) into (71), we obtain the following:

‖u⊥‖2
gε

�‖u⊥‖2
gε
(1− | ln ε|−1)− Cε2| ln ε||(u, Gε)gε |2 +

1
2
|(u, Gε − cεψε)gε |2

with some constant C independent of ε and u. This estimate and (73) allow us to rewrite (68) as

hε(u, u) + c1‖u‖2
L2(Ωε)

�(κ + c3(ε))‖u⊥‖2
gε
(1− | ln ε|−1)

− ε

⎛⎝4π(β− a0)
(

det A0
) 1

4

‖G2
−1‖2

L2(R3\ω)

+ C| ln ε|−1

⎞⎠|(u, Gε)gε |2
(74)

where C is a constant independent of ε and u.
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By the Cauchy–Schwarz inequality and (59), (67), we find that

‖u‖2
L2(Ωε)

=‖u⊥‖2
L2(Ωε)

+ 2 Re(u, Gε)gε(Gε, u⊥)L2(Ωε) + |(u, Gε)gε |2‖Gε‖2
L2(Ωε)

�− η‖u⊥‖2
L2(Ωε)

+
η‖Gε‖2

L2(Ωε)

1 + η
|(u, Gε)gε |2

�− η‖u⊥‖2
L2(Ωε)

+
εη‖G‖2

L2(Ω)(1− Cε
1
2 )

(1 + η)‖G2
−1‖2

L2(R3\ω)

|(u, Gε)gε |2

for an arbitrary η ∈ (0, 1) with some constant C independent of ε, u, and η. By (74), for an
arbitrary c4 > 0, we then obtain

hε(u, u) + (c1 + c4)‖u‖2
L2(Ωε)

�
(
κ + c3(ε)− c4η(1− | ln ε|−1)

)
‖u⊥‖2

gε

+
ε‖G‖2

L2(Ω)

‖G2
−1‖2

L2(R3\ω)

⎛⎝ c4η

(1 + η)
− 4π(β− a0)

(
det A0

) 1
4

‖G‖2
L2(Ω)

− C| ln ε|−1

⎞⎠|(u, Gε)gε |2.

Hence, choosing η small enough and c4 large enough, in view of condition (12), we conclude
on the existence of the constants η and c4 such that

hε(u, u) + (c1 + c4)‖u‖2
L2(Ωε)

� c5‖u⊥‖2
gε
+ c5ε|(u, Gε)gε |2 (75)

for all u ∈ D(gε) with a fixed positive constant c5 independent of ε and u.

4.3. Self-Adjointness

We proceed to proving the self-adjointness of the operators Hε and H0,β. We begin
with the operator Hε. Since the form hε is symmetric and lower-semi-bounded and is
associated with the operator Hε, it is sufficient to show that it is closed, and then this will
imply the self-adjointness of the operator Hε.

We choose an arbitrary sequence un ∈ D(hε) such that

‖un − u‖L2(Ωε) → 0, hε(un − um, un − um)→ 0 as n, m → ∞ (76)

for some u ∈ L2(Ωε). We also observe that since

‖v‖2
gε

= ‖v⊥‖2
gε
+ |(v, Gε)gε |2

for each v ∈ D(gε), then it follows from (75) that

hε(v, v) + (c1 + c4)‖v‖2
L2(Ωε)

� c5ε‖v‖2
gε

.

This estimate and (76) yield

‖un − um‖gε → 0 as n, m → ∞.

Since the space D(gε) is Hilbert and is a subspace of L2(Ωε), the sequence un converges
in D(gε), and the limit is necessarily u. Hence, u ∈ D(gε) and ‖un − u‖gε → 0 as n → ∞.
By estimates (36) and (44), we also see that

(
α(un − u), (un − u)

)
L2(∂ωε)

→ 0 as n → +∞.
Therefore, hε(un − u) → 0 as n → +∞, and the form hε is closed. This yields the self-
adjointness of the operator Hε.

We proceed to the operator H0,β. We consider the adjoint operator H∗
0,β, and by the

definition of an adjoint operator, the domain of H∗
0,β consists of all functions v ∈ L2(Ω), for

which there exists a function g ∈ L2(Ω) obeying the identity

(H0,βu, v)L2(Ω) = (u, g)L2(Ω) for all u ∈ D(H0,β), H∗
0,βv = g.
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Substituting the representation in (13) for the functions from the domain of the operator
H0,β into the above identity, we obtain

(HΩu0, v)L2(Ω) − (β− a)−1u0(x0)(G, c1v + g)L2(Ω) = (u0, g)L2(Ω), u0 ∈ D(HΩ). (77)

Similarly to (32)–(34), we confirm that

(
(HΩ + c1)u0, G

)
L2(Ω\Bδ(x0))

= −
(

∂u0

∂n
, G

)
L2(∂Bδ(x0))

+

(
u0,

∂G
∂n

)
L2(∂Bδ(x0))

(78)

Since u0 ∈ W2
2 (Ω), by (18), (36), and (41), we find that(

∂u0

∂n
, G

)
L2(∂Bδ(x0))

→ 0,
(

u0,
∂G
∂n

)
L2(∂Bδ(x0))

→ −4π
(

det A0
) 1

4 u0(x0)

Passing, then, to the limit in (78), we obtain

(
(HΩ + c1)u0, G

)
L2(Ω)

= −4π
(

det A0
) 1

4 u0(x0). (79)

This allows us to rewrite (77) as

(HΩu0, v)L2(Ω) − (β− a)−1κ((HΩ + c1)u0, G)L2(Ω) = (u0, g)L2(Ω),

ρ := −
π
√

det A0(G, c1v + g)L2(Ω)

4
,

which yields

(HΩu0, v− (β− a)−1ρG)L2(Ω) = (u0, g + (β− a)−1c1ρG)L2(Ω).

Due to the self-adjointness of the operator HΩ, we then obtain the identities

w := v− (β− a)−1ρG ∈ D(HΩ), HΩw = g + (β− a)−1c1ρG. (80)

Applying identity (79) with u0 replaced by w, we find that

−4π
(

det A0
) 1

4 w(x0) = ((HΩ + c1)w, G)L2(Ω) = (g + c1v, G)L2(Ω) = −4π
(

det A0
) 1

4 ρ.

This identity and (80) imply that

v = w + (β− a)−1w(x0)G, H∗
0,βw = g = HΩw− (β− a)−1c1w(x0)

and, hence, H∗
0,β = H0,β.

In the next section, we also need the following auxiliary lemma, the proof of which
literally reproduces that of Lemma 4.3 in [6].

Lemma 7. Let f ∈ L2(Ω), Im λ �= 0, u := (H0,β − λ)−1 f . Then, the function u satisfies the
representation

u(x) = v(x) + (β− a0)
−1v(x0)G(x), v ∈ D(HΩ), (81)

and the estimate

hΩ(v, v) + c1‖v‖2
L2(Ω) + ‖v0‖2

W2
2 (B2R2 (x0))

+ |v0(x0)|2 � C(λ)‖ f ‖2
L2(Ω) (82)

holds, where C(λ) is a constant independent of f .
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5. Resolvent Convergence

In this section, we prove estimates (15) and (16). The operators Hε and H0,β are self-
adjoint, and this is why their resolvents are well-defined for λ with a non-zero imaginary
part. We arbitrarily fix such λ and a function f ∈ L2(Ω), and we let

u0 := (H0,β − λ)−1 f , uε := (Hε − λ)−1 f , vε := uε − u0. (83)

The function vε is an element of W2
2 (Ωε) and solves the boundary value problem

(Ĥ − λ)vε = 0 in Ωε, Bvε = 0 on ∂Ω,
∂vε

∂n
= −αvε + pε on ∂ωε,

where

pε :=
(

∂

∂n
+ α

)
u0.

The associated integral identity with vε as the test function reads as

hε(vε, vε)− λ‖vε‖2
L2(Ωε)

= (pε, vε)L2(∂ωε). (84)

Our next step is to estimate the right hand of this identity.
Since u0 ∈ D(H0,β), it satisfies representation (81) with v = v0 and estimate (82), while

by (14), for the function f , we have

f = (H0,β − λ)u0 = (HΩ − λ)v0 − (β− a0)
−1(λ + c1)v0(x0)G.

Following (69), we let

vε,⊥ := vε − (vε, Gε)gε Gε, (vε,⊥, Gε)gε = 0, vε = vε,⊥ + (vε, Gε)gε Gε. (85)

Then, we represent the function pε as

pε = pε,1 + pε,2 + pε,3 + pε,4, pε,1 :=
∂v0

∂n
,

pε,2 := (v0 − 〈v0〉∂ωε
)α, pε,3 := (〈v0〉∂ωε

− v0(x0))α,

pε,4 := v0(x0)(β− a0)
−1

(
∂G
∂n

+ αG
)
+ αv0(x0),

(86)

where
〈v0〉∂ωε

:=
1

ε2 mes ∂ω

∫
∂ωε

v0(x) ds

and mes ∂ω is the area of ∂ω.
By estimates (36) and (82), we immediately obtain∣∣(pε,1, vε)L2(∂ωε)

∣∣ � Cε‖v0‖W2
2 (Ω0)

‖vε‖W1
2 (Ω0)

� Cε‖ f ‖L2(Ω)

(
‖vε,⊥‖gε + |(vε, Gε)gε |

)
; (87)

here and till the end of this section, C denotes various constants independent of f , u0, uε,
vε, ε, and spatial variables.

The function v0 − 〈v0〉∂ωε
satisfies condition (38) and belongs to W2

2 (B2R2(x0)). This is
why, by (36), (40), (82), and the definition of α, we obtain the following:∣∣(pε,2, vε)L2(∂ωε)

∣∣ �Cε2‖v0‖W2
2 (B2R2 (x0))

‖vε‖W1
2 (Ω0)

�Cε2‖ f ‖L2(Ω)

(
‖vε,⊥‖gε + |(vε, Gε)gε |

)
.

(88)
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Applying estimate (41) with φ = 1 to the function v0 and estimates (36) and (82), we
obtain the following:∣∣(pε,3, vε)L2(∂ωε)

∣∣ �C|(v0 − 〈v0〉∂ωε
)|‖vε‖L2(∂ωε) � Cε‖ f ‖L2(Ω)‖vε‖gε

�Cε‖ f ‖L2(Ω)‖vε‖gε

(
‖vε,⊥‖gε + |(vε, Gε)gε |

)
.

(89)

In view of the definition of vε,⊥ in (85), we have

(pε,4, vε)L2(∂ωε) = (pε,4, vε,⊥)L2(∂ωε) + (vε, Gε)gε

(pε,4, G)L2(∂ωε)

‖G‖gε

. (90)

Using, then, the definition of the function α in (3), asymptotics for ‖G‖gε in (59), estimate (36)
applied for vε,⊥, inequality (82) for v0, the boundary condition on ∂ωε in (56), and the
uniform boundedness of the function, we find that∣∣(pε,4, vε,⊥)L2(∂ωε)

∣∣ � Cε
1
2 ‖pε,4‖L2(∂ωε)‖vε,⊥‖gε � Cε

1
2 ‖ f ‖L2(Ω)‖vε,⊥‖gε . (91)

Employing asymptotics(8) and (26), condition (11), and estimate (82), we find that∣∣(pε,4, G)L2(∂ωε)

∣∣ � Cε‖ f ‖L2(Ω)

and, hence, in view of (59), (90), and (91),∣∣(pε,4, vε)L2(∂ωε)

∣∣ � Cε
1
2 ‖ f ‖L2(Ω)‖vε,⊥‖gε + Cε

3
2 ‖ f ‖L2(Ω)|(vε, Gε)gε |.

Summing up this estimate and (87)–(89), in view of (86), we obtain∣∣(pε, vε)L2(∂ωε)

∣∣ � Cε
1
2 ‖ f ‖L2(Ω)‖vε,⊥‖gε + Cε‖ f ‖L2(Ω)|(vε, Gε)gε |.

We take the imaginary part of identity (84) and use the above estimate:

‖vε‖2
L2(Ωε)

� Cε
1
2 ‖ f ‖L2(Ω)‖vε,⊥‖gε + Cε‖ f ‖L2(Ω)|(vε, Gε)gε |.

Then, we take the imaginary part of identity (84) and employ the above inequality and (75):

‖vε,⊥‖gε + ε
1
2 |(vε, Gε)gε | � Cε

1
2 ‖ f ‖L2(Ω).

This implies that

‖vε,⊥‖gε � Cε
1
2 ‖ f ‖L2(Ω), |(vε, Gε)gε | � C‖ f ‖L2(Ω). (92)

Inequality (15) follows from the above estimates, (83), (85), and (59). It is also easy to see
that for an arbitrary domain Ω̃ described in the formulation of the theorem, we have

‖χΩ̃G‖D(hΩ) � C.

Using this estimate and (92), we arrive at (16).

6. Order Sharpness

In this section, we show that estimates (15) and (16) are order-sharp by providing an
appropriate example. We let

Ω := B1(0), x0 := 0, Ω0 := B 1
2
(0),

Ĥ := −Δ, c1 := 0, Bu = u,
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Then, A0 is the unit matrix and, assuming that α1 is a constant function,

G(x) = |x|−1 − 1, α0(x) = −|x|−1,

a0 = −1, β0 = 0, α1 = −β− 1.

We choose u0 as

u0(x) := v0(x) + (β + 1)−1G(x), v0(x) := w(|x|ε−1),

where w = w(ξ) is an infinitely differentiable even function on R, vanishing outside [−2, 2]
and obeying the conditions

w(ξ) ≡ 1 on [−1, 1], f0(ξ) := w′′(ξ) + 2ξ−1w′(ξ) �≡ 0 on [−2, 2] \ [−1, 1]. (93)

The function v0 obviously belongs to W2
2 (Ω) and vanishes on ∂Ω. The function u0

solves the equation

(H0,β + i)u0 = f ,

f (x) := −ε−2 f0(|x|ε−1) + iw(|x|ε−1) + i(β + 1)−1G(x).

In view of the assumption of f0 in (93), we immediately see that

‖ f ‖2
L2(Ω) � Cε−4∥∥ f0(| · |ε−1)

∥∥2
L2(B2ε(0))

− C � Cε−1,

where the Cs are some positive constants independent of ε. Using the first assumption
in (93), it is also straightforward to confirm that(

∂

∂ν
+ α0 + α1

)
u0 =ε−1(α1 − β)(β + 1)−1 + α1β(β + 1)−1

=− ε−1(2− (β + 1)−1)− β.
(94)

The function
Q(x) :=

1
|x| sinh

1 + i√
2
(|x| − 1)

solves the problem

(−Δ + i)Q = 0 in x ∈ Ω \ {0}, Q = 0 on ∂Ω,(
∂

∂ν
+ α0 + α1

)
= −ε−1 1 + i√

2

(
cosh

1 + i√
2
(1− ε) + (2 + β) sinh

1 + i√
2
(1− ε)

)
.

(95)

We also observe that

‖Q‖L2(Ωε) � C, ‖Q‖W1
2 (Ωε)

� Cε−
1
2 , ‖Q‖W1

2 (Ω\Br(0)) � C(r), (96)

where C and C(r) are some fixed positive constants independent of ε.
Using problem (95) and identity (94), we easily see that the corresponding function

uε = (Hε + i)−1 f reads as uε = u0 − cεQ, where

cε :=

√
2

1 + i
2− (β + 1)−1 + εβ(

cosh 1+i√
2
(1− ε) + (2 + β) sinh 1+i√

2
(1− ε)

)
=

√
2

1 + i
2− (β + 1)−1(

cosh 1+i√
2
+ (2 + β) sinh 1+i√

2

) + O(ε).
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Hence, in view of (96),

‖uε − u0‖L2(Ω\Br(0))

‖ f ‖L2(Ω)
� Cε

1
2 ,

‖uε − u0‖L2(Ωε)

‖ f ‖L2(Ω)
� C(r)ε

1
2 ,

‖uε − u0‖W1
2 (Ωε)

‖ f ‖L2(Ω)
� C, (97)

where C and C(r) are some fixed constants independent of ε. The first estimate shows that
estimate (15) is order-sharp, while the second estimate does the same for (16). Estimate (97)
ensures that estimate (17) is order-sharp. The proof of Theorem 1 is complete.
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Abstract: We consider an operator of multiplication by a complex-valued potential in L2(R), to
which we add a convolution operator multiplied by a small parameter. The convolution kernel is
supposed to be an element of L1(R), while the potential is a Fourier image of some function from
the same space. The considered operator is not supposed to be self-adjoint. We find the essential
spectrum of such an operator in an explicit form. We show that the entire spectrum is located in a
thin neighbourhood of the spectrum of the multiplication operator. Our main result states that in
some fixed neighbourhood of a typical part of the spectrum of the non-perturbed operator, there are
no eigenvalues and no points of the residual spectrum of the perturbed one. As a consequence, we
conclude that the point and residual spectrum can emerge only in vicinities of certain thresholds in
the spectrum of the non-perturbed operator. We also provide simple sufficient conditions ensuring
that the considered operator has no residual spectrum at all.

Keywords: convolution operator; potential; perturbation; spectrum; emerging eigenvalues

MSC: 47G10; 47A55; 47A10

1. Introduction

Over the last 20 years, there has been growing interest in non-local operators since
they arise in various applications. Among such operators, there are convolution operators
with integrable kernels. They appear in population dynamics, ecological problems and
porous media theory. One of the interesting models of a nonlocal operator is a convolution
operator perturbed by a potential, i.e., an operator

(Lu)(x) =
∫
Rd

a(x− y)u(y) dy + V(x)u(x) in L2(R
d). (1)

While the spectra of the convolution operator and of the operator of multiplication by
the potential can be found and characterized very easily, the description of the spectrum
of their sum is a very non-trivial problem. At the same time, the spectral properties of
such sums are not only of pure mathematical interest, but are important also for many
applications. For instance, such operators arise in the mathematical theory of population
dynamics and it is important to know whether a given operator of the form (1) possesses
positive eigenvalues; such questions were studied in [1–4].

A more general problem regards the spectral properties of Schrödinger type operators,
which are perturbations of a given pseudo-differential operator by a potential; see [5–8]
and the references therein. The assumptions made in the cited papers ensured that the
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essential spectrum of the perturbed operator coincides with that of the unperturbed pseudo-
differential operator. The main results described the existence of the discrete spectrum
and Cwikel–Lieb–Rozenblum-type inequalities. A similar result was obtained in [9] for
perturbations of a rather general class of Schrödinger type operators defined on a σ-compact
metric space. In [10], various bounds were obtained for the number of negative eigenvalues
produced by a perturbation of an operator H0 under the assumption that the Markov
process with generator −H0 is recurrent.

In our recent works [11,12], we studied spectral properties of operator (1) assuming
that it was self-adjoint. The essential spectrum was found explicitly. We established several
sufficient conditions ensuring the existence of the discrete spectrum and obtained upper
and lower bounds for the number of points of the discrete spectrum. We also provided
sufficient conditions guaranteeing that the considered operator had infinitely many discrete
eigenvalues accumulating to the thresholds of the essential spectrum. The structure of
such sufficient conditions was quite different from similar well-known sufficient conditions
for differential operators perturbed by localized potentials. The reason is that in the latter
case, the unperturbed differential operator is unbounded and is perturbed by a bounded
multiplication operator. In the case of the operator in (1), both the convolution operator
and multiplication are equipollent and this essentially changes the spectral properties in
comparison with the classical model of perturbed elliptic differential operators.

It is well known that a small localized perturbation of a differential operator with a
non-empty essential spectrum can create eigenvalues emerging from certain thresholds
in this essential spectrum. There are hundreds of works, in which such bifurcation was
investigated for various models. Not trying to mention all such works, we cite only a few
very classical ones, where this phenomenon was first rigorously studied [13–16]. In view of
such results for differential operators, a natural and reasonable continuation of our studies
in [11,12] is to consider similar the issue for operators (1), i.e., to study the operator

(Lεu)(x) =
∫
Rd

a(x− y)u(y) dy + εV(x)u(x)

on L2(R
d), where ε is a small parameter. Here, again, the unperturbed operator and the per-

turbed one are equipollent and we naturally expect that the mechanisms of the eigenvalue’s
emergence from the essential spectrum can be rather different from ones for differential
operators. This is indeed the case; for instance, using the Fourier transform, we can replace
the operator Lε with a unitary equivalent one, in which the original convolution operator
is replaced by the multiplication operator, while the potential generates a convolution
operator with a small coupling constant:

(L̂εu)(x) = â(x)u(x) + ε
∫
Rd

V̂(x− y)u(y) dy.

Exactly this operator in the one-dimensional case (d = 1) is the main object of the study
in the present work. We succeed in dropping the condition of self-adjointness of the
operator and treating a general operator with a complex-valued potential and a general
convolution kernel. For such a general non-self-adjoint operator, we explicitly find its
essential spectrum; it turns out to be the union of the ranges of the potential and of the
Fourier image of the convolution kernel. Then, we show that the entire spectrum is located
in a thin neighbourhood of the spectrum of the unperturbed multiplication operator. Our
most nontrivial result states that in some fixed neighbourhood of a typical part of the
spectrum of the unperturbed operator, there are no eigenvalues and no residual spectrum.
As a consequence, we conclude that the eigenvalues and the residual spectrum can emerge
only in vicinities of certain thresholds in the essential spectrum of the unperturbed operator.
We also provide simple sufficient conditions ensuring that the considered operator has no
residual spectrum at all, and not only in the aforementioned vicinities.
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The issue of the existence and behaviour of possible eigenvalues and the residual
spectrum emerging from the aforementioned threshold is an interesting problem that
deserves an independent study. We shall present such a study in our next paper, which is
being prepared now.

2. Problem and Main Results

Let V = V(x) and a = a(x) be measurable complex-valued functions defined on R.
On the space L1(R), we introduce a Fourier transform by the formula

F [u](x) :=
∫
Rd

u(ξ)e−ix·ξ dξ

and then extend it to L2(R). We assume that the function a belongs to L1(R), while the
function V is an image of some function V̂ ∈ L1(R

d), i.e., V = F [V̂]. We let â(ξ) := F [a](ξ).
The paper is devoted to studying an operator in L2(R) defined by the formula

Lε := LV + εLa�, (La�u)(x) :=
∫
Rd

a(x− y)u(y) dy, (LVu)(x) := V(x)u(x),

where ε is a small positive parameter. This operator is bounded in L2(R); this fact can be
easily proved by literally reproducing the proof of Lemma 4.1 in [11]. Our main aim is to
describe the behaviour of the spectrum of this operator for sufficiently small ε.

Since the functions a and V are complex-valued, the operator Lε is non-self-adjoint. In
this paper, we follow a usual classification of the spectrum of a non-self-adjoint operator.
Namely, the spectrum σ( · ) of a given operator is introduced as a complement to its
resolvent set. The point spectrum σpnt( · ) is the set of all eigenvalues. The essential
spectrum σess( · ) is defined in terms of the characteristic sequences, i.e., λ ∈ σess(A) of a
closed operator A in L2(R) if there exists a bounded non-compact sequence un in L2(R)
such that (A− λ)un → 0 in L2(R) as n → ∞. The residual spectrum σres( · ) is defined as

σres( · ) := σ( · ) \
(

σpnt( · ) ∪ σess( · )
)
.

We shall show in Section 4.3, see Lemma 8, that the residual spectrum is given by the formula

σres(A) = (σpnt(A∗))† \
(

σpnt(A) ∪ σess(A)
)
, (2)

where for an arbitrary set S ⊂ C, the set S† is obtained by the symmetric reflection with
respect to the real axis, i.e., S† := {λ : λ ∈ S}.

We first describe the essential spectrum of the operator Lε. In order to do this, we
introduce two curves in the complex plane as the ranges of the functions V and â:

Υ := {V(x) : x ∈ R}, γ := {â(x) : x ∈ R}.

Theorem 1. The spectrum of the operator Lε is located in a small neighbourhood of Υ, namely,

σ(Lε) ⊆
{

λ ∈ C : dist(λ,Υ) � ε‖a‖L1(R)

}
. (3)

For all ε the essential spectrum of the operator Lε is given by the identity

σess(Lε) = Υ∪ εγ. (4)

The sets Υ and γ are continuous closed curves in the complex plane that contain the origin.

Apart of the essential spectrum described in Theorem 1, the operator Lε can also
have point and residual spectra. Our second main result states that the eigenvalues of the
operator Lε and its residual spectrum can exist only in the vicinities of certain thresholds
on the curve Υ and they are absent in certain neighbourhoods of finite pieces of this
curve. In order to state such a result, we classify all points x0 ∈ R by a behaviour of the
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function V in their vicinities. Namely, given two pairs α = (α−, α+) and β = (β−, β+) with
α± ∈ C \ {0} and β± ∈ (0,+∞), a point x0 ∈ R is called a (β, α) threshold if there exists a
ρ-neighbourhood of the point x0 such that

V(x)−V0 = α±|x− x0|β±v±(x) as 0 � ±(x− x0) � ρ, (5)

where v− ∈ C2[x0− ρ, x0], v+ ∈ C2[x0, x0 + ρ] are some complex-valued functions such that

v±(x0) = 1, |v′−(x)| � C on [x0 − ρ, x0], |v′+(x)| � C on [x0, x0 + ρ], (6)

where C is some constant independent of x.
A point x0 ∈ R is called regular if there exists a ρ-neighbourhood of the point x0

such that
V ∈ C2[x0 − ρ, x0 + ρ], V′(x0) �= 0. (7)

Let S be a connected close piece of the curve Υ not containing the origin. We assume
that this piece is the image of finitely many disjoint segment Jj := [b−j , b+j ] on the real
axis, i.e.,

S =
{

V(x) : x ∈ J
}

, V(x) /∈ S as x /∈ J :=
n⋃

j=1

Jj, (8)

where n ∈ N and b±j ∈ R are fixed numbers and b−j < b+j . For δ > 0, we let

Sδ :=
{

λ ∈ C : dist(λ, S) � δ
}

.

By Br(y), we denote an open ball in the complex plane of a radius r centred at a point y.
Now, we are in a position to formulate our second main result.

Theorem 2. Let S be a connected close piece of the curve Υ not containing the origin and
obeying (8), each segment Jj contains only regular points and finitely many (β, α) thresholds,
and for each of such thresholds, we have β± < 1. Suppose that there exists a natural m such that for
each λ ∈ S, each of the segment Jj contains at most m points x such that V(x) = λ. Suppose also
that the generalize derivative a′ exists and

a ∈ L1(R) ∩W1
2 (R), esssup

(x,y)∈R2

0<|x−y|<1

|a′(x)− a′(y)|
|x− y|θ < ∞, (9)

where θ ∈ (0, 1] is some fixed number. Then, there exists a sufficiently small δ > 0 such that for
all sufficiently small ε, the closed δ-neighbourhood Sδ of the set S intersects neither with the point
spectrum of the operator Lε, nor with its residual spectrum, i.e.,

σpnt(Lε) ∩ Sδ = ∅, σres(Lε) ∩ Sδ = ∅.

Our third result concerns the residual spectrum. It is well known that such a spectrum
is always absent for self-adjoint operators. In view of the absence of the residual spectrum
in the set Sδ stated in Theorem 2, there arises a natural question on sufficient conditions
ensuring the absence of the residual spectrum for the operator Lε. The answer to this
question is our third main result formulated in the following theorem.

Theorem 3. Assume that one of the following conditions holds:

V(x) = V(x), a(x) = a(−x), (10)

or
V(τx + �) = V(x), a(−τx) = a(x), x ∈ R, (11)
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for some � ∈ R and τ ∈ {−1,+1}. Then, the residual spectrum of the operator Lε is empty for
all ε.

Let us briefly discuss the problem and the main results. The main feature of our
operator Lε is its non-self-adjointness, and in the general situation, both functions V and
a are complex-valued. The convolution operator is multiplied by the small parameter
and our operator Lε is to be treated as a perturbation of the multiplication operator by a
small convolution operator. As mentioned in the introduction, by applying the Fourier
transform to the operator Lε, we can reduce it to a unitarily equivalent operator, in which
the convolution and the potential parts interchange; then, we obtain a convolution operator
perturbed by a small potential. The results of this work serve as a first step in studying
how such a small perturbation deforms the spectrum of the unperturbed operator.

Our first result, Theorem 1, describes explicitly the location of the essential spectrum
of the operator Lε. It turns out to be the union of the essential spectra of the unperturbed
multiplication operator LV and of the perturbed operator εLa�. These parts of the essential
spectrum are the curves Υ and εγ. The latter curve is small and is located in the vicinity of
the origin. The spectrum of the operator Lε also satisfies inclusion (3), which means that
this spectrum is located in a thin tubular neighbourhood of the limiting spectrum Υ.

Our most nontrivial result is Theorem 2. It states that in a typical situation, there are
fixed neighbourhoods of finite pieces of the curve Υ, which contain no point and residual
spectra of the operator Lε. The choice of such finite pieces is characterized by the presence
of (β, α) thresholds, and these pieces are to be generated by regular point and finitely many
(β, α) thresholds with β± < 1. The latter condition means that the function V approaches
such threshold with a not very high rate; see (5). The fact that there should be finitely
many such thresholds is important and is employed essentially in the proof of Theorem 2.
Another important point is that the considered piece of the curve Υ should not pass the
origin; the presence of an additional curve εγ of the essential spectrum seems to play a
nontrivial role in the existence of the discrete and residual spectrum in the vicinity of the
origin. Assumption (9) is also essentially employed in the proof, and what can happen
once they are violated is an interesting open question. We conjecture that violation of these
conditions can dramatically change the spectral picture for the operator Lε.

We also observe that the second condition in (9) means that the first generalized
derivative a′ is Hölder-continuous almost everywhere, and this can be guaranteed by
assuming that the second generalized derivative a′′ exists and belongs to Lp(R) with some
p ∈ (1,+∞) including the case p = +∞. Indeed, if the second derivative is an element of
L∞(R), then the second condition in (9) is satisfied with θ = 1, while for 1 < p < +∞, it is
implied by the Hölder inequality:

|a′(x)− a′(y)| =
∣∣∣∣

y∫
x

a′′(t) dt
∣∣∣∣ � |x− y|1−

1
p ‖a′‖Lp(R).

An important consequence of Theorem 2 is that the eigenvalues and the points of the
residual spectrum can arise only in the vicinity of (β, α) thresholds, when at least one of the
numbers β+ and β− exceeds or equal to 1; in the case β+ = β− = 1, we should additionally
assume that α+ �= −α− to avoid the case of a regular point. This means that typically,
the spectrum of the operator Lε is as follows: there is the essential spectrum described in
Theorem 1, and along the curve Υ, there are no eigenvalues and residual spectrum except
vicinities of the origin and (β, α) thresholds with β+ � 1 or/and β− � 1. In such vicinities,
the eigenvalues can indeed emerge; see an example in our recent work [12]. However, the
study of possible emerging eigenvalues in the general situation is a non-trivial problem,
which we postpone for our next paper.

Theorem 3 addresses one more question on the absence of the residual spectrum for
the operator Lε. In contrast to Theorem 2, here we aim to find cases where the residual
spectrum is completely absent rather than only in some neighbourhoods of some pieces of
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Υ. Condition (10) guarantees that the operator Lε is self-adjoint. Condition (11) is more
delicate and, in fact, it means that the operator Lε is PT -symmetric, namely,

PT (Lε)∗ = LεPT . (12)

Here T is the operator of the complex conjugation, i.e., T u = u. The symbol P is an
operator acting as

(Pu)(x) = u(τx + �). (13)

We also observe that once condition (12) holds for some other operator P , it also ensures the
absence of the residual spectrum for the operator Lε. Indeed, if λ and φ are an eigenvalue
and an associated eigenfunction of the adjoint operator (Lε)∗, then

LεPT φ = PT (Lε)∗φ = λPT φ. (14)

Hence, λ is an eigenvalue of the operator Lε, and by Formula (2), we see that the residual
spectrum of the operator Lε is empty.

3. Location of Spectrum and Essential Spectrum

In this section, we prove Theorem 1. We begin with checking identity (3). The spectrum
of the operator LV obviously coincides with Υ. As λ /∈ Υ, the inverse operator (LV − λ)−1

is the multiplication by (V − λ)−1 and it is easy to see that the norm of the operator
(LV − λ)−1 satisfies the estimate

‖(LV − λ)−1‖ � 1
dist(λ,Υ)

. (15)

For λ /∈ Υ, we consider the resolvent equation

(Lε − λ)u = f

with an arbitrary f ∈ L2(Ω), and we rewrite it as

u + ε(LV − λ)−1La�u = (LV − λ)−1 f . (16)

By ‖ · ‖X→Y, we denote the norm of a bounded operator acting from a Banach space X
into a Banach space Y. As it was shown in the proof of Lemma 4.1 in [11], once a ∈ L1(R),
the operator La� is bounded in L2(R) and

‖La�‖L2(R)→L2(R) � ‖a‖L1(R). (17)

This estimate and (15) yield that as

ε‖(LV − λ)−1La�‖ � ε
‖a‖L1(R)

dist(λ,Υ)
< 1,

the inverse operator
(
I + ε(LV − λ)−1La�

)−1 is well defined, where I is the identity
operator. This allows us to solve Equation (16) and to find the resolvent of the operator Lε:

(Lε − λ)−1 =
(
I + ε(LV − λ)−1La�

)−1
(LV − λ)−1 as ε‖a‖L1(R) < dist(λ,Υ).

Hence, each point in the spectrum of the operator Lε satisfies the inequality
dist(λ,Υ) � ε‖a‖L1(R) and this proves inclusion (3).

In order to prove identity (4), we adapt the proof of Theorem 2.1 from [11] and below,
we reproduce the main milestones from the cited work. It follows from our assumptions on
a and V̂ that the functions V and â are bounded and continuous on R and decay at infinity.
We also observe the following unitary equivalence:
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(
1

(2π)
d
2
F

)
La�

(
1

(2π)
d
2
F

)−1

= Lâ,
(

1

(2π)
d
2
F

)
LV

(
1

(2π)
d
2
F

)−1

= LV̂�. (18)

Hence,
σ(Lεâ) = σess(Lεâ) = σ(Lεa�) = σess(Lεa�) = εγ,

σ(LV) = σess(LV) = σ(LV̂�) = σess(LV̂�) = Υ.
(19)

We are going to prove the inclusion

Υ∪ εγ ⊆ σess(Lε). (20)

We let

ϕn(x) :=

⎧⎪⎨⎪⎩
(2n)

1
2 as |x| < 1

n
,

0 as |x| > 1
n

for all natural n. For an arbitrary λ ∈ Υ, there exists x0 ∈ R such that V(x0) = λ. The
sequence ϕn(x− x0), normalized and non-compact in L2(R), is obviously a characteristic
one of the operator LV at the point λ. We also have:

‖La�ϕn( · − x0)‖2
L2(R) �2n

∫
R

dx

( x0+
1
n∫

x0− 1
n

|a(x− y)| dy

)2

= 2n
∫
R

dx

( x+ 1
n∫

x− 1
n

|a(y)| dy

)2

�2n

(
sup
x∈R

x+ 1
n∫

x− 1
n

|a(y)| dy

) ∫
Rd

dx

x+ 1
n∫

x− 1
n

|a(y)| dy

=2n

(
sup
x∈R

x+ 1
n∫

x− 1
n

|a(y)| dy

) ∫
Rd

dy|a(y)|
y+ 1

n∫
y− 1

n

dx

=‖a‖L1(R)

(
sup
x∈R

x+ 1
n∫

x− 1
n

|a(y)| dy

)
→ 0, n → ∞,

where the latter convergence is due to the absolute continuity of the Lebesgue integral.
Hence, ϕn(x− x0) is a characteristic sequence of the operator Lε at λ and

σess(LV) ⊆ σess(Lε). (21)

By unitary equivalence (18) and identity (19), we similarly obtain σess(Lεa�) ⊆ σess(L), and
in view of (21), this proves (20).

It remains to show that
σess(Lε) \

(
Υ∪ εγ

)
= ∅.

If λ ∈ σess(Lε) \ (Υ ∪ εγ), there exists a bounded non-compact sequence un ∈ L2(R)
such that

fn := (L− λ)un → 0, n → ∞. (22)

Since λ /∈
(

σess(LV) ∪ σess(Lεa�)
)
, in view of (19), the resolvents (LV − λ)−1 and

(Lεa� − λ)−1 are well defined and bounded. Then, we rewrite (22) as

1
V − λ

Lεa�un + un =
fn

V − λ
→ 0, n → +∞, V(x) �= λ, x ∈ R,

and we get
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(Lεa� − λ)un + V1Lεa�un =
λ

V − λ
fn, V1 :=

V
V − λ

,
1

V − λ
= − 1

λ
+

V1

λ

where we have used zero as in σess(LV) and, therefore, λ �= 0. Applying, then, the resolvent
(La� − λ)−1 to the obtained identity, we finally find:

un = (Lεa� − λ)−1
(

λ

V − λ
fn −V1Lεa�un

)
.

Since the function V decays as infinity, the same holds for V1. This ensures the compactness
of the operator V1Lεa� in L2(R) and, hence, by the above identity, the sequence un is
compact, which is impossible. The proof is complete.

4. Absence of Point and Residual Spectrum

In this section, we prove Theorem 2. The proof consists of three main parts and we
present them as separate subsections. After the proof of Theorem 2, we provide the proof
of Theorem 3.

4.1. Absence of Embedded Eigenvalues

By our assumptions, the segment Jj contains only regular points and possibly finitely
many (β, α) thresholds. We denote the latter thresholds by x(j,i), i = 1, . . . , mj, j = 1, . . . , n,

while the symbols β
(j,i)
± and α

(j,i)
± stand for the corresponding values of β± and α±. The

mentioned structure of the segment Jj implies that the function V is continuous on each
of the segments Jj and is continuously differentiable on the same segments except the
(β, α) thresholds. It also follows from the definition of the (β, α) thresholds and the regular
points that

|V′(x)| � c0 > 0, x ∈ Jj \ {x(j,i), i = 1, . . . , mi}, j = 1, . . . , n, (23)

where c0 is a fixed constant independent of x. As x approaches one of the thresholds x(j,i),
the derivative V′ blows up in the sense |V′(x)| → +∞ as x → x(j,i).

It follows from (8) that there exists a small fixed δ0 such that

V(x) /∈ S as x ∈ [b−j − δ0, b−j ) ∪ (b+j , b+j + δ0], j = 1, . . . , n,

and, by (24),

dist(V(x), S) � c1|x− b±j | as 0 < ±(x− b±j ) < δ0, j = 1, . . . , n. (24)

with some fixed positive constant c1 independent of x and j. We can additionally choose δ0
small enough so that for all j = 1, . . . , n, the intervals [b−j − δ0, b−j ) ∪ (b+j , b+j + δ0] contain
only regular points and, if necessary, reducing the constant c0, we can extend estimate (23)
to J̃j, namely,

|V′(x)| � c0 > 0, x ∈ J̃j \ {x(j,i), i = 1, . . . , mi}, j = 1, . . . , n. (25)

Since S is a closed connected piece of the curve Υ, there exist two small fixed positive
numbers δ1 and c2 such that

dist(V(x), Sδ1) � c2 as x /∈ J̃ :=
n⋃

j=1

J̃j, J̃j := [b−j − δ0, b+j + δ0]. (26)

We consider the eigenvalue equation for the operator Lε with the spectral parameter
ranging in Sδ1 :

(V − λ)ψ + εLa�ψ = 0. (27)
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Given an arbitrary measurable set X ⊆ R, by PX , we denote the operator of restriction to X.
This operator is considered as acting from L2(R) into L2(X) by the rule (PXψ)(x) := ψ(x),
x ∈ X. Representing the real axis as R = J̃ ∪ (R \ J̃) and using an obvious decomposition
L2(R) = L2( J̃)⊕ L2(R \ J̃), we denote

ψ J̃ := P J̃ψ, ψR\ J̃ := PR\ J̃ψ

and equivalently rewrite Equation (27) as a pair of two equations

(V − λ)ψ J̃ + εP J̃M J̃ψ J̃ + εP J̃MR\ J̃ψR\ J̃ = 0,

(V − λ)ψR\ J̃ + εPR\ J̃MR\ J̃ψR\ J̃ + εPR\ J̃M J̃ψ J̃ = 0,
(28)

where for an arbitrary measurable set X ⊆ R, the symbol MX denotes a convolution
operator acting from L2(X) into L2(R) by the rule

(MXψ)(x) :=
∫
X

a(x− y)ψ(y) dy, x ∈ R. (29)

The first equation in (28) is to be treated as that in L2( J̃), while the other equation is that
in L2(R \ J̃).

Owing to (26), the norm of the operator of multiplication by (V − λ)−1 in L2(R \ J̃) is
bounded uniformly in λ ∈ Sδ1 by the constant c−1

2 . Applying this operator to the second
equation in (28), we obtain an equivalent equation(

IR\ J̃ + ε(V − λ)−1PR\ J̃MR\ J̃
)
ψR\ J̃ + ε(V − λ)−1PR\ J̃M J̃ψ J̃ = 0, (30)

where IR\ J̃ is the identity operator in L2(R \ J̃) and by estimate (17) we immediately see
that (V − λ)−1PR\ J̃MR\ J̃ is a bounded operator in L2(R \ J̃), and (V − λ)−1PR\ J̃M J̃ is
a bounded operator from L2( J̃) into L2(R \ J̃); both operators are bounded uniformly
in λ ∈ Sδ1 . Hence, for sufficiently small ε, the operator IR\ J̃ + ε(V − λ)−1PR\ J̃MR\ J̃ is
invertible for each λ ∈ Sδ1 and the inverse operator

Q(ε, λ) :=
(
IR\ J̃ + ε(V − λ)−1PR\ J̃MR\ J̃

)−1

is bounded uniformly in ε and λ ∈ Sδ1 as an operator in L2(R \ J̃). Applying this operator
to Equation (30), we immediately find ψR\ J̃ :

ψR\ J̃ = −εQ(ε, λ)(V − λ)−1PR\ J̃M J̃ψ J̃ , (31)

and the operatorQ(ε, λ)(V−λ)−1PR\ J̃M J̃ from L2( J̃) into L2(R \ J̃) is bounded uniformly
in ε and λ ∈ Sδ1 . Substituting this formula into the first equation in (28), we arrive at a
single equation for ψ J̃ :

(V − λ)ψ J̃ + εP J̃M J̃ψ J̃ − ε2P J̃MR\ J̃Q(ε, λ)(V − λ)−1PR\ J̃M J̃ψ J̃ = 0. (32)

We observe that the second and the third terms in the above equation can be rewritten as

εP J̃M J̃ψ J̃ − ε2P J̃MR\ J̃Q(ε, λ)(V − λ)−1PR\ J̃M J̃ψ J̃ = εP J̃La�A(ε, λ)ψ J̃ ,

where A is an operator from L2( J̃) into L2(R) defined by the formula

A(ε, λ)ψ J̃ :=

{
ψ J̃ on J̃,

−εQ(ε, λ)(V−λ)−1PR\ J̃M J̃ψ J̃ on R \ J̃.
(33)

This operator is bounded uniformly in ε and λ ∈ Sδ1 , namely,

‖A(ε, λ)‖L2( J̃)→L2(R) � c3, (34)
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where c3 is a constant independent of ε and λ. Hence, Equation (32) becomes

(V − λ)ψ J̃ + εP J̃La�A(ε, λ)ψ J̃ = 0. (35)

Our main aim is to prove that there exists a fixed positive δ ∈ (0, δ1] such that for
λ ∈ Sδ, Equation (35) can have only trivial solutions. First, we are going to show that such
a statement holds for λ located on the curve Υ∩ Sδ1 ; such a curve obviously contains S.

We arbitrarily choose λ ∈ Υ ∩ Sδ1 and let z(j,i) be all points of the segment J̃j such
that V(z(j,i)) = λ. Here, the superscript j ranges in some subset of {1, . . . , n} and i ranges
from 1 to some natural number depending on j. Let us show that the total number of
points z(j,i) in each segment J̃j is bounded by some constant m̃ � m independent of j and λ
provided δ1 and δ0 are chosen small enough. Indeed, according to our assumptions, the
total number of the points z(j,i) located in the segment Jj is bounded by m and we only
need to estimate the total number of such points located in J̃j \ Jj. If λ is such that one of
the corresponding points z(j,i) is located in [b−j − δ0, b−j ) or in (b+j , b+j + δ0] for some j, then

each of the mentioned intervals can contain at most one point z(j,i). This will be ensured by
the inequality

V(x) �= V(y) as x �= y, x, y ∈ [b−j − δ0, b−j ) or x, y ∈ (b+j , b+j + δ0], (36)

which we are going to prove. The point b+j can be regular or a (β, α) threshold, and in both

cases, owing to (5) and (7), for x ∈ (b+j , b+j + δ0] the function V can be represented as

V(x) = α0(x− b+j )
β0 v0(x), v0 ∈ C2[b+j , b+j + δ0],

provided δ0 is small enough. Here, α0 is some non-zero complex number, β0 ∈ (0, 1] is
some real number and v0 is some complex-valued function such that v0(b+j ) = 1. Choosing

x, y ∈ (b+j , b+j + δ0] arbitrarily, we have

V
1

β0 (x)−V
1

β0 (y) =α
1

β0
0

(
(x− b+j )v

1
β0
0 (x)− (y− b+j )v

1
β0
0 (y)

)
=α

1
β0
0

(
(x− y)v

1
β0
0 (x) + (y− b+j )

(
v

1
β0
0 (x)− v

1
β0
0 (y)

))
.

Applying the Lagrange rule, we obtain:

V
1

β0 (x)−V
1

β0 (y) = α
1

β0
0 (x− y)

(
v

1
β0
0 (x) + (y− b+j )ṽ0(x, y)

)
, (37)

where ṽ0(x, y) is some function obeying the uniform estimate

|ṽ0(x, y)| � 1
β0
‖v0‖

1
β0
−1

C[b+j ,b+j +δ0]
‖v′0‖C[b+j ,b+j +δ0]

.

Since each segment J̃j can contain only finitely many (β, α) thresholds and all other points
are regular, the right-hand side of this inequality can be estimated from the above by some
constant independent of j. Hence, in view of the identity v0(b+j ) = 1, the expression in the
brackets on the right-hand side of (37) is close to 1 and can not vanish once we choose a
small enough δ0. This confirms inequality (36).

Let δ2 be a fixed positive number such that the intervals U(j,i) := J̃j ∩
(
z(j,i) − δ2, z(j,i) + δ2

)
are disjoint and each of these intervals contains no (β, α) thresholds except possibly that at z(j,i).
Assume that z(j,i) is a regular point and let x range outside U(j,i), but still in some bigger
neighbourhood of z(j,i). By the Lagrange rule, we then have

V(x)− λ = V(x)−V(z(j,i)) = (x− z(j,i))
(

Re V′(x(j,i)
r ) + i Im V′(x(j,i)

i )
)
,
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where x(j,i)
r and x(j,i)

i are some points between x and z(j,i). By inequality (25), we see that
for such x, the inequality holds:

|V(x)− λ| � c2|x− z(j,i)|. (38)

If z(j,i) is a (β, α) threshold, we choose δ2 small enough, so that in the interval U(j,i),
representation (5) holds true. This representation implies immediately that

|V(x)− λ| � c4|x− z(j,i)|

again for x outside U(j,i), but still in some bigger neighbourhood of z(j,i); here, c4 is a fixed
positive constant independent of x, j and i. This estimate and (38) imply the existence of a
positive constant c5 depending on δ2 but independent of the choice of λ such that

|V(x)− λ| � c5 > 0 as x ∈ J̃ \U, U :=
⋃
j,i

U(j,i). (39)

By χ(j,i) = χ(j,i)(x), we denote the characteristic functions of the intervals U(j,i), while
M0 is the set of the superscripts (j, i) such that either the point z(j,i) is regular or it is a (β, α)
threshold with at least one of β± obeying β± ∈ [ 1

2 , 1]. We return back to Equation (35) with
λ ∈ Υ ∩ Sδ1 and let ψ J̃ be its solution in L2( J̃). Since the function V − λ vanishes only
at the corresponding points z(j,i), which form a set of zero measures, we can rewrite this
equation as

ψ J̃ +
ε

V − λ
P J̃La�A(ε, λ)ψ J̃ = 0. (40)

The second term in this equation can be represented as follows:

1
V − λ

P J̃La�A(ε, λ)ψ J̃ = B0(ε, λ)ψ J̃ + B1(ε, λ)ψ J̃ , B1(ε, λ)ψ J̃ :=
1

V − λ
B2(ε, λ)ψ J̃ ,

where(
B0(ε, λ)ψ J̃

)
(x) :=

1
V(x)− λ ∑

(j,i)∈M0

χ(j,i)(x)
∫
R

a(z(j,i) − y)
(
A(ε, λ)ψ J̃

)
(y) dy, x ∈ J, (41)

(B2(ε, λ)ψ J̃)(x) := ∑
(j,i)∈M0

∫
R

(
a(x− y)− a(z(j,i) − y)χ(j,i)(x)

)(
A(ε, λ)ψ J̃

)
(y) dy, x ∈ J.

Let us show that B1(ε, λ) is a bounded operator in L2( J̃) and, moreover, its norm is
bounded uniformly in λ ∈ Υ ∩ Sδ1 . Indeed, as x ∈ J̃ \U, the function

(
B1(ε, λ)ψ J̃

)
(x)

reads as (
B1(ε, λ)ψ J̃

)
(x) =

1
V(x)− λ

∫
R

a(x− y)
(
A(ε, λ)ψ J̃

)
(y) dy.

Estimates (17), (34) and (39) then imply∥∥B1(ε, λ)ψ J̃
∥∥

L2( J̃\U)
� c−1

5 ‖a‖L1(R)‖Aψ J̃‖L2( J̃) � c3c−1
5 ‖a‖L1(R)‖ψ J̃‖L2( J̃). (42)

As x ∈ U(j,i), (j, i) ∈ M0, the function
(
B1(ε, λ)ψ J̃

)
(x) is given by the formula

(
B2(ε, λ)ψ J̃

)
(x) =

1
V(x)− λ

∫
R

(
a(x− y)− a(z(j,i) − y)

)(
A(ε, λ)ψ J̃

)
(y) dy

=
1

V(x)− λ

∫
R

dy
(
A(ε, λ)ψ J̃

)
(y)

x−z(j,i)∫
0

a′
(
t + z(j,i) − y

)
dt.

(43)
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Using, then, the definition of the regular points and (β, α) thresholds and estimate (25), by
the Cauchy–Schwarz inequality and the uniform boundedness of the operatorA, we obtain:

∣∣(B1(ε, λ)ψ J̃
)
(x)

∣∣2 � C
|x− z(j,i)|2

(∫
R

dy
∣∣(A(ε, λ)ψ J̃

)
(y)

∣∣ |x−z(j,i) |∫
−|x−z(j,i) |

∣∣a′(t + z(j,i) − y
)∣∣ dt

)2

� C
|x− z(j,i)|2

∥∥A(ε, λ)ψ J̃
∥∥2

L2(R)

∫
R

dy

( |x−z(j,i) |∫
−|x−z(j,i) |

∣∣a′(t + z(j,i) − y
)∣∣ dt

)2

� C
|x− z(j,i)|

∥∥A(ε, λ)ψ J̃
∥∥2

L2(R)

∫
R

dy
|x−z(j,i) |∫

−|x−z(j,i) |

∣∣a′(t + z(j,i) − y
)∣∣2 dt

=
C

|x− z(j,i)|
∥∥A(ε, λ)ψ J̃

∥∥2
L2(R)

|x−z(j,i) |∫
−|x−z(j,i) |

dt
∫
R

∣∣a′(t + z(j,i) − y
)∣∣2 dy

�C‖a′‖L2(R)‖ψ J̃‖2
L2( J̃),

(44)

where the symbol C stands for various constants independent of x, λ ∈ Υ and ψ J̃ . Integrat-
ing the obtained estimate over U(j,i) and summing up the result over (j, i) ∈ M0, we finally
arrive at the inequality ∥∥B1(ε, λ)ψ J̃

∥∥
L2(U)

� c6‖ψ J̃‖L2( J̃),

where c6 is a constant independent of λ ∈ Υ∩ Sδ1 and ψ J̃ . This inequality and (42) imply
that the operator B1 is bounded in L2( J̃) and its norm is bounded uniformly in λ ∈ Υ∩ Sδ1 .

Let us study the function B0ψ J̃ defined in (41). If ψ J̃ is a solution of Equation (40) in the
space L2( J̃), then the function B1ψ J̃ is also an element of this space and, hence, B0(ε, λ)ψ J̃

is necessarily in L2( J̃). At the same time, as x ∈ U(j,i), this function reads(
B0(ε, λ)ψ J̃

)
(x) =

1
V(x)− λ

∫
R

a
(
z(j,i) − y

)(
A(ε, λ)ψ J̃

)
(y) dy (45)

and the integral is independent of x. The function (V(x)− λ)−1 has a singularity at the
point z(j,i) and since z(j,i) is either a regular point or a (β, α) threshold with at least one of
β± not less than 1

2 , this function is not an element of L2(U(j,i)). Hence, the only possibility
is that the integral in (45) necessarily vanishes. Then, B0ψ J̃ = 0 and Equation (40) becomes(

I J̃ + εB1(ε, λ)
)
ψ J̃ = 0,

where I J̃ is the identity mapping in L2( J̃). Since the operator B1 is bounded uniformly in
λ, for sufficiently small ε, the operator I + εB1(ε, λ) is boundedly invertible and the above
equation can have only the trivial solution. Therefore, Equations (35) and (40) also have
only the trivial solution as λ ∈ Υ∩ Sδ1 .

4.2. Reduction to System of Linear Algebraic Equations

We proceed to proving the existence of a small fixed positive δ � δ1 such that the set
Sδ \Υ contains no eigenvalues of the operator Lε. Namely, we are going to show that for
λ ∈ Sδ \Υ, Equation (35) possesses only the trivial solution. In this subsection, we make
the first important step in studying this equation, i.e., we reduce it to a system of linear
algebraic equations.

We choose a sufficiently small δ3 � min
{ δ1

2 , 1
}

and introduce a finite covering of the
curve S by open balls Bδ3(Pk) with centers at some points Pk ∈ S, k = 1, . . . , N, where
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N ∈ N is the number of the balls. By our assumptions, for each k, the point Pk is the image
of finitely many points in the segment Jj and, hence, the piece of curve B2δ3(Pk) ∩Υ is the
image of finitely many segments in J̃j, namely,

B2δ3(Pk) ∩Υ =
n⋃

j=1

N(j)
k⋃

i=1

{
V(x) : x ∈ I(j,i)

k

}
, Pk = V(Y(j,i)

k ), Y(j,i)
k ∈ I(j,i)

k ,

where I(j,i)
k ⊂ J̃j are some open intervals, N(j)

k are some given natural numbers, and Y(j,i)
k

are some points. Owing to inequality (25) and the assumed smoothness of the function V,
by choosing a small enough δ3, we can gain the following properties:

P1. The intervals I(j,i)
k are disjoint for different i, their lengths satisfy the estimate |I(j,i)

k | < 1

and all possible thresholds in the interval Jj are among the points Y(j,i)
k ;

P2. The end points of the intervals I(j,i)
k do not coincide with the (β, α) thresholds located

in the segment Jj, each of the intervals I(j,i)
k contains at most one (β, α) threshold and

the distance from this threshold to other intervals I(j,i)
k is at least c7δ3, where c7 > 0 is

a constant independent of δ3, k, j, i; the image of each end point of each interval I(j,i)
k

is located on ∂B2δ3(Pk);

P3. If some interval I(j,i)
k contains a (β, α) threshold, then the corresponding identity (5)

holds true for the entire interval.

In what follows, given a curve and a point in the complex plane, we say that this
point is projected onto this curve orthogonally to some non-zero complex number if this
projection is made along the straight line orthogonal to the vector connecting the origin
and this non-zero complex number. We suppose an extra two properties of δ3.

P4. If a given interval I(j,i)
k contains only regular points, then for all λ ∈ Bδ3(Y

(j,i)
k ) \Υ,

there exists a unique projection of λ

V′(Y(j,i)
k )

onto the curve Γ(j,i)
k :=

{
V(x) : x ∈ I(j,i)

k
}

orthogonally to the number V′(Y(j,i)
k ) and the inequality holds:

Re
V′(x)

V′(Y(j,i)
k )

� 1
2

for all x ∈ I(j,i)
k ; (46)

P5. If a given interval I(j,i)
k contains a (β, α) threshold at Y(j,i)

k ∈ I(j,i)
k with corresponding

α± = α
(j,i)
±,k , then for all λ ∈ Bδ3(Y

(j,i)
k ) \Υ such that Re λ−Pk

α
(j,i)
±,k

> 0 there exists a unique

projection of λ

α
(j,i)
k,±

onto the curve

Γ(j,i)
k,± :=

{
V(x) : x ∈ I(j,i)

k,±
}

, where I(j,i)
k,± := I(j,i)

k ∩
{

x : ±(x−Y(j,i)
k ) > 0

}
orthogonally to the number α

(j,i)
k,± ; the functions v± = v(j,i)

k,± from (5) corresponding to

the (β, α) threshold at Y(j,i)
k satisfy the estimates

v(j,i)
k,± � 1

2
,

∣∣v(j,i)
k,± (x)

∣∣ � 2,
∣∣ Im v(j,i)

k,± (x)
∣∣ � tan

πβ0

2
Re v(j,i)

k,± (x) as x ∈ I(j,i)
k,+ ,

|I(j,i)
k,± |‖(v

(j,i)
k,± )′‖

C(I(j,i)
k,+ )

� 1

41+ 1
β0

,
(47)

where
β0 :=

1
2

min
k,j,i

{
β
(j,i)
k,+ ; β

(j,i)
k,−

}
. (48)
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We observe that the definition of intervals I(j,i)
k implies immediately that

|V(x)− λ| � δ3 as λ ∈ Bδ3(Pk), x ∈ J̃ \ I(j)
k , j = 1, . . . , n, I(j)

k :=
N(j)

k⋃
i=1

I(j,i)
k . (49)

Property P4 can be equivalently formulated as follows: there exists a unique solution
to the equation

Re
V(Z)− Pk

V′(Y(j,i)
k )

= Re
λ− Pk

V′(Y(j,i)
k )

(50)

for all λ ∈ Bδ3(Y
(j,i)
k ) \ Υ. In view of the definition of a regular point, this equation is

uniquely solvable, since for Z close to Y(j,i)
k the quotient on the left hand side behaves as

V(Z)− Pk

V′(Y(j,i)
k )

= Z−Y(j,i)
k + O

(
(Z−Y(j,i)

k )2).

The latter identity also ensures the possibility of satisfying (46). We denote the unique
solution of (50) by Z(j,i)

k = Z(j,i)
k (λ).

Property P5 can be also equivalently formulated as follows: there exists a unique
solution to the equation

Re
V(Z±)− Pk

α
(j,i)
±,k

= Re
λ− Pk

α
(j,i)
±,k

(51)

for all λ ∈ Bδ3(Y
(j,i)
k ) \Υ obeying an additional condition Re λ−Pk

α
(j,i)
±,k

> 0. These equations

are again locally uniquely solvable owing to the definition of (β, α) threshold, which also
ensures (47). We denote the solutions of (51) by Z(j,i)

±,k = Z(j,i)
±,k (λ). We also let

Z(j,i)
±,k (λ) := Yj,i

k as Re
λ− Pk

α
(j,i)
±,k

� 0. (52)

In what follows, we consider Equation (35) for λ ∈ Ek,δ3 , where

Ek,δ3 := Bδ3(Pk) \Υ. (53)

We rewrite this equation in form (40) and then we represent the second term in the latter
equation as

ψ J̃ + εB3,k(ε, λ)ψ J̃ + εB4,k(ε, λ)ψ J̃ = 0, (54)

B3,k(ε, λ) :=
n

∑
j=1

N(j)
k

∑
i=1

ξ
(j,i)
k

V − λ
P J̃La�A(ε, λ),

B4,k(ε, λ) :=
n

∑
j=1

N(j)
k

∑
i=1

1− ξ
(j,i)
k

V − λ
P J̃La�A(ε, λ),

where ξ
(j,i)
k are the characteristic functions of the intervals I(j,i)

k . It follows immediately from

the definitions of the operators B4,k and the function ξ
(j,i)
k and estimates (17), (34) and (49) that

‖B4,k‖L2( J̃)→L2( J̃) �
c8

δ3
, (55)

where c8 is a constant independent of λ, k, δ3.
We proceed to studying the operators B3,k(ε, λ). Let M1 be the set of all superscripts

(j, i) such that the intervals I(j,i)
k , (j, i) ∈ M1, contain only regular points, while M2 is the set
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of all superscripts (j, i) such that the intervals I(j,i)
k , (j, i) ∈ M2, possesses a (β, α) threshold

at Y(j,i)
k ∈ I(j,i)

k . Bearing in mind Properties P4 and P5, we represent the operator B3,k as
a sum

B3,k(ε, λ) = B5,k(ε, λ) + B6,k(ε, λ)A(ε, λ), (56)

where B5,k(ε, λ) and B6,k(ε, λ) are operators in L2( J̃) defined by the formulas

B5,k(ε, λ) := ∑
(j,i)∈M1

φ
(j,i)
k �

(
Z(j,i)

k (λ), ε, λ
)
+ ∑

(j,i)∈M2

φ
(j,i)
k,+ �

(
Z(j,i)

k,+ (λ), ε, λ
)

+ ∑
(j,i)∈M2

φ
(j,i)
k,− �

(
Z(j,i)

k,− (λ), ε, λ
)
,

B6,k(ε, λ) := ∑
(j,i)∈M1

B(j,i)
6,k (ε, λ) + ∑

(j,i)∈M2

B(j,i)
6,k,+(ε, λ) + ∑

(j,i)∈M2

B(j,i)
6,k,−(ε, λ), (57)

where

φ
(j,i)
k :=

ξ
(j,i)
k

V − λ
, φ

(j,i)
k,± :=

ξ
(j,i)
k,±

V − λ
,

(
B(j,i)

6,k (ε, λ)ψ
)
(x) := ξ

(j,i)
k (x)

∫
R

a(x− y)− a
(
Z(j,i)

k (λ)− y
)

V(x)− λ
ψ(y) dy,

(
B(j,i)

6,k,±(ε, λ)ψ
)
(x) := ξ

(j,i)
k (x)

∫
R

a(x− y)− a
(
Z(j,i)

k,± (λ)− y
)

V(x)− λ
ψ(y) dy,

(58)

ξ
(j,i)
k,± are the characteristic functions of the intervals I(j,i)

k,± , and �(z, ε, λ), z ∈ R, is a bounded
linear functional on L2( J̃) defined as

�(z, ε, λ)ψ J̃ :=
∫
R

a(z− y)
(
A(ε, λ)ψ J̃

)
(y) dy.

In order to study the properties of the operators B5,k(ε, λ) and B6,k(ε, λ), we shall need
the following lemma.

Lemma 1. There exists δ4 > 0 independent of k such that for all λßnEk,δ3 , all k and all δ3 � δ4
the estimates hold:

|V(x)− λ| � c9|x− Z(j,i)
k (λ)| as x ∈ I(j,i)

k , (j, i) ∈ M1,

|V(x)− λ| � c9|x− Z(j,i)
k,± (λ)| as x ∈ I(j,i)

k,± , (j, i) ∈ M2,
(59)

where c9 is a positive constant independent of δ3, x, λ, k, j and i.

Proof. We first consider the case (j, i) ∈ M1. By Equation (50), estimate (25) and the
Lagrange rule, we have:

|V(x)− λ| =
∣∣V′(Y(j,i)

k )
∣∣∣∣∣∣∣V(x)− Pk

V′(Y(j,i)
k )

− λ− Pk

V′(Y(j,i)
k )

∣∣∣∣∣
�
∣∣V′(Y(j,i)

k )
∣∣∣∣∣∣∣Re

V(x)− Pk

V′(Y(j,i)
k )

− Re
λ− Pk

V′(Y(j,i)
k )

∣∣∣∣∣
=

∣∣V′(Y(j,i)
k )

∣∣∣∣∣∣∣Re
V(x)− Pk

V′(Y(j,i)
k )

− Re
V(Z(j,i)

k )− Pk

V′(Y(j,i)
k )

∣∣∣∣∣ � c0

2

∣∣x− Z(j,i)
k

∣∣.
(60)
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We proceed to the case (j, i) ∈ M2. We shall prove the second inequality in (59) only
for x ∈ I(j,i)

k,+ ; the case of the interval I(j,i)
k,− can be treated in the same way. In the considered

case, the interval I(j,i)
k contains a (β, α) threshold at some internal point Y(j,i)

k . We first
suppose that Re λβ−1

+ � 0. In view of (5) and (52), we have:

|V(x)− λ| �
∣∣α(j,i)

k,+

∣∣∣∣∣∣∣∣Re
V(x)− λ

α
(j,i)
k,+

∣∣∣∣∣∣ � C
∣∣x−Y(j,i)

k

∣∣β
(j,i)
±,k � C

∣∣x−Y(j,i)
k

∣∣, (61)

where C is a constant independent of k, j, i and λ. This proves the second inequality in (59)
as Re λβ−1

+ � 0.
Suppose that Re λβ−1

+ > 0. Then, we argue similarly to (60):

|V(x)− λ| =
∣∣α(j,i)

+,k

∣∣∣∣∣∣∣∣V(x)− Pk

α
(j,i)
+,k

− λ− Pk

α
(j,i)
+,k

∣∣∣∣∣∣
�
∣∣α(j,i)

+,k

∣∣∣∣∣∣∣∣Re
V(x)− Pk

α
(j,i)
+,k

− Re
V(Z(j,i)

+,k )− Pk

α
(j,i)
+,k

∣∣∣∣∣∣
�
∣∣α(j,i)

+,k

∣∣∣∣∣((x−Y(j,i)
k )β

(j,i)
k,+ Re v(j,i)

k,+ (x)
)′∣∣∣

x=ζ

∣∣∣∣∣x− Z(j,i)
k,+

∣∣
=

∣∣α(j,i)
+,k

∣∣∣∣∣β(j,i)
k,+ Re v(j,i)

k,+ (ζ) + (ζ −Y(j,i)
k )Re(v(j,i)

k,+ )′(ζ)
∣∣∣ ∣∣x− Z(j,i)

k,+

∣∣∣∣ζ −Y(j,i)
k

∣∣1−β
(j,i)
k,+

,

where ζ is some point between x and Z(j,i)
k,+ . It follows from the first and fourth inequalities

in (47) and (48) that∣∣∣β(j,i)
k,+ Re v(j,i)

k,+ (ζ) + (ζ −Y(j,i)
k )Re(v(j,i)

k,+ )′(ζ)
∣∣∣ � β

(j,i)
k,+

2
− |I(j,i)

k,+ |‖(v
(j,i)
k,+ )′‖

C(I(j,i)
k,+ )

� β0 −
1

41+ 1
β0

>
β0

2
.

This inequality and the inequality |I(j,i)
k,+ | < |I(j,i)

k | < 1, see Property P1, allows us to continue
the above estimating:

|V(x)− λ| �
β0

∣∣α(j,i)
+,k

∣∣
2

∣∣x− Z(j,i)
k,+

∣∣∣∣ζ −Y(j,i)
k

∣∣1−β
(j,i)
k,+

�
β0

∣∣α(j,i)
+,k

∣∣
2|I(j,i)

k,+ |
1−β

(j,i)
k,+

∣∣x− Z(j,i)
k,+

∣∣ � β0
∣∣α(j,i)

+,k

∣∣
2

∣∣x− Z(j,i)
k,+

∣∣.
The proof is complete.

Using this lemma and arguing as in (43) and (44), we easily see that the operators
B6,k(ε, λ) are bounded uniformly in ε and λ ∈ Ek,δ3 once δ3 � δ4, namely,

‖B6,k(ε, λ)‖L2( J̃)→L2( J̃) � c10, (62)

where c10 is a constant independent of ε and λ. This inequality and (55), (34) yield that
the operator

G(ε, λ) :=
(
IJ + εB4,k + εB6,kA(ε, λ)

)−1

is well defined and bounded in L2( J̃) provided

ε � δ3

2(c8 + c10c3δ3)
, λ ∈ Ek,δ3 , 0 < δ3 � δ4

and for such values of ε, δ3 and λ, it satisfies the estimate

‖G(ε, λ)‖L2( J̃)→L2( J̃) � 2.
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We substitute identity (56) into Equation (54) and then apply the operator G(ε, λ)
to the resulting relation and use the definition of the operator B5,k. This implies one
more equation:

ψ J̃ + ε ∑
(j,i)∈M1

Φ(j,i)
k (ε, λ)�

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M2

Φ(j,i)
k,+ (ε, λ)�

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

Φ(j,i)
k,− (ε, λ)�

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0,

(63)

where
Φ(j,i)

k (ε, λ) := G(ε, λ)φ
(j,i)
k , Φ(j,i)

k,± (ε, λ) := G(ε, λ)φ
(j,i)
k,± . (64)

We arbitrarily choose p ∈ {1, . . . , n} and i ∈ {1, . . . , N(p)
k } and if (p, q) ∈ M1, we apply the

functional �
(
Z(p,q)

k (λ), ε, λ
)

to Equation (63), while for (p, q) ∈ M2 we apply the functionals

�
(
Z(p,q)

k,± (λ), ε, λ
)

to the same equation. This gives the following identities:

�
(
Z(p,q)

k (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M1

A(p,q,j,i)
k (ε, λ)�

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,+ (ε, λ)�

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,− (ε, λ)�

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0, (p, q) ∈ M1,

�
(
Z(p,q)

k,+ (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M1

A(p,q,j,i)
k,+ (ε, λ)�

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,+,+ (ε, λ)�

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,+,− (ε, λ)�

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0, (p, q) ∈ M2,

�
(
Z(p,q)

k,− (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M1

A(p,q,j,i)
k,− (ε, λ)�

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,−,+ (ε, λ)�

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,−,− (ε, λ)�

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0, (p, q) ∈ M2,

(65)

where

A(p,q,j,i)
k (ε, λ) := �

(
Z(p,q)

k (λ), ε, λ
)
Φ(j,i)

k (ε, λ), A(p,q,j,i)
k,± (ε, λ) := �

(
Z(p,q)

k (λ), ε, λ
)
Φ(j,i)

k,± (ε, λ) (66)

as (p, q) ∈ M1 and

A(p,q,j,i)
k,± (ε, λ) := �

(
Z(p,q)

k,± (λ), ε, λ
)
Φ(j,i)

k (ε, λ), A(p,q,j,i)
k,�,� (ε, λ) := �

(
Z(p,q)

k,� (λ), ε, λ
)
Φ(j,i)

k,� (ε, λ) (67)

as (p, q) ∈ M2, where the symbols � and � are to be independently replaced by ‘+’
or ‘−’. Identity (65) is a system of linear equations for the numbers �

(
Z(j,i)

k (λ), ε, λ
)

and �
(
Z(j,i)

k,± (λ), ε, λ
)
. Once we find these numbers, we can recover the function ψ J̃ for

Equation (63). If system (65) has only the trivial solution, this immediately implies that
ψ J̃ vanishes identically, and by Formula (31), Equation (27) can have only the trivial so-
lution; hence, the set Ek,δ3 contains no eigenvalues of the operator Lε. In order to prove
that system (65) has only the trivial solution, it is sufficient to show that all functions
A(p,q,j,i)

k,± (ε, λ) and A(p,q,j,i)
k,�,� (ε, λ) are bounded uniformly in ε and λ. The proof of this fact is

our next important step.
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4.3. Trivial Solution and Absence of the Spectrum

In this subsection, we prove the uniform boundedness of the functions A(p,q,j,i)
k,± (ε, λ)

and A(p,q,j,i)
k,�,� (ε, λ) and this will allow us to complete the proof of Theorem 2. We first rewrite

Formula (64) for the functions Φ(j,i)
k (ε, λ) and Φ(j,i)

k,± (ε, λ) as

Φ(j,i)
k (ε, λ) = φ

(j,i)
k − εG(ε, λ)

(
B4,k(ε, λ) + B6,k(ε, λ)

)
φ
(j,i)
k ,

Φ(j,i)
k,± (ε, λ) = φ

(j,i)
k,± − εG(ε, λ)

(
B4,k(ε, λ) + B6,k(ε, λ)

)
φ
(j,i)
k,± .

(68)

The prove of the uniform boundedness of A(p,q,j,i)
k (ε, λ), A(p,q,j,i)

k,± (ε, λ), A(p,q,j,i)
k,± (ε, λ),

A(p,q,j,i)
k,�,� (ε, λ) is based on a series of the following lemmas.

Lemma 2. There exists δ5 > 0 such that as δ3 � δ5, for all λ ∈ Ek,δ3 and (j, i) ∈ M1 the
estimates hold ∣∣∣∣ ∫

R

φ
(j,i)
k (x) dx

∣∣∣∣ � c11

δ3
,

where c11 is a constant independent of k, j, i, δ3 and λ.

Proof. We begin with representing the considered integral as

∫
R

φ
(j,i)
k (x) dx =

∫
I(j,i)
k

dx
V(x)− λ

=
1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(x)
V(x)− λ

dx +
1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(Z(j,i)
k )−V′(x)

V(x)− λ
dx.

(69)

The first integral in the right hand side of the above representation can be immediately
rewritten as ∫

I(j,i)
k

V′(x)
V(x)− λ

dx =
∫

Γ(j,i)
k

dt
t− λ

.

The above integral over the curve Γ(j,i)
k is holomorphic in λ ∈ Bδ3(Pk) \Υ. As λ is such that

dist(λ,Υ) � δ3
2 , we have an obvious estimate∣∣∣∣∣

∫
Γ(j,i)

k

dt
t− λ

∣∣∣∣∣ � C
δ3

, (70)

where C is a constant independent of λ, k, j, i and δ3. We also easily find that

d
dλ

∫
Γ(j,i)

k

dt
t− λ

=
∫

Γ(j,i)
k

dt
(t− λ)2 =

1

∂−Γ(j,i)
k − λ

− 1

∂+Γ(j,i)
k − λ

, (71)

where ∂±Γ(j,i)
k are the end-points of the curve Γ(j,i)

k . Definition (53) of the set Ek,δ3 ensures that

1

|∂±Γ(j,i)
k − λ|

� 1
δ3

.
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Having this estimate and (70) in mind and integrating (71) with respect to λ, in view of (25),
we immediately find ∣∣∣∣∣ 1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(x)
V(x)− λ

dx

∣∣∣∣∣ � C
δ3

, (72)

where C is a constant independent of λ, k, j, i and δ3.
In order to estimate the second integral in the right hand side of (69), we employ

estimate (59) and the Lagrange rule:∣∣∣∣∣ 1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(Z(j,i)
k )−V′(x)

V(x)− λ
dx

∣∣∣∣∣ � C

|V′(Z(j,i)
k )|

sup
t∈I(j,i)

k

|V′′(t)|, (73)

where C is a constant independent of λ, k, j, i and δ3. According to the definition of the regular
points, the function V is twice continuously differentiable on Jj except for (β, α) thresholds,
which are denoted, we recall, by x(j,i). In the vicinity of the latter points, the first and the

second derivatives of the function V have singularities of orders O(|x − x(j,i)|β
(j,i)
± −1) and

O(|x− x(j,i)|β
(j,i)
± −2). According to Property P2, the minimal distance from the interval I(j,i)

k to
the nearest (β, α) threshold is at least c7δ3, and since the total number of the thresholds is finite,
we conclude on the existence of δ5 > 0 such that for δ3 � δ5 the estimate

sup
t∈I(j,i)

k

|V′′(t)|

|V′(Z(j,i)
k )|

� C
δ3

holds true, where C is a constant independent of δ3, k, j, i. Substituting this estimate
into (73), we obtain: ∣∣∣∣∣ 1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(Z(j,i)
k )−V′(x)

V(x)− λ
dx

∣∣∣∣∣ � C
δ3

,

where C is a constant independent of δ3, k, j, i. This estimate and (72) yield the desired
estimate from the statement of the lemma. The proof is complete.

Lemma 3. For all λ ∈ Ek,δ3 and (j, i) ∈ M2 the estimates hold∣∣∣∣ ∫
R

φ
(j,i)
k,± (x) dx

∣∣∣∣ � c12, (74)

where c12 is a constant independent of k, j, i, and λ but depending on δ3.

Proof. We provide the proof only for the integral with φ
(j,i)
k,+ ; the other case can be treated

in the same way. We first suppose that

Re
λ− Pk

α
(j,i)
+,k

� 0.

Then, by (61) and the assumed inequality β
(j,i)
k,+ < 1 we immediately obtain:∣∣∣∣∣∣

∫
R

ξ
(j,i)
k,± (x)

V(x)− λ
dx

∣∣∣∣∣∣ � C
∫

Γ(j,i)
k,+

dx

(x−Y(j,i)
k )β

j,i
k,+

� C,
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where by C we denote some constants independent of λ, k, j, i and δ3.
Suppose now that

Re η > 0, where η :=
λ− Pk

α
(j,i)
+,k

. (75)

Owing to the third inequality in (47) and (48) the function

w(x) := (x−Y(j,i)
k )

(
v(j,i)

k,+ (x)
) 1

β
(j,i)
k,+

is well defined and

wβ
(j,i)
k,+ (x) =

(
x−Y(j,i)

k
)β

(j,i)
k,+ v(j,i)

k,+ (x) =
V(x)− Pk

α
(j,i)
k,+

. (76)

The assumed smoothness of v(j,i)
k,+ , see (5) and (6) yields that

w ∈ C2(I(j,i)
k,+ ), ‖w‖

C2(I(j,i)
k,+ )

� C, (77)

where C is a constant independent of k, j, i. The first, second and fourth inequalities in (47)

and identity (5) imply that for x ∈ I(j,i)
k,+ , the estimates hold:⎛⎝ |x−Y(j,i)

k,+ |
β
(j,i)
k,+

∣∣v(j,i)
k,+ (x)

∣∣ 1

β
(j,i)
k,+

−1∣∣(v(j,i)
k,+ )′(x)

∣∣⎞⎠β
(j,i)
k,+

�
∣∣(v(j,i)

k,+ )′(x)
∣∣β

(j,i)
k,+

∣∣v(j,i)
k,+ (x)

∣∣∣∣I(j,i)
k,+

∣∣β
(j,i)
k,+

� 2
∣∣(v(j,i)

k,+ )′(x)
∣∣β

(j,i)
k,+

∣∣I(j,i)
k,+

∣∣β
(j,i)
k,+

� 2

4
β
(j,i)
k,+
β0

+β
(j,i)
k,+

� 1

4β
(j,i)
k,+

<
1

2β
(j,i)
k,+

�
∣∣v(j,i)

k,+ (x)
∣∣β

(j,i)
k,+ .

Hence,

|w′(x)| � C, x ∈ I(j,i)
k,+ ,

where C is a positive constant independent of x, k, j and i. We denote

Γ̃ :=
{

w(x) : x ∈ I(j,i)
k,+

}
, α̃ := α

(j,i)
k,+ , β̃ := β

(j,i)
k,+ .

We rewrite the considered integral as follows:

∫
R

φ
(j,i)
k,± (x) dx =

∫
I(j,i)
k,+

dx
V(x)− λ

=
1

w′(Z(j,i)
k,+ )

∫
I(j,i)
k,+

w′(x) dx
V(x)− λ

+
∫

I(j,i)
k,+

w′(Z(j,i)
k,+ )− w′(x)

V(x)− λ
dx.

Using, then, identity (76) and making the change in variable t = w(x) in the first integral in
the right hand side of the above identity, we obtain:∫

R

φ
(j,i)
k,± (x) dx =

1

α̃w′(Z(j,i)
k,+ )

∫
Γ̃

dt
tβ̃ − η

+
∫

I(j,i)
k,+

w′(Z(j,i)
k,+ )− w′(x)

V(x)− λ
dx. (78)

Owing to the above established smoothness of the function w, see (77), and the second
inequality in (59), by applying the Lagrangue rule, we immediately estimate the second
integral in the right hand side of the above identity:
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∣∣∣∣∣
∫

I(j,i)
k,+

w′(Z(j,i)
k,+ )− w′(x)

V(x)− λ
dx

∣∣∣∣∣ � C
∫

I(j,i)
k,+

|x− Z(j,i)
k,+ |

|V(x)− λ| dx � C, (79)

where the symbol C denotes various constants independent of δ3, λ, k, j and i.
Let us estimate the first integral in the right hand side of (78). Suppose that the point η

is located above the curve Γ̃. Then, we choose the branch of the analytic function zβ̃ with
the cut along the positive imaginary semi-axis and the argument of z ranging in (− 3π

2 , π
2 ].

Let z̃ be the end-point of the curve Γ̃ not coinciding with the origin. In the complex plane,
we introduce extra two curves:

Γ̃1 :=
{

z : z = e
− πi

β̃ s, s ∈ (0, |z̃|)
}

, Γ̃2 :=
{

z : |z| = |z̃|, arg z ∈ (−π, arg z̃)
}

.

Then, the closure of the union of these two curves and Γ̃ is a closed contour, and by the
Cauchy integral theorem, we obtain:∫

Γ̃

dt
tβ̃ − η

= −
∫
Γ̃1

dt
tβ̃ − η

−
∫
Γ̃2

dt
tβ̃ − η

= e
− πi

β̃

|z̃|∫
0

ds
sβ̃ + η

−
∫
Γ̃2

dt
tβ̃ − η

. (80)

Since λ ∈ Ek,δ3 , it follows from the definition of η in (75) and Property P2 that

|η| � δ3

|α̃| , |z̃|β̃ =
2δ3

|α̃| .

Hence, |tβ̃ − η| � δ3
|α̃| on the curve Γ̃2 and∣∣∣∣ ∫

Γ̃2

dt
tβ̃ − η

∣∣∣∣ � 2π|α̃|
δ3

. (81)

Since Re η > 0 by (75), the first integral in the right hand side of the above identity can be
immediately estimated as∣∣∣∣∣e− πi

β̃

|z̃|∫
0

ds
sβ̃ + η

∣∣∣∣∣ �
|z̃|∫
0

ds
sβ̃

=
1

1− β̃

1

|z̃|1−β̃
=

1
1− β̃

|α̃|
1
β̃
−1

(2δ3)
1
β̃
−1

� C

δ
1

β0
−1

3

,

where C is a constant independent of δ3, k, j and i. This estimate (80) and (81), (80) prove
the uniform boundedness of the first integral in the right hand side of (78), and in view
of (79), we arrive at estimate (74) for φ

(j,i)
k,+ . The proof is complete.

Lemma 4. The function a is an element of C( J̃).

Proof. Since a ∈ W1
2 (R), by the standard embedding theorems, we conclude that a ∈ C(R)

and this proves the lemma.

Lemma 5. As δ3 � min{δ4, δ5}, for λ ∈ Ek,δ3 the estimates hold:

‖La�φ
(j,i)
k ‖L∞( J̃k)

� c13, ‖La�φ
(j,i)
k,± ‖L∞( J̃k)

� c13, (82)

‖La�φ
(j,i)
k ‖L2(R) � c13, ‖La�φ

(j,i)
k,± ‖L2(R) � c13, (83)

where c13 is a constant independent of λ, k, j, i but depending on δ3.

Proof. We fix k and some (j, i) in the corresponding set M1 and represent the function
La�φ

(j,i)
k as
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(
La�φ

(j,i)
k,±

)
(x) = a

(
x− Z(j,i)

k
) ∫

I(j,i)
k

φ
(j,i)
k (y) dy +

∫
I(j,i)
k

a(x− y)− a(x− Z(j,i)
k )

V(y)− λ
dy. (84)

By Lemmas 2 and 4, we immediately estimate the first integral in the right hand side of the
above identity: ∣∣∣∣a(x− Z(j,i)

k
) ∫

I(j,i)
k

φ
(j,i)
k (y) dy

∣∣∣∣ � c11

δ3
‖a‖C( J̃),

∥∥∥∥a
(
· −Z(j,i)

k
) ∫

I(j,i)
k

φ
(j,i)
k (y) dy

∥∥∥∥
L2(R)

� c11

δ3
‖a‖L2(R).

(85)

To estimate the second integral in the right hand side of (84), we employ a representation
similar to (43):∫

I(j,i)
k

a(x− y)− a(x− Z(j,i)
k )

V(y)− λ
dy =

∫
I(j,i)
k

dy
V(y)− λ

y−Z(j,i)
k∫

0

a′
(
x− Z(j,i)

k − t
)

dt

and use then the Cauchy–Schwarz inequality and the first estimate from (59):

∣∣∣∣∣
∫

I(j,i)
k

a(x− y)− a(x− Z(j,i)
k )

V(y)− λ
dy

∣∣∣∣∣ � 1
c9

∫
I(j,i)
k

1

|y− Z(j,i)
k | 1

2

∣∣∣∣∣∣∣∣
|y−Z(j,i)

k |∫
−|y−Z(j,i)

k |

∣∣∣a′(x− Z(j,i)
k − t

)∣∣∣2
dt

∣∣∣∣∣∣∣∣
1
2

dy

�
‖a′‖L2(R)

c9

∫
I(j,i)
k

dy

|y− Z(j,i)
k | 1

2

� C,

∥∥∥∥∥
∫

I(j,i)
k

a( · − y)− a( · − Z(j,i)
k )

V(y)− λ
dy

∥∥∥∥∥
2

L2(R)

�C
∫
R

dx
∫

I(j,i)
k

dy

|y− Z(j,i)
k |

|y−Z(j,i)
k |∫

−|y−Z(j,i)
k |

∣∣∣a′(x− Z(j,i)
k − t

)∣∣∣2
dt

�C‖a′‖2
L2(R)

∫
I(j,i)
k

dy

|y− Z(j,i)
k |

|y−Z(j,i)
k |∫

−|y−Z(j,i)
k |

dt � C,

where by C we denote various constants independent of λ, k, j and i. These estimates (84) and (85)
prove the first inequalities in (82) and (83).

The proof of the second inequalities in (82) and (83) follows the same lines. Namely,
in (84), we just replace I(j,i)

k , Z(j,i)
k , φ

(j,i)
k by I(j,i)

k,+ , Z(j,i)
k,+ , φ

(j,i)
k,+ . Then, a corresponding analogue

of inequality (85) is implied by Lemmas 3 and 4, while estimating the second integral
literally reproduces the above argument. The proof is complete.

Lemma 6. As δ3 � min{δ4, δ5}, for λ ∈ Ek,δ3 the estimates hold:∥∥B6,k(ε, λ)A(ε, λ)φ
(j,i)
k

∥∥
L2( J̃) � c14,

∥∥B6,k(ε, λ)A(ε, λ)φ
(j,i)
k,±

∥∥
L2( J̃) � c14,

where c14 is a constant independent of λ, k, j, i but depending on δ3.

Proof. In view of the definition of the operator B6,k in (57), it is sufficient to prove the
uniform boundedness of the norms
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∥∥B(p,q)
6,k (ε, λ)A(ε, λ)φ

(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k (ε, λ)A(ε, λ)φ

(j,i)
k,±

∥∥
L2( J̃), (p, q) ∈ M1,∥∥B(p,q)

6,k,� (ε, λ)A(ε, λ)φ
(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k,� (ε, λ)A(ε, λ)φ

(j,i)
k,±

∥∥
L2( J̃), (p, q) ∈ M2, � ∈ {+,−}.

(86)

Bearing in mind the definition of the operators B(p,q)
6,k and B(p,q)

6,k,± in (58), the definition of
the operator A in (33), and inequalities (26) and (62), we can estimate the first of the above
norms as follows:∥∥B(p,q)

6,k (ε, λ)A(ε, λ)φ
(j,i)
k ‖L2( J̃) �

∥∥B(p,q)
6,k (ε, λ)φ

(j,i)
k

∥∥
L2( J̃) +

∥∥B(p,q)
6,k (ε, λ)PR\ J̃A(ε, λ)φ

(j,i)
k

∥∥
L2( J̃)

�
∥∥B(p,q)

6,k (ε, λ)φ
(j,i)
k

∥∥
L2( J̃) + C

∥∥M J̃φ
(j,i)
k

∥∥
L2(R\ J̃),

where C is a constant independent of λ, ε, k, j, i and δ3. In the same way, we can estimate
other norms in (86) and, hence, it is sufficient to prove the uniform boundedness only for
the norms∥∥B(p,q)

6,k (ε, λ)φ
(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k (ε, λ)φ

(j,i)
k,±

∥∥
L2( J̃), (p, q) ∈ M1,∥∥B(p,q)

6,k,� (ε, λ)φ
(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k,� (ε, λ)φ

(j,i)
k,±

∥∥
L2( J̃), (p, q) ∈ M2, � ∈ {+,−},∥∥M J̃φ

(j,i)
k

∥∥
L2(R\ J̃),

∥∥M J̃φ
(j,i)
k,±

∥∥
L2(R\ J̃).

(87)

The uniform boundedness of the latter two norms follows immediately from (83) and
definition (29) of the operator M J̃ .

According to the definition of the operators B(j,i)
6,k in (58), the identity holds:(

B(p,q)
6,k (ε, λ)φ

(j,i)
k

)
(x) =ξ

(j,i)
k (x)

∫
I(j,i)
k

a(x− y)− a
(
Z(j,i)

k (λ)− y
)

(V(x)− λ)(V(y)− λ)
dy

=ξ
(j,i)
k (x)

a(x− Z(j,i)
k (λ))− a(0)

(V(x)− λ)

∫
I(j,i)
k

dy
V(y)− λ

+ ξ
(j,i)
k (x)

∫
I(j,i)
k

a(x− y)− a(x− Z(j,i)
k (λ))− a

(
Z(j,i)

k (λ)− y
)
+ a(0)

(V(x)− λ)(V(y)− λ)
dy

=ξ
(j,i)
k (x)

a(x− Z(j,i)
k (λ))− a(0)

(V(x)− λ)

∫
I(j,i)
k

dy
V(y)− λ

+ ξ
(j,i)
k (x)

∫
I(j,i)
k

dy
(V(x)− λ)(V(y)− λ)

x−Z(j,i)
k∫

0

(
a′(t + Z(j,i)

k − y)− a′(t)
)

dt.

Since ξ
(j,i)
k is the characteristic function of a bounded interval I(j,i)

k and a ∈ L1( J̃) by
Lemma 4, in view of Lemma 2, we immediately conclude that the first term in the right
hand side of the above identity is an element of L2(R) and it is bounded uniformly in λ, k,
j, i in the norm of this space. The norm of the second term is estimated by using (59) and
the second condition in (9):
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∫
R

∣∣∣∣∣ξ(j,i)
k (x)

∫
I(j,i)
k

dy
(V(x)− λ)(V(y)− λ)

x−Z(j,i)
k∫

0

(
a′(t + Z(j,i)

k − y)− a′(t)
)

dt

∣∣∣∣∣
2

dx

� C
∫

I(j,i)
k

dx

∣∣∣∣∣
∫

I(j,i)
k

dy

|x− Z(j,i)
k ||y− Z(j,i)

k |

|x−Z(j,i)
k |∫

−|x−Z(j,i)
k |

∣∣∣a′(t + Z(j,i)
k − y)− a′(t)

∣∣∣ dt

∣∣∣∣∣
2

� C
∫

I(j,i)
k

dx

∣∣∣∣∣
∫

I(j,i)
k

dy

|x− Z(j,i)
k ||y− Z(j,i)

k |

|x−Z(j,i)
k |∫

−|x−Z(j,i)
k |

|Z(j,i)
k − y|θ dt

∣∣∣∣∣
2

� C
∫

I(j,i)
k

dx

∣∣∣∣∣
∫

I(j,i)
k

dy

|y− Z(j,i)
k |1−θ

∣∣∣∣∣
2

� C,

where the symbol C stands for various constants independent of λ, k, j, i. Hence, the
functions B(p,q)

6,k (ε, λ)φ
(j,i)
k are bounded in L2(R) uniformly in λ, k, j, i. Similar boundedness

for remaining functions in (87) is established in the same way, and one should just use the
second estimate from (59) and Lemma 3. The proof is complete.

Lemma 7. As δ3 � min{δ4, δ5}, for λ ∈ Ek,δ3 the estimates hold:∥∥B4,k(ε, λ)A(ε, λ)φ
(j,i)
k

∥∥
L2( J̃) � c15,

∥∥B4,k(ε, λ)A(ε, λ)φ
(j,i)
k,±

∥∥
L2( J̃) � c15,

where c15 is a constant independent of λ, k, j, i but depending on δ3.

Proof. Denoting

B(p,q)
4,k :=

1− ξ
(p,q)
k

V − λ
P J̃La�,

we observe that

B4,k =
n

∑
p=1

N(j)
k

∑
q=1

B(j,i)
4,k A(ε, λ). (88)

Then, using inequality (49) and the definition of the operator A(ε, λ), we obtain:

‖B(p,q)
4,k A(ε, λ)φ

(j,i)
k ‖L2( J̃) � C‖La�φ

(j,i)
k ‖L2(R), ‖B(p,q)

4,k A(ε, λ)φ
(j,i)
k,± ‖L2( J̃) � C‖La�φ

(j,i)
k ‖L2(R),

where the symbol C denotes some constants independent of λ, k, j and i. Applying, then,
estimates (83), we see that the norms in the above inequality are uniformly bounded, and
together with, (88) this completes the proof.

We substitute Formula (68) into (66) and (67) and apply Lemmas 6 and 7 and esti-
mate (82). This yields the desired uniform boundedness of the functions A(p,q,j,i)

k (ε, λ),

A(p,q,j,i)
k,± (ε, λ), A(p,q,j,i)

k,± (ε, λ), A(p,q,j,i)
k,�,� (ε, λ) with some fixed sufficiently small δ3. All these

functions are bounded by some constant c16 independent of ε, λ ∈ Ek,δ3 , k, j, i. Hence, there
exists ε0 > 0 independent of k, λ, j, i such that as ε < ε0, system (65) possesses only trivial
solution simultaneously for all k. Therefore, there exists δ > 0 such that the set Sδ contains
no eigenvalues of the operator Lε.

In order to prove the absence of the residual spectrum, we first need to establish
Formula (2). By Ker( · ) and Ran( · ), we denote the kernel and the range of a given
closed operator.

Lemma 8. Identity (2) is true.
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Proof. Given a closed operator A in a Hilbert space H, let λ /∈ σess(A) ∪ σpnt(A). Then,
Ker(A − λ) = {0} and hence, the inverse operator (A − λ)−1 is well defined on the
range Ran(A − λ). This inverse operator is bounded. Indeed, if this operator was un-
bounded, this would mean the existence of a sequence un ∈ D(A) such that ‖un‖H = 1
and ‖(A− λ)un‖H → 0 as n → ∞. Since λ /∈ σess(A), the sequence {un} is compact, and
choosing a subsequence if needed, we can suppose that un converges to some u∗ in H.
Then, by the closedness of the operator A and the normalization of un, we immediately
conclude that ‖u∗‖H = 1 and (A− λ)u∗ = 0, i.e., u∗ is an eigenfunction of A associated
with its eigenvalue λ. This is impossible, since λ /∈ σpnt(A) and, therefore, the inverse
operator (A− λ)−1 is bounded on the range Ran(A− λ). By [17] (Ch. 3, Sect. 2, Thm. 9),
this yields that the range Ran(A− λ) is closed. Hence, as λ /∈ σess(A)∪ σpnt(A), it belongs
to the spectrum σ(A) if and only if Ran(A− λ) = Ran(A− λ) �= H, which is equivalent
to Ker(A∗ − λ) �= {0}, i.e., if and only if λ is an eigenvalue of the adjoint operator A∗. This
completes the proof.

In view of Formula (2), we observe that the adjoint operator for Lε reads as

(Lε)∗ = LV + εLa∗�, a∗(z) := a(−z). (89)

This adjoint operator is of the same structure as Lε in particular, the essential spectrum of
the operator LV is just the complex conjugation of the curve Υ, namely,

σ(LV) = σess(LV) = Υ†.

Then, we choose the complex conjugation of the piece S of this curve and we see that it
also satisfies the assumptions of Theorem 2. The function a∗ obeys Assumption (9). Then,
lessening if needed the number δ, we conclude that the set (Sδ)† contains no eigenvalues of
the operator (Lε)∗. Then, Formula (2) implies that the set Sδ also contains no points of the
residual spectrum of the operator Lε and this completes the proof of Theorem 2.

4.4. Absence of Residual Spectrum

In this subsection, we prove Theorem 3. We recall Formula (89) for the adjoint operator
Lε and immediately see that Condition (10) guarantees the self-adjointness of the operator
Lε. This implies the absence of the residual spectrum.

Suppose that Condition (11) is obeyed. As it was stated in Section 2, see identities (12)–(14),
it is sufficient to check the validity of PT -symmetricity condition (12) with the operator
P given in (13). This can be carried out by straightforward calculations for an arbitrary
ψ ∈ L2(R) using conditions (11):

(
PT (Lε)∗ψ

)
(x) =PT

⎛⎝V(x)φ(x) + ε
∫
R

a(y− x)φ(y) dy

⎞⎠
=V(τx + �)φ(τx + �) + ε

∫
R

a(y− τx− �)φ(y) dy

=V(τx + �)φ(τx + �) + ε
∫
R

a(τ(y− x))φ(τy + �) dy

=V(x)(PT φ)(x) + ε
∫
R

a(x− y)(PT φ)(y) dy = (LεPT φ)(x).

This completes the proof.
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Abstract: We suggest a new statement of the inverse spectral problem for Sturm–Liouville-type
operators with constant delay. This inverse problem consists of recovering the coefficient (often
referred to as potential) of the delayed term in the corresponding equation from the spectra of two
boundary value problems with one common boundary condition. The previous studies, however,
focus mostly on the case of zero initial function, i.e., they exploit the assumption that the potential
vanishes on the corresponding subinterval. In the present paper, we waive that assumption in favor
of a continuously matching initial function, which leads to the appearance of an additional term
with a frozen argument in the equation. For the resulting new inverse problem, we pay special
attention to the situation when one of the spectra is given only partially. Sufficient conditions and
necessary conditions on the corresponding subspectrum for the unique determination of the potential
are obtained, and a constructive procedure for solving the inverse problem is given. Moreover, we
obtain the characterization of the spectra for the zero initial function and the Neumann common
boundary condition, which is found to include an additional restriction as compared with the case of
the Dirichlet common condition.

Keywords: Sturm–Liouville-type operator; functional-differential operator; constant delay; initial
function; frozen argument; inverse spectral problem
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1. Introduction and Main Results

In recent years, there appeared a considerable interest in the inverse problem of recovering
an integrable or a square-integrable potential q(x) in the functional-differential equation

−y′′(x) + q(x)y(x− a) = λy(x), 0 < x < π, (1)

with constant delay a ∈ (0, π) from the spectra of two boundary value problems for (1) with
one common boundary condition (see [1–17] and references therein). For a = 0, this problem
becomes the classical inverse Sturm–Liouville problem due to Borg [18,19], but the nonlocal
case a > 0 requires other approaches. Moreover, it reveals some essentially different effects
in the solution of the inverse problem than in the classical situation a = 0. For example, the
solution of the inverse problem may be non-unique when a ∈ (0, 2π/5) (see [12–14]).

Various equations with delay have been actively studied from the last century in con-
nection with numerous applications (see, e.g., [20–26]). Such equations can be characterized
by the possibility for the argument of the unknown function to go beyond its domain. For
example, Equation (1) for a > 0 includes values of y(x) for x < 0. In order to overcome this
issue, one should specify an initial function, i.e., to impose y(x) = f (x) for x ∈ (−a, 0) with
some known f (x). In particular, one can put q(x) = 0 on (0, a), which actually corresponds to
specifying f = 0. We distinguish these two ways because rewriting Equation (1) in the form

−y′′(x) + q+(x)y(x− a) = λy(x)− r(x), 0 < x < π, (2)
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where r(x) = q−(x) f (x− a) and

q−(x) =

⎧⎨⎩ q(x), x ∈ (0, a),

0, x ∈ (a, π),
q+(x) =

⎧⎨⎩ 0, x ∈ (0, a),

q(x), x ∈ (a, π),
(3)

shows that f �= 0 leads to a non-homogenous equation, while f = 0 deals with the
corresponding homogenous one. Thus, for posing an eigenvalue problem, it is natural to
choose the latter, i.e., to assume that q(x) = 0 on (0, a). For this reason, the previous studies
of inverse problems for (1) were focused mostly on this case, i.e., the reconstruction of q(x)
was actually carried out only for q+, while q− was a priori assumed to be zero.

A non-zero initial function f also may be appropriate for posing an eigenvalue prob-
lem, but it should be linearly dependent on the unknown function y(x) on [0, π] as, e.g.,

f (x) = y(0)g(x), −a < x < 0. (4)

This example corresponds to the classical theory [22] and ensures a continuous con-
tinuation of y(x) to [−a, 0) whenever g(x) ∈ C[−a, 0] and g(0) = 1. Such continuation,
however, is not always required (see, e.g., [25]). So, one can consider more general forms
of an initial function such as f (x) = Ly(x) with a linear operator L acting from W2

2 [0, π]
to L∞(−a, 0). Then, for keeping L in the frames of a perturbation, a natural requirement
would be its relative compactness [27] with respect to the minimal operator of double dif-
ferentiation. In particular, one can take Ly(x) = F(y)g(x), where F(y) is a linear functional
relatively bounded to y′′, e.g., F(y) = y(j)(b) for some b ∈ [0, π] and j ∈ {0, 1}. We will
focus, however, on the special case (4).

An attempt to study the inverse problem for Equation (1) with a non-zero initial
function f (x) has been made in [16]. However, no dependence of f (x) on y(x) was
assumed at all.

In the present paper, we refuse the usual assumption q− = 0 but in favor of the initial
function in the form (4). Then, Equation (1) can be rewritten with the so-called frozen
argument:

−y′′(x) + q+(x)y(x− a) + p(x)y(0) = λy(x), 0 < x < π, p(x) := q−(x)g(x− a). (5)

Since the functions q−(x) and g(x− a) enter only in their product p(x), they cannot
be recovered simultaneously from any spectral information. Moreover, the reconstruction
of q−(x) on any subinterval (α, β) ⊂ (0, a) can be possible only if g(x) �= 0 a.e. on
(α − a, β − a). For these reasons, we consider without loss of generality the canonical
situation when g(x) ≡ 1.

For j = 0, 1, Bj(q) denotes the boundary value problem for Equation (1) with a
complex-valued potential q(x) ∈ L2(0, π) under the boundary conditions

y′(0) = y(j)(π) = 0

and under the initial-function condition

y(x) = y(0), −a < x < 0. (6)

Let {λn,j}n≥0 be the spectrum of Bj(q). Consider the following inverse problem.

Inverse Problem 1. Given {λn,0}n≥0 and {λn,1}n≥0, find q(x).

The main results of the present paper (Theorems 1–3) are restricted to the case a ≥ π/2.
In accordance with [13,14], the solution of Inverse Problem 1 may be non-unique for
a ∈ (0, 2π/5), while the case a ∈ [2π/5, π/2) will require an additional investigation. For
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future reference, however, we will mark those auxiliary assertions below whose proofs
automatically extend to any wider ranges of a than just a ∈ [π/2, π).

Everywhere below, one and the same symbol {κn} will denote different sequences
in l2. The following theorem gives basic necessary conditions for the solvability of Inverse
Problem 1.

Theorem 1. For j = 0, 1, the following asymptotics holds

λn,j = ρ2
n,j, ρn,j = n +

1− j
2

+
ω

πn
cos

(
n +

1− j
2

)
a +

κn

n
, ω ∈ C. (7)

Here, the constant ω is determined by the formula

ω =
1
2

∫ π

a
q+(x) dx. (8)

Moreover, if the spectra {λn,0}n≥0 and {λn,1}n≥0 correspond to one and the same q−(x), then

iθ0(−ir)− θ1(−ir) = o(e(π−a)r), r → +∞, (9)

where
θ0(ρ) = ρ(Δ0(ρ

2)− cos ρπ)−ω sin ρ(π − a),

θ1(ρ) = Δ1(ρ
2) + ρ sin ρπ −ω cos ρ(π − a),

(10)

while the functions Δ0(λ) and Δ1(λ) are determined by the formulae

Δ0(λ) =
∞

∏
n=0

λn,0 − λ

(n + 1/2)2 , Δ1(λ) = π(λ0,1 − λ)
∞

∏
n=1

λn,1 − λ

n2 . (11)

Condition (9) actually means that Inverse Problem 1 remains overdetermined as in
the case q− = 0 (see [6,15]). As will be seen below, it is sufficient to specify only one full
spectrum and an appropriate part of the other one. For example, we also consider the
following problem.

Inverse Problem 2. Given {λnk ,0}k∈N and {λn,1}n≥0, find q(x).

Here, {nk}k∈N is an increasing sequence of non-negative integers. The next theorem
gives sufficient conditions as well as necessary conditions on {nk}k∈N for the uniqueness
of q(x).

Theorem 2. (i) If the system σ0 := {sin(nk + 1/2)x}k∈N is complete in H := L2(0, π− a), then
the potential q(x) in Inverse Problem 2 is determined uniquely.

(ii) Conversely, if the specification of {λnk ,0}k∈N and {λn,1}n≥0 uniquely determines q(x),
then the defect of σ0 does not exceed 1, i.e., dim(H� σ0) ≤ 1.

Since the system {sin(n + 1/2)x}n≥0 is complete in L2(0, π), this theorem, obviously,
implies the unique determination of q(x) by both complete spectra as in Inverse Problem 1.

The use of subspectra in the inverse problem with delay began in [6] for the zero initial
function, where necessary and sufficient conditions were obtained on parts of both spectra to
ensure the uniqueness of q+(x) in the case of the Dirichlet common condition at the origin.

We note that the gap between the sufficient and the necessary conditions in Theorem 2
is actually caused by imposing the common Neumann boundary condition. By the same
reason, the conditions in Theorem 1 do not suffice for the solvability of Inverse Problem 1.

In the case of the Dirichlet common condition, necessary and sufficient conditions for the
solvability of the corresponding inverse problem were obtained in [15] when q− = 0. Here,
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we provide such conditions in the same case q− = 0 but for the Neumann common condition,
which brings to them an additional item. Specifically, the following theorem holds.

Theorem 3. Arbitrary complex sequences {λn,0}n≥0 and {λn,1}n≥0 of the form (7) sharing one
and the same ω ∈ C are the spectra of the problems B0(q) and B1(q), respectively, with q(x) = 0
a.e. on (0, a) if and only if the exponential types of the functions θ0(ρ) and θ1(ρ) determined by
(10) and (11) do not exceed π − a and the following relation is fulfilled:

λ0,1

∞

∏
n=1

λn,1

n2 =
2ω

π
. (12)

The latter relation is an additional characterizing condition, which does not exist in
the Dirichlet case [15]. We note that the relevant difference between both cases was pointed
out in [12] (see Remark 2 therein).

There are also various studies of recovering the operator with purely frozen argument

�y := −y′′(x) + q(x)y(b), y(α)(0) = y(β)(π) = 0,

from its spectrum, where b ∈ [0, π] and α, β ∈ {0, 1} (see [28–35] and references therein). In
particular, its unique solvability depends on the value of b as well as on α and β. We note
that both related to Inverse Problem 1 situations: b = 0, α = 1, β = 0 and b = 0, α = β = 1
belong to the so-called non-generate case, when the solution is unique (see, e.g., [28,29,32]).

We note that Theorem 2 also formally holds for a = π, which follows from Theorem 4.1
in [28] or Theorem 2 in [29]. In this case, q− = q and q+ = 0. Then, Equation (1) under the
initial-function condition (6) becomes an equation with purely frozen argument:

−y′′(x) + q(x)y(0) = λy(x), 0 < x < π,

where q(x) is uniquely determined by the single spectrum {λn,1}n≥0.
The paper is organized as follows. In the next section, we construct transformation

operators for a fundamental system of solutions of the homogeneous equation in (2),
i.e., when r(x) = 0. In Section 3, Green’s function of the Cauchy problem for the non-
homogeneous Equation (2) under the zero initial conditions is constructed. In Section 4, we
study the characteristic functions of the problems Bj(q) and prove Theorem 1. Proofs of
Theorems 2 and 3 are given in Section 5 along with a constructive procedure for solving the
inverse problems. In the last section, we summarize the main innovations of the paper and
discuss the results.

Throughout the paper, we agree that ρ is connected with λ by the relation ρ2 = λ, while
f ′ and f (j) denote the partial derivatives of a function f with respect to the first argument:

f ′(x1, . . . , xm) :=
d

dx1
f (x1, . . . , xm), f (j)(x1, . . . , xm) :=

dj

dxj
1

f (x1, . . . , xm).

2. Transformation Operators

Let C(x, λ) and S(x, λ) be solutions of the homogeneous equation in (2), i.e., the equation

−y′′(x) + q+(x)y(x− a) = λy(x), 0 < x < π, (13)

under the initial conditions

C(0, λ) = S′(0, λ) = 1, C′(0, λ) = S(0, λ) = 0.

They form a fundamental system of solutions of equation (13) (see, e.g., [14]).
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In this section, we obtain representations for the functions C(x, λ) and S(x, λ) involving
the so-called transformation operators, which connect them with the corresponding solutions
of the simplest equation with the zero potential. Specifically, the following lemma holds.

Lemma 1. Let a ≥ π/2. The functions S(x, λ) and C(x, λ) admit the representations

S(x, λ) =
sin ρx

ρ
+

∫ x

a
P(x, t)

sin ρ(x− t)
ρ

dt, (14)

C(x, λ) = cos ρx +
∫ x

a
K(x, t) cos ρ(x− t) dt, (15)

where (in accordance with our standing agreement) ρ2 = λ and

P(x, t) =
1
2

∫ x+ a−t
2

a+t
2

q+(τ) dτ, (16)

K(x, t) =
1
2

∫ a+t
2

a
q+(τ) dτ +

1
2

∫ x+ a−t
2

a
q+(τ) dτ. (17)

Proof. The assertion for S(x, λ) is a particular case of Lemma 1 in [15]. So we will prove
only (15) and (17). It is easy to see that the Cauchy problem for C(x, λ) is equivalent to the
integral equation

C(x, λ) = cos ρx +
∫ x

a

sin ρ(x− t)
ρ

q+(t)C(t− a, λ) dt.

Taking into account that a ≥ π/2, we calculate∫ x

a

sin ρ(x− t)
ρ

q+(t)C(t− a, λ) dt =
∫ x

a

sin ρ(x− t)
ρ

q+(t) cos ρ(t− a) dt

=
∫ x

a
q+(t) cos ρ(t− a) dt

∫ x−t

0
cos ρτ dτ

=
1
2

∫ x

a
q+(t) dt

∫ x−t

0

(
cos ρ(t− a + τ) + cos ρ(t− a− τ)

)
dτ

=
1
2

∫ x

a
q+(t) dt

∫ 2(x−t)+a

a
cos ρ(x− τ) dτ =

1
2

∫ 2x−a

a
cos ρ(x− t) dt

∫ x+ a−t
2

a
q+(τ) dτ

=
1
2

∫ x

a

( ∫ x+ a−t
2

a
q+(τ) dτ +

∫ a+t
2

a
q+(τ) dτ

)
cos ρ(x− t) dt,

which finishes the proof.

Remark 1. While the imposed restriction a ≥ π/2 is vital for (16) and (17), representations (14)
and (15) also remain valid for all smaller a ≥ 0 but with more complicated kernels. In particular,
Lemma 1 in [15] gives an integral equation for P(x, t) for all a ∈ [0, π/2). Moreover, it extends
representation (14) to quadratic pencils with two delays.

The following corollary can be easily checked by direct calculations.

Corollary 1. The following representations hold:

C(x, λ) = cos ρx + ω(x)
sin ρ(x− a)

ρ
+

∫ x

a
K0(x, t)

sin ρ(x− t)
ρ

dt, (18)
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C′(x, λ) = −ρ sin ρx + ω(x) cos ρ(x− a) +
∫ x

a
K1(x, t) cos ρ(x− t) dt, (19)

where

ω(x) =
1
2

∫ x

a
q+(t) dt, Kj(x, t) =

1
4

(
q+

( a + t
2

)
− (−1)jq+

(
x +

a− t
2

))
, j = 0, 1. (20)

3. Green’s Function of the Cauchy Operator

Here, we obtain the solution z(x, λ) = z(x, λ; r) of the Cauchy problem for the non-
homogeneous Equation (2) with an arbitrary free term r(x) under the zero initial conditions

z(0, λ) = z′(0, λ) = 0. (21)

In the next section, we will need representations for z(π, λ; q−) and z′(π, λ; q−).
As in the local case a = 0, the function z(x, λ) is expected to have the form

z(x, λ) =
∫ x

0
G(x, t, λ)r(t) dt, (22)

where G(x, t, λ) is called Green’s function. Let us obtain an explicit formula for it.

Lemma 2. Let a ∈ [0, π]. Then,

G(x, t, λ) = yt(x− t), t ≤ x ≤ π, (23)

where the function yt(x) for each fixed t ∈ [0, π) solves the Cauchy problem

−y′′t (x) + qt(x)yt(x− a) = λyt(x), 0 < x < π − t, yt(0) = 0, y′t(0) = 1, (24)

with

qt(x) :=

⎧⎨⎩ 0, 0 < x < min{a, π − t},

q+(x + t), a < x < π − t.
(25)

Proof. Since the function G(x, t, λ) is uniquely determined by the representation (22), one
has the right to impose any restrictions on it that will finally lead to (22). In particular, it is
natural to assume that G(x, t, λ) is sufficiently smooth and obeys the conditions

G(x, x, λ) = 0, G′(x, x, λ) = 1. (26)

Then, substituting (22) into (2) and taking the arbitrariness of r(x) into account, we
obtain the relations

−G′′(x, t, λ) = λG(x, t, λ), 0 < t < x < a,

−G′′(x, t, λ) + q+(x)G(x− a, t, λ) = λG(x, t, λ), 0 < t < x− a < π − a,

−G′′(x, t, λ) = λG(x, t, λ), 0 < x− a < t < x < π,

which, in turn, along with (26) guarantee that (22) is a solution of the problem (2) and (21).
Substituting x + t into the above three relations instead of x, we obtain

−G′′(x + t, t, λ) = λG(x + t, t, λ), 0 < x < a− t < a, (27)

−G′′(x + t, t, λ) + q+(x + t)G(x + t− a, t, λ) = λG(x + t, t, λ), a < x < π− t < π, (28)
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−G′′(x + t, t, λ) = λG(x + t, t, λ), max{0, a− t} < x < min{a, π − t}. (29)

Denote yt(x) := G(x + t, t, λ). Then, combining (27) and (29), one can rewrite:

−y′′t (x) = λyt(x), 0 < x < min{a, π − t},

while (28) takes the form

−y′′t (x) + q+(x + t)yt(x− a) = λyt(x), a < x < π − t < π.

Using the designation (25) along with initial conditions (26), we arrive at (24).
Finally, note that after solving the Cauchy problem (24) by the standard approach

(see, e.g., [14]), it is easy to see that G(x, t, λ) is a continuous function with respect to all
arguments. Hence, the integral in (22) exists and gives a solution to the Cauchy problem (2)
and (21).

Lemma 3. Let a ≥ π/2. Then, the following representations hold:

G(x, t, λ) =
sin ρ(x− t)

ρ
, max{0, x− a} ≤ t ≤ x ≤ π, (30)

and

G(x, t, λ) =
sin ρ(x− t)

ρ
+

1
2

∫ x

a+t

sin ρ(x− τ)

ρ
dτ

∫ x+ a+t−τ
2

a+t+τ
2

q+(η) dη (31)

whenever 0 ≤ t ≤ x− a ≤ π − a.

Proof. By virtue of (24) and Lemma 1, we have the representation

yt(x) =
sin ρx

ρ
+

1
2

∫ x

a

sin ρ(x− τ)

ρ
dτ

∫ x+ a−τ
2

a+τ
2

qt(η) dη, 0 ≤ x ≤ π − t,

which, in accordance with (23) and (25), leads to (30) and (31).

By substituting (30) and (31) into (22) and changing the order of integration, we obtain

z(x, λ) =
∫ x

0

(
r(t) +

1
2

∫ t−a

0
r(τ) dτ

∫ x+ a+τ−t
2

a+t+τ
2

q+(η) dη
) sin ρ(x− t)

ρ
dt, 0 ≤ x ≤ π, (32)

where r(x) = 0 for x < 0.
Further, differentiating (30) and (31) with respect to x, we arrive at the formulae

G′(x, t, λ) = cos ρ(x− t), max{0, x− a} ≤ t ≤ x ≤ π,

and

G′(x, t, λ) = cos ρ(x− t) +
1
2

∫ x

a+t

( ∫ x

a+t+τ
2

q+(η) dη +
∫ x

x+ a+t−τ
2

q+(η) dη
)

cos ρ(x− τ) dτ

as soon as 0 ≤ t ≤ x− a ≤ π − a. Substituting them into

z′(x, λ) =
∫ x

0
G′(x, t, λ)r(t) dt,

we analogously obtain the representation

z′(x, λ) =
∫ x

0

(
r(t) +

1
2

∫ t−a

0

( ∫ x

a+t+τ
2

q+(η) dη

+
∫ x

x+ a+τ−t
2

q+(η) dη
)

r(τ) dτ
)

cos ρ(x− t) dt.

(33)
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4. Characteristic Functions

Consider the entire functions

Δj(λ) := C(j)(π, λ) + z(j)(π, λ; q−), j = 0, 1. (34)

The next lemma holds for any a ∈ [0, π].

Lemma 4. For j = 0, 1, eigenvalues of the problem Bj(q) coincide with zeros of Δj(λ).

Proof. Since the sum C(x, λ) + z(x, λ; q−) cannot be identically zero, any zero of Δj(λ) is
an eigenvalue of the problem Bj(q), which, in turn, under our settings has the form

−y′′(x) + q+(x)y(x− a) + q−(x)y(0) = λy(x), y′(0) = y(j)(π) = 0. (35)

Conversely, let λ be an eigenvalue of Bj(q), and let y(x) be the corresponding eigen-
function, i.e., a nontrivial solution of (35). Then, y(0) �= 0 since, obviously, y(x) ≡ 0
otherwise. Without loss of generality, one can assume that y(0) = 1, which will imply
y(x) = C(x, λ) + z(x, λ; q−) due to the uniqueness of solution of the Cauchy problem.
Hence, Δj(λ) = y(j)(π) = 0.

As usual, we call Δj(λ) the characteristic function of the problem Bj(q). The following
lemma based on the two preceding sections gives representations for both characteris-
tic functions.

Lemma 5. The characteristic functions admit the representations

Δ0(λ) = cos ρπ + ω
sin ρ(π − a)

ρ
+

∫ π

0
w0(x)

sin ρx
ρ

dx, w0(x) ∈ L2(0, π), (36)

Δ1(λ) = −ρ sin ρπ + ω cos ρ(π − a) +
∫ π

0
w1(x) cos ρx dx, w1(x) ∈ L2(0, π). (37)

Moreover, the constant ω is determined by (8), and

w0(π − x) = w1(π − x) = q−(x), 0 < x < a, (38)

while for a < x < π :

w0(π − x) =
1
4

(
q+

( a + x
2

)
− q+

(
π +

a− x
2

))
+

1
2

∫ x−a

0
q−(t) dt

∫ π+ a+t−x
2

a+x+t
2

q+(τ) dτ, (39)

w1(π − x) =
1
4

(
q+

( a + x
2

)
+ q+

(
π +

a− x
2

))

+
1
2

∫ x−a

0

( ∫ π

a+x+t
2

q+(τ) dτ +
∫ π

π+ a+t−x
2

q+(τ) dτ
)

q−(t) dt. (40)

Proof. Substituting x = π into (18) and (19) and using (8) and (20), we obtain

C(π, λ) = cos ρπ + ω
sin ρ(π − a)

ρ
+

∫ π−a

0
u0(x)

sin ρx
ρ

dx, (41)

C′(π, λ) = −ρ sin ρπ + ω cos ρ(π − a) +
∫ π−a

0
u1(x) cos ρx dx, (42)

where

uj(π − x) = Kj(π, x) =
1
4

(
q+

( a + x
2

)
− (−1)jq+

(
π +

a− x
2

))
, a < x < π, j = 0, 1. (43)
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Further, substituting r = q− and x = π into (32) and (33), we arrive at

z(π, λ; q−) =
∫ π

0
v0(x)

sin ρx
ρ

dx, z′(π, λ; q−) =
∫ π

0
v1(x) cos ρx dx, (44)

where
v0(π − x) = v1(π − x) = q−(x), 0 < x < a, (45)

v0(π − x) =
1
2

∫ x−a

0
q−(t) dt

∫ π+ a+t−x
2

a+x+t
2

q+(τ) dτ, a < x < π, (46)

v1(π − x) =
1
2

∫ x−a

0

( ∫ π

a+x+t
2

q+(τ) dτ +
∫ π

π+ a+t−x
2

q+(τ) dτ
)

q−(t) dt, a < x < π. (47)

According to (34), (41), (42), and (44), we obtain (36) and (37) with

wj(x) = uj(x) + vj(x), j = 0, 1, (48)

where u0(x) = u1(x) = 0 on (π− a, π). Finally, substituting (43) and (45)–(47) into (48), we
arrive at (38)–(40).

In the rest of this section, we provide auxiliary facts about arbitrary functions of the
form (36) and (37) and give the proof of Theorem 1.

Lemmas 6–8 below are valid for any fixed a ∈ [0, 2π]. By the standard approach (see,
e.g., [19,36]) involving Rouché’s theorem, one can prove the following assertion.

Lemma 6. For j = 0, 1, any Δj(λ) has infinitely many zeros {λn,j}n≥0 of the form (7).

The next assertion for a = 0 can be found in [19], but the proof does not depend on
the value of a as soon as it ranges within [0, 2π].

Lemma 7. Any functions of the forms (36) and (37) are determined by their zeros uniquely.
Moreover, the representations in (11) hold.

Now, we are in position to give the proof of Theorem 1.

Proof of Theorem 1. The asymptotics (7) is a direct corollary of Lemmas 5 and 6. It remains
to make note that, by virtue of (10), (36), and (37) along with Lemma 7, we have

iθ0(ρ)− θ1(ρ) = i
∫ π

0
w0(x) sin ρx dx−

∫ π

0
w1(x) cos ρx dx =

θ+(ρ)− θ−(ρ)
2

,

where, according to (38),

θ+(ρ) =
∫ π−a

0
(w0 − w1)(x) exp(iρx) dx, θ−(ρ) =

∫ π

0
(w0 + w1)(x) exp(−iρx) dx,

which implies (9).

Statements analogous to the next lemma are often used for finding necessary and
sufficient conditions for the solvability of inverse problems, i.e., a characterization of the
spectral data (see Remark 2 in [36]). For its proof, we will follow a new simple idea
suggested in [36].

Lemma 8. For j = 0, 1, let {λn,j}n≥0 be arbitrary complex sequences of the form (7). Then, the
function Δj(λ) constructed by the corresponding formula in (11) has the form (36) or
(37), respectively.
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Proof. Since the assertion of the lemma for j = 0 formally follows from Lemma 6 in [15],
we focus on the case j = 1. Let a sequence {λn,1}n≥0 of the form (7) be given. First, let
all values λn,1 be distinct and λ0,1 = 0. Denote ρ−n,1 := −ρn,1 for n ≥ 1. By virtue of
Lemma 2 in [36], the system {exp(iρn,1x)}n∈Z is a Riesz basis in L2(−π, π). Moreover, the
asymptotics (7) implies {θ(ρn,1)}n∈Z ∈ l2, where θ(ρ) := ρ sin ρπ −ω cos ρ(π − a) and ω
is as in (7). Hence, there exists a unique function W1(x) ∈ L2(−π, π) obeying the relations

θ(ρn,1) =
∫ π

−π
W1(x) exp(iρn,1x) dx, n ∈ Z.

Obviously, W1(x) is even. Thus, λn,1 = (ρn,1)
2, n ≥ 0, are zeros of the function Δ1(λ)

determined by (37) with w1(x) = 2W1(x). By Lemma 6, Δ1(λ) has no other zeros, while by
Lemma 7, it admits the second representation in (11), which finishes the proof for a simple
sequence {λn,1}n≥0 containing a zero element.

For the general case, it is sufficient to note that multiplying Δ1(λ) with any function

h(λ) := ∏
n∈A

λ− λ̃n,1

λ− λn,1
, A ⊂ N∪ {0}, #A < ∞,

preserves the form (37) and changes only w1(x). Indeed, we have

h(λ)Δ1(λ) = −ρ sin ρπ + ω cos ρ(π − a) + H(λ),

where

H(λ) = (1− h(λ))
(

ρ sin ρπ −ω cos ρ(π − a)
)
+ h(λ)

∫ π

0
w1(x) cos ρx dx.

The function H(λ) is whole as soon as λn,1 are zeros of Δ1(λ). Moreover, in the ρ-plane, we,
obviously, have H(ρ2) ∈ L2(−∞,+∞) and H(ρ2) = o(exp(|Im ρ|π)) as ρ → ∞. Thus, by
virtue of the Paley–Wiener theorem (see, e.g., [37]), it has the form

H(λ) =
∫ π

0
w̃1(x) cos ρx dx, w̃1(x) ∈ L2(0, π),

which finishes the proof completely.

Finally, let us give one more auxiliary assertion, which will be used in the proof of
Theorem 2. Let {nk}k∈N be an increasing sequence of non-negative integers. Without loss of
generality, assume that multiple elements in the subspectrum {λnk ,0}k∈N are neighboring, i.e.,

λnk ,0 = λnk+1,0 = . . . = λnk+mk−1,0,

where mk is the multiplicity of the value λnk ,0 in this subspectrum. Put

S := {1} ∪ {k : λnk ,0 �= λnk−1,0, k ≥ 2}

and consider the functional system σ := {sn(x)}n∈N, where

sk+ν(x) :=
(

nk +
1
2

) dν

dλν

sin ρx
ρ

∣∣∣
λ=λnk ,0

, k ∈ S , ν = 0, mk − 1.

Lemma 9. The system σ is a Riesz basis in Hb := L2(0, b) if and only if so is the system
σ0 = {sin(nk + 1/2)x}k∈N. Moreover, they have equal defects, i.e., dim(Hb � σ0) = dim(Hb � σ).

Proof. Let there exist d linearly independent entire functions hν(λ), ν = 1, d, of the form

hν(λ) =
∫ b

0
fν(x)

sin ρx
ρ

dx, fν(x) ∈ L2(0, b), (49)
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whose zeros have the common part {(nk + 1/2)2}k∈N. In other words, the space Hb � σ0
contains at least d linearly independent functions fν(x). Consider the meromorphic function

F(λ) :=
∞

∏
k=1

λnk ,0 − λ

(nk + 1/2)2 − λ
.

Then, the entire (after removing singularities) function h̃ν(λ) := F(λ)hν(λ) has the form

h̃ν(λ) =
∫ b

0
f̃ν(x)

sin ρx
ρ

dx, f̃ν(x) ∈ L2(0, b). (50)

Indeed, as in the proof of Lemma 2 in [36], one can show that |F(ρ2)| < Cδ whenever

|ρ± (nk + 1/2)| ≥ δ, k ∈ N,

for each fixed δ > 0. Hence, we have |ρh̃ν(ρ2)| ≤ Cδ|ρhν(ρ2)| for such ρ. Thus, according
to (49), the function ρh̃ν(ρ2) is square-integrable on the line ρ = iδ, while the maximum modulus
principle for analytic functions gives ρh̃ν(ρ2) = o(exp(|Im ρ|b)) as ρ → ∞ in the entire plane.
Using the Paley–Wiener theorem [37] and taking the oddness of ρh̃ν(ρ2) into account, we
obtain (50). Obviously, the functions h̃ν(λ), ν = 1, d, are linearly independent, and their zeros
have the common part {λnk ,0}k∈N with account of multiplicity. Therefore, dim(H � σ0) ≤
dim(H� σ). Analogously, one can prove the inequality dim(H� σ0) ≥ dim(H� σ).

We have proved the second assertion of the lemma, which means, in particular, that the
systems σ and σ0 can be complete in Hb only simultaneously. Hence, by virtue of Proposi-
tion 1.8.5 in [19], the simultaneous Riesz-basisness follows from their quadratical closeness

∞

∑
k=1

‖sk − s0
k‖2

L2(0,b) < ∞, s0
k(x) := sin γkx, γk := nk +

1
2

.

The last inequality, in turn, is ensured by the estimate

sk(x)− s0
k(x) = sin ρnk ,0x− sin γkx + O

( 1
k2

)
= 2 cos

(ρnk ,0 + γk)x
2

sin
(ρnk ,0 − γk)x

2
+ O

( 1
k2

)
= O

(1
k

)
, k → ∞,

which holds uniformly in x ∈ [0, b].

5. Solution of the Inverse Problems

When the functions w0(x) and w1(x) are specified, relations (38)–(40) can be considered
as a nonlinear integral equation with respect to q(x) = q−(x)+ q+(x). The following lemma
actually implies its unique solvability.

Lemma 10. For any functions w0(x), w1(x), q−(x) ∈ L2(0, π − a), the linear system consisting
of (39) and (40) has a unique solution q+(x) ∈ L2(a, π).

Proof. Summing up equations (39) and (40) and then subtracting one from the other, we
obtain

2(w1 + w0)(π − x) = q+
( a + x

2

)
+ 2

∫ x−a

0
q−(t) dt

∫ π

a+x+t
2

q+(τ) dτ,

2(w1 − w0)(π − x) = q+
(

π +
a− x

2

)
+ 2

∫ x−a

0
q−(t) dt

∫ π

π+ a+t−x
2

q+(τ) dτ,

⎫⎪⎪⎬⎪⎪⎭ a < x < π.

Changing the variable, we arrive at the relations

2(w1 + w0)(π + a− 2x) = q+(x) + 2
∫ 2(x−a)

0
q−(t) dt

∫ π

x+ t
2

q+(τ) dτ, a < x <
a + π

2
,
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2(w1 − w0)(2x− π − a) = q+(x) + 2
∫ 2(π−x)

0
q−(t) dt

∫ π

x+ t
2

q+(τ) dτ,
a + π

2
< x < π.

Then, changing the order of integration in the last two formulae, we obtain the system

2(w1 + w0)(π + a− 2x) = q+(x) + 2
∫ 2x−a

x
q+(t) dt

∫ 2(t−x)

0
q−(τ) dτ

+2
∫ π

2x−a
q+(t) dt

∫ 2(x−a)

0
q−(τ) dτ, a < x <

a + π

2
,

2(w1 − w0)(2x− π − a) = q+(x) + 2
∫ π

x
q+(t) dt

∫ 2(t−x)

0
q−(τ) dτ,

a + π

2
< x < π.

Using the designations

W(x) :=

⎧⎪⎨⎪⎩
2(w1 + w0)(π + a− 2x), a < x <

a + π

2
,

2(w1 − w0)(2x− π − a),
a + π

2
< x < π,

(51)

Q(x, t) :=

⎧⎪⎪⎨⎪⎪⎩
2
∫ 2(x−a)

0
q−(τ) dτ, a < 2x− a < t < π,

2
∫ 2(t−x)

0
q−(τ) dτ, a < x < t < min{2x− a, π},

(52)

one can rewrite the latter system as a Volterra integral equation of the second kind:

W(x) = q+(x) +
∫ π

x
Q(x, t)q+(t) dt, a < x < π, (53)

which possesses a unique solution q+(x) ∈ L2(a, π) (see, e.g., [38]).

Proof of Theorem 2. First of all, note that due to (7), the value ω is always determined by
specifying {λn,1}n≥0 via the formula

ω = π lim
k→∞

ñk
ρñk ,1 − ñk

cos ñka
, (54)

where the natural sequence {ñk} is chosen so that | cos ñka| ≥ c > 0. Alternatively, in
accordance with (37), one can use the relation

ω = lim
n→∞

(
Δ1(ξ

2
n) + ξn sin ξnπ

)
, ξn =

2πn
π − a

, (55)

where Δ1(λ) is constructed by the second formula in (11).
(i) Let the system σ0 be complete in H. Since, according to Lemma 7, the characteristic

function Δ1(λ) is uniquely determined by its zeros, so is also w1(x) in (37). By virtue of (38),
the function w0(x) coincides with w1(x) a.e. on (π − a, π), i.e., it becomes known too.

By differentiating (36) ν = 0, mk − 1 times and substituting λ = λnk ,0 for k ∈ S , we
arrive at the relations

βn =
∫ π−a

0
w0(x)sn(x) dx, n ∈ N, (56)

where mk, S and sn(x) were defined before Lemma 9 and

βk+ν = −(nk + 1) dν

dλν

(
cos ρπ + ω

sin ρ(π−a)
ρ + γ(λ)

)∣∣∣
λ=λnk ,0

,

k ∈ S , ν = 0, mk − 1,
(57)

γ(λ) =
∫ π

π−a
w1(x)

sin ρx
ρ

dx. (58)
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Hence, by virtue of Lemma 9, the function w0(x) is determined uniquely also on (0, π − a).
Thus, it remains to recall representations (3) and (38), as well as to apply Lemma 10.

(ii) Assume that q(x) is uniquely determined by {λnk ,0}k∈N and {λn,1}n≥0 and, to the
contrary, that dim(H� σ0) > 1. Then, according to Lemma 9, we have dim(H� σ) > 1, i.e.,
there exist at least two linearly independent functions f1(x), f2(x) ∈ L2(0, π − a) such that∫ π−a

0
fν(x)sn(x) dx = 0, n ∈ N, ν = 1, 2. (59)

Let q̃+(x) be a solution of the integral equation

W(x) + α1F1(x) + α2F2(x) = q̃+(x) +
∫ π

x
Q(x, t)q̃+(t) dt, a < x < π, (60)

where W(x) is defined in (51), while

Fν(x) :=

⎧⎪⎨⎪⎩
2 fν(π + a− 2x), a < x <

a + π

2
,

−2 fν(2x− π − a),
a + π

2
< x < π,

ν = 1, 2. (61)

According to (53), we have q̃+(x) = q+(x) + α1g1(x) + α2g2(x), where

gν(x) = Fν(x) +
∫ π

x
Q1(x, t)Fν(t) dt, ν = 1, 2,

while Q1(x, t) is the resolvent kernel for the kernel Q(x, t). Choose α1 and α2 so that they
do not vanish simultaneously and

1
2

∫ π

a
q̃+(x) dx = ω. (62)

Since the functions F1(x) and F2(x) are linearly independent, so are g1(x) and g2(x). Hence,
q̃+ �= q+. Continue q̃+(x) to (0, a) as zero and consider the function q̃(x) = q−(x) + q̃+(x).
By virtue of (62) and Lemma 5, the characteristic functions Δ̃0(λ) and Δ̃1(λ) of the problems
B0(q̃) and B1(q̃), respectively, have the forms

Δ̃0(λ) = cos ρπ + ω
sin ρ(π − a)

ρ
+

∫ π

0
w̃0(x)

sin ρx
ρ

dx, w̃0(x) ∈ L2(0, π),

Δ̃1(λ) = −ρ sin ρπ + ω cos ρ(π − a) +
∫ π

0
w̃1(x) cos ρx dx, w̃1(x) ∈ L2(0, π),

and w̃j(x) = wj(x) a.e. on (π − a, π) for j = 0, 1. Moreover, analogously to (53), we have

q̃+(x) +
∫ π

x
Q(x, t)q̃+(t) dt =

⎧⎨⎩ 2(w̃1 + w̃0)(π + a− 2x), a < x <
a + π

2
,

2(w̃1 − w̃0)(2x− π − a),
a + π

2
< x < π.

Comparing this with (51), (60), and (61), we obtain w̃1(x) = w1(x) a.e. on (0, π) and

w̃0(x) = w0(x) + α1 f1(x) + α2 f2(x) a.e. on (0, π − a). (63)

Hence, the spectra of B1(q) and B1(q̃) coincide. Moreover, according to (56)–(59) and (63), the
sequence {λnk ,0}k∈N is a subsequence of zeros of Δ̃0(λ). Hence, {λnk ,0}k∈N is a subspectrum
also of the problem B0(q̃). Thus, we obtained another potential q̃ �= q with the same spectral
data {λnk ,0}k∈N and {λn,1}n≥0 as q has. This contradiction finishes the proof.

Now, we are in a position to give a constructive procedure for solving Inverse Prob-
lem 1 (Algorithm 1).
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Algorithm 1 Constructive procedure for solving Inverse Problem 1
Let the spectra {λn,0}n≥0 and {λn,1}n≥0 be given. Then:
(i) Construct the functions Δ0(λ) and Δ1(λ) by the formulae in (11);
(ii) Find the value ω by (54) or (55);
(iii) Calculate the functions w0(x) and w1(x) in (36) and (37) by inverting the corresponding
Fourier transforms:

w0(x) =
2
π

∞

∑
n=1

an sin nx, w1(x) =
2
π

∞

∑
n=0

bn cos nx,

where

an = n(Δ0(n2)− (−1)n) + ω(−1)n sin na, n ≥ 1, bn = Δ1(n2)−ω(−1)n cos na, n ≥ 0;

(iv) Find q−(x) ∈ L2(0, a) by any relation in (38) and put q−(x) = 0 for x ∈ (a, π);
(v) Construct the functions W(x) and Q(x, t) by the formulae (51) and (52), respectively,
and find q+(x) ∈ L2(a, π) by solving the Volterra integral Equation (53);
(vi) Finally, construct q(x) = q−(x) + q+(x), where q+(x) = 0 on (0, a).

This algorithm can be easily extended to Inverse Problem 2 if {sin(nk + 1/2)x}k∈N
is a Riesz basis in L2(0, π − a). Then, by virtue of Lemma 9, so is the system {sn(x)}n∈N.
Therefore, on step (iii), the function ω0(x) can be constructed in accordance with (56) by
the formula

w0(x) =
∞

∑
n=1

βns∗n(x), 0 < x < π − a,

where the coefficients βn are determined by relations (57) and (58), while {s∗n(x)}n∈N is the
biorthogonal basis to the basis {sn(x)}n∈N. It remains to note that, according to (38), the
knowledge of w0(x) on (π − a, π) is excessive since w1(x) has been found completely.

Proof of Theorem 3. Let us begin with the necessity part. According to (10), (36), and (37),
we have

θ0(ρ) =
∫ π

0
w0(x) sin ρx dx, θ1(ρ) =

∫ π

0
w1(x) cos ρx dx.

Hence, by virtue of (3) and (38), the exponential types of θ0(ρ) and θ1(ρ) do not exceed
π − a. Finally, the relation (12) follows from Lemmas 5 and 7 after substituting λ = 0
into (37) and the second formula in (11). Indeed, according to (38) and (40), the assumption
q− = 0 implies∫ π

0
w1(x) dx =

1
4

∫ π

a

(
q+

( a + x
2

)
+ q+

(
π +

a− x
2

))
dx =

1
2

∫ π

a
q+(x) dx = ω. (64)

For the sufficiency, we construct the functions Δ0(λ) and Δ1(λ) by the formulae in (11)
using the given sequences {λn,0}n≥0 and {λn,1}n≥0. By virtue of Lemma 8, these functions
have the forms (36) and (37), respectively, with some w0(x), w1(x) ∈ L2(0, π), which, in turn,
vanish a.e. on (π − a, π) by the first condition along with the Paley–Wiener theorem [37].

By virtue of Lemma 10, there exists a unique solution q+(x) ∈ L2(a, π) of the system
(39) and (40) with q−(x) = 0. As in (64), we calculate

ω̃ :=
∫ π−a

0
w1(x) dx =

1
2

∫ π

a
q+(x) dx

and, hence,
Δ1(0) = ω + ω̃. (65)
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On the other hand, the second formula in (11) and condition (12) imply Δ1(0) = 2ω, which,
along with (65), gives ω̃ = ω. Consider the problems B0(q) and B1(q) with the potential

q(x) =

{
0, x ∈ (0, a),

q+(x), x ∈ (a, π).

According to Lemma 5, Δ0(λ) and Δ1(λ) are their characteristic functions, respectively.
Hence, {λn,j}n≥0 is the spectrum of Bj(q) for j = 0, 1.

6. Conclusions and Discussing the Results

The paper thus connects two different directions in the inverse spectral theory, namely:
for operators with constant delay [1–17] and for operators with a frozen argument [28–35],
which have been developed independently before the present study. Such a fusion is
naturally caused by replacing the standard assumption of the vanishing of the potential
q(x) on (0, a) in equation (1) by imposing a continuously matching initial function (4). This
leads to the appearance of a new term with a frozen argument at zero in Equation (5).
Alternative forms of an initial function may give rise to considering also other equations
with frozen argument

−y′′(x) + q+(x)y(x− a) + q−(x)g(x− a)y(j)(b) = λy(x), 0 < x < π, (66)

where g(x) ∈ L∞(0, a) and b ∈ [0, π], while j ∈ {0, 1}, or more general equations

−y′′(x) + q+(x)y(x− a) + q−(x)Ly(x) = λy(x), 0 < x < π, (67)

with some known linear operator L : W2
2 [0, π]→ L∞(−a, 0) under the reasonable assump-

tion of the relative compactness with respect to the operator of double differentiation.
The usual restriction q−(x) = 0 means that the two spectra must carry excessive

information about the potential. For this reason, the reconstruction of q(x) given only
parts of the spectra was initiated in [6]. In particular, necessary and sufficient conditions
for arbitrary subspectra guaranteeing the uniqueness of the potential were established.
Later in [15], necessary and sufficient conditions for the solvability of the inverse problem
from the complete spectra were obtained. Due to the overdetermination, these conditions
besides the asymptotics also included some restrictions on the growth of certain entire
functions constructed by the spectra.

Refusing the assumption q−(x) = 0 would obviously lead to an increase of the
required information for the unique recovery of q(x). However, Theorem 2 shows that
one of the spectra can still be specified partially. This effect is caused by the unique
determination of the corresponding operator with the purely frozen argument, when
q+(x) = 0, from only one spectrum.

The proof of Theorem 2 gave Algorithm 1 for solving the inverse problem, which can be
implemented numerically. We note that, in spite of the growing interest in recovering operators
with constant delay, still no numerical results in this direction are known. For implementing
Algorithm 1, one can adapt the numerical method suggested in [39] for integro-differential
operators and involving approximations by entire functions of exponential type.
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Abstract: Quasilinear equations in Banach spaces with distributed Gerasimov–Caputo fractional
derivatives, which are defined by the Riemann–Stieltjes integrals, and with a linear closed operator A,
are studied. The issues of unique solvability of the Cauchy problem to such equations are considered.
Under the Lipschitz continuity condition in phase variables and two types of continuity over all
variables of a nonlinear operator in the equation, we obtain two versions on a theorem on the
nonlocal existence of a unique solution. Two similar versions of local unique solvability of the Cauchy
problem are proved under the local Lipschitz continuity condition for the nonlinear operator. The
general results are used for the study of an initial boundary value problem for a generalization of the
nonlinear phase field system of equations with distributed derivatives with respect to time.

Keywords: distributed fractional derivative; fractional differential equation; Cauchy problem; quasi-
liner equation; fixed point theorem; initial boundary value problem

MSC: 34G20; 35R11; 34A08; 47D99

1. Introduction

Various classes of fractional differential equations are the subjects of intensive research
by many scientists in recent decades. Such equations are of interest both because of
their increasing importance in applied investigations [1–4], and from the point of view
of the development of theory [5–8]. A special class consists of equations with distributed
derivatives (or so-called continual derivatives, mean derivatives), which, in partial, are
applied to the research of some real phenomena and processes, when an order of a fractional
derivative in a model depends on the process parameters: in the theory of viscoelastic
media [9], in modeling dielectric induction and diffusion [10,11], in the kinetic theory [12],
and in other scientific fields [13–16]. These works initiated other investigations of the
equations with distributed derivatives from the point of view of the qualitative theory of
differential equations [17–22].

The main aim of the present work is to investigate the Cauchy problem for a class
of abstract quasilinear equations with distributed derivatives. Let Z be a Banach space,
Dβ be the fractional Gerasimov–Caputo derivative for β > 0 and the fractional Riemann–
Liouville integral for β ≤ 0, A be a linear closed densely defined in Z operator. Consider
the Cauchy problem

Dkz(t0) = zk, k = 0, 1, . . . , m− 1, (1)

Mathematics 2023, 11, 2472. https://doi.org/10.3390/math11112472 https://www.mdpi.com/journal/mathematics146
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for the quasilinear equation

c∫
b

Dαz(t)dμ(α) = Az(t) + B

⎛⎝t,
c1∫

b1

Dαz(t)dμ1(α), . . . ,
cn∫

bn

Dαz(t)dμn(α)

⎞⎠, (2)

where b < c, m − 1 < c ≤ m ∈ N, μ ∈ BV((b, c];C) (i. e., μ is a function of a bounded
variation), c is a variation point of the measure dμ(α), bl < cl , c1 ≤ c2 ≤ · · · ≤ cn < c,
μl ∈ BV((bl , cl ];C), cl is a variation point of the measure dμl(α), l = 1, 2, . . . , n. Equality (2)
contains the Riemann–Stieltjes integrals.

Linear equations with a distributed order derivative

c∫
b

ω(α)Dαz(t)dα = Az(t) (3)

were studied in works [23–25], where ω : (b, c) → C and A is a bounded operator, or a
generator of an analytic resolving family of a fractional equation. For b = 0, c ∈ (0, 1], a
criteria in terms of conditions on a linear closed operator A for the existence of an analytic
resolving family of operators for Equation (3) were obtained in paper [26]. In the work [27],
these criteria were generalized to the case c > 1 and a perturbations theorem on generators
of analytic resolving operators families for (3) was obtained. Analogous results for the
equation with a discretely distributed Gerasimov–Caputo derivative

n

∑
k=1

ωkDαk z(t) = Az(t).

were obtained in [28]. All these results were generalized and combined in general formula-
tions with the Riemann–Stieltjes integral in the definition of the distributed derivative [29].
Recall that an arbitrary function μ with a bounded variation has the form μ = μc + μd,
where μc is a continuous function with a bounded variation, and μd is a jumps function.
Consequently, the left-hand side of (2) has the form

c∫
b

Dαz(t)dμ(α) =

c∫
b

μ′c(α)Dαz(t)dα +
n

∑
k=1

ωkDαk z(t),

if there exists an appropriate derivative μ′c, αk are points of jumps of the function μd, ωk are
values of jumps, k = 1, 2, . . . , n.

Each result in the listed works [23–29] on the linear homogeneous equation is accom-
panied by theorems on the solvability of the corresponding linear inhomogeneous equation.
Here, such theorems are used for the study of the Cauchy problem (1) to quasilinear
Equation (2). Note that the above-mentioned papers concern equations with distributed
order derivatives in finite-dimensional spaces, or in the linear case, or with a bounded
operator A in a Banach space (see [25]). In the present paper, we have studied for the first
time a quasilinear equation with distributed derivatives and an unbounded A operator in
an infinite-dimensional space.

In the second section of the present work, the main definitions and results on the
solvability of the inhomogeneous equation are formulated. The third section contains
the definition of special functional spaces, statements and proofs of their properties and
properties of operators of distributed Gerasimov–Caputo fractional derivatives, which are
acting in these spaces. In the fourth section, theorems on nonlocal solvability of Cauchy
problem (1) and (2) are proved under the condition B ∈ C([t0, T]× Zn; DA), where DA
is the domain of A with its graph norm, or with B ∈ C([t0, T]×Zn;Z), but in a slightly
narrower functional space. In the fifth section, analogous results were obtained on the local
unique solvability of problem (1) and (2) with B ∈ C(U; DA), or B ∈ C(U;Z), where U is
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an open set in R×Zn. The last section contains an application of abstract results to the
research of an initial boundary value problem for some generalization of the phase field
system of equations with the distributed order Gerasimov–Caputo time-derivatives.

2. Linear Equation and Resolving Families

Let Z be a Banach space, denote for β > 0, h : (t0, ∞) → Z the Riemann–Liouville
fractional integral of an order β > 0

Jβh(t) :=
1

Γ(β)

t∫
t0

(t− s)β−1h(s)ds, t > t0.

Let m− 1 < α ≤ m ∈ N, Dm be the derivative of the m-th order, then

Dαh(t) := Dm Jm−α

(
h(t)−

m−1

∑
k=0

h(k)(t0)
(t− t0)

k

k!

)

is the Gerasimov–Caputo derivative of the order α [1,2,30]. It will be assumed that
Dαh(t) := J−αh(t) for α < 0.

For a function h : R+ → Z , the Laplace transform is denoted by ĥ or Lap[h], if
the expression for h is too large. For the Gerasimov–Caputo derivative of an order α ∈
(m− 1, m], it is known the equality (see, e.g., [6])

D̂αh(λ) = λα ĥ(λ)−
m−1

∑
k=0

h(k)(0)λα−1−k. (4)

The notations Sθ,a := {μ ∈ C : | arg(μ − a)| < θ, μ �= a} for θ ∈ [π/2, π], a ∈ R,
Σψ := {t ∈ C : | arg t| < ψ, t �= 0} for ψ ∈ (0, π/2] will be used later. Besides, the
Banach space of all linear continuous operators from Z to Z will be denoted by L(Z),
and denote the set of all linear closed operators, densely defined in Z , acting in the space
Z , by C l(Z). The domain DA of an operator A ∈ C l(Z) endows by its graph norm
‖ · ‖DA := ‖ · ‖Z + ‖A · ‖Z . Hence, DA is a Banach space with this norm due to the
closedness of A.

Consider the Cauchy problem

Dkz(0) = zk, k = 0, 1, . . . , m− 1, (5)

for the distributed order equation

c∫
b

Dαz(t)dμ(α) = Az(t), t > 0, (6)

where b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, μ : (b, c] → C is a function with a bounded
variation, briefly μ ∈ BV((b, c];C), c is a variation point of the measure dμ(α). Equality (6)
contains the Riemann–Stieltjes integral. A solution of problem (5) and (6) is a function

z ∈ Cm−1(R+;Z) ∩ C(R+; DA), such that
c∫

b
Dαz(t)dμ(α) ∈ C(R+;Z) and equalities (5)

and (6) for t ∈ R+ are fulfilled. Hereafter, R+ := R+ ∪ {0}.
Under the conditions of this section, consider the analytic on Sπ,0 functions

W(λ) :=
c∫

b

λαdμ(α) Wk(λ) :=
c∫

k

λαdμ(α), k = 0, 1, . . . , m− 1,
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also defined by Riemann–Stieltjes integrals. Here and further, the main branch of the power
function is considered.

Lemma 1 ([29]). Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, μ ∈ BV((b, c];C), c be a variation
point of the measure dμ(α). Then for k, l = 0, 1, . . . , m− 1, k > l,

∀ε ∈ (0, c) ∃C, � > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < �} |Wk(λ)| ≥ C|λ|c−ε;

∀ε ∈ (0, c) ∃C, � > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < �} |W(λ)| ≥ C|λ|c−ε;

∃C, � > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < �} |Wk(λ)−Wl(λ)| ≤ C|λ|k;

∃C, � > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < �} |Wk(λ)−W(λ)| ≤ C|λ|k.

Definition 1 ([29]). A family of operators {Sk(t) ∈ L(Z) : t ≥ 0}, k ∈ {0, 1, . . . , m− 1}, is
called k-resolving for Equation (6), if:

(i) Sk(t) is strongly continuous for t ≥ 0;
(ii) Sk(t)[DA] ⊂ DA, Sk(t)Az = ASk(t)z for all z ∈ DA, t ≥ 0;
(iii) Sk(t)zk is a solution of the Cauchy problem

Dlz(0) = 0, l ∈ {0, 1, . . . , m− 1} \ {k}, Dkz(0) = zk (7)

to Equation (6) for any zk ∈ DA.

Remark 1. Thus, a k-resolving family {Sk(t) ∈ L(Z) : t ≥ 0} consists of operators, such that
Sk(t) for t ≥ 0 maps arbitrary zk ∈ DA into the value z(t) = Sk(t)zk at the point t of a solution of
Cauchy problem (6) and (7). Therefore, the families {Sk(t) ∈ L(Z) : t ≥ 0}, k = 0, 1, . . . , m− 1,
entirely describe the solution of the complete Cauchy problem (5) and (6).

A resolving family of operators is called analytic if it has an analytic continuation to
a sector Σψ0 for some ψ0 ∈ (0, π/2]. An analytic resolving family of operators {S(t) ∈
L(Z) : t ≥ 0} has a type (ψ0, a0) for some ψ0 ∈ (0, π/2], a0 ∈ R, if for any ψ ∈ (0, ψ0),
a > a0 there exists C(ψ, a) > 0, such that for every t ∈ Σψ the inequality ‖S(t)‖L(Z) ≤
C(ψ, a)eaRe t holds.

Remark 2. Similar notions of analytic resolving families of operators are used in the study of
integral evolution equations [31] and fractional differential equations [32]. They generalize the
notion of an analytic resolving semigroup of operators for the first order equation D1

t z(t) = Az(t)
(see [33–35]).

Denote ρ(A) := {λ ∈ C : (λI − A)−1 ∈ L(Z)} for an operator A ∈ C l(Z), i. e., ρ(A)
is the resolvent set of A. Define a class AW(θ0, a0) (see [29]) of all operators A ∈ C l(Z),
such that:

(i) there exist θ0 ∈ (π/2, π], a0 ≥ 0, such that W(λ) ∈ ρ(A) for every λ ∈ Sθ0,a0 ;
(ii) for every θ ∈ (π/2, θ0), a > a0 there exists K(θ, a) > 0, such that for all λ ∈ Sθ,a

‖(W(λ)I − A)−1‖L(Z) ≤
|λ|K(θ, a)

|W(λ)||λ− a| .

Remark 3. The classes AW(θ0, a0) in works [26–28] are partial cases of this class with the same
denotation AW(θ0, a0) due to the more general construction of the distributed derivative in the
present work. If μ is a constant, excluding a unique jump in the point α = c, class AW(θ0, a0)
coincides with the class Ac(θ0, a0), defined in [32]. For c = 1, this class contains generators of
analytic operator semigroups [33–35].

Remark 4. If A ∈ L(Z), then A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0 (see [29]).
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For an operator A ∈ AW(θ0, a0), the operators

Zk(t) :=
1

2πi

∫
Γ

Wk(λ)

λk+1 (W(λ)I − A)−1eλtdλ, k = 0, 1, . . . , m− 1,

are defined for t > 0, where Γ = Γ+ ∪ Γ− ∪ Γ0, Γ± = {μ ∈ C : μ = a + re±iθ , r ∈ (δ, ∞)},
Γ0 = {μ ∈ C : μ = a + δeiϕ, ϕ ∈ (−θ, θ)} for some δ > 0, a > a0, θ ∈ (π/2, θ0).

Theorem 1 ([29]). Let b, c ∈ R, b < c, m − 1 < c ≤ m ∈ N, μ ∈ BV((b, c];C), c be a
variation point of the measure dμ(α). Then, there exists an analytic 0-resolving family of operators
of the type (θ0 − π/2, a0) for Equation (6), if and only if A ∈ AW(θ0, a0). In this case, there
exists a unique k-resolving family of operators for every k = 0, 1, . . . , m− 1, and it has the form
{Zk(t) ∈ L(Z) : t ≥ 0}.

Remark 5. The theorem shows that the condition A ∈ AW(θ0, a0) is not only sufficient, but also
necessary for the analytic resolving families existence, in other words, for the unique solvability of
problem (5) and (6) in the considered sense.

Theorem 2 ([29]). Let b, c ∈ R, b < c, 2 < c, μ ∈ BV((b, c];C), c be a variation point of the
measure dμ(α), μ(α) ∈ R for all α from some left neighborhood of c, A ∈ AW(θ0, a0) for some
θ0 ∈ (π/2, π), a0 ≥ 0. Then, A ∈ L(Z).

Denote for t > 0
Z(t) :=

1
2πi

∫
Γ

eλt(W(λ)I − A)−1dλ.

Recall that Cγ([0, T];Z) with γ ∈ (0, 1] is the class of functions f : [0, T] → Z , such
that for all t, s ∈ [0, T] the Hölder condition ‖ f (t)− f (s)‖Z ≤ C|t− s|γ is satisfied with
some C > 0.

Theorem 3 ([29]). Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, μ ∈ BV((b, c];C), c be a variation
point of the measure dμ(α), θ0 ∈ (π/2, π], a0 ≥ 0, A ∈ AW(θ0, a0), g ∈ C([0, T]; DA) ∪
Cγ([0, T];Z), γ ∈ (0, 1], zk ∈ DA, k = 0, 1, . . . , m− 1. Then, the function

z(t) =
m−1

∑
k=0

Zk(t)zk +

t∫
0

Z(t− s)g(s)ds

is a unique solution of Cauchy problem (5) for the equation

c∫
b

Dαz(t)dμ(α) = Az(t) + f (t).

3. Some Properties of Distributed Derivatives

For t0, T, β ∈ R, t0 < T, denote the space Cm−1,β([t0, T];Z) := {z ∈ Cm−1([t0, T];Z) :
Dβz ∈ C([t0, T];Z)} with the norm

‖z‖Cm−1,β([t0,T];Z) := ‖z‖Cm−1([t0,T];Z) + ‖Dβz‖C([t0,T];Z).

It is evident, that Cm−1,β([t0, T];Z) = Cm−1([t0, T];Z), if and only if β ≤ m− 1. It can
be proved directly that even for β > m− 1 the space Cm−1,β([t0, T];Z) is complete.
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Lemma 2. Let m− 1 < β ≤ m ∈ N, z ∈ Cm−1,β([t0, T];Z). Then, for every α ∈ [0, β] Dαz ∈
C([t0, T];Z), moreover, there exists C > 0, such that for all α ∈ [0, β], z ∈ Cm−1,β([t0, T];Z)

‖Dαz‖C([t0,T];Z) ≤ C‖z‖Cm−1,β([t0,T];Z).

Proof. If m− 1 < α < β < m ∈ N, we have for y ∈ Cm([t0, T];Z)

Dm Jβ−αy(t) = Dm
t−t0∫
0

sβ−α−1

Γ(β− α)
y(t− s)ds =

= Dm−1

⎛⎝ (t− t0)
β−α−1

Γ(β− α)
y(t0) +

t−t0∫
0

sβ−α−1

Γ(β− α)
D1y(t− s)ds

⎞⎠ =

= Dm−2

⎛⎝ (t− t0)
β−α−2

Γ(β− α− 1)
y(t0) +

(t− t0)
β−α−1

Γ(β− α)
D1y(t0) +

t−t0∫
0

sβ−α−1

Γ(β− α)
D2y(t− s)ds

⎞⎠ =

= · · · =
m−1

∑
l=0

(t− t0)
β−α−m+l

Γ(β− α−m + l + 1)
Dly(t0) +

t∫
t0

(t− s)β−α−1

Γ(β− α)
Dmy(s)ds =

=
m−1

∑
l=0

(t− t0)
β−α−m+l

Γ(β− α−m + l + 1)
Dly(t0) + Jβ−αDmy(t). (8)

Therefore, for z ∈ Cm−1,β([t0, T];Z)

Dαz(t) = Dm Jβ−α Jm−β

(
z(t)−

m−1

∑
k=0

Dkz(t0)
(t− t0)

k

k!

)
=

=
m−1

∑
l=0

(t− t0)
β−α−m+l

Γ(β− α−m + l + 1)
Dly(t0) + Jβ−αDmy(t) = Jβ−αDβz(t),

where

y(t) = Jm−β

(
z(t)−

m−1

∑
k=0

Dkz(t0)
(t− t0)

k

k!

)
∈ Cm([t0, T];Z),

Dly(t0) = 0, l = 0, 1, . . . , m− 1.

Hence, Dαz ∈ C([t0, T];Z) and

‖Dαz‖C([t0,T];Z) ≤
(T − t0)

β−α

Γ(β− α + 1)
‖Dβz‖C([t0,T];Z) ≤ max

s∈[0,β]

(T − t0)
s

Γ(s + 1)
‖Dβz‖C([t0,T];Z).

Let m− 1 < α < m = β, then Dαz(t) = Jm−αDmz(t), and we have the same result.
In the case n − 1 < α < n ≤ m − 1 < β < m, for z ∈ Cm−1,β([t0, T];Z) we can

obtain similarly

Dαz(t) = Dn Jn−α

(
z(t)−

n−1

∑
k=0

Dkz(t0)
(t− t0)

k

k!

)
=

= Dm Jm−n Jn−α

(
z(t)−

n−1

∑
k=0

Dkz(t0)
(t− t0)

k

k!

)
=

= Dm Jβ−α Jm−β

(
z(t)−

n−1

∑
k=0

Dkz(t0)
(t− t0)

k

k!

)
= Jβ−αDβz(t)
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due to (8), since for k = 0, 1, . . . , m− 1

‖Dk Jm−βz(t)‖Z ≤
(t− t0)

β−m

Γ(β−m + 1)
‖z‖Cm−1([t0,t];Z) → 0, t → t0.

Consequently,

‖Dαz‖C([t0,T];Z) ≤ max
s∈[0,β]

(T − t0)
s

Γ(s + 1)
‖Dβz‖C([t0,T];Z).

If β = m here, then

Dαz(t) = Dm Jm−α

(
z(t)−

n−1

∑
k=0

Dkz(t0)
(t− t0)

k

k!

)
=

=
m−1

∑
l=n

(t− t0)
l−α

Γ(l − α + 1)
Dlz(t0) + Jm−αDmy(t)

and

‖Dαz‖C([t0,T];Z) ≤ m max
s∈[0,β]

(T − t0)
s

Γ(s + 1)
‖z‖Cm−1,β([t0,T];Z).

Finally, in the case α ∈ {0, 1, . . . , m − 1}, we have the estimate ‖Dαz‖C([t0,T];Z) ≤
‖z‖Cm−1([t0,T];Z).

Corollary 1. Let z ∈ Cm−1([t0, T];Z). Then, Dαz ∈ C([t0, T];Z) for all α ∈ [0, m− 1], besides,
there exists C > 0, such that for all α ∈ [0, m− 1], z ∈ Cm−1([t0, T];Z)

‖Dαz‖C([t0,T];Z) ≤ C‖z‖Cm−1([t0,T];Z).

Proof. Take β = m− 1 in the proof of Lemma 2.

Remark 6. If z ∈ C([t0, T];Z) and α < 0, then it is obvious that Dαz ∈ C([t0, T];Z).

Corollary 2. Let m− 1 < c ≤ m ∈ N, b < c, μ ∈ BV((b, c];C), c be a variation point of the

measure dμ(α), z ∈ Cm−1,c([t0, T];Z). Then,
c∫

b
Dαz(t)dμ(α) ∈ C([t0, T];Z), besides, there

exists C1 > 0, such that for all z ∈ Cm−1,c([t0, T];Z)∥∥∥∥∥∥
c∫

b

Dαz(t)dμ(α)

∥∥∥∥∥∥
C([t0,T];Z)

≤ C1‖z‖Cm−1,c([t0,T];Z).

Proof. Indeed, due to Lemma 2∥∥∥∥∥∥
c∫

b

Dαz(t)dμ(α)

∥∥∥∥∥∥
C([t0,T];Z)

≤ CVc
b (μ)‖z‖Cm−1,c([t0,T];Z),

where Vc
b (μ) is the variation of μ on (b, c].

Lemma 3. Let β ∈ (0, 1), z, Dβz ∈ C([t0, T];Z). Then, z ∈ Cβ([t0, T]Z), moreover, there exists
C > 0, such that for all t, τ ∈ [t0, T]

‖h(t)− h(τ)‖ ≤
‖Dβz‖C([t0,T];Z)

Γ(β + 1)
|t− τ|β.
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Proof. If t0 ≤ τ < t ≤ T, then

‖h(t)− h(τ)‖Z = ‖JβDβh(t)− JβDβh(τ)‖Z ≤

≤ (t− t0)
β − (τ − t0)

β

Γ(β + 1)
‖Dβh‖C([t0,T];Z) ≤

(t− τ)β

Γ(β + 1)
‖Dβh‖C([t0,T];Z),

since the function
(t− t0)

β − (τ − t0)
β

(t− τ)β

decreases with respect to τ ∈ [t0, t) at β ∈ (0, 1).

Corollary 3. Let m− 1 < c ≤ m ∈ N, b < c < β, μ ∈ BV((b, c];C), c be a variation point of the

measure dμ(α). Then, for every z ∈ Cm−1,β([t0, T];Z), ε ∈ (0, β− c) we have
c∫

b
Dαz(t)dμ(α) ∈

Cβ−c−ε([t0, T];Z). Additionally, there exists C > 0, such that for all z ∈ Cm−1,c([t0, T];Z),
s, t ∈ [t0, T]∥∥∥∥∥∥

c∫
b

Dαz(t)dμ(α)−
c∫

b

Dαz(s)dμ(α)

∥∥∥∥∥∥
Z

≤ C‖z‖Cm−1,β([t0,T];Z)|t− s|β−c−ε.

Proof. Indeed, due to Lemmas 2 and 3 for every s, t, such that t0 ≤ s < t ≤ T, we have∥∥∥∥∥∥
c∫

b

Dαz(t)dμ(α)−
c∫

b

Dαz(s)dμ(α)

∥∥∥∥∥∥
Z

≤

≤ |t− s|β−c−ε

Γ(β− c− ε + 1)

∥∥∥∥∥∥Dβ−c−ε

c∫
b

Dαz(t)dμ(α)

∥∥∥∥∥∥
C([t0,T];Z)

≤ C‖z‖Cm−1,β([t0,T];Z)|t− s|β−c−ε.

4. Nonlocal Unique Solvability of Quasilinear Equation

A solution on a segment [t0, T] of the Cauchy problem

Dkz(t0) = zk, k = 0, 1, . . . , m− 1, (9)

for the equation

c∫
b

Dαz(t)dμ(α) = Az(t) + B

⎛⎝t,
c1∫

b1

Dαz(t)dμ1(α), . . . ,
cn∫

bn

Dαz(t)dμn(α)

⎞⎠, (10)

where b < c, m− 1 < c ≤ m ∈ N, bl < cl , ml − 1 < cl ≤ ml ∈ Z, c1 ≤ c2 ≤ · · · ≤ cn < c,
μ ∈ BV((b, c];C), μl ∈ BV((bl , cl ];C), l = 1, 2, . . . , n, T > t0, g ∈ C([t0, T];Z), is a

function z ∈ Cm−1([t0, T];Z) ∩ C((t0, T]; DA), such that
c∫

b
Dαz(t)dμ(α) ∈ C((t0, T];Z),

cl∫
bl

Dαz(t)dμl(α) ∈ C([t0, T];Z), l = 1, 2, . . . , n, and equalities (9) and (10) for t ∈ (t0, T]

are fulfilled.

Lemma 4. Let m − 1 < c ≤ m ∈ N, b < c, μ ∈ BV((b, c];C), c be a variation point of the
measure dμ(α), n ∈ N, c1 ≤ c2 ≤ · · · ≤ cn < c, μl ∈ BV((bl , cl ];C), cl be a variation point of
the measure dμl(α), l = 1, 2, . . . , n, A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0, zk ∈ DA,
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k = 0, 1, . . . , m− 1, B ∈ C([t0, T]×Zn; DA). Then a function z is a solution of problem (9) and
(10) on the segment [t0, T], if and only if z ∈ Cm−1,cn([t0, T];Z) and for all t ∈ [t0, T] the equality

z(t) =
m−1

∑
k=0

Zk(t− t0)zk +

t∫
t0

Z(t− s)Bz(s)ds (11)

holds, where

Bz(s) := B

⎛⎝s,
c1∫

b1

Dαz(s)dμ1(α),
c2∫

b2

Dαz(s)dμ2(α), . . . ,
cn∫

bn

Dαz(s)dμn(α)

⎞⎠.

Proof. If z is a solution of problem (9) and (10), then there exists Dcn z ∈ C([t0, T];Z), since
cn is a variation point of the measure dμn(α). Therefore, z ∈ Cm−1,cn([t0, T];Z) and due to
Corollary 2 the mapping

t → B

⎛⎝t,
c1∫

b1

Dαz(t)dμ(α),
c2∫

b2

Dαz(t)dμ(α), . . . ,
cn∫

bn

Dαz(t)dμ(α)

⎞⎠ (12)

acts continuously from [t0, T] into DA, since B ∈ C([t0, T]× Zn; DA). Consequently, by
Theorem 3, equality (11) is valid.

Let z ∈ Cm−1,cn([t0, T];Z) and for all t ∈ [t0, T] equality (11) holds. Then, by
Corollary 2, mapping (12) belongs to the class C([t0, T]; DA) in the case B ∈ C([t0, T] ×
Zn; DA). By Theorem 3, z is a solution of problem (9) and (10).

A mapping B : [t0, T]×Zn → Z is called Lipschitz continuous, if there exists CL > 0,
such that for all t ∈ [t0, T], x1, x2, . . . , xn, y1, y2, . . . , yn ∈ Z

‖B(t, x1, x2, . . . , xn)− B(t, y1, y2, . . . , yn)‖Z ≤ CL

n

∑
l=1

‖xl − yl‖Z .

Theorem 4. Let m− 1 < c ≤ m ∈ N, b < c, μ ∈ BV((b, c];C), c be a variation point of the
measure dμ(α), n ∈ N, c1 ≤ c2 ≤ · · · ≤ cn < c, bl < cl, μl ∈ BV((bl , cl ];C), cl be a variation
point of the measure dμl(α), l = 1, 2, . . . , n, A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0,
zk ∈ DA, k = 0, 1, . . . , m− 1, a mapping B ∈ C([t0, T]×Zn; DA) be Lipschitz continuous. Then,
problem (9) and (10) have a unique solution on the segment [t0, T].

Proof. Due to Lemma 4, it is sufficient to prove that the integro-differential Equation (11)
has a unique solution in the Banach space Cm−1,cn([t0, T];Z).

For z ∈ Cm−1,cn([t0, T];Z) define the operator

G(z)(t) :=
m−1

∑
k=0

Zk(t− t0)zk +

t∫
t0

Z(t− s)Bz(s) ds, t ∈ [t0, T].

Since mapping (12) belongs to C([t0, T]; DA), due to Theorem 3, we find that G(z) ∈
Cm−1([t0, T];Z), DkG(z)(t0) = zk for k = 0, 1, . . . , m− 1.

If cn < k, then the form of Zk implies that by (4)

Lap[Dcn Zk(t)zk](λ) = λcn−1−kWk(λ)RW(λ)(A)zk,

∥∥∥λcn−1−kWk(λ)RW(λ)(A)zk

∥∥∥
Z
≤ C‖zk‖Z
|λ|k+1−ε−cn
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for some ε ∈ (0, k − cn) due to Lemma 1. Hence, Dcn Zk(0)zk = 0 and Dcn Zk(t− t0)zk ∈
C([t0, T];Z). It is known that DkZk(t− t0)zk ∈ C([t0, T];Z). In the case cn > k, we have
due to equality (4)

Lap[Dcn Zk(t)zk](λ) = λcn−1−kWk(λ)RW(λ)(A)zk − λcn−1−kzk =

= λcn−1−k[Wk(λ)−W(λ)]RW(λ)(A)zk + λcn−1−kRW(λ)(A)Azk,∥∥∥λcn−1−k[Wk(λ)−W(λ)]RW(λ)(A)zk

∥∥∥
Z
≤ C‖zk‖Z
|λ|c−ε+1−cn

,

∥∥∥λcn−1−kRW(λ)(A)Azk

∥∥∥
Z
≤ C‖zk‖DA

|λ|c−ε+1−cn+k ,

for some ε ∈ (0, c − cn) by Lemma 1. Therefore, Dcn Zk(0)zk = 0 and Dcn Zk(t − t0)zk ∈
C([t0, T];Z).

Due to [29] Lemma 4 DkZ(0) = 0, k = 0, 1, . . . , m− 2, ‖Dm−1Z(t)‖L(Z) = O(tc−ε−m)
as t → 0+. Therefore,∥∥∥∥∥∥

t∫
t0

Z(t− s)Bz(s)ds

∥∥∥∥∥∥
Z

= O((t− t0)
c−ε), t → t0+,

Dk|t=t0

t∫
t0

Z(t− s)Bz(s)ds = 0, k = 0, 1, . . . , m− 1,

since Bz is continuous on [t0, T] for z ∈ Cm−1,cn([t0, T];Z) by Corollary 2. We have

‖Lap[Dmn Jmn−cn Z(t)](λ)‖L(Z) = ‖λcn RW(λ)(A)‖L(Z) ≤
C

|λ|c−ε−cn

with ε ∈ (0, c− cn), consequently, ‖Dmn Jmn−cn Z(t)‖L(Z) = O(tc−ε−cn−1) as t → 0+. Since,

Dcn

t∫
t0

Z(t− s)Bz(s)ds = Dmn Jmn−cn

t∫
t0

Z(t− s)Bz(s)ds =
t∫

t0

Dmn Jmn−cn Z(t− s)Bz(s)ds,

we have ∥∥∥∥∥∥
t∫

t0

Dmn Jmn−cn Z(t− s)Bz(s)ds

∥∥∥∥∥∥
L(Z)

= O(tc−ε−cn).

Thus, G(z) ∈ Cm−1,cn([t0, T];Z).
Let Gj be the j-th degree of the operator G, j ∈ N. For the sake of certainty, we consider

that T − t0 ≥ 1. In the case T − t0 < 1, further reasoning will remain valid after the
replacement T − t0 by 1.

Arguing as before, we can find that for k = 0, 1, . . . , m − 1 and for small ε > 0 the
inequality ‖DkZ(t)‖L(Z) ≤ Ctc−ε−1−k is valid. Consequently, for x, y ∈ Cm−1,cn([t0, T];Z),
we have in the case cn > m− 1

‖DkG(x)(t)− DkG(y)(t)‖Z ≤ C
t∫

t0

(t− s)c−ε−1−k‖Bx(s)− By(s)‖Zds ≤

≤ C1‖x− y‖Cm−1,cn ([t0,t];Z)(t− t0)
c−ε−k ≤

≤ C2‖x− y‖Cm−1,cn ([t0,t];Z)[(t− t0)
c + (t− t0)

c−ε−cn ],
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‖Dcn G(x)(t)− Dcn G(y)(t)‖Z ≤ C
t∫

t0

(t− s)c−ε−1−cn‖Bx(s)− By(s)‖Zds ≤

≤ C2‖x− y‖Cm−1,cn ([t0,t];Z)[(t− t0)
c + (t− t0)

c−ε−cn ].

Therefore,

‖G(x)− G(y)‖Cm−1,cn ([t0,t];Z) ≤ C2(m + 1)‖x− y‖Cm−1,cn ([t0,t];Z)[(t− t0)
c + (t− t0)

c−ε−cn ].

Then, for k = 0, 1, . . . , m− 1

‖DkG2(x)(t)− DkG2(y)(t)‖Z ≤ C
t∫

t0

(t− s)c−ε−1−k‖BG(x)(s)− BG(y)(s)‖Zds ≤

≤ C2(T − t0)
c

t∫
t0

‖G(x)− G(y)‖Cm−1,cn ([t0,s];Z)ds ≤

≤ C2
2(m + 1)(T − t0)

c‖x− y‖Cm−1,cn ([t0,t];Z)[(t− t0)
c+1 + (t− t0)

c−ε−cn+1],

‖Dcn G2(x)(t)− Dcn G2(y)(t)‖Z ≤ C
t∫

t0

(t− s)c−ε−1−cn‖BG(x)(s)− BG(y)(s)‖Zds ≤

≤ C2
2(m + 1)(T − t0)

c‖x− y‖Cm−1,cn ([t0,t];Z)[(t− t0)
c+1 + (t− t0)

c−ε−cn+1],

‖G2(x)− G2(y)‖Cm−1,cn ([t0,t];Z) ≤

≤ C2
2(m + 1)2(T − t0)

c‖x− y‖Cm−1,cn ([t0,t];Z)[(t− t0)
c+1 + (t− t0)

c−ε−cn+1].

By the same way, we obtain

‖G3(x)− G3(y)‖Cm−1,cn ([t0,t];Z) ≤

≤ C3
2(m + 1)3(T − t0)

2c‖x− y‖Cm−1,cn ([t0,t];Z)
(t− t0)

c+2 + (t− t0)
c−ε−cn+2

2
.

Similarly, we obtain for t ∈ [t0, T], j ∈ N, x, y ∈ Cm−1,cn([t0, T];Z) that

‖Gj(x)− Gj(y)‖Cm−1,cn ([t0,t];Z) ≤

≤ Cj
0[(t− t0)

c+j−1 + (t− t0)
c−ε−cn+j−1]

(j− 1)!
‖x− y‖Cm−1,cn ([t0,t];Z)

with C0 = C2(m + 1)(T − t0)
c. Consequently,

‖Gj(x)− Gj(y)‖Cm−1,cn ([t0,T];Z) ≤
2Cj

0(T − t0)
c+j−1

(j− 1)!
‖x− y‖Cm−1,cn ([t0,T];Z).

Hence, for a large enough j, the mapping Gj is a contraction in the space
Cm−1,cn([t0, T];Z) and it has a unique fixed point in this space, which is known to be
the unique fixed point in Cm−1,cn([t0, T];Z) of the mapping G. Due to Lemma 4, z is the
fixed point of G, if and only if it is a unique solution of problem (9) and (10).

If cn ≤ m− 1, then we will omit the estimates for the derivatives of the order cn.

Lemma 5. Let m − 1 < c ≤ m ∈ N, b < c, μ ∈ BV((b, c];C), c be a variation point of the
measure dμ(α), n ∈ N, c1 ≤ c2 ≤ · · · ≤ cn < β < c, μl ∈ BV((bl , cl ];C), cl be a variation
point of the measure dμl(α), l = 1, 2, . . . , n, A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0,
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zk ∈ DA, k = 0, 1, . . . , m− 1, B ∈ C([t0, T]×Zn;Z) be Lipschitz continuous. Then, a function
z ∈ Cm−1,β([t0, T];Z) is a solution of problem (9) and (10) on the segment [t0, T], if and only if
for all t ∈ [t0, T] it satisfies equality (11).

Proof. If z ∈ Cm−1,β([t0, T];Z) is a solution of problem (9) and (10), then due to Lipschitz
continuity of B and by Corollary 3 the function Bz satisfies the Hölder condition. Due to
Theorem 3, equality (11) is valid.

Let z ∈ Cm−1,β([t0, T];Z) and for all t ∈ [t0, T] equality (11) is valid. Then, by
Corollary 3, the function Bz is Hölderian. By Theorem 3, the function z is a solution of
problem (9) and (10).

Theorem 5. Let m− 1 < c ≤ m ∈ N, b < c, μ ∈ BV((b, c];C), c be a variation point of the
measure dμ(α), n ∈ N, c1 ≤ c2 ≤ · · · ≤ cn < c, bl < cl, μl ∈ BV((bl , cl ];C), cl be a variation
point of the measure dμl(α), l = 1, 2, . . . , n, A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0,
zk ∈ DA, k = 0, 1, . . . , m− 1, a mapping B ∈ C([t0, T]×Zn;Z) be Lipschitz continuous. Then,
problem (9) and (10) have a unique solution on the segment [t0, T].

Proof. Choose β ∈ (cn, c) and for z ∈ Cm−1,β([t0, T];Z) consider the operator

G(z)(t) :=
m−1

∑
k=0

Zk(t− t0)zk +

t∫
t0

Z(t− s)Bz(s) ds, t ∈ [t0, T].

Since B is Lipschitz continuous and by Corollary 3 all the arguments of B satisfy the
Hölder condition, hence, Bz is Hölderian also. Consequently, by Theorem 3, we have
G(z) ∈ Cm−1([t0, T];Z), DkG(z)(t0) = zk for k = 0, 1, . . . , m− 1.

If cn ≥ m − 1, then β > m − 1 and, as in the proof of the previous theorem, it
can be shown that G(z) ∈ Cm−1,β([t0, T];Z), for sufficiently large j, the mapping Gj is a
contraction in Cm−1,β([t0, T];Z) and G has a unique fixed point in Cm−1,β([t0, T];Z). Due
to Lemma 5, the unique fixed point is a unique solution of problem (9) and (10).

If cn < m− 1, we can take β = m− 1 and the proof will be simpler.

5. Local Unique Solvbability of Quasilinear Equation

Now, the nonlinear operator B is defined on some open subset U of R × Zn. A
solution on some segment [t0, t1], t1 > t0, of Cauchy problem (9) for Equation (10) is a

function z ∈ Cm−1([t0, t1];Z) ∩ C((t0, t1]; DA), such that
c∫

b
Dαz(t)dμ(α) ∈ C((t0, t1];Z),

cl∫
bl

Dαz(t)dμl(α) ∈ C([t0, t1];Z), l = 1, 2, . . . , n, equalities (9), inclusion

⎛⎝t,
c1∫

b1

Dαz(t)dμ1(α),
c2∫

b2

Dαz(t)dμ2(α), . . . ,
cn∫

bn

Dαz(t)dμn(α)

⎞⎠ ∈ U

for t ∈ [t0, t1] and equality (10) for t ∈ (t0, t1] are satisfied.
As before, here b < c, m− 1 < c ≤ m ∈ N, μ ∈ BV((b, c];C),bl < cl , ml − 1 < cl ≤

ml ∈ Z, c1 ≤ c2 ≤ · · · ≤ cn < c, μl ∈ BV((bl , cl ];C), l = 1, 2, . . . , n.
A mapping B : U → Z is called locally Lipschitz continuous, if for every point

(t, x1, x2, . . . , xn) ∈ U there exists its vicinity V ⊂ U and a constant C > 0, such that for all
(s, y1, y2, . . . , yn), (s, v1, v2, . . . , vn) ∈ V

‖B(s, y1, y2, . . . , yn)− B(s, v1, v2, . . . , vn)‖Z ≤ C
n

∑
l=1

‖yl − vl‖Z . (13)
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Denote for zk ∈ DA, k = 0, 1, . . . , m− 1, from initial conditions (9)

z̃(t) = z0 + z1(t− t0) + · · ·+ zm−1
(t− t0)

m−1

(m− 1)!
, z̃l =

cl∫
bl

Dα z̃(t0)dμl(α), l = 1, 2, . . . , n.

Theorem 6. Let m− 1 < c ≤ m ∈ N, b < c, μ ∈ BV((b, c];C), c be a variation point of the
measure dμ(α), n ∈ N, c1 ≤ c2 ≤ · · · ≤ cn < c, bl < cl, μl ∈ BV((bl , cl ];C), cl be a variation
point of the measure dμl(α), l = 1, 2, . . . , n, A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0,
zk ∈ DA, k = 0, 1, . . . , m − 1, (t0, z̃1, z̃2, . . . , z̃n) ∈ U, a mapping B ∈ C(U; DA) be locally
Lipschitz continuous. Then, there exists t1 > t0, such that problem (9) and (10) have a unique
solution on the segment [t0, t1].

Proof. Take a sufficiently small δ > 0, such that in the neighborhood

V := {(t, x1, x2, . . . , xn) ∈ R×Zn : |t− t0| ≤ δ, ‖xl − z̃l‖Z ≤ δ}

the inequality (13) holds with some C > 0. Define

Mt1 :=

⎧⎪⎨⎪⎩z ∈ Cm−1,cn([t0, t1];Z) :

∥∥∥∥∥∥∥
cl∫

bl

Dαz(t)dμl(α)− z̃l

∥∥∥∥∥∥∥
Z

≤ δ,

t ∈ [t0, t1], l = 1, 2, . . . , n}.

Due to Corollary 2 Mt1 is a complete metric space with the metric

d(x, y) = ‖x− y‖Cm−1,cn ([t0,t1];Z).

For z ∈Mt1 , define the operator

G(z)(t) :=
m−1

∑
k=0

Zk(t− t0)zk +

t∫
t0

Z(t− s)Bz(s) ds, t ∈ [t0, t1].

Since Bz belongs to C([t0, t1]; DA), we have G(z) ∈ Cm−1([t0, t1];Z), DkG(z)(t0) = zk
for k = 0, 1, . . . , m− 1. As in the proof of Theorem 4, we have G(z) ∈ Cm−1,cn([t0, t1];Z),
therefore, G(z) ∈Mt1 . If necessary, we can reduce t1 here. Due to Corollary 2

cl∫
bl

DαG(z)(t)dμl(α) ∈ C([t0, t1];Z), l = 1, 2, . . . , n.

Consequently, for small enough t1 − t0 G(z) ∈Mt1 .
Arguing as in the proof of Theorem 4, we have for k = 0, 1, . . . , m− 1 and small ε > 0

‖DkZ(t)‖L(Z) ≤ Ctc−ε−1−k. Therefore, for x, y ∈Mt1

‖DkG(x)(t)− DkG(y)(t)‖Z ≤ C
t∫

t0

(t− s)c−ε−1−k‖Bx(s)− By(s)‖Zds ≤

≤ C1‖x− y‖Cm−1,cn ([t0,t1];Z)(t1 − t0)
c−ε−k ≤

‖x− y‖Cm−1,cn ([t0,t1];Z)

2(m + 1)
, k = 0, 1, . . . , m− 1,

‖Dcn G(x)(t)− Dcn G(y)(t)‖Z ≤ C1‖x− y‖Cm−1,cn ([t0,t1];Z)(t1 − t0)
c−ε−cn ≤
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≤
‖x− y‖Cm−1,cn ([t0,t1];Z)

2(m + 1)
,

for sufficiently small t1 − t0, hence,

‖G(x)− G(y)‖Cm−1,cn ([t0,t1];Z) ≤
1
2
‖x− y‖Cm−1,cn ([t0,t1];Z).

Thus, the mapping G is a contraction in the metric space Mt1 . By the Banach theorem
on a fixed point, G has a unique fixed point z in this space. Due to Lemma 4, the fixed point
z is a unique solution of problem (9) and (10) on [t0, t1].

Theorem 7. Let m− 1 < c ≤ m ∈ N, b < c, μ ∈ BV((b, c];C), c be a variation point of the
measure dμ(α), n ∈ N, c1 ≤ c2 ≤ · · · ≤ cn < c, bl < cl, μl ∈ BV((bl , cl ];C), cl be a variation
point of the measure dμl(α), l = 1, 2, . . . , n, A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0,
zk ∈ DA, k = 0, 1, . . . , m − 1, (t0, z̃1, z̃2, . . . , z̃n) ∈ U, a mapping B ∈ C([t0, T]× Zn;Z) be
locally Lipschitz continuous. Then, there exists t1 > t0, such that problem (9) and (10) have a
unique solution on the segment [t0, t1].

Proof. For a fixed β ∈ (cn, c) take a small enough δ > 0, such that in

V := {(t, x1, x2, . . . , xn) ∈ R×Zn : |t− t0| ≤ δ, ‖xl − z̃l‖Z ≤ δ}.

the inequality (13) is satisfied with a constant C > 0. Define

Mt1 :=

⎧⎪⎨⎪⎩z ∈ Cm−1,β([t0, t1];Z) :

∥∥∥∥∥∥∥
cl∫

bl

Dαz(t)dμl(α)− z̃l

∥∥∥∥∥∥∥
Z

≤ δ,

t ∈ [t0, t1], l = 1, 2, . . . , n}.

For z ∈Mt1 , define the operator

G(z)(t) :=
m−1

∑
k=0

Zk(t− t0)zk +

t∫
t0

Z(t− s)Bz(s) ds, t ∈ [t0, t1].

Due to the Lipschitz continuity of B by Corollary 3, Bz satisfies the Hölder condition.
Due to Theorem 3, G(z) ∈ Cm−1([t0, t1];Z), DkG(z)(t0) = zk, k = 0, 1, . . . , m− 1.

If cn ≥ m− 1, then β > m− 1. Reasoning by the same way as in the proof of Theorem 6,
we can obtain that G(z) ∈ Cm−1,β([t0, T];Z) and the mapping G is a contraction in Mt1 and
has a unique fixed point in the metric space Mt1 . By Lemma 5, the fixed point is a unique
solution of problem (9) and (10) on the segment [t0, t1].

If cn < m− 1, we take β = m− 1.

6. Application to a Nonlinear Initial-Boundary Value Problem

In the framework of the Cauchy problem for a quasilinear equation in Banach space,
we can investigate initial-boundary value problems for partial differential equations with
time-distributed derivatives. For this aim, we need to choose an appropriate space Z and
an operator A. Now, we will demonstrate this with the example of the following problem.

Consider a bounded region Ω ⊂ Rd with a smooth boundary ∂Ω, β, γ, ν ∈ R, c ∈ (1, 2),
b < c, α1 < α2 < · · · < αn ≤ c, ωk ∈ R \ {0}, k = 1, 2, . . . , n, ω ∈ C([b, c];R); if αn < c,
then ω(c) �= 0 in a some left vicinity of c; βl < c, bl < cl < c, μl ∈ BV((bl , cl ];R), l = 1, 2.
Consider the initial-boundary value problem

u(s, 0) = u0(s), v(s, 0) = v0(s), s ∈ Ω, (14)
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∂u
∂t

(s, 0) = u1(s),
∂v
∂t

(s, 0) = v1(s), s ∈ Ω, (15)

u(s, t) = v(s, t) = 0, (s, t) ∈ ∂Ω× (0, T], (16)

for the nonlinear system of equations in Ω× (0, T]

n

∑
k=1

ωkDαk
t u(s, t) +

c∫
b

ω(α)Dα
t u(s, t)dα = Δu(s, t)− Δv(s, t)+

+ F1

⎛⎝s, Dβ1 u(s, t),
c1∫

b1

Dαv(s, t)dμ1(α)

⎞⎠, (17)

n

∑
k=1

ωkDαk
t v(s, t) +

c∫
b

ω(α)Dα
t v(s, t)dα = νΔv(s, t) + βu(s, t) + γv(s, t)+

+ F2

⎛⎝s, Dβ2 v(s, t),
c2∫

b2

Dαu(s, t)dμ2(α)

⎞⎠. (18)

Remark 7. If ω2 = ω3 = · · · = ωn = 0, α1 = 1, ω(α) ≡ 0 for all α ∈ (b, c), F1 ≡ 0,
β2 = 0, μ2 ≡ 0, after linear replacement of unknown functions u(s, t) = ũ(s, t) + κ

2 ṽ(s, t),
v(s, t) = κ

2 ṽ(s, t), κ ∈ R, systems (17) and (18) are the linearization of the phase field system of
equations [36,37].

Define Λ1z = Δz, DΛ1 = Hj+2
0 (Ω) ⊂ Hj(Ω). By {ϕk : k ∈ N}, denote an orthonormal

in the inner product 〈·, ·〉 in L2(Ω) eigenfunctions of Λ1, which are enumerated in the non-
increasing order of the eigenvalues {λk : k ∈ N} taking into account their multiplicities.

Take the Sobolev space Z = (Hj(Ω))2 for some j ∈ N∪ {0}, such that j > d/2,

A =

(
Λ1 −Λ1
βI γI + νΛ1

)
, DA = (Hj+2

0 (Ω))2, (19)

where Hj+2
0 (Ω) :=

{
z ∈ Hj+2(Ω) : z(s) = 0, s ∈ ∂Ω

}
. Consequently, A ∈ C l(Z).

Theorem 8 ([29]). Let c ∈ (1, 2), ν > 0, β, γ ∈ R, then there exist θ0 ∈ (π/2, π), a0 ≥ 0, such
that A ∈ AW(θ0, a0).

Theorem 9. Let c ∈ (1, 2), b < c, ν > 0, β, γ ∈ R, α1 < α2 < · · · < αn ≤ c, ωk ∈
R \ {0}, k = 1, 2, . . . , n, ω ∈ C([b, c];R); if αn < c, then ω(c) �= 0 in the left vicinity of
c; βl < c, bl < cl < c, μl ∈ BV((bl , cl ];R), cl be a variation point of the measure dμl(α),
l = 1, 2, u0, u1, v0, v1 ∈ Hj+2

0 (Ω), F1, F2 ∈ C∞(Rn;R). Then, there exists a unique solution of
problem (14)–(18) on a segment [0, t1] with some t1 > 0. If the first order partial derivatives of
functions F1, F2 with respect to the second and the third variables are bounded, then there exists a
unique solution of problem (14)–(18) on a segment [0, T] with every T > 0.

Proof. We can consider problem (14)–(18) as Cauchy problem (9) and (10) in the space
Z = (Hj(Ω))2 with the operator A, which is defined by (19). Note that the left sides of
Equations (17) and (18) are the same distributed derivative. By Theorem 8 A ∈ AW(θ0, a0)
for some θ0 ∈ (π/2, π), a0 ≥ 0 and it remains to show that the nonlinear operator
B(x, y)(·) = (F1(·, x(·), y(·)), F2(·, x(·), y(·))) satisfies the conditions of Theorem 7. Due
to [38] (Proposition 1 in Appendix B) for x, y ∈ Hj(Ω), we have Fl(x, y) ∈ Hj(Ω), l = 1, 2,
since j > d/2. Moreover, by [38] (Proposition 1 in Appendix B), B ∈ C∞((Hj(Ω))2; Hj(Ω)).
Hence, B is locally Lipschitz continuous and in the case of boundedness of the first order
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partial derivatives of functions F1, F2 with respect to the second and the third variables B is
Lipschitz continuous. It remains to apply Theorem 7 or Theorem 5, respectively.

7. Conclusions

Using the form of the unique solution for the Cauchy problem to the linear inho-
mogeneous equation in a Banach space with a distributed Gerasimov–Caputo fractional
derivative and with a linear closed operator A, which generates an analytic resolving family,
we reduce the Cauchy problem for an analogous quasilinear equation to an equation of the
form z = G(z), where the mapping G(z) uses the forms of k-resolving families of operators
of the initial linear equation. It allows us to prove the fulfillment of the conditions of the
Banach theorem on a fixed point in a specially constructed spaces of functions. Thus, in this
paper, it is shown how the linear theory of resolving families of operators made it possible
to make the transition from the study of linear equations with a distributed derivative to
the study of the corresponding quasilinear equations. The obtained results will allow us to
study the unique solvability issues for new initial-boundary value problems for equations
and systems of equations with distributed Gerasimov–Caputo partial derivatives.

Using the approach developed in this paper, we plan to investigate the initial problems
for quasilinear equations with distributed Riemann–Liouville, Hilfer, ϕ-Hilfer fractional
derivatives [39], as well as other integrodifferential operators.
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Abstract: This paper deals with second-order differential pencils with a fixed frozen argument on a
finite interval. We obtain the trace formulae under four boundary conditions: Dirichlet–Dirichlet,
Neumann–Neumann, Dirichlet–Neumann, Neumann–Dirichlet. Although the boundary conditions
and the corresponding asymptotic behaviour of the eigenvalues are different, the trace formulae have
the same form which reveals the impact of the frozen argument.
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1. Introduction

In this paper, we consider boundary value problem generated by

−y′′(x) + [q0(x) + ρq1(x)]y(a) = ρ2y(x), 0 < x < 1, (1)

and boundary conditions
y(α)(0) = y(β)(1) = 0, (2)

where a ∈ (0, 1), qj(x), j = 0, 1 are complex-valued functions in Sobolev space Wj
2[0, 1],

ρ is the spectral parameter and α, β ∈ {0, 1}. We note that (α, β) = (0, 0), (1, 1), (0, 1) or
(1, 0) represent Dirichlet–Dirichlet, Neumann–Neumann, Dirichlet–Neumann, Neumann–
Dirichlet boundary conditions correspondingly. We denote the corresponding operator
by Lα,β = L(q0, q1, α, β, a). We call Lα,β the second-order differential pencils with frozen
argument. Specifically, we deduce the trace formulae for Lα,β.

Trace is an important conserved quantity in matrix theory. In finite dimensional space,
the sum of principal diagonal elements of a matrix equals to the sum of eigenvalues which
we call the trace. While considering the differential operators in the Hilbert space, however,
a sum of infinitely many eigenvalues leads to a divergence series. In 1953, for the first time,
Gelfand and Levitan [1] introduced an interesting formula for the Sturm–Liouville operator:

∞

∑
n=0

[
λn − n2 − 1

π

∫ π

0
q(t)dt

]
=

1
4
[q(0) + q(π)]− 1

2π

∫ π

0
q(t)dt, (3)

where the operator was generated by the Neumann–Neumann-type boundary problem

−y′′(x) + q(x)y(x) = λy(x), y′(0) = y′(π) = 0,

and q(x) ∈ C1[0, π], λn are the corresponding eigenvalues. After that, many scholars put
attention to this quantity, which has many applications in integrable system theory and
the inverse problem [2–6]. Also, it turned out that regularized trace formulae had physical
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meaning, as discussed by Sadovnichii and Podol’skii [7]: “The meaning of the regularized trace
as a measure of the defect of the total energy of the system when it is perturbed in the case when the
total energy itself of the system (more precisely, of the model under consideration) is infinite · · · ”.

In physics, the interactions between colliding particles is of fundamental significance.
For example, Jaulent and Jean [8] describe this phenomenon by s-wave Schrödinger equa-
tion with a radial static potential V(x):

−y′′(x) + V(E, x)y(x) = Ey(x),

where V(E, x) is the following form for the energy dependence:

V(E, x) = Q(x) + 2
√

EP(x).

With an additional condition Q(x) = −P2(x), the above Schrödinger equation reduces
to the Klein–Gordon equation for a particle of zero mass and energy E, which could serve
as part of Lax pair in a two-component Camassa–Holm Equation [9]. Due to the nonlin-
ear dependence on the spectral parameter, the corresponding inverse spectral problem
and inverse scattering theory are difficult; we refer to papers [10–16]. With the method
of asymptotic estimation on the family of contours [17], Cao and Zhuang [18] studied
regularized traces of the Schrödinger equation with energy-dependent potential, in which
the final quantity only contains the term with P(x). Further, Yang [19–21] obtained some
new formulae related to both P(x) and Q(x).

Recently, the Sturm–Liouville equation with the frozen argument of the form

−y′′(x) + q(x)y(a) = λy(x), x ∈ (0, 1) (4)

has attracted much attention. This equation can be classified as a special case of a functional
differential equation with a deviating argument. Especially Equation (4) belongs to the
class of loaded equations [22] which arise in mathematical physics, such as groundwater
dynamics [23,24], heat conduction [25,26], system with energy feedback [27].

For the inverse spectral problem of differential operators with frozen argument,
the classical approaches like the method of spectral mappings and the Gelfand–Levian–
Marchenko method do not work. Albeverio et al. [28] and Nizhnik [29,30] studied some
special cases where the nonlocal boundary condition guarantees the self-adjointness of
the corresponding operator. Bondarenko et al. [31] studied Equation (4) with Boundary
conditions (2) where 1/a ∈ N and α, β ∈ {0, 1}. They classified two cases: degenerate and
non-degenerate, depending on the values of α, β and on the parity of k = 1/a. Moreover,
Bondarenko et al. established the unique solvability of the inverse problem. For the study
of different aspects of this operator, such as arbitrary a ∈ (0, 1), non-separated boundary
conditions, etc., we refer to [32–40]. Namely, Kuznetsova [41,42] proved the well-posedness
of the inverse spectral problem generated by (4) and (2) by a new approach, which is
effective in both the rational and irrational cases. Bondarenko [43] explained the relation be-
tween the Sturm–Liouville operators with frozen argument and the Laplace operator with
integral matching conditions on a star-shaped graph. Also, as pointed out by Buterin [44],
the frozen argument term appeared naturally in the study of a Sturm–Liouville operator
with constant delay.

However, there are few works on differential pencils with frozen argument. Equation (1)
appears, for example, after applying the Fourier method of separation of variables to the
following loaded hyperbolic equation:

∂2

∂t2 u(x, t) =
∂2

∂x2 u(x, t)− (λr(x) + q(x))u(a, t), 0 < x < 1, t > 0,

where a ∈ (0, 1), λ is a spectral parameter, r(x) is called the loss function and q(x) the
impedance function. This model arises in the study of inverse scattering in lossy layered
media [45]; moreover, we assume that the model is affected by a magnetic field exerting a
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force-per-unit mass represented by −(λr(x) + q(x))u(a, t), i.e., depending on the lateral
displacement u(a, t) at point a at time t. The author of [46] studied the inverse spectral
problem for Lα,β by using the approach suggested in [31]. Namely, Lα,β share the same
degenerate and non-degenerate conditions with boundary value problem (4) and (2).

Motivated by the works of Cao and Zhuang [18], we focus on regularized traces of Lα,β.
For the next section, we recall some basic facts from [46], i.e., the integral equation for the
characteristic functions of Lα,β and asymptotic behaviour of the corresponding eigenvalues;
then, we provide the main results. Finally, we offer a conclusion.

2. Preliminaries and Main Results

We let C(x, ρ), S(x, ρ) be the solutions of Equation (1) under the initial conditions

C(a, ρ) = S′(a, ρ) = 1, S(a, ρ) = C′(a, ρ) = 0.

It is easy to verify that

C(x, ρ) = cos ρ(x−a)+
x∫

a

q1(t) sin ρ(x−t)dt+
x∫

a

q0(t)
sin ρ(x−t)

ρ
dt, (5)

S(x, ρ) =
sin ρ(x− a)

ρ
. (6)

Integrating by parts the second term of (5), we obtain

C(x, ρ) = cos ρ(x− a) +
1
ρ
(q1(x)− q1(a) cos ρ(x− a))

− 1
ρ

x∫
a

q′1(t) cos ρ(x− t)dt +
1
ρ

x∫
a

q0(t) sin ρ(x− t)dt.
(7)

We define

Δα,β(ρ) =

∣∣∣∣∣C(α)(0, ρ) S(α)(0, ρ)

C(β)(1, ρ) S(β)(1, ρ)

∣∣∣∣∣; (8)

then, it is easy to verify that the eigenvalues of Lα,β coincide with the zeros of Δα,β(ρ).
We note that the spectrum of the operator L(q0(1− x), q1(1− x), 1− a, α, β) coincides

with the one of L(q0(x), q1(x), a, α, β); without loss of generality, we assume 0 < a ≤ 1/2
for definiteness.

Theorem 1 ([46]). The characteristic functions Δα,β(ρ) of the problem Lα,β have the form of

Δα,α(ρ) = ρ2α−2

⎛⎝ρ sin ρ−Wα,α(a, ρ) +

1∫
0

(Uα,α(t) cos ρt + Vα,α(t) sin ρt) dt

⎞⎠, (9)

if α = β, and

Δα,β(ρ) = ρ−1

⎛⎝(−1)α
(
ρ cos ρ−Wα,β(a, ρ)

)
+

1∫
0

(Uα,β(t) sin ρt + Vα,β(t) cos ρt) dt

⎞⎠, (10)
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if α �= β, where

Wα,β(a, ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q1(a) sin ρ− q1(0) sin ρ(1− a)− q1(1) sin ρa, (α, β) = (0, 0),
q1(a) sin ρ, (α, β) = (1, 1),
q1(a) cos ρ− q1(0) cos ρ(1− a), (α, β) = (0, 1),
q1(a) cos ρ− q1(1) cos ρa, (α, β) = (1, 0).

Moreover, the functions Uα,β(t) and Vα,β(t) have the following form:

Uα,β(t) =
(−1)αβ

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q0(1− a + t) + dq0(1− a− t), t ∈ (0, a),

cq0(1 + a− t) + dq0(1− a− t), t ∈ (a, 1− a),

c
(
q0(1 + a− t) + q0(t− 1 + a)

)
, t ∈ (1− a, 1)

(11)

and

Vα,β(t) =
(−1)γ

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−q′1(1− a + t) + dq′1(1− a− t), t ∈ (0, a),

cq′1(1 + a− t) + dq′1(1− a− t), t ∈ (a, 1− a),

c
(
q′1(1 + a− t)− q′1(t− 1 + a)

)
, t ∈ (1− a, 1),

(12)

where c = (−1)1+β, d = (−1)α+β and γ = max{α, β}.

We let Z0 := Z \ {0}, Z1 := {±0,±1,±2, · · · } and Z2 := Z. From this, we stipulate
that if n denotes an index for eigenvalues, then n ∈ Z0 for (α, β) = (0, 0), n ∈ Z1 for
(α, β) = (1, 1) and n ∈ Z2 for (α, β) = (0, 1) or (α, β) = (1, 0).

Theorem 2 ([46]). The eigenvalues of Lα,β can be numbered as {ρn,α,β}, counting with their
multiplicities, such that the following asymptotics hold:

(i) For (α, β) = (0, 0),

ρn,0,0 = nπ +
q1(0) + (−1)n+1q1(1)

nπ
sin nπa +

κ0,0,n

n
, {κn,0,0} ∈ l2; (13)

(ii) For (α, β) = (1, 1),

ρn,1,1 = nπ +
κ1,1,n

n
, {κn,1,1} ∈ l2; (14)

(iii) For (α, β) = (0, 1),

ρn,0,1 =

(
n− 1

2

)
π +

q1(0)
nπ

sin
(

n− 1
2

)
πa +

κ0,1,n

n
, {κn,0,1} ∈ l2; (15)

(iv) For (α, β) = (1, 0),

ρn,1,0 =

(
n− 1

2

)
π +

(−1)n+1q1(1)
nπ

cos
(

n− 1
2

)
πa +

κ1,0,n

n
, {κn,1,0} ∈ l2. (16)

In order to obtain the trace formulae of Lα,β, we need the following lemma.

Lemma 1 ([17]). Let ω(z) and ω0(z) be two entire functions on a z−plane and have no zeros
on some closed contour Γ. Suppose that ω(z)\ω0(z) = 1 + θ(z), where |θ(z)| ≤ δ on Γ,
0 < δ < 1; then,

∑
Γ
(λσ

n − μσ
n) = − 1

2πi

∮
Γ

σzσ−1 ln
ω(z)
ω0(z)

dz, (17)

where λn and μn are zeros of ω(z) and ω0(z) inside Γ correspondingly, and σ is a positive integer.
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We let {τn,α,β} be the spectrum of L(0, 0, α, β, a), α, β ∈ {0, 1}.

Theorem 3. The following formulae hold:

∑
n∈Zj

(
ρn,α,β − τn,α,β

)
= q1(a), (18)

where j = 0, 1, 2.

Proof. We let ΓN , N = 1, 2, · · · be the counterclockwise square contours AN BNCN DN with

AN =

(
N +

3
4

)
(1− i), BN =

(
N +

3
4

)
(1 + i),

CN =

(
N +

3
4

)
(−1 + i), DN =

(
N +

3
4

)
(−1− i).

Formulae (13)–(16) imply that, for sufficiently large N, the eigenvalues ρn,α,β, |n| ≤ N
are inside ΓN , and the eigenvalues ρn,α,β with |n| > N are outside ΓN . Also, since {τn,α,β}
is the the spectrum of L(0, 0, α, β, a), we have {τn,α,β} ∩ ΓN = ∅.

Now we prove the theorem for the case (α, β) = (0, 0); the other cases are similar. We
let Δ◦0,0(ρ) = sin ρ/ρ be the characteristic function of L(0, 0, 0, 0, a). By using (9), (11) and
(12), we estimate the fraction Δ0,0(ρ)/Δ◦0,0(ρ) on the contour ΓN for sufficiently large N:

Δ0,0(ρ)

Δ◦0,0(ρ)
= 1 +

q1(0) sin ρ(1− a) + q1(1) sin ρa
ρ sin ρ

− q1(a)
ρ

+ o
(

1
ρ

)
, ρ ∈ ΓN .

Using the Taylor series expansion, we have

ln
Δ0,0(ρ)

Δ◦0,0(ρ)
=

q1(0) sin ρ(1− a) + q1(1) sin ρa
ρ sin ρ

− q1(a)
ρ

+ o
(

1
ρ

)
, ρ ∈ ΓN .

Calculating the contour integral by (17) and using residue calculation, we obtain that
for sufficiently large N,

N

∑
n=−N

(ρ0,0,n−μ0,0,n) =− 1
2πi

∮
ΓN

ln
Δ0,0(ρ)

Δ◦0,0(ρ)
dρ

=q1(a)+q1(0)

(
2

N

∑
n=1

θn−(1−a)

)
+ q1(1)

(
2

N

∑
n=1

ζn−a

)
+ o(1),

where

θn = (−1)n+1 sin nπ(1− a)
nπ

, ζn = (−1)n+1 sin nπa
nπ

.

Together with the Fourier series

x = 2
∞

∑
n=1

(−1)n+1 sin nπx
nπ

, x ∈ (−1, 1),

we arrive at (18) for (α, β) = (0, 0) by taking N → ∞. Note that for the cases (α, β) = (0, 1)
and (α, β) = (1, 0), we need the Fourier series expansion

1
2
= 2

∞

∑
n=1

(−1)n+1 cos(n− 1
2 )πx

(n− 1
2 )π

, x ∈ (−1, 1).
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3. Conclusions

In this paper, we deduce the trace formulae of second-order differential pencils with
frozen argument. By applying the methods in complex analysis, we calculate the regular-
ized sum of infinite eigenvalues of Lα,β in the Gelfand–Levitan sense. Let us mention some
advantages of our approach:

1. Operator Lα,β is non-selfadjoint which may have complex eigenvalues with multi-
plicity; however, the method we use allows us dealing with the regularized sum of
eigenvalues in the whole meaning.

2. The regularized trace of Lα,β depends only on the value of q1(x) at the frozen point a,
regardless of the boundary conditions and the potential q0(x).

3. In the study of inverse spectral problem of Lα,β, the rationality of frozen argument a is
important. Whether a is rational leads to different approachs of inverse spectral prob-
lem. However, we do not need this distinction while calculating the trace formulae.
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Abstract: In this paper, we consider the Gelfand–Levitan–Marchenko–Krein approach. It is used
for solving a variety of inverse problems, like inverse scattering or inverse problems for wave-type
equations in both spectral and dynamic formulations. The approach is based on a reduction of the
problem to the set of integral equations. While it is used in a wide range of applications, one of
the most famous parts of the approach is given via the inverse scattering method, which utilizes
solving the inverse problem for integrating the nonlinear Schrodinger equation. In this work, we
present a short historical review that reflects the development of the approach, provide the variations
of the method for 1D and 2D problems and consider some aspects of numerical solutions of the
corresponding integral equations.

Keywords: Gelfand–Levitan–Krein–Marchenko equation; inverse coefficient problem; inverse
scattering problem

MSC: 35R30; 65M32; 65R32; 65N21

1. Introduction

The origin of Gelfand–Levitan–Krein–Marchenko (GLKM) approach is related to the
inverse problem of recovering the differential operator via the spectral data. The first work
in this field was conducted in 1929 by V.M. Ambartsumyan [1] and this was later followed
by results of G. Borg [2] and N. Levinson [3,4]. The foundation of the GLKM method is
connected with the paper [5], where I.M. Gelfand and B.M. Levitan presented a method to
reconstruct a Sturm–Liouville operator by the spectral function and provided conditions
sufficient for a given monotonic function to be the spectral function of the operator. A few
years later, in 1954, a paper [6] by M.G. Krein was published, proposing algorithms for
solving the inverse problem for a wave equation. These two works can be used to denote
two directions of the method’s development in the second half of the XX century. On the
one hand, the continued study of inverse scattering and its applications was used by C.S.
Gardner et al. in [7], where the authors used the theory of the inverse scattering problem to
integrate the Korteweg de Vries equation and, later, the non-linear Schrodinger equation.
This (and the fact the Schrodinger equation is widely used in photonics) determined the
importance of developing the methods and algorithms of inverse scattering. On the other
hand, results of M.G. Krein led to the dynamic version of the approach, which was applied
to a variety of inverse problems for hyperbolic equations, and has strong connections
with geophysical problems. The feature of the approach that is important for geophysical
applications is its direct nature, with respect to methods, which reduces the inverse problem
to optimization.
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Since both “branches” of the approach have different variations and applications, the
motivation behind this paper is to provide a structured and generalized review of the
approach that considers the history of the method and its main variations (and multidi-
mensional analogs as well) from both the theoretical and numerical points of view.

The paper is organized as follows. In the current section we, after a brief introduction,
provide a review of the large amount of works related to the GLKM approach, divided into
the two groups—papers related to the spectral and scattering inverse problems, and papers
related to the inverse problems for hyperbolic equations.

In Section 2, we provide a description of the result that was previously obtained in
a one-dimensional case. We provide the formulation of the I.M. Gelfand–B.M. Levitan
equation in both spectral and dynamic formulations in Section 2.1. In Section 2.2, we
consider the inverse scattering problem, which is reduced to the V.A. Marchenko equation
and also describe the way to use this equation to obtain the solution of the Cauchy problem
for the KdV equation (the inverse scattering method). We provide more details in Section 2.2,
because the general scheme behind the results of Section 2.1 is covered by their two-
dimensional analogs. Section 2.3 considers the M.G. Krein equation that arises in the
1D acoustic inverse problem. We also use this opportunity to consider the boundary-
control method (which is often referred to as the BC method) for that inverse problem. We
formulate the essence of the method and show that both the Krein method and the BC
method have the same discrete form in one-dimensional cases. Then, in Section 2.5 we
formulate how to use the already mentioned one-dimensional results in order to solve the
inverse problem for the 1D seismic inverse problem.

Section 3 is devoted to the multi-dimensional analog of the Gelfand–Levitan equation
(Section 3.1) and the Krein equation (Section 3.2), correspondingly. In Section 4, we present
a review of the numerical methods that are applicable to solve the GLKM equation in
both 1D and 2D. We also provide some numerical results to illustrate the two-dimensional
variation of the GLKM method in Section 5. And finally, in Section 6 we provide some new
results regarding using the approach to recover the speed of sound and the density from
the acoustic equation in cases in which both functions depend on both space variables.

1.1. Inverse Spectral Problems—Inverse Scattering Problems and Method

Let us consider the short history of the development of the theory of inverse spectral
and inverse scattering problems. In this section, we will also mention the inverse scattering
method because it is very difficult to separate the scientific results obtained.

1929—V.M. Ambartsumyan [1] established that “a homogeneous string is uniquely
determined by the set of eigenfrequencies”. Specifically, if eigenvalues λn of the boundary
value problem

−y′′ + q(x)y = λy, x ∈ [0, π];

y′(0) = y′(π) = 0

are λn = n2 and q(x) is a real continuous function, then q(x) ≡ 0.
1943—W. Heisenberg [8,9] considered the inverse scattering problem and proved that

in order to solve the inverse scattering problem, it is sufficient to know the asymptotic
behavior of the wave function.

1946—G. Borg [2] investigated the inverse problem for a Sturm–Liouville operator. He
shown that the result, provided by V.M. Ambartsumyan was quite rare, in the sense of re-
covering the potential, using only one spectrum. More specifically, he proved the following:

Theorem 1. Let λ0 < λ1 < λ2 < . . . be the eigenvalues of the operator

−y′′ + q(x)y = λy, 0 ≤ x ≤ π,

y′(0)− hy(0) = 0, y′(π) + Hy(π) = 0, h, H ∈ R,

Let μ0 < μ1 < μ2 < . . . be the eigenvalues of the operator
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−y′′ + q(x)y = μy, 0 ≤ x ≤ π,

y′(0)− hy(0) = 0, y′(π) + H1y(π) = 0, H1 �= H ∈ R,

Then, the sequences {λm}∞
m=0 and {μn}∞

n=0 uniquely determine the function q(x) and the numbers
h, H and H1.

Over the next several years, the subject was actively studied and then advanced in
1949 by a series of interconnected works of N. Levinson and V. Bargmann. N. Levinson [3]
provided simpler proofs for some of the results obtained by G. Borg [2]. Then, he [4] tackled
an inverse problem of the quantum theory of scattering. He proved that in the absence
of negative eigenvalues a scattering phase given for all positive energies and any fixed
angular momentum uniquely determines the potential. Meanwhile V. Bargmann [10,11]
proved that in the general case the spherically symmetric potential (at any fixed angular
momentum) is not uniquely determined by the scattering phase.

1949—A.N. Tikhonov [12] continued (in a way) the works of G. Borg and N. Levinson
in studying the properties of data that can guarantee the uniqueness of the solution. He
proved the theorem of uniqueness of solving the inverse Sturm–Liouville problem on a
semi-axis via a given Weyl function. These works were also the first where the inverse
problem on a semi-axis was considered.

1950—V.A. Marchenko [13] investigated several questions for differential operators.
This work can be considered the first in a series of fundamental results that formed
the essence of the GLKM approach. He proved that the spectral function of a Sturm–
Liouville operator (given in a half-line or finite interval) uniquely determines the operator.
One of the main features of his work was to use transformation operators to investigate
inverse problems.

1951—I.M. Gelfand and B.M. Levitan [5] developed a method to reconstruct a Sturm–
Liouville operator via the spectral data. This work was the first that introduced the integral
equations, named after authors. They also formulated conditions sufficient for a given
monotonic function to be the spectral function of the operator (in a half-line or finite
interval). It follows that for two sequences of real numbers {λn}∞

0 , {αn}∞
0 , αn > 0, to be

the spectrum and normalization numbers of the Sturm–Liouville operator, it is sufficient
that for some constants a0, a1, b0, b1√

λn = n +
a0

n
+

a1

n3 + O
(

1
n4

)
, αn =

π

2
+

b0

n2 +
b1

n4 + O
(

1
n4

)
.

The results of I.M. Gelfand and B.M. Levitan were given in an intuitive account by N.
Levinson in [14].

1952—V.A. Marchenko extended his results [15], obtained earlier, and provided a more
systematic approach for usage of transmutation operators for studying the Sturm–Liouville
inverse problems. The results of V.A. Marchenko generalize the results of G. Borg and N.
Levinson and also explain the results of V. Bagrmann.

We should also mention a series of papers published in the same years by M.G.
Krein [16–20] that are closely connected with works of Gelfand, Levitan and Marchenko.
He developed an efficient method to construct the Sturm–Liouville operator via the spectral
function and two spectra. Later, he used these results to solve the inverse problem for the
string equations that started the usage of the approach for hyperbolic equations.
Over the next ten years, the method that originated in the mentioned works was extensively
studied in a number of works [21–28].

The continued study of inverse scattering eventually led to a method that uses the
solving of inverse problem for integrating several nonlinear equations. As a first step of the
method’s development, one can consider the work of E. Fermi et al. [29] in 1954, where the
authors detected computationally an abnormally slow stochastization of a dynamic system
in the form of a chain of nonlinear oscillators.
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1962—R. Newton, using the results of I.M. Gelfand and B.M. Levitan, studied the
construction of scattering potentials from the phase shifts at fixed energy [30]. A few
years later, in 1965, M.D. Kruskal and N.J. Zabussky [31], using the work of E. Fermi et
al., discovered using numerical simulation that collisions of solitons in the Korteweg–de
Vries (KdV) equation are elastic. As a result, an endless series of conservation laws was
discovered soon after.

1967—C.S. Gardner et al. [7] proposed the method of inverse scattering and integrated
the KdV equation:

ut − 6uux + uxxx = 0, x ∈ R, t > 0

with the initial condition
u(x, 0) = f (x)

by going from the potential of the one-dimensional Schrodinger equation

−d2ψ

dx2 + q(x)ψ = k2ψ

to the reflection coefficient r(k) of this potential. One of the crucial steps of the method is to
solve the inverse problem and restore the potential of the Schrodinger equation, which was
provided by results of Gelfand, Levitan and Marchenko.

Over the next ten years, such fundamental result led to a large number of papers
where the inverse scattering method was studied and generalized.

1968–1969—P.D. Lax [32] discovered an algebraic mechanism forming a basis of the
method of inverse scattering.

1970—B.B. Kadomtsev and V.I. Petviashvili obtained the generalization of the KdV
equation when studying the stability of solitary waves in weakly dispersive media [33].
The equation was named after them.

1971—C.S. Gardner [34] introduced a theory of the KdV equation as a Hamiltonian
system.

1971—V.E. Zakharov and A.B. Shabat [35] applied the method of inverse scattering to
the nonlinear Schrodinger equation.

1971—V.E. Zakharov and L.D. Faddeev [36], independently of C.S. Gardner, con-
structed a theory of the KdV equation as a Hamiltonian system.

1973—A.B. Shabat [37] constructed a class of quasi-linear equations that can be reduced
to linear equations.

1974—S.P. Novikov [38], P.D. Lax [39] and V.A. Marchenko [40] studied a periodic
Cauchy problem for the KdV equation.

The new result for the periodic problem obtained from the method introduced by C.S.
Gardner et al. [7] was the Faddeev–Zakharov theorem: the eigenvalues of the operator L
are commutating integrals of the KdV equation as a Hamiltonian system.

1974—V.E. Zakharov and A.B. Shabat [41] proposed a general scheme of the inverse
scattering method to integrate the nonlinear differential equations.

1974—L.D. Faddeev [42] published a paper that contains the first multi-dimensional
analogs of the Gelfand–Levitan method. Another example of solving scattering problems
for more than one dimension can be found in [43].

1974—V.E. Zakharov and S.V. Manakov [44] showed that the nonlinear Shrodinger
equation considered as a Hamiltonian system is fully integrable. This can be done using a
scattering matrix of the one-dimensional Dirac operator.

1976—S.V. Manakov [45] generalized the Lax pair for two-dimensional time-dependent
equations.

1976—V.E. Zakharov and S.V. Manakov [46] showed that each one-dimensional dif-
ferential operator whose coefficient depends on an arbitrary set of parameters can be
associated with a series of multidimensional nonlinear partial differential equations inte-
grable via the inverse scattering method.
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1976—P.D. Lax [47] considered the almost periodic behavior (in time) of the periodic
solutions to the KdV equation. He presented a new proof based on Lennart’s recursion.

1979—V.E. Zakharov and A.B. Shabat [48] extended the method developed in 1976
to spectral problems as rational functions of the spectral parameter. They obtained a
description of new classes of equations integrable via the method of inverse scattering and
an algorithm to construct their exact solutions.

In the early 1980s, new nonlinear equations integrable via the method of inverse
scattering (in particular, the nonlinear Shrodinger equation, the sin-Gordon equation, etc.)
were found.

1980—V.E. Zakharov et al. [49] provided a systematic description of the method of
inverse scattering.

1982—L.P. Nizhnik and M.D. Pochinayko [50] investigated the nonlinear two-dimensional
(in space) Shrodinger equation and used the inverse scattering method for its integration.

1984—A.P. Veselov and S.P. Novikov [51] considered a two-dimensional generalization
of the KdV equation (the Veselov–Novikov equation) with the help of the two-dimensional
potential Shrodinger operator.

1984—R.G. Novikov and G.M. Henkin [52] applied (and adapted) the inverse scatter-
ing method to obtain weakly localized solutions to a KdV equation in which the transmis-
sion coefficient of the scattering matrix may be zero for a finite set of pulses.

1984—A.P. Veselov and S.P. Novikov obtained a two-dimensional integrable extension
of the KdV equation [51].

1985–1986—P. Grinevich et al. [53–56] gave the first results on the inverse scattering
method for the Veselov–Novikov equation with decaying at infinity potential at fixed
energy E.

The method of inverse scattering was investigated by Boiti et al. [57], Tsai [58], Nach-
man [59], Bogdanov et al. [60], Lassas et al. [61], Lassas et al. [62,63], Music [64] and
Perry [65].

1986—R.G. Novikov [53] used it for physical inverse scattering, i.e., for inverse scatter-
ing in a physical sense, for the first time.

1992—J.-P. Francoise and R.G. Novikov [66] investigated the hierarchy of the Calogero–
Moser system for the Kadomtsev–Petviashvili and Veselov–Novikov equations.

1999—R.G. Novikov [67] proposed some inverse scattering algorithm, which requires
the solution of the linear integral equation with a specific kernel. That equation can be
considered as a two-dimensional analog of the the Gelfand–Levitan–Marchenko–Krein
equations.

2011—A.V. Kazeykina and R.G. Novikov [68] studied the asymptotics of solutions to a
Cauchy problem for the Veselov–Novikov equation with positive energy.

2013— M. Music et al. [69] studiet nonlinear scattering transform for the two-dimensional
Schrodinger equation at zero energy with a radial potential.

2020 and 2021—N. Bondarenko obtained the spectral data characterization for the
matrix Sturm–Liouville operator with the general self-adjoint boundary conditions [70].
This result implies the characterization of the spectral data for the Sturm–Liouville operators
on geometrical graphs of arbitrary structure with rationally dependent edge lengths. It is
worth mentioning that the spectral data characterization for the Sturm–Liouville operator
on a star-shaped graph was previously obtained in [71].

2021—S.A. Avdonin et al. [72] investigated the inverse problem of recovering the
matrix potential from the dynamical Neumann-to-Dirichlet operator for a dynamical system
with boundary control for the vector Schrodinger equation on the interval with a non-self-
adjoint matrix potential.

2023—X.-C. Xu and N. Bondarenko [73] proved the local solvability and stability of
the inverse Robin–Regge problem in the general case, taking eigenvalue multiplicities into
account. The new approach was developed based on the reduction of this inverse problem
to the recovery of the Sturm–Liouville potential from the Cauchy data.
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1.2. Inverse Problems for Hyperbolic Equations

1954—M.G. Krein [6] was the first to use the GLK method for inverse problems for
hyperbolic equations. He considered the so-called string problem and formulated theorems
on the solvability of an inverse problem. The nonlinear inverse problem for the string
equation was reduced to an integral equation (the Krein equation).

1968—B.S. Pariiskii [74] studied a one-dimensional inverse problem for the wave
equation with a perturbation at some depth and derived the Krein equation.

1970–1971—B. Gopinath and M. Sondhi [75,76], independently of each other, proposed
an integral equation (also in a time domain) for reconstructing human speech from acoustic
measurements.

1971—A.S. Blagoveshchenskii [77] obtained another proof of Krein results. He showed
that the dependence of the sought-for coefficient on the additional information is local.
In contrast, earlier such problems were studied by using Fourier (or Laplace) transforms
in time. Later, that differential equation coefficient was actually reconstructed from the
properties of the eigenfunctions of the corresponding spectral problem.

1975—A.S. Alekseev and V.I. Dobrinskii [78] used a discrete analog of the Gelfand–
Levitan method to study numerical algorithms for solving the one-dimensional inverse
dynamic problem of seismology. Later, ideas from the I.M. Gelfand and B.M. Levitan
approach were used to deal with monochromatic seismic problems [79].

1977—B.S. Pariiskii [80] published a detailed review of the numerical methods for
solving Gelfand–Levitan equation.

1979—W. Symes [81] applied nonlinear integral equations for an inverse problem in
time domain.

1980—R. Burridge [82] attempted to apply the Gelfand–Levitan–Marchenko equations
for elasticity theory in a time domain and found a relation between them and the Gopinath–
Sondhi equation.

1982—F. Santosa [83] developed an exact method for solving an inverse problem of
plane wave propagation via the Gelfand–Levitan method, tested a numerical scheme for
solving the integral equation, investigated the stability and analyzed the numerical errors
and approximations.

1988—S.I. Kabanikhin [84] proposed a new algorithm for solving the Gelfand–Levitan
equation using a sufficient condition for solvability of the inverse problem.

1991—V.G. Romanov and S.I. Kabanikhin [85] applied a dynamic version of the
Gelfand–Levitan method to the one-dimensional inverse problem of geoelectrics for a
quasi-stationary approximation of the system of Maxwell equations.

1998—A.S. Alekseev and V.S. Belonosov [86] used the spectral method to reconstruct
the acoustic impedance in a one-dimensional wave equation.

1987—M.I. Belishev [87] developed the first multi-dimensional analogs of the Gelfand–
Levitan–Krein equations for hyperbolic inverse problems.

1988—S.I. Kabanikhin [84,88] proposed another multi-dimensional analog of the
Gelfand–Levitan–Krein equations.

1992—M.I. Belishev and A.S. Blagoveshchenskii [89] proposed a multidimensional
analog of the Gelfand–Levitan equation based on the boundary-control method.

2004—S.I. Kabanikhin and M.A. Shishlenin [90] showed that the discrete analogs of
the Krein and boundary-control methods are the same for the one-dimensional coefficient
inverse problem of acoustics.

2005—S.I. Kabanikhin et al. [91] published a book on numerical methods for solving
two-dimensional analogs of the Gelfand–Levitan–Krein equation for coefficient inverse
problems for the wave and acoustics equations.

2011—S.I. Kabanikhin and M.A. Shishlenin [92] developed a numerical method for
solving the Krein equation for the Nth approximation of the two-dimensional inverse
acoustic problem. The Krein equation for the Nth approximation was obtained in ma-
trix form, for which a numerical method was constructed based on the singular value
decomposition method.
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2011—M.A. Shishlenin and N.S. Novikov [93] conducted a comparative analysis of
two numerical methods for solving the Gelfand–Levitan equation and developed the
Monte-Carlo method for solving the Gelfand–Levitan equation.

2016—V. Druskin et al. [94] proposed the method of finding the velocity propagation
speed in the acoustic wave equation based on the discrete form of the GLKM method.

2018—L. Borcea et al. [95] proposed new linear-algebraic algorithm that uses a
reduced-order model to compare data with data corresponding to the Born model with
single scattering.

2021—V. Druskin et al. [96] combined data-driven reduced-order models with the
Lippmann–Schwinger integral equation to obtain a direct nonlinear inversion method.
Numerically, it has been shown that the proposed inversion is much better than the
Born inversion.

2021—V.G. Romanov [97] justified the scheme related to the construction of the infinite
system of integral equations in the case when the potential is analytic in x.

The Gelfand–Levitan–Krein method was applied for solving acoustic [98–100], elastic-
ity [101] and seismic [102,103] coefficient inverse problems. We also should mention series
of works of A.V. Baev [104–107], where he recently obtained some new results, related to
solving inverse problems for hyperbolic equations by using variations of GLK approach.

An advantage of the Gelfand–Levitan–Krein approach for solving coefficient inverse
problems for hyperbolic equations is that the direct problems need not be solved many
times. We note the boundary control (BC) method created by M.I. Belishev [108–111]
and a globally convergent method of [112–118] by M.V. Klibanov. In the next section,
we will briefly consider the BC method and its connection to the Krein approach in the
one-dimensional case.

2. One-Dimensional Problems

2.1. I.M. Gelfand–B.M. Levitan Equation

First, we consider the direct Sturm–Liouville problem:

lqy(x) := −y′′ + q(x)y, (1)

defined on a set of functions y ∈ W2
2 (0, π) and satisfying the relations

lqy(x) = λy, x ∈ (0, π),

y′(0)− hy(0) = 0, y′(π) + Hy(π) = 0.
(2)

Here, h, H ∈ R, q(x) ∈ L2(0, π). Let λn be an eigenvalue and ϕ(x, λn), an eigenfunction of
the operator lq and ϕ(0, λ) = 1, ϕ′(0, λ) = h. Let

αn =

π∫
0

ϕ2(x, λn)dx, (3)

The set {λn, αn}n≥0 is called the spectral data of the operator lq, with the following asymp-
totic properties [119]:

√
λn = n +

ω

πn
+

βn

n
, αn =

π

2
+

β1n
n

, {βn}, {β1n} ∈ l2,

αn > 0, λn �= λm, (n �= m).

The inverse Sturm–Liouville problem consists in reconstructing the potential q(x) and
coefficients h, H from the spectral data. Using a function F(x, t):

F(x, t) =
∞

∑
n=0

(
cos

√
λnx cos

√
λnt

αn
− cos nx cos nt

α0
n

)
, (4)
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where

α0
n =

{
π
2 , n > 0,
π, n = 0,

one can reduce the inverse Sturm–Liouville problem to the Gelfand–Levitan equation:

G(x, t) + F(x, t) +
x∫

0

G(x, s)F(s, t)ds = 0, 0 < t < x. (5)

The solution to the Gelfand–Levitan equation makes it possible to determine the solution
to the inverse problem via the formula

q(x) = 2
d

dx
G(x, x), h = G(+0,+0), H = ω − h− 1

2

π∫
0

q(t)dt. (6)

One can also consider the following coefficient dynamic inverse problem: find an even q(x)
that satisfies the following:

utt = uxx − q(x)u, x ∈ R, t > 0; (7)

u|t=0 = 0, ut|t=0 = δ(x);

u|x=0 = f (t). (8)

The inverse problem can be reduced to the Gelfand–Levitan equation [120]:

w̃(x, t) +
x∫

0

[ f ′(t− τ) + f ′(t + τ)]w̃(x, τ)dτ = −1
2
[ f ′(t− x) + f ′(t + x)], t ∈ [0, x). (9)

Here, f (t) is an odd continuation of the inverse problem’s data to the negative t and the
derivative of f (t) is taken at the points of continuity only. The solution to the inverse
problems (7) and (8) can be found via the formula

q(x) = 4
d

dx
w̃(x, x− 0), x > 0. (10)

We should also mention the paper of R.G. Novikov [121], where he proposed an ex-
plicit formula to solve the inverse scattering problem for the Sturm–Liouville operator (in
dimension 1) up to smooth functions.

2.2. V.A. Marchenko Equation—The Inverse Scattering Method

Let us consider the direct scattering problem: given q(x) such that q(x) → 0 for
x → ±∞, find eigenfunctions and eigenvalues of the problem ([122]):

−y′′ + q(x)y = k2y. (11)

Equation (11) for q(x) < 0 and k2 > 0 has a continuous spectrum of eigenvalues. If k2 < 0
then the spectrum is discrete. Let us suppose that

∞∫
−∞

(1 + |x|)|q(x)|dx < ∞.
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Equation (11) has a fundamental system of the solutions:

ψ1(x, k) ∼= e−ikx + o(1), ψ2(x, k) ∼= eikx + o(1), x → +∞, (12)

ϕ1(x, k) ∼= e−ikx + o(1), ϕ2(x, k) ∼= eikx + o(1), x → −∞. (13)

Note that

ψ1(x, k) = ψ∗2 (x, k) = ψ2(x,−k), (14)

ϕ1(x, k) = ϕ∗2(x, k) = ϕ2(x,−k). (15)

Here, ∗ is the complex conjugation. Equation (11) has two linear independent solutions;
therefore, each solution can be represented as a linear combination

ϕ(x, k) = a(k)ψ(x, k) + b(k)ψ∗(x, k), (16)

ϕ∗(x, k) = c(k)ψ(x, k) + d(k)ψ∗(x, k). (17)

Therefore, we have that
d(k) = a∗(k), c(k) = b∗(k).

It follows from (16) that

ϕ(x, k)
a(k)

= ψ(x, k) +
b(k)
a(k)

ψ∗(x, k), (18)

and using asymptotic for x → +∞ we obtain that

ϕ(x, k)
a(k)

= e−ikx + r(k)eikx + o(1). (19)

Here, r(k) = b(k)/a(k) is the reflection coefficient. For x → −∞, we have

ϕ(x, k) ∼= e−ikx. (20)

Then, the last wave has the form

ϕ(x, k)
a(k)

∼= t(k)e−ikx.

Here, t(k) = 1/a(k) is the completion rate. The discrete spectrum of the Schrodinger
operator is k2

n = −χ2
n (χn > 0). If we consider the asymptotic for x → −∞ in the form

ϕ(n)(x) = eχnx + o(eχnx), (21)

then for x → +∞ we have the wave function in the form

ϕ(n)(x) = bn e−χnx + o(e−χnx)

Eigenfunctions corresponding to the discrete spectrum and the eigenvalues are real-
valued. Let us enumerate eigenvalues

χ2
1 > χ2

2 > . . . > χ2
n > 0

and suppose that the ϕ(1)(x) wave function corresponding to χ2
1 has no zeros for

x ∈ (−∞, ∞). Then, ϕ(n)(x) has (n − 1) zeros using oscillatory theorem [123] and we
have that bn = (−1)n−1|bn|.

The set
S = {r(k), χn, |bn|, n = 1, N}
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is called scattering data. The direct scattering problem is to find scattering data via the
given q(x).

Let us consider the following functions

χ−(x, k) = ϕ(x, k)eikx, (22)

χ+(x, k) = ψ(x, k)eikx, (23)

and assume the following boundary conditions hold

lim
x→−∞

χ−(x, k) = 1, (24)

lim
x→+∞

χ+(x, k) = 1. (25)

Using the connection between Equation (11) and the Volterra integral equations, one
can obtain that the functions ϕ, ψ are the solutions of the following integral equations [15,42]:

ϕ(x, k) = e−ikx +

x∫
−∞

sin k(x− ξ)

k
q(ξ)ϕ(ξ, k)dξ,

ψ(x, k) = e−ikx −
+∞∫
x

sin k(x− ξ)

k
q(ξ)ψ(ξ, k)dξ.

(26)

Functions χ−(x, k) and χ+(x, k) solve the following equation

−χ±xx(x, k) + 2ikχ±x(x, k) + q(x)χ±(x, k) = 0, (27)

and instead of (26) we obtain

χ−(x, k) = 1 +
x∫

−∞

e2ik(x−ξ) − 1
2ik

q(ξ)χ−(ξ, k)dξ.

χ+(x, k) = 1−
∞∫

x

e2ik(x−ξ) − 1
2ik

q(ξ)χ+(ξ, k)dξ.

For k → ∞, we have

χ+(x, k) = 1 +
∞∫

x

q(ξ)
2ik

dξ + o
( 1

k2

)
. (28)

It follows from (16) that

ϕ(x, k)eiky

a(k)
= ψ(x, k)eiky + r(k)ψ∗(x, k)eiky. (29)

Let us integrate (29) with respect to k:

∞∫
−∞

ϕ(x, k)eiky

a(k)
dk =

∞∫
−∞

ψ(x, k)eikydk +
∞∫

−∞

r(k)ψ∗(x, k)eikydk. (30)

In the left-hand side of (30)

∞∫
−∞

ϕ(x, k)eiky

a(k)
dk = 2π i

N

∑
n=1

ϕ(x, iχn)

an(iχn)
e−χny. (31)
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We have
ϕ(x, iχn) = bnψ∗(x, iχn) = bnψ(x,−iχn),

then (31) can be rewritten in the form

∞∫
−∞

ϕ(x, k)eiky

a(k)
dk = 2π i

N

∑
n=1

bnψ(x,−iχn)

an(iχn)
e−χny. (32)

Let us introduce a new function K(x, y), such that

ψ(x, k) = e−ikx +

∞∫
x

K(x, y)e−ikydy, (33)

then (32) is rewritten as follows

∞∫
−∞

ϕ(x, k)eiky

a(k)
dk = 2π i

N

∑
n=1

bn e−χny

an(iχn)

⎡⎣e−χnx +

∞∫
x

K(x, z)e−χnzdz

⎤⎦. (34)

It follows from (30) that

∞∫
−∞

ϕ(x, k)eiky

a(k)
dk = 2π

∞∫
x

K(x, z)δ(y− z)dz+

+

∞∫
−∞

r(k)eik(y+x)dk +
∞∫

x

K(x, z)

⎡⎣ ∞∫
−∞

r(k)eik(z+y)dk

⎤⎦dz. (35)

Therefore, we obtain

2π i
N

∑
n=1

bn

ak(iχn)
e−χn(x+y) + 2π i

∞∫
x

K(x, z)
∞

∑
n=1

bn

an(iχn)
e−χn(x+y)dz=

=2πK(x, y) +
∞∫

−∞

r(k)eik(y+x)dk +
∞∫

−∞

K(x, z)

⎡⎣ ∞∫
−∞

r(k)eik(z+y)dk

⎤⎦dz. (36)

Define the function F(x) which consists of scattering data

F(x) =
N

∑
n=1

bn e−χnx

ian(iχn)
+

1
2π

∞∫
−∞

r(k)eikxdk, (37)

then Equation (36) can be rewritten in the form of the V.A. Marchenko integral equation

K(x, y) + F(x + y) +
∞∫

x

K(x, s)F(s + y)ds = 0. (38)

Using (33), we obtain that

χ+(x, k) = 1 +
∞∫

x

K(x, y)eik(x−y)dy = 1− 1
ik

K(x, y)eik(x−y)
∣∣∣y=∞

y=x
+ o

(1
k

)
. (39)

We have
1
ik

K(x, y)eik(x−y) → 0, y → ∞
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then
χ+(x, k) = 1 +

1
ik

K(x, x). (40)

It follows from (28) that

K(x, x) =
1
2

∞∫
x

q(ξ)dξ. (41)

Then, the function q(x) in the equation is reconstructed via the formula

q(x) = −2
d

dx
K(x, x).

Now, before moving further to the inverse scattering method, we would like to
illustrate the connection between the considered inverse problems for 1D via Figure 1.

Figure 1. The connection between the inverse spectral problem, the inverse scattering problem and
the inverse problem in time domain.

Let us consider the inverse scattering method, which appears while studying some
nonlinear equations of mathematical physics. The method, proposed by C.S. Gardner, J.M.
Green, M.D. Kruskal and R.M. Miura in 1967 [7] represent the nonlinear equation under
study as a compatibility condition for a system of linear equations. An initial version of the
method based on the theory of scattering for differential operators (hence, the name of the
method) was applied to the Korteweg–de Vries equation

ut − 6uux + uxxx = 0, (42)

and can be represented in the form of the solution of linear equations

ψxx + (λ− u)ψ = 0,

ψt + ψxxx − 3(λ + u)ψx = C(t)ψ.
(43)

It is a compatibility condition of the overspecified linear system of equations

(L− λ)ψ = 0, (44)

ψt + Aψ = 0,

where

L = − d2

dx2 + u(x, t), A =
d3

dx3 − 3
[

u
d

dx
+

d
dx

u
]

,
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and is equivalent to the operator relation (Lax representation)

∂L
∂t

= [L, A]. (45)

Let us consider the initial condition for the Korteweg–de Vries Equation (42)

u(x, 0) = f (x). (46)

We suppose that
∞∫

−∞

(1 + |x|)| f (x)|dx < ∞.

Let it be that for the known f (x) we find from the scattering data

Sn(0) = {λn(0); r(k, 0); bn(0); n = 1, N}. (47)

The wave function in Equation (43) depends on the time variable t:

ϕ(x, k, t) = a(k, t)ψ(x, k, t) + b(k, t)ψ∗(x, k, t), (48)

and we have the following asymptotics when x → +∞

ϕ(x, k, t) = a(k, t)e−ikx + b(k, t)eikx + o(1). (49)

Substituting (49) into (43) we obtain

ȧ + 4ik3a− ca = 0,

ḃ− 4ik3b− cb = 0.
(50)

Therefore, solving (50) we obtain

r(k, t) =
b(k, t)
a(k, t)

= r(k, 0)e8ik3t. (51)

bn(t) = bn(0)e8χ3
nt, n = 1, N. (52)

Therefore, if by the given initial data f (x) we find S(t = 0), then S(t) has the following
form

S(t) =
{

r(k, 0)e8ik3t; χn(0); bn(0)e8χ3
nt, n = 1, N

}
. (53)

Let us denote

F(x, t) =
N

∑
n=1

bn(0)e−χnx+8χ3
nt

ian(iχn)
+

1
2π

∞∫
−∞

r(k, 0)eikx+8ik3tdk. (54)

Then, we solve the Marchenko integral equation for the function K(x, y, t) to solve the
inverse problem of scattering:

K(x, y, t) + F(x + y, t) +
∞∫

x

K(x, s, t)F(s + y, t)ds = 0. (55)

Then, we find the solution of the KdV equation via the formula

u(x, t) = −2
∂

∂x
K(x, x, t). (56)
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Therefore, in the first step we find the scattering data S(t = 0) for the known f (x). In the
second step, we find the scattering data S(t). Then, the function F(x, t) is found via (54). In
the fourth step, we solve the Marchenko Equation (55). In the last step, we find the solution
of the KdV equation via Equation (56). The scheme of the method is illustrated in Figure 2:

�

The Cauchy problem
ut − 6uux + uxxx = 0

u(0, x) = f (x)
The Cauchy problem
solution: u(x, t)

�

Direct problem

Inverse scattering
data t = 0: S0

�
Inverse problem

�The evolution by t

solved explicitly
Scattering data
for arbitrary t: S(t)

Figure 2. Scheme of solving the KdV equation by solving the inverse scattering problem.

To solve these problems efficiently, numerical calculations are required. An advantage
of the inverse scattering method is that it allows advancing in time as far as needed without
loss of accuracy.

2.3. Krein Equation

We consider the following inverse problem:

utt = uxx −
σ′(x)
σ(x)

ux, x > 0, t > 0; (57)

u
∣∣
t<0 ≡ 0; (58)

ux
∣∣
x=+0 = δ(t); (59)

u(+0, t) = f (t). (60)

In [77], the inverse problem of acoustics is reduced to the Krein equation

−2 f (+0)Φ(x, t)−
x∫

−x

f ′(t− s)Φ(x, s)ds =
1

σ(+0)
, |t| < x, (61)

in which the function r(t) is oddly extended to the negative t.
The solution to the inverse problems (57)–(60) can be found via the formula

σ(x) =
1

4σ(+0)Φ2(x, x− 0)
. (62)

2.4. Boundary-Control Method in One-Dimensional Case

Let us consider the inverse problem with arbitrary source:

∂2ug

∂t2 =
∂2ug

∂x2 − σ′(x)
σ(x)

∂ug

∂x
, x > 0, t > 0;

ug∣∣
t<0 ≡ 0;

∂ug

∂x

∣∣∣
x=+0

= g(t);

ug(0, t) = f g(t).
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f g(t) is data measured for g(t). The inverse problem consists in finding σ(x) by the
given functions g(t) and f g(t). Let us define

wgh(s, t) =
∫ L

0

ug(x, s) uh(x, t)
σ(x)

dx :=
(

ug(·, s), uh(·, t)
)

H
, (63)

which for s = t = � can be expressed as:

wgh(�, �) =
1

2σ(+0)

∫ �

0

∫ 2�−ξ

ξ

[
h(τ) f g(ξ)− g(ξ) f h(τ)

]
dτdξ. (64)

Note, we can find the response to the arbitrary source g(t) by knowing response
f (t) (57)–(60):

ug(0, t) := f g(t) =
∫ t

0
f (t− s) g(s)ds. (65)

Let us consider dense system of functions
{

ψk(t)
}
∈ L2(0, �), k = 1, M and

ug(x, �) = θ(�− x). (66)

Here, θ(·) is a Heaviside theta-function. Therefore, we find the approximate source

g(t) ≈ gM(t) =
M

∑
k=1

αkψk(t). (67)

The coefficients
{

αk
}

, k = 1, M solve the following system

Γα = b, (68)

where
Γjk =

(
uj(·, T), uk(·, T)

)
H

, bj =
(

a(·), uj(·, T)
)

H
, j, k = 1, M. (69)

Using (65), (69) and taking into account that
{

ψk(t)
}

are given on [0, �], one can show
that coefficients of matrix Γ and components of vector b are defined from

{
ψk(t)

}
, k = 1, M:

Γjk = − f (+0)
σ(+0)

∫ �

0

∫ �−τ

0
ψj(ξ)dξ

∫ �−τ

0
ψk(η)dηdτ−

− 1
2σ(+0)

∫ �

0

∫ �−η

0
ψk(η

′)dη′
∫ �

0

[
r′(τ + η) + r′(|τ − η|)

]
×

∫ �−τ

0
ψj(ξ)dξdτdη; (70)

bj = − 1
σ(+0)

∫ �

0
(�− t)ψj(t)dt. (71)

Here, j, k = 1, M. One can obtain:

‖a‖2
H ≈ ‖aM‖2

H =
M

∑
k=1

αkbk. (72)

Therefore ∫ �

0

dx
σ(x)

= ‖a‖2
H ≈ ‖aM‖2

H =
M

∑
k=1

αkbk. (73)

It follows from (70) and (71) that all components of system (68) depend on parameter
�. Therefore, differentiating by � we derive from (73):

d
d�
‖a‖2

H(�) =
d
d�

∫ �

0

dx
σ(x)

=
1

σ(�)
≈ d

d�

[
M

∑
k=1

αkbk

]
. (74)
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Using (73) and (74), an approximate solution of the inverse problem is given by the
formula:

σ(�) ≈
{

d
d�

[
M

∑
k=1

αkbk

]}−1

. (75)

Now, we will consider the connection between the BC method and the Krein equation
for the 1D acoustic problem. In order to do that, we consider the discrete version of
Equations (61) and (68).

Let h = �/N, ψn
k = ψk(nh), k = 1, N, n = 0, N − 1. We consider the following basis

functions:
ψn

k =
1
h2

[
δN−k+1,n − δN−k,n

]
, n = 0, N − 1, k = 1, N,

where

δn,k =

{
1, n = k
0, n �= k

.

We use the following formula for numerical integration:

∫ �

0
f (t)dt = h

N−1

∑
n=0

f n + o(h).

Let us find the discrete analogs of components of vector b and matrix Γ.

Lemma 1. The components of the vector can be represented in the form

bj =
1
σ0

+ o(h), j = 1, N. (76)

Lemma 2. The following equality holds true

N−m−1

∑
n=0

ψn
k = − 1

h2 δm+1,k. (77)

Lemma 3. The coefficients Γjk can be represented in the form

Γjk = − f 0

hσ0
δk,j −

1
2σ0

[
f ′ j+k−2

+ f ′ |j−k|]
+ o(h). (78)

Using (78), we rewrite the initial Equation (68) in discrete form:

2
f 0

σ0
αj +

h
σ0

N

∑
k=1

[
f ′ j+k−2

+ f ′ |j−k|]
αk = −2

h
σ0

, j = 1, N. (79)

Denote αN
k = αk(Nh). Then, we obtain that

N

∑
k=1

αN
k bN

k =
1
σ0

N

∑
k=1

αN
k . (80)

Let us find the finite-difference derivative of (80):

( N

∑
k=1

αN
k bN

k

)
�̄
=

1
hσ0

[ N

∑
k=1

αN
k −

N−1

∑
k=1

αN−1
k

]
=

1
σ0

N−1

∑
k=1

αN
k − αN−1

k
h

+
αN

N
h

. (81)

Let us denote
βN

k =
1

2hσ0
αN

k .
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Then, Equation (79) has the form

2 f 0βN
j + h

N

∑
k=1

[
f ′ j+k−2

+ f ′ |j−k|]
βN

k = − 1
σ0

, j = 1, N. (82)

Equation (82) is solved for fixed N. Then, the solution to the inverse problem can be
found in discrete form

σN =
[( N

∑
k=1

αN
k bN

k

)
�̄

]−1
=

1
2

[ N−1

∑
k=1

(βN
k − βN−1

k ) + βN
N

]−1
.

σN =
1

4σ0 [ΨN
N ]

2

Note that the system of Equation (82) coincides with the Krein Equation (61). Thus,
we have shown that the basic relations of the boundary-control method and the Krein
method coincide in the one-dimensional case in a discrete form. Both methods allow us to
find a solution to the inverse problem at a specific point x0 of depth without any special
calculations of unknown coefficients in the interval (0, x0).

2.5. One-Dimensional Inverse Seismic Problem

A.S. Alekseev used the one-dimensional Gelfand–Levitan approach for solving the
theory of elasticity’s inverse problem [22]. The problem is to determine elastic properties of
the medium from the following system:

ρ
∂2U

∂t2 = (λ + μ)grad divU + μΔU + gradλdivU +
3

∑
i=1

gradμ(
∂U

∂xi
+ gradUxi )ei;

U(x, y, z, t)|t<0 ≡ 0;

σz|z=0 = λ0

[
∂Ux

∂x
+

∂Uy

∂y
+

∂Uz

∂z

]
+ 2μ0

∂Uz

∂z
= g1(x, y, t);

τxz|z=0 = μ0

(
∂Ux

∂z
+

∂Uz

∂x

)
= g2(x, y, t);

τyz|z=0 = μ0

(
∂Uy

∂z
+

∂Uz

∂y

)
= g3(x, y, t);

Ux(x, y, 0, t) = f1(x, y, t); Uy(x, y, 0, t) = f2(x, y, t); Uz(x, y, 0, t) = f3(x, y, t).

(83)

The first Equation in (83) describes the propagation of elastic waves through the
medium. Functions gi, i = 1, 2, 3 set the seismic load, which causes the propagation of the
seismic waves through the medium. The problem is to determine Lame parameters λ, μ, ρ
by using the measurements f j, j = 1, 2, 3, given by the last ratios in (83) that correspond to
measuring the components of the displacement vector U by using receivers located on the
surface z = 0.

If the desirable elastic parameters λ, μ, ρ depend only on the depth z, then we can
solve the inverse problem (83) by reducing it to several families of integral equations of
Gelfand–Levitan type. As shown in [22], if we apply it to the medium surficial moment
of force with the intensity δ(t), then the propagated wave is the SH wave. The inverse
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problem can be reduced then, using the Hankel transform and the symmetry of the problem,
to the following family of problems:

1
v2

s

∂2U
∂t2 =

∂2U
∂z2 +

∂ ln(μ)
∂z

∂U
∂z

− k2U;

U(z, t; k)|t<0 ≡ 0;
∂U
∂z
|z=0 =

1
4πμ0

δ(t);

U(z, t; k)|z=0 = fk(t).

(84)

Here, vs =
√

μ
ρ is the shear wave’s velocity, k is the integer parameter, μ0 is the known

value of the function μ(z) at the surface z = 0 and fk(t) are known functions. We can use
travel-time coordinates to rewrite the first equation in (84) as follows:

∂2V
∂t2 =

∂2V
∂x2 − q(x; k)V; (85)

Here, x =
∫ z

0
dξ

vs(ξ)
, q(x; k) = k2v2

s − 1
2

σ′′
σ + 3

4 (
σ′
σ )

2 and σ(x) = 1√
μρ is the acoustic

impedance of the medium. A.S. Alekseev proposed solving the inverse problem for
Equation (85) by reducing it to the inverse Sturm–Liouville problem and using the Gelfand–
Levitan approach (9) in the spectral domain. This allows us to calculate shear wave velocity
vs(x) and the density of the medium ρ(x). After that, as shown in [22], we can reconstruct

p-wave velocity vp(z) =
√

λ+2μ
ρ (z) in the same manner by using the point force type

source with intensity δ(t).

3. Two-Dimensional Analogs of the Approach

3.1. A Two-Dimensional Analog of Gelfand–Levitan Equation

Consider the following sequence of direct problems (k = 0,±1,±2, . . .):

u(k)
tt = u(k)

xx + u(k)
yy − q(x, y)u(k), x ∈ R, y ∈ R, t > 0; (86)

u(k)|t=0 = 0, u(k)
t |t=0 = δ(x)eiky. (87)

We suppose that q(x, y) is a 2π-periodic function with respect to y. Consider an inverse
problem: determine the even function q(x, y) from the additional information

u(k)|x=0 = f (k)(y, t), k = 0,±1,±2, . . . (88)

The uniqueness of the solution to the inverse problems (86)–(88) can be proved using a
technique proposed in [124,125], based on properties of the Dirichlet-to-Neumann map
and the finite dependance of the solution on the boundary conditions. Now, we consider
the following auxiliary sequence of direct problems (m = 0,±1,±2, . . .) [91,126]:

w(m)
tt = w(m)

xx + w(m)
yy − q(x, y)w(m), x > 0, y ∈ R, t ∈ R; (89)

w(m)|x=0 = eimyδ(t), w(m)
x |x=0 = 0. (90)
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Now, using the d’Alembert formula for problems (89) and (90), we can obtain [91,126]:

w(m)(x, y, t) =
1
2

eimy[δ(t− x) + δ(t + x)]+

+
1
2

∫ x

0

∫ t+x−ξ

t−x+ξ

[
− w(m)

yy + q(x, y)w(m)
]
(ξ, y, τ)dξdτ. (91)

The following condition takes place: w(m)(x, y, t) ≡ 0, 0 < |x| < t, y ∈ R.
We denote

w̃(m)(x, y, t) = w(m)(x, y, t)− 1
2

eimy[δ(t− x) + δ(t + x)
]
. (92)

Using (92) in (91), we can obtain:

w̃(m)(x, y, t) =
1
4

eimyθ(x− |t|)
[

xm2 + Q(x, y, t)
]
+

+
1
2

∫ x

0

∫ t+x−ξ

t−x+ξ

[
− w̃(m)

yy + q(x, y)w̃(m)
]
(ξ, y, τ)dξdτ. (93)

Here,

Q(x, y, t) =
∫ x+t

2

0
q(ξ, y)dξ +

∫ x−t
2

0
q(ξ, y)dξ. (94)

Then,

w̃(m)(x, y, x− 0) =
1
4

eimy
[

xm2 +
∫ x

0
q(ξ, y)dξ

]
. (95)

Inverse problems (86)–(88) can be reduced formally to a system of integral equations
(k = 0,±1,±2, . . .) of the first kind

x∫
−x

∑
m

f (k)m (t− s)w̃(m)(x, y, s)ds = −1
2

[
f (k)(y, t− x) + f (k)(y, t + x)

]
, (96)

or the second kind

w̃(k)(x, y, t) +
x∫

−x
∑
m

f (k)m
′
(t− s)w̃(m)(x, y, s)ds = −1

2

[
f (k)t (y, t− x) + f (k)t (y, t + x)

]
. (97)

Here, |t| < x, y ∈ R. The systems of Equations (96) and (97) are two-dimensional
analogs of the Gelfand–Levitan equation. Note that, according to Equation (95), q(x, y) can
be calculated, for instance, via the formula

q(x, y) = 4
d

dx
w̃(0)(x, y, x− 0). (98)

3.2. A Two-Dimensional Analog of Krein Equation

Consider the following sequence of the direct problems (k = 0,±1,±2, . . .) [92]:

u(k)
tt = u(k)

xx + u(k)
yy −∇ ln ρ(x, y)∇u(k), x > 0, y ∈ R, t > 0; (99)

u(k)|t<0 ≡ 0, u(k)
x (+0, y, t) = eiky δ(t). (100)

An inverse problem is to determine the function ρ(x, y) from the additional information

u(k)(+0, y, t) = f (k)(y, t), k = 0,±1,±2, . . . (101)
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We suppose that ln ρ(x, y) is a 2π-periodic function. The necessary condition of the
inverse problem’s solvability can be obtained [84,88,92]:

f (k)(y,+0) = −eiky, y ∈ (−π, π), k ∈ Z. (102)

We also consider the following sequence of the auxiliary problem:

w(m)
tt = w(m)

xx + w(m)
yy −∇ ln ρ(x, y)∇w(m), x > 0, y ∈ (−π, π), t ∈ R, m ∈ Z; (103)

w(m)|x=0 = eimyδ(t), w(m)
x |x=0 = 0. (104)

Then, we have the following form of the solution of problems (103) and (104):

w(m)(x, y, t) =
1
2

eimy

√
ρ(x, y)
ρ(0, y)

[δ(x + t) + δ(x− t)] + w̃(m)(x, y, t), (105)

Here, w̃(m)(x, y, t) is the piecewise-smooth function. Solutions of sequences (99), (100)
and (103), (104) are connected:

u(k)(x, y, t) =
∫

R
∑
m

f (k)m (t− s)w(m)(x, y, s)ds, x > 0, y ∈ (−π, π), t ∈ R; (106)

Here,
f (k)(y, t) = ∑

m
f (k)m (t)eimy. (107)

Then, we extend functions f (k) and u(k) for t < 0 as an odd continuation:

f (k)(y, t) = − f (k)(y,−t), t < 0; (108)

u(k)(x, y, t) = −u(k)(x, y,−t), t < 0; (109)

Now, we apply the operator ∫ x

0

(.)
ρ(ξ, y)

dξ (110)

to equality (106). Let us denote

V(m)(x, y, t) =
∫ x

0

w(m)(ξ, y, t)
ρ(ξ, y)

dξ, (111)

Then, we can obtain:

∂

∂t

∫ x

0

u(k)(ξ, y, t)
ρ(ξ, y)

dξ =
∂

∂t

∫
R

∑
m

V(m)(x, y, s) f (k)m (t− s)ds=

=− 2V(k)(x, y, t) +
∫ x

−x
∑
m

V(m)(x, y, s) f (k)′m (t− s)ds. (112)

It was shown [84,92] that the left part of Equation (112) does not depend on x, t, and
satisfies the following ratio:

∂

∂t

∫ π

−π

∫ x

0

u(k)(ξ, y, t)
ρ(ξ, y)

dξdy = −
∫ π

−π

eiky

ρ(0, y)
dy. (113)

Let us denote
Φ(m)(x, t) =

∫ π

−π
V(m)(x, y, t)dy. (114)
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We can obtain from (112) and (113):

2Φ(k)(x, t)−∑
m

∫ x

−x
( f k

m)
′(t− s)Φ(m)(x, s)ds = −

∫ π

−π

eiky

ρ(0, y)
dy, k ∈ Z. (115)

For every fixed value of x, Equation (115) is a linear Fredholm integral equation of the
second kind. The set of Equation (115) is the multi-dimensional analog of the M.G. Krein
equation [84,91]. It was proved [91,126] that

V(m)(x, y, x− 0) =
eimy

2
√

ρ(x, y)ρ(0, y)
. (116)

Therefore,

Φ(m)(x, x− 0) =
∫ π

−π

eimy

2
√

ρ(x, y)ρ(0, y)
dy. (117)

The solution to the inverse problem ρ(x, y) can be found via the formula

ρ(x, y) =
π2

ρ(0, y)

[
∑
m

Φm(x, x− 0)e−imy
]−2

. (118)

To find the solution to the inverse problem ρ(x, y) at a point x0 > 0, we solve the
system (115) setting x = x0 and calculate ρ(x0, y) via Equation (118).

To numerically solve the two-dimensional analog of the Krein equation (see Figures 3–6),
we use the Nth approximation [127,128] of the Krein equation [91]. That is, in the sys-
tem (115) we set Φk(x, t) ≡ 0 for all N < |k| [92]. Discrete analogs of the Gelfand–Levitan
equation are investigated in [91,129–132].

Figure 3. Exact solution of the inverse problem.

190



Mathematics 2023, 11, 4458

Figure 4. Approximate solution of the inverse problem, N = 5, ε = 0.

Figure 5. Approximate solution of the inverse problem, N = 10, ε = 0.

Figure 6. Approximate solution of the inverse problem, N = 10, ε = 0.05.
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4. Numerical Methods for Solving Gelfand–Levitan and Krein Equations

In this section, we present a short review of numerical methods that can be used for
solving arising equations. In order to find the solution of one of the considered inverse
problems, we have to solve the family of corresponding integral equations for every value
of the parameter x, which is correlated to the current depth. On the one hand, Gelfand–
Levitan ((9) and (91)) and Krein ((61) and (115)) equations, despite their differences, have
similar basic structure, which is provided by the form of the Fredholm linear integral
equation with a convolution-type kernel and the fact that we need only one component of
the solution to solve the inverse problem. On the other hand, this structure makes several
numerical techniques suitable for solving these equations. The efficiency of one or another
algorithm results from its ability to utilize the structure of the equation.

In [133,134], the authors proposed the Monte-Carlo method for solving the 2D analog
of the Gelfand–Levitan Equation (91). The idea is to represent the solution of the equation
by the sum of Neumann series. This sum is calculated as mean value of some random
variable. Such a scheme allows one to estimate specific components of the solution, which
is important due to the fact that we only need one component of the solution of the Gelfand–
Levitan-type equation to restore the solution of the inverse problem. Another stochastic
approach was proposed in [135], where Equation (91) was solved by a randomized version
of the Kaczmarz algorithm. Randomization of the well-known Kaczmarz projection method
allows one to achieve (under some assumptions) second-order complexity of the method. It
is also possible to modify the algorithm to use more information about the structure of the
discrete version of Equation (91), like block structure of the matrix. Moreover, unlike most
Monte-Carlo methods, this algorithm does not require the convergence of Neumann series.

We should also mention the approaches based on the convolution-type kernels of the
Gelfand–Levitan and Krein equations. Such kernels allow one to reduce the equations
to linear systems with Toeplitz (or block-Toeplitz) matrices. In [136], Equation (115) was
solved via the block version of the Levinson–Durbin recursion method. It was shown that
such an approach allows one to use the connection between Equation (115) for different
values of depth parameter x. The proposed recursion method allows one to calculate the
solutions of the whole family of Krein equations during the solution of only one linear
system. Both methods allow one to obtain the solution of the inverse problem in every
point of the mesh for O(N2) operations, where N is the number of mesh points.

5. Numerical Calculations

In this section, we present an example of the numerical reconstruction of the inverse
problem’s solution, based on the GLK approach. For the numerical solution of inverse
problems (99)–(101), we used a regularization technique, based on a projection of the
problem on N-dimensional subspace, produced by the basis {eiky}k=0,±1,...,±N [91,92,128].
This approach reduces the two-dimensional problem to a finite system of one-dimensional
inverse problems [91]. We suppose that the solution of problems (99) and (100) can be
represented as a series:

u(k)(x, y, t) = ∑
m

u(k)
m (x, t)eimy; (119)

We also suppose that the function ρ(x, y) also has the same representation:

ln ρ(x, y) = ∑
m

am(x)eimy; (120)

In this case, problems (99)–(101) can be rewritten as follows
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∂2u(k)
n

∂t2 =
∂2u(k)

n

∂x2 − n2u(k)
n (x, t)− ∑

m∈Z

∂am

∂x
(x)

∂u(k)
n−m
∂x

(x, t)+

+ ∑
m∈Z

m(m− n)am(x)u(k)
n−m(x, t), x ∈ R, t > 0, k, n ∈ Z;

u(k)
n |t=0 = 0,

∂u(k)
n

∂t
|t=0 = δknδ(x);

u(k)
n |x=0 = f (k)n (t).

Here, δkn is the Kronecker symbol:

δkn =

{
1, k = n
0, else

.

Now, we suppose that all the Fourier coefficients with number greater than N vanish
and consider then the following problem:

∂2V(k)
N

∂t2 =
∂2V(k)

N
∂x2 − KV(k)

N + A(x)V(k)
N − B(x)

∂V(k)
N

∂x
, x > 0, t > 0; (121)

V(k)
N |t<0 ≡ 0,

∂V(k)
N

∂x
|x=0 = I(k)N δ(t); (122)

V(k)
N |x=0 = F(k)

N . (123)

Problems (121)–(123) are called an N-approximation of inverse problems (99) and (100).
Here, A, K, B are square matrices of size 2N + 1 with elements:

Kkm = m2δkm; (124)

Akm(x) = m(k−m)ak−m(x), k, m = −N . . . N; (125)

Bkm(x) =
∂ak−m

∂x
, k, m = −N . . . N. (126)

Using the technique proposed in [137], one can obtain that, as N → ∞, the N-
approximation converges to the solution of systems (99) and (100). The N-approximation
of the Krein Equation (115) can be also obtained:

Φk(x, t) =
1
2

∫ x

−x
∑

|m|<N
( f k

m)
′(t− s)Φm(x, s)ds + Gk, k = −N, . . . , N; (127)

Numerical calculations (see Figures 3–6) are used to find an approximate solution
to the inverse problem. The two-dimensional inverse problem is approximated via a
finite system of one-dimensional inverse problems [91,92,128]. The problem is solved in
the domain x ∈ (0, 1), y ∈ (−π, π), t ∈ (0, 2). Equation (127) is approximated via an
SLAE, the size of which depends on both the number of grid points and the number of
harmonics considered. The spatial dimension of the grid is 100× 100. The number of
Fourier harmonics can be associated with the number of sources and receivers that one has
on the surface x = 0. While the dependence of the solution on the number of harmonics
required was considered in several works related to the numerical solution of 2D problems
(that we mentioned in previous section), in this paper we consider some values of that
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number only to illustrate the behaviour of the numerical reconstruction. The number of
Fourier harmonics is N = 5 in Figure 4 and N = 10 in Figures 5 and 6.

In order to illustrate the impact of the noise on the reconstruction, we consider the
noisy data in the following form:

f ε(y, t) = f (y, t) + εα(y, t)( fmax − fmin). (128)

Here, ε is a noise level in the data, α(y, t) is a uniformly distributed random number on the
interval [−1, 1] for a fixed y and t and fmax and fmin are the maximum and minimum of
the exact data, respectively. Below, we provide the results of the inverse problem’s solution
for 5% error in the data. We chose this number in an arbitrary way to illustrate the stability
of the method. On the other hand, such a level of errors, introduced in the data without
any pre-processing, could be considered as a way to simulate the real-case scenario.

One can see that the accuracy of the numerical reconstruction was acceptable. How-
ever, the second peak, which is located further from the daylight surface (and, thus,
receivers), was reconstructed worse than the first one. On the one hand, this result fits
well into the physics beside the inverse problem—the large obstacle deters part of the
information about the object to get to the receivers, located on the daylight surface. On the
other hand, from a mathematical point of view the convergence of the numerical solution
to the exact one can be provided by increasing the numbers of Fourier coefficients and
grid points, but only in the case of smooth parameters. The stability of the method is
also acceptable and can be improved further by using some processing of the noised data
(because the kernel of the equation depends on the first derivative of the data).

6. Reconstruction of the Velocity c(x, y) and the Density ρ(x, y)

Let us consider the following inverse problem: find the velocity c(x, y) and the density
ρ(x, y) from the sequence of relations (k = 0,±1,±2, . . .):

c−2(x, y)u(k)
tt = Δu(k) −∇ ln ρ(x, y)∇u(k), x ∈ R, y ∈ R, t > 0;

u(k)|t=0 = 0, u(k)
t |t=0 = eiky δ(x).

u(k)(0, y, t) = f (k)(y, t), u(k)
x (+0, y, t) = 0.

Let τ(x, y) be a solution of the Cauchy problem for the the eikonal equation

τ2
x + τ2

y = c−2(x, y), x > 0, y ∈ R;

τ|x=0 = 0, τx|x=0 = c−1(0, y), y ∈ R.
(129)

Let us introduce new variables z = τ(x, y), y = y and new functions

v(k)(z, y, t) = u(k)(x, y, t), b(z, y) = c(x, y). (130)

Since the velocity is supposed to be strictly positive, this change of variables is not
degenerate at least in some interval x ∈ (0, h).

Let us consider the sequence of the auxiliary problems (m = 0,±1,±2, . . .) [91,126]:

w(m)
tt = w(m)

zz + b2w(m)
yy + qw(m)

yz + pw(m)
z + rw(m)

y , z > 0, y ∈ R, t ∈ R;

w(m)(0, y, t) = eimy δ(t), w(m)
z (0, y, t) = 0.

(131)
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Here,

q(z, y) = 2b2τy, (132)

p(z, y) = b2(z, y)(τxx + τzz)− (ln ρ)z −
1
2

q(z, y)(ln ρ)y, (133)

r(z, y) = −b2(z, y)(ln ρ)y −
1
2

q(z, y)(ln ρ)z. (134)

We suppose that c(0, y) = b(0, y) is known and for simplicity b(0, y) ≡ 1 for y ∈ R.
In the neighborhood of the plane t = z, the solution of the direct problem (131) has

the form [91,126]:

w(m)(z, y, t) = S(m)(z, y)δ(z− t) + Q(m)(z, y)θ(z− t) + w̃(m)(z, y, t). (135)

Here, w̃(m) is continuous function and functions S(m) and Q(m) solve the following problems:

2(S(m))z + q(z, y)(S(m))y + Sp(z, y) = 0, t > 0, y ∈ R;

S(m)|t=0 =
1
2

eimy.
(136)

2(Q(m))z + q(z, y)(Q(m))y + Qh(z, y)=

=−
[
(S(m))zz + b(z, y)(S(m))yy + q(S(m))yz + p(S(m))z + q(S(m))y

]
, t > 0, y ∈ R; (137)

Q(m)|t=0 = 0. (138)

The 2D analogy of the M.G. Krein equation follows from (135) (m = 0,±1,±2, . . .):

∑
m

S(m)(z, y) f (k)m
′
(t− z) + w̃(k)(z, y, t) + ∑

m

z∫
−z

f (k)m
′
(t− s)w̃(m)(z, y, s)ds = 0, |t| < z. (139)

So, to solve the inverse problem we can solve the system (136)–(139) using the projec-
tion method and find functions c(x, y) and ρ(x, y) using the following iterative algorithm.

First, we introduce the N-approximation of the system (136)–(139), e.g., let w̃(m), S(m)

and Q(m) be equal to 0 for all |m| > N. Let us suppose that cn(x, y) is known. Then,
we calculate τn(x, y) from (129), bn(z, y) from (130) and qn(z, y) and pn(z, y) from (134).
Function S(m)

n (t, y) is calculated from (136). Then, solving the 2D analogy of M.G. Krein
Equation (139), we find w̃(m)

n (z, y, t) for |m| ≤ N. It follows from (135) that Q(m)
n (t, y) =

w̃(m)
n (t + 0, y, t). Then, from Equations (136) and (137), we find function bn+1(z, y) and after

that the new value cn+1(x, y) = bn+1(z, y) is calculated.

7. Conclusions

In this paper, we reviewed existing works related to the Gelfand–Levitan–Marchenko–
Krein approach that allows one to solve some inverse problems by reducing them to sets of
integral equations. We discussed spectral and dynamic variations of the method, as well as
the connection between the GLKM approach and the BC method and the inverse scattering
method that utilizes the connection of some nonlinear equations (we considered the KdV
equation in the manuscript) and the inverse scattering problem to formulate the algorithm
to integrate the equations. Also, we mentioned different approaches to the numerical
solution of the GLKM equations.

When considering the further development of the approach, one should mention that,
while the one-dimensional version of the method is well-developed, there are still a lot
of aspects that have to be considered in the multi-dimensional case, both in theory and
numerics. Also, the fact that the method belongs to the class of the direct ones provides
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the natural usage of the approach as the first step of the data processing and parameter
estimations that can be later improved via other techniques of solving the inverse problems.
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Abstract: We study the solvability of the Ionkin problem for some differential equations with one
space variable. These equations include parabolic and quasiparabolic, hyperbolic and quasihyper-
bolic, pseudoparabolic and pseudohyperbolic, elliptic and quasielliptic equations and equations of
many other types. For the above equations, the following theorems are proved with the use of the
splitting method: the existence of regular solutions—solutions that all have weak derivatives in the
sense of S. L. Sobolev and occur in the corresponding equation.

Keywords: spatial nonlocal problems; Ionkin condition; splitting method; regular solutions; existence;
uniqueness
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1. Introduction

The Ionkin problem (N. I. Ionkin [1]) has been studied by many authors and for
many classes of partial differential equations, and at the same time, the original method,
proposed by N. I. Ionkin himself, has almost always been used. This is the method
of decomposing the solution in some special biorthogonal systems of functions. In 2006,
in A. M. Nakhushev’s book [2] (see also [3–5]) and in the recent works [6,7] of the author
of this paper, new approaches were applied to studying the Ionkin problem and close
nonlocal problems—in A. M. Nakhushev’s work, for second-order parabolic equations,
and in the works of the author of this paper, for quasiparabolic equations, parabolic
equations with an arbitrary evolution direction and elliptic equations.

In the present article, A. M. Nakhushev’s approach is further developed: we show that
this approach is applicable to a wide class of differential equations and that with its help,
one can obtain a number of substantially new results on the solvability of the Ionkin
problem and some other nonlocal problems close to it.

In 1986 in [8], N. I. Yurchuk proposed his approach to studying the solvability
of the Ionkin problem for second-order parabolic equations. This approach was based
on a priori estimates but it gave the existence of solutions belonging to some weighted
Sobolev space. Let us clarify that in contrast to N. I. Yurchuk’s approach, the approach
of [6,7] gives the existence of solutions belonging to classical Sobolev spaces. The splitting
method proposed below also gives the existence of regular solutions.

2. Statement of the Problems

Let Ω be the interval (0, 1) of the Ox axis, Q be the rectangle Ω× (0, T) of the vari-
ables x and t be finite height T. Denote by Dk

x and Dk
t the derivatives ∂k

∂xk and ∂k

∂tk , respec-
tively. Furthermore, let

Pk(t, Dt) =
pk

∑
j=1

αkj(t)Dj
k, k = 1, . . . , m,

be operators with real coefficients and L be the differential operator
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L =
m

∑
k=0

Pk(t, Dt)D2k
x .

For the operator L, define the conditions

Uj(x, 0) = 0, j = 1, . . . m1, x ∈ Ω, (1)

Uj(x, T) = 0, j = m1 + 1, . . . , p0 = max (p1, . . . , pm), x ∈ Ω. (2)

Nonlocal Problem I: Find a function u(x, t) that is a solution in Q to the equation

Lu = f (x, t)

and satisfies conditions (1) and (2) and also the conditions

D2k
x u(x, t)

∣∣∣
x=0

= 0, k = 0, . . . , m− 1, t ∈ (0, T), (3)

D2k+1
x u(x, t)

∣∣∣
x=0

− D2k+1
x u(x, t)

∣∣∣
x=1

= 0, k = 0, . . . , m− 1, t ∈ (0, T). (4)

Nonlocal Problem II: Find a function u(x, t) that is a solution in Q to the equation

Lu = f (x, t)

and satisfies conditions (1) and (2) and also the conditions

D2k+1
x u(x, t)

∣∣∣
x=0

= 0, k = 0, . . . , m− 1, t ∈ (0, T), (5)

D2k
x u(x, t)

∣∣∣
x=0

− D2k
x u(x, t)

∣∣∣
x=1

= 0, k = 0, . . . , m− 1, t ∈ (0, T). (6)

Nonlocal Problem III: Find a function u(x, t) that is a solution in Q to the equation

Lu = f (x, t)

and satisfies conditions (1), (2), and (3) and also the condition

D2k+1
x u(x, t)

∣∣∣
x=0

+ D2k+1
x u(x, t)

∣∣∣
x=1

= 0, k = 0, . . . , m− 1, t ∈ (0, T). (7)

Nonlocal Problem IV: Find a function u(x, t) that is a solution in Q to the equation

Lu = f (x, t)

and satisfies conditions (1), (2) and (5), and also the condition

D2k
x u(x, t)

∣∣∣
x=0

+ D2k
x u(x, t)

∣∣∣
x=1

= 0, k = 0, . . . , m− 1, t ∈ (0, T). (8)

For m = 1, P0 = Dt, P1 = −I, Nonlocal Problem I is the Ionkin problem [1] (see
also [9]). Nonlocal Problem II for the same operators P0 and P1 can be called the problem
conjugate to the Ionkin problem. If in Problems I and II, the operators P0 and P1 are not
the same as in the Ionkin problem, then these problems can be called a generalization
of the Ionkin problem and the conjugate Ionkin problem.

Nonlocal Problems III and IV for the equation Lu = f have not been studied previously.
Define the linear space H:

H = {v(x, t) : v(x, t) ∈ L2(Q), Dpk
t D2k

x v(x, t) ∈ L2(Q), k = 0, . . . , m}

(here the derivatives are understood as weak derivatives in the sense of S. L. Sobolev).
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Obviously, H is a Banach space with respect to the norm

‖v‖H =

⎛⎝∫
Q

[
v2 +

m

∑
k=0

(
Dpk

t D2k
x v

)2
]

dx dt

⎞⎠1/2

.

The aim of this article is to prove the existence of solutions to Nonlocal Problems I–IV
belonging to H.

3. Main Results

We put F(x, t) = f (x, t) + f (1− x, t).
Consider two auxiliary problems.

Problem 1. Find a function v(x, t) that is a solution in Q to the equation

Lv = F(x, t)

and satisfies conditions (1) and (2) and also the condition

D2k+1
x v(x, t)

∣∣∣
x=0

= D2k+1
x v(x, t)

∣∣∣
x=1

= 0, k = 0, . . . , m− 1, t ∈ (0, T). (9)

Problem 2. Find a function w(x, t) that is a solution in Q to the equation

Lw = f (x, t)

and satisfies the conditions

D2k
x w(x, t)

∣∣∣
x=0

= 0, k = 0, . . . , m− 1, t ∈ (0, T),

D2k
x w(x, t)

∣∣∣
x=1

= D2k
x v(x, t)

∣∣∣
x=0

, k = 0, . . . , m− 1, t ∈ (0, T) (10)

(v(x, t) is a solution to Problem 1).

The Main Condition: The operators Pk, k = 0, . . . , m, the function f (x, t), and conditions (1)
and (2) are such that boundary value Problems A and B are uniquely solvable in H.

Theorem 1. Suppose the fulfillment of the Main Condition. Then the solution w(x, t) to Problem 2
is a solution to Nonlocal Problem I in H.

Proof. Alongside v(x, t), the function v(1 − x, t) is also a solution to Problem 1. Since
a solution to Problem 1 is unique, for (x, t) ∈ Q we have

v(x, t) = v(1− x, t). (11)

Next, using the solution w(x, t) to Problem 2, define the function V(x, t):

V(x, t) = w(x, t) + w(1− x, t).

This function satisfies the equalities

D2k
x V(x, t)

∣∣∣
x=0

= D2k
x w(x, t)

∣∣∣
x=1

= D2k
x v(x, t)

∣∣∣
x=0

, (12)

D2k
x V(x, t)

∣∣∣
x=1

= D2k
x w(x, t)

∣∣∣
x=1

= D2k
x v(x, t)

∣∣∣
x=0

= D2k
x v(x, t)

∣∣∣∣
x=1

(13)

(the last equality follows from (11)).
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These equalities imply that the functions v(x, t) and V(x, t) satisfy identical boundary
conditions, and they are both solutions to the same equation. Due to the uniqueness
of solutions, we have

V(x, t) = v(x, t).

However, then
D2k+1

x w(x, t)
∣∣∣
x=0

− D2k+1
x w(x, t)

∣∣∣
x=1

= D2k+1
x v(x, t)

∣∣∣
x=0

+ D2k+1
x v(x, t)

∣∣∣
x=1

= 0, t ∈ (0, T).

In other words, the function w(x, t) satisfies the desired boundary conditions of Non-
local Problem I.

The fulfillment of conditions (1) and (2) for w(x, t), the validity of the equation Lw = f
and the membership w(x, t) ∈ H are obvious.

Therefore, w(x, t) is a desired solution to Nonlocal Problem I.
The theorem is proved.

We put f1(x, t) =
x∫

0
f (y, t) dy.

Theorem 2. Suppose that the function f1(x, t) satisfies the Main Condition. Then, Nonlocal
Problem II has a solution belonging to H.

Proof. Let u(x, t) be a solution to Nonlocal Problem I for f1(x, t). We put u(x, t) = ux(x, t).
The function u(x, t) will be the desired solution to Nonlocal Problem II.

The theorem is proved.

For proving the solvability of Nonlocal Problems III and IV, we need a modified
Main Condition.

We put F1(x, t) = f (x, t)− f (1− x, t).
Consider two auxiliary problems:

Problem 3. Find a function v(x, t) that is a solution in Q to the equation

Lv = F1(x, t)

and satisfies conditions (1) and (2) and also condition (9).

Problem 4. Find a function w(x, t) that is a solution in Q to the equation

Lw = f (x, t)

and satisfies the conditions

D2k
x w(x, t)

∣∣∣
x=0

= 0, D2k
x w(x, t)

∣∣∣
x=1

= −D2k
x v(x, t)

∣∣∣
x=0

,

k = 0, . . . , m− 1, t ∈ (0, T)

(v(x, t) is a solution to Problem 3).

The Modified Main Condition: The operators Pk, k = 0, . . . , m, the function f (x, t), and
conditions (1) and (2) are such that boundary value Problems A1 and B1 are uniquely solvable in H.

Theorem 3. Suppose the fulfillment of the Modified Main Condition. Then the solution w(x, t)
to Problem 4 is a solution to Nonlocal Problem III from H.

Proof. Like v(x, t), the function −v(1− x, t) is a solution to Problem 3. Since the solution
to Problem 3 is unique, then for (x, t) ∈ Q, we have v(x, t) = −v(1 − x, t). We put
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V1(x, t) = w(x, t) − w(1 − x, t). Obviously, w(x, t) satisfies all conditions to Nonlocal
Problem III. The membership of w(x, t) in H follows from the Modified Main Condition.

The theorem is proved.

Theorem 4. Suppose that f1(x, t) satisfies the Modified Main Condition. Then, Nonlocal Prob-
lem IV has a solution belonging to H.

The proof of this theorem is obvious.

4. Examples

Theorems 1–4 imply that for proving the solvability of Nonlocal Problems I–IV (and,
in particular, the solvability of the Ionkin problem), it suffices to check the fulfillment
of the Main Condition or the Modified Main Condition. Let us give several examples when
these conditions either hold or are easy to be seen to hold.

Example 1. Quasiparabolic Equations of Arbitrary Order.

Let P0 and Pm be the operators

P0 = (−1)p+1D2p+1
t , Pm = (−1)m+1 I.

In the rectangle Q, consider the equation

P0u + PmD2m
x u = f (x, t). (14)

For p = 0, m = 1, this equation is the heat equation; the Ionkin problem (Nonlocal
Problem I) was studied in this case (by expanding the solution in the series in special
biorthogonal function systems) in [1,9]. In the more general case of second-order parabolic
equations with arbitrary coefficients, the solvability of Nonlocal Problems I and II was
established in [6,8]. Next, the solvability of Nonlocal Problem I in the special case of p = 0,
m = 2, was studied in [10] (also with the use of expanding the solution in special biorthog-
onal systems).

In the general case of p ≥ 0, m ≥ 1, Nonlocal Problems I–IV have not been studied
before.

As was shown in Section 2, for proving the solvability of Nonlocal Problems I–IV in H,
it suffices to prove that they satisfy the Main Condition or the Modified Main Condition.

As with conditions (1) and (2), for Equation (14), choose either the conditions

Dk
t u(x, t)

∣∣∣
t=0

= 0, k = 0, . . . , p, x ∈ Ω,

Dk
t u(x, t)

∣∣∣
t=T

= 0, k = 0, . . . , p− 1, x ∈ Ω (15)

or the conditions
Dk

t u(x, t)
∣∣∣
t=0

= 0, k = 0, . . . , p, x ∈ Ω,

Dk
t u(x, t)

∣∣∣
t=T

= 0, k = p + 1, . . . , 2p− 1, x ∈ Ω. (16)

The solvability of boundary value Problem 1 in H for Equation (14) (with condi-
tions (15) or (16)) is not hard to prove by the classical Fourier method. Obviously, this
solution is unique, and f (x, t) ∈ L2(Q) is a sufficient condition for the solvability (existence
and uniqueness) of Problem 1.

We show that under some additional assumptions on f (x, t), Problem 2 is also uniquely
solvable in H.
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Transform Problem 2: turn it into a problem with zero boundary conditions by setting

w(x, t) = W(x, t)− ϕ(x, t),

ϕ(x, t) = a2(m−1)(x)D2(m−1)
x v(0, t) + a2(m−2)(x)D2(m−2)

x v(0, t) + . . . + a0(x)v(0, t).

Here, the coefficients ak(x) are polynomials of degree of at most 2m− 1, and they are
chosen so that the conditions

D2k
x ϕ(x, t)

∣∣∣
x=0

= 0, D2k
x ϕ(x, t)

∣∣∣
x=1

= D2k
x v(x, t)

∣∣∣
x=0

k = 0, . . . , m− 1, t ∈ (0, T),

hold. Obviously, the function W(x, t) must satisfy the equation

LW = f (x, t)− P0 ϕ(x, t) = f̃ (x, t)

in Q.
The boundary value problem for this equation with zero boundary data for Problem 2

has a solution belonging to H if f̃ (x, t) ∈ L2(Q). Since f (x, t) ∈ L2(Q), for the validity
of the desired inclusion for the function f̃ (x, t), it suffices that the equations

D2p+1
t D2k

x v(0, t) ∈ L2([0, T]), k = 0, . . . , m− 1, (17)

hold. We show that under some additional conditions for f (x, t), the solution v(x, t)
to boundary value Problem 1 (with conditions (15) and (16)) is such that the equations
in (17) hold.

Proposition 1. Suppose that the functions Dk
x f (x, t), k = 0, . . . , 2m− 1, belong to L2(Q) and

for m ≥ 2 we have

D2k−1
x f (x, t)

∣∣∣
x=0

− D2k−1
x f (x, t)

∣∣∣
x=1

= 0, k = 1, . . . , m− 1, t ∈ (0, T). (18)

Then, boundary value Problem 1 with conditions (15) or (16) for Equation (14) has a solu-
tion v(x, t) such that v(x, t) ∈ H, D2p+1

t D2m−1
x v(x, t) ∈ L2(Q), D3m−1

x v(x, t) ∈ L2(Q).

Proof. Consider the auxiliary problem: Find a function v(x, t) that is a solution to Q to
the equation

Lv + ε(−1)pD2p+1
t D4m−2

x v = F(x, t) (19)

(ε > 0) and satisfies conditions (15) and (9) and also the conditions

D2k+1
x v(x, t)

∣∣∣
x=0

= D2k+1
x v(x, t)

∣∣∣
x=1

, k = m, . . . , 2(m− 1), t ∈ (0, T). (20)

Define the space H1:

H1 = {v(x, t) : v(x, t) ∈ H, D2p+1
t D4m−2

x v(x, t) ∈ L2(Q)}.

Boundary Value Problem (9), (15), (19), (20) has a solution v(x, t) belonging to H1; this
is not hard to prove by using by the classical Fourier method or by the Galerkin method
with the choice of a special basis (see, for example, [11]).
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Multiply (19) by the function (−1)p+1(T0 − t)D2p+1
t D4m−2

x v(x, t), T0 > 0, and inte-
grate it by using Q. After easy calculations, we infer that solutions v(x, t) to the boundary
value problem (9), (15), (19), (20) satisfy the a priori estimate

∫
Q

{[
D2p+1

t D2m−1
x v(x, t)

]2
+

[
Dp

t D3m−1
x v(x, t)

]2
}

dx dt

+ε
∫
Q

[
D2p+1

t D4m−2
x v(x, t)

]2
dx dt ≤ C

2m−1
∑

k=0

∫
Q

[
Dk

x f (x, t)
]2

dx dt,
(21)

in which the number C is defined only by T.
Estimate (21) and the reflexivity of a Hilbert space (see [12,13]) implies that there exist

sequences {ε l}∞
l=1 of positive numbers and {vl(x, t)}∞

l=1 of solutions to problem (9), (15),
(19), (20) with ε = ε l such that as l → ∞, the convergences

ε l → 0,

vl(x, t)→ v(x, t) weakly in H,

ε l D
2p+1
t D4m−2

x vl(x, t)→ 0 weakly in L2(Q),

hold. Obviously, the limit function v(x, t) is a desired solution to Problem 1 under
condition (15).

For condition (16), all the arguments are analogous to those given above.
The proposition is proved.

The proposition implies that, for solutions to Problem 1, under the above conditions
on f (x, t), equations (17) hold. As we said above, Nonlocal Problem I satisfies the Main
Condition under conditions (15) or (16).

Summing up what was said above, we obtain the following theorem:

Theorem 5. For any function f (x, t) such that Dk
x f (x, t), k = 0, . . . , 2m− 1, belong to L2(Q) and

satisfying (18) for m ≥ 2, Nonlocal Problem I with conditions (15) and (16) has a solution u(x, t)
belonging to H.

The solvability of Nonlocal Problem II with conditions (15) or (16) with respect to t is
not hard to prove with the use of Theorem 2.

The solvability of nonlocal Problem III with conditions (15) or (16) is not hard to prove
with the use of Theorem 3. We only specify that here we must also use the assertion about
the presence of the additional equations in (17) for solutions v(x, t) to Problem 3 and that
condition (18) must be replaced by the condition for m ≥ 2,

D2k−1
x f (x, t)

∣∣∣
x=0

+ D2k−1
x f (x, t)

∣∣∣
x=1

= 0, k = 0, . . . , 2(m− 1), t ∈ (0, T). (22)

The solvability of Nonlocal Problem IV is not hard to prove with the use of
Theorem 4.

We do not give the exact statements of Nonlocal Problems II–IV due to their obviousness.

Example 2. Hyperbolic and Quasihyperbolic Equations.

We confine ourselves to the case m = 1.
In the rectangle Q, consider the equation

Lv ≡ (−1)p+1D2p
t u− uxx = f (x, t) (23)

For p = 1, this equation is the usual wave equation; the nonlocal Ionkin problem
for this equation was studied in [14]. For p > 1, Equation (23) is not hyperbolic (and,
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in particular, the classical initial boundary value problem for it is ill-posed); Nonlocal
Problems I–IV have not been studied for it before.

As with conditions (1) and (2), we use either the conditions

Dk
t u(x, t)

∣∣∣
t=0

= 0, k = 0, . . . , p, x ∈ Ω,

Dk
t u(x, t)

∣∣∣
t=T

= 0, k = 1, . . . , p− 1, x ∈ Ω, (24)

or the conditions
Dk

t u(x, t)
∣∣∣
t=0

= 0, k = 0, . . . , p, x ∈ Ω,

Dk
t u(x, t)

∣∣∣
t=T

= 0, k = p + 1, . . . , 2p− 1, x ∈ Ω. (25)

The solvability of Problem 1 for Equation (23) with conditions (24) with respect
to t in H was established in [15,16], and the solvability of Problem 1 for Equation (23)
with conditions (25) with respect to t in H was shown in [17]; in both cases, the solution
v(x, t) is unique, and in both cases, the following memberships for f (x, t) are required:
f (x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q).

We show that the solution v(x, t) to Problem 1 with conditions (24) or (25) under some
additional constraints on f (x, t) is such that D2p

t Dxv(x, t) ∈ L2(Q).

Proposition 2. Suppose that the functions f (x, t), ft(x, t), fxt(x, t) belong to L2(Q). Then
Boundary Problem 1 with conditions (24) or (25) for Equation (23) has a solution v(x, t) such that
D2p

t Dxv(x, t) ∈ L2(Q), D3
xv(x, t) ∈ L2(Q).

Proof. Consider the auxiliary problem: Find a function v(x, t) that is a solution in Q to the equa-
tion

Lv + ε(−1)p+1D2p
t D4

xv = F(x, t) (26)

(ε > 0) and satisfies (24) and the condition

D2k+1
x v(x, t)

∣∣∣
x=0

= D2k+1
x v(x, t)

∣∣∣
x=1

= 0, k = 0, 1, t ∈ (0, T). (27)

Using the Fourier method or the Galerkin method with the choice of a special basis, it
is not hard to see that problem (24), (26), (27) has a solution v(x, t) such that v(x, t) ∈ H,
D2p

t D4
xv(x, t) ∈ L2(Q). Demonstrate that v(x, t) satisfies a priori estimates uniform in ε.

Multiply Equation (26) by the function (T0 − t)DtD4
xv(x, t), T0 > T, and integrate

the result over Q. After easy calculations, we infer that solutions v(x, t) to problem (24),
(26), (27) satisfy the estimate

∫
Q

{[
Dp

t D2
xv(x, t)

]2
+

[
D3

xv(x, t)
]2

}
dx dt

+ε
∫
Q

[
Dp

t D4
xv(x, t)

]2
dx dt +

∫
Ω

[
D3

xv(x, T)
]2

≤ C1
∫
Q

[
f 2(x, t) + f 2

t (x, t) + f 2
xt(x, t)

]
dx dt,

(28)

where the constant C1 is determined only by T.
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At the next step, multiply (26) by D2p
t D2

xv(x, t) and integrate the result over Q. Using
Young’s inequality and estimate (28), we conclude that solutions v(x, t) to problem (24),
(26), (27) admit the estimate∫

Q

[
D2p

t Dxv(x, t)
]2

dx dt + ε
∫
Q

[
D2p

t D3
xv(x, t)

]2
dx dt

≤ C2
∫
Q

[
f 2(x, t) + f 2

t (x, t) + f 2
x (x, t) + f 2

xt(x, t)
]

dx dt,
(29)

where the constant C2 is determined only by T.
Estimates (28) and (29) are quite enough for passing to the limit in problem (24), (26),

(27). Using (28) and (29) and the reflexivity of a Hilbert space, passing to the limit in the cor-
responding subsequence, we conclude that Problem 1 with condition (24) for Equation (23)
has a desired solution v(x, t).

If in Problem 1 condition (25) is given for Equation (23), then completely analogous
arguments again yield the existence of a desired solution v(x, t).

The proposition is proved.

Proposition 2 means that Nonlocal Problem I satisfies the Main Condition. Therefore,
we have the following theorem:

Theorem 6. For any function f (x, t) such that f (x, t) ∈ W1
2 (Q), fxt(x, t) ∈ L2(Q), Nonlocal

Problem I with conditions (24) or (25) has a solution u(x, t) ∈ H.

It is not hard to prove the solvability of Nonlocal Problems II–IV with
conditions (24) or (25) with respect to t using the algorithm of Section 2 and the tech-
nique of obtaining a priori estimates presented in the proof of Proposition 2.

Example 3. Elliptic and Quasielliptic Equations.

We again confine ourselves to the case m = 1.
In the rectangle Q, consider the equation

(−1)p+1D2p
t u + uxx = f (x, t) (30)

The Ionkin problem (in its generalized statement) for Equation (30) in the case p = 1
(i.e, for an elliptic equation) was studied in [7], whereas for p > 1, Nonlocal Problems I–IV
for (30) have not been studied before.

Let us consider two versions of conditions (1) and (2) again: the condition

Dk
t u(x, t)

∣∣∣
t=0

= Dk
t u(x, t)

∣∣∣
t=T

= 0, k = 0, . . . , p− 1, x ∈ Ω, (31)

or the condition

D2k
t u(x, t)

∣∣∣
t=0

= D2k
t u(x, t)

∣∣∣
t=T

= 0, k = 0, . . . , p− 1, x ∈ Ω. (32)

The Main Condition will be fulfilled for Nonlocal Problem I if the solution v(x, t) to
Problem 1 for Equation (30) with conditions (31) or (32) satisfies the membership D2p

t Dxv(x, t)
∈ L2(Q); the proof of what is required is similar to the proofs of Propositions 1 and 2 (i.e.,
involves regularizations and a priori estimates).

Theorem 7. For any function f (x, t) such that f (x, t) ∈ L2(Q), fx(x, t) ∈ L2(Q), Nonlocal
Problem I with conditions (31) and (32) has a solution u(x, t) belonging to L2(Q).

The proof of this theorem is obvious.
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The solvability of Nonlocal Problems II–IV for Equation (30) is also easy to prove
by using Theorems 2–4.

Example 4. Equations of Sobolev Type.

Nonlocal Problems I–IV for equations of Sobolev type have rarely been studied—we
can only mention the works [6,18], in which the solvability of Problems I and II was
investigated for equations called pseudohyperbolic [19,20] and pseudoparabolic [21,22]
in the literature. Let us show that the technique presented in Section 2 makes it possible
to obtain existence theorems for solutions to Nonlocal Problems I–IV and for some other
classes of Sobolev-type equations.

In the rectangle Q, consider the equation

utt − αuxx − uxxtt = f (x, t). (33)

The equation arises in the mathematical modeling of processes of plasma physics,
in describing the dynamics of long waves on water, in electrodynamics and in elasticity
theory (see [20–26]).

As with conditions (1), (2), we use either the Cauchy conditions

u(x, 0) = ut(x, 0) = 0, x ∈ Ω, (34)

or the Dirichlet conditions

u(x, 0) = u(x, T) = 0, x ∈ Ω, (35)

The solvability of Problem 1 for Equation (33) with conditions (34) or (35) in H for
f (x, t) ∈ L2(Q) is obvious. Moreover, a solution v(x, t) to Problem 1 for Equation (33) with
conditions (34) for f (x, t) ∈ L2(Q) and arbitrary α, and with conditions (35) for f (x, t) ∈
L2(Q), α ≤ 0, satisfies the membership vxtt(x, t) ∈ L2(Q). Consequently, Problem 2
for Equation (33) is also solvable in H. Thus, the Main Condition for Nonlocal Problem I
is fulfilled both for condition (34) and for condition (35). This means that the following
theorem holds:

Theorem 8. For any function f (x, t) ∈ L2(Q), Nonlocal Problem I with condition (34) is solvable
in H for any α. If condition (35) is defined in Nonlocal Problem I, then a solution from H exists
provided that f (x, t) ∈ L2(Q), α ≤ 0.

The solvability of Nonlocal Problems II–IV is easily proved with the use of Theorems 2–4.

Example 5. Degenerating Equations.

In all the above examples, the equations under consideration were equations with con-
stant coefficients. At the same time, all equations could have coefficients depending on t.
Moreover, the corresponding equations could degenerate, i.e., some of the coefficients
defining the type of the equation could vanish.

Now, consider the degenerating elliptic equation

utt + h(t)uxx + μ(t) = f (x, t), (36)

in Q, in which h(t) is a nonnegative function on [0, T].
The Ionkin problem for Equation (36) was studied in [27,28] for h(t) = tm by the method

based on representing the solution as a series in special biorthogonal function systems,
where the function μ(t) also had a model form (subordinate to h(t)). Let us demonstrate
that both for the Ionkin problem (i.e., Nonlocal Problem I) and for Nonlocal Problems II–IV,
it is not hard to also obtain results on solvability in H for more general equations.
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As with conditions (1), (2), we use a Dirichlet condition; namely, the condition

u(x, 0) = u(x, T) = 0, x ∈ Ω, (37)

Proposition 3. Suppose the fulfillment of the conditions

h(t) ∈ C([0, T]), h(t) ≥ 0 for t ∈ [0, T]; (38)

μ(t) ∈ C([0, T]), μ(t) ≤ 0 for t ∈ [0, T]. (39)

Then, for any function f (x, t) for which one of the conditions

f (x, t) ∈ L2(Q), fx(x, t) ∈ L2(Q), fxx(x, t) ∈ L2(Q),

fx(0, t)− fx(1, t) = 0, t ∈ (0, T), (40)

or
f (x, t) ∈ L2(Q), fx(x, t) ∈ L2(Q), h−

1
2 (t) fx(x, t) ∈ L2(Q), (41)

holds, Problem 1 for Equation (36) with condition (37) has a solution v(x, t) such that v(x, t) ∈ H,
vxtt(x, t) ∈ L2(Q), h

1
2 (t)vxxx(x, t) ∈ L2(Q).

Proof. Consider the auxiliary problem: Find a function v(x, t) that is a solution in Q
to the equation

vtt + h(t)vxx − εvxxtt + μv = f (x, t) (42)

(ε > 0) and satisfies (37) and also the condition

vx(0, t) = vxxx(0, t) = vx(1, t) = vxxx(0, t) = 0, t ∈ (0, T). (43)

The existence of a regular solution (of a solution having all square-integrable deriva-
tives occurring in the equation) to this problem under the conditions of the theorem is
obvious. Multiplying (42) first by −vxxxx(x, t), then by −vxxtt(x, t), integrating over Q and
using the hypotheses of the theorem, it is not hard to see that solutions v(x, t) to the bound-
ary value problem (36), (42), (43) satisfy the estimate∫

Q

[
v2

xtt + h(t)v2
xxx

]
dx dt + ε

∫
Q

[
v2

xxtt + v2
xxxx

]
dx dt ≤ C0( f ), (44)

where the constant C0( f ) does not depend on ε. This estimate and the reflexivity of a Hilbert
space imply the possibility of choosing a sequence converging to a desired solution to
Problem 1 for Equation (36) with condition (37).

The proposition is proved.

Proposition 3 means that the Main Condition is fulfilled for Nonlocal Problem I.
Therefore, the following Theorem holds:

Theorem 9. Suppose the fulfillment of conditions (38) and (39) and also of one of conditions (40)
or (41). Then, Nonlocal Problem I has a solution u(x, t) ∈ H.

Using Theorems 2–4, it is not hard to obtain theorems on the solvability of
Equation (36) with condition (37) to Nonlocal Problems II–IV.

5. Comments and Supplements

5.1. The splitting method proposed in this article makes it possible to study further
properties of solutions to Nonlocal Problems I–IV without investigating the properties
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of the corresponding function series. For example, knowing the properties of solutions
to Problems A and B or to Problems A1 and B1, it is not hard to obtain theorems on increas-
ing the smoothness, the boundedness of the solutions, the behavior of the solutions, etc.

5.2. In the examples presented in Section 3, some specific conditions (1) and (2)
are used. Obviously, other conditions can be used—for example, for quasihyperbolic
equations (23), one can use the conditions from [17]; for quasielliptic equations (30), along
with conditions (31) or (32), we can use mixed conditions, etc.

5.3. The examples of Section 3 do not exhaust all classes of equations for which the
splitting method is applicable. Observe first of all that in Examples 1–4, we consider
equations with constant coefficients but in fact all equations can have variable coefficients
(with the unconditional type preserved). In Examples 2–5, instead of the case m = 1,
it is quite possible to consider the case m > 1 (in this case, conditions on the function
f (x, t) of the type of conditions (18) or (22) can appear). Equations of Sobolev type are
certainly not limited to the simplest pseudoparabolic and pseudohyperbolic equations
discussed in Example 4; for example, Nonlocal Problems I–IV can also be effectively studied
for the general pseudohyperbolic equations of [25,29], etc.

5.4. It seems that the splitting method can be effectively used for studying the solvabil-
ity of Nonlocal Problems I–IV with fractional derivatives.
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Abstract: In this paper, an approach to solving direct and inverse scattering problems on the half-line
for a one-dimensional Schrödinger equation with a complex-valued potential that is exponentially
decreasing at infinity is developed. It is based on a power series representation of the Jost solution in
a unit disk of a complex variable related to the spectral parameter by a Möbius transformation. This
representation leads to an efficient method of solving the corresponding direct scattering problem for
a given potential, while the solution to the inverse problem is reduced to the computation of the first
coefficient of the power series from a system of linear algebraic equations. The approach to solving these
direct and inverse scattering problems is illustrated by several explicit examples and numerical testing.

Keywords: non-selfadjoint Schrödinger operator; Jost solution; direct scattering problem; inverse
scattering problem

MSC: 34A55; 34L05; 34L16; 34L25; 34L40; 65L09; 65L15

1. Introduction

Consider the one-dimensional Schrödinger equation

l[y] := −y′′ + q(x)y = λy, x ∈ (0, ∞), (1)

with λ ∈ C and a complex-valued potential q(x) satisfying the condition∫ ∞

0
eεx|q(x)|dx < ∞ (2)

for some ε > 0. By ρ, we denote the square root of λ such that ρ ∈ C+ := {w ∈ C : Im(w) ≥ 0}.
In the present work, an approach to solving direct and inverse scattering problems for (1)
under Condition (2) is developed.

Complex-valued potentials arise when studying parity time (PT)-symmetric poten-
tials [1] (Chapter 1), [2], quasi-exactly solvable (QES) potentials [3,4], hydrodynamics, and
magnetohydrodynamics [5]; see also [6–8].

Studying a Zakharov–Shabat system, even with a real-valued potential, naturally leads
to a couple of equations of the form (1) with complex-valued potentials; see [9]. Indeed,
consider the Zakharov–Shabat system

−→υ x(x) =
(

v1(x)
v2(x)

)
x
=

( −iρ u(x)
−u(x) iρ

)
−→υ (x), 0 < x < ∞ (3)

where ρ is a complex spectral parameter and u(x) is a real-valued potential.
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Mathematics 2023, 11, 3544

The further transformation of −→υ (x) is as follows:

y1(x) = v2(x)− iv1(x),

y2(x) = v2(x) + iv1(x)

This leads to a pair of Schrödinger equations with complex-valued potentials

−y′′1 (x) + (−iu′ (x)− u2(x))y1(x) = ρ2y1(x), (4)

−y′′2 (x) + (iu′ (x)− u2(x))y2(x) = ρ2y2(x). (5)

Thus, the results of the present work are applicable to direct and inverse scattering
problems for a Zakharov–Shabat system.

A direct scattering problem for (1) with a complex-valued potential was studied in a
number of publications ([10–13]). Equation (1) under Condition (2) was considered in [12]
(p. 292), [14–20] (p. 353), and [21,22].

It is well-known (see, e.g., [12] (p. 443), [18]) that (1) admits a unique solution, which
we denote by e(ρ, x), satisfying the asymptotic equality

e(ρ, x) = eiρx(1 + o(1)), x → ∞.

This solution is called the Jost solution of (1). It admits the Levin integral representa-
tion [12] (see also [18,23,24])

e(ρ, x) = eiρx +
∫ ∞

x
A(x, t)eiρtdt, Im ρ > − ε

2
, x ≥ 0 (6)

where for every fixed x, the kernel A(x, t) belongs to L2(x, ∞). In [25] (see also [26]) a
Fourier–Laguerre series representation for A(x, t) was proposed in the form

A(x, t) =
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 , (7)

where Ln(τ) stands for the Laguerre polynomial of order n. A recurrent integration
procedure was developed in [27] to calculate the coefficients an(x). The substitution of (7)
into (6) was found to lead to a series representation for the Jost solution [25,26]

e(ρ, x) = eiρx

(
1 + (z + 1)

∞

∑
n=0

(−1)nznan(x)

)
, x ≥ 0, ρ ∈ C+ (8)

where

z = z(ρ) =

(
1
2 + iρ

)
(

1
2 − iρ

) · (9)

In the present work, we consider the direct and inverse scattering problems for (1)
subject to the homogeneous Dirichlet condition

y(0) = 0, (10)

however, the approach developed here is also applicable in the case of other boundary
conditions, such as

y′ (0)− hy(0) = 0

with h ∈ C.
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The problem (1) and (10) under Condition (2) possesses a continuous spectrum coin-
ciding with the positive semi-axis λ > 0, and may have a point spectrum that coincides
with the squares of the non-real roots of the Jost function

e(ρ) := e(ρ, 0),

if such roots exist. Let us denote them as ρ1, . . . , ρα. Their multiplicity may be greater
than one. In this case, instead of norming constants associated to the eigenvalues, the
corresponding normalization polynomials Xk(x) naturally arise (see Section 3.3 below).

As a component of the scattering data for (1), the scattering function

s(ρ) :=
e(−ρ)

e(ρ)

is considered in the strip |Im(ρ)| < ε0 where ε0 is sufficiently small (see Section 3.2 below).
The direct scattering problem for (1) and (10) consists of obtaining the set of the

scattering data {
{ρk, mk, Xk(x)}α

k=1, s(ρ)
}

. (11)

The overall approach developed in the present work to solve this problem is based
on the representation (8). Indeed, the calculation of {ρk}α

k=1 is easily realizable with the
aid of the argument principle theorem applied to find zeros of (8) in the unit disc. To the
best of our knowledge, there has been no practical way of calculating the normalization
polynomials. We propose a simple procedure for computing their coefficients by solving a
finite system of linear algebraic equations. For this, an auxiliary result for the derivatives
∂m

∂zm e(ρ(z), x) is obtained.
The calculation of the scattering function s(p) requires an analytic extension of the

Jost function e(ρ) obtained from (8), onto the strip −ε0 < Im(ρ) < 0. We explore different
possibilities for such an extension, including the Padé approximants (see [28,29]) and the
power series analytic continuation [30] (p. 150), [31]. This results in an efficient numerical
method for solving the direct scattering problem.

The inverse scattering problem consists of recovering the potential q(x) from the set
of the scattering data. A general theory of this inverse problem can be found in [12,13,20]
(p. 353), [24,32–35]. Here, we use the representation (7) for the numerical solution of the
problem, thus extending the approach developed in [25,26,36–38] to the non-selfadjoint
situation. The inverse Sturm–Liouville problem is reduced to an infinite system of linear
algebraic equations. The potential q(x) is recovered from the first component of the solution
vector, which coincides with a0(x) in (7).

The reduction to the infinite system of linear algebraic equations is based on the
substitution of the series representation (7) for the kernel A(x, t) into the Gelfand–Levitan
equation (see [39]),

A(x, t) =
∫ ∞

x
A(x, u) f (u + t)du + f (x + t), 0 ≤ x ≤ t < ∞, (12)

where the function f can be computed from the set of scattering data (11):

f (x) :=
1

2π

∫ ∞+iη

−∞+iη
(s(ρ)− 1)eixρdρ−

α

∑
k=1

Xk(x)eiρkx, 0 < η < ε0.

To approximate the complex-valued function a0(x), we consider the truncated system
of linear algebraic equations, for which the existence, uniqueness and stability of the
solution is proved.

Finally, we illustrate the proposed approach by numerical calculations performed in
Matlab2021a.
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We discuss the details of the numerical implementation of the method: its convergence,
stability and accuracy. In a couple of examples, we show the “in-out” performance of
the approach, i.e., we solve the direct problem numerically and use the results of our
computation as the input data to solve the inverse problem.

The approach based on the representations (7) and (8) leads to efficient numerical
methods for solving both direct and inverse scattering problems.

In Section 2, we recall the series representations for the kernel A(x, t) and for the
Jost solution, then prove additional results related to these representations. In Section 3,
we recall the set of scattering data and put forward an algorithm for solving the direct
scattering problem. Additionally, we present analytical examples. In Section 4, the approach
for solving the inverse scattering problem is developed. Analytical examples from Section 2
are considered in order to illustrate the approach. In Section 5, we discuss the numerical
implementation of the algorithms proposed for solving the direct and inverse scattering
problems. Section 6 contains some concluding remarks.

2. Series Representations for the Transmutation Operator Kernel and Jost Solution

Consider the one-dimensional Schrödinger equation on the half-line (1) where
λ = ρ2 ∈ C is the spectral parameter. The potential q(x) is a complex-valued function
satisfying Condition (2) for some ε > 0.

Equation (1) is considered on the class of functions D(l) =
{

y ∈ W2,2(0, ∞) : l[y] ∈ L2(0, ∞)
}
.

Series Representation for Solutions of the One-Dimensional Schrödinger Equation

Equation (1) possesses the unique so-called Jost solution e(ρ, x) (see, e.g., [12] (p. 443), [18]),
which for all x ≥ 0 is a holomorphic function of ρ in the half-plane Im ρ ≥ 0 and satisfies
the asymptotic relation

e(ρ, x) = eiρx(1 + o(1)) when x → ∞ and Im ρ ≥ 0. (13)

The function e(ρ) := e(ρ, 0) is called the Jost function.

Remark 1. Under the assumption q(x) ∈ L(0, ∞) instead of (2), for every x ≥ 0 the solution
e(ρ, x) is continuous with respect to ρ for ρ ∈ C+ \ {0} and holomorphic with respect to ρ for
ρ ∈ C+. If in addition (1 + x)q(x) ∈ L(0, ∞), the functions e(ν)(ρ, x), ν = 0, 1 are continuous
for ρ ∈ C+, x ≥ 0 (see [24] (p. 105)).

Remark 2. Under Condition (2), the Jost solution satisfies the asymptotic relations

∂j

∂xj e(ρ, x) = (ix)(j)eiρx + o
(

e−
ε
2 x

)
, j = 0, 1, . . . when x → ∞,

provided the existence of these derivatives; see [21].

The solution e(ρ, x) admits the Levin integral representation [12]

e(ρ, x) = eixρ +
∫ ∞

x
A(x, t)eiρtdt, Im ρ ≥ 0, x ≥ 0, (14)

where A(x, t) is a complex-valued continuous function for 0 ≤ x ≤ t < ∞. Denote
Q(x) := ‖q‖L(x,∞). The kernel A(x, t) admits the bound [24] (p. 108)

|A(x, t)| ≤ 1
2

Q
(

x + t
2

)
exp

(
‖Q‖L(x,∞) − ‖Q‖L( x+t

2 ,∞)

)
. (15)

Under Condition (2), the Jost solution is extensible onto the half-plane Im ρ > − ε
2

through the Levin representation (14). The extension satisfies (13) for Im ρ > − ε
2 .
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Proposition 1. Under Condition (2), the kernel A(x, t) admits the bound

|A(x, t)| ≤ 1
2

e−ε( x+t
2 )

(∫ ∞

x+t
2

eετ |q(τ)|dτ

)
exp

(
Cε

ε

(
e−εx − e−ε x+t

2

))
, 0 ≤ x ≤ t < ∞, (16)

where Cε =
∫ ∞

0 eεt|q(t)|dt.

Proof. Under Condition (2), the potential q(x) satisfies the inequality

Q(x) ≤ e−εx
∫ ∞

x
eεt|q(t)|dt = Cεe−εx. (17)

Moreover, for any fixed x ∈ [0, ∞) we have [12] (p. 317)

‖Q‖L(x,∞) ≤
Cε

ε
e−εx. (18)

Thus, substitution of (17) and (18) into (15) gives us (16).

Additionally, the kernel A(x, t) has first continuous derivatives that satisfy the in-
equalities [12] (p. 305)

|Ax(x, t)|, |At(x, t)| ≤ 1
4

∣∣∣∣q( x + t
2

)∣∣∣∣+ Cε exp
(
−ε

(
3
2

x + t
))

, (19)

and the equality [12] (p. 328)

A(x, x) =
1
2

∫ ∞

x
q(t)dt. (20)

As was pointed out in [25], since A(x, ·) ∈ L2(x, ∞), the function

a(x, t) := e
t
2 A(x, t + x) (21)

belongs to L2([0, ∞); e−t) and hence admits the series representation

a(x, t) =
∞

∑
n=0

an(x)Ln(t), (22)

where Ln(t) stands for the Laguerre polynomial of order n and an(x) are complex-valued
functions such that {an(x)}∞

n=0 ∈ l2 for any x ≥ 0. For all x ≥ 0, the series (22) converges
in the norm of L2([0, ∞); e−t). Thus,

A(x, t) =
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 (23)

and
∞

∑
n=0

an(x) = A(x, x) =
1
2

∫ ∞

x
q(t)dt. (24)

This series representation was obtained in [25] for real-valued q(x). However, (23)
remains true in the non-selfadjoint case as well.

Proposition 2. For any fixed x ≥ 0, the series

a(x, t) =
∞

∑
n=0

an(x)Ln(t), t ∈ [0, ∞) (25)

converges pointwise.
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Proof. We use [40] (Theorem 6.5), and thus need to verify that the following assertions
are true.

1. a(x, ·) is of class L
(
[0, ∞); e−t).

2. a(x, ·) is γ-Hölder continuous, i.e., there exists 0 < γ ≤ 1, such that

|a(x, t0)− a(x, t)| ≤ M|t0 − t|γ,

for some constant M > 0 and arbitrary t, t0 ∈ [0, ∞).
3. The integrals ∫ 1

0
t−3/4|a(x, t)|dt,

∫ ∞

1

e−t/2|a(x, t)|dt (26)

exist.
To prove the first assertion, it is enough to consider estimate (15). Indeed,∫ ∞

0
e−t|a(x, t)|dt ≤

∫ ∞

0
|A(x, x + t)|dt

≤ 1
2

∫ ∞

0
Q
(

2x + t
2

)
exp

(
‖Q‖L(x,∞) − ‖Q‖L( 2x+t

2 ,∞)

)
dt

≤
exp

(
‖Q‖L(x,∞)

)
2

∫ ∞

0
Q
(

2x + t
2

)
exp

(
−‖Q‖L( 2x+t

2 ,∞)

)
dt

= exp
(
‖Q‖L(x,∞)

) ∫ ∞

x
Q(τ) exp

(
−‖Q‖L(τ,∞)

)
dτ.

Note that d
dτ ‖Q‖L(τ,∞) = Q(τ) and therefore

∫ ∞

x
Q(τ) exp

(
−‖Q‖L(τ,∞)

)
dτ = 1− exp

(
−‖Q‖L(x,∞)

)
. (27)

Thus, ∫ ∞

0
e−t|a(x, t)|dt ≤ exp

(
‖Q‖L(x,∞)

)
− 1 < ∞.

The second assertion follows from the inclusion A(x, ·) ∈ C1(x, ∞).
The existence of the first integral in (26) follows from the continuity of a(x, ·). Finally,

for the second integral we have∫ ∞

1

e−t/2|a(x, t)|dt =
∫ ∞

1

|A(x, x + t)|dt ≤
∫ ∞

0
|A(x, x + t)|dt,

and thus, from the proof of the first assertion, we obtain
∫ ∞

1
e−t/2|a(x, t)|dt < ∞.

Now, the application of Theorem 6.5 from [40] completes the proof.

Following [25] (see also [26] (p. 63)), the substitution of (23) into (14) and termwise
integration lead to the series representation (8) for the Jost solution.

The series (8) is convergent in the open unit disk of the complex z-plane, D := {z ∈ C : |z| < 1},
and for every x, the function e(ρ, x)e−iρx belongs to the Hardy space H2(D) as a function
of z [26].

Proposition 3. Let q(x)(1 + x) ∈ L(0, ∞). Then, the kernel A(x, t) admits the representa-
tion (23), where for any x fixed the series converges in the norm of L2(x, ∞), and the complex-valued
coefficients an(x) satisfy the system of equations

−l[a0]− a′0 = q, (28)

−l[an]− a′n = −l[an−1] + a′n−1, n = 1, 2, . . . , (29)
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as well as the inequality

|an(x)| ≤ exp
(
‖Q‖L(x,∞)

)
− 1, n = 0, 1, 2, . . . . (30)

Proof. The proof of (28) and (29) from [26] (Theorem 10.1, p. 66) given for the case of a
real-valued q remains valid in this more general situation as well.

Note that

an(x) =
∫ ∞

0
a(x, t)Ln(t)e−tdt.

From estimate (15) and inequality ([41] (p. 164)) |Ln(t)| ≤ et/2, t ≥ 0, we have

|an(x)|≤
∫ ∞

0 |A(x, x + t)Ln(t)|e−t/2dt ≤ 1
2

∫ ∞
0 Q

( 2x+t
2

)
exp

(
‖Q‖L(x,∞) − ‖Q‖L( 2x+t

2 ,∞)

)
dt

= exp
(
‖Q‖L(x,∞)

)
− 1 (31)

(see (27)).

Corollary 1. Under Condition (2), the coefficients an satisfy the inequality

|an(x)| ≤ exp
(

Cε

ε
e−εx

)
− 1. (32)

Proof. Substitution of (17) and (18) into (31) yields (32).

Remark 3. Under the assumption that functions a(ν)(x, t) are absolutely continuous with respect
to t in [0, ∞) for ν = 0, 1, 2, the convergence of the power series in (8) for z ∈ D can be proved with
the aid of a result from [42], which states that

|an(x)| ≤ V√
n(n− 1)(n− 2)

,

provided that
lim

t→+∞
e−t/2t1+ja(j)(x, ·) = 0 j = 0, 1, 2 (33)

and

V =

√∫ ∞

0
t3e−t

[
a(3)(x, ·)

]2dt < ∞. (34)

Moreover,∥∥∥∥∥a(x, t)−
N

∑
n=0

an(x)Ln(t)

∥∥∥∥∥
L2(0,∞;e−t)

≤ V
√

N√
(N − 1)(N − 2)(N − 3)

.

To ensure Condition (33) for j = 0, notice that from (16) we have

|a(x, t)| = e
t
2 |A(x, t + x)| ≤ Ce

t
2 e−ε( x+t

2 ). (35)

For j = 1, Condition (33) holds due to (19). However, the fulfillment of (33) for j = 2 as well
as that of (34) requires the additional regularity of q(x), ensuring the possibility of the differentiation
of the integral equation for the kernel

A(x, t) =
1
2

∫ ∞

(x+t)/2
q(ξ)dξ +

1
2

∫ (x+t)/2

x
q(ξ)

(∫ t+ξ−x

t+x−ξ
A(ξ, η)dη

)
dξ

+
1
2

∫ ∞

(t+x)/2
q(ξ)

(∫ t+ξ−x

ξ
A(ξ, η)dη

)
dξ, 0 ≤ x ≤ t < ∞
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at least three times [12] (p. 296).

Remark 4. Denote

eN(ρ, x) = eiρx

(
1 + (z + 1)

N

∑
n=0

(−1)nznan(x)

)
, ρ ∈ C

+. (36)

In [27], the following statements were proved in the case of a real-valued potential.
1. If Im ρ > 0, then

|e(ρ, x)− eN(ρ, x)| ≤ εN(x)
e− Im ρ x√

2 Im ρ

where

εN(x) :=

(
∞

∑
n=N+1

∣∣∣an(x)2
∣∣∣)1/2

=

(∫ ∞

0
e−t|a(x, t)− aN(x, t)|2dt

)1/2
. (37)

2. If ρ ∈ R, then

‖e(·, x)− eN(·, x)‖L2(−∞,∞) =
√

2πεN(x).

These results remain valid in the case of a complex-valued potential. Moreover, under the
assumptions of Remark 3, we obtain the inequality

εN(x) ≤ V
√

N√
(N − 1)(N − 2)(N − 3)

.

Remark 5. The substitution of ρ = i
2 into (8) leads to the equality a0(x) = e

(
i
2 , x

)
ex/2 − 1.

Moreover, note that we have

q(x) =
a′′0 (x)− a′0(x)

a0(x) + 1
. (38)

By ω(ρ, x), we denote the solution of (1), satisfying the initial conditions

ω(ρ, 0) = 0,
d

dx
ω(ρ, 0) = 1. (39)

We also need the solution

Ω(ρ, x) =
2iρω(ρ, x)

e(ρ)
. (40)

3. Direct Problem

3.1. Spectrum of (1) and (10)

Consider the problem (1) and (10) under Condition (2). Let us recall some definitions
and facts from [12] (p. 452) (see also [18]). The continuous spectrum fills the entire semi-axis
λ > 0.

Definition 1. We call the roots of e(ρ) that lie in C+ \ {0} the singular numbers of the problem
(1) and (10).

If they exist, their number is finite. Let us denote the non-real singular numbers by ρ1, . . . , ρα.
The numbers λk = ρ2

k constitute the point spectrum of the problem, and the multiplicities of the
zeros ρk (k = 1, . . . , α) are called the multiplicities of the singular numbers and denoted by mk,
respectively.
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Thus, we are interested in the zeros zk of the Jost function

e(ρ) = 1 + (z + 1)
∞

∑
n=0

(−1)nznan(0) (41)

to obtain the eigenvalues from λk = −
(

zk−1
2(zk+1)

)2
.

For an estimate of the number of the eigenvalues, we refer to [43].

3.2. Scattering Function s(ρ)

Let us introduce ε1 as the distance from the real axis to the non-real roots of the
function e(ρ). Let ε0 = min

(
ε1, ε

2
)

when ε1 �= 0 (ε1 = 0 means that there are no non-real
roots), or ε0 = ε

2 otherwise.
The scattering function s(ρ) is defined by

s(ρ) :=
e(−ρ)

e(ρ)
, |Im(ρ)| < ε0. (42)

Let us recall some properties of the Jost function e(ρ) and scattering function s(ρ)
(see, e.g., [39]).

1. e(ρ) is holomorphic for Im ρ > −ε0, and for every 0 < η < ε0 it satisfies the asymptotic
relation

e(ρ) = 1 + O
(

1
ρ

)
, as |ρ| → ∞ (43)

uniformly in the strip |Im ρ| ≤ η.
2. s(ρ) is meromorphic in the strip |Im ρ| < ε0, and for every 0 < η < ε0:

s(ρ) = 1 + O
(

1
ρ

)
, as |ρ| → ∞ (44)

uniformly in the strip |Im ρ| ≤ η.
3. s(ρ) has no non-real poles in the strip |Im ρ| < ε0.
4. s(ρ)s(−ρ) = 1.
5. s(0) = ±1.

A function satisfying properties 2–5 is said to be of S-type in the strip |Im ρ| < ε0. The
following examples illustrate some of the above definitions.

Example 1 ([44,45]). Consider the potential

q1(x) := 10ie−x, x ≥ 0

with 0 < ε < 1 in (2). With the aid of Wolfram Mathematica v.12 the Jost solution can be obtained
in a closed form,

e1(ρ, x) =
(√

−10i
)2iρ

J−2iρ((2− 2i)
√

5e−x/2)Γ(1− 2iρ), x ≥ 0, Im(ρ) > −1/2, (45)

where Jν(z) stands for the Bessel function of the first kind of order ν.
Hence,

e1(ρ) =
(√

−10i
)2iρ

J−2iρ((2− 2i)
√

5)Γ(1− 2iρ),

and the eigenvalues are the squares of the values ρ ∈ C+ such that

J−2iρ((2− 2i)
√

5) = 0.
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From here, we obtain the only singular number

ρ0 ≈ 1.784065847527427576134879232 + 0.6087886812067186310240220034i. (46)

The scattering function has the form

s1(ρ) =
(1− i)−4iρ5−2iρ J2iρ((2− 2i)

√
5)Γ(1 + 2iρ)

J−2iρ((2− 2i)
√

5)Γ(1− 2iρ)
. (47)

It is well-defined in the domain

D(s1) =

{
ρ ∈ C : J−2iρ

(
(2− 2i)

√
5
)
�= 0∧

(
Im(ρ) > −1

2
∨−2iρ /∈ Z

)
∧

(
Im(ρ) <

1
2
∨ 2iρ /∈ Z

)}
and is an S-type function in the strip |Im(ρ)| < 1

2 .

Example 2. Consider the potential

q2(x) := −4i sech(2x) tanh(2x)− 4 sech2(2x), x ≥ 0,

which satisfies Condition (2) for 0 < ε < 2. The Schödinger equation with this potential comes
from a Zakharov–Shabat system (3) with the potential u(x) = 2 sech(2x) and its reduction to
Equation (5).

The corresponding Jost solution e2(ρ, x) is obtained from the Jost solution of a Zakharov–Shabat
system (see [46]) with the potential u(x),

e2(ρ, x) =
ρ− tanh(2x) sech(2x)

ρ + i
eiρx, x ≥ 0, Im(ρ) > −1

2
.

Thus, the Jost function is

e2(ρ) =
ρ + 1
ρ + i

, Im(ρ) > −1
2

.

It has one root, ρ∗ = −1, which corresponds to the spectral singularity λ∗ = ρ2
∗ = 1.

The scattering function is given by

s2(ρ) =

(
1− ρ

i− ρ

)(
ρ + i
ρ + 1

)
, (48)

which is an S-type function in the strip |Im(ρ)| < 1
2 .

Example 3 ([21]). Consider the potentials of the form

q(x) = −2a2 sech 2(ax + b), x ≥ 0, b ∈ C, a > 0 (49)

satisfying Condition (2) for 0 < ε < 2a. The Jost solution has the form

e(ρ, x) =
ρ + ia tanh(b + ax)

ρ + ia
eiρx, x ≥ 0, Im(ρ) > −a,

from which the Jost function is obtained

e(ρ) =
ρ + ia tanh(b)

ρ + ia
, Im(ρ) > −a

with the single root ρ = −ia tanh(b).
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The square of this ρ represents the discrete spectrum of the problem. The potential (49) is
complex-valued when b is not purely imaginary. The scattering function has the form

s(ρ) =
(ρ− ia tanh(b))(ρ + ia)
(ρ + ia tanh(b))(ρ− ia)

,

which is an S-type function in |Im(ρ)| < min{a, Im(−ia tanh(b))} in the case of a complex-
valued potential. In the case of a real-valued potential, s(ρ) is an S-type function in |Im(ρ)| < a.

To present an explicit example, we fix a = 1 and b = −1− i in (49). Then,

q3(x) = −2 sech 2(x− 1− i), x ≥ 0

with 0 < ε < 2 in Condition (2) and the Jost solution is

e3(ρ, x) =
ρ + i tanh(x− 1− i)

ρ + i
eiρx, x ≥ 0, Im(ρ) > −1.

Thus, the Jost function has the form

e3(ρ) =
ρ− i tanh(1 + i)

ρ + i
, Im(ρ) > −1,

and one eigenvalue exists: λ = − tanh2(1 + i).
The scattering function

s3(ρ) =
(ρ + i tanh(1 + i))(ρ + i)
(ρ− i tanh(1 + i))(ρ− i)

(50)

is an S-type function in the strip |Im(ρ)| < 1.

3.3. Normalization Polynomials

The normalization polynomial Xk(x) of degree mk − 1, associated with the eigenvalue
ρ2

k (mk is the algebraic multiplicity of ρk as zero of e(ρ)), defined by the equation [18]

i Res(Ω(ρ, x); ρk) = eiρkxXk(x) +
∫ ∞

x
A(x, t)Xk(t)eiρktdt, (51)

where Ω(ρ, x) is defined by (40). Using the series representation (23) of the kernel A(x, t),
we can obtain a method to compute the coefficients of Xk(x).

Remark 6. Note that the series (8) can be written as

e(ρ, x) = eiρx

(
1 + (z + 1)

∞

∑
n=0

(−1)nan(x)P(−n,0)
n (1 + 2z)

)
, ρ ∈ C

+(z ∈ D) (52)

in terms of the Jacobi polynomials P(α,β)
n (τ).

Let us write Equation (51) in terms of the Jost solution and Jacobi polynomials,
as follows.

Proposition 4. Let λk = ρ2
k, k = 1, . . . , α be an eigenvalue of problem (1) and (10) and mk be its

multiplicity. For the normalization polynomial Xk(x), the equality holds

i Res(Ω(ρ, x); ρk) = Xk(x)e(ρk, x) + eiρkx
∞

∑
n=0

(−1)nan(x)
mk−1

∑
j=1

djXk(x)
dxj (zk + 1)j+1P(j−n,0)

n (1 + 2zk), x ≥ 0. (53)
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Proof. The substitution of (23) into (51) yields

i Res(Ω(ρ, x); ρk) = eiρkx

(
Xk(x) +

∫ ∞

0

∞

∑
n=0

an(x)Ln(s)e−(
1
2−iρk)sXk(x + s)ds

)
.

Here, we change the order of summation and integration due to Parseval’s identity [47]
(p. 16) and additionally use the equality

Xk(x + s) =
mk−1

∑
j=0

sj

j!
djXk(x)

dxj .

Thus,

i Res(Ω(ρ, x); ρk) = eiρkx

(
Xk(x) +

∞

∑
n=0

an(x)
mk−1

∑
j=0

1
j!

djXk(x)
dxj

∫ ∞

0
Ln(s)e−(

1
2−iρk)ssjds

)
.

The last integral can be explicitly evaluated [48] (Formula 7.414 (7))

∫ ∞

0

(
Ln(s)e−(

1
2−iρk)s

)
sjds = j!(zk + 1)j+1F(−n, j + 1, 1; zk + 1) = j!(zk + 1)j+1(−1)nP(j−n,0)

n (1 + 2zk),

where F(a, b, c; z) stands for the hypergeometric function [49] (p. 56). Thus, we have
the equation

i Res(Ω(ρ, x); ρk) = eiρkx

[
Xk(x) +

∞

∑
n=0

(−1)nan(x)
mk−1

∑
j=0

(zk + 1)j+1 djXk(x)
dxj P(j−n,0)

n (1 + 2zk)

]
,

and due to Remark 6, we obtain (53).

Hereinafter Cn
k =

(
n
k

)
denotes the binomial coefficient.

Lemma 1. The m-th derivative of the Jost solution e(ρ, x) with respect to the variable z admits
the representation

∂m

∂zm (e(ρ, x)) = e(ρ, x)
m−1

∑
j=0

(−1)jCm−1
j

m!
(m− j)!

xm−j(z + 1)j−2m

+ eiρx
∞

∑
n=0

(−1)nan(x)
m+1

∑
j=2

P(j−n−1,0)
n (1 + 2z)

m

∑
s=j−1

(−1)s+j+1Cm−1
s−j+1

m!
(m− s)!

xm−s(z + 1)s+1−2m, (54)

where ρ ∈ C+(z ∈ D) and x ≥ 0.

Proof. We use the identity [50] (p. 3)

Fz(−n, j, 1, z + 1)(z + 1) = jF(−n, j + 1, 1, z + 1)− jF(−n, j, 1, z + 1), (55)

where Fz means the derivative with respect to z, and j, n are integers.
Let us prove the lemma by induction. For m = 1, from (52), we have

∂

∂z
(e(ρ, x)) =

(
eiρxx

(z + 1)2

)(
1 + (z + 1)

∞

∑
n=0

(−1)nan(x)P(−n,0)
n (1 + 2z)

)

+ eiρx

(
∞

∑
n=0

an(x)F(−n, 1, 1, z + 1) + (z + 1)
∞

∑
n=0

an(x)Fz(−n, 1, 1, z + 1)

)
.
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The application of (55) gives

∂

∂z
(e(ρ, x)) =

xe(ρ, x)
(z + 1)2 + eiρx

∞

∑
n=0

(−1)nan(x)P(1−n,0)
n (1 + 2zk). (56)

Consider Formula (54) as the induction hypothesis for m = k. The idea is to prove
the equation

∂

∂z

(
e(ρ, x)

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

− eiρx
∞

∑
n=0

an(x)F(−n, 2, 1, z + 1)

(
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

=e(ρ, x)
k

∑
j=0

(−1)jCk
j

(k + 1)!
(k + 1− j)!

xk+1−j(z + 1)j−2k−2 (57)

and the equality

∂

∂z

(
eiρx

∞

∑
n=0

an(x)
k+1

∑
j=2

F(−n, j, 1, z + 1)(
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k+1

))

+eiρx
∞

∑
n=0

an(x)F(−n, 2, 1, z + 1)

(
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

=eiρx
∞

∑
n=0

an(x)

(
k+2

∑
j=2

F(−n, j, 1, z + 1)(
k+1

∑
m=j−1

(−1)m+j+1Ck
m−j+1

(k + 1)!
(k−m + 1)!

xk−m+1(z + 1)m−2k−1

))
. (58)

Then, noting that the second terms on the left-hand side of (57) and (58) coincide up to
the sign, the desired result is obtained by summing up both equations.

The proof of Equations (57) and (58) is presented in Appendix A, which completes the
proof of the Lemma.

As long as there is no possible misunderstanding, we consider a fixed ρ = ρk with
a multiplicity m = mk and the corresponding normalization polynomial X(x) = Xk(x).
Thus, the index k is omitted along the following two statements.

Lemma 2. The coefficients bj of a normalization polynomial X(x) of degree m− 1

X(x) =
m−1

∑
j=0

bjxj (59)

satisfy the equation

i Res(Ω(ρ, x); ρk) = b0e(ρk, x) +
m−1

∑
n=1

n−1

∑
r=0

bn
n!

(r + 1)!
Cn−1

r

(
∂r+1

∂zr+1 (e(ρ, x))
)∣∣∣∣

z=zk

(zk + 1)n+r+1. (60)
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Proof. Comparing (53) with (60) we see that, in fact, we need to prove the equality

X(x)e(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
j=1

djX(x)
dxj (z + 1)j+1P(j−n,0)

n (1 + 2z)

=b0e(ρ, x) +
m−1

∑
n=1

n−1

∑
r=0

bn
n!

(r + 1)!
Cn−1

r
∂r+1

∂zr+1 (e(ρ, x))(z + 1)n+r+1. (61)

Note that

X(x)e(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
j=1

djX(x)
dxj (z + 1)j+1P(j−n,0)

n (1 + 2z)

=
m−1

∑
s=0

bsxse(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
j=1

dj

dxj

(
m−1

∑
s=0

bsxs

)
(z + 1)j+1P(j−n,0)

n (1 + 2z)

=
m−1

∑
s=0

bsxse(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
s=1

(
s

∑
j=1

s!
(s− j)!

bsxs−j

)
(z + 1)j+1P(j−n,0)

n (1 + 2z)

=b0e(ρ, x) +
m−1

∑
s=1

bs

(
e(ρ, x)xs + eiρx

∞

∑
n=0

(−1)nan(x)
s

∑
j=1

s!
(s− j)!

xs−j(z + 1)j+1P(j−n,0)
n (1 + 2z)

)
. (62)

Then, upon comparison of (61) with (62), it can be observed that proving (61) is
equivalent to proving the equality

s−1

∑
r=0

s!
(r + 1)!

Cs−1
r

∂r+1

∂zr+1 (e(ρ, x))(z + 1)s+r+1 (63)

=e(ρ, x)xs + eiρx
∞

∑
n=0

s

∑
j=1

(−1)nan(x)
s!

(s− j)!
xs−j(z + 1)j+1P(j−n,0)

n (1 + 2z) (64)

for some natural number s ≤ m− 1. Thus, we are going to prove (64). The substitution of
the term with the derivative in (63) by Formula (54) for m = r + 1 is enough to obtain (64)
as follows

s−1

∑
r=0

s!
(r + 1)!

Cs−1
r

∂r+1

∂zr+1 (e(ρ, x))(z + 1)s+r+1

=
s−1

∑
r=0

s!
(r + 1)!

Cs−1
r e(ρ, x)

(
r

∑
j=0

(−1)jCr
j

(r + 1)!
(r + 1− j)!

xr−j+1(z + 1)j−2r−2

+eiρx
∞

∑
n=0

an(x)
r+2

∑
j=2

F(−n, j, 1, z + 1)
r+1

∑
s=j−1

(−1)s+j+1Cr
s−j+1

(r + 1)!
(r− s + 1)!

xr−s+1(z + 1)s−2r−1

)

=
s−1

∑
r=0

s!
(r + 1)!

Cs−1
r e(ρ, x)

(
r

∑
j=0

(−1)jCr
j

(r + 1)!
(r + 1− j)!

xr−j+1(z + 1)j−2r−2

+eiρx
∞

∑
n=0

an(x)
r+1

∑
j=1

F(−n, j + 1, 1, z + 1)
r+2

∑
s=j

(−1)s+jCr
s−j

(r + 1)!
(r− s + 1)!

xr−s+1(z + 1)s−2r−1

)

= e(ρ, x)xs + eiρx
∞

∑
n=0

s

∑
j=1

an(x)
s!

(s− j)!
xs−j(z + 1)j+1F(−n, j + 1, 1; z + 1).

This completes the proof of the Lemma.
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Equation (60) provides us with a simple method for computing the coefficients bj
in (59), and consequently for calculating the normalization polynomials.

Theorem 1. The coefficients bj of a normalization polynomial Xk(x) =
mk−1

∑
j=0

bjxj corresponding

to a complex singular number ρk satisfy the system of linear algebraic equations

A · B = D, (65)

where A is an m×mk matrix with entries defined by

Ajn =

⎧⎪⎨⎪⎩
e(ρk, xj), n = 1,
n−2

∑
r=0

n!
(r + 1)!

Cn−1
r

(
∂r+1

∂zr+1 e
(
ρk, xj

))∣∣∣∣
z=zk

(zk + 1)n+r+1, 1 < n ≤ mk − 1.
(66)

Here, xj ≥ 0 are distinct points, j = 1, . . . , m (m ≥ mk). B is an mk vector with its entries being the
normalization polynomial coefficients Bn = bn−1, n = 1, . . . , mk, and D is an m vector defined by

Dj = i Res(Ω(ρ, xj); ρk). (67)

Proof. The proof consists of observing that each row in (65) is just Formula (60) correspond-
ing to a point xj. The number of rows must be at least mk; otherwise, the system (65) is
underdetermined.

Thus, the coefficients of the normalization polynomial are obtained from the sys-
tem (65).

Definition 2. A set
J =

{
{ρk, mk, Xk(x)}k=1,...α, s(ρ)

}
(68)

is called the scattering data set of problem (1) and (10).
Here, ρk are the non-real singular numbers, mk their multiplicities, Xk(x) the correspond-

ing normalization polynomials, and s(ρ) is the scattering function (S-type function in the strip
|Im ρ| < ε0).

In order to recall a result on the characterization of the scattering data, we need the
following definition [39].

Definition 3. Let s(ρ) be an S-type function in the strip |Im ρ| < ε0 and let L be a curve lying in
the strip and running from −∞ to +∞, such that all roots (poles) of s(ρ) are situated above (below)
L. The increment divided by 2π of a continuous branch of Arg s(ρ), when ρ runs along L from
−∞ to +∞, is called the index of s(ρ) and denoted by Ind s.

Let us assume that a set J as in Definition 2 is given. A necessary and sufficient
condition (obtained in [18]) to ensure that this set represents the scattering data for a
problem (1) and (10) with Condition (2) is the following relation

Ind s + 2m +κ = 0 (69)

where

m = m1 + . . . + mα, κ =
1
2
[1− s(0)] =

{
0 for e(0) �= 0,
1 for e(0) = 0.

In the case when mk = 1, the notion of the Birkhoff solution is useful for computing
the corresponding norming constants.
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Remark 7. Let E(ρ, x) denote the Birkhoff solution of Equation (1) (see [24] (p. 113)), i.e., a
solution satisfying the asymptotic relation

E(ρ, x) = (−iρ)(ν)e−iρx(1 + o(1)), x → ∞, ν = 0, 1

uniformly for |ρ| ≥ δ, for each δ > 0. For Im ρ > 0, this solution is not unique. Indeed, if E0(ρ, x)
is a Birkhoff solution, then E(ρ, x) = E0(ρ, x) + ce(ρ, x) is also a Birkhoff solution of (1) for any
constant c ∈ C. Note that for ρ = ρk (a singular number of the problem), the values of all Birkhoff
solutions at the origin coincide. We have E(ρk) := E(ρk, 0) = E0(ρk, 0), because e(ρk) = 0.
Moreover,

E(ρk) =
2iρk

e′(ρk, 0)
, (70)

which can be observed by considering the Wronskian W[e(ρ, x), E(ρ, x)] = −2iρ.

Remark 8. The solution ω(ρ, x) satisfying Conditions (39) has the form

ω(ρ, x) =
E(ρ)e(ρ, x)− e(ρ)E(ρ, x)

2iρ
, ρ ∈ C+. (71)

Note that ρk is a pole of Ω(ρ, x) in the upper half-plane of the complex variable ρ if
and only if it is a root of the Jost function e(ρ) (see (40)). Thus, in case of a simple pole ρk in
Equation (67), the residue can be computed as follows

Res(Ω(ρ, x); ρk) = Res
(

2iρ
e(ρ)

ω(ρ, x); ρk

)
= Res

(
E(ρ)e(ρ, x)− e(ρ)E(ρ, x)

e(ρ)
; ρk

)
=

E(ρk)e(ρk, x)− e(ρk)E(ρk, x)
ė(ρk)

=
E(ρk)e(ρk, x)

ė(ρk)
,

where ė(ρ) := d
dρ e(ρ), and the corresponding normalization polynomial (in fact normaliza-

tion constant) is given by

ck =
Res(Ω(ρ, x); ρk)

e(ρk, x)
i =

E(ρk)

ė(ρk)
i. (72)

Moreover, due to (70), we have

ck = − 2ρk
ė(ρk)e′(ρk, 0)

. (73)

Similarly to the case of a real-valued potential [51] (p. 95), one can see that

ck =
1∫ ∞

0 e2(ρk, x)dx
=

1

(e′(ρk, 0))2 ∫ ∞
0 ω2(ρk, x)dx

.

If |q(x)| ≤ c1 exp(−c2|x|γ), γ > 1 (for some constants c1, c2 > 0), then e(ρ) is an entire
function of ρ (see [51] (p. 95)). In this case, as a Birkhoff solution E(ρ, x), one can consider
the Jost solution e(−ρ, x), Im(ρ) > 0, and hence from (72) we obtain

ck =
e(−ρk)

ė(ρk)
i. (74)

Example 4. According to Remark 8, the normalization constant associated with the unique eigen-
value of the operator from Example 3 is

c1 =
e(ia tanh(b))

ė(−ia tanh(b))
i =

(
2a tanh(b)

tanh(b) + 1

)
(tanh(b)− 1),
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and, in particular, for q3(x), we have

c1 =
2(1 + tanh(1 + i)) tanh(1 + i)

1− tanh(1 + i)
.

Example 5. With the aid of Remark 8, an approximate value of the normalization constant for the
eigenvalue λ0 from Example 1 is obtained

c0 ≈ 16.339391035537 + 40.670169841396i.

3.4. Numerical Algorithm

The approximate solution of the direct problem can be performed with the following
steps.

1. Compute the Jost function using (41) and the recurrent integration procedure from [27],
for Im(ρ) ≥ 0.

2. Extend the Jost function e(ρ) to −ε0 < Im(ρ) < 0 using any convenient technique,
such as the classic analytic continuation, Padé approximants [28] or some other
approach [52,53].

3. Obtain the scattering function s(ρ) for 0 ≤ |Im(ρ)| < ε0 by Formula (42).
4. To locate the eigenvalues, find the non-real poles of the function Ω(ρ, x), which is

equivalent to finding zeroes of the function e(ρ) in the unit disk in terms of z. This
can be achieved with the aid of the argument principle theorem. In particular, in the
present work, we compute the change in the argument along rectangular contours γ.
If the change in the argument along γ is zero, consider another contour. Otherwise,
subdivide the region within the contour until the desired accuracy is attained. Note
that for a sufficiently large N, zeros of eN(ρ), approximate the square roots of the
eigenvalues of the problem arbitrarily closely. The proof is analogous to that in [54]
and is based on the Rouché theorem from complex analysis.

5. Obtain the normalization polynomials.

5.1 For simple poles, use Remark 8 to obtain the normalization constants.
5.2 Otherwise, for higher multiplicities, solve the linear system of Equation (65)

for the coefficients bnk , nk = 0, 1, . . . , mk − 1 computing Aj,n and Dj defined in
Equations (66) and (67) for several values of xj.

4. Inverse Problem

In order to reconstruct the potential in (1) from the scattering data, it is convenient to
introduce the function [39]

φs(x) =
1

2π

∫ ∞+iη

−∞+iη
(s(ρ)− 1)eixρdρ, (75)

where η is a number satisfying the inequalities 0 < η < ε0 (ε0s, defined in Section 3.2), and
the function

f (x) = φs(x)−
α

∑
k=1

Xk(x)eiρkx, x ≥ 0. (76)

Remark 9. Hereinafter, we use the notation∫
Lη

=
∫ ∞+iη

−∞+iη
(77)

for 0 < η < ε0 where Lη represents a line parallel to the real axis crossing iη.
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The kernel A(x, t) and the function f (x) satisfy the following Gel’fand–Levitan (G-L)
equation [39] (Theorem 10.1)

A(x, t) =
∫ ∞

x
A(x, u) f (u + t)du + f (x + t), 0 ≤ x ≤ t < ∞. (78)

4.1. Infinite Linear Algebraic System for Coefficients an(x)

Following [38], from the G-L Equation (78), we deduce the following system of linear
algebraic equations for the coefficients an(x) from the series representation (23).

Theorem 2. The complex-valued functions an(x) satisfy the equations

am(x)−
∞

∑
n=0

an(x)Amn(x) = fm(2x), m = 0, 1, . . . (79)

where

fm(x) :=
∫ ∞

0
f (s + x)Lm(s)e−

s
2 ds, (80)

Amn(x) :=
∫ ∞

0
fn(2x + s)Lm(s)e−

s
2 ds.

Proof. Substitution of the series representation (23) into (78) leads to the equalities

f (x + t) =
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 −
∞

∑
n=0

an(x)
∫ ∞

x
Ln(u− x)e

x−u
2 f (u + t)du

=
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 −
∞

∑
n=0

an(x)
∫ ∞

0
Ln(y)e−

y
2 f (x + y + t)dy, (81)

where the change in the order of summation and integration is justified by the general
Parseval identity [47] (p. 16).

We have∫ ∞

x
A(x, u) f (u + t)du =

〈
A(x, x + u), f (u + x + t)

〉
L2(0,∞)

=
∞

∑
n=0

〈
A(x, x + u), e−u/2Ln(u)

〉
L2(0,∞)

〈
e−u/2Ln(u), f (u + x + t)

〉
L2(0,∞)

=
∞

∑
n=0

an(x)
∫ ∞

0
e−

u
2 Ln(u) f (u + x + t)du.

Denote s = t− x. Equation (81) is equivalent to

f (s + 2x) =
∞

∑
n=0

an(x)Ln(s)e−
s
2 −

∞

∑
n=0

an(x)
∫ ∞

0
Ln(y)e−

y
2 f (s + 2x + y)dy. (82)

Multiplying the last equation by Lm(s)e−
s
2 and integrating this, we obtain∫ ∞

0
f (s + 2x)Lm(s)e−

s
2 ds =

∞

∑
n=0

an(x)
∫ ∞

0
Ln(s)Lm(s)e−sds

−
∞

∑
n=0

an(x)
(∫ ∞

0
Lm(s)e−

s
2

(∫ ∞

0
f (s + 2x + y)Ln(y)e−

y
2 dy

)
ds

)
. (83)

Note that ∫ ∞

0
Ln(s)Lm(s)e−sds = δmn,
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and ∫ ∞

0
f (s + 2x + y)Ln(y)e−

y
2 dy = fn(2x + s).

Thus, from (83) we obtain (79).

4.2. Expressions for fm(x) and Amn(x)

It is convenient to regard the functions fm(x) and Amn(x) as a sum of the components
corresponding to the continuous fm,c(x), Amn,c(x) and discrete spectra fm,d(x), Amn,d(x),
and simplify these expressions with the aid of the formula ([48], Formula 7.414 (6))

∫ ∞

0
Lm(s)es(iρ− 1

2 )ds =
(−1)m

(
1
2 + iρ

)m

(
1
2 − iρ

)m+1 . (84)

The continuous and discrete components for the function fm(x) have the form

fm,c(x) :=
∫ ∞

0
φs(s + x)Lm(s)e−

s
2 ds =

1
2π

∫
Lη

(s(ρ)− 1)eiρx
∫ ∞

0
Lm(s)eiρs− s

2 dsdρ

=
(−1)m

2π

∫
Lη

(s(ρ)− 1)

(
1
2 + iρ

)m

(
1
2 − iρ

)m+1 eiρxdρ, (85)

and

fm,d(x) := −
α

∑
k=1

∫ ∞

0
Xk(s + x)ei(s+x)ρk Lm(s)e−

s
2 ds,

= −
α

∑
k=1

eiρkx
∫ ∞

0

(
mk−1

∑
j=0

(
1
j!

)
djXk(x)

dxj sj

)
eiρksLm(s)e−

s
2 ds,

= −
α

∑
k=1

eiρkx
mk−1

∑
j=0

(
1
j!

)
djXk(x)

dxj

∫ ∞

0
sjLm(s)e−(

1
2−iρk)sds,

= (−1)m+1
α

∑
k=1

mk−1

∑
j=0

eiρkx djXk(x)
dxj (zk + 1)j+1P(j−m,0)

m (1 + 2zk). (86)

For the function Amn,c(x), we have

Amn,c(x) :=
∫ ∞

0
Lm(s) fn,c(2x + s)e−

s
2 ds

=
(−1)n

2π

∫
Lη

(s(ρ)− 1)

(
1
2 + iρ

)n

(
1
2 − iρ

)n+1

(∫ ∞

0
Lm(s)e−(

1
2−iρ)sds

)
e2iρxdρ

=
(−1)n+m

2π

∫
Lη

(s(ρ)− 1)

(
1
2 + iρ

)n+m

(
1
2 − iρ

)n+m+2 e2iρxdρ, (87)

and for Amn,d(x), we use (84) to obtain
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Amn,d(x) =
∫ ∞

0
Lm(s) fn,d(2x + s)e−

s
2 ds

= −
∫ ∞

0
Lm(s)

α

∑
k=1

mk−1

∑
j=0

dj

dxj (Xk(2x + s))(zk + 1)j+1F(−n, j + 1, 1; zk + 1)e2iρkxe−(
1
2−iρk)sds

= −
α

∑
k=1

mk−1

∑
j=0

(zk + 1)j+1F(−n, j + 1, 1; zk + 1)e2iρkx

∫ ∞

0

dj

dxj

(
mk−1

∑
p=0

(
sp

2p p!
dp

dxp (Xk(2x))
))

Lm(s)e−(
1
2−iρk)sds

= −
α

∑
k=1

mk−1

∑
j=0

mk−1

∑
p=0

1
2p p!

dp+j

dxp+j (Xk(2x))(zk + 1)j+1F(−n, j + 1, 1; zk + 1)e2iρkx

∫ ∞

0
spLm(s)e−(

1
2−iρk)sds

= (−1)m+n+1
α

∑
k=1

mk−1

∑
j=0

mk−1−j

∑
p=0

1
2p

dp+j

dxp+j (Xk(2x))(zk + 1)p+j+2P(j−n,0)
n (1 + 2zk)

P(p−m,0)
m (1 + 2zk)e2iρkx. (88)

Remark 10. When an eigenvalue ρ2
k is simple and the corresponding normalization polynomial

Xk(x) is just a normalization constant ck, expressions (86) and (88) can be written in the form

fm,d(x) = −
α

∑
k=1

eixρk (−zk)
m(zk + 1)ck, (89)

Amn,d(x) = −
α

∑
k=1

e2ixρk (−zk)
m+n(zk + 1)2ck. (90)

We illustrate the calculation of the functions (85)–(88) with some examples.

Example 6. Consider the scattering function obtained in Example 2:

s2(ρ) =

(
1− ρ

i− ρ

)(
ρ + i
ρ + 1

)
(91)

in the strip 0 ≤ Im(ρ) < 1, with no discrete spectrum and thus no normalization polynomials. Let
us compute the function φs(x) defined by (75), where the line Lη lies in the strip 0 < Im(ρ) < 1.
Since the function s2(ρ) is analytic in the strip 0 < Im(ρ) < 1, the value of the integral is
independent of the choice of 0 < η < 1. Using Jordan’s lemma to calculate the integral in (75),
we obtain

f (x) = φs(x) = −2ie−x.

Now, computing the functions fm(x) and Amn(x) from Formula (85) and (87) and using the
residue theorem, we obtain

fm(x) = −4i · 3−(m+1)e−x, Anm(x) = −8i · 3−(n+m+2)e−2x.

Thus, in the case of the potential q2(x), the system of Equation (79) can be written explicitly.
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Example 7. Consider the scattering function s3(ρ) from Example 3. It has two poles in the upper
half-plane: at i and i tanh(1 + i). Hence, using the residue theorem, we find that

φs(x) =
2(1 + tanh(1 + i))e−x(1+tanh(1+i))

(
ex tanh(1+i) − ex tanh(1 + i)

)
tanh(1 + i)− 1

,

f (x) = −2e(2−x+2i), fm(x) = −4 · 3−(m+1)e(2−x+2i), Amn(x) = −8e2−2x+2i3−(m+n+2).

Again, the corresponding system of Equation (79) can be written explicitly.

Example 8. Consider s1(ρ) from Example 1. To compute φs(x), we consider the singularities
of s1(ρ) in the upper half-plane. From the set D(s1) (see Example 1), we have that s1(ρ) has an
infinite number of isolated singularities at the points ρk = ik

2 with k ∈ N \ {0} and a singular
number ρ0; see (46). Using properties of the gamma function, we obtain

Res
ρ=ρk

k=1,2,...

(s1(ρ)− 1) =

(
(1− i)−4iρk 5−2iρk J2iρk ((2− 2i)

√
5)

J−2iρk ((2− 2i)
√

5)Γ(1− 2iρk)

)
Res
ρ=ρk

k=1,2,...

Γ(1 + 2iρ)

=

(
(1− i)2k5k J−k((2− 2i)

√
5)

Jk((2− 2i)
√

5)Γ(1 + k)

)
(−1)ki

2(k− 1)!
=

(
5(1− i)2)k

2k!(k− 1)!
i,

and

Res
ρ=ρ0

(s1(ρ)− 1) =
e(−ρ0)

e′(ρ0)
= −ic0,

where c0 is the normalization constant obtained in Example 5. Therefore, for x > 0, we have

φs(x) = ieixρ0 Res
ρ=ρ0

(s1(ρ)− 1) + i
∞

∑
k=1

e−
xk
2 Res

ρ=ρk
(s1(ρ)− 1)

= c0eixρ0 − 1
2

∞

∑
k=1

(
−e−

x
2

)k

(k− 1)!
= c0eixρ0 +

e−e−x/2−x/2

2
.

Hence, the function f (x) has the form

f (x) = c0eixρ0 +
e−e−x/2−x/2

2
− c0eixρ0 =

e−e−x/2−x/2

2
,

and we obtain the functions fm,c(x) and fm,d(x) in terms of z0 =
1
2+iρ0
1
2−iρ0

(see (9)) as follows

fn,c(x) = c0eixρ0(−1)nzn
0 (z0 + 1) + (−1)n

∞

∑
k=1

(
−e−

x
2

)k

(k− 1)!
(1− k)n

(1 + k)n+1 , (92)

and

fn,d(x) = (−1)n+1c0eixρ0(z0 + 1)zn
0 . (93)

Thus, from Equations (92) and (93) we obtain

fn(x) = (−1)n
∞

∑
k=1

(
−e−

x
2

)k

(k− 1)!
(1− k)n

(1 + k)n+1 .
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Likewise, applying the residue theorem, we have

Amn(x) = 2(−1)n+m
∞

∑
k=1

(−e−x)
k

(k− 1)!
(1− k)n+m

(1 + k)n+m+2 .

Thus, as in the previous two examples, the system of Equation (79) can be written explicitly.

The cancellation of terms when summing up (92) with (93) is not incidental and is
generalized below in Remark 12.

To calculate the integrals in functions fm and Amn in the case when the scattering func-
tion is given explicitly, we implement Jordan’s lemma and the residue theorem considering
the asymptotics (44). However, often the function s(ρ) is not given in a closed form but
as a table of data—then, the following techniques can be useful to compute the integrals.
First, we recall a widely used technique for the quadrature of highly oscillatory integrals
through approximations of the Fourier sine and cosine transform. This is illustrated below
in Example 16. A second option is a transformation of integrals in fm and Amn into integrals
over a finite interval providing a certain advantage for its numerical implementation. This
is illustrated below in Example 21.

Remark 11. We mainly discuss the calculation of the functions fm. The calculation of Amn
is analogous.

1. Suppose s(ρ) is given in a closed form. By Pol we denote the set of its poles in the open upper
half-plane. Since s(ρ) satisfies the asymptotics (44), the integral in (85) can be computed with
the aid of Jordan’s lemma and the residue theorem as follows

fm,c(x) = (−1)mi ∑
ρj∈Pol

Res
ρ=ρj

(z + 1)zm(s(ρ)− 1)eiρx, (94)

provided the series on the right-hand side is convergent; see [55] (p. 459).
If Pol contains only simple poles, we obtain

fm,c(x) = (−1)mi ∑
ρj∈Pol

(zj + 1)zm
j eiρjxRes

ρ=ρj
(s(ρ)− 1). (95)

2. Consider the integral in (85)

fm,c(x) =
(−1)me−ηx

2π

∫ ∞

−∞
(s(σ + iη)− 1)

(
1
2 + i(σ + iη)

)m

(
1
2 − i(σ + iη)

)m+1 eiσxdσ (96)

for some 0 < η < ε0. Following the approach from [56] (p. 236), denote

g(σ) := (s(σ + iη)− 1)

(
1
2 + i(σ + iη)

)m

(
1
2 − i(σ + iη)

)m+1 ,

and set ψ(σ) = g(σ) + g(−σ), φ(σ) = g(σ)− g(−σ). Then

∫ ∞

−∞
(s(σ + iη)− 1)

(
1
2 + i(σ + iη)

)m

(
1
2 − i(σ + iη)

)m+1 eiσxdσ =
∫ ∞

0
ψ(σ) cos(σx)dσ + i

∫ ∞

0
φ(σ) sin(σx)dσ. (97)
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The integrals on the right hand side (the Fourier cosine and sine transforms) are approximated
by the corresponding sums

h
N

∑
k=0

ψ

((
k +

1
2

)
h
)

cos
(

x
(

k +
1
2

))
and h

N

∑
k=0

φ(kh) sin(xkh), (98)

where h and N are chosen to be sufficiently small and large, respectively.
3. Transform the line Lη into a circle centered at −2η

1+2η of radius 1
2+η with the aid of the formulas

ρ =
i(1 + 4η − exp(iθ))

2(1 + exp(iθ))
, dρ = exp(iθ)

(1 + 2η)

(1 + exp(iθ))2 dθ. (99)

This enables us to consider the integral in (85) in the form

fm,c(x) =
(−1)m

2π

∫ 2π

0

(
s
(

i(1 + 4η − exp(iθ))
2(1 + exp(iθ))

)
− 1

)
exp

(
−x

(
1 + 4η − exp(iθ)
2(1 + exp(iθ))

))
·(

1
2 −

(
1+4η−exp(iθ)
2(1+exp(iθ))

))m

(
1
2 +

(
1+4η−exp(iθ)
2(1+exp(iθ))

))m+1 exp(iθ)
(1 + 2η)

(1 + exp(iθ))2 dθ,

reducing the integration to a finite interval.

Remark 12. Suppose that the eigenvalues are simple, and Formula (74) is applicable. Denote
the set K = {ρ1, . . . , ρα} of non-real singular values. From (89), (90) and (95), we have that the
functions fm(x) and Amn(x) can be computed as

fm(x) = (−1)mi ∑
ρj∈Pol \K

1
ė(ρj)

(zj)
m(zj + 1)eiρjxRes

(
e(−ρ); ρ = ρj

)
,

Amn(x) = (−1)n+mi ∑
ρj∈Pol \K

1
ė(ρj)

(zj)
n+m(zj + 1)2e2iρjxRes

(
e(−ρ); ρ = ρj

)
.

4.3. Stability of the System and Its Solution

Consider the truncated system (79):

am(x)−
M

∑
n=0

an(x)Amn(x) = fm(2x), m = 0, . . . , M. (100)

Denote its solution as UM =
{

aM
m
}M

m=0. In the following two theorems, we prove
the unique solvability of (100), the convergence of its solution to the exact one as well as
its stability.

Theorem 3. Let x ≥ 0 be fixed. Consider the system (100) truncated to M + 1 equations. Then,
for a sufficiently large M, the truncated system is uniquely solvable, and

aM
m (x)→ am(x), M → ∞, m = 0, 1 . . . . (101)

Proof. Since { fm(2x)}∞
m=0 ∈ �2 and {Am,n(x)}∞

m,n=0 ∈ �2 ⊗ �2 and we look for
{am(x)}∞

m=0 ∈ �2, the assertion of the theorem for the truncated system follows directly
from the general theory presented in [57] (Chapter 14, §3).

Theorem 4. The approximate solution
{

aM
m (x)

}M
m=0 of the system is stable.
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Proof. Note that the truncated system (100) coincides with that obtained by applying
the Bubnov–Galerkin procedure to the G-L Equation (78) with the orthonormal system
of Laguerre polynomials in L2([0, ∞); e−x); see [58] (§14). Let IM denote the (M + 1)×
(M + 1) identity matrix, LM = {Am,n(x)}M

m,n=0 be the coefficient matrix of the truncated

system and RM = { fm(2x)}M
m=0 the right hand side of (100). Following [58] (§9), consider a

system called inexact
(IM + LM + ΓM)VM = RM + δM,

where ΓM is an (M + 1)× (M + 1) matrix representing errors in the coefficients Am,n, and
δM is the column vector representing errors in the coefficients fm. Let VM be a solution of
the non-exact system. The solution of the Bubnov–Galerkin procedure is said to be stable
if there exist constants c1, c2 > 0, such that for ‖ΓM‖ ≤ r and arbitrary δM the non-exact
system is solvable, and the following inequality holds

‖UM −VM‖ ≤ c1‖ΓM‖+ c2‖δM‖. (102)

Now, since in the case under consideration, the inequality (102) is true (see [58]
(Theorems 14.1 and 14.2)), the approximate solution is stable.

4.4. Algorithm to Recover the Potential

Given a scattering data set J as in Definition 2, the algorithm to recover q(x) consists
of the following steps.

1. Compute the functions fm(x) and Amn(x) with the aid of (85)–(88).
2. Solve the truncated system of linear algebraic Equation (100) to obtain the coefficient

a0(x).
3. Recover the potential q(x) from (38).

5. Numerical Examples

We implemented the algorithms proposed in Sections 3.4 and 4.4 to solve the direct
and inverse problems, respectively, with machine precision and with the aid of Matlab2021.
Several examples are discussed, some of which have been introduced in previous sections.

5.1. Direct Problem

In this subsection, we discuss the computation of the scattering data, based on the
series representation of the Jost solution (8). We deal with the approximate solution
obtained by truncating the series (36).

The computation of the coefficients an(x) is performed with the aid of the recurrent
integration procedure from [27].

First of all, we discuss the choice of the number N in (36). Below, we show that a
satisfactory accuracy is attained for a relatively small N (from several units to several
dozens), and a reliable indicator

εN = max

∣∣∣∣∣ N

∑
n=0

an(x)− 1
2

∫ ∞

x
q(t)dt

∣∣∣∣∣ (103)

can be used to choose an appropriate N.
In the case of simple singular numbers ρk, the norming constants can be computed

with the aid of (73):

ck ≈ − 2ρk
ėN(ρk)e′N(ρk, 0)

. (104)

Another possibility consists of using (74) in the form

ck ≈
[m, n]eN(ρ)(−ρk)

ėN(ρk)
, (105)
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where [m, n]eN(ρ)(−ρk) stands for the Padé approximant of eN(ρ) at ρ = −ρk. This can
be achieved when the accuracy of this rational approximation in the upper half-plane is
satisfactory, i.e., when one has a suitable small value of max

∣∣∣[m, n]eN(ρ)(ρ)− eN(ρ)
∣∣∣ in a

sufficiently large region in the upper half-plane of the complex variable ρ.
A reliable algorithm to compute derivatives of (36) in (104) is proposed in [27].
To obtain the scattering function (42) in the strip |Im(ρ)| < ε0 we consider two options

depending on how the computation of the Jost function is performed for ρ in the lower
half-plane. The first one uses

s(ρ) ≈
[m, n]eN(ρ)(−ρ)

eN(ρ)
,

provided [m, n]eN(ρ)(ρ) extends eN(ρ) analytically onto a certain strip in the lower half
ρ-plane. A second option for the computation of s(ρ) is

s(ρ) ≈
eN(−ρ)

eN(ρ)
, (106)

where the expression (36) is calculated at points ρ of a parallel line sufficiently close to the
real axis and contained in the lower half ρ-plane.

Remark 13. The notation for the approximate Jost solution (Jost function) may contain two indices,
k and N: ek,N(ρ, x) (ek,N(ρ)), where k denotes the solution associated with the Schrödinger equation
with the potential qk(x) and N is the parameter from (36).

Example 9. Consider the potential q2(x) from Example 2. We present the indicator εN in Table 1
for different values of N in (103).

Table 1. Example 9: indicator εN for different values of N.

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

2 1.57× 10−1 30 6.7× 10−12

3 5.24× 10−2 35 6.02× 10−12

5 5.82× 10−3 40 5.21× 10−12

10 2.39× 10−5 45 4.98× 10−12

15 9.86× 10−8 55 4.34× 10−12

20 4.11× 10−10 180 1.98× 10−12

Figure 1 shows the real and imaginary parts of the approximate and exact Jost solution
computed from (36) at a sample point ρ = 1 + i/3 with N = 30, i.e., e2,30(1 + i/3, x). The
maximum absolute error of the computed Jost solution for x in the interval [0, 12] is 2.14× 10−13.
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Figure 1. Real (left) and imaginary (right) parts of e2(1 + i/3, x) and approximate Jost solution
e2,30(1 + i/3, x).

Table 2 presents the maximum absolute and relative errors of the approximate Jost function
e2,N(ρ(z)) for z ∈ D for different values of N.

Table 2. Maximum absolute and relative errors of the approximate Jost function e2,N(ρ(z)) in D.

N 2 5 20 25 30 40 180

Abs. Error 1.57× 10−1 5.82× 10−3 4.06× 10−10 1.68× 10−12 2.48× 10−14 1.98× 10−14 1.96× 10−14

Rel. Error 1.78× 10 6.58× 10−1 4.58× 10−8 1.89× 10−10 9.66× 10−13 3.17× 10−13 1.57× 10−13

Figure 2 shows the function |e2,30(ρ(z))| for z ∈ D. Here, we illustrate the existence of a
unique singular number. Indeed, this singular number ρ = −1 corresponds to z = −0.6− 0.8i
and the value e2,30(−1) is −5.55× 10−15 + 2.66× 10−15i.

Figure 2. Function |e2,30(ρ(z))| for z ∈ D.
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The distribution of the absolute and relative errors of the approximate Jost function is presented
in Figure 3 and Figure 4 (respectively), where the maximum absolute error is 1.98× 10−14 and the
maximum relative error is 3.17× 10−13.

Figure 3. Absolute error of approximate Jost function e2,30(ρ(z)) for z ∈ D.

Figure 4. Relative error of approximate Jost function e2,30(ρ(z)) for z ∈ D.

Furthermore, a good approximation of the derivative of the Jost function becomes essential for
the argument principle algorithm performance. This is necessary to obtain the eigenvalues as the
squares of non-real zeros of the approximate Jost function. In Figure 5, we illustrate de2,30(ρ(z))

dz ,
and Figures 6 and 7 depict the distribution of the absolute and relative errors, respectively. The
maximum absolute error is 9.6× 10−13 and the maximum relative error is 7.21× 10−13.

Figure 5. Function
∣∣∣ de2,30(ρ(z))

dz

∣∣∣ for z ∈ D.
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Figure 6. Absolute error of de2,30(ρ(z))
dz , z ∈ D.
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Figure 7. Relative error of de2,30(ρ(z))
dz , z ∈ D.

To find the singular numbers, we consider the circle {z ∈ C : |z| = 1} (real axis in ρ) and a
cubic spline interpolation of the approximate Jost function (N = 30). For the spline interpolation,
we use the Matlab routine csapi. To locate the zeros of the spline, we use slmsolve from the Shape
Language Modeling (SLM) toolbox, version 1.14 by John D’Errico [59], available for Matlab2021a.
The value ρ1 = −1.000000000000003 was obtained with an absolute error of 3.11 × 10−15.
Additionally, the argument principle algorithm applied to e2,30(ρ(z)) in D discarded any eigenvalue
of the problem (non-real zero ρ).

The second step of the algorithm from Section 3.4 requires computing the Jost function in the
strip −ε0 < Im(ρ) < 0 (ε0 = ε

2 = 1). In this example, we extend e2,30(ρ(z)) analytically via
Padé’s approximation. The Padé approximant [m, n]e2,30(ρ)

was computed in Matlab2021a using the
routine pade.

In Table 3, we computed the maximum absolute and relative errors of the Padé approximant
[1, 1]e2,N(ρ) of e2,N(ρ) with N = 3, 5, 20, 30, 40, 50 and 180 for 0 ≤ Im(ρ) < 1. These values
indicate the possibility of dealing with this Padé approximant when computing the set of scattering
data. Additionally, from Table 4, we confirm that this approximant satisfactorily extends the Jost
function to a desirable strip in the lower half-plane (the strip is related to the one needed for the
calculation of the scattering function s2(ρ)).
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Table 3. Maximum absolute and relative errors of the Padé approximant [1, 1]e2,N(ρ)
with respect to

e2,N(ρ) in a strip in the upper half ρ-plane.

N Max. Abs. Error of [1, 1]e2,N(ρ)(ρ) N Max. Rel. Error of [1, 1]e2,N(ρ)(ρ)

with 0 ≤ Im(ρ) < 1 with 0 ≤ Im(ρ) < 1

3 7.18× 10−1 3 2.97

5 5.45× 10−1 5 2.14

20 1.26× 10−6 20 4.3× 10−6

30 4.6× 10−11 30 1.58× 10−10

40 8.71× 10−12 40 3.10× 10−11

50 1.93× 10−11 50 6.56× 10−11

180 1.05× 10−10 180 3.56× 10−10

Table 4. Maximum absolute and relative errors of the Padé approximant [1, 1]e2,N(ρ)
with respect to

the exact Jost function e2(ρ) in a strip in the lower half ρ-plane.

N Max. Abs. Error of [1, 1]e2,N(ρ)(ρ) N Max. Rel. Error of [1, 1]e2,N(ρ)(ρ)

in −1 < Im(ρ) ≤ 0 in −1 < Im(ρ) ≤ 0

3 3.07 3 2.99

5 2.66 5 2.16

20 7.99× 10−6 20 4.34× 10−6

30 2.89× 10−10 30 1.59× 10−10

40 5.65× 10−11 40 3.12× 10−11

50 1.23× 10−10 50 6.61× 10−11

180 6.54× 10−10 180 3.59× 10−10

To obtain s2(ρ) numerically on the strip 0 < Im(ρ) < ε0 = 1, we use the truncated series
e2,30(ρ) and the Padé approximant [1, 1]e2,30(ρ)

:

s2(ρ) ≈
[1, 1]e2,30(ρ)

(−ρ)

e2,30(ρ)
.

The maximum absolute error inside the region R = [−30, 30]×
[
10−2i,

(
ε0 − 10−2)i

]
is

9.64× 10−10.

Remark 14. The order of the Padé approximant used for the Jost function is not arbitrary.
Although the maximum absolute errors inside the region R of other approximations of s2(ρ)
using [2, 2]e2,30(ρ)

(
9.35× 10−11), [3, 3]e2,30(ρ)

(
1.34× 10−11), [4, 4]e2,30(ρ)

(
1.5× 10−11) and

[7, 7]e2,30(ρ)

(
6.37× 10−12) are better in comparison with [1, 1]e2,30(ρ)

, we choose [1, 1]e2,30(ρ)
as

the most suitable option to avoid the appearance of Froissart doublets. Indeed, the use of the Padé
approximants when there is no available information about the smoothness of the function to be
approximated is challenging. Some publications propose modified algorithms [60], even using the
Toeplitz matrix theory with many numerical implementations in Maple, Wolfram Mathematica
(see [61]) or Matlab (see [62]). For the purposes of this paper, it is sufficient to use only the informa-
tion obtained from the truncated series eN(ρ) and the argument principle algorithm to construct
the approximant. Consider the number K of zeros counting multiplicities of the approximate Jost
function eN(ρ) (singular numbers being calculated using the argument principle algorithm) located
inside D as the degree of the polynomial in the numerator in the Padé approximant. Recalling that,
in most cases, an accurate Padé’s approximation is obtained on the diagonal approximant types for
analytical functions, it is reasonable to choose the Padé approximant as [K, K]eN(ρ).

243



Mathematics 2023, 11, 3544

Example 10. Consider the potential q3(x) from Example 3. The approximate Jost function e3,N(ρ)
is computed in the strip 0 ≤ Im(ρ) < ε

2 = 1 for several values of N. In Table 5, the maximum
absolute error of the approximate Jost function is presented.

Table 5. Maximum absolute error of the Jost function e3,N(ρ) for N = 2, 5, 20, 30, 50 and 180.

N 2 5 20 30 50 180

Abs.
Error 2.34× 10−1 8.65× 10−3 6.03× 10−10 5.57× 10−14 4.72× 10−14 4.67× 10−14

Similarly to the previous example, a search for real singular numbers was performed; however,
none were detected. Subsequently, the argument principle algorithm located a non-real singular num-
ber in D, with the value z1 ≈ −0.386709149322063 − 0.105221869864471i
(ρ1 ≈ −0.271752585319512 + 1.083923327338694i). Its absolute error is 8× 10−15. The contour
refinement is not a concern, since the performed algorithm from [54] is based on the argument
principle algorithm followed by several Newton iterations.

Additionally, the Jost function was extended to the strip |Im(ρ)| < ε0 = 1 through the Padé
approximant

[1, 1]e3,30(ρ)
=

ρ
(
4.69× 1015 + 4.94× 1013i

)
+ 1.94× 1015 − 4.92× 1015i

ρ(4.69× 1015 + 6.12× 1014i)− 6.11× 1014 + 4.69× 1015i
.

The corresponding maximum absolute error of [1, 1]e3,30(ρ)
(ρ) inside the rectangle

R1 := [−20, 20] ×
[
0i,

(
ε0 − 10−2)i

]
in the complex ρ-plane is 8.43 × 10−11. Inside

R2 := [−20, 20]×
[(
−ε0 + 10−2)i,

(
ε0 − 10−2)i

]
, the maximum absolute error is 8.42× 10−11.

Next, an approximate value of the normalization constant corresponding to ρ1 was computed

c1 ≈
[1, 1]e3,30(ρ)

(−ρ1)

ė3,30(ρ1)
i ≈ −10.317711295453737 + 12.894194226972697i

with an absolute error of 2.8× 10−9.
Finally, we calculate the scattering function by

s3(ρ) ≈
[1, 1]e3,30(ρ)

(−ρ)

e3,30(ρ)
. (107)

The maximum absolute error of the approximation of s3(ρ) in R1 is 1× 10−9 (see Figure 8).

Figure 8. Absolute error of the approximate scattering function s3(ρ) ≈
[1,1]e3,30(ρ)

(−ρ)

e3,30(ρ)
.
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Example 11. Consider the potential q1(x) from Example 1. Table 6 shows the parameter εN for
some values of N.

Table 6. Example 11: parameter εN for different values of N.

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

2 4.43 38 1.12× 10−5

3 2.91 48 6.97× 10−7

5 1.13 58 5.17× 10−8

10 1.32× 10−1 88 4.46× 10−11

15 1.88× 10−2 98 5.12× 10−12

20 3.17× 10−3 108 9.48× 10−13

28 2.27× 10−4 178 1.49× 10−12

Note that the approximation of the Jost function in this example requires more terms in the series
representation than in previous examples. To control the accuracy of the approximation, in addition to
the parameter εN, one can use the asymptotic relation for the Jost function from [24] (p. 105),

e(ρ) = 1 +
ω(0)

iρ
− q(0)

(2iρ)2 +
ω2(0)
(2iρ)2 + o

(
1
ρ2

)
, |ρ| → ∞, ρ ∈ C

+ \ {0}, (108)

where ω(x) = − 1
2

∫ ∞
x q(s)ds. This relation is valid for q(x) with first and second summable

derivatives.
Figure 9 depicts the Jost function computed with N = 98 and the singular number

ρ0 ≈ 1.784065846059995 + 0.608788673578742i. Figure 10 shows the fulfillment of the asymp-

totic relation (108), namely the graph of
∣∣∣e1,98(ρ)− ω(0)

iρ + q(0)
(2iρ)2 − ω2(0)

(2iρ)2

∣∣∣, which tends to 1 when
|ρ| → ∞.

Figure 9. Absolute value of e1,98(ρ) in the upper half ρ-plane. The marked point is the singular
number ρ0.
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Figure 10. Graph of
∣∣∣e1,98(ρ)− ω(0)

iρ +
q(0)
(2iρ)2 − ω2(0)

(2iρ)2

∣∣∣ tending to 1 when |ρ| → ∞.

The eigenvalue is computed numerically as a zero of the exact Jost function with the aid
of Wolfram Mathematica v.12 (Wolfram Research, Inc., Champaign, IL, USA) λ0 ≈ λ∗0 :=
2.8122672899483 + 2.1722381890043i. This “exact” eigenvalue is compared with the approxima-
tion 2.812267289948449 + 2.172238189004328i obtained as the square of the approximate ρ0. The
absolute error is 1.52× 10−13.

For the numerical calculation of the analytic extension of e1,98(ρ) onto the strip − 1
2 <

Im(ρ) < 0, it is not possible to consider the Padé approximant [1, 1]e1,98(ρ)
. This does not approx-

imate e1,98(ρ) accurately even in the upper half-plane of the complex variable ρ. Using the Padé
approximant [7, 7]e1,98(ρ)

the absolute error was 0.17.
Instead of using Formula (105) to compute the normalization constant c0, Formula (104)

is applied to obtain the approximation c0 ≈ 16.339391965970112 + 40.670169715260290i with
absolute error 3.05× 10−12.

To compute the scattering function s1(ρ) on a line parallel to the real axis contained in the strip
|Im(ρ)| < ε0 = |Im(ρ0)| ≈ 0.608788673578742i, Formula (106) was used. The function e1(ρ) is
represented by (36) for ρ on a line in the lower half ρ-plane parallel and sufficiently close to the real
axis. Having calculated these series representations for the functions involved in s1(ρ), we compute

s1(ρ) ≈
e1,98(−ρ)

e1,98(ρ)

with a maximum absolute error 1.45× 10−7 along the line Lη=0.1 (see (77)).
In this example, we obtain a satisfactory accuracy in the calculations of the scatterin data set

using the expression (36) alone and the derivatives required by (104).

Example 12 ([44]). Consider the potential

q4(x) := Ri sin(x)e−x,

with R being a constant (Reynolds number). When R > 0 is sufficiently large, the eigenvalues may exist.
For example, for R = 10, there is one eigenvalue in the box B := 1.604391258

44 + 1.7978849i81
67 [44]

(see also [45]).
The Jost solution is not available in a closed form. In order to check the validity of the numerical

calculation of the coefficients an(x) for e4,N(ρ.x), we consider the indicator εN (Table 7).
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Table 7. Example 12: indicator εN for different values of N (potential q4(x) with R = 10).

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

2 4.43 55 3.92× 10−7

3 2.91 105 9.77× 10−11

5 5.97× 10−1 136 1.06× 10−12

10 7.85× 10−2 137 9.19× 10−13

15 1.17× 10−2 155 6.11× 10−13

20 1.70× 10−3 175 7.77× 10−13

45 6.95× 10−6 200 9.72× 10−13

Figure 11 depicts the Jost function computed with N = 137 and the approximation of the
singular number ρ1 ≈ 1.416695330664399 + 0.634534798062634i, with its square belonging to
the box B. Additionally, Figure 12 shows the fulfillment of the asymptotic relation (108).

Figure 11. Absolute value of e4,137(ρ) (R = 10) in the upper half ρ-plane and the marked point is the
approximate singular number ρ1.

Figure 12. Graph of
∣∣∣e4,137(ρ)− ω(0)

iρ +
q(0)
(2iρ)2 − ω2(0)

(2iρ)2

∣∣∣ tending to 1 when |ρ| → ∞ (R = 10).

The normalization constant c1 is calculated using (104),

c1 ≈ 0.423317609673475 + 10.608764849282464i.

Finally, the scattering function is approximated by
e4,137(−ρ)

e4,137(ρ)
.

Now, take R = 30 in the potential q4(x). In this case, two boxes localizing the only two
eigenvalues λ1 and λ2 were obtained in [44],

B1 := 2.55564161435
19 + 7.68818701819

03i, B2 := 6.3746591
12 + 2.469955

46i.
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Table 8 provides the values of the indicator εN for several values of N.

Table 8. Example 12: indicator εN for different values of N (R = 30).

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

5 1.09× 101 105 1.27× 10−7

10 2.86 155 2.30× 10−10

15 7.71× 10−1 175 2.78× 10−11

20 1.17× 10−1 200 5.70× 10−12

45 1.66× 10−3 220 6.46× 10−12

55 1.65× 10−4 230 7.04× 10−12

Approximate eigenvalues computed from e4,N(ρ) for different values of N, are presented in
Tables 9 and 10.

Table 9. Approximate eigenvalue λ̃1 computed using different values of N in e4,N(ρ) (R = 30).

N λ̃1

35 2.555647790300414 + 7.688132784089897i

65 2.555641614022092 + 7.688187017680658i

105 2.555641614273991 + 7.688187018110548i

200 2.555641614273991 + 7.688187018110548i

230 2.555641614273991 + 7.688187018110548i

Table 10. Approximate eigenvalue λ̃2 computed using different values of N in e4,N(ρ) (R = 30).

N λ̃2

35 6.368733224187178 + 2.460948309337657i

65 6.374657558248066 + 2.460950123973226i

105 6.374654410969357 + 2.460950093296220i

200 6.374654410861196 + 2.460950093077938i

230 6.374654410861196 + 2.460950093077938i

Note that λ̃1 ∈ B1 and λ̃2 ∈ B2 for N = 200. Finally, the normalization constants are
calculated using e4,200(ρ) in (104),

c1 ≈ 1.669128547357084× 102 − 1.694940279771396× 102i

c2 ≈ −54.578951306154920 + 45.276710620944780i.

Although, in this example, more powers for the series representation of the Jost function were
used, the method proved to be applicable to obtaining the scattering data set without any additional
informatio. The good accuracy achieved is confirmed by the ability t use the scattering data obtained
as input data to solve the inverse scattering problem to recover the potential q4(x) with R = 30
below in Example 22.

5.2. Inverse Problem

In the present section, we discuss the accuracy, convergence and stability of the
proposed method for solving the inverse scattering problem.
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Remark 15. By qk,M(x), we denote the approximation of the potential qk(x) (k = 1, 2, 3, 4, 5)
obtained by solving the truncated system (100) with the sum up to M, i.e., with M + 1 equations.

5.2.1. Convergence and Accuracy

Example 13. Consider the scattering data calculated in Example 3:

J =
{{

ρ1 = i tanh(1 + i), m1 = 1, c1 =
2(i + i tanh(1 + i)) tanh(1 + i)

i− i tanh(1 + i)

}
,

s3(ρ) =
(ρ + i tanh(1 + i))(ρ + i)
(ρ− i tanh(1 + i))(ρ− i)

}
where s3(ρ) is an S-type function in the strip 0 ≤ |Im(ρ)| < ε0 = 1.

We shall recover the potential q3(x) = −2 sech2(x − 1 − i). The system (100) of linear
algebraic equations for this example is obtained in a closed form (see Example 7). For a different
number of equations in the truncated system, we obtain a solution symbolically by using the Matlab
routine solve. The potential q3(x) is recovered from (38). Figure 13 presents the recovered potential
in each case.

0 2 4 6 8 10
-7

-6

-5

-4

-3

-2

-1

0

1

0 2 4 6 8 10
-4

-3

-2

-1

0

1

2

3

4

Figure 13. Real (left) and imaginary (right) part of the recovered potential q3,M(x) for M = 4, 7, 9 and 11.

The corresponding absolute and relative errors are presented in Figure 14 and Figure 15, respec-
tively. Note that a high accuracy is attained even in the case of a very reduced number of equations
in the truncated system. Moreover, a very fast convergence of the method can be appreciated.
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Figure 14. Absolute error of the recovered potential q3,M(x) with M = 4, 7, 9 and 11.
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Figure 15. Relative error of the recovered potential q3,M(x) with M = 4, 7, 9 and 11.

Example 14. Consider the scattering data J = {s2(ρ)} from Example 2. As was shown above
(Example 6), the system (100) for this example can be written explicitly. Again, when solving
the corresponding truncated system for different values of M we observe a fast convergence and
remarkable accuracy even for small values of M (see Table 11 and Figure 16).

Table 11. Maximum absolute error of the approximate potential q2,M(x) for some values of M.

M in (100) 0 1 2 3 6 8

max
x∈[0,6]

|q2(x)− q2,M(x)| 1.05 1.13× 10−1 1.25× 10−2 1.4× 10−3 1.91× 10−6 2.35× 10−8

Figure 16. Exact and computed potential q2,6(x).

Example 15. Consider the closed form of the scattering function s1(ρ) from Example 1. We
compute functions fm,c(x) and Amn,c(x) using the first option from Remark 11. Some poles and
residues are given in Table 12 (computed with the aid of the package Numerical Calculus of
Mathematica v.12).

250



Mathematics 2023, 11, 3544

Table 12. Poles and residues in the upper half-plane of the function s1(ρ)− 1.

Poles Residues

0.5i 5

1.784065846059995 + 0.608788673578742i 40.670169841396− 16.339391035537i

1i −25i

1.5i − 125
3

2i 625
18 i

2.5i 625
36

3i − 625
108 i

3.5i − 1743
1265

4i 249
1012 i

6i 7
267,683 i

7i − 1
10,857,221 i

Note that the absolute value of the residues decreases considerably as the poles move away from
the origin on the imaginary axis. This allows us to use a small number of poles for the calculation of
the functions fm,c(x) and Amn,c(x).

The convergence of the method in this case results to be slower; see Figure 17, although a
satisfactory accuracy is attained for M = 9.

Figure 17. Absolute error for different values of M in the truncated system (100) (left) and the
absolute value of the recovered potential q1,19(x) computed with 20 equations (right) for x ∈ [0, 10].

5.2.2. Stability of the System

Since the stability of the method was proved in Theorem 4, we are able to work
efficiently with noisy scattering data. First, we consider the natural noise arising from the
numerical implementations of the last two procedures in Remark 11, i.e., calculation of
the approximate matrix in (100) from the scattering function s(ρ) given in a closed form.
Another situation considered in this subsection is the recovery of the potential from a
uniformly noisy scattering function.

Remark 16. Henceforth, denote by f̃m(x), f̃m,c(x), Ãmn(x) and Ãmn,c(x) the numerical approxi-
mation of fm(x), fm,c(x), Amn(x) and Amn,c(x).

Remark 17. In the last step of the algorithm from Section 4.4, for recovering q with the aid of (38),
the coefficient a0 needs to be differentiated twice. This was performed by interpolating a0(x) with
a quintic spline through the Matlab routine spapi and a posterior differentiation with the Matlab
command fnder.
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Example 16. Let us consider the scattering data from Example 2. The recovery of the potential
q2(x) from the exact scattering function s2(ρ), obtained by using approximate functions f̃m(x)
and Ãmn(x) in the truncated system (100), is presented. The computation of functions fm(x) and
Amn(x) requires numerical integration along the line Lη=0.5 (see (77)). For this purpose, the last
two procedures in Remark 11 were applied.

Method 1. The second option in Remark 11 is implemented. With the scattering function (91)
at points ρ = σ + 0.5i and σ = −(k + 1/2)h for k = 0, 1, . . . , N(x), where N(x) = 55000/x
and h = 0.145454545, the calculation of the Fourier transforms in (98) is carried out. In Table 13,
the maximum absolute error of f̃m(x) is presented for 4 values of the parameter m.

Table 13. Example 16: maximum absolute error of f̃m,c(x) calculated with the second procedure in
Remark 11.

m 0 1 2 3

max
x∈(0,20)

∣∣ fm(x)− f̃m(x)
∣∣ 1.102× 10−9 7.995× 10−10 7.988× 10−10 8.757× 10−10

Now, we compute Ãmn,c(x) using the same numerical integration method with parameters
N(x) = 5500/x and h = 0.127272727.

Table 14 shows the maximum absolute error of Ãmn(x) for parameters m, n = 0, 1, 2, 3.

Table 14. Example 16: maximum absolute error of Ãmn(x) calculated with the second procedure in
Remark 11.

m
max

x∈(0,20)

∣∣Amn(x)− Ãmn(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 4.721× 10−10 4.712× 10−10 4.711× 10−10 4.714× 10−10

1 4.712× 10−10 4.711× 10−10 4.714× 10−10 4.712× 10−10

2 4.711× 10−10 4.714× 10−10 4.712× 10−10 4.699× 10−10

3 4.714× 10−10 4.712× 10−10 4.699× 10−10 4.678× 10−10

The system (100) constructed with f̃m(x) and Ãmn(x) is solved numerically in Matlab for
several values of M. Maximum absolute and relative errors of the approximation of the potential
q2,M are shown in Table 15.

Table 15. Example 16: maximum absolute and relative errors of the approximation of the potential
q2,M(x) by the recovered potential for some values of M in (100).

M in (100) 0 1 2 3 5 7

Abs. Error of q2,M(x) 9.3× 10−1 1× 10−1 1.1× 10−2 1.21× 10−3 1.06× 10−4 1.14× 10−4

Rel. Error of q2,M(x) 1.6 1.74× 10−2 1.93× 10−3 2.14× 10−4 4.15× 10−6 2.04× 10−6

Figure 18 presents the absolute value of the recovered q2 potential from 4 equations in (100).

252



Mathematics 2023, 11, 3544

Figure 18. Recovered potential q2,3(x) by Method 1 in Example 16.

Method 2. Now, we compute the approximate functions f̃m(x) (see Table 16) and Ãmn(x)
(see Table 17) following the third procedure in Remark 11.

Table 16. Example 16: maximum absolute error of f̃m(x) after applying the third procedure in
Remark 11.

m 0 1 2 3

max
x∈(0,20)

∣∣ fm(x)− f̃m(x)
∣∣ 6.05× 10−5 2.02× 10−5 6.73× 10−6 2.24× 10−6

Table 17. Example 16: maximum absolute error of Ãmn(x) after applying the third procedure in
Remark 11.

m
max

x∈(0,20)

∣∣Amn(x)− Ãmn(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 1.27× 10−13 4.26× 10−14 1.42× 10−14 4.74× 10−15

1 1.22× 10−9 1.42× 10−14 4.74× 10−15 1.58× 10−15

2 4.07× 10−10 1.36× 10−10 1.58× 10−15 5.29× 10−16

3 1.36× 10−10 4.52× 10−11 1.5× 10−11 1.68× 10−12

In Table 18, the absolute error of the recovered potential for some values of M in (100) is presented.

Table 18. Example 16: maximum absolute error of recovered potential q2,M(x) using the third option
in Remark 11.

M in (100) 0 1 2 3 5 7

max
x∈(0,20)

|q2(x)− q2,M(x)| 8.25× 10−1 2.34× 10−1 5.25× 10−2 9.71× 10−3 5.71× 10−3 2.23× 10−3

Rel. Error of q2,M(x) 1.24 1.21× 10−1 5.2× 10−1 8× 10−2 6.19× 10−2 7.25× 10−3

Both methods (procedures 2 and 3 from Remark 11) illustrated in the above exam-
ple have proven to be suitable for calculating the functions fm and Amn from a table of
values for the s2(ρ). Nevertheless, it is worth mentioning that although the first method
(procedure 2) produced slightly more accurate results, this approach might be sensitive to
the choice of the N(x) and h parameters, whereas the second method (procedure 3) only
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requires the implementation of trapz, the Matlab integration routine on a dense set of points
defined in the interval (0, 2π). Hence, for the purposes of this paper, it is sufficient to
consider procedure 3 from Remark 11 in the following examples, so as to obtain satisfactory
approximations of fm and Amn.

As expected from the results of Example 14 for this potential, the numerical method
for recovering the potential q2(x) converges very fast. Indeed, an acceptable approximation
of q2(x) is achieved with only four equations in this case, where an inexact matrix in the
linear system (100) is considered. In fact, the difference between the approximate and the
exact potential presented in Figure 18 is indistinguishable.

In the following examples, a noisy scattering function with a uniformly distributed
noise ε(ρ) added to the rand routine of Matlab is considered.

Example 17. Consider the scattering function s2(ρ) and denote the noisy scattering function
by ŝ2(ρ) := s2(ρ) + ε(ρ). Here, ε(ρ) is ±5% uniformly distributed complex-valued noise (the
percentage of the noise is applied pointwise to the modulus and argument of the value of s2(ρ)). The
maximum absolute error of ŝ2 on the line Lη=0.5 is 2.46× 10−1. The potential was recovered using
five equations with a maximum absolute error of 5.2× 10−1. The real and imaginary parts of the
potential and the absolute error of its recovery are shown in Figure 19.

Figure 19. Example 17: figures on the top part show the recovered potential q2,4(x), and the bottom
figure shows the absolute error of the recovered potential.

Despite the noise that ŝ2(ρ) produces in the matrix of the system (100), the method
recovers the shape of the potential q2 with reasonable accuracy.

Example 18. Consider the scattering function s3(ρ) and define ŝ3(ρ) := s3(ρ) + ε(ρ) where ε(ρ)
is a ±10% uniformly distributed complex-valued noise (considered as in the previous example).
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The maximum absolute error of ŝ3 on the line Lη=0.5 is 1.75. The potential was recovered using
eight equations with a maximum absolute error of 8.6× 10−1. The real and imaginary parts of the
potential as well as the absolute error of its recovery are shown in Figure 20.

Figure 20. Example 18: figures on the top part show the potential q3,7(x) recovered with eight
equations, and the bottom figure presents the absolute error of the recovered potential.

Although, in this case, the absolute error of ŝ3(ρ) is larger, the shape of the recovered potential
is still quite close to that of the exact one.

5.2.3. In-Out

In this subsection, we consider the results obtained in Section 5.1 as input data for the
inverse problem.

Example 19. We use the approximate scattering function s3(ρ) from Example 10 calculated
by (107). Particularly, the form in which it is given allows for us to approximate functions f̃m,c(x)
and Ãmn,c(x) with the aid of the numerical calculus of residues, i.e., the first procedure in Remark 11
(see Tables 19 and 20).

Table 19. Example 19: maximum absolute error of the approximation of the function fm,c(x) using
calculus of residues.

m 0 1 2 3

max
x∈(0,15)

∣∣ fm,c(x)− f̃m,c(x)
∣∣ 4.795× 10−10 1.911× 10−10 7.494× 10−11 2.861× 10−11
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Table 20. Example 19: maximum absolute error of the approximation of the function Amn,c(x) using
calculus of residues.

m
max

x∈(0,15)

∣∣Amn,c(x)− Ãmn,c(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 2.995× 10−10 1.206× 10−10 4.835× 10−11 1.895× 10−11

1 1.206× 10−10 4.835× 10−11 1.895× 10−11 7.238× 10−12

2 4.835× 10−11 1.895× 10−11 7.238× 10−12 2.73× 10−12

3 1.895× 10−11 7.238× 10−12 2.73× 10−12 1.057× 10−12

The potential q3(x) was recovered with an absolute error of 1.8× 10−5 in the interval (0, 15)
using 8 equations.

Example 20. Consider the approximate scattering function s1(ρ) from Example 11. The coefficient
a0(x) was recovered using 14 equations with a maximum absolute error of 4.29× 10−3, from which
the potential was recovered with a maximum absolute error of 0.23, Figure 21.

Figure 21. The (left) figure shows the recovered potential q1,13(x), and the (right) figure presents the
absolute error of the recovered potential.

Example 21. Consider the approximate scattering data obtained in Example 9. The approximate
functions f̃m(x) (see Table 21) and Ãmn(x) (see Table 22) were obtained accurately enough to
recover the potential (see Table 23).

Table 21. Example 21: maximum absolute error of the approximation of the function fm(x).

m 0 1 2 3

max
x∈(0,100)

∣∣ fm(x)− f̃m(x)
∣∣ 8.92× 10−3 2.97× 10−3 9.91× 10−4 3.3× 10−4

Table 22. Example 21: maximum absolute error of the approximation of the function Amn(x).

m
max

x∈(0,15)

∣∣Amn(x)− Ãmn(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 1.5× 10−7 4.8× 10−8 1.6× 10−8 5.4× 10−9

1 2.7× 10−6 1.6× 10−8 5.4× 10−9 1.8× 10−9

2 9× 10−6 2.9× 10−6 1.8× 10−9 6× 10−10

3 3× 10−6 9.9× 10−7 3.3× 10−7 2× 10−10
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Table 23. Maximum absolute error of the approximation of the potential by the recovered potential
q2,M(x).

M in (100) max
x∈(0,20)

|q2(x)− q2M (x)|

0 1.09

1 1.63× 10−1

2 6.44× 10−2

3 5.41× 10−2

5 5.3× 10−2

7 5.3× 10−2

Figure 22 illustrates the stability and convergence of the method with the absolute error
stabilized at 5.3× 10−2.

Figure 22. Absolute error of the approximation of the potential by the recovered potential q2,M(x)
using 1, 2, 3, 4, 6 and 8 equations.

Example 22. Consider the potential q4(x) = 30i sin(x) exp(−x) introduced in Example 12.
Using the results of the solution of the direct scattering problem from Example 12, we recover q4(x)
using 20 equations with a maximum absolute error of 8.67× 10−1 (Figure 23).

Figure 23. Real (left) and imaginary (right) parts of the exact potential and the recovered q4,19(x)
(R = 30).
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It is worth mentioning that the coefficient a0(x) is recovered with an absolute error of
2.28× 10−2 (Figure 24). The error is calculated and compared with the solution of the Cauchy
problem

a′′0 (x)− a′0(x) = q4(x)(a0(x) + 1), (109)

a0(b) = 0, a′0(b) = −1
2

,

for a sufficiently large value of b > 0, obtained using ode45 routine of Matlab2021a.

Figure 24. Example 22: absolute error of the recovered coefficient a0(x) with 20 equations.

This is a case where closed formulas for the scattering data set are unavailable. Therefore, the
In–Out procedure confirms a satisfactory accuracy in the solution of both the direct and inverse
scattering problems.

Example 23. Consider the singular potential

q5(x) =
exp(−2.5x)(

x− π
2
)1/3 .

In Table 24, we present the parameter εN for different values of N in (103).

Table 24. Example 23: indicator εN for different values of N.

N εN for x ∈ [0, 4] N εN for x ∈ [0, 4]

2 1.57× 10−1 35 1.10× 10−3

3 5.24× 10−2 40 1.03× 10−3

5 3.97× 10−3 45 9.57× 10−4

10 2.25× 10−3 150 4.84× 10−4

15 1.77× 10−3 250 3.60× 10−4

25 1.33× 10−3 450 2.56× 10−4
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Using data from Table 24, we computed the scattering data with N = 45. No eigenvalue was
detected, so the scattering data set consists of the scattering function approximated by the expression

s5(ρ) ≈
e5,45(−ρ)

e5,45(ρ)
, ρ ∈ R.

Using this scattering data set to solve the inverse problem, we obtained the coefficient a0(x) as
shown in Figure 25. The maximum absolute error resulted in 1.9× 10−4.

Figure 25. Example 23: coefficient a0(x) with four equations.

The potential is recovered as shown in Figure 26. The corresponding absolute error is presented
in Figure 27. Indeed, the maximum absolute error is 9.82× 10−2.

Figure 26. Recovered potential q5,3(x).

Figure 27. Absolute error of q5,3(x).
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This example shows the applicability of the proposed algorithms to both the solution of the
direct and inverse scattering problems in the case of non-smooth potentials.

6. Conclusions

An approach to solving the direct and inverse scattering problems on the half-line
for the one-dimensional Schrödinger equation with an exponentially decreasing complex-
valued potential is developed. It is based on a series representation of the Jost solution
from [25], which is shown in the present work to remain valid in a non-selfadjoining case.

When solving the direct problem, this representation is used to calculate the scattering
data set through a simple and efficient procedure, which includes a proposed algorithm for
computing normalization polynomials (which are part of the scattering data set) by solving
a finite system of linear algebraic equations for its coefficients.

When solving the inverse problem, the use of the series representation combined
with the Gel’fand–Levitan equation reduces the problem to a system of linear algebraic
equations for the series coefficients, and the knowledge of the first coefficient is sufficient
to recover the potential.

The numerical results illustrate the remarkable accuracy of the proposed algorithms
in solving both the direct and inverse scattering problems.
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Appendix A. Proofs of Auxiliary Equalities for Lemma 1

Let us prove Equation (57). Consider

∂

∂z

(
e(ρ, x)

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

−eiρx
∞

∑
n=0

an(x)P(0,1−n)
n

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

=ez(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

+e(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(−2k + j)(z + 1)j−2k−1

−eiρx
∞

∑
n=0

an(x)P(0,1−n)
n

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k.

Using the representation (52) for the Jost solution, the last expression can be written
as follows

xe(ρ, x)
(z + 1)2

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

+e(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(j− 2k)(z + 1)j−2k−1
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=e(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j+1(z + 1)j−2k−2
(

1 + (j− 2k)
(

x−1(z + 1)
))

=e(ρ, x)
k−1

∑
j=0

(−1)jCk
j

(k + 1)!
(k + 1− j)!

xk−j+1(z + 1)j−2k−2

+e(ρ, x)(−1)kCk
k

(k + 1)!
(k + 1− k)!

x(z + 1)−k−2

=e(ρ, x)
k

∑
j=0

(−1)jCk
j

(k + 1)!
(k + 1− j)!

xk−j+1(z + 1)j−2k−2.

Now, let us prove equality (58). Consider

∂

∂z

(
eiρx

∞

∑
n=0

an(x)
k+1

∑
j=2

F(−n, j, 1, z + 1)

k

∑
m=j−1

(−1)1−m+jCk−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k+1

)

+eiρx
∞

∑
n=0

an(x)F(−n, 2, 1, z + 1)
k−1

∑
j=0

(−1)jCk−1
j

k!
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=
xeiρx

(z + 1)2

∞
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n=0

an(x)
k+1

∑
j=2
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+eiρx
∞

∑
n=0

an(x)

(
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k

∑
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k
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(−1)j−m+1Ck−1
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k!
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xk−m(m− 2k + 1)(z + 1)m−2k

)

+eiρx
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k−1
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(−1)jCk−1
j

k!
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Note that the last expression can be written as eiρx ∑∞
n=0 an(x)Fn(z) where

Fn(z) =
x

(z + 1)2

k+1

∑
j=2
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k
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Associating terms in the expression for Fn(z), we obtain

Fn(z) =
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k
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Simplification of the last expression results in
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where we applied Formula (55). Thus,
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k!
(k−m)!

xk−m(z + 1)m−2k

+F(−n, 2, 1, z + 1)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

=
k+1

∑
j=2

F(−n, j, 1, z + 1)
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k+1

(
x

(z + 1)2 −
2k− 1−m

z + 1
− j

z + 1

)
+

k

∑
j=2

jF(−n, j + 1, 1, z + 1)
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k

+(k + 1)F(−n, k + 2, 1, z + 1)
k

∑
m=k

(−1)k−m+2
(

k− 1
m− k

)
k!

(k−m)!
xk−m(z + 1)m−2k

+F(−n, 2, 1, z + 1)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k
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=
k+1

∑
j=2

F(−n, j, 1, z + 1)
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k+1

(
x

(z + 1)2 −
2k− 1−m

z + 1
− j

z + 1

)
+

k

∑
j=2

jF(−n, j + 1, 1, z + 1)
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k

++
k + 1

(z + 1)k F(−n, k + 2, 1, z + 1)k! + F(−n, 2, 1, z + 1)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

=
k+1

∑
j=2

F(−n, j, 1, z + 1)
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k+1

(
x

(z + 1)2 −
2k− 1−m

z + 1
− j

z + 1

)
+

k

∑
j=2

jF(−n, j + 1, 1, z + 1)
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k

+F(−n, 2, 1, z + 1)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

+F(−n, k + 2, 1, z + 1)(k + 1)!(z + 1)(−k)

=
k+1

∑
j=2

F(−n, j, 1, z + 1)
k+1

∑
m=j−1

(−1)(m+j+1)Ck
m−j+1

(k + 1)!
(k−m + 1)!

xk−m+1(z + 1)m−2k−1

+F(−n, k + 2, 1, z + 1)(k + 1)!(z + 1)−k

=
k+1

∑
j=2

F(−n, j, 1, z + 1)
k+1

∑
m=j−1

(−1)(m+j+1)Ck
m−j+1

(k + 1)!
(k−m + 1)!

x(k−m+1)(z + 1)(m−2k−1)

+F(−n, k + 2, 1, z + 1)(−1)(2k+4)Ck
0
(k + 1)!
(0)!

x0(z + 1)−k

=
k+2

∑
j=2

F(−n, j, 1, z + 1)
k+1

∑
m=j−1

(−1)m+j+1Ck
m−j+1

(k + 1)!
(k−m + 1)!

xk−m+1(z + 1)m−2k−1

which is the desired result.
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Abstract: In this paper, we study spectral properties of non-self-adjoint operators with the discrete
spectrum. The main challenge is to represent a complete description of belonging to the Schatten
class through the properties of the Hermitian real component. The method of estimating the singular
values is elaborated by virtue of the established asymptotic formulas. The latter fundamental result is
advantageous since, of many theoretical statements based upon it, one of them is a concept on the root
vectors series expansion, which leads to a wide spectrum of applications in the theory of evolution
equations. In this regard, the evolution equations of fractional order with the sectorial operator
in the term not containing the time variable are involved. The concrete well-known operators are
considered and the advantage of the represented method is convexly shown.
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convergence exponent; counting function
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1. Introduction

Erhard Schmidt, whose advisor had been David Hilbert, studied the integral equations
with nonsymmetric kernels and introduced singular values (s-numbers), which afterwards
were interpreted by the brilliant Allakhverdiyev theorem as a measure of deviation between
a compact operator and finite-dimensional ones. From that time on, singular values have
become a most popular tool for studying spectral properties of non-self-adjoint operators.
However, although the history could have developed in a different way, the fact is that the
eigenvalues of the operator real component are no less suitable for this study. The last idea
fully reflects the plot of this paper.

The idea to write this paper originates from the concept of decomposition of an
element of the abstract Hilbert space on the root vectors series. The latter concept lies
in the framework of abstract functional analysis, and its appearance arises from elabo-
ration of methods of solving evolution equations investigated in the recent century by
Lidskii V.B. [1], Markus A.S., Matsaev V.I. [2], Agaranovich M.S. [3], and others. In its sim-
ple reduced form, applicably to self-adjoint operators, the concept admits the interpretation
through the well-known fact that the eigenvectors of the compact self-adjoint operator
form a basis in the closure of its range. The question of what happens in the case when
the operator is non-self-adjoint is rather complicated and deserves to be considered as a
separate part of the spectral theory.

We should make a brief digression and explain that relevance appears just in the
case when a senior term of a considered operator is not self-adjoint, for there is a num-
ber of papers [2,4–8] devoted to the perturbed self-adjoint operators. The fact is that
most of them deal with a decomposition of the operator on a sum, where the senior
term must be either a self-adjoint or normal operator. In other cases, the methods of the
papers [9,10] become relevant and allow us to study spectral properties of operators
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whether we have the abovementioned representation or not; moreover, they have a natural
mathematical origin that appears brightly while we are considering abstract constructions
expressed in terms of the semigroup theory [10].

Generally, the aims of the mentioned part of the spectral theory are propositions on
the convergence of the root vectors series in one or another sense to an element belonging
to the closure of the operator range; by this, we mean Bari, Riesz, and Abel–Lidskii senses
of the series convergence [11]. The main condition in terms of which the propositions are
mostly described is the asyptotics of the operator singular numbers; here, we should note
that it is originally formulated in terms of the operator belonging to the Schatten class.
However, Agaranovich M.S. made an attempt to express the sufficient conditions of the
root vector series basis property, in the abovementioned generalized sense, through the
asymptotics of the eigenvalues of the real component [3]. The paper by Markus A.S. and
Matsaev V.I. [2] can be also considered within the scope since it establishes the relationship
between the asymptotics of the operator eigenvalues absolute value and eigenvalues of the
real component.

Thus, the interest in how to express root vectors series decomposition theorems
through the asymptotics of the real component eigenvalues arose previously, and the
obvious technical advantage in finding the asymptotics creates a prerequisite to investigate
the issue properly. We should point out that under the desired relationship between
asymptotics, we are able to reformulate theorems on the root vectors series expansion in
terms of the assumptions related to the real component of the operator. The latter idea is
relevant, since in many cases, the calculation of the real component eigenvalues asymptotics
is simpler than direct calculation of the singular numbers’ asymptotics.

If we make a comparison analysis between the methods of root vectors decompo-
sition by Lidskii V.B. [1] and Agaranovich M.S. [3], we will see that the first one formu-
lated the conditions in terms of the singular values but the second one did so in terms
of the real component eigenvalues. In this regard, we will show that the real compo-
nent eigenvalue asymptotics are stronger than that of the singular numbers; however,
Agaranovich M.S. [3] imposed the additional condition—the spectrum belongs to the do-
main of the parabolic type. From this point of view, the results by Lidskii V.B. [1] are
more advantageous since the convergence in the Abel–Lidskii sense was established for an
operator class wider than the class of sectorial operators. Apparently, a reasonable question
that may appear is about minimal conditions that guarantee the desired result, which, in
particular, is considered in this paper.

Here, we can obviously extend the results devoted to operators with the discrete
spectrum to operators with the compact resolvent, for they can be easily reformulated
from one realm to another. In this regard, we should give warning that the latter fact does
not hold for real components since the real component of the inverse operator does not
coincide with the inverse of the operator real component. However, such a complication
was diminished due to the results of [9], where the asymptotic equivalence between the
eigenvalues of the mentioned operators was established.

The following are a couple of words on the applied relevance of the issue. The abstract
approach to the Cauchy problem for the fractional evolution equation is a classic one [12,13].
In its framework, the application of results connected with the basis property covers many
problems in the theory of evolution equations [1,10,14–16]. In its general statement, the
problem appeals to many applied ones, and we can produce a number of papers dealing
with differential equations which can be studied by the abstract methods [17–22]. Appar-
ently, the main advantage of this paper is a method that enables the implementation of the
existence and uniqueness theorem abstract condition verification for concrete evolution
equations. The latter concept may be interesting for the reader, for it allows broadening of
the condition under which the Abel–Lidskii method works, which, in turn, gives a wide
spectrum of applications in the theory of differential equations. Thus, we can claim that
the offered approach is undoubtedly novel from the abstract theory point of view, and is
relevant from the applied one.
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2. Preliminaries

Let C, Ci, i ∈ N0 be real constants. We assume that a value of C is positive and can
be different in various formulas, but values of Ci are certain. Denote by int M, Fr M the
interior and the set of boundary points of the set M, respectively. Everywhere further,
if the contrary is not stated, we consider linear densely defined operators acting on a
separable complex Hilbert space H. Denote by B(H) the set of linear bounded operators
on H. Denote by L̃ the closure of an operator L. We establish the following agreement on
using symbols L̃i := (L̃)i, where i is an arbitrary symbol. Denote by D(L), R(L), N(L) the
domain of definition , the range, and the kernel, or null space, of an operator L, respectively.
The deficiency (codimension) of R(L), dimension of N(L) are denoted by def L, nul L,
respectively. In some places, if it is necessary from the stylistic point of view, we use the
following notation: L−1 := I/L. Assume that L is a closed operator acting on H, N(L) = 0,;
let us define a Hilbert space HL :=

{
f , g ∈ D(L), ( f , g)HL = (L f , Lg)H

}
. Considering a

pair of complex Hilbert spaces H,H+, the notation H+ ⊂⊂ H means that H+ is dense in H

as a set of elements and we have a bounded embedding provided by the inequality

‖ f ‖H ≤ C0‖ f ‖H+ , C0 > 0, f ∈ H+;

moreover, any bounded set with respect to the norm H+ is compact with respect to the
norm H. Let L be a closed operator for any closable operator S such that S̃ = L, its domain
D(S) will be called a core of L. Denote by D0(L) a core of a closeable operator L. Let P(L)
be the resolvent set of an operator L and RL(ζ), ζ ∈ P(L), [RL := RL(0)] denotes the
resolvent of an operator L. Denote by λi(L), i ∈ N the eigenvalues of an operator L, we
numerate them in order of increasing (decreasing) of their absolute values. Suppose L is
a compact operator and N := (L∗L)1/2, r(N) := dim R(N); then the eigenvalues of the
operator N are called the singular values (s-numbers) of the operator L and are denoted by
si(L), i = 1, 2, . . . , r(N). If r(N) < ∞, then we use by definition si = 0, i = r(N) + 1, 2, . . . .
Let Sp(H), 0 < p < ∞ be the Schatten–von Neumann class (Schatten class) and S∞(H) be
the set of compact operators, by definition use

Sp(H) :=

{
L : H→ H,

∞

∑
n=1

sp
n(L) < ∞, 0 < p < ∞

}
.

According to the terminology of the monograph [11], the dimension of the root vectors
subspace corresponding to a certain eigenvalue λk is called the algebraic multiplicity of
the eigenvalue λk. Let ν(L) denote the sum of all algebraic multiplicities of an operator L.
Denote by n(r) a function equal to a number of the elements of the sequence {an}∞

1 , |an| ↑ ∞
within the circle |z| < r. Let A be a compact operator, denoted by nA(r) counting function
a function n(r) corresponding to the sequence {s−1

i (A)}∞
1 . Let Sp(H), 0 < p < ∞ be a

Schatten–von Neumann class and S∞(H) be the set of compact operators. Suppose L
is an operator with a compact resolvent and sn(RL) ≤ C n−μ, n ∈ N, 0 ≤ μ < ∞; then
we denote by μ(L) order of the operator L in accordance with the definition given in the
paper [8]. Denote by ReL := (L + L∗)/2, ImL := (L− L∗)/2i the real and imaginary
components of an operator L, respectively. In accordance with the terminology of the
monograph [23], the set Θ(L) := {z ∈ C : z = (L f , f )H, f ∈ D(L), ‖ f ‖H = 1} is called
the numerical range of an operator L. An operator L is called sectorial if its numerical
range belongs to a closed sector Lι(θ) := {ζ : | arg(ζ − ι)| ≤ θ < π/2}, where ι is the
vertex and θ is the semiangle of the sector Lι(θ). If we want to stress the correspondence
between ι and θ, then we will write θι. An operator L is called bounded from below if the
following relation holds: Re(L f , f )H ≥ γL‖ f ‖2

H, f ∈ D(L), γL ∈ R, where γL is called
a lower bound of L. An operator L is called accretive if γL = 0. An operator L is called
strictly accretive if γL > 0. An operator L is called m-accretive if the following relation holds:
(A+ ζ)−1 ∈ B(H), ‖(A+ ζ)−1‖ ≤ (Reζ)−1, Reζ > 0. An operator L is called m-sectorial if L
is sectorial and L + β is m-accretive for some constant β. An operator L is called symmetric if
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one is densely defined and the following equality holds: (L f , g)H = ( f , Lg)H, f , g ∈ D(L).
Let B be a bounded operator acting in H, and assume that {ϕn}∞

1 , {ψn}∞
1 are a pair of

orthonormal bases in H. Define the absolute operator norm as follows:

‖B‖2 :=

(
∞

∑
n,k=1

|(Bϕn, ψk)H|2
)1/2

< ∞.

Everywhere further, unless otherwise stated, we use notations of the
papers [11,23–26].

2.1. Sectorial Sesquilinear Forms and the Hermitian Components

Consider the Hermitian components of an operator (not necessarily bounded):

ReL :=
L + L∗

2
, ImL :=

L− L∗

2i
,

where it is clear that in the case when the operator L is unbounded but densely defined
we need agreement between the domain of definition of the operator and its adjoint, since
in other cases, the real component may be not densely defined. However, the latter claim
requires concrete examples; in this regard, we can refer to Remark 4 [10].

Consider a sesquilinear form t[·, ·] (see [23]) defined on a linear manifold of the Hilbert
space H. Denote by t[·] the quadratic form corresponding to the sesquilinear form t[·, ·]. Let

h = (t + t∗)/2, k = (t− t∗)/2i

be a real and imaginary component of the form t, respectively, where t∗[u, v] = t[v, u], D(t∗)
= D(t). In accordance with the definitions, we have h[·] = Re t[·], k[·] = Im t[·]. Denote
by t̃ the closure of a form t. The range of a quadratic form t[ f ], f ∈ D(t), ‖ f ‖H = 1 is
called range of the sesquilinear form t and is denoted by Θ(t). A form t is called sectorial
if its range belongs to a sector having a vertex ι situated at the real axis and a semiangle
0 ≤ θι < π/2. Suppose t is a closed sectorial form; then a linear manifold D0(t) ⊂ D(t) is
called the core of t, if the restriction of t to D0(t) has the closure t (see [23], p. 166).

Suppose L is a sectorial densely defined operator and t[u, v] := (Lu, v)H, D(t) = D(L);
then due to Theorem 1.27 ([23], p. 318), the corresponding form t is closable, and due to
Theorem 2.7 ([23], p. 323), there exists a unique m-sectorial operator Tt̃ associated with the
form t̃. In accordance with the definition ([23], p. 325), the operator Tt̃ is called a Friedrichs
extension of the operator L.

Due to Theorem 2.7 ([23], p. 323), there exist unique m-sectorial operators Tt, Th

associated with the closed sectorial forms t, h, respectively. The operator Th is called a
real part of the operator Tt and is denoted in accordance with the original definition [23]
by Re Tt.

Here, we should stress that the construction of the real part in some cases is obvi-
ously coincident with that of the real component; however, the latter does not require the
agreement between the domain of definitions mentioned above. The condition represented
below reflects the nature of uniformly elliptic operators being the direct generalization of
the one considered in the context of the theory of Sobolev spaces.

H1: There exists a Hilbert space H+ ⊂⊂ H and a linear manifold M that is dense in H+. The closed
operator W is defined on M and the latter set is its core.

H2: |(W f , g)H|≤C1‖ f ‖H+‖g‖H+ , Re(W f , f )H≥C2‖ f ‖2
H+

, f , g ∈M, C1, C2 > 0.

Consider a condition M ⊂ D(W∗); in this case, the real Hermitian component
H := ReW of the operator is defined on M, and the fact is that H̃ is self-adjoint, bounded
from below (see Lemma 3 [9]). Hence, a corresponding sesquilinear form (denote this
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form by h) is symmetric and bounded from below also (see Theorem 2.6 [23], p. 323). The
conditions H1, H2 allow us to claim that the form t corresponding to the operator W is
a closed sectorial form; consider the corresponding form h. It can be easily shown that
h ⊂ h, but, using this fact, we cannot claim in general that H̃ ⊂ H, where H := ReW
(see [23], p. 330). We just have an inclusion H̃1/2 ⊂ H1/2 (see [23], p. 332). Note that
the fact H̃ ⊂ H follows from a condition D0(h) ⊂ D(h) (see Corollary 2.4 [23], p. 323).
However, it is proved (see proof of Theorem 4 [9]) that relation H2 guarantees that H̃ = H.
Note that the last relation is very useful in applications, since in most concrete cases we can
find a concrete form of the operator H.

2.2. Previously Obtained Results

Here, we represent previously obtained results that will undergo thorough study since
our principal challenge is to obtain an accurate description of the Schatten–von Neumann
class index of a non-self-adjoint operator.

Further, we consider Theorem 1 [10] statements separately under assumptions H1, H2.
Note that in terms of Theorem 1 [10] the operator W is a closure of the restriction of the
operator L on the set M. Without loss of generality, we can assume that W is closed since
the conditions H1, H2 guarantee that it is closeable. Thus, the given above version of the
conditions H1, H2 allows us to avoid redundant notations, more detailed information in
this regard is given in the paper [10].

We have the following classification in terms of the operator order μ, where it is
defined as follows λn(RH) = O(n−μ), n → ∞.

(A) The following Schatten classification holds:

RW ∈ Sp, inf p ≤ 2/μ, μ ≤ 1, RW ∈ S1, μ > 1.

Moreover, under assumptions λn(RH) ≥ C n−μ, 0 ≤ μ < ∞, the following implication
holds: RW ∈ Sp, p ∈ [1, ∞),⇒ μ > 1/p.

Observe that the above-given classification is far from the exact description of the
Schatten–von Neumann class index p. However, having analyzed the above implications,
we can see that it makes a prerequisite to establish a hypotheses RW ∈ Sp, inf p = 1/μ.
The following narrative is devoted to its verification.

Let us thoroughly analyze the technical tools involved in the proof of the statement
in order to absorb and contemplate the scheme of reasonings. Consider the statement, if
μ ≤ 1, then RW ∈ Sp, inf p ≤ 2/μ. The main result, on which it is based, is the asymptotic
equivalence between the inverse of the real component and the real component of the
resolvent. Indeed, due to application of some technicalities, we have a relation

(|RW |2 f , f )H = ‖RW f ‖2
H ≤ C · Re(RW f , f )H = C · (ReRW f , f )H;

using the minimax principle, we obtain the s-numbers asymptotics through the asymptotics
of the real component eigenvalues.

Consider the statement that if λn(RH) ≥ C n−μ, 0 ≤ μ < ∞, then the following
implication holds: RW ∈ Sp, p ∈ [1, ∞),⇒ μ > 1/p. The main results that guarantee
the fulfilment of the latter relation are inequality (7.9) ([11], p. 123), Theorem 3.5 [10], in
accordance with which we obtain

∞

∑
i=1

|si(RW)|p ≥
∞

∑
i=1

|(RW ϕi, ϕi)H|p ≥
∞

∑
i=1

|Re(RW ϕi, ϕi)H|p =

=
∞

∑
i=1

|(ReRW ϕi, ϕi)H|p =
∞

∑
i=1

|λi(ReRW)|p ≥ C
∞

∑
i=1

i−μp, p ≥ 1.

Thus, we see that estimation of the series is involved; in this regard, we will make a
more detailed remark further.
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Below, we represent the second statement of Theorem 1 [10], where the peculiar result
related to the asymptotics of the eigenvalue absolute value is given.

(B) In the case ν(RW) = ∞, μ �= 0, the following relation holds:

|λn(RW)| = o
(
n−τ

)
, n → ∞, 0 < τ < μ.

It is based on the Theorem 6.1 ([11], p. 81), in accordance with which we have

k

∑
m=1

|Im λm(B)|p ≤
k

∑
m=1

|λm(ImB)|p, (k = 1, 2, . . . , νI(B)), 1 ≤ p < ∞, (1)

where νI(B) ≤ ∞ is the sum of all algebraic multiplicities corresponding to the not-real
eigenvalues of the bounded operator B, ImB ∈ S∞ (see [11], p. 79).

Note that the statement (B) allows us to arrange brackets in the series that converges
in the Abel–Lidskii sense (see [1,14]), which would be an advantageous achievement in
the theory constructed further. However, it has a harmonious correspondence with the
case where we do not have the exact index of the Schatten class, for in this case, due to the
convergence test, we obtain a relation

RW ∈ Sp,⇒ sn = o(n−1/p),

which gives us a relation |λn(RW)| = o
(

n−1/p
)

in accordance with the connection of the
asymptotics (see Chapter II, §3 [11]). Note that the latter relation does not contradict (B) if
we assume p > 1/μ. Thus, along the abovementioned implication RW ∈ Sp, p ∈ [1, ∞),⇒
p > 1/μ, it makes the prerequisite to observe the hypotheses inf p = 1/μ.

Apparently, the used technicalities appeal to the so-called nondirect estimates for
singular values realized due to estimates of the series. As we will see further, the main
advantage of the series estimation is the absence of the conditions imposed on the type of
the asymptotics; it may be not one of the power type. However, we will show that under
the restriction imposed on the type of the asymptotics, assuming that one is of the power
type, we can obtain direct estimates for singular values. In the reminder, let us note that
the classes of differential operators have the asymptotics of the power type, which make
the issue rather relevant.

3. Main Results

The Main Refinement of the Result A

The reasonings produced below appeal to a compact operator B, which represents
a most general case in the framework of the decomposition on the root vectors theory;
however, to obtain more peculiar results, we are compelled to deploy some restricting
conditions. In this regard, we involve hypotheses H1, H2 if it is necessary. The result
represented below gives us the upper estimate for the singular values; it is based on the
result by Ky Fan [27], which can be found as a corollary of the well-known Allakhverdiyev
theorem (see Corollary 2.2 [11]).

Lemma 1. Assume that B is a compact sectorial operator with the vertex situated at the point
zero, then

s2m−1(B) ≤
√

2 sec θ · λm(ReB), s2m(B) ≤
√

2 sec θ · λm(ReB), m = 1, 2, . . . .

Proof. Consider the Hermitian components

ReB :=
B + B∗

2
, ImB :=

B− B∗

2i
,
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where it is clear that they are compact self-adjoint operators, since B is compact and due to
the technicalities of the given algebraic constructions. Note that the following relation can
be established by direct calculation:

Re2B + Im2B =
B∗B + BB∗

2
,

from what follows the inequality

1
2
· B∗B ≤ Re2B + Im2B. (2)

Having analyzed the latter formula, we see that it is rather reasonable to think over
the opportunity of applying the corollary of the minimax principle, pursuing the aim to
estimate the singular values of the operator B. For this purpose, consider the following
relation: Re2B fn = λ2

n fn, where fn, λn are the eigenvectors and the eigenvalues of the
operator ReB, respectively. Since the operator ReB is self-adjoint and compact, then its set
of eigenvalues form a basis in R(ReB). Assume that there exists a nonzero eigenvalue of
the operator Re2B that is different from {λ2

n}∞
1 , then, in accordance with the well-known

fact of the operator theory, the corresponding eigenvector is orthogonal to the eigenvectors
of the operator ReB. Taking into account the fact that the latter form a basis in R(ReB), we
come to the conclusion that the eigenvector does not belong to R(ReB). Thus, the obtained
contradiction proves the fact λn(Re2B) = λ2

n(ReB). Implementing the same reasonings, we
obtain λn(Im

2B) = λ2
n(ImB).

Further, we need a result by Ky Fan [27] (see Corollary 2.2) [11] (Chapter II, § 2.3), in
accordance with which we have

sm+n−1(Re2B + Im2B) ≤ λm(Re2B) + λn(Im
2B), m, n = 1, 2, . . . .

Choosing n = m and n = m + 1, we obtain, respectively,

s2m−1(Re2B + Im2B) ≤ λm(Re2B) + λm(Im
2B),

s2m(Re2B + Im2B) ≤ λm(Re2B) + λm+1(Im
2B) m = 1, 2, . . . .

At this stage of reasoning we need involve the sectorial property Θ(B) ⊂ L0(θ), which
gives us |Im(B f , f )| ≤ tan θ Re(B f , f ). Applying the corollary of the minimax principle to
the latter relation, we obtain |λn(ImB)| ≤ tan θ λn(ReB). Therefore,

s2m−1(Re2B + Im2B) ≤ λm(Re2B) + λm(Im
2B) ≤ sec2θ · λ2

m(ReB),

s2m(Re2B + Im2B) ≤ sec2θ · λ2
m(ReB) m = 1, 2, . . . .

Applying the minimax principle to formula (2), we obtain

s2m−1(B) ≤
√

2 sec θ · λm(ReB), s2m(B) ≤
√

2 sec θ · λm(ReB), m = 1, 2, . . . .

This gives us the upper estimate for the singular values of the operator B.

However, to obtain the lower estimate, we need involve Lemma 3.1 ([23], p. 336),
Theorem 3.2 ([23], p. 337). Consider an unbounded operator T, Θ(T) ⊂ L0(θ); in accor-
dance with the first representation theorem ([23], p. 322), we can consider its Friedrichs
extension—the m-sectorial operator W, in turn, due to the results ([23], p. 337), it has a
real part H which coincides with the Hermitian real component if we deal with a bounded
operator. Note that by virtue of the sectorial property, the operator H is non-negative.
Further, we consider the case N(H) = 0; it follows that N(H

1
2 ) = 0. To prove this fact

we should note that defH = 0; considering inner product with the element belonging to
N(H

1
2 ), we easily obtain the fact that it must equal zero. Having analyzed the proof of
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Theorem 3.2 ([23], p. 337) we see that its statement remains true in the modified form even
in the case where we lift the m-accretive condition; thus, under the sectorial condition
imposed upon the closed densely defined operator T, we obtain the following inclusion:

T ⊂ H1/2(I + iG)H1/2,

where the symbol G denotes a bounded self-adjoint operator in H. However, to obtain
the asymptotic formula established in Theorem 5 [9], we cannot be satisfied by the made
assumptions but require the existence of the resolvent at the point zero and its compactness.
In spite of the fact that we can proceed our narrative under the weakened conditions
regarding the operator W in comparison with H1, H2, we can claim that the statement of
Theorem 5 [9] remains true under the assumptions made above, and we prefer to deploy H1,
H2, which guarantees the conditions we need and at the same time provides a description
of the issue under the natural point of view.

Lemma 2. Assume that the conditions H1, H2 hold for the operator W, moreover,

‖ImW/ReW‖2 < 1,

then
λ−1

2n (ReW) ≤ Csn(RW), n ∈ N.

Proof. Firstly, let us show that D(W2) is a dense set in H+. Since the operator W is closed
and strictly accretive, then in accordance with Theorem 3.2 ([23], p. 268), we have R(W) =
H; hence, there exists the preimage of the set M—let us denote it by M′. Consider an
arbitrary set of elements {xn}∞

0 ⊂ H and denote their preimages by x′n. Using the strictly
accretive property of the operator, we have

‖x0 − xn‖H = ‖W(x′0 − x′n)‖H ≥ C‖x′0 − x′n‖H+ .

Choosing a sequence

{xn}∞
1 ⊂M, xn

H→ x0,

we obtain the fact that the set M′ is dense in D(W) in the sense of the norm H+; hence, it is
dense in H+ since M ⊂ D(W) is dense in H+ in accordance with condition H1. Therefore,
the set D(W2) is dense in H+ since M′ ⊂ D(W2). Thus, we have proved the fulfilment of
condition H1 for the operator W2 with respect to the same pair of Hilbert spaces.

Note that under the assumptions H1, H2, using the reasonings of Theorem 3.2 ([23],
p. 337), we have the following representation

W = H1/2(I + iG)H1/2, W∗ = H1/2(I − iG)H1/2.

It follows easily from this formula that the Hermitian components of the operator
W are defined, and we have ReW = H, ImW = H1/2GH1/2. Using the decomposition
W = ReW + iImW, W∗ = ReW − iImW, we easily obtain(

W2 + W∗ 2

2
f , f

)
H

= ‖ReW f ‖2
H − ‖ImW f ‖2

H;

(
W2 −W∗ 2

2i
f , f

)
H

= (ImW ReW f , f )H + (ReW ImW f , f )H, f ∈ D(W2).

Using simple reasonings, we can rewrite the above formulas in terms of Theorem 3.2
([23], p. 337); we have

Re(W2 f , f )H = ‖H f ‖2
H − ‖H1/2GH1/2 f ‖2

H, Im(W2 f , f )H = Re(H1/2GH1/2 f , H f )H,
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f ∈ D(W2). (3)

Consider a set of eigenvalues {λn}∞
1 and a complete system of orthonormal vectors

{en}∞
1 of the operator H, the conditions H1, H2 guarantee the existence of the system {en}∞

1
since RH is compact (see Theorem 3 [10]); using the matrix form of the operator G, we have

‖H f ‖2
H =

∞

∑
n=1

|λn|2| fn|2, ‖H1/2GH1/2 f ‖2
H =

∞

∑
n=1

λn

∣∣∣∣∣ ∞

∑
k=1

bnk
√

λk fk

∣∣∣∣∣
2

,

Re(H1/2GH1/2 f , H f )H = Re

(
∞

∑
n=1

λ3/2
n fn

∞

∑
k=1

bnk
√

λk f̄k

)
,

where bnk are the matrix coefficients of the operator G. Applying the Cauchy–Schwartz
inequality, we obtain

‖H1/2GH1/2 f ‖2
H ≤

∞

∑
n=1

λn

∣∣∣∣∣ ∞

∑
k=1

|λk fk|2
∞

∑
k=1

|bnk|2/λk

∣∣∣∣∣ ≤ ‖H f ‖2
H

∞

∑
n,k=1

|bnk|2λn/λk;

|Re(H1/2GH1/2 f , H f )H| ≤ ‖H f ‖H

⎛⎝ ∞

∑
n=1

∣∣∣∣∣ ∞

∑
k=1

b̄nk
√

λnλk fk

∣∣∣∣∣
2
⎞⎠1/2

≤ ‖H f ‖2
H

(
∞

∑
n,k=1

|bnk|2λn/λk

)1/2

.

In accordance with the definition of the sectorial property, we require

|Im(W2 f , f )H| ≤ tan θ · Re(W2 f , f )H, 0 < θ < π/2.

Therefore, the sufficient conditions of the sectorial property can be expressed as
follows:

‖H f ‖2
H

(
∞

∑
n,k=1

|bnk|2/λk

)1/2

≤ ‖H f ‖2
H

(
1−

∞

∑
n,k=1

|bnk|2λn/λk

)
tan θ;

∞

∑
n,k=1

|bnk|2λn/λk + cot θ

(
∞

∑
n,k=1

|bnk|2λn/λk

)1/2

≤ 1,

where θ is the semiangle of the supposed sector. Solving the corresponding quadratic
equation, we obtain the desired estimate:(

∞

∑
n,k=1

|bnk|2λn/λk

)1/2

<
1
2

{√
cot2 θ + 4− cot θ

}
. (4)

Having noticed the fact that the right-hand side of (4) tends to one from below when θ
tends to π/2, we obtain the condition of the sectorial property expressed in terms of the
absolute norm:

‖H1/2GH−1/2‖2 :=

(
∞

∑
n,k=1

|bnk|2λn/λk

)1/2

< 1, (5)

in this case, we can choose the semiangle of the sector using the following relation:

tan θ =
N

1− N2 + ε, N := ‖H1/2GH−1/2‖2,

where ε is an arbitrary small positive number. Thus, we can assume that if the value
of the absolute norm is less than one, then the operator W2 is sectorial and the value of
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the absolute norm defines the semiangle. Note that coefficients bnk
√

λn/λk, bkn
√

λn/λk
correspond to the matrices of the operators, respectively,

H1/2GH−1/2 f =
∞

∑
n=1

λ1/2
n en

∞

∑
k=1

bnkλ−1/2
k fk, H−1/2GH1/2 f =

∞

∑
n=1

λ−1/2
n en

∞

∑
k=1

bnkλ1/2
k fk.

Thus, if the absolute operator norm exists, i.e.,

‖H1/2GH−1/2‖2 < ∞,

then both of them belong to the so-called Hilbert–Schmidt class; however, it is clear without
involving the absolute norm since the above operators are adjoint. It is remarkable that
we can formally write the obtained estimate in terms of the Hermitian components of the
operator, i.e.,

‖ImW/ReW‖2 < 1.

Below, for a convenient form of writing, we will use a short-hand notation A := RW ,
where it is necessary. The next step is to establish the asymptotic formula

λn

(
A2 + A2∗

2

)
% λ−1

n

(
ReW2

)
, n → ∞. (6)

However, we cannot directly apply Theorem 5 [9] to the operator W2; thus, we are
compelled to modify the proof having taken into account weaker conditions and the
additional condition (5).

Let us observe that the compactness of the operator RW(λ), λ ∈ P(W) gives us
the compactness of the operator W−2. Since the latter is sectorial, it follows easily that
RW2(λ), λ ∈ P(W2) is compact, since the outside of the sector belongs to the resolvent set
and the resolvent compact, at least at one point, is compact everywhere on the resolvent
set. Note that due to the reasonings given above, the following relation holds:

Re(W2 f , f )H ≥ C‖H f ‖2
H ≥ C‖ f ‖2

H+
, f ∈ D(W2), (7)

where the latter inequality can be obtained easily (see (28) [9]). Thus, we obtain the fact
that the operator W2 is a sectorial, strictly accretive operator; hence, it falls in the scope of
the first representation theorem (see Theorem 2.1 [23], p. 322) in accordance with which
there exists one-to-one correspondence between the closed densely defined sectorial forms
and m-sectorial operators. Using this fact, we can claim that the real part H1 := ReW2

is defined and the following relations hold in accordance with the second representation
theorem, i.e., Theorem 3.2 ([23], p. 337).

W2 = H1/2
1 (I + iG1)H1/2

1 , W2∗ = H1/2
1 (I + iG2)H1/2

1 ,

where G1, G2 are self-adjoint bounded operators. Now, by direct calculation, we can verify
that H1 = ReW2, and we should also note that D(W2) is a core of the corresponding closed
densely defined sectorial form h placed in correspondence to the operator H1 by virtue of
the first representation theorem, i.e., D0(h) = D(W2). Let us show that G1 = −G2. We have

H1 f =
1
2

[
H

1
2
1 (I + iG1) + H

1
2
1 (I + iG2)

]
H

1
2
1 =

=H1 f +
i
2

H
1
2
1 (G1 + G2)H

1
2
1 f , f ∈M′.
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By virtue of inequality (7), we see that the operator H1 is strictly accretive, therefore
N(H1) = 0; (G1 + G2)H1/2

1 = 0. Since

H = R(H1/2
1 )⊕N(H1/2

1 ),

then G1 = G2 =: G′. Applying the reasonings represented in Theorem 5 [9], we obtain the
fact that H−1/2

1 is a bounded operator defined on H. Using the properties of the operator
G′, we obtain ‖(I + iG′) f ‖H · ‖ f ‖H ≥ Re([I + iG′] f , f )H = ‖ f ‖2

H, f ∈ H. Hence, ‖(I +
iG′) f ‖H ≥ ‖ f ‖H, f ∈ H. It implies that the operator I + iG′ is invertible. The reasonings
corresponding to the operator I − iG′ are absolutely analogous. Therefore,

A2 = H− 1
2

1 (I + iG′)−1H− 1
2

1 , A2∗ = H− 1
2

1 (I − iG′)−1H− 1
2

1 . (8)

Using simple calculation based upon the operator properties established above,
we obtain

ReA2 =
1
2

H− 1
2

1 (I + G′2)−1H− 1
2

1 . (9)

Therefore,(
ReA2 f , f

)
H
=

(
H− 1

2
1 (I + G′2)−1H− 1

2
1 f , f

)
H

≤ ‖(I + G′2)−1‖ ·
(

RH1 f , f
)
H

, f ∈ H.

On the other hand, it is easy to see that ((I + G′2)−1 f , f )H ≥ ‖(I + G′2)−1 f ‖2
H. At

the same time, it is obvious that the operator I + G′2 is bounded and we have ‖(I +
G′2)−1 f ‖H ≥ ‖I + G′2‖−1‖ f ‖H. Applying these estimates, we obtain(

ReA2 f , f
)
H
=

(
(I + G′2)−1H− 1

2
1 f , H− 1

2
1 f

)
H

≥ ‖(I + G′2)−1H− 1
2

1 f ‖2
H ≥

≥ ‖I + G′2‖−2 ·
(

RH1 f , f
)
H

, f ∈ H.

Using relation (7), we obtain the fact that the resolvent RH1 is compact, and the fact
that ReA2 is compact is obvious. Thus, analogously to the reasonings of Theorem 5 [9],
applying the minimax principle, we obtain the desired asymptotic formula (6). Further, we
will use the following formula obtained due to the positiveness of the squared Hermitian
imaginary component of the operator A, and we have

A2 + A2∗

2
=

A2 + A∗2

2
≤ A∗A + AA∗.

Applying the corollary of the well-known Allakhverdiyev theorem (Ky Fan [27]), see
Corollary 2.2 [11] (Chapter II, § 2.3), we have

λ2n(A∗A + AA∗) ≤ λn(A∗A) + λn(AA∗), n ∈ N.

Taking into account the fact sn(A) = sn(A∗), using the minimax principle, we obtain
the estimate

s2
n(A) ≥ Cλ2n

(
A + A2∗

2

)
, n ∈ N,

and applying (6), we obtain

s2
n(A) ≥ Cλ−1

2n

(
ReW2

)
, n ∈ N.

Here, it is rather reasonable to apply formula (3), which gives us

‖ f ‖2
H ≤ ‖ f ‖2

H+
≤

(
ReW2 f , f

)
H
≤ (H f , H f )H, f ∈ D(W2),
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which, in turn, collaboratively with the minimax principle, leads us to the theorem
statement. Here, we should remark that in order to apply the minimax principle, we
need a compact embedding of the energetic space, which is provided by the estimate
from below.

Remark 1. It is remarkable that the central point of the proof is the representation theorems;
in accordance with the first one, we have a plain construction of the operator real part equaling
the Hermitian real component. These allow us to implement the simplified scheme of reasonings
represented in [9].

Consider a rather wide operator class including the operators having the asymptotics
of the resolvent singular values or one of the real component eigenvalues of the power
type, i.e.,

C1nμ ≤ λn ≤ C2nμ, μ < 0.

In order to apply the obtained theoretical results to the class, we can reformulate them
in the following stylistically convenient form.

Theorem 1. Assume that the hypotheses H1, H2 hold for the operator W, moreover,

‖ImW/ReW‖2 < 1,

then
sn(RW) % λ−1

n (ReW).

Proof. Since conditions H1, H2 hold, then the resolvent RW is a compact sectorial operator
with the vertex situated at the point zero (see Theorem 3 [10]). The estimates from the
above and below for the singular values follow from the application of Lemmas 1 and 2,
respectively; here, we should take into account the fact that (Cn)γ % nγ, γ ∈ R and the
fact that λn(ReRW) % λ−1

n (ReW), which is the claim of Theorem 5 [9].

4. Mathematical Applications

4.1. The Low Bound for the Schatten Index of the Perturbed Differential Operator

1. Trying to show an application of Lemma 1, we produce an example of a non-self-
adjoint operator that is not completely subordinated in the sense of forms (see [8,9]).
The pointed-out fact means that we cannot deal with the operator applying meth-
ods [8] for they do not work.

Consider a differential operator acting in the complex Sobolev space:

L f := (ck f (k))(k) + (ck−1 f (k−1))(k−1) + . . . + c0 f ,

D(L) = H2k(I) ∩ Hk
0(I), k ∈ N,

where I := (a, b) ⊂ R, and the complex-valued coefficients cj(x) ∈ C(j)( Ī) satisfy the
condition sign(Recj) = (−1)j, j = 1, 2, . . . , k. Consider a linear combination of the Riemann–
Liouville fractional differential operators (see [26], p .44) with the constant real-valued
coefficients:

D f := pnDαn
a+ + qnDβn

b− + pn−1Dαn−1
a+ + qn−1Dβn−1

b− + . . . + p0Dα0
a+ + q0Dβ0

b−,

D(D) = H2k(I) ∩ Hk
0(I), n ∈ N,
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where αj, β j ≥ 0, 0 ≤ [αj], [β j] < k, j = 0, 1, . . . , n.,

qj ≥ 0, sign pj =

⎧⎪⎨⎪⎩(−1)
[αj ]+1

2 , [αj] = 2m− 1, m ∈ N,

(−1)
[αj ]

2 , [αj] = 2m, m ∈ N0.

The following result is represented in the paper [9]; consider the operator

G = L+D,

D(G) = H2k(I) ∩ Hk
0(I).

It is clear that it is an operator with a compact resolvent; however, for the accuracy we
will prove this fact. Moreover, we will produce a pair of Hilbert spaces so that conditions
H1, H2 hold. It follows that the resolvent is compact; thus, we are able to observe the
problem related to calculating the Schatten index. Apparently, it may happen that the direct
calculation of the singular values or their estimation is rather complicated since we have
the following relation:

GG∗ ⊃ (L+D)(L∗ +D∗) ⊃ LL∗ +DL∗ + LD∗ +DD∗,

where inclusions must satisfy some conditions connected with the core of the operator
form, for in other cases, we have the risk of losing some singular values. In spite of the
fact that the shown difficulties, in many cases, can be eliminated, the offered method of
singular values estimation becomes apparently relevant.

Let us prove the fulfilment of the conditions H1, H2 under the assumptions H :=
L2(I), H+ := Hk

0(I), M := C∞
0 (I). The fulfillment of the condition H1 is obvious; let us

show the fulfilment of the condition H2. It is easy to see that

Re(L f , f )L2(I) ≥
k

∑
j=0

|Recj| ‖ f (j)‖2
L2(I) ≥ C‖ f (j)‖2

Hk
0(I), f ∈ D(L).

On the other hand,

|(L f , f )L2(I)| =
∣∣∣∣∣ k

∑
j=0

(−1)j(cj f (j), g(j))L2(I)

∣∣∣∣∣ ≤ k

∑
j=0

∣∣∣(cj f (j), g(j))L2(I)

∣∣∣ ≤
≤ C

k

∑
j=0

‖ f (j)‖L2(I)‖g(j)‖L2(I) ≤ ‖ f ‖Hk
0(I)‖g‖Hk

0(I), f ∈ D(L).

Consider fractional differential Riemann–Liouville operators of arbitrary non-negative
order α (see [26], p. 44) defined by the expressions

Dα
a+ f =

(
d

dx

)[α]+1
I1−{α}
a+ f ; Dα

b− f =

(
− d

dx

)[α]+1
I1−{α}
b− f ,

where the fractional integrals of arbitrary positive order α, defined by

(Iα
a+ f )(x) =

1
Γ(α)

x∫
a

f (t)
(x− t)1−α

dt,
(

Iα
b− f

)
(x) =

1
Γ(α)

b∫
x

f (t)
(t− x)1−α

dt, f ∈ L1(I).

Suppose 0 < α < 1, f ∈ ACl+1( Ī), f (j)(a) = f (j)(b) = 0, j = 0, 1, . . . , l; then the next
formula follows from Theorem 2.2 ([26], p. 46):

Dα+l
a+ f = I1−α

a+ f (l+1), Dα+l
b− f = (−1)l+1 I1−α

b− f (l+1). (10)
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Further, we need the following inequalities (see [28]):

Re(Dα
a+ f , f )L2(I) ≥ C‖ f ‖2

L2(I), f ∈ Iα
a+(L2),

Re(Dα
b− f , f )L2(I) ≥ C‖ f ‖2

L2(I), f ∈ Iα
b−(L2), (11)

where Iα
a+(L2), Iα

b−(L2) are the classes of the functions representable by the fractional inte-
grals (see [26]). Consider the following operator with the constant real-valued coefficients:

D f := pnDαn
a+ + qnDβn

b− + pn−1Dαn−1
a+ + qn−1Dβn−1

b− + . . . + p0Dα0
a+ + q0Dβ0

b−,

D(D) = H2k(I) ∩ Hk
0(I), n ∈ N,

where αj, β j ≥ 0, 0 ≤ [αj], [β j] < k, j = 0, 1, . . . , n.,

qj ≥ 0, sign pj =

⎧⎪⎨⎪⎩(−1)
[αj ]+1

2 , [αj] = 2m− 1, m ∈ N,

(−1)
[αj ]

2 , [αj] = 2m, m ∈ N0.

Using (10) and (11), we obtain

(pjD
αj
a+ f , f )L2(I) = pj

((
d

dx

)m
D

m−1+{αj}
a+ f , f

)
L2(I)

= (−1)m pj

(
I

1−{αj}
a+ f (m), f (m)

)
L2(I)

≥

≥ C
∥∥∥∥I

1−{αj}
a+ f (m)

∥∥∥∥2

L2(I)
= C

∥∥∥∥D
{αj}
a+ f (m−1)

∥∥∥∥2

L2(I)
≥ C

∥∥∥ f (m−1)
∥∥∥2

L2(I)
,

where f ∈ D(D) is a real-valued function and [αj] = 2m− 1, m ∈ N. Similarly, we obtain
for orders [αj] = 2m, m ∈ N0

(pjD
αj
a+ f , f )L2(I) = pj

(
D

2m+{αj}
a+ f , f

)
L2(I)

= (−1)m pj

(
D

m+{αj}
a+ f , f (m)

)
L2(I)

=

= (−1)m pj

(
D
{αj}
a+ f (m), f (m)

)
L2(I)

≥ C
∥∥∥ f (m)

∥∥∥2

L2(I)
.

Thus in both cases, we have

(pjD
αj
a+ f , f )L2(I) ≥ C

∥∥∥ f (s)
∥∥∥2

L2(I)
, s =

[
[αj]/2

]
.

In the same way, we obtain the inequality

(qjD
αj
b− f , f )L2(I) ≥ C

∥∥∥ f (s)
∥∥∥2

L2(I)
, s =

[
[αj]/2

]
.

Hence, in the complex case, we have

Re(D f , f )L2(I) ≥ C‖ f ‖2
L2(I), f ∈ D(D).

Combining Theorem 2.6 ([26], p. 53) with (10), we obtain∥∥∥pjD
αj
a+ f

∥∥∥
L2(I)

=

∥∥∥∥I
1−{αj}
a+ f ([αj ]+1)

∥∥∥∥
L2(I)

≤ C
∥∥∥ f ([αj ]+1)

∥∥∥
L2(I)

≤ C‖ f ‖Hk
0(I);

∥∥∥qjD
αj
b− f

∥∥∥
L2(I)

≤ C‖ f ‖Hk
0(I), f ∈ D(D).

279



Mathematics 2024, 12, 540

Hence, we obtain
‖D f ‖L2(I) ≤ C‖ f ‖Hk

0(I), f ∈ D(D).

Taking into account the relation

‖ f ‖L2(I) ≤ C‖ f ‖Hk
0(I), f ∈ Hk

0(I),

combining the above estimates, we obtain

Re(G f , f )L2(I) ≥ C‖ f ‖2
Hk

0(I), |(G f , g)L2(I)| ≤ ‖ f ‖Hk
0(I)‖g‖Hk

0(I), f , g ∈ C∞
0 (I).

Thus, we have obtained the desired result.
To deploy the minimax principle for eigenvalues estimating, we come to the

following relation:
C1‖ f ‖2

Hk
0(I) ≤ (ReG f , f )L2(I) ≤ C2‖ f ‖2

Hk
0(I),

from which follows easily, due to the asymptotic formula for the eigenvalues of a self-
adjoint operator (see [29]), the fact that

λn(ReG) % n2k, n ∈ N;

therefore, applying Lemma 1 collaboratively with the asymptotic equivalence formula (see
Theorem 5 [9])

λ−1
n (ReG) % λn(ReRG), n ∈ N,

we obtain the fact that
RG ∈ Sp, inf p ≤ 1/2k.

Thus, it gives us an opportunity to establish the range of the Schatten index.

2. Let us show the application of Lemma 2; firstly, consider the following reasonings:

‖ImWH−1‖2 = ‖H−1ImW‖2 =
∞

∑
n,k=1

∣∣∣(ImWen, H−1ek)H

∣∣∣2
=

∞

∑
n,k=1

λ−2
n (H)|(en, ImWek)H|2 =

=
∞

∑
n=1

λ−2
n (H)||ImWen||2H,

where {en}∞
1 is the orthonormal set of the eigenvectors of the operator H. Thus, we obtain

the following condition:
∞

∑
n=1

λ−2
n (H)||ImWen||2H < 1, (12)

which guarantees the fulfilment of the conditions expressed in terms of absolute norm in
Lemma 2. It is remarkable that this form of the condition is quite convenient if we consider
perturbations of differential operators. Below, we observe a simplified case of the operator
considered in the previous paragraph. Consider

L f := − f ′′ + ξDα
0+ f , D(L) = H2(I) ∩ H1

0(I), I = (0, π), α ∈ (0, 1/2), ξ ∈ R,

then

C0(L1 f , f )L2(I) ≤ (ReL f , f )L2(I) ≤ C1(L1 f , f )L2(I), L1 f := − f ′′, D(L1) = D(L).

It is a well-known fact that

λn(L1) = n2, en = sin nx.
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It is also clear that
ImL ⊃ ξ(Dα

0+ − Dα
π−)/2i.

In accordance with the first representation theorem (see Theorem 2.1 [23], p. 322), we
have that H2(I) ∩ H1

0(I) is a core of the form corresponding to the operator L∗; hence,

ImL = ξ(Dα
0+ − Dα

π−)/2i.

Note that (
Dα

0+en
)
(x) =

n
Γ(1− α)

x∫
0

(x− t)−α cos nt dt.

Applying the generalized Minkowski inequality, we obtain

⎛⎝ π∫
0

|(Dα
a+en)(x)|2dx

⎞⎠1/2

=
n

Γ(1− α)

⎛⎜⎝ π∫
0

∣∣∣∣∣∣
x∫

0

(x− t)−α cos nt dt

∣∣∣∣∣∣
2
⎞⎟⎠

1/2

≤

≤ n
Γ(1− α)

π∫
0

cos nt dt

⎛⎝ π∫
t

(x− t)−2αdx

⎞⎠1/2

=
n√

(1− 2α)Γ(1− α)

π∫
0

(π − t)1/2−α cos nt dt ≤

≤ nπ1/2−α√
(1− 2α)Γ(1− α)

.

Analogously, we obtain⎛⎝ π∫
0

|(Dα
π−en)(x)|2dx

⎞⎠1/2

≤ nπ1/2−α√
(1− 2α)Γ(1− α)

.

Hence,

‖ImLen‖ ≤
nξπ1/2−α√

(1− 2α)Γ(1− α)
.

Therefore,

∞

∑
n=1

λ−2
n (ReL)||ImLen||2 <

ξ2π1−2α

(1− 2α)Γ2(1− α)

∞

∑
n=1

1
n2 =

ξ2π3−2α

6(1− 2α)Γ2(1− α)
.

Using this relation, we can obviously impose a condition on ξ that guarantees the
fulfilment of relation (12), i.e.,

ξ <

√
6(1− 2α)Γ(1− α)

π3/2−α
.

In accordance with Theorem 1, the last condition follows that

s−1
n (RL) % n2, RL ∈ Sp, inf p = 1/2.

4.2. Existence and Uniqueness Theorems for Evolution Equations via Obtained Results

In this paragraph, we consider applications to differential equations in concrete Hilbert
spaces and involve such operators as Riemann–Liouville operator, Kipriyanov operator,
and Riesz potential, difference operator. Moreover, we produce the artificially constructed
normal operator for which the clarification of the Lidskii results relevantly works.

Further, we consider a Hilbert space H which consists of element-functions u : R+ →
H, u := u(t), t ≥ 0 and we assume that if u belongs to H then the fact holds for all values
of the variable t. Notice that under such an assumption all standard topological properties,
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such as completeness, compactness, etc., remain correctly defined. We understand such
operations as differentiation and integration in the generalized sense that is caused by
the topology of the Hilbert space H; more detailed information can be found in Chapter 4
Krasnoselskii M.A. [30]. Consider an arbitrary compact operator B; we can form the
operators corresponding to the groups of its eigenvalues, i.e.,

Pν(B, α, t)⇔ λNν+1, λNν+2, . . . , λNν+1 ,

where {Nν}∞
0 is a sequence of natural numbers,

Pν(B, α, t) =
1

2πi

∫
ϑν(B)

e−λαtB(I − λB)−1dλ, α > 0,

ϑν(B) is a contour on the complex plain containing the eigenvalues λNν+1, λNν+2, . . . , λNν+1

only and no more eigenvalues.
The root vectors of the operator B are called by the Abel–Lidskii basis if

∞

∑
ν=0

Pν(B, α, t)→ I, t → 0,

where convergence is understood as the operator pointwise convergence in the
Hilbert space.

The correspondence between the series and the element, given due to the formula, is
known as a convergence in the Abel–Lidskii sense. We can compare this definition with the
main principle of the spectral theorem—the unit decomposition. We place the following
contour in correspondence to the operator:

ϑ(B) := {λ : |λ| = r > 0, |argλ| ≤ θ + ε} ∪ {λ : |λ| > r, |argλ| = θ + ε}.

Consider the following hypotheses:

S1: Under the assumptions B ∈ Sp, inf p ≤ α, Θ(B) ⊂ L0(θ), a sequence of natural numbers
{Nν}∞

0 can be chosen so that

1
2πi

∫
ϑ(B)

e−λαtB(I − λB)−1 f dλ =
∞

∑
ν=0

Pν(B, α, t) f , f ∈ H,

the latter series is absolutely convergent in the sense of the norm.

Combining the generalized integrodifferential operations, we can consider a fractional
differential operator in the Riemann–Liouville sense, i.e., in the formal form, we have

D1/α
− f (t) := − 1

Γ(1− 1/α)

d
dt

∞∫
0

f (t + x)x−1/αdx, α > 1.

Let us study a Cauchy problem:

D1/α
− u = Wu, u(0) = h ∈ D(W). (13)

Note that it is possible to apply the Abel–Lidskii concept using the methods [1,10,14–16]
in the case RW ∈ Sp, inf p ≤ α. We can assume that the central result of the above-listed
papers is to find conditions under which the hypotheses S1 holds. We can generalize the
results related to the existence and uniqueness theorem (see Theorem 4 [31], Theorem 1 [16],
Theorem 6 [15]), as follows:
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Theorem 2. Assume that S1 holds, then there exists a solution of Cauchy problem (13) in the form

u(t) =
∞

∑
ν=0

Pν(B, α, t)h.

Apparently, under this point of view, the results of the paper become relevant since,
applying Theorem 1, we can find the exact value of the Schatten index p. Therefore, we can
decrease the value of α, satisfying the condition inf p ≤ α in accordance with S1.

To demonstrate the claimed result, we produce an example dealing with well-known
operators. Consider a rectangular domain in the space Rn, defined as follows: Ω := {xj ∈
[0, π], j = 1, 2, . . . , n}; and consider the Kipriyanov fractional differential operator defined
in the paper [25] by the formal expression

Dβ f (Q) =
β

Γ(1− β)

r∫
0

[ f (Q)− f (T)]
(r− t)β+1

(
t
r

)n−1
dt + (n− 1)! f (Q)r−β/Γ(n− β),

β ∈ (0, 1), P ∈ ∂Ω,

where Q := P + er, P := P + et, e is a unit vector having a direction from the fixed point
of the boundary P to an arbitrary point Q belonging to Ω. Consider the perturbation of the
Laplace operator by the Kipriyanov operator:

L := D2k + ξDβ, D(L) = Hk
0(Ω) ∩ H2k(Ω),

where ξ > 0,

D2k f = (−1)k
n

∑
j=1

D2k
j f .

It was proved in the paper [10] that

C0(D2k f , f )L2(Ω) ≤ (ReL f , f )L2(Ω) ≤ C1(D2k f , f )L2(Ω), f ∈ D(L).

Therefore,
λn(ReL) % n2k/n.

On the other hand, we have the following eigenfunctions of D2k in the rectangular
domain:

el̄ =
n

∏
j=1

sin ljxj, l̄ := {l1, l2, . . . , ln}, ls ∈ N, s = 1, 2, . . . , n.

It is clear that

D2kel̄ = λl̄ el̄ , λl̄ =
n

∑
j=1

l2k
j .

Since the search for the below-given information in the literature (however, it is a
well-known fact) can bring some difficulties, we would like to represent it. Let us prove
that the system {el̄} is complete in the Hilbert space L2(Ω). We will show it if we prove
that the element that is orthogonal to every element of the system is a zero. Assume that

π∫
0

sin l1x1dx1

π∫
0

sin l2x2dx2 . . .
π∫

0

sin lnxn f (x1, x2, . . . , xn)dxn = (el̄ , f )L2(Ω) = 0.
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In accordance with the fact that the system {sin mx}∞
1 is a complete system in L2(0, π),

we conclude that

π∫
0

sin l2x2dx2 . . .
π∫

0

sin lnxn f (x1, x2, . . . , xn)dxn = 0.

Having repeated the same reasonings step by step, we obtain the desired result. Taking
into account the following inequality (see [10]) and the embedding theorems, we obtain

‖Dβ f ‖L2(Ω) ≤ Cβ‖ f ‖H1
0 (Ω) ≤ Cβ,k,n‖ f ‖Hk

0(Ω), (14)

where the constant Cβ is defined through the infinitesimal generator J of the corresponding
semigroup of contraction (shift semigroup in the direction) (9) [10]. Now it is clear that the
conditions H1, H2 are satisfied, where H := L2(Ω), H+ := Hk

0(Ω), M := C∞
0 (Ω). Using

the intermediate inequality (14), by direct calculation, we obtain

∞

∑
l1,l2,...ln=1

λ−2
l̄ (ReL)L2(Ω) ‖ImLel̄‖2

L2(Ω) ≤ (ξCβ)
2

∞

∑
l1,l2,...ln=1

λl̄(D2)

λ2
l̄ (D2k)

.

Therefore, if the following condition holds,

∞

∑
l1,l2,...ln=1

l2
1 + l2

2 + . . . + l2
n

(l2k
1 + l2k

2 + . . . + l2k
n )2

< (ξCβ)
−2, (15)

then the conditions of Lemma 2 are satisfied. Applying Lemma 2, we can consider the
values of the parameters k, n such that the last series is convergent, and at the same time,
RL ∈ Sp, inf p = n/2k > 1. The latter fact gives us the argument showing the relevance
of Lemma 2 since we can find the range of α appropriate for the Abel–Lidskii method
applicability. Below, we produce the corresponding reasonings.

Assume that the following condition holds:

n
2
+ 1 < 2k < n.

Consider the vector function

ψ(l̄) =
(l2k

1 + l2k
2 + . . . + l2k

n )2

l2
1 + l2

2 + . . . + l2
n

,

then ψ(t̄) = nt2(2k−1), t̄ = {t, t, . . . t}. It is clear that the number s of values ψ(l̄), li ≤ t
equals tn, i.e., s = tn. Therefore,

ψ(t̄) = ns
2(2k−1)

n , ψ(t− 1) = n(s1/n − 1)2(2k−1);

n(s1/n − 1)2(2k−1) ≤ ψ(l̄) ≤ ns
2(2k−1)

n , t− 1 ≤ li ≤ t, i = 1, 2, . . . , n.

Having arranged the values in the order corresponding to their absolute value increas-
ing, we obtain

n(s1/n − 1)2(2k−1) ≤ ψj ≤ ns
2(2k−1)

n , (s1/n − 1)n < j < s.

Therefore,
(s1/n − 1)2(2k−1)

s
2(2k−1)

n

<
ψj

nj
2(2k−1)

n

<
s

2(2k−1)
n

(s1/n − 1)2(2k−1)
,
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from which follows the convergence of the following series, since if we take into account
the condition n/2 + 1 < 2k, we obtain

∞

∑
j=1

ψ−1
j < ∞.

In other words, we have proved that series (15) is convergent. Thus, we have con-
sidered the case showing the relevance of Lemma 2. We can claim that the Abel–Lidskii
method in its classical form is not applicable to the fractional evolution equation for the
values of α less than n/2k. This rather ridiculous result, from one point of view, gives us a
better comprehension of methodology and allows us to avoid disturbing calculation and
difficulties of any kind connected with the verification of opportunity to apply the method.

5. Conclusions

In this paper, we represent an efficient tool for finding the asymptotics of operator sin-
gular values. However, it may be interesting itself since it appeals to the spectral properties
of the operator real component, which are undoubtedly relevant in the framework of the
abstract spectral theory. Some difficulties in the application of the Abel–Lidskii method
were considered under the point of view of the created concept, where the the mathematical
applications cover integrodifferential operators of the real order.
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1. Introduction

According to the Pokhozhaev paradigm, blow-up phenomena are equivalent to the
absence of global solutions. This approach is based on the following reasoning. It is
quite frequent for real models of mathematical physics that an equation (or inequality)
is resolvable "in small" (i.e., in a neighborhood of the ground state). In this case, if we
can prove that no global solutions exist, then there exists a point where the solution is
destroyed, which means the blow-up phenomenon. For a thorough explanation of this
approach, readers are addressed to the famous monograph [1] providing the foundation of
the global nonexistence theory and containing a lot of blow-up results for various semilinear
and quasilinear equations, inequalities, and boundary-value problems.

In this paper, the said phenomena are investigated for coercive inequalities with
nonlinearities of the Kardar–Parisi–Zhang-type (KPZ-type nonlinearities), i.e., coercive
inequalities containing the second power of the first derivative of the desired function
(note that this kind of nonlinearity is not covered by the authors of [1]). The motivation to
study KPZ-type nonlinearities is well known; for instance, a comprehensive list of recent
publications illustrating their applications not covered by other kinds of nonlinearities (for
example, interface dynamics and directed polymer models) is provided in [2], which is a
review of various results about equations and inequalities with KPZ-type nonlinearities.
Their theoretical value is caused by the following circumstance: the second power is the
greatest one such that a priori L∞ estimates of first-order derivatives of the solution via the
L∞-norm of the solution itself hold (see, for example, [3–5]).

For noncoercive KPZ-type nonlinearities, i.e., for the case where the highest-order
linear part is dominated by the (low-order) nonlinear one, the above phenomenon is
investigated earlier (see [2] and references therein). The coercive case was an open problem
up to now, though the result for semilinear coercive inequalities (studied in regards to the
problem of the equilibrium of a charged gas in a container) has been known longer than
six decades: in [6,7], a sufficient condition of the absence of global solutions is proved for
inequalities of the kind

Δv ≥ μ(v), (1)

where Δ denotes the Laplacian: Δ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
.
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2. Regular Case

In Rn, consider the inequality

Δu+

n∑
j=1

gj(x,u)
(
∂u

∂xj

)2

≥ ω(u), (2)

assuming that there exists a function g continuous and locally summable over the positive
semiaxis and such that gj(x, s) ≤ g(s) in Rn × (0,∞), j = 1, 2, . . . ,n.

Introduce the function

f(s) :=

s∫
0

e

x∫
0

g(τ)dτ

dx. (3)

Then, f ′(s) = e

s∫
0

g(τ)dτ

> 0, i.e., f is monotone. Hence, the function f−1 is well defined
on the range of the function f and is monotone as well. Denote f−1 by ψ.

The main result of this section is preceded by the following classical theorem (see [6,7]).

Theorem 1 (Keller–Osserman). If

∞∫
1

dτ√√√√√τ∫
1

μ(s)ds

<∞, (4)

then inequality (1) has no positive global solutions.

The following assertion is valid.

Theorem 2. If
∞∫
1

dτ√√√√√τ∫
1

ω[ψ(s)]

ψ ′(s)
ds

<∞,

then inequality (2) has no positive global solutions.

Proof. Suppose, to the contrary, that the assumptions of the theorem are satisfied, but
there exists a positive function u(x) satisfying inequality (2) in Rn. Then, the function u(x)
satisfies the inequality

Δu+ g(u)|∇u|2 ≥ ω(u) (5)

in Rn as well.
Introduce v(x) := f[u(x)], where the function f is defined by relation (3). Then,

∂v

∂xj
= f ′(u)

∂u

∂xj
and

∂2v

∂x2j
= f ′′(u)

(
∂u

∂xj

)2

+ f ′(u)
∂2u

∂x2j
, j = 1,n.

Further, f ′′(s) = g(s)e

s∫
0

g(τ)dτ

, i.e., g(s) =
f ′′(s)
f ′(s)

and, therefore,

Δv = f ′(u)
[
Δu+ g(u)|∇u|2

]
, i.e., ψ ′(v)Δv =

[
Δu+ g(u)|∇u|2

]
.
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Now, taking into account that v(x) is positive provided that u(x) is positive, we

conclude that v(x) is a positive solution of inequality (1) with μ(s) =
ω[ψ(s)]

ψ ′(s)
. However,

due to Theorem 1, inequality (1) has no global positive solutions under Condition (4).
The obtained contradiction completes the proof.

3. Singular Case

The case where g(s) =
const
s

is not covered by the previous section because the local
integrability condition is violated. In that case, another ansatz is used. More exactly, the
following assertion is valid.

Theorem 3. If there existsα from (−1,∞) such that gj(x, s) ≤ α

s
in Rn× (0,∞), j = 1, 2, . . . ,n,

and ∞∫
1

dτ√√√√√√τ
1

α+1∫
1

s2αω(s)ds

<∞, (6)

then inequality (2) has no positive global solutions.

Proof. Suppose, to the contrary, that the assumptions of the theorem are satisfied, but
there exists a positive function u(x) satisfying inequality (2) in Rn. Then, the function u(x)
satisfies inequality

Δu+
α

u
|∇u|2 ≥ ω(u) (7)

in Rn as well.
Denoting uα+1(x) by v(x), we see that

∂v

∂xj
= (α+ 1)uα

∂u

∂xj
,
∂2v

∂x2j
= α(α+ 1)uα−1

(
∂u

∂xj

)2

+ (α+ 1)uα
∂2u

∂x2j
j = 1,n, Δv = (α+ 1)uα

[
Δu+

α

u
|∇u|2

]
,

and, therefore,
Δv

(α+ 1)uα
≥ ω(u).

Now, taking into account that u(x) = v
1

α+1 (x), and u(x) is positive everywhere, we
conclude that v(x) is a positive solution of the inequality

Δv ≥ (α+ 1)v
α

α+1ω
(
v

1
α+1

)
. (8)

Due to [6,7], the last inequality has no global positive solutions provided that

∞∫
1

dτ√√√√√τ∫
1

ρ
α

α+1ω
(
ρ

1
α+1

)
dρ

<∞. (9)

Now, consider inequality (6) and use the substitution s = ρ
1

α+1 in its internal integral.
We see that Condition (6) implies the validity of inequality (9). Hence, inequality (8) has no
global positive solutions.

The obtained contradiction completes the proof.
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4. Critical Case

If α = −1 in inequality (7), then the substitution from the previous section cannot be
used. However, the following (weaker) result is still valid for this critical case.

Theorem 4. Let gj(x, s) ≤ −
1

s
in Rn × (0,∞), j = 1, 2, . . . ,n, and there exists a positive

constant β such that
∞∫
1

dτ√√√√√βeτ∫
βe

ω(s)

s2
ds

<∞. (10)

Then, inequality (2) has no global solutions exceeding β everywhere.

Proof. Suppose, to the contrary, that the assumptions of the theorem are satisfied, but there
exists a function u(x) satisfying inequality (2) in Rn such that u(x) > β in Rn. Then, the
function u(x) satisfies the inequality

Δu−
|∇u|2
u

≥ ω(u) (11)

in Rn as well.

Denoting v(x) = ln
u(x)

β
by v(x), we see that v(x) is positive everywhere,

∂v

∂xj
=

1

u(x)

∂u

∂xj
=

β

u(x)

1

β

∂u

∂xj
, and

∂2v

∂x2j
=

∂2u

∂x2j
u−

(
∂u

∂xj

)2

u2(x)
=

1

u(x)

[
∂2u

∂x2j
−

1

u(x)

(
∂u

∂xj

)2
]

, j = 1,n.

Therefore,

Δv =
1

u

(
Δu−

|∇u|2
u

)
,

i.e., the left-hand side of inequality (11) is equal to uΔv.
Now, taking into account that ev =

u

β
, we conclude that u(x) = βev. Thus,

βevΔv ≥ ω
(
βev

)
, i.e., v(x) is a positive solution of the inequality

Δv ≥ e−v

β
ω

(
βev

)
. (12)

Due to [6,7], this inequality has no global positive solutions provided that

∞∫
1

dτ√√√√√τ∫
1

ω
(
βeρ

)
eρ

dρ

<∞. (13)

Now, using the substitution s = βeρ, we conclude that Condition (13) is equivalent to
Condition (10). Hence, inequality (12) has no global positive solutions.

The obtained contradiction completes the proof.
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5. Examples

5.1. Inequalities with Constant Coefficients at Principal Nonlinear Terms

Since 1957, the classical result of Keller and Osserman was substantially strengthened.
In particular, it is extended for the case of variable principal coefficients, i.e., for the case
where the left-hand side of inequality (1) is changed for

n∑
i,j=1

∂2

∂xi∂xj
ai,j(x,u), (14)

where each principal coefficient satisfies the following restriction for the growth with
respect to the second independent variable: ai,j(x, s) ≤ const|s| (see [8]). Since only
sufficient blow-up conditions are provided in [8], the question whether the above growth
restriction is essential remained open up to now. However, using the above results for
KPZ-type inequalities, one can show that the said coefficients are allowed to grow much
faster. To do that, it suffices to consider inequality (5), assigning the coefficient g(s) to be
equal to a positive constant (denote it by α). That inequality can be represented in the form

n∑
i,j=1

∂2u

∂xi∂xj

(
δ
j
i

1

α
eαu

)
≥ eαuω(u).

Its left-hand side is represented in form (14), but the growth restriction is not satisfied:
the coefficients are allowed to grow exponentially. However, Theorem 2 provides the
following sufficient blow-up condition:

∞∫
1

dτ√√√√√τ∫
1

(αs+ 1)2ω

[
ln(αs+ 1)

α

]
ds

<∞.

Indeed, in the considered case, we have the relations f(s) =

s∫
0

eαxdx =
eαs − 1

α
, i.e.,

ψ(s) =
ln(αs+ 1)

α
, ψ ′(s) =

1

αs+ 1
, and, therefore, the function μ(s) from Condition (4)

takes the form

eln(αs+1)ω

[
ln(αs+ 1)

α

]
(αs+ 1) = (αs+ 1)2ω

[
ln(αs+ 1)

α

]
.

5.2. Case of Emden–Fowler Nonlinearities at Right-Hand Sides

Consider the following singular case (see Section 3 above), where the right-hand side
of the equation is a power function (the so-called nonlinearity of the Emden–Fowler kind):

Δu+
α

u
|∇u|2 ≥ up. (15)

According to Theorem 3, this inequality has no global positive solutions provided that

∞∫
1

dτ√√√√√√τ
1

α+1∫
1

s2α+pds

<∞.

291



Mathematics 2023, 11, 3787

The internal integral is equal to

s2α+p+1

2α+ p+ 1

∣∣∣∣∣
τ

1
α+1

1

=
τ

2α+p+1
α+1 − 1

2α+ p+ 1
=
τ1+

α+p
α+1 − 1

2α+ p+ 1
=
τq+1 − 1

2α+ p+ 1
,

where q =
α+ p

α+ 1
.

Then, the left-hand side of the last inequality is equal to

∞∫
1

dτ√
τq+1 − 1

2α+ p+ 1

. Its conver-

gence is equivalent to the convergence of the integral

∞∫
1

dτ√
τq+1 − 1

. Apply the substitution

z := τq+1 − 1. Then, τq+1 = z + 1, τ = (z + 1)

1

q+ 1 , and, therefore,

dτ =
(z+ 1)

1
q+1−1

q+ 1
dz =

dz

(q+ 1)(z+ 1)
q

q+1

. Thus, the last integral is equal to

1
(q+1)

∞∫
0

dz
√
z(z+ 1)

q
q+1

. The singularity of the integrand function at the origin is integrable.

Its singularity at infinity is integrable under the assumption that
1

2
+

q

q+ 1
> 1, i.e., q > 1,

which is equivalent to the inequality p > 1.
We see that inequality (15) has no global solutions provided that p > 1.
To compare this coercive example with the noncoercive case, consider the noncoercive

inequality
Δu+

α

u
|∇u|2 + up ≤ 0, (16)

for positive values of α (assuming that n ≥ 3).
As in Section 3, assume that there exist its global positive solution u(x) and introduce

the function v(x) := uα+1(x). Then Δu+
α

u
|∇u|2 =

Δv

(α+ 1)uα
(see Section 3). Now, taking

into account that u(x) = v(x)
1

α+1 , we conclude that

Δv

(α+ 1)v
α

α+1

+ v
p

α+1 ≤ 0, i.e., −Δv ≥ (α+ 1)v
α+p
α+1 .

Since α+ 1 > 0, it follows that v(x) is a global positive solution of the inequality

−Δv ≥ vα+p
α+1 .

According to [9], the last inequality has no global positive solutions provided that

1 <
α+ p

α+ 1
<

n

n− 2
. This condition is equivalent to the condition 1 < p <

n+ 2α

n− 2
(cf. the

condition p > 1 obtained for the coercive case above).

6. Conclusions

In this paper, we investigate quasilinear partial differential inequalities of kind (2),
where the coefficients gi(x, s) at the principal nonlinear terms are majorized either by
locally summable (with respect to s) functions or by functions with singularities of the

kind
const
s

. For both cases, we provide sufficient conditions of the absence of global
positive solutions (or, which is the same, necessary conditions of their existence). The
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obtained results generalize both the classical Keller–Osserman result in [6,7] and its recent
Kon’kov–Shishkov extension (see [8]).
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Abstract: We consider the coefficient inverse problem for the 2D acoustic equation. The problem is
recovering the speed of sound in the medium (which depends only on the depth) and the density (function
of both variables). We describe the method, based on the Gelfand–Levitan–Krein approach, which allows
us to obtain both functions by solving two sets of integral equations. The main advantage of the proposed
approach is that the method does not use the multiple solution of direct problems, and thus has quite low
CPU time requirements. We also consider the variation of the method for the 1D case, where the variation
of the wave equation is considered. We illustrate the results with numerical experiments in the 1D and 2D
case and study the efficiency and stability of the approach.

Keywords: acoustic equation; inverse problems; direct methods; integral equations

MSC: 35R30; 45B05

1. Introduction

In this paper we consider the coefficient inverse problems for the second-order
hyperbolic acoustic equation. Such problems (that can be interpreted as the recovering of
the structure of the subsurface by using measurements) obtained on the daylight surface
are one of the basic problems in seismology. The applied nature of the coefficient inverse
problems for hyperbolic equations explains the wide range of methods, developed for
its solution, from kinematic methods to reverse-time migration. While we did not plan
to consider the detailed review of existing methods (one can find such survey in [1], for
example), we should mention that approaches that utilize the dynamic characteristics of the
wave field have tended to become more popular recently. For example, one of the rapidly
developing methods is full waveform inversion [2], which is based on the reduction of the
problem for the optimization of some misfit functional.

However, methods based on the optimization approach require the solution of the
corresponding direct problem on each iteration of the scheme. Despite the recent progress
of computational algorithms and hardware, the amount of computations required is still
concerning, especially in multi-dimensional cases. The other feature of optimization
approaches is their reliance on the basic structure of the medium, which, on the mathematical
level, leads to the usage of prior information. In case of poor knowledge of prior information,
the efficiency of the methods decreases due to the fact that the corresponding misfit
functional usually have several local minima.

In this paper we use the alternate approach, developed originally in works of I.M.
Gelfand, B.M. Levitan, M.G. Krein, and V.A. Marchenko [3–5]. During the second half of
the XX century, the ideas of I.M. Gelfand, B.M. Levitan, and M.G. Krein were developed by
A.S. Alekseev [6], A.S. Blagoveschenckiy [7], W. Symes [8], R. Burridge [9], F. Santosa [10],
and many other researchers, and these applied for several problems of acoustics, seismics,
and geoelectrics [11–14]. The multi-dimensional variation of the Gelfand–Levitan–Krein
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(G–L–K) approach was considered in [14,15]. Different numerical algorithms for solving
G–L–K equations were considered in [16–18]. The G–L–K method was applied for solving
coefficient inverse problems of acoustics [19], elasticity [20], and seismics [21].

G–L–K methods allow us to reduce the nonlinear inverse problem to a family of
linear integral equations. Such methods that provide the inversion of the forward problem
are called direct ones. Another direct method, suitable for solving such problems, is the
boundary control method [22,23]. The other important feature of this approach is that one
does not have to use the prior information when solving G–L–K equations. There are a
few other approaches that do not rely on the usage of a priori information. Aside from
boundary control, one can also mention the global convergence method [24–28].

In this work, we use the G–L–K method to recover both the density and the speed of sound
from the acoustic equation, where density depends on two variables, while the speed of sound
is the function of the depth only. The recovering of the speed of sound as the 2D function by the
G–L–K approach was considered in [29], where it was reduced to quite complicated system of
equations. In this work, we consider a more simple case of the structure of the speed of sound in
order to recover two coefficients of the equation. One should also mention the paper [30], where
the wave speed in the acoustic wave equation was estimated from boundary measurements
by constructing a reduced-order model matching discrete time–domain data. The success of
the proposed algorithm hinges on the data-driven Gram–Schmidt orthogonalization of the
snapshots that suppresses multiple reflections and can be viewed as a discrete form of the
Marchenko–Gelfand–Levitan–Krein algorithm.

There are some other papers that consider the identification of several parameters, but most
of them are dealing with Maxwell’s equations and based on the Carleman estimates [31–34]
and/or the optimization scheme [35]. Similar approaches were used for the system of elasticity
in [36] for the problem of recovering two coefficients from the acoustic equation using interior
data in [37], and for the system of the first-order acoustic equations in [38].

A method of finding the complex permittivity and permeability of a sample of isotropic
material partially filling the rectangular waveguide cross section was presented in [39].

It was proved that the electromagnetic material parameters are uniquely determined
by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic
settings [40].

In [41], the reconstruction of a complex-valued anisotropic tensor from the knowledge
of several internal magnetic fields, which satisfies the anisotropic Maxwell system on a
bounded domain with prescribed boundary conditions, was considered.

The recovering of conductivity, permittivity, and the electrokinetic mobility parameter
in Maxwell’s equations were analyzed with internal measurements, while allowing the
magnetic permeability to be a variable function [42]. It was shown that the knowledge of
two internal data sets associated with well-chosen boundary electrical sources uniquely
determines these parameters.

In [43], an inverse boundary value problem for the time-harmonic Maxwell equations
was considered. The authors showed that the electromagnetic material parameters were
determined by boundary measurements where part of the boundary data is measured on a
possibly very small set.

It was justified [44] that some elements of the scheme related to the construction of
the infinite system of integral equations in the case when the potential is analytic in x. In
particular, the convergence of the series in these equations was proved and the conditions
for the N-approximation of the system was found.

This paper has the following structure. In the introduction we have considered a brief
review of different approaches related to the solution of inverse problems for hyperbolic
equations. In Section 2 we formulate the inverse problem for the acoustic equation in 2D
and use the G–L–K approach to recover the acoustic impedance. In Section 3 we obtain
the additional family of integral equations to recover the auxiliary function, that, with the
acoustic impedance, gives us the necessary information to obtain both the density of the
medium (which is considered to be a 2D function) and the speed of sound (that depends

295



Mathematics 2023, 11, 3029

only on the depth). In Section 4 we consider the 1D problem for the acoustic-type equation,
which is connected to the seismic inverse problem. In order to find both the speed of sound
and the velocity, we use the property of the solution of the obtained integral equation
to recover the unknown functions. In Section 5 we present numerical examples of the
solution of the inverse problem. In the discussion we summarize the results of numerical
experiments and consider ways for further develop the approach.

2. Two-Dimensional Acoustic Inverse Problem

We consider the following equation that describes the propagation of acoustic waves
in the medium:

1
c2(z, y)

utt = Δu−∇ ln ρ(z, y)∇u.

Here c(z, y) > 0 is the speed of the propagation of the acoustic waves, ρ(z, y) > 0 is
the density of the medium, and u(z, y, t) is the exceeded pressure. As we mentioned in the
introduction, we consider that the speed of sound is dependent only on the depth, and the
density is dependent on both variables (we should also mention that the method proposed
can be naturally extended to the 3D case with respect to the density).

Let us consider the sequence of the direct problems (y(0) ∈ R—the set of real numbers):
1

c2(z)
utt(z, y, t) = Δz,yu−∇z,y ln ρ(z, y)∇z,yu, z > 0, t > 0, y ∈ R, (1)

u|t<0 ≡ 0, z > 0, y ∈ R, (2)

uz|z=0 = δ(t)δ(y− y(0)), t > 0, y ∈ R. (3)

The boundary condition (3) describes the source of the acoustic waves, which is located on
the surface z = 0 in point y0 and has the form of the Dirac delta function in the time domain.

The inverse problem consists in finding the functions c(z), ρ(z, y) using the additional
information on the surface z = 0:

u(+0, y, t) = f (y, t; y(0)), t > 0, y ∈ R. (4)

Now, in order to rewrite Equation (1), we consider the time travel coordinates:

x =
∫ z

0

dξ

c(ξ)

Then, the inverse problem (1)–(4) can be rewritten as follows:

utt = σ(x, y)
[

∂

∂x

(ux

σ

)
+ c2(x)

∂

∂y

(uy

σ

)]
; (5)

u|t<0 ≡ 0, x > 0, y ∈ R (6)

ux|x=0 = c0δ(t)δ(y− y(0)), t > 0, y ∈ R. (7)

u(+0, y, t) = f (y, t; y(0)), t > 0, y ∈ R (8)

Here function σ(x, y) = c(x)ρ(x, y) describes the acoustic impedance of the medium.
We will also assume that the value c0 = c(+0) is known, and the function ρ(0, y) is also
known and sufficiently smooth.

First, we tend to recover the function σ(x, y). In order to do that, we apply the Fourier
transform with respect to y(0) to the problem (5)–(8). For simplicity, we consider the case
when all the functions considered are 2π periodical with respect to y. Then, we obtain the
following sequence of ratios (here k ∈ Z):
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u(k)
tt = σ(x, y)

⎡⎣ ∂

∂x

(
u(k)

x
σ

)
+ c2(x)

∂

∂y

⎛⎝u(k)
y

σ

⎞⎠⎤⎦; (9)

u(k)|t<0 ≡ 0, x > 0, y ∈ (−π, π); (10)

u(k)|y=−π = u(k)|y=π ; (11)

u(k)
x |x=0 = c0eikyδ(t), t > 0, y ∈ R. (12)

u(k)(+0, y, t) = f (k)(y, t), t > 0, y ∈ R (13)

The problem is to recover σ(x, y) by the given f (k)(y, t), k ∈ Z set of integers. The problem
in (9)–(13) was considered in [14,16], in case of c(x) = 1. Using the same approach, based on
a combination of the projection method and a 2D analogue of the M.G. Krein approach, we
reduce the problem in (9)–(13) to the following set of systems of linear integral equations:

Φ(k)(x, t)− 1
2c0

∑
m∈Z

x∫
−x

f (k)m
′
(t− s)Φ(m)(x, s)ds =

1
2c0

π∫
−π

eiky

ρ(0, y)
dy. (14)

Here x < 0, t ∈ (−x, x), k ∈ Z, and function f (k)m is the Fourier coefficient of the
inverse problem’s data with respect to y:

f (k)(y, t) = ∑
m∈Z

f (k)m (t)eimy, t > 0; f (k)(y, t) = − f (k)(y,−t), t < 0.

For every given x, the Equation (14) is a system of linear integral equations of
the second kind with respect to the unknown functions Φ(k)(x, t). These functions are
connected with σ(x, y) by the values on characteristic lines t = x:

Φ(m)(x, x− 0) =
π∫

−π

eimy

2
√

σ(x, y)ρ(0, y)
dy.

Therefore, when Equation (14) is solved, the acoustic impedance σ(x, y) can be
calculated as follows:

σ(x, y) =
π2

ρ(0, y)

[
∑

m∈Z
Φ(m)(x, x− 0)e−imy

]−2
(15)

3. Obtaining the Density and the Speed of Sound

Now we suppose that the function σ(x, y) is known. However, the given acoustic
impedance is not enough to calculate the density or the speed of sound instantly. Therefore,
we consider another substitution. Let us consider the function v(x, y, t), which is connected
with u(x, y, t) as follows:

u(x, y, t) = c0

√
σ(x, y)
σ(0, y)

v(x, y, t).

Let us also suppose, that the function σ(x, y) satisfies the condition σx|x=0 = 0. Then,
the problem (9)–(12) can be rewritten as follows:

vtt = Δx,yv(x, y, t) + q(x, y)v; (16)

x > 0, y ∈ (−π, π), t > 0,

v(k)|t<0 ≡ 0, (17)

v(k)x |x=0 = δ(t)eiky. (18)
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The function q(x, y) has the following structure:

q(x, y) =
[

1
2

(σx

σ

)
x
− 1

4

(σx

σ

)2
]
+ c2(x)

[
1
2

(σy

σ

)
y
− 1

4

(σy

σ

)2]
. (19)

The condition (13) provides the data of the inverse problem:

v(k)(+0, y, t) =
1
c0

f (k)(y, t). (20)

The inverse problem (16)–(20) was extensively studied by S.I. Kabanikhin. We reduce
it to the 2D analogue of the I.M. Gelfand–B.M. Levitan equation [15,17,18]:

c0w(k)(x, y, t) +
x∫

−x
∑

m∈Z
f (k)m

′
(t− s)w(m)(x, y, s)ds =

= −1
2

[
f (k)

′
(y, t− x) + f (k)

′
(y, t + x)

]
, k ∈ Z. (21)

The connection between the function q(x, y) and the solution of Equation (21) has the
following form:

q(x, y) = −4
d

dx
w(0)(x, y, x− 0). (22)

Thus, the problem of recovering functions c(x) and ρ(x, y) for every x > 0 is reduced
to the following procedure:

1. Solve Equation (14) and use (15) to obtain σ(x, y);
2. Solve Equation (21) and use (22) to obtain q(x, y);
3. Use the representation (19) to calculate c(x), when q(x, y), σ(x, y) are known;

4. Recover the density ρ(x, y) = σ(x,y)
c(x) .

When c(x) is calculated, one can reverse the travel-time transform and return to the
original coordinates z =

∫ x
0 c(ξ)dξ.

However, we should mention that the proposed scheme requires that function

q2(x, y) =
(σy

σ

)
y
− 1

2

(σy

σ

)2

takes a non-zero value in at least one point y. Thus, the horizontal inhomogeneity of the
density is necessary. The case when both the coefficients depend only on the depth is
considered in the following section, when we have to consider a different form of equation
and propose a different approach of the parameter’s reconstruction.

4. One-Dimensional Acoustic Inverse Problem

The 1D formulation of the Equation (1) has the form:

1
c2(z)

∂2U
∂t2 =

∂2U
∂z2 +

∂ln(ρ)
∂z

∂U
∂z

.

When using the travel-time transform one can obtain:

∂2U
∂t2 =

∂2U
∂x2 −

σ′(x)
σ(x)

∂U
∂x

Where, as in the previous section, σ(x) = c(x)ρ(x). Thus, as we mentioned previously,
in this case one can only recover the acoustic impedance and not the speed and the density
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independently. Therefore, we alter the formulation of the inverse problem and consider it
as follows:

1
c2(z)

∂2U
∂t2 =

∂2U
∂z2 − ∂lnρ

∂z
∂U
∂z

− k2U; (23)

U(z, t; k)|t<0 ≡ 0; (24)
∂U
∂z
|z=0 = δ(t); (25)

U(z, t; k)|z=0 = fk(t). (26)

Here k �= 0 is some given parameter. The inverse problem (23)–(26) is to recover
functions ρ(z), c(z) by the given function f (t). Such formulation is connected with the
seismic inverse problem in the case of the horizontally layered structure and was considered
by A.S. Alekseev [6] in the spectral domain. The connection between the two mentioned
problems is based on the special form of the sounding wave and the Hankel transform.
Once again, in the travel-time coordinates, we consider the following formulation (for
simplicity we also assume that c(0) = 1):

∂2U
∂t2 =

∂2U
∂x2 −

σ′(x)
σ(x)

∂U
∂x

− k2c2U; (27)

U(x, t)|t<0 ≡ 0; (28)
∂U
∂x
|x=0 = δ(t); (29)

U(x, t)|x=0 = f (t). (30)

The inverse problem (27)–(30) can be considered in the same manner as in the previous
section. Yet, we use the 1D case to illustrate the different scheme of recovering two
parameters. While the first one is based on the solution of both M.G. Krein and I.M.
Gelfand–B.M. Levitan Equations (14) and (21), in this section, we show the possibility of
substituting the solution of (21) with some finite-difference ratios.

Once again, we start with the recovering of the acoustic impedance. The 1D analogue
of (14) gives us the M.G. Krein equation:

−2 f0(+0)V(x, t)−
∫ x

−x
V(x, s) f ′0(t− s)ds = 1, t ∈ (−x, x) (31)

The solution V(x, t) of Equation (31) is connected with the function σ(x) as follows:

σ(x) =
V(0, 0)

2V2(x, x)
. (32)

Thus, in order to recover σ(x), one has to use only the one component of the solution
V(x, t) of Equation (31). While this property can be used to increase the efficiency of
numerical algorithms [17], now we will assume that the solution of Equation (31) gives us
the full set of values of V(x, t), x > 0, t ∈ (−x, x).

Using the framework of [7,14], one can obtain that the function V(x, t) solves the
following system:

∂2V
∂t2 =

∂2V
∂x2 +

σ′(z)
σ(z)

∂V
∂x

− k2
∫ x

0
c2(ξ)σ(ξ)Vx(ξ, t)dξ, x > 0, t ∈ R; (33)

V|x=0 = 0; (34)

Vx|x=0 = δ(t). (35)
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Using the initial conditions (34) and (35), one can obtain that V(x, t) = 0 for |t| > x,
V(x,−t) = V(x, t), t > 0, and V(x, x − 0) = 1

2
√

σ(x)σ(0)
. Therefore, we replace (33)–(35)

with the problem:

∂2V
∂t2 =

∂2V
∂x2 +

σ′(z)
σ(z)

∂V
∂x

− k2
∫ x

0
c2(ξ)σ(ξ)Vx(ξ, t)dξ, x > 0, t ∈ (−x, x);

V|t=x = V|t=−x =
1

2
√

σ(x)σ(0)
.

Let us introduce the uniform grid tk = kh, xi = ih and consider the finite-difference
approximation of (33):

Vk−1
i − 2Vk

i + Vk+1
i

h2 =
Vk

i−1 − 2Vk
i + Vk

i+1
h2 +

Vk
i+1 −Vk

i−1
2h

σi+1 − σi
hσi

+ hk2
i

∑
s=1

c2
s Pk

s ; (36)

Here σi = σ(xi), c2
s = c2(xs), and

Pk
s = σ(xs)Vx(xs, tk) ≈ σs

Vk
s −Vk

s−1
h

Using (36) for t = 0, one can obtain:

hk2c2
i P0

i =
1
h2

(
V−1

i + V1
i −V0

i−1(1−
σi+1 − σi

2σi
)−V0

i−1(1 +
σi+1 − σi

2σi
)

)
− hk2

i−1

∑
s=1

c2
s P0

s . (37)

The ratio (37) provides the recurrent procedure, which allows us to reconstruct the
value of c2(x) for each depth by using values σi and Vk

i , obtained from (31) and (32).

5. Numerical Results

In this section, we consider the results of the numerical experiments of the reconstruction
of velocity and density of the medium in the 1D and 2D cases. We consider the synthetic
data obtained by solving the direct problem. For the 1D case, we consider the layered
structure of the medium corresponded to the Yurubcheno-Tokhomskoe gas field [45]. The
values of the parameters are presented in Table 1.

Table 1. The 1D model—parameters of the layers.

Depth, km 0.17 0.47 0.87 1.070 1.320 1.600 2.100 2.200 2.300

vs(z), km/s 0.9 1.7 3.1 3.5 2.7 3.2 2.85 3.4 2.8

ρ(z), 103 kg/m3 2.1 2.4 2.65 2.75 2.5 2.7 2.6 2.75 2.6

In order to solve the inverse problem, first we consider the solution of the 1D Krein
Equation (31) and calculate the function V(x, t). We solve the integral Equation (31)
by discretizing it and reducing it to the SLAE. If xM = Mh, then the system has the
following form:

(−2 f0 I − hÃ[M])V[M] = 1[M].

where I is an identity matrix, and

Ã[M] =

⎡⎢⎢⎢⎢⎢⎣
f0 f1 . . . f2M−1

f−1 f0 . . . f2M−2
. . . . . . . . . . . .

f−2M+2 . . . f0 f1
f−2M+1 . . . f−1 f0

⎤⎥⎥⎥⎥⎥⎦.
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Thus, the structure of Equation (31) allows to reduce it to the system with the Toeplitz
matrix. We solve the system by using an adaptation of the Levinson–Durbin algorithm. A
full description can be found in [16]. When the Krein equation is solved, we use (37) to
recover the speed of sound.

The results of the reconstruction are presented in Figure 1. We used the uniform mesh
with Nt = Nx = 200 during the reconstruction. As one can see, the layered structure is
fully recovered and the accuracy is acceptable.
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Figure 1. The 1D case—the result of the reconstruction in travel-time coordinates: (a) the
reconstruction of the acoustic impedance; (b) the reconstruction of the speed of sound; (c) the
reconstruction of the density of the medium.

We also reverse the travel-time transform and return to the original depth. The results
of the reconstruction of the speed of sound is presented in Figure 2.

We are now moving to the 2D case. We used synthetic data during the numerical
experiments, obtained from the solution of the direct problem (9)–(13) by using a combination
of the projection method and the finite-difference scheme. We should mention that we used
different grid parameters during the solution of the direct and inverse problem (the grid
parameters were chosen as Ndir = 250 and Ninv = 100 for the direct and inverse problems,
correspondingly). We also introduced random errors into the data, as discussed further.
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Figure 2. The 1D case—the result of the reconstruction of the speed of sound in the original coordinates.

First we consider the case of smooth parameters. The speed of sound was chosen as a
function, closed to linear (the red line in Figure 3), while the density varies with respect to
both variables and is presented in Figure 4.
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Figure 3. The 2D case—the speed of sound reconstruction.
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The important parameter of the 2D reconstruction is the number of sources and
receivers that describe the quantity of data available during the inverse problems solution.
The Figures 3 and 5 illustrate the dependence of the results on the amount of given
sources/receivers.
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Figure 4. The 2D smooth case—density of the medium (exact values).
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Figure 5. The 2D smooth case—density reconstruction: (a) 3 sources/receivers; (b) 7 sources/receivers;
(c) 11 sources/receivers.

We also present the result of computations for non-smooth parameters, illustrated by
Figure 6. However, due to the complex connection between impedance, speed of sound, and
the solution of Equation (21) provided by the formula (19), one should consider additional
regularizing procedures during the simultaneous solution of Equations (14) and (21). We
plan to study the restoration of parameters in the non-smooth case in future work. For
now we have focused on the problem of recovering the density of the medium, while we
suppose that the speed of sound is known.
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Figure 6. The 2D case—density reconstruction: (a) exact solution; (b) computed solution (five
sources/receivers); (c) computed solution (nine sources/receivers).

During the experiment we considered the model with two inclusions into the
homogeneous media (the smaller one is located beneath the larger one). As illustrated by
Figure 6, it is possible to locate both inclusions when using more data obtained.

The next experiment was to study the effects of the noise in the data on the solution of
the inverse problem. The noise was added to the data according to the formula:

f (k)err (y, t) = f (k)(y, t) + εα(y, t) f (k)(y, t),

where f (k)(y, t) is the value of computed data, α is the random variable, which is uniformly
distributed on (−1, 1), and ε is the level of noise. The results of computations with noised
data are presented in Figures 7 and 8.

The structure of the density of the model, used during experiments with noised
data, is presented in Figure 7a. It consists of three non-homogeneous layers and two
elliptic inclusions located between the layers. The next picture illustrates the result of the
reconstruction for the noiseless data. We should mention that due to the relative complexity
of the model, one has to use more data to obtain a relatively accurate solution. Depicted in
Figure 7c is the result of adding the noise to the data. One can see the distortion caused
by the noise, which becomes more observable with depth. One of the possible ways to
decrease the influence of noise is, as presented in the last part of Figure 7, to reduce the
number of sources and receivers used during the solution of the equations. In this case, the
number of sources can be considered as a regularization parameter.

In the last series of tests we tried to compare the proposed method, based on the G–L–K
approach, with the optimization approach. The latter method was broadly described
in [46,47] and based on the optimization of the misfit functional by gradient-based methods.
The direct and adjoint problem is solved on each iteration by using the finite volume
scheme. Since the mentioned method was considered for dealing with problems of
acoustic tomography, we chose another model for the last test. The model consists of
a round object with several inclusions. Figure 9 provides the comparative analysis of the
density reconstruction, while Table 2 describes the elapsed CPU time for both methods (the
computations were carried out on a laptop). We should also mention that a comparative
analysis of the G–L–K method and the optimal control method was carried out in [19], and
the comparison with boundary control was considere in [48,49].

Table 2. G–L–K method and optimization scheme—time–cost comparison.

Time (s) G–L–K Method Optimization

2 sources 5 sources 8 sources 11 sources 8 sources

Nx = 100 1.37 5.22 11.87 23.016 300

Nx = 200 5.17 20.81 52.17 89.25 1700
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Figure 7. The 2D case—density reconstruction (noised data): (a) exact solution; (b) computed solution
(15 sources/receivers, noiseless data); (c) computed solution (15 sources/receivers, 5% noise in the
data); (d) computed solution (7 sources/receivers, 5% noise in the data).
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Figure 8. The 2D case—the speed of sound reconstruction (noised data).
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Figure 9. The 2D case—the result of the density reconstruction: (a) exact solution; (b,c) solution
obtained by G–L–K method; ((b) 5 sources/receivers; (c) 11 sources/receivers); (d) solution obtained
by optimization approach (8 sources/receivers).

6. Discussion

In this paper, we considered the problem of recovering two parameters from the
acoustic equation when the speed of sound in the medium depends only on the depth but
the density is the function of two variables. As for the 1D case, we considered the variation
of the wave equation, which allows for the reconstruction of two parameters. We used the
direct method, based on the approach of G–L–K, to solve the mentioned inverse problems
and provided several numerical experiments to illustrate the results.

The proposed algorithm demonstrated acceptable accuracy during the synthetic tests.
The time cost of the method is also low, because the convolution type of the kernels
of the obtained equations allows to use a specific numerical algorithm, based on the
Toeplitz matrix inversion. The stability of the method is yet to be improved. One should
mention that the issue of stability becomes more complicated due to the fact that we
use the derivative of the data for the computation, and because the effects, provided by
the noise, tend to accumulate with increasing depth (which is caused by the structure
of Equations (14) and (21)). On the other hand, due to the over-determination of the
considered inverse problem, one can decrease the impact of the noise by using the quantity
of data as the regularization parameter.

We also have to mention that the comparison of the proposed approach and the
approach based on the optimization scheme was carried out only on a basic level. We
plan to study it in detail in future work. The efficiency of both methods depends on
several factors, such as the method of optimization of the functional, the method used
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for solving the integral Equations (14) and (21), the complexity of the governing equation,
etc. However, the main difference of the methods is based on their core structure—the
direct nature of the G–L–K approach requires less computation time, while the optimization
methods are more versatile and allow us to control the residual on each iteration.

We should mention, that the proposed ideas could be used for solving the inverse
problems, in cases when the speed of sound can be considered as a sum of the main trend
function, which depends only on the depth, and a small enough horizontal non-homogeneous
part. Indeed, let us consider the inverse problem:

1
c2(z, y)

utt(z, y, t) = ρ(z, y)div
(

grad u
ρ

)
, z > 0, t > 0, y ∈ R (38)

u|t<0 ≡ 0, x > 0, y ∈ R (39)

uz|z=0 = δ(t)δ(y− y(0)), t > 0, y ∈ R. (40)

u(+0, y, t) = f (y, t; y(0)), t > 0, y ∈ R (41)

Let us assume that
c(z, y) = c0(z) + c1(z, y).

In this case, one could linearize the direct problem’s operator and solve (38)–(41) in
two steps:

1. Use the G–L–K approach to recover c0(z) by solving (1)–(4);
2. Recover c1(z, y) by solving the linearized problem

1
c2

0(z)
u(1)

tt (z, y, t) = ρ(z, y)div

(
grad, u(1)

ρ

)
+ 2c1(z, y)Q(x, y, t), z > 0, t > 0, y ∈ R, (42)

u|t<0 ≡ 0, x > 0, y ∈ R (43)

uz|z=0 = 0, t > 0, y ∈ R. (44)

u(+0, y, t) =
[

f − f (0)
]
(y, t; y(0)), t > 0, y ∈ R (45)

Here the functions Q(x, y, t) = 1
c(z)div

(
grad u(0)

ρ

)
and f (0)(y, t; y(0)) = u(0)(+0, y, t)

depend only on the solution u(0)(x, y, t) of the direct problem (1)–(3) and can be calculated,
since the coefficients of the direct problem were found in the previous step.

Since the last formulated problem is linear, it can be solved by several methods,
direct or iterational. In that case that the approach of G–L–K is used in the first step and
provides the initial approximation of the parameters, this is improved in the next step of
data processing.
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Abstract: This paper is devoted to the study of the multi-dimensional integral transform with the
Fox H-function in the kernel in weighted spaces with integrable functions in the domain Rn

+ with
positive coordinates. Due to the generality of the Fox H-function, many special integral transforms
have the form studied in this paper, including operators with such kernels as generalized hypergeo-
metric functions, classical hypergeometric functions, Bessel and modified Bessel functions and so
on. Moreover, most important fractional integral operators, such as the Riemann–Liouville type, are
covered by the class under consideration. The mapping properties in Lebesgue-weighted spaces,
such as the boundedness, the range and the representations of the considered transformation, are
established. In special cases, it is applied to the specific integral transforms mentioned above. We use
a modern technique based on the extensive use of the Mellin transform and its properties. Moreover,
we generalize our own previous results from the one-dimensional case to the multi-dimensional one.
The multi-dimensional case is more complex and needs more delicate techniques.

Keywords: multi-dimensional integral transform; Fox H-function; Melling transform; weighted
space; fractional integrals and derivatives

MSC: 44A30; 33C60; 35A22

1. Introduction

We consider the multi-dimensional H-integral transform ([1], Formula (43)):

(H f )(x) =
∞∫

0

Hm, n
p, q

[
xt

∣∣∣∣∣ (ai, αi)1,p
(bj, βj)1,q

]
f (t)dt, x > 0; (1)

where (see [1,2], ch. 28; [3], ch. 1) x = (x1, x2, . . . , xn) ∈ Rn; t = (t1, t2, . . . , tn) ∈
Rn, Rn is the n-dimensional Euclidean space; x · t =

n
∑

n=1
xntn denotes their scalar prod-

uct; in particular, x · 1 =
n
∑

n=1
xn for 1 = (1, 1, . . . , 1). The inequality x > t means that

x1 > t1, . . . , xn > tn, and inequalities ≥, <, ≤ have similar meanings;
∞∫
0

=
∞∫
0

∞∫
0

· · ·
∞∫
0

; by

N = {1, 2, . . . }, we denote the set of natural numbers, N0 = N
⋃ {0}, Nn

0 = N0 × · · · ×N0;
k = (k1, k2, . . . , kn) ∈ Nn

0 (ki ∈ N0, i = 1, 2, . . . , n) is a multi-index with k! = k1! · · · kn!
and |k| = k1 + · · · + kn; Rn

+ = {x ∈ Rn, x > 0}; for κ = (κ1, κ2, . . . , κn) ∈ Rn
+ Dκ =

∂|κ|
(∂x1)

κ1 ···(∂xn)κn ; dt = dt1 · · · dtn; tκ = tκ1 tκ2 · · · tκn ; f (t) = f (t1, t2, . . . , tn); Cn (n ∈ N) is the
n-dimensional space of n complex numbers z = (z1, z2, · · · , zn) (zj ∈ C, j = 1, 2, · · · , n);
λ = (λ1, λ2, . . . , λn) ∈ Cn; h = (h1, h2, . . . , hn) ∈ Rn

+; d
dx = d

dx1·dx2···dxn
;

Mathematics 2024, 12, 1829. https://doi.org/10.3390/math12121829 https://www.mdpi.com/journal/mathematics310



Mathematics 2024, 12, 1829

m = (m1, m2, . . . , mn) ∈ Nn
0 and m1 = m2 = · · · = mn; n = (n1, n2, . . . , nn) ∈

Nn
0 and n1 = n2 = · · · = nn; p = (p1, p2, . . . , pn) ∈ Nn

0 and p1 = p2 = · · · = pn;
q = (q1, q2, . . . , qn) ∈ Nn

0 and q1 = q2 = · · · = qn (0 ≤ m ≤ q, 0 ≤ n ≤ p);
ai = (ai1 , ai2 , . . . , ain), 1 ≤ i ≤ p, ai1 , ai2 , . . . , ain ∈ C (i1 = 1, 2, . . . , p1; . . . ; in =

1, 2, . . . , pn);
bj = (bj1 , bj2 , . . . , bjn), 1 ≤ j ≤ q, bj1 , bj2 , . . . , bjn ∈ C (j1 = 1, 2, . . . , q1; . . . ; jn =

1, 2, . . . , qn);
αi = (αi1 , αi2 , . . . , αin), 1 ≤ i ≤ p, αi1 , αi2 , . . . , αin ∈ R

+
1 (i1 = 1, 2, . . . , p1; . . . ; in =

1, 2, . . . , pn);
βj = (β j1 , β j2 , . . . , β jn), 1 ≤ j ≤ q, β j1 , β j2 , . . . , β jn ∈ R

+
1 (j1 = 1, 2, . . . , q1; . . . ; jn =

1, 2, . . . , qn).
The function in the kernel of (1)

Hm, n
p, q

[
xt

∣∣∣∣∣ (ai, αi)1,p
(bj, βj)1,q

]
=

n

∏
k=1

Hmk , nk
pk , qk

[
xktk

∣∣∣∣ (aik , αik )1,pk
(bjk , β jk )1,qk

]
(2)

is the product of H-functions Hm, n
p, q [z]:

Hm,n
p, q [z] ≡ Hm,n

p,q

[
z

∣∣∣∣∣ (ai, αi)1,p

(bj, β j)1,q

]
=

1
2πi

∫
L

Hm,n
p,q (s)z

−sds, z �= 0, (3)

where

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai, αi)1,p

(bj, β j)1,q
|s
]
=

m
∏
j=1

Γ(bj + β js)
n
∏
i=1

Γ(1− ai − αis)

p
∏

i=n+1
Γ(ai + αis)

q
∏

j=m+1
Γ(1− bj − β js)

. (4)

In the representation (3), L is a specifically chosen infinite contour, and the empty products,
if any, are taken to be one.

The H-function (3) is the most general of the known special functions and includes, as
special cases, elementary functions and special functions of the hypergeometric and Bessel
type, as well as the Meyer G-function. One may find its properties, for example, in the
books by Mathai and Saxena ([4], Ch. 2); Srivastava, Gupta and Goyal ([5], ch. 1); Prud-
nikov, Brychkov and Marichev ([6], Section 8.3); Kiryakova [7]; and Kilbas and Saigo ([8],
Ch.1–Ch.4).

Due to the generality of the Fox H-function, many special integral transforms have the
form studied in this paper, including operators with such kernels as generalized hypergeo-
metric functions, classical hypergeometric functions, Bessel and modified Bessel functions
and so on. Moreover, most important fractional integral operators, such as the Riemann–
Liouville type, are covered by the class under consideration. The mapping properties in
Lebesgue-weighted spaces, such as the boundedness, the range and the representations of
the considered transformation, are established. In special cases, it is applied to the specific
integral transforms mentioned above. We use a modern technique based on the extensive
use of the Mellin transform and its properties.

Our paper is devoted to the study of the H-transform (1) in Lebesgue-type weighted
spaces Lν, 2 of functions f (x) = f (x1, x2, . . . , xn) on Rn

+, such that

‖ f ‖ν,2 = {
∫
R1
+

x2·νn−1
n {· · · {

∫
R1
+

x2·ν2·−1
2 ×

[
∫
R1
+

x2·ν1−1
1 | f (x1, . . . , xn)|2dx1]dx2} · · · }dxn}1/2 < ∞,

ν = (ν1, ν2, . . . , νn) ∈ Rn, ν1 = ν2 = · · · = νn, and 2 = (2, 2, . . . , 2).
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In this paper, we apply some our previous results to obtain mapping properties such
as the boundedness, the range and the representations for the H-transform (1).

The research results for transformation (1) generalize those obtained earlier for the
corresponding one-dimensional transformation (see [8], Ch. 3):

(H f )(x) =
∞∫

0

Hm, n
p, q

[
xt| (ai, αi)1,p

(bj, β j)1,q

]
f (t)dt, x > 0; (5)

in the space Lν, 2 of Lebesgue measurable functions f on R1
+ = (0, ∞), such that∫ ∞

0
|tν f (t)|2 dt

t
< ∞ (ν ∈ R).

The H-transform (5) generalizes many integral transforms: transforms with the Mei-
jer G-function, Laplace and Hankel transforms, transforms with Gauss hypergeometric
functions and transforms with other hypergeometric and Bessel functions in the kernels.
One may find a survey of results and a bibliography in this field for the one-dimensional
case in a monograph ([8], Sections 6–8). Note that a very important class of transforms
under consideration is the class of Buschman–Erdélyi operators; they have many impor-
tant properties and applications. The topic of this paper is also strongly connected with
transmutation theory, cf. [9].

Note that, in transmutation theory applied to differential equations, its solutions
are represented as integral transforms; in this way, solutions of perturbed differential
equations are represented via more simple solutions of unperturbed equations. Through
the results of this paper and similar ones, such a representation may also be accompanied
by norm estimates in classical functional spaces. It helps to estimate the norms of perturbed
equations and analyze their smoothness or singularity conditions, cf. [9].

2. Preliminaries

The properties of the H-function Hm, n
p, q [z] (3) depend on the following numbers ([8],

Formulas 1.1.7–1.1.15):

a∗ =
n

∑
i=1

αi −
p

∑
i=n+1

αi +
m

∑
j=1

β j −
q

∑
j=m+1

β j; Δ =
q

∑
j=1

β j −
p

∑
i=1

αi; (6)

δ =
p

∏
i=1

α
−αi
i

q

∏
j=1

β
β j
j ; (7)

μ =
q

∑
j=1

bj −
p

∑
i=1

ai +
p− q

2
; (8)

a∗1 =
m

∑
j=1

β j −
p

∑
i=n+1

αi; a∗2 =
n

∑
i=1

αi −
q

∑
j=m+1

β j; a∗1 + a∗2 = a∗, a∗1 − a∗2 = Δ; (9)

ξ =
m

∑
j=1

bj −
q

∑
j=m+1

bj +
n

∑
i=1

ai −
p

∑
i=n+1

ai; (10)

c∗ = m + n− p + q
2

. (11)

The empty sum in (6), (8), (9), (10) and the empty product in (7), if they occur, are taken to
be zero and one, respectively.

The following assertions hold.
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Lemma 1 ([8], Lemma 1.2). For σ, t ∈ R, the following estimate holds

|Hm,n
p, q (σ + it)| ∼ C|t|Δσ+Re(μ) exp−π[|t|a∗+Im(ξ)sign(t)]/2 (|t| → ∞) (12)

uniformly in σ on any bounded interval in R, where

C = (2π)c∗ exp−c∗−Δσ−Re(μ) δσ
p

∏
i=1

α
1/2−Re(ai)
i

q

∏
j=1

β
Re(bj)−1/2
j (13)

and ξ and c∗ are defined in (10) and (11).

Theorem 1 ([8],Theorem 3.4). Let α < ζ < β and either of the conditions a∗ > 0 or a∗ = 0 and
Δζ + Re(μ) < −1 hold. Then, for x > 0, except for x = δ when a∗ = 0 and Δ = 0, the relation

Hm,n
p,q

[
x
∣∣∣∣ (ap, αp)

(bp, βp)

]
=

1
2πi

γ+i∞∫
γ−i∞

Hm,n
p, q

[
(ap, αp)

(bp, βp)
|t
]

x−tdt (14)

holds and the estimate

|Hm,n
p,q

[
x
∣∣∣∣ (ap, αp)

(bp, βp)

]
| ≤ Aζ x−ζ (15)

is valid, where Aζ is a positive constant depending only on ζ.

A set of bounded linear operators acting from a Banach space X into a Banach space Y
is denoted by [X, Y].

The multi-dimensional Mellin integral transform (M f )(x) of function
f (x) = f (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) ∈ Rn

+, is determined by the formula

(M f )(s) =
∞∫

0

f (t)ts−1dt, Re(s) = ν, (16)

s = (s1, s2, . . . , sn) ∈ Cn. The inverse multi-dimensional Mellin transform has the form

(M−1g)(x) =
1

(2πi)n

∫ γ1+i∞

γ1−i∞
· · ·

∫ γn+i∞

γn−i∞
x−sg(s)ds, (17)

x ∈ Rn
+, γj = Re(sj) (j = 1, · · · , n). The theory of multi-dimensional integral transforma-

tions (16) and (17) can be recognized, for example, in books ([3], Ch. 1; [10,11]).
We will need the following spaces. As usual, by Lp(R

n), we understand the space of
functions f (x) = f (x1, x2, . . . , xn), for which

‖ f ‖p =

{∫
Rn
| f (x)|pdx

}1/p
< ∞, p = (p1, p2, . . . , pn), 1 ≤ p < ∞.

If p = ∞, then the space L∞(Rn) is defined as the collection of all measurable functions
with a finite norm

‖ f ‖L∞(Rn) = esssup| f (x)|,
where esssup | f (x)| is the essential supremum of the function | f (x)| [12].

We need the following properties of the Mellin transform (16).

Lemma 2 ([1], Lemma 1). Let ν = (ν1, ν2, . . . , νn) ∈ Rn, ν1 = ν2 = · · · = νn. The following
properties of the Mellin transform (16) are valid.

(a) Transformation (16) is a unitary mapping of the space Lν, 2 onto the space L2(R
n).
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(b) For f ∈ Lν, 2, the following holds

f (x) =
1

(2πi)n lim
R→∞

∫ ν1+iR

ν1−iR

∫ ν2+iR

ν2−iR
· · ·

∫ νn+iR

νn−iR
(M f )(s)x−sds, (18)

where the limit is taken in the topology of the space Lν, 2 and where

if F(ν + it) =
n
∏
i=1

Fj(νj + itj), Fj(νj + itj) ∈ L1(−R, R), j = 1, 2, . . . , n, then

∫ ν1+iR

ν1−iR

∫ ν2+iR

ν2−iR
· · ·

∫ νn+iR

νn−iR
F(s)ds = in

∫ R

−R

∫ R

−R
· · ·

∫ R

−R
F(ν + it)dt.

(c) For functions f ∈ Lν, 2 and g ∈ L1−ν, 2, the following equality holds

∞∫
0

f (x)g(x)dx =
1

(2πi)n

∫ ν+i∞

ν−i∞
(M f )(s)(Mg)(1− s)x−sds. (19)

In [1], we consider the general multi-dimensional integral transform ([1], Formula (1))

(
K f

)
(x) = hx1−(λ+1)/h d

dx
x(λ+1)/h

∞∫
0

k[xt] f (t)dt (x > 0), (20)

where the function k[xt] in the kernel of (20) is the product of one type of special function:

k[xt] = k[x1t1] · k[x2t2] · · · k[xntn].

Transformation (20) satisfies the following theorem.

Theorem 2 ([1], Theorem 1). Let ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = · · · = νn),
h = (h1, h2, . . . , hn) ∈ Rn

+, and λ = (λ1, λ2, . . . , λn) ∈ Cn.
(a) If the transformation operator (20) satisfies the condition K ∈ [Lν,2,L1−ν,2], then the kernel

on the right side of (20) k ∈ L1−ν,2. If we set, for νj �= 1− (Re(λj) + 1)/hj, j = 1, 2, . . . , n,

(Mk)(1− ν + it) =
θ(t)

λ + 1− (1− ν + it)h

=
n

∏
j=1

θ(tj)

λj + 1− (1− νj + itj)hj
(21)

almost everywhere, then function θ ∈ L∞(Rn), and, for f ∈ Lν,2, the relation

(MK f )(1− ν + it) = θ(t)(M f )(ν− it) (22)

holds almost everywhere.
(b) Conversely, for a given function θ ∈ L∞(Rn), there is a transform K ∈ [Lν,2,L1−ν,2] so

that the equality (22) holds for f ∈ Lν,2. Moreover, if νj �= 1− (Re(λj) + 1)/hj, j = 1, 2, . . . , n,
then transformation K f (20) is representable in the form (20) with the kernel k defined by (21).

(c) Based on statement (a) or (b) with θ �= 0, K is a one-to-one transformation from the space
Lν,2 into the space L1−ν,2, and if, in addition, 1/θ ∈ L∞(Rn), then K maps Lν,2 onto L1−ν,2,
and, for functions f , g ∈ Lν,2, the relation

∞∫
0

f (x)(Kg)(x)dx =

∞∫
0

(K f )(x)g(x)dx (23)

314



Mathematics 2024, 12, 1829

is valid.

3. Lν,2-Theory for the Multi-Dimensional H-Transform

To formulate the results for the transform H f (1), we need the following constants
([1]), which are analogous for the one-dimensional case defined via the parameters of the
H-function (3) ([8], (3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.10)).

Let α̃ = (α̃1, α̃2, . . . , α̃n) and β̃ = (β̃1, β̃2, . . . , β̃n), where

α̃1 =

{− min
1≤j1≤m1

[Re(bj1
)

β j1

]
, m1 > 0,

−∞, m1 = 0,
β̃1 =

{
min

1≤i1≤n1

[ 1−Re(ai1
)

αi1

]
, n1 > 0,

∞, n1 = 0,

α̃2 =

{− min
1≤j2≤m2

[Re(bj2 )

β j2

]
, m2 > 0,

−∞, m2 = 0,
β̃2 =

{
min

1≤i2≤n2

[ 1−Re(ai2 )

αi2

]
, n2 > 0,

∞, n2 = 0,

and

α̃n =

{− min
1≤jn≤mn

[
Re(bjn )

β jn

]
, mn > 0,

−∞, m2 = 0,
β̃n =

{
min

1≤in≤nn

[
1−Re(ain )

αin

]
, nn > 0,

∞, nn = 0;
(24)

and let a∗ = (a∗1, a∗2, . . . , a∗n), Δ = (Δ1, Δ2, . . . , Δn) and

a∗1 =
n1

∑
i=1

αi1 −
p1

∑
i=n1+1

αi1 +
m1

∑
j=1

β j1 −
q1

∑
j=m1+1

β j1 , Δ1 =
q1

∑
j=1

β j1 −
p1

∑
i=1

αi1 ,

a∗2 =
n2

∑
i=1

αi2 −
p2

∑
i=n2+1

αi2 +
m2

∑
j=1

β j2 −
q2

∑
j=m1+1

β j2 , Δ2 =
q2

∑
j=1

β j2 −
p2

∑
i=1

αi2 ,

and

a∗n =
nn

∑
i=1

αin −
pn

∑
i=nn+1

αin +
mn

∑
j=1

β jn −
qn

∑
j=mn+1

β jn ; Δn =
qn

∑
j=1

β jn −
pn

∑
i=1

αin ; (25)

and let μ = (μ1, μ2, . . . , μn) and

μ1 =
q1

∑
j=1

bj1 −
p1

∑
i=1

ai1 +
p1 − q1

2
, μ2 =

q2

∑
j=1

bj2 −
p2

∑
i=1

ai2 +
p2 − q2

2
, . . . ,

μn =
qn

∑
j=1

bjn −
pn

∑
i=1

ain +
pn − qn

2
; (26)

The exceptional set EH of a function Hm,n
p,q (s)

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai, αi)1,p

(bj, βj)1,q

∣∣∣∣∣s
]
=

n

∏
k=1

Hmk ,nk
pk , qk

[
(aik , αik )1,pk

(bjk , β jk )1,qk

∣∣∣∣∣s
]

, (27)

is called a set of vectors ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = · · · = νn), such that
α̃k < 1− νk < β̃k, k = 1, 2, . . . n, where the parameters α̃k, β̃k(k = 1, 2, . . . , n) are defined by
Formula (24), and functions Hmk ,nk

pk , qk (sk) (k = 1, 2, . . . , n) of the view (4) have zeros on lines
Re(sk) < 1− νk (k = 1, 2, . . . , n), respectively.

Applying the multi-dimensional Mellin transformation (16) to (1), formally, we obtain

(MH f )(s) = Hm,n
p,q

[
(ai, αi)1,p

(bj, β j)1,q
|s
]
(M f )(1− s). (28)
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Theorem 3. Suppose that

α̃k < 1− νk < β̃k; νk = νl , k �= l (k, l = 1, 2, . . . , n); (29)

and that either of the conditions

a∗k > 0 (k = 1, 2, . . . , n); (30)

or
a∗k = 0, Δk[1− νk] + Re(μk) ≤ 0 (k = 1, 2, . . . , n) (31)

holds. Then, we have the following results.
(a) There exists a one-to-one transform H ∈ [Lν,2, L1−ν,2] so that the relation (28) holds for

Re(s) = 1− ν and f ∈ Lν,2.
If a∗k = 0, Δk[1− νk] +Re(μk) = 0 (k = 1, 2, . . . , n), and ν does not belong to an exceptional

set EH, then the operator H maps Lν,2 onto L1−ν,2.
(b) If f ∈ Lν,2 and g ∈ Lν,2, then, for H, we have the relation (23)

∞∫
0

f (x)
(
Hg

)
(x)dx =

∞∫
0

(
H f

)
(x)g(x)dx. (32)

(c) Let f ∈ Lν,2, λ = (λ1, λ2, . . . , λn) ∈ Cn , h = (h1, h2, . . . , hn) ∈ Rn
+. If Re(λ) >

(1− ν)h− 1, then H f is given by the formula(
H f

)
(x) = hx1−(λ+1)/h

× d

dx
x(λ+1)/h

∞∫
0

Hm,n+1
p+1,q+1

[
xt

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ− 1, h)

]
f (t)dt. (33)

When Re(λ) < (1− ν)h− 1, H f is given by(
H f

)
(x) = −hx1−(λ+1)/h

× d

dx
x(λ+1)/h

∞∫
0

Hm+1,n
p+1,q+1

[
xt

∣∣∣∣∣ (ai, αi)1,p, (−λ, h)

(−λ− 1, h), (bj, β j)1,q

]
f (t)dt. (34)

(d) The transform H is independent of ν in the sense that, for ν and ν̃ satisfying the
assumptions (29), and either (30) or (31), and for the respective transforms H on Lν,2 and H̃
on Lν̃,2 given in (28), then H f = H̃ f for f ∈ Lν,2

⋂
Lν̃,2.

Proof. Let ω(t) = H(1 − ν + it)=
n
∏

k=1
H(1 − νk + itk). By virtue of (4), (24), and the

conditions (29), the functionsHm1,n1
p1, q1 (s1),Hm2,n2

p2, q2 (s2), . . . ,Hmn ,nn
pn , qn (sn) are analytic in the strips

α̃1 < 1− ν1 < β̃1, . . . , α̃n < 1− νn < β̃n, ν1 = ν2 = · · · = νn, respectively. In accordance
with (12) and conditions (30) or (31), ω(t) = O(1) as |t| → ∞. Therefore, ω ∈ L∞(Rn),
and hence we obtain from Theorem 2 (b) that there exists a transform H ∈[Lν, 2,L1−ν, 2]
such that

(MH f )(s)(1− ν + it) = H(1− ν + it)(M f )(ν− it)

for f ∈ Lν, 2. This means that the equality (28) holds when condition Re(s) = 1− ν is

met. Since the functions Hm1,n1
p1, q1 (s1), Hm2,n2

p2, q2 (s2), . . . ,Hmn ,nn
pn , qn (sn) are analytic in the strips

α̃1 < 1 − ν1 < β̃1, . . . , α̃n < 1 − νn < β̃n, ν1 = ν2 = · · · = νn, respectively, and have
isolated zeros, then ω(t) �= 0 almost everywhere. Thus, it follows from Theorem 2 (c)
that H ∈ [Lν, 2,L1−ν, 2] is a one-to-one transform. If a∗k = 0, Δk(1 − νk) + Re(μk) = 0
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(k = 1, 2, . . . n) and ν is not in the exceptional set EH of H, then 1/ω ∈ L∞(Rn), and, from
Theorem 2 (c), we have that H transforms the space Lν, 2 onto L1−ν, 2. This completes the
proof of the statement (a) of the theorem.

According to the statement of the Theorem 2 (c), if f ∈ Lν, 2 and g ∈ Lν, 2, then the
relation (32) is valid. Thus, the assertion (b) is true.

Let us prove the validity of the representation (33). Suppose that f ∈ Lν, 2 and
Re(λ) > (1− ν)h− 1. To show the relation (33), it is sufficient to calculate the kernel k in
the transform (20) for such λ. From (21), we obtain the equality

(Mk)(1− ν + it) = H(1− ν + it)
1

λ + 1− (1− ν + it)h

=
n

∏
k=1

H(1− νk + itk)
1

λk + 1− (1− νk + itk)hk

or, for Re(s) = 1− ν,

(Mk)(s) = H(s)
1

λ + 1− hs
=

n

∏
k=1

H(sk)
1

λk + 1− hksk
. (35)

Then, from (18) and (35), we obtain the expression for the kernel k

k(x) =
n

∏
k=1

k(xk) =
1

(2πi)n

n

∏
k=1

lim
R→∞

∫ 1−νk+iR

1−νk−iR
(Mk)(sk)x−sk

k dsk

=
1

(2πi)n

n

∏
k=1

lim
R→∞

∫ 1−νk+iR

1−νk−iR
Hk(sk)

1
λk + 1− hksk

x−sk
k dsk, (36)

where the limits are taken in the topology of Lν,2.
According to (4) and (27), we have

H(s)
1

λ + 1− hs
= H(s)

Γ(1− (−λ)− hs)

Γ(1− (−λ− 1)− hs)

= Hm,n+1
p+1, q+1

[
(−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ− 1, h)
|s
]

=
n

∏
k=1

Hmk ,nk+1
pk+1, qk+1

[
(−λk, hk), (aik , αik )1,pk

(bjk , β jk )1,qk , (−λk − 1, hk)
|sk

]
. (37)

Denote by α̂k, β̂k (k = 1, 2, . . . , n) the constants α̃k, β̃k (k = 1, 2, . . . , n) in (24), respec-
tively; by ã∗k (k = 1, 2, . . . , n), the constants a∗k (k = 1, 2, . . . , n); and by Δ̃k (k = 1, 2, . . . , n),
the constants Δk (k = 1, 2, . . . , n) in (25), respectively; and by μ̃k (k = 1, 2, . . . , n), the
constants μk (k = 1, 2, . . . , n) in (26), respectively, for Hmk ,nk+1

pk+1, qk+1 (k = 1, 2, . . . , n) in (37).

Then, α̂k = α̃k (k = 1, 2, . . . , n); β̂k = min[β̃k, (1 + Re(λk))/hk] (k = 1, 2, . . . , n); ã∗k = a∗k
(k = 1, 2, . . . , n); Δ̃k = Δk (k = 1, 2, . . . , n); μ̃k = μk − 1 (k = 1, 2, . . . , n). Thus, it fol-
lows that

(a′) α̂k < 1− νk < β̂i (k = 1, 2, . . . , n);
from Re(λ) > (1− ν)h− 1, and either of the conditions
(b′) ã∗k > 0 (k = 1, 2, . . . , n);
(c′) ã∗k = 0 (k = 1, 2, . . . , n); or
Δ̃k(1− νk) + Re(μ̃k) = Δk(1− νk) + Re(μk)− 1 ≤ −1
(k = 1, 2, . . . , n) holds. Applying Theorem 1 for x > 0, then the equality
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Hm,n+1
p+1,q+1

[
xt

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ− 1, h)

]

=
n

∏
k=1

Hmk ,nk+1
pk+1, qk+1

[
xk

∣∣∣∣∣ (−λk, hk), (aik , αik )1,pk

(bjk , β jk )1,qk , (−λk − 1, hk)

]

=
1

(2πi)n

n

∏
k=1

lim
R→∞

∫ 1−νk+iR

1−νk−iR
Hk(sk)

1
λk + 1− hksk

x−sk
k dsk (38)

holds almost everywhere. Then, (36) and (38) lead to the fact that the kernel k is given by

k(x) = Hm,n+1
p+1,q+1

[
x

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ− 1, h)

]
,

and (33) is proven.
The representation (34) is proven similarly to (33). We use the equality

H(s)
1

λ + 1− hs
= −H(s)

Γ(hs− λ− 1)
Γ(hs− λ)

= −Hm+1,n
p+1, q+1

[
(ai, αi)1,p, (−λ, h)

(−λ− 1, h), (bj, β j)1,q
|s
]

= −
n

∏
k=1

Hmk+1,nk
pk+1, qk+1

[
(aik , αik )1,pk , (−λk, hk)

(−λk − 1, hk), (bjk , β jk )1,qk

|sk

]
. (39)

instead of (37). Thus, the statement (c) is proven.

Let us prove (d). If f ∈ Lν, 2
⋂
Lν̃, 2 and Re(λ) > max[(1− ν)h− 1, (1− ν̃)h− 1] or

Re(λ) < min[(1− ν)h− 1, (1− ν̃)h− 1], then both transforms H f and H̃ f are given in (33)
or (34), respectively, which shows that they are independent of ν.

Corollary 1. Suppose that α̃k < β̃k (k = 1, 2, . . . , n), and that one of the following conditions holds:
(a) a∗k > 0 (k = 1, 2, . . . , n);
(b) a∗k = 0 (k = 1, 2, . . . , n); Δk > 0 (k = 1, 2, . . . , n); and

α̃k < −Re(μk)
Δk

(k = 1, 2, . . . , n);
(c) a∗k = 0; Δk < 0 (k = 1, 2, . . . , n); and

β̃k > −Re(μk)
Δk

(k = 1, 2, . . . , n);
(d) a∗k = 0 (k = 1, 2, . . . , n); Δk = 0, (k = 1, 2, . . . , n); and
Re(μk) ≤ 0 (k = 1, 2, . . . , n).
Then the H-transform (1) can be defined on Lν, 2 with
α̃k < νk < βk (k = 1, 2, . . . , n); ν1 = ν2 = · · · = νn.

Proof. When 1 − β̃k < νk < 1 − α̃k (k = 1, 2, . . . , n), by Theorem 3, if either a∗k > 0
(k = 1, 2, . . . , n) or a∗k = 0 (k = 1, 2, . . . , n), Δk(1 − νk)Re(μk) ≤ 0 (k = 1, 2, . . . , n) is
satisfied, then the H-transform can be defined on Lν, 2, which is also valid when α̃k < νk < β̃k
(k = 1, 2, . . . , n). Hence, the corollary is clear in cases (a) and (d). When Δk > 0 and
α̃k < −Re(μk)

Δk
(k = 1, 2, . . . , n), the assumption α̃k < β̃k (k = 1, 2, . . . , n) yields that there

exists a vector ν = (ν1, ν2, . . . , νn) such that α̃k < 1− νk ≤ −Re(μk)
Δk

(k = 1, 2, . . . , n), and

αk < 1− νk ≤ −Re(μk)
Δk

(k = 1, 2, . . . , n), which are required. For the case (c), the situation is

similar, i.e., there exists ν of the forms β̃k > 1− νk ≥ −Re(μk)
Δk

(k = 1, 2, . . . , n) and α̃k < 1− νk

(k = 1, 2, . . . , n). Thus, the proof is completed.
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4. Conclusions

The multi-dimensional integral transformation with the Fox H-function is studied.
Conditions are obtained for the boundedness and one-to-oneness of the operator of such a
transformation from one Lebesgue-type weighted space of functions to another, and the
analogues of the formula for integration by parts are proven. For the transformation under
consideration, various integral representations are established. The results generalize those
obtained earlier for the corresponding one-dimensional integral transform.

Due to the generality of the Fox H-function, many special integral transforms have the
form studied in this paper, including operators with such kernels as generalized hypergeo-
metric functions, classical hypergeometric functions, Bessel and modified Bessel functions
and so on. Moreover, most important fractional integral operators, such as the Riemann–
Liouville type, are covered by the class under consideration. The mapping properties in
Lebesgue-weighted spaces, such as the boundedness, the range and the representations of
the considered transformation, are established. In special cases, it is applied to the specific
integral transforms mentioned above. We use a modern technique based on the extensive
use of the Mellin transform and its properties. Moreover, we generalize our own previous
results from the one-dimensional case to the multi-dimensional one. The multi-dimensional
case is more complex and needs more delicate techniques.
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Abstract: In this paper, we study inverse nodal problems for a boundary value problem. A uniqueness
result for the potential function and a reconstruction method are obtained. By using the nodal points
as input data, we compute the approximation solution of the potential function for the boundary
value problem by the first kind Chebyshev wavelet method. Two numerical examples show that the
first kind Chebyshev wavelet method for solving the inverse nodal problems for the boundary value
problem is valid.

Keywords: inverse nodal problem; boundary value problem; potential function; Chebyshev wavelet

MSC: 34A55; 47E05

1. Introduction

We are concerned with the inverse nodal problem for the boundary value problem
(BVP) L := L(q, h, a) defined by

ly := −y′′ + q(x)y = ρ2y, 0 < x < 1, (1)

associated with boundary conditions:

y′(0, ρ)− hy(0, ρ) = 0, (2)

ay′(1, ρ) + ρy(1, ρ) = 0, (3)

where a �= 0, a, h ∈ R, ρ is the spectral parameter, q(x) is a real-valued function and
q ∈ L2[0, 1].

Differential operators with boundary conditions having the spectral parameter fre-
quently arise in nuclear physics, mathematics, quantum mechanics (see [1–9] and the
references therein). In 2010, using the method of spectral mapping, Freiling and Yurko [1]
studied three inverse problems for the Sturm–Liouville equation with boundary conditions
polynomially dependent on the spectral parameter, and provided procedures to reconstruct
this operator. In 1965, Li [2] showed that only one spectrum is sufficient to determine the
potential function q(x) of BVP L(q, ∞, a) on [0, 1] by the quantum theory of scattering and
presented an example to show that Li’s theorem does not hold for a = 0.

The classical Sturm–Liouville operator L0 := L(q, h, H) is of the form (see [10]):⎧⎨⎩
ly := −y′′ + q(x)y = λy, 0 < x < 1,
y′(0, λ)− hy(0, λ) = 0,
y′(1, λ) + Hy(1, λ) = 0,

where h and q(x) are defined the above, λ is the spectral parameter, H ∈ R. Borg [3]
showed that two spectra with one common boundary condition and another differential

Mathematics 2022, 10, 4204. https://doi.org/10.3390/math10224204 https://www.mdpi.com/journal/mathematics320
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boundary conditions are sufficient to determine the potential on [0, 1] together with the
coefficients of the boundary conditions. Although there is only a little difference between
operators L and L0, many features are unlike, for example, Li’s theorem for L and Borg’s
theorem for L0. However, Hochstadt [4] studied the relationship between Li’s theorem and
Borg’s theorem and improved the Li’s theorem. He proved that one spectrum of operator L
is equivalent to two spectra of operators L0(q, ∞, 0) and L0(q, ∞, ∞).

The inverse nodal problem for differential operators is to recover the potential function
and coefficients of boundary conditions by using its nodal data (see [11–13]), which was
firstly studied by McLaughlin [11], Shen [12], Hald and McLaughlin [13]. Later on, there
have been a lot of study of recovering the potential function by less nodal data. The
uniqueness theorems and the reconstruction formulae were given by partial nodal data,
for example, X.F. Yang [14]; Cheng, Law, and Tsay [15]; Guo and Wei [16]; C.-F. Yang [17];
Buterin and Shieh [18,19]; Wang and Yurko [20]; Wang, Shieh, and Wei [21]; and Wei, Miao,
Ge, and Zhao [22], and the references therein). In particular, Chen, Cheng, and Law studied
the stability of the inverse nodal problem for the Sturm–Liouville operator L0 [23]. Since
BVP L(q, h, a) is not a special case of the operator in [1], Theorems 1 and 2 are also new
results (see [9,20–22]).

In recent years, some numerical methods have been studied to determine the approxi-
mation solution of 1st type of Fredholm integral equation by Rashed [24,25]; Maleknejad,
Saeedipoor, and Dehbozorgi [26]; Zhou and Xu [27], or other works. The approximation
solutions of the inverse nodal problem for differential operators were studied by Akbar-
poor, Koyunbakan, and Dabbaghian [28]; Gulsen, Yilmaz, and Akbarpoor [29]; Neamaty,
Akbarpoor, and Yilmaz [30], respectively. In this study, we compute the approximation
solution of the inverse nodal problem of BVP L by the first kind Chebyshev wavelet method
and apply the first kind Chebyshev wavelet method for solving this problem.

In Section 2, we establish the uniqueness theorem for BVP L and give the reconstruction
procedure. In Section 3, we find an approximation solution of the potential function q(x)
of BVP L from the first kind Chebyshev wavelet method. In Section 4, we present two
numerical examples to show that the numerical method is valid.

2. Inverse Nodal Problem

In this section, we study the asymptotic formula of nodal points of the boundary value
problem (1)–(3) and establish a uniqueness theorem for the inverse node problem with
given nodal data.

Let S(x, ρ), C(x, ρ), ϕ(x, ρ), and ψ(x, ρ) be solutions of (1) with the initial conditions

S(0, ρ) = 0, S′(0, ρ) = 1, C(0, ρ) = 1, C′(0, ρ) = 0,

ϕ(0, ρ) = 1, ϕ′(0, ρ) = h, ψ(1, ρ) = a, ψ′(1, ρ) = −ρ.

Denote τ = | Im ρ|, ϕ0 = arctan 1
a and

q1(x) := h +
1
2

∫ x

0
q(t)dt.

Then, the asymptotic formulae of ϕ(x, ρ) and ψ(x, ρ) are as follows:

ϕ(x, ρ) = cos ρx + q1(x)
sin ρx

ρ
+ o

(
eτx

|ρ|

)
, 0 ≤ x ≤ 1, (4)

ϕ′(x, ρ) = −ρ sin ρx + q1(x) cos ρx + o(eτx), 0 ≤ x ≤ 1,

ψ(x, ρ) =
√

1 + a2 cos(ρ(1− x)− ϕ0) + O

(
eτ(1−x)

|ρ|

)
, 0 ≤ x ≤ 1, (5)

ψ′(x, ρ) =
√

1 + a2ρ sin(ρ(1− x)− ϕ0) + O
(

eτ(1−x)
)

, 0 ≤ x ≤ 1.
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The characteristic function Δ(ρ) of L is defined by

Δ(ρ) := 〈ψ, ϕ〉(x, ρ),

where 〈ψ, ϕ〉(ρ, x) := ψ(x, ρ)ϕ′(x, ρ)− ψ′(x, ρ)ϕ(x, ρ) , which is called Wronskian of ψ and
ϕ. Clearly Δ(ρ) is independent of x (see [10]), and zeros of Δ(ρ) are called the eigenvalues
of L. Denote the index set A := {±0,±1,±2, · · · } (For details, see [31]) and σ(L) := {ρn :
ρn ∈ A} be the set of eigenvalues. Therefore, the asymptotic formula of Δ(ρ) is

Δ(ρ) =aϕ′(x, ρ) + ρϕ(x, ρ)

=
√

1 + a2[−ρ sin(ρ− ϕ0) + ω cos(ρ− ϕ0) + o(eτ)],

where

ω = h +
1
2

∫ 1

0
q(t)dt.

We have the asymptotic formulae of eigenvalue ρn:

ρn = nπ + ϕ0 +
ω

nπ + ϕ0
+

κn

n
, n ∈ A, |n| ( 1, (6)

where {κn} ∈ l2. It follows from (6), all eigenvalues are real and simple for sufficiently
large |n|. By direct calculation, we see that the n-th eigenfunction ϕ(x, ρn) has exactly |n|
zeros xj

n ∈ (0, 1), which satisfies the following formula:

0 < x1
n < x2

n < · · · < xn
n < 1, if n > 0,

0 < x0
n < x−1

n < · · · < xn+1
n < 1, if n < 0,

xj
n =

(j− 1/2)π
nπ + ϕ0

+
2h +

∫ xj
n

0 q(t)dt

2(nπ + ϕ0)
2 − (j− 1/2)πω

(nπ + ϕ0)3 + o
(

1
n2

)
. (7)

for n ( 1 uniformly with respect to j. Denote l j
n := xj+1

n − xj
n,

X := X+

⋃
X−, X+ :=

∞⋃
n=1

{
xj

n

}n−1

j=1
and X− :=

−1⋃
n=−∞

{
xj

n

}0

j=n+1
.

It follows from (7)

l j
n =

π

nπ + ϕ0
+ o

(
1
n2

)
(8)

and X is dense on (0, 1). We have

Theorem 1. Given X0 ⊆ X, where X0 be dense on (0, 1). For each fixed x ∈ [0, 1], select a nodal

sequence
{

x
jnk
nk

}
⊆ X0 such that lim|nk |→∞ x

jnk
nk = x, then

ϕ0 =− π lim
|nk |→∞

nk

(
nkl

jnk
nk − 1

)
,

f (x) := lim
|nk |→∞

2(nkπ + ϕ0)
2

(
x

jnk
nk −

(jnk − 1
2 )π

nkπ + ϕ0

)

=
∫ x

0
q(t)dt + 2h− 2ωx.
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Proof. It follows from (8)

ϕ0 = −π lim
|nk |→∞

(
nk(nkl

jnk
nk−1 − 1) + o(1)

)
= −π lim

|nk |→∞
nk

(
nkl

jnk
nk−1 − 1

)
.

We reconstruct the coefficient a by

1
a
= tan ϕ0. (9)

It follows from (7)

f (x) := lim
|nk |→∞

2(nkπ + ϕ0)
2

(
x

jnk
nk −

(jnk − 1
2 )π

nkπ + ϕ0

)

= lim
|nk |→∞

⎛⎝∫ (jnk−
1
2 )π

nkπ+ϕ0

0
q(t)dt + 2h− 2ω

(jnk − 1
2 )π

nkπ + ϕ0
+ o(1)

⎞⎠
=

∫ x

0
q(t)dt + 2h− 2ωx. (10)

In (10), let x = 0, we obtain

h =
f (0)

2
. (11)

Taking the derivative with respect to x in (10), we get

f ′(x) a.e.
= q(x)− 2ω.

Then, we reconstruct the coefficient q(x)−
∫ 1

0 q(t)dt as follows

q(x)−
∫ 1

0
q(t)dt a.e.

= f ′(x) + 2h. (12)

According to the Theorem 1, the coefficient of L is reconstructed from the nodal subset
X0 on (0, 1), and the reconstruction procedure is as follows:

Algorithm 1.

(1) For each fixed x ∈ [0, 1], choose a sequence
{

x
jnk
nk

}
⊆ X0 such that lim|nk |→∞ x

jnk
nk = x;

(2) The coefficient a is reconstructed by (9);
(3) Calculate the function f (x) from (10);
(4) Reconstruct the coefficient h of the boundary conditions from (11);
(5) Recover the function q(x)−

∫ 1
0 q(t)dt by (12).

From Algorithm 1, we obtain the uniqueness theorem

Theorem 2. (q(x)−
∫ 1

0 q(t)dt, h, a) can be uniquely determined by the dense nodal subset X0
on (0, 1).

3. Numerical Solution of Inverse Nodal Problems

In this section, we study the following numerical solution of inverse node problems
of L.

Numerical solution: for sufficiently large n, given the nodal points xj
n, j = 1, n and

constants h, a, and
∫ 1

0 q(t)dt, reconstruct the potential function q(x). The solution ϕ(x, ρ)
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of (1) can be written as follows (see [10]):

ϕ
(

xj
n, λn

)
= cos(ρnxj

n) + q1

(
xj

n

) sin(ρnxj
n)

ρn
+

1
2ρn

∫ xj
n

0
q(t) sin(ρnxj

n) cos(2ρnt) dt

− 1
2ρn

∫ xj
n

0
q(t) cos(ρnxj

n) sin(2ρnt) dt + O
(

1
ρ2

n

)
= 0. (13)

This implies

cos(ρnxj
n) = O

(
1
ρn

)
. (14)

By virtue of (13) and (14), we obtain∫ xj
n

0
q(t) cos2(ρnt) dt = −ρn cot(ρnxj

n)− h + O
(

1
ρn

)
= −ρ0

n cot(ρ0
nxj

n)− h + O
(

1
n

)
, (15)

where ρ0
n := nπ + ϕ0 +

ω
nπ+ϕ0

. Therefore, (15) implies∫ xj
n

0
q(t) cos2(ρ0

nt) dt = −ρ0
n cot(ρ0

nxj
n)− h + O

(
1
n

)
. (16)

It follows from (16)∫ xj
n

0
q(t) cos2(ρ0

nt)dt ∼= −ρ0
n cot(ρ0

nxj
n)− h. (17)

It is well known that Equation (17) is the first kind Fredholm integral equation. We
convert the integral Equation (17) to a system of linear Equation (18) (see below). Then, the
solution of the system of linear Equation (18) is an approximation solution of the potential
function q(t). We approximate the potential function q(t) with the first kind Chebyshev
polynomials as the basis functions.

Consider the Chebyshev wavelets on the interval [0, 1) (see [26])

ψl,m(t) =

⎧⎨⎩2k/2T̃m

(
2kt− 2l + 1

)
,

l − 1
2k−1 ≤ t < l

2k−1 ,

0, otherwise,

where

T̃m(t) =

⎧⎨⎩
1√
π

, m = 0,√
2
π Tm(t), m > 0,

where l = 1, 2, . . . , 2k−1, m = 0, 1, . . . , M− 1, k can be any positive integer, and M ( 1. The
functions Tm(t) are the Chebyshev polynomials of degree m of the first kind on the interval
[−1, 1], given by the following recursive formula:

T0(t) = 1, T1(t) = t,

Tm+1(t) = 2tTm(t)− Tm−1(t), m = 1, 2, . . . .

The function f (t) on the interval [0, 1) is expressed as

f (t) =
2k−1

∑
l=1

∞

∑
m=0

cl,mψl,m(t),

where

cl,m =< q(t), ψl,m(t) >L2
w [0,1)=

∫ 1

0
q(t)ψl,m(t)w(2kt− 2l + 1)dt,
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< ·, · >L2
w [0,1) is the inner product on L2

w[0, 1), ‖q‖2,w is the norm of q(x) on L2
w[0, 1), and

the weight function is w(x) = 1√
1−x2 .

Using the Chebyshev wavelets to approximate the potential function q(t), we have

q(t) ∼=
2k−1

∑
l=1

M−1

∑
m=0

cl,mψl,m(t) = CTΨ(t), (18)

where

C =
[
c1,0, . . . , c1,M−1, c2,0, . . . , c2,M−1, . . . , c2k−1,0, . . . , c2k−1,M−1

]T
,

Ψ(t) =
[
ψ1,0(t), . . . , ψ1,M−1(t), ψ2,0(t), . . . , ψ2,M−1(t), . . . , ψ2k−1,0(t), . . . , ψ2k−1,M−1(t)

]T
.

Substituting (18) into (17), we get

2k−1

∑
l=1

M−1

∑
m=0

cl,m

(∫ xj
n

0
ψl,m(t) cos2(ρ0

nt)dt

)
∼= −ρ0

n cot(ρ0
nxj

n)− h, j = 1, n.

Next, we present the following theorem for the convergence of the given method.
The readers refer to the references [25,26] for the convergence of the first kind Chebyshev
wavelet method.

Theorem 3. For each fixed n = 2k−1M, M ( 1, given n nodal points {xj
n}n

j=1 satisfying (7)
together with the coefficients (h, a, Q(1)), then the potential function q(x) can be written as an
infinite sum of the first kind Chebyshev wavelets and this series converges to q(x), that it is

q(x) =
2k−1

∑
l=1

∞

∑
m=0

cl,mψl,m(x)

and the approximation of potential function q(x) is as follows:

qk,M(x) =
2k−1

∑
l=1

M−1

∑
m=0

cl,mψl,m(x).

The solution of the inverse node problem can be computed by the following steps:

(1) Choose k, M. Set n = 2k−1M.
(2) Calculate the unknown vector C by the following linear equation:

AC = B,

where

A =

⎛⎜⎜⎜⎜⎝
a1

1,0 a1
1,1 . . . a1

1,M−1 a1
2,0 . . . a1

2,M−1 . . . a1
2k−1,0 . . . a1

2k−1,M−1
a2

1,0 a2
1,1 . . . a1

1,M−1 a2
20 . . . a2

2,M−1 . . . a2
2k−1,0 . . . a2

2k−1,M−1
...

...
...

a2k−1 M
1,0 a2k−1 M

1,1 . . . a2k−1 M
1,M−1 a2k−1 M

2,0 . . . a2k−1 M
2,M−1 . . . a2k−1 M

2k−1,0
. . . a2k−1 M

2k−1,M−1

⎞⎟⎟⎟⎟⎠,

where

aj
l,m =

∫ xj
n

0
ψl,m(t) cos2(ρ0

n)tdt,

l = 1, 2k−1, m = 0, M− 1, n = 2k−1M, j = 1, n,
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B =

⎛⎜⎜⎜⎜⎜⎜⎝

−ρ0
n cot(ρ0

nx1
n)− h

−ρ0
n cot(ρ0

nx2
n)− h

·
·
·

−ρ0
n cot(ρ0

nxn
n)− h

⎞⎟⎟⎟⎟⎟⎟⎠,

(3) To approximate q(ti), i = 1, 2k−1M, we use the following formula:

[q(ti)] = CTΦ,

where
ti =

2i− 1
2k M

, i = 1, 2, . . . , 2k−1M,

and

Φ =

[
Ψ

(
1

2k M

)
, Ψ

(
3

2k M

)
, . . . , Ψ

(
2k M− 1

2k M

)]
.

4. Numerical Examples

In this section, we use the first kind Chebyshev wavelet method to solve the inverse
nodal problem for (1)–(3) and provide two numerical examples to demonstrate the accuracy
of the numerical method by the Matlab software program.

Example 1. Let the potential function q(x) = cos(4πx) and h = 1, a = 1. If k = 4 and
M = 5, 7, 9 and xj

n satisfy the Formula (7), respectively, we find three approximation solutions of
the potential function q(x).

We use the first kind Chebyshev wavelet method to obtain an approximation of the
potential function q(x) as a solution of the inverse nodal problem for L. Numerical values
of q(x) and exact solutions of q(x) with k = 4 and M = 5, 7, 9, respectively, we obtain three
approximation solutions of the potential function q(x) by the first kind Chebyshev wavelet
method (see Figure 1).

Figure 1. Numerical values of q(x) and absolute errors between the approximation and exact
solutions of q(x) with k = 4 and M = 5, 7, 9 in Example 1.

Now, we give the second example for numerical values of q(x) and exact solutions of
q(x) with k = 4 and M = 5, 7, 9 and k = 5, 7, M = 5 and k = 6, M = 10, respectively.
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Example 2. Let the potential function q(x) = 3x2 − 1 and h = 1, a = 1.

(1) If k = 4 and M = 5, 7, 9 and xj
n satisfy the Formula (7), we find three approximation solutions

of the potential function q(x);
(2) If k = 5, 7, M = 5 and k = 6, M = 10 and xj

n satisfy the Formula (7), we find three
approximation solutions of the potential function q(x).

We obtain approximation solutions of the potential function q(x) by the first kind
Chebyshev wavelet method (see Figures 2 and 3).

Figure 2. Numerical values of q(x) and absolute errors between the approximation and exact
solutions of q(x) with k = 4 and M = 5, 7, 9 in Example 2.

Figure 3. Numerical values of q(x) and absolute errors between the approximation and exact
solutions of q(x) with k = 5, 7, M = 5, and k = 6, M = 10 in Example 2.

In the Figures 1–3, it can be seen that by increasing the values of n, the approximation
solution of BVP L for the inverse nodal problem by the first kind Chebyshev wavelet
method becomes more accurate and the error decreases. However, if n is not large, the
errors near the boundary points are larger than others. If n = 27−1 × 5, the numerical
solution is more effective.
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5. Conclusions

In this work, we study the inverse nodal problem for Sturm–Liouville equation with
one boundary condition having spectral parameter. The uniqueness theorem for BVP L and
the reconstruction procedure are presented from the dense nodal set on the whole interval.
By applying the first kind Chebyshev wavelet method, we compute three approximation
solutions of BVP L for k = 4 and M = 5, 7, 9, respectively, in two examples. We still
compute three approximation solutions of BVP L for k = 5, 7, M = 5 and k = 6, M = 10,
respectively, in Example 2. With increasing the values of n, the approximation solution of
BVP L for the inverse nodal problem by the first kind Chebyshev wavelet method becomes
more accurate and the error decreases. It is also proved that the first kind Chebyshev
wavelet method for the approximation solution of BVP L for the inverse nodal problem is
an effective method.
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Abstract: In this paper, we consider the differential equation y′′ + ω2ρ(x)y = 0, where ω is a positive
parameter. The principal concern here is to find conditions on the function ρ−1/2(x) which ensure
that the consecutive differences of sequences constructed from the zeros of a nontrivial solution
of the equation are regular in sign for sufficiently large ω. In particular, if cνk(α) denotes the kth
positive zero of the general Bessel (cylinder) function Cν(x; α) = Jν(x) cos α− Yν(x) sin α of order
ν and if |ν| < 1/2, we prove that (−1)mΔm+2cνk(α) > 0 (m = 0, 1, 2, . . . ; k = 1, 2, . . . ), where
Δak = ak+1 − ak. This type of inequalities was conjectured by Lorch and Szego in 1963. In addition,
we show that the differences of the zeros of various orthogonal polynomials with higher degrees
possess sign regularity.

Keywords: Sturm–Liouville equations; differences; zeros; completely monotonic functions; Bessel
functions; orthogonal polynomials
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1. Introduction

We consider the differential equation

y′′ + ω2ρ(x)y = 0, a ≤ x ≤ b, (1)

where ω is a positive parameter and ρ(x) is a positive C∞-function on the interval [a, b]. By
a Sturm–Liouville function, we mean a nontrivial real solution of (1). Let {xk(ω)} denote
the ascending sequence of the zeros of a Sturm–Liouville function in the interval [a, b]. The
Sturm comparison theorem (see, e.g., p. 314 of [1] or p. 56 of [2]) states that the second
differences of the sequence {xk(ω)} are all positive if ρ′(x) < 0 and are all negative if
ρ′(x) > 0. Our main purpose here is to move beyond the second differences and to show
that higher consecutive differences of sequences constructed from {xk(ω)} are regular in
sign. Lorch and Szego [2] initiated the study of the sign regularity of higher differences of
the sequences associated with Sturm–Liouville functions. In particular, if cνk(α) denotes
the kth positive zero of the general Bessel (cylinder) function

Cν(x; α) = Jν(x) cos α−Yν(x) sin α,

they proved that

(−1)mΔm+1cνk(α) > 0 (m = 0, 1, 2, . . . ; k = 1, 2, . . . ), (2)

for |ν| > 1/2, and conjectured (p. 71 of [2]) that, on the basis of numerical evidence

(−1)mΔm+2cνk(α) > 0 (m = 0, 1, 2, . . . ; k = 1, 2, . . . ). (3)

for |ν| < 1/2.
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The symbol Δmak means, as usual, the mth (forward) difference of the sequence {ak}:

Δ0ak = ak, Δmak = Δm−1ak+1 − Δm−1ak (m = 1, 2, . . . ; k = 1, 2, . . . ).

Note that Cν(x; α) is a solution of the equation

y′′ + q(x)y = 0, x ∈ (0,+∞), (4)

with q(x) = 1− (ν2 − (1/4))x−2. Because q′(x) = 2(ν2 − (1/4))x−3, we can see that the
Sturm comparison theorem provides the results (2) for m = 1 and (3) for m = 0. It is
mentioned in [2] that the signs of the first M differences of zeros of a Sturm–Liouville
function of (4) could be inferred from the signs of q(m)(x), m = 1, 2, . . . , M. Muldoon [3]
made progress in (3), proving that (3) holds when 1/3 ≤ |ν| < 1/2 ([3], Corollary 4.2).

Our approach here is based on the ideas and results of [4], where the string equation
y′′ + λρ(x)y = 0 with y(0) = y(1) = 0 was considered. Using the eigenvalues and the
nodal points, we constructed a sequence of piecewise continuous linear functions which
converges to ρ−1/2(x) uniformly on [0, 1]. Moreover, we obtained a formula for derivatives
of ρ−1/2(x) in terms of the eigenvalues and the differences of the nodal points.

The rest of this paper is organized as follows. In Section 2, we use the zeros xk(ω) of a
Sturm–Liouville function as nodes to obtain a difference-derivative theorem (Lemma 1).
In addition, we provide asymptotic estimates for ρ−1/2(xk(ω)) as ω → +∞ (Lemma 3).
Then, we are able to express the higher differences Δm+1xk(ω) in terms of the derivatives
of ρ−1/2(x) at those zeros. Moreover, the expression can be used to determine the regular
manner of these differences (Theorems 1 and 2). In addition, we construct sequences
from xk(ω), where all the mth differences have the same sign (Corollary 1). The proofs of
Lemmas 1 and 3 rely on a system of interlaced inductions, which is presented in Section 5.
In Section 3, we use an approximation process for the zeros of the general Bessel function
to prove the conjecture of Lorch and Szego (Theorem 3). In Section 4, the zeros of various
orthogonal polynomials with higher degrees are shown to share similar sign regularity
(Theorems 4 and 5).

The notation used throughout is standard. A function ϕ(x) is said to be M-monotonic
(resp., absolutely M-monotonic) on an interval I if

(−1)m ϕ(m)(x) ≥ 0 (resp., ϕ(m)(x) ≥ 0), (x ∈ I; m = 0, 1, . . . , M). (5)

If (5) holds for M = ∞, then ϕ(x) is said to be completely (resp., absolutely) monotonic
on I. A sequence {ak(ω)} depending on a positive parameter ω is said to be asymptotically
M-monotonic (resp., asymptotically absolutely M-monotonic) if

(−1)mΔmak(ω) ≥ 0 (resp., Δmak(ω) ≥ 0), (m = 0, 1, 2, . . . , M; k = 1, 2, . . . )

for sufficiently large ω.
Here, we should mention a number of recent studies related to this paper. In the proofs

of Lemmas 1 and 3, we use the standard Taylor expansion of a function at the nodes. In
fact, there have many different types of Taylor expansion; many interesting applications
can be found in [5,6] and the references therein. The continuity of the coefficient function
ρ(x) ensures that the zeros of the solution of (1) have a regular asymptotic distribution.
Readers interested in uniform distribution sequences can refer to [7]. Completely monotonic
functions and sequences have specific representations, and arise in many research areas,
such as moment problems and harmonic mappings. Interested readers can refer to [8–10]
and the references therein.

2. Main Results

In this section, we consider the differential equation

y′′ + ω2ρ(x)y = 0, a ≤ x ≤ b, (6)
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where ω is a positive parameter. We assume throughout that ρ(x) is a positive C∞-function
on the interval [a, b]. The notation f (x) is reserved for the function ρ−1/2(x). Let y(x; ω) be
a nontrival real solution of (6) and let x1(ω) < x2(ω) < · · · be the zeros of y(x; ω) in the
interval [a, b]. For a ≤ x < b, we denote by k(x; ω) the smallest positive integer k such that
x ≤ xk(ω). It is well known (see, e.g., [4,11]) that

min
[xk(ω),xk+1(ω)]

f ≤ ω

π
Δxk(ω) ≤ max

[xk(ω),xk+1(ω)]
f . (7)

It follows that π min[a,b] f ≤ ωΔxk(ω) ≤ π max[a,b] f . In particular, we have

Δxk(ω) = O(ω−1) as ω → +∞. (8)

Thus, by (7) and the continuity of f , we obtain f (x) = limω→+∞
ω
π Δxk(x;ω)(ω), and for any

fixed l,

lim
ω→+∞

Δxk(x;ω)+l(ω)

Δxk(x;ω)(ω)
= 1. (9)

Note that (9) means that, because ω → +∞, the sequence xk(ω) behaves as if equally
distributed.

If ϕ is m-times differentiable in (t, t+md) and the lower derivatives of ϕ are continuous
on [t, t + md], a mean-value theorem ([12] p. 52, no. 98) for differences and derivatives
states that there exists a δ such that

Δm
d ϕ(t) = dm ϕ(m)(t + δmd),

where Δd ϕ(t) = ϕ(t + d)− ϕ(t). It is interesting to look for a difference-derivative theorem
which can express the differences of a smooth function on the sequence {xk(ω)} in terms
of its derivatives at this sequence. The following lemma provides such a result.

Lemma 1. Let xk = xk(ω). If ϕ is a C∞-function on [a, b], then for m = 1, 2, . . . ,

Δm ϕ(xk) = O(ω−m). (10)

Moreover,

Δm ϕ(xk) =
m

∑
q=1

A(m)
q,k ϕ(q)(xk+m−q) + O(ω−m−1), (11)

where the coefficients A(m)
q,k satisfy the recurrence relation

A(m)
1,k = Δmxk, A(m)

q,k =
m−1

∑
r=q−1

(
m− 1

r

)
A(r)

q−1,k+m−1−rΔm−rxk, (12)

for q = 2, 3, . . . , m.

To prove Lemma 1, a more detailed investigation into the behaviour of xk(ω) is
required. We use the Prüfer method to achieve this purpose. For each nontrivial solution
y(x; ω) of (6), we define the Prüfer angle θ(x; ω) as follows:

ωρ1/2(x) cot θ(x; ω) =
y′(x; ω)

y(x; ω)
.

Then, θ(x; ω) satisfies the differential equation

θ′(x; ω) = ωρ1/2(x) +
ρ′(x)
4ρ(x)

sin 2θ(x; ω). (13)
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If we specify the initial condition for θ(x; ω) to be θ(a; ω) = θa(ω) with 0 ≤ θa(ω) < π,
then, by the standard results (see, e.g., [1] p. 315), we have

θ(xk(ω); ω) = kπ, (14)

and kπ ≤ θ(x; ω) ≤ (k + 1)π, x ∈ [xk(ω), xk+1(ω)]. Let xk = xk(ω). When integrating
both sides of (13) from xk to xk+1 and using (14), we find that

π = ω
∫ xk+1

xk

ρ1/2(x)dx +
∫ xk+1

xk

ρ′(x)
4ρ(x)

sin 2θ(x; ω)dx. (15)

Taking the Taylor expansion of (1/ f )(x) at xk and using (8), we obtain

∫ xk+1

xk

ρ1/2(x)dx =
m

∑
r=0

(1/ f )(r)(xk)

(r + 1)!
(Δxk)

r+1 + O(ω−m−2). (16)

The estimate of the second integral in (15) is stated as the following lemma. Its proof
consists of a reducible system of integrals which is provided in Appendix A.

Lemma 2. Let xk = xk(ω). Then, for m = 2, 3, . . . , we have

∫ xk+1

xk

ρ′(x)
4ρ(x)

sin 2θ(x; ω)dx =
m−2

∑
r=0

ΔFr(xk)ω
−r−1 + Rm−2(xk), (17)

where the functions Fr depend on f = ρ−1/2 and

Rm−2(xk) = O(ω−m−1). (18)

Note that the first two functions Fr appearing in (17) are of the forms

F0 =
f ′

4
−

∫
( f ′)2

8 f
dx and F1 = 0. (19)

For m = 2, 3, . . . , using the estimates (16), (17) and (18), and multiplying (15) by
f (xk)/π, we find the estimate for f (xk):

f (xk) =
ω

π

m

∑
r=0

gr(xk)

(r + 1)!
(Δxk)

r+1 +
1
π

m−2

∑
r=0

( f ΔFr)(xk)ω
−r−1 + O(ω−m−1), (20)

where the functions gr = f (1/ f )(r) and r = 0, 1, 2, . . . , m. Note that g0 = 1. Moreover, if we
apply the mth order difference operator to (20), we can find the estimates for differences of
the function f (x) at those zeros. Indeed, we have the following lemma.

Lemma 3. Let f (x) and xk = xk(ω) be the same as above. Then, for m = 1, 2, 3, . . . , we have

Δmxk = O(ω−m). (21)

Moreover,
Δm f (xk) =

ω

π
Δm+1xk + O(ω−m−1). (22)

The proofs of Lemmas 1 and 3 are provided in Section 5.
Now, if we apply Lemma 1 to the function f (x), then by (22), we have the estimate for

the higher differences of xk = xk(ω):

ω

π
Δm+1xk =

m

∑
q=1

A(m)
q,k f (q)(xk+m−q) + O(ω−m−1). (23)
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Moreover, by using (8) and (12), and iterating (23) for m from 1 to M, then choosing a
sufficiently large ω, we can ensure the monotonicity of the sequence {Δxk(ω)} by f .

Theorem 1. Let xk = xk(ω) and f (x) = ρ−1/2(x) be the same as above. If f (x) is M-monotonic
on the interval [a, b], then the sequence {Δxk(ω)} is asymptotically M-monotonic.

Proof. Because

(−1)m f (m)(x) ≥ 0 (x ∈ [a, b]; m = 0, 1, 2, . . . , M), (24)

it suffices to show that

(−1)m−q A(m)
q,k ≥ 0 (q = 1, 2, . . . , m; m = 1, 2, . . . , M), (25)

as ω → +∞ to conclude that

(−1)mΔm+1xk(ω) ≥ 0, (m = 0, 1, 2, . . . , M). (26)

We prove (25) by induction on M. When M = 1, (25) reduces to A(1)
1,k ≥ 0, which is

true because A(1)
1,k = Δxk, by (12). Now, suppose that (25) is true for N, with 1 ≤ N < M.

By (23) for m = N, we have

ω

π
(−1)NΔN+1xk =

N

∑
q=1

[(−1)N−q A(N)
q,k ][(−1)q f (q)(xk+N−q)] + O(ω−N−1),

which is nonnegative, as ω → +∞ by the induction hypothesis, (24) and (21) for m = N + 1.
Thus, by (12) for m = N + 1, (−1)N A(N+1)

1,k = (−1)NΔN+1xk ≥ 0 and for q = 1, 2, . . . , N + 1,

(−1)N+1−q A(N+1)
q,k =

N

∑
r=q−1

(
N
r

)
[(−1)r−q+1 A(r)

q−1,k+N−r][(−1)N−rΔN+1−rxk] ≥ 0,

again following the induction hypothesis. This proves (25) for N + 1, and thereby proves
the theorem.

Note that if the factors (−1)m are deleted from the assumptions (24), followed by mak-
ing the obvious changes in the above proof, conclusion (26) remains valid with amendation
by eliminating the factors (−1)m. Thus, we have the following theorem.

Theorem 2. Let xk = xk(ω) and f (x) = ρ−1/2(x) be the same as mentioned above. If f (x)
is absolutely M-monotonic on the interval [a, b], then the sequence {Δxk(ω)} is asymptotically
absolutely M-monotonic.

As consequence of Lemma 1 and Theorems 1 and 2, we can use the zeros of a solution
of (6) to construct sequences in which all mth differences have the same sign.

Corollary 1. (a) Let f (x) be M-monotonic on [a, b]. If ϕ(x) is also M-monotonic on [a, b], then
the sequence {ϕ(xk)} is asymptotically M-monotonic.

(b) Let f (x) be absolutely M-monotonic on [a, b]. If ϕ(x) is also absolutely M-monotonic on
[a, b], then the sequence {ϕ(xk)} is asymptotically absolutely M-monotonic.

Proof. Because f (x) is M-monotonic on [a, b], it can be seen from the proof of Theorem 1
that (25) holds. On the other hand, the M-monotonicity of ϕ(x) on [a, b] means that

(−1)m ϕ(m)(x) ≥ 0 (x ∈ [a, b]; m = 0, 1, 2, . . . , M). (27)
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It now follows from (11), (25), (27) and (10) that

(−1)mΔm ϕ(xk) =
m

∑
q=1

[(−1)m−q A(m)
q,k ][(−1)q ϕ(q)(xk+m−q)] + O(ω−m−1) ≥ 0,

for all k and m = 0, 1, 2, . . . , M, as ω → +∞. The proof of part (b) is similar to that of
part (a).

Note that by the definition of the function f (x) = ρ−1/2(x), the conclusion of
Theorem 1 (resp., Theorem 2) can be inferred directly from the assumptions on ρ(x).
In fact, (−1)mρ(m+1)(x) ≥ 0 (resp., ρ(m+1)(x) ≤ 0) on [a, b] for m = 0, 1, 2, . . . , M − 1,
implying (−1)m f (m)(x) ≥ 0 (resp., f (m)(x) ≥ 0) on [a, b] for m = 1, 2, . . . , M. To examine
these assertions, we can proceed by induction on M. For M = 1, per f (x) = ρ−1/2(x)
and f ′(x) = (−1/2)ρ−3/2(x)ρ′(x), the assertion is valid. For higher derivatives of f (x), a
general term of f (m)(x) would appear as

Sm = C[ρ]α0 [ρ′]α1 [ρ′′]α2 · · · [ρ(m)]αm

with exponentials α0 being a negative half-integer and α1, α2, . . . , αm all non-negative inte-
gers. The induction is carried through by differentiating Sm. We have

S′m = Cα0[ρ]
α0−1[ρ′]α1+1[ρ′′]α2 · · · [ρ(m)]αm + Cα1[ρ]

α0 [ρ′]α1−1[ρ′′]α2+1 · · · [ρ(m)]αm

+ · · ·+ Cαm[ρ]
α0 [ρ′]α1 [ρ′′]α2 · · · [ρ(m)]αm−1[ρ(m+1)],

and under the conditions (−1)mρ(m+1)(x) ≥ 0 (resp., ρ(m+1)(x) ≤ 0) and the negative α0,
each term in the last sum has opposite sign (resp., the same sign) as Sm. Thus, f (m)(x) and
f (m+1)(x) have alternating signs (resp., the same sign), completing the induction. Hence,
we obtain the following corollary.

Corollary 2. Let xk = xk(ω) be the same as above: (a) if ρ′(x) is (M− 1)-monotonic on [a, b],
then the sequence {Δxk(ω)} is asymptotically M-monotonic, and

(b) if −ρ′(x) is absolutely (M − 1)-monotonic on [a, b], then the sequence {Δxk(ω)} is
asymptotically absolutely M-monotonic.

Although Corollary 2(a) is a partial result included in ([13], Theorem 3.3), the tech-
niques employed in this section are independent of the methods in the series of pa-
pers [3,13,14] and the results of Hartman ([15], Theorems 18.1n and 20.1n). It provides the
connection of the quantities between the differences of the zeros and the coefficient function
ρ(x), and might have some numerical interest.

One can find similar results concerned with the critical points of a Sturm–Liouville
function of (6). In fact, by letting x′k(ω) denote the kth critical point of a solution y(x; ω) of
(6) in the interval [a, b] and noting the definition of the Prüfer angle

θ(x′k(ω); ω) = (k− 1
2
)π,

the procedures employed in this section are all valid. Thus, if we replace {xk(ω)} in
Theorems 1 and 2 and Corollaries 1 and 2 with {x′k(ω)}, the conclusions in these Theorems
and Corollaries continue to hold.

3. Applications to Bessel Functions

Let cνk(α) be the kth positive zero of the general Bessel (cylinder) function

Cν(x; α) = Jν(x) cos α−Yν(x) sin α,
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where Jν(x) and Yν(x) denote the Bessel functions with order ν of the first and second kind,
respectively. The main results in this section are stated as follows.

Theorem 3. (a) For |ν| < 1/2, we have

(−1)mΔm+2cνk(α) > 0 (m = 0, 1, 2, . . . ; k = 1, 2, 3, . . . ).

(b) For 0 < |ν| < 1/2, we have

(−1)mΔm+1c2|ν|
νk (α) > 0 (m = 0, 1, 2, . . . ; k = 1, 2, 3, . . . ).

The Airy functions (see, e.g., [16] p. 18) satisfy the differential equation y′′ + x
3 y = 0.

Here, we consider a broader class of functions, including the Airy functions, which satisfy
the differential equation (see, e.g., [17] p. 97)

z′′ + ω2xγz = 0, x ∈ (0,+∞), (28)

where 0 < γ < +∞. These functions are closely related to Bessel functions. Indeed,

z(x; ω) = x1/2Cν(2νωx1/(2ν); α), where ν = 1/(γ + 2),

is a nontrivial real solution of (28). Note that for each ω > 0, the kth positive zeros ξk(ω) of
z(x; ω) satisfies the identities

2νω(ξk(ω))1/(2ν) = cνk(α) and (2νω)2νξk(ω) = c2ν
νk(α).

Moreover, for each ω > 0 and for m = 0, 1, 2, . . . , we have

Δm+2cνk(α) = 2νωΔm+2(ξk(ω))1/(2ν) (29)

and
Δm+1c2ν

νk(α) = (2νω)2νΔm+1ξk(ω). (30)

Here, the identities (29) and (30) are the key to the regularity behaviour of the Bessel
zeros.

To prove Theorem 3, we consider the family of differential equations

y′′ + ω2(x + a)γy = 0 (a > 0; 0 < γ < +∞), (31)

on the interval [0, b]. Let ya(x; ω) be a nontrivial real solution of (31) and let the sequence
{xk(ω; a)} be the zeros of ya(x; ω) with ascending order in [0, b]. Following Theorem 1 with
f (x) = (x + a)−γ/2 and Corollary 1(a) with the function ϕ(x) = (x + a)−1/(2ν), we have

(−1)mΔm+1xk(ω; a) ≥ 0 (m = 0, 1, 2, . . . , M) (32)

and
(−1)mΔm(xk(ω; a) + a)−1/(2ν) ≥ 0 (m = 0, 1, 2, . . . , M), (33)

as ω → +∞. If we specify the initial conditions for the solution ya(x; ω) of (31) to be

ya(0; ω) = z(a; ω) and y′a(0; ω) = z′(a; ω),

then it is easy to verify that ya(x; ω) = z(x + a; ω) for x ∈ [0, b]; hence, for each k,
xk(ω; a) + a converges to ξk as a → 0+. Thus, for each ω > 0, by (29) and (30) we have

Δm+2cνk(α) = lim
a→0+

2νωΔm+2(xk(ω; a))1/(2ν) (34)
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and
Δm+1c2ν

νk(α) = lim
a→0+

(2νω)2νΔm+1xk(ω; a). (35)

Recalling (15) and (17) with the function ρ(x) = (x + a)γ and denoting xk = xk(ω; a),
we have

ω
∫ xk+1

xk

(x + a)γ/2dx = π −
m+1

∑
r=0

ΔFr(xk)ω
−r−1 − Rm+1(xk). (36)

Note that ν = 1/(γ + 2) and f (x) = (x + a)(2ν−1)/(2ν). By (19), we have

ΔF0(xk) =
4ν2 − 1

16ν
Δ(xk + a)−1/(2ν).

Thus, (36) becomes

2νωΔ(xk + a)1/(2ν) = π +
1− 4ν2

16νω
Δ(xk + a)−1/(2ν) −

m+1

∑
r=1

ΔFr(xk)ω
−r−1 − Rm+1(xk). (37)

If we apply the difference operator Δm+1 to (37), by (10) in the case m + 2 and (18) in
the case m + 3, we can find

2νωΔm+2(xk + a)1/(2ν) =
1− 4ν2

16νω
Δm+2(xk + a)−1/(2ν) + O(ω−m−4). (38)

Moreover, multiplying (38) by (−1)mωm+3, we have

2νωm+4(−1)mΔm+2(xk + a)1/(2ν) =
1− 4ν2

16ν
ωm+2(−1)mΔm+2(xk + a)−1/(2ν) + O(ω−1). (39)

By (39), (33), (10) in the case m + 2 and 0 < ν < 1/2, we have

(−1)mΔm+2(xk + a)1/(2ν) ≥ 0 as ω → +∞. (40)

Now, for each a > 0, if we choose a sufficiently large ω = ω(a) such that (40) and (32)
hold, then by (34) and (35) we have

(−1)mΔm+2cνk(α) ≥ 0 (m = 0, 1, 2, . . . ; k = 1, 2, 3, . . . ), (41)

and
(−1)mΔm+1c2ν

νk(α) ≥ 0 (m = 0, 1, 2, . . . ; k = 1, 2, 3, . . . ). (42)

Second, according to Yν(x) = (Jν(x) cos πν− J−ν(x))/ sin πν (see, e.g., [17] p. 64), it
is easy to verify that C−ν(x; α) = Cν(x; α + πν); hence,

c−νk(α) = cνk(α + πν).

Thus, for 0 < |ν| < 1/2, (41) holds and (42) holds in the modified form:

(−1)mΔm+1c2|ν|
νk (α) ≥ 0 (m = 0, 1, 2, . . . ; k = 1, 2, 3, . . . ). (43)

Third, for ν = 0, any positive zero cνk(α) of Cν(x; α) is definable as a continuously
increasing function of the real variable ν (see, e.g., [17] p. 508), meaning that by an
approximating process, (41) holds for all |ν| < 1/2.

Finally, because neither {Δ2cνk(α)} nor {Δc2|ν|
νk (α)} are constant sequences, the results of

Lorch, Szego, and Muldoon for completely monotonic sequences ([2] p. 72 or [18] Theorem 2)
guarantee the strict inequalities of (41) and (43). This completes the proof of Theorem 3.
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4. Applications to Classical Orthogonal Polynomials

Several important classical orthogonal polynomials are related to Sturm–Liouville
functions, such as the Hermite and Jacobi polynomials. In ([2] p. 71), Lorch, Szego, and their
coworkers conjectured on the basis of numerical evidence that the θ-zeros of the Legendre
polynomials, the special cases of Jacobi polynomials, and the positive zeros of the Hermite
polynomials form sequences with mth differences having constant signs. In this section, we
apply the results in Sections 2 and 3 to obtain partial answers for these conjectures.

4.1. Positive Zeros of Hermite Polynomials

Let Hn(t) be the Hermite polynomial (see, e.g., [16] p. 105 (5.5.3)), defined by

Hn(t) = (−1)net2
(

d
dt
)ne−t2

. (44)

We consider the Hermite differential equation

H′′
n − 2tH′

n + 2nHn = 0,

and the related equation
u′′ + [(2n + 1)− t2]u = 0. (45)

A simple calculation shows that (see, e.g., [16] p. 105 (5.5.2))

un(t) = e−t2/2Hn(t)

is a nontrivial solution of (45). From the general theory of orthogonal polynomials, we know
that Hn(t) has precisely n real zeros. By (44), we see that for even n it is the case that Hn(t)
is an even function of t, while for odd n Hn(t) is an odd function of t. Accordingly, all zeros
of Hn(t) are placed symmetrically with respect to the origin, and the same phenomenon is
clearly true for un(t). For each n, the positive zeros of Hn(t) are named by h(n)1 < h(n)2 <

· · · < h(n)
[n/2], where [·] is the greatest integer function.

The main result concerned with Hermite polynomials is as follows.

Theorem 4. Let h(n)k be as above. Then, for each k we have

Δmh(n)k ≥ 0 (m = 1, 2, . . . , M), (46)

for sufficiently large n.

Proof. For each n, by introducing the variable x = t/
√

2n + 1 and letting zn(x) = un(t),
Equation (45) is transformed into

z′′n + (2n + 1)2(1− x2)zn = 0.

We denote the kth positive zero of zn(x) by ξ
(n)
k , where ξ

(n)
k = h(n)k /

√
2n + 1. Thus, we have

Δmh(n)k =
√

2n + 1Δmξ
(n)
k .

To prove (46), we consider the differential equation

y′′ + (2n + 1)2(a− x2)y = 0 (a > 1; x ∈ [0, 1]). (47)
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Let ω = 2n + 1, let f (x) = (a− x2)−1/2, let yn(x; a) be a nontrivial real solution of
(47), and let x(n)k (a) be the kth positive zero of yn(x; a). Then, from the following fact about
f (m)(x)

f (m)(x) = {a polynomial o f x with nonnegative coe f f icients}(a− x2)−(2m+1)/2,

we know that f (m)(x) ≥ 0 on the interval [0, 1] for m = 1, 2, 3, . . . . Thus, by Theorem 2, we
obtain

Δmx(n)k (a) ≥ 0 (m = 1, 2, . . . , M)

for sufficiently large n. If we specify the initial conditions for yn(x; a) to be

yn(0; a) = zn(0) and y′n(0; a) = z′n(0),

then it is easy to verify that yn(x; a) uniformly converges to zn(x) on the interval [0, 1] as
a → 1+. Consequently, for k = 1, 2, . . . , [ n

2 ], the zero x(n)k (a) converges to ξ
(n)
k as a → 1+.

Therefore, for fixed k,
Δmξ

(n)
k = lim

a→1+
Δmx(n)k (a) ≥ 0,

and (46) holds.

4.2. Zeros of Jacobi Polynomials

Considering a > −1 and b > −1, the Jacobi polynomial P(a,b)
n (x) (see, e.g., [16] p. 67

(4.3.1)) is defined by

(1− x)a(1 + x)bP(a,b)
n (x) =

(−1)n

2nn!
(

d
dx

)n{(1− x)n+a(1 + x)n+b}.

Concerning the Jacobi polynomials P(a,b)
n (x) on the orthogonal interval [−1, 1], if we

denote the zeros x(n)k = x(n)k (a, b) of P(a,b)
n (x) with the descending order

1 > x(n)1 > x(n)2 > · · · > x(n)n > −1,

then the θ-zeros θ
(n)
k = θ

(n)
k (a, b) and x(n)k = cosθ

(n)
k of P(a,b)

n (cosθ) behave as the order

0 < θ
(n)
1 < θ

(n)
2 < · · · < θ

(n)
n < π.

According to the uniform convergence theorem ([16] Theorem 8.1.1, p. 190)

lim
n→+∞

n−αP(a,b)
n (cos

x
n
) = (

x
2
)−a Ja(x),

we know that
lim

n→+∞
nθ

(n)
k (a, b) = jak.

Now, by Theorem 3(a), for ν = a and α = 0, we have the following theorem.
Theorem 5. For |a| < 1/2 and k fixed, we have

(−1)mΔm+2θ
(n)
k (a, b) ≥ 0 (m = 0, 1, 2, . . . , M)

for sufficiently large n.

5. Proofs of Lemmas 1 and 3

In this section, we prove (10), (11), (12), (21), and (22) simultaneously by induction.
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For m = 1, taking the Taylor expansion of ϕ at xk

ϕ(xk+1) = ϕ(xk) + ϕ′(xk)Δxk + ϕ′′(ξk,2)
(Δxk)

2

2

where xk ≤ ξk,2 ≤ xk+1 and using (8), we have

Δϕ(xk) = ϕ′(xk)Δxk + O(ω−2),

hence, (10), (11), and (12) are valid for m = 1. If we apply the first order difference operator
to (20) and use (10) for m = 1 with ϕ = F0, then we have

Δ f (xk) =
ω

π
Δ2xk +

ω

2!π
Δ{g1(xk)(Δxk)

2}+ O(ω−2).

Because Δ{αkβk} = αk+1(Δβk) + (Δαk)βk, we have

Δ f (xk) = ω
π Δ2xk +

ω
2!π g1(xk+1){Δxk+1Δ2xk + Δ2xkΔxk}+ O(ω−2)

= ω
π Δ2xk(1 + O(ω−1)) + O(ω−2).

Applying (10) for m = 1 again to the function f (x), we find that Δ f (xk) = O(ω−1);
now, we have

Δ2xk = O(ω−2),

hence,
Δ f (xk) =

ω

π
Δ2xk + O(ω−2).

Thus, (21) for m = 2 and (22) for m = 1 are valid. The validity of (21) for m = 2 is the
impetus of our induction argument.

Now, suppose that (10), (11), (12), (21), and (22) are fulfilled for m = 1, 2, . . . , N. If we
apply (10) for m = N with ϕ(x) = f (x) to (22) for m = N, then we have (21) for m = N + 1,
that is,

ΔN+1xk = O(ω−N−1).

Taking the Taylor expansion of ϕ at xk

ϕ(xk+1) = ϕ(xk) +
N+1

∑
p=1

ϕ(p)(xk)

p!
(Δxk)

p +
ϕ(N+2)(ξk,N+2)

(N + 2)!
(Δxk)

N+2, (48)

where xk ≤ ξk,N+2 ≤ xk+1, applying the Nth order difference operator to (48), and then
using (21) for m = 1, we have

ΔN+1 ϕ(xk) =
N+1

∑
p=1

1
p!

ΔN{ϕ(p)(xk)(Δxk)
p}+ O(ω−N−2). (49)

Following the product rule for higher differences, we know that

ΔN{ϕ(p)(xk)(Δxk)
p} =

N

∑
r=0

(
N
r

)
Δr ϕ(p)(xk+N−r)Δ

N−r(Δxk)
p.

If we replace ϕ(xk) with ϕ(p)(xk+N−r) in (10) for m = r, r = 1, 2, . . . , N and use (21)
for m = 1, 2, . . . , N + 1, then we obtain

ΔN{ϕ(p)(xk)(Δxk)
p} = O(ω−N−p) (p = 1, 2, . . . , N + 1). (50)
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Thus, (49) and (50) imply (10) for m = N + 1. Moreover, we have

ΔN+1 ϕ(xk) = ΔN{ϕ′(xk)Δxk}+ O(ω−N−2)

= ∑N
r=0 (

N
r )Δ

r ϕ′(xk+N−r)ΔN+1−rxk + O(ω−N−2).
(51)

Applying (11) for m = r to (51) with ϕ′(xk+N−r) instead of ϕ(xk) for r = 1, 2, . . . , N,
we find

ΔN+1 ϕ(xk) = ϕ′(xk+N)ΔN+1xk

+∑N
r=1 (

N
r ){∑r

q=1 A(r)
q,k+N−r ϕ(q+1)(xk+N−q)}ΔN+1−rxk + O(ω−N−2).

(52)

If we change the order of the summation in (52) and shift the q index, then we can find

ΔN+1 ϕ(xk) = ϕ′(xk+N)ΔN+1xk

+∑N+1
q=2 ϕ(q)(xk+N+1−q){∑N

r=q−1 (
N
r )A(r)

q−1,k+N−rΔN+1−rxk}+ O(ω−N−2).

Thus, (11) and (12) are valid for m = N + 1.
Finally, to prove (22) for m = N + 1, by applying the (N + 1)th order difference

operator to (20) for m = N + 1, we have

ΔN+1 f (xk) =
ω
π ∑N+1

r=0
1

(r+1)! Δ
N+1{gr(xk)(Δxk)

r+1}

+ 1
π ∑N−1

r=0 ΔN+1{ f (xk)ΔFr(xk)}ω−r−1 + O(ω−N−2).
(53)

Following the product rule for higher differences again, we have

ΔN+1{gr(xk)(Δxk)
r+1} =

N+1

∑
β=0

(
N + 1

β

)
Δβgr(xk+N+1−β)Δ

N+1−β(Δxk)
r+1.

Using (10) for m = β with gr(xk+N+1−β) replacing ϕ(xk) for β = 1, 2, . . . , N + 1 and using
(21) for m = 1, 2, . . . , N + 1, we obtain

ΔN+1{gr(xk)(Δxk)
r+1}

= gr(xk+N+1)ΔN+1(Δxk)
r+1 + ∑N+1

β=1 (N+1
β )Δβgr(xk+N+1−β)ΔN+1−β(Δxk)

r+1

= gr(xk+N+1)(ΔN+2xk)O(ω−r) + O(ω−N−r−2).

(54)

On the other hand, applying (10) to the functions f (x) and Fr(x) for m = 1, 2, . . . , N + 1,
we have

ΔN+1{ f (xk)ΔFr(xk)}

= f (xk+N+1)ΔN+2Fr(xk) + ∑N+1
β=1 (N+1

β )Δβ f (xk+N+1−β)ΔN+2−βFr(xk)

= O(ω−N−1) + O(ω−N−2).

(55)

Applying the estimates (54) and (55) to (53), we obtain

ΔN+1 f (xk) = ω
π ΔN+2xk + (ω

π ΔN+2xk)O(ω−1) + O(ω−N−2)

= ω
π ΔN+2xk(1 + O(ω−1)) + O(ω−N−2).

(56)

If we replace ϕ(xk) with f (xk) in (10) for m = N + 1, then we have

ΔN+1 f (xk) = O(ω−N−1). (57)
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Note that (56) and (57) imply

ω

π
ΔN+2xk = O(ω−N−1). (58)

Then, by (56) and (58), we have (22) for m = N + 1. This completes the proofs of
Lemmas 1 and 3.

6. Conclusions

In this work, we consider the second-order differential equation y′′ + ω2ρ(x)y = 0
on the interval [a, b] associated with a positive parameter ω. When the function ρ−1/2(x)
satisfies the (absolutely) M-monotonic condition on the interval [a, b], we show that the
difference of the zeros for a nontrivial solution of the equation satisfies the asymptotically
(absolutely) M-monotonic property. As applications, we use an approximation process for
the zeros of the Bessel function and prove the conjecture of Lorch and Szego. In addition,
we show that the differences of the zeros of various orthogonal polynomials with higher
degrees possess sign regularity.

On the basis of numerical evidence, Lorch, Szego, and their coworkers conjectured that
the θ-zeros of the Legendre polynomials, the special cases of Jacobi polynomials, and the
positive zeros of the Hermite polynomials are able to form absolutely monotonic sequences,
that is, sequences in which all consecutive differences of the zeros are non-negative. In
Theorem 5, the x-zeros of Jacobi polynomials are arranged in descending order, and hence
the θ-zeros are arranged in increasing order, while the mth differences and (m + 1)th
differences of the θ-zeros of Jacobi polynomials are sign-alternating.
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Appendix A

Recalling f (x) = ρ−1/2(x) and the differential Equation (13) for the Prüfer angle
θ(x; ω), we have

θ′(x; ω) =
ω

f (x)
{1− f ′(x)

2ω
sin 2θ(x; ω)}. (A1)

Then,

{− f ′

2 f
sin 2θ} θ′

{1− ( f ′/2ω) sin 2θ}ω/ f
= −

∞

∑
r=0
{ω−1

2
f ′ sin 2θ}r+1θ′, (A2)

hence,

∫ xk+1

xk

ρ′

4ρ
sin 2θdx = −

m−1

∑
r=0

ω−r−1

2r+1

∫ xk+1

xk

( f ′)r+1(sinr+12θ)θ′dx + O(ω−m−1), (A3)

where θ = θ(x; ω), θ′ = θ′(x; ω) and xk = xk(ω).

To prove Lemma 2, we introduce the following integrals for a C∞-function ϕ which is
defined on [a, b]:

Pr[ϕ] =
∫ xk+1

xk

ϕ · sinr(2θ) · θ′dx,

Qr[ϕ] =
∫ xk+1

xk

ϕ · sinr(2θ) · cos(2θ)dx,
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and
Rr[ϕ] =

∫ xk+1

xk

ϕ · sinr+1(2θ)dx,

where r = 0, 1, 2, . . . . Now, (A3) can be written as

∫ xk+1

xk

ρ′

4ρ
sin 2θdx = −

m−1

∑
r=0

ω−r−1

2r+1 Pr+1[( f ′)r+1] + O(ω−m−1). (A4)

Via integration by parts, we have the following reduced formula for Pr+1[ϕ]:

Pr+1[ϕ] =
−ϕ · sinr2θ · cos2θ

2(r + 1)
|xk+1
xk +

r
r + 1

Pr−1[ϕ] +
1

2(r + 1)
Qr[ϕ

′]. (A5)

Introducing θ′ in the same way as in (A2) and using integration by parts and (14), we
have the following estimates for Qr[ϕ] and Rr[ϕ]:

Qr[ϕ] = −
m−r−3

∑
j=0

ω−j−1

2j+1(r + j + 1)
Rr+j[(ϕj)

′] + O(ω−m+r), (A6)

and

Rr[ϕ] =
m−r−3

∑
j=0

ω−j−1

2j Pr+j+1[ϕj] + O(ω−m+r+1), (A7)

where ϕj = ϕ f ( f ′)j. By applying the estimates (A6) and (A7) with suitable integrands to
(A5) and then collecting the terms with the same order of ω in the sum together, we can
find

Pr+1[ϕ] =
−ϕ·sinr2θ·cos2θ

2(r+1) |xk+1
xk + r

r+1 Pr−1[ϕ]

−∑m−r−3
β=0

ω−β−2

2β+2(r+1) ∑
β
j=0

1
r+j+1 Pr+β+1[(ϕ′)j,β−j] + O(ω−m+r),

(A8)

where ϕj1,j2 = [(ϕj1)
′]j2 . By (A8) and (14), we have

P1[ϕ] =
−Δϕ(xk)

2
−

m−3

∑
β=0

ω−β−2

2β+2

β

∑
j=0

1
j + 1

Pβ+1[(ϕ′)j,β−j] + O(ω−m), (A9)

and

P2[ϕ] =
P0[ϕ]

2
−

m−4

∑
β=0

ω−β−2

2β+3

β

∑
j=0

1
j + 2

Pβ+2[(ϕ′)j,β−j] + O(ω−m+1). (A10)

If we apply (A1) and (A7) to the integral P0[ϕ], then we have

P0[ϕ] = ω
∫ xk+1

xk

ϕ

f
dx−

m−3

∑
j=0

ω−j−1

2j+1 Pj+1[(ϕ f ′/ f )j] + O(ω−m+1). (A11)

Applying (A11) to (A10), we obtain

P2[ϕ] =
ω
2

∫ xk+1
xk

ϕ
f dx−∑m−3

j=0
ω−j−1

2j+2 Pj+1[(ϕ f ′/ f )j]

−∑m−4
β=0

ω−β−2

2β+3 ∑
β
j=0

1
j+2 Pβ+2[(ϕ′)j,β−j] + O(ω−m−1).

(A12)

In (A4), if we apply (A8) to the function ϕ = ( f ′)r+1 and use (A9) and (A12) to
collect the reductions of those integrals Pr−1[( f ′)r+1] and Pr+β+1[(( f ′)r+1)′j,β−j], then all
reduction processes are stopped after a finite number of steps, while the remainders behave
as O(ω−m−1). This completes the proof of Lemma 2.
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Abstract: We firstly prove the Horváth-type theorem for Sturm–Liouville operators on a star-shaped
graph and then solve a new partial inverse nodal problem for this operator. We give some algorithms
to recover this operator from a dense nodal subset and prove uniqueness theorems from paired-
dense nodal subsets in interior subintervals having a central vertex. In particular, we obtain some
uniqueness theorems by replacing the information of nodal data on some fixed edge with part of the
eigenvalues under some conditions.

Keywords: partial inverse spectral problem; partial inverse nodal problem; boundary value problem;
graph; paired-dense nodal subset

MSC: 34A55; 34B09; 34L05; 47E05

1. Introduction

Consider the following boundary value problem B := B(q, α), q(x) := {ql(x)}p
l=1,

α = {αl}p
l=1 on a star-shaped graph with p edges of identical length 1, defined as follows:

−y′′l + ql(x)yl = λyl , x ∈ (0, 1), l = 1, p, (1)

associated with the separated boundary conditions at the pendant vertices 0

yl(0, λ) cos αl + y′l(0, λ) sin αl = 0, l = 1, p, (2)

and the standard matching conditions at the central vertex 1

y1(1, λ) = yl(1, λ), l = 2, p,
p

∑
l=1

y′l(1, λ) = 0, (3)

where λ is the spectral parameter, αl ∈ [0, π) and ql(x), and l = 1, p is called the potential
and is an integrable real-valued function on the l-th edge. The differential operators on
quantum graphs have many applications in chemistry, mathematics, networks, spider webs,
and so on (see [1–17] and the references therein).

The problem B is a natural extension of the classical Sturm–Liouville problem on the
finite interval. The inverse nodal problems for the classical Sturm–Liouville operators are
to recover the potential and boundary conditions by using its nodal data [18–23]. McLaugh-
lin [22] firstly studied the inverse nodal problem for the classical Sturm–Liouville operator
and showed that one set of nodal points can determine the Sturm–Liouville operators
uniquely. The solution of the potential function to this problem was given by Hald and
McLaughlin [19]. The uniqueness results show that the inverse nodal problem is overde-
termined. Later on, there was much study focus on how to use less information of nodal

Mathematics 2022, 10, 3971. https://doi.org/10.3390/math10213971 https://www.mdpi.com/journal/mathematics345
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data to recover the potential. The uniqueness theorems and the reconstruction formulae
are given by using twin-dense nodal subset [15,20,21,24–26], dense nodal subset [23,27,28],
and partial nodal data [15,29–31]. Guo and Wei [30] presented a sharp condition on the
nodal subset and proved the uniqueness for the classical Sturm–Liouville operator with
a paired-dense nodal subset in interior subintervals under some conditions based on the
Gesztesy–Simon theorem in [32]. In addition, the theory on dynamic Sturm–Liouville
boundary value problems via variational methods was found in [33,34].

Beginning in 2002, Kuchment [5–8] studied quantum graphs and investigated the
spectral properties of periodic boundary value problems for a carbon atom in graphene.
In [12,13], Pivovarchik studied inverse spectral problems with Dirichlet boundary condi-
tions for a star-shaped graph with p edges. He gave the asymptotic expansion of eigenval-
ues and showed that there are p sequences of eigenvalues where one sequence is simple
while the others might not be. In particular, Law and Pivovarchik [35] discussed the
multiplicity of the eigenvalues and interlacing properties between two spectral sets of
the Sturm–Liouville problems defined on a tree. Recently, Luo, Jatulan and Law [36]
gave a complete classification of Archimedean tilings for the periodic quantum graphs
and investigated the sufficient conditions for point spectrum and continuous spectrum.
Bondarenko [2] showed that if all components ql(x), l = 1, p but one on the graph are given
a priori, the remaining component can be uniquely determined by two sequences of chosen
eigenvalues and provided a constructive algorithm for the solution of the partial inverse
problem. In [37], Wang and Shieh generalized Bondarenko’s theorem by the methods
in [38]. In this paper, we are going to solve the following partial inverse spectral problem
for B:

IP1: (Inverse Problem 1) If ql(x) = q̃l(x) on [0, 1], αl for l �= i0 and qi0(x) = q̃i0(x)
on [a0, 1] for some a0, a0 ∈ (0, 1] given a priori, recover qi0(x) and αi0 from part of the
eigenvalues.

On the other hand, the inverse nodal problems on quantum graphs have been studied.
In 2007, Currie and Watson [39] studied the inverse nodal problems on general graphs
and showed that, for qi ∈ L∞, one set of eigenvalues and nodal positions is sufficient to
reconstruct the potentials q′is. In 2008, Yurko [40] discussed the inverse nodal problem for
B with αl = 0, l = 1, p and proved that each component ql(x) can be uniquely determined
up to a constant by a dense nodal set. Later on, Cheng [41] derived the asymptotics
of eigenvalues of B with ql ∈ L1, l = 1, p and presented direct and explicit formulae on
recovering the potentials using a twin-dense nodal subset. Wang and Shieh [31] investigated
the partial inverse nodal problem for B with Dirichlet boundary conditions from a twin-
dense nodal subset in interior subintervals under some conditions. Therefore, we are going
to solve the following partial inverse nodal problem for B with less nodal information:

IP2: (Inverse Problem 2) Recover the component ql(x), l = 1, p from given paired-
dense nodal subsets on subintervals having a central vertex.

We firstly prove the Horváth-type theorem for B and extend Horváth’s method in [38]
for the classical Sturm–Liouville operator to B, which is also the theoretical basis for the
solution of the partial inverse nodal problem for B. Then, we show that the components
{ql(x)}p

l=1 for B can be uniquely determined up to a constant by a dense nodal subset
corresponding to the first eigenvalue sequence in [0, 1]; see Theorem 2. We also give
algorithms to reconstruct {ql(x)}p

l=1 and {αl}p
l=1 from a dense nodal subset. In Theorem 3,

combined with the Horváth-type theorem for B, we show that if there is a paired-dense
nodal subset corresponding to the first eigenvalue sequence in a interior subinterval, then,
with a sufficiently large counting number corresponding to the first eigenvalue sequence,
we can uniquely determine the components {ql(x)}p

l=1 up to a constant on the whole graph.
Finally, in Theorem 4, without any nodal data on some i0-th edge but with part of the
eigenvalues, we can also uniquely determine components {ql(x)}p

l=1 up to a constant on
the whole graph from a paired-dense nodal subset corresponding to the first eigenvalue
sequence and sufficiently large counting numbers. We extend Guo-Wei’s method in [30] for
the classical Sturm–Liouville operator to B.
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This article is organized as follows. In Section 2, we present preliminaries. We give the
asymptotic formulae of nodal points. We present solutions to IP1 in Section 3 and IP2 in
Section 4, respectively.

2. Preliminaries

Let Sl(x, λ), Cl(x, λ), and ϕl(x, λ) be solutions of (1) for each l = 1, p associated with
the initial conditions:

Sl(0, λ) = 0, S′l(0, λ) = 1, Cl(0, λ) = 1, C′l(0, λ) = 0,

ϕl(0, λ) = sin αl , ϕ′l(0, λ) = − cos αl .

Moreover, we have

ϕl(x, λ) = sin αlCl(x, λ)− cos αlSl(x, λ).

By the results in [42], we obtain the asymptotic formulae:

(a) If αl = 0, ⎧⎪⎪⎨⎪⎪⎩
ϕl(x, λ) =

sin ρx
ρ

− Ql(x) cos ρx
ρ2 + o

(
eτx

ρ2

)
, 0 < x < 1,

ϕ′l(x, λ) = cos ρx +
Ql(x) sin ρx

ρ
+ o

(
eτx

ρ

)
, 0 < x < 1,

(4)

(b) If 0 < αl < π,⎧⎨⎩ ϕl(x, λ) = sin αl cos ρx + (Ql(x) sin αl − cos αl)
sin ρx

ρ
+ o

(
eτx

ρ

)
, 0 < x < 1,

ϕ′l(x, λ) = −ρ sin αl sin ρx + (Ql(x) sin αl − cos αl) cos ρx + o(eτx), 0 < x < 1
(5)

for |λ| → ∞, where ρ =
√

λ, τ = |Imρ|, and

Ql(x) :=
1
2

∫ x

0
ql(t)dt, l = 1, p.

The characteristic function Δ(λ) of B is defined by

Δ(λ) :=
p

∑
l=1

ϕ′l(1, λ)
p

∏
k=1,k �=l

ϕk(1, λ), (6)

which is an entire function in λ of order 1/2, where all zeros of Δ(λ) coincide with the
eigenvalues of B. Denote σ(B) := ∪p

m=1Mm asthe eigenvalue set of B (counting with their
multiplicities) where Mm = {λm,n}n∈N and ρm,n :=

√
λm,n. We shall find the asymptotic

formulae of nodal points separately corresponding to the three cases:

(I) αl = 0, l = 1, p;
(II) αl ∈ (0, π), l = 1, p;
(III) αl = 0, l = 1, T, and αl ∈ (0, π), l = T + 1, p, 1 ≤ T ≤ p− 1.

(7)

By (Theorem 2.1 [41]), all eigenvalues are real. For the case I, there exist p sequences
of eigenvalues λm,n with the asymptotic formulae:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ1,n =

(
n− 1

2

)
π +

1
2p(n− 1

2 )π

∫ 1

0
(1− cos((2n− 1)πt))

(
p

∑
l=1

ql(t)

)
dt + O

(
1
n2

)
,

ρm,n = nπ +
Λm,n,1

nπ
+ O

(
1
n2

)
, m = 2, p,

(8)
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for n ( 1, where Λm,n,1 is the (m− 1)-th, m = 2, p zero of the polynomial p1(Λ) of degree
(p− 1)

p1(Λ) :=
p

∑
l=1

∏
i �=l

[
Λ− 1

2

∫ 1

0
(1− cos((2n− 1)πt))qi(t)dt

]
. (9)

For case II, there exist p sequences of eigenvalues λm,n with the asymptotic formulae⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ1,n = (n− 1)π +

1
2(n− 1)pπ

(
−2A1 +

∫ 1

0
(1 + cos(2(n− 1)πt)

(
p

∑
l=1

ql(t)

))
dt + O

(
1
n2

)
,

ρm,n = nπ +
Λm,n,2

nπ
+ O

(
1
n2

)
, m = 2, p,

(10)

for n ( 1, where

A1 =
p

∑
l=1

cot αl , (11)

and Λm,n,2 is the (m− 1)-th, m = 2, p zero of the polynomial p2(Λ) of degree (p− 1)

p2(Λ) :=
p

∑
l=1

∏
i �=l

[
Λ− cot αi +

1
2

∫ 1

0
(1 + cos(2(n− 1)πt))qi(t)dt

]
, (12)

and for the case III, there exist p sequences of eigenvalues λm,n with the asymptotic formulae⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρm,n = nπ + (−1)md1 +
ω1

2nπ
+ o

(
1
n

)
, m = 1, 2,

ρm,n = nπ +
Λm,n,3

nπ
+ O

(
1
n2

)
, m = 3, T + 1,

ρm,n =
(

n− 1
2

)
π +

Λm,n,4(
n− 1

2

)
π

+ O
(

1
n2

)
, m = T + 2, p,

(13)

for n ( 1, where

d1 := arcsin

√
T
p

, A2 :=
p

∑
l=T+1

cot αl , ω1 :=
1
p

(
(p− T)

T

∑
l=1

Ql(1) + T
p

∑
l=T+1

Ql(1)− TA2

)
, (14)

Λm,n,3 is the (m− 2)-th, m = 3, T + 1 root of the polynomial p3(Λ) of degree (T − 1)

p3(Λ) :=
T

∑
l=1

T

∏
i �=l,i=1

(
Λ− 1

2

∫ 1

0
(1− cos(2nπt))qi(t)dt

)
, (15)

and Λm,n,4 is the (m − T − 1)-th, m = T + 2, p root of the polynomial p4(Λ) of degree
(p− T − 1)

p4(Λ) :=
p

∑
l=T+1

p

∏
i �=l,i=T+1

(
Λ− cot αi +

1
2

∫ 1

0
(1 + cos((2n− 1)πt))qi(t)dt

)
. (16)

The function

ml(x, λ) := − ϕ′l(x, λ)

ϕl(x, λ)
, x ∈ (0, 1], l = 1, p,

is called the Weyl m-function of Bl , where the problem Bl is defined by by (1), (2) and
ϕl(1, λ) = 0. Applying the same arguments as the proof of Marchenko’s theorem in [43],
one shows that the Weyl m-function ml(a, λ) uniquely determines ql(x) on [0, a] with
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0 < a ≤ 1 and αl . The eigenfunction y(x, λm,n) corresponding to the eigenvalue λm,n of B
is of the form:

y(x, λm,n) = {cl(λm,n)ϕl(x, λm,n)}p
l=1,

where cl(λm,n), l = 1, p are constant, do not depend on x, and are not all zeros. The function
ϕl(x, λ1,n) is called the l-th component of y(x, λ1,n). Let xj

l,1,n be the j-th nodal point of

the l-th component ϕl(x, λ1,n) corresponding to the eigenvalue λ1,n, i.e., ϕl(xj
l,1,n, λ1,n) =

0, l = 1, p. The l-th component ϕl(x, λ1,n) has exactly n − 1 (simple) zeros inside the
interval (0, 1), and

0 < x1
l,1,n < x2

l,1,n < · · · < xj
l,1,n < · · · < xn−1

l,1,n < 1.

For l = 1, p, let Xl,1 := {xj
l,1,n} be the nodal set of the l-th component ϕl(x, λ1,n)

corresponding to M1. Then, Xl,1 is dense on [0, 1] (see below for Lemma 1). Since we
can only obtain the same nodal information from the same eigenvalues, we assume that
I1 := {n1,k}∞

k=K0
is a strictly increasing subsequence in N (where K0 is defined in Lemma 2)

such that

M1,0 :=
{

λ1,n1,k : λ1,n1,k1
< λ1,n1,k2

for any n1,k1 < n1,k2 , n1,k1 , n1,k2 ∈ I1

}
.

Next, we shall give the definition of a paired-dense nodal subset on a finite interval.

Definition 1. For each l = 1, p, denote WI1([al , bl ]) ⊆ Xl,1
⋂
[al , bl ] with 0 ≤ al < bl ≤ 1

on the l-th edge. The nodal subset WI1([al , bl ]) is called a paired-dense nodal subset on [al , bl ]
corresponding to I1 if the following conditions hold:

1. For each n1,k ∈ I1, there exist some jk, rk ≥ 1, rk ∈ N, such that xjk
l,1,n1,k

, xjk+rk
l,1,n1,k

∈
WI1([al , bl ]).

2. WI1([al , bl ]) = [al , bl ].

The definition of the paired-dense nodal subset was given in [30]. Clearly, the twin-
dense nodal subset is a special case of the paired-dense nodal subset. Denote

ω0 =
1
p

p

∑
l=1

Ql(1), α
j
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j

n− 1
2

, for I,

j− 1
2

n− 1
, for II,

j
n

, l = 1, T, for III,

j− 1
2

n
, l = T + 1, p, for III,

By the asymptotic behavior of λ1,n and ϕl(x, λ1,n), one can easily obtain asymptotic
behavior of nodal points. We omit the proof.

Lemma 1. For three cases, the nodal points xj
l,1,n of the l-th component ϕ(x, λ1,n) corresponding

to the eigenvalue λ1,n have the asymptotic formulae:

xj
l,1,n =α

j
n +

1
2(n− 1

2 )
2π2

(∫ α
j
n

0
ql(t)dt− 2ω0α

j
n

)
+ o

(
1
n2

)
, for I, (17)

xj
l,1,n =α

j
n −

cot αl
(n− 1)2π2 +

1
2(n− 1)2π2

∫ α
j
n

0
ql(t)dt
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+
1

2(n− 1)2π2

(
2A1

p
−ω0

)
α

j
n + o

(
1
n2

)
, for II, (18)

xj
l,1,n =α

j
n +

d1α
j
n

nπ
+

1
2(nπ)2

∫ α
j
n

0
ql(t)dt

+
2d2

1 −ω1

2(nπ)2 α
j
n + o

(
1
n2

)
, l = 1, T, for III, (19)

xj
l,1,n =α

j
n +

α
j
n

nπ
− cot αl

n2π2 +
1

2(nπ)2

∫ α
j
n

0
ql(t)dt

+
2d2

1 −ω1

2(nπ)2 α
j
n + o

(
1
n2

)
, l = T + 1, p, for III (20)

for n ( 1 uniformly in j, where ω1, d1, and A1 are defined in (11) and (14).

3. Partial Inverse Spectral Problems

In this section, we shall study the partial inverse spectral problem for B. Let the
boundary value problem B̃ have the same form as B but with different coefficients. If a
certain symbol γ denotes an object related to B, then the corresponding symbol γ̃ with a
tilde denotes the analogous object related to B̃. Let γ̂ = γ− γ̃.

For m = 2, p, let Im := {nm,k}∞
k=1 be a strictly increasing subsequence in N, and

denote Mm,0 := {λm,nm,k : nm,k ∈ Im} ⊆ Mm. For each m = 1, p, the counting function
corresponding to Mm,0 is defined by

NMm,0(t) := ∑
ρm,nm,k<t,λm,nm,k∈Mm,0

1, t ∈ R
+.

By (6), this yields

Δ(λ) = γ1(λ)ϕ′i0(1, λ) + γ2(λ)ϕi0(1, λ), (21)

where

γ1(λ) = ∏
l �=i0

ϕl(1, λ), and γ2(λ) =
p

∑
l �=i0

ϕ′l(1, λ)
p

∏
k �=i0,k �=l

ϕk(1, λ).

Clearly the entire functions γ1(λ) and γ2(λ) in λ are only dependent on ql(x) and
αl , l �= i0. If γ1(λm,n) = γ2(λm,n) = 0, then we cannot obtain any information about
the component qi0(x) from the eigenvalue λm,n by (21). Hence, we add the following
Assumption 1:

Assumption 1. For each λm,nm,k ∈ Mm,0, such that

γ2
1(λm,nm,k ) + γ2

2(λm,nm,k ) �= 0, m = 1, p.

We shall prove the following Horváth type-theorem for B, which is a solution to IP1:

Theorem 1. Let ql(x) = q̃l(x) on [0, 1], αl = α̃l for l �= i0 and qi0(x) = q̃i0(x) on [a0, 1] for
some a0, a0 ∈ (0, 1] be given a priori. If Mk,0 = M̃k,0 with Assumption 1 satisfied, and there exist
t0 > 0, 0 ≤ κ1 ≤ 1, δ1 > 0 such that

p

∑
m=1

NMm,0(t) ≥ 2a0

{
κ1

[
t
π

+
1
2

]
+ (1− κ1)

([
t
π

]
+

1
2

)
− 1 + κ1 + O(t−δ1)

}
, if αi0 = 0; (22)

p

∑
m=1

NMm,0(t) ≥ 2a0

{
κ1

[
t
π

+
1
2

]
+ (1− κ1)

([
t
π

]
+

1
2

)
+ κ1 + O(t−δ1)

}
, if αi0 �= 0 (23)
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for sufficiently large t ≥ t0, and

lim
t→∞

∑
p
m=1 NMm,0(t)

t
=

2a0

π
,

where [x] denotes the largest integer less than or equal to x, then

qi0(x) a.e.
= q̃i0(x) on [0, 1] and αi0 = α̃i0 . (24)

Proof. It follows from (1) for l = i0∫ 1

0
q̂i0(x)ϕi0(x, λm,nm,k )ϕ̃i0(x, λm,nm,k )dx =< ϕi0 , ϕ̃i0 > (1, λm,nm,k )− < ϕi0 , ϕ̃i0 > (0, λm,nm,k ),

where < ϕl , ϕ̃l > (x, λ) := ϕl(x, λ)ϕ̃′l(x, λ)− ϕ′l(x, λ)ϕ̃l(x, λ), l = 1, p, is called the Wron-
skian of ϕl(x, λ) and ϕ̃l(x, λ). This implies

< ϕi0 , ϕ̃i0 > (1, λm,nm,k ) =
∫ 1

0
q̂i0(x)ϕi0(x, λm,nm,k )ϕ̃i0(x, λm,nm,k )dx− sin α̂i0 . (25)

The assumption ql(x) = q̃l(x) on [0, 1] and αl = α̃l for all l �= i0 together with the
initial conditions ϕl(0, λ) = ϕ̃l(0, λ) = sin αl , ϕ′l(0, λ) = ϕ̃′l(0, λ) = − cos αl show that

ϕl(1, λm,nm,k ) = ϕ̃l(1, λm,nm,k ) and ϕ′l(1, λm,nm,k ) = ϕ̃′l(1, λm,nm,k ) (26)

for all m = 1, p. From (21) and (26), it is clear that

γ1(λm,nm,k ) = γ̃1(λm,nm,k ) and γ2(λm,nm,k ) = γ̃2(λm,nm,k ) (27)

By Assumption 1 and (21), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ′i0(1, λm,nm,k ) = −

γ2(λm,nm,k )

γ1(λm,nm,k )
ϕi0(1, λm,nm,k ),

ϕ̃′i0(1, λm,nm,k ) = −
γ2(λm,nm,k )

γ1(λm,nm,k )
ϕ̃i0(1, λm,nm,k ),

if γ1(λm,nm,k ) �= 0, (28)

or ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕi0(1, λm,nm,k ) = −

γ1(λm,nm,k )

γ2(λm,nm,k )
ϕ′i0(1, λm,nm,k ),

ϕ̃i0(1, λm,nm,k ) = −
γ1(λm,nm,k )

γ2(λm,nm,k )
ϕ̃′i0(1, λm,nm,k ),

if γ2(λm,nm,k ) �= 0. (29)

It follows from (25) and (27)–(29) that

< ϕi0 , ϕ̃i0 > (1, λm,nm,k ) = 0, ∀nm,k ∈ Im, m = 1, p. (30)

By qi0(x) = q̃i0(x) on [a0, 1], this yields

< ϕi0 , ϕ̃i0 > (a0, λm,nm,k ) = 0, ∀nm,k ∈ Im, m = 1, p. (31)

Define the function Ki0(λ) by

Ki0(λ) :=
< ϕi0 , ϕ̃0,i0 > (a0, λ)

∏
p
m=1 Fm(λ)

, (32)
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where

Fm(λ) := ∏
λm,nm,k∈Mm,0

(
1− λ

λm,nm,k

)
, m = 1, p. (33)

If λm,nm,k = 0, we substitute 1 − λ

λm,nm,k

by λ in (33). If the eigenvalue λm,nm,k ∈

∪p
m=1Mm0 is simple, then (31) guarantees that the function Ki0(λ) is analytical at λ = λm,nm,k .

By (8), (10) and (13), we see that the multiplicity of each eigenvalue can be only finite.
Assume that the multiplicity of the eigenvalue λm,nm,k := λ0 ∈ ∪p

m=1Mm,0 is k0, k0 ≥ 2.
Then,

Δ(λ0) =
dΔ(λ)

dλ

∣∣
λ=λ0

= · · · = dk0−1Δ(λ)
dλk0−1

∣∣
λ=λ0

= 0. (34)

Consequently, (21) and (34) show that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(λ0)ϕ′i0(1, λ0) + γ2(λ0)ϕi0(1, λ0) = 0,

γ1(λ0)
dϕ′i0

(1,λ)
dλ

∣∣
λ=λ0

+ γ2(λ0)
dϕi0 (1,λ)

dλ

∣∣
λ=λ0

+
dγ1(λ)

dλ

∣∣
λ=λ0

ϕ′i0(1, λ0) +
dγ2(λ)

dλ

∣∣
λ=λ0

ϕi0(1, λ0) = 0,
...

∑k0−1
k=0 Ck

k0−1
dkγ1(λ)

dλk

∣∣
λ=λ0

dk0−1−k ϕ′i0(1, λ)

dλk0−1−k

∣∣
λ=λ0

+∑k0−1
k=0 Ck

k0−1
dkγ2(λ)

dλk

∣∣
λ=λ0

dk0−1−k ϕi0(1, λ)

dλk0−1−k

∣∣
λ=λ0

= 0,

(35)

Similar to (35), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(λ0)ϕ̃′i0(1, λ0) + γ2(λ0)ϕ̃i0(1, λ0) = 0,

γ1(λ0)
dϕ̃′i0

(1,λ)
dλ

∣∣
λ=λ0

+ γ2(λ0)
dϕ̃i0 (1,λ)

dλ

∣∣
λ=λ0

+
dγ1(λ)

dλ

∣∣
λ=λ0

ϕ̃′i0(1, λ0) +
dγ2(λ)

dλ

∣∣
λ=λ0

ϕ̃i0(1, λ0) = 0,
...

∑k0−1
k=0 Ck

k0−1
dkγ1(λ)

dλk

∣∣
λ=λ0

dk0−1−k ϕ̃′i0(1, λ)

dλk0−1−k

∣∣
λ=λ0

+∑k0−1
k=0 Ck

k0−1
dkγ2(λ)

dλk

∣∣
λ=λ0

dk0−1−k ϕ̃i0(1, λ)

dλk0−1−k

∣∣
λ=λ0

= 0.

(36)

It follows from (35) and (36) that

< ϕi0 , ϕ̃0,i0 > (1, λ0) =
d < ϕi0 , ϕ̃0,i0 > (1, λ)

dλ

∣∣
λ=λ0

= · · · = dk0−1 < ϕi0 , ϕ̃0,i0 > (1, λ)

dλk0−1

∣∣
λ=λ0

= 0.

This implies that the function < ϕi0 , ϕ̃0,i0 > (1, λ) has zeros at λ0 of at least k0.
Moreover, the function < ϕi0 , ϕ̃0,i0 > (a0, λ) has zeros at λ0 of at least k0. Thus, the function
Ki0(λ) is analytical at λ = λm,nm,k . Note that (4) and (5) show that

∣∣< ϕi0 , ϕ̃i0 > (a0, λ)
∣∣ =

⎧⎪⎨⎪⎩O
(

e2a0τ

|ρ|2
)

, if αi0 = 0, (37)

O(e2a0 τ), if αi0 �= 0, (38)
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for |λ| → ∞. By the results on the Weyl m-functions ml(x, λ) and m̃l(x, λ) in [32], we have∣∣mi0(x, λ)− m̃i0(x, λ)
∣∣ = |iρ + o(1)− (iρ + o(1))| = o(1) (39)

uniformly in x ∈ [δ, 1] for |λ| → ∞ in any sector ε0 < arg λ < π − ε0 for ε0 > 0, where
δ ∈ (0, 1] (for details, see [32]). Consequently, it follows from (4), (5) and (39) that

∣∣< ϕi0 , ϕ̃i0 > (a0, λ)
∣∣ =

⎧⎪⎨⎪⎩o
(

e2a0τ

|ρ|2
)

, if αl = 0, (40)

o(e2a0τ), if αl �= 0, (41)

for |λ| → ∞ in any sector ε0 < arg λ < π − ε0. By Levinson’s estimate (see [44]), then the
first formula of (8), or (10), or (13) and (22), or (23) imply that there exists a constant cm
such that

1∣∣∣∏p
m=1 Fm(λ)

∣∣∣ =O
(

e−2a0τ+ε
√
|λ|

)
, ∀λ ∈

p⋂
m=1

Dm,cm (42)

for sufficiently large |λ|, where

Dm,cm :=
{

λ : |ρ− ρm,nm,k | ≥
1
8

cm, λm,nm,k ∈ Mm,0

}
.

Thus (37), (38), and (42) show that

|Ki0(λ)| = O
(

e2ε
√
|λ|

)
, ∀λ ∈

p⋂
m=1

Dm,cm (43)

for sufficiently large |λ|. Consequently, (43) and the maximum modulus principle show
that the entire function Ki0(λ) is of the zero-exponential type, i.e., for arbitrary ε > 0, then

|Ki0(λ)| ≤ ce2ε
√
|λ|, λ ∈ C (44)

for sufficiently large |λ|, where c is constant. Noting that

sin
√

λ√
λ

=
∞

∏
n=1

(
1− λ

n2π2

)
,

we obtain

∫ ∞

1

[ t
π ]

t
y2

y2 + t2 dt = ln

∣∣∣∣∣ ∞

∏
n=1

(
1− iy

n2π2

)∣∣∣∣∣+ O(1) = ln

∣∣∣∣∣ sin
√

iy√
iy

∣∣∣∣∣+ O(1)

=

√
|y|
2
− 1

2
ln |y|+ O(1), (45)

∫ ∞

1

[
t
π + 1

2

]
t

y2

y2 + t2 dt = ln

∣∣∣∣∣∣∣
∞

∏
n=1

⎛⎜⎝1− iy(
n− 1

2

)2
π2

⎞⎟⎠
∣∣∣∣∣∣∣+ O(1) = ln

∣∣∣cos
√

iy
∣∣∣+ O(1)

=

√
|y|
2

+ O(1). (46)
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∫ ∞

1

1
t

y2

y2 + t2 dt =
∫ ∞

1

(
1
t
− t

y2 + t2

)
dt =

1
2

ln(y2 + 1) = ln |y|+ O(1). (47)

Next, we shall prove by two cases

|Ki0(iy)| ≤

⎧⎪⎨⎪⎩
c

|y|1−a0(1−κ1)
, if αi0 = 0;

c
|y|a0κ1

, if αi0 �= 0
(48)

for sufficiently large y > 0. Here and below, we use the symbol c to represent a positive
constant that may vary from one formula to another.

Case (1): All eigenvalues λm,nm,k ≥ 1. It follows from (45), (46), (47), (22) and (23) that

ln

∣∣∣∣∣ p

∏
m=1

Fm(iy)

∣∣∣∣∣ =
∫ ∞

1

∑
p
k=1 Nk,0(t)

t
y2

y2 + t2 dt + O(1)

≥2a0

⎧⎪⎨⎪⎩
∫ ∞

1
κ1[ t

π + 1
2 ]+(1−κ1)([ t

π ]+
1
2 )−1+κ1

t
y2

y2+t2 dt + O(1), if αi0 = 0;∫ ∞
1

κ1[ t
π + 1

2 ]+(1−κ1)([ t
π ]+

1
2 )+κ1

t
y2

y2+t2 dt + O(1), if αi0 �= 0

=

⎧⎨⎩ 2a0

√
|y|
2 − a0(1− κ1) ln |y|+ O(1), if αi0 = 0;

2a0

√
|y|
2 + a0κ1 ln |y|+ O(1), if αi0 �= 0.

This implies⎧⎪⎨⎪⎩
∣∣∣∏p

m=1 Fm(iy)
∣∣∣ ≥ c

e2a0
√
|y|/2

|y|a0(1+κ1)
, if αi0 = 0;

|∏p
m=1 Fm(iy)| ≥ c|y|a0(1−κ1)e2a0

√
|y|/2, if αi0 �= 0

(49)

for a y ∈ R+ that is sufficiently large. By (40), (41), and (49), we obtain (48).

Case (2): There exist k0 ≥ 1 eigenvalues such that λm,nm,km
< 1, m = 1, p, km = 1, km,0,

where there may exist some km,0 such that km,0 = 0. If km,0 = 0, then λm,nm,k ≥ 1 for all nm,k.
Without loss of generality, we assume

λm,nm,km
< 1, m = 1, p, km = 1, km,0,

p

∑
m=1

km,0 = k0.

Let

μm,nm,km
= nm,km π > 1, m = 1, p, Sm,0 := {λm,nm,km

}km,0
km=1, km = 1, km,0

and

F1,m(λ) =
km,0

∏
km=1

(
1− λ

μm,nm,km

)
× ∏

λm,nm,k∈Mm,0\Sm,0

(
1− λ

λm,nm,k

)
, m = 1, p. (50)

Since

lim
y→+∞

p

∏
m=1

km,0

∏
km=1

1− iy
λm,nm,km

1− iy
μm,nm,km

= 1,
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then there exists a sufficiently large Y0 such that∣∣∣∣∣∣
p

∏
m=1

km,0

∏
km=1

1− iy
λm,nm,km

1− iy
μm,nm,km

∣∣∣∣∣∣ ≥ 1
2

(51)

for y > Y0. Note that

p

∏
m=1

Fm(λ) =
p

∏
m=1

km,0

∏
km=1

1− λ
λm,nm,km

1− λ
μm,nm,km

×
p

∏
m=1

F1,m(λ).

By (49), (50) and (51), we also have (48). It follows from (48)

lim
y→∞

Ki0(iy) = 0. (52)

By the Phragmén-Lindelöf-type result in [20] together with (44) and (52), we obtain

Ki0(λ) ≡ 0, λ ∈ C. (53)

It follows from (53) that

< ϕi0 , ϕ̃i0 > (a0, λ) = 0, ∀λ ∈ C, l = 1, p.

Consequently,

mi0(a0, λ) = m̃i0(a0, λ), ∀λ ∈ C, l = 1, p. (54)

By Marchenko’s result in [21] together with (54), we have

q̂i0(x) a.e.
= 0 on [0, a0], and αi0 = α̃i0 . (55)

The proof of Theorem 1 is completed.

4. Partial Inverse Nodal Problems

In this section, we shall study the partial inverse nodal problem for B from a paired-
dense nodal subset in an interior subinterval having a central vertex. For l = 1, p, we
say WI1([al , bl ]) = W̃Ĩ1

([al , bl ]) if for any n1,k ∈ I1 there exist jk, rk, ñ1,k, j̃k ∈ N such that

xjk
l,1,n1,k

, xjk+rk
l,1,n1,k

∈ WI1([al , bl ]), x̃ j̃k
l,1,ñ1,k

, x̃ j̃k+rk
l,1,ñ1,k

∈ W̃Ĩ1
([al , bl ]) and

xjk
l,1,n1,k

= x̃ j̃k
l,1,ñ1,k

, xjk+rk
l,1,n1,k

= x̃ j̃k+rk
l,1,ñ1,k

.

We obtain the following three uniqueness theorems for B.

Theorem 2. For each l = 1, p, let Xl,1,0 ⊆ Xl,1 be a dense nodal subset on [0, 1]; then

ql(x)− q̃l(x) a.e.
= 2ω̂0 on [0, 1], αl = α̃l for l = 1, p, I or II

ql(x)− q̃l(x) a.e.
= ω̂1 on [0, 1], αl = α̃l for l = 1, p, III

Denote

C1 = 2ω̂0, for I; C2 = 2ω̂0 −
2Â1

p
, for II; C3 = ω̂1, for III.

We need the following lemma to prove our main results in this paper.
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Lemma 2. Let 0 ≤ al < 1 for l = 1, p. If WI1([al , 1]) = W̃Ĩ1
([al , 1]), then there exists a large

number K0 such that

λ1,n1,k − λ̃1,ñ1,k
=Cν, ∀n1,k ∈ I1, for ν = 1, 2, 3, (56)

By Theorems 1, 2 and Lemma 2, we prove Theorems 3 and 4, which are solutions to
IP2.

Theorem 3. Let 0 ≤ al < 1/2 for l = 1, p and 0 ≤ β1 = max1≤l≤p{al} < 1/2. If WI1([al , 1]) =
W̃Ĩ1

([al , 1]), and there exist t0 > 0, 0 ≤ κ1 ≤ 1, and δ1 > 0 such that

NM1,0(t) ≥ 2β1

{
κ1

[
t
π

+
1
2

]
+ (1− κ1)

([
t
π

]
+

1
2

)}
− 1 + κ1 + O(t−δ1) for I, (57)

NM1,0(t) ≥ 2β1

{
κ1

[
t
π

+
1
2

]
+ (1− κ1)

([
t
π

]
+

1
2

)
+ κ1

}
+ O(t−δ1) for II, III (58)

for sufficiently large t ≥ t0, and

lim
t→∞

NM1,0(t)
t

=
2β1

π
,

then

ql(x)− q̃l(x) a.e.
= Cμ on [0, 1], αl = α̃l for l = 1, p, μ = 1, 2, 3, (59)

Remark 1. We can only study the partial inverse nodal problems for the cases 0 ≤ al < 1/2,
l = 1, p. The general cases 0 ≤ al < 1, l = 1, p require a separate investigation.

Without any nodal data on the component qi0(x), we have Theorem 4 from
Theorems 3 and 1.

Theorem 4. Let 0 ≤ al < 1/2 for l �= i0 and β1 = maxl �=i0{al}. Suppose that WI1([al , 1]) =
W̃Ĩ1

([al , 1]) for l �= i0, and Mm,0 = M̃m,0 for m �= 1, Mm,0 for m = 1, p satisfying the assumption
(A), and there exist t0 > 0, 0 ≤ κξ ≤ 1, δξ > 0, ξ = 0, 1, such that

⎧⎪⎪⎨⎪⎪⎩
NM1,0(t) ≥ 2β1

{
κ0

[
t
π

+
1
2

]
+ (1− κ0)

([
t
π

]
+

1
2

)
− 1 + κ0 + O(t−δ0)

}
,

∑
p
m=1 NMm,0(t) ≥ 2

{
κ1

[
t
π

+
1
2

]
+ (1− κ1)

([
t
π

]
+

1
2

)
− 1 + κ1 + O(t−δ1)

}
,

for I; (60)

⎧⎪⎪⎨⎪⎪⎩
NM1,0(t) ≥ 2β1

{
κ0

[
t
π

+
1
2

]
+ (1− κ0)

([
t
π

]
+

1
2

)
+ κ0 + O(t−δ0)

}
,

∑
p
m=1 NMm,0(t) ≥ 2

{
κ1

[
t
π

+
1
2

]
+ (1− κ1)

([
t
π

]
+

1
2

)
+ κ1 + O(t−δ1)

}
,

for II, III (61)

for sufficiently large t ≥ t0;

lim
t→∞

NM1,0(t)
t

=
2β1

π
, lim

t→∞

∑
p
m=1 NMm,0(t)

t
=

2
π

,

then (59) holds.

Next, we present proofs of Lemma 2 and Theorems 2–4.
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Proof of Theorem 2. For each fixed x ∈ [0, 1] and l = 1, p, we choose xjk
l,1,n1,k

∈ Xl,1,0 such

that lim
k→∞

xjk
l,1,n1,k

= x. This implies lim
k→∞

α
jk
n1,k = x. By (17)–(20) and the Riemann–Lebesgue

lemma, we have

fl,1,1(x) := lim
k→∞

2(n1,k −
1
2
)2π2

(
xjk

l,1,n1,k
− α

jk
n1,k

)
= lim

k→∞

(∫ α
jk
n1,k

0
ql(t)dt− 2ω0α

jk
n1,k + o(1)

)

=
∫ x

0
ql(t)dt− 2ω0x, x ∈ [0, 1] for I; (62)

fl,1,2(x) := lim
k→∞

2(n1,k − 1)2π2
(

xjk
l,1,n1,k

− α
jk
n1,k

)
= lim

k→∞

(∫ α
jk
n1,k

0
ql(t)dt +

(
2A1

p
− 2ω0

)
α

jk
n1,k + o(1)

)

=− 2 cot αl +
∫ x

0
ql(t)dt +

(
2A1

p
− 2ω0

)
x, x ∈ [0, 1] for II; (63)

hl,1(x) := lim
k→∞

(n1,kπ)
(

xjk
l,1,n1,k

− α
jk
n1,k

)
= lim

k→∞

(
d1α

jk
n1,k + o(1)

)
=d1x, x ∈ [0, 1], l = 1, T, for III, (64)

fl,1,3(x) := lim
k→∞

2(n1,kπ)2

⎛⎝xjk
l,1,n1,k

− α
jk
n1,k −

d1α
jk
n1,k

n1,kπ

⎞⎠
= lim

k→∞

(∫ α
jk
n1,k

0
ql(t)dt− (ω1 − 2d2

1)α
jk
n1,k + o(1)

)

=
∫ x

0
ql(t)dt− (ω1 − 2d2

1)x, x ∈ [0, 1], l = 1, T, for III, (65)

fl,1,4(x) := lim
k→∞

2(n1,kπ)2

⎛⎝xjk
l,1,n1,k

− α
jk
n1,k −

d1α
jk
n1,k

n1,kπ

⎞⎠
= lim

k→∞

(
−2 cot αl +

∫ α
jk
n1,k

0
ql(t)dt− (ω1 − 2d2

1)α
jk
n1,k + o(1)

)

=− 2 cot αl +
∫ x

0
ql(t)dt− (ω1 − 2d2

1)x, x ∈ [0, 1], l = T + 1, p, for III. (66)

By taking derivatives with respect to x in (62)–(66), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′l,1,1(x) a.e.
= ql(x)− 2ω0, x ∈ [0, 1], l = 1, p, (67)

f ′l,1,2(x) a.e.
= ql(x) +

(
2A1

p
− 2ω0

)
, x ∈ [0, 1], l = 1, p, (68)

h′l,1(x) = d1 = arcsin

√
T
p

, (69)

f ′l,1,3(x) = f ′l,1,4(x) a.e.
= ql(x)−ω1 + 2d2

1, x ∈ [0, 1], l = 1, p. (70)

It follows from the assumption Xl,1,0
a.e.
= X̃l,1,0 that

hl,1(x) = h̃l,1(x) and fl,1,ν(x) = f̃l,1,ν(x), x ∈ [0, 1], l = 1, p, ν = 1, 4. (71)
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By (69), we find T by

T = p sin2 h′l,1(x). (72)

For cases II and III with l = T + 1, p, letting x = 0 in (63) and (66), we obtain

αl = α̃l =

⎧⎪⎪⎨⎪⎪⎩
arccot

− fl,1,2(0)
2

, l = 1, p, for II, (73)

arccot
− fl,1,4(0)

2
, l = T + 1, p, for III. (74)

Furthermore, it follows from (71) that

f ′l,1,ν(x) a.e.
= f̃ ′l,1,ν(x), x ∈ [0, 1], l = 1, p, ν = 1, 4. (75)

Consequently, (67)–(75) imply that

q̂l(x) := ql(x)− q̃l(x) a.e.
= Cμ, x ∈ [0, 1], l = 1, p, μ = 1, 2, 3. (76)

This completes the proof of Theorem 2.

The proof of Theorem 2 is constructive. We reconstruct the potential ql(x) up to a
constant on the equilateral graph with the dense nodal subset Xl,1,0 on the l-th edge, l = 1, p,
by the following algorithms:

Algorithm 1: For case I, reconstruct the potential ql(x) up to a constant by the follow-
ing two steps:

(1) Find fl,1,1(x) by (62) for each l = 1, p.
(2) Reconstruct ql(x)− 2ω0 on (0, 1) by (67).

Algorithm 2: For case II, reconstruct the potential ql(x) up to a constant by the
following three steps:

(1) Find fl,1,2(x) by (63) for each l = 1, p.
(2) Reconstruct αl for each l = 1, p by (73), and then find A1.
(3) Recover ql(x)− 2ω0 on (0, 1) for each l = 1, p by (68).

Algorithm 3: For case III, reconstruct the potential ql(x) up to a constant by the
following four steps:

(1) Find hl,1(x) by (64) for each l = 1, p; reconstruct T by (72).
(2) Find fl,1,3(x) by (65) for each l = 1, T and find fl,1,4(x) by (66) for each l = T + 1, p.
(3) Reconstruct αl for each l = T + 1, p by (74), and then find A2.
(4) Recover ql(x)−ω1 on (0, 1) for each l = 1, p by (70).

Proof of Lemma 2. By suitably modifying the proof of Theorem 2, we obtain

ql(x)− q̃l(x) a.e.
= Cν, x ∈ [al , 1], l = 1, p, ν = 1, 2, 3. (77)

It follows from (17)–(20) that as k → ∞

Ll,1,n1,k
:= xjk+rk

l,1,n1,k
− xjk

l,1,n1,k
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rk

n1,k −
1
2

+ o

(
1

n2
1,k

)
, for I,

rk
n1,k − 1

+ o

(
1

n2
1,k

)
, for II,

rk
n1,k

+
d1rk

n2
1,kπ

+ o

(
1

n2
1,k

)
, for III, l = 1, T,

rk
n1,k

+
rk

n2
1,kπ

+ o

(
1

n2
1,k

)
, for III, l = T + 1, p.

(78)
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If the problems B and B̃ belong to the same subcase in (7), say, case I, it follows from
the first formula of (78) and the assumption that

Ll,1,n1,k
=

rk

n1,k −
1
2

+ o

(
1

n2
1,k

)
=

rk

ñ1,k −
1
2

+ o

(
1

ñ2
1,k

)
= L̃l,1,n1,k

, for k ( 1.

Without loss of generality, we assume ñ1,k ≥ n1,k here and below. This implies

rk(n1,k − ñ1,k)(
n1,k −

1
2

)(
ñ1,k −

1
2

) = o

(
1

n2
1,k

)
for k ( 1. (79)

It follows from (79) that

n1,k = ñ1,k for k ( 1. (80)

If the problem B belongs to case II, while the problem B̃ belongs to case III, then it
follows from the second and third formulae of (78) and the assumption that

rk
n1,k − 1

+ o

(
1

n2
1,k

)
=

rk
ñ1,k

+
d1rk

ñ2
1,kπ

+ o

(
1

ñ2
1,k

)
for k ( 1. (81)

By virtue of (81), this yields

rk
n1,k − 1

+ o

(
1

n2
1,k

)
=

rk
ñ1,k

+
d1rk

ñ2
1,kπ

+ o

(
1

ñ2
1,k

)
for k ( 1. (82)

In particular, we have

rkñ1,k

n1,k − 1
− rk −

d1rk
ñ1,kπ

= o

(
ñ1,k

n2
1,k

)
+ o

(
1

ñ1,k

)
,

and hence
lim
k→∞

ñ1,k

n1,k
= 1.

By (82), we obtain

ñ1,k − n1,k + 1− d1

π
ñ1,k

= o
(

1
n1,k

)
for k ( 1.

This implies

ñ1,k − n1,k + 1− d1

π
= 0 for k ( 1, (83)

which is impossible by 0 <
1
π

arcsin

√
T
p
<

1
2

and ñ1,k − n1,k + 1 ≥ 1. Therefore, the prob-

lems B and B̃ belong to the same subcase, and other cases can be treated similarly. This
implies that (80) is valid for k ( 1. Next, we only consider the problems B and B̃ belonging
to case III and l ∈ {T + 1, · · · , p}. For each l = T + 1, p, consider two Dirichlet boundary
value problems defined on the interval [xjk

l,1,n1,k
, xjk+rk

l,1,n1,k
],
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⎧⎨⎩−ϕ′′l (x, λ1,n1,k ) + ql(x)ϕl(x, λ1,n1,k ) = λ1,n1,k ϕl(x, λ1,n1,k ), (84)

ϕl(xjk
l,1,n1,k

, λ1,n1,k ) = ϕl(xjk+rk
l,1,n1,k

, λ1,n1,k ) = 0, (85)

and ⎧⎨⎩−ϕ̃′′l (x, λ̃1,ñ1,k
) + q̃l(x)ϕ̃l(x, λ̃1,ñ1,k

) = λ̃1,ñ1,k
ϕ̃l(x, λ̃1,ñ1,k

), (86)

ϕ̃l(xjk
l,1,n1,k

, λ̃1,ñ1,k
) = ϕ̃l(xjk+rk

l,1,n1,k
, λ̃1,ñ1,k

) = 0. (87)

It follows from the first formula of (13) and (20) that

ρ1,n1,k xjk
l,1,n1,k

=

(
jk −

1
2

)
(d1 + π) +

d1

2n1,kπ
+ o

(
1

n1,k

)
, (88)

b1 := −(2jk − 1)(d1 + π)d1 − 2π cot αl + α
jk
n1,k (ω1 + d2

1) +
∫ α

jk
n1,k

0
ql(t)dt;

ρ1,n1,k xjk+rk
l,1,n1,k

=

(
jk + rk −

1
2

)
(d1 + π) +

d2

2n1,kπ
+ o

(
1

n1,k

)
, (89)

b2 := −(2jk + rk − 1)(d1 + π)d1 − 2π cot αl + α
jk
n1,k (ω1 + d2

1) +
∫ α

jk+rk
1,n1,k

0
ql(t)dt;

ρ̃1,ñ1,k
xjk

l,1,n1,k
=

(
j̃k −

1
2

)
(d1 + π) +

d̃1

2ñ1,kπ
+ o

(
1

n1,k

)
, (90)

b̃1 := −(2 j̃k − 1)(d1 + π)d1 − 2π cot α̃l + α
jk
n1,k (ω̃1 + d2

1) +
∫ α

jk
n1,k

0
q̃l(t)dt;

ρ̃1,n1,k xjk+rk
l,1,n1,k

=

(
j̃k + rk −

1
2

)
(d1 + π) +

d̃2

2ñ1,kπ
+ o

(
1

n1,k

)
, (91)

b̃2 := −(2 j̃k + rk − 1)(d1 + π)d1 − 2π cot α̃l + α
jk
n1,k (ω̃1 + d2

1) +
∫ α

jk+rk
1,n1,k

0
q̃l(t)dt.

By (84)–(87) and the integrations, we easily obtain

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

((ql(x)− q̃l(x))− (λ1,n1,k − λ̃1,ñ1,k
))ϕl(x, λ1,n1,k )ϕ̃l(x, λ̃1,ñ1,k

)dx = 0. (92)

By virtue of (92) and ql(x)− q̃l(x) a.e.
= Cν on [al , 1], we have

(Cν − (λ1,n1,k − λ̃1,ñ1,k
))

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

ϕl(x, λ1,n1,k )ϕ̃l(x, λ̃1,ñ1,k
)dx = 0. (93)

On the other hand, it follows from (5)

ϕl(x, λ1,n1,k )ϕ̃l(x, λ̃1,ñ1,k
) = sin αl sin α̃l cos ρ1,n1,k x cos ρ̃1,ñ1,k

x + O
(

1
n1,k

)
. (94)

By virtue of (94), this yields

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

ϕl(x, λ1,n1,k )ϕ̃l(x, λ̃1,ñ1,k
)dx
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=sin αl sin α̃l

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos ρ1,n1,k x cos ρ̃1,ñ1,k
xdx + O

(
1

n2
1,k

)

=
sin αl sin α̃l

2

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

(
cos(ρ1,n1,k + ρ̃1,ñ1,k

)x + cos(ρ1,n1,k − ρ̃1,ñ1,k
)x

)
dx + O

(
1

n2
1,k

)
. (95)

For k ( 1, (80) shows that

1
2Ll,1,n1,k

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos(ρ1,n1,k + ρ̃1,ñ1,k
)xdx

=
1

2(ρ1,n1,k + ρ̃1,n1,k )Ll,1,n1,k

(
sin(ρ1,n1,k + ρ̃1,n1,k )xjk+rk

l,1,n1,k
− sin(ρ1,n1,k + ρ̃1,n1,k )xjk

l,1,n1,k

)
=

(−1)jk+ j̃k−1

2rk(d1 + π)(1 + 1
2n1,k

) + o
(

1
n1,k

)(
sin

(
(jk + j̃k + 2rk − 1)d1 +

b1 + b̃1

2n1,kπ
+ o

(
1

n1,k

))

− sin

(
(jk + j̃k − 1)d1 +

b2 + b̃2

2n1,kπ
+ o

(
1

n1,k

)))

=
(−1)jk+ j̃k−1

(
sin(jk + j̃k + 2rk − 1)d1 − sin(jk + j̃k − 1)d1

)
2rk(d1 + π)

+ O
(

1
n1,k

)
. (96)

It follows from the first formula of (13) and (80) that

1
2Ll,1,n1,k

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos(ρ1,n1,k − ρ̃1,ñ1,k
)xdx

=
1

2Ll,1,n1,k

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos
(

ω1x
n1,k

+ o
(

1
n1,k

))
dx

=
1

2Ll,1,n1,k

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

[
1− 2 sin2

(
ω1x
2n1,k

+ o
(

1
n1,k

))]
dx

=
1
2
+ O

(
1

n2
1,k

)
. (97)

By (80), (96) and (97), there exists a sufficiently large constant K0 such that

∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos(ρ1,n1,k − ρ̃1,ñ1,k
)xdx >

∣∣∣∣∣
∫ x

jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos(ρ1,n1,k + ρ̃1,ñ1,k
)xdx

∣∣∣∣∣ (98)

for all k ≥ K0. It follows from (92) and (98) that∣∣∣∣∣
∫ x

jk+rk
l,1,n1,k

x
jk
l,1,n1,k

ϕ(x, λnk )ϕ̃(x, λ̃ñk
)dx

∣∣∣∣∣
≥ sin α sin α̃

(∫ x
jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos(ρ1,n1,k − ρ̃1,ñ1,k
)xdx−

∣∣∣∣∣
∫ x

jk+rk
l,1,n1,k

x
jk
l,1,n1,k

cos(ρ1,n1,k + ρ̃1,ñ1,k
)xdx

∣∣∣∣∣+ O

(
1

n2
1,k

))
>0. (99)

Therefore, (93) and (99) imply that

λ̂n1,k = λn1,k − λ̃ñ1,k
= Cν
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for all n1,k ∈ I1. This completes the proof of Lemma 2.

Next, we prove Theorem 3.

Proof of Theorem 3. By the assumption of Theorem 3 together with Lemma 2, we have{
ql(x)− q̃l(x) a.e.

= Cμ, x ∈ [al , 1], l = 1, p, μ = 1, 2, 3, (100)

λ1,n1,k − λ̃1,ñ1,k
=Cμ, μ = 1, 2, 3, ∀n1,k ∈ I1. (101)

Let q̃0,l(x) := q̃l(x) + Cμ, q̂0,l(x) := ql(x)− q̃0,l(x), and ϕ̃0,l(x, λ) be the solution of{
u′′(x, λ) + (λ− q̃0,l(x))u(x, λ) = 0, 0 < x < 1, (102)

u(0, λ) = sin αl , u′(0, λ) = − cos αl .

By a shift of the spectrum to the constant Cμ, then (100) and (101) imply{
q̂0,l(x) a.e.

= 0 on [al , 1], l = 1, p, (103)

λ1,n1,k − λ̃01,ñ1,k
= 0, ∀n1,k ∈ I1. (104)

Next, we prove

q̂0,l(x) a.e.
= 0 on [0, al ], and αl = α̃l , l = 1, p.

For each λ1,n1,k , (103) and (104) show that

< ϕl , ϕ̃0,l > (al , λ1,n1,k ) = 0, ∀ n1,k ∈ I1. (105)

It follows from (4) and (5) that

∣∣< ϕl , ϕ̃0,l > (al , λ)
∣∣ =

⎧⎪⎨⎪⎩O
(

e2alτ

|ρ|2
)

, if αl = 0, (106)

O(e2alτ), if αl �= 0, (107)

for |λ| → ∞. Consequently, it follows from (4), (5) and (39) that

∣∣< ϕl , ϕ̃0,l > (al , λ)
∣∣ =

⎧⎪⎨⎪⎩o
(

e2alτ

|ρ|2
)

, if αl = 0, (108)

o(e2alτ), if αl �= 0, (109)

for |λ| → ∞ in any sector ε0 < arg λ < π − ε0. Define the function Kl,1(λ) by

Kl,1(λ) :=
< ϕl , ϕ̃0,l > (al , λ)

F1(λ)
, l = 1, p,

Therefore, (105) together with the assumption on M1,0 show that Kl,1(λ) is an entire
function in λ. By Levinson’s estimate (see [44]), the first formula of (8), or (10), or (13) and
(58) imply that there exists a constant c1 such that

1
|F1(λ)|

=O
(

e−2α1τ+ε
√
|λ|

)
, ∀λ ∈ D1,c1 (110)

for sufficiently large |λ|. Thus (106), (107) and (110) for m = 1 show that

|Kl,1(λ)| = O
(

e−2(α1−al)τ+2ε
√
|λ|

)
, ∀λ ∈ D1,c1 (111)
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for sufficiently large |λ|. Consequently, it follows from al ≤ α1 ≤ 1
2 , (111) and the maximum

modulus principle that the entire function Kl,1(λ) is of the zero-exponential type, and then
for arbitrary ε > 0,

|Kl,1(λ)| ≤ ce2ε
√
|λ|, λ ∈ C (112)

for sufficiently large |λ|. By calculations, we have⎧⎪⎨⎪⎩ |F1(iy)| ≥ c
e2α1

√
|y|/2

|y|α1(1+κ0)
, for I;

|F1(iy)| ≥ c|y|α1(1−κ0)e2α1
√
|y|/2, for II, III

(113)

for a y ∈ R+ that is sufficiently large. It follows from (108), (109) and (113) that

|Kl,1(iy)| = o(1)

for a sufficiently large y > 0. This implies

lim
y→∞

Kl,1(iy) = 0. (114)

By the Phragmén-Lindelöf-type result in [20] together with (112) and (114) again, we
obtain

Kl,1(λ) ≡ 0, λ ∈ C. (115)

It follows from (115) that

< ϕl , ϕ̃0,l > (al , λ) = 0, ∀λ ∈ C, l = 1, p.

Consequently,

ml(al , λ) = m̃0,l(al , λ), ∀λ ∈ C, l = 1, p. (116)

By (116) together with Marchenko’s result in [21], we obtain

q̂0,l(x) a.e.
= 0 on [0, al ], and αl = α̃l , l = 1, p. (117)

Hence, (103) and (117) show that (59) holds. The proof of Theorem 3 is completed.

Proof of Theorem 4. We use the same symbols as these in Theorem 3. Applying the same
arguments as the proof of Theorem 3, we have{

q̂0,l(x) a.e.
= 0 on [0, 1], and αl = α̃l , l �= i0, (118)

λ1,n1,k − λ̃01,ñ1,k
= 0, ∀n1,k ∈ I1. (119)

Next, we prove

q̂0,i0(x) a.e.
= 0 on [0, 1], and αi0 = α̃i0 . (120)

It follows from (1) and (102) for l = i0 that

< ϕi0 , ϕ̃0,i0 > (1, λm,nm,k ) =
∫ 1

0
q̂0,i0(x)ϕi0(x, λm,nm,k )ϕ̃0,i0(x, λm,nm,k )dx− sin α̂i0 . (121)

Similar to the argument as the proof of Theorem 1, one can complete the remaining
proof of Theorem 4.
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Abstract: This work is devoted to the development of methods for constructing asymptotic formulas
as x → ∞ of a fundamental system of solutions of linear differential equations generated by a
symmetric two-term differential expression of odd order. The coefficients of the differential expression
belong to classes of functions that allow oscillation (for example, those that do not satisfy the
classical Titchmarsh–Levitan regularity conditions). As a model equation, the fifth-order equation
i
2

[
(p(x)y′′′)′′ + (p(x)y′′)′′′

]
+ q(x)y = λy, along with various behaviors of coefficients p(x), q(x),

is investigated. New asymptotic formulas are obtained for the case when the function h(x) =

−1 + p−1/2(x) /∈ L1[1, ∞) significantly influences the asymptotics of solutions to the equation. The
case when the equation contains a nontrivial bifurcation parameter is studied.

Keywords: asymptotic methods; oscillating coefficients; singular differential equations of odd order;
Campbell’s identity; quasi-derivatives; Shin–Zettl matrix

MSC: 34E10; 34E15; 34L20

1. Introduction

Analyzing the asymptotic behavior as x → ∞ of a fundamental system of solutions of
arbitrary-order singular differential equations, being of independent interest, is an effective
method for studying qualitative spectral characteristics for corresponding differential
operators [1–3]. As a rule, in these books, differential equations with regular coefficients
with regular growth at infinity are investigated. Therefore, the study of the asymptotic
behavior of solutions to equations with coefficients from other classes of functions is of
particular interest. Such classes of functions were described by us in a previous paper [4].
Let us also note the works [5–7], where differential operators with distribution coefficients
were studied.

For example, in the work [7], asymptotic formulas were obtained for the fundamental
system of solutions of a two-term equation of even order:

(−1)n(p(x)y(n))(n) + q(x)y = λy, x ∈ [1, ∞),

where the locally summable function p can be represented as p(x) = (1 + r(x))−1, r ∈
L1[1, ∞) and q is a generalized function representable for some fixed k, 0 ≤ k ≤ n, in the
form q = σ(k), where σ ∈ L1[1, ∞) if k < n , |σ|(1 + |r|)(1 + |σ|) ∈ L1[1, ∞), if k = n.

Since 2014, we have been publishing a series of articles devoted to the study of the
asymptotic behavior of solutions to singular ordinary differential equations with regularly
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oscillating coefficients [4,8–11]. In this case, a new approach was used for the study based
on a sequence of matrix transformations and the use of Campbell’s identity [12].

The use of this approach made it possible to obtain new asymptotic formulas in
different cases. For example, in [4,11], new asymptotic formulas were obtained for solutions
of the Sturm–Liouville equation

y′′ +
(

μ2 +
sin(xβ)

xα

)
y = 0, 0 < α ≤ 1, β >

α

2
+ 1

under some relations between α, β, μ. Note that μ has the meaning of a bifurcation
parameter. By the way, this equation is one of the equations for testing new methods for
constructing asymptotic formulas (see, for example, [13], p. 160).

Equations of odd order for irregular classes of coefficients (in the Titchmarsh–Levitan
sense) have been studied less. In the works [7,10], the asymptotics of solutions of odd-order
equations were studied in the case when the coefficient of the highest derivative is equal or
equivalent to unity.

Here, we develop an approach that was proposed in [4,8–11] and can be implemented
to study the asymptotic behavior as x → ∞ of a fundamental system of solutions of
two-term equations of arbitrary odd order of the form

ly =
i
2

[(
p(x)y(n)

)(n+1)
+

(
p(x)y(n+1)

)(n)
]
+ q(x)y = λy, x ≥ 1 (1)

for various behaviors of coefficients p(x), q(x).
This method allows us to significantly expand the classes of coefficients p(x) and

q(x) for which we can write out the asymptotic behavior of solutions. In particular, new
formulas are obtained in cases where p(x) and q(x) allow oscillations. Note that the
new formulas obtained allow us to study the spectral properties of differential operators
generated by the expression ly (1).

2. Transition to the Ordinary System of Differential Equations
Using Quasi-Derivatives

Let us write Equation (1) in the form of a system of ordinary differential equations
of the first order. To do this, we use the apparatus of quasi-derivatives (for more detail,
see [14–16]). Let us define the functions qn(x) ∈ L1,loc[1, ∞) so that

q(n)n (x) = q(x) (2)

and introduce into consideration quasi-derivatives defined by the following formulas:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z1 = y, zn+2 =
√

pz′n+1 − iqnz1

z2 = z′1, zn+3 = z′n+1 + iC1
nqnz2

.... ....
zn = z′n−1, z2n = z′2n−1 + i(−1)n−1Cn−2

n qnzn−1

zn+1 =
√

pz′n, z2n+1 = z′2n + i(−1)nCn−1
n qnzn.

(3)

Then, Equation (1) is equivalent to the relation

z′2n+1 = λz1 − i(−1)n+1 qn√
p

zn+1.

Let us introduce the column vector z = column(z1, z2, ..., z2n+1) and write Equation (1)
as a system of ordinary differential equations

z′ = Sz,
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where S(x, λ) is the Shin–Zettl matrix [14].

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ... 0 0 0 0 ... 0
0 0 1 ... 0 0 0 0 ... 0

..............
0 0 0 ... 1 0 0 0 ... 0
0 0 0 ... 0 1√

p 0 0 ... 0
iqn√

p 0 0 ... 0 0 1√
p 0 ... 0

0 −inqn 0 ... 0 0 0 1 ... 0
...............

0 0 0 ... 0 (−1)n−1inqn 0 0 ... 1
−iλ 0 0 ... 0 0 (−1)niqn√

p 0 ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the non-zero elements of the matrix S(x, λ) are given by the formulas

skj = 1, j = 1 + k, k = 1, n− 1, k = n + 2, 2n, sn,n+1 = sn+1,n+2 =
1√
p

,

sn+1,1 =
iqn√

p
, sn+k,k = (−1)k−1iCk−1

n qn, k = 2, n,

s2n+1,2n−1 =
(−1)niqn√

p
, s2n+1,1 = −iλ.

Note that from the relation q(n)n (x) = q(x), the function qn(x) is determined up to a
polynomial of order n− 1. However, the fundamental system of solutions of Equation (1)
does not depend on the choice of integration constants, which follows directly from
Formula (3). Conditions for choosing the coefficients of the polynomial are formulated for
each case under study.

Further, in order to avoid complicated formulas, we limit ourselves to considering the
5th-order two-term equation

ly =
i
2

[(
p(x)y′′

)′′′
+

(
p(x)y′′′

)′′]
+ q(x)y = λy, x ≥ 1. (4)

Using Formula (3), we introduce quasi-derivatives⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z1 = y
z2 = z′1
z3 =

√
pz′2

z4 =
√

pz′3 − iq2 z1

z5 = z′4 + 2iq2z2.

Then, Equation (4) is equivalent to the relation

z′5 = −iλz1 +
iq2√

p
z3

and can be written as a system of ordinary differential equations:

z′ =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1/

√
p 0 0

iq2/
√

p 0 0 1/
√

p 0
0 −2iq2 0 0 1
−iλ 0 iq2/

√
p 0 0

⎞⎟⎟⎟⎟⎠z,
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where z = column(z1, z2, z3, z4, z5).
Let the function p(x) admit the representation

1√
p(x)

= 1 + h(x), h(x) ∈ L1,loc[1, ∞). (5)

Let us write the last system of equations in the following form, taking into account (5):

z′ = (L0 + h(x)L1 + iq2(x)D0 + ih(x)q2(x))D1)z, (6)

L0 =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−iλ 0 0 0 0

⎞⎟⎟⎟⎟⎠, L1 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠,

D0 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 −2 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠, D1 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠.

3. Construction of Asymptotic Formulas

3.1. Case 1

Let us set
h̃(x) = q2(x)h(x). (7)

Let the following conditions be satisfied:

h(x), q2(x) ∈ L1[1, ∞), h̃(x) ∈ L1,loc[1, ∞).

For example, these conditions are true for

h(x) =
1

xγ
, γ > 1; q(x) = xα sin xβ, α > 0, β >

α + 3
2

.

Let the constant matrix T reduce the matrix L0 to diagonal form. Let us make a
replacement:

z = Tu, T−1L0T = Λ, μ5
k = −iλ, k = 1, 5,

Λ =

⎛⎜⎜⎜⎜⎝
μ1 0 0 0 0
0 μ2 0 0 0
0 0 μ3 0 0
0 0 0 μ3 0
0 0 0 0 μ3

⎞⎟⎟⎟⎟⎠, T =

⎛⎜⎜⎜⎜⎝
1 1 1 1 1

μ1 μ2 μ3 μ4 μ5
μ2

1 μ2
2 μ2

3 μ2
4 μ2

5
μ3

1 μ3
2 μ3

3 μ3
4 μ3

5
μ4

1 μ4
2 μ4

3 μ4
4 μ4

5

⎞⎟⎟⎟⎟⎠.

Then, system (5) takes the form

u′ =
(

Λ + h(x)T−1L1T + iq2(x)T−1D0T + iq2(x)h(x)T−1D1T
)

u. (8)

Obviously, because of the imposed conditions, System (8) satisfies the conditions of
Lemma 1 in [3], p. 288, and is L-diagonal, which means we can write out asymptotic
formulas as x → ∞ for the fundamental system solutions of this system:

zk(x, λ) = T · uk(x, λ) = eμkx · T · (ek + o(1)), k = 1, 5,

where ek are unit basis vectors.
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3.2. Case 2

Let the following conditions be satisfied:

q2(x) /∈ L1[1, ∞), h(x), q3(x), h̃(x) ∈ L1[1, ∞). (9)

These conditions are true for

h(x) =
1

xγ
, γ > 1; q(x) = xα sin xβ, α > 0,

α + 3
2

≥ β >
α + 4

3
.

Following the approach outlined in the paper [8], we make a replacement in System
(6):

z = eiq3(x)D0 u. (10)

We obtain
u′ = e−iq3(x)D0

(
L0 + h(x)L1 + ih̃(x)D1

)
eiq3(x)D0 u. (11)

Let us apply Campbell’s identity to transform the right-hand side of (11) to

e−iq3(x)D0 L0eiq2(x)D0 = L0 − iq3(x)[D0, L0] +
i2q2

3(x)
2!

[D0, [D0, L0]]−

− i3q3
3(x)
3!

[D0, [D0, [D0, L0]]] + ...,

where [A, B] = AB− BA is a matrix commutator.
Below, we use the following obvious consideration: if the matrix A is nilpotent, then a

nonzero sequence of matrix commutators of the form [A, [A, ..., [A, B]]...] is finite.
Note that the matrix D0 is nilpotent. By sequentially calculating the commutators on

the right side of the last relation, we obtain that all terms, starting from the fourth, are equal
to zero, and non-zero terms can be calculated:

[D0, L0] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
−1 0 0 0 0
0 3 0 0 0
0 0 −3 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠, [D0, [D0, L0]] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
5 0 0 0 0
0 5 0 0 0

⎞⎟⎟⎟⎟⎠.

Similar calculations can be carried out for the remaining terms on the right side of (11):

e−iq3(x)D0 h(x)L1eiq3(x)D0 = h(x)L1 − iq3h(x)[D0, L1] +
h(x)i2q2

3(x)
2!

[D0, [D0, L1]] + ....,

[D0, L1] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
−1 0 0 0 0
0 2 0 0 0
0 0 −2 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠, [D0, [D0, L1]] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
4 0 0 0 0
0 4 0 0 0

⎞⎟⎟⎟⎟⎠.

Because [D0, D1] = 0, the following representation is true:

e−iq3(x)D0 h̃(x)D1eiq3(x)D0 = h̃(x)D1.

Then, Equation (11) can be rewritten as

u′ = (L0 + hL1 + h̃D1 − iq3[D0, L0] +
i2q2

3
2!

[D0, [D0, L0]]− iq3h[D0, L1] +
i2hq2

3
2!

[D0, [D0, L1]])u. (12)
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Because of the imposed conditions on the functions h(x), q(x), the last system can be
written as

u′ = (L0 + D(x))u,

where D(x) is a matrix whose elements belong to L1[1, ∞). Just as in Case 1, let us make
the replacement u = Tv; then,

v′ = (Λ + T−1D(x)T)v. (13)

System (13) satisfies the conditions of Lemma 1 in [3] and is L-diagonal, which means,
taking into account (10), we can write asymptotic formulas for x → ∞ for its fundamental
system of solutions:

zk(x, λ) = eμkx · eiq3(x)D0 · T · (ek + o(1)), k = 1, 5.

where ek are unit vectors.

Remark 1. Let us note the importance of resulting Equation (12). Imposing various conditions
on the coefficients of this equation, h(x), q3(x)h(x), q2

3(x)h(x), h̃(x), q3(x), and q3
2(x), different

from the conditions in (9) , one can obtain different asymptotics of the fundamental system of
solutions with nontrivial properties.

3.3. Case 3

Let us define the function h1(x) so that

h′1(x) = h(x). (14)

Let us now consider the case when

h(x), q2(x) /∈ L1[1, ∞), q3(x), h1(x), h̃(x) ∈ L1[1, ∞).

For example, these conditions are true for

h(x) =
1

xγ
, 0 < γ < 1; q(x) = xα sin xβ, 2 > α > 0,

α + 3
2

≥ β >
α + 3− γ

2
.

Just as in Case 2, let us make a replacement in System (6)

z = eh1(x)L1u. (15)

Then, System (6) takes the form

u′ = e−h1(x)L1
(

L0 + iq2(x)D0 + ih̃(x)D1
)
eh1(x)L1u. (16)

Let us apply Campbell’s identity to transform the right-hand side of (16):

e−h1(x)L1 L0eh1(x)L1 = L0 − h1(x)[L1, L0] +
h2

1(x)
2!

[L1, [L1, L0]]−
h3

1(x)
3!

[L1, [L1, [L1, L0]]] + ...

Note that the matrix L1 is nilpotent. By sequentially calculating the commutators on
the right side of the last relation, we obtain that all terms, starting from the fourth, are equal
to zero, and non-zero terms can be calculated:

[L1, L0] =

⎛⎜⎜⎜⎜⎝
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠, [L1, [L1, L0]] =

⎛⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠.
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Similar calculations can be carried out for the remaining terms on the right side of (16):

e−h1(x)L1 iq2(x)D0eh1(x)L1 = iq2(x)D0 − iq2(x)h1(x)[L1, D0] +
iq2(x)h2

1(x)
2!

[L1, [L1, D0]]−

− iq2(x)h3
1(x)

3!
[L1, [L1, [L1, D0]]] +

iq2(x)h4
1(x)

4!
[L1, [L1, [L1, [L1, D0]]]].

[L1, D0] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
−1 0 0 0 0
0 2 0 0 0
0 0 −2 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠, [L1, [L1, D0]] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 −2 0 0 0
0 0 4 0 0
0 0 0 −2 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠,

[L1, [L1, [L1, D0]]] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 6 0 0
0 0 0 −6 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠, [L1, [L1, [L1, [L1, D0]]]] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 −12 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠,

e−h1(x)L1 ih̃(x)D1eh1(x)L1 = ih̃(x)D1 − ih1(x)h̃(x)[L1, D1],

[L1, D1] =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0

⎞⎟⎟⎟⎟⎠.

Because of the imposed conditions on the functions h(x), q(x), the last system can be
written as

u′ = (L0 + iq2(x)D0 + D(x))u.

where D(x) is a matrix whose elements belong to L1[1, ∞). Unlike Case 2, the resulting
system is not yet L-diagonal. Let us make one more transformation:

u = eiq3(x)D0v. (17)

Then, the last system will take the form

v′ = e−iq3(x)D0(L0 + iq2(x)D0 + D(x))eiq3(x)D0v. (18)

Let us apply Campbell’s identity to transform the right-hand side of (18). Just as in
Case 2, taking into account the nilpotency of the matrix D0 and sequentially calculating all
the necessary matrix commutators, we obtain the following form of System (18):

v′ = (L0 + D̃(x))v.

Here, the matrix D̃(x) is defined by the expression

D̃(x) = −iq3(x)[D0, L0] +
i2q2

3
2!

[D0, [D0, L0]] + e−iq3(x)D0 D(x)eiq3(x)D0 ,

which because of the conditions imposed above on the functions h(x), q(x), is obviously a
matrix with elements summable over [1, ∞).

Next, we make the replacement v = Ts. Then,

s′ = (Λ + T−1D̃(x)T)s. (19)
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System (19) satisfies the conditions of Lemma 1 in [3] and is L-diagonal, which means,
taking into account (15) and (17), we can write out asymptotic formulas as x → ∞ for its
fundamental system of solutions:

zk(x, λ) = eμkx · eh1(x)L1 · eiq3(x)D0 · T · (ek + o(1)), k = 1, 5,

where ek are unit vectors.
Summarizing Cases 1–3, we find that we have proven the following theorem:

Theorem 1. Let functions q2(x), q3(x), h(x), h̃(x), h1(x) be defined by Formulas (2), (5), (7),
and (14) correspondingly and one of the following conditions be satisfied:
(1) h(x), q2(x) ∈ L1[1, ∞),
(2) h(x), q3(x), h̃(x) ∈ L1[1, ∞),
(3) q3(x), h1(x), h̃(x) ∈ L1[1, ∞).
Then, the asymptotic formulas as x → ∞ for the fundamental system of solutions of Equation (4)
are valid:

yj(x, λ) = eμjx · (1 + o(1)), j = 1, 5.

In fact, we obtain the asymptotic formulas as x → ∞ for vector function; we may also
write down the asymptotic formulas for quasi-derivatives of solutions.

3.4. Counterexample

Let us show that the conditions of Theorem 1 are essential.
Let

h(x), q2(x) /∈ L1[1, ∞), q3(x), h1(x) ∈ L1[1, ∞), h̃(x) ∈ L1,loc[1, ∞).

In the same way as in Case 3, we make sequential transformations

z = eh1(x)L1 u, u = eiq3(x)D0 w,

which brings Equation (6) to the form

w′ = (L0 + ih(x)q2(x))D1)w + F(x)w, (20)

where F(x) ∈ L1[1, ∞) .
The last system of equations allows for a large variety in the asymptotic behavior as

x → +∞ and can be the subject of a separate study.
We limit ourselves to considering a model example on which we demonstrate an

unusual property of equations with oscillating coefficients, namely, the influence of the
algebraic structure of the coefficients of the equation on the asymptotic behavior of the so-
lutions.

Let
h(x) = a sin(ex), q2(x) = sin(kex),

from which

h̃(x) = h(x)q2(x) = a sin(ex) sin(kex) =
1
2

a[cos((k− 1)ex) + cos((k + 1)ex)].

Consider two cases: k = ±1 and k �= ±1. Let k �= ±1. Define the function h̃1(x) so
that h̃′1(x) = h̃(x). Note that, in this case, h̃1(x) ∈ L1[1, ∞).

In System (20), we set
w = eih̃1(x)D1 v;
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then, for v, we obtain the system

v′ = (L0 + F1(x))v, (21)

where F1(x) ∈ L1[1, ∞) and which can easily be reduced to an L-diagonal system. Con-
sequently, the main term of the asymptotics of the fundamental system of solutions (21),
as above, are determined:

zj(x, λ) = eμjx · T · (ej + o(1)), j = 1, 5.

Let k = ±1. Note that now

h(x)q2(x) = a sin(ex) sin(kex) =

1
2

a[cos((k− 1)ex) + cos((k + 1)ex)] =
1
2

a(1 + cos(2ex))

whence it follows that h(x)q2(x) /∈ L1[1, ∞). Let us denote σ(x) = i
2 a cos(2ex) and repre-

sent the system (21) in the following form:

w′ =
(

L0 +
i
2

aD1 + σ(x)D1

)
w + F(x)w, (22)

where F(x) ∈ L1[1, ∞), and the matrix L0 +
i
2 aD1 is constant. Considering

σ1(x) = − i
2

a
∫ +∞

x
cos(2eξ)dξ ∈ L1[1, ∞),

we make a replacement in System (22)

w = eσ1(x)D1 v,

and again using the technique described above, we obtain the system

v′ = (L0 +
i
2

aD1)w + F1(x)w. (23)

Here, taking into account that σ1(x) ∈ L1[1, ∞), we have F1(x) ∈ L1[1, ∞). Let matrix
T̂ reduce matrix L0 +

i
2 aD1 to diagonal form, μ̂j , werej = 1, 5-eigenvalues of the matrix

L0 +
i
2 aD1. Let us make a replacement:

v = T̂s, T̂−1(L0 +
i
2

aD1)T̂ = Λ̂.

Then, System (22) takes the form

s′ = (Λ̂ + T̂−1F1(x)T̂)s.

The resulting system is equivalent to the L-diagonal system. Then, as above, the fun-
damental system of solutions of Equation (6) can be represented as

zj(x, λ) = eμ̂jx · T̂ · (ej + o(1)), j = 1, 5.

Thus, when the numerical coefficient k passes through the points k = ±1, the asymp-
totics of the fundamental system of solutions of Equation (4) undergoes a qualitative change.
In other words, the points k = ±1 are bifurcation points for System (6) and corresponding
Equation (4).

Such bifurcation points for differential equations and systems of equations with
regularly oscillating coefficients are typical and were recently noted by us in works devoted
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to the study of the asymptotic behavior of the Sturm–Liouville equation with an oscillating
potential [4,11].

4. Discussion

The results obtained have important applications in the spectral theory of differential
operators generated by the left side of Equation (1). In particular, they make it possible to
calculate the deficiency indices of the corresponding minimal differential operator.

The authors intend to investigate this issue in the future. In addition, we will be
interested in the qualitative nature of the spectrum of such operators.

5. Conclusions

In this paper, we present a new approach to studying asymptotic behavior for x → ∞
solutions of singular binomial differential equations of odd order for new classes of coeffi-
cients the corresponding differential expression.

This approach is based on the transition to a first-order system using quasi-derivatives
and sequences of matrix transformations of this system. The key point of our approach
is using the features of the algebraic matrix structure of the resulting system of ordinary
differential equations.

This makes it possible to construct asymptotic formulas for solutions of new classes of
equations, for example, for equations with oscillating coefficients. Note that similar results
for such equations were not previously known.

Of particular interest is the counterexample we constructed, showing the phenomenon
of “resonance” of oscillating coefficients: the existence of certain values of the numerical
parameters of the coefficients of the equation at which the qualitative change asymptotic
behavior of solutions. This property is typical, in general, for differential equations with
oscillating coefficients of arbitrary order and was previously shown by us for the Sturm–
Liouville equation.

Author Contributions: All three authors, on an equal level, discussed and posed the research
questions in this paper. Y.T.S. helped prove the main results and type the manuscript. N.F.V. is the
main author concerning the proofs of the main results. E.A.N. put the results into a more general
frame and instructed the team on how to write the manuscript in this final form. All authors have
read and agreed to the published version of the manuscript.

Funding: The studies of E.A.N. and Y.T.S. were funded by the Russian Science Foundation, project
no. 23-21-00225.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Eastham, M.S.P. The Asymptotic Solution of Linear Differential Systems, Applications of the Levinson Theorem; Clarendon Press: Oxford,
UK, 1989.

2. Fedoryuk, M.V. Asymptotic Methods for Linear Ordinary Differential Equations; Nauka: Moscow, Russia, 1983. (In Russian)
3. Naimark, M.A. Linear Differential Operators; Nauka: Moscow, Russia, 1969. (In Russian)
4. Nazirova, E.A.; Sultanaev, Y.T.; Valeeva, L.N. On a Method for Studying the Asymptotics of Solutions of Sturm–Liouville

Differential Equations with Rapidly Oscillating Coefficients. Math. Notes 2022, 112, 1059–1064.
5. Konechnaja, N.N.; Mirzoev, K.A.; Shkalikov, A.A. On the Asymptotic Behavior of Solutions to Two-Term Differential Equations

with Singular Coefficients. Math. Notes 2023, 104, 244–252. [CrossRef]
6. Mirzoev, K.A.; Konechnaja, N.N. Asymptotics of solutions to linear differential equations of odd order. Vestnik Moskov. Univ. Ser.

1. Mat. Mekh. 2020, 75, 22–26. [CrossRef]
7. Konechnaja, N.N.; Mirzoev, K.A.; Shkalikov, A.A. Asymptotics of Solutions of Two-Term Differential Equations. Math. Notes 2023,

113, 228–242. [CrossRef]
8. Nazirova, E.A.; Sultanaev, Y.T.; Valeev, N.F. On a new approach for studying asymptotic behavior of solutions to singular

differential equations. Trans. Ufa Math. J. 2015, 3, 9–14.

375



Mathematics 2024, 12, 213

9. Myakinova, O.V.; Sultanaev, Y.T.; Valeev, N.F. On the Asymptotics of Solutions of a Singular nth-Order Differential Equation with
Nonregular Coefficients. Math. Notes 2018, 104, 606–611.

10. Valeev, N.F.; Nazirova, E.A.; Sultanaev, Y.T. On a Method for Studying the Asymptotics of Solutions of Odd-Order Differential
Equations with Oscillating Coefficients. [CrossRef] Math. Notes 2021, 109, 980–985. [CrossRef]

11. Nazirova, E.A.; Sultanaev, Y.T.; Valeev, N.F. The new asymptotics for solutions of the Sturm-Liouville equation. Proc. Inst. Math.
Mech. Acad. Sci. Azerbaijan 2023, 49, 253–258.

12. Rossmann, W. Lie Groups—An Introduction Through Linear Groups; Oxford University Press: Oxford, UK, 2006.
13. Bellman, R. Stability Theory of Differential Equations; Mc-Graw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953.
14. Everitt, W.N.; Marcus, L. Boundary value problem and symplectic algebra for ordinary differential and quasi-differential operators.

AMS. Math. Surv. Monogr. 1999, 60, 1–60.
15. Everitt, W.N.; Race, D. Some remarks on linear ordinary quasi-differential expressions. Proc. Lond. Math. Soc. 1987, 3, 300–320.

[CrossRef]
16. Everitt, W.N.; Zettl, A. Differential operators generated by a countable number of quasi-differential expressions on the real line.

Proc. Lond. Math. Soc. 1992, 3, 524–544. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

376



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-1596-8


