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1. Introduction to the Applications, Challenges, and Research Trends in Wireless
Sensor Networks

A typical wireless sensor network (WSN) contains wirelessly interconnected devices,
called sensor nodes, which have sensing, processing, and communication abilities and
are disseminated within an area of interest. A WSN also includes at least one sink node,
called the base station, which has enhanced energy, computational, and communication
resources. Within a WSN, while sensor nodes monitor ambient conditions, process the
relative data, and transmit them to other sensor nodes and the base station, the latter
controls the operation of the specific WSN and its communication with other WSNs and/or
the final user [1].

Taking advantage of the combined capabilities of its constituting elements, WSNs can
monitor the conditions existing in areas of interest of almost any kind and size. This is
the reason why, although WSNs were initially invented to be used exclusively in military
sector, currently they are not only considered to be the basis of the Internet of Things (IoT),
but also support a continuously growing range of applications that are associated with
almost any sector of human activity, ranging from the environment and flora and fauna, to
industry, urban activities, and healthcare [2].

On the other hand, the operation of WSNs is obstructed because of various reasons.
First of all, WSNs have certain restrictions. Specifically, the energy sufficiency of typical
sensors nodes is extremely limited. This is because their energy is typically supplied
by batteries which, in most cases, are impractical to either recharge or replace, since the
positions of the sensor nodes are usually difficult or even impossible to reach. Therefore,
the attainment of energy conservation is a vital issue for WSNs. That is why, while
energy saving is necessitated, energy sustainability is pursued through many different
methodologies and means [3–6].

Additionally, sensor nodes have limited resources in terms of the storage and pro-
cessing of data. Thus, data management in WSNs is by itself a very challenging issue of
scientific research [7–10].

Moreover, wireless communications have inborn limitations regarding transmission
power, transmission speed, the capacity of communication channels, and their vulnerability
to interferences and intrusion that impede WSNs. Consequently, numerous challenges
regarding WSNs arise [11–13].

Furthermore, in most cases, the incorporation of a large number of sensor nodes in
WSNs makes it particularly challenging to achieve specific goals associated with tasks such as
connectivity preservation with coverage maximization [14–16], congestion avoidance [17–19],
quality of service attainment [20,21], security provision [22,23], data aggregation [24,25],
fault tolerance [26,27], and node localization [28,29]. In many cases, the performance opti-
mization of WSNs concerns more than one of the aforementioned metrics, thus necessitating
the usage of multi-objective optimization algorithms [30,31].
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At the same time, emerging developments in several sectors of science and technology,
such as the Internet of Things [32,33], machine learning [34,35], deep learning [36,37], big
data [38–40], 5G [41–43], edge computing [44], energy harvesting [3,45,46], and wireless
power transfer [3,46,47] seem to be promising to support and enhance the operation of
WSNs, thus triggering corresponding research trends.

2. Overview of this Special Issue

The Special Issue, entitled “Advanced Wireless Sensor Networks: Applications, Chal-
lenges and Research Trends”, attracted the interest of many researchers associated with the
topics mentioned in the previous section, and finally, after a double-blind review process,
ten high-quality papers were selected for publication. In this section, a brief overview of
these ten contributions is provided in order to encourage the reader to explore them in
more detail.

The research article by Singh et al., the first contribution of this Special Issue, inves-
tigates the integration of WSNs with machine learning and deep learning techniques to
enhance soil moisture estimations for agricultural and environmental management pur-
poses. Specifically, this study evaluates five machine learning/deep learning methods and
demonstrates the effectiveness of the long short-term memory (LSTM) model in accurately
estimating soil moisture levels across different regions. By leveraging WSN-driven data
alongside satellite observations and climate models, the proposed methodology offers
a practical approach for high-resolution soil moisture estimation, with implications for
precision agriculture and environmental monitoring. The paper concludes by identifying
future research directions to further improve soil moisture estimation models and their
applicability in real-world scenarios.

The second contribution, by Pinto Neves et al., introduces a novel firmware update
method for microcontrollers, aiming to minimize downtime and optimize data transmission
during updates. Unlike traditional methods that replace the entire program, this approach
enables updating specific code segments without interrupting ongoing operations. Imple-
mented and validated on a PIC18F27K42 microcontroller, the method showcases reduced
downtime, less than 10 ms, and good recoverability in failure scenarios. However, it has
limitations, such as updating only up to eight rows at a time and requiring full control over
functionalities, excluding compatibility with operating systems or hardware abstraction
layers. Despite these limitations, the method demonstrates easy replication across vari-
ous microcontrollers, indicating broad applicability. Future research directions include
exploring radio transmission options and automating memory partitioning for improved
efficiency, suggesting a promising avenue for advancing firmware update practices in
microcontroller-based systems.

The third contribution of this Special Issue is a paper by Wang et al. that addresses the
challenge of channel collisions in dense long-range wide-area networks (LoRaWANs) by
proposing a novel time-allocation adaptive data rate (TA-ADR) algorithm. By introduc-
ing the concept of time intervals for node transmissions, the TA-ADR algorithm aims to
allocate independent time slots to each node, mitigating data collision issues in densely
populated scenarios and optimizing network performance. Practically, the specific algo-
rithm dynamically adjusts the spreading factor (SF) and transmission power (TP) for LoRa
nodes, intelligently scheduling transmission times to reduce the risk of data collisions and
enhance transmission efficiency. Simulations conducted in a dense LoRaWAN environment
demonstrate significant improvements over existing algorithms, achieving an approximate
30.35% enhancement in data transmission rate, 24.57% reduction in energy consumption,
and 31.25% increase in average network throughput compared to the ADR+ algorithm.

The paper by Tu et al., referred to as the fourth contribution of this Special Issue,
addresses the challenge of complexity in multi-user detection (MUD) schemes for uplink
massive multiple-input multiple-output (M-MIMO) systems by proposing a novel mixed
over-relaxation (MOR) algorithm, combining the advantages of successive over-relaxation
(SOR) and accelerated over-relaxation (AOR) methods. The MOR algorithm aims to reduce
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the bit error rate (BER), computational complexity, and adapt to both 4G and beyond
fifth-generation (B5G) environments. By dividing MOR into initial and collaboration stages,
the algorithm achieves rapid convergence and refinement performance through alternating
iterations. Simulations demonstrate significant improvements in BER performance com-
pared to traditional SOR and AOR methods, achieving approximately 99.999% and 99.998%
improvement, respectively, while keeping the complexity at O(Nˆ2). The collaborative
architecture of MOR effectively balances BER performance and computational complex-
ity, making it suitable for M-MIMO orthogonal frequency division multiplexing (OFDM)
and universal filtered multi-carrier (UFMC) systems in both 4G and B5G environments,
presenting a promising solution for future wireless communication systems.

The fifth contribution of the Special Issue is a paper by Xu et al. that introduces a Q-
learning and efficient low-quantity charge (QL-ELQC) method tailored for the smoke alarm
unit within a power system, aiming to enhance the lifetime of wireless sensor network
nodes. Actually, traditional medium-access control protocols often overlook the alarm state,
prompting the need for an optimized approach. The QL-ELQC method, considering the
relationship between sensor data conditions and RF module activation, indeed optimizes
the standby and active periods of nodes based on quantity charge models. By effectively
managing the duty cycle, the proposed method mitigates the continuous state–action space
limitations of Q-learning. Simulation results demonstrate significant improvements in
latency and energy efficiency compared to existing schemes, with experimental validation
aligning with theoretical expectations. The extension of the lifetime of nodes provided by
the proposed method is particularly beneficial in scenarios where battery replacement or
recharging is impractical, thus offering a promising solution for enhancing WSN longevity
in alarm systems under harsh environmental conditions.

The paper by Kovtun et al. is the sixth contribution of this Special Issue. It investigates
the process of information transfer between sensor network end IoT devices and hubs at
the transport protocol level, focusing on leveraging the 5G platform. Viewing this process
as a semi-Markov model with nested Markov chains, the study derives a stationary dis-
tribution of the sliding window size, crucial for determining information flow intensity.
A recursive method with linear computational complexity is formalized to calculate this
distribution. Using this, a distribution function characterizing communication channel
bandwidth is formulated. The study showcases the potential of TCP protocol in handling
massive IoT traffic but highlights security concerns. Future research aims to optimize
TCP parameters for precise Quality of Service (QoS) policies in 5G clusters supporting
sensor networks, contributing to advancements in ultra-reliable low-latency communica-
tions (URLLCs), massive machine-type communications (mMTCs), and enhanced mobile
broadband (eMBB) technologies.

The seventh contribution of this Special Issue is a research article by El Boudani et al. It
introduces a novel approach for enhancing indoor positioning accuracy in 5G IoT networks,
crucial for identity and context-aware applications such as simultaneous localization and
mapping (SLAM). Utilizing a K-nearest neighbors and deep neural network (K-DNN)
algorithm, the study proposes a method that incorporates a fusion of Bluetooth low-
energy (BLE) and wireless local area network (WLAN) signals, along with a unique data
augmentation concept for received signal strength (RSS)-based fingerprinting, resulting
in a 3D fused hybrid radiomap. This hybrid approach aims to improve 3D localization
accuracy by addressing challenges such as outlier detection and reducing labor costs
during data collection. The implementation demonstrates promising results, achieving
a 91% classification accuracy in 1D and submeter accuracy in 2D positioning. The study
underscores the potential of cooperative machine learning localization and suggests future
directions for expanding the model’s capabilities, including integrating data from different
azimuth angles and incorporating floor-level detection for multi-story buildings.

The eighth contribution is an article by Kou et al. that addresses authentication and key
negotiation challenges in unmanned aerial vehicle mobile ad hoc networks (UAVMANETs)
for secure communication among multiple UAVs. By introducing a Latin square approach,
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the authentication process is simplified, enhancing the efficiency of signature aggregation
within the Boneh–Lynn–Shacham (BLS) signature scheme and aggregating keys negotiated
via the elliptic curve Diffie–Hellman (ECDH) protocol into new keys. This innovative
protocol ensures secure communication over insecure channels, crucial for UAVMANETs
operating in open wireless environments. Through security analysis and simulations, the
proposed scheme demonstrates improved efficiency in authentication and key negotiation
while meeting stringent security requirements. However, future research is suggested to
address scenarios involving dynamic changes in group membership, aiming to design a
more flexible protocol tailored to the dynamic nature of UAV networks.

Christakis et al., in their research article, which is the ninth contribution of this Special
Issue, investigate the use of low-cost electrochemical sensors in WSNs for air quality
monitoring in urban environments, addressing the challenge of sensor aging that affects
measurement accuracy. Through a long-term experimental study, the researchers compared
sensor data with official air monitoring instruments, revealing that aging due to factors such
as gas exposure and temperature fluctuations degrades sensor performance. To mitigate
this, they developed novel corrective formulae using specific coefficients, which adjust
for aging and temperature variations respectively. Their methodology demonstrated high
reliability and accuracy for nitrogen dioxide (NO2) and ozone (O3) sensors without the
need for frequent recalibration, making it feasible to deploy cost-effective and dense air
quality monitoring networks in smart cities.

Finally, the tenth contribution of this Special Issue is a paper by Pu et al. that addresses
the challenge of ensuring data freshness in industrial wireless sensor networks (IWSNs).
Specifically, this research article proposes a scheduling algorithm that maintains the age
of information (AoI) of each data packet within a bounded interval. Recognizing that
optimizing the average AoI alone is insufficient for industrial applications, the authors
developed a low-complexity AoI-bounded scheduling algorithm that guarantees timely
data delivery, critical for the stability of industrial control systems. The algorithm adjusts
the transmission intervals and superframe lengths based on the nodes’ sampling periods,
ensuring schedulability and reducing peak AoI by allocating additional time slots to
nodes with higher requirements. Numerical examples demonstrate the effectiveness of
this approach in maintaining bounded AoI, thus enhancing the reliability and real-time
performance of IWSNs in industrial settings.

3. Conclusions

The Guest Editors of this Special Issue believe that WSNs will continue being at the
epicenter of scientific interest, and hope that this collection of articles will be helpful to
scientists who focus their research efforts on this challenging domain.
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Abstract: Soil moisture estimation is crucial for agricultural productivity and environmental man-
agement. This study explores the integration of Wireless Sensor Networks (WSNs) with machine
learning (ML) and deep learning (DL) techniques to optimize soil moisture estimation. By combining
data from WSN nodes with satellite and climate data, this research aims to enhance the accuracy
and resolution of soil moisture estimation, enabling more effective agricultural planning, irrigation
management, and environmental monitoring. Five ML models, including linear regression, support
vector machines, decision trees, random forests, and long short-term memory networks (LSTM), are
evaluated and compared using real-world data from multiple geographical regions, which includes
a dataset from NASA’s SMAP project, supplemented by climate data, which employs both active
and passive sensors for data collection. The outcomes demonstrate that the LSTM model consistently
outperforms other ML algorithms across various evaluation metrics, highlighting the effectiveness
of WSN-driven approaches to soil moisture estimation. The study contributes to the advancement
of soil moisture monitoring technologies, offering insights into the potential of WSNs combined with
ML and DL for sustainable agriculture and environmental management practices.

Keywords: soil moisture estimation; wireless sensor networks (WSNs); precision agriculture; remote
sensing; LSTM (long short-term memory)

1. Introduction

Soil moisture estimation, which involves quantifying the water content present in the soil,
is a critical parameter in agriculture and crop management, as it directly influences various
aspects of plant growth, health, and overall agricultural productivity. Soil moisture content
is an essential indicator of water availability for plants. Optimal soil moisture levels are
essential for seed germination, crop emergence, and supporting vigorous field activity
during critical growth stages [1]. Soil moisture levels not only affect the physical and
chemical processes of soil but also influence the global ecological environment, hydrological
patterns, and climate change [2].

Monitoring soil moisture levels can provide valuable insights to support precision
agriculture techniques. Studies have shown that soil moisture estimation can aid in preci-
sion irrigation management [3]. By accurately quantifying soil moisture content, farmers
can optimize water application, preventing over-watering or under-watering of crops.
This leads to improved water use efficiency, reduced agricultural water consumption, and
enhanced crop yields. Additionally, soil moisture data can help detect the onset of agri-
cultural droughts, enabling timely interventions and mitigation strategies to support crop
resilience during water-stressed conditions [4].

Soil moisture estimation also plays a critical role in crop planning and management.
Knowing the available soil moisture content can guide decisions on crop selection, planting
schedules, and the application of fertilizers and pesticides [1]. This information helps farm-
ers maximize the use of limited water resources and ensures optimal growing conditions
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for their crops. The importance of soil moisture estimation extends beyond agriculture,
encompassing domains such as water resource management, environmental monitoring,
and environmental management. Soil moisture plays a crucial role in evaluating erosion
risks and assessing the potential for geological hazards like landslides and sinkholes [3].
Monitoring soil moisture is essential for managing water resources, detecting environ-
mental stresses, and supporting sustainable ecosystem management [3]. For instance,
soil moisture information can aid in flood prediction and control efforts. By monitor-
ing soil saturation levels, authorities can better anticipate the risk of flooding and take
appropriate mitigation measures [5]. Additionally, soil moisture data can help evalu-
ate erosion risks, as excessive moisture can lead to soil instability and increased erosion
rates. Moreover, soil moisture estimation contributes to improved weather forecasting
and climate modeling. Incorporating soil moisture data into these models enhances their
accuracy, enabling more reliable predictions of precipitation patterns, temperature fluctu-
ations, and other climate-related phenomena [3]. This information is crucial for manag-
ing water resources, planning climate adaptation strategies, and supporting sustainable
ecosystem management.

Soil moisture encompasses capillary, gravitational, and hygroscopic water, with its
dynamics shaped by variables like temperature, vegetation, soil composition, land use,
topography, and precipitation patterns [6]. The level of soil moisture emerges as a pivotal
factor impacting plant development, nutrient uptake, and the physical and chemical prop-
erties of the soil. Surface soil moisture levels ranging from 20 to 25 mm are conducive to
germination and emergence of crops but may hinder fieldwork and damage newly-seeded
crops if prolonged. Optimal vigorous field activity is associated with 15–20 mm of surface
soil moisture, while levels below 10 mm may not support seed germination or early growth.
Subsurface soil moisture values above 100 mm indicate favorable moisture conditions,
while levels below 25 mm may lead to crop stress and reduced yields, especially during crit-
ical growth stages [7]. Moreover, it serves as a valuable indicator for detecting agricultural
droughts, early signs of water scarcity, and aids in strategic crop planning and management
strategies. Furthermore, soil moisture plays a crucial role in evaluating erosion risks, as-
sessing the potential for geological hazards such as landslides and sinkholes, contributing
to improved weather prediction accuracy, and facilitating flood control initiatives [3].

The traditional methods for estimating soil moisture have several limitations. Even though
gravimetric methods are accurate, they are time-consuming and labor-intensive, providing mois-
ture content only at specific depths. Similarly, hand-feel techniques and moisture blocks are
qualitative methods and may produce varying results based on users and conditions [6]. Re-
mote sensing methods like satellite imaging offer a cost-effective and non-invasive ap-
proach for monitoring soil moisture over large areas [8,9]. However, remote measurements
typically have lower resolution compared to point measurements and estimate moisture
content only for the top few centimeters of soil. Complex data processing is also required
to filter out the effects of vegetation, terrain, soil type, and other factors influencing remote
sensing data.

To address these shortcomings, this study explores the integration of ML and DL tech-
niques with WSN and remote sensing data for soil moisture estimation. ML and DL models
are data-driven and can integrate relevant input features like brightness temperature, syn-
thetic aperture radar (SAR) backscatter, sensor properties, geographical information, and
meteorological variables from WSNs and remote sensing sources to map the output [10].
These advanced models have shown promising results in accurately predicting surface soil
moisture with high spatial and temporal resolution. By leveraging their ability to extract
complex patterns and relationships from diverse data sources, including WSNs and remote
sensing data, ML and DL techniques can overcome the limitations of traditional methods
in terms of spatial and temporal resolution, coverage, and adaptability to non-linear and
dynamic relationships [11].
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This study aims to develop an optimal methodology for accurately determining
soil moisture content over large agricultural areas using active and passive microwave
satellite data sensitive to topsoil moisture integrated with data from WSNs. Five ML/DL
methods are evaluated as part of the proposed methodology, including linear regression
(LR), support vector machines (SVM), decision trees (DT), random forests (RF), and LSTM.
The models are trained using data from NASA’s SMAP satellite mission, which offers
global measurements of moisture in the top 5 cm of soil. Additionally, data from WSNs
are incorporated. Models are assessed using various metrics such as Mean Square Error
(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). These evaluations help identify the most effective algorithm
for continuously estimating and predicting real-time soil moisture content by leveraging
both microwave data and WSN data. The main contributions of this study are as follows:

• This paper presents an efficient method for estimating soil moisture content using ML
and DL techniques for active-passive microwave remote sensing data.

• By consolidating data from ground-based sensors embedded in wireless sensor net-
work platforms, specifically targeting soil moisture levels, with inputs from remote
sensing sources like satellite observations and climate models, this approach elevates
the precision of soil moisture estimation through comprehensive data integration.

• It provides a practical approach to soil moisture estimation that combines cutting-
edge machine-learning techniques with real-world data sources, making it applicable
in agricultural and environmental management contexts.

• Developing a framework leveraging the best-performing ML model to provide ac-
curate, high-resolution soil moisture quantification, which can aid farmers, water
management authorities, and stakeholders in irrigation planning, drought monitoring,
and crop yield forecasting.

The structure of this paper is as follows. Section 2 provides an overview of recent
advancements in soil moisture estimation using WSNs, remote sensing, and machine
learning/deep learning techniques. Section 3 introduces the basic tools and techniques
used in this study. Section 4 describes the methodology, including data consolidation,
pre-processing, feature selection, model building, and the evaluation metrics employed.
Subsequently, Section 5 presents the results and provides a comprehensive discussion
of the obtained findings. Finally, the paper is concluded in Section 6, and potential future
research directions are identified.

2. Literature Review

Soil moisture is pivotal in agriculture and environmental studies, influencing plant
growth and water balance. Precise assessment is crucial for tasks like precision agriculture,
water resource management, and flood prediction. Traditional methods like gravimetric
and TDR are laborious and spatially limited. WSN and IoT infrastructure also offers
versatile tools for assessing various environmental parameters like water quality and soil
moisture with precision and efficiency [12,13]. Remote sensing has become popular, with
recent advancements leveraging WSN for real-time monitoring. Additionally, ML models
have gained traction due to their ability to handle complex relationships, enhancing soil
moisture prediction accuracy. SVM has significantly advanced soil moisture prediction,
exhibiting superior accuracy and effectiveness in various studies. Utilizing a kernel function
to map input data into a higher-dimensional space, SVM has outperformed traditional
regression models in predicting soil moisture levels. Studies by [14–16] have demonstrated
SVM’s efficacy in this domain. However, SVM’s computational complexity, particularly
with large datasets, and sensitivity to parameter tuning remain as significant limitations.
W. Wu et al. [17] employed the Random Forest Regression (RFR) model for soil moisture
prediction. While effective in surpassing traditional regression models, RFR faces challenges
in handling complex relationships or noisy datasets, necessitating careful consideration
in soil moisture estimation tasks.
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N. Zhu et al. [18] introduced a multilayer neural network model, utilizing data from
the Heihe River Basin in China. This model outperformed multiple linear regression and
SVM in terms of accuracy. The data used here are obtained from a small area that lacks
diversity, and spatial representations and hence may have serious challenges in scaling up.
Similarly, Song et al. [19] proposed a DL-based cellular automata model for spatiotemporal
soil moisture distribution, achieving high accuracy across various spatial and temporal
scales in China; however, the study area is relatively small, only 22 km2, and the data
used in the study are of only two months, August and September. Furthermore, LSTM,
a type of recurrent neural network (RNN) known for handling long-term dependencies, has
gained attention in soil moisture prediction. Q. Yuan et al. [20] applied LSTM in the Yellow
River Basin of China, demonstrating superior performance compared to other ML models.
However, despite their effectiveness, these methods may encounter challenges related to
noise in the data and computational complexity, which should be taken into account when
utilizing them for soil moisture estimation.

Remote sensing techniques, coupled with ML models, have also emerged as promis-
ing alternatives for accurate soil moisture estimation. For instance, H. Adab et al. [21]
utilized an RF model for estimating surface soil moisture using remote sensing data from
the Soil Moisture Active Passive (SMAP) satellite mission. Similarly, P. Leng et al. [22]
presented a framework utilizing a combination of a land surface model and an RF model
for all-weather fine-resolution soil moisture estimation. Additionally, M. A. Rajib et al. [5]
proposed a drought evaluation and forecast model based on soil moisture simulation,
employing a hybrid approach combining a hydrological model with remote sensing.
William et al. [23] also used a multilayer perceptron model trained on sensor data from
local meteorological departments to predict droughts in the coastal regions of Ecuador.
Despite the advancements in soil moisture estimation, there are still several limitations to
consider in remote sensing methods, such as limited spatial resolution, which is specifically
relevant when it comes to estimating soil moisture on a finer scale.

Despite the significant contributions to soil moisture estimation, several research
gaps remain to be addressed. The literature lacks a focus on refining the algorithms and
models used to analyze WSN data and incorporating them effectively into remote sensing
data for more precise soil moisture estimation. There is a need to develop methodologies
for the seamless integration and interoperability of heterogeneous data sources. Addi-
tionally, research should address the challenges associated with data quality, consistency,
and compatibility to ensure reliable and accurate soil moisture estimation across diverse
geographical regions and environmental conditions. The integration of ML models with
the fusion of remote sensing and WSN sources may enhance the reliability of soil moisture
estimation. Overall, addressing these research gaps will contribute to advancing the state-
of-the-art in soil moisture estimation and its applications in agricultural sustainability,
water resource management, and environmental conservation.

3. Preliminaries

This section introduces key concepts and technologies driving soil moisture estima-
tion advancements. It begins with an overview of NASA’s SMAP project, employing
active and passive sensors for global soil moisture data collection. The discussion fol-
lows on the Google Earth Engine, facilitating satellite data access and geospatial analysis.
Additionally, the section highlights the Power Access Climate Data platform, integrating
ground-based sensors and satellite imagery for comprehensive climate analysis. Further
exploration covers Wireless Sensor Networks, notably IMD’s deployment for real-time
monitoring of essential meteorological parameters, including soil moisture content.

3.1. Soil Moisture Active Passive (SMAP)

The SMAP project [24–26], led by NASA, employs a combination of active and passive
sensors to gather soil moisture data. An active synthetic aperture radar (SAR) transmits
microwave pulses and measures their return signal strength, while a passive radiome-
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ter records natural microwave emissions from the Earth’s surface. Equipped with a 6-m
reflector antenna rotating every three seconds, the observatory scans a 1000 km-wide
swath of the Earth’s surface. Collaboratively, the radar and radiometer produce high-
resolution soil moisture maps with a spatial accuracy of approximately 10 km. Orbiting
at an altitude of about 685 km, the SMAP observatory completes global coverage every
2–3 days over a 3-year period, ensuring frequent and comprehensive soil moisture measure-
ments. Data collected undergo processing and analysis at ground-based stations utilizing
specialized algorithms to estimate soil moisture content within the top 5 cm of the soil.
Validation occurs through ground-based measurements and other data sources, such as
climate models.

3.2. Google Earth Engine (GEE)

GEE is a cloud computing platform that assesses, stores, and analyzes data from a va-
riety of satellites, including Sentinel, Landsat, and MODIS. The collection includes climate,
atmosphere, surface temperature, land cover, terrain, cropland, and other geophysical data
that are openly and freely available. The web-based Interactive Development Environ-
ment and internet-based Application Programming Interface are available in Python and
JavaScript. It helps the researchers to reduce the burden of storing a large number of big
data files locally. It saves the data pre-processing and formatting time with the advantage
of accessing earth observation data. Earth Engine Explorer lets users manage and visual-
ize data from several satellites, while Earth Engine Time-lapse lets them see the Earth’s
evolution over 40 years. GEE can process large geospatial datasets with global coverage.

3.3. Power Access Climate Data

Power Access Climate Data [27] is a sophisticated web platform designed to offer
comprehensive access to a wide range of climate data and analysis tools. Built on state-
of-the-art technologies, it integrates data from ground-based sensors, satellite imagery,
and climate models. Notably, the platform provides an extensive array of climate mod-
els with various resolutions, outputs, and time scales, available in formats like NetCDF,
Comma Separated Values, and JSON. Users can access historical climate data spanning
decades. It offers a wealth of climate information, including temperature, precipitation,
humidity, wind speed and direction, and atmospheric pressure. Additionally, it provides
real-time weather data sourced from an extensive network of weather stations located
across the globe. This combination of historical and real-time data empowers users to
perform comprehensive analyses and make accurate predictions regarding climate patterns
and trends. The platform’s visualization tools include interactive maps, time-series charts,
and scatter plots for spatial and temporal data exploration. Moreover, its analysis and
forecasting tools employ advanced statistical and ML algorithms to identify patterns and
forecast future climate scenarios, catering to researchers, policymakers, and businesses
in need of informed decision-making based on climate data.

3.4. WSN Based Data

The monitoring stations deployed by the Indian Meteorological Department (IMD)
are strategically distributed to capture essential meteorological parameters using WSN.
WSN technology enables the seamless collection of data related to temperature, humidity,
rainfall, and wind speed from various geographical locations. Each monitoring station
within the network is equipped with sensors capable of measuring these parameters
in real-time [28]. IMD employs a variety of sensors within the WSNs to capture different
meteorological parameters. Thermometers and hygrometers are utilized for measuring
temperature and humidity. Rainfall is measured using rain gauges, while anemometers
are employed for wind speed measurement. Soil moisture content is assessed using soil
moisture sensors embedded in the ground at appropriate depths. To ensure the accuracy
and reliability of the collected data, IMD follows stringent calibration processes for all
deployed sensors. Calibration involves comparing sensor readings with known reference
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values under controlled conditions to adjust for any systematic errors or discrepancies.
This calibration process is regularly conducted to maintain the accuracy of sensor mea-
surements over time. Additionally, IMD implements various quality control measures to
assess and maintain the integrity of the collected data. These measures include outlier de-
tection, data validation checks, and sensor health monitoring. Outlier detection algorithms
identify anomalous data points that may indicate sensor malfunctions or environmental
disturbances. Data validation checks verify the consistency and plausibility of sensor
readings based on predefined thresholds and ranges. WSNs are programmed to collect
data at regular intervals depending on the specific requirements of the monitoring stations
and the parameters being measured. The experiments in this study are based on daily
frequency data. WSNs play a crucial role in facilitating the transmission of sensor data from
remote locations to centralized data acquisition systems. These networks utilize wireless
communication protocols to relay information over long distances, enabling IMD to gather
comprehensive meteorological data across diverse terrains and regions in India. By lever-
aging WSN technology, IMD ensures the efficient operation of its monitoring stations and
the timely acquisition of critical weather and soil moisture information for agricultural,
environmental, and disaster management applications.

4. Methodology

Figure 1 provides an overview of the proposed methodology of this study, which
begins with data consolidation, involving the integration of active and passive microwave
satellite data sensitive to topsoil moisture with data obtained from WSNs. The data
from NASA’s SMAP satellite mission, which provides global measurements of moisture
in the top 5 cm of soil, are acquired. WSN data are collected concurrently with satellite data
to supplement the training dataset. The raw SMAP data are processed into usable estimates
utilizing the GEE platform. Furthermore, the WSN data augment the SMAP-derived
moisture levels with additional climate parameters such as temperature and precipitation.
The integrated dataset consolidates satellite soil moisture observations from SMAP, and
ground-based climate measurements, offering comprehensive insights into soil moisture
dynamics and their relationships with weather, water availability, vegetation health, and
climate patterns.

In the next step, the consolidated data undergo preprocessing, which includes han-
dling missing values in the dataset using techniques like mean before-after and multivariate
imputation. Subsequently, the dataset is further preprocessed to clean noise and ensure
consistency, followed by feature selection, where the most relevant features from the in-
tegrated dataset are identified for the soil moisture estimation task. The data used in this
study are recorded at regular intervals, indicating its time-series nature. To effectively
utilize ML and DL techniques, the time-series data are transformed into a supervised
learning problem. This transformation involves shifting the time series data and selecting
appropriate lag values to create a dataset suitable for forecasting using supervised learning
algorithms. This process ensures that the temporal relationships within the data are pre-
served and utilized for accurate estimation. Before concluding the data preprocessing step,
the preprocessed data are split into training and testing sets in an 80:20 ratio.

Next, in the model building and training step, five different models (Logistic Regres-
sion, Support Vector Machines, Decision Trees, Random Forests, and LSTM) are selected
for training. Each selected model undergoes training for a predefined number of epochs
using the training subset to optimize parameters and weights for accurate predictions.
Hyperparameter tuning is also performed simultaneously to achieve better results. The per-
formance of each model is evaluated using standard evaluation metrics such as MSE, RMSE,
MAE, and MAPE. These metrics enable the identification of the most reliable algorithm
for continuously estimating and predicting real-time soil moisture content from microwave
and WSN data. In the following sections, the steps involved in the proposed methodology
are discussed in detail.
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Figure 1. Methodology overview for soil moisture estimation via WSN-driven ML approaches.

4.1. Study Area

India is selected as the study area due to its geographical diversity and status as an
agriculture-based country. It is geographically diverse, encompassing a wide range of en-
vironmental conditions, soil types, and land uses with a variety of agricultural practices
prevailing in different regions. The study aimed to capture this diversity by selecting study
areas from different regions across the country with a variety of agricultural practices
prevailing in different regions. By including areas from various states and geographical
regions, such as coastal areas, plains, and hilly terrains, the study ensures representation
of the country’s geographical diversity. The selected study areas represent a diverse range
of agricultural practices found across India. For instance, some regions may specialize
in rice cultivation, while others may focus on wheat, sugarcane, or pulses. Additionally,
it provides real-time weather data sourced from an extensive network of weather stations
located across the globe. This combination of historical and real-time data empowers
users to perform comprehensive analyses and make accurate predictions regarding climate
patterns and trends. By selecting areas with different dominant crops and agricultural tech-
niques, the study aims to capture the variability in agricultural practices across the country.
Furthermore, India exhibits diverse climatic zones, ranging from tropical in the south to
temperate in the north, along with arid and semi-arid regions. These climatic variations
influence soil moisture dynamics and agricultural productivity. The selected study spans
different climatic zones, ensuring the representation of the full spectrum of climatic condi-
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tions in India. For instance, areas like Talcher and Angul may experience tropical climates,
while regions like Kandhamal may have temperate climates. Additionally, consideration
was given to areas with distinct industrial and agricultural activities. Talcher and Angul are
known for their industrial and mining activities, which can have implications for soil mois-
ture dynamics and land use patterns. On the other hand, regions like Cuttack, Dhenkanal,
and Kandhamal are predominantly agricultural areas with diverse soil types and land uses.

4.2. Dataset Preparation

The process of consolidating the dataset involves bringing together a diverse array
of data sources to create a unified soil moisture dataset. This includes incorporating raw
data from various sources such as NASA’s SMAP project, Power Access Climate Data,
and data from WSNs. The soil moisture dataset was compiled by amalgamating data
from multiple sources and processing tools. Initially, soil moisture data were sourced from
NASA’s SMAP project [29], utilizing GEE. This dataset encompasses features such as surface
soil moisture levels, land surface temperature, soil texture, land cover/land use, and other
pertinent parameters collected by the satellite mission. To enhance the dataset’s richness,
additional parameters from Power Access Climate Data were integrated. These parameters
encompass temperature, wind direction (degrees), wind speed (m/s), surface pressure
(kPa), dew point (°C), temperature at 2 meters height (°C), earth temperature (°C), and
precipitation (mm per day). Incorporating these parameters offers a more comprehensive
understanding of the factors influencing soil moisture levels. Moreover, parameters from
WSNs-based data collected through the Indian Meteorological Department (IMD) were also
included to augment the global dataset. These parameters comprise humidity, precipitation
(rainfall/snowfall), sunshine duration, and cloud cover, further enriching the dataset with
localized environmental data. The methodology includes preprocessing to standardize
units and resolve inconsistencies, alignment, and integration to match data points based
on spatial and temporal dimensions, and spatial interpolation to harmonize resolutions.
Additional features are engineered, such as soil moisture anomalies, to enrich the dataset.
Quality control checks ensure accuracy, with discrepancies addressed. The output is
a consolidated dataset ready for analysis and applications in agriculture, environment, and
disaster management.

4.2.1. Data Preprocessing

For time series data preprocessing, visual techniques are used to explore the dataset,
with line plots specifically useful for identifying seasonality and trends. In cases where non-
stationarity is observed, differencing methods are applied to stabilize the mean and variance
of the data. The stationarity of the time series is further validated using the Augmented
Dickey-Fuller (ADF) test, ensuring the suitability of the data for subsequent modeling
steps. Feature engineering plays a vital role in extracting informative features from the time
series, with lag values computed using autocorrelation function (ACF) plots to capture
temporal dependencies. Missing values within the dataset are addressed using forward
or backward-filling techniques, ensuring the continuity of the temporal sequence. Follow-
ing preprocessing, the dataset is partitioned into training and testing sets while preserving
the temporal order of the observations. Through these comprehensive preprocessing steps,
the time series data are prepared for training and evaluation, enabling accurate forecasting
or classification tasks.

4.2.2. Missing Value Imputation

For the efficient handling of the missing values in the dataset, two widely used
imputation methods mean-before-after and multivariate imputation have been employed.
The mean-before-after technique replaces null values at time i with the mean of adjacent
values at times i− 1 and i + 1.

x̄i =
xi−1 + xi+1

2
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This approach may not perform well when there is a continuous sequence of null
values. On the other hand, multivariate imputation can fill each null value with multiple
potential values. Compared to a single imputation, this method accounts for uncertainties
associated with missing value imputation [30].

4.2.3. Lag Values

Lag values in soil moisture estimation denote the time intervals between current
and historical soil moisture measurements. Optimal lag values are crucial for capturing
temporal dependencies and improving the accuracy of soil moisture forecasting models.
The correlation indicates significant temporal dependencies, crucial for capturing soil mois-
ture dynamics accurately. It can be utilized to identify optimal lag values for maximizing
correlation. This can be expressed as:

ρ̂τ =
∑n

t=1(rt − r̄)(rt−τ − r̄)√
∑n

t=1 (rt − r̄)2 ∑n
t=1 (rt−τ − r̄)2

where ρ̂τ represents the sample autocorrelation coefficient at lag τ, measuring the linear
relationship between soil moisture instances at time t and t − τ. rt represents the soil
moisture instance at time t, capturing its value in the time series. r̄ is the mean of all soil
moisture instances. n is the total number of instances in the time series.

By utilizing the sample autocorrelation coefficient (ρ̂τ), which quantifies the linear
relationship between soil moisture instances at time t and t− τ, we can identify optimal
lag values. It helps in understanding the past temporal dependencies. The autocorrelation
analysis allows us to assess how closely related current soil moisture values are to their
historical counterparts at different time lags. By calculating ρ̂τ for various lag values (τ),
we identified the lag that maximizes correlation, indicating the most influential historical
time points for predicting future soil moisture levels. Once optimal lag values are deter-
mined, they can be incorporated into forecasting models. These models utilize historical
soil moisture data at specific lag intervals to make accurate predictions about future soil
moisture dynamics. Incorporating such lag values enhances the predictive performance
of machine learning models trained on soil moisture time series data.

4.3. Machine Learning Models

To incorporate ML and DL techniques into the soil moisture estimation approach, a vari-
ety of models were utilized to capture the intricate data relationships. The models included
linear regression, support vector machine (SVM), decision tree, random forest, and LSTM
networks. Linear regression served as a fundamental model, capturing linear data relation-
ships. SVM was chosen for its capacity to handle nonlinear relationships via kernel functions,
while decision trees provided interpretability and the ability to model complex interactions.
Random forest, an ensemble method, enhanced accuracy by aggregating predictions from
multiple decision trees. LSTM networks, a form of recurrent neural network (RNN), were
employed to capture temporal dependencies crucial for time series analysis. The details
of the models employed in the study are provided in the following subsections.

4.3.1. Linear Regression

Linear regression is employed as one of the ML models. It can be represented
by the equation:

y = β0 + β1x1 + β2x2 + . . . + βpxp + ε

where:

• y represents the soil moisture content, our dependent variable.
• x1, x2, . . . , xp are independent variables, such as wind speed, wind direction, pressure,

and temperature.
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• β0 is the y-intercept, indicating the soil moisture content when all independent vari-
ables are zero.

• β1, β2, . . . , βp are coefficients representing the change in soil moisture content for a one-
unit change in each independent variable.

• ε is the error term, accounting for the difference between the predicted and actual soil
moisture values.

To train the linear regression model, we utilize the least squares method to estimate
the coefficients β:

β = (XT
trainXtrain)

−1XT
trainytrain

where XT
train represents the transpose of the matrix of input features Xtrain for training, and

ytrain represents the corresponding observed soil moisture values.
Once trained, the model can make predictions on new data by multiplying the matrix

of input features for testing Xtest by the vector of coefficients β:

ŷ = Xtestβ

Here, ŷ represents the vector of predicted soil moisture values for the test dataset.
This approach allows us to estimate soil moisture levels based on various environmental
factors.

The theoretical basis for using linear regression is its ability to capture the linear
relationship between the input features (e.g., weather data, soil properties) and the target
variable (soil moisture content). Linear regression assumes a linear model, which is often
a reasonable approximation for many soil moisture estimation problems, where the factors
influencing soil moisture exhibit relatively straightforward, linear dependencies.

4.3.2. Support Vector Machine

To train an SVM model for soil moisture regression, a kernel function is selected to
map input features into a higher-dimensional space. For this purpose, the radial basis
function (RBF) kernel is chosen, defined as:

K(xi, xj) = exp(−γ||xi − xj||2)

where xi and xj represent the input feature vectors for two data points, and γ is a hyperpa-
rameter controlling the kernel function’s width.

With the kernel function defined, the SVM model is trained to determine the hy-
perplane maximizing the margin between support vectors and the decision boundary.
The decision function for the SVM regression model is expressed as:

f (x) =
n

∑
i=1

(αi − α∗i )K(x, xi) + b

Here, x denotes the input feature vector for a new data point, n is the number of train-
ing examples, αi and α∗i are the Lagrange multipliers for the ith training example and its
corresponding slack variable, K(x, xi) is the kernel function evaluated at x and xi, and b is
a bias term.

To train the SVM model, the optimization problem is solved:

min
α,α∗ ,b

1
2
(α− α∗)TK(α− α∗) + C

n

∑
i=1

(ξi + ξ∗i )
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subject to the constraints:

n

∑
i=1

(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C

yi − f (xi) ≤ ε + ξi

f (xi)− yi ≤ ε + ξ∗i

where C is a hyperparameter controlling the trade-off between maximizing the margin
and minimizing the training error, ξi and ξ∗i are slack variables allowing points to fall
on the wrong side of the decision boundary, and ε controls the margin width.

To predict soil moisture levels for new data, the decision function f (x) is evaluated
for each data point. The predicted values are obtained as:

ŷ = f (Xtest)

where Xtest represents the matrix of input features for the testing data.
SVMs are well-suited for soil moisture estimation due to their capacity to handle

non-linear relationships between the input features and the target variable. By employing
kernel functions, SVMs can map the input data into a higher-dimensional feature space
where linear models can be used to capture the complex non-linear patterns in the data.
This makes SVMs particularly effective in modeling the intricate relationships between
various environmental factors and soil moisture dynamics.

4.3.3. Decision Tree

To apply decision trees for soil moisture estimation, a training dataset comprising
feature-target pairs (x1, y1), . . . , (xN , yN) is used where xi represents a D-dimensional fea-
ture vector and yi denotes the corresponding soil moisture content. The decision tree
algorithm recursively partitions the feature space into regions Rj where soil moisture levels
exhibit similar characteristics. This process involves defining a recursive function T that
takes a dataset D and a set of candidate splitting functions F as inputs. The function T
constructs a decision tree minimizing impurity or maximizing information gain. At each
step, T selects the optimal splitting function f ∗ from F to partition the data into subsets
D1, . . . , DK based on f ∗(x). These subsets are recursively used to generate child nodes.
Termination occurs when a maximum depth is reached, impurity or information gain drops
below a threshold, or the number of samples in a node falls below a threshold. For predict-
ing soil moisture for new inputs x, the decision tree traverses from the root to a leaf node,
guided by the splitting functions. The prediction is obtained by averaging the soil moisture
levels of training examples falling within the leaf node’s region.

The hierarchical, tree-like structure of decision trees aligns well with the task of soil
moisture estimation. Decision trees can effectively capture the complex interactions be-
tween multiple input features, as they recursively partition the feature space into regions
with similar soil moisture characteristics. This ability to handle non-linear relationships
and model higher-order feature interactions makes decision trees a suitable choice for soil
moisture modeling.

4.3.4. Random Forest

For soil moisture estimation, a dataset (x1, y1), . . . , (xN , yN) incorporates various soil
and environmental features. Here, each xi encapsulates soil attributes, weather conditions,
and environmental variables, while yi signifies the corresponding soil moisture content.
This dataset serves as the basis for employing the random forest regression algorithm to
build an ensemble of decision trees for predictive modeling. Each decision tree within
the random forest acts as a model capturing the intricate relationship between input
features and soil moisture content. Techniques like bootstrapping and random feature
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subset selection during training foster diversity among the trees, enhancing the overall
predictive capability of the model.

During prediction, the random forest aggregates the outputs of individual trees, pro-
viding an ensemble prediction that is more robust and less prone to overfitting compared
to a single decision tree model. This ensemble approach enables more accurate estimation
of soil moisture levels across various environmental contexts and geographical regions,
bolstering agricultural planning, water resource management, and environmental surveil-
lance efforts. Examining the algorithmic framework of random forests for soil moisture
estimation, the procedural steps are outlined as follows:

• Define a hyperparameter B, representing the number of trees in the forest.
• For each tree b = 1, . . . , B:

– Draw a bootstrap sample of size N from the training set, denoted as Db.
– Randomly select a subset of features of size m, where m << D, for training

the decision tree. This fosters diversity and mitigates overfitting.
– Train a decision tree on the bootstrap sample Db using the selected features.

The decision tree is constructed by recursively partitioning the feature space into
rectangles, similar to the decision tree algorithm. This tree is denoted as Tb.

• To predict soil moisture for a new input x, the random forest regression algorithm
aggregates predictions from all trees in the forest. Mathematically, the predicted soil
moisture content ŷ is computed as the average of predictions from each tree:

ŷ =
1
B

B

∑
b=1

Tb(x)

where Tb(x) represents the prediction of the b-th decision tree for input x.
Random forests, as an ensemble of decision trees, leverage the strengths of individual

decision trees while mitigating their potential to overfit. By training multiple decision
trees on random subsets of the data and features, random forests can capture a more
comprehensive representation of the underlying relationships between the input features
and soil moisture. This ensemble approach enhances the robustness and reliability of soil
moisture estimation.

4.3.5. Long Short-Term Memory (LSTM)

In the domain of soil moisture estimation, the LSTM model emerges as a potent tool,
adept at handling the sequential data inherent in meteorological conditions and envi-
ronmental factors over time. In the context of moisture estimation, the input dataset X
comprises features like wind speed, wind direction, pressure, temperature, and time, span-
ning multiple time steps. These features encapsulate critical environmental information
affecting soil moisture dynamics. The LSTM model processes these sequential data to
capture temporal dependencies and intricate patterns, thereby enhancing its predictive ca-
pability.

During training, the LSTM model learns to map the input features to the correspond-
ing soil moisture levels through the computation of hidden states ht. This hidden state
encapsulates the historical context of the input features up to time step t, allowing the model
to capture long-term dependencies crucial for accurate soil moisture estimation. The output
layer of the LSTM model transforms the hidden state ht into the predicted soil moisture
content yt through a linear transformation:

yt = Wht + b

where W ∈ R1×H is the weight matrix, and b ∈ R1 is the bias vector.
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Moreover, by incorporating techniques such as dropout regularization during training,
the LSTM model mitigates overfitting concerns, ensuring robust performance across diverse
environmental conditions. Once trained, the LSTM model can be deployed to make
predictions on new input data, providing valuable insights into soil moisture dynamics
over time.

LSTMs are particularly well-suited for soil moisture estimation due to their ability to
model temporal dependencies and long-term patterns in time-series data. Soil moisture
dynamics are often influenced by historical weather conditions, soil properties, and other
time-dependent factors. LSTMs can effectively capture these long-term dependencies,
enabling more accurate predictions of soil moisture levels compared to models that treat
each time step independently.

4.4. Evaluation Metrics

The performance of soil moisture estimation models was evaluated using several key
metrics, including the MAE, RMSE, MSE, and MAPE. These metrics provide insights into
the accuracy and reliability of the forecasting models.

MAE, a common metric for regression models, quantifies the average magnitude
of errors between the actual and predicted soil moisture values. It is calculated as:

MAE =
1
n

n

∑
j=1
|yj − ŷj| (1)

MSE is another important metric that quantifies the average squared difference be-
tween actual and predicted values:

MSE =
1
n

n

∑
j=1

(yj − ŷj)
2 (2)

RMSE is a quadratic measure that penalizes larger errors more heavily. It is computed
as the square root of the average of squared differences between actual and predicted values:

RMSE =

√√√√ 1
n

n

∑
j=1

(yj − ŷj)2 (3)

MAPE provides a normalized measure of prediction accuracy by considering the per-
centage difference between predicted and actual values relative to the actual values:

MAPE =
100%

n

n

∑
i=1

|yi − ŷi|
yi

(4)

In Equations (1)–(4), yi and ŷi represent the actual and predicted soil moisture values,
respectively, and n signifies the total number of predictions. MAPE offers insights into
how closely the model’s predictions align with the actual soil moisture values on average.
These metrics collectively offer insights into the performance and predictive accuracy
of soil moisture estimation models, aiding in model selection and refinement for effective
environmental monitoring and agricultural planning.

The metrics discussed above are well-suited for evaluating the performance of ML
models for a task like soil moisture estimation due to the following reasons:

• Practical Relevance: Soil moisture is a continuous variable, so regression-based met-
rics like RMSE, MAE, and MAPE are appropriate to quantify the model’s ability to
accurately predict the actual soil moisture values.

• Interpretability: These metrics are widely used and understood in tasks like soil
moisture estimation, making it easier to compare the results to other studies and
understand the practical implications of the model’s performance.
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• Error Characteristics: RMSE and MAE provide complementary information about
the models; RMSE is sensitive to large errors, while MAE gives a sense of the average
error magnitude. This helps assess both the overall accuracy and typical error levels

• Practical Applications: For the many real-world applications of soil moisture estima-
tion, such as irrigation scheduling or drought monitoring, having a good understand-
ing of the typical error magnitudes (via RMSE and MAE) and the overall model fit
(via R²) is crucial to ensure the practical usefulness of the predictions.

In summary, the choice of RMSE, MAE, and MAPE as evaluation metrics is well-
justified for this soil moisture estimation study, as they provide a comprehensive assessment
of the model’s predictive performance in a way that is directly relevant to the practical
applications of the technology.

4.5. Hyper-Parameter Tuning

The tuning of hyperparameters is crucial to achieving optimal model performance.
Grid search [31] was employed to systematically evaluate models across predefined hy-
perparameter search spaces. Grid Search uses a different combination of all the specified
hyperparameters and their values and calculates the performance for each combination and
selects the best value for the hyperparameters. For each model, the hyper-parameters used,
the range of values tested and the optimal selected hyperparameter are given in Table 1.

Table 1. Optimal hyper-parameters for models identified through grid search.

Model Hyper-Parameter Search Space Optimal Value

LR None None None

SVM C {0.1, 1, 10, 100, 1000} 10

Gamma {0.0001, 0.001, 0.01,
0.1, 1} 0.001

DT Max depth {2, 3, 5, 10, 20} 3
Min samples leaf {5, 10, 20, 50, 100} 50

RF B {25, 50, 100, 150} 25

LSTM

Learning rate {0.001, 0.01, 0.1, 0.2} 0.001
Batch Size {8, 16, 32, 64} 32
Dropout {0.2, 0.3, 0.4} 0.3

Optimizer {SGD, RMSprop,
Adam} Adam

The thorough hyper-parameter tuning process ensured that each ML model was
optimized for the specific characteristics of the soil moisture estimation problem, enhancing
their performance and reliability in practical applications.

5. Results and Discussion

This section presents the results of experiments estimating soil moisture conducted
using Google Colaboratory (GC) and GEE. The GC environment is powered by Python 3.7
and is equipped with a two-core Intel(R) Xeon(R) CPU running at 2.0 GHz, along with
13 GB of RAM and an NVIDIA Tesla T4 GPU.

Data from all the studied locations discussed in Section 4.1 are selected, and all the
models are trained and evaluated using these data. In the following sub-sections, we
analyze and discuss the results based on evaluation metrics listed in Table 2. Moreover,
boxplots of the evaluation matrices are given in Figure 2.
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Table 2. Location-wise performance of different models using varied matrices.

Location: Cuttack

Model MSE RMSE MAE MAPE

LR 0.59 0.77 0.51 7.52%
SVM 0.26 0.51 0.25 4.24%
DT 1.02 1.01 0.75 7.17%
RF 0.69 0.83 0.46 5.57%
LSTM 0.06 0.24 0.16 2.80%

Location: Kandhamal

LR 0.53 0.73 0.53 6.69%
SVM 0.27 0.52 0.25 2.98%
DT 0.94 0.97 0.48 5.05%
RF 0.47 0.68 0.36 3.75%
LSTM 0.08 0.28 0.18 2.00%

Location: Dhenkanal

LR 0.2 0.45 0.29 6.57%
SVM 0.2 0.44 0.18 3.93%
DT 0.56 0.75 0.31 5.00%
RF 0.26 0.51 0.23 3.88%
LSTM 0.03 0.17 0.11 2.56%

Location: Talcher

LR 0.37 0.61 0.44 6.27%
SVM 0.18 0.42 0.22 3.06%
DT 0.78 0.89 0.49 5.17%
RF 0.46 0.68 0.37 3.85%
LSTM 0.06 0.24 0.17 2.28%

Location: Angul

LR 0.76 0.87 0.59 9.31%
SVM 0.26 0.51 0.24 3.80%
DT 0.96 0.99 0.51 5.07%
RF 0.49 0.72 0.40 4.07%
LSTM 0.05 0.21 0.18 2.75%
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Figure 2. Cont.
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Figure 2. Comparison of model performance using (a) MSE, (b) RMSE, (c) MAE, and (d) MAPE
for LR, SVM, DT, RF, and LSTM models.

5.1. Cuttack

The LSTM model exhibited superior performance compared to the other models
in the Cuttack area, achieving the lowest MSE of 0.06, RMSE of 0.24, MAE of 0.16, and MAPE
of 2.80%. The SVM model also performed reasonably well, with the second-lowest MAE
(0.25) and MAPE (4.24%). In contrast, the decision tree model demonstrated the poorest
performance, with the highest MSE (1.02), RMSE (1.01), and MAE (0.75), While its MAPE
(7.17%) was lower compared to the linear regression model, which exhibited a MAPE
of 7.52%.

5.2. Kandhamal

Consistent with the results in Cuttack, the LSTM model exhibited the best performance
in the Kandhamal area, with the lowest MSE (0.08), RMSE (0.28), MAE (0.18), and MAPE
(2.00%). The Random Forest (RF) model also performed well, securing the second-lowest MSE
(0.47), RMSE (0.68), MAE (0.36), and MAPE (3.75%). The DT model showed the highest MSE
(0.94) and RMSE (0.97), while the LR model had the highest MAE (0.53) and MAPE (6.69%).

5.3. Dhenkanal

In the Dhenkanal area, the LSTM model maintained its superior performance, achiev-
ing the lowest MSE (0.03), RMSE (0.17), MAE (0.11), and MAPE (2.56%). The RF and SVM
models also exhibited good performance, with comparable MSE, RMSE, MAE, and MAPE
values. The DT model had the highest MSE (0.56), RMSE (0.75), and MAE (0.31), while
the LR model had the highest MAPE (6.57%).

5.4. Talcher

For the Talcher area, the LSTM model continued to outperform the other models, with
the lowest MSE (0.06), RMSE (0.24), MAE (0.17), and MAPE (2.28%). The SVM model
exhibited the second-best performance, with the lowest MSE (0.18), RMSE (0.42), and MAE
(0.22), while the RF model had the second-lowest MAPE (3.85%). The DT model showed
the highest MSE (0.78), RMSE (0.89), and MAE (0.49), and the LR model had the highest
MAPE (6.27%).

5.5. Angul

In the Angul area, the LSTM model once again demonstrated superior performance,
with the lowest MSE (0.05), RMSE (0.21), MAE (0.18), and MAPE (2.75%). The SVM model
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was the second-best performer, with the second-lowest MSE (0.26), RMSE (0.51), MAE
(0.24), and MAPE (3.80%). The DT model showed the highest MSE (0.96), RMSE (0.99), and
MAE (0.51), while the LR model had the highest MAPE (9.31%).

Figure 2 presents a comprehensive comparison of the performance of various ML and
DL models, including LR, SVM, DT, RF, and LSTM, using different evaluation metrics for all
the regions under consideration. Figure 2a shows the box plot of the MSE values for each
model, and we can observe that the LSTM model exhibits the lowest MSE, indicating its
superior performance in minimizing the squared differences between predicted and actual
values. The DT model, on the other hand, shows the highest MSE, suggesting a poorer fit
to the data. The SVM and RF models perform moderately well, with MSE values lower
than the DT model but higher than the LSTM model. Figure 2b illustrates the RMSE, which
is the square root of the MSE and provides a more interpretable measure of the model’s
average prediction error. Consistent with the MSE results, the LSTM model demonstrates
the lowest RMSE, followed by the SVM, RF, LR, and DT models, respectively. In Figure 2c,
MAE is presented, which measures the average absolute difference between predicted
and actual values. The LSTM model again outperforms the other models with the lowest
MAE, indicating its ability to minimize the magnitude of prediction errors. The DT model
exhibits the highest MAE, while the SVM and RF models perform moderately well. Fi-
nally, Figure 2d compares the models based on the MAPE, which expresses the prediction
error as a percentage of the actual value. The LSTM model continues to excel, achieving
the lowest MAPE, suggesting its superior performance in capturing the relative magnitude
of prediction errors. The DT model shows the highest MAPE, indicating a larger relative
error compared to the other models.

Based on Figure 2 and Table 2, it is evident that the LSTM model consistently outper-
formed the other ML and DL models across all evaluation metrics and geographical areas.
The LSTM model demonstrated its effectiveness in minimizing prediction errors, achieving
higher accuracy, and capturing the long-term dependencies and temporal patterns within
the data, which are crucial for accurate forecasting or prediction tasks. Soil moisture data
exhibit complex temporal patterns and long-term dependencies, making LSTM’s memory
cells crucial for retaining relevant information over multiple time steps. Its sequential data
processing capability ensures it captures subtle temporal trends often overlooked by tradi-
tional models. Furthermore, LSTMs dynamically adapt to changing patterns, making them
robust in capturing non-linear relationships and abrupt changes in soil moisture dynamics.
Additionally, they excel at modeling seasonal trends and cyclical patterns inherent in soil
moisture data, rendering them superior for accurate time series forecasting of soil moisture
estimation. Furthermore, as shown in Table 2, the LSTM model maintained its dominance
across various geographic locations, consistently achieving the lowest MSE, RMSE, MAE,
and MAPE values in areas such as Cuttack, Kandhamal, Dhenkanal, Talcher, and Angul.
This consistency in performance highlights the robustness and adaptability of the LSTM
model to different contexts and data patterns.

In contrast, the DT model generally exhibited the poorest performance across both
Figure 2 and Table 2. The DT model had the highest MSE, RMSE, MAE, and MAPE
values in most cases, potentially due to its tendency to overfit the data or its inability to
capture complex patterns effectively. The SVM and RF models performed moderately
well, often outperforming the LR model but falling short of the LSTM model’s exceptional
performance. This suggests that while SVM and RF models can capture intricate patterns
and relationships within the data to some extent, the DL techniques employed by the LSTM
model offer a distinct advantage in handling complex, sequential, or time-series data.

Overall, the consistent out-performance of the LSTM model across various evaluation
metrics and geographical areas highlights its suitability for accurate forecasting and predic-
tion tasks, particularly in scenarios involving sequential or time-dependent data. Although
overfitting can occur if the model memorizes noise in the training data, generalization
may be hindered by insufficiently diverse training data. Additionally, meticulous data
preprocessing is essential, and training can be computationally demanding. Sensitivity to
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hyperparameters requires careful tuning, and interpreting model decisions can be challeng-
ing due to its black-box nature. Despite these limitations, LSTM models remain powerful
tools for capturing temporal dependencies in soil moisture data and making accurate
predictions, provided careful attention is given to model development and evaluation.

Additionally, soil moisture estimation models can be compared not only for their
predictive accuracy but also for the computing resources they require as shown in Table 3,
where n refers to the number of data samples, d refers to the number of input features, T is
specific to Random Forests referring to the number of trees, and t represents the number
of time steps for LSTM.

Table 3. Computational cost of different models used in this study.

Model Time Complexity

Linear Regression O(nd)
Support Vector Machine O(nd)

Decision Tree O(ndlog(n))
Random Forest O(Tndlog(n))

LSTM O(tnd)

Traditional ML algorithms like SVM, Random Forests, Decision Trees, and Linear
Regression typically have a time complexity that scales linearly with the number of sam-
ples and features, as indicated by the O(nd) time complexity. This suggests that these
models can require significant computational resources for feature engineering and train-
ing, especially when dealing with large datasets with numerous features. In contrast,
the LSTM model has a time complexity of O(tnd), where the additional time step factor t
results in higher computational requirements compared to the traditional ML algorithms.
This is due to the complex architecture and sequential data processing capabilities of LSTM
networks, which demand extensive computational power during the training phase. De-
spite the higher training time associated with LSTM, its advantages in accuracy and its
capacity to capture temporal dependencies in soil moisture data make it a viable option,
even if at a greater computational cost. The trade-off between model performance and
computational efficiency is an important consideration when selecting the appropriate
machine-learning technique for soil moisture estimation tasks.

6. Conclusions and Future Work

In this study, we have explored the utilization of WSNs in conjunction with ML tech-
niques for advancing soil moisture estimation. By leveraging data from WSNs integrated
with remote sensing sources such as satellite observations and ground-based sensors, we
have demonstrated the effectiveness of ML models in accurately estimating soil moisture
content across various geographical regions. Our analysis reveals that models trained
on WSN data supplemented with satellite observations exhibit robust performance in esti-
mating soil moisture levels. Specifically, the LSTM model consistently outperforms other
ML algorithms across different regions, achieving lower error rates in terms of MSE, RMSE,
MAE, and MAPE. The LSTM’s MSE of 0.06 and MAPE of 2.8% indicate a remarkable
performance, suggesting that the predicted outcomes closely align with the actual values.
The MSE being close to 0 further underscores the accuracy of the predictions, highlighting
the model’s ability to minimize the squared differences between predicted and actual
values. This underscores the importance of leveraging WSN-driven data to enhance soil
moisture estimation accuracy. The findings of our study hold significant implications
for agriculture and environmental management. Using the proposed approach, soil mois-
ture can be estimated more accurately. This precision enables optimized irrigation practices,
enhancing water use efficiency and crop yields. Moreover, the timely detection of low soil
moisture levels facilitates proactive drought mitigation efforts, safeguarding agricultural
productivity and rural livelihoods. Additionally, the insights gained support sustainable
land management practices, aiding in ecosystem conservation and resilience-building
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against climate change impacts. It is important to note that our study does not claim
to have provided the “best” model for soil moisture estimation [10]. Instead, we aim to
offer a comprehensive analysis of the performance of different ML and DL models under
similar conditions.

Future research can improve soil moisture estimation models by integrating additional
data sources like remote sensing satellites, exploring alternative machine learning algo-
rithms, incorporating climate and environmental factors, and evaluating model uncertainty
and robustness. The researchers may focus on the deployment of real-time monitoring
systems based on WSNs which can enable continuous monitoring of soil moisture lev-
els, facilitating timely interventions and adaptive management practices. Furthermore,
conducting comprehensive validation and calibration studies across diverse environmen-
tal conditions and geographical regions will be crucial for ensuring the reliability and
applicability of WSN-driven soil moisture estimation models in real-world scenarios.
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Abstract: This article presents a new firmware update paradigm for optimising the procedure in
microcontrollers. The aim is to allow updating during program execution, without interruptions
or restarts, replacing only specific code segments. The proposed method uses static and absolute
addresses to locate and isolate the code segment to be updated. The work focuses on Microchip’s
PIC18F27K42 microcontroller and includes an example of updating functionality without affecting
ongoing applications. This approach is ideal for band limited channels, reducing the amount of
data transmitted during the update process. It also allows incremental changes to the program
code, preserving network capacity, and reduces the costs associated with data transfer, especially in
firmware update scenarios using cellular networks. This ability to update the normal operation of
the device, avoiding service interruption and minimising downtime, is of remarkable value.

Keywords: firmware update; partial update; runtime; internet of things; microcontrollers

1. Introduction

In electronic devices that incorporate microcontrollers, it is common to implement
firmware update mechanisms to correct errors and make new services available after the
product has been launched. Firmware updates often involve risks related with downtime,
failure of the update itself, and costs associated with communications to support those
updates. The article aims to address these limitations by presenting an innovative firmware
update method that minimises or eliminates downtime and optimises the data to be up-
dated. Despite the importance of this topic, there is little research into efficient firmware
update methods that minimise or eliminate downtime. There are devices for which inter-
ruption of operation is critical, for example, the digital control of the power supply of a
data centre (or other critical system) in a non-redundant configuration. In this scenario,
firmware updates on the power supply unit can lead to temporary service interruptions [1].
Kilpeläinen [2] presents an innovative method for dynamic firmware updates, address-
ing updates without the need to reboot the device and modify the program code during
execution. With regard to the efficient use of the communications channel, the literature
refers to methods for optimising the data transmission to be updated. Bogdan [3] focuses
on optimising data transmission in firmware update processes, detailing the concept of
delta transmission and its combination with data compression. That work is based on
the use of opcodes instead of addresses, offering an innovative perspective to efficiently
transmit the updates. The system inactivity time present in the aforementioned methods,
which assume a reboot after the update, led to the proposal of an innovative firmware
update method based on block updates, with the aim of replacing specific code segments
the program’s memory, which is done during runtime and without the need for a reboot.
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The originality of this study lies in the innovative approach of updating firmware by blocks,
enabling an efficient and secure implementation while minimising negative impacts on
system operations. This new method is expected to significantly reduce downtime and
the use of communication channels. A circuit with a PIC18F27K42 microcontroller [4] was
developed to validate the method. The firmware that comprises the applications and the
update process was initially uploaded to that circuit using a RS232 serial channel and a
serial terminal. The article is organised in sections. Section 2 describes several similar
related studies. Section 3 gives a detailed description of the implemented block oriented
firmware update method and the assumptions that allow the method to be successfully
replicated. The communications protocol used to perform the update file transfer is also
described as well the update process. In Section 4, the results obtained are described.
Section 5 presents the main conclusions derived from the findings of this study.

2. Related Work

Several notable studies were analysed related to the firmware updates management,
optimisation of the update files transmission, and improving the process of writing to
the microcontroller’s program memory. In the field of firmware update management,
Mahfoudhi [5] describes an over-the-air firmware update management model for NB-IoT
networks as the number of end devices increases significantly, seeking improvements in
flexibility, installation time, efficiency, and cost reduction. In a similar context, Frisch [6]
proposes a set of models and rules for the firmware update process based on secure distri-
bution and automatic installation mechanisms. Kachman [7] addresses energy efficiency
and its impact on firmware update processes as well as explores the evolution of this
method based on delta transmission. In the area of optimising the transmission of update
files, several significant studies stand out. Wee [8] presents a methodology for transmitting
update files that is based on the differences between the new and old firmware, with the
aim of optimising the firmware update process. Moreover, a high speed compression and
decompression algorithm to significantly speed up the update time is described. Ji [9]
refers to a study that focuses on the incremental firmware update method by modules. This
method is based on assigning memory zones to each module and introducing the concept of
static allocation of functions and relevant security considerations. This innovative approach
improves the efficiency and security of firmware updates. Regarding the optimising of the
writing process of to the microcontroller’s program memory, several studies have made sig-
nificant contributions. Jisu Kwon [10] presents a method of updating the microcontroller’s
program memory based on updating by functional blocks. This makes possible a partial
update of the program memory instead of completely rewriting it, avoiding downtime
during the update process. Xia [11] presents the concept of function addressing by means
of a module orientated programming model. In this model, the code is organised around
modes and modules for a generic dispatching procedure. Xia also introduces the con-
cept of multimode application management, grouping together applications with similar
behaviour and analysing performance evaluation techniques and metrics. Dhakal [12]
presents an architecture based on delta updates and incremental mode for large scale IoT

systems and refers to the ability to verify firmware integrity, highlighting the advantages of
delta updates and identifying scenarios in which this method may not be efficient. Sun [13]
reveals the limits of conventional firmware update methods and proposes a method that
uses partial updates, optimising the lifetime of program memory. This method is based on
partitioning the program memory into several sections, updating only the relevant section,
and classifying each partition as a component. The study addresses security mechanisms,
such as encryption, signing, and validation before and after the update, as well as solutions
for the static allocation of functions in scenarios where the function addresses are different
between the two firmware versions; in addition, the update method is based on packets
that include the functions or modules to be updated, and the study presents a statistical
analysis of update times as a function of the transmission channel. Kwon [14] proposes
partitioning the firmware into functional blocks, introducing the concept of a function
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map. The method aims to update only the functional blocks with differences, reducing the
use of program memory, energy consumption, and update time. This involves sending a
functional block, where the updating application checks for differences and updates only
what is necessary, then updating the function map to reflect the new state. Baldassari [15]
explores delta firmware updates in scenarios with bandwidth constraints by updating only
small memory files of the firmware. The study details the delta update process, which
requires one application to build the delta file and another to rebuild the new firmware
from the received deltas. Although this approach offers the advantage of updating the
firmware with small memory files, it also has disadvantages, such as greater complexity
compared to traditional methods, a higher probability of failure, and the need to keep a
copy of the original version of the firmware in the microcontroller. In addition, it requires
substantial resources on the microcontroller side, including memory and processing to
handle delta updates and corrections.

3. Method Development

The underlying idea of the proposed new method consists of the Non Volatile

Memory (NVM) controller usage to directly update parts of the existent program code.
The NVM controller is a hardware resource present in the majority of microcontrollers
that is responsible for the management of non-volatile memory—also known as flash
memory—the type of memory that retains data even when the microcontroller is turned off.
The above mentioned NVM controller acts over the available flash memory blocks allowing
one to read, write, and erase the existing data in memory. The use of this NVM controller
allow us to update the existent firmware during runtime in the same way we can read
and write NVM user data without compromising the operation of the applications. Conse-
quently, an update task application is added that aims to receive the data blocks associated
with the code of a particular application and update them in the flash program memory,
as illustrated in Figure 1.

Figure 1. Runtime firmware updates method.

The non-volatile memory of a microcontroller is usually segmented or organised into
several sectors, most of them devoted to the program memory. The program memory
can be configured with different partitions, sizes, and write protection attributes. These
partitions can be configured to implement the boot area, the application area, and the user
memory data. In this paper, a PIC18F27K42 microcontroller is used as a testbed platform
to validate the proposed techniques. This microcontroller has a non-volatile memory
control mechanism that uses an internal timer and voltage generator to perform writing
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operations. Reading program memory is executed byte by byte. The writing process is,
however, more complex, as it requires the operation to be performed on a row of bytes.
The content of this row must be previously erased or available for writing if it is its first use.
The writing operation also requires that a write unlock sequence be activated [4]. Writing or
erasing program memory will halt the microcontroller central processing unit CPU, making
it impossible to execute instructions from the memory row that is being erased, as the
microcontroller CPU is blocked until the process is completed [4]. For the above mentioned
PIC18F27K42, the measured erasing and writing procedures take 10 ms per row. Table 1
illustrates the size and number of rows [4].

Table 1. Size and number of rows, PIC18F27K42.

Description Value Units

Erase Row Size 64 Word
Length Row 128 Byte
User Rows 1024 Byte

The program memory read operation does not modify data; therefore, it is very simple
to carry out, simply defining the memory area to be accessed. To complete this operation,
we need to previously select the program flash memory and set the address to be read
using the TBLPTR register, then read the contents of that position. Note that the reading
is performed byte to byte, but each program memory position has a size of two bytes;
therefore, it is necessary to increment the pointer of the reading table TBLRD for each byte
read. The result is in the register TABLAT: the first byte corresponds to the less significant
byte and the second to the most significant byte of the specified memory position content [4].
To read the contents of a particular program memory address, the following sequence of
operations must be completed, as illustrated in the flowchart of Figure 2.

Figure 2. Reading the contents of program memory PIC18F27K42.

The write operation follows the same principle as the read operation, but operates
over rows instead of bytes. The write operation is performed on an entire row, but it
is implemented byte by byte [4]. As a recommended practice, in a write operation in
which only part of the row is changed, it is suggested that the row be read and stored
in volatile memory RAM before being erased. The copied row is then updated with the
portion of the data that differs from the original version. Finally, the NVM row should be
deleted and rewritten with the updated version. For the writing process to be successful,
we must first make sure that the row is available for writing; in other words, the row is
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formatted. Thereafter, it is necessary to define the NVM area to be used for writing, where
through the TBLPTR register we define the address we want to write; as with reading, the
writing is also done byte by byte, and, in the writing process, the least significant byte is
copied to the register TABLAT followed by the increment of the writing table TBLWR. That
process is repeated for the most significant byte. After copying the row, the next step
involves activating the NVMCON1bits.WREN write permission bit as well as selecting the
NVMCON1bits.FREE write bit command, followed by sending the write unblock sequence
to the NVM. The actual write is initiated by activating the NVMCON1bits.WR bit [4]; see the
flowchart in Figure 3.

Figure 3. Writing process to program memory PIC18F27K42.

To erase a row of non-volatile memory, a specific NVM controller command is used
devoted for that purpose. The FREE bit of the NVMCON1 register, if enabled, indicates that
on the next enable the WR bit of the same register will erase the row specified by the
address contained in the TBLPTR register. Moreover, it is necessary to previously unlock a
specific range of rows to accommodate the program code and thereafter complete the erase
procedure [4], as depicted in the flowchart in Figure 4.
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Figure 4. Erasing a row of program memory PIC18F27K42.

The NVM memory locking mechanism prevents unintended self-write programming
or erasing. Thus, to promote memory integrity, any write and erase operation performed
by the NVM controller must be preceded by an unlocking process. This process must be
executed sequentially and without interruptions. If the sequence, for some reason, is
interrupted, the writing or erasing process is cancelled [4]. To implement this method
successfully, two non-mandatory but highly recommended requirements must be met to
facilitate its implementation. The first one concerns the static and absolute allocation of
the functions. Typically, a compiler, in order to optimise the space of the memory of the
program, leans all the code to minimise the used memory space, making it more difficult to
identify the location of the block of code that will need to be updated. By allocating the
function’s code in a static and absolute way, an absolute reference of the location of each
function of program is set, facilitating the identification of the code block in an Intel Hex

file (see Figure 5).

Figure 5. Example of memory allocation with and without static and absolute allocation.

The usage of static and absolute function allocation also improves the code organisa-
tion. Without static and absolute allocation, even small changes in source code can result
in a hex file completely reformulated by the compiler. The usage of static and absolute
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allocation avoids major changes. Now, small code changes in specific functions will only
affect the associated allocated memory areas, as illustrated in Figure 6.

Figure 6. Result of the hexadecimal file with the change of only one line of code.

Static and absolute allocation of functions requires well designed system architecture
and a complete knowledge of the program’s memory map in order to avoid overlaps
between the functions or applications code blocks. In order to prevent an accidental overlap
of two or more functions, the compiler warns us by displaying a message with the functions
that are at stake, promoting the necessary changes in the memory map. The following error
message was generated by the compiler under the above mentioned conditions [16].

error: (596)

segment “_Reset_CNT_TMR_text” (19574-195A3)

overlaps segment “_TMR0_Interrupt_Handling_text” (194F6-1958F)

The second requirement concerns the size allocated to each function, which must be
an integer multiple of row size; in the considered microcontroller, that size is equal to
128 bytes [4]. An example of a program memory map is depicted in Figure 7.
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Figure 7. Example of program memory map.

The following step, after the program memory map definition, comprises setting the
function’s indexes addresses in the above mentioned range. To allocate a function in a
static and absolute way, one simply needs to add before the function name the method
__at(address); from here, the compiler will place that function in that specific address,
as illustrated in the following function prototype.

void __at(APP_1_Start_Address) App_1(void)

To validate this method, a testbed was developed comprising a circuit board with the
microcontroller, two push buttons, and an ICSP header (depicted in Figure 8).

Figure 8. Layout of the circuit implemented to validate the method.

The firmware project comprises three applications: two similar applications associated
to different hardware resources, in this case push buttons, and In Application Programming
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(IAP) that performs an update of the firmware by means of a runtime self programming
process. The first application prints in the serial port the message “Button 1 has been

pressed” when button 1 is pressed. Similarly, the second application prints the message
“Button 2 has been pressed” in the serial port when button 2 is pressed. These messages
are defined and saved in the microcontroller flash memory. Figure 9 illustrates the flowchart
of the implemented program.

Figure 9. Implemented system and applications used to validate the proposed method.

After executing a firmware upgrade operation, it is intended to update the message
printed by the first application from “Button 1 has been pressed” to “This string has

been changed by update at run time”, whenever the hardware button 1 is pressed (see
Figure 10).

Figure 10. Proposed amendment for App_1.

From the analysis of the compiled program code, it can be seen where each function
of the first application is allocated in the program memory (see Figure 11 and example of
program memory map in Figure 7).
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Figure 11. Sample code and location of functions in program flash memory.

Additionally, it is also possible to identify and locate application 1 in the hexadecimal
file generated from the compiler (see Figure 12).

From the analysis of the modified program hexadecimal file, it can be concluded that
only a well defined area of the program memory was changed; all the remaining program
memory stays intact. Figure 13 presents the original and upgraded code versions of the
aforementioned application 1, demonstrating the code blocks that have been removed on
the original version and the ones that have been inserted on the modified one.
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Figure 12. Location of functions in program memory in the hexadecimal file.

Figure 13. Changed program memory area viewed from hexadecimal file.

Using the static and absolute function allocation allows one to control and manipulate
the entire program memory, making the updating task easier and keeping the firmware
update circumscribed to a well defined block of program memory between addresses
0x00001280 and 0x000012B0. The update process consists of receiving a hexadecimal file in
the Intel Hex File format [17] over the serial channel. However, as only one block of the
program’s memory is to be updated and the hexadecimal file is not formatted to send a
single block but the entire file, some changes need to be made so that the update process
application can interpret the file correctly. Those changes include the addition of a start file,
followed by the most significant word of the address and the end of file, as illustrated in
Figure 14.
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Figure 14. Update file in Intel Hex File format, adapted to the application.

The Intel Hex File format is one of the formats used to update microcontrollers’
firmware, but there are also other possible formats, such as the binary .bin file. The Intel

Hex File format is characterized by the lines being in hexadecimal format; all the lines
start with the character ‘:’ followed by the data field length, start address, data type,
the associated data (for each specific data type), and, finally, the error control checksum
mechanism [17].

Figure 13 depicts the hexadecimal file obtained from the compiled modified code,
which is sent to the microcontroller according to the aforementioned Intel Hex File format
described in Figure 15 and Table 2. As explained previously, with the inclusion of all the
fields, the file sent to the microcontroller is the one presented in Figure 14. The update
file results from the extraction of a block of program memory of the hexadecimal file with
the updated code; the file is started with a start file named Update, followed by the most
significant word of the address, the data to update, and, finally, the end of file indicator. The
update process application is responsible for the file receiving and processing. The initial
state of the update process app waits for the reception of a start file, “Update” string,
to proceed to the data acquisition state. In this state, the process waits until it receives a
complete record and verifies its integrity using the checksum mechanism. If the line is
valid, the process thereafter extracts the address, the type, and the data contained in the
line. Depending on the type of data, the process reacts accordingly. For Extended Linear

Address type, the MSW of the address is defined; if the type is “Data_Record”, it updates
the LSW of the address and copies the data to a process buffer; finally, if the type is End of

file, the process proceeds to the next stage, updating the program memory block. First,
it copies the area of the program memory block to be updated to volatile memory RAM

for final verification purposes of the update integrity; in the next operation, it erases the
memory block to be updated, followed by updating with the data received by the update
file; finally, a verification is performed between the data in the update file received and the
data stored in the updated memory block. The update process application can be seen in
the flowchart in Figure 16.

Figure 15. Intel Hex File record format [17].
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Table 2. Line fields structure, Intel Hex File format [17].

Field Designation

Start frame Record start character
Length Two ASCII digits to specify the record data field size
Address Four ASCII digits to define the starting address of this data record.

Type

Data type:
0—Data record;
1—End of file record;
2—Extended segment address record;
4—Extended linear address record.

Data Data bytes.

Checksum Two ASCII digits representing the checksum calculated as 2s complement of all
preceding bytes in data record except the colon.

Figure 16. Updating process application state diagram.

If the process was completed successfully, it reports “Update success”; otherwise, it
reports “Update failure” through the serial channel. Figure 17 illustrates the update file
transfer protocol implemented between the host and the device microcontroller.

Update success

Update failure

Figure 17. Implemented update file transfer protocol.
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4. Results

This section presents the results obtained by the proposed novel firmware update
method during runtime. This method was validated using the previously presented
example program and testbed. First, an Intel hex file was sent to the PIC18F27K42 mi-
crocontroller using an RS232 terminal to change program memory, updating the message
that occurs when the push button is activated. The update process application receives
and verifies the integrity of the Intel hex file, producing the desired modification in one
particular block of the flash memory (see Figure 18). The updated applications now operate
accordingly with the performed changes. The application assigned to button, 1 instead
of printing the message “Button 1 has been pressed” on the serial port, starts to print
a different message: “This string has been changed by update at run time”. It is
also possible to verify through the terminal log time that the update completion time took
around 63 ms, which is the expected value for an update with a size of 128 bytes. The
63 ms corresponds to about 52 ms spent in the transmission (about 200 bytes at a rate of
38.4 kbps), 10 ms in the block update [4], and about 1 ms in the update process. One of
the main contributions of this study is the significant reduction in downtime during the
update process as well as the elimination of the need for rebooting the end device after the
update. Moreover, this method aims to overcome some limitations associated with the delta
firmware update method described in [3,12,15], namely, the requirement to reconstruct the
firmware from the deltas, leading to resource savings and process simplification.

Figure 18. Microcontroller update during runtime.
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5. Conclusions

In this paper, a new firmware update method for microcontrollers is presented, im-
plemented, and validated. This new method differs from existing ones because it allows
for updating only specific code lines, blocks, or functions instead of replacing the entire
program during runtime. This method is suited to band limited channels that take into
account the attained reduction on the amount of data transmitted. The proposed update
procedure offers additional advantages, such as a reduced downtime, less than 10 ms,
and good recoverability in a failure scenario.

The planned method also presents some limitations; the update process was designed
to update only up to eight rows (1024 bytes’ maximum), so it is therefore impossible to
update the entire program memory at once.

This firmware update method is also incompatible with operating systems and/or
intermediate hardware abstraction layers; it requires full control over all functionalities.
Moreover, under a power failure event, the success of the update process is not guaranteed.
Thus, it is advisable to include a supercapacitor-based backup power circuit to maintain
module power and the upgrade process integrity.

This method was successfully and easily replicated on several microcontrollers, such
as the MSP430, STM8, STM32, ATtiny, ATmega, SAMD21, and PIC32. This observation
emphasises the feasibility and applicability of the method on a broad set of microcontrollers,
thus increasing the scope of its potential usefulness. Future advances on the proposed
method must consider the inclusion of radio transmission, using LoRaWAN or available
cellular networks, to send the update file to remote sensor end-devices. An automated
process to manage the partitioning of program memory and assign to each specific function
an area of appropriated size based on its likelihood of being updated will also be investi-
gated in the future. In conclusion, this article leaves an open door to a new generation of
firmware updates for microcontrollers.
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Abstract: Currently, a variety of Low-Power Wide-Area Network (LPWAN) technologies offer
diverse solutions for long-distance communication. Among these, Long-Range Wide-Area Network
(LoRaWAN) has garnered considerable attention for its widespread applications in the Internet of
Things (IoT). Nevertheless, LoRaWAN still faces the challenge of channel collisions when managing
dense node communications, a significant bottleneck to its performance. Addressing this issue, this
study has developed a novel “time allocation adaptive Data Rate” (TA-ADR) algorithm for network
servers. This algorithm dynamically adjusts the spreading factor (SF) and transmission power (TP) of
LoRa (Long Range) nodes and intelligently schedules transmission times, effectively reducing the
risk of data collisions on the same frequency channel and significantly enhancing data transmission
efficiency. Simulations in a dense LoRaWAN network environment, encompassing 1000 nodes within
a 480 m × 480 m range, demonstrate that compared to the ADR+ algorithm, our proposed algorithm
achieves substantial improvements of approximately 30.35% in data transmission rate, 24.57% in
energy consumption, and 31.25% in average network throughput.

Keywords: LPWAN; LoRaWAN; ADR algorithm; time allocation

1. Introduction

In today’s digital landscape, the Internet of Things (IoT) has become a pivotal force
in bridging the gap between the virtual and physical worlds, driving connectivity across
a myriad of devices [1]. With the exponential growth of IoT endpoints, conventional
wireless networks are hitting their limits in scalability and energy efficiency [2]. This has
prompted a shift toward more sustainable, low-energy, and expansive communication
frameworks. Within this paradigm, Low-Power Wide-Area Networks (LPWANs) stand out
as a beacon of IoT connectivity, offering a trifecta of benefits: minimal power requirements,
extensive coverage, and economical operation. As a member of the numerous Low-Power
Wide-Area Network (LPWAN) technologies, LoRaWAN is widely used in modern smart
cities due to its advantages such as simple and flexible network formation, operation in
unlicensed frequency bands, and the ability to communicate remotely with extremely low
power consumption. It is considered one of the most promising LPWAN technologies
today [3–5] and is applied in areas like monitoring water consumption in urban buildings
and checking [6] the structural health of buildings [7].

LoRaWAN is a Media Access Control (MAC) protocol built on top of the LoRa
(Long-Range) physical layer. LoRa itself is a wireless modulation method at the physical
layer, based on Chirp Spread Spectrum (CSS) [8] technology, and is focused on providing
long-distance, low-power wireless transmission. The core advantage of LoRa technol-
ogy lies in its ability to achieve low data rate communication over long distances while
maintaining low energy consumption. In contrast, LoRaWAN defines how to establish a

Electronics 2024, 13, 434. https://doi.org/10.3390/electronics13020434 https://www.mdpi.com/journal/electronics43



Electronics 2024, 13, 434

complete network on the foundation of LoRa, encompassing features like device address-
ing, encrypted communication, data rate management, and multiple access. To facilitate
interoperability among LoRa devices from different manufacturers and to provide bet-
ter support for the diversity and scalability of LoRa technology in IoT applications, the
LoRa Alliance introduced the standardized LoRaWAN communication protocol in 2015.
This protocol not only promotes compatibility among LoRa devices from various suppliers
but also enhances the functionality and reliability of the entire LoRa network.

The classical LoRaWAN follows a star network topology, primarily consisting of end
devices, gateways, and a network server, as shown in Figure 1. The end devices are IoT
terminal nodes responsible for data collection and communication with the gateways.
Gateways serve as intermediate devices, connecting the end devices to the network server
and handling the reception and forwarding of data from the end devices. The network
server is the core of the LoRaWAN network, responsible for managing and coordinating
communication between end devices and gateways, as well as handling functions such as
data transmission, device authentication, and security [9].

Figure 1. Classic LoRaWAN architecture.

The LoRaWAN standard protocol defines three classes of end devices, Class A,
Class B, and Class C, to meet the power and latency requirements of different
scenarios [10,11]. Among them, Class A is the most common and basic device class that
all LoRa devices must support. It has the lowest power consumption and the simplest
communication mode. Its operation is illustrated in Figure 2. In Class A mode, the end
devices actively send data packets based on their own needs. After a certain airtime delay,
these packets are received by one or multiple gateways. Following the completion of
an uplink transmission, the device pauses for a period (Delay 1). During this time, the
gateway sends downlink data to the end device, based on the frequency and data rate of
the previous uplink transmission. After each data transmission, the end device sequentially
opens two short receive windows, with their opening times determined by the end of the
transmission. If the end device successfully receives data during the first receive window,
it does not open the second receive window. If not, after the first window closes and fol-
lowing another period (Delay 2), the device opens the second receive window to continue
receiving potential data. Since the gateway cannot ascertain whether the end device has
actually opened the receive window, it proceeds to send data during the pre-scheduled
periods of both receive windows.
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Figure 2. Information sending and receiving process of Class A node.

The Adaptive Data Rate (ADR) feature in the LoRaWAN protocol plays a crucial role
in optimizing communication efficiency by dynamically adjusting two key parameters:
spreading factor and transmit power. These parameters help regulate network capacity,
coverage, power consumption, and device lifespan. Increasing SF levels enhances inter-
ference resistance and sensitivity, widening coverage but at the cost of lower data rates
and increased energy requirements. Conversely, TP directly impacts communication range
and energy consumption. To balance these factors, LoRaWAN employs a standard ADR
algorithm to harmonize SF and TP, thereby improving overall network throughput [10].
Additionally, the quasi-orthogonal nature of different SFs in LoRaWAN allows for nearly
interference-free transmissions on the same bandwidth when the SFs are different [12].
However, significant signal interference occurs between LoRa nodes using the same SF.
However, as the density of nodes increases, more nodes with the same SF transmitting at
the same time lead to escalated data collisions, significantly reducing the data transmission
success rate.

To address this challenge, our proposed Time-Allocation Adaptive Data Rate
(TA-ADR) algorithm innovates by calibrating the adjustment steps for SF and TP. It intro-
duces the concept of transmission time intervals for LoRa nodes, allocating appropriate
time slots for nodes with the same SF to transmit data, thereby reducing the risk of conflicts
and enhancing the transmission success rate.

The rest of this article is structured as follows. In Section 2, we present an overview of
the related work and introduce the main contributions of our study. Section 3 describes the
flow of the ADR+ algorithm and the optimized TA-ADR algorithm. Section 4 introduces
the simulation configuration and gives the analysis of the results after simulation. The
conclusion of this paper is given in Section 5.

2. Related Work

The ADR algorithm, as a fundamental feature in the LoRaWAN protocol, is a key
advantage and has received extensive attention from many research teams. Several
research teams have focused on optimizing the ADR algorithm to adapt to different
application scenarios and network requirements, proposing a series of corresponding
improvement methods.

Slabicki et al. pointed out in the literature [13] that the basic ADR algorithm mentioned
in the LoRaWAN standard protocol is to select the maximum signal-to-noise ratio in the
last 20 packets as the calculation basis, but this method is too optimistic in a noisy channel.
Therefore, they simply modified the ADR algorithm. In the proposed ADR+ algorithm,
the average value of the SNR of the latest packet is used as the basis for the subsequent
calculation, which improves the performance of ADR algorithm in noisy channels.

In reference [14], Babaki et al. introduced the Ordered Weighted Averaging (OWA)
operator to optimize the ADR algorithm for accurately demodulating the suitable spreading
factor based on the current channel conditions and external environment. This algorithm
improves the transmission success rate and achieves almost the same energy consumption
as other ADR algorithms, even in dense LoRa networks and high channel noise.

Reference [15] proposes a new and more efficient dynamic ADR algorithm called
ND-ADR (New-Dynamic Adaptive Data Rate Algorithm). This algorithm introduces RSSI
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in addition to the basic ADR algorithm’s selection of SF based solely on the maximum SNR
value. By combining the average values of RSSI and SNR, ND-ADR dynamically adjusts
the number of SNR values considered (denoted as “n”). Initially set to three frames, the
value of “n” is dynamically increased based on certain conditions. This allows the server
to quickly adapt to changes in the external environment, effectively addressing commu-
nication quality issues and high packet loss rates in mobile terminal devices operating in
harsh environments.

In reference [16], the authors build upon the ADR+ algorithm by introducing an
energy efficiency controller α, which is related to the total energy consumption of all nodes.
The algorithm multiplies the average SNR value from the most recent 20 packets by α and
then gradually decreases α from 1 in steps of 0.1. This approach aims to find the optimal
α value that minimizes network energy consumption without compromising data delivery
rates. The simulation results presented in the reference demonstrate that this algorithm
outperforms the ADR+ algorithm in terms of energy consumption and data delivery rates.

In reference [17], Marini et al. propose a new ADR algorithm for LoRaWAN networks
called CA-ADR (Collision-Aware ADR). This algorithm takes into account the collision
probability at the MAC layer of the network. When allocating data rates, it minimizes the
collision probability while maintaining controllable link performance by considering the set
of nodes in the entire network. The feasibility of both cloud computing and fog computing
architectures is also validated. The results demonstrate that the fog computing-based
architecture is feasible and reduces end-to-end transmission latency.

In reference [18], Jeon et al. present a simple and energy-efficient uplink transmission
rate control scheme for LoRaWAN. The aim is to support efficient communication for a
large number of IoT devices over a wide area. This scheme enables devices to increase or
decrease the transmission rate based on the changing link quality. It introduces a ping-pong
mechanism to avoid frequent rate changes. Through modeling and simulation comparisons,
the results show that this scheme outperforms other approaches in terms of transmission
success rate, effective transmission rate, frame transmission delay, and energy consumption.

In reference [19], Anwar et al. discovered that fixed SF allocations are no longer effi-
cient in LoRaWAN when the end devices (EDs) are in motion. The link conditions between
the EDs and gateways change abruptly, resulting in significant packet loss and increased
retransmission attempts. To address this issue, they propose a resource management ADR
(RM-ADR) scheme that considers both packet transmission information and received power.
The research findings indicate that in a mobile LoRaWAN network environment, RM-ADR
achieves faster convergence time by reducing packet loss and retransmission attempts.

Reference [20] mentioned an EE-LoRa for spread spectrum factor selection and power
control in multi-gateway LoRaWAN networks. The author first optimized the energy
efficiency of the network, and then applied power control to minimize the transmit power
of nodes while maintaining the reliability of communication.

In reference [21], Cuomo et al. proposed two LoRa spread spectrum channel allocation
algorithms to solve the problems existing in the ADR algorithm allocation mechanism
of LoRaWAN. Scenario 1 (EXPLoRa-SF) uses a heuristic algorithm to evenly allocate SFs
to these nodes, with the same number of LoRa nodes for each spread spectrum factor.
Scenario 2 (EXPLoRa-AT) is used to fairly distribute broadcast time among network nodes
so that the various SFs transmit data at the same time.

We summarize the features of the ADR algorithms mentioned in Table 1.
Compared to the ADR algorithms proposed in the existing literature, our TA-ADR

algorithm incorporates a time scheduling strategy, allowing for the allocation of communi-
cation windows within the LoRaWAN network to reduce channel conflicts among nodes
with the same SF. This approach not only enhances the success rate of data transmission
but also optimizes the network’s energy consumption efficiency. Here are the primary
contributions of our study:
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(1) The TA-ADR algorithm diminishes channel conflicts by distributing non-overlapping
communication time windows among nodes, thereby improving the data delivery
rate and network throughput.

(2) The TA-ADR algorithm adapts the timetable to changes in node density,
particularly as the number of nodes increases, enabling better management of
communication loads.

Table 1. Features of the algorithms.

Algorithm Features

Reference [13] SNR is calculated from the average of the most recent frames.
Reference [14] The SNR is calculated by the OWA operator.
Reference [15] RSSI was introduced to the SNR and modified during the adjustment step.
Reference [16] Introduction of the α of energy efficiency controllers.

Reference [17] Consider the collision probability of the MAC layer to reduce collisions
when allocating data rates.

Reference [18]
The transmission rate can be dynamically adjusted according to the link
quality change, and the ping-pong mechanism is introduced to avoid
frequent rate changes.

Reference [19] In a mobile LoRaWAN environment, resource management is performed
by combining packet transmission information and received power.

Reference [20] Start by optimizing the energy efficiency of the network, and then apply
power control.

Reference [21]

EXPLoRa-SF features: The heuristic algorithm is used to evenly distribute
SF to nodes to avoid SF aggregation.
EXPLoRa-AT features: Fairly allocates the broadcast time to ensure the
simultaneous transmission of data from different SFs.

3. Introduction and Optimization of ADR+ Algorithm

3.1. Standard ADR Algorithm and ADR+ Algorithm

In this section, the speed regulation mechanism of the ADR algorithm is introduced,
and then we describe the standard ADR algorithm and ADR+ algorithm. Finally, the
algorithm of the SF and TP adjustment stage is optimized on the basis of the ADR+
algorithm, and the optimization process is described in detail.

The ADR mechanism can be divided into two parts: the network server (NS)-side
algorithm is responsible for increasing the data transmission rate of end nodes, while the
end node (ED)-side algorithm is responsible for decreasing the data transmission rate
of end nodes. The ED-side algorithm for ADR is defined by the LoRa Alliance, while
developers can choose basic ADR algorithms or configure their own algorithms for the
NS side [15]. Additionally, the NS is located at the core of the network, allowing it to
access global information. This enables the NS-side algorithm to dynamically adjust SF and
TP of end nodes based on global information, leading to better optimization of network
performance compared to node-side algorithms. The ADR algorithm in the LoRaWAN
standard protocol includes both the ED-side algorithm and the NS-side algorithm. The
ED-side algorithm relies on acknowledge character (ACK) feedback to determine if the
data transmission is successful. If the node does not receive an acknowledgment from the
gateway within two receiving windows, it considers the data transmission as failed and
activates the retransmission mechanism. It automatically reduces the data transmission
rate before retransmitting the data. The NS-side algorithm determines the link quality
based on the signal-to-noise ratio (SNR) of the recently received data and adjusts the SF
and TP accordingly. The ADR+ algorithm, compared to the ADR algorithm, only modifies
the NS-side algorithm while keeping the node-side algorithm unchanged. Algorithm 1
describes the implementation steps of the NS-side ADR+ algorithm [14]. In Algorithm 1,
the input SF value ranges from 7 to 12 in steps of 1, and the input TP value ranges from 2 to
14 in steps of 3. It involves calculating the required SNR (SNRrequired) based on the current
SF, averaging the SNR of the latest received 20 data packets to obtain SNRavg, determining
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the appropriate SF based on SNRavg, and then computing the SNR margin (SNRmargin)
and the adjustment steps (nsteps) using Equations (1) and (2):

SNRmargin = SNR avg − SNR required − devicemargin (1)

nsteps = int
(
SNRmargin/3

)
(2)

Ultimately, through iteration, the values of SF and TP are gradually adjusted until
certain conditions are met, and then the adjusted values of SF and TP are output. Table 2
lists the minimum SNR required for different SFs. If the SNR margin (SNRmargin) is positive,
it indicates that the current channel quality is good, and the node can increase the data rate
or decrease the transmission power to reduce power consumption and extend the node’s
battery life. If the SNR margin is negative, it indicates that the node is currently using a
transmission power that is too low, resulting in a low SNR for the uplink signal. Therefore,
it is necessary to increase the transmission power or decrease the data rate.

Table 2. SNR required for different data rates (BW 125 KHz) [22].

Data Rate Spreading Factor SNR (dB)

DR5 SF7 −7.5
DR4 SF8 −10.0
DR3 SF9 −12.5
DR2 SF10 −15
DR1 SF11 −17.5
DR0 SF12 −20.0

Algorithm 1 NS ADR+ Algorithm

Input: SF ∈ [7, 12], TP ∈ [2, 14],
Output: SF and TP

1. SNRrequired = demodulation f loor (current data rate)
2. SNRavg = avg (SNRs o f last 20 f rames)

3. SF = demodulation f loor (SNR avg

)
4. SNRmargin = SNRavg − SNRrequired − device_margin

5. nsteps = int
(

SNRmargin/3
)

6. while nsteps > 0 and SF > SFmin

SF = SF− 1

nsteps = nstep− 1

end while

7. while nsteps > 0 and TP > TPmin

T = TP− 3

nsteps = nsteps− 1

end while

8. while nsteps < 0 and TP < TPmax

TP = TP + 3

nsteps = nsteps + 1

end while

The flowchart of the ADR+ algorithm is presented in Figure 3.
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Figure 3. Flowchart of the standard ADR algorithm.

3.2. Algorithm Optimization

In this section, we will introduce the idea of algorithm optimization and the
optimized algorithm.

The ADR+ algorithm has powerful capabilities in controlling data rates, which can
improve the communication success rate and reduce the overall network energy consump-
tion to some extent. However, from the ADR+ algorithm flow, it is evident that the ADR+
algorithm always starts by changing the spreading factor and tends to decrease it. In a
network with a large number of deployed LoRa nodes, this can lead to numerous nodes
operating on the same spreading channel, resulting in severe data collisions, increased
triggering of the node’s retransmission mechanism, and inevitably increasing network
energy consumption while reducing the communication success rate.

To address these issues, we propose the communication time algorithm to allocate
signal transmission times for nodes with the same spreading factor. The message types
in LoRaWAN are divided into uplink messages and downlink messages. The data packet
structure of uplink messages mainly consists of five parts as shown in Figure 4: Pream-
ble, PHDR (Physical Header), PHDR_CRC (Physical Header Cyclic Redundancy Check),
PHYPayload (Physical Payload), and CRC (Cyclic Redundancy Check). The PHDR_CRC
is the Cyclic Redundancy Check for the PHDR, which is used to detect errors in the
header information. The CRC is for the PHYPayload, ensuring the integrity of the data
payload [10].

Figure 4. The data packet structure for uplink messages in LoRaWAN.

The transmission time of a LoRaWAN data packet is composed of the transmission
time of the preamble and the transmission time of the payload. The transmission time of
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the preamble is determined by the symbol effective length NPreamble and the time to send a
single symbol Ts, where Ts is related to the symbol rate Rs of LoRa. The specific calculation
formula is as follows:

Rs =
BW
2SF (3)

Ts =
1

Rs
(4)

TPreamble = (NPreamble + 4.25)× Ts (5)

Here, BW represents bandwidth, and SF represents spreading factor.
The transmission time of the payload is related to the selected header type. In explicit

header mode, the header contains information such as payload length, forward error
correction rate, and whether CRC is used. In implicit header mode, the payload bytes,
forward error correction rate, and CRC need to be manually set. The number of payload
symbols (NPayload) is calculated as follows:

NPayload = 8 + max
(

ceil
(

8PL− 4SF + 28 + 16− 20H
4(SF− 2DE)

(CR + 4)
)

, 0
)

(6)

where PL is the number of bytes in the payload. H represents the selected header type,
where H = 0 indicates explicit header mode and H = 1 indicates implicit header mode.
DE represents whether low data rate optimization is used during data transmission, where
DE = 1 indicates it is used and DE = 0 indicates it is not used. max() denotes the
maximum value function, and ceil() represents the ceiling function for rounding up.

After obtaining the number of payload symbols, the formula to calculate the transmis-
sion time of the payload (TPayload) is defined as:

TPayload = NPayload × Ts (7)

Finally, by adding the transmission time of the preamble and the transmission time of
the payload, we can determine the transmission time of the LoRa data packet (TPacket):

TPacket = TPeamble + TPayload (8)

From the derivation of the above data packet transmission time formulas, we can see
that the factors affecting the data packet transmission time include BW, SF, CR, NPreamble,
PL, header type, and whether low data rate optimization is used. In this article, our
algorithm only dynamically adjusts the SF and TP of the LoRa node. Therefore, we preset
the variables W, CR, NPreamble, header type, and whether low data rate optimization is used.
We set BW to 125 kHz, CR to 1, NPreamble to 8, PL to 23 bytes, H = 0 for explicit header, and
DE = 0 for not using the low data rate optimization configuration. By using the formulas,
we can calculate the number of payload symbols NPreamble and the transmission time TPacket
of the LoRa data packet for different spreading factors, as shown in Table 3.

Table 3. The number of payload symbols and transmission time of LoRa node for different SFs.

SF 7 8 9 10 11 12

NPayload (symbol) 48 43 38 33 33 28
TPacket (ms) 61.696 113.152 205.824 370.688 741.376 1318.912

From Table 3, it can be observed that if a LoRa node uses SF12 to transmit a data
packet, then within the corresponding time, 21 LoRa nodes using SF7 can complete the
transmission of one data packet. Next, we established a communication time algorithm for
all nodes based on their channel, spreading factor, and node number. We calculated the
communication time interval tSF

i which characterizes the time interval from the beginning
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to the end of data transmission by a LoRa node i at the SF, where the time occupied by
a spreading factor channel is denoted as TSF, such as T7 = 61.696 ms. The time interval
between node communications is denoted as ΔTSF, such as ΔT7 = 123.392 ms. Assuming
the starting time of the first node is t0, the formula to determine the interval of tSF

i is
defined as:

ΔTSF = 2 ∗ TSF (9)

tSF
i ∈ [t0 + (TSF + ΔTSF)(i− 1), t0 + TSFi + ΔTSF(i− 1)] (10)

Based on the time interval tSF
i , a new algorithm called TA-ADR (Time Slot Adaptive

Data Rate) is proposed. The algorithm flow of TA-ADR is detailed in Algorithm 2.

Algorithm 2 NS TA-ADR Algorithm

Input: SF ∈ [7, 12]; TP ∈ [2, 14]; Time range T of the current node; Timetable TSF
i of

communication of all nodes in LoRa gateway.
Output: SF, TP and update timetable TSF

i of all node communications for all spread spectrum
channels of LoRa Gateway.

1. SNRrequired = demodulation f loor (current data rate)
2. SNRavg = avg (SNRs o f last 20 f rames)

3. SF = demodulation f loor (SNR avg

)
4. SNRmargin = SNRavg − SNRrequired − device_margin

5. nsteps = int
(

SNRmargin/3
)

6. while nsteps > 0 && TP > TPmin Do

TP = TP− 3
nsteps = nsteps− 1
end while

7. i f nsteps > 0 and SF− nsteps ≥ SFmin

i f T ∩ tSF−nsteps
i == ∅

SF = SF− nsteps, nsteps = 0;
else SF = SF− nsteps− 1, k = 1;
while T ∩ tSF

i ! = ∅ and SF > SFmin
SF = SF− 1, k = k + 1;
i f T ∩ tSF

i == ∅ and TP + k ∗ 3 ≤ TPmax
TP = TP + k ∗ 3, nsteps = 0;
break;
end while
end i f

8. while nsteps < 0 and TP < TPmaxDo

TP = TP + 3
nsteps = nsteps + 1
end while

9. i f nsteps < 0 and SF− nsteps ≤ SFmax

i f T ∩ tSF−nsteps
i == ∅

SF = SF− nsteps, nsteps = 0;
else SF = SF− nsteps− 1, k = 1;
while T ∩ tSF

i ! = ∅ and SF < SFmax
SF = SF + 1, k = k + 1;
i f T ∩ tSF

i == ∅ and TP + k ∗ 3 ≥ TPmin
TP = TP− k ∗ 3, nsteps = 0;
break;
end while
end i f
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3.3. Algorithm Implementation

In Section 3.2 of our paper, we delved into a novel ADR management algorithm,
dubbed the Time-Allocation Adaptive Data Rate algorithm. This algorithm is designed
to optimize data transmission and significantly reduce conflicts between nodes on the
same frequency channel using the same SF. This section will elaborate on the details of
implementing the TA-ADR algorithm.

The input parameters for the TA-ADR algorithm include the SF range of the current
node, the TP range, the time range T of nodes that need to be optimized, and the commu-
nication schedule TSF

i of all nodes within the LoRa gateway. The output of the algorithm
is the adjusted SF and TP values, along with an updated communication schedule for all
nodes across all spread spectrum channels. To illustrate the relationship between T, tSF

i , and
TSF

i , let us consider an example in a LoRaWAN network with six LoRa nodes, all having a
TP of 2 dBm. Among these, three nodes use a SF of 7, while the other three use SF8, and
the initial send time is 0 s. Therefore, the communication time intervals for these six nodes
are tSF7

1 ∈ [0 s, 0.063 s], tSF7
2 ∈ [0.189 s, 0.252 s], tSF7

3 ∈ [0.378 s, 0.441 s], tSF8
1 ∈ [0 s, 0.114 s],

tSF8
2 ∈ [0.342 s, 0.456 s], and tSF8

3 ∈ [0.684 s, 0.798 s], respectively. From this, we can derive
the theoretical communication timetable TSF

i for these nodes, as presented in Table 4.

Table 4. The time communication table TSF
i before updating.

TSF
i i = 1 i = 2 i = 3

SF7 tSF7
1 tSF7

2 tSF7
3

SF8 tSF8
1 tSF8

2 tSF8
3

After the nodes 2 and 3 using SF8 transmit their data, the NS calculates that these nodes
have SNRmargin with both having an nsteps of 1. Therefore, NS optimizes the parameters
for these nodes under SF8 using Algorithm 2. For node 2 under SF8 (with T being tSF8

2 ),
after evaluating intersections with tSF7

i (i = 1, 2, 3), it is found that T intersects with tSF7
3 ,

indicating that node 2 should maintain its original settings. For node 3 under SF8 (with T
being tSF8

3 ), no intersections are found with tSF7
i (i = 1, 2, 3), suggesting the time slot under

SF7 is available. Thus, NS sends frame information containing the adjusted SF value and
the new communication interval to node 3 during its receive window. Node 3 then resets its
parameters accordingly. The updated communication timetable TSF

i is displayed in Table 5.

Table 5. The time communication table TSF
i after the update.

TSF
i i = 1 i = 2 i = 3 i = 4

SF7 tSF7
1 tSF7

2 tSF7
3 tSF7

4

SF8 tSF8
1 tSF8

2

Next, the parameter calculation and cyclic part of algorithm 2 are discussed. Initially,
the algorithm calculates the minimum SNR required (SNRrequired) for the current SF, and
computes the average SNR (SNRavg) from the last 20 frames of data. Then, it adjusts
the SF based on the SNRavg. Then, the algorithm calculates the SNR margin (SNRmargin),
which is the difference between the average SNR and the required SNR, minus the device
margin (device_margin). This SNR margin is then divided by 3 to determine the number of
adjustment steps (nsteps). Then, the loop is entered; if nsteps is greater than 0, indicating
that the SNR is higher than required, the algorithm attempts to reduce the TP to save energy.
For each reduction in TP (by 3 dB each time), nsteps is decreased by 1, until TP reaches the
minimum value or nsteps becomes 0. If there are remaining nsteps after reducing TP, the
algorithm tries to decrease the SF. It first checks if lowering the SF would cause a conflict
with the communication schedule of other nodes. If there is no conflict, SF is reduced, and
nsteps is set to 0. If there is a conflict, the algorithm further decreases SF (by 1 each time),
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and for each decrease in SF, TP is increased by 3 dB, until a conflict-free configuration is
found or SF is lowered to its minimum value. If the original nsteps is less than 0, indicating
that the SNR is lower than required, the algorithm attempts to increase TP to improve
signal quality. For each increase in TP (by 3 dB each time), nsteps is incremented by 1,
until TP reaches its maximum value or nsteps becomes 0. If nsteps is still less than 0 after
increasing TP, the algorithm tries to increase SF. Similarly, it checks for conflicts with the
schedule after increasing SF, and if there is a conflict, it continues to increase SF (by 1 each
time), and for each increase in SF, TP is decreased by 3 dB, until a conflict-free configuration
is found or SF is increased to its maximum value.

It is important to emphasize that our proposed TA-ADR algorithm is implemented
on the NS end. All logic and computational operations are performed internally within
the NS, sparing the LoRa nodes any additional burden. The NS, after processing through
Algorithm 2, sends the optimized SF, TP, transmission time, and the addresses of the
specific nodes needing optimization to the gateway. The gateway then conveys this infor-
mation to the respective nodes, which adjust their parameters and transmission times upon
receipt. Additionally, to achieve time synchronization among the nodes, we make the Lo-
RaWAN gateways periodically broadcast time stamp updates to ensure all LoRa nodes are
precisely synchronized.

4. Simulation and Results

In this section, we divide our discussion into two parts: simulation parameter settings
and result analysis. In the simulation parameter settings section, we present the path
loss model used in the LoRaWAN network, as well as the topology, simulation range,
and simulation parameters. The result analysis section provides comparative graphs
of three algorithms in the LoRaWAN network and elaborates on the advantages of the
TA-ADR algorithm.

4.1. Simulation Parameter Settings

In this network simulation, we used the log-normal shadowing path loss model [15]
to simulate the path loss caused by attenuation and shadowing when the signal propagates
through the air. The mathematical model is defined as follows:

Lp(di) = Lp(d0) + 10γlg(di/d0) + Xσ (11)

where Lp(d0) represents the average path loss at the reference distance d0, measured in
dB. di is the distance from node i to the gateway. γ is the path loss exponent. Xσ (dB) is a
zero-mean Gaussian random variable with standard deviation σ.

The received signal power Pr,i(d) can be obtained by subtracting the path loss Pt,i from
the transmit power Lp(d) of node i [21]:

Pr,i(d) = Pt,i − Lp(di) (12)

All LoRa nodes in the simulation are initialized in Class A transmission mode. The
region parameters and path loss parameters are given in Reference [14], where the sim-
ulation area size is 480 m× 480 m and the path loss parameters d0, Lp(d0), γ, and σ are
provided in Table 6.

Table 6. Path loss model parameters in urban scenarios.

Scene d0(m) Lp(d0)(dB) γ σ

City 40 127.41 2.08 3.57

According to the predefined network parameters in Table 7, we conducted simulations
of LoRa networks using the FLoRa framework in the OMNeT++ platform. We evaluated
the performance of three different ADR algorithms in an urban scenario. The LoRa network
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adopts a star network topology with the gateway placed at the center, as shown in Figure 5.
The nodes are uniformly distributed around the gateway.

Table 7. Simulation parameters.

Parameter Value

Carrier frequency ( f ) 868 MHz
Bandwidth (BW) 125 KHz
Coding rate (CR) 4/5

Spreading factor (SF) [7, 12]
Initial SF of nodes 12

Transmission power (TP) 2− 14 dBm
Initial TP of nodes 14 dBm

Payload (byte) 23 bytes
Simulation time 24 h

Figure 5. Simulation network with 200 nodes.

Each simulation runs for a duration of 24 h. In the network, each node sends only one
data packet at a time (with a payload size of 23 bytes), and nodes with the same SF will
wait for a time interval of 2 ∗ TSF before sending again. All LoRa nodes periodically send
a round of information. The energy consumption of LoRa nodes comes from three states
(send, receive, and sleep). Node transmission power consumption depends on node level
and instantaneous current value during transmission. The current of the node in receive
and sleep mode was obtained from the Semtech SX1272 data manual, and the operating
voltage was 3.3 V [23].

Finally, we assessed the performance of the three schemes based on the following
three parameters:
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Energy consumption (mJ): Defined as the total energy consumed by all nodes in the
LoRaWAN network divided by the total number of data packets successfully received by
the gateway.

Packet delivery rate (%): Defined as the total number of data packets successfully
received by the LoRaWAN network server divided by the total number of data packets
sent by all nodes.

Throughput (bps): Defined as the amount of data successfully transmitted per second
in the LoRaWAN network.

4.2. Interpretation of Result

From Figure 6a,b, it can be observed that as the number of nodes in the LoRaWAN
network increases, the energy efficiency and the packet delivery rate decreases. It is evident
that the TA-ADR algorithm performs better compared to the other two algorithms, and its
performance advantage becomes even more significant as the number of nodes increases.

Figure 6. Simulation comparison with different numbers of nodes: (a) energy consumption (mJ);
(b) packet delivery rate.

At a node count of 200, the ADR+ algorithm reduces energy consumption by approxi-
mately 2.73% compared to the ADR algorithm, while the TA-ADR algorithm reduces energy
consumption by approximately 7.63% compared to the ADR algorithm, and by approxi-
mately 5.03% compared to ADR+. At a node count of 1000, the ADR+ algorithm reduces
energy consumption by approximately 37.74% compared to the ADR algorithm, while the
TA-ADR algorithm reduces energy consumption by approximately 53.04% compared to
the ADR algorithm, and by approximately 24.57% compared to ADR+. This is because
the ADR algorithm, which selects the maximum SNR value for SF decoding, is overly
optimistic. In a noisy channel, the ADR algorithm is prone to selecting a high SNR value
for decoding, resulting in a lower SF being decoded. In contrast, the ADR+ algorithm uses
the average SNR value as a reference, resulting in more accurate SF decoding. However,
in the subsequent adjustment steps, both algorithms prioritize assigning lower spreading
factors to nodes. As a result, in the simulation scenario, most nodes under these algorithms
transmit data with smaller SF, leading to data collisions and reduced data delivery. Nodes
that fail to transmit trigger retransmissions, further increasing energy consumption.

In Figure 7, we present a statistical analysis of the final SF allocation for 1000 LoRa
nodes under the three ADR algorithms. The results show that under the ADR algorithm,
643 nodes are assigned SF7 and 269 nodes are assigned SF8. Under the ADR+ algorithm,
503 nodes are assigned SF7 and 406 nodes are assigned SF8. In contrast, the TA-ADR
algorithm assigns nodes almost equally in decreasing order of SFs, with an approximately
50% reduction in the number of nodes for each SF. Based on the propagation time of each
SF in the 125 kHz bandwidth channel, as calculated in Table 2, when a node uses a higher
SF to transmit a data packet, approximately two nodes using lower SFs can transmit data
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consecutively within that time frame. Therefore, when the spreading channel is fully
utilized, the number of nodes using lower SFs should be approximately twice the number
of nodes using higher SFs.

 
Figure 7. Number of LoRa nodes with different SFs is as follows in urban scenario with
1000 LoRa nodes.

Although the TA-ADR algorithm, like the other two algorithms, prioritizes assigning
lower spreading factors to LoRa nodes in subsequent SF adjustments, it allocates nodes with
the same SF to different time slots for data transmission. When the low spread spectrum is
fully allocated, it continues to allocate LoRa nodes to unused higher spreading channels
and correspondingly reduces the TP of that node. This ensures that multiple LoRa nodes
with the same SF do not transmit data in the same time slot, reducing the probability
of data collisions and improving data delivery rates while reducing the number of node
retransmissions. The results in Figure 6b further demonstrate that the LoRaWAN network
under the TA-ADR algorithm exhibits superior packet delivery ratio (PDR) performance.
On average, the PDR under the TA-ADR algorithm is approximately 30.35% higher than
that under the ADR+ algorithm and approximately 59.54% higher than that under the
ADR algorithm.

Finally, in order to more intuitively reflect the ability of nodes in the LoRaWAN
network to transmit data under the TA-ADR algorithm, we selected the statistical data of
the network throughput changes over time during the period from 16 h to the end of the
simulation to display in Figure 8, and calculated the average value of throughput, which
is given in Table 8. The average network throughput of the TA-ADR algorithm is about
31.25% higher than that of the ADR+ algorithm, and 48.65% higher than that of the ADR
algorithm, which further proves the advantages of the TA-ADR algorithm.
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Figure 8. Throughput of 1000 LoRa nodes in 8 h.

Table 8. Average throughput 1000 nodes in 8 h.

Scheme Average Throughput [bps]

TA-ADR 1115.29
ADR+ 849.70
ADR 750.28

5. Conclusions and Prospects

5.1. Conclusions

In this study, we propose an NS ADR algorithm for dynamically adjusting the SF
and TP of LoRa nodes in dense LoRaWAN networks. The algorithm introduces the con-
cept of time intervals, denoted as tSF

i , for node transmissions. Its objective is to allocate
independent time intervals to each node as much as possible, thereby mitigating data
collision issues in densely populated scenarios. Through network simulations of Lo-
RaWAN networks, we evaluated the performance of this algorithm and compared it with
other algorithms. The results demonstrate that our proposed TA-ADR algorithm outper-
forms the comparison algorithms in terms of energy consumption, packet delivery rate,
and throughput.

5.2. Deficiencies and Prospects

The optimal application scenario for the TA-ADR algorithm is primarily limited to
network environments with deterministic and periodic traffic patterns. This limitation
stems from the core principle of the TA-ADR algorithm, which involves pre-planning
communication schedules for nodes within the network. In environments characterized
by non-deterministic or non-periodic traffic patterns, the communication behavior of
nodes may be random or unpredictable. Under such circumstances, the pre-planned
communication schedules may not accurately reflect the actual communication needs of
the nodes, leading to reduced communication efficiency. With the increase in the noise
level in the environment, the effectiveness of the TA-ADR algorithm will become weaker
and weaker, but it is still better than the other two algorithms. Therefore, in future work,
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exploring ways to improve the TA-ADR algorithm to better adapt to diverse traffic patterns
will be an important research direction.
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Abstract: The Internet of Things (IoT) is one of the most important wireless sensor network (WSN)
applications in 5G systems and requires a large amount of wireless data transmission. Therefore,
massive multiple-input multiple-output (M-MIMO) has become a crucial type of technology and trend
in the future of beyond fifth-generation (B5G) wireless network communication systems. However, as
the number of antennas increases, this also causes a significant increase in complexity at the receiving
end. This is a challenge that must be overcome. To reduce the BER, confine the computational
complexity, and produce a form of detection suitable for 4G and B5G environments simultaneously,
we propose a novel multi-user detection (MUD) scheme for the uplink of M-MIMO orthogonal
frequency division multiplexing (OFDM) and universal filtered multi-carrier (UFMC) systems that
combines the merits of successive over-relaxation (SOR) and accelerated over-relaxation (AOR)
named mixed over-relaxation (MOR). Herein, we divide MOR into the initial and collaboration stages.
The former will produce the appropriate initial parameters to improve feasibility and divergence
risk. Then, the latter achieves rapid convergence and refinement performance through alternating
iterations. The conducted simulations show that our proposed form of detection, compared with
the BER performance of traditional SOR and AOR, can achieve 99.999% and 99.998% improvement,
respectively, and keep the complexity at O(N2). It balances BER performance and complexity with
fewer iterations.

Keywords: massive multiple-input multiple-output (M-MIMO); beyond fifth-generation (B5G);
successive over-relaxation (SOR); accelerated over-relaxation (AOR); mixed over-relaxation (MOR)

1. Introduction

International mobile telecommunications (IMT) [1–3] have formulated the architecture
and goals in the future for fifth-generation (5G) systems [4–6], such as enhanced mobile
broadband (eMBB), ultra-reliable and low-latency communications (URLLC), and massive
machine-type communications (mMTC). They bring users a better experience and inject
new vitality into the fields of the Internet of Things (IoT) [7–9], industrial automation,
telemedicine, and driverless driving. Among them, the IoT is one of the critical application
technologies for 5G wireless communication [10,11], and wireless transmission services
have become an influential means of transmitting IoT messages. To meet various applica-
tions of the IoT, wireless communication transmission of large amounts of information to
data collection centers and extension to big data analysis is an essential requirement for
eMBB and URLLC (i.e., beyond 5G (B5G) technology [12–14] will be forced to bear massive
amounts of data while being more time-saving than the previous systems).

Apart from the demand increase in data rate and spectral efficiency in the evolution of
wireless communication systems, single-carrier modulation technology has disadvantages
such as poor resistance to channel delays, a high bit error rate (BER), and significant
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bandwidth demand. Therefore, it is insufficient for most current applications. Thus, many
researchers have developed multi-carrier modulation technology to cut a bandwidth into
many subchannels and use multiple subcarriers to transmit signals and combat the above
shortcomings. Orthogonal frequency-division multiplexing (OFDM) is one of the most
popular technologies among multiple-carrier modulation schemes [15,16]. Although the
spectrum overlaps, its subcarriers are orthogonal. Therefore, each subcarrier will not affect
one another. Furthermore, its robustness to channel delay and resistance to inter-symbol
interference (ISI) is proven [17]. Unfortunately, OFDM still has some disadvantages that are
not conducive to B5G [18–20], such as strict synchronization requirements, high sidelobe
losses, and inter-carrier interference (ICI), which need to be improved. To approach the
needs of B5G systems simultaneously, it is necessary to find new multi-carrier waveforms
to combat the shortcomings of OFDM and support higher data rates, low latency, and looser
synchronization techniques. Universal filtered multi-carrier (UFMC) [21,22] is a feasible
candidate multi-carrier waveform that combines the advantages of OFDM and filter bank
multi-carrier (FBMC) [23,24], is resistant to ICI, and has less out-of-band emissions (OOBMs)
to reduce sidelobe losses. In addition, UFMC is compatible with the same architecture as
OFDM regarding the channel model [25–27].

Regarding the challenges of B5G wireless communication systems, to further stimu-
late the advantages of UFMC and provide better spectral efficiency, previous researchers
have proposed the massive multiple-input multiple-output (M-MIMO) architecture as an
essential type of technology for advanced wireless communication [28,29] which provides
better link reliability and higher spectral efficiency. Due to coherent combination [30], the
transmit power is inversely proportional to the number of transmit antennas. Thus, as the
number of transmit antennas increases, the energy efficiency, signal throughput diversity
gain, array gain, capacity gain, and beamforming gain will also be improved and can be
obtained efficiently [31,32].

As for the current standard optimum detectors, maximum likelihood (ML) [33] has
the best BER performance, but many researchers are distressed and discouraged due to its
complexity. The main reason for this is that the complexity grows exponentially with the
number of antennas, severely impacting hardware costs, while traditional linear detector
methods, such as zero forcing (ZF) [34] and the minimum mean square error (MMSE) [35],
have BER performance levels that are only inferior to ML. Regrettably, they still involve the
calculation of the inverse matrix, which keeps the complexity high. To deal with the hazards
of inverse matrices, many researchers have dedicated themselves to proposed methods
based on iterative algorithms to avoid the annoying inverse matrices in mathematical
operations, such as the Neumann series (NS) method, Gauss–Seidel (GS) method, Jacobi
(JA) method, successive over-relaxation (SOR) method, and accelerated over-relaxation
(AOR) method proposed by Liu et al. [36], Wu et al. [37], Kong et al. [38], Gao et al. [39],
and Hadjidimos et al. [40], respectively. These detectors avoid the inverse matrix opera-
tion by linear iteration and then reduce the complexity from O(N3) to O(N2). However,
their performance has yet to reach the required level of the current day and still needs
improvement. Given this, Ning et al. [41] and Hu et al. [42] proposed a symmetric succes-
sive over-relaxation (SSOR) method and a symmetric accelerated over-relaxation (SAOR)
method based on SOR and AOR, respectively, which utilize two similar symmetric matrices
for iteration so that the performance can be better than the previous SOR method and AOR
method. Even so, their performance results are unsatisfactory. Therefore, Yu et al. [43]
and the authors in our previous work [44], through the two-stage structure proposed SOR
method and AOR method combined with the Chebyshev algorithm, namely Chebyshev
successive over-relaxation (CSOR) and Chebyshev accelerated over-relaxation (CAOR)
techniques, respectively, produced efficient performance.

To reduce the high complexity of the linear detector caused by the increased transmitter
antenna of M-MIMO and still maintain its BER performance, this study proposes a more
advanced novel detection method combining the merits of the SOR and AOR methods to
promote a balance between calculated complexity and BER performance. Simultaneously,
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we provide one option for disparate needs. Herein, we divide the proposed algorithm
into two parts to improve the feasibility and reduce the risk of divergence. The first part,
named the initial stage, involves preprocessing the parameters required for the proposed
detection, such as the iteration matrix, matched filter (MF) compensation vector, and
initial estimation signal. In the second part, called the collaboration stage, the parameters
processed in the first part are mixed with the respective characteristics of SOR and AOR
through the collaborative architecture to speed up convergence and refine performance.
It is worth noting that this study cooperates with the SOR and AOR methods to achieve
efficient performance through the joint architecture, which offsets their shortcomings and
provides the effect of each compensating the other’s performance. Therefore, we named it
mixed over-relaxation (MOR). The simulation results show that MOR detection only needs
moderate computational complexity and good BER performance and is achievable with
uplink multi-user M-MIMO OFDM and UFMC systems simultaneously. These are merits
and features that other previous works do not present.

The rest of this paper is organized as follows. Section 2 introduces the system model
adopted in this paper. Section 3 reviews some traditional iterative methods and the novel
MOR detection method proposed in this study. The simulation results, complexity analysis,
and verification of the proposed method are given in Section 4. Section 5 provides a
concluding remark to summarize the paper.

2. System Model

This section will illustrate the architecture of the OFDM [17,26,45] and UFMC [21,23,26]
systems and then briefly describe the M-MIMO channel model [17,28,46], channel estima-
tion method, and standard MMSE detector [47], which acts as a benchmark for comparing
BER performance.

2.1. OFDM Systems

As shown in Figure 1, the input data are first modulated by quadrature amplitude
modulation (QAM) and inserted into pilot tones to generate a QAM symbol signal. The
signal of the QAM symbol is serial-to-parallel (S/P) conversion and performs an N-point
inverse fast Fourier transform (IFFT). Finally, parallel-to-serial (P/S) conversion is used to
generate OFDM signals. It can be expressed as follows [26]:

xOFDM[n] =
N−1

∑
k=0

X[k]e
j2πkn

N , 0 ≤ n ≤ (N − 1), (1)

where X[k] is the QAM symbol signal and N is the number of subcarriers.
To better combat inter-symbol interference (ISI), adding a cyclic prefix (CP) to the

OFDM signal can effectively avoid the occurrence of ISI, and according to [48], the length
of the CP has been adopted and proven to be a quarter of the number of subcarriers. Before
the signal is transmitted to the channel, the OFDM signal is converted from baseband to a
radio frequency (RF) through a process called upconversion and sent to the receiving end
through the channel.

At the receiving terminal, the channel’s RF signal output must first be converted into
a baseband signal by the downconversion function. Then, the serial signal is altered to its
parallel form using the S/P converter. Because a CP is added to the OFDM signal at the
transmitter, the receiver must remove its CP component first and then perform an N-point
fast Fourier transform (FFT). Herein, the signal includes two parts: the pilot and data parts,
which must be separated. The pilot part is provided to the channel estimator to estimate
the channel matrix, and the channel matrix mixes the data part into the detector to obtain
the complex signal transmitted by the transmitter. Finally, the output data are produced
through P/S conversion and QAM demodulation.
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Figure 1. A system block diagram of the OFDM transceiver.

2.2. UFMC Systems

The UFMC system is a B5G candidate waveform extended by the OFDM system
architecture to obtain a prompted spectrum efficiency. As shown in Figure 2, the input
data are first modulated by QAM and inserted into pilot tones to generate QAM symbol
signals. At this time, the QAM symbol signals are converted into S/P form and divided
into B sub-bands, each with M QAM sub-symbol signals. To allow vector operations to be
performed on the grouped sub-bands, each sub-band needs zero padding to the subcarrier
length N. Then, each sub-band is subjected to N-point IFFT and multiplied by a finite
impulse response (FIR) filter of a length L individually. Finally, vector addition and P/S
conversion of all sub-band signals are performed to obtain the UFMC signal, whose vector
length is (N + L− 1). The UFMC signal xUFMC[n] can be expressed as follows [26]:

xUFMC[n] =
B

∑
b=1

L−1

∑
l=0

N−1

∑
m=0

X[b, m]e
j2πmn

N fb(l), 0 ≤ n ≤ (N + L− 1), (2)

where X[b, m] is the QAM symbol signal after zero padding, its length is N × 1, and fb(l) is
the FIR filter for each sub-band. In this study, for the UFMC system, fb(l) is adopted based
on the Dolph–Chebyshev filter, which can be written as [49,50]

fb(l) = hb(l)e

j2π

N

(N − NZG
2

+

(
b−1

2

)
n+

N
2

)
l
, 0 ≤ l ≤ (L− 1), (3)

where NZG is the zero padding for each sub-band and hb(l) is the Dolph–Chebyshev
prototype FIR filter, whose equation is [49,50]

hb(l) = (−1)l
cos

[
N cos−1

[
μ cos

(
πl
N

)]]
cosh

[
N cosh−1 (μ)

] , (4)

in which μ = cos
[

1
N

cosh−1 (10α)

]
, α is the attenuation parameter, which is a positive real

number and determines the relative sidelobe attenuation of the filter. In front, the signal
is transmitted to the channel as the OFDM mentioned earlier, and the UFMC signal is
upconverted and sent to the receiving end through the channel.

Similar to the aforementioned OFDM receiver, the UFMC channel output signal is
downconverted and then S/P converted. At this time, when performing a 2N-point FFT,
it is necessary to first zero fill the received signal to twice the subcarrier length and then
downsample it to recover the signal, which is performed to extract the odd-numbered
elements after the FFT [25–27]. As in the previous subsection, separating the pilot and data
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parts is necessary. The pilot part is provided to the signal estimator to estimate the channel
matrix, and the channel matrix mixes the data part into the detector to obtain the complex
signal transmitted by the transmitter. Finally, the output data are obtained through P/S
conversion and QAM demodulation.

Figure 2. A system block diagram of the UFMC transceiver.

2.3. Multi-User M-MIMO Channel Model

For the uplink M-MIMO scenario [28,29] in this article, we assumed that there was a
total of KNt user antennas, denoted as NT , and mounted NR antennas at the base station,
where K is the number of users and each user has Nt transmission antennas. In terms of
setting the number of antennas, to ensure optimal detector performance and minimize
thermal noise interference and channel estimation bias, we set the number for NR to be
much larger than the total number of user antennas NT . Moreover, the signal transmitted
into the channel and the received signal can be denoted as x =

[
x1, x2, . . . , xNT

]T and
y =

[
y1, y2, . . . , yNR

]T , respectively. Furthermore, we use bold lowercase letters and bold
capital letters to represent vectors and matrices, respectively, to make them easier to read.
Therefore, the channel model can be expressed as follows [51,52]:

y = Hx + n, (5)

where H ∈ CNR×NT and n is the NR × 1 noise vector. To be clear, we have rewritten this as⎡⎢⎣ y1
...

yNR

⎤⎥⎦ =

⎡⎢⎣ h11 . . . h1NT
...

. . .
...

hNR1 . . . hNR NT

⎤⎥⎦
⎡⎢⎣ x1

...
xNT

⎤⎥⎦+

⎡⎢⎣ n1
...

nNR

⎤⎥⎦. (6)

Now, we will use the Rayleigh fading channel matrix [53] to simulate the outdoor
environment for the above matrix H. Without loss of generality, considering that the realistic
environment has many external factors, we set up a channel with two independent and
identically distributed (i.i.d.) paths and a Gaussian distribution that obeyed unit variance
and a zero mean to align with the compatible actual environment [44]. The noise vector
adopted additive white Gaussian noise (AWGN) that conformed to an i.i.d. and complex
Gaussian distribution.

Here, we used a comb-type pilot structure [54] to measure the Rayleigh fading channel
at the base station, which periodically inserted pilot tones into the subcarriers. Furthermore,
we estimated the channel matrix with the least squares (LS) channel estimation method [55]
with the pilot tones, and the result can be expressed as

ĤLS =
(

XH
p Xp

)−1
XH

p Yp = X−1
p Yp, (7)

where Xp and Yp denote the transmitted and received signals’ pilot tones, respectively.
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As for the detector, it estimates the transmitted signal through the estimated channel
matrix and the matched filter (MF). In light of this, according to [35,47,52], the traditional
linear MMSE detection algorithm has been proven to be nearly optimal for uplink MIMO
systems, and the estimation of its transmitted signal can be expressed as

x̂MMSE =
(

Ĥ
H

Ĥ + σ2INT

)−1
Ĥ

H
y = W−1yMF, (8)

where σ2 denotes the noise variance, Ĥ is the channel estimation matrix, W is the filter
matrix of MMSE, which is equal to

(
Ĥ

H
Ĥ + σ2INT

)
, and yMF is MF’s output, which is

equivalent to Ĥ
H

y.

3. Proposed Scheme

To clarify our proposed method, we will briefly describe the conventional SOR [39,56]
and AOR [40,44] methods, including their convergence behavior. Immediately afterward,
we will introduce our proposed MOR method, which allows improved BER performance
and complexity balance with fewer iterations. Moreover, we will briefly discuss and derive
convergence in Appendix A.

3.1. Overview of the Conventional SOR Method

According to [56], we consider a linear system whose mathematical equation can be
expressed as

Ax = b, (9)

where A is a symmetric positive definite matrix, x is an arbitrary complex vector, and
b the MF output of the received signal y after channel estimation. We can denote b as
b = Ĥ

H
y = yMF, and it is a nonzero complex vector (i.e., b ∈ Cn \ {0}). Moreover, A can

be decomposed into
A = D− L−U, (10)

in which D, −L, and −U are A’s diagonal, lower, and upper triangular matrices, respec-
tively. Then, the SOR iteration equation can be expressed as

x(i+1) = (D−ωL)−1{[(1−ω)D + ωU]x(i) + ωb}, (11)

where ω is the relaxation parameter. Herein, we replace (D−ωL)−1 and [(1−ω)D + ωU]
with MSOR and NSOR, respectively, and further define the matrix GSOR, called the iteration
matrix of SOR, which is expressed as

GSOR = MSORNSOR. (12)

Then, Equation (11) can be simplified and written as

x(i+1) = GSORx(i) + dSOR, (13)

where dSOR, the MF compensation vector of SOR, comes from MSOR multiplied by d, where
d is ωb.

The linear iterative algorithm judges its convergence using the spectral radius ρ(G) of
matrix G as the criterion, which is defined as follows [44,57]:

ρ(G) � max
λ∈ρ(G)

|λ|, (14)

where λ is the eigenvalue of G. Moreover, Equation (11) will converge if ρ(GSOR) satisfies

ρ(GSOR) = max
1<c<NT

|λc| < 1. (15)

According to [56], the SOR iterative algorithm has been proven to converge when it
satisfies 0 < ω < 2.
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3.2. Overview of the Conventional AOR Method

The conventional AOR iterative algorithm [40] is an extended version of the SOR
iterative algorithm that, through a combination of relaxation parameters ω and acceleration
parameters γ, obtains better performance, and the equation is as follows:

x(i+1) = (D− γL)−1{[(1−ω)D + (ω− γ)L + ωU]x(i) + ωb}, (16)

Similar to the SOR method, to simplify Equation (16), we define the matrix GAOR,
called the iteration matrix of AOR, as

GAOR = MAORNAOR, (17)

where MAOR = (D− γL)−1 and NAOR = [(1−ω)D + (ω− γ)L + ωU]. Then, Equation (16)
can be written as

x(i+1) = GAORx(i) + dAOR, (18)

where dAOR is the MF compensation vector of AOR, equal to MAOR multiplied by d. From
Equation (14), we see that Equation (16) will converge if it satisfies

ρ(GAOR) = max
1<c<NT

|λc| < 1. (19)

According to [44], when satisfying 0 < ω < 2, 0 < γ < 2, and ω = γ, the AOR itera-
tive algorithm has been proven to converge.

3.3. Proposed MOR Method

After reviewing the previous subsections, we developed a novel detection combining
the advantages of conventional SOR and AOR to improve BER performance and balance
the complexity, which we call mixed over-relaxation (MOR). As shown in Figure 3, the first
part is the initial stage, and some parameters required by the iterative algorithm must be
processed. In the first step, we define the iteration matrix of MOR according to the iteration
matrices GSOR and GAOR mentioned earlier in Sections 3.1 and 3.2, respectively, which are
written as follows:

GMOR = GAORGSOR. (20)

Aside from that, we performed a mixed operation on the MF compensation vectors
in the SOR and AOR iterative equations for better BER performance. Here, the MOR MF
compensation signal dMOR can be described as follows:

dMOR = (GAORMSOR + MAOR)d. (21)

Next, to obtain appropriate initial ω and γ values, we must first calculate the spec-
tral radius of GMOR. The definition of the spectral radius ρ(GMOR) is the same as in
Equation (14) in the previous subsection, and it can be written as

ρ(GMOR) � max
λ∈ρ(GMOR)

|λ|, (22)

Therefore, we can find the mathematical equations [44] for ω and γ:

ω =
1√

1− μ2
, (23)

γ =
2

1 +
√

1− μ2
, (24)

where μ is ρ(GMOR)|ω=1,γ=0.
The second part we call the collaboration phase. As shown in the MOR algorithm

block (collaboration stage) proposed in Figure 3, we joined the relaxation characteristics
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of the SOR iteration algorithm and the acceleration ability of the AOR iteration algorithm.
Through the collaborative architecture, SOR and AOR assist each other in estimating the
better signal and apply the appropriate initialization ω and γ to obtain the MOR iteration
matrix GMOR and MF compensation vector dMOR. The experimental results prove that
the proposed MOR method has a faster convergence speed and better BER performance.
Moreover, its iteration equation can be simplified as follows:

x(i+1) = GMORx(i) + dMOR. (25)

It is worth noting that the parameters generated in the initial stage in Figure 3 only
need to be calculated once, which include the iterative matrix GMOR, MF compensation
vector dMOR, and initial estimate signal x(0), which are provided to the collaboration stage
for iterative calculation. The procedure of the proposed MOR detection method is shown
in Algorithm 1. As for its convergence of MOR, we will derive this in detail in Appendix A.
Therefore, we know that MOR will converge when 0 < ω < 2 and 0 < γ < 2. Aside from
that, we can compare the convergence conditions of SOR and AOR to MOR and find that
MOR does not increase the convergence difficulty and also does not limit ω = γ as AOR
does, which means that MOR has higher flexibility in choosing ω and γ.

Figure 3. A block diagram of the proposed detection scheme.

Algorithm 1 Proposed MOR detection algorithm.
Receiver signal input:

1. WMMSE = Ĥ
H

Ĥ + σ2INT � A, and A = D + L + U

2. yMF = Ĥ
H

y � b

The first part: (initial stage)

1. MSOR = (D−ωL)−1, NSOR = [(1−ω)D + ωU]

2. MAOR = (D− γL)−1, NAOR = [(1−ω)D + (ω− γ)L + ωU]
3. GSOR = MSORNSOR, GAOR = MAORNAOR
4. GMOR = GAORGSOR
5. d = ωb, dMOR = (GAORMSOR + MAOR)d

6. ω =
1√

1− μ2
, γ =

2
1 +

√
1− μ2

, μ = ρ(GMOR)|ω=1,γ=0

7. Set i := 0 and x(0) := 1

The second part: (collaborative stage)
While not converging, do

1. x(i+1) = GMORx(i) + dMOR
2. i := i + 1

End
Set x̂ := x(i+1)

Receiver signal output: The estimate of the transmitted signal vector x̂
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4. Simulation Results and Complexity Analysis

4.1. Simulation Results and Discussion

In this section, some numerical simulations will be performed to evaluate and verify
the performance of our proposed novel receiver. Moreover, we use the famous Mat-
lab(Version R2022a) mathematical software tool to simulate the numerical results and
graphics, execute Monte Carlo 500,000 for each graph, and use Microsoft Excel for cal-
culations and statistical tables. Considering the OFDM multi-carrier technology, UFMC
multi-carrier technology, and NR × NT uplink multi-user M-MIMO environment described
in Section 2, as shown in Table 1, we fed the same total data volume of 512 to experiment
with the two systems equitably, and the pilot tone insertion interval was 0.05. Therefore,
each symbol inserted 25 pilot tones and 1024 QAM modulation. For the particular param-
eters of OFDM in the 4G environment and UFMC in the B5G environment, the former
needed to set a cyclic prefix (CP) whose length was one quarter of the subcarrier (i.e., 128),
and the volume of the data was equal to the number of subcarriers. In the latter, the size
of subcarrier N was 1024, the number of sub-bands B was 16, and each sub-band was
allocated a data volume of 32 (i.e., M). It is worth noting that the product of the two could
not be greater than the number of subcarriers N (i.e., the total data amount needed to be
less than or equal to the number of subcarriers), in which the number of zero padding
was the subcarrier minus the data amount and would be divided into the starting and
tailing of the data vector (i.e., 256). According to [58–60], the UFMC waveform adopted the
Chebyshev FIR filter, where the filter length L was 43 and the side attenuation was 40. In
addition, we assumed that the channel was a two-multipath flat Rayleigh fading channel
with AWGN, and the receiver could obtain channel state information (CSI) through the
least squares (LS) estimation scheme. We chose SOR [39], AOR [40], SSOR [41], SAOR [42],
CSOR [43], and CAOR [44] as the BER performance and complexity comparison objects
of the proposed MOR scheme and used the MMSE as the BER performance benchmark.
Moreover, we briefly describe the features of previously published works and our proposed
MOR scheme in Table 2.

Table 1. Enumerate parameters used in simulation scenarios.

Parameter Value

Common parameters

Modulation scheme 1024 QAM
Volume of data 512

Amount of pilot data in one symbol 25
The maximum SNR (dB) 50

Channel type Rayleigh fading channel
Number of users K 8

Number of transmission antennas in one user Nt 2
Number of channel taps 2

Noise AWGN
Channel estimation LS

The number of experiments for Monte Carlo (times) 500,000

OFDM specific parameters

CP length 128

UFMC specific parameters

Number of subcarriers N 1024
Number of sub-bands B 16

Number of subcarriers in each sub-band M 32
Amount of zero padding in each sub-band NZG 256

Filter type Chebyshev FIR filter
Filter length L 43

Filter sidelobe attenuation (dB) 40
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Table 2. Brief descriptions of our proposed scheme and previously published works.

Scheme Brief Description

SOR [39] SOR is a linear iterative method, and it was derived from adding relaxation
parameters ω to the Gauss–Seidel iterative algorithm.

AOR [40]
The AOR iterative algorithm is an extension of the SOR iterative algorithm. It is
a linear iterative method derived through the relaxation parameter ω and the

newly added acceleration parameter γ.

SSOR [41] SSOR combines two SOR sweeps in a semi-iterative architecture to produce an
iterative matrix similar to a symmetric matrix.

SAOR [42] SAOR combines two AOR sweeps in a semi-iterative architecture to produce an
iterative matrix similar to a symmetric matrix.

CSOR [43] The CSOR method combines the SOR iterative algorithm and the recursive
characteristics of the Chebyshev polynomials.

CAOR [44] The CAOR method combines the AOR iterative algorithm and the recursive
characteristics of the Chebyshev polynomials.

MOR
Our proposed MOR method joins the characteristics and abilities of both the

SOR and AOR iterative algorithms to accelerate iterative convergence and obtain
efficient BER performance through a collaborative architecture.

To verify and roughly observe the characteristics between the OFDM and UFMC
waveforms regarding BER performance and the power spectral density (PSD), we con-
ducted some experiments to demonstrate their disparity, as shown in Figures 4 and 5.
In Figure 4, we can see that the UFMC effectively improved the BER performance when
NR × NT = 64× 16 and utilized the MMSE detector. Especially when the SNR level was
35 dB, the UFMC and OFDM BER performance values were 2.061× 10−5 and 9.886× 10−4,
respectively, which could be improved by approximately 97.916%. As for the PSD, which
is an agreeable index of the impact of OOBMs, as shown in Figure 5, we can observe that
under the same environment and data volume, the UFMC had better OOBM resistance than
OFDM, which means it resisted intercarrier interference (ICI) better [22,61]. By combining
the BER performance and PSD simulation results, we know that the UFMC had better BER
performance and could achieve better OOBM resistance, which is expected in future B5G
wireless communication systems.

Figure 4. An MMSE BER performance comparison for OFDM vs. UFMC with NR × NT = 64× 16
and K = 8.
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Figure 5. A PSD comparison for OFDM vs. UFMC.

Next, we will explore MOR detectors that can be applied to 4G and B5G multi-carrier
technologies. To obtain the appropriate relaxation parameter ω and acceleration parameter
γ, we first used Equations (23) and (24) to obtian the preliminary relaxation parameter ω
and acceleration parameter γ. Apart from this, as shown in Figures 6 and 7, the acceleration
parameter γ and relaxation parameter ω are depicted for different relaxation parameter ω
values and acceleration parameter γ values for our proposed method in the OFDM and
UFMC, respectively, comparing the BER performance graphs when the iteration number
i was 4, NR × NT was 64× 16, and the SNR was at 35 dB. We can observe in Figure 6a,b
that if γ was the curve of 1.1, the BER performance would improve, whereas the BER
performance would decrease, and the best BER performance was when ω was equal to
1.2. Similarly, we also observed the same values of ω and γ in Figures 6 and 7. In light of
this, choosing a γ value close to 1.1 and ω value close to 1.2 would have the best estimate.
Meanwhile, the experimental simulation data in Figures 6 and 7 were consistent with the
theoretical calculation values of Equations (23) and (24). It is worth noting that regardless
of whether the MOR operated in the OFDM or UFMC, the optimal values of ω and γ were
the same, which is ideal. This means that the MOR-optimized BER performance could still
be obtained without recalculation if applied to 4G or B5G systems, substituting ω with 1.1
and γ with 1.2.

(a)

Figure 6. Cont.
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(b)

Figure 6. BER performance of MOR method relative to ω with SNR = 35 dB, NR × NT = 64× 16,
K = 8, and number of iterations i of 4 for (a) OFDM and (b) UFMC.

(a)

(b)

Figure 7. BER performance of MOR method relative to γ with SNR = 35 dB, NR × NT = 64× 16,
K = 8, and number of iterations i of 4 for (a) OFDM and (b) UFMC.
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Figures 8 and 9 depict the BER performance comparison of different detection methods
when the iteration number i was 3 and 4, respectively. Among them, Figures 8a and 9a apply
to the OFDM system, and Figures 8b and 9b apply to the UFMC system. In Figure 8a,b,
we can observe that when the iteration number i was equal to 3, our proposed method
was already close to the performance of the MMSE. Moreover, when the SNR was at 40 dB,
we compared the BER performance of MOR and related it to that of the CAOR, and for
the OFDM system, it was approximately 1.395× 10−6 and 8.563× 10−3, respectively, an
improvement of 99.984%. The UFMC system’s results were roughly 3.878× 10−8 and
7.773× 10−3, respectively, an improvement of 99.999%. As shown in the numerical values,
the BER performance of our new method was significantly improved compared with CAOR,
let alone other iterative detection methods. In addition, as shown in Figure 9a,b, when the
iteration number i was equal to 4, the BER performance of our method overlapped with
the MMSE method.

(a)

(b)

Figure 8. BER performance comparison for different detection methods with NR × NT = 64× 16,
K = 8, and number of iterations i of 3, for (a) OFDM and (b) UFMC.
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(a)

(b)

Figure 9. BER performance comparison for different detection methods with NR × NT = 64× 16,
K = 8, and number of iterations i of 4 for (a) OFDM and (b) UFMC.

Following this, we will observe when the number of base station antennas NR increases,
as shown in Figures 10 and 11, which depict the BER performance comparison of different
detection methods run in OFDM and UFMC systems when the number of base station
antennas NR was 128 and 256, respectively, while the fixed iteration number i was 2. In
Figure 10a, we can observe that when the SNR was at 35 dB and NR was 128, the MOR
and CAOR BER performance of the OFDM system were approximately 1.838× 10−5 and
6.030× 10−3, respectively, an improvement of 99.695%; In Figure 10b, the MOR and CAOR
BER performance of the UFMC system were approximately 6.208× 10−7 and 4.955× 10−3,
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respectively, an improvement of 99.987%. In Figure 11, when NR kept increasing to 256,
whether the OFDM or UFMC system was used, MOR only needed two time iterations, and
the BER performance already overlapped with the MMSE.

(a)

(b)

Figure 10. BER performance comparison for different detection methods with NR × NT = 128× 16,
K = 8, and number of iterations i of 2 for (a) OFDM and (b) UFMC.
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(a)

(b)

Figure 11. BER performance comparison for different detection methods with NR × NT = 256× 16,
K = 8, and number of iterations i of 2 for (a) OFDM and (b) UFMC.

To analyze the BER performance of different detector methods varies with the ratio
of NR to the total number of user antennas NT , we denoted this as β, which is called
the antenna ratio [52]. Figures 12 and 13 show the variations in BER performance of
different detector methods for OFDM and UFMC systems when the iteration number i
was 2 and 3, respectively. From Figures 12 and 13, we took some samples to look at the
BER improvement, as shown in Tables 3 and 4, respectively. For example, when β was
equal to 16, the MOR and CAOR of the OFDM system were approximately 1.174× 10−4

and 2.862× 10−4, respectively, an improvement of 58.979%.
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(a)

(b)

Figure 12. (a) OFDM and (b) UFMC, BER vs. β for different detection schemes when the number of
iterations i was 2 and the SNR was 30 dB.
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Table 3. Comparison of BER improvement of MOR vs. previous works at β = 16 for the
OFDM system.

Number
of

Iterations
CAOR [44] CSOR [43] SAOR [42] SSOR [41] AOR [40] SOR [39]

i = 2 58.979% 62.589% 77.826% 78.116% 99.589% 99.608%
i = 3 2.026% 2.310% 4.290% 4.315% 51.695% 57.018%

(a)

(b)

Figure 13. (a) OFDM and (b) UFMC, BER vs. β for different detection schemes when the number of
iterations i was 3 and the SNR was 30 dB.
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Table 4. Comparison of BER improvement of MOR vs. previous works at β = 16 for the
UFMC system.

Number
of

Iterations
CAOR [44] CSOR [43] SAOR [42] SSOR [41] AOR [40] SOR [39]

i = 2 98.214% 98.690% 99.542% 99.563% 99.998% 99.999%
i = 3 5.717% 6.395% 9.784% 9.958% 96.957% 97.998%

As shown by the numerical values, we could find that the gap in BER performance
of all iterative methods had a decreasing trend. Undoubtedly, as the β values grew, BER
performance was improved with more antennas due to the spatial diversity gain [62,63].
Above all, our proposed method achieved the best BER performance compared with the
abovementioned detection methods regardless of the value of β. Simultaneously, as the
number of antennas kept increasing, the required iterations were also relatively reduced.

To further illustrate the impact of the numerical antenna ratio β on BER performance,
in Tables 5 and 6, we compare the degree to which the BER performance of each iterative
method was close to the MMSE when the number of iterations i was 2 and 3 in the form
of a logarithm value (i.e., to obtain a more demarcated numerical comparison, we took
the logarithm operation log(·) and denoted it as a separation rate between the MMSE) of
the BER distance between each detection method and the traditional MMSE, and the data
came from the simulation data in Figures 12 and 13. We can observe that in Tables 5 and 6,
under different β conditions, the distance between MOR and the traditional MMSE was
the smallest. For instance, in the OFDM and UFMC, when β was 16 and i was 2, the BER
separation rates between MOR and the MMSE were 0.0061 and 0.0215, respectively. Aside
from that, when β was 8 and i was 3, the BER separation rate of MOR and the MMSE was
0.0001 and 0.0005, respectively, which means the proposed method was already extremely
close to the MMSE. Furthermore, when β was 16 and i was 3, the BER separation rate
between MOR and the MMSE in the OFDM and UFMC was 0 and −0.0007, respectively.
As shown in the numerical value, the distance in the UFMC system was already negative,
which means that the BER performance distance ratio between MOR and the MMSE was
less than one. Hence, the value became a negative value after the logarithm operation
log(·). In light of this, the separation rate value was smaller, and the BER performance of
the detector was closer to the MMSE.

Table 5. Comparison of BER performance separation rates between all detectors and MMSE in
different β under an iteration number i of 2 and SNR at 30 dB for (a) OFDM and (b) UFMC.

Scheme β = 4 β = 8 β = 12 β = 16

(a)

SOR [39] 1.0008 1.5153 1.9799 2.4129
AOR [40] 0.9777 1.4873 1.9552 2.3921
SSOR [41] 0.8439 0.9307 0.8355 0.6660
SAOR [42] 0.8276 0.9239 0.8284 0.6603
CSOR [43] 0.6947 0.7013 0.5836 0.4330
CAOR [44] 0.6482 0.6449 0.5303 0.3930

Proposed MOR 0.1522 0.0399 0.0138 0.0061

(b)

SOR [39] 1.6925 2.8858 3.9460 4.9298
AOR [40] 1.6674 2.8555 3.9195 4.9080
SSOR [41] 1.5252 2.1803 2.4161 2.3807
SAOR [42] 1.5076 2.1693 2.3989 2.3610
CSOR [43] 1.3578 1.8727 2.0138 1.9043
CAOR [44] 1.3017 1.7794 1.8911 1.7695

Proposed MOR 0.4893 0.1636 0.0528 0.0215
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To understand the convergence of different detectors under different numbers of base
station antennas NR, Figures 14–16 show the relationship between the iteration number
i and BER performance in OFDM and UFMC systems when NR was 64, 128, and 192,
respectively. While NR was 64 and the SNR was 37 dB, as shown in Figure 14, MOR almost
converged at four iterations, which can also be verified by Figure 9. Moreover, at the same
iteration count of four, when comparing MOR to CAOR, the BER performance in the OFDM
and UFMC systems improved by 80.540% and 99.705%, respectively. Similarly, as shown in
Figure 15, when NR increased to 128, the SNR level was 33 dB, and MOR nearly converged
while only needing three iterations. In other words, at the same iteration count of three,
when comparing MOR to CAOR, the BER performance in the OFDM and UFMC systems
improved by 35.220% and 88.542%, respectively. As for NR increasing to 192 and the SNR
being at 31 dB, as shown in Figure 16, we found that the MOR method could approach
convergence in only two iterations for either the OFDM or UFMC systems. Compared with
CAOR, their BER performance increased by 84.196% and 99.776%, respectively. Echoing
the previous antenna ratio β analysis, M-MIMO would enhance the BER performance
when increasing the number of base station antennas NR. Moreover, our proposed MOR
algorithm had the best BER performance and the fastest convergence speed among the
abovementioned detectors.

Table 6. Comparison of BER performance separation rates between all detectors and MMSE in
different β under an iteration number i of 3 and SNR at 30 dB for (a) OFDM and (b) UFMC.

Scheme β = 4 β = 8 β = 12 β = 16

(a)

SOR [39] 0.6406 0.6283 0.5046 0.3667
AOR [40] 0.5523 0.5364 0.4307 0.3160
SSOR [41] 0.4857 0.1397 0.0415 0.0192
SAOR [42] 0.4594 0.1354 0.0410 0.0191
CSOR [43] 0.2707 0.0643 0.0220 0.0102
CAOR [44] 0.2197 0.0514 0.0186 0.0089

Proposed MOR 0.0026 0.0001 0 0

(b)

SOR [39] 1.2935 1.7443 1.8282 1.6979
AOR [40] 1.1828 1.5852 1.6505 1.5160
SSOR [41] 1.0907 0.5603 0.1396 0.0448
SAOR [42] 1.0539 0.5384 0.1365 0.0440
CSOR [43] 0.7417 0.2591 0.0766 0.0280
CAOR [44] 0.6407 0.2048 0.0633 0.0248

Proposed MOR 0.0102 0.0005 0.0001 −0.0007
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(a)

Figure 14. Cont.

(b)

Figure 14. BER performance vs. number of iterations with NR × NT = 64× 16, K = 8, and
SNR = 37 dB for (a) OFDM and (b) UFMC.
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(a)

Figure 15. Cont.

(b)

Figure 15. BER performance vs. number of iterations with NR × NT = 128× 16, K = 8, and
SNR = 33 dB for (a) OFDM and (b) UFMC.

81



Electronics 2024, 13, 187

(a)

Figure 16. Cont.

(b)

Figure 16. BER performance vs. number of iterations with NR × NT = 192× 16, K = 8, and
SNR = 31 dB for (a) OFDM and (b) UFMC.
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To more clearly observe the numerical evolution of the number of iterations and
BER performance under different numbers of antennas, where NR was 128 and 192, as
well as the progress of each method approaching the MMSE, we organized the data into
Tables 7 and 8 from Figures 15 and 16, respectively. Similar to Tables 5 and 6, to obtain a
clear numerical comparison, we took the logarithm operation log(·) of the BER distance
between each detector and the MMSE at iteration numbers i from 2 to 5. In Table 7a,b, we
observe that MOR was quite near the MMSE in only three iterations when NR was 128
and the SNR was at 36 dB. Compared with CAOR, the separation rate with the MMSE in
the OFDM system was 0.0006 and 0.1891, respectively, being shortened by 0.1885, while
in the UFMC system, the values were 0.0020 and 0.9429, respectively, being compressed
by 0.9409. In Table 8, NR increased to 192. The MOR scheme was extremely close to the
MMSE and only needed two iterations. Moreover, there was a significant gap with other
iteration methods. It is worth noting that in Tables 7b and 8b, when the iteration number i
reached 5 and 4, respectively, the BER separation rate between MOR and the MMSE was
already a negative value. To summarize Tables 7 and 8, the MOR detector had the fastest
convergence and was closest to the optimal BER performance compared with thte other
methods, whether in the OFDM or UFMC systems. Moreover, the experimental results in
Figures 14–16 show that in addition to Appendix A theoretically proving the convergence
of the MOR scheme, it is also verified convergence from the experimental data.

Finally, to verify M-MIMO affecting the capability of the OFDM and UFMC systems,
Table 9 shows the improvement range of various iterative methods in the OFDM and UFMC
as NR increased, which can be referred to in Figure 12. We know that no matter whether
the OFDM or UFMC system was used, when the number of antennas increased in the
M-MIMO environment, all schemes could obtain significantly improved BER performance,
of which the amount of gain in the UFMC was slightly higher than that of the OFDM
system, which means that the UFMC system had better adaptability to M-MIMO. Also, the
proposed MOR detector is entirely compatible with M-MIMO environments in both OFDM
and UFMC systems and has better spatial diversity gain. It is worth noting that MOR can
be used seamlessly for the 4G environment of the OFDM system and B5G environment of
the UFMC system. Therefore, the proposed MOR detector is highly competitive in the 4G
and B5G environments.

Table 7. Comparison of BER performance separation rates between all detectors and MMSE in
different iteration numbers when NR × NT = 128× 16 and SNR level was 33 dB for (a) OFDM and
(b) UFMC.

Scheme i = 2 i = 3 i = 4 i = 5

(a)

SOR [39] 2.7875 1.6570 0.2604 0.0162
AOR [40] 2.7573 1.5006 0.1624 0.0089
SSOR [41] 2.0874 0.5203 0.0370 0.0037
SAOR [42] 2.0766 0.5002 0.0355 0.0036
CSOR [43] 1.7833 0.2392 0.0104 0.0003
CAOR [44] 1.6917 0.1891 0.0070 0.0002

Proposed MOR 0.1517 0.0006 0 0

(b)

SOR [39] 5.1212 3.8485 1.2989 0.0649
AOR [40] 5.0897 3.6505 0.8284 0.0304
SSOR [41] 4.3528 2.0726 0.1591 0.0101
SAOR [42] 4.3387 2.0076 0.1460 0.0091
CSOR [43] 4.0115 1.1673 0.0344 0.0010
CAOR [44] 3.8973 0.9429 0.0238 0.0010

Proposed MOR 0.7785 0.0020 0.0002 −0.0001
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Table 8. Comparison of BER performance separation rates between all detectors and MMSE in
different iteration numbers when NR × NT = 192× 16 and SNR level was 31 dB for (a) OFDM and
(b) UFMC.

Scheme i = 2 i = 3 i = 4 i = 5

(a)

SOR [39] 2.4801 0.7712 0.0305 0.0011
AOR [40] 2.4547 0.6671 0.0219 0.0006
SSOR [41] 1.1957 0.0596 0.0039 0.0004
SAOR [42] 1.1855 0.0587 0.0039 0.0004
CSOR [43] 0.8873 0.0321 0.0009 0
CAOR [44] 0.8124 0.0269 0.0006 0

Proposed MOR 0.0208 0 0 0

(b)

SOR [39] 4.8419 2.5898 0.1252 0.0044
AOR [40] 4.8152 2.3851 0.0834 0.0015
SSOR [41] 3.2391 0.2311 0.0077 0.0003
SAOR [42] 3.2191 0.2232 0.0077 0.0003
CSOR [43] 2.8017 0.1264 0.0035 0.0003
CAOR [44] 2.6612 0.1017 0.0022 0.0003

Proposed MOR 0.0286 0.0008 −0.0001 −0.0001

Table 9. BER improvement rates of different detection schemes when iteration number i was 2 and
SNR was 33 dB for NR = 128, 192, and 256 for (a) OFDM and (b) UFMC.

Scheme NR = 128 NR = 192 NR = 256

(a)

SOR [39] 52.373% 74.435% 85.341%
AOR [40] 52.902% 74.528% 85.265%
SSOR [41] 82.208% 97.369% 99.613%
SAOR [42] 81.815% 97.369% 99.612%

Table 9. Cont.

Scheme NR = 128 NR = 192 NR = 256

CSOR [43] 85.210% 97.312% 99.689%
CAOR [44] 85.543% 97.923% 99.685%

Proposed MOR 88.750% 98.050% 99.795%

(b)

SOR [39] 53.632% 75.869% 96.501%
AOR [40] 54.283% 75.998% 86.430%
SSOR [41] 86.601% 98.955% 99.944%
SAOR [42] 86.397% 98.954% 99.944%
CSOR [43] 90.299% 99.392% 99.973%
CAOR [44] 91.097% 99.478% 99.977%

Proposed MOR 98.600% 99.951% 99.997%

4.2. Computational Complexity Analysis

In this subsection, we evaluate the computational complexity of the proposed detection
method in terms of the number of complex multiplications and additions (CMAs) com-
pared with other mentioned detection methods in this article [39–44]. Table 10 shows the
algebraic expressions of the computational complexity of different iterative methods, where
i and NT represent the number of iterations and the number of user antennas, respectively.
Furthermore, iterative methods for inverse matrices require

(
2N2

T − NT
)

CMAs [64]. Rela-
tively, the iterative procedure of our proposed MOR method utilizes Equation (25), where
GMOR = MSORNSORMAORNAOR and dMOR = (MAOR + GAORMSOR)d require

(
6N2

T − 2NT
)

and 3N2
T CMAs, respectively. Because there are two stages within our proposed MOR

algorithm, with the first being the initial stage that involves spending
(
9N2

T − 2NT
)

CMAs
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for initialization calculation and the second being the collaboration stage to perform the
iterative work by Equation (25), requiring i

(
2N2

T
)

CMAs. Therefore, the total complexity of
our proposed method is

(
9N2

T − 2NT
)
+ i

(
2N2

T
)
. In addition, Table 11 shows the numerical

complexity of each detector when NT is 16 and the number of iterations is from 2 to 5.
Furthermore, to be more straightforward, the numerical complexity is presented using a
bar chart in Figure 17.

Here, considering both the BER performance and complexity factors under discussion,
we observe from Table 11 and Figure 8 that in the case of three iterations, although the
complexity of our proposed method was about 15.546% slightly higher than CAOR, we
found that MOR could significantly surpass CAOR in the OFDM and UFMC systems, not
to mention other detectors. On the other hand, it can be observed that when the iteration
number i was 3, the MOR complexity only required 3808 CMAs, which could outperform
the CAOR BER performance with an iteration number i of 5 (needing 4848 CMAs). When
further observing the impact of increasing the number of base station antennas NR on the
BER performance and complexity, it can be found from Figures 15 and 16 that as NR in-
creased, the number of iterations required by the iterative method gradually decreased, and
the proposed MOR algorithm especially only required three iterations and two iterations,
respectively. In light of the above discussion, we know that as the number of antennas NR
increased, it could arrive at convergence using a small amount of iterations, simultaneously
reducing the complexity. Therefore, overall, the computational complexity of MOR was
lower than that of other detectors, and it had good BER performance.

Table 10. Algebraic expressions of computational complexity for different detectors.

Iteration Methods Complex Multiplications and Additions (CMAs)

SOR [39]
1
2
(
5N2

T + NT
)
+ i

(
2N2

T + NT
)

AOR [40] 3N2
T + 3iN2

T
SSOR [41]

(
5N2

T + NT
)
+ 2i

(
2N2

T + NT
)

SAOR [42] 6N2
T + 6iN2

T

CSOR [43]
1
2
(
5N2

T + NT
)
+ i

(
2N2

T + 3NT
)

CAOR [44] 3N2
T + 3i

(
N2

T + NT
)

Proposed MOR
(
9N2

T − 2NT
)
+ i

(
2N2

T
)

Table 11. Numerical complexity comparison for different detectors with NT = 16.

Iteration CMAs CMAs CMAs CMAs

Methods i = 2 i = 3 i = 4 i = 5

SOR [39] 1704 2232 2760 3288
AOR [40] 2304 3072 3840 4608
SSOR [41] 3408 4464 5520 6576
SAOR [42] 4608 6144 7680 9216
CSOR [43] 2280 3096 3912 4728
CAOR [44] 2400 3216 4032 4848

Proposed MOR 3296 3808 4320 4832

85



Electronics 2024, 13, 187

Figure 17. Bar chart of computational complexity for different detectors with NT = 16.

5. Conclusions

This paper proposes a novel collaborative architecture receiver that mixes the relax-
ation characteristics of the SOR iteration algorithm and the acceleration ability of the AOR
iteration algorithm to improve the convergence rate and obtain significant BER performance
compared with the other iterative methods. Of course, combining the best convergence
merits and complementarity of AOR and SOR is crucial to achieving such excellent BER
performance. The numerical results verified that compared with the BER performance of
different detection methods under the same environment, it outperformed other detection
methods and was simultaneously close to the performance of the MMSE. For the com-
plexity issue, although the proposed method adds a little computational load compared
with CSOR and CAOR detectors under consistent iteration numbers, fortunately, due to
our proposed MOR detector only needing a small amount of iteration to convergence,
simultaneously, the BER performance approached the MMSE the most. In other words,
our proposed method can achieve outstanding BER performance and only needs moderate
complexity compared with other detectors that require more iterations. In addition, by
applying MOR to 4G and B5G environments through experiments, we can verify that it can
be ideally used and realize its merit.

Finally, the B5G system is an essential driver of advanced wireless sensor networks.
Applications, such as the AIoT face numerous computing and transmission challenges.
Therefore, it will be an inevitable trend to develop technologies that meet the requirements
of eMMB, URLLC, and mMTC. We propose that the MOR algorithm be applied to M-
MIMO systems, which possess lower complexity and BERs, contributing to the demand for
large-scale transmission, low latency, and high accuracy in this field. Simultaneously, it is
an algorithm worth looking forward to in further development.
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Abbreviations

The following abbreviations are used in this manuscript:

4G fourth-generation
5G fifth-generation
AOR accelerated over-relaxation
AWGN additive white Gaussian noise
B5G beyond fifth-generation
BER bit error rate
CAOR Chebyshev accelerated over-relaxation
CMAs complex multiplications and additions
CP cyclic prefix
CSI channel state information
CSOR Chebyshev successive over-relaxation
eMBB enhanced mobile broadband
FBMC filter bank multi-carrier
FFT fast Fourier transform
FIR finite impulse response
GS Gauss–Seidel
i.i.d. independent and identically distributed
ICI inter-carrier interference
IFFT inverse fast Fourier transform
IMT international mobile telecommunications

IoT Internet of Things
ISI inter-symbol interference
JA Jacobi
LS least squares
M-MIMO massive multiple-input multiple-output
MF matched filter
ML maximum likelihood
MMSE minimum mean square error
mMTC massive machine-type communications
MOR mixed over-relaxation
MUD multi-user detection
NS Neumann series
OFDM orthogonal frequency division multiplexing
OOBM out-of-band emission
QAM quadrature amplitude modulation
RF radio frequency
S/P serial to parallel
SAOR symmetric accelerated over-relaxation
SE spectral efficiency
SOR successive over-relaxation
SSOR symmetric successive over-relaxation
P/S parallel to serial
PSD power spectral density
UFMC universal filtered multi-carrier
URLLC ultra-reliable and low-latency communications
WSN wireless sensor network
ZF zero forcing
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Appendix A

In this subsection, we will deduce whether the MOR iteration equation converges and
its convergence conditions.

As in Equation (22), when the spectral radius of the iteration matrix ρ(G) is less than
one (i.e., the eigenvalue of the iteration matrix in the iteration equation is less than one),
the iteration equation can be proven to converge. On the other hand, the MOR iteration
matrix GMOR is as shown in Equation (20), and its expansion is

GMOR = (D− γL)−1[(1−ω)D + (ω− γ)L + ωU](D−ωL)−1[(1−ω)D + ωU]. (A1)

Assuming that λ is the eigenvalue of GMOR, according to the eigenvalue theorem [65],
we can obtain

GMORx = (D− γL)−1[(1−ω)D + (ω− γ)L + ωU](D−ωL)−1[(1−ω)D + ωU]x

= λx,
(A2)

where moving (D− γL)−1 and (D−ωL)−1 to the right of the equal side yields

[(1−ω)D + (ω− γ)L + ωU][(1−ω)D + ωU]x = (D− γL)(D−ωL)λx. (A3)

We can simplify Equation (A3) as follows:

(D−ωD + ωL− γL + ωU)(D−ωD + ωU)x =
(

D2 −ωDL− γDL + ωγL2
)

λx, (A4)

Then, we have[(
D2 −ωD2 + ωDU

)
+
(
−ωD2 + ω2D2 −ωU

)
+
(

ωLD−ω2LD + ω2LU
)

+(−γLD + ωγLD−ωγLU) +
(

ωUD−ω2UD + ω2U2
)]

x

=
(

D2 −ωDL− γLD−ωγL2
)

λx,

(A5)

and [
D2
(

1− 2ω + ω2 − λ
)
+ DU

(
ω−ω2

)
+ LD

(
ω−ω2 − γ + ωγ + γλ

)
+LU

(
ω2 −ωγ

)
+ UD

(
ω−ω2

)
+ ω2U2 + ωDLλ−ωγL2λ

]
x = 0.

(A6)

Now, we multiply Equation (A6) by xT such that

xT
[
D2
(

1− 2ω + ω2 − λ
)
+ DU

(
ω−ω2

)
+ LD

(
ω−ω2 − γ + ωγ + γλ

)
+LU

(
ω2 −ωγ

)
+ UD

(
ω−ω2

)
+ ω2U2 + ωDLλ−ωγL2λ

]
x = 0,

(A7)

and transpose Equation (A7):

x
[
D2
(

1− 2ω + ω2 − λ
)
+ DL

(
ω−ω2

)
+ UD

(
ω−ω2 − γ + ωγ + γλ

)
+UD

(
ω2 −ωγ

)
+ LD

(
ω−ω2

)
+ ω2L2 + ωDUλ−ωγU2λ

]
xT = 0.

(A8)
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Then, we add Equation (A7) to Equation (A8) to obtain Equation (A9) as follows:

xT
[
2D2

(
1− 2ω + ω2 − λ

)
+ D(L + U)

(
ω−ω2

)
+ (UL + LU)

(
ω2 −ωγ

)
+(U + L)D

(
ω−ω2 − γ + ωγ + γλ

)
+ (L + U)D

(
ω−ω2

)
+ ω2

(
L2 + U2

)
+ωD(U + L)λ−ωγ

(
U2 + L2

)
λ
]
x = 0.

(A9)

We can simplify Equation (A9) to be

xT
[
2D2

(
1− 2ω + ω2 − λ

)
+ D(L + U)

(
3ω− 3ω2 − γ + ωγ + ωλ + γλ

)
+
(

U2 + L2
)(

ω2 −ωγλ
)
+ (UL + LU)

(
ω2 −ωγ

)]
x = 0,

(A10)

because W = D + L + U after transposition becomes W−D = L + U. We substitute this
equation into Equation (A10):

xT
[
2D2

(
1− 2ω + ω2 − λ

)
+ D(W−D)

(
3ω− 3ω2 − γ + ωγ + ωλ + γλ

)
+
(

U2 + L2
)(

ω2 −ωγλ
)
+ (UL + LU)

(
ω2 −ωγ

)]
x = 0,

(A11)

and simplify Equation (A11) to

xT
[
D2
(

2− 7ω + 5ω2 + γ−ωγ−ωλ− γλ− 2λ
)
+
(

U2 + L2
)(

ω2 −ωγλ
)

+DW
(

3ω− 3ω2 − γ + ωγ + ωλ + γλ
)
+ (UL + LU)

(
ω2 −ωγ

)]
x = 0,

(A12)

Since D and W are symmetric positive definite matrices, both xTD2x and xTDWx are
more than zero [66], and the following equalities can be written:(

2− 7ω + 5ω2 + γ−ωγ−ωλ− γλ− 2λ
)
> 0,

λ <
2− 7ω + 5ω2 + γ−ωγ

ω + γ + 2
,

(A13)

(
3ω− 3ω2 − γ + ωγ + ωλ + γλ

)
> 0,

λ <
3ω− 3ω2 − γ + ωγ

−ω− γ
,

(A14)

Herein, we assume that 0 < ω < 2 and substitute these values into Equations (A13)
and (A14).

For Equation (A13), if ω = 0, then we can obtain

λ <
2 + γ

γ + 2
= 1, (A15)

and when ω = 2, we can obtain

λ <
8− γ

4 + γ
. (A16)

We hope that λ < 1 meets the convergence conditions. Therefore, we have

8− γ

4 + γ
= 1, (A17)

and
γ = 2. (A18)
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From Equations (A15) and (A18), we can infer that Equation (A13) will converge when
0 < ω < 2 and 0 < γ < 2.

Similarly, in Equation (A14), when ω = 0, we can obtain

λ <
−γ

−γ
= 1, (A19)

and when ω = 2, we can obtain

λ <
−6 + γ

−2− γ
. (A20)

We hope that λ < 1 meets the convergence conditions. Therefore, we have

−6 + γ

−2− γ
= 1, (A21)

and
γ = 2. (A22)

From Equations (A19) and (A22), we can demonstrate that Equation (A14) will con-
verge when 0 < ω < 2 and 0 < γ < 2.

In summary, we deduce that when 0 < ω < 2 and 0 < γ < 2, it can be proven that the
MOR iterative equation converges when ω and γ are not necessarily equal.
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Abstract: With the rapid development of the Internet of Things (IoT), improving the lifetime of nodes
and networks has become increasingly important. Most existing medium access control protocols are
based on scheduling the standby and active periods of nodes and do not consider the alarm state.
This paper proposes a Q-learning and efficient low-quantity charge (QL-ELQC) method for the smoke
alarm unit of a power system to reduce the average current and to improve the lifetime of the wireless
sensor network (WSN) nodes. Quantity charge models were set up, and the QL-ELQC method is
based on the duty cycle of the standby and active times for the nodes and considers the relationship
between the sensor data condition and the RF module that can be activated and deactivated only
at a certain time. The QL-ELQC method effectively overcomes the continuous state–action space
limitation of Q-learning using the state classification method. The simulation results reveal that the
proposed scheme significantly improves the latency and energy efficiency compared with the existing
QL-Load scheme. Moreover, the experimental results are consistent with the theoretical results. The
proposed QL-ELQC approach can be applied in various scenarios where batteries cannot be replaced
or recharged under harsh environmental conditions.

Keywords: wireless sensor networks; node lifetime; charge consumption; Q-learning

1. Introduction

Internet of Things (IoT) technology enables machines, such as home appliances, medi-
cal equipment, and industrial instruments, to interact with users and other machines via
the Internet [1]. Wireless sensor networks (WSNs) are a broad category of IoT applications.
WSNs can send and receive data via the Internet using a sink node [2,3]. The successful
operation of a power system requires the support of communication networks with massive
node access and latency-critical two-way reliable transmission [4]. However, power man-
agement in WSNs poses a significant challenge when the WSN must operate continuously
for sustained periods without a consistent power source. In such contexts, the nodes have
specific limitations regarding their memory, processing capacity, radio communication
range, and energy supply [5]. One type of node uses batteries that cannot be replaced or
recharged under harsh environmental conditions [6].

Although many complex communication protocols and routing algorithms have been
proposed for WSNs, disadvantages, such as power dissipation, network complexity, and
high costs, must be overcome for hardware and software implementation [7]. For long-term
operation, the power-constrained condition is strict and limited, and a back-end circuit
system is required to obtain the sensor information and to transmit the acquired data [8].
As the network scales up and the number of nodes increases, certain fundamental problems,
such as energy-efficient data transmission, scalability, data gathering, and aggregation,
become concerns [9]. Thus, an effective low-power circuit system is indispensable to
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ensure the long-term operation of WSNs [10–12]. To improve the WSN’s lifetime, the
high-coverage communication of targets must be ensured before performing a sensor-node
duty cycle [13,14]. The Cooperative Medium Access Control (C-MAC) [15] method for
improving the duty cycle-based MAC with idle listening has been proposed. However, an
additional channel is required to synchronize the nodes which consume additional energy.

Recently, reinforcement learning (RL) has been widely employed to address resource
management problems in next-generation wireless networks [16]. The Q-learning tech-
nique is an RL approach in which the algorithm continuously learns by interacting with
the environment, gathering information to take certain actions and to improve a specific
policy [17]. It is based on iterative offline operations that predict the next optimal step based
on obtained experience. Hence, the lifetimes of nodes and WSNs have been extended using
Q-learning [18,19], and low power consumption has been achieved via energy manage-
ment [20,21]. A novel Q-learning-based data-aggregation-aware energy-efficient routing
algorithm was proposed in [22]. A runtime-decentralized self-optimization framework
based on deep RL for configuring the parameters of a multi-hop network was presented
in [23]. This maximizes the performance by determining the optimal result from the en-
vironment [24,25]. However, in using a Q-learning algorithm that has too many actions
or states to control throughout the duty cycle of a WSN, both the storage requirement
and dimensions of the problem become intractable for the end node [26]. Furthermore, a
systematic literature review revealed that energy consumption is the most fundamental
problem in WSNs [27]. However, this has not been sufficiently considered by scholars
and practitioners [28]. Therefore, a low-power-consumption method must be designed to
improve the long-term operation of nodes in WSNs by considering various performance
metrics with relatively few states and actions.

This study proposed a Q-learning, efficient low-quantity charge (QL-ELQC) method
with a small number of states and actions to extend the lifetime of a photoelectric smoke
end node (PSEN) in the WSN of a power system. Mathematical models were established to
describe the relationships between the main parameters and the principal charge consump-
tion. The outcome of the mathematical analysis formed the basis for the measures taken
to optimize the PSEN system and to improve its lifetime. Furthermore, Q-learning-based
ELQC was applied to self-adjust the standby time of the modules to optimize the duty
cycle of the sensor and RF module’s standby time to reduce the average current of the
node system. The proposed method effectively overcomes the limitations of Q-learning by
solving the problem of a continuous state–action space using the state classification method
based on the relationship between the sensor data and the threshold. A lifetime testing
system for a wireless photoelectric smoke sensor end node is introduced.

The remainder of this paper is organized as follows. In Section 2, we describe the
proposed system architecture. In Section 3, we propose an ELQC model. Section 4 presents
the proposed QL-ELQC method. The testing of the modules is provided in Section 5, and
the experiment on the node system is discussed in Section 6. Finally, the conclusions are
presented in Section 7.

2. Architecture

2.1. WSN PSEN-SM System Architecture

As depicted in Figure 1, the WSN smoke and smart meter system has three hierarchy
levels and relationships. The first level comprises the PSENs and SMNs, which monitor
the smoke, humidity, ambient temperature, and electricity consumption and send the
related compressed data to the sink nodes. The PSENs and SMNs receive commands or
acknowledgments from the sink nodes. The second level represents the sink nodes (always
in an active state), which receive the PSEN and SMN data and send acknowledgments
or commands back to them via the radio frequency (RF) module. The sink nodes receive
layer commands from the PC via the Internet and simultaneously send related data to the
PC via the Internet and alarm signals to the mobile device of an operator. The third level
comprises a PC with Internet access and a data server, which receives data from the sink
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nodes and sends commands back via the Internet. The following section introduces how
the PSEN is used. The SMN method is not involved here.

Figure 1. Proposed WSN architecture.

A time-sharing communication protocol is used between the PSENs and the sink
node. Each node and module applies a duty-cycling method to reduce charge consump-
tion. Moreover, the sink node of the WSN has high performance, which can reduce the
communication time with the PSEN. When all PSENs have a long lifetime, the total lifetime
of the WSN can be extended.

2.2. PSEN System Architecture

The PSEN system architecture is illustrated in Figure 2. The system comprises a
microcontroller (MCU), an RF module, a power module, and a sensor module. To reduce
the charge consumption, each module has a quantity charge model associated with the
dominant charge consumer. A component can be regarded as a functional block, and the
operational state of various modules is dynamically adapted to the required performance
level, which can minimize the power wasted by idle or underutilized components [29].
The PSEN integrates temperature and humidity sensors to detect environmental changes
rapidly. For the smoke sensor, we used an ultralow-power photoelectric amplifier with a
low supply voltage.

Figure 2. PSEN system architecture.

The PSEN is set to a low power state after the interrupt is initialized and opened.
When there is an interrupt signal, the MCU wakes up to execute the interrupt events. Since
a node battery’s charge is limited, we define three states for the PSEN, namely, the ordinary,
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warning, and alarm states. The proposed node system can optimize the hardware and
software systems, simplify the protocol, and compress signal data.

3. Proposed ELQC Model

Each node in a WSN consists of multiple modules, which can be abstracted as a series,
such as 1, 2, . . ., m, and each module has multiple states, which can also be seen as a
sequence 1, 2, . . ., n. We can encode them as m × n matrices, as expressed in Equation (1).
Hence, we can determine the charge consumption of each module in each state.

Qtotal =

⎡⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 . . . Q1j . . . Q1n
Q21 Q22 . . . Q2j . . . Q2n
· · · · · ·

Qi1 Qi2 . . . Qij . . . Qin
· · · · · ·

Qm1 Qm2 . . . Qmj . . . Qmn

⎤⎥⎥⎥⎥⎥⎥⎦. (1)

The charge consumption Qij of the i-th module in the j-th state is the time integral of the
current, and its average current Iij at quantum time Tij can be represented by the following:

Qij =
∫

iijdt = IijTij, i = 1, 2 . . . m; j = 1, 2 . . . n (2)

The node total charge consumption is the time integral of the current (total sum
method), which is the sum of the time integrals of the current for each component at
different states and can be represented as follows:

Qtotal = ∑m
i=1 ∑n

j=1 Qij = ∑m
i=1 ∑n

j=1

∫
iijdt = ∑m

i=1 ∑n
j=1 IijTij, i = 1, 2 . . . m, j = 1, 2 . . . n (3)

The average current Itotal−aver. and time Ttotal matrices for the nodes in various states
are represented by the following:

Itotal−aver. =

⎡⎢⎢⎢⎢⎢⎢⎣

I11 I12 . . . I1j . . . I1n
I21 I22 . . . I2j . . . I2n
· · · · · ·

Ii1 Ii2 . . . Iij . . . Iin
· · · · · ·

Im1 Im2 . . . Imj . . . Imn

⎤⎥⎥⎥⎥⎥⎥⎦, Ttotal =

⎡⎢⎢⎢⎢⎢⎢⎣

T11 T12 . . . T1j . . . T1n
T21 T22 . . . T2j . . . T2n
· · · · · ·

Ti1 Ti2 . . . Tij . . . Tin
· · · · · ·

Tm1 Tm2 . . . Tmj . . . Tmn

⎤⎥⎥⎥⎥⎥⎥⎦. (4)

The total charge consumption of the node is the sum of the consumption of each
module, and QMi =

[
Qi1Qi2 . . . Qij . . . Qin

]
denotes the charge consumption of the i-th

module including n states. These are abbreviated as follows:

Qtotal = ∑m
i=1 QMi, i = 1, 2 . . . m (5)

First, we study the calculations of the i-th module. The charge consumption QMi is
the sum of the i-th module in the different n states, which is the sum of the corresponding
item scores of the two matrices in the i-th row in Equation (4), represented as follows:

QMi = ∑n
j=1 Qij = ∑n

j=1

∫
iijdt = ∑n

j=1 IijTij, i = 1, 2 . . . m, j = 1, 2 . . . n (6)

During the period of the i-th module in all states, the average current and period
IMi and TMi for the i-th module of the node is given by the following:

IMi =
QMi
TMi

=
∑n

j=1 IijTij

∑n
j=1 Tij

,TMi = ∑n
j=1 Tij, j = 1, 2 . . . m, j = 1, 2 . . . n, (7)
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Similar to real-world node implementations, we divided the states of the i-th module
into working, idle listening, and standby states. (Iwi, Twi), (Isti, Tsti), and (Ili, Tli) are
the currents and times corresponding to the working, standby, and idle listening states,
respectively. In general, Ili > Isti. In the sleep state, the current is almost zero and consumes
almost no charge; therefore, it is ignored. These can then be represented as follows:

IMi =
IwiTwi + Isti Tsti + IliTli

Twi + Tsti + Tli
= Iwi − (Iwi − Ili)Rli − (Iwi − Isti)Rsti, i = 1, 2 . . . m,

Rsti = Tsti/TMi, Rli = Tli/TMi = 1− (Tsti + Twi)/TMi, TMi = Twi + Tsti + Tli, i = 1, 2 . . . m,
(8)

where Rsti and Rli denote the standby and idle listening time duty cycle of the i-th module.
If Twi and Iwi are fixed, Rsti (1 ≥ Rsti ≥ 0) and Rli (1 ≥ Rli ≥ 0) increase as the standby

time Tsti and idle listening Tli increase. When the other parameters remain unchanged
and the standby time is known, then the idle listening duration can be obtained, and vice
versa. When Rsti and Rsli increase, the average current and the charge consumption of the
i-th module decrease. The average current and period of the module are represented by
the following:

IM =

⎡⎢⎢⎢⎢⎢⎢⎣

IM1
IM2
· · ·
IMi
· · ·
IMm

⎤⎥⎥⎥⎥⎥⎥⎦, TM =

⎡⎢⎢⎢⎢⎢⎢⎣

TM1
TM2
· · ·
TMi
· · ·

TMm

⎤⎥⎥⎥⎥⎥⎥⎦. (9)

The node’s total average current can be obtained as follows:

Inode−aver = ∑m
i=1 IMi, i = 1, 2 . . . m. (10)

The total node charge consumption during the battery’s lifetime is equal to the avail-
able battery charge. The quantity of charge Qbattery, availability rate η of the battery, and
self-discharge rate Rself-dischage can be obtained from the datasheets of the battery. We can
then obtain the battery life Tbatt.li f e of the WSN node as follows:

Inode−aver.Tbatt.li f e = Qbatteryη
(

1− Rsel f−discharge

)Tbatt.li f e
. (11)

For η of 0.72 and Rself-discharge of 3%, the lifetime graph from 0 to 20 years and charge
consumption from 950 to 2800 mAh are illustrated in Figure 3. It can be seen that as the
current I decreases, the lifetime t of the node increases, as the yellow color in the figure
deepens. As the battery capacity Q increases, the allowable current for node with the same
lifespan increases, and the light yellow parts in the figure become more numerous.

Figure 3. Current of the PSEN for battery charge and lifetime.
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4. Proposed QL-ELQC Method

To minimize the average current and to extend the node’s life, the designed com-
munication distance is greater than the actual distance, so all nodes can communicate
directly with the sink nodes. If other parameters are not changed, when implementing
multi-hops between adjacent nodes to the sink node, one data transmission exchanges
twice the receiving and transmitting data with the upper and next nodes, but when the
node communicates directly with the sink node, it need only exchange once, which can
eliminate the charge consumption according to the ELQC model (8).

In special circumstances, some nodes require multi-hops to communicate with the
sink node. Since a routing table is used for data transfer, Q-table is used for the next idle
listening duration and standby time of a node in WSN. Therefore, this can minimize the
time for changing the radio state to RX. The QL-ELQC scheduling method adaptively
adjusts the idle listening duration and standby times of the nodes according to the alarm
level, which reduces the delay and energy consumption required for data transmission.
Here, the QL-ELQC will mainly focus on standby time.

4.1. Proposed QL-ELQC Block Diagram

QL is based on iterative offline operations that predict the next optimal step based
on obtained experience. To alert the node in time and to extend its lifetime, we used a
QL-ELQC method for duty cycle optimization to determine its operating and propagation
strategy in a dynamic environment.

For the proposed QL-ELQC method, the atmospheric sensor data are defined as
“state”, while the standby time in the entire period is regarded as an “action”. The level of
alarm and the reduction in the average current are the “reward”. In this paper, each node is
regarded as an agent that interacts with the environment, calculates the reward, updates
the Q-value, self-learns, and selects the optimal state and action, as depicted in Figure 4.
Then, the optimal transition between states can send alarm data in time and reduce the
quantity of charge consumed to extend the lifetime of the node.

Figure 4. Proposed QL-ELQC block diagram.

Because the state of the environment is significantly large, the state space is also large.
Concurrently, the different duty cycles of standby time in the entire period are considered
environmental actions. This renders the typical implementation of QL infeasible. To
address this problem, the state classification method adopted in this paper aims to limit
the acceptable computational overhead and to reduce the energy and time consumption
caused by excessive computational complexity. One of its distinctive features compared
with other MAC protocols is that the standby time is modified based on the relationship
between the atmospheric sensor data and the threshold. The data compression method can
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be used when the data are in the same state. Simultaneously, carrier detections exist for
“listening before transmitting” protocols and transmissions are repeated if the data are not
received. This ensures fast point-to-point communication during alarm states.

4.2. Proposed QL-ELQC Model
4.2.1. QL-ELQC of Standby Time Optimization

Owing to the complexity of atmospheric data in WSNs, the duty cycle must be dy-
namically altered based on the variable sensor data. The node determines the transmission
frequency based on state vector S = (s1, s2,. . ., sN) and sends the results to the RF mod-
ule. In this paper, a model with three states and one optimal action was created using a
self-learning process and interaction with the atmosphere to satisfy the rapid alarm and
early warning requirements of the system. This overcomes the problem caused by major
atmospheric conditions and action spaces. Based on the relationship between the monitored
data values V and thresholds Vth, which are set in many experiments, the environmental
states are divided into three categories, alarm, warning, and normal states, which can be
expressed as follows:

S =

⎧⎨⎩
s1, V ≥ Vth, continuous 3 times, in alarm state
s2, V ≥ Vth, 1− 2 times, in warning state
s3, V ≤ Vth, in normal state

. (12)

If the measurement data are larger than the threshold by one time, the node enters
the warning state and the sensors immediately increase the monitoring frequency to
continuously determine whether it has exceeded the threshold to lessen the error alarm.
Subsequently, if one of the data points is still larger than the related threshold, the node
system is in an alarm state. The node system then sends the data continuously until the
alarm state is cleared, and the sink node system (always active) sends the alarm data to the
user PC and the mobile phone of the worker on duty. It continuously reduces the latency
through Q-learning training in the alarm state. If the measured data do not exceed the
threshold, the node system is in the normal state and the data are processed using the
QL-ELQC method to optimize the duty cycle of the node.

In general, the data monitored by sensors do not change significantly in a short
period or fluctuate within an allowed range within a certain period. As opposed to
continuous monitoring, this can considerably reduce charge consumption. Meanwhile,
data aggregation substantially reduces energy consumption compared with transmitting
all raw data to the sink node and can reduce traffic and improve the sensing quality for this
type of smoke alarm system. The sensors and RF module duty cycles were then optimized
using the QL-ELQC method to reduce the charge consumption, considering parameters
such as communication distance, operating frequency band, voltage, and current. Therefore,
the PSEN with the QL-ELQC quantity charge function to predict the next duration can
trigger the alarm in time and can minimize charge consumption.

This policy is crucial for handling the priority relationship between alarms in time and
reducing charge consumption. The shorter the standby time, the faster the node system
reacts to an alarm state. However, the greater the standby time, the smaller the charge con-
sumption for the node system. The maximum standby time does not exceed the sensitivity
requirements of the system. Concurrently, the standby times of the sensor and RF module
are not necessarily zero because each module has a minimum time interval. Moreover, in
the alarm state, real-time monitoring and communication are superior to the quantity of
charge consumed by the smoke alarm system. In an ordinary state, data compression and
the duty-cycling algorithm should be prioritized to reduce charge consumption. Based on
the sensor data state and policy, QL-ELQC selects an optimal action from the action set
A = [Tst1, Tst2, Tst3, Tst4]. The duty cycle of standby time Rst can then be calculated using
Rsti = Tsti/TMi, i = 1, 2,. . .m:

Rst = [Rst.al., Rst.war.1, Rst.war.2, Rst.nor.], (13)
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where Rst.al., Rst.war.1, Rst.war.2, and Rst.nor. are the duty cycles for the standby time of the
RF module and sensor module during the alarm, warning 1–2 times, and normal action
states, respectively.

In this model, reductions in the node’s average current and the times that the sensor
data continuously exceed the threshold are used as reward values to guide the next steps.
The more the average current is reduced, the greater the reward in the normal state. The
greater the number of times that the data exceed the threshold, the greater the reward value
for the alarm level and the smaller the standby time. Using linear regression and function
approximation [26], the reward at time t, Rt, can be determined as follows:

Rt = δIt + (1− δ)lt +∅, (14)

where It denotes the average current and lt indicates the level of alarm of the node at time
t and the initialization of t = 0. Furthermore, δ symbolizes the weight of It. The reward
computed by both the average current and alarm levels ensures an alarm in time and
prolongs the lifetime of the node.

The Q function for a node with standby time Tst is represented as Qt(st, Rst), which
represents the real value at time t. It is updated based on a dynamic programming concept.
If the objective value function Qtarget at time t is Qtarget = Rt + βmaxa∈AQt(st+1, Rst+1 ),
then β indicates the discount factor of the node. If A represents a set of actions,
Maxa∈AQt(st+1, Rst+1 ) indicates the largest Q function in the corresponding state st+1 at
standby time Tst+1. The learning rate α is set as the step size for each update to reduce the
difference between the two values; the specific update formula is as follows:

Qt+1(st, Tst) = Qt(st, Tst) + α[Rt + βmaxa∈AQt(st+1, Tst+1 )−Qt(st, Tst)]. (15)

The node adopts the ε—greedy strategy to optimize its standby time, rather than
directly selecting the maximum Q value as the setting. When Q-table converges, select-
ing action a in any state s to maximize Q(s, a) can yield the optimal control strategy
a∗ = argmaxa∈AQ(s, a). An optimization control scheme based on Q-learning is presented
in the algorithm.

The values of parameters α, β, and ε are crucial for the algorithm to work properly.
If α is too small, the convergence speed of the algorithm will slow down; if α is too high,
it may prevent the algorithm from converging or it may experience oscillations. These
parameter values were selected by initialization, dynamic adjustment, and experimental
verification, based on the Algorithm 1’s performance and convergence.

Algorithm 1: Standby time optimization control scheme based on QL-ELQC

1: Initialization ε = 0.1, α = 0.1, β = 0.9, t = 0, Q(s, Rst) = 0;
2: Observation sensor data and status st Equation (12);
3: Select standby time optimization action value control scheme based on the ε—greedy
strategy Tst;
4: Set the standby time according to policy and calculate Rst Equation (13);
5: Obtain the instant reward value Equation (14);
6: Update Qt(st, Tst), Qt(st+1, Tst+1) . according to Equation (15);
7: Determine whether the learning process has ended. If not, set t = t + 1 and return to step 2, else
end the learning procedure.

4.2.2. Simulation Results

To verify the algorithm, ten nodes were deployed at distances of 30 m using a tree
topology. The transmission distance for each node was set to 55 m. One node is a sink
node (always active). The other node sensor modules detect the environment and generate
data at intervals of 10 s in the normal state and 1 s in the alarm state. As analyzed above,
the three different atmospheric states were classified based on the relationship between
the data, threshold, and state set S = [s1, s2, s3]. The different standby time choices of
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the RF module and sensor module were considered environmental actions. Action set
A = [a1, a2, a3, a4], initialization at t = 0, the node learning rate α = 0.1, discount factor
β = 0.9, ∅ = 4, δ = 2, and ε = 0.1 were set. The transmitting, receiving, and standby
currents of the RF module were Iw.tr = 16 mA, Iw.rx = 12.5 mA, and Ist = 0.68 μA. Carrier
detection exists for “listen before transmit” protocols, and each node sends data based on
the allocated time slot to reduce collisions.

As shown in Figure 5, using the two methods, the PSEN’s lifetime was compared
in the alarm and normal states. In the alarm state, the PSEN’s lifetime using the two
methods is identical. In the normal state, the PSEN’s lifetime under QL-ELQC is longer
than that for the QL-Load [26]. This indicates that the QL-ELQC scheme is suitable for
the duty cycle of alarm nodes in response to dynamic environmental changes in the WSN.
QL-ELQC makes self-adaptive decisions based on the classification of states, actions, and
function approximations in a dynamic environment and prolongs the lifetime of the node
and the WSN.

Figure 5. The lifetimes of PSENs.

This study used the data compression method for the case when the sensor data were
in the same state. End-to-end latency in packet transmission is occasionally caused by
re-transmissions. Due to the carrier detection measures for “listening before transmitting”
protocols and the alarm channel, the delay is generally less than 1 s, which is much smaller
than that of other QL schemes.

5. Experimentation

According to the ELQC model, when the PSEN is in a different state, the charge
consumption is different. For experimental convenience and to verify that the QL-ELQC
prolongs the lifetimes of PSENs, we divided the mode of the i-th module into two categories,
namely, working mode Iwi, Twi and standby mode Isti, Tsti. Since the current in the sleep
state is almost zero, it was ignored. The operating voltage (VCC) was fixed, and the power
consumption was calculated from the current in the module connection path. Thus, the low
dropout regulator (LDO) fixed the VCC to measure the current of each module circuit using
an oscilloscope (RIGOL DS1074). In the figures, the relation between the Iw values in the
tables and the voltage values registered by the oscilloscope is 10 mV/mA and 1 mV/μA.

5.1. RF Module

The RF module is integrated via an nRF905 Nordic chip, as depicted in Figure 6; the
specifications and measured currents of the RF module are listed in Table 1. TNor.lt. indicates
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the maximum time of the RF module in standby mode under normal environmental
conditions, and Tal.lt indicates the minimum value of the RF module in the alarm state. This
means that the range of standby time TRF.st for the RF module is 0.22 ≤ TRF.st ≤ 86, 400 s.
In this experiment, the TX current was 16 mA, and the transmission time was Ttx = 7 ms,
while the RX current was 12.5 mA, and the receiving time was Trx = 10 ms. Thus, the
working time and average current of the RF module were approximately Ttx-rx = 17 ms and
Itx-rx = 13,941 μA, respectively.

Figure 6. RF module current of the PSEN at TX+6 dBm (5 mA/div).

Table 1. RF module parameters of the PSEN in different states.

State Iw

Time
Dist.(m)

TW (ms) TNor-st. (s) Tal.st (ms)

RX 12.5 mA 10 86,400 220
TX +6 dBm 16.0 mA 7 86,400 220 40–55

Standby 0.68 μA All time 0 0

5.2. Sensor Module

Here, we only list the experimental results for the smoke sensors. The varying current
and operating times of the A5303 smoke sensor at different stages were measured in several
experiments, as shown in Figure 7. Table 2 lists the varying currents to the smoke sensors.
With a large value at the starting point, the signals promptly increased to the maximum
value and then gradually slowed down. The average current was 33 μA, which can be
calculated using Equation (7), and the operating time was approximately 410 ms when
it detected the environment once. With values lower than the threshold, the operational
interval is 10 s, and the sensor is in standby mode. When the value exceeds the threshold,
the sensor measures the environment three times repeatedly at 1 s intervals. This means
that the standby time Tsen.st range for the sensor is 1 ≤ Tsen.st ≤ 10 s.

Figure 7. Smoke sensor experimental results (100 μA/div).
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Table 2. Smoke sensor experimental data for different states (power: 3.3 V).

State Iw (μA)
Time

Iw.aver. (μA)
TW (ms)

Smoke sensor
during

one period

Start 300 10

33

signal MAX. 500 0.2

Attenua.
meas.

50 100
25 100
20 100
10 100

Standby 2.6 All time 2.6

5.3. MCU

Microcontrollers are widely used in terminal devices. Therefore, they are listed
separately and discussed herein. The PSEN system used a low-power-consumption
MCUMSP430 from Texas Instruments. The software uses the interrupts of the MCU to
awaken the standby state to execute the QL-ELQC period monitoring, to compress data, to
set the alarm, to transmit data, and to receive commands or acknowledgments from the sink
node. The clock system is specifically designed for battery-powered applications. Table 3
presents the experimental results for the MSP430 when the PSEN was in different states.
Environmental monitoring included monitoring the temperature, humidity, and smoke.

Table 3. MCU experimental data of the PSEN in different states (power: 3.3 V).

State Iw.aver Tw

Low battery detect 420 μA 120 ms
Environment detect 420 μA 120 ms

Environ. detect & RF 500 μA 250 ms
Standby 1.96 μA 10 s

5.4. Power Management

In this study, we used the analog-to-digital converter (ADC) feature of an MCU
MSP430F149 to detect the battery voltage periodically (10 s in the normal state and 1 s in
the alarm state). The reference voltage of the ADC was 2.5 V, and resistors R1 and R2 were
used to distribute the battery voltage. The circuit of the low-battery detector is shown on
the left-hand side of Figure 8.

Figure 8. Low-battery circuit and AD VBAT input buffer.

The new battery’s voltage is slightly higher than the nominal voltage, and the AD
VBAT voltage is greater than the break-over voltage for the clamp diode of the AD VBAT
input buffer, which is the circuit in the MCU. In the experiment, when the AD STROBE was
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set with a high resistance input, the current in decades of μA could be detected through R1.
To solve this problem, a new low-battery circuit was designed, as shown in Figure 9.

Figure 9. Newly designed low-battery circuit.

When the MCU does not detect the battery voltage, AD_STROBE is low and Q3 is off.
Simultaneously, the grid voltage of Q4 becomes high and Q4 is off. When Q3 and Q4 are
in the off state, AD_VBAT is reduced by R2. Thus, the detection circuit does not consume
charge. When the MCU detects the battery voltage, AD_STROBE is high. In this case, Q3 is
turned on, which pulls down the grid voltage of Q4, turning Q4 on. In this instance, R1
and R2 distribute the battery voltage, and the MCU detects the voltage of AD_VBAT to
obtain the battery voltage. Table 4 lists the low-voltage detector experimental current and
operating time of the PSEN. The average current is 0.0083 μA, which can be calculated
using Equation (7).

Table 4. Low-voltage detector experimental data of the PSEN (power: 3.3 V).

Compo. Stage Iw (μA) TW (ms) Iw.aver. (μA)

Low voltage
IR 1980 12

0.0083AD 900 2
MCU 420 10

6. PSEN System Measurements and Discussion

Table 5 lists the experimental average current for each module and the total average
current of the PSEN system. The actual communication time Ttx-rx of the RF module in
Table 1 was 17 ms, and the average current of Itx-rx is 13,941 μA. Note that the redundant
RF module’s operational time (200 ms) and the current (16,000 μA) were calculated for the
average current Itotal-ave. and Ial.ave., considering the collision and retransmitting. The LDO
current has three components, among which 1.54 μA was the standby current, 2.5 μA was
the PSEN’s current for monitoring the environment, and 11 μA was the PSEN’s current
for communicating with the sink node. Based on these currents, as well as Tw and Tst,
the average LDO current under normal and alarm states was determined as 3.14 μA and
5.06 μA using Equation (7), respectively.

From the module measurements, we obtained the average current for different compo-
nents using Equation (7), and then, the total average standby current of all components was
calculated to be 6.92 μA, which is close to the PSEN’s total system standby current of 6.8 μA
obtained from the experiment. As shown in Table 6, the error between the measurements
and calculation with ELQC was 1.73%, which verifies the accuracy of the ELQC model.
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Table 5. Experimental data for each module in the normal or alarm state (VCC = 3.3 V).

Module
Iw

(μA)
Ist

(μA)
Tw

(s)
Tnorm-st/lt

(s)
Tal.-st

(s)
Itotal-ave.

(μA)
Ial.ave.

(μA)

LDO
11

1.54
0.200 86,400 1

3.14 5.062.5 0.721 10 1
Low-vol. 2488 0 0.012 3600 1 0.0083 29.50

MCU 420 2 0.120 10 1 6.47 46.79
Smoke 33 2.6 0.410 10 1 3.79 11.44
SHT10 386 0.1 0.103 10 1 4.08 36.14

RF-module 16,000 0.68 0.200 86,400 1 0.717 2667.23
Total 6.8 18.65 2796.16

Table 6. Theoretical and experimental data of the PSEN standby current.

Standby Parameters of the Node System I (μA)

Experimental 6.8
Theoretical calculation 6.92

Error (%) 1.73

Meanwhile, the PSEN’s total normal average current was 18.65 μA, and the total
average current was 2.79 mA in the alarm state. As shown in Figure 10, the standby
time (86,400 s) set by the QL-ELQC in the normal state was much longer than that (1 s)
in the alarm state, and the current in the normal state was approximately 1/150 times
lower than that in the alarm state. The advantage is not reflected enough within 10 s, and
the longer the standby time, the more obvious the advantage. When power equipment
operates normally, the probability of smoke occurrence remains extremely low; therefore,
the QL-ELQC method used in the normal state significantly extends the total lifespan of
the PSEN.

Figure 10. Experimental current of the RF module under different states (each experiment was
repeated three times).

The simulation lifetime of the PSEN is 9.2 years for E91 in Figure 5, which is similar
to a theoretical lifetime of 9.29 years but so long that we cannot test it for approximately
10 years, based on a practical system current of 18.65 μA. Using Equation (7), we can vary
the current and change the lifetime of the PSEN to test the low-quantity charge design
method; namely, we can select a small Qbattery and shorten the lifetime for the test. Here, we
used three E92 (not ordinary E91) small batteries, which have an approximately 950-mAh
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charge ranging from 1.6 to 1.2 V. The relevant data for the tested system are presented in
Table 7. By increasing the communication times of the PSEN to every half second with
sensors continuously monitoring the environment, the current of the PSEN can be increased.
Thus, the current of the tested system is 5.48 mA (not 18.65 μA) to shorten the lifetime
of the test, and the calculation lifetime is 173.35 h. When the voltage decreased to 1.2 V,
the practical lifetime of our tested system was 181 h, and the error was 7.64 h, which is
approximately 4%. As our proposed method considers redundancy, the tested system ran
slightly longer than the calculated lifetime. Through practical experiments and algorithms,
we tested the lifetime of a photoelectric smoke node and verified that our method, which is
based on the charge quantity, is reasonable. Our proposed approach is general and can be
applied to alarm scenarios where the node requires long-term operation.

Table 7. Measurement and theoretical lifetime of the PSEN with increasing transmission times.

Battery Type E92

Quantity charge from 1.6 to 1.2 V 950 mAh
Tested practical lifetime (h) 181
Calculation lifetime (h) 173.35
Error (%) 4

7. Conclusions

In this paper, a Q-learning and efficient low-quantity charge (QL-ELQC) method
is presented for the smoke alarm unit of a power system to reduce the average current
and to improve the lifetime of the nodes of wireless sensor networks (WSNs). Analytical
functions were derived to describe the behavior of the parameters versus those with which
they were compared. The Q-learning-based ELQC method was applied to self-adjust the
standby time of the modules to optimize the duty cycle of the sensor and RF modules to
prolong the lifetime of the node system. This could effectively overcome the continuous
state–action space limitations of Q-learning using the state classification method. Methods
were used to extend the lifetime of PSENs in WSNs by reducing the average current in
each module and every state, respectively. The simulation results reveal that the proposed
scheme significantly improves the lifetime compared with the existing QL-Load scheme.
Furthermore, the experimental results are consistent with the theoretical results. The model
appears to be accurate for nodes in WSNs. The experimental results show that the proposed
QL-ELQC method extends the lifetime of the PSEN, which is capable of long-term operation.
We concluded that the QL-ELQC method proposed in this paper can be used for reference
to prolong the lifetime of the node in alarm scenarios where batteries cannot be replaced or
recharged under harsh environmental conditions.
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Abstract: The study examines the process of information transfer between the sensor network end
IoT device and the hub at the transport protocol level focused on using the 5G platform. The authors
interpreted the researched process as a semi-Markov (focused on the dynamics of the size of the
protocol sliding window) process with two nested Markov chains (the first characterizes the current
size of the sliding window, and the second, the number of data blocks sent at the current value
of this characteristic). As a result, a stationary distribution of the size of the sliding window was
obtained both for the resulting semi-Markov process and for nested Markov chains, etc. A recursive
approach to the calculation of the mentioned stationary distribution is formalized. This approach is
characterized by linear computational complexity. Based on the obtained stationary distribution of
the size of the sliding window, a distribution function is formulated that characterizes the bandwidth
of the communication channel between the entities specified in the research object. Using the resulting
mathematical apparatus, the Window Scale parameter of the TCP Westwood+ protocol was tuned.
Testing has shown the superiority of the modified protocol over the basic versions of the BIC TCP,
TCP Vegas, TCP NewReno, and TCP Veno protocols in conditions of data transfer between two points
in the wireless sensor network environment.

Keywords: information and communication technologies; data transfer; transport protocol; end IoT
device; hub; sliding window size; bandwidth

1. Introduction

A key role in managing modern network traffic belongs to transport layer protocols (in
particular the TCP (Transmission Control Protocol) [1–4]). By controlling network connec-
tions at a point-to-point level, the main algorithms of these protocols form both quantitative
and qualitative characteristics of bidirectional packet flow following the physical charac-
teristics and level of congestion of a network route used. Therefore, it is a property of
transport protocols that make a decisive contribution to ensuring the reliability, stability
and performance of data networks. The latter makes the task of modeling the behavior
and analyzing the performance of transport protocols especially the TCP protocol very
relevant. We separately, note that the study of the properties of the TCP protocol in various
application scenarios is relevant, including because more than 95% of all data flows in the
world are controlled by this protocol [5–7].

The Internet of Things (IoT) is built on existing network infrastructure, technologies
and protocols currently used in homes, offices and the Internet. This means that most IoT
runs on existing TCP/IP networks. TCP/IP uses a four-layer model with specific protocols
at each layer. The diagram below (Figure 1) shows a comparison of the protocols currently
in use and those most likely to be used for IoT [8–10] in the future.
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Figure 1. Analysis of the most current protocols used in the TCP/IP model to support Internet and
IoT data flows.

Figure 1 shows that most changes will occur at the communication and application
layers, while the network and transport layers are likely to remain unchanged. Thus, by
solving the problems of optimizing the TCP protocol for the specific needs of IoT, we are
engaged in promising research, the results of which will be in demand not only in the
present but also in the future.

Note that TCP creates end-to-end connections on top of the inherently unreliable
and best-effort IP packet service through a unique procedure known as a “three-way
handshake”. During this process, the client sends three TCP segments to the server, and
the server responds, establishing a connection. However, due to the nature of IP routing
networks, packets containing the TCP segment requesting a new connection and the
server’s response can sometimes get lost, leading to uncertainty for the communicating
hosts. The third message in the sequence enhances the overall reliability of the connection.
TCP employs distinct terminology for its connection establishment process. It utilizes a
solitary bit known as the SYN (SYNchronization) bit to signify a connection request. This
single bit is encapsulated within a comprehensive 20-byte (typically) TCP header, and
additional data, including the Initial Sequence Number (ISN) for segment tracking, is
transmitted to the receiving host. ACKnowledgments for connections and data segments
are confirmed using the ACK bit, while a request to conclude a connection is conveyed
through the FIN (FINal) bit. It’s important to highlight that when transmitting a single
request and response pair within segments, TCP necessitates the creation of an additional
seven packets. This results in a substantial packet overhead, and the entire procedure
tends to be sluggish when operating over high-latency (delayed) connections. This is a
contributing factor to the growing popularity of UDP, especially as networks continue to
improve their reliability.

However, let us focus on the network and transport layers in more detail. At the
network layer, IPv6 will dominate in the long term. It is unlikely that IPv4 will be used,
but it may play a role in the initial stages. Most IoT devices for the home, such as smart
light bulbs, currently use IPv4. TCP dominates the transport layer on the Internet. It is
used in both HTTP and many other popular Internet protocols (SMTP, POP3, IMAP4, etc.).
MQTT (Message Queuing Telemetry Transport) protocol is expected to become one of the
main application layer protocols for messaging. Currently, MQTT uses TCP. However,
there is an opinion [8] that in the future, due to lower overhead costs, the share of using
UDP to serve IoT needs will grow (MQTT-SN operating on top of UDP will probably
become more widespread). At the same time, the share of IoT devices that simultaneously
operate both on the Internet and on IoT is growing. This statement is confirmed by data on
protocol support for IoT platforms: Microsoft Azure (MQTT, AMQP, HTTP and HTTPS),
AWS (MQTT, HTTPS, MQTT over WebSockets), IBM Bluemix (MQTT, HTTPS, MQTT),
Thingworx (MQTT, HTTPS, MQTT, AMQP). Thus, the trinity of the Internet, IoT, and
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TCP will be stable and inseparable in the future. At the same time, we will mention the
main disadvantages of TCP, namely, the difficulty in setting up and managing specific use
cases; the protocol does not guarantee the delivery of data packets. It is the optimization of
TCP protocol parameters to eliminate these shortcomings in the context of the interaction
between the “sensor network end IoT device” and the “hub” that is the motivation for the
research presented below.

2. State-of-the-Art

The chosen subject area is characterized by a high intensity of research. As confirma-
tion of this fact, we mention both highly cited [1–9] and new research works [10–15].

In [10], T. Toprasert and W. Lilakiataskun introduce a Markov Decision Process (MDP)
aimed at improving congestion avoidance. The researchers argue that the MIMD mecha-
nism surpasses both TCP-Illinois and TCP-Scalable in managing window size congestion.
Drawing from their findings, they presented a new iteration of the TCP protocol named
TCP-Siam. This protocol incorporates a coefficient designed to optimize the congestion
window (cWnd), enhancing performance when packets are lost over loss-prone links in
a WMN.

In [11], Hurni and colleagues investigated methods to enhance TCP performance.
They delved into the impacts of distributed caching coupled with local retransmission
techniques. In this approach, every intermediary node stores TCP segments and retransmits
the segment if its ACK (acknowledgement) is notably delayed, determined by RTT (round-
trip time) estimates. They incorporated their solution into the Contiki OS’s uIP stack with a
module they named “caching and congestion control” (cctrl). This was then tested across
several radio-duty cycling MAC (medium access control) protocols using a real-world
testbed of seven TelosB motes. While experiments revealed the cctrl module boosted TCP
throughput in numerous settings, its efficacy largely hinged on the specific RDC MAC
protocols employed.

Kim et al., as mentioned in [12], undertook an experimental analysis of TCP per-
formance over RPL within an IPv6-driven testbed. This testbed, a low-power and lossy
network (LLN), incorporated 30 TelosB devices operating on the TinyOS BLIP stack, com-
plemented by one LBR (LoWPAN border router) and a Linux server. Their observations
revealed that TCP displayed notable throughput disparities across nodes in multi-hop
LLNs. Moreover, RPL’s lack of consideration for traffic load balancing could potentially
deteriorate TCP performance.

In an effort to rectify the TCP fairness issues among LLN endpoints, Park and Paek
introduced TAiM (TCP assistant in the middle) in [13]. This system intervenes mid-way in
TCP communication, specifically at the LBR, and adjusts the RTT of ongoing flows. TAiM
holds onto packets and deliberately introduces a delay before forwarding them. This means
a flow with reduced throughput experiences a briefer delay, while a flow with increased
throughput faces a more extended delay. Experiments utilizing the BLIP stack indicated
that TAiM enhanced TCP fairness without compromising the overall throughput.

Gomez et al., in [14], offered guidelines for streamlined TCP implementation, opti-
mized for IoT contexts. Specifically, when considering the RTO algorithm, they advocated
for the adoption of CoCoA within TCP.

With the advent of advanced low-power embedded devices boasting greater process-
ing capabilities and increased memory, Kumar et al. demonstrated that a comprehensive
TCP can comfortably operate within the CPU and memory limits of contemporary wireless
sensor network platforms. They achieved this by implementing a full-scale TCP named
TCPlp [15], which draws from the complete capabilities of the TCP in the FreeBSD OS.

As the main results in most of the mentioned works, there are various estimates of
the stationary mathematical expectation of the bandwidth of the communication channel,
which is controlled by the transport protocol (directly or consolidated). There is also a study
of the second moment of bandwidth [12–15] for a point stochastic process, specially selected
within the original process of information transfer. Such a trend is quite understandable
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because, among the typical tasks that are solved in the field of information and communi-
cation technologies, there is not only the determination of the state of the communication
process at an arbitrary moment in time but also the forecasting of its development and the
planning of resources “for growth”. It is in such problems that the highest points of the
distributions of controlled parameters, as well as their quantiles, are of greatest interest.

Most of the mentioned estimates of the characteristic parameters of the information
interaction process are formalized in the form of simple algebraic constructs, in which the
efficiency and simplicity of calculations are balanced by the generality of the approxima-
tion of the obtained values. In particular, general assessments completely ignore several
significant features that appear in situations where the process of information exchange in
sensor networks is observed. Let us formulate the most obvious of these features:

- service signals regarding the result of the transfer of a packet of data blocks arrive at
random moments, which leads to the interpretation of RTT as a stochastic parameter
with a known distribution, depending on the size of the sliding window of the trans-
port protocol. This feature represents the basic specificity of the Ultra-Reliable Low
Latency Communication (URLLC) technology as a component of the 5G platform;

- when forming the parametric space of the model of the information exchange process,
one should take into account the fact that in real information and communication
systems, both the size of the sliding window and the bandwidth of the communication
channel are large but always finite. This feature represents the basic specificity of the
Massive Machine-Type Communications (mMTC) technology as a component of the
5G platform;

- both the distribution of the size of the sliding window and the distribution of band-
width should be defined in terms of the ratio of RTT and bandwidth of the com-
munication channel. This approach will make it possible to eliminate the potential
influence of the speed characteristics of the data transfer channel on the adequacy of
the description of the studied process by the created mathematical apparatus. This
feature represents the basic specificity of the enhanced Mobile BroadBand (eMBB)
technology as a component of the 5G platform.

Taking into account the strengths and weaknesses of the mentioned methods, we will
formulate the necessary attributes of scientific research.

Studied object: The object of our research is the transport layer for managing the
process of data transfer between the sensor network end IoT device and the hub using the
communication capabilities of the 5G platform.

Research subject: the probability theory and mathematical statistics, the stochastic
processes theory, the queuing theory, and the experiment planning theory.

The aim of the research: is to formalize the process of information transfer between the
sensor network end IoT device and the hub at the transport level with the determination of
the essential characteristic parameters of the protocol.

Research objectives:

- to formalize the process of information transfer between the sensor network end IoT
device and the hub based on the stochastic processes theory and the queuing theory;

- to formalize in the analytical basis of the researched process the stationary distribution
of the size of the sliding window as a characteristic parameter that determines the
intensity of the information flow from the addressee;

- to formalize in the analytical basis of the researched process the distribution function
of the bandwidth of the communication channel between the entities specified in the
research object;

- justify the adequacy of the proposed mathematical apparatus and demonstrate its
functionality with an example.

Main contribution. The study examines the process of information transfer between
the sensor network end IoT device and the hub at the transport protocol level. In this
context, a queuing system with controlled input flow, deterministic service, feedback and
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an unlimited queue is synthesized. The authors interpreted the research object as a semi-
Markov (focused on the dynamics of the size of the protocol sliding window) process with
two nested Markov chains (the first characterizes the current size of the sliding window,
and the second—the number of data blocks sent at the current value of this characteristic).
As a result, a stationary distribution of the size of the sliding window (a parameter that
determines the intensity of the information flow from the addressee) was obtained both for
the resulting semi-Markov process and for nested Markov chains, etc. A recursive approach
to the calculation of the mentioned stationary distribution is formalized. This approach
is characterized by linear computational complexity. Based on the obtained stationary
distribution of the size of the sliding window, a distribution function is formulated that
characterizes the bandwidth of the communication channel between the entities specified
in the research object.

One of the key algorithms in the family of TCP-like transport protocols is an algorithm
conventionally called Additive-Increase/Multiplicative-Decrease (AIMD) [16–18]. The
AIMD algorithm is focused on increasing the intensity of the flow of packets generated
by the sender if the recipient confirms their successful delivery. The mathematical model
presented in Section 3 reflects the impact of the AIMD algorithm on massive traffic between
the sensor network end IoT device and the hub. Also in Section 3, an analytical form of
bandwidth distribution for such a connection is obtained. Section 4 presents the results
of the experiments, describing the equipment used and the technologies used to register
the empirical data. This section presents the results of comparing the TCP Westwood+
protocol, the Window Scale parameter of which was determined based on the author’s
mathematical apparatus, with BIC TCP, TCP Vegas, TCP NewReno, TCP Veno without
tuning. In Section 5, conclusions are drawn taking into account the results obtained, and
directions for further research are formulated.

3. Materials and Methods

Regardless of the type of operating system, the modern transport protocol is designed
to ensure the reliable reception of data blocks sent by the communication channel by the
addressee. The TCP protocol uses the sliding window to regulate how many packets
are in transit to maximize the transmission throughput assuring the reliability of the
communication. A few different algorithms have been proposed to regulate the window
size, starting from TCP Reno and NewReno to the TCP BIC and CUBIC used in modern
operating systems. Suppose that the size of the sliding window is equal to l > 0. The basic
mechanism of the regulation of the window size can be modeled as follows: if the sender
received confirmation from the addressee about the successful receipt of the data block
packet at the current sliding window size, then the sliding window size for the next in
line to send the data block packet will be increased to the value l + �l/n�, where n ≥ 2,
n ∈ N. Otherwise, the size of the sliding window will be reduced to the value �l/n�. While
this is a simplified model mimicking the behavior of the traditional TCP Reno algorithm,
the more advanced window size control algorithms, such as BIC and CUBIC can still be
approximated with it.

Let us generalize the probabilities fi that i = 1, 2, . . . consecutively sent data blocks
will be received by the addressee in the form of a distribution of { fi}. We consider the
stochastic elements of this set to be independent. Compliance with this condition allows
us to classify the entity { fi} as a geometric distribution, the parameter p ∈ (0, 1) of which
characterizes the probability of losing a data block during the transfer process.

We will assume that the circular delay D is constant and equal to one. Under the
condition of guaranteed successful transfer of all data blocks sent by n RTT, the protocol
will send

N(n) = 1 + 2 + . . . + n =
1
2

(
n2 + n

)
(1)

data blocks starting from the size of the sliding window l = 1. Therefore, the amount of data
equal to N(n) will be sent in N(t) = O

(
t2) units of time. The non-linear growing character
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of the function N(t) prompts the introduction of a parameter whose value will limit this
growth from above. As such a parameter, we will use the estimate of the bandwidth limit
of the communication channel L.

The estimate L is determined empirically for the communication technology used
in the investigated information and communication system and the configuration of the
hardware component (which in itself is a non-trivial task). In turn, the circular delay is
characterized by a stochastic value γl , the value of which depends on the size of the sliding
window l, which was relevant at the time of transfer of the corresponding data blocks
packet. We denote the distribution function of the stochastic value γl as Rl(t) and Dl = ∃γl
(if the latter exists).

We focus our research on the description of the information transfer process between
the sensor network end IoT device and the hub. The organization of such a process
in modern conditions assumes that the monitoring sender (most often – the end IoT
device) always has information for transfer. As already mentioned, in real information and
communication systems, the bandwidth of the communication channel is limited (estimate
L). This circumstance prompts us to introduce a parameter lmax related to the estimate L,
the value of which is the upper limit of the growth of the sliding window size.

Based on the above-formulated features of the information transfer process between the
sensor network end IoT device and the hub, the analytical description of this process will be
carried out based on the stochastic processes theory and the queuing theory. In this context,
our goal is to synthesize a queuing system Σ with controlled input flow, deterministic service,
feedback, and unlimited queuing. In the terminology of queuing theory:

- a set of data blocks for transfer is a set of requests;
- a communication channel is a service device;
- a service duration distribution is deterministic with a parameter t0 = 1/L.

The functioning of feedback, which regulates the dynamics of the size of the sliding
window, is taken into account by entering the set W = {W+, W−}, where W+ is a service
signal about successful data transfer (positive service signal) and W− characterizes the
reversed situation (negative service signal).

The moment of arrival of a signal of type W is a stochastic value: the probability of the
appearance of the signal W+ is characterized by the parameter 1− p and the probability of
the appearance of the signal W− is characterized by the parameter p.

The receipt of requests is regulated by the transport protocol according to the type
of service signal W. When a feedback service signal W is received, k ≥ 0 requests (data
blocks) are received from the set of requests to the system Σ. The value k depends on the
current size of the sliding window l and the number of facts of receiving negative service
signals W−. Requests available in the system Σ are served sequentially (without regard to
priority, in order of arrival). To describe the process of information transfer between the
sensor network end IoT device and the hub, it is necessary to analytically characterize the
output flow of the system Σ.

We formalize analytically the distribution of the size of the sliding window. Suppose
that at the time t > 0 the size of the sliding window is determined by the function l(t).
Also, let us generalize by the set T = {τi}, i = 1, 2, . . ., the sequence of moments when the
value of the parameter l changed in response to the service signals W. The development of
this concept will be the Markov chain li = l(τi), li ∈ X

{
2, lmax

}
, i = 1, 2, . . .; moreover, the

minimum size of the sliding window is lmin = 2, which corresponds to the specifics of the
investigated process. We define the step process {l(t)}t>0 as semi-Markov. We characterize
the event of a transition of chain {li} from state u to state v in k steps with probability pk

uv,

u, v ∈ X. Based on the above, we write: pk
uv →

k→∞
πv,

lmax
∑

l=2
πl = 1.

Let us generalize the set of probabilities P{l(t) = l} Pl(t) = P{l(t) = l} and condi-
tional mathematical expectations αl = A(τi+1 − τi|l(τi) = l ).
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By definition: ε = τi+1 − τi > 0 in which case, either τi+1 − τi ≥ l/L or τi+1 − τi ≥ γl .
Accordingly, ∃ε : Fl(ε) ≤ 1− ε, where Fl(ε) are the distribution function of the difference
τi+1 − τi and the conditional mathematical expectation αl exists if Dl exists. Therefore, if a
finite mathematical expectation can be determined for a stochastic quantity γl then for a
stochastic dependence Pl(t) it is possible to write

Pl(t) →t→∞
αlπl/

lmax

∑
l=2

αlπl . (2)

The logic of reasoning embodied in expression (2) echoes that which is the basis of the
ergodic theorem for semi-Markov processes [11].

We define the stationary distribution πl for the Markov chain {li} in the form of
Chapman’s equations:

πi = fi−1πi−1 + (1− f2i)π2i+
+(1− f2i+1)π2i+1∀2i ≤ lmax,

(3)

πi = fi−1πi−1∀lmax < 2i < 2lmax, (4)

where fi = (1− p)i and

πlmax = flmax−1πlmax−1 + flmax πlmax . (5)

In the states πi defined by Equation (3) the system Σ can enter both under the condition
of linear growth (under the condition of receiving positive service signals) and under the
condition of gradual decline (under the condition of receiving negative service signals).

In the states πi defined by Equation (4) the system Σ can enter only under the condition
of linear growth (provided positive service signals are received).

Equation (5) describes the situation when the system Σ has reached the upper limit
of the size of the sliding window lmax and is in this state before the arrival of a negative
service signal.

Obtaining an explicit analytical solution to the system of Equations (3) and (4) taking
into account Equation (5) is difficult, and its practical implementation will be accompa-
nied by significant computational costs even with the empirical selection of normalizing
constants. So, let us resort to the recurrent representation of πi taking

Fi =
i

∏
k=1

fk, j = �lmax/2�. (6)

We will obtain:
πi = πjCi, (7)

where the values πj are determined by the normalization condition and

Ci = Fi−1∀j < i < lmax, (8)

Ci−1 =
1

fi−1
(Ci − (C2i(1− f2i) + C2i+1(1− f2i+1))), (9)

Clmax = Flmax−1/(1− flmax). (10)

If we substitute Expressions (8) and (9) into Equation (7) and take into account
notation (6) and expression (10), we will obtain the original system of Equations (3), (4) and
Expression (5). Therefore, Expression (7) completely determines the distribution of πl and
the recurrent procedure characterized by Expressions (8)–(10) is characterized by linear
complexity O(lmax).

Let us combine the entities l(t) (the current size of the sliding window) and n(t) (the
number of data blocks sent at the size of the sliding window l(t)) into a dual function
η(t) = {l(t), n(t)}. We accept n(t) = 1 each time when, as a result of receiving service
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signals W, the size of the sliding window l(t) changes. We denote the moment of sending
the i-th data block (the moment of completion of service of the i-th request by the system
Σ) as τ′i . Accordingly, if τ′i1 > τ′i2 then i1 > i2. The sequence ηi = η

(
τ′i
)

is by definition a
Markov chain.

Accepting the notation πη = π(l, n), we formulate the stationary distribution πη of
the Markov chain {ηi} based on Chapman’s equations:

π(l, n) = (1− p)π(l, n− 1)∀l, 1 < n < l, (11)

π(l, 1) = (1− p)π(l − 1, l − 1) + p
2l
∑

j=1
π(2l, j)+

+p
2l+1
∑

j=1
π(2l + 1, j) = 0∀2l ≤ lmax,

(12)

π(l, 1) = (1− p)π(l − 1, l − 1)∀lmax < 2l < 2lmax, (13)

π(lmax, 1) = (1− p)π(lmax − 1, lmax − 1)+
+(1− p)π(lmax, lmax).

(14)

Based on Equation (11), we write

π(l, n) = (1− p)n−1π(l, 1) = (1− p)n−1πl . (15)

The distribution πη is determined by Expressions (7) and (15).
Let us focus on defining conditional mathematical expectations αl . If the system Σ

has time to process the requests in the queue before the service signal W arrives, then
τi+1 − τi = γl . Otherwise, τi+1 − τi = l/L. Accordingly:

αl =

∞∫
lt0

tdRl(t) + lt0Rl(lt0), t0 = 1/L. (16)

The change in the size of the sliding window carried out by the mechanisms of the
transport protocol is one of the main sources of the stochastic nature of the output stream
of the system Σ. A significant characteristic parameter of this flow is bandwidth B. The
stochastic characteristic B is defined as the ratio of the number of outgoing requests of the
system Σ for the time interval [τi, τi+1) to the duration of this interval.

For the effective application of the transport protocol in wireless communication
networks of 5G technology, the analytical formalization of the distribution of the stochastic
characteristic B is relevant. Using 5G technology, the authors focus on such an area of its
application as eMBB. The Industry 5.0 paradigm declares the active use of virtualization
with the effect of presence, which is impossible without the stable transfer of high-resolution
video streams. Moreover, it is wireless communication channels that are optimal in terms
of expectations of industrialists, officials, environmentalists and consumers.

If the continuous right function N(t) characterizes the number of outgoing requests of
the system Σ at the time t then the character B can be described by the expression

B =
N(τi+1)− N(τi)

τi+1 − τi
. (17)

Note, that the logic of determining the size of the sliding window implemented in
the transport protocol assumes: if l < γl then τi+1 − τi = γ and B = l/γl . If the condition
l < γl is not fulfilled, then, for an a priori positive queue length of the system Σ, equality
B = L holds. We have already obtained the analytical characterization of the independent
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stochastic value l(t) (the size of the sliding window, see above). Using the full probability
formula [19] ∀0 ≤ x < L, we define the distribution function FB(x) as

FB(x) = P(B < x) =
lmax

∑
i=2

P(l = i)P(D > i/x), (18)

We introduce the limit Pl defined by expression (2) into expression (18):

FB(x) =
lmax

∑
l=2

Pl(1− Rl(l/x)) = 1−
lmax

∑
l=2

Pl Rl(l/x). (19)

Expression (19) is valid for ∀(x < L) ∪ (B(L) = 1).
Therefore, we have analytically formalized both the distribution of the size of the

sliding window and the distribution of the bandwidth of the communication channel for
the process of information transfer between the sensor network end IoT device and the
hub based on the stochastic processes theory and the queuing theory. The study takes into
account that:

- service signals regarding the result of the transfer of a packet of data blocks arrive at
random moments, which led to the interpretation of RTT as a stochastic parameter
with a known distribution, depending on the size of the sliding window;

- when forming the parametric space of the model of the researched process, it is taken
into account that in real information and communication systems both the size of the
sliding window and the bandwidth of the communication channel is finite;

- both the sliding window size distribution and the bandwidth distribution are defined
in terms of the ratio of RTT and bandwidth of the communication channel. This
eliminates the potential influence of the speed characteristics of the data transfer
channel on the adequacy of the description of the researched process by the created
mathematical apparatus.

4. Results and Discussion

Let us start setting up the experiment by specifying the entities mentioned in the
research object, namely, “sensor network ends IoT device” and “hub”. By the hub, we
understand the data processing center [20] in the classical sense of this term. Now let us
define the end IoT device as an integral element of the sensor network. A modern trend in
the organization of sensor networks is the use of edge computing technology [21–23] for
processing the data collected by the sensors to relieve the burden of the connection channel
with the hub. The spread of this technology is explained by an objective fact: the scale
of sensor networks is constantly growing. The introduction of edge computing makes it
possible to smooth out the problem of controllability of the sensor network in the conditions
of its expansion. The implementation of edge computing technology on a cloud computing
platform has both advantages (scalability, survivability) and disadvantages (complications
of ensuring confidentiality and regular subscription costs).

The authors propose to carry out preprocessing of sensor data on a developed set of
low-level data processing centers. Technologically, each such low-level data preprocessing
center or end IoT device is a Raspberry Pi computer (the authors focus on the 4B and
Compute Module 4 models, which combine a powerful quad-core ARM v8 Cortex-A72
processor with a full range of current communication interfaces, including Gigabit Ethernet,
Wi-Fi 802.11ac, Bluetooth 5.0). Another important fact in favor of the Raspberry Pi is that
this computer can function under the control of both an open license Linux operating
system (individual features of the installation process are solved with the help of the
NOOBS tool presented by Raspberry Pi and a licensed Windows 10 IOT operating system.
With this interpretation of the sensor network end IoT device, it is possible to implement the
process of information transfer both under the control of the TCP protocol (Next Generation
TCP/IP Stack) and under the control of the TCP BIC, TCP CUBIC, Highspeed TCP, H-TCP,

118



Electronics 2023, 12, 4662

TCP Hybla, TCP Illinois, TCP Low Priority, TCP Vegas, TCP NewReno, TCP Veno, TCP
Westwood+, YeAH-TCP.

The application of the mathematical apparatus presented in the previous section for
estimating the size of the sliding window and the bandwidth of the communication channel
is implemented through the possibilities defined by the standards RFC1323, RFC2018, and
RFC3168, namely:

- TCP Window Scale Option: the ability to vary the size of the sliding window up to the
limit value of 230 = 1 GB,

- TCP selective acknowledgment (SACK) options: the possibility of feedback (receiving
positive and negative sensory signals from the addressee),

- Explicit Congestion Notification (ECN): the ability to detect congestion of the commu-
nication channel without losing data packets.

- TCP timestamps: the possibility of more accurate measurement of RTT due to Preven-
tion Against Wrapped Sequence ACK numbers (PAWS).

The external resource https://www.speedguide.net/analyzer.php (accessed on 8
November 2023) was used to check the current settings of the transport protocol.

Other settings of the transport protocol regarding the used operating system were
carried out according to the advice of colleagues from the Pittsburgh Supercomputing Center:
https://www.psc.edu/research/networking/tcp-tune (accessed on 8 November 2023).

The New TTCP utility (nuttcp: https://www.nuttcp.net/Welcome%20Page.html (ac-
cessed on 8 November 2023)) was used to directly measure the performance of the TCP/IP
stack. The advantages of this utility are:

- a simple and effective method of measuring bandwidth via TCP or UDP,
- cross-platform,
- the ability to check the effectiveness of the local TCP/IP stack (loopback),
- the correct termination of TCP connections, and the ability to work with clients

under NAT.

Let us apply the mathematical apparatus obtained in the previous section, generalized
by Expression (19), to the task of analyzing real network information transactions. By
default, we assume that the function Rl(t) = R(t) does not depend on the size of the
sliding window and is a normal distribution with parameters μ = 60 ms and σ = 30 ms.

Figure 2 visualizes the stationary distribution of the size of the sliding window πl for
different probabilities p of the appearance of the service signal W− and at lmax = 120 ms
(typical value for the Internet): πl = f (l), pW− , lmax = const.
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Figure 2. Visualization of the dependence of πl = f (l) at pW− , lmax = const.
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The transport protocol changes the size of the sliding window l according to the ratio
between the maximum size of the sliding window lmax and the probability of losing a
packet of data blocks pW− . It is possible to track three main modes in the dynamics of
changing the value of the size of the sliding window. In the first mode, the size of the
sliding window quickly reaches its maximum value and keeps it almost all the time during
the information transaction. In the second mode, the arrival of a negative service signal
W− leads to a reduction in the size of the sliding window by half with a quick return to the
maximum value lmax. In this mode, the corresponding distribution πl has two extremes
at the points lmax and lmax/2. As the probability of the appearance of a negative service
signal pW− increases, the duration of the sliding window size in a stable state (third mode)
decreases. The distribution πl loses its extremum at this point lmax/2. If the probability
of the appearance of a negative service signal W− exceeds 0.1, then the value lmax > 10
does not have a noticeable effect on the appearance of the distribution πl . Breaks of the
smooth nature of individual curves from Figure 2 are explained by the chosen mathematical
apparatus for describing the studied process which is a priori stepwise.

Figure 3 shows the mathematical expectation μB and the root mean square deviation
σB of the bandwidth B as a function of the probability pW− . The curves are obtained for
different values of the estimate L at a constant value of lmax = 70.

From Figure 3a it can be seen that the curves of the mathematical expectation μB are
monotonic decreasing functions under conditions of the increasing value of the argument
pW− . Such a theoretically determined trend coincides with the real behavior of the network
construct, which was investigated by the nuttcp utility. It can be seen that the correspond-
ing value of the estimate L determines the initial value of the curve μB = f (pW−) and
determines the rate of its decreasing with increasing probability pW− . Thus, the accuracy
of the estimation of the bandwidth of the communication channel is an important factor
that affects the performance of information transfer in conditions of low interference (low
probability of the appearance of a negative service signal W−). This is an important con-
clusion because it is a factor that should determine the shift in the focus of attention of
researchers from the search for more accurate methods of estimating the bandwidth of a
communication channel (low probability pW− ) to searching for more secure methods of
encoding data packets or causes of interference (high probability pW− ).

Figure 3b shows that the function σB = f (pW−) can be both monotonic and have an
extremum on the interval pW− ∈ (0, 1). This fact allows us to predict the possibility of
setting the problem of finding the optimal value of the bandwidth of the communication
channel for the parametric space L, lmax, pW− .

Figure 4 visualizes the mathematical expectation μB and the root mean square devia-
tion σB of the bandwidth B as a function of the circular delay parameters D. The arguments
are the probability values pW− .

Note, that the nature of the functional dependencies presented in Figures 3 and 4,
coincides, which indicates the relationship between the parameters L D. Figure 4 shows that
the curves of the mathematical expectation μB are monotonic decreasing functions under
conditions of the increasing value of the argument pW− . Such a theoretically determined
trend coincides with the real behavior of the network construct, which was investigated
by the nuttcp utility. It is interesting that the curve σB can be both monotonic and have an
extremum on the interval pW− ∈ (0, 1). This circumstance makes it possible to supplement
the parametric space of the potential problem of finding the optimal value of the bandwidth
of the communication channel with the parameter D.
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Figure 3. (a) Visualization of the dependence of μB = f (pW− ) at L = const. (b) Visualization of the
dependence of σB = f (pW− ) at L = const.
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Figure 4. (a) Visualization of the dependence of μB = f (pW− ) at D = const. (b) Visualization of the
dependence of σB = f (pW− ) at σD = const.

We will conclude the experimental section by comparing the TCP Westwood+ protocol,
the Window Scale parameter of which was determined based on the author’s mathematical
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apparatus, with the BIC TCP, TCP Vegas, TCP NewReno, TCP Veno protocols without
tuning (see Figure 5). The communication channel was supported by 5G technology.
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Figure 5. Empirical dependences B = f (pW− ) for a stable wireless network configuration and
different transport protocols.

The results shown in Figures 3 and 4 confirm the adequacy of the mathematical
apparatus proposed by the authors, and the results shown in Figure 5 testify to its applied
potential. However, this potential can be fully revealed only by researching the relevant
optimization problems.

5. Conclusions

The object of this research is the transport layer for managing the process of data
transfer between the sensor network end IoT device and the hub using the communication
capabilities of the 5G platform. In this case, the authors focus their attention on the TCP
protocol. We interpreted the research object as a semi-Markov (focused on the dynamics of
the size of the sliding window of the protocol) process with two nested Markov chains (the
first characterizes the current size of the sliding window, and the second—the number of
data blocks sent at the current value of this characteristic).

As a result, a stationary distribution of the size of the sliding window (a parameter that
determines the intensity of the information flow from the addressee) was obtained both for
the resulting semi-Markov process and for nested Markov chains, etc. A recursive approach
to the calculation of the mentioned stationary distribution, which is characterized by linear
computational complexity, is formalized. Based on the obtained stationary distribution
of the size of the sliding window, a distribution function is formulated that character-
izes the bandwidth of the communication channel between the entities specified in the
researched process.

Future research. As we mentioned earlier, the object of our research is the transport
layer for managing the process of data transfer between the sensor network end IoT device
and the hub using the communication capabilities of the 5G platform. In this article, we
presented the basic mathematical apparatus for studying this process. We see its further
application in determining the optimal TCP parameters for exact QoS policies that will be
used to manage information interaction in a 5G cluster that supports the operation of a
sensor network using URLLC, mMTC, and eMBB technologies.

The results presented in the article showed the promise of using the TCP protocol in a
sensor network, the end IoT devices of which generate massive traffic. At the same time,
we note that the TCP protocol has some problems with data security, namely [24–26]:
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- TCP is incapable of safeguarding a segment against message modification attacks
due to its lack of protection for the checksum field. This field is intended to detect
alterations in a segment, but it remains vulnerable to message modification attacks,
allowing for the manipulation of TCP segments without detection. Additionally, there
are no mechanisms for peer entities to detect message modification attacks.

- TCP does not provide data encryption capabilities, making it unable to maintain the
security of segment data against message eavesdropping attacks. TCP transports un-
encrypted data from the application layer, leaving any valuable information exposed
to potential interception.

- TCP is unable to defend connections against unauthorized access attacks because it
verifies a peer entity solely based on the source IP address and port number, which
can be easily modified by attackers.

We will try to remove these limitations in our future studies.
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Abstract: Indoor positioning is a core enabler for various 5G identity and context-aware applications
requiring precise and real-time simultaneous localisation and mapping (SLAM). In this work, we
propose a K-nearest neighbours and deep neural network (K-DNN) algorithm to improve 3D indoor
positioning. Our implementation uses a novel data-augmentation concept for the received signal
strength (RSS)-based fingerprint technique to produce a 3D fused hybrid. In the offline phase, a
machine learning (ML) approach is used to train a model on a radiomap dataset that is collected
during the offline phase. The proposed algorithm is implemented on the constructed hybrid multi-
layered radiomap to improve the 3D localisation accuracy. In our implementation, the proposed
approach is based on the fusion of the prominent 5G IoT signals of Bluetooth Low Energy (BLE) and
the ubiquitous WLAN. As a result, we achieved a 91% classification accuracy in 1D and a submeter
accuracy in 2D.

Keywords: indoor localisation; 5G IoT; deep learning; machine learning; information fusion; tracking;
Internet of Things

1. Introduction

Supported by AI (artificial intelligence) and IoT (Internet of Things), 3D position-
ing is a core enabler for various 5G identity and context-aware applications requiring
precise and real-time simultaneous localisation and mapping (SLAM) both indoors and
outdoors [1]. Typical scenarios include mobile robots (MRs) performing surgery on a
patient, autonomous ground vehicles (AGVs) docking newly arrived products in a smart
factory, and unmanned aerial vehicles (UAVs) monitoring crops’ status [2–4]. Very recently,
a Cisco report [5] predicted an increase in the number of these specialised IoT devices
connected to the internet from 8.8 billion in 2018 to 13.1 billion by 2023—1.4 billion of them
will be 5G-capable. In this respect, while space giants (SpaceX and Lockheed Martin) [6]
are working to improve the outdoor accuracy of GPS III to below 3 m, heterogeneous 5G
IoT networks (HetNets) represent themselves as an indispensable source for improving
indoor positioning systems (IPSs).

A 3rd Generation Partnership Project (3GPP) release established the requirements for
improved indoor/outdoor 3D localisation using a RAT-independent positioning scheme
for vertical and horizontal sectors [7]. Therefore, this specification put a strong empha-
sis on seamless collaborations and fusion between various radio technologies, such as
device-to-device communication, ultra-dense communication, millimetre wave (mm wave),
sub-6 GHz, and vehicle-to-everything (V2X) [8], and protocols such as IEEE 802.15.1 (Blue-
tooth Low Energy), IEEE 802.11be (extremely High Throughput WLAN), and IEEE 802.11az
(Next Generation Positioning) [9]. In light of this, a very good opportunity has emerged in
the area of indoor localisation for both urban areas and smart cities.
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To further improve positioning accuracy, researchers have focused on various hybrid
approaches. For 5G IoT networks, the location of the user’s equipment is estimated using
a combination of signal propagation characteristics such as angle of arrival (AOA), time
of arrival, time difference of arrival, received signal strength (RSS), RSS difference (RSSD),
direction of arrival (DOA), and frequency difference of arrival (FDoA) [3]. These hybrid
approaches were recently further surveyed in [10–12]. Among all these approaches, the
RSS fingerprint-based method is the most widely used for real-time tracking. Additionally,
most of the existing approaches consider the use of the RSS from specific radio technology.
However, the offline phase of fingerprint collection requires a considerable amount of
human resources and is also time-consuming, especially for complex buildings. For this
reason, we propose a K-nearest-neighbours and deep neural network (K-DNN) algorithm
to improve 3D indoor positioning. The contributions of this paper can be summarized
as follows:

• A realistic information fusion scenario for 5G IoT networks was planned and deployed
utilizing a 5G IoT gateway, a Bluetooth Low Energy (BLE) network, and a set of
wireless IoT access points without requiring any extra information such as a magnetic-
inductive sensor, acoustics, visible light, or a powerline.

• Our implementation used a novel data-augmentation concept for a received signal
strength (RSS)-based fingerprint technique to produce a 3D fused hybrid fingerprint.
This concept was supported by the interquartile range (IQR) method for the detection
and elimination of outliers.

• To improve 3D positioning accuracy, a K-DNN cooperative algorithm was imple-
mented on the constructed hybrid multi-layered radiomap.

The concept presented is a continuation of our previous work in [13,14] towards
cooperative localisation. This paper is divided into the following parts: Section 2 covers
the state of the art in fingerprint-based techniques for 3D/2D positioning and information
fusion methods. The proposed system model and the underlying algorithms are presented
in Section 3. The 5G IoT physical network environment is explained in Section 4. The
experimental setup is covered in Section 5. Section 6 provides the performance evaluation,
and Section 7 analyses the obtained results. Finally, a summary and directions for future
work are presented in Section 8.

2. State of the Art

2.1. Received Signal Strength

Received signal strength (RSS) is a way to measure the signal power received by a
user’s equipment. This is expressed in decibel milliwatts (dBm) or milliwatts (Mw). The
RSS-based method is one of the methods widely adopted by the indoor localisation research
community. RSS can be used to approximate the distance between a user device (UE) and a
transmitting device (Tx), as shown in Figure 1.

Using an RSS indicator (RSSI), a relative measurement of RSS, and a free-space path
loss (FSPL) propagation model [15], the distance delta between a UE and Tx can be esti-
mated via the formula below:

FSPL(dB) = 20log10(d) + 20log10( f ) + φ (1)

where d is the distance expressed in metres; f is the frequency measured in kilohertz,
megahertz, or gigahertz; and φ is a constant based on the frequency unit. During location
determination, this formula assumes that the antennas are lossless and their polarisation is
the same. However, this is not often the case in complex and unpredictable environments
with continuous noise.
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Figure 1. RSS-based positioning.

2.2. RSS Fingerprint-Based 2D and 3D Indoor Positioning

In the RSS fingerprint-based method, unlike the free-space path loss (FSPL) model,
the location is estimated by matching the signal received from the user equipment with
a database of preconstructed location radiomaps. The most significant advantage of this
method is its ability to maintain high accuracy in a cluttered multi-path environment,
according to a study conducted by [16,17]. As shown in Figure 2, this technique has two
phases: offline and online. In the offline phase, a site survey or measurement campaign is
conducted through which a set of RSS signals is collected and linked to its corresponding
location XY in the 2D case and XYZ in the 3D case. The constructed radiomap is then
used to train a localisation algorithm with a distance error loss function, such as least
squares [18], weighted least means [19], maximum likelihood estimation [20], or convex
optimisation [21].

Figure 2. Fingerprint -based positioning phases.

To construct a radiomap, the most commonly used method for collecting signal
fingerprints is called war-diving [22]. After identifying the indoor area of interest, the user
equipment stays in each position for a specific time interval to obtain enough fingerprint
information. As the monitoring device moves along the grid, the collected RSS single is
stored in the database along with a reference point. Regarding 5G IoT positioning indoors,
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the use of this technique was investigated by Huan et al. in [23]. The authors used the
Kalman filter to remove the noisy RSS values. Next, a universal kriging (UK) algorithm
was used for spatial interpolation and data augmentation to reduce dependency on the
fingerprinting database. Finally, the authors trained a KNN model to calculate the user
equipment’s location, achieving a 1.44 m positioning error. Although this approach is
interesting, it was not established whether the system could perform equally in a 3D
environment. Additionally, the use of a single base station might seem to save power,
but it does not guarantee the same accuracy given the changes in the environment and
the LOS issues in cluttered space. Similarly, Gong et al. [24] suggested a two-step KNN
(2-KNN) algorithm that used reference signals from the state information of the channel
(CSI). During the offline phase, a smooth rank sequence (SRS) estimated the number of
received signal paths. During the online phase, a trained 2-KNN algorithm was used
to determine the 2D location of the user equipment. Most studies have overlooked 3D
localisation, which is essential for scenarios like robot navigation, immersive shopping,
and virtual reality. This was the main motivation for us to investigate this area. Further
studies on 5G and beyond (6G) can be found in the following survey papers: [25,26].

2.3. Information Fusion for 5G IoT

Information fusion for 5G IoT has attracted considerable attention from the research
community. This technique, as shown in Figure 3, involves blending data from various
sources or sensors using a data fusion system to gain better inference and improve accu-
racy/precision. This concept produces an effective and reliable IPS (indoor positioning
system) while saving the cost of expensive infrastructure [27]. Over the last decade, re-
searchers have attempted to merge data readings from sources such as RFID [28], GPS [29],
pedometers [30], BLE (Bluetooth Low Energy) [14], VLC (visible light communication),
and many other technologies, as stated in [13,31]. Very recently, Klus et al. [32] examined
fusing GNSS with WLAN data in a 5G network to improve positioning. The authors
implemented a neural network as their main algorithm. Based on the authors’ conclusions,
the proposed approach achieved an accuracy of 1 m in an open space and 3.4 m in a
cluttered area. A serious limitation of this study was the GNSS’s inability to penetrate
walls composed of different materials, especially in complex environments. In a more
recent work, Alvarez-Merino et al. [33] looked into using WiFi fine-time measurement
(FTM), UWB, and cellular-based radio fusion to improve indoor location accuracy. The
authors’ approach showed promising results. However, unlike [32], this system did not
rely on existing infrastructure but required a UWB setup that could be costly and was
limited to user equipment with this capability. These limitations motivated us to propose a
cost-effective setup based on BLE and WiFi. A detailed discussion of these techniques can
be found in the following resources: [34–36].

Figure 3. Information fusion localisation process.

BLE Technology

BLE has emerged as a low-cost wireless solution for localising people and assets,
offering traditional Bluetooth protocol capabilities over ultra-low power consumption

129



Electronics 2023, 12, 4150

circuits [37]. BLE-enabled devices communicate over 2.4 GHz and use 40 channels (PHY
channels) divided by a 2MHz frequency gap. Channels 37, 38, and 39 are used for advertis-
ing, while the rest are used for data transfer during a connection. This technology uses a
neighbour discovery process (NDP) in which a BLE-enabled device, often referred to as a
“scanner”, searches for nearby BLE devices called “advertisers” [38]. Once the discovery
process has finished, a list of available devices is returned based on availability and RSS
value. According to the core specification, BLE 5.0 has improved drastically compared to
version 4.2, offering two types of discovery process: basic and advanced [39]. Recently, BLE
has become a central source of information fusion amongst the research community. Several
research papers have explored the use of this technology to improve indoor localisation
accuracy. Kanakareja et al. [40] investigated using the BLE protocol along with LoRa to
reduce the distance error of an indoor tracker called “The Things Network” (TTN). The idea
is very promising; however, it only works for environments where a low-power wide area
network (LP-WAN), like a wireless sensor network, is deployed. To track the movements of
elderly people indoors, Kolakowski et al. [41] used BLE and ultra-wide band technologies.
While this is a very effective low-power solution, realising it requires the deployment of
UWB infrastructure. Additionally, UWB suffers from clock synchronisation issues due
to the time-sensitive nature of its pulses, which is not practical for real-time localisation
systems [42]. Finally, to label areas like parking lots and meeting rooms with localisation
information, Hu et al. [43] proposed a system called Grid-Loc that combined both active
radio frequency identification (RDFID) and BLE. Similarly, this solution needed a pre-setup
to start tracking and did not make use of widely existing infrastructure technologies such
as wireless local-area networks (WLANs). In our work, to improve 3D localisation, we
implemented a fusion of BLE and the ubiquitous WLAN. This concept is further discussed
in Section 3.

2.4. Machine Learning

In the fingerprint-based localisation method, the application of machine learning
involves training a model on a radiomap dataset that has been collected during the offline
phase. Given a radiomap database, the localisation model aims to infer the state or location
of the user’s device from the received measurement vector σ, which includes RSS values
σi from several access points. According to the literature, the widely used algorithms can
be classified into deterministic and probabilistic algorithms. The principle behind these
methodologies is based on searching a database of fingerprints and finding one or more
locations whose RSS values have the highest similarity to the one currently observed.

2.4.1. Probabilistic Approach

In the probabilistic approach, the position is determined based on the likelihood that
the user is in the location ’x’ given vector or RSS values received during the online phase.
Assuming that a set of location candidates L is L = {L1, L2, L3, ..., Lm} for any obtained RSS
vector values σ, one selects Li if

P(Li|σ) > P(Lj|σ) for j, k = 1, 2, 3, ...n, i �= j (2)

where P(Li|σ) is the probability that a user device is at location Li given the RSS vector σ if
its likelihood is higher than that of P(Lj|σ).

Finally, using Equation (2), the 3D location (x̂, ŷ, ẑ) can be estimated using the weighted
average probability as follows:

(x̂, ŷ, ẑ) = Σn
i=1(P(Li|s)(xLi , yLi , zLi )) (3)

2.4.2. Deterministic Approach

In the deterministic positioning approach, location λ is considered a non-random
vector [44]. The main objective is to estimate λ̂ at every step. Usually, the location estimate
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is treated as a linear combination of calibrated points pi. The principle behind this approach
can be summarised in the following equation:

λ̂ = Σk
i=1

wi

ΣM
j=1wj

λi (4)

Here, the set {λ1 . . . λi} denotes the sequence of reference points associated with Δi,
which is the distance between the respective radiomap fingerprint r̄i and the measurement
x taken during live positioning, i.e., Δi = ||xi − r̄||. The norm ||.|| in this equation can
be any arbitrary formula. This can be the Mahalanobis norm [45], the Manhattan norm
(1 norm) [46], or the Euclidean norm (2 norm) [44]. As this paper focusses on the latter, wi
can be written as follows:

Δi =

√√√√ N

∑
j=1

xij − sj)2 (5)

In Equation (4), wi is a set of non-random weight coefficients assigned to each reference
point based on its importance in distinguishing it from other fingerprints. Consequently,
the value of wi assigned to each fingerprint impacts the location estimation. In this case,
the weight allocation expressed in Equation (4) refers to the weighted K-nearest neigh-
bours (WKNN) algorithm [46]. A possible value for wi can be the inverse of the RSS
innovation [46], which can be expressed as follows:

wi =
1

||x− r̄|| (6)

If Equation (4) is simplified, it can be assumed that all fingerprints are assigned equal
weights. As a result of this assumption, wi is eliminated, and the formula becomes the
K-nearest neighbours (KNN) method. Thus, setting K = 1, the equation yields the simple
nearest neighbours (NN) method [44,47]. In terms of performance, it was demonstrated
in [44,46] that the KNN and WKNN methods offer a higher degree of accuracy than the
NN method in the cases of K = 3 and K = 4, respectively. However, the NN method appears
to perform satisfactorily and offers the same results in the presence of high-density RSS
radiomaps [48].

Several researchers have addressed the question of indoor localisation in 5G networks
using KNN [23,24,49–53]. Despite this, the KNN method alone failed to deal with a highly
dense 3D radiomap, as studied in [13,54,55]. This motivated us to propose a combination
of deep learning and KNN methods to improve localisation in complex 3D environments.
Since the main focus of this paper is on the deterministic positioning approach based on
deep learning and K-nearest neighbours, more complex methods such as the database cor-
relation method (DCM), linear discriminant analysis (LDA), and the k-anonymity method
can be found in [56–58], respectively. The following subsection deals with existing research
contributions related to deep learning.

2.4.3. Deep Learning

Deep learning is a subclass of machine learning algorithms based on artificial neural
networks (ANNs) and representation learning [59]. Artificial neural networks themselves
were inspired by biological networks. These types of algorithms are more powerful than
traditional machine learning algorithms as they use multiple connected layers to extract
complex patterns from raw data [60]. The training technique used in deep learning can
be supervised, semi-supervised, or unsupervised [61]. In 5G networks, the adaptation of
these techniques [62,63] in indoor and outdoor localisation has shown some great results.
Wafaa et al. [64] studied the use of CNNs to reduce localisation error and improve accuracy.
Their approach converted a 2D fingerprint radiomap and its kurtosis values to a 3D RSS
radio image. This 3D tensor was then used as an input for their proposed model. This
localisation framework was tested in a 20 m × 20 area. The reported results suggest
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that this concept could achieve up to 94.13% accuracy in a grid size of 2 m × 2 m with
10 anchors. Although it sounds promising, this concept has not been tested in a 3D
environment. Similarly, Yang et al. [65] proposed an indoor 3D localisation scheme based
on a 1D CNN and BLE signal fingerprinting. This approach was tested in a 3D space of
4.0 m × 2.0 m × 3.0 m. The authors deployed eight BLE beacons and divided the 3D space
into 16 grids of 1 m × 1 m × 1 m in size. Following these steps, the system was able to
achieve a 0.25 m error and a precision of almost 100%. A serious limitation of this work was
that the framework was tested in a small and uncluttered environment. Furthermore, to
achieve the same result, according to the adopted setup, a BLE must be deployed for each
1 m2. This is usually not cost-effective, especially for large complex buildings. To overcome
these two limitations, we suggest the use of a hybrid radiomap and a combination of KNN
and DNN to realise a cost-effective scalable solution. The following section covers the
proposed approach in detail.

3. The Proposed Approach

Our proposed approach aimed to improve indoor positioning using several 5G IoT
wireless signal data sources. This could be achieved by merging actual BLE and WiFi
3D location data with simulated BLE and WiFi location data into a multi-layered hybrid
radiomap to save the tedious time spent constructing a fingerprint database. To support
this data augmentation approach, K-DNN, a new cooperative positioning algorithm that
combines KNN (K-nearest neighbours) and DNNs (dense neural networks) was developed
to reduce the localisation error. Figure 4 provides an overview of the algorithmic flow of
the proposed K-DNN system. The following subsections describe in detail the K-DNN
algorithm used in this paper.

Figure 4. The flow of the proposed K-DNN system model.

3.1. K-DNN Architecture and Hybrid 3D Localisation for 5G IoT

K-DNN is a novel cooperative positioning algorithm. Given a set of WLAN trans-
mitters N and a set of BLE transmitters M connected to a set of 3D locations (XYZ), two
machine learning models are trained to support each other to achieve minimal distance
error. During the offline phase, the algorithm receives two matrices of hybrid radiomaps.
This can be mathematically expressed as

BLE_RSS : {(x1, y1, z1, ble1. . . blem),. . . , (xi, yi, zi, ble1. . . blem)}
WLAN_RSS : {(xi, yi, zi, wlan1. . . wlann),. . . , (xi, yi, zi, wlan1. . . wlann)}

K-DNN begins by eliminating outliers from the given radiomaps using the IQR
(interquartile) method [66]. The cleaned fingerprint datasets are then merged into a single
radiomap. Next, a min–max normalisation technique is implemented to convert the RSSI
values of the BLE and WLAN into the same scale. As a final step in this phase, the KNN
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model is first trained to predict the 2D location (X, Y), and the DNN is trained to predict
the 1D location (Z).

During the online phase, the K-DNN receives the following input:

BLE_RSSonline : {ble1,. . . , blem}
WLAN_RSSonline : {wlan1,. . . , wlann}.

Given this, KNN attempts to approximate the 2D (XY) locations as an output. This
outcome is then fed along with the original input received by KNN into the DNN, which
in turn predicts the 1D (Z) location. As a result, the 3D (XYZ) location is realised through
this cooperative prediction approach. The main reason for including these two models was
the nature of the 1D (classes) and 2D (continuous values) outputs.

3.2. K-DNN Model Architecture
3.2.1. KNN

The K-nearest neighbours algorithm is a non-parametric supervised machine learning
algorithm used for pattern classification and regression. This means that it does not make
any assumptions about the data being analysed. Since learning in KNN is supervised, the
trainer has to choose the parameters to achieve the best results. This algorithm was first
proposed in 1951 by Evelyn Fix, Joseph Hodges [67], and Thomas Cover [68], who later
expanded on it. In the K-DNN algorithm, KNN is used to predict the 2D (XY) location. As
previously highlighted in Algorithm 1, this algorithm receives a set of RSS values as input
R. This can be written as R = [RSS1, RSS2, . . . , RSSn]

The input provided to KNN consists of a vector of seven normalised RSS values. This
part of K-DNN model attempts to reduce the localisation error of the X and Y location
using the Euclidean distance. The output of this model is then combined with the original
input R and fed into the DNN model.

3.2.2. DNN

Deep learning is a crucial building block in the proposed K-DNN system. It allows
the learning of complex patterns and data representations through multiple processing
layers [61]. One of the most important architectures in deep learning is the deep neural net-
work, also known as multiple-layer perceptron (MLP) or a deep feed-forward network [69].
The DNN considered in K-DNN is a classification model. Figure 5 shows the number of
layers, neurones, and input and output parameters used in this model.

The input layer of this network receives transposed vectors of signal values and 2D
locations. This can be expressed as

DNNinput = [X, Y, RSS1, RSS2, . . . , RSSn]
T (7)

where X and Y are the 2D points predicted by KNN and RSSi represents the signal value
of the ith transmitter (BLE or WLAN).

The calculated result for this layer is then fed into the first hidden layer. Each input
element from Equation (7) is multiplied by a specific weight vector �w. The product of this
operation is then added to a bias b. The formula for this can be expressed as follows:

h1 =
n

∑
i=1

w1
i Ii + b1

i (8)

where Ii is the element ith of the input vector. The summation of all these inputs is then
passed onto an activation function unit A. In our proposed network, this is the rectified
linear unit (ReLu).

A1 = max(0, h1) (9)
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Here, A1 is the activation function of the first hidden layers. The output of this layer is
128 neurones. In the same way,

h2 =
n

∑
i=1

w2
i a1

i + b2
i (10)

The result of this hidden layer is passed onto a further activation unit A2:

A2 = max(0, h2) (11)

Finally, the output of Equation (11) is received by hidden layer 3 to make a similar
calculation for h1 and h2:

h3 =
n

∑
i=1

w3
i a2

i + b3
i (12)

The values calculated by Equation (12) are then fed into the activation function below:

A3 = max(0, h3) (13)

To predict the correct height of the mobile device, the softmax function equation below
is used:

θ(ai) =
exp(a3

i )

∑j exp(a3
j )

(14)

Figure 5. Layers of the DNN.
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3.3. K-DNN Psuedocode

For clarity purposes, the Algorithm 1 below explains how K-DNN works.

Algorithm 1: K-DNN Algorithm for 3D Localisation

Input : BLE_RSS : {(x1, y1, z1, ble1...blem)} ; � Get Hybrid BLE RSS

Input :WLAN_RSS : {(x1, y1, z1, wlan1.....wlann)} ; � Get Hybrid WiFi RSS

Output : Λ ; � Output 3D location

Require: Signal UpperThreshold μ;
Require: Signal LowerThreshold η;
Require: First quartile Q1;
Require: Third quartile Q3;
IQR← Q3-Q1 ; � Calculate Interquartile

for blei in BLE_RSS and wlani in WLAN_RSS do

if blei<Q3+(1.5*IQR) and blei>Q1-(1.5*IQR) then

ble_r← blei ; � Apply IQR method to BLE

if wlani<Q3+(1.5*IQR) and wlani>Q1-(1.5*IQR) then

wlan_r← wlani ; � Apply IQR method to WLAN

RSS← wlan_r ∪ ble_r ; � Fuse BLE and WLAN Radiomaps

end

for RSSi in RSS do

R ← RSSi−μ
μ−η ; � Normalize signal

X_Y ← KNN(R) ; � Apply first model prediction

Z ← DNN(R, X_Y) ; � Apply second model prediction

Λ ← X_Y ∪ Z ; � merge results output

end

return Λ

4. 5G IoT Physical Network Environment

In this part of the article, we explain the main components of the 5G IoT network
that was used in this experiment. For clarity purposes, Figure 6 shows the logical network
architecture.

Figure 6. 5G IoT network logical architecture.

4.1. 5G Core Network

In this experimental testbed, we adopted 5G NSA (non-stand-alone) access as sug-
gested by 3GPP release 15 [70]. This concept uses dual connectivity (eNodeB/gNodeB)
to provide radio access to 5G-enabled UE (user equipment) via 4G EPC infrastructure,
as demonstrated in Figure 7a. The 5G core network complied with 3GPP release 16 [71]
and used an open source called Open5gs [72]. This platform implements both 5GC (5G
core) and EPC (evolved packet core) using the C language. Open5G has evolved from

135



Electronics 2023, 12, 4150

4G NextEPC and comes with a WebUI to manage network subscribers. The developed
5G core network was used to configure NR/LTE networks for a private cellular network
infrastructure. The core network was virtualised and deployed on a 64-bit Linux machine
using a VMWARE workstation. It is worth mentioning that at the time of writing this
paper, other projects such as OpenAirInterface [73] and free5GC [74] have been instigated.
However, these solutions are not stable yet. A detailed description of these three projects
can be found in [75].

(a) 5G lab setup (b) 5G modem gateway

(c) Bluetooth Low Energy 2 (d) 5G wireless access point 4

Figure 7. 5G IoT test environment.

4.2. eNodeB (4G)/gNodeB (5G)

The Evolved/E-UTRAN Node B is a component in the E-UTRA of 4G LTE11. This
component connects subscribers to service providers through the S1-AP protocol linked
to S1-MME from the mobility management entity side. The eNodeB has its own radio
control functionality that manages a USRP B210 SDR (software-defined radio), as shown
in Figure 7a. This component offers a radio service via the air interface. The operating
frequency of this radio unit for 4G is between 800 MHz and 2600 MHz, as per the OfCom
regulations. A duplexer was also used to reduce the number of antennas needed to keep
the transmitter (Tx) and receiver (Rx) synchronised for both radio units. The software
side of this solution was implemented on a custom-built PC powered by an i9 CPU with
a total memory of 32 GB. This unit was an implementation of 3GPP release 15 [70], as
previously highlighted. This meant that it used dual connectivity to offer the service to
the user equipment. The 5G-capable device had to first connect to the MME through the
eNodeB to attach to a gNodeB. This is why it is called the NSA mode. This unit used the
X2AP protocol to communicate with the eNodeB nearby. The dedicated hardware for this
base station was similar to the eNodeB. In order to reduce the clock drifting, a 5G radio
was offered through a USRP B210 attached to a 5G band 7 cavity duplexer.
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4.3. 5G IoT Modem

The 5G gateway implemented in this testbed consisted of a Raspberry Pi 4 model B
and a Quectel 5G Quectel RM500Q-GL modem [76], as shown in Figure 7b. This gateway
linked the 5G cellular network to the WLAN and BLE networks used to extract fingerprints.

4.4. Wireless Local Area Networks

During the experimental design, five IEEE 802.11ac [77] wireless access points were
considered for deployment at the assigned site. Figure 7d depicts one of the access points
used in this setup. In this configuration, each transmitter operated at 2.4 Ghz and a coverage
range of 45 m, although dual band was possible, as this technology also supports 5 Ghz.

4.5. Bluetooth Low Energy

As a secondary source for information fusion, we considered using the IEEE 802.15.1
standard, which is BLE version 5.0 [78]. The devices used in this experiment operated at 2.4
Ghz and 350 m. Figure 7c illustrates one of the BLE units used in this setup. The following
section covers the simulated environment of this architecture.

5. Test Environment

The K-DNN algorithm was tested by combining actual and simulated measurements.
The experiment took place in two teaching laboratories at London South Bank University
of approximately 126 m2 (6 m wide by 21 m long by 3 m high), as shown in Figure 8.

Figure 8. Floor plan with access points and BLE position.

To achieve this task, a 5G IoT network was deployed in the two laboratories. The
network consisted of five IEEE 802.11 access points and four IEEE 802.15 BLE units that
were randomly placed based on Table 1. Two radiomaps were constructed: the first was
generated using an actual measurement campaign, and the second using TruNet wireless,
a 3D ray-tracing deterministic simulator [79].
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Table 1. The 5G IoT setup location and antenna orientation.

Device X Y Z Antenna Orientation

AP1 0 0 2 Vertical

AP2 6 6.5 1.5 Horizontal

AP3 0 11 1.5 Vertical

AP4 0 13 1 Horizontal

AP5 3 15 0.5 Horizontal

BLE01 4 0 1 N/A

BLE02 1 9 1.5 N/A

BLE03 6 13 2 N/A

BLE04 3 21 0.5 N/A

5.1. Radiomap from Actual 5G IoT Measurements

During data collection, fingerprints were collected in 2236 equally spaced locations
(0.5 m spacing) at 0.5 m, 1 m, 1.5 m, and 2.5 m heights, as shown in Figure 9a. At each
measurement location, 30 distinct measurements were recorded at an interval of 1 sec-
ond using the iFused fingerprint data collector developed for Android-based devices, as
shown in Figure 9b. The RSS values stored in the radiomap ranged from −103 dBm to
−28 dBm. During the measurement campaign, the application recorded data from 5 APs
and 4 BLE devices.

(a) FW-208 classroom grid setup (b) iFused fingerprint data collector

Figure 9. Physical environment and fingerprint data collector.

5.2. 5G IoT Simulated Radiomap
5.2.1. TruNet Tool

As previously highlighted, we considered using a 3D ray-tracing (RT) deterministic
tool called Trunet [79]. This application constructs 3D radiomaps in conjunction with
calibration techniques. The main advantage is that the tool generates efficient radiomaps
while saving the time and cost incurred by a measurement campaign. Figure 10a,b illustrate
the building simulated using the Trunet software along with a layer of the multi-layered
simulated radiomap generated for both WLAN and BLE, respectively.
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(a) Simulated radiomap for BLE 1 (b) Simulated radiomap for access point 2

Figure 10. 5G IoT simulated environment radiomap example.

5.2.2. Simulated Radiomap

The second radiomap was constructed using the TruNet simulator. RSS fingerprints
were collected according to the procedure used by the authors of [13,80]. To ensure that
the measurement recorded by the iFuse application matched the simulated measurements,
5 APs and 4 BLE units were configured according to the antenna radio propagation char-
acteristics in Table 2. Furthermore, the building structure and furniture were configured
based on the calibration procedure in [81]. As a result, the same 2236 measurement points
were generated and defined as receiver cells. At the end of this process, two layers of
fingerprints (2 m and 1.5 m high) were merged with the actual measurement radiomap.

Table 2. The BLE and WLAN radio propagation parameters.

Parameter BLE WLAN

Rx sensitivity (dBm) −70 −120

Tx power (dBm) 8 12

Antenna type Omnidirectional Omnidirectional

Max refractions 5 12

Max reflections 5 12

Max diffractions 1 1

5.2.3. The physical Network Behaviour

It was evident that the obtained RSS signal could be affected by various types of
noise from the environment. We needed to ensure that the radiomap constructed by the
simulation matched with the results of the measurement campaign. Figure 11 shows a
strong correlation between the real RSS values and the Trunet values measured for access
points and BLE units.

(a) Measured vs. simulated fingerprints for AP 01 (b) Measured vs. simulated fingerprints for BLE 02

Figure 11. BLE 02 and AP 01 simulated vs. real measurement comparison.
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5.3. Preprocessing
5.3.1. Multi-Layered Radiomap Hybridisation

The hybridisation of a radiomap refers to the process of merging simulated and real
measurements of the same environment at different height levels. This preprocessing
technique merges multiple 3D layers from various available sources. In this experiment,
we combined two simulated measurements (2 m and 1.5 m heights) with two layers of real
measurements (0.5 m and 1m heights). This technique is novel as far as we know and has
not been implemented in previous papers. It could be beneficial for scenarios involving
complex buildings where extensive human resources and time are allocated. To ensure that
there was a correlation between the simulated and real measurements, we compared the
location IDs of the same layer belonging to the same BLE and access point. As demonstrated
in Figure 12, there was a strong correlation between the measurements obtained in the
simulation and the actual measurements. Furthermore, to prove the feasibility of this
technique, we compared the non-fused and fused models, as presented at a later stage in
this paper.

(a) Access point 03 hybrid radiomap (b) Access point 03 simulated radiomap

Figure 12. Simulated Authors. No need to move it. vs. hybrid radiomap.

5.3.2. Feature Selection

During the feature selection process, a Pearson correlation test was performed between
the BLE units and APs, as this was necessary to ensure that there was no redundancy in the
information provided to the K-DNN models. Figure 13 clearly shows that there was no
substantially positive or negative correlation between the selected BLE unit and AP used in
this experiment.

Figure 13. Pearson correlation matrix for the radiomap.

5.3.3. Outlier Elimination

Outliers are generally values that lie an abnormal distance from other values in a
normal distribution. In the case of RSS-based positioning, these types of values find their
way into a radiomap during the measurement campaign when a signal fluctuation occurs or
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when there is interference, such as human activity. To deal with this data quality problem,
we applied the interquartile method introduced by Upton and Cook in [82], as shown in
Figure 14.

In this work, we implemented this method to prevent K-DNN from learning extreme
RSS values that were picked up by the receiver during the data collection process. After
treating the outliers, 2031 observations were left to train the K-DNN model. Table 3 shows
a summary of the considered features and their minimum and maximum values.

Figure 14. Outlier removal using IQR technique.

Table 3. The features used to construct the fingerprint database.

Variable Min. Value Max. Value Type

X 0 6 Coordinates

Y 0 21 Coordinates

Z 0.5 2 Coordinates

AP1 −84 dBm −28 dBm RSS value

AP2 −86 dBm −30 dBm RSS value

AP3 −84 dBm −35 dBm RSS value

AP4 −87 dBm −32 dBm RSS value

AP5 −109 dBm −37 dBm RSS value

BLE01 −105 dBm −32 dBm RSS value

BLE02 −86 dBm −32 dBm RSS value

BLE03 −97 dBm −35 dBm RSS value

BLE04 −120 dBm −42 dBm RSS value

5.3.4. Data Normalisation

To preserve the relationship between the original data values while speeding up the
learning process, a min–max normalisation technique was implemented to scale the original
values between 0 and 1. Since the scaled values were negative, we extracted the absolute
value. The equation used was ∣∣∣∣ RSSi −min(RSS)

min(RSS)−max(RSS)

∣∣∣∣ (15)

141



Electronics 2023, 12, 4150

where min(RSS) refers to the minimum value of the threshold signal in the training sig-
nal, that is, −120 dBm, and max(RSS) represents the maximum measured value, that is,
−28 dBm. Each measurement of the signal that we needed to convert is denoted by RSSi,
where i is the ith row on the N BLE unit or access point transmitter. For a different scenario,
it would be preferable to rely on the receiver sensitivity level as the minimum value while
choosing the strongest measured signal value during the offline phase as the maximum
value. This process was important for both the KNN and DNN models, as it changed
the values of each access point and BLE unit to a common scale, without affecting the
differences in the range of values.

5.3.5. One-Hot Encoding

One-hot encoding is the process of converting a column of continuous ordinal numeric
values to binary columns based on the distinctive values [13], as shown in Algorithm 2.
This process was applied in this experiment to the 1D (Z) values. Mapping the distinctive
values 0.5 m, 1.0 m, 1.5 m, and 2.0 m to four binary columns was the result of this process.

Algorithm 2: One-Hot Encoding

Input : Column Z � get Z columns

Output : Result matrix of N binary vectors unique values from Z
Dictionary D = [];
Results R = {[],[],[],[]};
for i in Z.length do

if i �∈ D:� If value not in dictionary add it

key = D[i]
D[i] = Z[i]

end

return D
Map D into results R columns as binary vector {[Z1], [Z2], . . . , [Zn]}

6. Performance Evaluation

Testing the performance of K-DNN involved training the DNN using the ADAM
(adaptive momentum) algorithm [83] and KNN using the elbow method [84]. The former is
useful for learning highly sparse datasets, while the latter is a technique used to cross-check
the model performance against the number of K chosen. Figure 15a reveals how the DNN
converged in the 1000th training iteration. The KNN model achieved the lowest error rate
at K = 6, as illustrated in Figure 15b.

(a) DNN Epochs vs. model accuracy (b) KNN MSE vs. the number of K selected

Figure 15. 5G IoT simulated environment radiomap example.

Additionally, it is worth noting that the DNNs were trained using the hyperparameters
in Table 4. In the following section, we evaluate and compare the performance of this
model on different radiomaps.
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Table 4. DNN hyperparameters.

Hyperparameter Value

Learning algorithm ADAM

Learning rate 0.001

β 1 0.9

β 2 0.999

Dropout 0.35

Momentum 0.99

Batch size 64

ε 1e-07

Number of hidden layers 3

Number of hidden layers in each neuron 128

7. Results Analysis

7.1. DNN Scoring

To assess the impact of the proposed approach, we trained four models using different
combinations of radiomaps to draw comparisons with the concept suggested in this paper.
The four models were trained as follows:

• Model 1: hybrid radiomap (proposed approach).
• Model 2: hybrid radiomap without information fusion.
• Model 3: simulated radiomap.
• Model 4: simulated radiomap without information fusion.

Using 180 random samples, as suggested by the authors in [85], we tested the misclas-
sification performance of each DNN model at various heights: 0.5 m, 1 m, 1.5 m, and 2 m, as
illustrated in Figure 16. In the graph, it is clear that the hybrid approach with information
fusion achieved the lowest misclassification count out of the four models. As can be seen
in Table 5, 91% of the samples—circa 164—were accurately classified. The model trained
using the proposed hybrid approach without information fusion came second, with a classi-
fication rate of 87% (152 out of 180 samples). The third model was trained with information
fusion and a simulated radiomap, and it performed badly compared to the two previous
models. This model achieved a classification rate of 73% (132 out of 180 samples). The
fourth model, which was trained using a simulated radiomap without information fusion,
performed worse, with a classification score of 56 out of 180. These results demonstrate
how the proposed hybrid approach outperformed the rest of the training scenarios. Given
this, it could be concluded that the hybrid information fusion technique could drastically
improve localisation in a 1D environment. Detailed misclassification counts for each height
are provided in Table 5. The model with the poorest performance is indicated in red, while
the model with the best performance is denoted in blue.

Table 5. Detailed results of DNN misclassification count.

Hybrid Hybrid No Fusion Simulated Simulated No Fusion

0.5 m 0 9 17 18

1 m 8 8 14 17

1.5 m 3 5 10 11

2 m 5 6 7 10

Total 16 28 48 56
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Figure 16. DNN misclassification count results by height.

7.2. KNN Scoring

As in the previous subsection, to assess the feasibility of our proposed technique in
2D localisation, four KNN models were evaluated using 180 samples. The trained models
were as follows:

• KNN 1: hybrid radiomap with information fusion.
• KNN 2: hybrid radiomap without information fusion.
• KNN 3: simulated radiomap with information fusion.
• KNN 4: simulated radiomap without information fusion.

Figure 17 shows the cumulative distribution function (CDF) of the error in metres for
each KNN model. For the 75th percentile, it is demonstrated that the hybrid with fusion,
simulated with fusion, hybrid, and simulated models achieved 90 cm, 1 m, 1.10 m, and
1.20 m errors, respectively. Using the CDF as a metric, the proposed 3D multi-layered hybrid
approach achieved a submetre accuracy, in contrast to the rest of the models. Therefore,
given the results for KNN and the DNN, it can be strongly argued that the proposed
K-DNN method drastically reduced the localisation error.

Figure 17. KNN CDF results.

8. Conclusions and Future Work

In this work, we proposed a novel algorithm for improved indoor positioning in
5G IoT networks. The proposed approach used IQR to deal with outliers and a hybrid
radiomap to reduce the labour cost incurred during the data collection phase. Additionally,
we demonstrated how cooperative machine learning localisation can be implemented on
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top of this technique. Using this approach, we showed how information fusion imple-
mented on 3D multi-layered radiomaps can be used to reduce the localisation error to
the submetre level in 2D and attain a 91% classification rate in 1D. This result could be
achieved in a similar environment if the steps in Figure 4 are followed. This concept has
the potential for expansion into more intricate indoor positioning scenarios, encompassing
diverse radio data sources from a heterogeneous network like 5G micro-infrastructure
(including microcells, femtocells, and picocells). Additionally, our proposed K-DNN model
demonstrated strong performance with RSS-based IoT and wireless sensor networks. As
a result, our future endeavours will focus on enhancing the model by integrating data
from different azimuth angles (45◦, 90◦, 180◦, and 360◦). Another avenue of research could
involve incorporating floor-level detection for buildings with multiple stories.
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Abstract: Unmanned aerial vehicle mobile ad hoc networks (UAVMANETs) formed by multi-UAV
self-assembling networks have rapidly developed and been widely used in many industries in recent
years. However, UAVMANETs suffer from the problems of complicated key negotiations and the
difficult authentication of members’ identities during key negotiations. To address these problems,
this paper simplifies the authentication process by introducing a Latin square to improve the process
of signature aggregation in the Boneh–Lynn–Shacham (BLS) signature scheme and to aggregate the
keys negotiated via the elliptic-curve Diffie–Hellman (ECDH) protocol into new keys. As shown
through security analysis and simulations, this scheme improves the efficiency of UAVMANET
authentication and key negotiation while satisfying security requirements.

Keywords: UAVMANET; multiparty key negotiation; Latin square; BLS protocol

1. Introduction

Unmanned aerial vehicles (UAVs) [1] are unmanned aircraft that can be flown au-
tonomously or remotely controlled using wireless channels for communication. The benefits
of UAVs include their simple structure, flexible deployment, and low prices. In recent
years, with the rapid development and large-scale application of internet-of-things (IoT)
technology, the development trend of UAVs has shifted from single UAVs to the cooperative
operation of multiple UAVs. UAV mobile ad hoc networks (UAVMANETs) [2] composed of
multiple UAVs have become a new type of mobile self-organized networks that are widely
used in commercial drone performances, joint search and rescue operations, environmental
surveys, military missions, and other applications.

A UAVMANET is a special self-organizing network created by placing clusters of
UAVs in open wireless channels [3], through which these UAV clusters can connect au-
tonomously after large-scale deployment. Each node in a UAVMANET has the same status
and acts as a temporary relay node while completing its flight mission [4]. The decentral-
ized structure of UAVMANETs ensures greater self-organization, more distributed control,
and more dynamic topologies than are found in traditional wireless and wired networks.

However, since the UAV clusters work in insecure open channels [5], UAVMANETs
are vulnerable to malicious attackers during the self-assembly process. Such attackers
can compromise UAVMANETs by eavesdropping on, jamming, and hijacking message
data on the communication links [6]. Key negotiation techniques for establishing secure
communication over insecure channels can be applied in UAVMANETs; however, attack-
ers can disguise themselves as legitimate users to obtain session keys illegitimately [7].
Additionally, UAVMANET networking needs to account for the flexibility of the network
members. Therefore, there is a need to establish a key agreement scheme that can guarantee
the efficient generation of session keys and support any number of UAV group members
to ensure the confidentiality, integrity, and availability of data communication. Such a
UAVMANET key negotiation protocol should have the following features:
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• Extensibility: In key negotiation, any number of UAV group members should be
allowed to form a UAVMANET.

• Security: Group members should be secure during the negotiation of group keys, and
the final session key information should not be able to be breached by malicious users
due to group member key interactions.

• Authenticability: Participating UAVMANETs should be authenticable during key
negotiations to prevent man-in-the-middle attacks.

1.1. Related Works

UAVMANETs, as a special kind of ad hoc network, have a multiparty key negotiation
problem. Solutions to this problem can be divided into two categories: noninteractive
key negotiation protocols and interactive key negotiation protocols. Noninteractive key
negotiation protocols allow the communicating parties to negotiate the same key in a
single key negotiation. After Diffie and Hellman [8] proposed the first noninteractive key
negotiation protocol in 1976, many cryptographers attempted to extend this approach
to multiple parties, that is, to solve the group key negotiation problem through a single
key negotiation. Joux [9] first accomplished the expansion of the Diffie–Hellman (DH)
protocol from two to three parties with only one round of communication but did not
expand the protocol to more than three members. Garg et al. [10] proposed implementing
a multilinear mapping scheme (the GGH scheme) on an ideal lattice using a hierarchical
coding system as a solution to the multiparty key negotiation problem. However, this
scheme was proven to be unreliable by Hu et al. [11]. Therefore, at present, it is not
possible to achieve a noninteractive key negotiation protocol with more than three parties.
The research on interactive key negotiation protocols is mainly based on expanding the
two-party DH protocol to multiple parties [12,13] by using the DH protocol as the core
scheme to form a unified key through the interaction of the protocol participants in multiple
communication rounds.

Dutta et al. [14] explored the DH algorithm on a ring structure with forward and
backward security but did not support the dynamic joining and leaving of members.
Steiner et al. [15] improved the DH protocol by proposing a key agreement approach that
can be used for multiple parties and accounts for dynamic group members. However, the
number of communication rounds generated in the key update and establishment phase of
the protocol is related to the number of group members; as the number of group members
increases, establishing group keys becomes more time consuming. Kim [16] formulated a
tree-based key management structure to improve the DH protocol and calculated the root
node key by cascading the subkeys of the leaf nodes. Compared with other structures, this
tree-based key management structure is better suited to the use of the DH protocol in a
group environment and can more efficiently reduce the number of node keys [17–20].

Due to the unique mathematical properties of Latin square arrays, they are widely used
in the field of communication [21,22]. They can also be applied in key negotiations. Because
a given partial Latin square can be uniquely extended to a complete Latin square, a Latin
square can be constructed for multiparty key gating. Stones et al. [23] constructed a shared
key based on subsecrets using symmetric self-replication. Chum et al. [24] constructed a
Latin square key-sharing scheme using hash functions. Shen et al. [25] combined a Latin
square scheme with a traditional (t, n)-gated key-sharing scheme to optimize machine-
to-machine communication by enhancing efficiency and security. We note that in the
above applications, the Latin square is load-balancing to adjust the communication model
for distributed systems. Boneh et al. [26] proposed using a Latin square to adapt a key
negotiation scheme for cloud computing. This protocol supports any number of user
members and incorporates key validation and fault tolerance, but its use of multiple
mappings is too burdensome for computing on drones.

In the last two years of research on UAV key negotiation, Xia et al. [27] proposed an
identity-based elliptic-curve key negotiation scheme to achieve authentication and key
negotiation between UAVs and ground stations. However, the proposed system is only
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applicable to static UASs with a central node, which is less flexible. Zhang et al. [28]
proposed a lightweight authentication and key negotiation protocol for UAVs. The physical
unclonable function (PUF) is introduced in the protocol operation, and the authentication
and key negotiation can be completed using only hash and heterodyne operations using
the characteristics of the PUF, avoiding complex cryptographic operations. However,
PUF-based schemes have disadvantages such as complex configuration and the need for
specific PUF hardware. Tian et al. [29] proposed a UAV authentication and key negotiation
protocol based on the PUF that can communicate across domains. This protocol can
communicate across domains before multiple ground stations, but the scheme does not
apply to UASs without a central station. Xie et al. [30] managed multiple drone tasks by
building a three-tier blockchain. Therefore, this paper proposes using a Latin square to
optimize the rounds and process of key negotiation in a self-organizing network of UAVs
and designs a set of improved DH protocols to ensure that security and efficiency can be
simultaneously addressed in the process of UAV group key negotiation. At the same time,
the proposed protocol accounts for the networking characteristics of UAVMANETs and
supports a flexible authentication process.

1.2. Motivation and Contributions

The main contributions of this paper are as follows:

• We propose a Latin-square-based dynamic-group key negotiation protocol with au-
thentication. Using the strong mathematical and cryptographic properties of Latin
squares, we designed the protocol to allow any number of members to form a group
and negotiate the session keys through a self-organizing network of group members
without the assistance of a central node for key negotiation. Compared with other
key negotiation protocols, our protocol has greater decentralization and networking
flexibility.

• The proposed protocol is made more efficient by combining a Latin square array with
the Boneh–Lynn–Shacham (BLS) signature algorithm. By combining the signature ag-
gregation process with the construction of a Latin square, it is ensured that each round
of communication verifies and aggregates the previous round of blocks, achieving a
more efficient signature scheme. The traditional protocol requires a communication
cost O(n2), while the proposed protocol has only an O(n log n) communication cost.
The proposed Latin-square-based signature scheme incurs only half the communi-
cation overhead of the elliptic curve digital signature algorithm (ECDSA), and this
scheme uses curve hashing to manage its time overhead, unlike other schemes.

• The proposed protocol has higher efficiency and less overhead in the key negotia-
tion phase than the traditional protocol. We optimized the broadcast scheme in the
traditional key agreement protocol to communicate with specified members in the
square; as a result, only an O(n log n) communication cost is required to complete key
negotiation, whereas the traditional key negotiation protocol has a communication
cost of O(n2). Furthermore, in the key agreement stage, we used the elliptic-curve
point product algorithm, which incurs less communication overhead. Therefore, the
proposed key negotiation protocol is more efficient than the traditional protocol.

1.3. Organization

This paper is organized as follows. The first section introduces the concept and main
features of UAVMANETs. The second section presents the initial parameters of the protocol
along with the mathematical notation used. The third section describes the model used.
The fourth section presents the protocol. The fifth and sixth sections analyze the security
and key properties of the protocol. The final section summarizes the full text.
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2. Preliminaries

In this section, we briefly describe the key techniques to be used and clarify their
connection to this paper. The symbols that appear in this paper are defined in Table 1.

Table 1. Symbolic notations used in the proposed protocol.

Notation Description

PIDi UAV identifier
Fp Domain formed by G

Fp2 Domain formed by GT
G Additive group
GT Multiplicative group
P, Q Prime numbers

ê Weil pairing on G×G→ GT

G1
The base point of an elliptic curve over a finite field for

authentication

G2
The base point of an elliptic curve over a finite field for key

negotiation
Pki Drone public key
Ski Drone private key
pi The temporary public key for drones
si The temporary private key for drones

Mt,i The tth negotiated key in the ith round
wi,j Shared key of PIDi and PIDj
κ Negotiated key

H(si) Hash of si
Signi Signature

2.1. BLS Signature Protocol

Building BLS signatures requires the utilization of curve hashing and the Weil
pairing technique.

Curve hashing means that the result of hashing a message corresponds to a point on
an elliptic curve, and the construction method is to determine the corresponding points on
the elliptic curve for various points whose hash values are plotted on the X coordinate axis.

A Weil pairing is the mapping of two points on a curve to a single number using
a special function. Let E be the elliptic curve defined by the equation y2 = x3 + 1 over
Fp2 , let P ∈ Fp be a point of order Q, and let G be the subgroup of points generated by P,
where GT is a subgroup of Fp2 . Then, the map ϕ(Q) is an automorphism of the group of
points on the curve E. To obtain a nondegenerate map, we define the modified Weil pairing
ê : G×G→ GT as follows:

ê(P, Q) = ê(P, ϕ(Q)) (1)

• Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G, a, b ∈ Fp.
• Nondegeneracy: If P ∈ G, then ê(P, P) is a generator of GT .
• Computability: There exists an efficient algorithm to compute ê(P, Q) for all P, Q ∈ G.

When generating a BLS signature, we first hash the curve of the message and then
multiply the coordinate points on the curve obtained from the corresponding curve hash by
the private key to obtain the signature. The result is the points on the curve. The signature
generation process is shown in Figure 1.
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Figure 1. BLS signature generation process.

It is necessary to verify that ê(Pk, H(s)) = ê(G1, Sign) when verifying a signature.

2.2. Latin Square

A Latin square is an n× n square matrix with exactly n different elements in each of
the n rows of elements. The pseudocode for the process of Latin square construction is
shown in Algorithm 1.

Algorithm 1 Construction of a Latin square

for x = 1; x ≤ k; x + + do

for y = 1; y ≤ k; y + + do

ax,y = (x + y − 1);
end for

end for

In this paper, using the mathematical properties of a Latin square array, the row
elements are used as the communication directions for pairing, and the pairing process
forms a new Latin square array to finally aggregate the signature information and key
negotiation information. Taking a 4× 4 Latin square array as an example, the specific
process is shown in Figure 2.

Figure 2. Latin square member aggregation process.

2.3. Elliptic-Curve Diffie–Hellman Key Exchange

The elliptic-curve Diffie–Hellman (ECDH) key exchange algorithm is a DH algorithm
built on elliptic curves, which uses the dot product operation (wi ∗ G2) ∗wj = (wj ∗ G2) ∗wi
on elliptic curves to negotiate keys. In this paper, the ECDH algorithm is used for UAV key
negotiation. The basic units for generating public and private keys and the basic elements
for conducting key negotiation are constructed as follows:

• PIDi uses a self-generated random number si as a temporary private key, constructs
an elliptic curve using the G2 generated by a ground station (GS), and calculates the
public key pi.
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• PIDj uses a self-generated random number sj as a temporary private key, constructs
an elliptic curve using the G2 generated by the GS, and calculates the public key pj.

• PIDi and PIDj exchange their public keys pi and pj on an open channel.
• PIDi computes the negotiated key κ = pj ∗ si.
• PIDj computes the negotiated key κ = pi ∗ sj.
• PIDi and PIDj have the same κ = sj ∗ G2 ∗ si.

In this paper, we complete the key negotiation problem in a group by applying the
ECDH algorithm several times in multiple rounds of communication to aggregate the keys,
finally ensuring that all members of the group negotiate the same key.

3. The Models

3.1. System Model

Figure 3 illustrates the communication model of the UAVMANET system. In this
system, there are two kinds of entities: a ground station (GS) and UAV nodes [31]. The GS,
as a trusted third party in this system, does not participate in key negotiations and is only
responsible for providing registration services for members in their first communication.
Only members who complete registration can participate in the dynamic activities of the
group. The group system consists of several UAVs registered by the GS, communicating
through a self-organizing network. When new members need to join, they need to register
their unique identifiers (IDs) through the GS. Then, after obtaining the identity information
and relevant system parameters provided by the GS, they can interact with other group
members to form new session keys. Only UAVs that have registered with the GS, and
thus have unique IDs and initial parameters, participate in the authentication and key
negotiation process. Therefore, this system is flexible and decentralized.

Figure 3. The communication model of the UAVMANET system.
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3.2. Security Model

For this paper, two games, Game0 and Game1, were defined to prove the security of
the authentication process and the key agreement process, respectively, of the protocol. The
operational model is shown in Figure 4.

Figure 4. Operational flow chart of the security model.

Game0 proves the security of the protocol authentication process. It is a game between
an adversary and a challenger under the model of existential unforgeability against chosen-
message attacks (EU-CMA) and is designed as follows.

Setup: The challenger C generates and publishes the initial parametersPG = (G,GT , g, p, e)
by executing the initial phase, which generates Pki.

Query: The adversary A selects a drone set {PID1, PID2 · · · PID2k} and can repeat-
edly ask the challenger C for a public key Pki and signature Signi.

Forgery: When A finishes querying C, A forges a signature from the information
obtained. If A forges a correct signature based on the information already queried, then A
wins the game.

Game1 proves the security of the protocol’s key negotiation process. It is a game
between an adversary B and a challenger D. The game is designed as follows.

Setup: The challenger D generates and publishes the initial parameters by executing
the initial phase, which generates Pki.

Query: The adversary B chooses a drone set {PID1, PID2 · · · PIDn} and can repeat-
edly ask the challenger D for a short-term key pi. The challenger D replies with the
short-term key pi. ({PID1, PID2 · · · PIDn} ⊂ {PID1, PID2 · · · PID2k}, meaning that the
adversary B does not have access to all keys.)

Attack: When B finishes querying D, the protocol is attacked to recover the negotiated
key; if B can compute the correct key κ, B wins the game.

4. The Proposed Protocol

This section describes the specific process of a multi-round DH cipher negotiation
protocol based on the construction of a Latin square (Figure 5). The protocol is divided into
three phases. In the first phase, a Latin square array is constructed for the cluster members
for system initialization. Based on the constructed Latin square, the cluster members will
select the nodes to perform key negotiations in each round. In the second phase, the cluster
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members authenticate their identity information. In the third phase, corresponding cluster
members perform key negotiations in accordance with the rules of the Latin square.

Figure 5. Protocol phase diagram.
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4.1. System Initialization

Before the protocol starts, each UAV obtains a unique identity PIDi by registering
with the GS. The base point G1 of an elliptic curve over a finite field is used to generate
the authentication keys Pki and Ski, and the base point G2 of an elliptic curve over a finite
field is used to generate the temporary keys pi and si for negotiation. The GS generates the
parameters PG = (G,GT , P, Q, ê), which are necessary for bilinear mapping, and the GS
sends {PIDi,G1,G2,G,GT , P, Q} to each UAV member when it registers with the network.

After a UAV has joined the network, it performs the initialization operation by
using the {PIDi,G1,G2,G,GT , P, Q} sent by the GS to generate its long-term key
Pki = Ski × G1 and its temporary key pi = si × G2, and it calculates H(si). The signature
ê(Pki, H(si)) = ê(G1, Signi) is constructed based on the parameters PG = (G,GT , P, Q, ê).

4.2. Latin Square Construction

Suppose that there are three members in a group, denoted by a0, a1, and a2. For this
three-member group, the following standard-type Latin square (Latin square in standard
form) can be built: ⎛⎝a0 a1 a2

a1 a2 a0

a2 a0 a1

⎞⎠
To generalize this Latin square to a generic k-order standard-type Latin square model,

in the proposed protocol, the total number of Latin square members n is first used to
calculate k = log2 n. If k is not an integer, then to maintain the structure of the protocol,
virtual members 2k − n to 2k are added to maintain the structure of the protocol and
facilitate the construction of the Latin square.

The generated k-order standard Latin square matrix is shown below. For each member
of the matrix, in the xth row and yth column, the element of the matrix is axy = (x + y− 1),
corresponding to the UAV node PID(x+y)mod2k in the UAV swarm. By placing the IDs
of the UAVs into the elements one by one, the constructed square communication matrix
model for the UAV swarm can be obtained as shown below.⎛⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 · · · a12k

a21 a22

a31 a33 · · ·
...

. . .
a2k1 · · · a11

⎞⎟⎟⎟⎟⎟⎟⎠⇒
⎛⎜⎜⎜⎜⎜⎜⎝

PID1 PID2 PID3 · · · PID2k

PID2 PID3

PID3 PID5

...
...

. . .
PID2k · · · PID1

⎞⎟⎟⎟⎟⎟⎟⎠
Taking a member PID1 as an example, in the first round of communication, PID1

receives a message Msg1,1 from PID2 to negotiate the key M1,1 after authentication. In the
second round of communication, PID1 negotiates the key M2,1 with PID3 after authentica-
tion, and in the nth round, PID1 negotiates the key Mn,1 with PID2n after authentication.
When n = k, indicating the last round of communication, PID1 and PID2k−1+1 obtain the
final group key κ. (Note: In this protocol, the default key for virtual members is 1).

After construction through the above process, the UAVs communicate in each round in
accordance with the rules of the constructed Latin square, and the two UAVs corresponding
to each round interact with each other to aggregate their authentication information and
keys and form a new Latin square. Finally, a consistent key is obtained through this
aggregation process. The process of signature aggregation confirms the legitimacy of
the aggregated key; each member can verify the legality of the whole process, and any
illegitimate user will cause errors in the final aggregated signature. Thus, the Latin square
construction process ensures efficient authentication and key negotiation. In accordance
with the nature of a Latin square, the aggregated information exchanged between the two
communicating parties for each round of authentication and key negotiation does not
contain duplicate elements, as shown in Figure 6.
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Figure 6. Operational process of the proposed protocol.

4.3. The Proposed Protocol

The operation of the protocol proposed in this paper is divided into two phases: the
authentication phase and the group key negotiation phase.

4.3.1. Authentication Phase

In this phase, the relevant parameters and signatures for authentication are first
generated by a single drone. Subsequently, aggregated signatures are formed through
interactions with the relevant drones in the corresponding Latin square, and finally, au-
thentication is completed. All participating drones obtain an aggregated signature in this
way and can authenticate the identity of any member of the group in any
communication round.

In the process of signature aggregation, not only is the information of the partic-
ipating members authenticated, but the key negotiation process is also recorded, and
untrusted individuals can be backtracked by tracing the aggregated blocks. Thus, the
aggregated signature results can be used as proof of legitimate participation in the key
negotiation process.

Step 1 Generation of public and private keys with individual signatures:
In this phase, each drone PIDi that has registered with the GS generates its own public

key Pki and private key Ski for authentication using the generator G1 sent by the GS:

Pki = Ski ∗ G1 (2)

The key si of the drone PIDi is signed as follows. First, the hash calculation H(si)
is performed on si, and the result is then multiplied by Ski to obtain the signature result
Signi = Ski ∗ H(si), which is transformed into a point on the elliptic hash curve. The
drone sends Msgi = {Pki||Signi||H(si)||· · · } (the data represented by the ellipses are the
second-stage key agreement data) to the corresponding node for authentication.

Step 2 Aggregation of signatures on Latin squares:
A single member generates a signature message by the member communication rules

specified by the Latin square constructed as described in the previous section and then
starts the first round of communication. During the communication process, the members
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participating in each communication round aggregate the signatures from the previous
communication round. Eventually, each member can generate a uniform aggregated
signature and can verify the signatures from the previous rounds. Based on the difference
in the aggregated signatures, the communication round in which an object was sent can
be located.

After the drone PIDi receives Msg1,i+1 = {Pki+1||Signi+1||H(si+1)||· · · } from PIDi+1
in round 1, it can calculate the aggregated signature using the mathematical properties of
an elliptic curve, Sign = Signi + Signi+1, while aggregating the key Pk = Pki + Pki+1.

Drone PIDi has the aggregated signature Sign = Signi,1 + Signi,2 + · · ·+ Signi,2n and
the aggregated key Pk = Pki + Pki+1 + · · · Pki+2n in round n (1 < n < k); it receives the
following PIDi+2n :

Msgn,i = {Pk||Sign||H(s)} (3)

where
Pk = Pki+2n+1 + Pki+2n+2 + · · · Pki+2n+1 (4)

Sign = Signi+2n+1 + Signi+2n+2 + · · · Signi+2n+1 (5)

H(s) = H(si+2n+1) + H(si+2n+2) + · · ·H(si+2n+1) (6)

Msgn,i is obtained by using the mathematical properties of elliptic curves to calculate
the aggregated signature Sign = Signi + Signi+1 + · · ·+ Signi+2n+1 while aggregating the
key Pk = Pki + Pki+1 + · · · Pki+2n+1 .

After the kth round of aggregation, PIDi can obtain the aggregated signature

Sign =
2k

∑
i=1

Signi and verify signatures with the aggregated public key Pk =
2k

∑
i=1

Pki. Simi-

larly, each drone in the cluster can obtain the aggregated signature Sign during the Latin
square construction process.

Step 3 Identity verification:
Since an improved BLS signature scheme is used in the signature aggregation pro-

cess, each round can be considered as a separate block, and performing authentication
requires only verifying each block. That is, the following equation should be satisfied:
ê( G1, Signi) = ê(Pk0, H(s0))× ê(Pk1, H(s1))× . . .× ê(Pki, H(si)).

After receiving Msgi+1 from PIDi+1 in round one, the drone PIDi verifies the signa-
ture using the public key Pki+1 of PIDi+1:

ê(Pki+1, H(si+1)) = ê(Ski × G1, H(si+1)) = ê(G1, Ski × H(si+1)) = ê(G1, Signi) (7)

Drone PIDi uses the aggregated public key Pki+2n+1 + Pki+2n+2 + · · · Pki+2n+1 re-
ceived from PID(i+2n)mod2k to verify the signature after the first n (n < k) rounds when the
message Msgn is received.

Specifically, after receiving Msgn from PID(i+2n)mod2k in the nth (n < k) round, the
drone PIDi uses the received aggregated public key Pki+2n+1 + Pki+2n+2 + · · · Pki+2n+1 to
verify the signature as follows:

ê(Pk , H(s))= ê
(

Pki+2n+1 + Pki+2n+2 + · · · Pki+2n+1 , H(s)
)

= ê
(G1 ×

(
Ski+2n+1 + Ski+2n+2 + · · · Ski+2n+1

)
, H(s)

)
= ê

(G1, Signi+2n+1 + Signi+2n+2 + · · · Signi+2n+1
)

= ê(G1, Signi+2n+1)× ê(G1, Signi+2n+2)× · · · ê
(G1, Signi+2n+1

) (8)

Here, the signature block of PID(i+2n)mod2k can be verified only if each signature
Signi+2n+1, Signi+2n+2, · · · , Signi+2n+1 in the signature block of PID(i+2n)mod2k is valid. In
the previous rounds of verification, signature aggregation was performed by other drones,
thus saving considerable work.
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Finally, after the kth round of verification, PIDi verifies the signature Sign =
2k

∑
i=1

Signi

using the aggregated public key Pk =
2k

∑
i=1

Pki. If the signature is verified, all drones

in the entire cluster are legitimate users. Every drone in the cluster can be verified via
this method.

4.3.2. Key Negotiation Phase

In this phase, individual drones first generate their public and private keys for negoti-
ation. An aggregated key is then formed by the drones in the corresponding Latin square
via the ECDH key negotiation protocol. In the next round, the aggregated key is passed in
the same way to form a new aggregated key. Finally, all cluster members can negotiate a
common key κ without pass-through in the following process.

In the process of key aggregation, the keys are aggregated on an elliptic curve so that
members of a group of arbitrary size can negotiate a common key without the participation
of the GS in a distributed manner. Thus, the difficult problem of negotiating keys over
wireless channels is solved.

Step 1 Generation of public and private keys:
A single drone PIDi generates its own public key pi and private key si for key negoti-

ation using G2 obtained from the GS:

pi = si ∗ G2 (9)

Step 2 Calculation of negotiated and aggregated keys on the Latin square:
In the first round of communication, UAV PIDi receives pi+1 from PIDi+1 and calcu-

lates the negotiated key:
M1,i = pi+1 ∗ si = G2 ∗ si+1 ∗ si (10)

In the second round of communication, UAV PIDi receives M1,i+2 from PIDi+2 and
calculates the negotiated key:

M2,i = M1,i ∗ G2 ∗M1,i+2 (11)

Drone PIDi forms the aggregated key before the nth round (2 < n < k):

Mn−1,i = Mn−2,i ∗ G2 ∗Mn−2,(i+2n−1)mod2k (12)

The following aggregated key is received from PID(i+2n)mod2k :

Mn−1,(i+2n)mod2k = Mn−2,(i+2n)mod2k ∗ G2 ∗Mn−2,(i+2n−1+2n)mod2k (13)

The key for this round is calculated as follows:

Mn,i = Mn−1,i ∗ G2 ∗Mn−1,(i+2n)mod2k (14)

After k− 1 rounds of negotiation, PIDi obtains the key Mk−1,i, and PID(i+2k−1)mod2k

obtains the key Mn−1,(i+2k−1)mod2k . Therefore, the negotiated shared key κ is obtained as
follows in the κth round:

κ = Mk−1,i ∗ G2 ∗Mk−1,(i+2k−1)mod2k (15)

By recursively expanding Mk−1,i and Mn−1,(i+2k−1)mod2k as described above, we can
obtain

κ =
k

∏
i=1

si ∗ G2 (16)

Similarly, all UAVs in the cluster can obtain the shared key by this method.
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5. Security Analysis

5.1. Informal Security Proof

Theorem 1. Each member of the cluster can verify that the negotiated key κ =
k

∏
i=1

si ∗ G2 is correct

and confidential.

Proof. The negotiated key of UAV cluster member PIDi is
κ = Mk−1,i ∗ G2 ∗ Mn−1,(i+2k−1)mod2k , where Mk−1,i = Mk−2,i ∗ G2 ∗ Mk−2,(i+2k−1)mod2k ,

Mk−1,(i+2k)mod2k = Mk−2,(i+2k)mod2k ∗ G2 ∗ Mk−2,(i+2k−1+2k)mod2k , and so on are calculated

recursively downward to obtain κ =
k

∏
i=1

si ∗ G2. κ =
k

∏
i=1

si ∗ G2 can be transformed into

κ =
k

∏
i=1

M1,i, where computing the private key in each M1,i can be considered equivalent

to solving the elliptic curve discrete logarithm problem (ECDLP) puzzle. Therefore, in
upward recursion, the aggregated key for each round is also secure. �

Theorem 2. In the protocol authentication phase, each UAV memberPIDiin the cluster can form an

aggregated public key Pk =
2k

∑
i=1

Pkifor the verification of the aggregated signature Sign =
2k

∑
i=1

Signi

and can verify that the signature is valid.

Proof. UAV member PIDi in the cluster has formed the following aggregated public key in
round k− 1:

Pkimod2k + Pk(i+2)mod2k + · · · Pk(i+2k−1)mod2k (17)

PIDi receives the following aggregated public key from PID(i+2k−1)mod2k :

Pk(i+2k−1+1)mod2k + Pk(i+2k−1+2)mod2k + · · · Pk(i+2k−2+2k−1)mod2k (18)

The above two aggregated public keys can be summed to obtain Pk =
2k

∑
i=1

Pki, and

similarly, Sign =
2k

∑
i=1

Signi. The signature is verified as follows:

ê(Pk , H(s))= ê

(
2k

∑
i=1

Pki, H(s)

)

= ê

(
G1 ×

2k

∑
i=1

Ski, H(s)

)

= ê

(
G1,

2k

∑
i=1

Signi

)

=
2k

∑
i=1

ê(G1, Signi)

(19)

This proves the theorem. �

5.2. Formal Security Proofs

The formal security proofs are now performed for Game0, Game1 to prove the unforge-
ability of the protocol with key negotiation against eavesdropping attacks.

Game0:
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Definition 1. The Computational Diffie–Hellman (CDH) Problem.

On the already determined cyclic group G, let ga, gb ⊂ G. Calculating e(g, g)ab

is difficult.
Let AdvCDH(A) denote the advantage that A has in trying to break the proposed

protocol, defined as follows:

AdvCDH(A) = Pr[winA] (20)

Let the adversaryA be attempting to forge a signature with a nonnegligible advantage
σ in solving the CDH problem, expressed as

AdvCDH(A) ≥ σ (21)

Forgery by the adversary A is considered successful when the following condition is
met:

Pr[winA] ≥ μ (22)

According to the security model introduced above, the adversaryA and the challenger
C run Game0 as follows.

First, the challenger C runs the Setup phase to generate the cyclic group G, ga, gb ⊂ G,
and its public key Pki, private key Ski, and signature Signi.

Then, the adversary A performs the Query operation, and the challenger C provides
the public key Pki of any UAV PIDi in the UAV set {PID1, PID2 · · · PID2k} and the short-
term private key hash H(si).

When the Query operation has been executed x times, the adversary A performs
the Forgery operation. A forges a signature based on the obtained data, and the forged

aggregated key is Pk =
x
∑

i=1
Pki according to the algorithm in the protocol. The decryption

algorithm can be used to verify the aggregated signature Sign =
x
∑

i=1
Signi with advantage

AdvCDH(A) ≥ σ on the basis of solving the CDH problem.

e

(
x

∑
i=1

Pki,
x

∑
i=1

H(si)

)
= e

(
G1,

x

∑
i=1

Signi

)
(23)

To achieve successful forgery, the adversary Amust solve the CDH problem, that is,
given G, g, gPki , gH(si), verify gSigni ·G1 = gPki ·H(si). Since there are 2k members in the whole
UAV cluster, once the adversary A has made x queries to obtain x keys, A still needs to
guess 2k − x keys. Let the key length be d; then, the probability that the adversary A wins
Game0 is

Pr[winA] =
1

2(2k−x)·d · AdvCDH(A) ≥ 1
2(2k−x)·d · σ ≥ μ (24)

If the authentication protocol can be forged, then the advantage in Pr[winA] ≥ μ

cannot be ignored. If 2(2
k−x)·d is also nonnegligible, then the CDH problem has been

solved, contradicting Definition 1. Therefore, the authentication part of the protocol is not
forgeable.

Game1:

Definition 2. Elliptic Curve Discrete Logarithm Problem (ECDLP).

Consider the discrete logarithm problem on an elliptic curve with elements pi on the
elliptic curve and base point G2. Finding si under the condition that pi = si · G2 holds
is difficult.
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Let AdvECDLP(B) denote the advantage that B has in trying to break the proposed
protocol, defined as follows:

AdvECDLP(B) = Pr[winB ] (25)

Let the adversary B be attempting to forge a signature with a nonnegligible advantage
σ in solving the ECDLP, to break the ECDLP. This is expressed as

AdvECDLP(B) ≥ σ (26)

An attack by the adversary B is considered successful when the following condition
is met:

Pr[winB] ≥ μ (27)

According to the security model introduced earlier, the adversary B and the challenger
D run Game1 as follows.

First, the challenger D runs the Setup phase, generating the base point G2, the tempo-
rary public key pi, and the temporary private key si.

Then, the adversary B performs the Query operation, and the challenger D provides
the temporary public key pi of any UAV PIDi in the set {PID1, PID2 · · · PID2k}.

When the Query operation has been executed x times, the adversary B performs the
Attack operation, attempting to compute the key based on the obtained data. The decryp-
tion algorithm is used to solve the ECDLP on the basis of the advantage AdvECDLP(B) ≥ σ
in calculating si. The final negotiated key is obtained as follows by the algorithm in
the protocol:

κx =
x

∏
i=1

si ∗ G2 (28)

To achieve successful forgery, the adversary B must solve the ECDLP, that is, the
element pi and the base point G2 on the given elliptic curve should identify si under the
condition that pi = si · G2. Since the whole UAV cluster has 2k members, once the adversary
B has made x queries to obtain x keys,B still needs to guess 2k − x keys. Let the key length
be d; then, the probability of the adversary B winning Game0 is

Pr[winB] =
1

2(2k−x)·d · AdvECDLP(B) ≥ 1
2(2k−x)·d · σ ≥ μ (29)

If the authentication protocol can be forged, then the advantage in Pr[winB] ≥ μ

cannot be ignored. If 2(2
k−x)·d is also not negligible, this means that the ECDLP has been

solved, contradicting Definition 2. Therefore, this protocol can resist eavesdropping attacks.

6. Comparative Analysis

This section compares the computational complexity and time overhead, among
other characteristics, of the proposed protocol with those of related protocols presented
in previous studies [32–34]. The experimental simulations were implemented on a laptop
computer with the following specifications: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30
GHz (16 CPUs). The simulations were implemented using the Python programming
language with the PyCryptodome and pypbc libraries, and we chose the class A curve in
pypbc to implement bilinear pairing. Table 2 lists the execution times of some operations
for comparison with those listed in the literature. For the calculation of the results, the
average of 1000 operations was taken.

163



Electronics 2023, 12, 3131

Table 2. The execution times of operations used in the protocol.

Operation Symbol Execution Time (ms)

Elliptic curve key generation tecc 3.999

Exponentiation tmi 3.887

Elliptic curve point addition tecc−add 0.001

Elliptic curve point multiplication tecc−mul 0.431

Bilinear pairing operation tbp 4.232

Map-to-point hash operation tmtp 4.549

Point addition related to bilinear pairing tbp−add 0.094

Multiplication of a scalarwith a point based on
bilinear pairing tbp−mul 1.812

In [32], Wei et al. proposed the CL-AAGKA protocol based on group key agree-
ment (GKA). Through identity-based authentication, the key negotiation protocol can
be authenticated without certificates. The computational overhead for a single node is
3(n + 1)tbp + (2n + 1)tbp−mul + 2ntecc−mul . With the participation of n nodes, the computa-
tional complexity of the system is O(n2).

In [33], Zhang et al. proposed the IBAAGKA protocol, which is a communication
protocol without key escrow based on asymmetric group key agreement (AGKA). Strong
unforgeable stateful identity-based batch multi-signatures (IBBMS) were used to ensure that
the computational overhead of a single node would be (n + 5)tmi + (5n + 1)tbp−mul + 4tbp;
accordingly, the computational complexity of the system is O(n2) with the participation of
n nodes.

In [34], Shen et al. proposed a protocol whose communication model has a reduced
computational complexity of O(n log n) compared to the above two protocols. However, it
uses many bilinear pair-based operations for authentication and key negotiation, and its
overhead for a single node is 2tbp + 2tbp−mul + (6 log2 n− 1)tmi.

The protocol proposed in this paper uses the concept of Latin squares to optimize the
communication model, enabling authentication and key negotiation without broadcasting
and requiring multicast communication only between nodes. Compared with the above
three protocols, the computational complexity is reduced to O(n log n). In the authentica-
tion phase of the protocol, the short BLS-based signature scheme is improved to enable
signature aggregation on the Latin square. The mainstream DSA and ECDSA require
320 bits, whereas the BLS short signature algorithm requires only 160 bits. In the key negoti-
ation phase, keys are aggregated using the dot product operation on an elliptic curve, which
has a smaller computational overhead than the bilinear pair operation. The overhead for a
single node in this scheme is tbp + tmtp + tecc + (4 log2 n− 1)tbp−mul + (2 log2 n− 1)tecc−mul .
Table 3 shows a performance comparison of the four protocols.

Table 3. Performance comparison of four protocols.

Protocol
Type of Message

Distribution
System Communication Cost The Computational Cost for Each Node

CL-AAGKA broadcast O(n2) 3(n + 1)tbp + (2n + 1)tbp−mul + 2ntecc−mul
IBAAGKA broadcast O(n2) (n + 5)tmi + (5n + 1)tbp−mul + 4tbp
Shen et al.’s

protocol multicast O(n log n) 2tbp + 2tbp−mul + (6 log2 n− 1)tmi

Proposed protocol multicast O(n log n) tbp + tmtp + tecc +(4 log2 n− 1)tbp−mul +(2 log2 n− 1)tecc−mul

In this comparison, we used the class A elliptic curve in the pypbc library in Python
to calculate the time overhead of each protocol for the cases of 16, 32, 64, and 128 group
members. The calculated run times of the four protocols are compared in the form of line
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graphs in Figure 7. With 16 members, the protocol proposed in this paper is 2.5 times faster
than the Shen et al. protocol, 5.7 times faster than the IBAAGKA protocol, and 12.8 times
faster than the CL-AAGKA protocol. In the case of 128 members, the protocol proposed
in this paper is 3.9 times faster than the Shen et al. protocol, 15.5 times faster than the
IBAAGKA protocol, and 61.5 times faster than the CL-AAGKA protocol.

Figure 7. Time-cost comparison of the four protocols.

As the number of simulated UAV nodes increases, the run times of the CL-AAGKA
and IBAAGKA protocols show exponential growth trends. In comparison, the execution
times of the Shen et al. protocol and the protocol proposed in this paper grow more slowly,
showing a clear time-overhead advantage. Compared to the Shen et al. protocol, the
proposed protocol achieves a lower time overhead by aggregating BLS signatures over a
Latin square array with the use of the elliptic-curve dot product operation, which incurs
less communication overhead.

7. Conclusions

In this paper, we focused on the problems of authentication and key negotiation for a
group of UAVs in the context of networking and proposed an aggregated signature-based
UAV key negotiation protocol based on the concept of Latin squares. The proposed protocol
is well adapted to the characteristics of UAVs communicating via wireless channels and
enables the computation of a common key without the participation of a central node in
the negotiation process. This paper combined the BLS signature algorithm with the Latin
square approach for the first time and proposed a method for completing key negotiation
through the aggregation of keys on a Latin square. The proposed protocol is highly flexible
and has greater operational efficiency than existing protocols, making it more valuable in
UAV environments with limited computing resources.

However, the groups formed by the protocol proposed in this paper need to be studied
in more detail when the members join dynamically, and the protocol proposed in this
paper needs to be improved and enhanced for situations where the group members change
frequently. In the future, we will work on this basis to design a more flexible group key
negotiation protocol, focusing on scenarios with frequent changes of group members.
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Abbreviations

UAVs Unmanned aerial vehicles
IoT Internet of things
UAVMANET Unmanned aerial vehicle mobile ad hoc network
BLS Boneh—Lynn—Shacham signature algorithm
DH Diffie—Hellman key negotiation protocol
GGH Goldreich, Goldwasser, and Halevi mapping scheme
GS Ground station
EU-CMA Existential unforgeability against chosen-message attacks model
GKA Group key agreement
AGKA Asymmetric group key agreement
IBBMS Identity-based batch multi-signatures
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Abstract: The continuously growing human activity in large and densely populated cities pollutes
air and consequently puts public health in danger. This is why air quality monitoring is necessary in
all urban environments. However, the creation of dense air monitoring networks is extremely costly
because it requires the usage of a great number of air monitoring stations that are quite expensive.
Instead, the usage of wireless sensor networks (WSNs) that incorporate low-cost electrochemical gas
sensors provides an excellent alternative. Actually, sensors of this kind that are recommended for
low-cost air quality monitoring applications may provide relatively precise measurements. However,
the reliability of such sensors during their operational life is questionable. The research work
presented in this article not only experimentally examined the correlation that exists between the
validity of the measurements obtained from low-cost gas sensors and their aging, but also proposes
novel corrective formulae for gas sensors of two different types (i.e., NO2, O3), which are aimed at
alleviating the impact of aging on the accuracy of measurements. The following steps were conducted
in order to both study and lessen the aging of electrochemical sensors: (i) a sensor network was
developed to measure air quality at a place near official instruments that perform corresponding
measurements; (ii) the collected data were compared to the corresponding recordings of the official
instruments; (iii) calibration and compensation were performed using the electrochemical sensor
vendor instructions; (iv) the divergence between the datasets was studied for various periods of
time and the impact of aging was studied; (v) the compensation process was re-evaluated and new
compensation coefficients were produced for all periods; (vi) the new compensation coefficients were
used to shape formulae that automatically calculate the new coefficients with respect to the sensors’
aging; and (vii) the performance of the overall procedure was evaluated through the comparison of
the final outcomes with real data.

Keywords: wireless sensor networks; IoT; smart cities; environmental monitoring; air pollution; air
quality monitoring; sensor aging; electrochemical gas sensors; NO2; O3

1. Introduction

Continuous advances achieved in the technology of microelectromechanical systems
(MEMS) have made it feasible to mass-produce inexpensive devices that, despite their small
dimensions, have enhanced capabilities of sensing, processing, and communicating [1].
The wireless interconnection of several devices of this type, referred to as sensor nodes,
gave birth to wireless sensor networks (WSNs) [2]. The architecture of a WSN is illustrated
in Figure 1. A typical sensor node comprises a processing unit, one or more sensors, a
transceiver, and a power unit, which in most cases is a battery. WSNs, by taking advantage
of the collaborative use of their sensor nodes, are able to not only monitor the ambient
conditions over wide areas of interest but also process sensed data and wirelessly transmit
them over long distances, via gateways referred to as base stations [3]. For this reason,
although their operation is hampered by problems of various kinds such as connectivity
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loss, congestion, vulnerable security, inadequate coverage, and most of all by the extremely
restricted energy adequacy of their sensor nodes [4–12], WSNs have the potential to support
almost any field of human activity and therefore have an ever-increasing range of applica-
tions [13–17]. The monitoring of air quality is not only one of the numerous applications of
WSNs but also an absolutely fundamental operation performed by the use of the Internet
of Things (IoT) [18] in so-called “smart cities”, where urban operations are performed
efficiently with minimum human intervention [19,20].

Internet 

or 

Satellite 

Figure 1. Typical architecture of a WSN.

Indeed, there is no doubt that air pollution is among the greatest threats against public
health. This is why air quality monitoring is necessary in all populated areas. However,
in wide urban areas this operation is extremely costly because it requires the creation of
dense monitoring networks comprising expensive scientific stations [21,22]. On the other
hand, a grid network of densely installed low-cost air quality monitoring devices can
also provide detailed information on the ambient air quality. Actually, the production
of low-cost devices for gas pollutant sensing is feasible thanks to recent technological
advances. At the same time, various research works have tried to optimize the effectiveness
of such sensors by applying techniques such as machine learning and other artificial
intelligence tools [23–28]. In this way, the development and installation of low-cost air
quality sensors has become increasingly important [29] as a partial solution to the problem
of supplementary coverage of an area. Actually, devices of this kind do not aim at replacing
corresponding scientific instruments of high accuracy, but rather at being an additional
source of air quality information, provided that their results are reliable [30]. This is
why the development of such sensing devices has been investigated in several research
works [31–38].

The research work that is presented in this article experimentally evaluated the reduc-
tion in measurement accuracy of low-cost gas pollutant electrochemical sensors because of
their aging and proposes corresponding corrective formulas. In what follows, in Section 2,
the relative theoretical background is established. In Section 3, both the infrastructure
is established and the procedures followed in the experiments performed are described.
In Section 4, the results of the experiments carried out are both presented and discussed
and the formulae proposed for corrective use are described and experimentally evaluated.
Finally, in Section 5, concluding remarks are drawn.

2. Theoretical Background

Nowadays, there are many different types of low-cost gaseous pollutant sensors that
are commercially available [39]. The most commonly used types are the electrochemical
sensors because they are able to detect and measure the concentrations of various gases
with a relatively high sensitivity and short response time [40].

Typically, the monitoring of pollutant gases in urban areas by using electrochemical
sensors requires the ability to sense lower concentrations of gases than those existing
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in industrial areas [41]. The detection and analysis of low concentrations necessitates
the usage of models that take into consideration the impact of exogenous factors such
as temperature, humidity, and pressure, which affect the operation of the electrodes of
electrochemical sensors [42], so that the measured values are accurate. Practically, the
output of an electrochemical sensor is an electric current of the order of μA, which is then
converted to voltage that is analogous to the concentration of the gas detected.

However, various research studies have demonstrated that the measurements made
by low-cost air quality sensors have, in many cases, low reliability compared to the mea-
surements made by using reference monitoring instruments [40,43–47]. Specifically, these
studies showed that the accuracy of such sensors is influenced by not only exogenous
factors related to environmental conditions, such as air temperature, relative humidity, and
interferences with other gases (cross-sensitivity), but also endogenous factors of the sensors
such as warming-up time, gain, and initial manufacturer calibration [48,49].

Also, many research studies have been conducted regarding the evaluation of low-cost
air quality sensors. Actually, there are two methods with which to study and evaluate
the performance of low-cost gas sensors. The first method is to evaluate the gas sensors
in a laboratory environment, i.e., under controlled conditions [45,50–55]. The second
method proposes the evaluation of gas sensors in the field with nearby reference measuring
instruments, so that low-cost sensors are calibrated by comparing the measured data that
they produce with the data obtained from reference instruments [56–60]. The second
method seems to lead to more accurate and reliable results, because the environmental
parameters such as temperature and humidity are taken into consideration, contrary to
what happens in the corresponding procedure that is conducted in laboratory environments.
Linear regression (LR), multiple linear regression (MLR) and machine learning models are
the most widely used methods to calibrate low-cost sensors [61,62]. In addition, a learning
systems-based generative adversarial network (GAN) research team [63] proposed a GAN-
based automatic property generation (GAPG) approach to generate verification properties
supporting model checking. Conversely, the time-series feature of the IoT makes the data
density and the data dimension higher; as such, anomaly detection is important to ensure
hardware and software security, and research work [64] has proposed a memory-augmented
encoder approach to detect anomalies in IoT data, which aims to use reconstruction errors
to determine data anomalies. While the aging of electrochemical sensors is a given problem,
the treatment of measurements during aging remains on the table. Based on this, the
investigation of equations that include correction factors to compensate and improve the
measurements during their lifetime was the subject of research of this work.

Regarding the electrochemical gas sensors, their operation is based on the chemical
reactions performed between environmental air and electrodes that are within a liquid
vessel that is incorporated inside the sensor units [65]. The creation of dense air monitoring
networks is both more affordable and easier to be deployed by using low-cost electro-
chemical sensors rather than high-cost monitoring instruments. On the other hand, when
using low-cost electrochemical sensors, not only is the calibration of the sensors affected by
ambient conditions in external environments but also sensors must be replaced at 1–2-year
intervals due to the rapid wear of their chemical elements [66].

Actually, the aging of the sensors and the accuracy of their response during their
lifetime have not been sufficiently studied. Research works have shown that aging biases
the voltage recording at certain environmental O3 concentrations (approximately 20% after
9 months of continuous operation), thus necessitating frequent calibration of the oxidizing
gas sensor [67]. It has also been demonstrated that the deterioration of sensors due to aging
is a non-reversible process. Specifically, it has been found that over long deployments
(>2 years), the sensor likely becomes insensitive to NO2 and O3. Therefore, the prompt
identification and replacement of nonfunctional sensors is essential in order to ensure
reliable data acquisition in long-term field deployments [68]. The investigation of aging
correction factors of low-cost electrochemical sensors were part of this work, as well as how
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well the use of aging correction models can realistically reproduce measurements during
their lifetime.

3. Analysis of the Experimental System and Procedure

As aforementioned, the research work presented in this article not only studies the
deterioration that is caused due to aging in the performance of low-cost sensors that
are used for air monitoring in smart cities, but also introduces a method that aims at
maintaining high levels of accuracy despite the aging of sensors. For this reason, a WSN
comprising low-cost electrochemical sensors [69] was developed by the authors of this
article to monitor the concentrations of nitrogen dioxide (NO2) and ozone (O3) in the
ambient air, Then, in the long run (i.e., 3 months, 6 months, and 8 months) the performance
of the low-cost sensors was compared with the reference instruments and was re-evaluated.
In what follows in Section 3, the experimental system developed and the initial procedures
followed for the calibration of the sensors are described.

3.1. System Overview

For first time in April 2021, the air quality monitoring system developed was installed
at the center area of Athens, Greece at a location which is denoted as point A in Figure 2.
The values of the measurements performed were compared to the corresponding data,
which were obtained from the website of the Ministry of Environment and Energy of Greece
(PERPA) [70]. These reference data were derived from the measurements performed by
the official pollution measuring stations of PERPA, which are placed also in the center
area of Athens at a location denoted as point B in Figure 2. The distance between these
two locations is 900 m. Both locations share the same urban conditions. Actually, the
spatial coverage of a monitoring site represents the quantification of the variability of
concentrations of a specific pollutant around the site [71,72], while the assessment of
representativeness aims at the delimitation of areas of the concentration field with similar
characteristics at specific locations, as well the spatial surrogate data (similar emission
sources and land-cover characteristics) [73–75].

Figure 2. Map of the locations of sensor network (A) and the PERPA station (B).

A synoptic overview of the overall system developed is illustrated in Figure 3.
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Figure 3. Schematic overview of the air monitoring system developed.

As illustrated in Figure 3, the data acquisition was carried out by three sensor nodes,
which namely are: AC_NO2_O3_1, AC_NO2_O3_2, and AC_NO2_O3_3. Their names
represent the location (i.e., Athens Center), the gases they detect (i.e., NO2 and O3) and the
node’s identification number. Each one of them incorporated both a NO2 sensor and an
O3 sensor couple in order to measure the concentrations of these two chemical substances
in ambient air. Each sensor node also incorporates a General Packet Radio Service (GPRS)
unit and a Wi-Fi unit. By alternately using these modules, each node could correspondingly
send sensed data to the Internet either across cellular communication networks via a GPRS
base station or across Wi-Fi via an access point. Next, the data transmitted via the Internet
reached an application server that runs under the Linux operating system. In this server,
data processing and data visualization to the end user took place via an application that had
been appropriately developed by using the Grafana open-source interactive visualization
platform. Finally, the storage of the sensed data was performed in a database that was
developed by using the influxDB open-source time-series database platform.

3.2. Sensor Nodes

As aforementioned, the system developed used three sensor nodes. They are displayed
in Figure 4.

 

Figure 4. Picture of the three sensor nodes of the air quality monitoring system developed.

Each one of the three sensor nodes consisted of a microcontroller with high processing
power, low power consumption and a sufficient number of ports for peripherals, i.e.,
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sensors, Wi-Fi and GPS. The interior of one of the three nodes is displayed in Figure 5,
while more details on their design and implementation can be found in [76].

 

Figure 5. Photograph of the interior of the nodes of the air quality monitoring system.

3.3. Sensor Calibration

At the beginning of the experimental process, a couple of brand-new electrochemical
sensors were incorporated in each one of the sensor nodes. The specific sensors were
namely: Alphasense OX-B431 [77] for O3 and Alphasense NO2-B43F for NO2 [78]. Both
of these sensors generally consisted of four electrodes supported by an individual sensor
board (ISB).

These sensors provided the output measurements in mV range, corresponding to the
concentration of the measured gas and any potential cross-sensitivity. Cross-sensitivity is
defined as the chemical reaction of the measuring element by another gas other than the
target gas, with the result that the measurements of an electrochemical sensor are affected.
The cross-sensitivity from other gases can be seen in the technical specifications of the
manufacturer datasheet of the ozone sensor (OX-B431) [75] and of the nitrogen dioxide
sensor (NO2-B43F) [76].

Specifically, the NO2 sensor (NO2-B43F) presented cross-sensitivity (% measured gas
@5 ppm) for the gases H2S < −80, NO < 5, CI2 < 100, SO2 < −3, and CO < −3; (% measured
gas @100 ppm) for the gases H2 < 0.1, C2H4 < 0.1, NH3 < 0.5, and halothane (not detected).
Similarly, the O3 sensor (OX-B431) presented cross-sensitivity (% measured gas @5 ppm)
for the gases H2S < −80, NO < 5, CI2 < 100, SO2 < −3, and CO < −3; (% measured gas
@100 ppm) for the gases H2 < 0.1, C2H4 < 0.1, NH3 < 0.5, and halothane <0.1.

In order to be able to read the gas concentration in each low-cost sensor, the manufac-
turer provides a set of steps that must be followed in order to perform an initial calibration.
These steps take into consideration two factors for each sensor—the interface board and
the electrodes—as well as environmental conditions such as the temperature. After this
initial calibration is completed, further data elaboration is required to correct the calibrated
data using known environmental measurements, and thus improve the accuracy of the
extracted results.

Regarding the initial calibration of its sensors, Alphasense proposes several potential
functions in its Application Note AAN-803-01 [79]. In the system developed in this specific
research work, Equation (1) was selected to perform the initial calibration of the sensors
used. Specifically, Equation (1) provides the calibrated voltage output (i.e., WEc: working
electrode corrected) that finally represents the concentration of the gas detected, using
the provided sensitivity of each individual sensor. This step incorporates the measured
working electrode reading (WEu), the auxiliary electrode reading (AEu), and a temperature
parameter nT according to Application Note AAN 803-01. To complete the calibration for
each individual sensor and ISB, Alphasense provides a set of background electrode noise
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values, corresponding to working electrode electronic zero (WEe) and auxiliary electrode
electronic zero (AEe), which are also indicated in Equation (1):

WEc = (WEu −WEe) − nT × (AEu − AEe) (1)

The gas pollutant concentration measurement of x gas is given by dividing the cali-
brated voltage output (i.e., WEc: working electrode corrected) by the Sensor_Sensitivity, as
shown in Equation (2):

GASxm = WEc/Sensor_Sensitivity (2)

where GASxm is the corrected measurement concentration, WEc is the calibrated value
of x gas (see Equation (1)), and the sensor sensitivity is given by the manufacturer for
each sensor.

Following the above procedure and according to the manufacturer, a methodology
must be designed and followed by the end user in order to improve calibration by taking
into consideration the impact of temperature, aging, etc. In this research work, after various
attempts, the corrective formula that was found to fit best the corresponding values of the
official instrumentation installed (i.e., the measuring stations of PERPA, Point B) [70] is the
one described by Equation (3):

GASxc = (GASxm + C1)/C2 (3)

where GASxc is the corrected value of x gas and GASxm is the value of the measured con-
centration of x gas after applying Equation (2), while C1 and C2 are coefficients calculated
for each station individually after a period of operation in the field, side by side with the
reference equipment.

Using Equation (3), the values of GASxc are expressed in ppb. The conversion from
ppb to μg/m3 is achieved by multiplying the gas concentration in ppb by the conversion
factors, for an ambient pressure of 1 atmosphere and a temperature of 20 degrees Celsius.
The conversion factors are, for ozone (O3) 1.995, and for nitrogen dioxide (NO2) 1.912. It
must be noted that regarding NO2 the correction coefficient C2 obtains three distinct values
depending on the level of NO2 concentration. Following the procedure of correction, the
three coefficients are calculated as C2a, when NO2 < 3, C2b, when 3 ≤ NO2 ≤ 30 and C2c,
when NO2 > 30.

4. Experimental Procedure Results and Discussion

Based on the aforementioned calibration and correction procedure in Section 3, several
experiments were conducted in order to verify the impact of aging on the corrective formula
expressed by Equation (3).

Specifically, during the period of calibration and initial correction (i.e., 14 April 2021 to
10 May 2021) the temporal variation of the corrected NO2 and O3 values of the three nodes
for the corresponding values of the reference instruments are illustrated in Figures 6 and 7,
respectively. Henceforth, the corrected values calculated for the three nodes are plotted in
scatter correlation plots to evaluate the conversion performance.

Observing Figures 6 and 7, it is obvious that the corrected values of the measurements
from low-cost sensors tend to follow the corresponding values of the reference instru-
ments. Observing Figure 7, it becomes evident that the low-cost sensors failed to reach
the minimum values when these were obtained from the reference instruments. This can
be attributed to the cross sensitivity of the sensor that was activated from other existing
environmental oxides. In Figure 8a–c, the cross-correlation performance of the calibration
and correction regarding the NO2 measurements of the three nodes is depicted. The corre-
sponding behavior for the O3 measurements is shown in Figure 9a–c. Both Figures 8 and 9
evince the consistency of the sensors. It is observed that C1 coefficient shows linear cor-
relation. The expected temporal limitation of the C1 trend is significantly longer than the
2-year lifetime of the sensors, as provided by the manufacturers.
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Figure 6. Measurements of NO2 concentration from low-cost and reference sensors (14 April 2021 to
10 May 2021).

Figure 7. Measurements of O3 concentration from low-cost and reference sensors (14 April 2021 to
10 May 2021).

   
(a) (b) (c) 

Figure 8. Nitrogen dioxide correlations among the three low−cost sensors used: (a) NO2 correlation
between AC_NO2_O3_1, and AC_NO2_O3_2; (b) NO2 correlation between AC_NO2_O3_2, and
AC_NO2_O3_3; (c) NO2 correlation between AC_NO2_O3_1, and AC_NO2_O3_3.
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(a) (b) (c) 

Figure 9. Ozone correlations among the three low−cost sensors. (a) O3 correlation between
AC_NO2_O3_1, and AC_NO2_O3_2; (b) O3 correlation between AC_NO2_O3_2, and AC_NO2_O3_3;
(c) O3 correlation between AC_NO2_O3_1, and AC_NO2_O3_3.

After the evaluation of the low-cost sensors and the validation of the high degree of
cross-correlation, the measurements of the low-cost sensors were compared against the
measurements of reference instruments as depicted in Figure 10a,b. For simplicity reasons
henceforth the data of only one of the low-cost sensors are presented in the plots to provide
the degree of cross-correlation. Figure 10a,b show the correlation for the NO2 and O3
concentration between the low-cost node AC_NO2_O3_2 and the reference instruments
for the period of training (i.e., April 2021). In addition, Table 1 summarizes the values of
coefficients C1 and C2. Specifically for NO, the coefficient C2 is divided into three sub-
coefficients C2a, C2b, C2c according to the measurement of the concentration of nitrogen
dioxide) for all the low-cost measurement stations for all the tests that were conducted to
evaluate the correlation, correction, and aging involution functions.

 
(a) (b) 

Figure 10. Correlation for the NO2 and O3 concentration between the low-cost sensor AC_NO2_O3_2
and the reference instruments. (a) Correlation of NO2 low-cost sensor (April coefficients C1, C2) and
reference; (b) Correlation of O3 low-cost sensor (April coefficients C1, C2) and reference.

Next, the time dependent deviation from accuracy was studied using the protocol:

• The values of C1 and C2 were maintained as constant and the correlation degree R2

was studied between the reference instruments and the low-cost stations during July
2021, October 2021 and December 2021. The results in this step are presented in Table 2,
manifesting the gradual deterioration of R2.

Additionally, in Table 2 the reference/low-cost correlation fitting is presented as
equation, y = αx + b, where y is the dependent variable (reference instrument μg/m3

value), α is the regression coefficient, x (low-cost station μg/m3 value) is the independent
variable and b is a constant. Observing the above findings, it becomes evident that the
performance of the sensing stations gradually deteriorates as the R2 is decreased over time.
For this reason, it was decided to make a temporal change on the C1 and C2 and re-examine
the performance of the sensing device.
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Table 1. Coefficients C1 and C2 for the low-cost NO2 and O3 gas sensors of the three nodes during
all the period studied.

Gas Node

April 2021 July 2021 October 2021 December 2021

C1
C2

C1
C2

C1
C2

C1
C2

a b c a b c a b c a b c

NO2

AC_NO2_O3_1 50 15 2.2 1 47 15 3.5 1.2 43 15 3.5 1 41 15 2 1
AC_NO2_O3_2 50 15 2 1 47 15 2.5 1 44 15 3.3 2 42 15 2.5 1
AC_NO2_O3_3 74 15 2.4 1.5 72 15 3.4 1 69 15 3.5 1 67 15 3 1

C1 C2 C1 C2 C1 C2 C1 C2

O3

AC_NO2_O3_1 43 1.8 45 2.8 48 2.4 50 2
AC_NO2_O3_2 45 1.8 47 2.5 49 2.1 51 2
AC_NO2_O3_3 40 1.7 43 2.4 45 3 47 1.6

Table 2. Correlation results between the reference instruments and the low-cost sensors while C1 and
C2 are kept constant and equal to those calculated during the installation of nodes.

Nodes Coeff.
April 2021 July 2021 October 2021 December 2021

NO2 O3 NO2 O3 NO2 O3 NO2 O3

AC_NO2_O3_1
A 0.8151 0.4625 −0.3521 0.826 0.7902 0.5071 0.4829 0.531
B 11.408 39.326 50.281 63.485 13.657 39.892 39.602 25.26

R2 0.4889 0.5506 0.0529 0.1963 0.3864 0.6494 0.4511 0.679

AC_NO2_O3_2
A 0.9373 0.5156 −0.2162 0.7511 0.7648 0.4751 0.3962 0.466
B 4.2728 33.426 31.447 62.033 39.329 30.472 27.553 13.46

R2 0.6959 0.6141 0.0375 0.1717 0.1619 0.5399 0.3326 0.217

AC_NO2_O3_3
A 0.8897 0.4658 −0.1519 0.788 0.3447 0.3995 0.3266 0.488
B 2.0495 38.05 32.619 57.386 9.5425 75.144 30.408 21.56

R2 0.7 0.5364 0.0161 0.2617 0.2388 0.4625 0.2448 0.706

It becomes evident from Table 2 that NO2 values during July show low cross-correlation.
As will be discussed later on, the impact of the aging compensation equations on the NO2
value is positive, as it improves the corresponding R2 despite the fact that it remains at low
values. Furthermore, in Greece, during the summertime, the environmental temperature
pushes the sensors to their functional limits. Specifically, according to the manufacturer,
these sensors are operational at the temperature range between −20 ◦C and 50 ◦C.

• New individual values for C1 and C2 were calculated (different ones for each period of
study, i.e., July 2021, October 2021 and December 2021) and the new R2 was calculated,
indicating the temporal variation of C1 and C2 for both gases during their aging. The
results extracted are displayed in Table 3. In addition, in Table 3 the reference/low-
cost correlation fitting is presented as equation, y = αx + b, where y is the dependent
variable (reference instrument μg/m3 value), α is the regression coefficient, x (low-cost
station μg/m3 value) is the independent variable, and b is a constant.

The extracted results from Tables 2 and 3 are shown at Figures 11 and 12. Figure 11
shows the correlations (R2) of NO2 and O3 low-cost sensor measurements and reference,
for the months July, October, and December 2021 with the calculated coefficients C1 and
C2 of April, as well as the correlations of NO2 and O3 measurements, for the months July,
October, and December 2021 with the calculated coefficients C1 and C2 of each month.

Figure 12 shows coefficients A and B of equation Y = AX + B for the NO2 and O3
measurements for July, October, and December 2021, by applying calculated coefficients C1
and C2 for April as well as calculated coefficients C1 and C2 of each month.
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Table 3. Summary of the correlation results among the reference instruments and the low-cost sensors
while the coefficients C1 and C2 vary and are recalculated according to the aging functions (indicated
by Equations (4) and (5)).

Nodes Coeff.
April 2021 July 2021 October 2021 December 2021

NO2 O3 NO2 O3 NO2 O3 NO2 O3

AC_NO2_O3_1
A 0.8151 0.4625 −0.2377 0.5311 0.6429 0.3718 0.4322 0.477
B 11.408 39.326 37.704 42.24 8.7848 34.555 27.746 29.72

R2 0.4889 0.5506 0.0565 0.1961 0.4058 0.6325 0.4067 0.678

AC_NO2_O3_2
A 0.9373 0.5156 −0.2236 0.5409 0.5061 0.4081 0.4293 0.481
B 4.2728 33.426 29.386 46.249 23.494 29.889 16.356 15.89

R2 0.6959 0.6141 0.057 0.1718 0.1551 0.5402 0.4733 0.468

AC_NO2_O3_3
A 0.8897 0.4658 −0.1616 0.5583 0.3382 0.2284 0.5357 0.517
B 2.0495 38.05 32.57 43.127 10.227 45.797 12.01 31.65

R2 0.7 0.5364 0.0282 0.2617 0.2496 0.4642 0.4954 0.705

  
(a) (b) 

  
(c) (d) 

Figure 11. Correlation for the NO2 and O3 measurements for July, October, and December 2021 of
(a) NO2 sensor (April calculated coefficients C1, C2) and reference; (b) O3 sensor (April calculated
coefficients C1, C2) and reference; (c) NO2 sensor (calculated coefficients C1, C2 per month) and
reference; (d) O3 low-cost sensor (calculated coefficients C1, C2 per month) and reference.

• Observation of the variation of C1 and C2 fitting was made to obtain the temporal
variation of C1 and C2 and extrapolate all intermediate values. While performing this
last step in order to obtain the aging formula, it was observed that coefficient C1 for
NO2 during the operation of the sensors showed a decrease by one unit per month of
the initial value from the beginning of the operation of the sensor. Next, coefficient C1
concerning the aging of the sensor was introduced as C1Age. In this way, the coefficient
C1Age for NO2 sensor is described in Equation (4) and the corresponding behavior for
the O3 sensor is described in Equation (5)
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 12. Coefficients A and B of the NO2 and O3 measurements for the months of July, October,
and December 2021 (a) NO2 coefficient A using April coefficients C1, C2; (b) NO2 coefficient B using
April coefficients C1, C2; (c) NO2 coefficient A using coefficients C1, C2 of each month; (d) NO2

coefficient B using coefficients C1, C2 of each month; (e) O3 coefficient A using April coefficients C1,
C2; (f) O3 coefficient B using April coefficients C1, C2; (g) O3 coefficient A using coefficients C1, C2 of
each month; (h) O3 coefficient B using coefficients C1, C2 of each month.

C1Age (NO2) = C1init (NO2)− n (4)
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C1Age (O3) = C1init (O3) + n (5)

where C1init represents the initial value of the coefficient from the beginning of the sensor’s
operation, and n expresses the sum of the months of in-time service of the sensor.

Next, the temporal variation of all coefficients (i.e., C1, C2x) was plotted to evaluate
the aging functions’ performance. The extracted results are depicted in Figure 13a–d for
NO2 sensors and Figure 14a,b for O3 sensors. These figures prove the variability of C1 and
C2 during the operation time (8 months) of the sensors.

(a) (b) 

 
(c) (d) 

Figure 13. Coefficient variation of NO2 low-cost sensors during their operational time. (a) NO2 low-
cost sensors’ coefficients C1 variation; (b) NO2 low-cost sensors’ coefficients C2a variation; (c) NO2

low-cost sensors’ coefficients C2b variation; (d) NO2 low-cost sensors’ coefficients C2c variation.

(a) (b) 

Figure 14. Coefficient variation of O3 low−cost sensors during their operational time. (a) O3 low-cost
sensors’ coefficients C1 variation; (b) O3 low−cost sensors’ coefficients C2 variation.
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Both in the nitrogen dioxide sensors and in the ozone sensors, it is observed that the C1
coefficient shows a linearity, which is expected according to the manufacturer; the sensor
during its lifetime (about two years) operates in a linear range.

Coefficient C2 concerns the scale of the measured values in relation to aging of the
sensor. According to the datasheets of O3 [77] and NO2 [78] sensors, their sensitivity
depends on the temperature [79]. The mean temperature values per month in 2021 in the
center of Athens are presented in Table 4, where the average temperatures for the months
that the experiment took place are highlighted [80].

Table 4. Annual climatological summary for 2021 [80].

Annual Climatological Summary

Name: athens984 City: Athens State: Attica, Greece
Elev: 60m Lat: 37◦58′42′′ N Long: 23◦42′56′′ E

Temperature (◦C), Hheat Base 18.3, Cool Base 18.3

Year Month Mean MAX Mean MIN Mean

2021 1 15.0 7.9 11.5
2021 2 15.8 7.0 11.3
2021 3 16.2 8.3 12.1
2021 4 20.0 11.3 15.7
2021 5 27.3 17.8 22.4
2021 6 30.1 21.1 25.4
2021 7 34.1 25.9 29.9
2021 8 34.3 25.5 29.7
2021 9 28.5 20.5 24.2
2021 10 21.7 15.0 18.0
2021 11 19.1 12.6 15.7
2021 12 14.9 8.3 11.7

Coefficient C2 (referred as C2Scale) contrary to C1Age is not so closely related to the
sensor lifetime. Instead, ambient temperature severely impacts the recordings of sensors.
This is not only observed but is also stated by the sensor manufacturer. Thus, C2Scale is
the corrected value after taking into consideration the temperature according to [75,77].
Coefficient C2Scale(O3)

for O3 measurements is given by Equation (6):

C2Scale(O3)
= C2init(O3)

+ (Sinit−Scurrent

)
/10 (6)

where C2init(O3)
is the initial value of C2 from the beginning of the O3 sensor operation, Sinit

is the sensitivity of the sensor during the first day of its lifetime at a specific temperature and
Scurrent is the corresponding sensitivity at the temperature of the running month [77]. As
described in Table 1 the coefficients C2aScale(NO2)

(NO2 < 3) and C2cScale(NO2)
(3 < NO2 < 30)

are maintained practically constant where C2aScale(NO2)
= 15 and C2cScale(NO2)

= 1. Contrary
to the above, the coefficient C2bScale(NO2)

(NO2 > 30) is strongly affected by the temperature.
The coefficient C2aScale(NO2)

for NO2 measurements is given by Equation (7):

C2Scale(NO2)
= C2init(NO2)

+ (Sinit−Scurrent

)
/10 (7)

where C2init(NO2)
is the initial value of the coefficient from the beginning of the NO2

sensor operation, Sinit is the sensitivity of the sensor during the first day of its lifetime at
a specific temperature, and Scurrent is the corresponding sensitivity at the temperature of
the running month [78]. For each sensor, the corresponding datasheets provided by the
manufacturer [75,76] include a graph which describes the relation of sensor sensitivity
according to the temperature of the environment. The calculation of the corresponding
sensitivity at a specific temperature is achieved by extracting the slope of the graph at each
temperature case.
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After having performed the above process, it was concluded that Equations (4)–(7) had
an obvious impact on the performance of the sensors. Specifically, it was observed that the
performance of the sensors was kept practically stable during their lifetime with respect to
the corresponding results extracted when the C1 and C2 factors were maintained as initially
set during their calibration. It could be seen that the adoption of a continuous correction
process was required in order to maintain the validity of pollutant gas measurements.

To proceed in further evaluation of the initial calibration and the correction process
due to aging, a boxplot presentation method was adopted. Actually, a boxplot, also known
as a box and whisker plot, is a graphical representation of statistical data that displays the
distribution of a dataset by showing the median, quartiles, and range of the data. Boxplots
are useful for both comparing the distribution of different datasets and visualizing the
distribution of a single dataset. They can also help to identify any potential outliers in
the data.

Specifically, the boxplots depicted in Figure 15 show the variation of the measured
quantities, between the inexpensive and reference sensors. Figure 15a illustrates the O3
variation for October 2021 using the coefficients C1 and C2 that were calculated for April
2021, while Figure 15b shows the corresponding variation using the coefficients calculated
using the data from October 2021. Figures 15c and 15d, respectively, show the correction
degree using the coefficients C1 and C2 for NO2.

(a) (b) 

(c) (d) 

Figure 15. Variation of low−cost sensors NO2 and O3. (a) Variation of O3 sensors using the coeffi-
cients calculated for April 2021 and applied in October 2021; (b) variation of O3 sensors using the
coefficients calculated for October 2021 and applied in October 2021; (c) variation of NO2 sensors
using the coefficients calculated for April 2021 and applied in October 2021; (d) variation of NO2

sensors using the coefficients calculated for October 2021 and applied in October 2021.

Observing the results in the boxplots illustrated in Figure 15, it can be straight for-
wardly concluded that the deviation of the recorded values with respect to the refer-
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ence instruments were significantly lower when changing the C1 and C2 coefficients (see
Figure 15b,d) when compared to the corresponding deviation when using the same C1 and
C2 values during the sensors’ lifetime (see Figure 15a,c). This fact supports the need for
adopting changes for the correction process during the lifetime of a low-cost electrochemi-
cal sensor. Furthermore, it becomes obvious that the adopted Equations (4)–(7) can improve
the performance of the sensors during their lifetime instead of keeping their values constant
during the lifetime of the sensors. It is still remaining to study whether these equations can
be further improved.

Finally, in order to demonstrate the impact of the change on the coefficients on
the performance, the corresponding boxplots were plotted and are shown in Figure 16.
Figure 16a–h show the variation of NO2 and O3 for each month for the coefficients C1
and C2 recalculated according to the aging formulas for each one of the studied months.
Specifically, Figure 16a,b correspond to the statistical variation of the reference/low-cost
using the aging-corrected C1 and C2 for NO2 and O3 during April 2021 (period A). The
corresponding box plots for July 2021 (period B) are depicted in Figure 16c,d. The October
2021 (period C) corresponding results are presented in Figure 16e,f for NO2 and O3, respec-
tively. Lastly, the extracted statistical boxplot results regarding December of 2021 (period
D) are shown in Figure 16g,h.

(a) (b)

(c) (d) 

(e) (f) 

Figure 16. Cont.
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(g) (h) 

Figure 16. Variation of NO2 and O3 using the coefficients calculated monthly. (a) Variation of NO2

using the coefficients calculated in period A; (b) variation of O3 using the coefficients calculated in
period A; (c) Variation of NO2 using the coefficients calculated in period B; (d) variation of O3 using
the coefficients calculated in period B; (e) variation of NO2 using the coefficients calculated in period
C; (f) variation of O3 using the coefficients calculated in period C; (g) variation of NO2 using the
coefficients calculated in period D; (h) variation of O3 using the coefficients calculated in period D.

Observing Figure 16, it becomes obvious that the use of the methodology proposed in
this article is indeed not only essential but also very effective in keeping the performance
of inexpensive electrochemical sensors constant during their lifetime.

5. Conclusions

There is no doubt that air quality monitoring in urban environments is one of the
most important applications of WSNs in smart cities. It is also true that there are many
commercially available instruments that are able to perform air quality monitoring with
high accuracy. However, they are very expensive to use in large-scale installations. At the
same time, technological advances have made it feasible to mass-manufacture inexpensive
electrochemical sensors that are able to measure the concentrations of pollutant gases in
air with relatively good accuracy. On the other hand, aging caused by a variety of factors,
including exposure to high levels of gases, temperature fluctuations, and moisture, deteri-
orates the sensitivity of such sensors, leading to inaccurate readings. One common way
to address sensor aging is to periodically perform calibration of the sensors in order to
check the existing accuracy and properly improve it if needed. Actually, most of the pub-
lished works that deal with the aging of low-cost sensors involve machine learning, neural
networks, and other similar processing-demanding methods. Such approaches require
significant CPU and memory resources, having a direct impact on the processing capability
specifications and the cost of such a measuring system. Additionally, incorporating such
methodologies on the measuring unit significantly increases energy consumption. Even for
the case when the processing is conducted at a central point, the need for high processing
power remains, since each networked measuring system must be treated separately. The
herein proposed solution incorporates a simple compensation algorithm of good perfor-
mance that can be easily executed at any sensing node. In addition, due to the simplicity of
the required actions, power consumption is practically unaffected.

Specifically, in this research work, the impact of aging on the accuracy of low-cost
gaseous pollutant sensors used in WSNs was studied. Specifically, an air quality monitoring
WSN containing three sensor nodes was established in the center of Athens, Greece. Each
one of the specific sensor nodes encompassed a couple of sensors that monitored the
concentration of ozone and nitrogen dioxide in the ambient air. For a period of eight
months the values of the measurements of these sensors were compared with those made
by the air monitoring instruments that are officially used by the State.

The first conclusion drawn from this research work is that the sensor’s aging—which
may be caused by a variety of factors, including exposure to high levels of gases, tem-
perature fluctuations, and moisture—indeed impacts its sensitivity, leading to inaccurate
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readings. One common way to address sensor aging is to periodically calibrate the sensors
to ensure their accuracy.

However, this research work evinced that there is a very effective methodology to
keep the sensors’ performance stable during their lifecycle. Actually, coefficients C1 and
C2 used in the methodology proposed express the performance of a sensor during its
operational life. Specifically, coefficient C1 is directly related to aging and its value changes
for each month of the operational time of the sensor according to a formula which is
differentiated according to the pollutant gas detected. At the same time, coefficient C2 aims
at the micrometric correction of the sensor values according to the average temperature of
the month of operation under study.

The suitable use of these two coefficients in the formulae proposed showed excellent
results for both NO2 and O3 low-cost air quality sensors, in the sense that not only their
aging was treatable but also high reliability of the measurements can be achieved for the
entire lifetime of the sensors. In this way, air quality monitoring can be performed via
low-cost sensors with no need for recalibration with official reference instruments at regular
intervals. So, it is feasible to create dense air quality monitoring networks in urban areas
without high acquisition costs. This is greatly beneficial to the attainment of not only
inexpensive but also accurate air monitoring via WSNs in smart cities.
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Abstract: Age of information (AoI) is an emerging network metric that measures information fresh-
ness from an application layer perspective. It can evaluate the timeliness of information in industrial
wireless sensor networks (IWSNs). Previous research has primarily focused on minimizing the
long-term average AoI of the entire system. However, in practical industrial applications, optimizing
the average AoI does not guarantee that the peak AoI of each data packet is within a bounded interval.
If the AoI of certain packets exceeds the predetermined threshold, it can have a significant impact
on the stability of the industrial control system. Therefore, this paper studies the scheduling prob-
lem subject to a hard AoI performance requirement in IWSNs. First, we propose a low-complexity
AoI-bounded scheduling algorithm for IWSNs that guarantees that the AoI of each packet is within
a bounded interval. Then, we analyze the schedulability conditions of the algorithm and propose
a method to decrease the peak AoI of nodes with higher AoI requirements. Finally, we present a
numerical example that illustrates the proposed algorithm step by step. The results demonstrate the
effectiveness of our algorithm, which can guarantee bounded AoI intervals (BAIs) for all nodes.

Keywords: age of information (AoI); industrial wireless sensor networks; peak AoI; scheduling

1. Introduction

Industrial wireless sensor networks (IWSNs) have emerged as a key technology en-
abling the deployment of Industry 4.0 for their flexibility, lack of wiring, low cost, and easy
deployment characteristics [1]. IWSNs are capable of delivering time-sensitive periodic
data flows generated by field devices to the gateway timely and reliably [2]. They have
been widely deployed in industrial process automation applications, such as digital twin
and remote state estimation [3]. These applications typically use data-driven models, and
the data inputted into the model should be fresh enough to accurately characterize physical
objects [4]. An emerging application layer performance metric, age of information (AoI),
has recently been proposed to measure the freshness of data [5]. AoI is defined as the
amount of time that has elapsed since the most recent update was generated at the source
and successfully received at the destination [6]. Compared with traditional performance
indicators (such as delay), AoI not only considers the time spent by data packets in wireless
link transmission but also considers the transmission interval specified by the network
scheduler. A small AoI implies that there exist fresh data available at the destination. AoI
comprehensively characterizes the freshness of data packets, which can be applied to the
performance evaluation of IWSNs.

Industrial applications require a high degree of data freshness, as many industrial
processes are dynamic and rapidly changing [7]. Timely and accurate information is critical
in making decisions that can impact the efficiency, safety, and overall performance of
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industrial operations [8]. For instance, in industrial process control systems, real-time
data from sensors are essential to adjust process parameters, prevent equipment failures,
and optimize production. In predictive maintenance, fresh data from sensors can be used
to monitor the condition of machinery and predict potential failures before they occur,
allowing for proactive maintenance and reducing downtime. If the age of information
(AoI) for a certain amount of data falls below its corresponding threshold, it can result in
significant damage to industrial production.

Due to the real-time nature of industrial applications, the IWSN standards (e.g.,
ISA100.11a and WirelessHART [9]) adopt time/frequency division multiple access
(TDMA/FDMA) as the medium access method to achieve collision-free transmissions [2].
A network scheduler in the gateway assigns time slots and channels to transmit a flow to
the destination, with multiple time slots in a superframe repeating cyclically [10]. Over
the past decade, researchers have proposed various IWSN scheduling algorithms [11–16],
focusing on minimizing transmission latency, energy consumption optimization, avoiding
conflicts, etc. Some studies have proposed using AoI as a metric to measure the freshness
of data in WSN. For instance, the authors in [4] analyze the long-term average AoI in WSN,
and they formulate the AoI minimization problem subject to energy and time constraints.
In [17,18], the authors consider minimizing the average AoI in energy constrained scenarios,
especially the energy-harvesting WSN. Meanwhile, the authors of [19] derive the worst
case average AoI and average peak AoI of data packets in WSN with the MAC layer based
on a carrier sense multiple access with collision avoidance (CSMA/CA) method. However,
optimizing AoI from the application layer perspective with hard performance requirements
in IWSNs has rarely been considered.

Numerous studies have investigated AoI optimization problems in wireless net-
works [20], mainly focused on optimizing the performance of the whole system, taking
into account different types of queue models, packet generation/arrival processes, queue
capacities, wireless channel models, etc. For example, the authors in [5] discussed the
minimum AoI for various single-service queue models under the first-come-first-served
queue discipline. In [21], the authors derived an expression for the long-term average AoI
of multi-service queue models. The authors of [22] investigated the problem of minimiz-
ing the AoI in a network subjected to various interference constraints and experiencing
time-varying channels. The authors of [23] examined the optimal sampling and updating
processes for IoT devices in a real-time monitoring system to minimize the long-term
average AoI. In summary, most studies on AoI optimization scheduling based on queue
theory aim to target a weighted-sum long-term average AoI. There are also some works
focused on reducing the violation probability, where the peak AoI exceeds a given age
constraint [24–26]. However, the reduction of violation probability still cannot meet the
deterministic requirements of industrial applications. The authors of [27] proposed a
scheduling algorithm with the constraint that each source in the system has a maximum
AoI threshold. They assumed that the time is divided into slots and each source node
collects a new sample at the beginning of each slot. Nonetheless, it is still challenging for
sensor nodes in IWSNs to sample data at each time slot due to computing capability and
energy constraints.

In industrial applications, the timely delivery of sampled data from the source to the
destination is critical, where there is a hard performance requirement for the AoI metric
per data packet. It warrants attention that optimizing the average AoI does not guarantee a
bounded peak AoI for each data packet; in industrial control systems, if one or a certain
packet’s AoI exceeds the predetermined threshold, it can seriously affect the stability of
the industrial control system. In view of this, we propose an AoI-bounded scheduling
algorithm for IWSNs that ensures that the AoI of all data packets sent by each node in
the network is within a bounded interval, thus ensuring that the peak AoI of all nodes is
bounded, which is crucial for ensuring the stability of the system. The main contributions
of this work can be summarized as follows.
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• We propose a low-complexity AoI scheduling algorithm for IWSNs that ensures that
each packet’s AoI is within a bounded interval, instead of optimizing the network’s
long-term average AoI. To the best of our knowledge, this is the first work in IWSNs
that guarantees that the AoI of each data packet is within a bounded interval, which
meets the high real-time demands of industrial applications.

• We analyze the schedulability conditions of the network and propose a method for
reducing the peak AoI of nodes with higher AoI requirements by allocating more time
slots to those nodes.

• We provide a numerical example to demonstrate the algorithm step by step, and the
results show the effectiveness of our algorithm.

The rest of this paper is organized as follows. In Section 2, the system model and
problem statement are presented by means of a comparison of the AoI evolution process for
data packets at different transmission intervals, and Section 3 presents our AoI-bounded
scheduling algorithm and analyzes the bounded AoI intervals (BAIs) of nodes. The perfor-
mance of the proposed algorithm is evaluated and discussed in Section 4. The conclusions
are presented in Section 5.

2. System Model and Problem Statement

We consider a data collection scenario in a time-slotted IWSN consisting of one sink
node and N source nodes with a single hop. Each source node Ni collects data periodi-
cally according to its own sampling period Ti and sends packets to the sink through the
wireless channel. We assume that the wireless channel is error-free, allowing us to ignore
the underlying communication channel and simplify the scheduling policy design. The
sampling period of nodes in an IWSN usually varies significantly due to differences in
sensor type or data update rates required by the industrial application. We assume that
each sensor node adopts a single-packet queue model due to the low-power and low-cost
characteristics of IWSNs. In this model, the older packet is dropped from the queue when
a new packet is generated. Therefore, to ensure the freshness and continuity of sampled
data, the data packet in the queue must be transmitted to the sink node before the next
new periodic data packet generation. The main notations used throughout this paper are
summarized in Table 1.

Table 1. List of key notations.

Notation Description

i Index for node
t Time slot number

Xi(t)
Indicator function that is equal to 1 when the node i transmits the packet in
time slot t, and Xi(t) = 0 otherwise

Gi(t) Data generation time
Ai(t) The AoI of source node i at time slot t

Ti Sampling period of node i
Δp

i Peak AoI of the of node i
Ii Transmission interval time of node i

Umin Minimum transmission units
αi Transmission interval coefficient of node i
Pt The duration of a superframe

The IEEE 802.15.4 is commonly adopted in IWSNs as the physical and MAC layer
fundamental techniques [2]. Assuming that the system is synchronized, time is divided
into equal-length time slots. Let Xi(t) ∈ {0, 1} be the indicator function that is equal to
1 when the node i transmits the packet in time slot t, and Xi(t) = 0 otherwise. It should
be noted that interference may arise when multiple nodes transmit packets during the
same time slot, and therefore, at most, one packet can be transmitted in the one slot, since
we have

∑N
i=1 Xi(t) ≤ 1. (1)
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Similar to [27,28], we assume that a node will wait until its send time slot to transmit
a data packet that it has generated, instead of sending it immediately. Each source node
can send data to the sink node and receive an acknowledgment message within a single
time slot. The scheduler cyclically schedules each source node through a superframe with a
duration of Pt. The packet sent by a source node comprises the data and the data generation
time, denoted by Gi(t). The AoI of source node i at time t is represented by Ai(t). When
the sink successfully receives a new packet, Ai(t) is updated to the difference between the
current time slot t and Gi(t). In other cases, Ai(t) increases linearly. The update process of
Ai(t) can be expressed as follows:

Ai(t) =
{

t− Gi(t) + 1 if node i update
Ai(t− 1) + 1 others

. (2)

Figure 1 presents a comparison of the AoI evolution process of packets under different
transmission intervals with the same sampling period (Ti = 7) of a node. The upper part of
each subgraph illustrates the data sampling events and data packet transmission events in
time slots, while the lower part depicts the AoI evolution process according to different
generation and delivery sequences of data packets. The sampling event of the source node
occurs at time slot si(k), si(k + 1), · · · , and the sink node receives the corresponding data
packet at time slot ri(k), ri(k + 1), · · · . We define the peak AoI of the k-th packet of node i
as Δp

i (k), ∀k > 0. The time between packet generation and sink reception is referred to as
the system time Di(k), which is equal to r(k)− s(k). We refer to the transmission interval
time as Ii, which equals r(k + 1)− r(k).
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Figure 1. Evolution of node’s AoI with respect to different transmission intervals. (a) The change of
node’s AoI when Ii > Ti; (b) the change of node’s AoI when Ii = Ti under ideal conditions; (c) the
change of node’s AoI when Ti

2 < Ii < Ti; (d) the change of node’s AoI when Ii <
Ti
2 .
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The source node in our system employs a single packet queue model, which means
that any data packet not sent from the queue will be dropped upon the generation of a
new data packet. As shown in Figure 1a, where Ii = 9 is greater than Ti, the packet k
was not sent to the sink node before packet k + 1 was generated, resulting in the packet k
being dropped. The red cross in Figure 1a indicates the moment that the data packet was
dropped. To avoid packet drops, it is crucial that Ii must be less than or equal to Ti. Ideally,
the transmission interval for each source node would be equal to its own sampling period,
with the time interval between the packet generation time slot and the transmission time
slot kept as short as possible. As shown in Figure 1b, in this scenario, the AoI of the node
changes periodically with the peak AoI being equal to Di(k) + Ii time slots (i.e., one time
slot plus seven time slots equals eight time slots). However, it is impractical to ensure that
the transmission interval of each node is equal to its own sampling period in a scheduling
since the sampling period of nodes in an IWSN usually varies significantly. In Figure 1c,d,
it can be clearly observed that a smaller transmission interval does not necessarily improve
AoI performance but can instead cause a waste of time slots.

Based on (2), it can be inferred that in the absence of new message arrivals, the AoI of
a node shows a linear growth with a slope of 1. From Figure 1, it can be observed that the
peak AoI Δp

i (k) of the k-th packet of node i is calculated as the sum of the system time of
the current data packet and its transmission interval. As such, we can conclude that

Δp
i (k) = Di(k) +

[
Ti
Ii

]
× Ii, (3)

where [·] is the floor function. After the scheduler completes the network scheduling, the
network executes the scheduling table repeatedly until the network parameters change.
During the execution of the scheduling table, the value of Ii remains fixed. Here, the peak
AoI of a node is determined by system time Di. Figure 1 also depicts that Δi(k) is equivalent
to the transmission period added to the system time of the subsequent data packet and is
expressed as

Δp
i (k) = Di(k + 1) + Ti. (4)

By substituting (4) into (3), we have the update process of Di(k) as

Di(k + 1) =

⎧⎨⎩ Di(k) +
[

Ti
Ii

]
× Ii − Ti, if Δp

i (k) > Ti

Di(k) +
[

Ti
Ii

]
× Ii − Ti, others

. (5)

The value of Di(k) changes periodically, which leads to the value of Δi(k), as stated
in (4), being within a specific period. However, it is an intractable problem to determine the
transmission interval Ii of nodes. If the value of Ii is less than or equal to Ti, it guarantees
that there will be at least one time slot between two consecutive sampling slots. On the
other hand, if Ii is greater than Ti, there will be no send time slot between two consecutive
sampling time slots of a node. This consequently results in the node being unable to
send the current data before the next sampling data are generated, ultimately leading
to discarding the existing data. According to (4) and (5), when Ii = Ti, the node’s peak
AoI will be a specific value, and the duration of the superframe can be the least common
multiple of Ti. Therefore, it is challenging to determine the length of the superframe due
to the considerable variance in the nodes’ sampling period. However, the value of 1

Ii

indicates the proportion of the slot occupied by node i in a superframe. Thus, ∑N
i=1

1
Ii
≤ 1

is necessary for the network to satisfy the scheduling feasibility. Therefore, we must choose
an appropriate Ii for the node according to Ti.

3. AoI-Bounded Scheduling Algorithm

This section first presents the AoI-bounded scheduling algorithm for IWSNs. Then,
we analyze the BAI of nodes with different sampling periods under this algorithm. Finally,
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we propose a method for improving the BAI in the proposed algorithm for nodes with
higher AoI requirements.

3.1. Scheduling Algorithm

The algorithm primarily divides the superframe into multiple minimum transmission
units (Umin) with the same length. Each node’s Ii is an integer multiple of Umin and less
than its Ti, guaranteeing that each node sends the current data before the next sampled
data are generated and that the network’s schedulability is satisfied.

As Umin is the algorithm’s basic scheduling unit in a superframe, it is necessary to
ensure that the Umin is less than or equal to the minimum sampling period in all nodes
to prevent data packets from being dropped. However, since Ii is an integer multiple of
Umin, a larger Umin can cause a superframe to have more available time slots. We take the
minimum Ti among all nodes as the Umin, which can be obtained as

Umin = min{Ti, ∀i ∈ N}. (6)

Umin is taken as the least common factor of the transmission interval Ii for each node.
Ii represents the length of the interval between two adjacent transmission time slots of node
i within one superframe. The Ii of node i can be obtained as

Ii(k) = αi ×Umin, (7)

and

αi = 2[log2 (
Ti

Umin
)]. (8)

αi is the transmission interval coefficient (TIC) of node i, defined as a power of two,
i.e., 2n. [·] is a floor function. According to (8), Ii < Ti.

In addition to considering periodic data transmission, aperiodic data cannot be ignored.
We reserve σ time slots for aperiodic data packets in each Umin; this means that there are
Umin − σ time slots that can be allocated to periodic data flows in each Umin. The general
structure of the superframe defined by the proposed scheduling algorithm is shown in
Figure 2. When considering network scheduling feasibility, it is crucial to ensure that the
time slots allocated for periodic nodes as well as the reserved time slots of aperiodic nodes
should not exceed the length of Umin, as constrained by condition (9):

∑N
i=1

1
αi

+ σ ≤ Umin. (9)

U1 U2 U ...

P

Slot 1 ...

U U U

P

Slot 2 Slot 3 Slot 4

U U...

U -

Figure 2. The superframe is divided into multiple minimum transmission units, where the length of
each transmission unit is equal to the minimum sampling period in all nodes, and σ time slots are
reserved for aperiodic data at the end of each transmission unit.

194



Electronics 2023, 12, 1499

Under the condition of guaranteeing network scheduling feasibility, by (9), each node’s
transmission intervals Ii are multiples of each other. The duration of a superframe Pt is the
least common multiple of all nodes Ii. Thus, Pt can be obtained as

Pt = max(αi)×Umin, i ∈ [1, N]. (10)

Finally, dedicated time slots are assigned to each node. In this step, priority is given to
nodes with a smaller Ti to determine their initial scheduling time slot (IST). We allocate
the first unused time slot t from 1 to Uki

as the IST of node Ni. After determining the
IST, the corresponding time slots of Ni in the remaining time slots of the superframe are
determined accordingly, i.e., IST + Ii × m, m =

[
1, · · · , αmax

αi
− 1

]
. Take node i with its

αi = 2 and the maximum α of the network (i.e., kmax = 8) as an example. If there exists
a time slot t ∈ [1, 2×Umin] with ∑N

i=1 Xi(t) = 0, we allocate the time slot t as the IST of
node i, and the corresponding time slots in the remaining superframe can be determined as
t + m× Ii, m ∈ {1, 2, 3}. The key steps of the proposed algorithm are given in Algorithm 1.
The time is mainly consumed in Step 5 of Algorithm 1, in which we need to find the first
unused time slot for each node as its IST. Therefore, the time complexity of Algorithm 1 is
O
(
n2), where n denotes the number of nodes in the networks.

Algorithm 1: AoI-bounded Scheduling

Input: N, Ti
Output: Umin, IST, Pt, Ii

1 Determine the length of Umin based on (6) // step 1

2 for i = 1,2,· · · ,N do // step 2

3 Determine the transmission interval Ii of node Ni based on (7) and (8).
4 end

5 // Validate the scheduability of the network. // step 3

6 if ∑N
i=1

1
αi
+ σ ≤ Umin then

7 Network is schedulable, go to Step 4;
8 else

9 Indicates the network configuration is overloaded;
10 Return;
11 end

12 Determine the duration of superframe Pt based on (10); // step 4

13 for i = 1,2,· · · ,N do // step 5

14 //Assign dedicated time slots to each node
15 Allocate the first unused time slot t from 1 to Uki

as the IST of node Ni;
16 end

17 Return

3.2. BAI Analysis

In this section, we analyze the upper and lower bounds of the node AoI under the
proposed scheduling algorithm, which in turn shows that the node AoI is in a bounded
interval. The BAI of node i can be determined by the interval between the minimum peak
AoI and the maximum peak AoI.

The worst-case scenario for scheduling occurs when the send time slot of a node
overlaps with a sample time slot, causing the latest sampled value to be delayed until the
next send time slot. This delay results in the node’s AoI reaching its maximum value. In
the worst-case scenario, the latest sampled data is generated after an elapsed time of Ti
from the last packet generation. Therefore, the AoI of the node at this time is Ti. The next
sending time of the node requires Ii time slots, and given that it takes one time slot to
complete the transmission of the message, the maximum peak AoI Δi

max of the node can
be expressed as follows:

Δi
max = Ii + Ti + 1 (11)
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Figure 1c depicts the optimal scenario of the scheduling algorithm, wherein a node
immediately transmits sampled data in the following time slot. This allows the node to
promptly send its data to the sink node and results in the minimum AoI for the node. In this
case, with an additional time slot accounting for data packet transmission, the minimum
peak AoI Δi

min is given by
Δi

min = 1 + Ti. (12)

The analysis above indicates that the maximum and minimum peak AoI of a node is
associated with its sampling period and transmission interval. Once the network scheduling
concludes, both the sampling and transmission intervals remain constant, resulting in
the AoI of the node being confined within a bounded interval. The BAI of node i is
between the maximum peak AoI Δi

max and the minimum peak AoI Δi
min, i.e., Ai(t) ∈

[Ii + Ti + 1, Ti + 1].

3.3. Peak AoI Decrease Method

From (7) and (11), we can determine that the maximum peak AoI is positively corre-
lated with αi and Umin. Improving the peak AoI by reducing Umin will reduce the available
time slots and affect network scheduling feasibility. The most effective way to improve
BAI is to reduce the peak AoI of node i by reducing αi. After reducing αi to α̃i, the the
node’s Ii(k) reduces accordingly, adding the node’s Pt

Umin
×
(

1
α̃i
− 1

αi

)
transmission slot to

the superframe. The improved Δi
max can be obtained as

Δi
max =

Ii × α̃i
αi

+ Ti + 1. (13)

Due to the addition of time slots for nodes, reducing the value of αi must still satisfy
constraint (8), ensuring network scheduling feasibility. Other than that, reducing the
maximum peak AoI can also reduce the average AoI. According to [29], the average AoI Δi
of source node i can be obtained as

Δi =
E[DiTi ]+E[Ti

2]/2
E[Ti ]

Δi = E[Di] +
Ti
2

(14)

Considering that the data packet transmission needs one time slot, the exception of Di
can be obtained as

E[Di] =
1 + Ii

2
+ 1. (15)

Therefore, a decrease in αi will decrease BAI and the average AoI Δi, accordingly.

4. Evaluation and Numerical Results

In this section, we evaluate the performance of the proposed algorithm by providing
an example and presenting the results of simulations. We consider a network of 10 sensor
nodes that periodically sample data and send them to the sink node, i.e., N = 10. The
sampling period Ti of each sensor node is uniformly distributed at random integers between
2 and 50 time slots, i.e., Ti ∈ [2, 50], as shown in Table 2. The duration of a time slot is
defined as 10 ms. We reserve one time slot for aperiodic data in each Umin. Following the
five key steps of the proposed algorithm in Section 4, we present a detailed example below
to illustrate the values obtained from each step of the proposed algorithm.

In step 1, the length of the minimum transmission unit Umin is determined according
to (6), which involves taking the minimum Ti among all nodes. Since the sampling period
of node #7 is the smallest among all nodes, the Umin is set to seven time slots.

In step 2, the minimum scheduling unit and the sampling period of all nodes are
given. Each node’s Ii and αi are calculated using Equations (7) and (8), respectively. The
results are presented in Table 2.
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In step 3, the primary task is to examine the schedulability of the network. According
to (2), the sum of the reciprocal of coefficients for all nodes, adding the number of reserved
time slots for aperiodic data packets, is calculated as ∑N

i=1
1
αi
+ σ = 6, less than the Umin.

This indicates that the proposed AoI scheduling algorithm can find a solution that schedules
all the nodes under the current network parameters setting.

In step 4, the duration of the superframe is determined based on (10), i.e., Pt = 28.
The network will repeat the whole schedule table every 28 time slots.

In step 5, the dedicated time slots for each source node are allocated. Following
the allocation process, the lower sampling period nodes are prioritized. For any node,
its IST is determined, and then the remaining time slots are allocated according to Ii(k).
Table 2 shows each node’s IST, and Figure 3 shows each source node’s send time slot in a
superframe. We take node #2 as an example, where α2 = 1; we need to decide the IST of
node #2 in U1. Since time slot 1 is occupied by node #7, the IST of node 2 is set to time slot
2. According to (7), the transmission interval of node 2 is seven time slots. Thus, the time
slots of node 2 in the superframe are 2, 9, 16, and 23.

Table 2. Parameters setting of the example network.

Node ID Ti αi Ii(k) IST

1 28 4 28 9
2 10 1 7 2
3 15 2 14 4
4 38 4 28 12
5 17 2 14 5
6 20 2 14 6
7 7 1 7 1
8 29 4 28 10
9 35 4 28 11
10 14 2 14 3

Figure 3. Illustration of the time slot allocation.

According to the parameters in Table 2, we evaluated the AoI performance of nodes
in a discrete-event simulator that we built in a Python environment. To demonstrate the
effectiveness of the proposed algorithm in ensuring AoI within a bounded interval, we
selected three representative nodes and examined the changes in their AoI. These nodes
include node #2 with α2 = 1, node #6 with α6 = 2, and node #9 with α9 = 4. We adopted
the optimal greedy scheduling algorithm as a benchmark for comparison, in which each
node transmits the data to the sink node in the next time slot after completing the sampling
process, thereby obtaining the lower bound value of the peak AoI. It is crucial to note that
it is impractical to apply the greedy scheduling strategy on every node in the network,
given the large number of nodes and the possibility of significant variations in the sampling
period of each node.

Figure 4 shows the real-time AoI, with the corresponding peak AoI and benchmark of
the three representative nodes. Clearly, the AoI of all three nodes is below its corresponding
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peak AoI. The node’s peak AoI changes periodically, guaranteeing each node’s BAI. Under
the proposed algorithm, since the peak AoI is positively correlated with Ii, it causes the
maximum peak AoI of node 9 to be higher than the rest of the nodes, resulting in a greater
BAI. The periodic variation of the AoI of nodes within the BAI interval can be attributed to
the utilization of the floor function in determining the transmission interval of nodes in (8).
As a result, the transmission period of nodes is shorter than the data generation period.
Furthermore, the network employs a superframe-based periodic cycle scheduling method,
which leads to the periodic variation of the time interval between node transmission slots
and node sampling slots. In addition, we analyzed the AoI of all nodes and confirmed the
BAI of all nodes and the peak AoI and average AoI of all ten sensor nodes, as shown in
Figure 5.

Δ

 
(a) 

Δ

(b) 

Δ

 
(c) 

Figure 4. The real-time AoI, with the corresponding peak AoI and benchmark of three sample nodes:
(a) node #2, (b) node #6, (c) node #9.
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Figure 5. Boxplot of AoI for all ten sensor nodes.

In Figure 6, the effectiveness of reducing the peak AoI of a node by adjusting its TIC
αi is demonstrated, with node #9 used as an example. By adjusting the α9 of node #9 from
4 to 2 and 1, a reduction in the peak AoI of the node was observed. Decreasing the TIC can
increase the number of transmission slots allocated to nodes. However, the TIC cannot be
arbitrary, as a coefficient that is too small would reduce the network’s schedulability; the
value of coefficient αi must satisfy the constraint in (9).

α9 α9 α9

α9 α9 α9

Figure 6. The AoI of node #9 with different α9.

The boxplot of the AoI for node #9 with different α9 is shown in Figure 7, which
indicates that reducing the TIC α9 leads to a decrease in the peak AoI, while the average
AoI of the node also decreases accordingly.
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α

Figure 7. Boxplot of AoI for node #9 with different TIC α9.

To evaluate the schedulability of the proposed algorithm, we conducted experiments
to test its scheduling success rate under varying numbers of nodes and average sampling
periods, as shown in Figure 8. The scheduling success rate is defined as the percentage of
test cases for which the algorithm is able to find a feasible schedule [30]. The scheduling
success rate exhibits a decreasing trend with an increase in the number of nodes, which
can be attributed to the requirement for additional time slots as the number of nodes
increases. Similarly, a decrease in the average time sampling period leads to a reduction
in the scheduling success rate. This can be attributed to the fact that a smaller sampling
period results in an increased number of packets being sent within a single superframe.

Figure 8. Schedulability analysis with respect to varying numbers of nodes and sampling periods.

5. Conclusions and Future Works

This paper proposed a scheduling algorithm guaranteeing each node’s AoI within a
bounded interval in an IWSN where the sensor nodes’ sampling periods vary significantly,
which is crucial for ensuring the stability of industrial systems. We determined the node’s
transmission interval and superframe length according to the node’s sampling period to
ensure network scheduling feasibility. Furthermore, we proposed a method to decrease the
peak AoI by allocating more time slots for the nodes. A numerical example is given to illus-
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trate the proposed algorithm step by step; the numerical results showed that the proposed
algorithm could guarantee that the AoI of each node would be below the corresponding
peak AoI.

In the future, the proposed algorithm is expected to be implemented in a real IWSN
scheduler to test the AoI performance with real industrial data. Moreover, the algorithm can
be extended to support multi-hop topology, while also taking into account lossy wireless
channel models.
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The following acronyms are used in this manuscript:

AoI Age of information
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CSMA/CA Carrier sense multiple access with collision avoidance
TDMA/FDMA Time/frequency division multiple access
IWSNs Industrial wireless sensor networks
IST Initial scheduling time slot
TIC Transmission interval coefficient
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