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Editorial

Modeling Forest Response to Climate Change

Gina Marano 1,2,*,†, Daniela Dalmonech 1,† and Alessio Collalti 1,†

1 Forest Modelling Laboratory, Institute for Agriculture and Forestry Systems in the Mediterranean,
National Research Council of Italy (CNR–ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy;
daniela.dalmonech@cnr.it (D.D.); alessio.collalti@cnr.it (A.C.)

2 Forest Ecology, Institute of Terrestrial Ecosystems, Department Environmental Systems Science,
ETH Zurich, 8092 Zurich, Switzerland

* Correspondence: gina.marano@usys.ethz.ch
† These authors contributed equally to this work.

In an era marked by unprecedented climate shifts, understanding the intricate re-
sponses of forest ecosystems to these changes is of paramount importance. The research
presented in this Special Issue delves deeply into various dimensions of forest dynamics
under the influence of climate change, offering critical insights that can guide effective
conservation and management strategies.

Vegetation seasonality, a crucial component of ecological systems, is under significant
stress due to global warming. Nooni et al.’s study [1] highlights how Normalized Difference
Vegetation Index (NDVI) trends in Equatorial Africa (EQA) have been influenced by
changes in precipitation and temperature over the past four decades. The research reveals
that while forest and cropland areas have experienced declining NDVI trends, shrubland
and grassland areas have tended to increase, suggesting that there is a complex interplay
between climate factors and vegetation types. This nuanced understanding is essential for
ecological conservation and resource management in the face of ongoing climate change.

Similarly, the capacity of forests to act as carbon sinks is under threat. In their study,
Morichetti et al. [2] examine carbon fluxes within forest ecosystems using the 3D-CMCC-
FEM model. Their analysis of five contrasting European forest sites under current and
future climate scenarios demonstrates the model’s robust ability to estimate net ecosystem
exchange (NEE). The study predicts a consistent reduction in the carbon sink capabilities
of forests due to climate change and forest aging. Despite an increase in the number of
days that evergreen forests act as carbon sinks, their overall annual capacity is projected to
decrease. Similarly, deciduous forests maintain stable carbon sink days but also show a
reduction in their annual capacity. This highlights the need for the implantation of adaptive
forest management practices that mitigate the anticipated decline in carbon sequestration.

The same model was employed by Vangi et al. [3] by simulating carbon stocks and
wood production across different forest ages and climate scenarios. Their findings indi-
cate a pronounced decline in biomass for older coniferous stands, such as spruce, under
warming conditions; meanwhile, beech forests may sustain or even enhance their carbon
storage capacity. Scots pine forests display intermediate behavior, with a stable stock
capacity but decreasing annual increment. These insights highlight the variable resilience
of different forest types to climate change, necessitating tailored management approaches
and, most importantly, underscoring the differential impacts of climate change on conif-
erous and broadleaf forests; in addition, they highlight the necessity of species-specific
management practices.

An important component of the carbon cycle and its dynamics is soil respiration;
therefore, its influence on the carbon cycle was explored by Kivalov et al. [4]. The au-
thors developed empirical models to better understand soil respiration in different forest
ecosystems. Their research highlights the importance of soil’s organic carbon and water-
holding capacity in predicting soil respiration, providing a foundation for the enhanced
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modeling of the carbon cycle in terrestrial ecosystems. Moving to a management-oriented
perspective, several studies investigated how management practices, namely restoration,
plantation and thinning techniques, can alleviate forest ecosystems from the future pressure
of environmental stressors.

The restoration and conservation of native forests also emerge as critical themes in
Yong et al.’s study [5]. The authors employ a joint species distribution model to analyze
the distribution of tree species in China’s Jilin Province. The study identifies climate,
site, and soil as the key environmental factors influencing tree species niches, with the
model demonstrating strong explanatory power. Their work emphasizes the importance
of environmental factors—climate, site, and soil—in shaping tree species niches, thus
providing a robust framework for forest restoration and proactive forest management.

The impact of climate change on economically significant timber trees is a crucial
aspect of timber-based bioeconomies. In their work, Feng et al. [6] focus on Cunninghamia
lanceolata by using the MaxEnt model to project its distribution under future climate
scenarios. Their research identifies the key environmental variables affecting its growth
and suggests that suitable habitats will shift to higher latitudes as the climate warms.
This predictive modeling is crucial for the planning of future planting strategies and
conservation efforts to ensure the survival of this valuable species.

Innovative methodologies also play a pivotal role in forest management. In their study,
Liu et al. [7] integrate remote sensing, deep learning, and statistical modeling to monitor
forest changes and carbon storage dynamics in China. Their approach demonstrates high
accuracy in mapping forest types and quantifying carbon storage, offering a valuable tool
in local forest management and the achievement of carbon neutrality.

On the same level, predictive models of species distribution under various climate sce-
narios offer critical insights into conservation planning. For instance, rare and endangered
species such as Magnolia wufengensis ‘Jiaolian’ are projected to experience significant habitat
shifts due to climate change, as reported by Shi et al. [8]. According to their study, the suit-
able habitats for such species will move to higher elevations and latitudes, highlighting the
need for dynamic conservation strategies that can adapt to these changes. Understanding
these shifts is crucial for the protection and sustainable management of biodiversity.

Thinning practices, which are an essential technique in sylviculture and the opti-
mization of its management, were examined by Qin et al. [9] through a hybrid modeling
approach; this combined the 3-PG process model and a long short-term memory neural
network. Their study offers practical guidelines for thinning practices that enhance forest
growth and carbon sequestration, demonstrating the significance of adaptive management
in response to climate and anthropogenic pressures.

The conservation of endemic ornamental species was explored by Shi et al. [10]
who reported that, under more severe scenarios of climate change, the populations of
Helleborus tibetanus Franchet, are at high risk of destruction. These insights are critical for
the conservation and sustainable utilization of this species in China.

Similarly, Korznikov et al. [11] employed Random Forest models to explore changes in
the distribution of Jezo spruce (Picea jezoensis (Siebold and Zucc.) Carrière) in Northeast Asia
under climate change scenarios. For this species, however, the key refugia are predicted
to remain suitable; hence, the establishment of artificial stands in these future climate-
acceptable regions may be vital for preserving genetic diversity.

The potential ability of forest plantations to mitigate climate change was also explored
by Altamirano-Fernandez et al. [12], who developed a mathematical model to optimize
carbon capture in forest plantations. Their work underscores the importance of strategic
planning in reforestation, thinning, and fire prevention to maximize carbon sequestration
and combat global warming.

Climate change impacts the productivity of sites differently across tree species and
regions. For example, in Ontario, Canada, the effects of climate on site productivity vary
among jack pine, black spruce, red pine, and white spruce plantations [13]. Sharma reports
that while jack pine shows positive climate effects in western Ontario, black spruce, red
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pine, and white spruce exhibit negative impacts, especially under high-emission scenarios.
These findings highlight the need for localized management strategies that account for
species-specific and regional climate responses in order to sustain forest productivity.

In conclusion, the collective research presented in this Special Issue underscores the
multifaceted responses of forest ecosystems to climate change by means of both statistical
and process-based models. Through modeling techniques and comprehensive analyses,
these studies provide critical insights and practical solutions regarding the management
and conservation of forests in a warming world. The knowledge gained from these in-
vestigations is vital for informing policy and guiding actions that will help sustain forest
ecosystems and their invaluable services for future generations.

Conflicts of Interest: The authors declare no conflicts of interest.
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Article

Analysis of Long-Term Vegetation Trends and Their Climatic
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Abstract: Understanding vegetation seasonality and its driving mechanisms improves decision-
making in the management of ecological systems in a warming global climate. Using multiple
statistical methods (i.e., trend analysis, abrupt changes, and partial correlation analysis), this study
analyzed the spatiotemporal variations in the Normalized Difference Vegetation Index (NDVI) in the
Equatorial Africa (EQA) region and their responses to climate factors from 1982 to 2021. The NDVI
values declined at a rate of 0.00023 year−1, while the precipitation (P) and mean temperature (TMEAN)
values increased at rates of 0.22 mm year−1 and 0.22 ◦C year−1, respectively. The mean minimum
temperature (TMIN) had a higher rate of 0.2 ◦C year−1 than the mean maximum temperature (TMAX)
at 0.02 ◦C year−1. An abrupt change analysis showed that the TMAX, P, and NDVI breakpoints
occurred in 2000, 2002, and 2009, respectively; TMEAN and TMIN breakpoints occurred in 2001.
The NDVI trends declined in forest and cropland areas but increased in shrubland and grassland
areas. The summer NDVI trends declined for all vegetation types and were reversed in the winter
season. The NDVI positively correlated with the P (r = 0.50) and TMEAN (r = 0.60). All seasonal
analyses varied across four seasons. A temporal analysis was conducted using partial correlation
analysis (PCR), and the results revealed that TMIN had a greater impact on the NDVI (PCR = −0.45),
followed by the TMAX (PCR = 0.31) and then the P (PCR = −0.19). The annual trend showed that
areas with significant greening were consistent with stronger wetter and weaker warming trends.
Both precipitation and temperature showed a positive relationship with vegetation in semi-arid and
arid regions but a negative relationship with humid regions. Our findings improve our insight into
scientific knowledge on ecological conservation.

Keywords: NDVI; vegetation dynamics; climate change; precipitation; temperature; Equatorial Africa

1. Introduction

Terrestrial vegetation is a dominant component of terrestrial ecosystems on Earth. Veg-
etation is an intermediary in the biosphere that influences energy–water–carbon cycles [1,2].
Therefore, monitoring and tracking vegetation dynamics are essential practices in the man-
agement of multiple sectors of ecological systems in a warming global climate [3,4]. Recent
observation and climate modeling studies have indicated that global warming significantly
influences climate patterns and vegetation dynamics [5,6]. For example, changes in the

Forests 2024, 15, 1129. https://doi.org/10.3390/f15071129 https://www.mdpi.com/journal/forests4
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hydrological cycle affect soil moisture and vegetation growth. Vegetation, in turn, impacts
the climate by altering energy and biogeochemical cycles [7,8]. According to the sixth
assessment report of the Intergovernmental Panel on Climate Change (IPCC AR6), global
warming is impacting our ecosystems, and these changes are mainly due to natural and
anthropogenic causes [7]. The impacts on ecosystems in a given region affect communities
whose livelihoods are directly tied to local ecosystems. However, the factors that explain
global ecosystem changes vary across space and time [9]. For example, it is well known that
intense social pressures on certain global land areas can suppress or promote major ecosys-
tem richness [4]. Typical empirical evidence includes land degradation in the Amazon
and Congo rainforests [10,11] and restoration programs (e.g., in China and India [12,13]
and greening in the Sahel region [14,15]). Thus, the study of vegetation dynamics (i.e.,
patterns, seasonality, and relationships) has gained substantial attention in climate change
studies [3,4].

With advances in observational remote sensing, it has become more convenient to dis-
entangle the issue of climate impacts on greening. Remote sensing (RS) data offer scalable
multi-temporal and multi-spatial analysis solutions. Many RS products are being devel-
oped to measure vegetation health, plant phenology, productivity, etc. [16–18]. The NDVI
(Normalized Difference Vegetation Index) is a commonly used index based on the ratio
of red (R) to near-infrared (NIR) reflectance (i.e., NDVI = (NIR − R)/(NIR + R)) [19]. The
NDVI is primarily used to determine the health and density of vegetation. This indicator
measures vegetated and non-vegetated terrain within the range of +1 and −1, where high
NDVI values (near +1) indicate dense green vegetation and low values indicate moisture-
stressed vegetation [20]. Multiple NDVI datasets are available for global and regional
studies [17]. The Global Inventory Modeling and Mapping Studies of the National Oceanic
and Atmospheric Administration/Advanced Very High-Resolution Radiometer Normal-
ized Difference Vegetation Index third generation (GIMMS NOAA/AVHRR NDVI3g)
dataset has been widely used to study vegetation greening since the 1980s. Over the past
three decades, the GIMMS NOAA/AVHRR NDVI3g dataset has significantly improved
our understanding of intra- and inter-annual variations in vegetation activity from regional
to global scales [21,22]. Most of these studies have reported large patterns and trends in
the magnitude and timing of vegetation activity in the Northern Hemisphere (NH) [23–25].
Additionally, increasing (“greening”) or decreasing (“browning”) vegetation trends have
been documented over multiple timescales [26]. The trajectories of these vegetation trends
have been reported to be gradual or abrupt for global and regional studies [27]. Vegetation
greenness in relation to trends in climate has been investigated at different spatial (i.e.,
global, regional, and watershed) and temporal scales [28].

Climate drivers, such as precipitation and temperature, generally influence vegetation
growth. Precipitation and temperature are the two most widely used climate variables in
different regions [29]. Despite these numerous studies, the relationship between precipi-
tation or temperature and vegetation dynamics across different climate zones at different
timescales is still complex [29,30]. Most of these studies used statistical models to analyze
the effect of water and heat conditions on vegetation. Recently, parametric methods have
been reported to be unreliable; however, non-parametric methods such as Sen Slope and
Mann–Kendall tests are widely used due to their reliability. These methods can be used
to determine changes in vegetation dynamics. Some studies used partial correlation and
cross-correlational analysis to quantify vegetation-driving factors. The partial correlation
analysis is intended to explain the relationships between vegetation growth and the driving
factors [31]. In addition, transient disturbances in the time series could be determined
during changes in vegetation [29], and the Pettitt test is preferred to detect breakpoints or
abrupt changes in vegetation and climate time series in many different regions [29,30].

The Equatorial Africa (EQA) region is located in the tropics, which are geographical
zones that regulate hydrological and carbon cycles [32]. Previous studies on vegetation
dynamics have been conducted in the Horn of Africa [33] and sub-Saharan Africa [34–37].
Moreover, recent studies have observed frequent changes in land use and land cover
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(LULC) across sub-Saharan Africa. Thus, the effects of vegetation dynamics caused by
climatic and non-climatic factors make this tropical region a hot spot for land–atmosphere
interactions [32,38,39] and, by extension, a test bed for investigation [40]. Moreover, warm-
ing at night has been reported to be faster than that during the day in certain global lands
(e.g., West Africa and Europe) [41]. However, our insight into vegetation responses to
the influences of climate and LUCL remains unclear due to confounding factors, such as
trends in minimum and maximum temperatures and land use changes. Therefore, it is
essential to strengthen research to understand vegetation dynamics in a warming global
climate. This study used the GIMMS NOAA/AVHRR NDVI dataset and precipitation and
air surface temperatures (minimum and maximum) from the CRU (Climate Research Units)
and AVHRR global LULC datasets, respectively. The objectives of this study are as follows:

(1) To investigate the spatiotemporal trends in vegetation and climate variables;
(2) To analyze the main climatic drivers of vegetation variability in the EQA region. All

the analyses were conducted in the EQA region from 1982 to 2021.

To the best of our knowledge, further studies on the inter-relationship of vegetation
and climate in the region have been recommended to include the effect of minimum and
maximum temperatures on vegetation dynamics based on the updated NDVI.

2. Materials and Methods

2.1. Study Area

The study area is Equatorial Africa (EQA), which is a region in the tropical African
continent with a geographical location of 18◦ W–55◦ E longitude and 2◦ N–20◦ N latitude.
The tropical monsoon climate strongly influences EQA [22,42]. The West African mon-
soon [22] on the western side and the East African monsoon [42] on the eastern side are
prevalent in the region. The average annual precipitation (P) is about 62.76 mm and varies
depending on the seasons (summer = 115.48 mm, autumn = 73.01 mm, winter = 9.12 mm,
and spring = 53.35 mm). The annual average temperature (TMEAN) is about 26.75 ◦C and
varies depending on the seasons (summer = 27.75 ◦C, autumn = 26.59 ◦C, winter = 24.12 ◦C,
and spring = 28.55 ◦C). The EQA climate system has a distinct wet and dry season [43]. The
seasonal climatology values that were computed by the authors, based on the CRU dataset
for the period 1982–2021 [44] and averaged over longitude 18◦ W–55◦ E and latitude 2◦
N–20◦ N, showed that the wettest season was summer and the driest season was winter;
the warmest season was spring, and the coolest season was winter. The elevation ranges
from 500 to 2000 m above mean sea level [45]. The highest elevations are found in the
Ethiopian, Kenyan, and Cameroon highlands (Figure 1c). The ten (10) predominant land
cover classification types [46] found in EQA are presented in Figure 1a.

Figure 1. The location of the study area. (a) Study area with subregions: (1) Sahara Desert [21◦–37◦ N],
(2) Sahel [12◦ N–20◦ N, 18◦ W–18◦ E], (3) Savanna [8◦ N–12◦ N, 18◦ W–18◦ E], (4) Guinea Coast [4–8◦ N,
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18◦ W–18◦ E], (5) Congo Basin [2◦–4◦ N, 18◦–25◦ E], (6) Sudano belt [12◦ N–20◦ N, 18◦–25◦ E],
(7) Arabian Peninsula (ARP) [12◦–20◦ N, 25◦–52◦ E], and (8) Horn of Africa (HOA) [8◦–20◦ N,
25◦–52◦ E]. (b) AVHRR land cover map: ENF—evergreen needleleaf forest (0.00%), EBF—evergreen
broadleaf forest (3.89%), DNF—deciduous needleleaf forest (0.00%), DBF—deciduous broadleaf
forest (0.13%), MF—mixed forest (0.00%), WL—woodland (7.68%), WGL—woodland grassland
(20.20%), CSL—closed shrubland (5.52%), OSL—open Shrubland (9.80%), GL—grassland (4.38%),
CL—cropland (3.67%), UBU—urban and built-up, BG—barren or sparsely vegetated (27.60%), and
water (17.11%). (c) Elevation.

2.2. Data Sources
2.2.1. NDVI

The data used in this study include the Global Inventory Modeling and Mapping
Studies (GIMMS) of the National Oceanic and Atmospheric Administration/Advanced
Very High-Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index third
generation (NDVI3g) (i.e., GIMMS AVHRR NDVI3g) dataset, which includes precipitation,
temperature, digital elevation model (DEM), and a land cover map. The GIMMS AVHRR
NDVI3g data with a spatial resolution of 8 km and a temporal interval of 15-day composit-
ing periods were obtained from the NASA website (https://daac.ornl.gov/VEGETATION/
guides/Global_Veg_Greeness_GIMMS_3G.html, accessed on 10 May 2023). The National
Oceanic and Atmospheric Administration/Advanced Very High-Resolution Radiometer
Normalized Difference Vegetation Index third generation plus (AVHRR NDVI3g+) dataset
covers January 1981 to December 2022 [18,19]. The AVHRR NDVI3g data acquisition
process, which includes using various sensor platforms, advanced algorithms for pre-
processing, and quality assurance procedures for atmospheric and radiometric correction,
has been described in detail in previous studies [18,47]. The Africa region mask was defined
to isolate the NDVI region from a gridded global dataset. To convert the bimonthly NDVI
to the monthly NDVI, the maximum-value composite (MVC) method proposed by Holben
et al. [48] was used. The NDVI grid values range from +1 to −1 and are computed as the
ratio of (NIR − R)/(NIR + R) pixels, where NIR is the near-infrared wavelength and R is the
red wavelength [18]. Positive NDVI values close to +1 indicate the presence of dense green
foliage, while negative NDVI values near −1 indicate the presence of water bodies [49].
We removed negative and zero NDVI grid values that indicated non-vegetated surfaces
and water bodies. The pixel grids were set to a monthly mean NDVI value of <0.1 over
39 years [19,50].

2.2.2. Climate Datasets (Precipitation and Temperature)

The Climatic Research Unit (CRU) data were used in this study to compute spatial
variation, trends, and correlation between climate and vegetation. The CRU data consist of
monthly spans from 1901 to the present with a resolution of 0.5◦ × 0.5◦. The Climatic Re-
search Unit (CRU) dataset was downloaded from the website (http://www.cru.uea.ac.uk,
accessed on 10 May 2023). Gridded product data processing and validation were reported
by Harris et al. [44]. In addition, the gridded data have been extensively used as they were
obtained from over 4000 weather stations and interpolated based on spatial autocorrelation
functions [51,52]. The temperature data comprise the monthly mean minimum tempera-
ture (TMIN) and the monthly mean maximum temperature (TMAX). The monthly mean
temperature (TMEAN) was computed from the TMIN and TMAX, and the study period
covered 1982–2021.

2.2.3. Land Use Land Cover

The spatial distribution of land use land cover (LULC) was obtained from the Univer-
sity of Maryland’s Department of Geography through the website https://glad.umd.edu/
(accessed on 10 May 2023) with a spatial resolution of 1 km [46]. Out of the 14 separate
land cover types, 10 were regrouped into four predominant land cover classes, including
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forest, grass, crop, and shrub, which were extracted for further analysis, and non-vegetated
cover areas were excluded for consideration in the computation.

2.3. Methods

In this study, we applied various statistical approaches for data analyses.

2.3.1. Data Processing

All data were initially loaded, averaged, and selected from January 1982 to December
2021, and the climatology was calculated by averaging the data from 1982 to 2021 at
different time scales. The seasonal scales were defined as a combined monthly average as
follows: spring (i.e., March–April–May, MAM), summer (June–July–August, JJA), autumn
(September–October–November, SON), and winter (December–January–February, DJF). All
datasets were resampled to a spatial resolution of 0.5◦ × 0.5◦ using the bilinear interpolation
method to match CRU dataset resolution. Figure 2 shows the methodological flow chart of
the work.

 
Figure 2. The work flowchart for this study.

2.3.2. Statistical Analysis

(a) Trend analysis and significance testcalculation
First, the linear trend was computed to understand the vegetation dynamics and its

connections to climate in the EQA region. The linear trend analysis was computed using
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the non-parametric Mann–Kendall (MK) trend and Sen slope tests. The MK trend test was
used to detect the significance of the time series trend, and the Sen slope test was used
to compute the magnitude of the trend in the time series [53–56]. The MK trend test is a
non-parametric test on data values (x) of a time series based on Equations (1)–(4) as follows:

υ = f(t) + ∑ t (1)

S =
n−1

∑
k−1

n

∑
j=k+1

sin
(
xj − xk

)
(2)

where n is the length of the time series xi, . . . xn, sgn () is the sign function, and xj and xk
are values in years j and k, respectively. E[S] = 0 for series without a trend and the variance
was calculated based on A3 as follows:

δ2(S) =
1

18

[
n(n − 1)(2n + 5)−

n

∑
i=1

tn(tn − 1)(2tn + 5)

]
(3)

where n is the number of tied groups and tn is the number of data values in the nth group.
The test statistic Z is as defined in Equation (4):

Z =

⎧⎪⎪⎨
⎪⎪⎩

s−1√
δ2(s)

i f S > 0

0 i f S = 0
s+1√
δ2(s)

i f S < 0
(4)

The Z-statistics test the null hypothesis (Ho), which states that there is no trend, against
the alternative hypothesis (H1), which states that there is a trend. H1 signifies an increase
or decrease trend in the data. The Sen slope is used to estimate the true slope as follows:

Y = mx + c (5)

where Y and x are the dependent and independent variables, respectively; m is the gradient;
and c is the intercept.

(b) Calculation of abrupt changes
Second, we used the Pettitt test [56] to detect abrupt changes in the time series of the

NDVI and climate variables. The null hypothesis (Ho), of no change, was tested against the
alternative hypothesis (Ha), which was changed. We implemented the function based on
Equations (6)–(8), following Verstraeten et al. [57] as follows:

Pij =

⎧⎨
⎩
−1, xi < xj

xi = xj
1 xi > xj

(6)

where xi and xj denote the magnitude of climate variables; xi precedes xj.

Qt,T =
t

∑
i=1

T

∑
j=t+1

Pij (7)

Qt,T is the Mann–Whitney statistic for samples, x1, . . . xt and xt+1, . . ., xT , which
denote the series of observed data.

The test statistic Q,T is computed based on expected values of t ranging from 1 to T.
Based on the test statistic below, the change point is computed using a two-tailed test.

WT = max|Qt,T | (8)
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If the statistic WT differs significantly from 0, then there is a change in year t that
corresponds to the time for the largest absolute value of Qt,T . The probability of a shift in
one year is the maximum |Qt,T |.

L = 2 exp

(
−6W2

T

T3 + T2

)
(9)

Based on the significance level ( α), if we reject the Ho hypothesis (null hypothesis)
when L < α, we can conclude that Xt is a significant change point at the α level.

(c) Correlation Analysis Model
Third, the relationships between the NDVI and single climate variables were per-

formed using Pearson correlation coefficients at annual and seasonal scales over 39 years
using Equation (10). Furthermore, we computed the correlation between the trends in the
NDVI response to LULC as follows:

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2(yi − y)2

(10)

where r is the correlation coefficient (r), xi and yi denote the climate variables, i denotes the
time, and n denotes the sample size.

In addition, a partial correlation coefficient (PCC) was also used to determine the main
driving factors for vegetation growth [58,59]. The PCC determines the relationship between
vegetation responses to the different climatic factors (i.e., precipitation and temperature).
The PCC between the NDVI and each climate factor was computed (Equation (11)), with
the other two as control variables. The climate variable with the greatest partial correlation
coefficient (PCR) was interpreted as the main driver. The PCC analysis model is provided
as follows:

ρxyz =
ρxy − ρxzρyx√

(1 − ρ2xz) ∗ (1 − ρ2yz)
(11)

where ρxyz is the partial correlation of variables x and y conditional on z, ρxy is the
correlation between variables x and y, and ρyz is the correlation between variables y
and z. The correlation values range from −1 to +1 to denote negative and positive
correlation, respectively.

Furthermore, we used cross-correlational analysis (CCA) to assess the time lag effects
of the NDVI responses to precipitation or temperature at a specified time lag [60]. The CCA
in Equations (12) and (13) was used to analyze the spatial patterns of time lag-correlation
for the time lags for 1, 2, 3, 6, 9, and 12 months as follows:

cc f (τ) = ∑ x(ti) ∗ y(ti + τ) (12)

ccc(τ) =
cc f (τ)√

(Var(x)) ∗ Var(y)
(13)

where cc f (τ) denotes the cross-correlation function, and ccc(τ) signifies cross-correlation.
Var(x) and Var(y) are variations (standard deviations) of x and y, respectively. τ is a time lag
x, and x(ti) and y(ti) are measured values of two variables at t = ti. For example, when
τ > 0, it means A leads B; τ < 0 means A lags B.

3. Results

3.1. Seasonal Analysis of the NDVI

Annually, the highest NDVI values of greater than 0.5 (>0.5) are in locations 2◦–8◦ N,
18◦ W–8◦ E and 2◦–8◦ N, 8◦–35◦ E, with NDVI values of 0.20–0.39 in semi-arid regions
along 2◦–8◦ N, 36–52◦ E and 8◦–14◦ N. Dense vegetation canopy tends to have positive
NDVI values greater than 0.4 to 0.8, which is consistent with vegetation conditions in the
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humid regions of the Congo Basin. Moderate NDVI values (0.2–0.35) are located in the
Sahel, Savanna, GC, and southern Sudano. The lowest values of 0.1 are located in arid
regions (14◦–20◦ N). Vegetation with NDVI values < 0.1 tends to be scattered vegetation
consistent with conditions in the arid regions of the Sahara Desert, Arabian Peninsula, and
Horn of Africa (Figure 3a). Seasonally, the NDVI values showed similar spatial variability
in the NDVI distribution, albeit with differences in the NDVI values (Figure 3b–e). Winter
and spring seasons showed a similar spatial pattern in the NDVI, albeit the values differed
(Figure 3b,c). The summer season showed the lowest NDVI values in arid regions of the SD,
northern Sudano, ARP, and HOA. Semi-arid areas of the Sahel, Savanna, GC, and southern
Sudano showed moderate values between 0.2 and 0.3 and >0.4 (Congo Basin) (Figure 3d).
The autumn season showed values of >0.4 in areas in the western Savanna, Guinea Coast,
and Congo Basin (Figure 3e).

Figure 3. The spatial distribution of the maximum NDVI values across EQA from 1982 to 2021.
(a) annual, (b) winter (DJF), (c) spring (MAM), (d) summer (JJA), and (e) autumn (SON).

The monthly NDVI values range from 0.04 to 0.22 (Figure 4, green bar). The monthly
P ranges from 0 to 140 mm (Figure 4, blue line), and the TMEAN ranges from 22 to 30 ◦C
(Figure 4, red line). All variables exhibited a clear periodic change, where the NDVI values
peaked at 0.22 in October and reached their lowest value at 0.16 in July. P seasonality was
highest (lowest) in August (January) at 138 (2 mm). The monthly TMEAN showed the
highest (lowest) values in May (January).

Figure 4. Monthly average changes in the NDVI (green bar) and climate factors in the EQA region.
NDVI—green bar; precipitation—blue line; and mean temperature—red line.

11



Forests 2024, 15, 1129

3.2. Long-Term Changes in NDVI and Climate Drivers
3.2.1. Spatial Trends in NDVI and Climate Drivers

The NDVI trends varied at a decadal rate of −0.5 to 0.5. However, many regions
showed no significant changes in NDVI trends across the EQA region (Figure 5). The
annual NDVI values exhibited an increasing trend at a rate of 0.5 per decade in the western
Savanna and Sahel and in a few patches in the eastern Sahel and southern Sudano. Similarly,
the annual NDVI values exhibited patches with a significant negative trend scattered along
the eastern Guinea Coast, Congo Basin, and the tip of the HOA at a rate of 0.1 per decade
(Figure 5a). The seasonal NDVI trends range from 0.1 to 0.5 per decade and are presented
in Figure 5b–e. The spring NDVI results showed mixed trends similar to the spatial pattern
of annual NDVI trends, albeit with differences in trend values (Figure 5b). Summer showed
widespread, significantly decreasing NDVI trends at 0.3 per decade in areas along the
Guinea Coast, eastern Savanna, and Congo Basin (Figure 5c). Autumn (Figure 5d) and
winter (Figure 5e) exhibited a similar increasing trend at 0.5 per decade along the Sahel.
However, the winter season showed increasing NDVI trends extending to the Savanna,
Guinea Coast, Congo Basin, southern Sudano, and patches scattered in the HOA (Figure 5e).

 

Figure 5. The spatial patterns of the NDVI trends in Equatorial Africa during 1982–2021. (a) Annual,
(b) spring (MAM), (c) summer (JJA), (d) autumn (SON), and (e) winter (DJF). The blue–red legend
denotes negative–positive trends. The dots in the maps denote the significant results at p < 0.05.
Positive and negative changes in the NDVI are called greening and browning, respectively.

The linear trend in P ranges from −5 to +5 mm per decade, as shown in Figure 6.
Annually, P showed significant increasing trends in the Sahel, Savanna, Sudano, and HOA.
The central Guinea Coast areas showed positive trends at 1 mm per decade but were
insignificant (p < 0.05). The spring season showed no significant P trends (Figure 6b). The P
trends during the summer presented similar values to annual P trends, except the Guinea
Coast showed significant decreasing trends (Figure 6c). Similarly, the spatial pattern of P
trends in autumn was identical to the annual P trends (Figure 6d, SON). The winter season
showed significantly increasing P trends along the Guinea Coast and patches in the Congo
Basin (Figure 6e).

The annual TMEAN ranged from −0.5 to +0.5 ◦C and increased across the study area
(Figure 7a). Areas in the Guinea Coast, central Sahel, Congo Basin, western Sahel, northern
Sudano, and parts of the HOA increased at a rate of 0.3–0.5 ◦C (Figure 7a, year). Generally,
the spatial patterns of TMEAN trends during the spring (Figure 7b, MAM) and winter
(Figure 7e, DJF) seasons were identical to annual trends. Summer trends showed that the
TMEAN increased at 0.1 ◦C per decade along the periphery of the EQA region (Figure 7c).
During the autumn season, a significantly increasing trend at 0.3 ◦C is widespread across
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the area (Figure 7d). A similar trend analysis was shown for the TMIN (Figure S1) and
TMAX (Figure S2). However, in the EQA region, the TMIN exhibited more pronounced
warming trends than the TMAX.

 

Figure 6. The spatial patterns of precipitation (P) trends. (a) Annual, (b) spring (MAM), (c) summer
(JJA), (d) autumn (SON), and (e) winter (DJF). The blue–red legend denotes negative–positive trends.
The dots in the maps denote the significant results at p < 0.05. Positive and negative changes in
precipitation are called wetting and drying, respectively.

 
Figure 7. The spatial patterns of mean average temperature (TMEAN) trends. (a) Annual, (b) spring
(MAM), (c) summer (JJA), (d) autumn (SON), and (e) winter (DJF). The blue–red legend denotes
negative–positive trends. The dots in the maps denote the significant results at p < 0.05. Positive and
negative temperature changes are called warming and cooling, respectively.

3.2.2. Temporal Trends in NDVI and Climate Drivers

Figure 8 presents the annual and seasonal variability in the NDVI and climate variables
(i.e., precipitation and temperature) from 1982 to 2021. Table 1 illustrates the tabulated
trend rate. The NDVI trends range from 0.05 to 0.30 (Figure 8a). Overall, the annual NDVI
trends decreased at a decadal rate of −2.3 × 10−4 (Figure 8a, blue color). Moreover, spring
(Figure 8a, orange color) and summer (Figure 8a, yellow color) showed that NDVI trends
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decreased at −3.9 × 10−4 and −7.5 × 10−4* year−1, while the NDVI showed increasing
trends of 3.3 × 10−4 and 1.4 × 10−5 year−1 in autumn (Figure 8a, purple color) and winter
(Figure 8a, green color), respectively. The annual P ranged from 0 to 120 mm (Figure 8b)
and increased at 2.0* mm per decade from 1982 to 2021 (Table 1, P). On a seasonal scale,
all four seasons showed a significant increasing trend. The summer season recorded the
highest trend at 4.5 mm per decade, followed by autumn at 3.4* mm per decade. The
increase in spring was 0.9 mm per decade, and winter was the lowest at 0.4 mm per decade.
The average mean temperature (TMEAN) ranges from 22 ◦C to 30 ◦C (Figure 8c). The
trend increased at an annual rate of 0.2* ◦C per decade (Table 1, TMEAN). Spring and
autumn exhibited a trend rate of 0.2* ◦C per decade, respectively. However, the trend
rate is slightly higher in winter and lowest in summer at 0.3* ◦C and 0.1 ◦C (α = 000) per
decade, respectively. In addition, the TMIN and TMAX presented significantly increasing
trends annually and in the four seasons, as presented in Figures S3 and S4, respectively.
The TMIN ranges from 15 to 23 ◦C in Figure S3, and the TMAX ranges from 30 to 36 ◦C
in Figure S4, respectively. Remarkably, all three temperature values (TMIN, TMEAN, and
TMAX) exhibited an annual trend rate of 0.2* ◦C per decade, albeit with differences in
values. At the seasonal level, the TMIN and TMEAN exhibited similar seasonal trend
rates, except for the winter season, which presented rates of 0.2* ◦C and 0.3* ◦C per decade,
respectively (Figures S3 and 8c). On the other hand, the results of the TMAX showed
a similar value of trend rate with summer and winter at 0.1 ◦C and 0.3* ◦C per decade,
respectively. In spring and autumn, temperatures increased slightly to 0.31* ◦C and 0.1* ◦C
per decade, respectively (Figure S4, Table 1).

  
(a) (b) 

 

 

(c)  

Figure 8. The inter-annual variations in (a) the mean NDVI, (b) P, and (c) TMEAN at annual and
seasonal timescales from 1982 to 2021. The linear trend calculated using the linear regression (dashed
lines) trend is calculated using the least squares linear trend fitting method over the period (at
p-value < 0.05). Annual (blue color), spring (MAM, orange color), summer (JJA, yellow), autumn
(SON, purple color), and winter (DJF, green color).
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Table 1. The slope of the annual and seasonal NDVI and meteorological variables from 1982 to 2021
over the EQA region.

Variable Time Scales

Annual MAM JJA SON DJF

NDVI
m = −2.3 × 10−4,

c = 0.19, (α = 0.097)
m = −3.9 × 10−4,

c = 0.18, (α = 0.259)
m = −7.5 × 10−4,

c = 0.19, (α = 0.001)
m = 1.4 × 10−5,

c = 0.22, (α = 0.478)
m = 3.3 × 10−4,

c = 0.18, (α = 0.076)

P
m = 0.20, c = 55.44,

(α = 0.000)
m = 0.09, c = 45.00,

(α = 0.032)
m = 0.45, c = 104.66,

(α = 0.000)
m = 0.34, c = 58.91,

(α = 0.000)
m = 0.04, c = 6.50,

(α = 0.000)

TMEAN
m = 0.02, c = 26.46,

(α = 0.000)
m = 0.02,

c = 28.18, (α = 0.000)
m = 0.01, c = 27.79,

(α = 0.008)
m = 0.02, c = 26.32,

(α = 0.000)
m = 0.03, c = 23.42,

(α = 0.001)

TMAX
m = 0.02, c = 33.14,

(α = 0.000)
m = 0.03, c = 35.17,

(α = 0.000)
m = 0.01, c = 33.40,

(α = 0.043)
m = 0.01, c = 32.89,

(α = 0.001)
m = 0.03, c = 31.08,

(α = 0.001)

TMIN
m = 0.02, c = 19.90

(α = 0.000)
m = 0.02, c = 21.36,

(α = 0.000)
m = 0.01, c = 22.27,

(α = 0.000)
m = 0.02, c = 19.95,

(α = 0.000)
m = 0.02, c = 15.82.

(α = 0.001)

Minus (−) value indicates a decreasing trend. α is the p-value.

The annual NDVI declined in forests and croplands at a rate of −3.0 × 10−3 and
−0.61 × 10−3 and increased in shrubs and grasslands by 2.2 × 10−3 and 4.0 × 10−3 across
the region from 1982 to 2021 (Figure 9). Seasonally, the NDVI declined in the forest and
cropland covers conservatively in spring, summer, and autumn, except in winter, where it
increased but at different rates of magnitude (Figure 9). In contrast, the NDVI increased in
grassland during the spring and autumn transition seasons, except for a decline in summer.
In addition, the NDVI in shrubs decreased (increased) in spring and summer (autumn and
winter), albeit with different trend values.

 

Figure 9. The temporal trends in the mean NDVI from 1982 to 2021 across EQA in four dominant
vegetation types.

3.3. Abrupt Change Analysis of NDVI and Climate Drivers

Table 2 presents breakpoint changes for the NDVI and climate variables from 1982 to
2021. Overall, the breakpoint results showed considerable similarities and differences over
the period. On the inter-annual scale, the NDVI, P, TMEAN, TMIN, and TMAX breakpoints
varied and occurred at different years. The annual NDVI breakpoints were observed in
2009. For the different seasons, the spring and summer NDVI breakpoints occurred in
spring and summer in 2002, while the autumn and winter breakpoints occurred in 1994 and
1993, respectively. The annual precipitation (P) breakpoint occurred in 2002 and seasonally,
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except in summer, which exhibited an identical breakpoint as the annual; the rest occurred
in 2011 for spring, in 1996 for autumn, and winter in 1998. In the temperature values,
the annual breakpoint for the TMEAN and TMIN was observed in 2001, while the TMAX
occurred in 2000. Seasonally, the TMIN showed that summer and autumn had similar
breakpoints in 2001, while the spring breakpoints occurred in 2000.

Table 2. The years of abrupt changes in the NDVI, P, TMEAN, TMIN, and TMAX from 1982 to 2021.

Variable Years of Abrupt Changes

Annual MAM JJA SON DJF

NDVI 2009 2002 2002 1994 1993

P 2002 2011 2002 1996 1988

TMEAN 2001 1997 2001 2001 1994

TMIN 2001 2000 2001 2001 2001

TMAX 2000 1997 2001 2000 1994

An analysis of the trend slope before and after the breakpoint was performed (Table 3).
The annual NDVI breakpoint displayed a positive (0.005) value before 2009 and a negative
value after 2009, indicating that the NDVI trends were not monotonic across the EQA region
from 1982 to 2021 as shown in Table 3. Seasonal analysis showed that the NDVI values
exhibited positive trends in the spring before and after the breakpoint. The summer (JJA)
NDVI values showed a positive trend before and after the breakpoints. The autumn and
winter NDVI trends were negative before and positive after the breakpoints, respectively.
For precipitation (P) analysis of trend estimates, we observed a significant positive annual
trend before (0.3645) and after (0.4830) the breakpoint in 2009 (p < 0.05). Spring P exhibited
positive values before and after the negative breakpoints. Summer, autumn, and winter
P showed positive trends before and after the breakpoints. In addition, the TMEAN and
TMIN showed no significant change in annual trends before and after the 2001 breakpoints.
The TMIN, TMEAN, and TMAX exhibited positive trends before and after the spring,
autumn, and winter breakpoints. In contrast, the TMIN, TMEAN, and TMAX showed
negative trends before and after the breakpoints in the summer season.

Table 3. The trends in the abrupt changes before and after for the NDVI, P, TMEAN, TMIN, and
TMAX from 1982 to 2021.

Trends before Abrupt Changes

Variable Annual MAM JJA SON DJF

NDVI 0.005 0011 * 0.0005 −0.0006 −0.0018

P 0.3645 * −0.0339 0.7566 * 0.5653 0.4220

TMEAN 0.0114 −0.0021 −0.0060 0.0053 −0.0009

TMIN 0.0065 0.0058 −0.0063 0.0055 0.0193

TMAX 0.0151 0.0026 −0.0057 0.0029 −0.0033

Trends after Abrupt Changes

Variable Annual MAM JJA SON DJF

NDVI −0.0013 0.0006 0.0006 0.0009 * 0.0015 *

P 0.4830 * 1.6933 0.9599 * 0.5658 * 0.0835 *

TMEAN 0.0114 0.0033 −0.0060 0.0055 0.0394 *

TMIN 0.0065 −0.0066 −0.0063 0.0053 0.0193

TMAX 0.0186 0.0044 −0.0057 0.0079 0.0476 *
* Asterisk significance level at p < 0.05.
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3.4. Analysis of Factors That Drive NDVI Changes
Correlation Analysis of NDVI and Climate Drivers

The annual correlation coefficient (r) between the NDVI and climate factors shows R
values ranging between −0.50 and +0.50 (Figure 10). Spatially, a strong positive correlation
(r > 0.5, p < 0.05) was found in the Sahel and northern Sudano regions, and a negative
correlation was observed in the SD and ARP (R > 0.45) between the NDVI and P (Figure 10a).
However, mixed results of weak relationships (r ≤ 0.30) were found in the Savanna, Guinea
Coast, and Congo Basin. Figure 10b (NDVI-TMIN) shows that strong and significant
positive r ≥ 0.5 correlations mainly occurred in the western Sahel and Guinea Coast,
while a weakly insignificant correlation was found in areas of southern Sudano (r ≤ 0.30,
p > 0.05). The spatial patterns of positive and negative correlation trends in Figure 10c
(NDVI-TMEAN) and Figure 10d (NDVI-TMAX) present similar values, with differences
in magnitudes. However, the spatial patterns of positive and negative correlation trends
in Figure 10c (NDVI-TMEAN) and Figure 10d (NDVI-TMAX) are identical. Seasonally,
a strong relationship between the NDVI and P was observed, and this spatial pattern is
comparable to spring–summer–autumn in the Sahel, Savanna, and Guinea Coast. However,
the spatial patterns of r values between the NDVI and the temperature values (TMIN,
TMEAN, and TMAX) were comparable to the spring and summer seasons across the region
(Figure S5).

 

Figure 10. Spatial correlation analysis of the annual and seasonal NDVI with climatic variables:
(a) NDVI vs. PRE, (b) NDVI vs. TMIN, (c) NDVI vs. TMEAN, and (d) NDVI vs. TMAX across EQA
during 1982–2021. The blue–red legend denotes a negative–positive relationship. The dots in the
maps denote the significant results at p < 0.05.

We analyzed the spatial patterns of time lag correlation to assess the time lag effects of
the NDVI as responses to precipitation and temperature at the time lags of 1, 2, 3, 6, 9, and
12 months. Table 4 presents the time lag correlation coefficients between the NDVI and P
and T from 1982 to 2021. Overall, the time lag of the NDVI negative correlation coefficients
of the NDVI with responses to climatic factors differed with R values ranging from −0.6 to
+0.6 over 1 to 3 months (Table 4), which signifies that the NDVI response to climate varies
within 1 to 3 months, specifically the maximum and mean temperatures. Meanwhile, the
TMIN leads the NDVI for up to 9 months, while the P leads the NDVI for up to 6 months.
The response of the NDVI to these climate factors varied from 1 to 9 months. It can be
seen that from the 12th month, the climate variables mostly lead to the NDVI. The spatial
distribution of the time lag correlation is provided in Figures A1–A4 at the annual scale
for the time lags for 1, 2, 3, 6, 9, and 12 months. Although significant positive correlations
were found in the study area, negative correlations of the NDVI with climatic factors were
observed in certain areas. This explains the heterogeneous response of the vegetation cover
to climatic conditions (Figures A1–A4).

17



Forests 2024, 15, 1129

Table 4. The time lag correlation coefficients between the NDVI and P and T from 1982 to 2021.

Time Lag
Lag-Corr

(NDVI, TMIN)

Lag-Corr
(NDVI,

TMEAN)

Lag-Corr
(NDVI, TMAX)

Lag-Corr
(NDVI, P)

1 −0.27 −0.27 −0.27 −0.21

2 −0.43 −0.42 −0.34 −0.33

3 −0.43 −0.39 −0.27 −0.35

6 −0.006 +0.11 0.28 −0.23

9 −0.32 +0.29 +0.20 +0.27

12 +0.14 +0.06 −0.07 +0.29
Note: A correlation coefficient (r) value ranges from −1 to +1. A minus sign indicates a negative correlation, and a
plus sign indicates a positive correlation.

We performed a partial correlation analysis to clarify the factors driving temporal
dynamics in the NDVI. Overall, the PCC results of the NDVI–climate relationship indicate
that the TMIN and P results were statistically significant at p < 0.05 (Table 5). The TMIN
showed moderate negative PCC with the NDVI (R = −0.45, p < 0.05), followed by P with
low negative PCC (R = −0.19, p < 0.05). This result suggests that the TMIN was the main
driver that moderately influenced the NDVI during the study period.

Table 5. The partial correlation coefficients between the NDVI and P and T (i.e., TMIN and TMAX)
from 1981 to 2021.

Climate Factors NDVI

P −0.19 *

TMIN −0.45 *

TMAX +0.31
Note: A higher PCR value infers a greater effect and, hence, the main driving factor. A minus sign indicates
the factor suppresses vegetation growth, and a plus sign encourages vegetation growth. The asterisks indicate
significance at p < 0.05.

4. Discussion

This study investigated the long-term record of vegetation dynamics and main drivers
across the Equatorial Africa (EQA) region based on the annual and seasonal scale. The
spatiotemporal distribution of vegetation and climate were analyzed. Trend analysis was
used to analyze the spatial heterogeneity and the dynamic variations in vegetation growth
and climate. In addition, correlation (partial) analysis was used to analyze the relationship
between vegetation growth and climate and the driving factors. The spatial patterns in
the NDVI are highly seasonal and exhibit contrasting seasonal patterns. Forests dominate
the Guinea Coast, and the Congo Basin region exhibits higher NDVI values. The Sahel,
Sudano, and Savanna areas are semi-arid and dominated by shrub woodlands, grasslands,
and crops exhibiting high values. In contrast, areas in the Sahara Desert, Arabian Peninsula,
and parts of the Horn of Africa are arid and dominated by sparse shrubs, crops, and
grasslands. Overall, the vegetation pattern and its seasonal distribution suggest that
changes in vegetation productivity depend on season and location, which is related to
climate (e.g., precipitation and temperature).

The distribution across the region has been confirmed in previous studies [15,31,61],
suggesting that vegetation trends are increasing and decreasing in different areas world-
wide [62]. Some studies found that vegetation increased while others declined [63,64]. Our
study found that the vegetation trends displayed spatial heterogeneity, and the overall
trend slightly declined from 1992 to 2021. Previous global studies have also reported
that global average temperature and changing precipitation regimes are expected to alter
moisture conditions in various global land regions [9]. Our results showed that the trend
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in the mean average temperature increased in agreement with past studies [9]. Increasing
minimum and maximum temperatures contributed to increasing mean average temper-
atures, which is consistent with Meehl et al. [65]. Increasing minimum temperatures are
related to vapor pressure feedback, while maximum temperatures are related to local
conditions such as soil moisture [66,67]. In addition, our precipitation results exhibited
an increasing trend in the semi-arid regions. In contrast, mixed trends are present in the
humid regions, and there was no change in precipitation in the arid regions. Our analyses
of the temporal trend changes to detect the timing and significance of changes in vegetation
and climate drivers showed that the breakpoint years occurred and shifted at different
years consistent with past studies [68] and the reasons that drive changes require further
analysis. However, there seems to be a general agreement that in parts of the study area,
such as the Sahel and Sudano regions, natural climate variability influences these changes
more than human-related activities, as reported by Fensholt and Rasmussen [69].

Regarding the GIMMS NDVI observations, previous global studies have reported
vegetation greening in the Northern Hemisphere (NH) [70]. Other studies have reported
that greening has stalled or reversed [63,70–72]. Our results showed spatial vegetation
heterogeneity as the different regions exhibited distinct vegetation variations in browning,
greening, or stagnation. Our results showed that the vegetation trend increased in the west-
ern Savanna, Sahel, and parts of Sudano. These locations are dominated by shrubs, grasses,
crops, and woodlands, and the climate zone is considered semi-arid [73,74]. Furthermore,
this study showed that greening along the Sahel region is consistent with Zhao et al. [62]
compared with global research that reported greening in the northern hemisphere [75]. In
addition, stagnant or no change in vegetation activity suggests that vegetation transitioning
stalled predominately forested areas along the Guinea Coast and Congo Basin, and the
region’s climate is considered a humid zone [73,74]. Likewise, vegetation transitioning
stalled in the southern Sahara Desert, northern Sudano, Arabian Peninsula, and parts of the
HOA. The region is arid, dominated by grasslands, crops, and sparse woodlands [73,74].
Our results of vegetation stalling are consistent with previous studies on arid and humid
regions by Zhou et al. [10] and arid regions by Berdugo et al. [28]. Generally, changes
in vegetation productivity are constrained by water and energy availability. Most global
and regional studies have reported that wet regions are becoming wetter and drier areas
are becoming drier [76,77]. Moreover, other global and regional studies have reported
that watersheds can be water-limited or energy-limited to drive vegetation growth. In
semi-arid regions, water-limited and energy-limited conditions dominate the constraints
on woody foliage production [15,31,61]. Our results provide data on the semi-arid areas
in the Sahel and Sudano regions, which show strong warming and wetting trends. Thus,
it is unsurprising that the greening in these semi-arid regions is consistent with strong
significant wetting, and the significantly weak warming trends in this study are consistent
with previous research [15,31].

Previous global and regional studies have indicated that external climate factors in-
fluence vegetation changes [78]. Some studies reported that greening patterns are related
to increasing temperature and precipitation [78]. Other studies have found that certain
regions have stalled or even reversed due to changes in precipitation and temperature
seasonality [63]. In this study, our correlation analysis showed spatial heterogeneity. Vege-
tation changes in the semi-arid region of the Sahel and major parts of the Savanna areas are
strongly positively related to precipitation. Biasutti et al. [61] found that rainfall recovery in
the Sahel supports foliage production. The analysis in the arid regions revealed a significant
negative relationship between precipitation and vegetation, suggesting vegetation activity
is significantly constrained by water conditions. The seasonal analysis of autumn precipi-
tation correlated most significantly with vegetation change. Generally, the investigation
showed that temperature values (minimum, average, and maximum) are significantly
positive in the western Sahel and Savanna areas, whereas a significantly negative correla-
tion is obvious in the northern Sudano and Arabian Peninsula. Semi-arid regions in the
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Sahel and western Savanna demonstrate that the area is a hot spot for land–atmosphere
interactions [39,79].

We further analyzed the time lag effects of the NDVI response to the different climate
factors, considering monthly values of 1 to 3 months and 6, 9, and 12 months (Appendix A,
Figures A1–A4). The subregions exhibited distinct inter-annual lags in vegetation response
to temperature and precipitation variations. Overall, there was a significant time-lagged
effect of climate factors on vegetation growth in general, with a lag of up to three months,
after which the response decreased in correlation values in line with previous studies [80,81].
Similarly, minimum temperature and precipitation primarily affect vegetation growth
responses. However, the response is negative based on the partial correlation coefficients.
This indicates that precipitation inhibits vegetation growth because higher precipitation
generally means lower temperatures. Understanding the mechanisms by which vegetation
changes occur is challenging, and future studies should explore the combined effect of
natural climate variability and human activities on changing vegetation dynamics. Our
findings on climate drivers emphasize that regional vegetation changes can better capture
specific patterns and dynamics.

5. Conclusions

This study investigated the spatiotemporal variations in the NDVI to examine the
responses of vegetation to climate and environmental factors in the EQA region using trend
analysis, abrupt change, correlation (partial) analysis, and MLR at annual and seasonal
scales from 1982 to 2021. The following conclusions were drawn based on our findings:

1. The NDVI annual trends revealed a distinct spatial heterogeneity with obvious con-
trasting seasonal patterns in the Sahel, Savanna, Guinea Coast, Congo Basin, Sudano,
Horn of Africa, Saharan Desert, and Arabian Peninsula at a rate of 0.5 per decade.
Precipitation annual trends showed significant increasing trends in the Sahel, Savanna,
Sudano, and western Guinea Coast at 0.1 mm per decade. Over the whole of the
study area, the spatial patterns of the TMAX, TMIN, and TMEAN showed comparable
positive trends at the annual rate of 0.2 ◦C per decade over the past 39 years;

2. The temporal NDVI trends decreased at an annual rate of −2.3 (×10−4) per decade,
with trends decreasing in spring and summer and increasing in autumn and winter,
i.e., −3.9 (×10−4) and −7.5 (×10−4); 3.3 (×10−4) and 1.4 (×10−4), respectively. Pre-
cipitation trends increased annually at a rate of 2.0 mm per decade and in all four
seasons with rates of 4.5 mm10a−1, 3.5 mm10a−1, 0.9 mm10a−1, and 0.4 mm10a−1.
The TMAX, TMIN, and TMEAN showed similar increasing annual trends at 0.2 ◦C
(10a−1) and in all four seasons;

3. The timing of the abrupt changes differed among the NDVI, P, and TMAX (i.e., 2009,
2002, and 2000), respectively, except for the TMIN and TMEAN in 2001. The NDVI
breakpoints in spring and summer occurred in 2002 but differed in autumn (1994)
and winter (1993). Seasonal P timing of abrupt changes differed in all four seasons
(i.e., spring, summer, autumn, and spring), occurring in 2011, 2002, 1996, and 1998,
respectively. The timing of abrupt changes between the TMAX and TMIN differed
in spring (1997, 2000), summer and autumn (2000, 2001), and winter (1994, 2001),
respectively, except in summer in 2001;

4. The annual trend showed that areas with significant greening were consistent with
stronger wetter and weaker warming trends and vice versa. Spatially, summer
and winter showed seasonal reversals in vegetation greening and browning trends,
respectively. The spring and autumn transition seasons showed similar spatial
trend patterns;

5. The relationship between the NDVI and precipitation is significantly positive in the
Sahel, western Savanna, and Guinea Coast and negative in the Congo Basin, Sudano,
Horn of Africa, Saharan Desert, and Arabian Peninsula. Similarly, the NDVI and
temperature trends showed a significant positive relationship with temperature values
(TMIN, TMEAN, and TMAX) in most of the Sahel, Savanna, and Guinea Coast areas
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and a negative relationship with temperature in the Congo Basin, Sudano, Horn
of Africa, Saharan Desert, and Arabian Peninsula. Across the study area, partial
correlation analysis showed that vegetation growth response to climate variables
was significant in precipitation and minimum temperature; however, the response
was negative.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15071129/s1, Figure S1. Spatial patterns of the mean average
minimum temperature (TMIN) trends: (a) annual, (b) spring (MAM), (c) summer (JJA), (d) autumn
(SON), and (e) winter (DJF). Figure S2. Same as Figure S1 but for the average maximum temperature
(TMAX). Figure S3. Inter-annual variations in the average minimum temperature (TMIN) at annual
and seasonal timescales from 1982 to 2021. Figure S4. Same as Figure S3 but for the average maximum
temperature (TMAX). Figure S5. Spatial correlation analysis of the seasonal NDVI with climatic vari-
ables: (a) NDVI vs. PRE, (b) NDVI vs. TMIN, (c) NDVI vs. TMEAN, and (d) NDVI vs. TMAX across
EQA during 1982–2021. Top left: MAM, top right: JJA, bottom left: SON; and bottom right: DJF.
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Appendix A

 
Figure A1. Spatial correlation analysis of time lag effects of NDVI with precipitation (P) at annual
scale: (a1) NDVI vs. PRE 1 month; (a2) NDVI vs. PRE 2 months; (a3) NDVI vs. PRE 3 months;
(a4) NDVI vs. PRE 6 months; (a5) NDVI vs. PRE 9 months; and (a6) NDVI vs. PRE 12 months across
EAQ during 1982–2021. The blue–red legend denotes positive–negative relationships. The dots in the
maps denote the significant results at p < 0.05.

 

Figure A2. Same as Figure A1 but for the time lag effects of the NDVI with the mean minimum
temperature (TMIN) at the annual scale.
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Figure A3. Same as Figure A1 but for the time lag effects of the NDVI with the mean average
temperature (TMEAN) at the annual scale.

 

Figure A4. Same as Figure A1 but for the time lag effects of the NDVI with the mean maximum
temperature (TMAX) at the annual scale.
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Abstract: Through photosynthesis, forests absorb annually large amounts of atmospheric CO2.
However, they also release CO2 back through respiration. These two, opposite in sign, large fluxes
determine how much of the carbon is stored or released back into the atmosphere. The mean seasonal
cycle (MSC) is an interesting metric that associates phenology and carbon (C) partitioning/allocation
analysis within forest stands. Here, we applied the 3D-CMCC-FEM model and analyzed its capability
to represent the main C-fluxes, by validating the model against observed data, questioning if the
sink/source mean seasonality is influenced under two scenarios of climate change, in five contrasting
European forest sites. We found the model has, under current climate conditions, robust predictive
abilities in estimating NEE. Model results also predict a consistent reduction in the forest’s capabilities
to act as a C-sink under climate change and stand-aging at all sites. Such a reduction is predicted
despite the number of annual days as a C-sink in evergreen forests increasing over the years, indicating
a consistent downward trend. Similarly, deciduous forests, despite maintaining a relatively stable
number of C-sink days throughout the year and over the century, show a reduction in their overall
annual C-sink capacity. Overall, both types of forests at all sites show a consistent reduction in their
future mitigating potential.

Keywords: carbon cycle; climate change; process-based model; mean seasonal cycle; forest ecosys-
tems

1. Introduction

Forests play a pivotal role in the biosphere–atmosphere feedback by annually absorb-
ing large amounts of atmospheric CO2 through photosynthesis (GPP; ~150 PgC year−1)
and releasing it back because of, e.g., ecosystem respiration (Reco), a relatively close amount
yet not necessarily equal, which varies year by year [1–3]. The net ecosystem exchange
(NEE) of CO2 between ecosystems and the atmosphere is the net balance between these
two gross fluxes opposite in sign, and it governs much of the overall terrestrial annual net
carbon (C) budget. Imbalances between CO2 sources (even including carbon lost by fires
and other processes) and sinks directly increase or decrease atmospheric CO2 levels [4].
Terrestrial ecosystems—and forests in particular—are contributing substantially to climate
change mitigation, provided that they are C-sinks and not C-sources [5]. Forests that might
absorb more than they emit are commonly considered carbon sinks (with NEE-negative in
sign), while if they emit more than they absorb are considered as carbon sources (with NEE-
positive in sign). The magnitude of this exchange of CO2, however, is subject to substantial
variability and trends, in large part as a response to variations and trends in climate [6].
Indeed, forests have been shown to be extremely sensitive to changes in environmental
conditions (e.g., climate, seasonality, atmospheric CO2 concentration, nitrogen deposition),
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to aging [7,8], and to disturbances [9], including management practices [10,11], which can
control both photosynthesis and respiration. Therefore, estimating NEE, GPP, and Reco is
a key step for better understanding the underlying mechanisms constraining ecosystem
functioning [12].

Europe and the Mediterranean are expected to become in the near future a ‘Hot Spot’
of climate change [13–16]. The literature reports that under climate change scenarios forests
are expected to grow faster, to mature earlier but also to die younger, curtailing their life
span [17], because of, mainly, warming and increased atmospheric CO2 concentration (the
so-called ‘CO2-fertilization effect’) [18]. Conversely, there is a general lack of evidence
and knowledge on how, overall, forest ecosystems will, on the whole, react to climate
change. Forest carbon balance will be impacted by climate change because various main
processes are impacted, which, in turn, may react and respond differently to climate
change, also because they are vulnerable and sensitive to separate environmental drivers.
Indeed, while an extensive line of evidence shows that the increased availability of CO2
may amplify the photosynthetic rate and assimilation capacity [19], such an increase
is largely debated since there is no evidence that such positive changes will generally
continue indefinitely [20,21]. Similarly, the effects of warming are largely discussed because,
while it is documented that some species may take advantage of a longer vegetation
season (e.g., deciduous species), there are also negative effects linked to warming such as
heat waves and the often-associated drought events [22,23], including late frost [24] and
disturbances [25], which can be detrimental to growth till tree survival. In addition, there
is a general concern that the changing temperature response of respiration turns boreal
forests from carbon sinks into carbon sources [26]. Indeed, warming has also been found
to accelerate both autotrophic as well as heterotrophic respiration (the two components
of ecosystem respiration), meaning that increased temperature may lead forests to release
more carbon, potentially more than absorbed annually [27]. Conversely, drought has been
shown to reduce microbial respiration and then heterotrophic respiration [28]. How these
processes (i.e., photosynthesis and ecosystem respiration) will be impacted by climate
change annually will determine much of the future forest annual C-budget.

The Mean Seasonal Cycle (MSC) metric, which reflects the average distribution of flux
(i.e., NEE, GPP, and Reco) throughout the days of a year, is an insightful measure linking
phenology with carbon partitioning and allocation within seasonal climatic variability. By
capturing the typical fluctuations in a specific region due to changing seasons, the MSC
highlights the expected seasonal changes in climate data, averaged over many years, to
smooth out anomalies and emphasize the regular, cyclical nature of these changes. Many
studies [29–32] have indeed shown that climate change will impact both the phenology
by changing the date for the beginning and the end of the growing season, as well as by
changing the shape of the Leaf Area Index (LAI) distribution over the year, which, at the
same time, will influence the way, among the other things, when photosynthesis can start
and how recent and old photosynthates are partitioned and used to build new tissues and
to replenish the reserves used for the metabolism, as well as carbon allocation [33] and the
C-dynamic.

Process-based models are valuable tools to understand how and to what extent future
climate change will impact these two fluxes (GPP and Reco) in the MSC, both processes
being controlled by warming and changes in precipitation regime and atmospheric CO2
concentration [34,35]. Here, we at first applied and validated, under current observed cli-
mate conditions, the ‘Three Dimensional–Coupled Model Carbon Cycle–Forest Ecosystem
Module’ (3D-CMCC-FEM), a biogeochemical, biophysical process-based forest ecosystem
model designed to simulate carbon, nitrogen, and water cycle in forest ecosystems and,
secondly, under climate change conditions.

Specifically, we question and analyze: (1) the capability of the 3D-CMCC-FEM to
represent under the current climate the main C-fluxes governing the C-cycle in terms of net
ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration
(Reco), by validating the model against independent data from the Fluxnet network; and,
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provided that the model is close to the observed data; (2) how, and if, the sink/source mean
seasonality will be influenced under two locally bias-corrected scenarios of warming (RCP
2.6 and 6.0) and atmospheric CO2 enrichment from three CMIP5 Earth System Models,
within ISIMIP-PROFOUND initiative, in five well-studied and long-monitored contrasting
forest sites (three evergreens and two deciduous) on a longitudinal transect through Europe
up to the end of the century.

2. Materials and Methods

2.1. Model Description (3D-CMCC-FEM ‘v.5.6’)

The ‘Three Dimensional–Couple Model Carbon Cycle–Forest Ecosystem Module’
(hereafter ‘3D-CMCC-FEM’) is a biogeochemical, biophysical, process-based forest ecosys-
tem model (see [10,11,36–44] and reference therein). The model is designed to simulate
carbon, nitrogen, and water cycles in forest ecosystems at commonly 1-hectare spatial
resolution and the main eco-physiological processes (e.g., photosynthesis) at daily temporal
resolution. The most recent code versions since Collalti et al. [17] adopt the biogeochemical
photosynthesis model of Farquhar, von Caemmerer, and Berry [45] to compute gross pri-
mary productivity (GPP). The biogeochemical photosynthesis model is parameterized as in
Bernacchi et al. [46,47] and temperature acclimation for leaves as in Kattge and Knorr [48].
The 3D-CMCC-FEM considers, as in De Pury and Farquhar [49], light interception, reflec-
tion, transmission, and assimilation (and leaf respiration) for both sun and shaded leaves.
Autotrophic respiration (RA) is computed mechanistically following the ‘Growth and Main-
tenance Respiration Paradigm’ (GMRP; [50]), which is divided into the metabolic costs for
synthesizing new tissues (growth respiration, RG) and the metabolic costs for maintaining
the existing ones (maintenance respiration, RM). In 3-D-CMCC-FEM, the maintenance
respiration is based on Nitrogen amount (a fixed fraction of carbon mass varying between
the six tree compartments) and is temperature-controlled by a standard Arrhenius relation-
ship [36]. ‘Type I’ and ‘Type II’ acclimation of respiration to temperature (i.e., short- and
long-term acclimation; [10,39,51]) are also accounted for. Any imbalance between carbon
assimilation and carbon losses because of plants’ respiration is buffered by a seventh pool,
the Non-Structural Carbon pool (NSC; starch and sugars undistinguished), which has
priority in the carbon allocation all over the year. The net primary production (NPP) is the
GPP minus RA. Biomass production (BP) is the amount of NPP not used for replenishing
the NSC pool. Indeed, other forms of non-structural carbon losses (e.g., biogenic volatile
organic compounds, BVOCs, or root exudates to mycorrhizas) are not accounted for by the
model. The phenological scheme, as well as the carbon partitioning/allocation scheme,
distinguished for deciduous and evergreen tree species, is in-depth described in Collalti
et al. [10,36,39,52]. Heterotrophic respiration follows a BIOME-BGC-like approach (which
follows the CENTURY model; [53,54]) distinguishing decomposition for litter and soil pools
with each of the four different conceptual pools characterized by different decomposability
degrees (i.e., fast, medium, slow, and a recalcitrant carbon pool) [39,55]. Altogether, litter
and soil decomposition emissions form heterotrophic respiration (RH), which, summed up
to RA, constitutes ecosystem respiration (Reco). Net ecosystem exchange (NEE) is equal to
Reco minus GPP. Therefore, negative values indicate carbon uptake from the atmosphere
(i.e., the system acts as a C-sink, NEE < 0), and positive values indicate carbon release
(i.e., the system acts as a C-source, NEE > 0). The 3D-CMCC-FEM’s sensitivity to its 54
species-specific parameters and how it varies along the forest development and under
climate change is described in Collalti et al. [17].

In the present study, we used version 5.6 [41], which slightly differs from v.5.5, de-
scribed in Collalti et al. [8] and Dalmonech et al. [11], for a new scheme (and relative
parameterization) for sapwood and live wood turnover and dynamics and some additional
new forest management schemes (not used here) described in Testolin et al. [43].
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2.2. Case Study Areas

Five case studies were selected as representative of the main European forest species
(and climate) and at the same time because of long-monitored sites and part of the
Fluxnet network [56], the ISIMIP (Inter-Sectoral Impact Model Intercomparison Project, [57];
https://www.isimip.org/, accessed on 1 January 2020) initiative and the PROFOUND
database [42,58,59]: the temperate European beech (Fagus sylvatica L.) forest of Collelongo,
Italy (IT-Col), and of Sorø, Denmark (DK-Sor), the maritime pine (Pinus pinaster Ait.) forest
of Le Bray, France (FR-Lbr), the boreal Scots pine (Pinus sylvestris L.) forest of Hyytiälä,
Finland (FI-Hyy), and the temperate Norway spruce (Picea abies (L.) H. Karst) forest of Bílý
Křìž, Czech Republic (CZ-Bk1) (Figure 1). Stand characteristics are described in Table 1.

 

Figure 1. Forest classification for broadleaved and coniferous forests at the European level in the
spatial resolution of 100 m [60]. Location of the Fluxnet sites considered.
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2.3. Input, Meteorological Data, and Climate Change Scenarios

To run, 3D-CMCC-FEM needs a set of input data from state variables representing
the stand at the beginning of simulations and that account for structural characteristics
(e.g., tree height, average age, diameter at breast height; see Table 1) as well as carbon
and nitrogen pools (e.g., stem carbon and nitrogen); meteorological forcing data (e.g.,
daily maximum and minimum temperature, daily precipitation); annual atmospheric CO2
concentrations; and species-specific parameters (e.g., maximum stomatal conductance). All
the data used to initialize the model in the present study for the five stands come from
the ISIMIP initiative and the PROFOUND database [58]. More specifically, daily observed
meteorological data for model validation come from the Fluxnet2015 Dataset [56], while
daily modeled historical (1997–2005) and future climate scenarios (2006–2099) are those
from the ‘ISIMIP 2bLBC’ experiments (‘2b experiments Locally Bias Corrected’) coming
from three different Earth System Models (ESMs; GFDL-ESM2M, IPSL-CM5A-LR, and
MIROC5, respectively) based on the Climate Model Intercomparison Project 5 (CMIP5)
driven by two Representative Concentration Pathways (RCPs) of atmospheric greenhouse
gas concentration trajectories, namely, RCP 2.6 and RCP 6.0. [61,62]. The ISIMIP 2bLBC have
the same structure as those in the 2b experiments but have been corrected by improving
the method described in Hempel et al. [63] and subsequently by the methods described
in Frieler et al. [57] and Lange [64] using the observed meteorology at the local level [58].
Therefore, the 2bLBC climate data represent the more consistent and closer modeled
climate data with the observational data. The annual atmospheric CO2 concentrations
for the historical period are based on Meinshausen et al. [65] and have been extended for
the period from 2006 to 2015 with data from Dlugokencky and Tans [66]. Values specific
for each RCP for the period 2016 to 2099 are also based on Meinshausen et al. [65] and
were used within the Farquhar, von Caemmerer, and Berry [45] photosynthesis model with
values varying, at the end of this century, from 421.4 μmol mol−1 (RCP 2.6) to 666.4 μmol
mol−1 (RCP 6.0), respectively. NEE, GPP, and Reco data, for model validation, come from
the Fluxnet2015 Dataset [56]. Other variables have been validated at these forest stands
in the past (although using slightly different model versions) and described in Collalti
et al. [8,10,37], Marconi et al. [40], Mahnken et al. [42], and Dalmonech et al. [11].

2.4. Model Runs, Validation, and Mean Seasonal Cycle Analyses under Climate Change

The model simulations for model validation under measured forcing climate ran for
CZ-Bk1 from 2000 to 2008, for IT-Col from 1997 to 2014, for FI-Hyy from 1996 to 2014, for
FR-Lbr from 1996 to 2008, and for DK-Sor from 1996 to 2008 (see Table 1). For all sites
model simulations under climate change scenarios began in 1997 and finished in December
2099. Model validation was performed by comparing modeled NEE, GPP, and Reco against
measured eddy covariance estimates (for GPP and Reco using the night-time method with
constant USTAR [67], as reported in the Fluxnet2015 Dataset [56].

To analyze 3D-CMCC-FEM’s capabilities to simulate NEE, GPP, and Reco for daily
and monthly time series, a set of commonly used statistical metrics have been applied
to compare measured vs. modeled data (under observed climate forcing). To avoid
considering bad quality data, a filtering procedure for quality-check has been applied; days
with less than 60% of valid data were not considered and excluded both in the model and
in the observed datasets. Therefore, daily NEE, GPP, and Reco eddy covariance data with
low-quality values (i.e., less than 0.6; [68]) were removed. Consequently, the corresponding
daily modeled data were removed too. The monthly NEE, GPP, and Reco values (both
from eddy covariance and the model) were aggregated from the daily ones. The common
statistic we applied includes Pearson’s correlation coefficient (r), Relative Mean Bias (RMB),
Normalized Root Mean Square Error (NRMSE), and Modeling Efficiency (ME)

In climate change projections, we considered the potential modifications in the ability
of forest stands to absorb or emit carbon throughout the season and across the years under
two different locally bias-corrected climate change scenarios, each coming from three
Earth System Models. This involves averaging the daily values of the MSC of the three

32



Forests 2024, 15, 1124

fluxes considered. It is noteworthy that NEE represents the equilibrium between carbon
absorption by vegetation during photosynthesis and carbon release through vegetation
and microbial respiration. Not only the length of the growing season but also the balance
between the yearly amount of photosynthesis and Reco has been shown to control much of
the variability across the sites and the decades analyzed [47,49]. This calculation is derived
from the variance between GPP and Reco encompassing both autotrophic respiration (RA,
including ground components) and heterotrophic respiration (RH) [69].

Under climate change scenarios, we account for potential changes in the sink/source
capacity of the stands during the season by averaging NEE, GPP, and Reco values every
ten years up to 2100 [70] and accounting for changes in the sink/source and source/sink
length during the year, computed as the number of total days of the year (DoY) where a
forest stand behaves as a C-sink (GPP > Reco with NEE < 0) or a C-source (GPP < Reco with
NEE > 0), as described by the NEE. In addition, we also account for the changes in the
DoY where NEE changes its sign at least for ten consecutive days to avoid artifact effects
of pulsing, e.g., the ‘Birch effect’ on Reco [71], and to account for unstable conditions and
no clear source/sink and sink/source seasonal transition during the year. Therefore, we
discuss changes in the MSC under the RCP 2.6 and RCP 6.0 for NEE, being the net result
of opposite fluxes (i.e., GPP and Reco), through its changes in negative values, i.e., days in
the year where NEE < 0 and describing CO2 uptake from the atmosphere, and positive,
i.e., days in the year where NEE > 0 and describing CO2 release to the atmosphere. In
this way, we account for potential changes that may lead to anticipations or delays in the
switch from source/sink and sink/source capacity, which often happens during spring and
autumn during the year. The analyses under climate change scenarios (2006–2099) also
include the changes in the shape of the Mean Seasonal Cycle (MSC) for NEE, GPP, and Reco
values and for the changes (both in the absolute and the percentage values) in the annual
value. Changes in MSC were estimated on the ten-year average values using the 1998–2008
decade as a benchmarking reference. Furthermore, we account for changes in the annual
values of NEE, GPP, and Reco due to climate change.

3. Results

3.1. Model Validation vs. Fluxnet Data

The NEE, GPP, and Reco, as modeled by 3D-CMCC-FEM, exhibit strong correlations
with the observed daily and monthly eddy covariance data and for the overall MSC across
all five sites (Figures A1 and 2 and Tables A1–A3 in Appendix A). Some slight differences
are observed for the daily values for temperate European beech forests of IT-Col and DK-Sor
when representing the NEE and Reco between the 100 and 200 DoY (Figure 2(1.a–1.c) and
Figure 2(5.a–5.c)). Modeled overestimations for GPP of about 5 gC m−2 day−1 at the peak
of production (~180 DoY) for both the European beech forest at IT-Col (Figure 2(1.b)) and
the maritime pine forest at FR-Lbr (Figure 2(2.b)) was observed. The highest correlation
coefficients between modeled and observed data were observed for DK-Sor and IT-Col
(r = 0.97 and 0.96, respectively) for the daily NEE and GPP (Table A1, Appendix A), while
FI-Hyy shows the best correlation for daily Reco (r = 0.94) and monthly NEE (r = 0.99)
(Tables A2 and A3).

At the IT-Col and CZ-Bk1, the model shows the best performances in simulating NEE
(RMB = 0.07 and 0.14, respectively—Table A1), while the lowest values were reached by
DK-Sor and IT-Col for the GPP (RMB ranging between −0.06 and 0.55, Table A2). Overall,
RMB values for GPP are relatively low across all case studies and time scales. Regarding
Reco at FI-Hyy and DK-Sor, the model tended to underestimate both daily (RMB of −0.3 and
−0.42, respectively) and monthly (−0.29 and −0.42, respectively). Conversely, at IT-Col,
the model exhibited a slight overestimation (RMB daily 0.82 and monthly 0.77, Table A3).
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Figure 2. The green lines represent the modeled (a) NEE, (b) GPP, and (c) Reco amounts (gC m−2

day−1) per DoY (Day of Year) for the five selected case studies, i.e., (1) Collelongo—IT-Col, (2) Le
Bray—FR-Lbr, (3) Hyytiälä—FI-Hyy, (4) Bílý Křìž—CZ-Bk1, and (5) Sorø—DK-Sor compared to
relative observed data (depicted as black dots) from the Fluxnet2015 Dataset [56]. The lower and
upper lines of the shaded area represent, respectively, the minimum and maximum values of the
observed and modeled datasets considered.

The model reports negative NRMSE values for NEE across all time scales, indicating
a slight overestimation (values ranging from −0.57 to −6.59) with the exception of the
CZ-Bk1 site for the daily NEE value (1.39), and at the IT-Col site for the monthly NEE value
(0.99). Regarding the GPP, (Table A2) DK-Sor showed the lowest NRMSE for daily and
monthly values (0.19 and 0.16, respectively). Conversely, at CZ-Bk1 and FR-Lbr forests, the
model displays the highest NRMSE for daily (1.21) and monthly (0.40) values, respectively.
Last, Table A3 shows the validation results for Reco. At FR-LBR, the highest accuracy and
precision were reported with the lowest NRMSE for daily and monthly values (0.24 and
0.20 respectively). For the other sites, we found almost the same model capability described
for the above fluxes (i.e., NEE and GPP) with a lower correlation and a slightly higher error
in terms of daily Reco at CZ-Bk1 (NRMSE = 1.16).

ME exhibits values close to one across all time scales and sites for NEE, with values
ranging from −0.10 (FR-LBr) to 0.92 (IT-Col) for daily NEE values and −0.15 (FR-LBr) to
0.95 (IT-Col) for monthly values. The modeled GPP has a similar trend of the observed
NEE with values ranging from 0.28 for FR-LBr to 0.97 for DK-Sor for daily values and
FR-LBr = 0.34 to DK-Sor = 0.92 for monthly values (Table A2). The Reco achieved lower
performances than GPP and NEE in terms of ME; Table A3 displays values from 1.17 for
IT-Col to 0.75 for FI-Hyy and IT-Col = −0.64 to FI-Hyy = 0.77, for daily and monthly time
scale, respectively.

Finally, the lowest MAE was found at IT-Col, for NEE (0.67 gC m−2 day−1 and
11.42 gC m−2 month−1) and GPP (0.91 gC m−2 day−1 and 20.68 gC m−2 month−1), while
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the lowest MAE for Reco was for FR-LBr (0.71 gC m−2 day−1 and 18.01 gC m−2 month−1)
(Tables A1–A3 in Appendix A).

3.2. Mean Seasonal NEE Cycle under Climate Change Scenario

Figures 3 and 4 display the 10-year average NEE seasonal cycle under climate scenarios
(i.e., RCP 2.6 and RCP 6.0) for the five case studies. Overall, across all the sites and scenarios
considered, there is a consistent reduction in the absolute NEE over time (i.e., NEE is ‘less
negative’ showing a reduction in the sink capacity) with changes in the source/sink (NEE
becomes negative and the site turns into a C-sink) and sink/source (NEE becomes positive
and the site turns into a C-source) switch over the year(s). However, RCP 2.6 generally
exhibits lower reductions in annual and mean seasonal NEE when compared to RCP 6.0
across most study sites and time intervals. The loss in the modeled sink capacity is because
Reco increases more than GPP, and the differences between the scenarios are related to an
increase in Reco higher than that for GPP under RCP 6.0.

 

Figure 3. Ten-year average NEE seasonal cycle under the RCP 2.6 climate scenario for 5 case studies
selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý Kříž—CZ-
Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual NEE variation (%) from the first
decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the Mean Seasonal
NEE Cycle of daily values (gC m−2 day−1).
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Figure 4. Ten-year average NEE seasonal cycle under the RCP 6.0 climate scenario for 5 case studies
selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý Kříž—CZ-
Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual NEE variation (%) from the first
decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the Mean Seasonal
NEE Cycle of daily values (gC m−2 day−1).

The rate of decrease in the annual NEE varies among locations and forest species. For
example, the beech forests at IT-Col and DK-Sor show a reduction in the NEE (i.e., the site
is less C-sink) of about 68%, and 43% (Figures 3 and 4—panel 1 and panel 5) at the end of
the century, generally exhibiting a more moderate decrease compared to evergreen sites.
The Scots pine forest shows, at the end of the century, a reduction in the sink capacity of
95%, standing out as the most significant decrease in NEE (Figures 3 and 4—panel 3). Over
time, the rate of decline shows a tendency to speed up, hinting at a reduction in the capacity
of the carbon sink because of, despite an overall increase in the GPP (Figures A2 and A3),
the increased ecosystem respiration due to increased temperatures (Figures A4 and A5).
By the end of the century, substantial reductions in NEE, i.e., the sites become less C-sink,
across all locations and scenarios were simulated, with some locations experiencing over
70–90% reduction compared to the 1999–2009 decade (Table A4).

The GPP, similar to NEE, generally increases across forest types and scenarios over
time, albeit with varying degrees (Figures A2 and A3). Specifically, RCP 6.0 shows higher
growth rates, particularly in later years (2059–2099), with increases ranging from 28 to
51% across all studied forests, compared to 10–26% for RCP 2.6 (Table A5). Analysis
of long-term trends suggests saturation and subsequent slight decreases in GPP growth
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rates under RCP 2.6, with this phenomenon being most noticeable in the forests of FI-
Hyy. RCP 6.0 consistently shows a higher percentage of change in Reco compared to RCP
2.6. By the end of the century (2089–2099), Reco changes from 37 to 106% for RCP 2.6
and 60 to 121% for RCP 6.0 across all forests examined (Table A6). Boreal and maritime
pine forests experienced higher changes compared to deciduous forests. For example, by
2089–2099, under RCP 6.0, changes reach 142% and 121% at FI-Hyy and FR-Lbr forests,
while deciduous forests like European beech in IT-Col and DK-Sor experience lower changes
at 67% and 60% respectively.

3.3. Changes in NEE Dynamics under Different Climate Scenarios

We considered fluctuations in the length of sink/source and source/sink forest stand
behaviors throughout the year. This calculation involved determining the total number
of days in a year (‘N. days year−1’) where a forest stand exhibited either C-sink (NEE < 0)
or C-source behavior (NEE > 0). The 10-year average number of days as a C-sink and
as a C-source under the RCP 2.6 and 6.0 for the five case studies selected is presented
in Figure 5a. The number of days identified as a C-sink in the evergreen forests for the
scenario RCP 2.6 (i.e., FR-LBr, CZ-Bk1, and FI-Hyy) starts relatively low in the first decade
(1999–2009) but increases significantly over time, showing a consistent upward trend
(Figure 5(2.a,3.a,4.a). At the CZ-Bk1 site, the number of days considered as a C-sink starts
at 47 N. days year−1 in the 1999–2009 decade and increases steadily over the decades,
peaking at 199 N. days year−1 in 2059–2069 and remaining relatively high thereafter. For
FI-Hyy forests, the number of days as a C-sink starts at 107 N. days year−1 in 1999–2009
and rises to 217 days in 2089–2099, with a peak of 225 in 2079–2089. Lastly, at the forests of
FR-LBr, there were no days as a C-sink in 1999–2009, but they increased steadily over time,
reaching 114 days by 2079–2089. The number of days as a C-source varies inversely to those
as a C-sink across decades, demonstrating a general reduction over time for evergreen
forests. The number of days functioning as a C-source decreased, from ~300 in 1999–2009
to ~200 N. days year−1 in 2089–2099 (Table A1), for evergreen forests. Deciduous forests on
the contrary almost maintain a relatively stable number of days as a C-sink through the
century (Figure 5(1.a,5.a). The number of days as a C-sink at IT-Col forests ranges from
212 to 224 N. days year−1, while at DK-Sor from 214 to 222 N. days year−1, with slight
fluctuations observed across decades and no clear overall trend. The same trend for the
capacity of the stand to act as a C-source, but with slightly different days in the range
from 137 to 159 N. days year−1 recorded in the forest of Sorø, and from 140 to 149 N. days
year−1 for the IT-Col site. The discrepancies between the already described RCP 2.6 and
RCP 6.0 scenarios are minimal as they exhibit a similar trend for evergreen and deciduous,
respectively, with only a slight change in the number of days, mainly in the last decade,
with a magnitude of ~10 N. days year−1.

To assess the changes in MSC due to climate change scenarios, we focused on the
shifting patterns of the DoY over decades, particularly examining when forest stands
transitioned from a C-source to a C-sink and vice versa (see Figure 5b). Regardless of the
scenario considered, the European beech forests revealed constant transition periods across
decades. In IT-Col, the shift from being a C-source to a C-sink occurred between DoY 136
and 150, with the opposite transition from sink to source around DoY 285. Meanwhile, in
DK-Sor, the same transitions happened between DoY 115 and 127, and reversed between
DoY 272 and 280 (Figure 5(1.b,5.b)). Even for evergreen forests, there are no noticeable
differences in the shift corresponding to RCP 2.6 and RCP 6.0 scenarios. At CK-BZ1, the
shift to a C-sink occurs relatively early in the year, spanning from DoY 2 to 31 across the
decades. At FI-Hyy, the transition timings vary widely, ranging from DoY 30 to 50 over
the decades. Similarly, at FR-LBr, the C-sink transitions occur from DoY 1 to 16 across
the decades, with some decades exhibiting earlier shifts. On the other hand, transitions
to C-sources at CZ-BK1 occur from late November to early December (DoY 201–329),
displaying a decreasing trend over the years. In contrast, at FI-Hyy, transitions take place
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from mid-September to late September (DoY 197–285), while at FR-LBr, they occur from
late September to early October (DoY 255–285) (Figure 5(2.a,3.a,4.a)).

 

Figure 5. Ten-year average number of days (N. days year−1) as C-sink and as C-source (a) and DoY
(Day of Year) in which C-source switch to C-sink and C-source to C-sink (b) under the RCP 2.6 and 6.0
for the 5 case studies selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy,
(4) Bílý Kříž—CZ-Bk1, and (5) Sorø—DK-Sor. Data missing for some intervals are because of filtering
and data removals to avoid pulsing artifacts, e.g., the ‘Birch effect’ and unstable conditions (see
Section 2).

4. Discussion

4.1. Model Validation

To sum up statistical metrics, the 3D-CMCC-FEM performs best in replicating the
mean seasonal patterns of the three fluxes in European beech forests DK-Sor and IT-Col.
Reco also reaches a satisfactory performance for the boreal Scots pine forest of FI-Hyy,
and the Scots pine forest of CZ-Bk1. The robust predictive ability of 3D-CMCC-FEM in
estimating NEE across different timeframes, forest species, and climates, as proved by
its alignment with the eddy covariance Fluxnet2015 Dataset [56], underscores its effec-
tiveness in capturing the complex dynamics of carbon fluxes within forest ecosystems, as
documented by previous works (see, e.g., [10,11,36,40,42]). Nevertheless, there are slight
inconsistencies, particularly during peak photosynthesis periods (around the 200th day of
the year) in both deciduous and evergreen forests, which have been acknowledged in the
existing literature. Studies indicate that estimates of ecosystem respiration derived from
eddy covariance often underestimate actual values for forest ecosystems [72–75].

38



Forests 2024, 15, 1124

4.2. Mean Seasonal NEE Cycle under Climate Change Scenario

The sensitivity of forest ecosystems to changes in environmental factors such as climate
change, seasonal variations, and atmospheric CO2 levels has been thoroughly evidenced in
the literature. Indeed, the interaction among these variables plays a crucial role in shaping
the carbon exchange dynamics [6,12,17,31,76].

The analysis of the mean NEE seasonal cycle under different climate change scenarios
presents several fascinating findings. The first key observation is the consistent reduction
in forest stand capabilities to act as carbon sinks from the atmosphere in the coming
years, across all study sites and climate change scenarios. Despite the overall lack of
understanding regarding how forest ecosystems will respond to climate change, several
new studies concur regarding the diminishing forest carbon uptake capabilities, thus
confirming our statement [26,31,77–79].

In broader terms, climate change affects forest carbon balance by influencing key
processes, which can respond differently due to their sensitivity to various environmental
drivers [80]. Indeed, the reduction in NEE, within the forests observed in this study, has a
disparity in the intensity of climate impacts across these scenarios: RCP 2.6 exhibits less
intense NEE reduction compared to RCP 6.0 scenarios. The warming accelerates both
autotrophic and heterotrophic respiration meaning that increased temperature may lead
forests to an increase in Reco [27,58,81,82]. On the other hand, the increasing atmospheric
CO2 concentration intensifies the GPP through the ‘carbon fertilization effect’ (i.e., reported
to be the cause of 44% of the GPP increase since the 2000s) [18,19]. Under the RCP 2.6
scenario, Reco exhibits a steady linear increase until the century’s end, while GPP follows
a bell-shaped curve, reaching saturation around the mid-century. Consequently, as GPP
saturates, its compensatory capacity reduces, while Reco continues to rise due to further
temperature increases in the latter half of the century resulting in a further decline in
NEE. Conversely, for the RCP 6.0 scenario, GPP saturation occurs only towards the end
of the century, and while one might anticipate a reversal in NEE trends considering this
factor, it does not materialize. This is because, under the RCP 6.0 scenario, a higher
temperature increase is predicted compared to RCP 2.6 (i.e., [58]), leading to a more
pronounced rise in ecosystem respiration relative to photosynthesis. As a consequence,
there is a greater decrease in the stand forest’s carbon sink capacity. The result refers to
all forests studied in this work, but in the forest of FI-Hyy, the phenomena look more
pronounced (Figures A2 and A3 in Appendix A).

The fate of ecosystem carbon flux depends not only on atmospheric and climate
conditions but also on the type of forests analyzed. The reduction in C-sink capabilities is
particularly notable in evergreen forests, which exhibit a higher decrease in NEE compared
to evergreen sites. The boreal Scots pine forest of FI-Hyy stands out with the most significant
reduction in NEE, indicating a heightened vulnerability to climate change effects. This
finding is supported by the study of Hadden and Grelle [26] who found that, over a 17-year
period, the forest ecosystem in a boreal forest stand in northern Sweden transitioned from
being a carbon sink to a carbon source. This could mean that past efforts to validate the
neutrality hypothesis [83] with climate change impact show limitations, and we need new
research directions and new perspectives to better capture changes in the carbon fluxes
between the ecosystem and atmosphere [84]. Indeed, a long-standing debate around the
C-neutrality of old-growth forests (and some of the sites become old-growth at the end
of simulations) raises concerns, and debates will increase about the reduction of the sink
capacity of aging forests, as assumed by Odum’s theory. As found in [7] (but see [85]), we
also found that even a >200-year-old stand (as IT-Col in 2099) still has sink capacity. The
annual NEE decrease (and much less the changes in the MSC), as shown by the model
results, is certainly a function not only of climate but also of the inherent effects related
to, e.g., biomass, both live and dead, accumulation (which led to increases in respiratory
costs), and changes in, e.g., the forest structure (which led to decreases in the carbon
assimilation), as stands age. Nevertheless, such effects on annual NEE are expected to be
greatly exacerbated by climate change.

39



Forests 2024, 15, 1124

4.3. Changes in NEE Dynamics under Different Climate Scenarios

Climate change impacts plant phenology by altering the start and end dates of the
growing season, which influences when photosynthesis can begin and consequently affects
C-fluxes [20,29,30,32,86].

A primary finding is that, regardless of the scenario analyzed, the number of days
identified as a C-sink in evergreen forests increases significantly over time, indicating a
consistent upward trend. Similarly, the number of days classified as a C-source decreases
over the decades, showing a general reduction. The second finding is that for evergreen
forests, the DoY to C-sink tends to increase (indicating a forward shift in the year when the
system becomes a sink), and the DoY to C-source decreases (indicating a backward shift
in the year when the system becomes a source), aligning with the overall trend of fewer
C-sink days and more C-source days over time. In contrast, deciduous forests maintain a
relatively stable number of C-sink (and C-source) days throughout the century, reflecting
a steady DoY when the system becomes a C-sink (or a C-source), despite an anticipated
beginning of the growing season but compensated by higher respiration rates. Indeed,
for the deciduous, the 3D-CMCC-FEM simulates the bud-brake through a thermic sum
function and leaf and fine root development (and the relative growth respiration peak) in a
well-defined and short time during spring [36]. Conversely, for the evergreens, leaf and
fine root growth development is spread all over the spring. At the same time, leaf fall in
the deciduous starts under certain hours of solar radiation, and thus, this is not under the
control of climate, while in the evergreen, it happens all over the year, and under the control
of climate, balanced by incoming photosynthates for new leaves and fine roots. Ultimately,
deciduous spring C-sink capacity is counterbalanced by high C-emissions mainly because
of growth respiration in spring. Such behavior is different for evergreens, which lengthen
their C-sink capacity during spring. However, the lengthening of the growing season
does not automatically mirror an increase in the net sink capacity because Reco shows an
increase much more than GPP. It is generally acknowledged that the changing temperature
response of respiration transforms forests from C-sinks to C-sources [26,76,87–89], while
the stability of the carbon sink/source dynamics over the decades for deciduous ecosystems
is a relatively recent finding. The DoY for deciduous forests remains unchanged because
the earlier start of the growing season, triggered by rising temperatures, is balanced by
an earlier increase in respiration. This compensates for the earlier rise in GPP at the level
of NEE. Overall, the lack of change in the number of C-sink (and C-source) days across
decades and the reduction in the NEE suggest that, over the long term, deciduous forests
are more efficient in using photosynthates compared to evergreen forests [90,91].

5. Limitations

The modeling framework presented has certain limitations that must be acknowledged.
First, we deliberately decided to not simulate the effects of anthropogenic disturbances,
e.g., forest management, nor the ones from natural disturbances caused by climate change,
such as windstorms, forest fires, and insect outbreaks, so as to concentrate on the effects
of climate change alone and avoid these potentially confounding effects. Climate extreme
events are presumed to be incorporated into the climate scenarios used to drive the model
and are, therefore, somewhat already accounted for. Moreover, indirect changes due to
climate change in key factors like nitrogen deposition, phosphorus, or ozone—which could
potentially amplify or mitigate our findings—were not evaluated. Nonetheless, some
research (e.g., [92]) indicates that this issue might not be universally relevant. These studies
highlight the strong response of various tree species to CO2 fertilization across different
levels of nutrient availability. Lastly, the potential for species migration to and from the
study areas was not considered. However, such dynamics might require longer timescales
than those covered in this study and it is unlikely (although still possible in theory) that
species composition may completely change throughout the simulations.
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6. Conclusions

The MSC metric is an interesting and descriptive metric that associates phenology
and carbon partitioning allocation within forest stands. Climate change impacts both the
phenology, by changing the date for the beginning and the end of the growing season, and
the ecosystem carbon allocation.

We applied the process-based forest model 3D-CMCC-FEM to evaluate the potential
modifications on the ability of different forest stands to absorb or emit carbon throughout
the season and across the years up to 2100. Before that, we validated the model under
current climate conditions and found a robust predictive ability of 3D-CMCC-FEM in
estimating NEE, GPP, and Reco across different timeframes, forest species, and climates.

The analysis of the mean NEE seasonal cycle under different climate change scenarios
presents a consistent reduction in the forest stand capabilities to act as a carbon sink in
the coming years, across all study sites, and climate change scenarios. The reduction in
NEE ability has different intensities of climate impacts across these scenarios. The RCP
2.6 scenario demonstrates a less pronounced reduction in NEE compared to the RCP 6.0
scenario. This disparity primarily stems from variations in key variables, such as the
differing rates of temperature increase between the two scenarios, as well as the CO2
fertilization effect, while, in all sites, age effects depend on the age at the beginning of the
simulations. The reduction in C-sink capabilities is mainly notable in evergreen forests,
which exhibit a higher decrease in NEE compared to deciduous forest sites.

Finally, we found that the number of days as a C-sink in evergreen forests increases
over the years, indicating a consistent upward trend. Conversely, the number of days as a
C-source decreases over the decades, showing a general reduction. This statement aligns
with the forward shift of DoY to C-sink, and the backward shift of DoY to C-source. In
contrast, deciduous forests maintain a relatively stable number of C-sink (and C-source)
days throughout the century, reflecting a fixed DoY when the system becomes a C-sink
(or a C-source). The DoY for deciduous forests remains constant as the earlier onset of
the growing season, driven by warming temperatures, is offset by an earlier uptick in
respiration. Decades pass with little change in the number of days as a C-sink (and a
C-source), alongside a decrease in NEE. This indicates that deciduous forests, over the
long haul, demonstrate greater efficiency in utilizing photosynthates when compared to
evergreen forests.
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Appendix A

 

Figure A1. The green lines represent the modeled (a) NEE, (b) GPP, and (c) Reco amounts
(gC m−2 month−1) per month for the five selected case studies (i.e., (1) Collelongo—IT-Col, (2) Le
Bray—FR-Lbr, (3) Hyytiälä—FI-Hyy, (4) Bílý Křìž—CZ-Bk1, and (5) Sorø—DK-Sor) compared to rela-
tive observed data (depicted as black dots) from the Fluxnet2015 Dataset (Pastorello et al., 2020 [56]).
The lower and upper lines of the shaded area represent, respectively, the minimum and maximum
values of the observed and modeled datasets considered.
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Table A1. Summary of the statistics between simulated and measured NEE from the Fluxnet2015
Dataset (Pastorello et al., 2020 [56]), calculated on the 5 cases studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Křìž—CZ-Bk1, and Sorø—DK-Sor). The table shows the
daily and monthly values for Person’s Coefficient (r—dimensionless), Relative Mean Bias (RMB—
dimensionless), Normalized Root Mean Square Error (NRMSE—dimensionless), Modeling Efficiency
(ME—dimensionless), and Mean Absolute Error (MAE, gC m−2 time−1).

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Daily NEE

r 0.96 0.93 0.93 0.85 0.97
RMB 0.07 −0.86 −0.48 0.14 −0.46

NRMSE −0.57 −1.56 −1.54 1.39 −6.59
ME 0.92 −0.10 0.58 0.69 0.46

MAE 0.67 1.20 0.67 1.15 1.42

Monthly NEE

r 0.98 0.95 0.93 0.92 0.99
RMB 0.07 −0.88 −0.49 0.21 −0.46

NRMSE 0.99 −1.55 −1.52 −0.50 −6.14
ME 0.95 −0.15 0.55 0.79 0.55

MAE 11.42 33.39 19.63 19.12 37.78

Table A2. Summary of the statistics between simulated and measured GPP from the Fluxnet2015
Dataset (Pastorello et al., 2020 [56]), calculated on the 5 cases studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-Lbr, Hyytiälä—FI-Hyy, Bílý Křìž—CZ-Bk1, and Sorø—DK-Sor). The table shows the
daily and monthly values for Person’s Coefficient (r—dimensionless), Relative Mean Bias (RMB—
dimensionless), Normalized Root Mean Square Error (NRMSE—dimensionless), Modeling Efficiency
(ME—dimensionless), and Mean Absolute Error (MAE, gC m−2 time−1).

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Daily GPP

r 0.99 0.95 0.93 0.95 0.99
RMB 0.15 0.55 0.01 −0.14 0.00

NRMSE 0.34 0.42 0.39 1.21 0.19
ME 0.91 0.28 0.86 0.85 0.97

MAE 0.91 1.51 0.91 0.97 0.75

Monthly GPP

r 0.99 0.96 0.93 0.99 1.00
RMB 0.15 0.52 0.01 −0.06 0.00

NRMSE 0.31 0.40 0.38 0.15 0.16
ME 0.92 0.34 0.86 0.97 0.97

MAE 20.68 41.69 26.05 14.25 20.26

Table A3. Summary of the statistics between simulated and measured Reco from the Fluxnet2015
Dataset (Pastorello et al., 2020 [56]), calculated on the 5 cases studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Křìž—CZ-Bk1, and Sorø—DK-Sor). The table shows the
daily and monthly values for Person’s Coefficient (r—dimensionless), Relative Mean Bias (RMB—
dimensionless), Normalized Root Mean Square Error (NRMSE—dimensionless), Modeling Efficiency
(ME—dimensionless), and Mean Absolute Error (MAE, gC m−2 time−1).

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Daily Reco

r 0.90 0.89 0.94 0.86 0.89
RMB 0.82 0.16 −0.30 0.30 −0.42

NRMSE 0.72 0.24 0.41 1.16 0.35
ME −1.17 0.50 0.75 0.63 0.62

MAE 1.14 0.71 0.74 0.88 1.29
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Table A3. Cont.

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Monthly Reco

r 0.99 0.94 0.95 0.99 0.95
RMB 0.77 0.14 −0.29 0.19 −0.42

NRMSE 0.83 0.20 0.39 0.24 0.29
ME −0.64 0.68 0.77 0.93 0.71

MAE 25.42 18.01 21.02 11.61 31.82

Table A4. Summary of the NEE variation (%) from the first decade of simulation (1999–2009), consider-
ing both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where
changes were the highest between the decades while underlined the lowest ones. Note that negative
values indicate that NEE becomes less negative, e.g., −100% indicates a reduction in the negative
values of NEE.

NEE

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 −37% −19% −4% −24% −9%
2019–2029 −64% −35% −16% −44% −14%
2029–2039 −70% −31% −27% −53% −22%
2039–2049 −76% −39% −39% −59% −29%
2049–2059 −71% −48% −47% −58% −33%
2059–2069 −79% −59% −58% −65% −32%
2069–2079 −75% −61% −66% −70% −37%
2079–2089 −76% −69% −76% −75% −44%
2089–2099 −74% −68% −95% −72% −43%

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 −35% −11% 0% −25% −11%
2019–2029 −60% −27% −11% −43% −14%
2029–2039 −74% −36% −23% −52% −26%
2039–2049 −76% −43% −36% −57% −34%
2049–2059 −75% −44% −46% −61% −31%
2059–2069 −75% −43% −57% −64% −23%
2069–2079 −72% −54% −69% −69% −30%
2079–2089 −76% −59% −79% −75% −34%
2089–2099 −71% −60% −87% −68% −36%

Table A5. Summary of the GPP variation (%) from the first decade of simulation (1999–2009), consider-
ing both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where
changes were the highest between the decades while underlined the lowest ones.

GPP

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 7% 6% 22% 12% 8%
2019–2029 10% 5% 34% 15% 15%
2029–2039 16% 11% 39% 18% 18%
2039–2049 17% 13% 42% 19% 19%
2049–2059 18% 12% 43% 20% 20%
2059–2069 18% 11% 41% 18% 23%
2069–2079 17% 12% 36% 18% 18%
2079–2089 16% 9% 32% 18% 15%
2089–2099 17% 10% 26% 16% 15%
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Table A5. Cont.

GPP

RCP 6.0
year CZ-BK1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 7% 7% 23% 11% 7%
2019–2029 10% 9% 36% 14% 13%
2029–2039 13% 10% 43% 18% 14%
2039–2049 15% 12% 44% 20% 15%
2049–2059 20% 17% 49% 20% 20%
2059–2069 23% 23% 50% 23% 28%
2069–2079 27% 26% 51% 26% 31%
2079–2089 28% 29% 50% 26% 31%
2089–2099 31% 30% 51% 28% 34%

 

Figure A2. Ten-year average GPP seasonal cycle under the RCP 2.6 climate scenario for 5 case
studies selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý
Kříž—CZ-Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual GPP variation (%)
from the first decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the
Mean Seasonal GPP Cycle of monthly values (gC m−2 day−1).
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Figure A3. Ten-year average GPP seasonal cycle under the RCP 6.0 climate scenario for 5 case
studies selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý
Kříž—CZ-Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual GPP variation (%)
from the first decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the
Mean Seasonal GPP Cycle of monthly values (gC m−2 day−1).

 

Figure A4. Ten-year average Reco seasonal cycle under the RCP 2.6 climate scenario for 5 case studies
selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý Kříž—CZ-
Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual Reco variation (%) from the first
decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the Mean Seasonal
Reco Cycle of monthly values (gC m−2 day−1).
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Figure A5. Ten-year average Reco seasonal cycle under the RCP 6.0 climate scenario for 5 case studies
selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý Kříž—CZ-
Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual Reco variation (%) from the first
decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the Mean Seasonal
Reco Cycle of monthly values (gC m−2 day−1).

Table A6. Summary of the Reco changes (%) from the first decade of simulation (1999–2009), consider-
ing both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where
changes were the highest between the decades while underlined the lowest ones.

Reco

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 29% 16% 39% 47% 15%
2019–2029 47% 22% 66% 71% 26%
2029–2039 59% 29% 83% 87% 33%
2039–2049 64% 35% 96% 94% 36%
2049–2059 63% 38% 102% 95% 40%
2059–2069 67% 40% 107% 99% 43%
2069–2079 63% 44% 104% 103% 39%
2079–2089 62% 43% 104% 106% 37%
2089–2099 63% 44% 106% 101% 37%

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 27% 14% 39% 45% 14%
2019–2029 45% 24% 66% 69% 23%
2029–2039 56% 29% 87% 85% 28%
2039–2049 60% 36% 97% 93% 33%
2049–2059 67% 43% 112% 99% 39%
2059–2069 71% 51% 121% 108% 47%
2069–2079 76% 60% 130% 117% 54%
2079–2089 80% 66% 136% 123% 55%
2089–2099 82% 67% 142% 121% 60%
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Table A7. Summary of the number of the days in a year (N. days year−1) as C-sink, considering
both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-
Col, Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values
where changes were the highest between the decades while underlined the lowest ones within each
forest stand.

Days as C-Sink

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-Lbr DK-Sor

1999–2009 44 221 107 0 212
2009–2019 126 223 135 25 208
2019–2029 176 223 156 82 206
2029–2039 182 217 170 85 216
2039–2049 195 216 171 103 217
2049–2059 189 220 182 102 218
2059–2069 199 220 199 108 216
2069–2079 189 217 201 109 219
2079–2089 194 225 208 129 222
2089–2099 193 219 218 117 228

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-Lbr DK-Sor

1999–2009 47 221 107 0 215
2009–2019 108 223 134 26 216
2019–2029 172 222 155 71 218
2029–2039 195 223 164 87 216
2039–2049 194 224 180 96 220
2049–2059 190 220 181 95 222
2059–2069 199 212 201 101 216
2069–2079 199 211 197 111 214
2079–2089 193 213 206 114 214
2089–2099 188 206 217 112 222

Table A8. Summary of number of the days in a year (n. days year−1) source, considering both climate
change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col, Le Bray—FR-
LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where changes were
the highest between the decades while underlined the lowest ones within each forest stand.

Days as C-Source

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 321 144 258 365 153
2009–2019 239 142 230 340 157
2019–2029 189 142 209 283 159
2029–2039 183 148 195 280 149
2039–2049 170 149 194 262 148
2049–2059 176 145 183 263 147
2059–2069 166 145 166 257 149
2069–2079 176 148 164 256 146
2079–2089 171 140 157 236 143
2089–2099 172 146 147 248 137
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Table A8. Cont.

Days as C-Source

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 318 144 258 365 150
2009–2019 257 142 231 339 149
2019–2029 193 143 210 294 147
2029–2039 170 142 201 278 149
2039–2049 171 141 185 269 145
2049–2059 175 145 184 270 143
2059–2069 166 153 164 264 149
2069–2079 166 154 168 254 151
2079–2089 172 152 159 251 151
2089–2099 177 159 148 253 143

Table A9. Summary of the changes in the source/sink DoY (Day of Year), considering both climate
change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col, Le Bray—FR-
LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where changes were
the highest between the decades while underlined the lowest ones within each forest stand. Data are
missing for some intervals because of filtering and data removal to avoid pulsing artifacts, e.g., the
‘Birch effect’ (see Section 2).

DoY to C-Sink

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 2 141 30 - 125
2009–2019 13 150 35 1 118
2019–2029 31 142 50 2 116
2029–2039 18 137 - - 119
2039–2049 24 136 45 11 117
2049–2059 22 139 47 8 120
2059–2069 26 139 50 7 115
2069–2079 25 136 44 9 118
2079–2089 21 144 48 16 123
2089–2099 21 138 50 8 127

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 - 142 30 - 129
2009–2019 11 146 38 1 124
2019–2029 13 141 40 - 123
2029–2039 25 144 40 1 120
2039–2049 14 144 53 - 120
2049–2059 21 140 46 1 120
2059–2069 32 132 53 8 111
2069–2079 28 133 52 8 107
2079–2089 27 130 51 4 111
2089–2099 31 127 59 1 112
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Table A10. Summary of the changes in the sink/source DoY (Day of Year), considering both climate
change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col, Le Bray—FR-
LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where changes were
the highest between the decades while underlined the lowest ones within each forest stand. Data are
missing for some intervals because of filtering and data removal to avoid pulsing artifacts, e.g., the
‘Birch effect’ (see Section 2).

DoY to C-Source

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 329 285 285 - 280
2009–2019 280 286 273 - 277
2019–2029 203 284 265 277 275
2029–2039 198 285 243 273 271
2039–2049 200 285 258 274 267
2049–2059 194 284 244 268 268
2059–2069 189 284 221 265 269
2069–2079 201 284 214 267 267
2079–2089 196 284 207 245 272
2089–2099 200 284 197 255 268

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 312 285 288 - 277
2009–2019 264 285 275 - 273
2019–2029 205 284 252 280 270
2029–2039 197 284 245 283 269
2039–2049 183 283 245 273 269
2049–2059 202 283 235 273 268
2059–2069 195 285 226 271 269
2069–2079 203 287 227 259 262
2079–2089 193 282 208 258 263
2089–2099 204 286 212 260 266
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Abstract: Carbon assimilation and wood production are influenced by environmental conditions and
endogenous factors, such as species auto-ecology, age, and hierarchical position within the forest
structure. Disentangling the intricate relationships between those factors is more pressing than ever
due to climate change’s pressure. We employed the 3D-CMCC-FEM model to simulate undisturbed
forests of different ages under four climate change (plus one no climate change) Representative
Concentration Pathways (RCP) scenarios from five Earth system models. In this context, carbon
stocks and increment were simulated via total carbon woody stocks and mean annual increment,
which depends mainly on climate trends. We find greater differences among different age cohorts
under the same scenario than among different climate scenarios under the same age class. Increasing
temperature and changes in precipitation patterns led to a decline in above-ground biomass in spruce
stands, especially in the older age classes. On the contrary, the results show that beech forests will
maintain and even increase C-storage rates under most RCP scenarios. Scots pine forests show an
intermediate behavior with a stable stock capacity over time and in different scenarios but with
decreasing mean volume annual increment. These results confirm current observations worldwide
that indicate a stronger climate-related decline in conifers forests than in broadleaves.

Keywords: carbon cycle; climate change; forest age; forest management; carbon stocks

1. Introduction

Assessing the quantity of CO2 equivalent stored in forest ecosystems is one of the main
goals for implementing the new European Forest Strategy for 2030, a key component of the
European Green Deal, to achieve greenhouse gas emission neutrality by 2050. Within this
framework, European forest strategies have been geared towards forest-based mitigation
plans [1,2], which makes it essential to estimate the carbon sequestration capacity and
potential under future climate conditions.

In the near future, Europe and Mediterranean areas will emerge as focal points (‘hot
spots’) of climate change, characterized by heightened temperatures and environmental
impacts [3,4]. Carbon assimilation and wood production are influenced by environmental
conditions (e.g., precipitation, temperature, atmospheric CO2, etc.) and endogenous factors,
such as species auto-ecology, age, and hierarchical position within the forest structure. In
the past decades, forest ecosystems proved to be crucial net carbon sinks [5,6], likely due to
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the positive fertilization effects of rising atmospheric CO2 and temperature [7]. However,
whether this effect will remain positive or be compensated by other limiting factors is still a
matter of debate [8–10]. Some studies suggest that the fertilization effect on carbon storage
and biomass production fades with forest aging in temperate forests [11,12] since these
positive effects cannot continue indefinitely, complicating the picture of the forest response
to climate changes even further. This is already the case in Europe, where forest aging and
increased disturbances are causing the saturation and decline of the forest carbon sink [9].
Unfortunately, there is not yet a clear strategy to increase the mitigation potentials of forests,
and the factors involved are manifold and entangled together [11,13,14].

The need to disentangle the intricate relationships between those factors is even more
pressing under climate change. Our current understanding of how future climate will
interact with forests of different age classes is particularly limited, especially since only a
few studies have explored the relationship between age and the ecosystem’s carbon balance
under changing climate conditions [15].

The climate sensitivity of age cohorts is driven, among all, by different access to
environmental resources, such as root depth and, therefore, access to water, as well as height,
which affects leaf-level water potential and, thus, stomatal conductance [16]. Rooting depth
and height jointly affect the tree’s sensitivity to water scarcity, a key environmental driver
of change. Future changes in environmental conditions are expected to impact the age
spectrum differently [17–19].

Since forest age is determined by management practices and 75% of European forests
are even aged [20,21], it is crucial to grasp and pin down the role of age in the sensitivity of
forest carbon stocks to climate change to guide and inform adaptative forest management.

Process-based forest models enable the exploration of climate change impacts on
various age cohorts within the same area, a task difficult to achieve through direct field
measurements, which would require decades or more. In this regard, this study examines
the ability of different forest age classes under the same future climate conditions to
sustain high productivity and carbon stock capacity. To achieve this goal, we employed
the ‘Three Dimensional-Coupled Model Carbon Cycle-Forest Ecosystem Module’ (3D-
CMCC-FEM) [22,23], simulating undisturbed forests of different cohorts under four climate
change scenarios (and including one ‘no climate change’ scenario), from the moderate one
(RCP 2.6) up to the most severe one (RCP 8.5) coming from five Earth system models. In
this context, carbon stocks and increment were simulated via total carbon woody stocks
(TCWS, i.e., the standing woody biomass in MgC ha−1) and the mean annual increment
(MAI, in m3 ha−1year−1), which depend mainly on age and long-term processes, such as
climate trends.

The primary aim of this research is (i) to explore the direct effects of climate change on
the overall carbon storage capacity across various stands, species, and age classes situated
in diverse regions of Europe, and (ii) to elucidate the potential influence of forest age on
stand dynamics in adapting to forthcoming climate shifts.

2. Materials and Methods

2.1. Study Sites

The study was conducted in three even-aged, previously managed European forest
stands (Figure 1): (i) the Boreal Scots pine (Pinus sylvestris L.) forest of Hyytiälä, Finland
(FI-Hyy); (ii) the wet temperate continental Norway spruce (Picea abies (L.) H. Karst) forest
of Bílý Krìz in the Czech Republic (CZ-BK1); and (iii) the temperate oceanic European
beech (Fagus sylvatica L.) forest of Sorø, Denmark (DK-Sor) where the 3D-CMCC-FEM (in
different versions) has been already validated in the past [14,24,25]. An overview of the
main site’s characteristics is presented in Tables 1 and 2.

For each site, daily bias-adjusted downscaled climate data from five Earth system
models (i.e., HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, and
NorESM1-M) driven by four representative concentration pathways, namely RCP 2.6, 4.5,
6.0, and 8.5 were available [26,27] (Figure S1). For more detailed information on the study
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site characteristics and climate data, see [14,24,25,28]. The chosen sites have been selected
due to their long monitoring history and the availability of a wide range of data sources for
both carbon fluxes and biometric data for model evaluation, as well as bias-corrected climate
scenarios for simulations under climate change scenarios from the ISIMIP-PROFOUND
initiatives (https://www.isimip.org/, accessed on 1 January 2024) [25,28]. In addition,
these stands (i) represent the most common European tree species; (ii) have a current state
that is the result of the legacy of past forest management; (iii) are mainly mono-specific
and therefore represent interesting «living labs» to study the effects of climate change
on single-species and their productivity, reducing confounding effects which otherwise
make models struggle to predict forest growth and carbon dynamics (e.g., [29,30]); and
(iv) they have already been investigated in the context of climate-smart-forestry silvicultural
scenarios [14].

Figure 1. Test site locations in Europe. The red “+” in the overwiew panel represent the sitre locations.

Table 1. Overview of the main site characteristics provided for each forest site. Years of obs. refers
to the first and last year of measurement; the temporal resolution of measurement is annual. For
the stand values (DBH, height, BA, age, and tree density), the range corresponds to the first and
last field measurement according to the years of obs. Column. DBH = diameter at breast height;
BA = basal area.

Name Species Lat Long Aspect Elevation Slope
Years of

Obs.
DBH
(cm)

Height (m)
BA

(m2 ha−1)
Age

Tree
Density
(ha−1)

Bílý Krìz Picea abies 49.3 18.32 180 875 12.5 1997–2015 8.16–20.47 6.26–15.26 10.33–36.96 16–34 2408–1252
Hyytiälä Pinus sylvestris 61.85 24.29 180 185 2 1995–2011 15.89–20.58 12.61–18.62 12.64–18.33 34–50 870–684

Sorø Fagus sylvatica 55.49 11.64 - 40 0 1994–2017 28.99–48.25 24.23–31.15 18.50–29.76 62–87 407–199

57



Forests 2024, 15, 1120

Table 2. Yearly averages of the daily maximum temperature (Tmax), daily minimum temperature
(Tmin), daily mean temperature (Tmean), annual precipitation sum (P), daily mean relative humidity
(RH), daily mean air pressure (AP), and annual sum of global radiation (R, direct + diffuse shortwave
radiation) for each of the sites. The column “Years” indicates the data’s acquisition year and the
period the average values refer to.

Site Source Years Tmax (◦C) Tmean (◦C) Tmin (◦C) P (mm) RH (%) R (J cm−2)

Bílý Krìz Local 2000–2008 11.5 7.36 3.8 1434.56 81.99 378 774.86
Hyytiälä Local 1996–2014 7.4 4.36 1.13 604.01 77.95 309 628.86

Sorø Local 1996–2012 10.66 8.26 5.91 760.52 82.95 360 687.83

2.2. The Model

The ‘Three Dimensional-Coupled Model Carbon Cycle-Forest Ecosystem Module’
(3D-CMCC-FEM v 5.6 [12,14,22–24,31] is a biogeochemical, biophysical, process-based,
stand-level forest model. The model is built to simulate carbon, nitrogen, and water
cycles in forest ecosystems, even including forest dynamics, under scenarios of climate
change and disturbances (e.g., forest management) and parameterized at the species level.
Photosynthesis is modeled through the biogeochemical model of Farquhar von Caem-
merer and Berry [32], implemented for sun and shaded leaves [33] and parametrized as
in Bernacchi et al. [34,35]. Temperature acclimation of leaf photosynthesis to increasing
temperature is accounted for following Kattge and Knorr [36]. Autotrophic respiration
(RA) is modeled mechanistically by distinguishing the cost of maintaining already exist-
ing tissues (RM) and the cost of synthesizing new ones (RG). Maintenance respiration is
controlled by the amount of nitrogen (stoichiometrically fixed fraction of live tissues) and
temperature. Temperature effects on enzyme kinetics are modeled through a standard
Arrhenius relationship but acclimated for temperature as described in Collalti et al. [24].
The net primary productivity (NPP) is the gross primary productivity (GPP) less RA.
Not all the annual NPP goes for biomass production since the model considers the
non-structural carbon (NSC) pool, an additional seventh C-pool that includes starch
and sugars (undistinguished) used to buffer periods of negative carbon balance (when
respiration exceeds assimilation, i.e., RA > GPP). Ultimately, the more trees respire, the
more NSC is used to sustain metabolism and NSC pool replenishment, and the less
NPP and BP there are (and less carbon is stocked). In the extreme case, when and if
all NSCs are depleted because of metabolism without being replenished through cur-
rent photosynthates, the model predicts stand mortality based on the carbon starvation
hypothesis [37,38].

The phenological and allocation schemes are all described extensively in Collalti
et al. [22,23,39] and Merganičová et al. [39]. The 3D-CMCC-FEM accounts for the ‘age-
effect’ in several ways. Ecological theories of the ‘60s describe [40,41], and past and growing
pieces of evidence suggest, that stabilization and a further slight decline follow an initial
step-wise increase in forest productivity. The causes of such a decline are debated and
include a decline in the GPP because of hydraulic limitation [16,42] as well as an increase
in RA because of increased respiring biomass [18,19,43]. The 3D-CMCC-FEM accounts for
both by including an age modifier [44], which reduces maximum stomatal conductance
(and then also GPP) in the Jarvis model and increases RA because of biomass accumulation
during forest development.

2.3. Virtual Stands, Model Runs, and Results Evaluation

The 3D-CMCC-FEM was first evaluated under observed climate and field data for GPP
and NPPwoody (i.e., the NPP for woody compound; gC m−2 year−1) and the diameter at breast
height (DBH) (see ‘Model validation’ paragraph in Supplementary Materials; [12,14]). The
model was forced with the modeled climate under different emission scenarios, corre-
sponding to the RCP atmospheric CO2 concentration values for the period 1997 to 2100,
ranging from 421.4 μmol mol−1 in the ‘best-case scenario’ (RCP2.6) to 926.6 μmol mol−1
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in the ‘worst-case scenario’ (RCP 8.5) coming from the ISIMIP-PROFOUND initiative.
For comparison purposes, we forced the forest model with a detrended and repeated
meteorology and atmospheric CO2 concentration from 1996 to 2006. The current climate
(i.e., no climate change ‘NoCC’) is considered the baseline to compare against climate
change scenarios. At the start of the simulations, we created a composite forest matrix
(CFM, composed of both measured stand data and “virtual” stand data), following the
approach described in Dalmonech et al. [14], to simulate the potential effect of climate
stressors on stands of different ages. The 3D-CMCC-FEM has been run at each site to
cover the rotation period of each species (from 1997 to 2099) amid the current climate
scenario (fixed atmospheric CO2 concentration at the year 2000 of 368.8 μmol mol−1)
consisting of detrended and repeated cycles of the present-day observed meteorology
from 1996 to 2006 and the Business-as-Usual (BAU) management practices observed
at each site (see [28] for the description of BAU applied at each site). Data required to
re-initialize the model at every tenth of the rotation length were retrieved from each
simulation. Hence, 10 additional stands were chosen for each age in the composite matrix
and added to the CFM. This collection of virtual forest stands was used to set different
starting stand ages at the present day (aget0) due, ideally, to the past silvicultural practice
and climate. Under this framework, a landscape of eleven different stands (in age and
their relative C-pools and forest structure) for each site is created. These new stands
were used, each running from 2006 to 2099, to assess the impact of climate forcing, as
the model has already been shown to be sensitive to forest stand development and the
relative standing biomass.

The 3D-CMCC-FEM was initialized with the structural attributes of the newly created
stands from 1997, which was the starting year of all simulations and for all stands. Modeled
climate change simulations under different RCP-emissions scenarios started to differentiate
in 2006 (up to 2100). The simulation runs from the different stand initial conditions, cor-
responding to different aget0 classes, were carried out without forest management, as we
are interested in the direct climate impact on undisturbed forest stand response, avoiding
the confounding effects of forest management on the responses (for forest management
effects, see [14]). A total of 825 different simulations were performed, as they combined
5 ESMs × 5 RCPs (4 RCPs + 1 current climate scenario) × 11 aget0 classes × 3 sites. Re-
sults are reported for MAI (mean annual increment; m3 ha−1 year−1) and TCWS (total
carbon woody stocks; MgC ha−1), respectively, as they are considered some of the most
representative and fundamental variables in the carbon cycle and forestry. Following the
methodology reported [14] (see Table S1 in Supplementary Materials), we evaluated the
model forced with the modeled climate. We compared GPP and NPPwoody against eddy
covariance estimates and ancillary data for the years 1997–2005 for DK-Sor and FI-Hyy and
2000–2005 for CZ-BK1. We also compared the diameter at breast height (DBH) in all sites
with field measures (see Supplementary Materials).

3. Results

Effect of Age Classes and Climate Change on Total Carbon Woody Stock and Increments

Norway spruce at CZ-BK1 shows mean TCWS values ranging between ~70 and
~140 MgC ha−1 under the NoCC scenario over the century, and from ~70 to ~130 MgC ha−1

with a decreasing pattern across all RCPs (Figure 2). In the Norway spruce stands un-
der some ESMs climate forcing (HadGEM2-ES and GFDL-ESM 2M mostly) and under
all climate change scenarios, the 3D-CMCC-FEM simulates mortality events for carbon
starvation, which increase across stands under gradually warmer climate scenarios and
from the oldest stands to the progressively youngest ones.
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Figure 2. Modeled total carbon woody stock (TCWS) (MgC ha−1) for age classes at the three sites in
all scenarios along the simulation period (2006–2099). Lines represent the moving average of 10 years.
The solid line corresponds to the real stand, while the dotted lines correspond to the virtual ones.
The shaded area represents two standard deviations from the mean predictions with the results from
the five ESMs’ climate change scenarios.

Under RCP 8.5, all classes show signs of decay at the end of the century. In the
youngest aget0 classes, a sharp decrease in MAI was observed (from 8 to 4 m3 ha−1 year−1),
while in the older ones, it holds steady to ~3 m3 ha−1 year−1 with a peak around 2075
(Figure 3). At FI-Hyy, younger aget0 classes (14- to 42-year-old) showed the fastest increase
in TCWS (reaching 120–130 MgC ha−1 at the end of the century under all scenarios), also
reflected in the pattern of MAI. Older aget0 classes showed a more stable trend throughout
the simulation (Figure 2), culminating at ~150 MgC ha−1, with MAI steadily declining from
2.5 to 2 m3 ha−1 year−1. In all scenarios, the Scots pine peaked in the 126 and 56 aget0
in TCWS and MAI, respectively. Minor differences were found in mean TCWS between
the NoCC and other RCP scenarios, ranging from −1.6% (140-year-old class under RCP
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2.6) to +2.8% (14-year-old class under RCP 6.0). At DK-Sor, the results for TCWS show
different patterns to other sites, with the highest values ranging between ~240 MgC ha−1

(under NoCC) and ~255 MgC ha−1 (under RCP 8.5) at the end of the century, with the least
TCWS under NoCC. The younger classes showed a shallow increase in TCWS during the
simulation period, stabilizing at the end of the century, while the older ones kept growing
(Figure 4). DK-Sor was the only site where the tightening of the climate conditions caused
a positive effect on the MAI, particularly in the younger classes, reversing the trend from
negative to positive at the end of the century.

Figure 3. Modeled mean annual increment (MAI) (m3 ha−1 year−1) for age classes at the three sites in
all scenarios along the simulation period (2006–2099). Lines represent the moving average of 10 years.
The solid line corresponds to the real stand, while the dotted lines correspond to the virtual ones.
The shaded area represents two standard deviations from the mean predictions with the results from
the five ESMs climate change scenarios.

61



Forests 2024, 15, 1120

Figure 4. Boxplot of modeled total carbon woody stock (TCWS) (left, MgC ha−1) and mean annual
increment (MAI) (right, m3 ha−1 year−1) for age classes at the three sites in the four RCPs scenarios
compared to the NoCC (no climate change) scenario. Boxplots with thick borders correspond to the
real stand. Lines are fitted throughout the median of the values of the variables using a generalized
additive model.

In summary, a positive growth trend of TCWS over time was found in all sites, with the
oldest aget0 classes accounting for the most carbon accumulation. Both conifer stands show
a plateau with a reduction in growth at the end of the simulation, which is more pronounced
and more severe in the warmest climate scenario. Conversely, the beech stands show a
positive growth pattern in all scenarios. Similar results were obtained for MAI, where the
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conifers showed a decreasing trend over the simulation period despite different magnitudes
and patterns among aget0 classes. The beech stands exhibited smaller variations among
aget0 than among scenarios concerning other sites. In Table 3, we report the mean value of
TCW and MAI over the simulation period for each site and climate scenario.

Table 3. Mean values of total carbon woody stock (TCWS) and mean annual increment (MAI) over the
simulation period (2006–2099) for each scenario and age class. CZ-BK1 = Bílý Krìz; FI-Hyy = Hyytiälä;
DK-Sor = Sorø.

Scenario Scenario

NoCC
RCP
2.6

RCP
4.5

RCP
6.0

RCP
8.5

NoCC
RCP
2.6

RCP
4.5

RCP
6.0

RCP
8.5

Age TCWS (Mg Cha−1) MAI (m3 ha−1)

CZ-BK1

12 72.22 69.92 65.04 70.42 65.93 4.89 4.75 4.57 4.80 4.63
16 75.71 73.60 73.20 74.10 71.88 5.03 4.86 4.67 4.91 4.72
24 86.53 84.47 84.06 85.02 82.70 4.73 4.60 4.41 4.63 4.45
36 97.46 95.37 95.00 96.13 93.64 4.30 4.19 4.01 4.22 4.07
48 101.76 99.69 99.33 91.00 99.58 3.81 3.71 3.71 3.74 3.68
60 110.19 108.17 107.88 99.34 107.00 3.58 3.51 3.50 3.53 3.47
72 118.19 116.00 115.64 117.06 114.55 3.42 3.35 3.34 3.37 3.31
84 121.56 119.38 119.04 120.58 117.50 3.18 3.12 3.11 3.14 3.08
96 120.19 118.12 117.98 119.70 116.90 2.88 2.83 2.83 2.85 2.80

108 126.78 121.26 124.28 117.57 112.33 2.74 2.70 2.70 2.71 2.66
120 145.50 124.43 142.41 135.02 127.84 2.72 2.69 2.68 2.69 2.65

FI-Hyy

14 66.42 66.62 67.39 68.49 66.98 1.91 1.93 1.95 1.99 1.94
28 79.83 79.00 79.73 81.05 79.37 2.21 2.19 2.21 2.25 2.20
36 104.34 102.42 103.17 104.75 102.86 3.20 3.14 3.16 3.21 3.15
42 89.82 88.55 89.35 90.79 89.08 2.35 2.31 2.33 2.37 2.33
56 118.76 116.62 117.57 119.20 117.36 3.20 3.14 3.17 3.21 3.17
70 119.29 117.43 118.61 120.25 118.65 2.91 2.86 2.89 2.92 2.89
84 125.92 123.95 125.19 126.85 125.27 2.76 2.72 2.74 2.77 2.74
98 133.33 131.06 132.29 134.12 132.33 2.66 2.62 2.64 2.67 2.64

112 141.29 138.87 140.00 141.92 140.19 2.57 2.53 2.55 2.57 2.55
126 148.26 145.43 146.69 148.63 146.91 2.49 2.45 2.47 2.49 2.47
140 155.77 153.11 154.50 156.52 154.79 2.47 2.43 2.45 2.47 2.45

DK-Sor

14 98.53 107.89 110.48 109.94 113.32 2.46 2.72 2.79 2.77 2.86
28 110.94 120.06 122.68 122.18 125.53 2.60 2.86 2.92 2.90 2.99
42 113.56 122.68 125.31 124.82 128.16 2.54 2.78 2.85 2.83 2.92
56 115.97 125.07 127.73 127.23 130.58 2.52 2.76 2.82 2.80 2.89
70 116.15 125.14 127.79 127.30 130.62 2.47 2.69 2.75 2.73 2.81
76 120.65 130.45 133.16 132.55 136.05 2.76 3.00 3.06 3.04 3.13
84 124.68 133.99 136.65 136.14 139.53 2.56 2.78 2.84 2.82 2.90
98 135.87 145.41 148.06 147.49 150.93 2.82 3.02 3.07 3.06 3.13

112 154.13 164.32 166.58 165.71 168.77 3.00 3.21 3.25 3.23 3.30
126 166.84 176.33 178.38 177.63 180.32 3.06 3.24 3.28 3.26 3.31
140 170.49 180.08 181.84 181.26 184.05 2.91 3.08 3.11 3.09 3.14

4. Discussion

Age-Dependent Impacts of Climate Change on Forests’ Increment and C-Stocks

The successional stage, represented by forest age, was the main driver controlling C-
storage capacity and biomass accumulation, as already known from previous studies [45–47],
with differences greater among different age cohorts under the same scenario than among
different climate scenarios under the same age class [12,14]. The evidence that the carbon
budget is mainly controlled by stand age suggests that the effects of climate change on forest
cohorts are generally less significant than the effect of age, mainly in terms of the amount
of standing biomass. In this sense, age represents multiple and interacting processes, such
as tree size [48,49], forest structural traits (canopy closure and LAI), reduction in stomatal
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conductance [16], and adaptation to specific environmental conditions which, in turn, make
it possible to increases the above-ground biomass (AGB) [50]. The model could reproduce
the expected behavior of biomass (and thus carbon) accumulation, simulating rapid growth
at a young age and saturation for the oldest age class, but not necessarily at the end of
the simulation period. Approaching the physiological optima for the species may benefit
the biomass synthesis through an augmented photosynthate supply but may eventually
increase the respiratory costs of tissue growth and maintenance despite a strong acclimation
capacity [18]. High respiratory costs in warm climates with low precipitation regimes, in
the older age classes, lead to C-starvation and mortality phenomena, as modelled for the
Norway spruce at the CZ-BK1 site. This indicates that the environment has reached its
carrying capacity and that competition for limited resources, such as light and water, is
excessively high to sustain more biomass in the oldest age classes.

We found different C-accumulation patterns under climate change between coniferous
stands and broadleaves. As expected, increasing temperature and changes in precipitation
patterns led to a decline in above-ground biomass in spruce stands, especially in the older
age classes. On the contrary, the results show that beech forests at DK-Sor will maintain
and even increase C-storage rates under most RCP scenarios. Scots pine forests show an
intermediate behavior with a stable stock capacity over time and in different scenarios but
with decreasing MAI. These results confirm current observations worldwide that indicate a
stronger climate-related decline in conifers forests than in broadleaves [51–53]. This con-
trasting response is explained by the different characteristics of the two phyla, in particular,
it is due to the temperature adaptation, with generally lower optimum temperature in
conifer in addition to its lower sensitivity to the length of the growing season. Similarly,
conifers also show lower efficiency in water management because of the shallower root
system, which increases the sensitivity to soil aridity and its vulnerability to drought
events [54]. Recent studies confirm that growth decline is more pronounced in conifers
than in broadleaf, especially beech forests, in the most northern species distribution [55].
Our results confirm the same growth patterns found by recent studies [47,53,56], where
broadleaves outperform conifers in productivity, and climate warming will probably exac-
erbate these opposite growth patterns.

However, despite some studies suggesting that age modulates different adaptation
strategies to some extent, it remains unclear whether younger trees may be more affected by
climate change than older ones. Bennett et al. [57], in a global analysis, found that droughts
consistently had more severe impacts on larger (older) trees, while Wang et al. [11] observed
a more substantial and sharper decline in basal area increment in young Korean pine in
China. Hogg et al. [58] found that the percentage decrease in biomass growth was not
significantly different for young, productive stands compared to older, less productive ones.
Our study suggests that warmer and drier conditions and extended growing seasons will
affect younger stands more than older ones, but with different trends among species. In
particular, MAI will be positively affected in younger beech forests, while it will remain
stable in older stands. On the contrary, climate change will strongly impact the growth rate
of young conifers stands more than older ones. Older forests tend to be more stable and
resilient than younger ones due to their rugged and stable interaction with climate triggers
and better responsiveness to environmental changes. The year-to-year climate variability is
buffered by larger carbon pools in sapwood and reservoirs in older trees, leading to higher
long-term stability than younger trees [12]. In this sense, ages represent the “memory” of
the forest to past climate and disturbance regimes, which align the species-specific traits
to the environmental conditions in which they grow, creating the niches in which AGB
accumulates [52,59].

Despite numerous efforts to decipher forests’ response to climate change, the intricate
methods employed by tree species to withstand extreme climates still need to be fully
unveiled. Further research exploiting ecophysiological models explicitly accounting for
age, tree-ring experiments, and remote sensing will be critical to understanding forest
ecosystems’ adaptation strategies to climate change, particularly in the face of rapid warm-
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ing and extreme disturbances. A better understanding of the interaction between forests
and climate can inform better forest management strategies, ultimately dampening the
impacts of climate change on forest ecosystems.

5. Limitations

The presented modeling framework has some limitations that should be considered.
Firstly, natural disturbances as consequences of climate change, such as windstorms,
forest fires, and insect outbreaks, were not simulated. These disturbances cause changes
in carbon stocks, nutrients, and soil conditions and contribute to the global release of
CO2 in the atmosphere, ultimately leading to increasing temperature and radiation. In
contrast, climate extreme events are considered to be already included in the climate
scenarios used to force the model and, thus, already accounted for in the model outputs.
Additionally, other indirect alterations due to climate change of key drivers, such as nitrogen
deposition, phosphorus, or ozone, which can somewhat amplify or reduce our results,
were not assessed. Nonetheless, some studies (e.g., [60]) lend credence to the notion that
this phenomenon may not be applicable across the board. They highlight the significant
responsiveness of various tree species to CO2 fertilization across a wide range of nutrient
availability. Finally, no allowance was made for the possibility of species migration to and
from the study areas. However, these dynamics may require longer timescales than those
simulated in this study.

6. Conclusions

Forest age is confirmed to be a significant factor in determining the carbon storage
capacity and biomass accumulation in forest ecosystems, especially in the context of future
climate uncertainty. The effects of species, site location, stand-level characteristics, and
development stage vary significantly and are contingent on specific factors. We observed
that differences in biomass accumulation were more pronounced among different age
cohorts than among different climate scenarios within the same age class, with contrasting
carbon accumulation patterns under climate change between coniferous and broadleaf
forests. Furthermore, our findings shed light on the differential impacts of climate change
on younger versus older forest stands. Warmer and drier conditions are projected to
affect younger stands more severely, particularly in coniferous forests. However, older
forests will likely exhibit greater stability and resilience due to their accumulated carbon
pools and enhanced adaptability to environmental changes. While our study provides
valuable insights, it also underscores the need for further research to unravel the complex
mechanisms by which forests adapt to climate change. This deeper understanding can
inform more effective forest management strategies, helping to mitigate the impacts of
climate change on forest ecosystems in the future. The varying responses of different tree
species highlight the need for tailored management approaches and conservation efforts to
enhance the resilience of our forests.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f15071120/s1, Figure S1: Evaluation of monthly seasonal
GPP (gC m−2 month−1) fluxes (left column) and annual (gC m−2 year−1) fluxes (central column)
for the sites of Sorø, Bily Kriz, and Hyytiala (rows). Quality-checked and -filtered GPP values evalu-
ated at the sites by the eddy covariance technique are reported as black dots. The shaded area for
seasonal values reports the maximum and minimum monthly values recorded in the time series.
The shaded area for annual data represents the relative uncertainty bounds. In the third column,
a comparison of the predicted annual DBH increment (cm y−1) with site observations at the three
sites is reported. Measured data are shown as black dots. Simulated data are reported as continuous
lines. Table S1: Performance statistics (coefficient of determination R2, relative root mean square error
RMSE (gC m−2 day−1) and Fractional Mean Bias, FMB) computed from monthly seasonal values
and annual series of model gross primary productivity, GPP, against eddy covariance estimated and
diametric annual increment data, DBH increment, against measured data. Results are reported for
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Abstract: Soil respiration (SR) is a main component of the carbon cycle in terrestrial ecosystems,
and being strongly affected by changes in the environment, it is a good indicator of the ecosystem’s
ability to cope with climate change. This research aims to find better empirical SR models using
25-year-long SR monitoring in two forest ecosystems formed on sandy Entic Podzol and loamy Haplic
Luvisol. The following parameters were considered in the examined models: the mean monthly soil
or air temperatures (Tsoil or Tair), the amount of precipitation during the current (P) and the previous
(PP) months, and the storage of soil organic carbon (SOC). The weighted non-linear regression was
used for model parameter estimations for the normal, wet, and dry years. To improve the model
resolutions by magnitude, we controlled the slope and intercept of the linear model comparison
between the measured and modeled data through the change in R0—SR at zero soil temperature.
The mean bias error (MBE), root-mean-square error (RMSE), and determination coefficient (R2) were
used for the estimation of the goodness of model performances. For the sandy Entic Podzol, it is
more appropriate to use the models dependent on SOC (TPPC). While for the loamy Haplic Luvisol,
the Raich–Hashimoto model (TPPrh) with the quadratic Tsoil or Tair dependency shows the better
results. An application of Tsoil for the model parameterization gives better results than Tair: the TPPC
model was able to adequately describe the cold-period SR (Tsoil ≤ 2 ◦C); the TPPrh model was able to
avoid overestimations of the warm-period SR (Tsoil > 2 ◦C). The TPPC model parameterized with
Tsoil can be used for the quality control of the cold-period SR measurements. Therefore, we showed
the importance of accounting for SOC and the water-holding ability when the optimal SR model is
chosen for the analysis.

Keywords: CO2 emission; forest soils; hydrothermal regime; carbon content; long-term observations;
humidity/aridity level; climate change; statistical modeling

1. Introduction

Soil respiration (SR) is the main pathway through which carbon exits terrestrial ecosys-
tems [1–3], changing soil organic carbon (SOC) storage and its allocation in soil [4]. It is the
integral part of the ecosystem carbon balance (net ecosystem production, NEP = GPP − Re),
defined as the difference between the gross primary production or photosynthesis (GPP)
and the total respiration (Re), which is the direct indicator of the ecosystem’s well being [5,6],
and a useful indicator of plant metabolism [1]. That is why SR—a main component of
Re—should be monitored for estimation of the ecosystem ability to withstand environmen-
tal stresses due to adverse changes in the environment or due to climate change [2,3], and
for reporting the annual greenhouse-gas inventory [7].

For the separation of the ecosystem-related and soil-related parameters in NEP, the
total respiration (Re) should be split to ecosystem respiration related to its growth (au-
totrophic respiration, Ra) and the soil respiration related to the microbial activity for the
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SOC decomposition (heterotrophic respiration, Rh) [8,9]. This respiration separation is
often modeled from the eddy-covariance data [1,10–14] that could lead to inconsistent re-
sults [15,16], due to the high variability of the Ra contribution to Re (10%–90%), depending
on the seasonality and vegetation types [17].

The direct methods for SR measurements employ operation of soil chambers of the
closed type [18,19]. As a rule, these methods require regular travelling to the site to conduct
measurements to assure the adequate representation of SR estimations during the year. This
represents the significant labor intensity of the soil-chamber measurement procedure [20].
The quality of these measurements can be altered by the size and the installation of the
chambers as well as by the soil heterogeneity [4], introducing high measurement variability,
and the presence of snow or vegetation covering the soil surface and interrupting gas
exchange [21,22]. Moreover, such a monitoring on a country level looks unrealistic because
of a prohibitively high cost [4].

The viable alternative to the measurement methods is to focus on the modeling of SR
including both simple empirical models [14,23–26] and more sophisticated process-based
dynamical models [4,27–29].

A number of research studies focusing on both SR measurements and applications
of empirical SR models highlight a strong dependency of SR on the following parameters:
(i) temperature [24,30–33] due to change in microbial activity; (ii) soil moisture [24,34–37]
due to change in soil porosity and accessibility of atmospheric oxygen;
(iii) precipitation [20,24,38–42] as a simpler way for the soil-moisture estimation; (iv) change
of water level in soil [26,43,44] blocking below-water-level SOC oxidation; and (v) allocation
of above-ground biomass [23,45]. Several studies link changes in the amount of SOC stored
in ecosystem soils to differences in SR [1,8,46–49].

The empirical models usually use one of two temperature sources for parameterization:
the soil temperature (Tsoil) [23,26,31–33] or the air temperature (Tair) [20,24,25,42]. Raich
and Potter (1995) [24] note that the soil-temperature application is more consistent from the
Q10 temperature-coefficient behavior’s point of view. They justified it by the direct response
of the microbial activity on changes in Tsoil. On the other hand, Suhoveeva and Karelin
(2022) [42] showed that the Raich–Hashimoto model [25] with the quadratic temperature
dependency gives good results when it is parameterized by Tair.

It should be noted that, as a rule, the choice of Tsoil or Tair stays on investigators’
judgment, and until now, no analysis on the preferred temperature sources for the model
parameterizations for different soil conditions have been conducted. The second remark on
the empirical SR modeling is often the presence of an insufficient magnitude resolution
of the modeled data in comparison to the measurements [20,31,42]—leaving the extreme
(summer or winter) measurements without adequate coverage by modeling, due to the
lack of their representativity in time series in comparison to the intermediately measured
values.

Following Raich and Potter’s (1995) [24] notes from above and paying attention to
the high variability of the winter-time measurements, we hypothesize that using Tsoil in
cold periods, generally not limited with water availability, could significantly improve
the SR modeling results in comparison to using Tair. On the other hand, following Maier
et al. (2010) [36], we hypothesize that in dryer warm periods, lacking a persistent amount
of moisture, soil structure and porosity affect the atmospheric oxygen availability in soil,
which together with the different amounts of SOC can affect the magnitude of SR.

The current research aims to address these hypotheses by identifying the better ver-
sions of the empirical models parameterized by the monthly averages of (i) soil or air
temperature, (ii) the amount of precipitation, and (iii) the amount of SOC in application
to sandy Entic Podzol and loamy Haplic Luvisol. To do this, the weighted non-linear
regression was used to estimate the model coefficients for the normal, wet, and dry years
separately to ensure an adequate coverage of different climatic periods. By controlling the
slope and intercept of the linear-model comparison between the measured and modeled
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values, the selected models are being re-adjusted to adequately represent the measurement
range during the year.

2. Materials and Methods

2.1. The Sites, Measurements, and Soil Properties

The research is focused on two forest ecosystems situated on the opposite banks of
Oka River near Pushchino town, Moscow region. The first site (54◦50′ N, 37◦35′ E) with
the sandy Entic Podzol (Arenic) [50] is located in the zone of coniferous-deciduous forests
in Prioksko-Terrasny Nature Biosphere Reserve on the left (northern) bank of Oka River
(top, Figure 1). The landscapes are plain sandy terraces formed as the result of modern
and ancient erosion processes located above Oka-River flood plain—the low plains with
the gentle southern slopes toward the River. The second site (54◦20′ N, 37◦37′ E) with the
loamy Haplic Luvisol (Siltic) [50] is located in the zone of deciduous forests on the right
(southern) bank of Oka River (bottom, Figure 1). The landscape is hilly with about 150-m
of elevation above the River. Oka River serves as the boundary between the forest zones.
The cross distance between the sites is about 8.6 km in the north–south direction.

 

Figure 1. Study sites, soil profiles (Entic Podzol and Haplic Luvisol) and site locations on the opposite
banks of Oka River; Prioksko-Terrasny Reserve is north from the River (“Prioksko-Terrasny Reserve”,
54◦52′ N, 37◦35′ E, Google Earth. November 2021. 25 May 2023); top left—Entic Podzol and bottom
left—Haplic Luvisol soil profiles.

Both forest sites are located in the same moderately-continental climate zone with
warm summers and moderately cold winters. Long-term meteorological observations (the
Complex Background Monitoring Station, settlement of Danki, Serpukhov district, Moscow
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region; 54◦50′ N, 37◦35′ E) for the last 10 years (https://pt-zapovednik.org, accessed on
1 June 2023) report the following: the average annual air temperature is 4.8 ◦C, the average
summer temperature is +17.6 ◦C (max 38–39 ◦C), and the average winter temperature is
−8.3 ◦C (min −43 ◦C in 1978); the average precipitation is 671 mm (max 91 mm in July);
the duration of the seasonal snow cover period is 133 days with the average snow depth
being 52 cm; the vegetation season lasts 186 days.

Due to the specifics of geomorphology, the soil properties of these sites are quite
different (left, Figure 1; Table 1). The higher concentration of fine particles (silt and clay)
in the Haplic Luvisol and consequently, smaller pores, explain its higher water-holding
capacity and as the result is the lower permittivity to the atmospheric oxygen, reducing
SOC oxidation [36], which is directly associated with its higher carbon storage. This process
is well investigated on the examples of the wet-meadow and bog soil, having high SOC
storage as well [26,37,43,51].

Table 1. Site description and soil properties of the forest ecosystems.

Entic Podzol Haplic Luvisol

Forest

Forest zone coniferous-deciduous Deciduous

Forest type
mature mixed with pine, linden,
aspen, birch, and oak, the age of

which reaches 90–120 years 2

secondary deciduous with aspen,
linden, and maple of an average

tree age of 50–70 years 2

Soil

Texture sandy-loamy 3 loamy 3

granulometry (sand:silt:clay) 11.6:1.0:1.3 1 4:4:2 2

pHKCl 3.67 1 5.56 2

C/N 15.3 1 12.8 2

SOC storage [kg C/m2] 1.23 (0–20 cm) 4 5.02 (0–20 cm) 4

Water-holding capacity [%] 40.5 2 57.5 2

1 [20]; 2 [40]; 3 [52]; 4 [53].

For the current research, we use a 25-year-long SR-measurement time series conducted
by the chambers of the closed type (SR—top, Figure 2) once a week. The standard chamber-
measurement approach is described in [20]. Firstly, the repetitive with 10-min interval
gas measurements using syringe-sample collection are conducted at sites at five nearby
locations to account for SR heterogeneity. Secondly, these samples are analyzed for CO2
concentrations in the laboratory using a gas chromatograph (KrystaLLyuks-4000 M, Meta-
Chrom, Yoshkar-Ola, Russia). The obtained changes in CO2 concentration are recalculated
into the SR fluxes by applying the chamber volumetric correction [19,22]. Simultaneously
with the SR, the soil temperature at 5-cm depth and the air temperature at 1-m height were
measured at the sites (Tsoil—brown, Tair—red; middle, Figure 2). The monthly averaged
data for the air temperature (Tair) and precipitation (Prec) were collected from the Complex
Background Monitoring Station, which is situated nearby to the coniferous-deciduous
forest site (blue; bottom, Figure 2). All the data were quality checked and averaged on a
monthly base to be fitted into the models.

The monthly averaged temperature (T) and precipitation (P) data have also been used
for the separation of the years of the measurements into “wet”, “dry”, and “normal” (top,
Figure 2) by an application of the following indexes to the data:

• Selyaninov hydrothermal coefficient—HTC = ∑ P/ ∑ T/10, when T > 10 ◦C (HTC6–8—
summer period, June to August months) [53];

• Wetness Indexes—WI = lg(∑ P/ ∑ T) (WI5–8 and WI5–9 for May to August and May
to September periods, respectively) [53].
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Figure 2. The 25-year-long measurements of soil respiration (SR, top), temperatures of air and soil
(Tair—red and Tsoil—brown, middle), and precipitation (Prec, bottom); on the SR graph: normal
conditions—green, wet conditions—blue, dry conditions—brown.

If the values of any of these indexes differ (higher or lower) more than a standard
deviation (STD) from the averages for the chosen measurement period, the year was placed
into the “wet” or “dry” datasets, respectively. The following 5 years were classified as
“wet”—1999, 2003, 2006, 2008, 2020; the following 9 years were “dry”—2002, 2007, 2010,
2011, 2014, 2015, 2018, 2021, 2022; and the remaining 11 years stayed as “normal”—1998,
2000, 2001, 2004, 2005, 2009, 2012, 2013, 2016, 2017, 2019.

For the initialization of the empirical models dependent on SOC, the estimations of
the SOC storage in 20-cm layers of Entic Podzol and Haplic Luvisol were used (Table 1).

2.2. Empirical Soil Respiration Models

The current research of the SR estimations is focused on two groups of empirical
models connecting SR with the temperature and amount of precipitation, serving as a proxy
for the soil moisture [20,24,39–41,54] and by this, estimating SR affected by the climatic
conditions. The first group includes the models dependent on Tsoil [26,31–33], and the
second group are the models dependent on Tair [20,24,25,42]. The comparison between the
groups shows that both groups are generally based on the same formulations but with
using different sources of temperature: Tsoil or Tair.

Temperature and Temperature—Precipitation models [20,24,26,31–33]:

SRT = R0e QT (1)

SRTP = R0e QT
(

P
K + P

)
(2)
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Temperature—Precipitation model dependent on the amounts of precipitation for the
current (P) and previous (Pm−1) months [25,42]:

SRTPP = R0e QT
(

αP + (1 − α)Pm−1

K + αP + (1 − α)Pm−1

)
(3a)

SRTPPrh = R0e (QT−Q2T2)

(
αP + (1 − α)Pm−1

K + αP + (1 − α)Pm−1

)
(3b)

Temperature—Precipitation—SOC model [48]:

SRTPC = R0e QT
(

P
K + P

)(
SOC

ψ + SOC

)
(4)

As an extension from the previous models (Equations (3a) and (4)), we suggest to look
at the combined Temperature—Precipitation—SOC model dependent on the amounts of
precipitation of two months:

SRTPPC = R0eQT
(

αP + (1 − α)Pm−1

K + αP + (1 − α)Pm−1

)(
SOC

ψ + SOC

)
(5)

In all models, T is the average monthly temperature of the soil surface layer [26,31–33]
or the average monthly temperature of air [20,24,25,42]; P is the average monthly amount
of precipitation; SOC is the organic-carbon storage in the top 20-cm of the soil.

The R0 (g C/m2day) is SR at 0 ◦C in normal soil-humidity conditions—it is usually
estimated from the measurements as an average SR for the not-frozen top-soil level. After
R0 is identified, the non-linear regression is used to estimate other parameters of the
models: Q and Q2 are the exponential-relationship temperature coefficients; K (cm) is
the half-saturation constant of the hyperbolic relationship between SR and the amount of
precipitation; α is the redistribution coefficient between the amounts of precipitation for the
current (P) and previous (Pm−1) months; and ψ (kg C/m2) is the half-saturation constant of
the hyperbolic relationship between SR and SOC.

Practically all the empirical models described above, T (Equation (1))–TP
(Equation (2))–TPP (Equation (3a))–TPC (Equation (4))–TPPC (Equation (5)), use the linear
temperature dependency in the exponential term and because of it, can be put into the
same class of the temperature relationship with SR. On the other hand, the model TPPrh
(Equation (3b)) uses the quadratic temperature dependency in the exponential term, which
obtains good results when the model was parameterized with the air temperature [25,42],
and it was taken to compare with other models.

The quality control of modeling was based on the comparison of the following statistics:
the mean bias error (MBE), the root mean square error (RMSE), the slope and intercept of the
linear regression (lm) between the measured and modeled data, and the lm determination
coefficient (R2).

3. Results and Discussion

3.1. Choice of the R0

One of the key parameters of all the empirical models described above is R0—the soil
respiration at 0 ◦C. It significantly affects the modeling quality because it defines the low
boundary of the modeling data (winter periods) and the intercept with the ordinate axis
of the linear model (lm), comparing modeling and measured data. In the ideal model, the
intercept of lm should lay in the origin of the coordinate system and the slope of lm should
be equal to 1. However, as a rule for the real models, the slope < 1 and intercept > 0 due to
an insufficient magnitude of the modeled data in comparison with the measurements—the
extreme values are not represented well by the modeling [20,31,42].

In our research, R0 was estimated from modeling by the T–TP–TPP–TPC–TPPC mod-
els in the following way: R0 is directly interconnected with the intercept of lm and by
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controlling and lowing R0, the intercept of lm is being readjusted to become positive and
closer to zero and at the same time, the slope of lm increases and becomes closer to unity.
With the negative intercept of lm, there will be an underestimation of the soil respiration in
the winter periods.

The obtained R0 values (colored lines, Figure 3) are two–three times smaller than the
earlier obtained values by Raich and Potter (1995) [24] and Kurganova et al. (2020) [20]
for the Entic Podzol. They can be directly compared with the SR measurements at
0 ≤ Tsoil < 1 ◦C in the autumn–winter period (colored dots with labels, Figure 3) when there
is not any freezing of the top-soil level, and by the selection of the temperature interval,
they should be located closer to the lower SR observed at the lower temperatures (Tsoil ≈ 0).

Figure 3. Parameter R0—soil respiration in autumn–winter period, Tsoil ≈ 0 ◦C—values (colored
horizontal lines) obtained during modeling by T–TP–TPP–TPC–TPPC models (intercept → 0+) with
the parameterization by the soil temperature (top) and the air temperature (bottom, monitoring
station) in the normal (green line), wet (blue line), and dry (brown line) years; colored dots with
labels—individual SR measurements, where the labels are the measurement-month numbers and the
dot colors for the monthly-precipitation amount are red (11 < P < 34 mm), brown (34 < P < 57 mm),
yellow (57 < P < 80 mm), green (80 < P < 103 mm), and blue (103 < P < 126 mm).
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As the result of such a selection (intercept → 0+), the R0 values obtained for the differ-
ent set of years—normal (n), wet (w), and dry (d)—demonstrate a weak linear dependency
from the soil moisture (colored lines, Figure 3) with the minimal R0 values correspond-
ing mainly with the dry period (brown lines). These R0 maximize the slope of lm (see
Tables A1–A4 in the Appendix A) as well.

It should be noted that the R0 values obtained from the models parameterized by Tair
are about 15% higher than the values obtained from the models parameterized by Tsoil.
This observation can be explained from the differences between Tair and Tsoil for these
conditions: the average soil temperature (Tsoil ≈ 2 ◦C, brown vertical line, Figure 4) is about
two degrees higher than the simultaneously observed air temperature (Tair = 0 ◦C, blue
horizontal line, Figure 4), which is associated with the more intensive SR for Tair = 0 ◦C
than for Tsoil = 0 ◦C.

 

Figure 4. The interrelationship between Tsoil measured at the sites and Tair obtained from the
monitoring station; horizontal blue line—Tair = 0 ◦C; vertical brown line—average soil temperature
Tsoil ≈ 2 ◦C for Tair ≈ 0 ◦C; red line—warm-period; and blue line—cold-period linear fits.

The R0 values obtained for different conditions (colored horizontal lines, Figure 3) are
close to each other when the parameterization with Tsoil was done. This finding signals that
there are more accurate estimations with Tsoil and agrees with Raich and Potter’s (1995) [24]
notes on the Q10 temperature coefficients that the microbial biomass responsible for SR is
better reacted to the Tsoil changes—the immediate substrate—than to the Tair changes.

This conclusion also agrees well with the observed (Figure 4) significant spread
of the air temperatures (Tair ≈ −12–+2 ◦C) for the soil temperatures close to zero Cel-
sius (Tsoil = 0 ◦C), seen at both sites and fewer smaller spreads of the soil temperatures
(Tsoil ≈ 0–+5 ◦C) for Tair = 0 ◦C. On the other hand, the Tsoil ≈ 2 ◦C threshold serves as a
clear indicator of the temperature-regime change. When Tsoil > 2 ◦C, air and soil tempera-
tures are in a close coupling with each other (red line, Figure 4), while for Tsoil ≤ 2 ◦C, this
coupling behavior has been effectively broken due to the strong influence of liquid water
keeping soil from freezing.

The individual values of the measured SR at near zero temperatures, when there is not
any freezing of the top-soil level occurred (colored dots, Figure 3), are generally associated
with the end-of-the-year cold periods with not very large monthly precipitation (Figure 2).
Investigating the large scattering of these SR values, we found some evidence that they
depend both on the monthly precipitation and soil properties together. For the Entic Podzol
(sandy soil with poor water-holding ability and larger pores), the lower precipitation
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periods (red and brown dots, Figure 3 left) have the extremely low SR—good drainage
easily dries out this soil. However, for Haplic Luvisol (loamy soil with high water-holding
ability and smaller pores), the lower precipitation periods (red and brown dots, Figure 3
right) are actually associated with the higher SR—this soil is over saturated with water [36]
in cold periods. These evidences point out the importance accounting for the soil properties
in SR modeling.

All those mentioned above ensure us that the R0 values we obtained from the modeling
(colored horizontal lines, Figure 3) behave as expected in comparison to the measurements.

3.2. Modeling Results

The modeling with the T (Equation (1))–TP (Equation (2))–TPP (Equation (3a))–TPC
(Equation (4))–TPPC (Equation (5)) models was conducted with using the non-linear regres-
sion for model fitting on the monthly-averaged measured SR, Tsoil or Tair, and precipitation
datasets where the winter and summer values were double weighted to obtain the represen-
tativeness of the models regardless of the time of the year. In addition to this modeling, the
results of the TPPrh (Equation (3b)) modeling with the quadratic temperature dependency
were used for comparisons. The temperature-related coefficients R0 и Q were estimated
from the T model with using the intercept → 0+ constraint for the lm, comparing the
measurements with the modeled data (T, TP, TPP, TPC, TPPC). These coefficient values
were taken as the base for further modeling with more complex TP, TPP, TPC, TPPC, and
also TPPrh (R0, Q, and Q2) models. This way, we separate the temperature-related effects
(R0, Q, and Q2) and, sequentially, focus on the precipitation (K) and SOC (ψ) effects, and
also on the effect of the precipitation redistribution between months (α).

Figures 5 and 6 show that the smallest SR values are observed during the dry years,
while the maximal 30% larger values are reached in the normal years, and the SR becomes
smaller again during the wet years. These observations agree well with the obtained R0
dependency from the soil moisture (colored lines, Figure 3) and also with the previous
research results [55–57]. They can be explained by the reduced microbial activity when there
is not enough water presented in soil in dry years [32,58,59] and also by the lack of available
oxygen for the SOC oxidation when it is saturated with water in wet years [26,36,37].

After fixing the temperature coefficients (R0 и Q) determined by the T–TP–TPP–TPC–
TPPC modeling by the method described above (Figures 5 and 6), the comparison among
the modeling results shows the following similarities and differences among the models
depending on (i) the soil type: Entic Podzol or Haplic Luvisol, and (ii) the sources of the
temperature used for parameterization: Tsoil or Tair.

For Entic Podzol and Tsoil:

• The best slope-lm values (slope, Figure 7) were observed with the TPPC model in a dry
environment (slope ≈ 0.9), with the TPC model in a normal environment (slope ≈ 0.9),
and with the TPP model in a wet environment (slope ≈ 0.9); the TPPC and TPPrh
models show the slope > 0.85 for most of the conditions;

• The best R2-lm values (R2, Figure 7) were observed with the TPPC model in a dry
environment (R2 ≈ 0.7) and with the TPPrh model in normal and wet environments
(R2 ≈ 0.75); the TPPC and TPP models show the R2 > 0.7 for all moisture conditions;

• The best MBE values of the comparison between the models and measurements
(|MBE|, Figure 7) were observed with the TPC and TPPC models in a dry environ-
ment (|MBE| ≈ 0.15), and with the TPPrh model in normal and wet environments
(|MBE| ≈ 0.08); the TPPC model shows |MBE| < 0.17 for all moisture conditions.

• The best RMSE values of the comparison between the models and measurements (RMSE,
Figure 7) were observed with the TPC и TPPC in a dry environment (RMSE ≈ 0.45),
and with the TPPrh model in normal and wet environments (RMSE ≈ 0.55); the TPPC
model shows RMSE < 0.63 for all moisture conditions.
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Figure 5. The comparison between the modeled (SR_model) and measured (SR_meas) SR values
(gCm−2day−1) for T (blue, Equation (1)) –TP (green, Equation (2))–TPP (orange, Equation (3a))–
TPC (red, Equation (4))–TPPC (black, Equation (5))–TPPrh (brown, Equation (3b)) models; lines—
linear regression to determine the slope and intercept values; Tsoil (local temperature) used
for parameterizations.
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Figure 6. The comparison between the modeled (SR_model) and measured (SR_meas) SR values
(gCm−2day−1) for T (blue, Equation (1)) –TP (green, Equation (2))–TPP (orange, Equation (3a))–
TPC (red, Equation (4))–TPPC (black, Equation (5))–TPPrh (brown, Equation (3b)) models; lines—
linear regression to determine the slope and intercept values; Tair (monitoring station) used for
parameterization.
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For Entic Podzol and Tair:

• The best slope lm values (slope, Figure 7) were observed with the TPPC model in
dry and wet environments (slope ≈ 0.88–0.9), and with the TPPrh model in a normal
environment (slope ≈ 0.88);

• The best R2-lm values (R2, Figure 7) were observed with the TPPC model for all
moisture conditions: R2 ≈ 0.67 for dry, R2 ≈ 0.77 for wet, and R2 ≈ 0.74 for normal;

• The best MBE values (|MBE|, Figure 7) were observed with the TPPC model in nor-
mal and dry environments (|MBE| ≈ 0.15), while the TPP model gives the smallest
|MBE| ≈ 0.11 in a wet environment;

• The best RMSE values (RMSE, Figure 7) were observed with the TPPC model for all
moisture conditions: RMSE ≈ 0.47 for dry, RMSE ≈ 0.53 for wet, and RMSE ≈ 0.63
for normal.

For Haplic Luvisol and Tsoil:

• The best slope-lm values (slope, Figure 7) were observed with the TPPrh for all
moisture conditions (slope ≈ 0.85–0.9);

• The best R2-lm values (R2, Figure 7) were observed with the TPPrh for all moisture
conditions (R2 ≈ 0.65–0.75);

• The best MBE values (|MBE|, Figure 7) were observed with the TPPrh for all moisture
conditions (|MBE| ≈ 0.15);

• The best RMSE values (RMSE, Figure 7) were observed with the TPPrh for all moisture
conditions (RMSE ≈ 0.43–0.53).

For Haplic Luvisol and Tair:

• The best slope-lm values (slope, Figure 7) were observed with the TPPrh model in dry
and wet environments (slope ≈ 0.85–0.91), and with the TPC and TPPC models in a
normal environment (slope ≈ 0.85);

• The best R2-lm values (R2, Figure 7) were observed with the TPPrh for all moisture
conditions (R2 ≈ 0.57–0.73);

• The best MBE values (|MBE|, Figure 7) were observed with the TPPrh model in
normal and wet environments (|MBE| ≈ 0.15–0.23), and with the TPPC model in a dry
environment (|MBE| ≈ 0.23);

• The best RMSE values (RMSE, Figure 7) were observed with the TPPrh for all moisture
conditions (RMSE ≈ 0.53–0.73).

From the conducted analysis, we see that the SOC and water-holding abilities are criti-
cal for the choice of optimal SR models. The TPPrh model with the quadratic dependency on
the temperature becomes more optimal in most of the environmental conditions—normal,
dry, and wet—for Haplic Luvisol having the finer texture (siltic), meaning lower permittiv-
ity to gasses [36], and the ability to hold larger amounts of water in comparison to Entic
Podzol (Table 1) and for a longer time period. On the other hand, the TPPC model looks
more optimal for sandy Entic Podzol, for which the weak water-holding ability leads to
lack of water in the dry periods and brings forward the presence of SOC—as the substrate
for the microbial community—to support SR when precipitation occurs.

These conclusions are also supported by the comparison of the mean annual SR mea-
surements with modeled values (Figure 8). While the TPPrh model shows a better annual
performance for Tsoil, for Tair, the TPPC model becomes slightly better for Entic Podzol—the
respective SR measured and modeled values stay within the standard deviation ranges
of each other. However, it should be noted that these conclusions based on the annual
means can be biased toward the larger summer SR values, underestimating the effects of
the smaller winter SR. The underestimation of the mean annual SR is also in agreement
with the fact that the model-comparison slopes are smaller than unity for both Entic Podzol
(Figure 5) and Haplic Luvisol (Figure 6), causing a possible underestimation of the larger
summer-time SR values. In the next section, we will see that the lower winter-time SR
values are actually adequately modeled by our procedure and should not influence the
respective model behavior showed in Figure 8.
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Figure 7. The comparison-statistics: slope—the slope of the lm; R2—the determination coefficient
of the lm; |MBE|—the absolute mean-bias error; and RMSE—the root-mean-square error between
the modeled and measures soil respiration values for the normal (blue), wet (red), and dry (green)
environmental conditions; in each panel: top—Tsoil (local), bottom—Tair (monitoring station) used for
parameterizations; in each panel: left—for Entic Podzol, right—for Haplic Luvisol.

3.3. An Optimal-Model Selection and the Winter Soil Respiration Control

The obtained above conclusions on the quality of the SR models parameterized with
the different temperature sources (Tsoil and Tair) for Entic Podzol (Figure 9) and Haplic
Luvisol (Figure 10) are well illustrated by the time series generated from the TPPC (red) and
TPPrh (blue) models. It should be noted that the TPPC model generates higher values than
the TPPrh model and by this, the TPPC model better approximates the winter extremes
but overestimates the summer SR pikes. It can be seen that an application of Tsoil for the
model parameterization allows more accurate estimations of the winter SR (both models)
and reduces overestimations in summer (both models), improving SR estimates in the
warm periods.
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Figure 8. The mean annual SR (gC m−2 day−1) over 25-year-long periods—blue bars—measured (SR)
and modeled (labels on the x-axis) with the standard deviation ranges (orange bars) of the individual-
year distributions of the mean annual SR; top—Tsoil (local), bottom—Tair (monitoring station).

Figure 9. The SR time series modeling for Entic Podzol: SR measurements—black line, TPPC model—
dashed red line, and TPPrh model—dashed blue line; top—for Tsoil (local) and bottom—for Tair

(monitoring station); green—normal, blue—wet, beige—dry years.
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Figure 10. The SR time series modeling for Haplic Luvisol: SR measurements—black line, TPPC
model—dashed red line, and TPPrh model—dashed blue line; top—for Tsoil (local) and bottom—for
Tair (monitoring station); green—normal, blue—wet, beige—dry years.

As an explanation of such model behavior, we can point to the soil condition difference
between the winter and summer periods: when there is enough water in winters, the SR
becomes more dependent on the Tsoil interconnected with microbial activity and SOC
presence as a substrate for the microbial community [24], while in dryer summer periods,
the presence of precipitation and the respective temperature and humidity changes though
the evapotranspiration of vegetation [60,61] start playing an important role in the soil
water balance and SR regulation. All those mentioned above are illustrated by Figure 4
(Section 3.1) highlighting different regimes of dependency between the Tsoil and Tair in the
cold and warm times of the year—blue and red lines, respectively.

We combine the TPPC and TPPrh models by the regime-change condition (Tsoil ≈ 2 ◦C)
from Figure 4, comparing the soil and air temperatures:

• with the Tsoil > 2 ◦C—choose the TPPrh model;
• with the Tsoil ≤ 2 ◦C—choose the TPPC model.
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For the comparison analysis of the combined TPPC, the TPPrh models (Table 2) show
the best statistical values for R2, MBE, and RMSE for the following model parameterizations:

All data: for the combined TPPC[Tsoil], the TPPrh[Tsoil] model parameterized by the
soil temperature;

Cold period: for the TPPC[Tsoil] model parameterized by the soil temperature;
Warm period: for the TPPrh[Tsoil] or TPPrh[Tair] model parameterized by the soil or

the air temperature.

Table 2. Quality control of the modeling by the combined TPPC: TPPrh models with the parameter-
ization by different temperature sources ([Tsoil] or [Tair]) conducted on the 25-year monitoring for
Entic Podzol and Haplic Luvisol; top—all data, middle—cold periods (Tsoil ≤ 2 ◦C), bottom—warm
periods (Tsoil > 2 ◦C).

Entic Podzol Haplic Luvisol

Model R2 MBE RMSE R2 MBE RMSE

(all data)

TPPC[Tsoil]:TPPrh[Tair] 0.734 −0.150 0.527 0.624 −0.348 0.716

TPPC[Tair]:TPPrh[Tair] 0.731 −0.156 0.536 0.623 −0.357 0.723

TPPC[Tsoil]:TPPrh[Tsoil] 0.735 −0.115 0.524 0.674 −0.287 0.651

Tsoil ≤ 2 (cold periods)

TPPC[Tsoil] 0.116 −0.225 0.397 0.054 −0.376 0.553

TPPC[Tair] 0.110 −0.241 0.428 0.047 −0.402 0.580

TPPrh[Tsoil] 0.032 −0.224 0.411 0.110 −0.425 0.581

TPPrh[Tair] 0.070 −0.288 0.480 0.040 −0.456 0.643

Tsoil > 2 (warm periods)

TPPC[Tsoil] 0.583 −0.124 0.638 0.465 −0.413 0.852

TPPC[Tair] 0.616 −0.094 0.599 0.431 −0.412 0.856

TPPrh[Tsoil] 0.604 −0.051 0.584 0.512 −0.239 0.698

TPPrh[Tair] 0.604 −0.106 0.589 0.431 −0.333 0.790

It should be noted that the (intercept → 0+) approach which we developed guarantees
an adequate estimation of the cold-period SR and a good magnitude resolution of the model
results (confirmed by Figure 8) in comparison to the measurements—an often observed
inefficiency of the standard parameterization approaches [20,31,42].

For Haplic Luvisol (Figure 10), the SR measurements are well represented by the
modeling values before the 2015 year; however, in the later period, the winter-time SR
values are too large due to changes in the forest structure (tree fall down) that year, making
soil more accessible to elements [62].

The low R2 values for the cold period (Table 2) are directly associated with the high
variability of the observations (see Figure 3) which typically occur during the winter-time
measurements due to snow presence on the ground and freezing–thawing cycles and
also due to changes in precipitation causing CO2 accumulation in soil and interrupting
gas exchange.

4. Conclusions

We have demonstrated an importance to account for the SOC storage and water-
holding ability for the selection of the proper SR models. For the sandy Entic Podzol with
a coarse texture and good drainage, it is better to use the models accounting for the SOC
storage (TPC and TPPC), while for the loamy Haplic Luvisol, having a finer texture and
high water-holding ability, it is better to apply Raich–Hashimoto-type models (TPPrh) with
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the quadratic temperature dependency being connected to the water presence in the soil
and the reaction of the microbial biomass on temperature change.

Both in the dry and in the normal years, accounting for SOC storage significantly
improves the modeling results (TPC and TPPC models) in comparison to the more simple
model results (T, TP, and TPP models). In the dry years, the TPPC model is better than
the TPC model, but in the normal years, the TPC model is better than the TPPC model,
highlighting an importance of the prolonged presence of soil humidity in dry periods.

An effect of humidity change becomes the most important in the wet years (TPP
и TPPC models). Optimal values for the parameter α included into the TPP and TPPC
models become close to zero or negative in the dry years, highlighting an importance of
the (continuous) moisture and precipitation presence from the previous month (PP).

We found that TPPC parameterized by the soil temperature adequately describes the
SR measured during the cold periods (Tsoil ≤ 2 ◦C), whereas TPPrh parameterized by the
soil or air temperature is better for describing the SR measured during the warm periods
(Tsoil > 2 ◦C).

The parameterization of the models with the soil temperature is shown to be an
important factor for adequate SR estimates. With this parameterization, the TPPC model
can be applied for the control of the winter-time SR measurements conducted at the sites.
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Appendix A

The results of parameterizations of the models and the comparisons between the soil
respiration measurements and modeling results for the Entic Podzol (Tables A1 and A3) and
Haplic Luvisol (Tables A2 and A4); Tsoil or Tair was used for the model parameterizations.

Table A1. Parameters (R0, Q, Q2, K, α, ψ) of the models (T, TP, TPP, TPC, TPPC, TPPrh) and the com-
parisons with the measurements (|MBE|, RMSE, slope, intercept, R2) for the Entic Podzol and forest
ecosystem in normal (n), wet (w), and dry (d) years; Tsoil was used for the model parameterizations.

Model Wetness R0 Q Q2 K α ψ Slope Intercept |MBE| RMSE R2

T n 0.545 0.118 - - - - 0.827 0.063 0.237 0.643 0.720

TP n 0.545 0.118 - 0.901 - - 0.819 0.049 0.266 0.644 0.726

TPP n 0.545 0.118 - −0.941 1.137 - 0.843 0.054 0.219 0.609 0.745
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Table A1. Cont.

Model Wetness R0 Q Q2 K α ψ Slope Intercept |MBE| RMSE R2

TPC n 0.545 0.118 - 6.838 - −0.179 0.897 −0.022 0.200 0.617 0.747

TPPC n 0.545 0.118 - −0.571 1.753 −0.043 0.863 0.066 0.172 0.628 0.724

TPPrh n 0.545 0.197 0.005 −1.694 2.266 - 0.853 0.172 0.083 0.549 0.765

T w 0.508 0.121 - - - - 0.860 −0.044 0.284 0.645 0.711

TP w 0.508 0.121 - −4.341 - - 0.885 0.029 0.167 0.625 0.702

TPP w 0.508 0.121 - −4.954 0.072 - 0.897 0.026 0.149 0.623 0.704

TPC w 0.508 0.121 - −5.869 - 0.042 0.863 0.063 0.171 0.623 0.697

TPPC w 0.508 0.121 - −11.137 0.330 0.148 0.831 0.152 0.138 0.617 0.686

TPPrh w 0.508 0.188 0.005 −5.843 0.119 - 0.840 0.214 0.060 0.548 0.732

T d 0.526 0.094 - - - - 0.763 0.095 0.233 0.511 0.610

TP d 0.526 0.094 - 0.864 - - 0.753 0.082 0.261 0.512 0.623

TPP d 0.526 0.094 - 0.734 1.157 - 0.751 0.081 0.265 0.510 0.629

TPC d 0.526 0.094 - 12.374 - −0.353 0.889 −0.003 0.157 0.451 0.688

TPPC d 0.526 0.094 - 20.012 0.870 −0.440 0.898 −0.019 0.161 0.452 0.692

TPPrh d 0.526 0.094 0.005 0.734 1.157 - 0.805 0.097 0.174 0.493 0.617

Table A2. Parameters (R0, Q, Q2, K, α, ψ) of the models (T, TP, TPP, TPC, TPPC, TPPrh) and the
comparisons with the measurements (|MBE|, RMSE, slope, intercept, R2) for the Haplic Luvi-
sol and forest ecosystem in normal (n), wet (w), and dry (d) years; Tsoil was used for the model
parameterizations.

Model Wetness R0 Q Q2 K α ψ Slope Intercept |MBE| RMSE R2

T n 0.448 0.119 - - - - 0.755 0.112 0.287 0.718 0.635

TP n 0.448 0.119 - 2.179 - - 0.738 0.079 0.347 0.717 0.658

TPP n 0.448 0.119 - 0.181 1.129 - 0.747 0.097 0.315 0.690 0.671

TPC n 0.448 0.119 - 10.960 - −1.050 0.856 −0.006 0.239 0.662 0.696

TPPC n 0.448 0.119 - 4.537 1.099 −0.767 0.843 0.044 0.212 0.650 0.694

TPPrh n 0.448 0.238 0.007 7.495 1.036 - 0.865 0.070 0.150 0.577 0.742

T w 0.432 0.122 - - - - 0.794 −0.055 0.416 0.792 0.631

TP w 0.432 0.122 - −5.128 - - 0.818 0.035 0.285 0.756 0.619

TPP w 0.432 0.122 - −5.151 0.995 - 0.818 0.035 0.285 0.756 0.619

TPC w 0.432 0.122 - −5.316 - 0.030 0.813 0.039 0.288 0.756 0.618

TPPC w 0.432 0.122 - −2.683 1.298 −0.124 0.828 0.004 0.298 0.757 0.626

TPPrh w 0.432 0.239 0.007 −0.030 1.537 - 0.902 0.022 0.150 0.587 0.742

T d 0.408 0.093 - - - - 0.687 0.057 0.363 0.607 0.467

TP d 0.408 0.093 - −0.356 - - 0.691 0.061 0.352 0.605 0.463

TPP d 0.408 0.093 - −2.952 0.037 - 0.751 0.064 0.269 0.578 0.469

TPC d 0.408 0.093 - 6.617 - −1.147 0.794 0.012 0.264 0.567 0.500

TPPC d 0.408 0.093 - −1.954 0.009 −0.180 0.757 0.064 0.262 0.577 0.469

TPPrh d 0.408 0.221 0.008 −3.074 0.384 - 0.842 0.069 0.143 0.426 0.635
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Table A3. Parameters (R0, Q, Q2, K, α, ψ) of the models (T, TP, TPP, TPC, TPPC, TPPrh) and the
comparisons with the measurements (|MBE|, RMSE, slope, intercept, R2) for the Entic Podzol
and forest ecosystem in normal (n), wet (w), and dry (d) years; Tair (meteostation) was used for
parameterization.

Model Wetness R0 Q Q2 K α ψ Slope Intercept |MBE| RMSE R2

T n 0.686 0.087 - - - - 0.836 0.074 0.211 0.640 0.717

TP n 0.686 0.087 - 0.384 - - 0.832 0.067 0.224 0.640 0.720

TPP n 0.686 0.087 - −0.473 1.135 - 0.844 0.066 0.205 0.625 0.729

TPC n 0.686 0.087 - 4.362 - −0.128 0.890 0.013 0.177 0.626 0.734

TPPC n 0.686 0.087 - 1.001 1.122 −0.079 0.885 0.042 0.157 0.616 0.736

TPPrh n 0.618 0.121 0.002 0.273 1.128 - 0.889 −0.025 0.218 0.639 0.734

T w 0.724 0.082 - - - - 0.881 0.014 0.191 0.553 0.762

TP w 0.724 0.082 - −2.618 - - 0.898 0.056 0.118 0.544 0.757

TPP w 0.724 0.082 - −2.171 1.331 - 0.906 0.052 0.109 0.536 0.764

TPC w 0.724 0.082 - −4.089 - 0.032 0.884 0.083 0.114 0.544 0.753

TPPC w 0.724 0.082 - −1.114 −2.042 −0.055 0.901 0.054 0.116 0.532 0.766

TPPrh w 0.651 0.095 0.001 −4.949 1.249 - 0.870 0.087 0.136 0.544 0.753

T d 0.649 0.063 - - - - 0.755 0.114 0.225 0.507 0.608

TP d 0.649 0.063 - 0.167 - - 0.754 0.111 0.231 0.507 0.611

TPP d 0.649 0.063 - −0.750 2.586 - 0.753 0.116 0.227 0.503 0.613

TPC d 0.649 0.063 - 8.757 - −0.291 0.867 0.038 0.147 0.464 0.662

TPPC d 0.649 0.063 - 20.364 0.763 −0.435 0.883 0.009 0.153 0.462 0.672

TPPrh d 0.584 0.110 0.002 0.084 1.234 - 0.850 −0.008 0.216 0.506 0.637

Table A4. Parameters (R0, Q, Q2, K, α, ψ) of the models (T, TP, TPP, TPC, TPPC, TPPrh) and the
comparisons with the measurements (|MBE|, RMSE, slope, intercept, R2) for the Haplic Luvisol
and forest ecosystem in normal (n), wet (w), and dry (d) years; Tair (meteostation) was used for
parameterization.

Model Wetness R0 Q Q2 K α ψ Slope Intercept |MBE| RMSE R2

T n 0.538 0.100 - - - - 0.767 0.103 0.331 0.810 0.628

TP n 0.538 0.100 - −0.204 - - 0.768 0.107 0.325 0.809 0.627

TPP n 0.538 0.100 - −2.136 0.440 - 0.784 0.133 0.270 0.803 0.621

TPC n 0.538 0.100 - 3.588 - −0.522 0.823 0.058 0.272 0.795 0.640

TPPC n 0.538 0.100 - −0.946 −0.933 −0.202 0.824 0.094 0.233 0.764 0.654

TPPrh n 0.538 0.175 0.004 −0.346 2.364 - 0.813 0.178 0.170 0.724 0.667

T w 0.611 0.093 - - - - 0.823 −0.007 0.338 0.758 0.662

TP w 0.611 0.093 - −3.108 - - 0.842 0.041 0.254 0.745 0.654

TPP w 0.611 0.093 - −2.787 1.268 - 0.842 0.046 0.249 0.742 0.655

TPC w 0.611 0.093 - 1.107 - −0.318 0.872 −0.023 0.263 0.747 0.665

TPPC w 0.611 0.093 - −0.242 2.004 −0.232 0.860 0.018 0.245 0.739 0.662

TPPrh w 0.611 0.158 0.003 3.576 −0.618 - 0.914 −0.066 0.227 0.680 0.718
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Table A4. Cont.

Model Wetness R0 Q Q2 K α ψ Slope Intercept |MBE| RMSE R2

T d 0.530 0.065 - - - - 0.686 0.078 0.343 0.584 0.485

TP d 0.530 0.065 - −1.484 - - 0.704 0.098 0.298 0.574 0.470

TPP d 0.530 0.065 - −3.552 0.156 - 0.750 0.096 0.239 0.555 0.480

TPC d 0.530 0.065 - 3.968 - −0.969 0.792 0.053 0.225 0.545 0.504

TPPC d 0.530 0.065 - −0.013 −0.432 −0.595 0.777 0.081 0.218 0.543 0.495

TPPrh d 0.530 0.126 0.003 −0.011 −0.432 - 0.844 −0.043 0.251 0.516 0.578
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Abstract: The composition, distribution, and growth of native natural forests are important references
for the restoration, structural adjustment, and close-to-nature transformation of artificial forests. The
joint species distribution model is a powerful tool for analyzing community structure and interspecific
relationships. It has been widely used in biogeography, community ecology, and animal ecology, but
it has not been extended to natural forest conservation and restoration in China. Therefore, based on
the 9th National Forest Inventory data in Jilin Province, combined with environmental factors and
functional traits of tree species, this study adopted the joint species distribution model—including
a model with all variables (model FULL), a model with environmental factors (model ENV), and a
model with spatial factors (model SPACE)—to examine the distribution of multiple tree species. The
results show that, in models FULL and ENV, the environmental factors explaining the model variation
were ranked as follows, climate > site > soil. The explanatory power was as follows: model FULL
(AUC = 0.8325, Tjur R2 = 0.2326) > model ENV (AUC = 0.7664, Tjur R2 = 0.1454) > model SPACE
(AUC = 0.7297, Tjur R2 = 0.1346). Tree species niches in model ENV were similar to those in model
FULL. Compared to predictive power, we found that the information transmitted by environmental
and spatial predictors overlaps, so the choice between model FULL and ENV should be based on the
purpose of the model, rather than the difference in predictive ability. Both models can be used to
study the adaptive distribution of multiple tree species in northeast China.

Keywords: joint species distribution model; niche; environmental factors; Tjur R2

1. Introduction

Natural forests are the most stable, diverse, and structurally complex terrestrial ecosys-
tems in nature; they play an irreplaceable role in responding to climate change, protecting
biodiversity, and maintaining ecological balance [1,2]. China’s natural forest area reaches
138.68 million hectares, accounting for 63.55% of national forest area [3], making it a
crucial strategic resource. The stock volume per unit area of China’s natural forests is
113.36 m3/ha, which is significantly lower compared to European countries with similar
site conditions (where the stock volume exceeds 200 m3/ha) [4]. In July 2019, the General
Office of the Central Committee of the Communist Party of China and the General Office of
the State Council issued the “Natural Forest Conservation and Restoration System Scheme”,
proposing the conservation and improvement of natural forest structure, focusing on cul-
tivating native tree species, and enhancing forest quality. Therefore, protecting natural
forest resources and enhancing the quality of natural forests has become a focus of forest
management now and in the future.
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The structure of stands, especially tree species composition, is a critical factor to con-
sider in the restoration of natural forests. For a long time, the selection of target tree species
and the determination of target forests in natural forest management have been mainly
based on expert experience, lacking quantitative research. The composition, distribution,
and growth conditions of tree species in virgin natural forests are important references for
natural forest restoration, structural adjustment, and the near-natural management of plan-
tations [5]. Currently, species distribution studies in Jilin Province are mainly limited to a
few tree species and forest types, such as Betula platyphylla, Betula ermanii, Quercus mongolica,
Larix gmelinii, and the broad-leaved forests of Pinus koraiensis [6–8]. Liu et al. conducted
more systematic research using the MaxEnt model, but these studies have overlooked the
interactions between species and cannot meet the needs of natural forest restoration and
quality improvement in the region [9]. Therefore, it is necessary to adopt new methods to
study the potential distribution suitability of the main forest types in northeast China’s
natural forests.

Species in nature do not exist independently in the environment but coexist and
interact within communities, also influenced by surrounding environmental factors [10].
Thus, species distribution is determined by both abiotic environmental factors (such as
climate, soil, and topography) and biotic interactions between different species (such as
predation, competition, and mutualism) [11,12]. With the development of computer tech-
nology and statistical methods, a species distribution modeling approach that combines
environmental variables with interactions among multiple species (i.e., joint species distri-
bution models) has been used in studies on the simulation and prediction of multi-species
distributions [13–15]. Joint species distribution models, by using species correlation in-
formation and latent variables to predict missing environmental factors, can clearly se-
lect models and assess the model’s performance within the model framework, thereby
simulating multi-species species–environment relationships and predicting the intensity
and type of interactions between different species [16]. Not only does this enhance the
interpretative power over ecological questions, but it also improves the flexibility and effec-
tiveness of predicting species’ distribution suitability. Therefore, joint species distribution
models are powerful tools for analyzing the structure of biological communities and inter-
specific relationships, widely applied in biogeography, community ecology, and animal
ecology [17–22], but these models have not yet been widely applied in the conservation
and restoration of China’s natural forests. Thus, understanding the distribution of multiple
tree species and their interrelationships in natural forests has significant theoretical and
practical significance for forest restoration.

Jilin province is located in the temperate zone, which has various types of natural
forests, including coniferous forest, broad-leaved forest, mixed forest, etc. The distribution
and combination of different tree species in the forest form a unique forest ecosystem. By
studying the natural distribution of tree species, we can reveal the structure, function, and
succession law of the forest ecosystem, and provide a scientific basis for the protection,
restoration, and management of forest ecology. Therefore, the objectives of this study
were as follows: (1) to construct a hierarchical model of species communities (HMSC) in
combination with environmental factors and species functional traits for the distribution of
multiple species; (2) to interpret tree species niches through the establishment of the best
fitting joint species distribution model; and (3) to analyze effects of tree species traits and
phylogeny on the HMSC model.

2. Materials and Methods

2.1. Study Area

The area involved in this study is the entirety of Jilin Province, located in the central
part of northeast China, spanning from 121◦38′ E to 131◦19′ E longitude and 40◦52′ N to
46◦18′ N latitude. The terrain of Jilin Province exhibits a characteristic of being higher
in the southeast and lower in the northwest, divided by the central Greater Khingan
Range into eastern mountainous areas and central–western plains. There are 19 soil types
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within the province, with dark brown earth being predominant. The natural environment
belongs to a temperate continental monsoon climate, with distinct seasonal changes and
regional differences, forming a gradient of vegetation types from southeast to northwest
characterized by moist, semi-moist, and semi-arid climates—from the moist forest climate
in the east to the semi-moist forest-steppe climate in the center and the semi-arid steppe
climate in the west. The average winter temperature does not exceed −11 ◦C, with summer
temperatures generally above 23 ◦C. The annual average precipitation is between 400 and
600 mm, with annual average sunshine hours ranging from 2259 to 3016 h, and the frost-free
period lasts between 100 and 160 days [9].

2.2. Data Collection

The data for the study area primarily revolve the ninth (2014) National Forest In-
ventory database in Jilin Province, encompassing five types of data needed: community
data (species presence or abundance), environmental factors (site, soil, or climate), tree
species functional traits (maximum tree height, wood density, and leaf area index, etc.),
phylogenetic relationships of tree species, and plot spatial data.

2.2.1. Plot Data

The construction of the joint species distribution model primarily uses sample plot
data on tree species composition by basal area, site factors, and latitude and longitude
coordinates, focused on the central Changbai Mountain subregion. The species’ basal area
compositions are extracted to form community data, with the basal area per hectare for
each species calculated to form the community abundance data. Further, the basal area per
hectare data are used to form presence–absence data for the community. Site factor data
mainly include elevation, slope, aspect, position, soil (type and thickness), humus layer
thickness, and litter thickness, from which site factor data in the environmental covariates
can be obtained. Plot latitude and longitude coordinates form the spatial data. A total of
3309 permanent sample plot data points with each 600 m2 from the ninth National Forest
Inventory were collected for this study; their distributions are shown in Figure 1.

Figure 1. The distribution map of permanent sample plots used in the study in Jilin province.

2.2.2. Climate Data

The climate data were sourced from the software ClimateAP V3.10, which is specifically
designed for extracting climate factors in the East Asia–Pacific region (from https://web.
climateap.net, accessed on 5 September 2023). ClimateAP allows users to extract and
downscale gridded climate data to site-specific, scale-free climate data through a dynamic
local downscaling method. ClimateAP calculates and exports many biologically relevant
climate variables at monthly, seasonal, and annual timesteps [23]. The study area’s climate
data were formed by registering and clipping with the basic geographic data of Jilin Province.
For this study area, the climate data of 3309 sample plots were acquired, including 10 annual
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variables (MAT, MWMT, MCMT, TD, MAP, AHM, NFFD, EMT, Eref, and CMD), 8 seasonal
variables (Tave_DJF, Tave_JJA, Tmax_DJF, Tmax_JJA, Tmin_DJF, Tmin_JJA, PPT_DJF, and
PPT_JJA), and 48 monthly variables (Tave01–Tave12, Tmin01–Tmin12, Tmax01–Tmax12,
and PPT01–PPT12). These abbreviations refer to Wang et al. [23].

2.2.3. Soil Data

Soil data were obtained from the SoilGrids system (version updated in June 2016), with
a spatial resolution of 250 m. Based on the World Reference Base (WRB) and the United
States Department of Agriculture (USDA) classification systems, totaling approximately
280 raster layers, the SoilGrids system provides global predictions of standard soil prop-
erties (organic carbon, bulk density, cation exchange capacity (CEC), pH value, soil struc-
ture ratio, and proportion of coarse fragments), bedrock depth, and soil type distribu-
tions at seven standard depths (0, 5, 15, 30, 60, 100, and 200 cm) [24]. Under the Open
Database License (ODbL), the 250 m maps from SoilGrids V2.0 can be downloaded from
www.SoilGrids.org (accessed on 15 September 2023). For this study area, 11 soil properties
were acquired.

2.2.4. Tree Species Trait Factors Data

To assess the relationship between tree species niches and functional traits, it was
necessary to collect functional trait data for the tree species appearing in the community
data. Among the 3309 permanent sample plot data collected, a total of 75 tree species were
involved. Due to the very low frequency of occurrence of many species, this study selected
31 tree species for further research, based on the criterion that the species appeared in
more than 3% of all permanent sample plots. The species selected include the following:
Pinus koraiensis Siebold et Zuccarini (sp1), Picea koraiensis Nakai (sp2), Picea jezoensis Carr. var.
microsperma (Lindl.) Cheng et L.K.Fu (sp3), Abies nephrolepis (Trautv.) Maxim. (sp4), Abies
holophylla Maxim. (sp5), Larix olgensis Henry (sp6), Pinus sylvestris Linn. var. mongolica Litv.
(sp7), Quercus mongolica Fischer ex Ledebour (sp8), Tilia mandshurica Rmpr.et Maxim. (sp9),
Tilia amurensis Rupr. (sp10), Ulmus davidiana Planch var. japonica (Rehd.) Nakai (sp11),
Carpinus cordata Bl. (sp12), Ulmus laciniata (Trautv.) Mayr (sp13), Betula dahurica Pall. (sp14),
Betula platyphylla Suk. (sp15), Betula costata Trautv. (sp16), Fraxinus mandschurica Rupr.
(sp17), Juglans mandshurica Maxim. (sp18), Phellodendron amurense Rupr. (sp19), Acer mono
Maxim. (sp20), Acer tegmentosum Maxim. (sp21), Acer mandshuricum Maxim. (sp22), Acer
ukurunduense Trautv. et Mey. (sp23), Acer triflorum Komarov (sp24), Acer pseudo-sieboldianum
(Pax) Komarov (sp25), Sorbus alnifolia (Sieb. et Zucc.) K. Koch (sp26), Fraxinus rhynchophylla
Hance (sp27), Populus davidiana Dode (sp28), Populus ussuriensis Kom. (sp29), Populus
simonii Carr. (sp30), and Salix matsudana Koidz. (sp31).

The trait factors for these tree species were obtained from the literature. Due to
limitations in data acquisition, the trait factors compiled in this study include the following:
wood density (WD), maximum height (H), leaf area (LA), specific leaf area (SLA), leaf
dry matter density (LMA), leaf dry matter content (LDMC), leaf carbon concentration
(Cmass), leaf nitrogen concentration (Nmass), leaf phosphorus concentration (Pmass),
leaf potassium concentration (Kmass), area-based nitrogen content (Narea), area-based
phosphorus content (Parea), and area-based potassium content (Karea).

2.2.5. Tree Species Phylogenetic Data

To evaluate the extent to which tree species niches reflect phylogenetic relationships,
phylogenetic data for the species were required. These data typically take the form of a
phylogenetic tree, usually constructed by running genomic sequence data through phylo-
genetic analysis software and then generating a phylogenetic correlation matrix to describe
the phylogenetic relationships among the species.

The procedure for generating the phylogenetic tree for the 31 tree species in this study
began with obtaining protein molecular sequences for the species from the National Center
for Biotechnology Information (www.ncbi.nlm.nih.gov, accessed on 12 December 2023).
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Due to the limitation of protein molecular sequence data for different organs of these
31 tree species, the chosen organ was the mature enzyme K (maturase K [chloroplast]) in
tree leaves. Then, the Molecular Evolutionary Genetics Analysis software (MEGA_X_10.2.4)
was used to perform phylogenetic analysis on the protein molecular sequence information
of these tree species and generate usable phylogenetic tree files in NWK format. The
finalized phylogenetic tree for these 31 tree species is shown in Figure 2.

Figure 2. The phylogenetic tree of 31 tree species in this study.

2.3. Methods

A multivariate hierarchical generalized linear mixed model for 31 tree species in Jilin
Province was constructed to study the relationship between environmental variables and
the distribution of tree species, i.e., the niches of tree species, and further to elucidate the
relationship between tree species niches, tree species traits, and phylogenetic trees.
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2.3.1. Model Structure Setup and Fitting

Given that the structure of multiple tree species community data is of a presence–
absence type, meaning the dependent variable is a 0–1 variable, the error distribution type
of the model was chosen to use a probit link function, considering spatial random effects
based on the geographic coordinates of the plots. To more comprehensively study the
relationship between environmental covariates and spatial random effects, three types of
model forms were considered. The first type is the full model (FULL), which includes both
environmental covariates and spatial random effects of the plots. The second type is the
environmental factor model (ENV), which includes only environmental covariates without
the spatial random effects of the plots. The third type is the spatial factor model (SPACE),
which includes only spatial random effects without environmental covariates. All three
model structures introduced tree species traits and phylogenetic relationships.

After setting up the HMSC model structure, the parameter estimation phase requires
fitting the data using the sampleMcmc function. Two MCMC chains were set, i.e., nChains
= 2, with a sampling step size of 10 (thin = 10), and sampling 1000 times for each parameter
(samples = 1000), discarding the first 5000 estimates (transient = 5000). Considering the
spatial random effects and the sample size exceeding 1000, the computational complexity
increased sharply, making the computation infeasible. Therefore, when dealing with the
spatial structure, the Nearest Neighbor Gaussian Process (NNGP) was used. In this case,
the parameter Method was set to “NNGP” and the corresponding parameter neighbors
were set to the standard number, 10 according to the literature [25].

2.3.2. Variable Selection

In terms of variable selection, it is hypothesized that several typical predictive variables
could influence the occurrence or abundance of species. Among these variables, some might
have no impact, or some might be collinear with other predictive variables, thus carrying
redundant information. Increasing the number of variables in the model raises the risk of
over-parameterization, thereby increasing the risk of overfitting. Therefore, it is generally
recommended to pre-select as few variables as possible, ensuring that the information
content of these variables is maximized, and they are mutually independent [26]. In
summary, at the first step, the most ecologically meaningful predictive variables should be
selected, and predictive variables closely related to other predictors should be excluded to
eliminate the multicollinearity among predictive variables.

In this study, environmental variables include 66 climatic factors (10 annual variables,
8 seasonal variables, and 48 monthly variables), 11 soil factors, and 7 site factors. Based
on the principles analyzed above, using the results of previous work and considering
ecological significance, along with the importance ranking in machine learning’s random
forest algorithm, a selection is made. Liu found a significant response relationship be-
tween common tree species and forest types in Jilin Province and environmental factors,
quantitatively measuring the impact of environmental variables on the distribution of tree
species or forest types: climate > site > soil, indicating that climate is the most critical factor
affecting vegetation distribution [4]. The specific environmental factors ranking (only top
five selected) are as follows: the highest temperature of the hottest month, the average
temperature of the hottest quarter, elevation, annual average temperature, and the average
temperature of the coldest quarter. Soil factors have a smaller impact, but for conifer
species, the significant ones are as follows: soil pH, bulk density, exchangeable hydrogen
ions, exchangeable calcium ions, and available phosphorus. Machine learning with the
data in the study is used to establish the relationship between tree species distribution
and these environmental factors, employing the random forest algorithm. Based on the
importance ranking, the top 10 influencing factors for each tree species are selected, and the
frequency of each influencing factor is counted. The recommended results include climate
factors NFFD, AHM, Eref, MCMT, TD, site factor ELE, soil factors bdod, soc, cfvo, and
phh2o. Finally, to avoid variable collinearity, a correlation analysis is conducted for the
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shortlisted environmental variables, excluding variables with a correlation coefficient of 0.7
or above.

Therefore, from the environmental variables, seven climatic factors were selected:
the average temperature of the hottest quarter (Tave_JJA), rainfall of the hottest quarter
(PPT_JJA), number of frost-free days per year (NFFD), annual humidex (AHM), evapotran-
spiration (Eref), average temperature of the coldest month (MCMT), and the temperature
difference between the hottest and coldest months (TD). One site factor was selected: eleva-
tion (ele). Four soil factors were selected: bulk density of soil particles (bdod), soil organic
carbon content (soc), proportion of coarse fragments (cfvo), and soil pH value (phh2o). The
specific value distributions are shown in Table 1.

Table 1. Summary statistics of environmental variables and tree species functional traits in this study.

Variable Unit Mean Standard Deviation Min Max

Tave_JJA ◦C 19.01 1.38 12.60 22.80
PPT_JJA mm 448.73 66.99 277.00 690.00

NFFD / 172.10 10.37 129.00 202.00
AHM / 19.18 3.76 7.90 44.00
Eref / 688.20 32.97 401.00 839.00

MCMT ◦C −15.89 0.94 −19.10 −10.50
TD ◦C 36.22 1.29 32.00 40.50
ele m 666.38 261.69 90.00 1860.00

bdod kg/dm3 132.57 3.43 118.84 144.05
soc g/kg 269.52 56.43 65.96 516.38
cfvo cm3/100 cm3 235.78 37.38 81.78 407.60

phh2o pH 60.25 2.22 52.23 83.14
H m 24.68 9.56 8.00 50.00

WD g/cm3 0.50 0.11 0.32 0.71
LA m2 0.00 0.01 0.00 0.04

LMA kg/m2 0.08 0.08 0.02 0.38
Cmass g/kg 407.84 82.73 240.20 512.77
Nmass g/kg 17.67 7.01 2.20 30.86
Pmass g/kg 1.65 0.65 0.67 3.86
Kmass g/kg 12.42 6.31 5.02 30.25

This study includes thirteen tree species functional traits: wood density (WD), maxi-
mum tree height (H), leaf area (LA), specific leaf area (SLA), leaf dry matter density (LMA),
leaf dry matter content (LDMC), leaf carbon concentration (Cmass), leaf nitrogen con-
centration (Nmass), leaf phosphorus concentration (Pmass), leaf potassium concentration
(Kmass), area-based nitrogen content (Narea), area-based phosphorus content (Parea), and
area-based potassium content (Karea). Based on pair scatter plots and correlation analysis,
it was found that SLA and LMA are inversely related, LDMC is related to Cmass, Nmass,
and Kmass, and the relationship between Nmass and Narea is related to LA. Considering
the meanings of these indicators, there were eight tree species trait factors selected for this
study: H, WD, LA, LMA, Cmass, Nmass, Pmass, and Kmass.

2.3.3. Model Evaluation Metrics

Changing the structure of the HMSC model will produce different joint species dis-
tribution models, requiring the evaluation of the fitting effectiveness and predictive ca-
pability of different HMSC models. The predictive capability can be assessed through
cross-validation. The chosen evaluation metrics are the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) and Tjur R2 [27].

AUC is a performance metric that measures the excellence of a learner, quantifying
the classification capability expressed by the ROC curve. The larger the AUC, the better
the classification capability, the more reasonable the output probabilities, and the more
sensible the order of results. The AUC value has a range of [0, 1], with an AUC greater than
0.5 indicating that the model’s fit is superior to random guessing [28]. Tjur R2 is primarily
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used to evaluate logistic regression models and is similar to the coefficient of determination
R2 used in ordinary regression models [29,30].

Tjur R2 =
1
2
(

n
∑

i=1
(π̂i − y)2 − n

∑
i=1

(yi − π̂i)
2

n
∑

i=1
(yi − y)2

+ 1)

In the formula, yi represents a binary response variable, in which yi = 1 means presence
and yi = 0 means absence. y represents the average value of yi, and π̂i represents the
predictive probability value of occurrence for species i. n represents the total number of
data records.

2.3.4. Data Analysis Tools

The software or dataset used for data processing and analysis in this study includes R
4.3.2, ClimateAP V3.10, SoilGrids V2.0, and MEGA_X_10.2.4. Details are as follows: R pack-
ages, with dplyr for data processing [31], ggplot2 for plotting [32], Hmsc for analyzing joint
species distribution data [33], ClimateAP for obtaining climate data for permanent sample
plots, SoilGrids for obtaining soil data for permanent sample plots, and MEGA_X_10.2.4
for generating phylogenetic trees of tree species.

3. Results

3.1. Tree Species Distribution Patterns

The richness (frequency of occurrence of tree species within permanent sample plots)
and prevalence (proportion of plots in which a given tree species appears out of the total
surveyed plots) distributions of these 31 tree species are shown in Figure 3. The richness of
tree species varies significantly across plots, ranging from 1 to 18 (plots with ≤3 species
account for 18.77%, and those with >10 species account for 16.50%). The prevalence of tree
species ranges from 5% to 60%, reflecting that the tree species selected in this study include
both common and rare species (top three prevalent common species—Acer mono 59.78%,
Quercus mongolica 55.03%, Tilia amurensis 54.37%; top three prevalent rare species—Salix
matsudana 3.35%, Populus tremula 3.93%, Pinus sibirica 4.08%).

Figure 3. Tree species distribution frequency of the community data (for species richness (left), the
y-axis (frequency) corresponds to the number of sampling plots, and the x-axis to the number of
species in each sampling plot; for species prevalence (right), the y-axis (frequency) corresponds to the
number of species, and the x-axis to the fraction of sampling plots in which the species is present).

3.2. Model Interpretability and Predictive Power
3.2.1. Overall Evaluation of Interpretability and Predictive Power of the Three Models

For the models FULL, ENV, and SPACE, their interpretability was evaluated by cal-
culating two indicators, AUC and Tjur R2. Cross-validation was conducted based on plot
numbers using a two-fold sampling method, and both AUC and Tjur R2 were calculated to
evaluate the models’ predictive power (Table 2).
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Table 2. The evaluation of HMSC model.

Models
Fitting Cross Validation

AUC Tjur R2 AUC Tjur R2

Model FULL 0.8325 0.2326 0.6940 0.1412
Model ENV 0.7664 0.1454 0.7528 0.1399

Model SPACE 0.7297 0.1346 0.6719 0.0705

Table 2 indicates that, in terms of model fitting, the AUC and Tjur R2 metrics show con-
sistent results, reflecting that, in terms of interpretability, model FULL > model
ENV > model SPACE. However, in the cross-validation, the performance of model SPACE
was slightly worse than the other two models. The AUC metric shows that model ENV
performed better than model FULL, but the Tjur R2 metric shows that its performance was
slightly worse than model FULL. By comparing the evaluation results of cross-validation
and model fitting, it can be seen that spatial random effects significantly improve the
model’s fitting effectiveness (AUC increased by 8.62%, Tjur R2 increased by 60.04%), but
its predictive effect is not ideal (AUC actually decreased by 7.81%, Tjur R2 increased by
0.97%). The inclusion of spatial random effects in model FULL led to a significant drop
in both AUC and Tjur R2 metrics in cross-validation (AUC decreased by 16.64%, Tjur R2

decreased by 39.30%). The cross-validation indicators for model ENV were close to those
of the model fitting (AUC decreased by 1.78%, Tjur R2 decreased by 3.79%), indicating
that this model maintains consistency in both interpretability and predictive power. At
first glance, the interpretability of model SPACE being greater than zero is questionable
since it does not contain environmental covariates, but it does have a spatial random effects
part, which contributes to its interpretability. However, the random effects part has limited
help in predicting new plots (AUC decreased by 7.92%, Tjur R2 decreased by 47.62%), as
shown by the predictive power of model SPACE based on cross-validation (Tjur R2 value
is 0.0705), suggesting there is overlap in information between environmental covariates
and spatial coordinates. In summary, whether considering interpretability or predictive
power, and whether evaluated by AUC or Tjur R2 for model fitting effectiveness, model
FULL and ENV perform as expected without overfitting, while model SPACE might have
overfitting issues.

3.2.2. Evaluation of Interpretability and Predictive Power by Tree Species

Combining the model forms—model FULL (model 1), model ENV (model 2), and
model SPACE (model 3)—with the type of model prediction, i.e., interpretability (MF) and
predictive power (MFCV), six combination schemes are formed. The evaluation of these
31 tree species using AUC and Tjur R2 metrics is displayed in Figure 4. The results reflected
by the AUC and Tjur R2 metrics for the distribution of the 31 tree species are consistent
across all models, indicating that, within the same model, interpretability exceeds predictive
power. This outcome is expected since interpretability uncovers all the information within
the data. The interpretability and predictive power of the 31 tree species in model ENV are
almost identical, resembling the predictive power of model FULL, suggesting that model
ENV has stable extrapolation capabilities.

There are significant differences in the HMSC model fits among the 31 tree species in
the study area, with AUC and Tjur R2 metrics showing a consistent pattern of differences
between interpretability and predictive power: model FULL > model SPACE > model ENV.
For example, considering AUC values, the top three species with the largest difference in
model FULL are as follows: Pinus sibirica (sp7, 0.48), Pinus sylvestris (sp5, 0.29), and Ulmus
pumila (sp12, 0.28). The top three species with the largest difference in model SPACE are as
follows: Acer ukurunduense (sp21, 0.14), Betula ermanii (sp16, 0.13), and Acer ginnala (sp23,
0.12). The top three species with the largest difference in model ENV are as follows: Populus
tremula (sp30, 0.05), Pinus sibirica (sp7, 0.05), and Salix matsudana (sp31, 0.04). Furthermore,
in terms of consistency and good fit between model interpretability and predictive power,
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the results for tree species in model FULL and ENV are consistent, including Picea jezoensis
(sp3), Abies nephrolepis (sp4), and Acer ginnala (sp23). Notably, in model SPACE, Picea
jezoensis (sp3), Abies nephrolepis (sp4), Betula ermanii (sp16), and Acer ginnala (sp23) all
exhibit the best interpretability and predictive power, even exceeding model FULL. Among
the more prevalent tree species, those with good interpretability and predictive power
in model FULL include the following: Pinus koraiensis (sp1, MF: 0.83, MFCV: 0.76), Tilia
amurensis (sp10, MF: 0.89, MFCV: 0.73), Ulmus laciniata (sp13, MF: 0.92, MFCV: 0.73), Betula
ermanii (sp16, MF: 0.91, MFCV: 0.81), Acer ukurunduense (sp21, MF: 0.92, MFCV: 0.76), and
Acer pseudosieboldianum (sp25, MF: 0.89, MFCV: 0.77).

Figure 4. The evaluation of 31 tree species for HMSC model.
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3.3. Variance Contribution of Environmental Covariates

The study first investigates the variance contribution of environmental covariates to
the models, i.e., variance partitioning for these three model types. Since model SPACE
only contains spatial random effects, all explained variance is attributed to random effects.
Therefore, comparisons between model FULL and ENV will more clearly demonstrate
the importance of environmental covariates and spatial random effects in explaining
community ecosystems.

The environmental covariates are grouped as follows: average temperature of the
hottest quarter (Tave_JJA), rainfall of the hottest quarter (PPT_JJA), number of frost-free
days per year (NFFD), annual humidex (AHM), evapotranspiration (Eref), average temper-
ature of the coldest month (MCMT), and the temperature difference between the hottest
and coldest months (TD) are grouped as climate variables; elevation (ELE) as a site variable;
and bulk density of soil particles (bdod), soil organic carbon content (soc), proportion of
coarse fragments (cfvo), and soil pH value (phh2o) as soil variables. For simplicity, the
intercept is allocated to climate variables. The variance contribution rates of the model
components are shown in Table 3. It is observed that the ranking of environmental factors
explaining model variance is as follows: climate > site > soil. The two components of
environmental change (climate and site) explain a significant portion of the model vari-
ance, with soil factors being the weakest. The variance contribution of spatial random
effects is also significant, with the importance of specific environmental factors varying by
tree species.

Table 3. The variance partition of models FULL, ENV, and SPACE.

Models Climate Site Soil Random

Model FULL 0.5742 0.1275 0.0914 0.2069
Model ENV 0.7322 0.1617 0.1061 0.0000

Model SPACE 0.0000 0.0000 0.0000 1.0000

The variance contribution results of model ENV also indicate that the ranking of envi-
ronmental factors explaining model variance is as follows: climate > site > soil, consistent
with what is shown by model FULL. Two species are dominated by site factors, each with
a variance contribution rate of over 45%, specifically Ulmus japonica (sp11, 0.62) and Tilia
amurensis (sp9, 0.47), with the remaining 29 species being dominated by climate factors. The
results of the variance partitioning indicate that model FULL has a substantial dependency
on spatial random effects for some species, which also explains the performance differences
between it and model ENV. Moreover, climate change explains nearly five times the model
variability than site changes.

3.4. Tree Species Niches

To examine the differences between the niches of tree species, this study utilized
a visualization method to display the response relationships of the 31 tree species to
environmental covariates in model FULL, representing the niches of tree species (Figure 5).
Figure 5 provides strong statistical support for the posterior distribution, showing either
positive (red) or negative (blue) relationships, indicating clear environmental filtering
signals. For most tree species, there is a significant parabolic relationship between their
presence and the average temperature of the hottest quarter. Due to the negative coefficient
of the quadratic term, there is an optimal temperature for their existence. Their responses
to environmental factors (rainfall in the hottest quarter PPT_JJA, annual humidex AHM,
average temperature of the coldest month MCMT, the temperature difference between
the hottest and coldest months TD, and soil pH value phh2o) are negative, while their
preferences for the number of frost-free days per year NFFD, evapotranspiration Eref,
elevation ele, bulk density of soil particles bdod, soil organic carbon content soc, and the
proportion of coarse fragments cfvo vary. In terms of the relationship between various
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tree species and environmental covariates, Larix olgensis (sp6), Ulmus japonica (sp11), Betula
platyphylla (sp15), and Acer triflorum (sp24) show a more positive response.

Figure 5. Heatmap of estimated parameters β of model FULL, i.e., species niches. Red and blue
colors show parameters that are estimated to be positive and negative, respectively (with at least 0.95
posterior probability in Model FULL).

The visualization results of tree species niches in model ENV are similar to those in
model FULL, with the difference being that the response of some tree species to environ-
mental covariates shifts from positive to non-correlated. For instance, in model ENV, the
response relationship to the number of frost-free days per year (NFFD) for Tilia amurensis
(sp10), Acer triflorum (sp24), and Fraxinus rhynchophylla (sp27) show non-correlation. Ulmus
japonica (sp11)’s response to the annual humidex AHM and Acer triflorum (sp24)’s response
to evapotranspiration Eref are non-correlated.

4. Discussion

4.1. Relationship between Tree Species Niches and Traits—Phylogeny

The HMSC models tree species niches (parameters β) as a function of tree species
traits (regression parameters γ) and phylogeny (phylogenetic signal parameters ρ); thus,
these connections can be explored by plotting parameter estimates for tree species com-
munities [16]. First, we investigate whether there is a correlated relationship between tree
species niches and their traits and phylogeny in model FULL (Figure 6). At a posterior
distribution statistical support level of 0.95, it indicates that the response of tree species
to environmental covariates (average temperature of the coldest month MCMT and the
temperature difference between the hottest and coldest months TD) is positively correlated
with tree species traits (leaf dry matter density, LMA, and leaf nitrogen concentration,
Nmass), while elevation, ele, is negatively correlated with leaf nitrogen concentration,
Nmass, and the proportion of coarse fragments, cfvo, is negatively correlated with maxi-
mum tree height, H (Figure 6 left). When reducing the statistical support level to 0.85, a
richer relationship between tree species niches and traits is observed (Figure 6 right). The
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relationships revealed by model ENV are mostly consistent, for example, at the 0.95 level,
elevation, ele, is not correlated with leaf nitrogen concentration, Nmass.

Figure 6. Heatmap of estimated parameters γ linking species traits to species niches of model FULL.
Red and blue colors show parameters that are estimated to be positive and negative, respectively
(with at least 0.95 posterior probability in the left, and 0.85 in the right).

Another method of examining the impact of tree species traits is to evaluate how much
variation they explain in the response of tree species to their environmental covariates
(Table 4). Leaf dry matter density, LMA, leaf nitrogen concentration, Nmass, and maximum
tree height, H, explain a significant portion of the environmental covariate variation, while
the remaining tree species traits only explain a small part of the environmental covariate
variation; this is consistent with the patterns presented in Figure 5. Further quantification
of the variance in the occurrence dependent variable of tree species explained by tree
species traits reveals the same pattern, i.e., the contribution to explained variance is not
high (0.1832 for model FULL and 0.1797 for model ENV). Comparing models FULL and
ENV, the former shows a slight improvement in the degree to which tree species traits
explain the variance of environmental covariates and the occurrence dependent variable,
which may be due in part to the contribution of spatial random effects in model FULL.

Table 4. The explanatory power of species traits.

Models Model FULL Model ENV

Environmental covariates

Intercept 0.3291 0.2521
Tave_JJA 0.0881 0.0659
Tave_JJA2 0.1521 0.0935
PPT_JJA 0.1458 0.1254

NFFD 0.0684 0.0839
AHM 0.0541 0.0471
Eref 0.0405 0.0494

MCMT 0.4355 0.4569
TD 0.4393 0.4522
ele 0.3504 0.3229

bdod 0.0418 0.0444
soc 0.0394 0.0406
cfvo 0.2119 0.1812

phh2o 0.0677 0.0515
Species occurrence 0.1832 0.1797

Further, examining the strength of the phylogenetic signal in tree species niches, the
percentiles of the parameter for the phylogenetic signal are statistically obtained from the
posterior distribution. (Model FULL: 2.5%, 0.24; 50%, 0.48; 97.5%, 0.67. Model ENV, 2.5%,
0.31; 50%, 0.55; 97.5%, 0.71.) This clearly indicates the presence of a phylogenetic signal
within the tree species niches. This suggests that the trait factors affecting tree species
niches that are missing in the data have a phylogenetic structure [16,34]. Additionally,
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the average value of the parameter representing the strength of the phylogenetic signal in
model FULL is 0.47, slightly lower than 0.54 in model ENV, indicating that spatial random
effects reduce the impact of missing tree species trait factors on tree species niches to some
extent [16].

4.2. Impact of Introducing Tree Species Traits and Phylogenetic Trees on Prediction

The HMSC model uses tree species trait data to estimate parameters reflecting the
response of tree species traits on their niches and uses tree species phylogenetic information
to estimate parameters indicating the strength of the phylogenetic signal in tree species
niches. These two parameters integrate tree-level information into community-level pa-
rameters, hence incorporating tree species traits and phylogeny into the model helps to
synthesize information extracted from community data. However, whether the introduc-
tion of tree species traits and phylogeny can enhance the predictive ability of the HMSC
model still needs to be assessed [16]. To this end, a new model, NTP, which does not include
information on tree species traits and phylogeny, was set up on the basis of model FULL
and applied to the same data. The predictive evaluation metrics AUC and Tjur R2 of both
models were then compared in cross-validation (Figure 7).

(A) 

 

(B) 

(C) (D) 

Figure 7. Difference in predictive power between models that include traits and phylogeny versus
those that do not. In four panels, each dot corresponds to one tree species. Panel (A) shows the
AUC statistic for the models that do (y-axis) and do not (x-axis) include traits and phylogeny.
Panel (B) shows the difference in AUC between the two models as a function of species prevalence.
Positive values of AUC increment indicate that the model with traits and phylogeny performs better
in cross-validation. The same as panels (C,D) for index Tjur R2, respectively.

The comparison between model FULL and NTP (Figure 7) shows that the patterns
reflected by the indicators AUC and Tjur R2 are consistent. The predictive ability gap
between model FULL and NTP is very small, and this difference diminishes as the preva-
lence of tree species increases. On average, the model including tree species traits and
phylogeny performs better, especially for rare tree species that are typically difficult to
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predict accurately. This is because the introduction of traits and phylogeny allows the
model to borrow information from other tree species, especially those with similar traits
and closely related phylogenies. For tree species that occur infrequently in the data, this
minor information can make a significant difference [34]. In contrast, tree species with
sufficient data do not need to borrow information from others, which explains why the
difference between the two models decreases when the species prevalence approaches 0.3.

As mentioned above, the introduction of tree species traits and phylogeny in the HMSC
model can enhance the predictive ability for evaluating tree species occurrence. However,
the contribution of tree species traits to explain the variation of tree species occurrence is
not high, and there are phylogenetic signals in tree species niches, which means that the
relevant tree species traits affecting tree species niches are missing in the data. Therefore, it
is necessary to find suitable tree species traits for improving the prediction of tree species
occurrence, especially for rare tree species in further study [34]. Additionally, we can
use tree species traits and phylogeny in the HMSC model to study the biotic relationship
between tree species in following research [22,35].

5. Conclusions

This study employed the widely used hierarchical modeling of species communities
(HMSC) to fit the distribution data of multiple tree species in Jilin Province. The data
types included the presence or abundance of tree species from the ninth National Forest
Inventory in 2014, environmental factors corresponding to the plots (site, soil, or climate
data), tree species functional traits (maximum tree height, wood density, and leaf area
index, etc.), phylogenetic relationships of tree species, and the geographic coordinates of
the plots. A joint species distribution model for multiple tree species was constructed,
including model structure design, selection of predictive factors, MCMC convergence test
of model parameters, and model evaluation and comparison. The HMSC fitting determined
environmental factors or tree species trait factors, establishing the joint species distribution
model with the best fitting effect. Finally, the application and extension of the constructed
joint species distribution model included interpreting tree species niches, studying the
relationship between tree species niches and tree species traits and phylogeny, and the
results of model comparison indicating that the information conveyed by environmental
and spatial predictors overlaps to some extent. Therefore, the choice between model
FULL and ENV should be based on the purpose of the model’s use, not the difference in
predictive ability.
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Abstract: Changes in climate and environmental conditions have aggravated the severity and unpre-
dictability of plant survival and growth. Cunninghamia lanceolata (Lamb.) Hook. is an economically
important timber tree. Exploring its potential distribution and dynamic changes and identifying
the leading environmental variables affecting it will help to adjust the planting range reasonably
according to the habits and climate change, thus contributing to its survival and growth. Based on
the MaxEnt model and ArcGIS tool, climate, soil, terrain, human activities, variable environment
layers, and 395 C. lanceolata distribution points were used to simulate and analyze the geographical
distribution characteristics of C. lanceolata in the current and future periods (the 2050s and 2070s)
under RCP2.6, RCP4.5, RCP6.0, and RCP8.5. The results showed that C. lanceolata was suitable to
grow in a subtropical monsoon climate with warm, humid, abundant rainfall and a relatively gentle
topography. Additionally, using percent contribution, permutation importance, and the knife-cutting
test, we noted that the annual precipitation (Bio12), human activities (Hfp), minimum temperature of
the coldest month (Bio6), mean temperature of the coldest quarter (Bio11), precipitation of coldest
quarter (Bio19), annual temperature range (Bio7), and elevation were the leading environmental fac-
tors affecting the geographical distribution of C. lanceolata. Among them, it should be noted that the
impact of human activities was negatively correlated with suitable habitat areas of C. lanceolata and
led to the degeneration of suitable habitats and fragmentized distribution. In addition, predictions
have shown that the areas of habitats under other scenarios will be characterized by an increasing
and then decreasing trend by the 2050s and 2070s, except for the RCP2.6 scenario, under which the
suitable habitats area of C. lanceolata will increase continuously. The core distributional shifts showed
that the suitable habitats of C. lanceolata will gradually shift and migrate to high-latitude areas due to
global warming. This study focused on the characteristics of suitable habitats of C. lanceolata under
different climatic scenarios using more environmental factors and scenarios than before, aiming to
provide a theoretical basis and guidance for the management and utilization of forest resources, the
planning of suitable planting areas, and germplasm protection.

Keywords: Cunninghamia lanceolata (Lamb.) Hook.; MaxEnt; geographical distribution; environmental
factors; human activities; carbon emission level

1. Introduction

Cunninghamia lanceolata (Lamb.) Hook. belongs to Cupressaceae, and it is popular for
its moderate intensity, lightweight, and easy processing characteristics, making it a com-
mercially important tree that is useful for landscaping, etc. [1,2]. The origin of C. lanceolata
is in the northeast and surroundingFF areas of north China and Inner Mongolia as early as
the late Jurassic period, based on the early fossil records. In light of the mass extinction
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during the Quaternary Ice Age, only some remnant areas remained, which were gradu-
ally excavated, utilized, and cultivated by people. The cultivation history can be traced
back to the end of the Warring States period [3]. According to 2010 statistics, the planting
area of C. lanceolata in 10 provinces in southern China was approximately 11.26 million
hectares [4], and the vegetation types are mainly cultivated vegetation, coniferous forest,
shrub, broad-leaved forest, grass, coniferous, and broad-leaved mixed forest, accounting
for about 25% of the plantations in the subtropical region of China [5] and providing up to
30% of the harvested logs in the Chinese timber industry [6]. At present, C. lanceolata has
become the main timber tree species in China. Moreover, the utilization of C. lanceolata can
be more diversified, in-depth, and efficient. For instance, Yao et al. developed and proved
the melamine–formaldehyde-modified furfurylation to improve the dimensional stability
and mechanical properties of C. lanceolata and to overcome the high costs of traditional
reaction methods [7]; Yan and Chang also developed a waterborne thermochromic topcoat
film with color-changing microcapsules, which exhibits different colors in different seasons,
as well as enhanced stability and aging resistance, consequently increasing the availability
of C. lanceolata raw materials [8]. Sun et al. demonstrated that the volatiles of C. lanceolata
in the natural state contain a variety of terpenoid, aliphatic, and aromatic compounds [9].
In particular, the terpenoid possesses antibacterial, anti-inflammatory, expectorant, and
antitussive effects.

The increase in industrialization, greenhouse gas (GHG) emissions, and other human
activities has proportionally increased global warming and its effects. This is visible
through extended frost-free seasons, seasonal droughts, heat waves, extreme precipitation,
etc. [10,11], resulting in disordered phenology [12], crop productivity reductions [13],
increased tree mortality [14,15], loss of species diversity, and even the extinction of cold-
tolerant plants [16]. Reducing GHG emissions is a top priority to increase the resilience
of natural systems [17]. Therefore, in light of global warming, there is a great need to
investigate the environmental factors affecting the geographical distribution and to predict
the geographical distribution characteristics of plants. It is of great significance for plant
protection, introduction, and development, as well as resource distribution [18]. Species
distribution models (SDMs) mainly use existing species distribution and environmental
data to estimate the species niches using specific algorithms. In addition, the models
reflect the species’ preference for habitat as a probability, which in turn predicts the range
of suitable habitats for plant species well [18]. At present, the commonly used models
for predicting the potential distribution of species include GARP, MaxEnt, CLIMEX, and
BIOCLIM. Among them, MaxEnt is widely used due to its good prediction effect, stability,
and simple and rapid operation [19]. Liu et al. analyzed the impact of human activities on
the environment and the impact of climate change on the distribution of three Cypripedium
species in northeast China using the MaxEnt model combined with ArcGIS technology [20].
Likewise, the MaxEnt model was also used by Garah and Bentouati to predict the potential
geographical distribution of Aurasian Aleppo pine (Pinus halepensis Mill.) [21]; Wang et al.
compared four niche models: GARP, BIOCLIM, DOMAIN, and MaxEnt., and concluded
that the prediction result of MaxEnt was comparably the most accurate [22].

Previous research has mainly reported the impacts of climate factors on suitable
habitats of C. lanceolata in China and found that annual average precipitation and mini-
mum temperature of the coldest month were the main factors affecting the distribution
of C. lanceolata [23,24]. Given the importance of human activities, soil, and topography on
distributions of species populations, this research collected all of relevant information, such
as the existing investigation and research data of C. lanceolata, specimen data, as well as
digital network information of climate, ecological, and environmental factors, under differ-
ent carbon emission scenarios to characterize the geographical distributions of C. lanceolata
at present and in the future.

The objectives of this study were: (1) to identify the potential distribution of C. lanceo-
lata in China under the current climatic conditions and the leading environmental factors
affecting the potential distribution of C. lanceolata; (2) to analyze the response curves of
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environmental factors and predict the environmental characteristics of suitable habitats
of C. lanceolata; and (3) to predict the potential distribution and dynamic change charac-
teristics of C. lanceolata in China under future climate change scenarios. This study will
provide a scientific theoretical basis for studying the distribution pattern of C. lanceolata
and preventing the decrease in C. lanceolata resources.

2. Materials and Methods

2.1. Collection and Processing of Species Distribution Data and Environmental Factors

Distribution data: The geographical information data of C. lanceolata used in this
paper were collected from National Specimen Information Infrastructure (http://www.
nsii.org.cn/, accessed on 1 June 2022), National Plant Specimen Resource Center (https:
//www.cvh.ac.cn/index.php, accessed on 1 June 2022) and Global Biodiversity Information
Facility (https://www.gbif.org/, accessed on 3 June 2022). All the specimen data since the
19th century were selected, and duplicate samples, fuzzy records, and artificial cultivation
records were screened out and deleted, only keeping specimens of wild communities.
The spatial resolution adopted in this paper was 2.5 arc-minutes (about 4.5 km), and the
buffer diameter was set at 3 km; when two distribution points were in the same buffer,
a single point was reserved [25]. A total of 389 C. lanceolata specimen records (Figure 1)
were obtained, which were processed by EXCEL 2016 into CSV. Format files contained
only species name, longitude, and latitude to make them convenient for the subsequent
construction of the MaxEnt model.

Figure 1. The geographical location of distribution points of Cunninghamia lanceolata (Lamb.) Hook.
in China.

Climate factors: 19 present and future bioclimatic factors were obtained from the World
Climate Data (http://www.worldclim.org/, accessed on 15 June 2022). Future climate
variables were based on the prediction of global future climate change, which was made in
the fifth assessment report published by IPCC. The atmospheric circulation model and the
BCC_CSM model developed by China National Climate Center were adopted, in which
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 represented various scenario assumptions about
future climate under four different carbon emission scenarios, respectively. Additionally,
the latter figures indicated that the radiation forcing level will be 2.6 W m−2 to 8.5 W m−2

by 2100. In total, there were 8 combinations of climate scenarios considered by this article:
RCP2.6—2050s, RCP2.6—2070s, RCP4.5—2050s, RCP4.5—2070s, RCP6.0—2050s, RCP6.0—
2070s, RCP8.5—2050s, and RCP8.5—2070s.
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Terrain factor: elevation data were obtained from the Shuttle Radar Topography
Mission (SRTM), which could be obtained from the world climate database (http://
www.worldclim.org/, accessed on 20 June 2022). Global terrain slope and aspect data
were obtained from the World Soil Database (https://www.fao.org/soils-portal/data-
hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on
20 June 2022).

Soil factors: 16 soil data points were obtained from the World Soil Database (https://
www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-
database-v12/en/, accessed on 20 June 2022).

Human activity factor: the human activity intensity data were obtained from the V2
(1995–2004) data set of the Global Human Footprint of Socioeconomic Data and Applica-
tions Center (https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-
geographic, accessed on 1 July 2022). See Table S1 for details of all environmental factors.

2.2. Preprocessing of Environmental Factor Data

Firstly, all the data were processed according to the vector map of the 1:1,000,000 admin-
istrative division of China and converted into ASC file format using “Toolbox/Conversion
Tools/From Raster/Raster to ASCII” in ArcGIS. In addition, Chinese soil and the HWSD
DATA files were imported into ArcGIS to establish a connection; then, 16 preliminarily
selected raster layers of surface soil factors in the MU_GLOBAL layer were extracted and
converted into ASC format files. Secondly, further processing of environmental factors was
conducted. All environmental variables were extracted using the mask tool in ArcGIS10.6,
“toolbox/spatial analyst tools/extraction/extract by mask”, and further resampled with
“toolbox/data management tools/raster/raster processing/Resample”. Finally, the envi-
ronmental variables of data grid image range and pixel size were completely consistent,
with a unified resolution of 2.5 min and a geographic coordinate system GCS_WGS_1984.
To avoid over-fitting among environmental variables and to ensure the accuracy of the
model’s operation, 50 environmental variables and data of C. lanceolata distribution points
were imported into MaxEnt 3.4.1 for pre-simulation, and the contribution rate of each
environmental variable was preliminarily obtained. The “Multivariate” tool in ArcGIS 10.6
was used to conduct a multiple linear analysis of 50 environmental variables. In addition,
when the correlation of two environmental variables was ≥0.8, the environmental variable
with a larger contribution rate in the pre-simulation was retained, and then the subsequent
secondary simulation was carried out [26].

2.3. Model Building and Accuracy Evaluation

Environmental variables and C. lanceolata distribution point data were imported into
MaxEnt 3.4.1; then, “Basic” was set to 25% of the distribution data as a test set to verify the
accuracy and 75% of the distribution data was used as a training set to drive the model.
Then, “Random seed” was checked, followed by “Subsample” selection; for the repetition
type, the operation was repeated 10 times, and output distribution values were set in
“logistic” format. Afterwards, “create response curves” was selected to draw curves of how
climate factors determine the predicted occurrence probability value, and “do jackknife”
was selected to output the contribution rate of each climate factor. Other parameters were
set as default, and the file was output as ASCII type.

The contribution rate of each environmental variable to the distribution of C. lanceolata
habitats was calculated using the Jackknife method. The receiver operating characteristic
curve (ROC curve) was drawn with specificity as the abscissa and sensitivity as the ordinate.
The quality of the model was determined by the area under the ROC curve (AUC value).
The numerical range of AUC was set at 0~1, and the larger the numerical value, the higher
the accuracy of the model. Theoretically, when the AUC value was 0.5~0.6, the model had
no prediction ability; at 0.6~0.7, the prediction ability was poor; at 0.7~0.8, the prediction
ability was medium; at 0.8~0.9, the prediction ability was good; and the accuracy of the
model was extremely high when the AUC value was >0.9 [27]. Furthermore, the prediction
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results were imported into ArcMap 10.6, and the classification tool was used to divide
the layer into four grades using the natural breaks (Jenks) method [23]. Various suitable
habitats were obtained based on p-value, as follows: unsuitable habitat (p < 0.07), low
suitable habitat (0.07 < p < 0.2), moderate suitable habitat (0.2 < p < 0.5), and high suitable
habitat (p > 0.5). Finally, the distribution maps of current and future suitable habitats of
C. lanceolata were made.

2.4. Dynamic Changes in the Distribution of Suitable Habitats under Different Climatic Scenarios
in the Future and Core Distributional Shifts under Different Climatic Scenarios

According to the calculation result of MaxEnt, the potential distribution map of
species was obtained by loading the result and visualizing the suitable habitat grades in
ArcGIS 10.6. The change in the area of potential distribution habitats and core distributional
shifts of C. lanceolata in the future were analyzed using the SDM toolbox v2.5, written in
Python language in ArcGIS 10.6 [28]. The statistics of the area mainly showed three types
of changes: expansion, unchanged, and contraction. In this research, this tool was used
to investigate the changes in the distribution of C. lanceolata habitats in different scenarios
compared with current suitable habitats.

As mentioned above, the SDM toolbox (Tool of ArcGIS based on Python 2.7.14) was
also used to treat the suitable habitats of C. lanceolata as a whole and to reduce them to a
vector particle. Then, the changing trend of the suitable habitats and the distributional core
position of suitable habitats in four scenarios in the present and future were calculated. The
geometric core represents the overall spatial position of the suitable habitats of C. lanceolata,
and the change reflects the overall spatial migration trend of suitable habitats [21].

3. Results

3.1. Accuracy Test of MaxEnt Model and the Leading Environmental Factors Affecting
the Distribution of C. lanceolata

The AUC value of the area under the ROC curve was used to test the accuracy of the
model. After 10 calculations, the mean test AUC was 0.947 (Figure 2), showing that the
model could accurately predict suitable habitats.

Figure 2. The receiver operating characteristic (ROC) curve of the MaxEnt model.

According to the contribution percentage in the first simulation and the correlation
among factors (Figure 3), 16 environmental factors were selected, including 8 climatic
factors, 5 topographic factors, 2 soil factors, and human activities (Hfp). Then, the 16 factors
were simulated for the second time, and the leading environmental variable factors that
limited the potential geographical distribution of C. lanceolata in China were selected based
on the percent contribution, permutation importance, and knife-cutting test. The percent
contribution was used to indicate the contribution degree of the variable to the model.
The permutation importance indicated the dependence of the model on this variable. The
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knife-cutting method was used to analyze the relationship between different environmental
factors and the distribution of suitable habitats for C. lanceolata. Criteria: The blue band
represents “With only variable”, and the longer the band, the higher the score, indicating
that this variable has a strong predictive ability for species distribution. The cyan band
represents the training score of “Without variable”, that is, the sum of the contributions
of the remaining variables except for this variable. If the score of “Without variable” is
low, it means that this variable contains some unique information, which is also important
for species distribution. The red stripe represents the cumulative contribution rate of all
environmental variables to the established model.

Figure 3. Correlation analysis of environmental factors.

According to the contribution percent (Figure S1), the environmental factors that
reached more than 10% were Bio12 (41.3%), Hfp (20%), Bio19 (13.1%), and Bio6 (11.1%).
The cumulative contribution rate of these four factors reached 85.5%, and they were the
leading variables affecting the distribution of C. lanceolata.

According to the permutation importance (Figure S2), the leading variables reaching
more than 5% were Bio12 (40.1%), Hfp (19.2%), Bio7 (17.4%), Bio6 (6.5%), and Elevation (5.3%).

According to the analysis of the normalized training gain obtained by the knife-
cutting test, under the condition of “With only variable”, the scores of Bio3, SlopeCl1,
SlopeCl3, AspectCIU, and AspectCIE were lower than 0.2, suggesting little influence on
the distribution of C. lanceolata. Interestingly, most terrain factors had little influence
on the prediction results. However, the scores of Bio11, Bio12, and Bio6 were over 1.2,
which showed that precipitation and temperature were the leading environmental factors.
In addition, the “Without variable” score of human activities was low, indicating the
importance of this variable to the geographical distribution of C. lanceolata, which should
not be ignored (Figure 4). Therefore, Bio11, Bio12, Bio6, and human activity factors (Hfp)
were determined to be the leading variables for the knife-cutting test.

Combined with the percent contribution, permutation importance, and knife-cutting
test, Bio12, Hfp, Bio6, Bio11, Bio19, Bio7, and Elevation were eventually selected as the
leading environmental factors.

The above content is the importance test of the influence of each factor on the distribu-
tion of C. lanceolata habitats at present, the results of eight future scenarios were roughly
the same as those of current times. Bio12, Hfp, Bio6, and Bio19 still accounted for more
than 80% of the contribution percent; Bio12, Hfp, and Bio7 still accounted for more than
80% of the permutation importance; and the results of knife-cutting were not different. (For
details, see Table S2).
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Figure 4. Results of knife-cutting of environmental factors.

To further clarify the relationships between the distribution habitats of C. lanceolata
and leading environmental factors, the response curves of the single environmental factor
(Bio12, Hfp, Bio6, Bio11, Bio19, Bio7, and Elevation) were obtained based on the MaxEnt
model (Figure 5). These curves show how the predicted probability of species distribution
changed with each environmental variable.

As shown in Figure 5, the presence probability of C. lanceolata fluctuated greatly
with the change in environmental variables. The presence probability response curve of
C. lanceolata to seven leading environmental factors was divided by 0.5 as the dividing
line, and the range with a presence probability greater than 0.5 was considered as the
suitable environmental interval conducive for the growth of C. lanceolata, as shown in
Figure 5. The thresholds for the leading environmental parameters were obtained at a
presence probability of >0.5. Regarding elevation, its influence on the presence probability
of C. lanceolata was stable and remained unchanged below 0 m. However, the increase
in the presence probability of C. lanceolata was proportionally linked to the increase in
elevation. In detail, the presence probability started to rapidly increase at −100 m, peaked
at 100 m, and then plummeted. Regarding the minimum temperature of the coldest month
(Bio6), when the temperature was below −10 ◦C, it was unfavorable for the growth of
C. lanceolata. As the temperature gradually increased, the presence probability also rapidly
increased and peaked when the temperature reached about 12 ◦C, and then decreased
rapidly. The influence of the temperature annual range (Bio7) on the presence probability
was stable at first, then increased when the temperature range rose from 13 ◦C, and reached
its peak when the range was 16 ◦C. The presence probability was slightly decreased after
that, then slightly increased when the temperature range increased to 22 ◦C, and finally
dropped sharply.

As for the mean temperature of coldest quarter (Bio11), C. lanceolata showed no growth
below −5 ◦C, suggesting that this is not suitable for its growth. In addition, its presence
probability increased with the increase in the mean temperature of the coldest quarter until
the temperature reached about 14 ◦C, and then the presence probability of C. lanceolata
reached its peak and later had a steep decrease. Concerning the annual precipitation
(Bio12), the presence probability gradually increased with its increase from 500 mm, then
stabilized at 1100 mm~1800 mm and increased sharply after that. When the precipitation
reached about 3250 mm, the presence probability reached a maximum value and then
decreased, but remained above 0.5. Moreover, as for precipitation of coldest quarter
(Bio19), the presence probability sharply increased when Bio19 was from 10 mm to 50 mm,
and increased constantly later, peaking at about 0.9 when Bio19 stabilized at 450 mm.
The presence probability of C. lanceolata increased layer by layer with the increase in the
intensity of human activities. Generally speaking, the presence probability of C. lanceolata
increased rapidly when human activity factors were between 10 and 50. After 50, the
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presence probability rose slowly and dropped to 70, then rose rapidly until about 91, and
after that, the probability reached a maximum value. Wholly, the elevation ranged from
0 to 600 m, the minimum temperature of the coldest month (Bio6) ranged from 1 to 12 ◦C,
the temperature annual range (Bio7) ranged from 14 to 30 ◦C, the mean temperature of
coldest quarter (Bio11) ranged from 6 to 15 ◦C, the annual precipitation (Bio12) ranged
from 1100 to 4700 mm, the precipitation of the coldest quarter (Bio19) ranged from 120 to
510 mm, and the human activity index ranged from 40 to 105 (Table 1).

Figure 5. Response curve of leading environmental factors. The curves show the mean response
of the 10 replicate Maxent runs (red) and the mean ± one standard deviation (blue, two shades for
categorical variables).
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Table 1. The suitable range of the leading variable environmental factors.

Environmental
Factors

Elevation
(m)

Bio6
(◦C)

Bio7
(◦C)

Bio11
(◦C)

Bio12
(mm)

Bio19
(mm)

Hfp

Suitable minimum value 0 1 14 6 1100 120 40
Suitable maximum value 600 12 30 15 4700 510 105

3.2. Potential Geographical Distribution of Suitable Habitats in Different Periods
3.2.1. Current Geographical Distribution of Suitable Habitats

According to the division of natural breaks (Jenks) method, the currently suitable
habitats of C. lanceolata were divided into four types: unsuitable habitat, low suitable
habitat, moderate suitable habitat, and high suitable habitat.

As can be seen from Figure 6, suitable habitats were mainly distributed in the south
of the Yangtze River, with the main distribution range between 97.59◦~121.24◦ E and
20.303◦~34.575◦ N. According to the area calculation, the total geographical distribution
habitat area of C. lanceolata was 193.78 × 104 km2, accounting for 20.19% of China’s land
area, among which the high suitable habitat accounted for 2.62%, the moderate suitable
habitat accounted for 6.10%, and the low suitable habitat accounted for 11.47%.

Figure 6. Current distribution of suitable habitats of C. lanceolata.

To explore the influence of human activities (high percent contribution) on the distri-
bution of C. lanceolata, human activities were removed and the simulation was conducted
again. It was found that the distribution of suitable habitats of C. lanceolata was concen-
trated and fragmented rather than scattered, characterized by an increase in the moderate
and high suitable habitats (Figure 7).
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Figure 7. Current distribution of suitable habitats of C. lanceolata without human activities.

Furthermore, the distribution area range did not change much, except in the expan-
sion of Hainan Island. The distribution of suitable habitats without interference of human
activities was upgraded to a low suitable habitat in the original unsuitable habitat, the low
suitable habitat was upgraded to a moderate suitable habitat, and the moderate suitable
habitat was upgraded to a high suitable habitat. In the area calculations without human ac-
tivity factors, the total geographical distribution area of C. lanceolata was 218.65 × 104 km2,
accounting for 22.78% of China’s land area and being 2.60% higher than the original suitable
habitat area. The high suitable habitat accounted for 4.93%, the moderate suitable area
accounted for 8.67%, and the low suitable area accounted for 9.18% of the total suitable
habitat area. Without the impact of human activities, high suitable habitats were mainly
distributed in eastern Sichuan, western Chongqing, Guizhou, Taiwan, Guangxi, southern
Guangdong, Hunan, and Jiangxi. Moderate suitable habitat was widely distributed in the
south of the Yangtze River, inlaid with the high suitable habitat. Generally, subtropical
monsoon climate areas and tropical monsoon climate areas in the south of the Yangtze
River were more suitable for the growth of C. lanceolata. The precipitation conditions
were relatively abundant and the temperature conditions were relatively appropriate. Not
considering the influence of human activities, these two kinds of areas were mainly high
and moderate suitable habitats for C. lanceolata.

Considering the influence of human activities, the distribution of C. lanceolata was
fragmented, and we speculated that human activities interrupted the distribution of the
original suitable habitats and led to its eastward and southward reduction. Hong et al.
also showed that the natural distribution habitats of C. lanceolata were continuous at first,
and then discontinuous later due to the influence of climate and human factors [29]. The
influence of human activities on the distribution of other species was similar [20]. In terms
of the total area, the suitable habitats area was reduced by 24.87 × 104 km2 due to human
activities, which indicated that there was a negative correlation between human activities
and the distribution of C. lanceolata.
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3.2.2. Potential Geographical Distribution of Suitable Habitats in the Future

In this paper, four RCP scenarios and two future periods were selected. Compared
with the current times, the total suitable habitat area of C. lanceolata increased and migrated
by different degrees in each period (Figure S3). Areas of potential distribution under
different climate scenarios of C. lanceolata are shown in Table S3.

In the 2050s, the proportions of the total suitable habitat area of C. lanceolata in China’s
land area under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios were predicted to be
21.49%, 21.60%, 22.34%, and 21.70%, respectively, which are higher than that in current
times (20.18%), with the area under RCP6.0 being the largest. In contrast to the potential
total suitable habitats in the 2050s (except for RCP2.6), the areas under other scenarios were
greatly reduced. By the 2070s, their area proportions are predicted to account for 21.80%,
20.59%, 21.73%, and 20.80%, respectively; of these four scenarios, the area under RCP2.6
will be the largest.

In addition, the area of habitat under RCP8.5 will be the largest by the 2050s, and by
the 2070s, the largest will be RCP2.6, not accounting for the influence of human activities.
The proportions of the total suitable habitat area of C. lanceolata in China’s land area under
the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios will be 23.35%, 22.43%, 23.30%, and
23.63% in the 2050s, respectively. By the 2070s, the proportion of habitat area under four
scenarios will be 23.82%, 23.56%, 23.42%, and 22.57%, respectively. This result once again
shows that human activities have a considerable impact on the potential distribution of
C. lanceolata, so this factor is additionally considered and analyzed below.

Considering different GHG emissions in the same period, the 2050s, the areas of low suitable
habitat under different GHG emission scenarios were RCP8.5 > RCP6.0 > RCP4.5 > RCP2.6. In the
moderate suitable habitats, the areas under different scenarios wereRCP6.0 > RCP2.6 > RCP8.5 > RCP4.5,
while the areas for high suitable habitats were RCP6.0 > RCP4.5 > RCP2.6 > RCP8.5. On the whole,
RCP6.0 was the most ideal based on the area of each suitable habitat under different scenarios.
Under this scenario, not only was total suitable habitat area was the largest, but the middle and high
suitable habitat areas were also the largest. In the 2070s, the area of low suitable habitat of C. lanceo-
lata under different GHG emission scenarios was ordered as RCP2.6 > RCP6.0 > RCP4.5 > RCP8.5.
The area condition of the moderate suitable habitat under different GHG emission scenarios
was RCP2.6 > RCP6.0 > RCP8.5 > RCP4.5. Finally, the high suitable habitat areas were ordered
as RCP8.5 > RCP2.6 > RCP6.0 > RCP4.5. Noteworthily, the RCP2.6 scenario was the highest in this
period based on the distribution areas of moderate and high suitable habitats.

Considering different periods and the same GHG emission scenarios under the four
carbon emission scenarios, the low suitable habitat of C. lanceolata in the 2070s was reduced
compared with the 2050s, and the largest contraction was 12.08 × 104 km2 under RCP8.5,
while the smallest was 0.34 × 104 km2 under RCP2.6. Likewise, in the moderate suitable
habitat, the area of the 2070s under RCP2.6 climate scenarios increased greatly compared
with that of the 2050s. In addition, the situation in high suitable habitat was similar to that
of the moderate suitable habitat. It should be noted that, under the RCP6.0 scenario, the
area cover fluctuated greatly. Wholly, the general trend of suitable habitats was that the
total habitat area increased continuously and reached the highest value of 209.27 × 104 km2

under RCP2.6, but under RCP4.5, RCP6.0, and RCP8.5, it first increased in the 2050s and
then decreased in the 2070s.

3.3. Dynamic Changes of Distribution Habitats under Different Climatic Scenarios in the Future

The distribution of C. lanceolata habitats in different scenarios in the future two periods
is shown in Figure 8. Under RCP2.6—2050s, both expansion and contraction were predicted
to be obvious. The expansion was mainly concentrated in Hainan province and the northern
regions like Shaanxi, Henan, the west of Yunnan, and Sichuan. The reduction in the middle
and lower reaches of the Yangtze River affected the performance of the overall suitable
habitats, but in the 2070s, the contraction area was obviously reduced, and the expansion
area was slightly increased. At this time, the total suitable area reached the maximum
among all scenarios in the 2070s. Notably, the southern Tibet valley and the Ali area of the
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Tibet Autonomous Region were also expanded; other studies have shown that these two
places may have acted as shelter escapes for plants in the ice age [30,31].

Figure 8. Change in the distribution of C. lanceolata habitats under different scenarios in the 2050s
and 2070s. (A) RCP2.6, (B) RCP4.5, (C) RCP6.0, (D) RCP8.5.

RCP4.5—2050s was similar to RCP2.6—2050s, but by the 2070s, the contraction was
predicted to be 13.37 × 104 km2 and to reach the maximum. However, the expansion was
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lower, and it was the least suitable area under this scenario of the 2070s. Compared to the
2050s, the areas of the three kinds of suitable habitats were all reduced, especially the low
suitable habitat. The contraction area was mainly concentrated in Yunnan and the middle
and lower reaches of the Yangtze River.

Under RCP6.0, the situations in the 2050s and that in the 2070s had few differences. In
the 2050s, the maximum expansion of the suitable area reached 27.33 × 104 km2, especially
in the west and north, and reduction was at its minimum, being 4.15 × 104 km2. The suitable
habitat condition in the 2070s was slightly worse than that in the 2050s. Compared with the
2050s, the areas of the three suitable habitats decreased, especially the high suitable habitat.

RCP8.5—2050s had the most obvious change in Yunnan, in contrast to RCP6.0—2050s,
which can be observed in Figure 8. Most of the original extended regions disappeared. By
the 2070s, the expansion was the least, especially in the western region. Expanded areas
(mainly low suitable habitat) retracted around the range of current suitable habitats such as
northeast Sichuan and southwest Shaanxi. The contraction of suitable areas was mainly
reflected in Yunnan, Hunan, Hubei, Zhejiang, Anhui, Henan, and the coastal areas of
Shandong and Jiangsu. All the areas of expansion and contraction under different scenarios
are shown in Table 2.

Table 2. Changes in suitable habitat areas under different scenarios in the 2050s and 2070s.

RCP2.6 RCP4.5 RCP6.0 RCP8.5

2050s 2070s 2050s 2070s 2050s 2070s 2050s 2070s

Expansion
/×104 km2 22.76 23.16 23.27 17.94 27.33 24.88 22.83 16.44

contraction
/×104 km2 8.46 5.74 8.04 13.37 4.15 7.81 6.26 9.14

No change
/×104 km2 205.96 208.68 206.39 201.05 210.28 206.61 208.16 205.28

No occupancy
/×104 km2 722.82 722.42 722.31 727.64 718.25 720.70 722.75 729.14

3.4. The Core Distributional Shifts under Different Climatic Scenarios

The centroid of the current habitats of C. lanceolata was located in Xinhua County, Loudi
City, Hunan Province, China (27.71◦ N, 111.03◦ E). Under RCP2.6—2050s, the distribution
centroid shifted to Xinxupu County, Huaihua City, Hunan Province (27.81◦ N, 110.56◦ E).
Under RCP2.6—2070s and RCP4.5—2050s, the distribution centroids were the same as those of
RCP2.6—2050s, while the coordinates were slightly different (27.82◦ N, 110.63◦ E and 27.84◦ N,
110.62◦ E). The centroid of RCP4.5—2070s shifted to Anhua County, Yiyang City, Hubei Province
(28.03◦ N, 110.88◦ E). And that of RCP6.0—2050s was XinXupu County (27.81◦ N, 110.39◦ E),
then shifted to Zhongfang County, Huaihua City, Hunan Province (27.64◦ N, 110.27◦ E) under
RCP6.0—2070s. The distribution centroids under RCP8.5—2050s and RCP8.5—2070s were
XinXupu County, Huaihua City, Hunan Province (27.80◦ N, 110.60◦ E) and Xinhua County,
Loudi City, Hunan Province (27.81◦ N, 110.80◦ E), respectively.

In the 2050s, the centroid under RCP2.6 migrated 47.83 km to the northwest, 42.99 km
to the northwest under RCP4.5, 64.49 km to the northwest under RCP6.0, and 43.59 km
to the northwest under RCP8.5. In the 2070s, the centroid of RCP2.6 migrated 6.69 km
northeast compared with that of 2050s, that of RCP4.5 moved 32.26 km northeast, that
of RCP8.5 moved 20.22 km northeast and returned to the centroid in current times, that
of RCP6.0 moved in a different direction from the others, the centroid moved 19.97 km
southwest. However, the centroid under RCP6.0 kept going west and had a trend to the
south by the 2070s, while the centroids under other scenarios all went northwest first and
then northeast (Figure 9).
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Figure 9. The core distributional shifts of C. lanceolata under different climate scenarios (the pink line
represents RCP2.6, the purple line represents RCP4.5, the green line represents RCP6.0, and the black
line represents RCP8.5).
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4. Discussion

4.1. Changes in Suitable Habitats of C. lanceolata in Different Periods

Based on the MaxEnt model, this study predicted the potential suitable habitats of
C. lanceolata in China, using climatic factors, human activity, soil factors, and terrain factors.
The results showed that the current potential suitable habitats of C. lanceolata are mainly
concentrated in the areas south of Qinling-Huai River, such as the Sichuan Basin and its
surrounding areas, Yunnan Plateau, the middle and lower reaches of the Yangtze River
and South China. The contemporary predicted results were consistent with the actual
distribution of C. lanceolata in China [32], and the mean AUC value of the ROC curve
was 0.947, which indicated that the prediction result was credible. By simulating and
predicting the distribution range of C. lanceolata in different periods, the future change
trend was investigated.

This paper studied the distribution of C. lanceolata habitats in current and future times,
and its historical origin was also valued by many scholars. According to the research [3],
the origin time of C. lanceolata was in the late Jurassic, and its origin centers were in the
northeast of China, north China and Inner Mongolia, and the southeast of Siberia, Russia.
However, due to the harsh climate during the Quaternary glacial period, the cold climate
zone migrated to the middle and low latitudes, which led to the widespread development
of ice sheets or glaciers at high latitudes and on mountains and made C. lanceolata mi-
grate to the south; most origins also became extinct one after another. According to the
fossil record of sporopollenin, C. lanceolata was mainly distributed in Lantian, Shaanxi
Province; Yuanmou, Yunnan Province; Jiujiang and Nanchang, Jiangxi Province; coastal
areas of Jiangsu and Zhejiang Provinces; Lixian and Changde, Hunan Province; Taihu
Lake, Jiangsu Province; Sanshui, Zhongshan, and Dongguan, Guangdong Province; Hui’an
Fujian Province; the Mianning and Anning River basins in Sichuan Province; Anqing,
Anhui Province; Hangzhou Bay, Yuyao Plain, and Ningfeng Plain in Zhejiang Province,
etc. [33–37]. Before current times, it formed its distribution south of the Qinling Mountains-
Huaihe River, and these areas were also considered as the remaining land of C. lanceolata.
Additionally, it was cultivated artificially as early as the pre-Qin period and the Spring
and Autumn Warring States period, and was introduced to the Yellow River Basin in the
Qin and Han Dynasties. Historically, its cultivated areas were mainly concentrated in
the middle and lower reaches of the Yangtze River, Nanling Mountain, Wuyi Mountain,
Xuefeng Mountain, and Sichuan Basin. In addition, there are also records of its introduction
in Taiwan Province [38–40]. Furthermore, SSR and cpDNA molecular markers have been
used to prove that Cunninghamia konishii Hayata was introduced and cultivated artificially
across the Taiwan Strait [41]. Although, currently, the distribution of C. lanceolata habitats is
mostly a result of years of cultivation, Wu regarded the current distribution areas as natural
habitats, and these areas are worth studying [42].

With the continuous increase in GHG emissions in the future, the greenhouse effect
will gradually intensify, leading to different changes in climate such as precipitation and
temperature, etc., and the distribution of suitable habitats of C. lanceolata will change
in terms of area and spatial pattern correspondingly. The future trend predicted in this
research is that the expansion in the northern region will be more stable than that in
the western region, and the central and eastern habitats will shrink to varying degrees;
moreover, northern Yunnan will contract more. In several provinces, the suitable habitats
will expand to slightly higher altitude areas. This expansion was noticed in previous
studies, and it was concluded that to adapt to climate change, the distribution of border
species will have to shift to higher-altitude areas gradually [43].

When the scenario was different and the period was the same, the area of total suitable
habitats in the 2050s first increased and then decreased with the augmentation of GHGs, and
reached its maximum value under the RCP6.0 scenario. The area change in the total suitable
habitats in the 2070s fluctuated in a wave shape, reaching its maximum value under the
RCP2.6 scenario. The expansion areas increased with the increase in the radiation forcing
level in the 2050s, showing a positive correlation. In the 2070s, there was a downward trend,
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with the radiation forcing level rising, while the contraction areas showed the opposite.
However, when the scenario was the same but in different periods, the area change in the
total suitable habitats with time showed that it increased at first and then decreased. Except
for the RCP2.6 scenario, which showed an increasing trend all the time, the expanded areas
increased and the contraction areas decreased. Under the RCP2.6 scenario, it was predicted
that the change of energy utilization types in the global scope would reduce the greenhouse
effect significantly, and this scenario would have the largest increase in crop areas in the
world; it is almost a suitable environment for all existing plants. Compared with RCP4.5,
RCP6.0 had a lower GHG concentration and radiation intensity before the 2050s, which
may be the reason why RCP6.0 was more suitable for the 2050s [44]. To sum up, RCP2.6
and RCP6.0 were more suitable for the future growth of C. lanceolata.

Under different scenarios in the future, the movement of habitat centroids was also
slightly different. The centroid of RCP6.0 kept shifting to the west and also to the south by
the 2070s. The centroids of other scenarios, especially RCP4.5, went northwest first and
then northeast. In most cases, with the increase in the GHG concentration and the passage
of time, the living environment deteriorated, and the centroids of C. lanceolata habitats
migrated to high latitudes. Similarly, Shugart et al. found that with global warming, plants
migrated northward at the end of the last glacier [45]. According to the latest research by
Parmesan and Yohe [46], more than 1700 plant species migrated to the polar regions at an
average speed of 6.1 m/10 a.

4.2. Ecological Characteristics of the Distribution of C. lanceolata Habitats

The results of this study showed that, among the 16 selected environmental factors,
temperature, precipitation, human activities, and elevation had certain influences on the
geographical distribution of C. lanceolata. According to the three test methods, precipitation
was the most important factor, followed by human activities and temperature. On the
whole, the influence of precipitation was stronger than that of temperature. The leading
environmental factors affecting the growth of C. lanceolata were annual precipitation (Bio12),
human activities (Hfp), minimum temperature of the coldest month (Bio6), mean temper-
ature of the coldest quarter (Bio11), precipitation of the coldest quarter (Bio19), annual
temperature range (Bio7) and elevation. The suitable ranges were 1100 mm~4700 mm
(Bio12), 40~105 (Hfp), 1~12 ◦C (Bio6), 6~15 ◦C (Bio11), 120 mm~510 mm (Bio19), 14~30 ◦C
(Bio7), and 0~600 m (elevation), respectively. Therefore, we concluded that a suitable
environment for the growth of C. lanceolata should be warm, humid, rich in precipitation,
and with a relatively flat terrain. As mentioned above, there was a negative correlation
between human activities and the area of the distribution habitat of C. lanceolata, that is, the
greater the intensity of human activities, the less suitable it was for C. lanceolata. According
to the area calculation, the total geographical distribution habitat area of C. lanceolata was
193.78 × 104 km2, accounting for 20.19% of China’s land area. Without the influence of
human activities, the proportion was about 22.78%; moreover, moderate and high suitable
habitats increased significantly and the distribution of whole habitats was more continuous.
Chen et al. pointed out that the high intensity of human activities led to the formation of
acid rain and a decline in soil fertility, and large-scale logging also affected the nitrogen
cycle in the ecological cycle, which is not conducive for plant growth [47]. The most suit-
able habitats of existing C. lanceolata were the subtropical monsoon climate, with ample
rainfall and proper temperature conditions for growth, and mainly cultivated vegetation,
coniferous forest, and shrubs. The high suitable habitat was predicted to be concentrated
in the north and east of Taiwan Province; Taiwan’s population is mainly concentrated in
the west [48]. There are mountains in the east of the middle part of the land, which are
less affected by human activities. This area is a subtropical monsoon climate, with high
temperatures and much rain in summer and mild temperatures and little rain in winter.
In addition, the undulating terrain weakens the winter wind, so it is more suitable for
C. lanceolata. Another province worth noting is Sichuan, compared with the eastern coastal
areas such as Jiangsu; the annual precipitation (Bio12), minimum temperature of the coldest
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month (Bio6), mean temperature of the coldest quarter (Bio11), and annual temperature
range (Bio7), especially the first three environmental factors, were more suitable for the
growth habits of C. lanceolata. Our prediction showed that with the increase in GHG
emission concentration in the future, the moderate suitable habitat in the Sichuan Basin
would be partially upgraded to a high suitable habitat and form a high suitable habitat
to surround the low suitable habitat, which may be due to the following reasons: with
the intensification of the greenhouse effect, climate change in Sichuan Basin is mainly
expressed by an increase in temperature, rainfall (mainly concentrated in June-September),
and even extreme rainfall. Additionally, the soil in the basin is loamy clay with a rich
nitrogen content, and the surface and groundwater are abundant, which is more suitable
for the growth of C. lanceolata [49,50]. The last area noteworthy is Hainan Province. Hainan
was not found to be suitable for C. lanceolata growth in the current prediction due to the fact
that mean temperature of the coldest quarter (Bio11) was more than 17 ◦C, the precipitation
in the coldest quarter (Bio19) was less than 94 mm, and the minimum temperature of the
coldest month (Bio6) was more than 13 ◦C. However, the greenhouse effect will advance
the spring phenology of tropical plants, prolong the growing season of plants, advance the
exhibition period of leaves, advance the initial flowering period, and delay the senescence
of leaves, which may lead to the emergence of a low suitable habitat in this area [51].

Other factors, such as soil, slope, and aspect, had little influence on the distribution of
C. lanceolata, among which AspectCIU and SlopeCL1-4 had slightly greater contributions,
representing the position with a slope of 2%~10%. These two coefficients indicated that
C. lanceolata is suitable for growing in an environment with a gentle slope, such as a flat
plain, central basin, piedmont, piedmont inclined plain, valley bottom, platform, foothills,
basin surroundings, hills, etc. The steeper the slope, the more serious the water and soil
loss and the poorer soil water and fertilizer conservation became [52]. Among the soil
factors, the soil texture (T_USDA_TEX_ CLASS) contributed a little to C. lanceolata, which
mainly describes the relative proportion of mineral particles with different sizes in the soil.
According to the response curve, the soil texture suitable for C. lanceolata growth was silty
clay, clay, silty clay loam, clay loam, silt, and silty loam. Research has shown that loose soil
without excessive rock obstacles is more suitable for plant growth [1].

Although C. lanceolata has been widely planted in recent years, many problems need
to be solved urgently. Firstly, the utilization efficiency is low. Due to the prosperity of
new building materials such as metal and plastic, the applicable scope of C. lanceolata
wood has been greatly reduced, and the unsalable stock is overstocked. It is urgent
to use C. lanceolata with high added value. Secondly, there are some problems, such as
unreasonable continuous planting. Tian et al. found that continuous rotation will lead
to a decline in the C. lanceolata forest yield, and properly prolonging the rotation period
of C. lanceolata forest in the same place will be beneficial for maintaining high-quality
wood [53]. While efficiently utilizing and rationally planting C. lanceolata, we should pay
attention to the impact of global warming and try to take protective measures in areas
with reduction tendencies. In fact, in this study, we found that in the cultivated vegetation
in eastern China, there will be many contractions in the future, so it is time to carry out
resource investigation and dynamic monitoring activities actively and to improve the
adaptability of C. lanceolata to climate change. Meanwhile, we should also make sustainable
land use plans in places with stable expansion and suitable environments, and reduce the
intensity and frequency of human activities on the edge of the newly increased habitats
so as to increase the populations of C. lanceolata forest resources, improve the ecological
service function, and realize both economic and ecological benefits.

5. Conclusions

In this study, 39 environment factors, including climate, soil, terrain and human
activities, were used to predict the potential distribution habitats of C. lanceolata in China
based on the MaxEnt model under different scenarios in current and future periods (the
2050s and 2070s). The results showed that the annual precipitation (Bio12), human activities
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(Hfp), minimum temperature of the coldest month (Bio6), mean temperature of the coldest
quarter (Bio11), precipitation of the coldest quarter (Bio19), annual temperature range (Bio7),
and elevation are predicted to be the leading environmental factors affecting distribution
of C. lanceolata, and the suitable habitats are characterized by warmth, humidity, abundant
rainfall, and relatively gentle topography. Human activities will cause the distribution
of suitable habitats to degenerate and fragmentize. The areas of habitats under different
scenarios were predicted to increase first and then decrease by the 2050s and 2070s, except
for the RCP2.6 scenario, under which the suitable habitats area of C. lanceolata will increase
continuously. Furthermore, the suitable habitats will gradually shift to high-latitude areas
due to climate change.
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Abstract: Forest and its dynamics are of great significance for accurately estimating regional car-
bon sequestration, emissions and carbon sink capacity. In this work, an efficient framework that
integrates remote sensing, deep learning and statistical modeling was proposed to extract forest
change information and then derive forest carbon storage dynamics during the period 2017 to 2020 in
Jiangning District, Nanjing, Eastern China. Firstly, the panchromatic band and multi-spectral bands
of GF-1 images were fused by using four different methods; Secondly, an improved Mask-RCNN
integrated with Swin Transformer was devised to extract forest distribution information in 2020.
Finally, by using the substitution strategy of space for time in the 2017 Forest Management and
Planning Inventory (FMPI) data, local carbon density allometric growth equations were fitted by
coniferous forest and broad-leaved forest types and compared, and the optimal fitting was accordingly
determined, followed by the measurements of forest-change-induced carbon storage dynamics. The
results indicated that the improved Mask-RCNN synergizing with the Swin Transformer gained an
overall accuracy of 93.9% when mapping the local forest types. The carbon storage of forest standing
woods was calculated at 1,449,400 tons in 2020, increased by 14.59% relative to that of 2017. This
analysis provides a technical reference for monitoring forest change and lays a data foundation for
local agencies to formulate forest management policies in the process of achieving dual-carbon goals.

Keywords: GF-1; image fusion; Swin Transformer; Mask-RCNN; carbon density growth equation

1. Introduction

As the largest organic “carbon pool” in terrestrial ecosystems, forest provides about
80% of the global above-ground vegetation biomass [1], and its carbon storage approxi-
mately accounts for 46.6% of the terrestrial ecosystems’ carbon stock [2]. Thus, widespread
forest dynamics inevitably alters the carbon sequestration capability of forest ecosystems
and then promotes global climate change and the greenhouse effect [3]. Therefore, accu-
rate acquisition of forest dynamics information contributes to evaluating the carbon sink
potential of forest ecosystems in the near future, which lays an underlying data basis for
assessing the degree of achieving the dual-carbon goals in China [4].

The traditional means for capturing forest dynamics information mainly rely on
massive in situ surveys. However, this manner has the drawbacks of high time and
labor costs, poor timeliness and potential low accessibility, therefore making it difficult to
meet the needs of dynamic monitoring over wide forested regions [5,6]. Fortunately, the
emergence and advancement of remote sensing technology have overcome the defects of
the traditional survey means. In particular, high-spatiotemporal-resolution remote sensing

Forests 2024, 15, 506. https://doi.org/10.3390/f15030506 https://www.mdpi.com/journal/forests129



Forests 2024, 15, 506

data contain more structural details and spectral and phenological variations; although such
an analysis process tends to be more complex, it is more conducive to the fine identification
and mapping of forest types and even tree species [7,8]. In recent decades, pixel-based
classification methods have been widely used in forest information extraction based on
medium- or high-resolution imagery. For example, Huang et al. combined Sentinel-2
spectral features and radar data backscattering features to classify tree species of typical
plantation forests in the tropics via the random forest method [9]. Although the classical
statistics-based or machine learning methods have operational speed and simplicity, the
“salt and pepper phenomenon” is quite common in classification results [10]. To minimize
the negative effects of pixel-based analysis methods, Object-based Image Analysis (OBIA)
has been proposed and applied in forest-related remote sensing efforts because it can make
full use of shallow information such as spectral, texture and geometric features and the
spatial topology of features in medium- or high-resolution remote sensing imagery for
classification [11]. For example, Mao et al. combined Sentinel active and passive remote
sensing data to develop an object-oriented SNIC + RF algorithm to classify the land cover of
Qianjiangyuan National Park, obtaining an overall accuracy of 93.98% [12]. However, OBIA
only considers the shallow features within the segmented objects; it is prone to cause mis-
segmentation and misclassification in complex situations [13]. Therefore, determining how
to adequately extract and utilize effective information from medium- or high-resolution
remote sensing images becomes the key to improving classification accuracy.

Along with the escalation in computer processing power, there has been a fast devel-
opment of deep learning in a wide range of application areas [14]. Deep learning methods
are representation learning methods with multiple levels of representation, obtained by
composing simple but non-linear modules that each transform the representation at one
level (starting with the raw input) into a representation at a higher, slightly more abstract
level. Deep learning extends standard machine learning by discovering intermediate repre-
sentations that can be used to solve more complex problems [15]. Convolutional neural
networks (CNNs), first proposed by Yann LeCun for image processing, are some of the most
widely used deep neural networks currently [16]. CNNs and their derived network models,
such as the fully convolutional networks (FCNs), U-net and DeepLab V+, have been widely
used in high-resolution image classification, and they have shown their robustness and
strong generalization ability as well as the capability of extracting and utilizing high-level
features from remote sensing images [17]. In addition, CNN-based model improvements
continue to confirm these observed advantages. For example, He et al. combined the
features of urban objects in high-resolution images and the characteristics of urban forest
itself and proposed the Object-Based U-Net-Dense Net-Coupled Network (OUDN) based
on a CNN for extracting urban forests, and its extraction accuracy reached 0.997 [18].

In particular, the Mask-Region Convolutional Neural Network (Mask-RCNN) model
is a flexible and generalized instance segmentation framework [19] that is commonly used
for target recognition and extraction [20,21]. Based on this, Xie et al. proposed a Modified
Mask-RCNN model for urban forest extraction after hyperpixel segmentation of GF-2
images and transferred the model to UAV image classification, achieving a high overall
accuracy of 92.48% [22]. Shi et al. also applied the Modified Mask-RCNN model to ex-
tract urban–suburban fragmented land cover types from several types of high-resolution
satellite images in Nanjing, and its accuracy was higher than that of the object-oriented
decision-tree-based classification model [23]. However, due to the limited receptive field of
the model structure, Mask-RCNN produced a fuzzy target edge segmentation and missed
small targets [24,25]. In contrast, the Transformer technology builds a global information
model by capturing long-distance dependencies of the entire feature graph with an atten-
tion mechanism [26,27]. In particular, the Swin Transformer model, an improved version
of Transformer, has global modeling capability, and its hierarchical network structure and
sliding window information interaction mode expand the receptive field to some extent to
reduce the amount of computation, making it more suitable for multi-scale target classifica-
tion recognition and extraction [28]. For example, Gao et al. used an instance segmentation
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optimization method by incorporating Swin Transformer to effectively solve the problem of
difficult segmentation for multi-larval individual image recognition in complex real-world
scenes, and they achieved a satisfactory result [29]. Although these existing deep learning
models have had different levels of success in extracting and recognizing objects of interest
from remote sensing images, coupling Mask-RCNN with Swin Transformer to accurately
identify different forest types including coniferous forest, broad-leaved forest and shrub
forest from 2 m resolution satellite images has been rarely attempted, and it deserves
further investments and tests.

A forest growth model is an important tool for studying tree growth and stand harvests;
it helps to conceptualize and abstract the complex phenomenon and process of tree growth
and to simulate and predict tree change and future development trends [30]. The whole
stand model is a kind of stand growth and harvest model with nearly a hundred years of
history; it describes the total amount of the whole stand and the growth process of average
individual trees [31]. According to whether the density factor is introduced into the model
as an independent variable, the whole stand model can be divided into two categories.
One is the density-independent model, an example of a model belonging to this category is
the traditional stand harvest table in Europe and America, with little practical significance.
Another type of model is the density-related model, which takes the index of stand density
as an independent variable to simulate the change in stand growth or harvest. Such models
are widely used at present [32]. For example, the Gompertz model is often used to describe
the growth of certain plants and the law of economic activities [33]. Zhao et al. applied the
Gompertz growth model to predict the output value of forest products; the relative error
was only 0.0082%, and the correlation coefficient reached 0.9992 [34]. The Richards model
has been widely used in various fields of forest growth, and it has the advantages of an
accurate description of the growth process and the strongest applicability [35]. For example,
by taking stand age, site index and stand density index as independent variables, Jiang et al.
studied the whole stand model of a Chinese fir plantation with variable density based on
the Richards model, achieving a high accuracy of 82.48% [36]. Based on the Richards model,
Feng et al. established a full-stand model of Beijing’s Platyphelus orientales plantation
based on the compatibility of the harvest model and showed a strong applicability [37].
Wang et al. used the logistic model to study the population quantitative characteristics of
Taxus chinensis, a rare and endangered plant, and fitted the S-shaped curve of population
growth, with a fitting accuracy of more than 90% [38]. Overall, the density-related whole
stand models are simple to understand and easy to use, and they can directly predict the
growth and harvest of the stand per unit area; thus, the total harvest of the whole stand can
be easily derived. With the introduction of new statistical methods, such as the mixed-effect
model, machine learning and quantile regression, their estimation accuracy and application
range can be further improved [39]. For example, Zhang et al. studied a model of Poplus
spp. and analyzed the distribution characteristics under different classes of environmental
indicators based on the KNN model and RF model, and a high accuracy and good fitting
effect were accordingly achieved [40]. However, the model simulation coefficients of the
above-mentioned density-dependent models are species-dependent and site-specific; thus,
to better predict the growth of particular stands by using these models, it is necessary to
make the model parameters localized.

The estimation methods of vegetation carbon storage are mainly divided into three
types [41]: (1) The first is survey-based estimation, namely estimation using regional forest
survey data, and this method usually gives the most accurate results but with extremely
high labor and time costs [42]. (2) The second is remote-sensing-based estimation, for
which commonly used data include optical remote sensing data, LiDAR data and synthetic
aperture radar (SAR) satellite data [43]. For instance, Vincent et al. used WorldView-2 and
LiDAR data to perform a fine estimation of vegetation carbon storage in Auckland, New
Zealand, and the accuracy reached up to 95.9% [44]. LiDAR can effectively and accurately
measure tree height and three-dimensional spatial structure to derive a very high carbon
estimate for individual trees or forest stands, but it is often subjected to the limitation of
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high operational cost [45]. Vatandaşlar et al. used SAR data to estimate the carbon stocks
of Mediterranean forests, and the conclusion fully proved that the total carbon stocks of
forest ecosystems could be estimated using appropriate SAR images and could be applied
to forestry with good accuracy [46]. (3) The third is process-based estimation, which mainly
refers to mechanism modeling. The mechanism modeling method can estimate forest
carbon storage and quantitatively describe the forest carbon cycle process, but it needs
a lot of parameters or variables to drive the process model, and in the reality of model
application, these parameters are frequently difficult to obtain in an accurate manner [47].

The major aim of this study was to propose a forest change analysis framework that
integrates deep learning and forest stand growth modeling to accurately assess the carbon
storage dynamics at a district or county scale. Specifically, the deep learning Mask-RCNN
model was improved by replacing ResNet101 with Swin Transformer for the accurate
extraction of forest types first, and then the optimal stand carbon density growth equation
was determined to accurately calculate forest growth, jointly supporting the evaluation of
forest carbon storage dynamics during the period 2017–2020.

2. Materials and Methods

2.1. Study Area

The study area is located in Jiangning District, Nanjing City, Jiangsu Province
(118◦28′ E~119◦06′ E, 31◦37′ N~32◦07′ N) (Figure 1). Jiangning District belongs to the
northern subtropical monsoon climate zone, with an average annual temperature of 15.7 ◦C
and an average annual precipitation of 1072.9 mm. The area contains a variety of landforms,
including low hills, highlands, plains and basins. The terrain is high in the north and south
and low in the center. The area is rich in water systems, with two major water systems, the
Yangtze River and the Qinhuai River, and many small rivers and reservoirs are scattered
throughout the area. Figure 1 shows the location of the study area and its vegetation
cover. During the past few decades, Jiangning District had rapid economic development
and an intense change in land use. Thus, Jiangning’s forest was frequently disturbed by
human activities. Choosing Jiangning District as a study area can test the reliability and
effectiveness of the proposed framework when quantifying the dynamic changes of forest
carbon stocks under rapid changes, to provide a reference and data support for local forest
change monitoring [48].

2.2. Data

In this study, two GF-1 images including a panchromatic and 4 multi-spectral (PMS)
bands, acquired on 17 August and 5 September 2020, respectively, were collected and
mosaicked to cover the entire study area of Jiangning District, and the images were fused
and acted as the major input for subsequent fine land cover classification. The PMS
camera of the GF-1 satellite provides a 2 m resolution panchromatic band and 4 8 m spatial
resolution multi-spectral bands (red, green, blue and near-infrared) simultaneously. The
camera has a high radiometric resolution, with a quantification level of 10 bits, and its
image swath is 60 km. Additionally, a DEM with a spatial resolution of 12.5 m covering
the entire study area was compiled from the Beijing KOSMOS Image Mall (a satellite
image vendor) to support subsequent land cover classifications. In addition, the 2017
Forest Management and Planning Inventory (FMPI) data were collected from the Nanjing
Greening and Gardening Bureau. These data were acquired by a complete field survey
of all forest stands involved. Before implementing this survey, all forest stands must be
delineated from current aerial photographs or large-scale topographic maps by visual
interpretation, followed by deploying well-trained experienced investigators to each forest
stand to capture forest stand information including tree species composition, dominant
tree species, age, average height, average DBH, crown closure and disturbance type and
severity. Finally, the inventory results were subjected to a quality check by limited sample
plot measurements and cross-comparison. According to the needs of forest classification in
the study area, the vector data of 2017 were converted into raster data. The 2017 FMPI data
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were used as the benchmark of forest status for the dynamic assessment. All the spatial
data mentioned here were resampled to 2 m resolution to facilitate the change analysis.

Figure 1. Geographical location and its vegetation cover of the study area (Upper Left: the map
of China’s territory; Lower Left: the map of the administrative boundaries of Jiangsu Province;
Right: the 2022 vegetation cover map of the study area).

2.3. Image Fusion

The post-atmospheric correction panchromatic band and multi-spectral bands of GF-1
images were fused to generate new higher-quality images with a 2 m spatial resolution
by using the Brovey transform, GS transform, NND transform and wavelet transform
fusion algorithms. The Brovey transform method multiplies multi-spectral images and
panchromatic high-resolution images on the basis of normalization to enhance image
information [49,50]; GS transform eliminates the strong correlation between the bands
and reduces the redundant information by orthogonalizing the image data [51,52]; the
NNDiffuse transform method can significantly improve the image processing quality
and speed, and the fused images will be better when all the multi-spectral bands are
covered by the panchromatic wavelength and the wavelengths of the multi-spectral bands
do not overlap [53]. Wavelet transform first decomposes the panchromatic band into
four new images (approximation, horizontal details, vertical details and diagonal details)
and then resamples the multi-spectral bands to make their spatial resolution consistent
with that of the panchromatic band; on this basis, a principal component analysis of the
these resampled multi-spectral bands is implemented, followed by a histogram-matching
operation between the approximation image and the first principal component image. Once
this is completed, the substitution of the approximation image with the histogram-matched
first principal component image and the implementation of a wavelet reconstruction
analysis are conducted to obtain the fused new images [54,55]. These fusion algorithms
were implemented in ENVI and Matlab packages. The evaluation of the final fused image
quality is an extremely important step in the process of image fusion [56]. Generally,
the evaluation includes the intuitive subjective qualitative evaluation by human visual
observation and the objective quantitative evaluation by calculating quantitative statistical
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indicators [57,58]. The quantitative assessment indicators used in this analysis were the
mean standard deviation, the mean correlation coefficient and the mean gradient [59,60].

2.4. Forest Distribution Extraction Modeling and Validation

First, because water can absorb a lot of solar energy, the reflectance of water is much
lower than that of most ground objects, and its reflectance decreases with the increase
in wavelength in the visible–shortwave infrared range. The normalized difference water
index (NDWI) widens the reflectance gap between the near-infrared band with the weakest
reflectance and the green band with the strongest reflectance for a water body through the
calculation of a ratio, making the water object information more prominent [61]. In the
analysis, NDWI was therefore used to classify the image into water body and non-water
body classes by specifying a threshold of 0.2. Green vegetation strongly absorbs red light
and strongly reflects near-infrared waves; on this basis, the normalized vegetation index
(NDVI), defined as the ratio between the difference and the sum of the reflectance of the
near-infrared channel and the reflectance of the visible channel, was used to highlight the
signal of vegetation. NDVI can reflect vegetation coverage and growth status and can
effectively remove some radiation errors. In an area covered by vegetation, the NDVI
value is positive, and with the increase in vegetation coverage, the NDVI value will be
increased, but it is easily saturated in high-vegetation-coverage areas [62]. Hence, NDVI
was used to classify the non-water body region of the GF-1 image into vegetation areas and
non-vegetation areas. In the vegetation areas, combined with the actual situation of the
study area, five major land cover types, namely coniferous forests, broad-leaved forests,
shrub forests, grassland and cropland, were identified as the scheme of classification. And
600 forest samples, 200 grassland samples and 200 cropland samples were picked up from
the fused GF-1 false-color composite based on our local knowledge to train the classification
models. Due to the complex structures of different forest types, it is difficult to accurately
characterize their differences in a single remote sensing band. Therefore, we used the origi-
nal multi-spectral reflectance bands [63], NDVI, Gray-Level Co-occurrence Matrix-based
textural measures [64], and topographic variables including elevation, slope and aspect [65]
as the inputs for the classifications of machine learning algorithms. Specifically, support
vector machine (SVM), random forest (RF), Mask-RCNN and Mask-RCNN integrated with
Swin Transformer were compared in terms of the classification performance. Among them,
SVM is a linear classifier with the largest interval defined on the feature space, and there
are several types of kernel functions available to potentially optimize the algorithm perfor-
mance. For example, the Gaussian kernel function can map finite-dimensional data to a
higher-dimensional space, which may give SVM a high accuracy in image classification [66].
In this study, the Gaussian kernel function was selected to extract forest types based on
the SVM algorithm, with the C parameter set to 1 and the gamma parameter set to 0.1. RF
is a data-driven non-parametric classification algorithm. The major parameters including
the number of variables m and the number of trees T in the algorithm need to be adjusted
according to specific application scenarios. In this analysis, parameters T = 100 and m = 5
were set after multiple tries. Further, ResNet101 was adopted as the backbone network part
of the image feature extraction network model. Then, the sliding window of the region of
interest (ROI) corresponding to the candidate frame was generated to obtain a feature map
with a high-quality candidate frame, which was used for subsequent target frame location,
mask recognition and image classification. The network structure consisted of the backbone
feature extraction network, Region Proposal Network (RPN) and classification structure.
The main feature extraction part included the Swin Transformer and the Feature Pyramid
Network (FPN), which can extract features from input images and obtain feature maps with
multi-scale semantic information. The proposed ROI network was mainly composed of a
CNN for realizing the segmentation so as to screen the approximate candidate box of the
target location. The classification structure mainly consisted of two parts: category branch
and mask branch. Figure 2 displays the integrated framework that combines Mask-RCNN
with Swin Transformer, which was used to extract forest distribution information.
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Figure 2. The integrated framework that combines Mask-RCNN with Swin Transformer for forest
type extraction.

The Mask-RCNN model combined with Swin Transformer obtained internal pa-
rameters through iterative training. After multiple experimental tests, the learning rate
was set to 0.005, the training batch size was 4, and 100 iterations were performed in the
training phase. To implement the classifications using the deep learning algorithms, a
sample library was established according to the actual situation of the study area. The
fused GF-1 false-color composite was first cut into 780 × 780 image blocks in TensorFlow
(https://www.tensorflow.org/). In order to ensure the consistency and full calculation of
the number of each type as far as possible, sample images with uniform distribution and
complete types were selected for annotation. The sample images were rotated and flipped
to increase the number of available sample images. In total, this study used 864 labeled
training map sheets and 432 labeled validation map sheets. The online annotation tool
VIA (VGG Image Annotator, version 2) was used to annotate the training and validation
datasets (sample images); VIA is an open-source image annotation software developed by
the Visual Geometry Group, does not need to be downloaded and installed, can run offline
in the browser, is simple to use and can annotate points, lines and polygons.

2.5. Calculation of Forest Carbon Storage Benchmark in 2017

In the current analysis, considering the availability of data and the operability, econ-
omy and accuracy of the used methods, we only measured or calculated the carbon storage
of forest living woods, excluding the carbon storage of forest soil, litter and debris, dead
wood and understory shrubs and herbs. For the measurement of forest living wood carbon
storage based on the 2017 FMPI data, the forest biomass conversion factor method was
adopted. This method has been widely used in the estimation of forest biomass and carbon
storage in wide regions because there is a good regression relationship between forest stock
volume, forest biomass and carbon storage by dominant tree species, and the estimation
of forest carbon storage via forest biomass has a high accuracy [67]. Thus, the carbon
storage of each forest stand in Jiangning District was calculated by using Equation (1),
while the carbon storage of shrub forest was calculated by using Equation (2). To minimize
the calculation complexity of shrub forests, we did not differentiate tree species of shrub
forests, and we just focused on different average biomass density values of shrub forests at
the two time points. The parameters involved in the calculation processes for tree species
are summarized in Table A1 in Appendix A. Since the parameters of BEF (biomass expan-
sion factor), wood basic density, carbon content and root-to-stem ratio of some minor tree
species were unavailable in the study area, the parameters of similar tree species from the
same family or genus were used for an approximate calculation. Finally, we summed the
measurements of all the forest stands of living woods and shrub forest to obtain the total
carbon storage benchmark in 2017.

Cz = ∑i,j

{
Ai,j·Vi,j·BCEFi,j·

(
1 + Ri,j

)·CFi,j
}

(1)

135



Forests 2024, 15, 506

Cz = Mi·Ai·CFD (2)

where Cz is the total carbon storage of forest stands (tons of carbon); Aij is the area of the
jth forest stand with dominant tree species i (hm2); Vij is the stock volume per unit area
of the jth forest stand with dominant tree species i (m3/hm2); BCEFij = BEFij·Di; BEFij
is the biomass expansion factor of tree species i in climatic zone j, which is the ratio of
above-ground biomass over the biomass of tree trunks; Rij is the ratio of root over stem of
tree species i in climatic zone j; CFij is the carbon content of tree species i in climatic zone j
(ton carbon/ton dry matter; C/t d.m); Mi is shrub layer biomass per unit area (hm2); Ai is
shrub layer area (hm2); CFD is carbon content ratio (C/t d.m).

2.6. Derivation of the 2020 Forest Carbon Storage

Based on the outcomes of Section 2.4, we could easily obtain the spatial distributions
of conventional forest stands (e.g., coniferous forest and broad-leaved forest) and the shrub
forest type. For the shrub forest, we used Equation (2) to calculate the carbon storage in
2020 by specifying its newly updated biomass density per unit area, derived from limited
harvesting measurements of shrubs, and its distribution area. For the conventional forest
stands, their calculation of the 2020 carbon storage was divided into two parts, including
the persisting forest part (pixels that were forest type in both 2017 and 2020), forest gain
part (pixels that were non-forest type in 2017 but were forest in 2020). The 2020 carbon
storage measurement of the persisting forest was based on the optimal local carbon density
growth allometric equations. Based on the 2017 FMPI data in Nanjing, we fit the carbon
density growth equations including the logistic (Equation (3)), Richards (Equation (4))
and Gompertz (Equation (5)) growth models (carbon density against forest age) of the
coniferous forests and broad-leaved forests in Nanjing City by adopting the space for
time substitution strategy in consideration of the availability of the inventory data of
different tree species with different stand ages via RStudio package, and we selected the
optimal equations for calculating the carbon storage of the persisting forests in Jiangning
by specifying a 3-year growth duration in the optimal equations. For the part of forest gain,
its initial forest age was set to 1.5 years (residing in the nursery with an average duration of
1.5 years for this mid-latitude region with good hydrothermal conditions); similarly, the
growth duration was also set to 3 years to calculate the carbon storage by following the
optimal equations for different forest types.

y =
a

(1 + be−ct)
(3)

y = a
(
1 − e−ct)b (4)

y = ae−be−ct
(5)

where y represents the carbon density of the forest stand; t represents the average age of
the forest stand; and a, b and c are the model parameters to be solved.

2.7. Validation Strategies

For the validation of forest type classification, we identified another set of validation
samples with the same size of 1000 pixels as the training set to construct confusion matrices.
The validation sample points were selected by stratified random sampling to ensure an
unbiased estimate of accuracy; 400 random points were generated in the non-forest region,
and 600 random points were generated in the forest region. Then, the actual type attributes
of these points were visually interpreted based on the fused GF-1 false-color composite
coupled with our local knowledge. On this basis, the overall accuracy (OA) and Kappa co-
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efficient were calculated to evaluate the classification accuracy. The formula for calculating
the Kappa coefficient is written in Equation (6):

Kappa =
Po − Pe

1 − Pe
(6)

Here, Po is the overall accuracy of classification, which refers to the probability that
the classification results are consistent with the true reference data, and is calculated by
dividing the amount of correctly classified pixels by the total of the pixels involved in
the validation. Pe is the estimate of the chance agreement, which refers to the completely
random assignment of pixels to classes (e.g., dicing to determine the class of a pixel). Thus,
the Kappa coefficient indicates the difference degree between the actual classifications made
by a classifier and the random classifications made by chance. When the Kappa coefficient
value ranges from 0.61 to 0.80, there is a substantial difference between the results of an
automated classifier and the results of a random chance classifier, suggesting an indication
of good classification performance. When the Kappa value ranges from 0.81 to 1.00, there is
an almost perfect difference between the results of an automated classifier and the results
of a random chance classifier, showing an indication of excellent classification performance.

For the validation of the fitted carbon density growth models based on the 2017 FMPI
data, we collected similar research studies (Table A7 in Appendix A) and cross-compared
our simulated carbon density results of coniferous forest and broad-leaved forest with the
results of those similar studies to prove the effectiveness and reliability of our simulated
carbon density growth models.

Figure 3 shows the overall flow chart of this study.

Figure 3. The flow chart of the current analysis.
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3. Results

3.1. Image Fusion

Table A2 in the Appendix A lists the objective evaluation statistics of the four im-
age fusion methods. It was found that the GS fusion method achieved the highest mean
correlation coefficient, mean gradient and information entropy values, 0.9743, 63.2020
and 7.6548, respectively, and the db2 (mother wavelet)-based wavelet transform fusion
method achieved the worst fusion performance, evidenced by the lowest correlation coef-
ficient, mean gradient and information entropy values, 0.9081, 1.1443 and 3.8584, respec-
tively. The order of mean correlation coefficients of the four image fusion methods was
GS > NND > wavelet transform > Brovey, indicating that the fusion of GS and NND
images was the closest to the original image, and the fidelity effect was good. The order of
information entropy was GS > NND > Brovey > wavelet transform, which reflects that GS
and NND have strong detail-expressive force and contain a large amount of information.
The average gradient was ordered as GS > Brovey > NND > wavelet transform, indicating
that GS and Brovey images are clearer.

Thus, GS-based image fusion was selected as the optimal input for subsequent forest
classification analysis. Figure 4 shows the visual effects of the four fused images. Sub-
jectively, Brovey and GS fusion methods could maintain high spectral fidelity compared
to the false-color composite of the original multi-spectral bands, but wavelet transform
and NNDiffuse methods had obvious spectral deviation. Based on the objective and sub-
jective evaluations, the GS fusion method was determined to be the best fusion method
among the four fusion methods, and its fused images were used to support subsequent
classification applications.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Visual effects of the four image fusion methods based on GF-1 (R: Band4, G: Band3, B:
Band2). (a) shows the panchromatic band gray level image; (b) shows the false-color composite of
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the original multi-spectral band combination (R: NIR band, G: red band, B green band); (c) shows
the false-color composite of the Brovey-fused images; (d) shows the false-color composite of the
db2-based wavelet-fused images; (e) shows the false-color composite of the NND-fused images;
(f) shows the false-color composite of the GS-fused images.

3.2. Validation
3.2.1. Forest Classification Verification

Tables A3–A6 in Appendix A display the independent validation statistics of the four
classification algorithms applied to extract the forest distributions. It was found that the
SVM model had an overall classification accuracy of 85.8% and a Kappa coefficient of
0.787 (Table A3, in which the user accuracy of broad-leaved forest, coniferous forest, shrub
forest and non-forest reached 90.31%, 76.16%, 49.28% and 91.49%, respectively), the RF
model achieved an overall accuracy at 87.8% and a Kappa coefficient of 0.817 (Table A4,
in which the user accuracy of broad-leaved forest, coniferous forest, shrub forest and
non-forest reached 91.97%, 80.00%, 53.03% and 92.62%, respectively), the Mask-RCNN
achieved an overall accuracy of 90.1% and a Kappa coefficient of 0.851 (Table A5, in which
the user accuracy of broad-leaved forest, coniferous forest, shrub forest and non-forest
reached 93.57%, 85.52%, 63.24% and 92.96%, respectively), and the Swin Transformer
coupled with Mask-RCNN had an overall accuracy of 93.9% and a Kappa coefficient of
0.908 (Table A6, in which the user accuracy of broadleaf forest, coniferous forest, shrub
forest and non-forest reached 94.94%, 90.13%, 81.13% and 96%, respectively). Obviously, the
Swin Transformer coupled with Mask-RCNN outperformed the other three classification
models, and its classification results were retained to support subsequent forest distribution
change analysis.

3.2.2. Cross-Comparison of the Carbon Density Fitting Results

Figure 5 shows the fitting effects of forest carbon density against forest age by conifer-
ous forest type and broad-leaved forest type, based on the logistic, Richards and Gompertz
models. The fitting R2 values of the logistic model, Richards model and Gompertz model
for the coniferous forest type were estimated at 0.78, 0.75 and 0.77 respectively, and the
fitting R2 values of the three models for the broadleaf forest type were 0.71, 0.70 and 0.71,
respectively. Apparently, the logistic model was the best model for simulating carbon
density growth in both coniferous forest and broad-leaved forest; thus, it was used to
predict the growth of carbon density of each forest stand by specifying the forest type first.
Clearly, the fitting performance of the logistic model outperformed the other two models
in both coniferous forests and broad-leaved forests, and all the models performed better
when fitting coniferous forest data than when fitting broad-leaved forest data in the current
study area (Figure 5).

Figure 6 shows the cross-validation effects of the fitted models by intercomparing
our fitting results with other existing similar studies (Table A7 in Appendix A). In the
comparison of coniferous forests, the carbon density results obtained by Justin (Drawing
G) [68] were slightly higher than our research results in each age group, and the carbon
density results of Li (Drawing C) [69] were also higher than our results in near-mature
forest, mature forest and over-mature forest. At the same time, we maintained a high
degree of agreement with the carbon density results obtained by Liu (Drawing E) [70], Yan
(Drawing F) [71], Wise (Drawing H) [72] and Riahi (Drawing I) [73]. In the comparison of
broad-leaved forests, we found that our carbon density results were lower than those of
Li (K) [69], Yue (P) [74] and Liu (N) [70] and slightly higher than those of Lan (Drawing
L) [75] and Hu (Drawing Q) [76]. But they all reasonably fall within the range of other
available findings.
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Figure 5. The fitting relationships between carbon density and forest age for broad-leaved forest (left)
and coniferous forest (right) based on the 2017 FMPI data.

  

Figure 6. Comparison of the simulated coniferous forest (left) and broad-leaved forest carbon
densities (right) with the results of other similar studies (A is the simulated results in the current
analysis).
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The cross-validation effect comparison with other existing similar literature shows
that the simulated carbon densities of the coniferous forest and the broad-leaved forest
at different age groups in the current work were reasonably within the ranges of other
existing research results (Figure 6), indicating that the simulated models were reliable and
applicable and that they could be used to calculate the carbon densities of persisting forests
and newly gained forests in 2020.

3.3. Result Analysis
3.3.1. Forest Classification Extraction Results

Figure 7 displays the forest distribution pattern created from the 2017 FMPI results,
Figure 8 shows the 2020 forest type distribution results extracted using the Swin Trans-
former coupled with the Mask-RCNN model. The forests were principally distributed in
the northeastern and southeastern portions of Jiangning District in both 2017 and 2020
(Figures 7 and 8). And there was a total forest area of 41,913.805 hm2 in 2017 and
42,261.315 hm2 in 2020, with a net increase of about 347.51 hm2. Figure 9 conveys the
forest change information during the period 2017 to 2020, which was derived from the
spatial overlay analysis of the 2017 forest distribution and the 2020 forest distribution. The
statistical results of the forest change information map (Figure 9) showed the following:
(1) There was a forest gain of 637.164 hm2 during the period 2017 to 2020, and because
the newly planted forest lands in 2020 did not take on the spectral signature of the forest
type on the GF-1 remote sensing image, the value of 637.164 hm2 might underestimate the
actual areas of afforestation that occurred during the period 2017 to 2020. (2) there was a
forest loss of 289.654 hm2 during the period 2017 to 2020, and simultaneously, an analysis
of forest reduction areas showed that it was mainly due to the construction demand of
cities and farmland, and the demand of urban development caused forest reduction. For
some regions, forest loss was characterized by small and scattered patches, mainly due
to the conversion of forests to farmland. (3) The main reason for the increase in forest in
some areas in the past three years was afforestation and greening efforts made by Jiangning
District in response to the national policy.

 
Figure 7. Forest distribution map of Jiangning in 2017.
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Figure 8. Forest distribution map of Jiangning in 2020.

Figure 9. Forest change map of Jiangning during 2017–2020.

3.3.2. Forest Carbon Storage Measurement and Its Dynamics

Based on the methods mentioned in Sections 2.5 and 2.6, the forest carbon storage of
2017 was calculated at 125.40 × 104 t, and the shrub forests’ carbon storage was derived at
1.085 × 104 t; thus, the total carbon storage of coniferous forest, broad-leaved forest and
shrub forest totaled 126.49 × 104 t in 2017. Based on the distributions of the persisting
forests and the newly gained forests, the 2017 FMPI data and the fitted carbon equations,
the carbon storage of the persisting forests in 2020 was calculated at 142.53 × 104 t, the
carbon storage of forest gains was estimated at 1.04 × 104 t and the carbon storage of the
shrub forests in 2020 was estimated at 1.142 × 104 t; thus, the total carbon storage of the
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forests in 2020 of Jiangning District was estimated at 143.54 × 104 t. Comparing the 2017
total carbon storage with the 2020 carbon storage, we found that there was a net increase in
carbon storage of 2.41 × 104 t.

4. Discussion

(1) Forest type extraction effectiveness and reliability

The initial backbone of the improved Mask-RCNN model in this study was replaced
by the Swin Transformer model, and the modified framework produced an extraction
accuracy that was similar to or even higher than that in other studies that also used this
type of approach [28,29]. Cong et al. compared the extraction accuracy of the improved
Mask-RCNN model fused with Swin Transformer with the convolutional neural network
model embedded with UNet3+ in bell pepper instance detection, and they found that the
average detection accuracy, average detection recall, average segmentation accuracy and F1
score were 98.1%, 99.4%, 94.8% and 98.8%, respectively, indicating that the improved Mask-
RCNN model fused with Swin Transformer could effectively segment different classes of
bell peppers under overexposure, bell pepper overlap and leaf occlusion conditions [77].
Jamali et al. compared multiple models within RF, SVM, VGG-16, 3D CNN, and Swin
Transformer to classify coastal wetlands in Saint John, New Brunswick, Canada, and
this work demonstrated that Swin Transformer has great potential in classifying complex
coastal landscapes [78]. Our results in the current study are consistent with the findings of
the above-mentioned two studies and confirm the effectiveness and high accuracy of the
proposed framework for forest type extraction applications.

(2) Forest growth model

According to the fitting results of the three forest growth models, logistic, Gompertz
and Richards, the logistic model had the best effect. Xu used five growth theory models,
namely Compertz, Korf, logistic, Mischerlich and Schumacher, to fit the unit stock of
the Masson pine forest and Chinese fir forest in Longquan, Zhejiang, and found that the
logistic equation had the best fitting effect, and the coefficient of determination was above
0.85 [79]. Similarly, Rong et al. took Jinguuling Forest Farm in Jilin as a research object
and established a stand stock growth model by using five theoretical growth equations:
Richards, logistic, single molecule, Gompertz and Korf. Their results showed that the
logistic model was the best in Larix artificial forest, mixed broad-leaved forest and mixed
coniferous natural forest [80]. The results of the two analyses are consistent with the results
of our study, which fully indicates the validity and credibility of the results of this study.

(3) Carbon storage measurement

Based on the 2017 FMPI data, this analysis focused only on the carbon pool of living
trees. Forest carbon storage was measured by dominant tree species categories in each
forest stand, and the local species-specific parameter values of BEF, carbon content, root-
to-stem ratio and basic density of wood compiled from the Second Forestry Carbon Sink
Measurement and Monitoring Work Program of Jiangsu Province were used, which made
the calculation results more accurate and in line with the forests of Jiangning District of
Nanjing City. Further, if the empirical parameters of soil and AGB (above-ground biomass)
sample plots surveyed by Fang et al. were taken as a basis, a rough estimation of the soil
carbon stock, litter carbon pool and understory shrub and grass carbon pool in the forests of
Jiangning District could be performed [42]; thus, our calculation results related to different
carbon pools could be expanded to support more a comprehensive assessment of forest
carbon fixation capability. However, these parameters are generally regional-scale-oriented,
and application of them to the local scale, e.g., Jiangning District, should be locally corrected.
Due to the unavailability of field sample data on soil, litter and understory shrub and grass
in Jiangning’s forests, the empirical estimations may have some uncertainties and deserve
further field sampling validations.

(4) Usage of the measured carbon storage dynamics
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The forest change map of Jiangning District (2017–2020) (Figure 7) and the measured
forest carbon dynamics provide key references for the development of carbon sink forestry,
sustainable forest management and forest protection and utilization measures [81]. The
information on forest change and carbon storage will enable administrative agencies to
grasp the change magnitude of forest carbon sequestration capacity and future development
potential in the whole region, to more accurately and efficiently identify areas suitable for
forest growth, and to regularly inventory, update, and release data on carbon-stock-related
indicators based on the framework proposed in the current work, helping to continuously
explore new paths for forest carbon stock measurement and monitoring [82]. Additionally,
the change information will facilitate the adoption of forest quarantine, biological and
chemical control, prediction and forecasting, and damage assessment to prevent forest
disasters from occurring and to improve forest management effectiveness [83]. Ultimately,
this study can provide a technical reference for efficient monitoring of forest status change,
and its findings lay an underlying data basis for local agencies to develop targeted forest
management policies or measures when pursuing the double-carbon goals (achieving peak
CO2 emissions before 2030 and carbon neutrality before 2060).

5. Conclusions

In this study, we developed an efficient framework that integrates deep learning,
statistical modeling and GF-1 remote sensing images for the timely evaluation of changes
in forest distribution and forest living carbon storage. We particularly fit the local optimal
carbon density growth equations by forest type to facilitate the dynamic assessment of
standing trees’ carbon storage in Jiangning’s forests between 2017 and 2020. The results
showed that Mask-RCNN fused with Swin Transformer had the highest capability in
extracting coniferous forest, broad-leaved forest and shrub forest compared to the other
three models. Additionally, the net increase in forest area and standing tree carbon storage
indicated the effectiveness of the forest management practices implemented by the local
agencies. The study findings provide key data and a methodological basis for the devel-
opment of carbon sink forestry, sustainable forest management and targeted measures for
forest conservation and utilization and contribute to pursuing the double-carbon goals
(achieving peak CO2 emissions before 2030 and carbon neutrality before 2060 in China).
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Appendix A

Table A1. The involved calculation parameters for dominant tree species (groups) in China.

Number Dominant Species BEF
Basic Density of
Wood D (t/m3)

Root-to-Stem
Ratio

Carbon Content
Ratio (tC/t d.m)

1 Red Pine 1.4251 0.4137 0.1920 0.5141
2 Black Pine 1.8920 0.4500 0.2180 0.5146
3 Horsetail Pine 1.2940 0.4482 0.1730 0.5271
4 Overseas Pine 1.4209 0.4894 0.2813 0.5156
5 Wetland Pine 1.3780 0.3590 0.2680 0.5311
6 Torch Pine 1.5680 0.4354 0.3380 0.5361
7 Other Pines 1.3410 0.4649 0.1810 0.4963
8 Fir 1.2990 0.3071 0.2030 0.5127
9 Willow Fir 1.2710 0.2893 0.2680 0.5331
10 Metasequoia 1.3630 0.2740 0.3510 0.5083
11 Pond fir 1.3580 0.3700 0.3133 0.5156
12 Cypress 1.4580 0.4722 0.2190 0.5088
13 Yew (Sequoia) 1.4477 0.3913 0.2197 0.5156
14 Other Fir 1.3340 0.3765 0.2420 0.5185
15 Oak 1.2880 0.6119 0.2890 0.4798
16 Birch 1.4210 0.5270 0.2530 0.4914
17 Water, Hu, Yellow 1.2930 0.4523 0.2210 0.4620
18 Ash 1.3120 0.5462 0.3190 0.4803
19 Walnut 1.3088 0.4302 0.2863 0.4803
20 Camphor 1.2490 0.4649 0.2580 0.4916
21 Nan 1.2490 0.4807 0.2580 0.5002
22 Elm 1.3683 0.4868 0.2504 0.4803
23 Mullein 1.4090 0.5161 0.1990 0.5115
24 Maple 1.2860 0.4860 0.3370 0.4803
25 Other Hardwoods 1.3850 0.6062 0.2410 0.4901
26 Lime 1.3831 0.4177 0.1997 0.4392
27 Sassafras 1.3130 0.4758 0.2610 0.4848
28 Poplar 1.3940 0.3644 0.1850 0.4502
29 Willow 1.3940 0.4409 0.1850 0.4803
30 Paulownia 1.7870 0.2367 0.2360 0.4695
31 Eucalyptus 1.1930 0.5901 0.1790 0.4748
32 Acacia 1.3860 0.5843 0.2070 0.4666
33 Mullein 1.3440 0.6768 0.1950 0.4893
34 Neem 1.3884 0.4389 0.1890 0.4803
35 Other Soft Broadleaf 1.2730 0.4222 0.2150 0.4502
36 Conifer Mix 1.3646 0.3902 0.2086 0.5168
37 Broadleaf Mix 1.2815 0.5222 0.2351 0.4796
38 Needle–Broadleaf Mix 1.3230 0.4754 0.2218 0.4893

Table A2. Objective evaluation measures of different image fusion algorithms.

Fusion Methods

Statistics
Band

Correlation
Coefficient

Mean
Gradient

Information
Entropy

Panchromatic 18.1610 6.2657

Multi-spectra

Blue

10.0761 6.5217
Green
Red
NIR

GS

Blue

0.9743 63.2020 7.6584
Green
Red
NIR
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Table A2. Cont.

Fusion Methods

Statistics
Band

Correlation
Coefficient

Mean
Gradient

Information
Entropy

Brovey
Green

0.8843 14.6312 4.6582Red
NIR

Wavelet Transform

Blue

0.9081 1.1443 3.8584
Green
Red
NIR

NNDiffuse

Blue

0.9094 10.0635 6.9215
Green
Red
NIR

Table A3. Accuracy validation statistics of forest type classifications based on SVM.

Classification Result

Broad-leaved
forest

Coniferous
forest Shrub forest Non-forest Subtotal Producer

accuracy (%)

Reference
samples

Broad-leaved forest 354 15 12 13 394 89.85
Coniferous forest 17 115 10 11 153 75.16

Shrub forest 10 8 34 9 61 55.74
Non-forest 11 13 13 355 392 90.56

Subtotal 392 151 69 388 1000
User accuracy (%) 90.31 76.16 49.28 91.49

OA = 85.8% Kappa = 0.787

Table A4. Accuracy validation statistics of forest type classifications based on RF.

Classification Result

Broad-leaved
forest

Coniferous
forest Shrub forest Non-forest Subtotal Producer

accuracy (%)

Reference
samples

Broad-leaved forest 355 13 12 14 394 90.10
Coniferous forest 15 124 8 6 153 81.05

Shrub forest 9 8 35 9 61 57.38
Non-forest 7 10 11 364 392 92.86

Subtotal 386 155 66 393 1000
User accuracy (%) 91.97 80.00 53.03 92.62

OA = 87.8% Kappa = 0.817

Table A5. Accuracy validation statistics of forest type classifications based on Mask-RCNN.

Classification Result

Broad-leaved
forest

Coniferous
forest Shrub forest Non-forest Subtotal Producer

accuracy (%)

Reference
samples

Broad-leaved forest 364 11 9 10 394 92.39
Coniferous forest 13 124 7 9 153 81.05

Shrub forest 5 4 43 9 61 70.49
Non-forest 7 6 9 370 392 94.39

Subtotal 389 145 68 398 1000
User accuracy (%) 93.57 85.52 63.24 92.96

OA = 90.1% Kappa = 0.851
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Table A6. Accuracy validation statistics of forest type classifications based on Mask-RCNN combined
with Swin Transformer.

Classification Result

Broad-leaved
forest

Coniferous
forest Shrub forest Non-forest Subtotal Producer

accuracy (%)

Reference
samples

Broad-leaved forest 375 8 5 6 394 95.18
Coniferous forest 10 137 3 3 153 89.54

Shrub forest 6 5 43 7 61 70.49
Non-forest 4 2 2 384 392 97.96

Subtotal 395 152 53 400 1000
User accuracy (%) 94.94 90.13 81.13 96.00

OA = 93.9% Kappa = 0.908

Table A7. List of similar studies used to verify the effectiveness and reliability of the simulated
carbon density equations.

Letter Stand Type Source Letter Stand Type Source

B Coniferous plantation forests Ali [84] J Broad-leaved plantation forests Li [69]
C Coniferous natural forests Li [69] K Broadleaf natural forests Li [69]
D Mixed conifer forests Li [85] L Mixed broadleaf forests Lan [75]
E Mixed coniferous forests Liu [70] M Mixed broadleaf forests Li [85]
F Coniferous forests Yan [71] N Mixed broadleaf forests Liu [70]
G Coniferous plantations Justine [68] O Mixed broadleaf forests Yang [86]
H Coniferous forests Wise [72] P Broadleaf forests Yue [74]
I Coniferous forests Riahi [73] Q Broad-leaved natural forests Hu [76]
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Abstract: Magnolia wufengensis is a newly discovered rare and endangered species endemic to China.
The primary objective of this study is to find the most suitable species distribution models (SDMs) by
comparing the different SDMs to predict their habitat distribution for protection and introduction in
China under climate change. SDMs are important tools for studying species distribution patterns
under climate change, and different SDMs have different simulation effects. Thus, to identify the po-
tential habitat for M. wufengensis currently and in the 2050s (2041–2060) and 2070s (2061–2080) under
different climate change scenarios (representative concentration pathways RCP2.6, RCP4.5, RCP6.0,
and RCP8.5) in China, four SDMs, Maxent, GARP, Bioclim, and Domain, were first used to compare
the predicted habitat and explore the dominant environmental factors. The four SDMs predicted that
the potential habitats were mainly south of 40◦ N and east of 97◦ E in China, with a high distribution
potential under current climate conditions. The area under the receiver operating characteristic
(ROC) curve (AUC) (0.9479 ± 0.0080) was the highest, and the Kappa value (0.8113 ± 0.0228) of the
consistency test and its performance in predicting the potential suitable habitat were the best in the
Maxent model. The minimum temperature of the coldest month (−13.36–9.84 ◦C), mean tempera-
ture of the coldest quarter (−6.06–12.66 ◦C), annual mean temperature (≥4.49 ◦C), and elevation
(0–2803.93 m), were the dominant factors. In the current climate scenario, areas of 46.60 × 104 km2

(4.85%), 122.82 × 104 km2 (12.79%), and 96.36 × 104 km2 (10.03%), which were mainly in central
and southeastern China, were predicted to be potential suitable habitats of high, moderate, and
low suitability, respectively. The predicted suitable habitats will significantly change by the 2050s
(2040–2060) and 2070s (2060–2080), suggesting that M. wufengensis will increase in high-elevation
areas and shift northeast with future climate change. The comparison of current and future suitable
habitats revealed declines of approximately 4.53%–29.98% in highly suitable habitats and increases
of approximately 6.45%–27.09% and 0.77%–21.86% in moderately and lowly suitable habitats, re-
spectively. In summary, these results provide a theoretical basis for the response to climate change,
protection, precise introduction, cultivation, and rational site selection of M. wufengensis in the future.

Keywords: climate change; environmental factors; introduction; Magnolia wufengensis; species
distribution models; suitable habitats

1. Introduction

According to the Sixth Assessment Report (AR6) of the Intergovernmental Panel
on Climate Change (IPCC), the global surface temperature from 2011 to 2020 is 1.1 ◦C
higher than that from 1850 to 1900, and the global temperature rise may reach 1.5 ◦C,
or face the risk of temporarily breaching 1.5 ◦C in the near term [1]. The escalating
global surface temperature presents a profound and imminent threat to the survival of
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plants [2], which will lead to the reduction of the suitable habitat area for some plants,
habitat fragmentation, and even the acceleration of the loss of global biodiversity [3–5]. Rare
and endangered plants (REPs) constitute a vital component of biodiversity, playing a pivotal
role in maintaining ecosystem health [6,7]. REPs are highly susceptible to environmental
changes due to their special physiological characteristics [8,9], such as narrow distribution
ranges, high environmental requirements, weak natural regeneration, and few genetic
resources [10,11]. According to recent research, approximately one-third of the world’s
tree species face the risk of extinction primarily due to human activity and climate change-
induced habitat loss [12]. Over a hundred tree species have already vanished from the
wild, and unless immediate and decisive action is taken, many more are on the brink of
extinction [13]. The protection of rare and endangered plants is the premise and basis for
the protection of biodiversity and should be one of the most urgent tasks at present.

Magnolia wufengensis is a rare and endangered species of the Magnoliaceae fam-
ily that was published in 2006 [14,15]; it is a group-building tree in forest ecosystems.
M. wufengensis is a lofty, deciduous arbor species with abundant variations in flower shape,
flower color, and petal number. The shapes of its tepals are ovoid, obovate, narrowly
obovate, and long lanceolate. The tepal color changes from white and pale red to red and
purple–red; the number of tepals varies from 9 to 46 [16]. Thus, M. wufengensis has great
aesthetic value, can be used for urban greening and mountain afforestation, and has great
potential for promotion and utilization.

However, the natural distribution range of M. wufengensis is very narrow, and it is
found only in the central and western parts of Wufeng County, Hubei Province, and the
Three Gorges area, where it is endemic [17]. Moreover, due to excessive deforestation
by humans and the fragility of its own genetic resources, the M. wufengensis population
is small, its habitat is severely fragmented, and it is very scarce in the wild, with fewer
than 2000 trees [18]. According to the standards of the IUCN (International Union for
the Conservation of Nature), M. wufengensis was endangered at a level of EN A2c, which
indicates that it is endemic to China [17]. Thus, it is in a critically endangered state and
is in urgent need of protection. Introduction and cultivation are effective ways to protect
and preserve germplasm resources of endangered plants [19]. Introduction and cultivation
require an understanding of the environmental conditions that affect its growth and the
selection of suitable habitat areas to be successful [20]. However, there are still some
problems that need to be considered in the introduction and cultivation planning. One is
the lack of detailed national growth data on M. wufengensis, and it is difficult to determine
the range of suitable habitats across the country. Due to the huge ornamental value and
economic value of M. wufengensis, many nurseries in China blindly follow trends and
introduce species in some areas that are not suitable, resulting in poor and slow growth
of M. wufengensis, which has caused large setbacks in the early stage [21]. The second is
how to adapt to global climate change. Global climate change has become one of the main
threats to rare and endangered plants in the future [22]. Future climate change will cause
changes in temperature and water conditions in plant growth areas, which will significantly
affect the distribution pattern of plants [23].

A viable solution to address the aforementioned problems is the utilization of species
distribution models (SDMs), which involve integrating species existence data with envi-
ronmental information to simulate and predict habitats suitable for species growth while
also mapping the distribution of potential suitable habitats for species across space and
time [24,25]. Because SDMs can reveal the relationship between the suitability of the habitat
and the environment for species, they are widely used in ecological research [26], espe-
cially in predicting the distribution of species and their hotspots [27], managing invasive
species [28], protecting of endangered species [11], and verifying the relationship between
climate change and species distribution [29]. The commonly used SDMs mainly include
the CLIMEX model, Genetic Algorithm for Ruleset Production (GARP), MaxEnt model,
Bioclim model, and Domain model [30–32]. Each mode is based on different principles and
algorithms, and the applicable conditions are also quite different [33,34].
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While some studies have focused on the potential suitable habitat areas of M. wufen-
gensis in the early stages [21,35], there was no model screening and a lack of potential
habitat simulation at the Chinese scale. The objective of this study is to employ an SDM
to predict the potential habitat distribution of M. wufengensis in China, considering the
implications of future climate change. We believe that the SDMs should be screened first,
and the most suitable model can be selected to effectively predict its potential suitable
habitat distribution. Meanwhile, as China is the global distribution center of Magnolia
plants, there are related species distributed from south to north [36]. We hypothesize that
M. wufengensis, a newly discovered species of the genus Magnolia, can grow in most parts
of China. With global warming in the future, the north-south boundary of China’s climate
may move northward [25]. According to the prediction results of most sympatrically
distributed species [37,38], this may also cause the distribution range of M. wufengensis to
move northward or even expand as a whole.

Therefore, this study aims to utilize four ecological niche models, Maxent, GARP,
Bioclim, and Domain, all of which can be constructed solely with species occurrence
point data, to predict the potential habitat of M. wufengensis in China. These four models
have demonstrated the ability to yield reliable predictions even when distribution sample
data and environmental variables are limited [33]. Specifically, we aimed to answer the
following questions: (1) Which SDMs best simulate the potential habitat of M. wufengensis
in China? (2) What are the main environmental factors affecting the habitat distribution
of M. wufengensis in China? What is the threshold? (3) Where is the potential habitat
distribution of M. wufengensis under future climate change? How has it changed from the
current distribution? Our study will provide scientific guidance for the response to climate
change, ex situ conservation, resource protection, precise introduction, cultivation, and
rational site selection of M. wufengensis in China.

2. Materials and Methods

The method of this study consists of five major steps: (1) collecting and processing
occurrence data and environmental factors from different sources; (2) modeling and com-
paring suitable habitat, the area under the receiver operating characteristic (ROC) curve
(AUC) and the Kappa value with Maxent, GARP, Bioclim, and Domain; (3) simulating
suitable habitat based on the best model under current and future climate change; (4) eval-
uating and exploring dominant environmental factors and thresholds; and (5) calculating
the centroid of the suitable area under different climate scenarios and exploring the shift of
the centroid. The step-by-step flow chart is shown in Figure 1.

 

Figure 1. Flow chart for predicting potential suitable habitat.
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2.1. Species Distribution Points

The distribution point data of M. wufengensis were obtained from data collection by the
(1) Global Biodiversity Information Facility (GBIF, https://www.gbif.org/, accessed on 15
July 2019), (2) Chinese Virtual Herbarium (CVH, http://v5.cvh.org.cn/, accessed on 15 July
2019), (3) National Specimen Information Infrastructure (NSII, http://mnh.scu.edu.cn/,
accessed on 15 July 2019), and (4) a field investigation (direct observation combined with
GPS (Global Positioning System) technology) [21] of the main M. wufengensis introduction
areas in China from June 2016 to October 2018 (Figure 2). After removing incorrect and
duplicate distribution points and retaining distribution points spaced at least 5 km apart
from adjacent points, a total of 49 M. wufengensis distribution record points were obtained.

 

Figure 2. (a) Distribution points of M. wufengensis in China; (b,c) M. wufengensis.

2.2. Environmental Factors

We downloaded 19 climatic factors and 3 topographical variables (elevation, aspect,
and slope) for 3 periods (a current period and the future periods of the 2050s (2040–2060)
and 2070s (2060–2080)) from the World Climate Database (http://www.worldclim.org/,
accessed on 15 July 2019) (Table S1). Here, we chose the CCSM4 climate system model,
which has great advantages in climate simulation [39]. For the future climate data in the
2050s and 2070s, we selected four RCPs: RCP2.6, RCP4.5, RCP6.0, and RCP8.5.
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We downloaded 11 soil factors from the Harmonized World Soil Database (HWSD, ht
tp://www.fao.org/soils-portal/soil-survey/soil-maps-anddatabases/harmonized-world
-soil-database-v12/en/ accessed on 15 July 2019) (Table S1).

To reduce the complexity of the model and prevent overfitting of the model due
to the correlation among various environmental factors, which affect the accuracy of the
model [40,41], we used R software (Version 3.6.1) to perform Pearson’s analysis and selected
environmental factors with a correlation lower than 0.8.

Finally, 9 climatic factors, 3 topographic factors, and 4 soil factors were chosen to
simulate the suitable habitat of M. wufengensis [21] (Table 1).

Table 1. Environmental factors were ultimately selected to simulate suitable habitat.

Category Variable Description Unit

Climate

bio1 Annual mean temperature ◦C
bio2 Mean diurnal range (mean of monthly (max temp–min temp)) ◦C
bio6 Min temperature of the coldest month ◦C

bio10 Mean temperature of the warmest quarter ◦C
bio11 Mean temperature of the coldest quarter ◦C
bio12 Annual precipitation mm
bio13 Precipitation of the wettest month mm
bio14 Precipitation of the driest month mm
bio15 Precipitation seasonality (coefficient of variation) /

Topographic
Elevation m

Slope ◦
Aspect rad

Soil

t-bulk Topsoil bulk density kg/dm3

t-ph Topsoil pH (H2O) /
t-clay Topsoil clay fraction %
t-oc Topsoil organic carbon %

Environmental factors from different sources were resampled in ArcGIS to ensure a
consistent spatial resolution (2.5 arcminute resolution) of the data and convert the data into
a format that can be recognized by all the SDMs [42]. The base map for data processing
was obtained from the 1:4,000,000 China administrative division map of the standard
map service of the Ministry of Natural Resources of the People’s Republic of China (http:
//bzdt.ch.mnr.gov.cn/, accessed on 15 July 2019).

2.3. Model Simulation

We used MaxEnt (MaxEnt version 3.4.1) [34], GARP models (Desktop-GARP
version 1.1.6) [43], Bioclim, and Domain (based on DIVA-GIS 7.5) [44,45].

Using the “Sample Points” tool in DIVA-GIS software, 75% of the known distribution
points were designated as the training data, while the remaining 25% were combined with
randomly selected background points, totaling ten times the size of the distribution points,
to form the testing data. To compare the distinctiveness of predictions generated by four
different models, ten sets of training data and corresponding testing data were randomly
generated. The training datasets were utilized for model predictions, while the testing
datasets were used for model validation [46].

Upon converting 16 environmental factor datasets into the required format for each
model, they were imported into the respective models, and the previously generated
training data were also imported, along with the configuration of relevant parameters. The
Maxent model’s setup followed the guidelines outlined by Phillips et al. (2006) [34], the
GARP model was configured based on Anderson et al. (2003) [43], the Bioclim settings
were derived from Booth et al. (2013) [44], and the Domain model’s configuration referred
to Carpenter et al. [45].

Maxent model procedure: First, 16 environmental data files (.asc) were loaded into the
Maxent software through the “Browse” function. Second, the training data of M. wufengensis
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were imported into the Maxent model. Finally, we selected the “Response Curves” and
“Jackknife Test”, which are used to analyze the environmental factors affecting the distribu-
tion of M. wufengensis. For the rest, we adopted the default settings.

Desktop-GARP procedure: First, 16 environmental data files (.asc) were processed by
the “Dataset Manager” in Desktop-GARP, converted into a format recognized by Desktop-
GARP (.raw), and loaded into the software in the form of a dataset. Second, the training
data of M. wufengensis (Upload Data Points) were loaded into the Desktop-GARP software.
The default parameter settings were selected, all 4 genetic rules were selected, the model
was run 100 times, the maximum number of iterations was 1000, and the convergence
limit was 0.01. Due to the instability of the model operation, according to the method of
Anderson et al. (2003) [43], the “best subsets” were enabled, and the internal testing features
were activated to select the 10 best models, which were added and superimposed in ArcGIS.
A final grid map with a range value of 0–10 was obtained, i.e., the predicted potential
distribution map of M. wufengensis, and the grading calculation was then performed.

Both the Bioclim and Domain models were simulated based on DIVA-GIS. First, the
16 environmental data files (.asc) were converted into a format recognized by DIVA-GIS
(.raw), and the stack dataset was then generated. Second, the training data of M. wufengensis
were inserted into “Data”. Finally, the environmental dataset was added in stack format
to the Modeling-Bioclim/Domain module, and predictions of the Bioclim and Domain
models were then generated.

2.4. Model Evaluation

In this study, the accuracy of the model was evaluated using the area under the curve
(AUC) and Cohen’s kappa. The AUC value is widely employed due to its threshold-
independent nature, making it a robust measure for model performance assessment [47,48].
The prediction results of each model were converted into “grd” format in DIVA-GIS. Then,
the testing datasets were imported, the evaluation file was created, and the AUC and Kappa
values were output [49].

The range of the AUC is between 0 and 1. An AUC < 0.7 suggests that the prediction
performance is extremely poor, values between 0.7 and 0.8 indicate moderate performance,
values between 0.8 and 0.9 suggest good performance, and values between 0.9 and 1.0 indi-
cate excellent performance [50]. In other words, the closer the value is to 1, the better the
model fit. The evaluation criteria for Kappa were excellent, 1.0–0.81; very good, 0.80–0.61;
good, 0.60–0.41; fair, 0.40–0.21; and fail, <0.20 [51,52].

2.5. Suitable Habitat Partitions under Current and Future Conditions

According to this study, which was repeated 10 times, each model produced 10 sets of
prediction results. The prediction result with the largest AUC for each model was selected
as the base map, and ArcGIS was used for raster format conversion and reclassification. The
species existence probabilities derived from each model were used to classify the predicted
potential suitable area for M. wufengensis of the different models, as shown in Table 2, and
the suitable habitat distribution maps of the different models were then obtained [43,52].

Table 2. Classification standards of suitable habitats for different SDMs.

Suitability GARP Maxent Bioclim Domain

Unsuitable [0, 2] [0, 0.2] 0 [0, 90]
Lowly suitable (2, 4] (0.2, 0.4] (0, 5%] [91, 93]

Moderately suitable (4, 6] (0.4, 0.6] (5%, 10%] [94, 96]
Highly suitable (6, 10] (0.6, 1.0] (10%, 27%] [97, 100]

3. Results

3.1. Prediction Results of Four Models

In this study, four SDMs were utilized to predict the distribution map of the current
potential suitable habitat for M. wufengensis in China (Figure 3). The representation of
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highly suitable, moderately suitable, lowly suitable, and unsuitable habitats is denoted by
the red, yellow, green, and white areas, respectively (the same applies below).

Figure 3. Distribution map of suitable habitat for M. wufengensis in China simulated by four SDMs
((a) GARP; (b) Maxent; (c) Bioclim; and (d) Domain).

The suitable habitats of M. wufengensis predicted by the four SDMs were all distributed
south of 40◦ N and east of 90◦ E in China. In terms of climate zone, the potential suitable
habitats were mainly in the subtropical temperate and humid monsoon climate zones,
and some areas were in the temperate monsoon climate zone, mainly including Hebei,
Shandong, Henan, Anhui, Jiangsu, Hubei, Hunan, Zhejiang, Jiangxi, Fujian, Guangdong,
Guangxi, Yunnan, Chongqing, Guizhou, and parts of eastern Sichuan, Shaanxi, Shanxi,
Gansu, and Liaoning.

Due to the different principles and algorithms of the different models, there were some
differences in their results. The distribution map of the suitable habitats for M. wufengensis
obtained by the GARP simulation (Figure 3a) showed that most of the suitable habitat was
highly suitable, while there were very limited moderately and lowly suitable habitats. The
range of suitable habitats of different grades for M. wufengensis simulated by the Maxent
model was relatively distinct (Figure 3b) and was similar to Bioclim’s prediction (Figure 3c).
The range of highly suitable habitats for M. wufengensis simulated by the Domain model
was very small and scattered (Figure 3d), and most of the suitable habitats were lowly
suitable habitats.

The areas of different grades of suitable habitats for M. wufengensis simulated by the
four models in Figure 4 show that the GARP model simulated the largest area of highly
suitable habitat at 273.05 × 104 km2, which was 2.86 times that simulated by the Maxent
model (95.26 × 104 km2), 6.90 times that simulated by the Bioclim model (39.53 × 104 km2),
and 31.00 times that simulated by the Domain model (8.81 × 104 km2). The GARP model
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similarly simulated the moderate and low suitability habitats for M. wufengensis as the
smallest areas, at 5.96 × 104 km2 and 4.95 × 104 km2, respectively, which was 5.63% and
5.58% of the moderately and lowly suitable habitats simulated by the Maxent model, 9.00%
and 4.45% of those simulated by the Bioclim model, and 9.18% and 4.72% of those simulated
by the Domain model, respectively. In general, the GARP model predicted the largest range
of suitable habitats for M. wufengensis. The suitable habitat of M. wufengensis obtained by
the Domain simulation was the smallest and most scattered. The prediction range of the
Maxent model was closer to that of the Bioclim model, the suitable habitats of different
grades were also clearer, and the distribution was more reasonable.

Figure 4. The suitable habitats for M. wufengensis of different grades in China simulated by
four schemes.

3.2. Model Accuracy Evaluation

The four SDMs simulated the mean values of the AUC and Kappa for the current
potential suitable habitat for M. wufengensis in China, as shown in Figure 5. Figure 5 shows
that the average AUC of the prediction results of the four models is above 0.85, which far ex-
ceeds that of a random model (AUC = 0.5), indicating that the four models have a relatively
good predictive effect for the suitable habitat of M. wufengensis. The standard deviation of
the AUC values of the four models was ordered as follows: Domain > Bioclim > Maxent >
GARP. The results of this study showed that for the suitable habitat of M. wufengensis, the
Maxent model (0.9479 ± 0.0080) had the best predictive results, followed by the Domain
(0.9367 ± 0.0287) and GARP (0.8719 ± 0.0039) models, and the Bioclim (0.8513 ± 0.0177)
model had the lowest level of prediction. Figure 5 shows that the average Kappa values
of the four SDMs are above 0.7, and the consistency of the models is significant. The
four SDMs predicted the potential suitable habitats for M. wufengensis with high accuracy,
and they can be used to predict the distribution of potential suitable habitats. The Kappa
values were in the following order: Maxent (0.8113 ± 0.0228) > Domain (0.7629 ± 0.0531) >
Bioclim (0.7166 ± 0.0372) > GARP (0.6969 ± 0.0200). In summary, combined with the AUC
and Kappa values of the model, the Maxent model best predicted the potential suitable
habitat for M. wufengensis, with the most significant consistency Table 3.
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Figure 5. Jackknife test for the importance of the variables.

Table 3. Comparison of AUC and Kappa values of the results of the four SDMs. Different small
letters indicate significant differences among treatments as assessed by Duncan’s test (p < 0.05).

Model Maxent GARP Bioclim Domain

AUC 0.9479 ± 0.0080 a 0.8719 ± 0.0039 b 0.8512 ± 0.0177 c 0.9367 ± 0.0287 a
Kappa 0.8113 ± 0.0228 a 0.6969 ± 0.0200 c 0.7166 ± 0.0372 c 0.7629 ± 0.0531 b

3.3. Evaluation of Environmental Factors

Through the above analysis, it can be concluded that the Maxent model is the best
model for predicting the potential suitable habitats of M. wufengensis. When simulating
the potential suitable habitat for a species, adopting default parameters is customary, but
it will cause overfitting, reduce the accuracy of the research results, and directly affect
the transferability of the model [53–55]. Therefore, in this study, we used the Maxent
model with parameters optimized by the ENMeval package in R software to simulate
the potential suitable habitats of M. wufengensis in China. The relevant parameters were
the regularization multiplier value (RM) of 3.5, and the feature combination (FC) was
LQ (Table S2). At this time, the model fits the species distribution points well and has
significantly decreased the complexity and reduced the degree of overfitting.

After predicting the potential suitable habitat of M. wufengensis through the Max-
ent model with optimized parameters, the percent contributions and the permutation
importance of each environmental factor were determined (Table S3). Among the 16 en-
vironmental factors, the minimum temperature of the coldest month (bio6), elevation
(28.73%), and mean temperature of the coldest quarter (bio11) ranked in the top 3, with
cumulative values as high as 96.07% and 92.32%, respectively (Table S3).

According to the results of the jackknife test (Figure 5), using factors other than the
ones examined, the regularized training gain increased the most in bio6, followed by bio11
and bio1.

The dominant environmental factors for the potential suitable habitats of M. wufengen-
sis in this study were bio6, bio11, bio1, and elevation.
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The response curve (Figure 6) shows that when the distribution probability of suit-
able habitats for M. wufengensis was greater than the threshold (0.2), the intervals of the
dominant environmental factors restricting the distribution of M. wufengensis were bio6
(−13.36–9.84 ◦C), bio11 (−6.06~−12.66 ◦C), bio1 (≥4.49 ◦C), and elevation (0–2803.93 m).

Figure 6. Responses of M. wufengensis to the four main environmental factors.

3.4. Current Potential Suitable Habitats in China

The results for M. wufengensis in the current potentially suitable habitats in China
under the optimized parameters are shown in Figure 7.

 

Figure 7. Suitable habitats for M. wufengensis in China under the current period.
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The highly suitable habitats for M. wufengensis were highly concentrated and were
mainly distributed in East China and Central China, covering Hubei, Henan, Anhui,
Jiangsu, Shanghai, the northern part of Hunan, Jiangxi, Zhejiang, southern Shandong,
and eastern Sichuan. The moderately suitable habitats mainly surrounded the highly
suitable habitats, covering eastern Sichuan, Hunan, Jiangxi, Zhejiang, Fujian, Shandong,
southeastern Hebei, southern Shanxi, eastern Guizhou, the northern parts of Guangxi and
Guangdong, and Chongqing, Beijing, and Tianjin. The lowly suitable habitats were mainly
in Yunnan, southwestern Guizhou, the southern parts of Guangxi and Guangdong, south-
ern Fujian, central Sichuan, southeastern Gansu, the southern parts of Shaanxi and Shanxi,
and small areas of Hebei and Liaoning. Currently, although Xinjiang and Tibet do not
have M. wufengensis populations, according to the MaxEnt prediction, Turpan in Xinjiang
and Linzhi in Tibet nevertheless have small areas of lowly suitable habitats, indicating
that the model has high transferability. Under the current climate scenario, the areas of
highly, moderately, and lowly suitable habitat for M. wufengensis were 46.60 × 104 km2,
122.82 × 104 km2, and 96.36 × 104 km2, accounting for 4.85%, 12.79%, and 10.03% of
China’s total land area, respectively.

3.5. Potential Suitable Habitat and Dynamic Changes in the Future

Four climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2050s and
2070s were selected, and the optimized MaxEnt model was used to simulate the distribution
of potential suitable habitat for M. wufengensis (Figure 8), the dynamic changes relative
to the current suitable habitat (Figure 9), and the changes in area (Table 4) under future
climate change conditions.

Table 4. Suitable habitat area change for M. wufengensis under different climate change scenarios.

Climate
Scenario

High Suitability Medium Suitability Low Suitability No Suitability

Area
(104 km2)

Change Rate
(%)

Area
(104 km2)

Change Rate
(%)

Area
(104 km2)

Change Rate
(%)

Area
(104 km2)

Change Rate
(%)

Current 46.59 / 122.82 / 96.36 / 694.83 /
RCP2.6 (2050) 32.63 −29.98 130.74 6.45 117.43 21.86 679.81 −2.16
RCP4.5 (2050) 33.48 −28.15 154.86 26.09 97.10 0.77 675.16 −2.83
RCP6.0 (2050) 36.34 −22.00 156.09 27.09 92.26 −4.25 675.91 −2.72
RCP8.5 (2050) 37.85 −18.77 144.75 17.86 101.48 5.31 676.53 −2.63
RCP2.6 (2070) 33.58 −27.94 147.68 20.24 103.54 7.45 675.81 −2.74
RCP4.5 (2070) 34.01 −27.02 149.15 21.44 102.21 6.07 675.23 −2.82
RCP6.0 (2070) 36.65 −21.33 143.50 16.84 100.99 4.80 679.46 −2.21
RCP8.5 (2070) 44.48 −4.54 144.27 17.46 99.31 3.06 672.55 −3.21

The results showed that the potential suitable habitat of M. wufengensis will undergo
various changes under future climate change scenarios. The highly suitable habitats for
M. wufengensis first decreased and then increased with increasing RCP value and time, but
the area was smaller than the current area and exhibited serious fragmentation in the 2050s
and 2070s (Figures 8 and 9). Among the various predictions, the highly suitable habitats
were the smallest at only 32.62 × 104 km2 under RCP2.6 in the 2050s, which was 29.98%
lower than the current area (Table 4), and the areas that exhibited the main reductions were
in southwestern Shandong, central Henan, the northern part of Anhui and Jiangsu, which
are characterized by plains and would become moderately suitable habitats (Figure 9a).
Under the RCP8.5 scenario in the 2070s, the highly suitable habitats were the closest to those
of the current period (Figures 8h and 9h; Table 4). However, under future climate change,
the highly suitable habitat for M. wufengensis increased significantly and was concentrated
in the Sichuan Basin (Figure 8).
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Figure 8. Distribution of suitable habitats for M. wufengensis under future climate change scenarios
((a–d) 2050s: RCP2.6, RCP4.5, RCP6.0, and RCP8.5; (e–h) 2070s: RCP2.6, RCP4.5, RCP6.0, and RCP8.5).
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Figure 9. Dynamic changes in potential suitable habitats for M. wufengensis under future climate
change scenarios ((a–d) 2050s: RCP2.6, RCP4.5, RCP6.0, and RCP8.5; (e–h) 2070s: RCP2.6, RCP4.5,
RCP6.0, and RCP8.5).
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Moderately suitable habitats for M. wufengensis under future climate change will
increase compared to those of the current period (Table 4). Under the RCP2.6 scenario in the
2050s, the increased area was the smallest at only 6.45% (Table 4). The area of moderately
suitable habitats reached a maximum of 156.09 × 104 km2 under RCP6.0 in the 2050s,
which was 27.09% larger than the current area, and the areas of increase were mainly in
Shandong, southern Henan, Jiangsu, northern Anhui, the southwestern part of Guizhou,
and the central part of Guangxi. There was a trend of expansion toward highly and lowly
suitable habitats (Figures 8c and 9c).

The lowly suitable habitat for M. wufengensis showed a trend of first increasing and
then decreasing under the RCP2.6 and RCP8.5 scenarios in both the 2050s and 2070s and
gradually increasing under the RCP4.5 scenario, while the suitable habitats first decreased
and then increased under the RCP6.0 scenario (Table 4). Under the RCP2.6 scenario in
the 2050s, the lowly suitable habitat reached a maximum area (117.43 × 104 km2), which
was 21.86% higher than the current area (Table 4). The areas of increase were mainly in
southeastern Tibet and most of Yunnan and Taiwan Island, which tended to extend toward
moderately suitable and unsuitable areas (Figures 8a and 9a), while under the RCP6.0
scenario in the 2050s, the area of lowly suitable habitat was 4.25% less than the current area,
with little change (Figure 9c). In the future, under different climate scenarios, the increased
areas will mainly be high-elevation mountain areas. For example, the area of the lowly
suitable habitat for M. wufengensis on Taiwan Island will increase and move to the central
high-elevation area, and on Hainan Island, this area will gradually decrease to only central
high-elevation areas (Figures 8 and 9).

Overall, the area of suitable habitats for M. wufengensis will decrease under future
climate change scenarios, with an overall decrease of 4.53%–29.98%; the area of moderately
suitable habitats will continue to increase in the future, with an increase of 6.45%–27.09%;
the area of lowly suitable habitats will increase by 0.77%–21.86%; and the area of unsuitable
habitats will gradually decrease by 2.16%–3.21% in the future.

3.6. Centroid Shifts in Different Suitable Habitats

Figure 10 indicates that the centroids of the highly suitable habitats (Figure 10a) and the
moderately suitable habitats for M. wufengensis (Figure 10b) migrate mainly to the northeast
under future climate change (Figure 10(a1,b1)). The centroids of the lowly suitable habitats
(Figure 10c) migrate mainly northward (Figure 10(c1)). In general, the centroid of the
suitable habitats for M. wufengensis moves more to the northeast.
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Figure 10. Centroid migration in suitable habitats for M. wufengensis under future climate scenarios
in China. (a1–c1) indicates the distances that centroids of different grades of suitable habitat migrate
in two directions (north–south and east–west) under future climate change.
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4. Discussion

4.1. Model Performance

M. wufengensis is an endangered and rare tree species in China. To provide better
protection for it, we used four SDMs to study its suitable habitat area. While the four SDMs
employed in this study demonstrated promising outcomes in simulating the distribution
of potential suitable habitats for M. wufengensis, some variations were observed in the
predicted suitable habitats among the different models. This is mainly because the different
SDMs are based on related mathematical algorithms and fit data in different ways [56]. In
this study, the GARP model exhibited the broadest range and the largest area of suitable
habitats predicted for M. wufengensis. This can be attributed to the GARP model’s foun-
dation on the principle of the genetic rule algorithm [57], which undergoes continuous
iteration to screen and evaluate the dataset. By simulating the ecological requirements of
the species, the model effectively determines the potential suitable areas within the study
region. Related studies have further confirmed that the GARP model commonly faces
the issue of overprediction, displaying a tendency to predict species fitness beyond their
known niches [58,59], presumably due to GARP’s failure to model lesser relationships in
the data [60]. In addition, the GARP model’s rulemaking process did not include factors
that caused species to spread to these incorrect areas [61]. Compared to the GARP model,
the Bioclim model exhibits a smaller overall suitable habitat area, yet with distinct levels
of specificity. This distinction primarily arises from the environmental envelope principle
that underpins the Bioclim model [44]. This model assumes that the environmental climate
within the envelope is similar to the actual distribution area’s climate, allowing a certain
species to grow and reproduce normally within this environment [52]. As a result, the
predictions are relatively conservative. In contrast to the GARP model, the Domain model
predicts the majority of the suitable habitat as low suitability areas. This discrepancy
arises from the fact that the Domain model classifies based on a similarity matrix between
points [45]. This is largely influenced by sample points, leading to the appearance of certain
suitable habitat areas in nearly all locations where distribution points exist [46]. With fewer
sample points, the level of suitability naturally tends to be lower. In comparison, while
the potential suitable habitats of M. wufengensis predicted by the Maxent model closely
resembled those of the GARP model, the distinctions between the different habitat grades
were more pronounced, resulting in clearer and more defined predicted outcomes. This is
because the Maxent model does not make any assumptions about that which is unknown
under the constraints of the maximum entropy theory algorithm and runs completely
according to the maximum entropy of that which is closest to their actual states, so its
predictions of suitable habitats for species are more accurate. Zhang et al. (2016) [62] also
found that the area of suitable habitat predicted by the Maxent model was smaller than
that of the GARP model for the distribution of Arceuthobium sichuanense in China; however,
the level of local detail in their study was more distinct. Moreover, the Maxent model
predicted that the suitable habitats of M. wufengensis can reach Yining, Bole, and Turpan in
Xinjiang, which is an area that was not predicted by the other three models, reflecting the
good transferability of the Maxent model.

The most important assumption of the Bioclim model is that species can grow, develop,
and reproduce in places where the climatic conditions are similar or comparable to those in
their current living environment [45], so the results of its predictions of species distribution
are relatively conservative. The Domain model is greatly affected by the sampling of the
original distribution point of the species when predicting their distribution area and will
spread around according to the sampling distribution point, resulting in the expansion
or contraction of the ecological niche of the species distribution area [52,60]. Thus, the
results of this study about these four models are consistent with previous studies. Wang
et al. (2020) [49] compared and analyzed the predictive effects of these four models when
researching and predicting the potential suitable areas of Pseudolarix amabilis and found that
the prediction range of GARP was wider, the prediction range of Bioclim was smaller, and
the Maxent model demonstrated higher accuracy in its prediction results compared to the
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other models. Duan et al. (2020) [63] studied the potential distribution of Ammopiptanthus
species in China and found that the Maxent model yielded the highest AUC value and
exhibited the best overall performance in predicting the species’ distribution. Elith et al.
(2006) [60] demonstrated that the Maxent model outperformed the Bioclim, Domain, and
GARP models when utilizing 16 different SDMs to predict the distribution of potential
suitable areas for 226 species.

4.2. Dominant Environmental Factors

The dominant environmental factors limiting the distribution of M. wufengensis in
China were the minimum temperature of the coldest month (bio6), mean temperature of
the coldest quarter (bio11), annual mean temperature (bio1), and elevation. Zhu (2012)
found that extremely low temperatures and their duration were important limiting factors
during the overwintering of M. wufengensis. Yang (2015) [64] found that during an actual
introduction process in North China, M. wufengensis under 3–4 years old could not naturally
overwinter, and they recommended that appropriate cold protection measures be taken
to protect M. wufengensis from low-temperature freezing damage. Currently, the most
advanced landscaping methods are to build windproof barriers and use insulation cotton
to wrap and cover trees [65]. This observation aligns with the finding that the Northeast
China region is unsuitable for the survival of M. wufengensis, while the North China region
comprises habitats with moderate and low suitability for the species. Liang (2010) [16]
reported that the semilethal temperature of M. wufengensis is −15 ◦C, which closely aligns
with the lower limit of −13.36 ◦C derived from the response curve of bio6 in this study.
Numerous researchers studying other plants with sympatric distributions have also reached
similar conclusions. For instance, Yan et al. (2019) [66] found that bio11 significantly
influenced the distribution of Pinus massoniana. Zhang et al. (2018) [38] observed that
temperature exerted a substantial impact on the potential geographical distribution of
Sorbus amabilis. Similarly, Li et al. (2016) [67] analyzed the importance of eight climate
variables for Quercus chenii using the MaxEnt model, and their findings highlighted that
the caloric index played a pivotal role in limiting the species’ geographical distribution,
followed by the water index.

Elevation affects the growth of M. wufengensis by affecting soil physicochemical prop-
erties, soil enzyme activity, light conditions, and air temperature, thereby limiting the
vertical geographic distribution of the species. The upper limit of the distribution of
M. wufengensis under natural conditions is 1400–2000 m [14,15], which is within the upper
limit of 2803.93 m obtained from the elevation response curve in this study.

The results of this study showed that precipitation had little effect on the distribution
of M. wufengensis in China. However, precipitation plays a vital role in plant growth.
M. wufengensis is a succulent root that is sensitive to water, and it easily dies if it receives
too much water [68]. The current highly suitable habitats for M. wufengensis are mainly in
East China. These areas are also traditional subtropical monsoon climate areas in China.
One of the most notable features of these areas is that rain and heat occur in the same
period, and it is easy to form a high-temperature and high-humidity environment. In the
actual investigation, pests and diseases were detected. The main diseases of M. wufengensis
were sooty blotch on the surface of leaves and root rot, which causes the plants to rot
from the root stem, and the main pests were sucking pests such as Tetranychus cinnabarinus,
Liriomyza, and Pseudococcus [21]. Therefore, suitable site conditions should be considered
when introducing M. wufengensis. For example, in low-lying areas, high beds should be
made, and in the summer, cleaning and drainage should be performed as appropriate.
If sooty blotch occurs, it is necessary to spray the plant with a 0.3%–0.5% mass fraction
of Bordeaux mixture for prevention and control, and root rot should be controlled by
continuously spraying 2–3 times with 500 times carbendazim solution, which can mostly
control the development of the disease. In addition, sucking pests should be sprayed
500–1000 times with omethoate for prevention [21].
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4.3. Current Suitable Habitats

Our study revealed that the potential suitable habitats for M. wufengensis are currently
widespread across southeast China, with areas of high suitability observed in Hubei, Henan,
Anhui, Sichuan, Zhejiang, Jiangsu, and Hunan. These results are consistent with a previous
study [21], which used the fuzzy similarity priority ratio method based on the principle of
climatic similarity and revealed that the suitable habitats of M. wufengensis were mainly
distributed in most areas from the eastern Huanghuai Plain to the northern Guangdong
and Guangxi Hills. According to other studies [69,70], there are 17 species of Magnolia in
East China, 20 species in Central China, and 29 species in South China, demonstrating a
high richness of Magnolia species in this study area and relatively reliable research results,
which can provide a scientific basis for the effective protection and precise introduction and
cultivation of M. wufengensis. Interestingly, unlike previous studies, our study showed that
Turpan in central Xinjiang and Linzhi in southern Tibet are also suitable for M. wufengensis,
providing evidence that the Maxent model has good transferability.

4.4. Changes to the Suitable Habitats in the Future

In the context of future global climate change, rare and endangered plants will face
higher extinction risks than other plants due to their narrow habitats, sparse popula-
tions, and weak natural regeneration [71]. Understanding the potential contraction or
expansion of their habitats is of great significance for the conservation of these rare and
endangered species. According to our research results, although the highly suitable habitats
of M. wufengensis show a decreasing trend under different climate change models in the
future, the moderately and lowly suitable habitats show an increasing trend. This indicates
that although some areas may not be suitable for the growth of M. wufengensis, there will
be some new areas suitable for its growth, which is very beneficial for its conservation
and introduction. Gao et al. (2022) [72] found that the highly suitable habitat of the rare
and endangered plant Firmiana kwangsiensis in Guangxi is expected to decrease over time,
and it will become extinct in some areas, but it can also adapt to some new areas. Li
et al. (2019) [73] showed that in the case of future global warming, the potential suitable
habitats of Osmanthus yunnanensis expand to the east and north, and the areas of suitable
distribution increase; the potential suitable habitats of Osmanthus delavayi expand to the
west and north, and the highly suitable habitats decrease. Zhang et al. (2018) [38] found
that the overall geographical distribution area of Sorbus amabilis contracted, and the degree
of fragmentation increased and migrated to high-altitude areas in the future. The results
of this study are basically consistent with the above conclusions. The suitable habitats
of M. wufengensis in the future showed characteristics of habitat fragmentation, and the
centroids of the suitable habitats generally moved to high elevations in the northeast
direction. The main limitation of the potential habitat distribution of M. wufengensis is
the low-temperature factor. In the future, the temperature in northern China will rise,
and M. wufengensis will be able to survive winter in some areas, so the potential suitable
habitats will expand to high-latitude areas. In Guizhou, Yunnan, Guangxi, Sichuan, Hubei,
Hunan, Anhui, Taiwan, and other places with high mountain ranges, the areas of suitable
habitat significantly increased. The mountain ranges in these areas have a high average
elevation, and the temperature will increase due to global warming in the future, which
can meet the growth conditions of M. wufengensis. Therefore, the potential suitable habitats
for M. wufengensis will migrate to higher altitudes at the same time.

In summary, judicious utilization of SDMs can effectively and swiftly discern the
potential distribution areas of rare and endangered species, facilitating the formulation of
subsequent conservation policies. Additionally, these models can anticipate the species’
future distribution based on environmental factors in forthcoming time frames, enabling
the proactive development of corresponding conservation plans and thereby maximizing
species richness preservation. However, in practical applications, certain models rely solely
on algorithmic logic, lacking robust ecological interpretations [74]. Some models even
depend solely on expert experience, exhibiting considerable subjectivity [33]. Moreover,
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the influence of sample quality and quantity is significant for some models [33]. There-
fore, during the actual modeling process, the selection of the most suitable model should
be based on the algorithms and theoretical underpinnings specific to different species
distribution models.

5. Conclusions

In this study, four SDMs (Maxent, GARP, Bioclim, and Domain) were used for the first
time to comprehensively predict and analyze potential suitable habitats for the introduction
of the rare and endangered plant M. wufengensis in China. The GARP model simulated the
widest range of suitable habitats. The Domain model simulated the smallest range, and
its layers were not clear. The Bioclim model results were similar to those of the Maxent
model, and the Maxent model had the best performance and the best simulation effect
based on the AUC and Kappa statistics. The low-temperature factor was the dominant
environmental factor affecting the distribution of M. wufengensis in China. The potential
suitable habitat for M. wufengensis was mainly distributed in the areas south of 40◦ N and
east of 97◦ E in China, with a high distribution potential under current climate conditions.
Under future climate scenarios, the highly suitable habitats for M. wufengensis in China
generally showed a decreasing trend, and moderately and lowly suitable habitats showed
an increasing trend. The centroid of the future potential suitable habitats of M. wufengensis
migrated to the northeast at a high latitude.
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Abstract: Climate change is posing new challenges to forestry management practices. Thinning
reduces competitive pressure in the forest by repeatedly reducing the tree density of forest stands,
thereby increasing the productivity of plantations. Considering the impact of thinning on vegetation
and physiological and ecological traits, for this study, we used Norway spruce (Picea abies) data from
three sites in the PROFOUND dataset to parameterize the 3-PG model in stages. The calibrated
3-PG model was used to simulate the stand diameter at breast height and the stem, root, and leaf
biomass data on a monthly scale. The 3PG-MT-LSTM model uses 3-PG simulation data as the
input variable. The model uses a long short-term memory neural network (LSTM) as a shared layer
and introduces multi-task learning (MTL). Based on the compatibility rules, the interpretability of
the model was further improved. The models were trained using single-site and multi-site data,
respectively, and multiple indicators were used to evaluate the model accuracy and generalization
ability. Our preliminary results show that, compared with the process model and LSTM algorithm
without MTL and compatibility rules, the hybrid model has higher biomass simulation accuracy
and shows a more realistic biomass response to environmental driving factors. To illustrate the
potential applicability of the model, we applied light (10%), moderate (20%), and heavy thinning
(30%) at intervals of 10, 15, 20, 25, 30 years. Then, we used three climate scenarios—SSP1-2.6, SSP2-
4.5, and SSP5-8.5—to simulate the growth of Norway spruce. The hybrid model can effectively
capture the impact of climate change and artificial management on stand growth. In terms of climate,
temperature and solar radiation are the most important factors affecting forest growth, and under
warm conditions, the positive significance of forest management is more obvious. In terms of forest
management practices, less frequent light-to-moderate thinning can contribute more to the increase
in forest carbon sink potential; high-intensity thinning can support large-diameter timber production.
In summary, moderate thinning should be carried out every 10 years in the young-aged forest stage.
It is also advisable to perform light thinning procedures after the forest has progressed into a middle-
aged forest stage. This allows for a better trade-off of the growth relationship between stand yield
and diameter at breast height (DBH). The physical constraint-based hybrid modeling approach is a
practical and effective tool. It can be used to measure long-term dynamic changes in forest production
and then guide management activities such as thinning to achieve sustainable forest management.

Keywords: forest biomass modeling; 3-PG model; LSTM; biomass compatibility; forest thinning

1. Introduction

Forests are the main part of terrestrial ecosystems and also the largest carbon storage
pool on land [1–3]. Human-induced climate change could fundamentally alter forests in the
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21st century, with profound implications for the world [4]. Forest biomass is a key indicator
in global carbon cycle research [5]. Thinning is a common forestry management practice.
It has a significant and direct impact on forest structure. The understory microclimate
will change with the change of structure and then affect the growth and development of
trees [6,7]. Through thinning, stand density is reduced, the interception of precipitation is
decreased while the understory light level is increased, and the decomposition of forest
litter is accelerated [8]. Retained wood can make full use of light, water, and soil, and
forest productivity can finally be improved. Accurately estimating the synergistic effect of
thinning and climate on forest growth is of great significance for optimizing the utilization
of forest resources and improving the ecological quality of forests [9–11]. In recent years,
researchers have extensively explored how to estimate the response of forest biomass to
thinning operations and climate change [12,13].

With the in-depth study of forestry management, mechanistic models have been
developed and have received more and more attention [14,15]. A process model can
simulate the key mechanistic processes of photosynthesis, respiration, and carbon water
balance in tree growth. A process model takes into account the impact of climate factors
and human disturbance on forest growth [16]. Individual-tree process models such as
MAESTRA or TRIPLEX are established based on the three-dimensional spatial information
of a single tree. These models take into account the extent to which the canopy utilizes
solar radiation [17,18]. Individual-tree process models exhibit a high level of precision in
their simulations. However, individual-tree process models rely on field surveys, which
can incur higher costs. A stand process model, such as 3-PG or FORECAST, considers
the effects of stand structure, climate change, and management practices. This model
effectively elucidates and simulates the influence of environmental variables on the growth
of forests [19,20]. Ecosystem process models, such as BIOME-BGC or LPG-DGVM, have
comprehensively incorporated the carbon cycle within the atmosphere-vegetation-soil
system. Its complexity is higher, and it is more suitable for large-scale carbon-water cycle
simulation [21,22]. The essence of the process model is to complete the description of
the material exchange and energy flow processes between the atmosphere, vegetation,
and soil with the help of complex empirical equations. However, due to the fact that the
environment is everchanging and will continue to change in the future, a model established
based on past knowledge may no longer hold true. Therefore, it is difficult to predict
dynamic changes in forests on a long-term scale (e.g., 50a).

With the development of artificial intelligence technology, Deep Learning (DL) pro-
vides a new means for forecasting forest growth and harvest [23,24]. DL does not restrict
the selection of data sources. It is able to automatically extract knowledge from data streams
to provide more flexible predictions. Kraft et al. [25] used LSTM to build a global model
for fitting the Normalized Difference Vegetation Index (NDVI). Their model shows that
LSTM can identify the memory effect of vegetation state on climate with satisfactory fitting
accuracy. In addition to LSTM, other DL methods are also widely used. Neto et al. [26]
used principal component analysis (PCA) to reduce the dimensionality of input data and
used an Artificial Neural Network (ANN) to estimate productivity dynamics during Eu-
calyptus rotations. With a limited sample size, it shows better results than other forest
productivity estimation methods. Xu et al. [27] proposed a neural network model with
a multi-task loss function. This model solves the compatibility problem of tree biomass
estimation and improves the generalization ability of the model. Despite the numerous
successes of the DL model, its limitations are also evident [28–30]. First of all, the accuracy
and generalization ability of the model depend on the ‘feeding’ of large amounts of data.
However, the collection of forestry data requires a lot of effort and material resources. The
process is also cumbersome and expensive. Secondly, the quality of the collected data
cannot be guaranteed during the data collection process. There may be noise present in
the data. Additionally, the training of the model can be disrupted, producing completely
incorrect results. Thirdly, the training process of DL models does not involve any physical
mechanisms. This can lead to unreasonable simulations in certain scientific problems.
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Building hybrid interpretable models is currently a very active research frontier [31,32].
The hybrid model combines the physical consistency of process models and the high data-
driven performance of DL methods [30]. Reichstein et al. [32] summarized the feasible
avenues for coupling physical models with DL in geoscience problems. Among them,
coupling strategies have been developed in the processes of runoff prediction and biological
regulation [33,34]. Coupling physical processes into the loss function of neural networks
enables more seamless hybrid model building [35]. However, the increase in interpretable
components may generate more errors, resulting in a decrease in system performance.
Therefore, the key to hybrid modelling is to explore the optimal solution to the “accuracy
versus transparency trade-off” problem [36,37].

In the context of climate change, precisely assessing the impact of thinning on forest
growth presents a viable approach to enhance forest structure, ecological quality, and
service functions [12,38]. At present, we still lack the technical means to effectively and
accurately understand how management behaviors affect forest production. The objectives
of this manuscript were to: (1) Take the 3-PG simulation value as the model input variable,
construct a 3PG-MT-LSTM hybrid model to increase model interpretability, sensitivity to
thinning events, and the accuracy of long-term biomass predictions. (2) Introduce biomass
compatibility rules to ensure that the model converges to a solution that follows the basic
physical laws, further improving the generalization ability of the model, and evaluate the
multi-index accuracy of the optimized model. (3) Under the conditions of multi-climate
scenarios, estimate the impact of different thinning practice intervals and intensities on the
growth of Norway spruce.

2. Materials and Methods

In this study, environmental elements, stand biomass observations, and geographic
location information were first obtained from the PROFOUND database [39] (https://
doi.org/10.5880/PIK.2020.006, accessed on 12 December 2022). The study area biomass
data information is shown in Section 2.1. Then, we used the 3-PG model to amplify the
original biomass observation data at different time intervals into monthly scale data. The
3PG-MT-LSTM model was established based on the biomass compatibility rule, using
3-PG simulated values as model inputs. Based on the characteristics of monthly average
temperature, carbon dioxide concentration, monthly frost days, monthly average solar
radiation, monthly precipitation, and monthly average water vapor pressure difference,
the model realizes the prediction n of the forest stand stem, root, foliage, aboveground, and
total biomass, and DBH. Using the single-site model as a basis, the factors of elevation,
slope, and aspect were added to construct a multi-site model. The specific experimental
method is presented in Section 2.2. In Section 2.3, we evaluate the accuracy of single-site and
multi-site models using multiple evaluation metrics. According to the evaluation results,
the model is continuously adjusted and optimized. Subsequently, in conjuction with CMIP6
multi-model and multi-scenario climate data (https://esgf-node.llnl.gov/projects/cmip6/,
accessed on 14 February 2023), we simulate the growth of Norway spruce at the Bily Kriz
site under different thinning regimes in Section 2.4. Finally, also in this paper, according
to the simulation results, we analyze the impact of thinning on Norway spruce growth
and make recommendations for forest management. The research framework is shown in
Figure 1.
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Figure 1. The research framework of this study. In the Data Preparation section, TEM, VPD, PAR,
PRE represent temperature, saturated water vapor pressure difference, photosynthetically active
radiation, and precipitation, respectively. In the 3-PG Model section, GPP and NPP represent gross
primary productivity and net primary productivity. In the Model Evaluation & Future Scenario
Demonstration section, R2, RMSE, MAE, MAPE, and CMIP6 GCMS represent R-square, root mean
squared error, mean absolute error, mean absolute percentage error, and global climate models in the
Coupled Model Intercomparison Project (Phase 6), respectively.

2.1. Norway Spruce Biomass Data

Norway spruce is a large, fast-growing, and highly adaptable evergreen coniferous tree
species commonly used as a timber tree throughout Europe. The growth rate of Norway
spruce is at its peak between 20 and 90 years. After 90 years, the rate gradually slows down.
In this study, the biomass data of Norway spruce and historical meteorological data were
obtained from the PROFOUND database (Table 1).

Table 1. Basic information of biomass data.

Site
Longitude and

Latitude
Elevation (m)

a Forest Age
Range (Years)

b Forest Biomass
Range (t/hm2)

c Number of
Thinning

Bily Kriz 18◦19′ E, 49◦18′ N 875 16–34 34.49~147.67 3
Hyytiala 24◦17′ E, 61◦50′ N 185 34–50 128.86~201.78 1
Solling 9◦34′ E, 51◦45′ N 508 85–133 250.67~372.96 4

a Forest Age Range refers to the age of the forest stand from the first to the last field survey conducted in the
experimental plot. b Forest Biomass Range refers to the maximum and minimum values of forest biomass obtained
during the survey and does not represent the biomass of the plot at the minimum (maximum) forest age. c Number
of Thinning refers to the number of times the plot was artificially thinned during the entire survey process and
does not include density changes caused by natural thinning.
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2.2. The 3PG-MT-LSTM Hybrid Modelling Approach
2.2.1. 3-PG Model

The 3-PG (Physiological Principles in Predicting Growth) model is a process-based
model that simulates forest growth and yield with a monthly time scale [19]. It is widely
used for predicting biomass production and carbon sequestration in forest ecosystems. The
model uses environmental variables such as temperature, precipitation, and solar radiation
to predict forest growth. The model illustrates key physiological and ecological processes
such as photosynthesis, respiration, and nutrient cycles in forest production. The key
process formulation of the model is shown in Equation (1).

GPP = αCx × FPAR × PAR × fT × fN × fF × fage × min{ fVPD, fSW} (1)

Among them, GPP refers to the gross primary productivity of forest stands; αCx refers
to the quantum efficiency of the vegetation canopy, which is the number of CO2 molecules
assimilated by vegetation per absorbed light quantum; FPAR (Fraction of photosynthet-
ically active radiation absorption) refers to the proportion of photosynthetically active
radiation absorbed by vegetation; PAR (Photosynthetically active radiation) refers to the
radiation that drives photosynthesis; and fT , fN , fF, fage, and fVPD represent the correc-
tion factors for temperature, soil fertility, frost, stand age, vapor pressure deficit, and soil
moisture, respectively.

Compared with other models, the 3-PG model is relatively simple to use and requires
fewer input parameters. In addition, the model is available in multiple open-source versions
such as EXCEL [40], Python [41], and R. We followed the method of 3-PG and used the
‘r3pg’ package of R program [42] to estimate biomass [43]. In this study, we used the Morris
method to analyze the sensitivity of physiological and ecological parameters involved
in the 3-PG model. The Morris sensitivity analysis method facilitates a global sensitivity
analysis of parameters by calculating model outputs by changing only one input value
between successive simulation runs [44]. Considering that forest growth is a dynamic
process, we re-fitted and optimized the model parameters (i.e., phased localization model)
after the thinning events and changes in the structure of the stand age groups. Finally, we
used the built-in biomass allocation module in the 3-PG model to simulate the allocation of
stand biomass among leaves, stems, and roots. The estimated values were used as inputs
for the multi-task LSTM.

2.2.2. Multi-Task Learning and LSTM

MTL (Multi-task learning) is a machine learning technique that enables the joint
training of multiple related tasks [45,46]. In this study, MLT is used to jointly predict the
individual organ and total biomass changes in forest stands. LSTM is a type of recurrent
neural network that can process sequential data by selectively remembering or forgetting
past information [47,48]. The key process in LSTM is mathematically shown below.

ft = σg

(
Wf xt + Wf mt−1 + b f

)
(2)

it = σg(Wixt + Wimt−1 + bi) (3)

ot = σg(Woxt + Womt−1 + bo) (4)

ct = ft 
 ct−1 + it 
 σc(Wcxt + Wcht−1 + bc) (5)

mt = ot 
 σh(ct) (6)

From Equation (2) to Equation (6), σg, σc, and σh represent logistic sigmoid function,
the input activation function, and the output activation function, respectively. f , i, o, and c
represent the forget gate, input gate, output gate and cell activation vector, respectively. m
depicts the hidden state vector, also known as output vector, of the LSTM units. W denotes
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the weight matrix (for example, Wi represents the weight matrix of input gate). The
⊙

stands for element-wise multiplication, and b denotes the bias term.
For this study, LSTM was used to model the temporal dynamics of biomass change.

The combination of multi-task learning and LSTM allows the model to capture the complex
relationships between thinning rules and climate change. By sharing the LSTM layer and
jointly training the model on multiple related tasks, the MT-LSTM model can learn to
generalize better and make more accurate predictions [49,50].

2.2.3. Loss Function

In this study, the loss function used in the MT-LSTM model consists of mean squared
error (MSE) loss function and biomass compatibility rules. MSE loss function is defined as
the average of squared differences between the actual and the predicted value (Equation (7)).
In the MT-LSTM model, stem (ystem), root (yroot), leaf biomass (ylea f ), aboveground biomass
(yaboveground), and total biomass (ytotal) were all estimated independently. The addition of
biomass correlation ensures the compatibility of the model, which is important for accurate
biomass estimation. The rule is based on the principle of mass balance, which states that
the total biomass in the system must always be consistent with the sum of the components.
The following equations (Equations (8) and (9)) are the biomass correlation rules added to
the loss function:

MSE =
1
n

n

∑
i=1

(yi_true − yi_prediction)
2 (7)

ytotal = yaboveground + yroot (8)

yaboveground = ystem + ylea f (9)

In Equation (7), n is the number of samples, while yi_true and yi_prediction are the
observed value of the ith sample and its corresponding predicted value, respectively. ytotal ,
yaboveground, yroot, ystem, and ylea f are the predicted values of the total, aboveground, root,
stem (with bark and branch), and leaf biomass of the forest stand, respectively.

2.2.4. Constrained Hybrid Models

We used the 3-PG model to expand the observational data on stand biomass at unequal
time intervals into monthly time series data. LSTM is trained using amplified data. MTL
aims to enhance the generalization ability of LSTM by simultaneously learning multiple
tasks. We added the biomass compatibility constraint to the LSTM loss function based on
MTL. Minimize the difference between the stand’s biomass and the sum of the biomass
of each organ in the stand. Additionally, the superposition of unjustifiable errors in the
prediction results is reduced, and the hybrid model’s performance is enhanced. The 3PG-
MT-LSTM model consists of two LSTM layers and one fully connected layer. The activation
function of the hidden layer is ReLU (rectified linear unit). The activation function of the
output layer is linear. The model optimizer is Adam (Adaptive Moment Estimation). The
model learning rate is set to 10−4.

2.3. Model Evaluation and Validation

The paper uses four evaluation indicators to assess the accuracy of the 3PG-MT-LSTM
model: R2, RMSE, MAE, and MAPE (Equations (10)–(13)). Among them, yi represents the
observed biomass value at time i, ŷi represents the estimated biomass value at time i, y
represents the average value of the observed biomass.

R2 =
∑n

i=1 (ŷi − y)2

∑n
i=1 (yi − y)2 (10)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (11)
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MAE =
1
n

n

∑
i=1

|ŷi − yi| (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (13)

R2 measures the proportion of the variance in the dependent variable that is predictable
from the independent variable. The closer R2 is to 1, the better the model performance.
RMSE, MAE, and MAPE measure the error between the predicted and observed values.
When MAE and MAPE are used together, they provide a comprehensive evaluation of the
model’s fit to data of different scales. In the context of this paper’s data, using both metrics
can help to assess the model’s performance in simulating the stand biomass of different
ages. Combining the above metrics can provide a more comprehensive evaluation of a
regression model’s accuracy.

2.4. Future Climate Scenarios and Thinning Treatments

The Coupled Model Intercomparison Project Phase 6 (CMIP6) is a collaborative effort
among climate scientists to assess and improve the performance of climate models’ [51].
SSP1-2.6, SSP2-4.5, and SSP5-5.8 are three future projection scenarios in CMIP6, and their
primary differences lie in greenhouse gas emissions and climate change predictions. The
climate scenarios of SSP1-2.6, SSP2-4.5, and SSP5-5.8 estimate that global warming will
be 1.7 ◦C, 2.0 ◦C, and 4.4 ◦C by 2081–2100, respectively. We used the average simulated
value of three models—IPSL-CM6A-LR, MPI-ESM1-2-HR, and BCC-CSM2-MR—in the
three climate scenarios (Figure A1). To study the synergic effects of climate and thinning on
forest growth, we designed 18 thinning regimes for spruce from the Bily Kriz site, including
an unthinning control group (Figure 2). Considering that spruce is a coniferous forest and
our study plot is an even-aged stand, we only applied the low thinning method to our
simulation. We designed the thinning intensity according to the number of trees. The
thinning intensity is the proportion of trees cut to the total number of trees in the forest.
Considering the ecological characteristics of spruce and its age groups, the stands were
thinned at an intensity of 10% (light thinning), 20% (moderate thinning), or 30% (heavy
thinning) in the stand stage where they are considered young (age less than 61). In the
middle-aged stage, the stand was only lightly thinned. When the stand is near mature (over
90 years of age), thinning operations are no longer carried out. To distinguish the effects
of thinning intervals on stand growth, we applied 10-, 15-, 20-, 25-, and 30-year intervals.
We added a third thinning operation for shorter intervals (10 or 15 years) based on two
thinning operations.
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Figure 2. Thinning regimes and time. The horizontal axis represents the year. The vertical axis
represents different thinning regimes. 10Y, 15Y, 20Y, 25Y, and 30Y represent the intervals of 10, 15,
20, 25, and 30 years with respect to forest stand thinning, respectively. L, M, H represent light
(10%), moderate (20%), and heavy (30%) thinning intensity, respectively, which are distinguished by
different colors in the figure; 2T/3T represent simulated thinning two times and three times within
the set thinning period.

3. Results

3.1. 3-PG Model Calibration and Picea asperata Biomass Simulation

We performed Morris sensitivity analysis using the r3pg package and identified the
three most sensitive parameters of the 3-PG model. They are the ratio of leaf biomass to
stem productivity when DBH is 20 cm (PFS20), the minimum fraction of NPP to roots
(PRn), and the canopy quantum efficiency (AlphaCx), respectively. Parameters related to
biomass allocation and photosynthesis are always sensitive to model performance. The
model parameterization process and results are similar. Therefore, this section uses the
Solling site with the most measured data and the longest temporal range as an example to
show the 3-PG calibration results. First, we calibrated the model using all the measured
values at the Solling site from 1967 to 2014, as introduced in Section 2.1. There is a deviation
between the estimated value (3-PG simulation) and the measured value (Observation)
(Figure 3a). From 1967 to 1970, the stand was not thinned, and the estimated value of 3-PG
was close to the measured value. But after the first thinning, the model did not properly
capture the immediate impact of thinning. This led to a persistent underestimation of
stand biomass. After the second thinning in 1981, the model continued to use the original
parameters. This can lead to overly optimistic estimates of the stand’s growth potential,
resulting in consistently higher estimates. In order to make the estimated value reflect the
true situation of the stand as much as possible, we re-optimized the sensitive parameters
of the model every time a thinning event occurred. After correcting the parameters in
stages, the model simulation results (3-PG staged simulation) were consistent with the
observation data. They can meet the data quality requirements of deep learning. Through
model simulation, we obtained a total of 3904 augmented data points to support LSTM
training. With the decrease in stand density, the optimal values of sensitive parameters in
the 3-PG model also change (Figure 3b). As the age of the forest increases and the density
of the stand decreases, there is a corresponding increase in the PRn value. In comparison to
the initial value, there is a 5.23% increase; PFS20 decreased by 7.09% compared with the
initial value, and AlphaCx changed by 2.6% overall from the initial value. The performance
of AlphaCx is subject to real-time thinning and exhibits notable fluctuations. A reduction
of 100 trees per hectare in stand density resulted in a fluctuation of 13.67% in the parameter
value. It is noteworthy that the parameters exhibit a relatively narrow range of variation
with respect to their values. Nonetheless, in the 3-PG model, even minor alterations to the
aforementioned three critical parameters can significantly impact the model’s trajectory.
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Figure 3. Taking the Solling site as an example, (a) comparison of the prediction results of the
traditional 3-PG model and the staged 3-PG model. Among them, the 3-PG simulation and 3-PG
staged simulation are estimated values after optimizing the physiological and ecological parameters
of the model using all observation data and stages, respectively. Observation is the value of the
observation data. The black dashed line indicates that the stand was thinned in its corresponding year;
(b) the changes in the optimal value of the main sensitive parameters—PF20, PRn, and alphaCx—of
the 3-PG model at different stages (stand density).

3.2. Calibrate and Evaluate the 3PG-MT-LSTM Model

For the present section, we initially employed the residual index to assess the efficacy
of 3PG-LSTM, 3PG-MT-LSTM without compatibility rules, and 3PG-MT-LSTM with com-
patibility rules. Next, we analyzed whether there was a significant difference between the
model residuals (Figure 4). Our findings indicate that incoporating biomass compatibility
rule into the model can substantially enhance its precision. Simultaneously, the difference
between the different models obtained by the Solling site with a large dataset and the
joint training of multi-site data is more significant. When the datasets are small, like at the
Hyytiala or Bily Kriz sites, the difference in performance between the single-task LSTM
models and the multi-task LSTM models is not statistically significant. Following the
incorporation of compatibility regulations, in contrast to the solitary-task LSTM model, the
performance of the four models was substantially enhanced to differing extents.

Our assessment of the model was conducted based on the metrics outlined in Section 2.3
(Figure 5). The compatibility rule makes the model more capable of explaining the growth
process and variation trend of distinct Norway spruce components (R2 > 0.9). We observed
that there is essentially no change in the prediction ability of the model for samples of vary-
ing forest ages since MAPE is comparable to the product of MAE and the average value of
the data. This demonstrates that the coupling model described in this study performs better
and is less susceptible to influence from outside sources. From the ratio of RMSE and MAE
(RMSE/MAEsolling_stem = 6.96, RMSE/MAEhyytiala_stem = 6.45, RMSE/MAEbily_stem = 4.95,
RMSE/MAEmulti-model_stem = 7.97), it is clear that adding the biomass compatibility rule
makes it harder for the model’s forecast process to avoid residual extremes. The model
prioritizes minimizing the penalty values of the biomass compatibility loss function and
the mean squared error (MSE) loss function. This results in models that sometimes sacrifice
the accuracy of individual variables to improve overall model accuracy. Because of the
volume and range of the data, the Solling site and multi-site estimation models have larger
RMSE and MAE values. The inaccuracy is fairly substantial as a result of the wide variance
in the stem biomass.
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Figure 4. Residual distribution and significance analysis of three models in different sites.
(a–c) represent the results obtained from training at the Solling site, Hyytiala site, and Bily Kriz
site, while (d) represents the results obtained from training on data from all three sites combined.
Asterisks refer to the significant differences in the models’ residuals (NS, no significant difference;
*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Figure 5. 3PG-MT-LSTM model evaluation results. (a–d) represent the results obtained from training
at the Solling site, Hyytiala site, Bily Kriz site, and all three sites combined. Different colors represent
different evaluation indicators. It should be noted that the unit of RMSE is 10 t.
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3.3. Changes in Norway Spruce Biomass under Different Future Climate Scenarios

Young, middle-aged, and near-mature forests are the primary types of forests that
benefit from thinning as a management strategy [52]. Considering this, in the later stages
of the long-term simulation, the spruces in the Hyytiala and Solling sites will reach the
mature forest stage. We chose the Bily Kriz site for simulation prediction. We estimated the
changing trend of stand biomass and average diameter at breast height using the thinning
regimes described and the gathered future climate data in Section 2.4. The ensemble means
of three CMIP6 models were utilized to analyze the trend of each meteorological factor
(Figure A1). The results indicate that there is a rising trend in the future daily minimum
and maximum temperatures, as well as the daily average solar radiation, across all climate
scenarios observed at the Bily Kriz site. The results also indicate that, under SSP1-2.6 and
SSP2-4.5 scenarios, the precipitation in 2090s increased by 9.79% and 7.02% compared
with that in 2010s. On the contrary, under the SSP5-8.5 scenario, the precipitation in 2090s
decreased by 12.84% compared with that in 2010s. However, the precipitation in the
SSP5-8.5 scenario decreased by 12.84%. The number of frost days had a greater impact
on forest productivity. The reduction in the number of frost days persisted because of the
steady escalation of the daily minimum temperature within the contexts of the SSP2-4.5
and SSP5-8.5 scenarios. In contrast to the frost days recorded in the 2010s, those observed
in the 2090s exhibited a reduction of 40.26% and 69.33% for the respective years. Despite a
slight increase in the daily minimum temperature under the SSP1-2.6 scenario, there was no
significant alteration in the annual count of frost days. Based on the above climate scenario,
we simulated the mean DBH and biomass of Norway spruce at the Bily Kriz site for the
2020–2100 period (Figure 6).

Figure 6. The future Norway spruce stand’s mean diameter at breast height and biomass trends at
the Bily Kriz site. (a,b) show the average diameter at breast height and biomass variation trend of
the Norway spruce in 2040, 2060, 2080, and 2100 under several climate scenarios and 18 thinning
strategies. Sections (c,d) identify the five most effective thinning techniques, based on the average
diameter at breast height and biomass estimations of the forest stand in the year 2100. Where
(i) represents the value difference between SSP1-2.6 and SSP5-8.5 scenarios, and (ii) Indicates the
difference in values between SSP2-4.5 and SSP5-8.5 scenarios. The presented data display the
simulated values of stand diameter at breast height and biomass for various thinning techniques in
the years 2040, 2060, 2080, and 2100, arranged in a left-to-right formation.
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The simulation results indicate that the productivity and DBH growth of spruce were
most significant in the SSP5-8.5 scenario, regardless of the combination of thinning intensity
and interval, when thinning from below was used (Figure 6a,b). Additionally, with the same
thinning intensity and a climate scenario with a higher average temperature, the growth of
Norway spruce varied more significantly. We selected the five thinning regimes with the
highest biomass and DBH values for spruce in 2100 to verify our views (Figure 6c,d). The
figures show the difference in spruce’s response to the same thinning regimes and different
climate scenarios at four time nodes in 2040, 2060, 2080, and 2100. Using the 10Y_H3T
thinning approach as an example, the difference in DBH between the SSP5-8.5 and SSP1-2.6
scenarios increased from 0.35 cm in 2040 to 3.01 cm in 2100. The difference in biomass
increased from 1.65 t hm−2 in 2040 to 17.28 t hm−2 in 2100. The same trend was present
among the other thinning regimes (i.e., 10Y_H2T, 10Y_M3T, and other regimes) and climate
scenarios. For stand diameter at breast height, with an increase in thinning intensity, the
growth rate of stand diameter also increased. However, once the stand age reached 100a
(2080), the growth of DBH per unit time began to slow. Furthermore, we discovered that
when the thinning frequency was 10 years, the stand diameter was substantially greater
than when the cutting frequency was 15 or 20 years. Light thinning at the middle-aged
stage of spruce influenced stand diameter, but this effect depended on the thinning intensity
at the young stage. For the light- and moderate-thinning plots, the impact on diameter at
breast height was not obvious after light thinning in the middle-aged forest stage. However,
on highly thinned plots, there was a greater potential for individual tree DBH growth after
thinning at the middle-aged forest stage. For stand biomass, the number of Norway spruce
trees in the stand fell constantly with increasing thinning severity during the continuous
thinning era (before 2060). When compared to the un-thinned instance, the reduced number
of trees resulted in lower total biomass. The number of trees was basically stable after
the thinning period. When the trees reached the near-mature forest stage in 2080, the
productivity of the 10Y_LT and 10Y_MT thinning forests were higher than that of the
non-thinned stands. In 2100, The 10-year-cut and 15-year-cut stands’ productivity was at a
relatively high level, and the trees still had great growth potential. When Norway spruce is
young, moderate-to-heavy thinning of the stand every 10 years makes it easier to produce
large-diameter timber. Thinning at extended time intervals (more than 20 years) not only
inhibits the growth of single-tree diameter at breast height but also limits the increase in
total biomass.

4. Discussion

4.1. Estimation Accuracy and Interpretability of the Hybrid Model

The 3-PG model is designed to simulate key processes in the growth of forest stands.
The model necessitates numerous parameters, and acquiring their values through direct
observation is a challenging task [53]. Utilizing the LSTM approach driven by data, it is
possible to effectively extract the spatio-temporal features of stand growth and their associ-
ations with climate, geography, and anthropogenic factors, based on historical data [54,55].
The process of training deep learning models typically necessitates a substantial amount of
data. This study utilized the optimized 3-PG model to address the challenge of acquiring
biomass data by boosting the available observation data. A substantial quantity of superior-
grade data needs to be acquired to bolster the training of the LSTM model. The present
study incorporates LSTM as a shared layer, multi-task learning, and biomass compatibility
rules. The model adheres to the fundamental principle of mass conservation. Improve-
ments in estimation accuracy, reliability, and generalization ability were also observed. The
3PG-MT-LSTM model more accurately captures the impact of thinning and climate change
on stand biomass. The reasonable use of models for prediction and estimation can reduce
uncertainty in forest management.

The density of tree stands is a crucial factor in determining the level of competition for
resources among trees, ultimately impacting their growth [56,57]. The Norway spruce at
the Solling site transitions from near-mature forest to mature forest. Thinning alters the
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structure of the canopy, allowing more light to reach the understory, which promotes forest
growth. However, according to the studies described in Section 3.1, the age of the forest
is a constraint that causes the photosynthetic efficacy of trees (or AlphaCx) to fluctuate
and decline. The decrease in the PFS20 parameter value can also reflect the change in
forest photosynthetic efficiency. After thinning, the leaf area index decreases, the gap
increases, and each tree is allocated more appropriate growing space. The light resource is
no longer the main object of tree competition. Whilst there was a gradual increase in leaf
biomass, there was a decrease in the proportion of biomass that trees allocated to leaves.
This discovery is in line with the research conducted by Deng et al. [58] and Chen et al. [59].
On the other hand, soil resources are finite. As forest grows, there is a concomitant decrease
in soil fertility for a given plot. At this time, there is a tendency for forest stands to allocate
a greater amount of carbon towards their root system, resulting in an increase in the PRn
parameter. This phenomenon has the potential to enhance the competitive advantage of
vegetation in acquiring soil resources. Competition for biomass allocation among stand
organs is considered to be an adaptive feature of forests [60]. Similar findings were reported
by Wang et al. [61] and Subedi et al. [62] in their respective investigations of the effects of
thinning on tree biomass distribution.

It is challenging to adequately depict forest tree growth using a “white box” model
because it is a complex process. For instance, the spatiotemporal dependence of vegetation
and physiological and ecological characteristics needs to be considered in the prediction
process. The LSTM regulates the flow and output of information by means of its distinc-
tive gating mechanism. In contrast to Artificial Neural Networks and Recurrent Neural
Networks, LSTM exhibits superior capacity in acquiring long-term dependencies within a
sequence [63]. The temporal correlation between climate-induced effects on forests remains
unclear. This is difficult to explain and quantify using known mechanisms [64,65]. Because
of its gating mechanism, LSTM is better suited to processing and predicting a long-time
series with relatively large intervals and delays [66,67]. LSTM can accurately capture the
effect of events on forest biomass, whether it be forest thinning with extended gap intervals
or climatic change with lag effects. While LSTM models can achieve high levels of accu-
racy during training, it is important to remain cautious of their inherent uncertainty. The
constraints of physical processes must also be considered while maximizing knowledge
learning from data. The 3-PG model exhibited more accuracy in simulating the allometric
growth of the tree. The output of the process model was employed as the training sample
for deep learning for this paper, and underlying physical law restrictions were introduced
in the training process. The aforementioned approach not only satisfies the data prereq-
uisites of Long Short-Term Memory (LSTM) and enhances the precision of the model but
also upholds a degree of conformity with the principles governing plant growth. Through
multi-task learning and penalty terms in loss function, the 3PG-MT-LSTM model integrates
biomass compatibility rules. In forest ecosystems, the biomass compatibility rule is a rare
and strong physical limitation. The principles of mass conservation-based compatibility
rules are universally applicable to trees of all species, regardless of the age of the forest
or its geographical location. During our research, we also considered models of volume
compatibility (i.e., biomass = plant volume * plant density). However, after discussion, we
discovered that the density of wood will alter slightly with the expansion of forest age,
even for the same tree species. Additionally, obtaining the volume also presents challenges.
This could cause the model to contain more mistakes and uncertainties. Because of this, for
this study, we ultimately decided to solely employ the biomass compatibility constraint
as the model’s additional penalty. In deep learning algorithms, this reduces the build-up
of unjustified errors. The accuracy of the 3PG-MT-LSTM model remains unaffected by
variations in forest age or external environmental factors, irrespective of whether the model
is trained on a single site or multiple sites. The integration of process modeling, and deep
learning techniques enhances the predictive capabilities of the model in predicting future
changes, thereby introducing a novel avenue for precision forestry research.
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4.2. Synergistic Effects of Thinning and Climate on Forest Growth

Examining the relationship between tree growth and environmental and management
practices is a crucial aspect of the advancement of precision forestry. In the young forest
stage, stand density is generally higher. Thinning reduces competition among trees for
nutrient space and resource constraints on tree growth. Based on the 3PG-MT-LSTM model
proposed in this paper, we performed long-term predictions of Norway spruce biomass
at the Bily Kriz site. The results showed that, when using the identical thinning strategy,
SSP5-8.5’s simulation of Norway spruce had the highest overall biomass and single-tree
diameter. After combining the differences between different climate scenarios in Section 3.3,
we can conclude that solar radiation and temperature are the most important driving
variables for Norway spruce growth without considering the impact of extreme climates.
This agrees with conclusions from earlier studies examining the environmental factors
that influence spruce growth [68–70]. The observed variations in DBH and biomass across
different scenarios indicate that the beneficial impact of forest management is particularly
pronounced in warmer climates. The differences observed in SSP5-8.5 compared to other
scenarios have evidenced that the Norway spruce species exhibits favorable ecological
adaptability and thrives in areas with abundant sunlight and moderate humidity levels.
The Norway spruce species can tolerate a variety of environmental conditions but prefers a
climate with moderate humidity and lots of sunlight [71]. Temperature and solar radiation
will exponentially increase after the 2070s, according to the SSP5-8.5 climate change scenario
(Figure A1). The amount of precipitation exhibited a further decrease. As a result, in the
SSP5-8.5 scenario, Norway spruce growth continued to increase. But compared to other
situations, the growth rate was lower.

Different thinning intensities and intervals had a substantial impact on stand growth,
in addition to climate change. The regimes taken during the young-aged forest stage for
thinning played a decisive role in the growth of the stand’s average diameter at breast
height. For even-aged spruce forests, we used low thinning to reduce stand density and
intra-stand competition. Under the low-thinning method, the heavy thinning of stands
in young forests is conducive to the production of large-diameter timber. On this basis,
further light thinning of stands in the middle-aged forest stage can increase the growth
potential of stand diameter at breast height. Over time, the growth rate of a single tree in
the light-to-moderate thinning stand slowed down significantly (at the same time interval,
the average increase in diameter at breast height decreased). This is due to the limitations
of light resources and soil resources [72]. Managers can improve ventilation and light
conditions in the forest at this time by pruning branches and increasing forest gaps. In the
thinning stage, there was an inverse relationship between thinning intensity and stand
biomass. The higher the thinning intensity, the smaller the stand number and remaining
biomass. This is consistent with the findings of Simon and Ameztegui [73]. After thinning,
the stand entered a rapid growth period. In Section 3.3, we found that the growth rate of
biomass in moderate- and heavy-thinning forests is much higher than that of light-thinning
forests. In 2100, the biomass of moderate-thinning stands was the highest compared with
other thinning regimes. This is a consequence of the regulation of multiple conditions, such
as the total number of trees, soil resources, and competition within the forest. Rimal et al.
examined the effects of different thinning intensities and intervals on the biomass growth
of a 75-year-old Norway spruce stand [13]. They found that light thinning applied at longer
intervals (greater than 25 years) resulted in higher stand biomass. However, according to
our research, conducting moderate-to-heavy thinning 1–2 times during the young-aged
Norway spruce forest stage and light thinning 0–2 times during the middle-aged forest
stage are more favorable for biomass accumulation. The 10Y_H2T thinning regime can
better balance the relationship between DBH and production. We attributed the differences
in Rimal et al.‘s results to the difference in the ages of the subjects. Specifically, our study
was conducted on a 34-year-old forest stand, whereas Rimal et al. conducted their research
on a 75-year-old one. Consequently, variations exist in the choice of thinning techniques
and the resultant findings.
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In the context of forest stand management, it may be advisable to conduct heavy
thinning during the early stages of stand development in instances where there is a high
demand for large-diameter timber. This approach is particularly relevant for operators in
this field. To enhance the stand’s overall productivity within a limited timeframe, opting
for light thinning as a stand management strategy is advisable. To maximize the stand’s
long-term carbon sink capacity, we recommend implementing periodic moderate thinning
with intervals of 10 to 15 years during the young-aged forest stage. Using the 3PG-MT-
LSTM model has the potential to aid forest managers in promptly revising stand growth
information. Before thinning, operators can formulate suitable thinning measures based
on the results of model simulations. This can provide a direction to help them achieve
a balance between producing large-diameter timber and economic benefits while taking
forest carbon storage into account. After thinning, the model can be used to continuously
monitor the growth of forest stands. By evaluating the real-time impact of management
measures on the value of forest carbon sinks, operators can promote the development of
sustainable forest management.

4.3. Limitations of Modeling Methods

The 3-PG model provides a larger training sample for deep learning algorithms. At
the same time, the cost of data collection is reduced. However, limited by the output of
the 3-PG model, we can only constrain the compatibility rules among stem, leaf, root,
aboveground biomass, and total biomass. The biomass of bark and branches cannot be
estimated. Due to constraints in data acquisition during the variable selection process,
variables such as soil fertility were not included. Although the 3-PG sub-model has the
capability to simulate alterations in soil fertility. To mitigate the potential for heightened
ambiguity within the model, we refrained from incorporating its simulated value as a
feature variable. Furthermore, we lack thinning regime designs for different thinning
methods. Our model currently only provides forest growth estimates for a single thinning
method. In the future, we hope to obtain more relevant data support, combined with
feature coding technology, to design a more complete thinning experiment. This provides a
reliable technical means of clarifying the long-term impacts of thinning on forests.

For the 3PG-MT-LSTM model, in addition to increasing the type and amount of data,
the coupling mechanism is also an important avenue for improvement. Despite the fact that
the interpretability of the hybrid model has improved, it fundamentally remains a model
driven by data. The model exhibits a high degree of precision in its response to alterations
in both climatic and human management factors. However, the challenge lies in accurately
measuring the individual impact of each variable on the simulation outcomes. During the
process of training a model, there is a relatively high demand for professional expertise and
hardware capabilities, resulting in a relatively high computational cost. Researchers will be
able to build genuine data–mechanism hybrid driving models in the future using methods
such as mechanism model parameter optimization, model sub-module proxy, and model
system error correction. This could further improve the robustness of forestry model and
provides technical support for forestry accurate management.

5. Conclusions

Data gaps are a common problem in forestry modeling. In this paper, combined
with the existing data parameterizing the 3-PG model, the stand diameter and biomass
data were successfully filled using the monthly scale simulation results. The LSTM is
trained based on the augmented data, and the 3PG-MT-LSTM model is constructed by
adding MTL and compatibility rules. In contrast to the conventional LSTM architecture,
the coupling model demonstrates enhanced precision in biomass estimation following
thinning operations while also circumventing the accumulation of errors across individual
components. There is no significant difference in the applicability of the model when it is
applied to spruce forest stands in different regions and forest ages, and the generalization
ability has improved. Utilizing the hybrid model, the present study showcases the impact
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of diverse thinning techniques on the growth of Norway spruce trees situated at the Bily
Kriz location in light of anticipated climate change scenarios. According to our analysis, the
periodic light-to-moderate thinning of Norway spruce stands at intervals of 10 to 15 years
had a favorable impact on the accumulation of biomass over an extended period.

The heavy thinning technique is deemed more appropriate to produce timber with
large diameters. Additionally, thinning management during the young-aged stages of
forest growth is imperative for any production objective. The decision to implement
additional management practices during the middle-aged stage of forest growth can be
appropriately modified based on the current condition of the stand. The application of a
hybrid model can help managers balance large-diameter timber production with economic
benefits. The carbon sink value of a stand is determined through comprehensive research to
provide scientific guidance for sustainable forest development. In conclusion, the in-depth
application of deep learning presents an opportunity for the field of forestry management,
but it also poses new challenges for forest managers.
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Appendix A

Figure A1. Change trends of annual average maximum and minimum temperature (a), annual
average solar radiation (b), and annual total precipitation (c) under SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios. The values shown here are from the same source as the future meteorological factors
in the text. They are taken from the ensemble averages of three climate models: IPSL-CM6A-LR,
MPI-ESM1-2-HR, and BCC-CSM2-MR.
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Abstract: As an endemic species and the only Helleborus species in China, Helleborus thibetanus is
highly valued in medicinal and ornamental applications, and basic research is needed for its further
resource conservation and utilization. Considering the interesting disjunct distribution of the genus
Helleborus, we focus on the distribution pattern of H. thibetanus in this research. Based on species
distribution models using three different algorithms (MaxEnt, RF, and FDA), we constructed a robust
ensemble model and predicted potential distributions under different scenarios: current situation,
paleo periods since the Last Glacial Maximum, and simulations of climate change in the 2070s. The
habitat suitability of H. thibetanus across geography and scenarios was further analyzed by calculating
regional areas and centroids. The results showed that H. thibetanus is currently distributed in southern
Shaanxi and northern Sichuan, while central and southern Sichuan used to be suitable 14 thousand
years ago but gradually became unsuitable, which may reflect the population decrease in Sichuan and
the population expansion in Shaanxi over the last 14 thousand years. Our results showed that current
populations are under limited extinction pressure in the soft climate change scenario (ssp126), but
most populations in Shaanxi are under extinction pressure in the hardy situation scenario (ssp585).
Fortunately, northern Sichuan is predicted to be relatively stable under climate change (both ssp126
and ssp585), and regions in western Sichuan and eastern Qinghai are predicted to become newly
suitable for H. thibetanus. These findings should be helpful for the further conservation and utilization
of H. thibetanus and also help us understand the history of the conjunct distribution pattern of the
Helleborus genus.

Keywords: Helleborus thibetanus; species distribution; climate change; bioclimatic variables

1. Introduction

Belonging to Ranunculaceae, Helleborus comprises about 22 species in Eurasia [1].
However, all species are located in Europe, except a single species (H. thibetanus) found
in Asia [1]. This disjunct and uneven diversity pattern suggests a complex evolutionary
history of Helleborus, which may connect to historical climate change, geological events, and
dispersal limitations. This evolution is ongoing [2]. Questions may arise, including why a
single species is left in Asia and what historical process explains its current distribution
pattern. Such questions are valuable in revealing the full evolutionary history of Helleborus
and other genera with disjunct distribution patterns. This history suggests that H. thibetanus
holds great value in basic scientific research [2]. Meanwhile, H. thibetanus has a long
tradition in ethnomedicinal and ethnoveterinary applications [3]. Modern pharmacological
studies have suggested that they possess antitumor, antibacterial, immune-regulation,
and cytotoxic properties, and many components have been disclosed [4,5]. In addition
to its extensive medicinal usage throughout history, H. thibetanus is widely used in the
ornamental industry, given its complex flower structure and long fluorescence [6,7]. The
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frequent and disordered introduction of natural germplasms due to their value in medical
and ornamental applications, along with other pressures such as habitat fragmentation
and global climate change, is creating extinction pressure on H. thibetanus [7,8]. Therefore,
it is important to perform distribution modeling on H. thibetanus to better understand its
distribution patterns and its evolutionary history, as well as to aid in conservation efforts.

Current species distribution patterns can depend on a variety of factors, including en-
vironmental influences, historical influences, and competition between species [2]. Among
them, climate factors often play important roles, as they can affect the growth, development,
and survival of plants in a variety of ways. Warmer temperatures often lead to increased
growth rates, while colder temperatures can lead to decreased growth rates or the death
of the plant [9]. In most cases, plants remain in balance with local climate conditions.
However, extreme temperatures and changes in weather patterns due to climate change
can lead to increased stress on plants, resulting in decreased growth and susceptibility to
disease [10]. To respond to dramatic changes in climate, plants can shift their distributions
to follow changing environments, shift their physiology to adapt to changing conditions
while remaining in place, remain in isolated pockets of the unchanged environment (climate
refugia), or, more often, become extinct [11]. Considering dramatic climate fluctuations
in the Quaternary, the current distribution pattern of the Helleborus species should result
from a series of events, including range shifts and species extinction [11]. Resolving the
Quaternary biogeographic history of Helleborus is important for fundamental ecological
and evolutionary science, and it is also crucial for addressing applied scientific questions
about species’ responses to contemporary climate change.

Species distribution models (SDMs) are often used to understand environmental rela-
tionships and predict species distributions in both environmental and geographic spaces.
SDMs are an important tool for conservation planners, ecologists, and natural resource
managers [12]. SDM methods span from purely correlative methods (i.e., statistical assess-
ments of relationships between species presence and a set of environmental variables) to
purely process-based methods (i.e., explicit ecological relationships between environmental
conditions and organism performance) [12]. Considering the limitation of demanding
parameterization in process-based approaches, correlation-based SDMs have been widely
applied because of their simplicity and the accessibility of software such as Maxent [13].
Meanwhile, different methods may have their own strengths and weaknesses. Ensemble
modeling is reported to produce a more accurate and reliable prediction by combining the
results of multiple individual models [14]. One of the most popular platforms for ensemble
modeling is BIOMOD [15]. With the rapid development of Species Distribution Modeling
(SDM) theory and technology, BIOMOD has become a powerful tool in several applica-
tions, particularly in ecology and conservation biology [12]. One of the main functions of
SDM is to help us understand the niche of specific species. By modeling the relationships
between species distribution and environmental variables, SDM can provide insights into
the fundamental niche of a species or the set of environmental conditions under which
it can persist [16]. Understanding the niche of a species can be crucial for conservation
efforts, particularly in managing and restoring degraded habitats or identifying potential
areas for reintroduction [16]. Another function of SDM is to identify suitable habitats for
wildlife and assist in conservation efforts [12]. By projecting potential distribution across
regions and periods, SDM can identify areas where species may be at risk of habitat loss
or fragmentation [7]. This information can be used to prioritize areas for conservation
and restoration efforts, as well as to inform land-use planning and decision-making [17].
Meanwhile, the utilization of SDM can facilitate the identification of regions that have
undergone less pressure in the face of both past and present climatic changes, referred to as
refugia [11,18]. The reconstruction of glacial refugial history has greatly contributed to our
comprehension of the mechanisms underlying species’ responses to environmental changes,
which can, in turn, provide valuable insights into their evolutionary capacity [19]. Further-
more, predictions of future refugia under conditions of climate change hold significant
implications for wildlife conservation and reintroduction efforts [18,20].
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The purpose of this study is to predict the distribution dynamics of H. thibetanus from
the Last Glacial Maximum to the near future under climate change, which is helpful for
its conservation and utilization. To achieve this objective, (1) we conducted a systematic
review of occurrences of H. thibetanus and constructed an ensemble species model based on
three different algorithms. (2) We detected the proximal climatic variables that affected the
distribution of H. thibetanus and explored their optimal limits. (3) We explored the climati-
cally suitable habitats under current climate conditions and projected the paleo-distribution
of H. thibetanus after the Last Glacial Maximum. (4) We predicted the future potential
distribution of H. thibetanus under different climate change scenarios and evaluated the
extinction risks among current distribution regions.

2. Materials and Methods

2.1. Occurrence Data and Distribution Range

A total of 302 specimen records of H. thibetanus were collected from 3 Chinese specimen
platforms of plants, including the Chinese Virtual Herbarium (www.cvh.ac.cn, accessed
on 31 July 2022), the Chinese Teaching Specimens Platform (http://mnh.scu.edu.cn/,
accessed on 31 July 2022), and the China Nature Reserve Specimen Resources (www.papc.cn,
accessed on 31 July 2022). Records without images or with uncertain locality were filtered,
and then each record was identified manually to filter for those with possible taxonomy
mistakes [1]. A total of 104 clean records were generated. Considering the possible bias
caused by spatial autocorrelation [21,22], we thinned our occurrence records using the
thin function of R package spThin [23], which generated a thinned dataset through a
randomization algorithm and ensured distances among all records were above a minimum
distance (10 km in this research). Finally, a total of 66 occurrences records were subjected to
further analysis.

A distribution range was generated to sample pseudoabsence or background records.
Firstly, the mean pairwise geographical distance of 66 thinned occurrences records was
calculated by sp packages [24] in R. Then, buffers of each thinned occurrence record with a
radium of the mean distance were generated and merged by raster package [25], which
was treated as the current possible distribution range of H. thibetanus.

2.2. Environmental Data and Correlation Analysis

Considering our object of tracing dynamic distribution history and estimating future
distribution loss risks under climatic change, a total of 19 bioclimatic data [26] (Table 1) were
initially selected and downloaded from the Chelsa Climatic Database, Version 2, accessed on
31 July 2022 (the download path is listed in Supplementary File S1). Data from the period of
1981~2010 was used to construct species distribution models, in which most specimens were
recorded. To estimate the risks under climate change, 2 shared socioeconomic pathways
(ssp) scenarios (ssp126 and ssp585) from CMIP6 (https://esgf-node.llnl.gov/projects/cmip6/,
accessed on 31 July 2022) were selected, which represent two contrasting scenarios of future
greenhouse gas emissions, with ssp126 assuming a rapid and sustained reduction in
emissions and ssp585 assuming a continued increase in emissions throughout the 21st
century [27]. Specifically, datasets of 3 global climatic models (GFDL-ESM4, PSL-CM6A-LR,
and MRI-ESM2-0, the download path is listed in Supplementary File S1) in the period of
2071~2100 under each scenario were downloaded to balance the possible bias generated
by global climatic models. To trace historical distribution dynamics, modeled bioclimatic
data of 6 historical periods (BC22K, BC18K, BC14K, BC10K, BC6K, and BC2K), ranging
from 22 thousand years before the current period (BC22K) to 2 thousand years before
the current period (BC2K), were also downloaded from the Chelsa Climatic Database
(https://chelsa-climate.org/chelsa-trace21k/, accessed on 31 July 2022) [28]. All of the
climatic data above are downloaded with a resolution of 30 arcsecs.
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Table 1. Bioclimatic variables and importance in modeling.

ID Bioclimatic Variables Unit
Mean Im-
portance

Standard
Deviation

bio01 Mean temperature ◦C - -
bio02 Diurnal air temperature range ◦C - -
bio03 Isothermality (bio02/bio07 ×100) \ 2.20 0.08

bio04 Temperature seasonality
(standard deviation ×100)

◦C 15.06 0.40

bio05 Max temperature of warm month ◦C - -
bio06 Min temperature of cold month ◦C - -
bio07 Annual temperature range ◦C - -
bio08 Mean temperature of wet quarter ◦C 23.41 0.60
bio09 Mean temperature of dry quarter ◦C - -
bio10 Mean temperature of warm quarter ◦C - -
bio11 Mean temperature of cold quarter ◦C - -
bio12 Annual precipitation mm - -
bio13 Precipitation of wet month mm - -
bio14 Precipitation of dry month mm - -

bio15 Precipitation seasonality
(coefficient of variation) \ 11.56 0.37

bio16 Precipitation of wet quarter mm - -
bio17 Precipitation of dry quarter mm - -
bio18 Precipitation of warm quarter mm 14.68 0.46
bio19 Precipitation of cold quarter mm 33.09 0.62

The function vifstep of R package usdm [29] was applied to reduce the multicollinearity
between bioclimatic variables, in which the maximum number of observations within the
training area was set to 10,000, and the thresholds of the correlation coefficients and vif
were set to 0.8 and 5. Consequently, 6 bioclimatic variables (Table 1) were selected for
further analysis.

2.3. Species Distribution Model Tuning and Construction

We applied 3 different algorithms to the following modeling, including maximum en-
tropy (MaxEnt) [13], random forests (RF) [30], and flexible discriminant analysis (FDA) [31].
All were implemented in the R package of biomod2 (v4.2.3) [15]. The 70 thinned occurrence
records and 6 bioclimatic variables obtained above were subject to tuning and constructing
species distribution models. The best parameters of each algorithm were tuned through the
function of BIOMOD_Tuning, which ran numerous models with different parameters and
evaluated each with True Skill Statistics (TSS). In the process of model construction, 3 sets of
pseudoabsence records were sampled from the distribution range, and 10 duplicate models
were constructed for each data set and each algorithm; that is to say, we generated 90 single
models total. In every single model, 70 percent of the input data were used to calibrate
the model, while the remaining 30 percent was used to evaluate the model. Other model
parameters were set according to the result of model tuning [12,32]. To balance the possible
bias produced by a single run or algorithm, we only maintained models with a TSS value
above 0.8 and then ensembled left models through the weight of the TSS value with the
prob.mean.weight option [32]. The importance of each bioclimatic variable in modeling was
calculated based on the ensembled model through the bm_VariablesImportance function
in BIOMOD2 with a replicate time of 30 and summarized by mean value and standard
deviation value, and then scaled to ensure the sum of the mean values is 1. The responsive
curve of the proximal bioclimatic variables was plotted through the bm_plotresponcse
function based on the training data [33] and the MaxEnt algorithm.

2.4. Potential Distribution Prediction and Geographical Analysis

The potential distribution under different scenarios of H. thibethanus was projected
using the ensembled model through the BIOMOD_Forecasting function in the Biomod2
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package. Firstly, we predicted the current potential distribution of H. thibetanus with the
bioclimatic training data. For an exploratory analysis of the historical distribution dynamic
of H. thibethanus, we projected its potential distribution in 6 historical periods (BC22K,
BC18K, BC14K, BC10K, BC6K, and BC2K). Finally, projections under future scenarios were
made for the purpose of evaluating its habitat risk under climate change.

Values below the threshold maximizing the TSS were masked by NA in each prediction
result, and then a fitness map under each scenario was plotted. To further compare
geographical changes of potential distributions under different scenarios, continuous
probability maps were transformed into binary maps through a threshold that maximized
the TSS. Regional areas and distribution centroids were then calculated with the help of
the SDMTools package [34]. All of the figures in this research were plotted using QGIS
(www.qgis.org, version 2.6.2) and the ggplot2 package [35].

3. Results

3.1. Single Model Accuracy and Ensembled Models

Single model accuracy based on AUC and TSS is illustrated in Figure 1, which refers to
MaxEnt obtaining the highest mean AUC (0.944) and TSS (0.810). Most single models were
shown to be high quality, which indicates that the model’s prediction effect was excellent
and that the prediction results had high accuracy and reliability. To further ensure high
accuracy and reliability, we only maintained single models with TSS > 0.8 and ensembled
them for further prediction analysis.

Figure 1. Model accuracy of single models applying three different algorithms.

3.2. Climatic Niche and Proximal Variables

The importance values of the six modeled climatic variables are listed in Table 1. As
the table shows, three bioclimatic variables (bio19, bio08, bio04, and bio18) contributed the
most to the prediction model. Bio19 had the highest importance (33.09%) in the prediction
model, while bio03 had the least importance (2.20%) in the prediction model.

The bioclimatic niche of H. thibetanus can be described using a suitable range of
multiple climatic variables, which can be displayed using the model’s response curve. As
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Figure 2 shows, most proximal bioclimatic variables (bio19, bio08, and bio04) are single-
peak curves. Specifically, the most suitable range (distribution probability above 0.5) of
bio19 (precipitation of the coldest quarter) is between 5.48 and 35.32 mm, and the peak at
20.40 mm. The most suitable range of bio08 (mean temperature of the wettest quarter) is
between 13.59 and 19.96 ◦C, and the peak at 16.62 ◦C. The most suitable range of bio04
(temperature seasonality) is between 7.23 and 8.65 ◦C, while the peak is 7.94 ◦C. The
response curve of bio18 (precipitation of warmest quarter) is not a peaked curve, which
reached a distribution probability of 0.5 at 452.70 mm, followed by a maximum probability
of 0.53 at 768.70 mm, and then remained stable as precipitation rose.

Figure 2. Response curves of 6 bioclimatic variables. We choose 18 MaxEnt models (with TSS > 0.8)
and the ensemble model based on the 18 individual models to generate variable curves. The curve
revealed by each individual model was drawn in grey, while a curve revealed by the ensemble model
was drawn in red.

3.3. Current Potential Distribution of H. thibetanus

The current potential distribution of H. thibetanus was predicted using ensembled
species distribution models. As Figure 3 shows, H. thibetanus is mainly located in three
provinces (Shaanxi, Gansu, and Sichuan), although fragments can be found in some
provinces (Xizang, Shanxi, Hubei, and Henan) that are also predicted to be suitable. The
most highly suitable regions (which have higher prediction values) are located in Southern
Gansu, Southern Shaanxi, and Northern Sichuan, corresponding to the Qinling mountains,
Daba mountains, and northern Hengduan mountains.

According to the binary results, the total area of the current potential distribution of
H. thibetanus is 287,556 km2. Sichuan had the largest area (85,678 km2) of suitable habitats
for H. thibetanus, followed by Shaanxi (84,828 km2) and Gansu (72,488 km2). These three
provinces accounted for a cumulative 84.5% of all suitable regions.
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Figure 3. The current potential distribution of H. thibetanus.

3.4. Paleo Potential Distribution and Historical Dynamics

The paleo potential distribution of H. thibetanus (Figure 4) was predicted based on
paleo bioclimatic data. It predicted a wider potential distribution of H. thibetanus in the
period BC22K (22 thousand years before the current year) than the current scenario, which
covers most regions in southern Shaanxi and northern Sichuan and extends to the southern
Hengduan mountains. Four thousand years later, the predicted potential distribution
in BC18K is mainly located in southern Sichuan, and most current potential regions in
Shaanxi were predicted to have low suitability. This trend persisted at least until BC10K,
and it was predicted that nearly all current potential regions in Shaanxi were unsuitable
for H. thibetanus between BC14K and BC10K. In the next 10 thousand years, the suitability
of Sichuan would decrease, while the suitability of Shaanxi and Gansu would increase,
resulting in the current potential distribution pattern of H. thibetanus.

The areas of the three types of suitable regions and the centroid of potential distribution
were calculated. As shown in Figure 5, the area of the suitable regions in BC22K is
256,836 km2, and the following area dynamics can be divided into two periods. In the
period of BC22K~BC14K, the area decreases until it reaches 121,549 km2. In the period of
BC14K~today, the area increases. The spatial dynamics of the paleo potential distribution
are shown by the movement of the centroid (Figure 6). As the results show, the centroid in
BC22K and BC2K was near the current centroid, while two significant movements occurred
between BC22K and BC2K. The centroid moves southeastwards between BC22K and BC14K
and then northeastern between BC14K and BC2K. The most southern centroid (with a
latitude value of 29.29 degrees) is found in BC14K, while the most western centroid (with a
longitude value of 103.30 degrees) is also found in BC14K.

3.5. Future Potential Distribution and Ranges under Risks

Two climate change scenarios were selected to predict the future potential distribution
of H. thibetanus and evaluate the risks of habitats disappearing. As Figure 7 shows, a
weaker suitable region change is found in the moderate climate change scenario (ssp126),
H. thibetanus is predicted to lose a limited number of regions in eastern and southern
Shaanxi and also some fragments in southern Sichuan. On the other hand, H. thibetanus is
predicted to expand its current distribution westwards and cover wide regions in eastern
Qinghai and western Sichuan. A greater suitable region change is predicted in the high
climate change scenario (ssp585). H. thibetanus is predicted to lose nearly all suitable regions
in Shaanxi in ssp585, but gain new suitable regions in eastern Qinghai and western Sichuan.
Overall, the area of the suitable region is predicted to increase in both scenarios (by 63.6 in
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ssp126 and 74.2% in ssp585) (Figure 5). The centroids of suitable regions in both scenarios
are predicted to move westwards (Figure 6) while they reach a longitude value of 103.4 in
ssp126 and 101.0 in ssp585.

Figure 4. Paleo potential distribution of H. thibetanus.

Figure 5. Area of different regions since the Last Glacial Maximum to the 2070s.

200



Forests 2023, 14, 630

Figure 6. Distribution centroids of H. thibetanus from the Last Glacial Maximum to the 2070s.

Figure 7. Changes of the potential distribution of H. thibetanus in the 2070s in two scenarios (ssp126
and ssp585).
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4. Discussion

4.1. Climatic Niche and Proximal Variables

As a temperate perennial plant, H. thibetanus is reported to prefer cold, semi-shady and
humid environments [6]. To describe the climatic niche of H. thibetanus quantitatively, six
bioclimatic variables were selected and modeled. Given the high quality index (AUC and
TSS) value and the consistency between a predicted potential distribution and experienced
knowledge, the species distribution model of H. thibetanus is proved to be accurate and
robust. According to the species distribution model, the total contribution rate related to
temperature (bio03 and bio04) is 17.26%, the rate related to precipitation (bio15) is 11.56%,
and the rate related to both temperature and precipitation (bio08, bio18, and bio19) is
71.18%. Herein, temperature contributes more compared to precipitation, although both
variables are important for delimitating the distribution of H. thibetanus. Temperature
is a key factor that influences plants’ growth, development, and reproduction [36]. It is
reported that H. thibetanus has strong adaptability to low temperatures and can flower in
snowy weather [1,6]. However, H. thibetanus seems to have limited adaptability to hot
temperatures, especially when accompanied by a wet environment (bio08). The optimal
limit was 13.59~19.96 ◦C. Another important temperate restriction is temperature season-
ality, which corresponds to demands in the process of seed dormancy and germination
of H. thibetanus [1,6]. The optimal limit of temperature seasonality is 7.23~8.65 ◦C, which
reflects a moderate temperature change and a limited dormancy in H. thibetanus seeds.
Precipitation is another important factor for plant life, which is also correlated with many
environmental factors influencing the physiological and biochemical processes of plants.
For example, soil moisture is the main factor affecting the plant assimilation rate and root
breath [36]. As a perennial plant that is dormant during the winter, H. thibetanus requires
low precipitation in the winter, which reflects a low optimal limit of precipitation in the
coldest quarter of 5.48~35.32 mm. On the other hand, H. thibetanus has grassy leaves and
requires high air moisture during its growth periods [1], which reflects a high optimal
limit of precipitation in the warmest quarter above 452 mm. Although both precipitation
variables are important in delimitating the distribution of H. thibetanus, low precipita-
tion during dormancy periods (33.09%) is more important than high precipitation during
growth periods (14.68%). Overall, our research indicates that the species distribution model
is powerful for helping us understand the niche of research objects. Besides bioclimatic
variables, other environmental variables (including soil characteristics, land cover, and
biological variables) [12,32] may also influence the distribution of H. thibetanus; thus, further
research that considers more environmental variables may provide a more comprehensive
understanding of the niche of H. thibetanus. Meanwhile, the current distribution pattern of
H. thibetanus may not fully be conducted by the species niche. Geographical events and
anthropogenic disturbances may also play significant roles, and species distribution models
concerning these parameters will produce more details.

4.2. The Current Distribution Range and Climate Refugia

Global climate has fluctuated greatly during the past three million years, leading to the
recent major ice ages [10,19]. An inescapable consequence for most living organisms is the
great changes in their distribution, which are expressed differently in different zones and
among different taxon [19]. To understand species’ biogeographic histories, we modeled
the potential distribution of H. thibetanus from the period of the Last Glacial Maximum to
the current period, and the distribution area and centroids were compared in this research.
The results show that current distribution regions of H. thibetanus are also suitable in the
period of LGM, reflecting a wide paleodistribution. In the following 22 thousand years,
climate fluctuations resulted in a round-trip movement of the distribution centroids of
H. thibetanus. In particular, the distribution area in Shaanxi decreases and then increases,
while the area in Sichuan increases and decreases. The extreme situation occurred near the
maximum of the Bølling-Allerød warming (BC 14K), in which nearly all suitable regions
in Shaanxi disappeared, while the area of the suitable region in Sichuan reached a peak.
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Being a slow migrator, another Helleborus species (H. niger) is proven to survive the LGM
in local refugia [8]. In our research, it is hard to prove that the current distribution area in
Shaanxi is the result of postglacial translation and colonization from Sichuan, as complex
terrain in the Qingling mountains may also provide local climate refugia for H. thibetanus
to survive. On the other hand, current population dynamics seem clear, as the results
reflect. The population located in Sichuan contracted over the last 14 thousand years, which
is consistent with the fact that limited accessions of wild H. thibetanus were recorded in
central and southern Sichuan, and most southern accession (a latitude of 30.6◦) located in
the Dengchi valley of Baoxing was recorded in 1954 (PE00428129). Meanwhile, populations
in Shaanxi grew, which is consistent with the growing specimen records in Shaanxi and
Gansu in recent years. Resolving biogeographic history is important for the fundamental
ecological and evolutionary science of H. thibetanus, but a single method is limited to
addressing a full story; thus, more methods (including phylogeographic and demographic
methods) are needed in further research [11].

4.3. Habitat Risks under Climate Change

It has been shown that global climate change has led to a continuous rise in global
temperature, precipitation mode (time and space), and precipitation intensity, which is
threatening the habitats of plants and animals [22,37,38]. So far, according to our predic-
tions, H. thibetanus revealed a wide area (287,556 km2) of current potential distribution,
which is much higher than the threshold (20,000 km2) of the vulnerable (VU) conservation
status. This indicates that H. thibetanus has a relatively low risk of extinction in the near
future when neglecting climatic change influences. To identify the habitat changes of
H. thibetanus as the global climate changes, potential distributions in two different scenarios
were modeled in this research. All of the changes can be divided into three catalogs: ex-
panded, stable, and contracted. Stable habitats refer to standing suitable regions in climate
change for H. thibetanus and could be considered basic preserved stations; such regions
include the highlands of southern Shaanxi and most regions of northern Sichuan in both
scenarios. Contracted habitats refer to threatened regions of the current distribution of
H. thibetanus. In ssp126, contracted habitats are located in the southern and eastern edges of
current distribution regions, but it covers most regions in Shaanxi in ssp585. Thus, preser-
vation actions are needed in all southern and eastern edges of current distribution regions,
while continuous monitoring is needed for populations in most of Shaanxi. Specifically,
populations in the Daba mountains are under higher climate pressure than those in the
Qingling mountains, although both may be extinct in the hardy climate change scenario
(ssp585). A similar situation is also reported in another Helleborus species (H. odorus subsp.
cyclophyllus), which is projected to lose a significant portion of its current distribution by
2070 [7]. In our research, wide expanded regions are also predicted. Though naturally ex-
panded areas should be restricted given the limited ability of dispersal of H. thibetanus [39],
those regions could be optional for ex situ preservation. Such regions are located west of
the current distribution and cover regions in northwestern Sichuan and eastern Qinghai.
However, considering the limited dispersal ability of H. thibetanus, expanded suitable habi-
tat may not be available for natural populations. In that case, H. thibetanus will lose 18.1%
and 53.9% of its current habitat in ssp126 and ssp585, respectively. Overall, global climate
change significantly affects the potential distribution of H. thibetanus even in a moderate
change scenario, and preservation is urgent. On the other hand, a more comprehensive
understanding of habitat risks calls for research on issues including genetic diversity [7],
local adaptation [40], and plasticity [41], which will also improve the preservation and
utilization of H. thibetanus.

5. Conclusions

As the single Helleborus species in Asia and an endemic species to China, H. thibetanus
is in urgent need of further basic research in order to understand its evolution and ecological
characteristics. Using three different algorithms, we constructed an ensemble model based
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on current bioclimatic data and occurrence records. We described the bioclimate niche
of H. thibetanus, including properties like moderate temperature and wet precipitation
in growth periods and dry precipitation in dormancy periods. Based on the ensembled
species distribution model, we projected a map of the current potential distribution of
H. thibetanus in high resolution, which displays continuous distribution in northern Sichuan
and southern Shaanxi. With the help of paleo-bioclimatic data, we projected the potential
distribution of H. thibetanus since the Last Glacial Maximum, and the result shows a round-
trip movement of the distribution centroids of H. thibetanus corresponding to the climate
fluctuation. Furthermore, we predicted the potential distribution of H. thibetanus in the
2070s under two different climate change scenarios, and the result shows that the current
distribution region will be threatened by global climate change, but regions located west of
the current distribution are predicted to be suitable for H. thibetanus under climate change.
Our results provide an important scientific basis for the conservation, introduction, and
utilization of H. thibetanus in China.
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Abstract: Spruce taiga forests in Northeast Asia are of great economic and conservation importance.
Continued climate warming may cause profound changes in their distribution. We use prognostic
and retrospective species distribution models based on the Random Forest machine learning method
to estimate the potential range change of the dominant taiga conifer Jezo spruce (Picea jezoensis
(Siebold & Zucc.) Carrière) for the year 2070 climate warming scenarios and for past climate epochs–
the Last Glacial Maximum (LGM) (~21,000 years before present) and the mid-Holocene Climatic
Optimum (MHO) (~7000 years before the present) using the MIROC-ESM and CCSM4 climate
models. The current suitable climatic conditions for P. jezoensis are estimated to be 500,000 km2. Both
climatic models show similar trends in past and future ranges but provide different quantitative areal
estimates. During the LGM, the main part of the species range was located much further south than
today at 35–45◦ N. Projected climate warming will cause a greater change in the distributional range
of P. jezoensis than has occurred since the MHO. Overlapping climatic ranges at different times show
that the Changbai Mountains, the central parts of the Japanese Alps, Hokkaido, and the Sikhote-Alin
Mountains will remain suitable refugia for Jezo spruce until 2070. The establishment of artificial
forest stands of P. jezoensis and intraspecific taxa in the future climate-acceptable regions may be
important for the preservation of genetic diversity.

Keywords: climate change; boreal forest; spruce forest; Picea jezoensis; species distribution modeling;
Last Glacial Maximum; Northeast Asia

1. Introduction

Current climate changes in the boreal zone of Eurasia have led to visible changes in
vegetation cover due to increased fire frequency, the proliferation of insect pests, desiccation,
and wind disturbances, which alter the structure of the vegetation cover and the distribution
of plants and whole biomes [1]. However, it remains unclear how current changes in the
distribution of boreal forests and their dominant species deviate from long-term dynamics
and what the prospects are. Studying the spatial distribution of dominant species in
changing boreal forests can therefore help us better understand the factors behind their past
and present occurrence, assess possible climate-induced range shifts, and predict future
forest dynamics [2,3].

Recently, species distribution modeling (SDM) methods have been widely used to
study the effects of climate change on species ranges [4–7]. Using data on the current
distribution of climatic indicators characterizing species range, it is possible to predict
climatically suitable areas under current climatic conditions, under climatic conditions
of the past, or predicted climatic conditions of the future [8–11]. Identifying areas and
climates that have been able to sustain relict populations of dominant boreal species from
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the Last Glacial Maximum (LGM) to the present and will be able to sustain them in the
future are important for the establishment of protected reserves, as these areas have the
potential to contain populations with a continuous history of several tens of thousands
of years. This is important for maintaining genetic diversity [12] and further opens the
possibility of adaptive management in areas such as forestry and agriculture as well as ex
situ species conservation [13,14].

One of the most important taiga forest species for the ecosystem’s functioning and
timber industry in Northeast Asia is Picea jezoensis (Siebold & Zucc.) Carrière (Jezo or
Yezo spruce, by the old name of Hokkaido Island), also known as Picea ajanensis Fisch. ex
Carrière (Ajan spruce) [15]. P. jezoensis is a coniferous evergreen tree up to 35 m tall and
120 cm in diameter at breast height. The life expectancy of the trees is 300–400 years; the
maximum age is 520 years [16]. Phylogenetically and ecologically, P. jezoensis is close to
the North American P. sitchensis (Bong.) Carrière. This conclusion is also supported by the
fact that both P. jezoensis and P. sitchensis have flattened leaves and loosely arranged seed
scales [17]. P. jezoensis occurs in the sub-maritime and maritime areas of Northeastern Asia
between 40◦ N and 55◦ N, where it forms zonal forests [18].

P. jezoensis forms mono-dominant or mixed spruce–fir stands (with Abies nephrolepis
(Trautv.) Maxim. in the mainland area and A. sachalinensis (F.Schmidt) Mast. in the insular
part of the region) from the elevation of sea level to 1500–2000 m, depending on latitude.
Forests formed by P. jezoensis occupy almost the whole range of ecologically different sites
in this belt, except only in mires and on rock outcrops. The optimal climatic parameters for
this species include a mean annual temperature from −1 to 0 ◦C, a vegetative period of
145–155 days, and a mean summer precipitation of 370–590 mm. Mean annual air humidity
within the range of species does not fall below 60%. The climatic optimum of P. jezoensis is
thus much more severe than that of European species Picea abies (L.) H.Karst. [15,16].

In the most productive spruce forests, timber stock reaches 1000 m3 with over 500 Mg ha−1

of aboveground biomass [15,16]. Due to its high economic potential, P. jezoensis is one of
the region’s main objects of logging and timber production. Besides logging, spruce forests
are also affected by natural disturbances. Since the middle of the 20th century, particularly
active processes of natural desiccation of P. jezoensis primeval forests have been recorded in
the continental part of the Far East, with a total area of 55,000 km2 already in the 1970s [16].

The critically important ecosystem function of P. jezoensis and the high economic value
of this species in the context of current trends in boreal forest degradation due to climate
change [19–21] make understanding the P. jezoensis range changes by projected climate
change scenarios particularly important. Retrospective modeling over time of significant
milestones of evolutionary vegetation dynamics, i.e., the LGM (~21,000 years before the
present) and the mid-Holocene Climatic Optimum (MHO) (~7000 years before the present),
is interesting for assessing the movement of P. jezoensis climate optimum in Northeast Asia.
There is a clear relevance to paleoenvironmental and phylogenetic studies as well as the
understanding of current trends in biodiversity and biome distributions [22].

In this study, we build the SDMs of P. jezoensis using the distribution data of the
species in its natural habitats (not under culture or plantation conditions) and the World-
Clim 1.4 climate dataset [23] associated with the downscaled paleoclimate data [24]. Using
paleoclimate data MIROC-ESM [25,26] and CCSM4 [27], we reconstruct the spatial distri-
bution of areas with climatic conditions suitable for P. jezoensis in the LGM and MHO. We
also construct prognostic models of the potential distribution for 2070 under the RCP2.6
(representative concentration pathway) climate change scenarios [28] and RCP8.5 [29]. We
used the MIROC-ESM and CCSM4 models because they cover paleoclimates and predicted
future climates among other climatic models. Both prognostic and retrospective SDMs
were developed using ensembles of decision trees. Tree-based supervised learning algo-
rithms are quite efficient tools for handling complicated decision boundaries in multifactor
spaces [30]. Another advantage of decision trees and their ensembles for SDMs is the ability
to estimate the importance of climatic variables and the impacts on the observed species
distribution. We focused on building SDMs using the RF classifier (a versatile machine
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learning algorithm) and the investigation of overlapping ranges of potential species oc-
currence under the LGM and projected future climates (RCP2.6, RCP8.5) which could be
considered long-term P. jezoensis refugia.

2. Materials and Methods

2.1. Study Area

The dark coniferous forests of P. jezoensis are widespread from the mountainous
regions of central Japan and South Korea in the south to central Kamchatka in the north.
The species range extends in latitude from 40◦ N to more than 55◦ N [18]. Details of the
species biology and ecology are described in previous works [15,16,18,31]. Clarification of
intraspecific taxonomy was performed based on allozyme analysis [32,33] and nuclear and
organelle DNA [34,35]. We suppose that the single subspecies of P. jezoensis subsp. jezoensis
exists throughout the entire range, except for isolated relict populations in the mountains of
central Honshu, attributed to the taxon P. jezoensis subsp. hondoensis (Mayr) P.A. Schmidt.

The range of P. jezoensis includes part of the Primorye Region, the southeast coast
of the Sea of Okhotsk, Sakhalin Island, the southern islands of the Kuril Archipelago,
part of Northeast China, central Kamchatka (the so-called “coniferous forest island”), the
north of the Korean Peninsula, Hokkaido Island, and the central part of Honshu Island
(Figure 1) [15,18]. The range of P. jezoensis lies in a deeply rugged mountain area. The
climate in the area of the P. jezoensis range is controlled by the seasonally alternating
maritime and continental air masses brought about by monsoon circulation. Annual
precipitation ranges from 460 mm in central Kamchatka to 1250 mm in the southern Kuril
Islands, and average annual temperatures range from −3 ◦C in the continental part to
+7.5 ◦C in Hokkaido. The influence of the East Asian monsoon decreases with distance
inland. In the continental part of the range, winters are sparsely snowy and cold, while
summers are cool and humid. Mean annual air humidity within the range of P. jezoensis does
not fall below 60%, although it varies considerably from region to region. Summarizing
climatic conditions in the areas where P. jezoensis forms pure and fir-mixed stands, the
climatic optimum is much harsher than for European P. abies. [15].

The presence of refugia both in the northern part of the range (isolated populations
in Kamchatka) and in the southern part (isolated populations in the mountains of South
Korea and P. jezoensis ssp. hondoensis in the Japanese Alps) testifies to an extensive shifting
of the species range in the past associated with periods of warming and cooling in the
Pleistocene. Thus, the explanation of the modern range of P. jezoensis lies not only in the
current climatic conditions of the present but also in its changes over the past millennia.
This is confirmed, among other things, by modern population genetics data [34,35].

2.2. Presence Points

Georeferenced occurrence points of P. jezoensis were taken from different sources:
1—local herbarium collections of the Botanical Garden-Institute FEB RAS (herbarium
acronym VBGI) and Institute of Biology and Soil Science FEB RAS (VLA); 2—Global
Biodiversity Information Facility database (GBIF) [36]; 3—own archival data of geobotanical
relevés and occurrences points sampled in the field research. To create the models, we
used only those points of P. jezoensis presence that belong to P. jezoensis subsp. jezoensis, i.e.,
not including P. jezoensis subsp. hondoensis, whose relict populations are isolated from the
contiguous range of this species in the mountains of central Honshu.
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Figure 1. Topography map of the region (a), the built species distribution model of Picea jezoensis
(Siebold & Zucc.) Carrière represented as a probability map; black dots indicate presence points in
the model train (n = 479) (b).

The presence of points outside the natural distribution area (forest plantations on the
islands of Hokkaido and Sakhalin) and in urbanized areas (gardens, parks) was excluded
using high-resolution satellite images. A filtering algorithm was then applied to remove
presence points located closer to each other than 2 km apart. The algorithm was imple-
mented using the geopy package [37]. We then calculated the average nearest neighbor
index implemented in the ArcMap 10.8 program [38] for the remaining data which com-
pares the observed average distance between all presence points to the expected distance for
a set of evenly distributed points. If the index is less than 1, the pattern exhibits clustering;
if the index is greater than 1, the trend is toward dispersion or competition. Thus, we
managed to avoid significant data imbalance effects when one region could be represented
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by a disproportionately large number of presence points. As a result, 479 unique points of
species presence were used in the modeling (Figure 1b). The number of pseudo absence
points randomly placed throughout the simulation area was estimated to be 2 times greater
than the number of presence points.

2.3. Climatic Data

To model the distribution of P. jezoensis, we used the 5 most informative bioclimatic
indices from a set of more than 30 indices provided by [39,40]: Kira’s warmth index
(WKI, the sum of average monthly temperatures above +5 ◦C), which showed the highest
contributions to the distribution of P. jezoensis vegetation in Northeast Asia; Kira’s coldness
index (CKI, the sum modulo of average monthly temperatures below +5 ◦C); the index of
continentality (IC, difference between annual maximum and minimum average monthly
temperatures); the rain precipitation index (Pp, the amount of precipitation during the
period with positive average monthly temperatures); and the snow precipitation index (Pn,
the amount of precipitation in the period with negative average monthly temperatures) [40].
We conclude that it is better to choose a few predictors with a clear biological interpretation
than to select a slightly optimal subset of predictors that have an implicit or unclear impact
on species distribution [11].

Preconditions checked before training the classifier included a multicollinearity check
of selected bioclimatic indices using NumPy package for Python [41] and the “omcdiag”
function from the mctest R-package [42]. The combination of selected bioclimatic indices
led to significantly different than zero values of the determinant of the covariance matrix
(p < 0.05). The index values were calculated from monthly mean temperatures and total
precipitation data provided in the WorldClime v.1.4 [23] with a spatial resolution of 30 arc-
seconds (~0.0083◦), which were extracted from the source data files using the Geospatial
Data Abstraction Library [43]. Similar data presented in the MIROC-ESM [25,26] and
CCSM4 [27] climate models were used to reconstruct the climatic situation during the LGM
and MHO and to forecast the climatic situation for the year 2070. Prognostic modeling was
performed in accordance with two global climate change scenarios: 1—RCP2.6 implies an
increase in the average planetary temperature of 0.3–1.7 ◦C by 2100 [28]; 2—-RCP.5 implies
an increase of 2.6–4.8 ◦C [29].

2.4. Model Building

The formal side of SDM consists in finding nonlinear relationships between species
distribution and bioclimatic parameters. To handle this problem, we chose the Random
Forest (RF) machine learning method implemented in the Python programming language in
the Scikit-learn package [44]. We selected RF as a method to build the models following the
results of several studies indicating that RF may be more applicable in predicting the native
potential distribution of species with sufficient species occurrence data [45,46]. Scikit-learn
is a general-purpose machine learning package focused on rapid prototyping, validating,
and deploying supervised and unsupervised learning models. It is widely used in the data
science world and allows researchers to formulate the process of building SDMs at a high
level of abstraction. Using Scikit-learn, the SDM creation process is expressed as a piece
of code in Python programming language, which efficiently performs all the necessary
steps related to machine learning model development, such as feature engineering and
feature selection, training, and model testing phases. We used a grid search cross-validation
procedure to find the optimal subset of RF hyperparameters. As a result, optimal values
for the configuration parameters of the RF algorithm were found to be equal to the values
used in similar models [47]. The optimal number of random trees was found to be equal to
100 and the maximum tree depth was limited to 10. The remaining RF parameters were set
to their default values.

The constructed model was evaluated using the continuous Boyce index [48], which
is calculated using only species presence points, based on 100 iterations by randomly
dividing the original spatial data set into training (3/4 points) and test (1/4 points) data
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sets. Using the continuous Boyce index to assess model quality is preferable to using ROC
AUC because it is based solely on empirical data on the location of species sites, without
reference to pseudo presence points [49].

We evaluated the contribution of each of the five predictors to the final model using
the “feature_importances” attribute [50] implemented for the RF from Scikit-learn [44].

The result of applying the trained classifier to climatic data is a probability map (from
0—presence is unlikely to 1—the maximum probability of presence) of habitat suitability for
P. jezoensis. For practical purposes, such as calculating the area of territory that a species can
potentially occupy, we represented the probability maps in binary form, namely “species
absent” (0) or “species present” (1). Binary probability maps require finding the optimal
threshold value. If the probability in each point exceeds the threshold value, we convert it
to 1 and treat it as a “species presence” point. Otherwise, the probability value is converted
to 0 and the corresponding point is considered a “species absence” point.

To estimate the optimal threshold value, we considered the problem of maximizing
the mean value of maxSSS [51], calculated based on 100 random splits of the original spatial
data set into training (3/4) and test (1/4) data sets. A similar optimization issue was noted
when compared to actual skill statistics and the F1 score metric (a measure of accuracy, the
harmonic mean of precision and recall). To verify the obtained optimal threshold value, we
used an expert approach [51,52]. Based on computational experiments, we concluded that
the optimal maxSSS yield values for the P. jezoensis distribution maps are consistent with the
expert evaluation. Binarization using an optimal threshold calculation is a convenient way
of quantification, but this approach is not the only one possible; the overall interpretation
of the ranges is also important [11]. To this end, we created potential distribution maps
with probability levels of 0.4–1 and 0.2–0.4.

Thus, the process of creating the SDM using the RF classifier consisted of the following
phases: (1) collection of P. jezoensis occurrence data; (2) data preprocessing (removal of duplicates,
local equalization of point density, generation of pseudo-absence points); (3) applying recursive
feature elimination and expert-based feature selection; (4) grid search for the best set of model
parameters (number of trees, tree depth, available trees building criterion); (5) finding the best
threshold value (by maximizing maxSSS and expert-based approach); and (6) applying the
model to past, present, and future climatic data to result in interpretation.

Finally, we calculated response curves for each model predictor. Response curves are
essentially smooth estimates of the modeled probability of species occurrence for a fixed
value of a particular predictor. Higher values on the response curves correspond to a higher
probability of species occurrence and suitability of climate.

All distribution maps were built in ArcMap 10.8. The relief map was drawn using
elevation data from the Shuttle Radar Topography Mission (SRTM) [53].

3. Results

Verification of decision trees by cross-validation of the obtained models of the modern
distribution of P. jezoensis showed high predictive accuracy. The continuous Boyce index
value for all models was 0.99, indicating their high prognostic abilities; the AUC value was
0.89 ± 0.004; the maxSSS was 1.696 ± 0.179; and the accuracy was 0.932 ± 0.019. Using the
five selected bioclimatic factors as predictors, the most important predictors are related to
moisture rather than temperature. The absence of strong differences in the contribution of
the factors generally indicates their common high importance in constructing the model
(Table 1).

The binarization probability level according to the maxSSS optimal threshold value
is 0.43. The climatic ranges of P. jezoensis distribution correspond well to the species dis-
tribution from ground-based data. A comparison of the distribution model of P. jezoensis
(Figure 1) with expert range maps of the species shows a high degree of agreement, thus
allowing the model of the current climatic range of the species to be used for retrospective
and predictive modeling. The inferred climatic ranges of P. jezoensis distribution corre-
sponded well to the distribution maps of the species derived from ground-based expert
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surveys (Figure S1) [16,18,35]. Cartographic models of the area potentially suitable for P.
jezoensis for different climatic conditions are shown in Figure 2.

Table 1. Importance of the climatic predictors in the Random Forest model.

Model Predictor Importance (Mean ± SE, n = 100)

Pp 0.234 ± 0.010
Pn 0.234 ± 0.009

WKI 0.210 ± 0.005
CKI 0.164 ± 0.003
IC 0.158 ± 0.001

Pp—annual precipitation in the months with the positive mean temperature; Pn—annual precipitation in the
months with the negative mean temperature; WKI—Kira’s warmth index; CKI—Kira’s coldness index; IC—index
of continentality.

Figure 2. Potential distribution of Picea jezoensis (Siebold & Zucc.) Carrière built using the MIROC-
ESM and CCSM4 climatic models under the Last Glacial Maximum (LGM), the mid-Holocene
Climatic Optimum (MHO), and 2070 RCP2.6 and RCP8.5 scenarios; red crosses indicate the central
geographical points of the predictable distributions.
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The potential distribution area of P. jezoensis is estimated at 513,000 km2 in current
climate conditions. Quantification of the climatically suitable area of P. jezoensis in the
LGM, the MHO, and climate projections for the year 2070 are shown in Table 2. Both the
MIROC-ESM and CCSM4 climate models showed similar trends in past and future climatic
range patterns but provide different quantitative areal estimates. Based on the MIROC-ESM
climate model, the potential area of suitable climate conditions of P. jezoensis was predicted
to be the highest in the 2070-year RCP2.6 scenario and lowest in the MHO (Table 3). Based
on the CCSM4 climate model, the potential area of suitable climate conditions of P. jezoensis
was predicted to be the highest in the 2070-year RCP8.5 scenario and lowest in the MHO.
In addition to reflecting similar trends in bioclimatic ranges, the two models are different
from each other in terms of quantitative areal estimates: the MIROC-ESM predicted area is
significantly (~100,000 km2) smaller than that of CCSM4 (Figure 2).

Table 2. The potential area (km2) of highly suitable climate conditions of Picea jezoensis (Siebold
& Zucc.) Carrière.

Scenario CCSM4 MIROC-ESM

LGM 546,250 * 456,471
MHO 494,278 322,155

RCP2.6 614,347 * 581,760 *
RCP8.5 625,076 * 483,805

* Asterisks indicate an increase in the potential area in comparison to the current distribution.

Table 3. The estimation of the overlapped area with the LGM time to the 2070-year climate condition.

Climate Model Scenario MIROC-ESM

MIROC-ESM
RCP2.6 18,293
RCP8.5 4480

CCSM4
RCP2.6 54,725
RCP8.5 20,416

During the LGM, the main part of the species range was located much further south
than today at 35–45◦ N. Projections for the MHO indicate a retreat from southern territories
and northward expansion with a distribution center shifted to 45–55◦ N.

The SDMs of P. jesoensis from the LGM to the year 2070 superimposed on each other
revealed the geographical locations where P. jezoensis always had favorable conditions.
The intersection of potential areas occupied by this species in different periods showed
the location of long-term stable refugia. Overlapping climatic ranges at different times
showed that the Changbai Mountains, the central parts of the Japanese Alps, the Hokkaido
mountains, and the Sikhote-Alin Mountains were the areas where P. jezoensis persisted over
time. These mountain areas indicate the existence of long-term stable refugia (Figure 3)
that deserve the highest priority in the conservation of the P. jezoensis gene pool and are
expected to be represented by the most ancient populations.
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Figure 3. Overlay of Picea jezoensis (Siebold & Zucc.) Carrière potential distribution models of the
four-time frames LGM-MHO-Current-Future follow the projected state of the MIROC-ESM and
CCSM4 models and the RCP2.6 and RCP8.5 scenarios for the year 2070.

4. Discussion

4.1. Model of Current Distribution

In the continental part, P. jezoensis has an almost continuous range along the Pacific
coast of Eurasia from 40 to 50◦ N. The ranges most distant from the seacoasts correspond
to the Lesser Khingan Ranges and the Tukuringra Range. The climatic model predicted
suitable areas for this species as relict isolated populations in the mountainous region of
the Korean Peninsula, for the northern part of which there are only literature indications
on the presence of P. jezoensis [54], but the presence points were absent in these locations
according to our modeling protocols. Non-zero presence probabilities of P. jezoensis were
obtained for several areas in South Korea, such as Mount Seorak (38.12◦ N, 128.46◦ E) and
Mount Odae (37.80◦ N, 128.53◦ E), for which we had no presence points, but the P. jezoensis
distribution is known from literature data [54]. On the other hand, the sensitivity of our
model was not sufficient to predict the southernmost point of occurrence of P. jezoensis on
Mount Jiri (35.33◦ N, 127.73◦ E).

Although we excluded the presence points of P. jezoensis subsp. hondoensis in central
Honshu from the analysis, the mountainous areas where this taxon is commonly found
were marked with a non-zero probability of presence. This region supports conditions
for the existence of many other rare conifer taxa isolated from the main range besides
P. jezoensis, for example, Pinus koraiensis Siebold & Zucc. [47].

4.2. Reconstructed Distribution in the LGM

The LGM climate in the region was characterized by lower temperatures and an
arid environment [55]. Fundamentally different climatic conditions and different land
contours during the sea level regression were reflected in a different distribution of biomes
and their constituent species [56]. The MIROC-ESM and CCSM4 climate models provide
generally similar climatic ranges of P. jezoensis during the LGM, with the main part of the
species range located much further south than today, at 41–42◦ N. In addition to reflecting
similar trends in bioclimatic extent, the two models are very different from each other:
the MIROC-ESM predicted area is significantly smaller than that of the CCSM4. The
climatically suitable area for the species according to the MIROC-ESM is somewhat smaller
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and the CCSM4 is somewhat larger than the area of the modern climatic range. It should
be considered that the total land area during the LGM was higher due to marine regression.
In particular, the CCSM4 model predicts the area between modern Hokkaido and Sakhalin
(the Soya Landbridge) as a climatically suitable area. The seabed in the form of coastal
plains represented additional habitats [57].

According to the CCSM4 model, areas with suitable bioclimatic conditions for
P. jezoensis up to 50◦ N were preserved along the coast of the Sea of Japan, the eastern
slopes of the Sikhote-Alin Mountains, and the western coast of Sakhalin Island. In the
MIROC-ESM model, the northern limits of the climatically acceptable area for the species
are located much more south. Although vegetation reconstructions [56] carried out for
the area north of 45◦ N imply the presence of sparse larch forests (tundra-like vegetation)
and the landscape complex supporting the mammoth tundra–steppe vegetation [58,59], P.
jezoensis is recorded in the palynological spectra of Sakhalin and Northeastern Hokkaido
during the LGM [60,61]. At the same time, Picea (probably P. jezoensis) pollen is recorded in
the Lake Khanka area (45◦ N 132◦ E) [62]. The continental regions of Northeastern China
had an arid climate and, judging by pollen surveys, supported forest-steppe and shrub-
steppe vegetation. Herbs expanded rapidly, dominated mainly by Poaceae. During the
LGM, the forest in the northern part of Northeast China was relatively open and dominated
by larches. Forests composed of birch, pine, and alder have developed in the Changbai
Mountains [63]. Vegetation structure in areas with less arid climates closer to seacoasts was
clearly more complex than in homogeneous larch forests, and areas of light coniferous taiga
were interspersed with refugia of dark coniferous taiga [64], and the overall vegetation
heterogeneity was supported by ample populations of megafauna [65].

The range of P. jezoensis was located much farther south in the climatic conditions of
the LGM than at present (Figure 2). On the contrary, the current isolated area of P. jezoensis
on the mainland in the central part of Kamchatka corresponds with the minimal influence
of the sea within the whole peninsula, and in this zone, the so-called “coniferous forest
island” is formed. Populations of P. jezoensis in Kamchatka are thought to be relict and
have been preserved in this area since past warm epochs when the distribution area of P.
jezoensis included the entire coast of the northern Okhotsk Sea. The time of isolation of the
Kamchatka population of P. jezoensis is estimated to be more than 400 thousand years [32].
However, both models do not predict the preservation of climatic refugia of P. jezoensis in
central Kamchatka, even though there is no doubt about the preservation of the species
in this area since the interglacial period. According to [34], the Kamchatka Peninsula
population of P. jezoensis was part of the mainland Asian range and separated during the
mid-Pleistocene. We explain this by the insufficient accuracy of model reproduction for
remote and sparsely populated areas of Northeast Asia.

The genetic structure of P. jezoensis on the mainland is closer to the population in the
northern part of Sakhalin Island [35]. The southern part of the island is closer to Hokkaido
Island, which was settled from the mainland by land bridges in the mid-Pleistocene.
Analysis of microsatellite loci indicates that P. jezoensis populations in southern Sakhalin and
Hokkaido have passed through a series of bottlenecks [35]. In the context of our modeling
data, this clearly signals the existence of isolated refugia in Sakhalin and Hokkaido during
the LGM period, as confirmed by palynological studies [60,61,66].

4.3. Reconstructed Distribution in the MHO

The MHO in the region was characterized by a higher temperature compared to the
present, which was reflected in the expansion of mixed stands of the main plant species, in-
cluding more thermophilic taxa, as evidenced by palynospectrum imprints [67,68]. Changes
in climatic conditions in the region from the LGM to the MHO were accompanied by the
transformation of natural complexes and changes in the boundaries of the main vegeta-
tion types. Warming and increased precipitation were accompanied by the northward
expansion of the forest-forming species of the dark coniferous forests from more southern
latitudes and isolated refugia. Simultaneously with the poleward expansion, populations
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disappeared in the southern part of the range, where boreal and mixed forest ecosystems
were replaced by more thermophilic vegetation [66,68,69].

The MIROC-ESM and CCSM4 models for the MHO climates predict smaller areas
of P. jezoensis ranges than those under modern climates (Table 3). Both models show that
in the MHO, the zone of a continuous distribution of P. jezoensis in mainland Northeast
Asia was restricted to the southern Sikhote-Alin Mountains in the south, and the mountain
ranges of North Korea and Northeast China (the Changbai Mountains) represented refugia
separated from the main range. Palynological data from the southern Sikhote-Alin Moun-
tains show that P. jezoensis did not disappear from plant communities during the LGM,
but the proportion of pollen from this species was significantly lower than at present and
was higher in broadleaved species [70,71]. In the island part of the region, the MHO was a
period of a significant decrease in P. jezoensis pollen and an increase in the proportion of
Quercus mongolica Fisch. ex Ledeb. s.l. pollen [61,66]. In the MHO time, relict populations
of P. jezoensis subsp. hondoensis on Honshu and isolated populations of P. jezoensis in the
mountains of the southern part of the Korean Peninsula have formed. At the same time,
warmer climatic conditions in Kamchatka facilitated the spread of P. jezoensis from refugia
preserved in the LGM [34,35].

4.4. Predicted Distribution in the Year 2070

RCP models ensure an increase in the temperature and precipitation balance de-
pending on the concentration of greenhouse gases in the atmosphere. According to the
optimistic scenario RCP2.6, the temperature increase by 2100 will be 2 ◦C, and according to
the scenario RCP8.5 by 5 ◦C [28,29].

All scenarios and climate models for the year 2070 envisage more dramatic changes
in the range of P. jezoensis than those that have occurred from the MHO to the present.
In the RCP2.6 scenario, both the MIROC-ESM and CCSM4 project growth in areas of
optimal climatic conditions. Areas in much of Kamchatka and along the coast of the Sea of
Okhotsk will be suitable for the species. At the same time, a continuous area of climatically
acceptable habitats in the southern part of the species range on the continent will disappear.
A further reduction of potentially suitable areas will also occur in the extreme south of
the species range, in the mountains of the southern Korean Peninsula [72,73]. Effects
of climate change on coniferous tree species in the region have been observed [74–78].
Dendrochronological methods revealed a decline in the annual growth of P. jezoensis in
China and Korea since 1980 in the lower elevations of the Changbai Mountains [79]. At
the same time, an increase in the width of annual tree rings was observed in the higher
elevations, as well as an extension of the length of the growing season.

Warming under the RCP8.5 scenario would result in an even more significant change
in the contours of potentially suitable habitat for P. jezoensis, but while the projected area of
the CCSM4 model would be higher than the current one, the MIROC-ESM model would
reduce the final area of climatically suitable habitat.

Nevertheless, even the realization of the most pessimistic climate change scenarios
will not cause the extinction of mainland populations in the Pektusan region (the southern
face of the Changbai Mountains), which has an uninterrupted history since the LGM, and
will not cause the complete disappearance of refugia in central Japan, although it will
greatly reduce them.

The overlay of climatically acceptable areas for P. jezoensis from the LGM to the year
2070 shows that such areas are extremely small. Even the pessimistic RCP8.5 scenarios
do not foresee the complete disappearance of P. jezoensis habitats from the Changbai
Mountains, where populations of this species have existed continuously since the LGM.
In the CCSM4 model, such areas of long-existing P. jezoensis include, in addition to the
Changbai Mountains, central and southern parts of the Sikhote-Alin Mountains, partially,
Hokkaido, southern Sakhalin, and southern Kurils (Figure 3).
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4.5. Implications for Conservation and Management

It should be noted that modeling methods provide a probabilistic assessment of
potential niches in terms of climate. Species distributions are affected by competition,
dispersal, niche size, and environmental conditions in space and time [80]. Natural shifts
in vegetation distribution may take longer because they depend on, among other things,
the availability of diaspores, competitive relationships between plants, and local factors
of a particular habitat [81,82]. At the same time, predictive models must always consider
not only the extent of suitable habitats but also the rate of species distribution expansion,
which is usually much slower than global climate change. The use of modeling techniques
provides insight into trends in the general state of populations, allows planning of the
conservation risks of P. jezoensis within the current range, and builds a systematic concept
for creating forest crops and establishing forest plantations outside the current distribution
of the species, with respect to expected climate changes [13,83,84].

To preserve the genetic diversity of P. jezoensis and intraspecific taxa, it is advisable
to think about establishing plantations in places where the climate will be acceptable in
the long term and in the context of projected changes. Forestry must take climate trends
into account when establishing new plantations of P. jezoensis. Establishing artificial forest
stands of this species in the southern part of its range against the background of a changing
climate appears to be a bad decision, while a deeper introduction of this species into forestry
practices could be a very prudent decision for areas of Northeast Asia where P. jezoensis
does not currently grow in natural ecosystems.

The departure of P. jezoensis populations from the optimal climate zone will not
cause their one-step extinction but will determine a trend towards gradual extinction by
increased tree elimination due to bacterial diseases, fungal diseases, limitation of natural
regeneration processes, drought, and fires accompanying drought. Within the study region,
the previously unknown occurrence of bark beetle outbreaks took place in the Sakhalin
and Kuril Islands as a result of massive windthrows in spruce and fir forests [85–87].

Due to the genetic diversity found in the populations of the species [32–35] and in
order to preserve it, it is necessary to create stands of P. jezoensis from those places where
the extinction of species is assumed. Such work cannot be carried out within one country
and will require the consolidation of the efforts of all the states of Northeast Asia into a
common project. The genetic structure of local populations of P. jezoensis in the mainland
part of the species range has not been sufficiently studied, in contrast to detailed studies
on the Japanese islands. First, it is of interest to collect materials from the boundaries of
the modern distribution of the species on the Sikhote-Alin Mountains, the Lesser Khingan
Mountains, the Tukuringra Range, and the southern Kurils.

5. Conclusions

SDMs of P. jezoensis built in this study are based on five bioclimatic factors and
considered the distribution of climate continentality, heat balance throughout the year, and
precipitation in warm and cold periods. The area of current suitable climatic conditions for
P. jezoensis is estimated at more than 500,000 km2. The MIROC-ESM and CCSM4 climate
models for retrospective and predictive modeling provide slightly different estimates of
potential range but describe similar trends in species range shifts.

We identify areas in the Changbai Mountains (China, North Korea) and the Sikhote-
Alin Mountains (Russia) as long-term climatically stable P. jezoensis refugia from the LGM
to projective climate conditions of the year 2070 under the scenario RCP8.5. These areas
could be prioritized for the in situ conservation of species populations. In addition to its
ecosystem role, P. jezoensis is also an economically important species, so the obtained results
should also be applied in forestry planning. Potentially favorable climatic areas in the
northern parts of Northeast Asia according to the obtained models should be considered
and used as places for establishing artificial forest stands of P. jezoensis in the future. A
reforestation process using P. jezoensis and commercial planting does not have long-term
perspectives in more southern areas.

218



Forests 2023, 14, 219

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/f14020219/s1, Figure S1: Distribution maps of Picea jezoensis
(a) by Manko (1987); (b), Nakamura and Krestov (2005); (c) Aizawa et al., 2009.

Author Contributions: Conceptualization, K.K. and T.P.; methodology, D.K., software, D.K.; valida-
tion, K.K., T.P. and D.K.; formal analysis, T.P.; data curation, D.K.; writing—original draft preparation,
T.P.; writing—review and editing, K.K., D.K., P.K. and J.D.; visualization, K.K., T.P. and D.K.; supervi-
sion, P.K. and J.D.; funding acquisition, K.K., P.K. and J.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Ministry of Education, Youth and Sport of the Czech Republic
(MŠMT), the project Mobility 2020 (CZ.02.2.69/0.0/0.0/18_053/0017850), K.K.; the Czech Science
Foundation (20-05840Y), K.K.; (21-26883S), J.D.; long-term research development project of the Czech
Academy of Sciences (RVO 67985939), K.K. and J.D.; the scientific research project of the Botanical
Garden-Institute FEB RAS (FWFR-2022-0008) No. 122040800089-2, P.K.

Data Availability Statement: Data The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of
Climate Warming. Science 2011, 333, 1024–1026. [CrossRef]

2. Becknell, J.M.; Desai, A.R.; Dietze, M.C.; Schultz, C.A.; Starr, G.; Duffy, P.A.; Franklin, J.F.; Pourmokhtarian, A.; Hall, J.;
Stoy, P.C.; et al. Assessing Interactions Among Changing Climate, Management, and Disturbance in Forests: A Macrosystems
Approach. Bioscience 2015, 65, 263–274. [CrossRef]

3. Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al.
Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [CrossRef] [PubMed]

4. Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [CrossRef]
5. Elith, J.H.; Graham, C.P.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.;

Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151.
[CrossRef]

6. Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev.
Ecol. Evol. Syst. 2009, 40, 677–697. [CrossRef]

7. Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol.
Lett. 2009, 12, 334–350. [CrossRef]

8. Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope
models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [CrossRef]

9. Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions.
Glob. Chang. Biol. 2006, 12, 2272–2281. [CrossRef]

10. Booth, T.H. Species distribution modelling tools and databases to assist managing forests under climate change. For. Ecol. Manag.
2018, 430, 196–203. [CrossRef]
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Abstract: Plantations with fast-growing species play a crucial role in reducing global warming and
have great carbon capture potential. Therefore, determining optimal management strategies is a
challenge in the management of forest plantations to achieve the maximum carbon capture rate. The
objective of this work is to determine optimal rotation strategies that maximize carbon capture in
forest plantations. By evaluating an ecological optimal control problem, this work presents a method
that manages forest plantations by planning activities such as reforestation, felling, thinning, and
fire prevention. The mathematical model is governed by three ordinary differential equations: live
biomass, intrinsic growth, and burned area. The characterization of the optimal control problem using
Pontryagin’s maximum principle is analyzed. The model solutions are approximated numerically by
the fourth-order Runge–Kutta method. To verify the efficiency of the model, parameters for three
scenarios were considered: a realistic one that represents current forestry activities based on previous
studies for the exotic species Pinus radiata D. Don, another pessimistic, which considers significant
losses in forest productivity; and a more optimistic scenario which assumes the creation of new forest
areas that contribute with carbon capture to prevent the increase in global temperature. The model
predicts a higher volume of biomass for the optimistic scenario, with the consequent higher carbon
capture than in the other two scenarios. The optimal solution for the felling strategy suggests that, to
increase carbon capture, the rotation age should be prolonged and the felling rate decreased. The
model also confirms that reforestation should be carried out immediately after felling, applying
maximum reforestation effort in the optimistic and pessimistic scenarios. On the other hand, the
model indicates that the maximum prevention effort should be applied during the life cycle of the
plantation, which should be proportional to the biomass volume. Finally, the optimal solution for the
thinning strategy indicates that in all three scenarios, the maximum thinning effort should be applied
until the time when the fire prevention strategy begins.

Keywords: ecological model; biomass volume; carbon dioxide; optimal control; numerical simulation

1. Introduction

Carbon dioxide (CO2) is one of the main greenhouse gases (GHG) in the atmosphere.
Multiple human activities in most industrialized countries have contributed to the increase
in this gas and have exacerbated the negative effects of climate change. According to the
latest report of the Intergovernmental Panel on Climate Change (IPCC), climate change is
devastating today, in particular, because of the changes in the patterns of humidity, tempera-
ture, winds, snow, and ice, especially in coastal zones. These changes in climate conditions
could have negative impacts on human health, agriculture, and the economy [1–3]. Under
this worldwide situation, governments are making cooperative efforts agreements (e.g., the
Paris Agreement and the Kyoto Protocol) to create new forest areas to help prevent the global
average temperature rising more than 2 ◦C during the 21st century [4–6]. Forest ecosystems
cover approximately 4100 billion hectares of the Earth’s surface and have a huge potential for
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carbon capture [7]. Of this total area, approximately 45% are exotic plantations whereas the
other 55% corresponds to native forests [8]. Because forest ecosystems can store the largest
amounts of carbon [9], it has been suggested that expanding forest areas and prolonging the
rotation age (i.e., the growth period required to derive maximum value from a stand of timber),
especially in exotic forest plantations [10], are key strategies to maximize carbon capture and
mitigate the negative effects of global climate change [11]. There is a large body of literature
where carbon capture is estimated [12,13]. In a temperate forest in Southern Europe, the
aboveground carbon capture in the species Eucalyptus nitens (Deane and Maiden), Eucalyptus
globulus Labill, and P. radiata, with rotation ages ranging from 10 to 35 years, was estimated to
be from 443 to 634 Tn C ha−1 [14]. The carbon sequestration with the same species established
in Chile was 212 Tn C ha−1 for P. radiata, 180 Tn C ha−1 for E. nitens, and 117 Tn C ha−1

for E. globulus (age of 20–24 years for P. radiata and 10–14 years for Eucalyptus) [15]. On the
other hand, in Panama the carbon stored in Tectona grandis E.L (Teca) plantations during 1 and
10 years was estimated to be 2.9 Tn C ha−1 and 40.7 Tn C ha−1, respectively [16].

On the other hand, there are studies on the oil palm (Elaeis guineensis Jacq) which, due
to its high biomass production and expansion dynamics, plays an important role in carbon
capture [17]. By means of mathematical modelling the dynamics of both oil production and
carbon capture have been studied [18]. In [19], they formulated an optimal control problem
based on a system of ordinary differential equations that relate the dynamics of young and
mature trees and considers felling as a control variable. The authors concluded that palm
oil production and carbon capture increases with a controlled felling rate.

Notwithstanding, to increase CO2 capture the trees must remain for longer periods
in the field, which delays the rotation age [20,21]. However, in some situations, it is
risky to prolong the rotation age in order to increase carbon capture, since it increases the
probability of forest fires when there is more fuel in the field. More frequent forest fires
will increase CO2 levels in the atmosphere, causing extreme climate events and decreasing
relative humidity in many regions of the world [22]. To model the probability of forest fire
occurrence some authors have used the Faustmann model generalized to the stochastic
Poisson process [23], whereas others have studied this phenomenon by using the Bellman
equation to determine the optimal rotation age in a forest stand that produces timber and
carbon benefits under fire risk [24]. The authors showed that higher fire risk will reduce the
optimal rotation age due to a lack of fire prevention and low carbon prices, while a higher
carbon price will increase the rotation age, thus obtaining a higher ecological benefit. It is
known that fires contribute to the increase of CO2 in the atmosphere. In [25] they developed
a meteorological fire index to predict the risk of fire occurrence and help forest managers
take appropriate preventive measures. The authors determined that relative humidity is
a simple and feasible parameter to describe the occurrence of fires. Several mathematical
models have been developed to describe the dynamics of CO2 capture in reforestation
projects [26–28]. The atmospheric CO2 concentration decreases as the rate of reforestation
increases. Also in [29], they presented a study to model the greenhouse effect caused by
CO2 emissions through the optimal control theory. In the model, the authors addressed the
optimization of investments in reforestation and clean technologies associated with state
variables such as CO2 emissions, planted area, and Gross Domestic Product (GDP). They
concluded that it is more efficient to invest in reforestation than in clean technologies.

Because forested areas can contribute to climate change mitigation, it is necessary
to find optimal management strategies that maximize carbon capture. Strategies such as
large-scale reforestations are efficient in capturing huge amounts of carbon [30], whereas
the optimization of thinning, fire prevention, and harvesting strategies can also reduce CO2
emissions in forest plantation management [31]. In [32] they applied a thinning strategy
in Korean pine (Pinus koraiensis Sieb. et Zucc.) forest plantations and determined that the
optimal rotation age that maximizes wood production and carbon capture was at the age
of 86 years. In another study on oil palm [18], they applied the optimal control theory to
model the dynamics of biomass growth and intrinsic biomass growth as state variables
and considered felling as a control variable. The authors showed that the maximum oil
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production and carbon capture was reached at the age of 20 years. However, to our knowl-
edge, no mathematical models have simultaneously modeled the relationship between
the living biomass, the intrinsic biomass growth, the burned area, the reforestation, the
felling and thinning, the fire prevention, and the relative humidity. Recently, [33] modeled
the effects of the dynamics of living biomass, intrinsic growth, and burned area on carbon
capture in forest plantations. The authors showed that biomass decreases in each cycle
of regeneration because of forest fires, and suggested a strategy based on fire prevention
in order to obtain maximum carbon capture. In this context, the objective of the present
work is to determine optimal rotation strategies that maximize carbon sequestration in
forest plantations. Based on the optimal control theory, a mathematical model is proposed
to describe the dynamic relationship of carbon capture in forest plantations with control
strategies such as reforestation, felling, fire prevention, and thinning, which are associated
with state variables such as living biomass, intrinsic growth, and burned area. To verify the
efficiency of the model, three scenarios are considered: realistic, pessimistic, and optimistic,
using numerical methods to approximate its solution. In the case of the realistic scenario
we tested with data of the species P. radiata.

2. Materials and Methods

2.1. The Mathematical Model

Referring to the models of [33,34], we created a mathematical model that studies opti-
mal rotation strategies that maximize carbon sequestration in forest plantations. This model
is based on a system of three ordinary differential equations (ODEs) that are governed
by three state variables, B(t), r(t), and I(t), that denote the amount of living biomass
(considers aboveground and belowground biomass), intrinsic biomass growth, and burned
area, respectively. From the state variables, four control strategies are associated: refor-
estation R(t), felling F(t), fire prevention S(t), and thinning T(t). In the following, the
notation “dot” represents the derivative of a variable with respect to time t. The dynamics
of the live biomass has a logistic growth with a carrying capacity K. The biomass also
increases proportionally and indirectly with respect to reforestation activities and decreases
proportionally due to the immediate effects of fire, felling, and thinning. The contribution
of relative humidity is not considered in the biomass dynamics, since it exceeds the carrying
capacity [33]. The differential equation governing biomass is as follows.

.
B(t) = r(t)B(t)

(
1 − B(t)

K

)
+ [βR(t)]B(t)− [μ1 I(t) + σF(t) + τ T(t)]B(t). (1)

From Equation (1), β is the rate at which biomass increases with respect to reforestation,
μ1 is the rate at which biomass decreases due to fire effects, σ is the rate at which biomass
decreases due to felling effects, and τ is the rate at which biomass decreases due to thinning
(there is an instantaneous decrease in biomass).

Intrinsic growth was originally studied in [34]. Here, we consider that thinning has
an indirect contribution with respect to individual growth in a linear manner, since, in the
long term, it is related to biomass to control density and timber quality [35], such that

.
r(t) = r0 − ρr(t) + νT(t). (2)

In Equation (2), r0 represents the maximum individual growth rate under ideal
conditions [36] and ρ is the effect of the natural mortality rate on individual growth. In the
case of thinning, in the long term, this silvicultural operation enhances the growth of the
remaining trees, and ν is the parameter by which the intrinsic growth of the living biomass
is increased by the effects of thinning.

Finally, the burned area increases as biomass increases, but this increasing behavior
cannot be unlimited. Therefore, a relationship between burned area and biomass is con-
sidered that limits the growth of burned area without inhibiting fire. On the other hand,
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burned area decreases due to fire prevention, thinning, and relative humidity. Thus, the
dynamics of the burned area are

.
I(t) = μ2 I(t)

(
B(t)

1 + B(t)

)
− θS(t)− ηT(t)− hI(t). (3)

From Equation (3), μ2 is the fire rate, θ is the fire prevention rate, η is the thinning
rate, and h is the relative humidity threshold at which fire occurs.

Considering Equations (1)–(3), the mathematical model is presented by means of a
system of nonlinear ODEs, as follows⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

.
B(t) = r(t)B(t)

(
1 − B(t)

K

)
+ [βR(t)]B(t)− [μ1 I(t) + σF(t) + τ T(t)]B(t)

.
r(t) = r0 − ρr(t) + νT(t)
.
I(t) = μ2 I(t)

(
B(t)

1+B(t)

)
− θS(t)− ηT(t)− hI(t),

(4)

satisfying the initial conditions B(t0) = B0, r(t0) = r0, and I(t0) = I0. It is assumed that
the amount of carbon stored in the biomass is proportional to the amount of biomass [37],
therefore C(t) = αB(t) where α is the rate of carbon capture. The following set of as-
sumptions allows building a model that simulates control strategies that maximize carbon
capture in forest plantations:

• The model is formulated for fast-growing managed forest plantations;
• There are many plantations with different ages, thus biomass never goes to zero;
• The ambient humidity is considered constant for simplicity;
• No soil fertilization in each cycle of the forest regeneration is considered;
• The area burned per year is considered, but human intentionality is not taken into account;
• There are no incentives for reforestation or carbon capture;
• The harvesting method corresponds to clear-cutting;
• In the thinning, the thinner, lower quality and less commercially valuable trees will be

removed. Two types of thinning effects are considered, which are explained below;
• The presence of artificial irrigation is neglected in the model;
• The budget for fire prevention is limited;
• Intensive management of forestry is not included in our model;
• Trees burned by fire are replaced by new plants and natural regeneration is not used;
• The mortality rate of extreme events is neglected in our model.

Where the variables B(t) ≥ 0, r(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, F(t) ≥ 0, S(t) ≥ 0 and
T(t) ≥ 0, the parameters (K,σ, h, μ1, μ2, τ, β, r0, ρ, η, θ, α, ν) ∈ R13

+ .
The relationships between the variables and parameters used in the controlled mathe-

matical model (4) are schematically represented in Figure 1.
Their notations, definitions, and units for variables and parameters are described in

Tables 1 and 2, respectively.

Table 1. Notation, definition, and units of each variable.

Notation Definition Unit

B(t) Volume of living biomass m3 ha−1

r(t) Intrinsic growth of biomass year−1

I(t) Burned area per year m2 year−1

C(t) Carbon capture Tn C ha−1year−1

R(t) Forest reforestation ha year−1

F(t) Forest felling ha year−1

S(t) Fire prevention US$m2 ha−1year−1

T(t) Forest thinning ha year−1
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Figure 1. Mathematical model scheme. Dashed arrows indicate positive input and negative output
values. The continuous arrow indicates that the term adds to the input variable but does not
subtract the output variable. The double solid line represents the observable variable assumed to be
proportional to biomass.

The parameters, their units, definition, and notation are as follows.

Table 2. Notation, definition, and units for each parameter.

Notation Definition Unit

β Rate of increase in biomass due to the effects of reforestation ha−1

h Relative humidity threshold to reduce fire year−1

μ1 Rate at which biomass decreases due to fire effects m−2

μ2 Fire parameter year−1

σ Rate at which biomass decreases due to felling effects ha−1

τ Rate at which biomass decreases due to thinning effects ha−1

r0 Maximum growth rate year−2

ρ Natural mortality rate year−1

ν Rate of increase in thinning over individual growth ha−1

θ Fire prevention rate ha US$−1year−1

η Thinning rate m2 ha−1 year−1

α Carbon capture rate Tn C m−3 year−1

2.2. The Optimal Control Problem

An optimal ecological control problem is presented with the objective to maximize the
objective function J representing the carbon capture in a fixed period

[
0, Tf

]
, such that

J(S, R, F, T) =
∫ Tf

0

[
ω1C(t) + ω2S2(t) + ω3R2(t)− ω4F2(t)− ω5T2(t)

]
dt, (5)
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subject to the state variables of the system (4). The state variables B, r, and I are assumed
free at the final time. The initial conditions are the real and adjusted values for the species
P. radiata from studies carried out in central Chile:

B(0) = B0 (real), r(0) = r0(real), I(0) = I0(adjusted)

B
(

Tf

)
= free, r

(
Tf

)
= free, I

(
I f

)
= free,

(6)

where the quantities ωi, i = 1, · · · , 5 are the weight parameters that balance the units of
the terms of the objective function. It is considered S2(t), assuming that the contribution to
carbon capture will be much higher if high prevention is applied and much lower if low
prevention is applied. It is considered R2(t), assuming that the greater the reforestation,
the greater the carbon capture. It is also considered T2(t), which implies that reducing
the availability of fuel in the forest will contribute to decreasing the fire risk. Finally,
it is considered F2(t), which increases the harvest rate to not compromise the owner’s
timber production. On the other hand, quadratic terms are introduced in the Lagrangian
framework to avoid the problem being linear, thus usual techniques can be applied [38].

To prove the existence of the optimal control problem we will follow the results
of [39,40], which is demonstrated in detail in Appendix A. So, now we are in the condition
to characterize the optimal control problem by means of Pontryagin’s maximum principle.

To solve the optimal control problem, Pontryagin’s maximum principle is used to
characterize the optimal controls S∗, R∗, F∗, T∗ [41]. To do this, it is necessary to determine
the expressions for the adjoint variables using the Hamiltonian function [42].

H(B, r, I, R, F, T, S, λ1, λ2, λ3, t) =
[
ω1C + ω2S2 + ω3R2 − ω4F2 − ω5T2]

+λ1

[
rB
(

1 − B
K

)
+ [βR]B − [μ1 I + σF + τT]B

]
+λ2[r0 − ρr + νT] + λ3

[
μ2 I
(

B
1+B

)
− θS − ηT − hI

]
.

(7)

From Equation (7), the adjoint variables λ1, λ2, and λ3 satisfy the following adjoint ODE.

.
λ1(t) = − ∂H

∂B = −αω1 − λ1

[
r
[
1 − 2B

K

]
+ βR − [μ1 I + σF + τT]

]
− λ3

μ2 I
(1+B)2

.
λ2(t) = − ∂H

∂r = −λ1B
(

1 − B
K

)
+ λ2ρ

.
λ3(t) = − ∂H

∂I = λ1μ1B − λ3

[
μ2B
1+B − h

]
.

(8)

Since the initial conditions for the state variables given in Equation (6) are free, the
transversality conditions for the adjoint variables given in Equation (8) are:

λ1

(
Tf

)
= 0, λ2

(
Tf

)
= 0, λ3

(
Tf

)
= 0. (9)

Using Pontryagin’s maximum principle, the optimality of the control variables S, R, F
and T establishes the characterization of the optimal controls S∗, R∗, F∗, and T∗ which
satisfy the necessary first-order conditions

S∗ = min
(

max
(

0, λ3θ
2ω2

)
, 1
)

R∗ = min
(

max
(

0,− λ1βB
2ω3

)
, 1
)

F∗ = min
(

max
(

0,− λ1σB
2ω4

)
, 1
)

T∗ = min
(

max
(

0,− (λ1τB−λ2ν+λ3η)
2ω5

)
, 1
)

.

(10)
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For solving optimal control problems three approaches are feasible: direct methods,
indirect methods, and dynamic programming [43,44]. We used the indirect methods be-
cause they are more robust than the base on the classical theory of Pontryagin’s maximum
principle that reduces the optimal control problem to the solution of a boundary value
problem. We used the fourth-order Runge–Kutta scheme using Octave/MATLAB soft-
ware [44,45]. In the following section, we performed numerical simulations to approximate
the solutions to the optimal control problem. We simulate using the fourth-order forward
Runge–Kutta method [38]. This iterative method consists of solving the controlled system
(4) using a fourth-order forward Runge–Kutta scheme and the traversal or terminal condi-
tions given in Equation (9) in a time interval

[
0, Tf

]
. Then, the adjoint system (8) is solved

by a fourth-order backward Runge–Kutta scheme using the solution of the current iteration
of the controlled system (4). The characterization of the controls of the Equation (10) is
updated through a convex combination of the above controls. The procedure stalls if the
values of the variables of the previous iteration are very close to the present iteration [44].

3. Results and Discussion

The main objective of this work is to determine the optimal strategies of reforestation
R(t), felling F(t), fire prevention S(t), and thinning T(t) that maximize carbon capture in
fast-growing forest plantations. To start with, the final time is set equal to Tf = 200 years.
The initial conditions assumed for the biomass of P. radiata plantations are B(0) = 7.5 m3

ha−1 and, for the intrinsic growth, a maximum growth r(0) = 0.0725 year−1, given in [46],
is considered. For the burned area, an average I(0) = 0.07 m2 year−1 is adjusted. Then, the
Runge-Kutta solver of order four is run for the following three scenarios:

Realistic Scenario. Real parameters from Table 3 (see Appendix B) were considered for
the species P. radiata from studies carried out in central Chile.

Table 3. Real parameters for P. radiata.

K μ1 β σ τ ρ r0 ν μ2 θ η h α

400 0.055 2 × 10−5 2 × 10−5 1 × 10−5 0.06 0.07275 0.159 0.4097 0.15 9.3 × 10−7 0.135 0.5

Pessimistic Scenario. According to the IPCC, in recent decades global warming has
increased GHG emissions and their accumulation is causing irreversible climatic changes. As
a result, the Earth is experiencing an increase in temperature, which will lead to a sustained
decrease in ambient relative humidity and a prolongation of the duration and frequency
of drought events [47] and fires [48]. In this context, this scenario considers a decrease in
ambient relative humidity, which will have a negative effect on biomass growth, and will also
favor conditions for an increase in the frequency and intensity of fires which, in turn, will
increase the burned area [49]. This scenario also considers a decrease in the budget dedicated
to fire prevention, due to the effects that the global health and war situation will have on local
and global economies [50,51]. For this scenario, the fixed values of the parameters shown in
Table 4, which correspond to an artificial data set, are considered.

Table 4. Pessimistic parameters for forest plantations.

K μ1 β σ τ ρ r0 ν μ2 θ η h α

400 0.02 0.1 0.09 1 × 10−5 0.06 0.061 0.03 0.47 0.052 9.3 × 10−7 0.11 0.5

Optimistic Scenario. This scenario assumes that there will be a substantial increase in
the annual rate of afforestation and reforestation, due to the growing concern to prevent
the global average temperature from rising over the next century and the growth of new
commodities based on environmental values, such as carbon capture [5,52,53]. The Paris
Agreement and the Kyoto Protocol have designed economic instruments that provide
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financial incentives for governments to protect the environment using the private sector
for strict pollution standards [29]. In this scenario, most of the parameters of the realistic
scenario in Table 3 were considered, assuming an afforestation and reforestation rate higher
than that of the realistic scenario (β = 0.04). By increasing the rate of afforestation and
reforestation, carbon capture will increase, decreasing the greenhouse effect and regulating
environmental temperature and humidity patterns. According to [54,55], they showed
that trees have a positive effect on relative humidity increase and temperature reduction.
Thus, this scenario assumes an increase in ambient relative humidity in the area where P.
radiata plantations are concentrated (h = 0.14). On the other hand, the presence of financial
incentives would increase the fire prevention budget by 120% (θ = 0.18) in activities such
as thinning, which will indirectly contribute positively to individual growth in the long
term (ν = 0.42) and decrease the continuity of fuel susceptible to fire.

The optimal trajectories for live biomass are similar for the three scenarios (Figure 2a),
however, as expected, in the optimistic scenario there is greater biomass accumulation
(the total area under the curve is 12 300) compared to the other scenarios (10 739 in the
realistic and 5 125.4 in the pessimistic scenarios, respectively). In general, the minimum
biomass volume coincides with the maximum burned area (Figure 2c), although in the
pessimistic scenario this occurs at earlier ages as a result of lower ambient humidity and
higher fire propensity [56], which shortens the rotation age. It is also observed that in
the following plantation rotation cycles the biomass is lower than in the first cycle for
the three scenarios. It could be due to the presence of fires in the three scenarios which
causes the volatilization of the main soil nutrients [57]. Volatilization of some major soil
nutrients, such as nitrogen and phosphorus, can affect tree growth and limit terrestrial
carbon sequestration [58,59]. This model does not consider artificial fertilization of the soil
and the plantation starts growing when the minimum burned area occurs. In [10], they
argue that a higher reforestation rate, together with prolonging the rotation age, are key
strategies to maximize carbon capture and mitigate the negative effects of global climate
change. The model corroborates the above since the optimistic scenario considers a higher
rate of afforestation and reforestation than the realistic scenario, which increases the volume
of forest biomass and there is a prolongation of the rotation age to 29 years, as opposed to
the earlier rotation ages determined by the pessimistic (23 years) and realistic (27 years)
scenarios. The rotation age of the realistic scenario is within the rotation age range reported
by [60] in operational plantations of P. radiata in central Chile. In the realistic scenario the
model maintains the same rotation age as in [60], while for the pessimistic scenario the
rotation age was reduced since the forest was affected by the fire, which forces early felling
to avoid damage by new fires, with the consequent emission of CO2 to the atmosphere. In
the case of the optimistic scenario, the model prolongs the rotation age due to the positive
impact of market incentives for environmental protection.

Carbon capture and burned area follow the same trend in all three scenarios (Figure 2b,c).
As expected, the maximum burned area occurs years after the maximum biomass volume
is produced. The realistic scenario shows a small burned area under the curve of 6258.8,
which suggests that the model realistically reflects the current fire prevention and firefighting
situation in Chile, which is more efficient [61,62]. It is also observed in the optimistic scenario
that the burned area under the curve is 8313.2, which is greater than the realistic scenario.
That scenario happens because in the optimistic scenario there is a greater volume of biomass
(Figure 2a). However, in the pessimistic scenario, despite a low volume of biomass, there is
a greater burned area under the curve of 10,974 compared to the other two scenarios. This
situation is because the relative humidity threshold is the lowest of the three scenarios and the
forest is more prone to burning, which decreases the biomass.

Finally, Figure 2d shows that the intrinsic growth variable is higher in the optimistic
scenario, while the pessimistic scenario is lower and with a flat trend due to the negative
effect of the higher number of fires, which affects individual plantation growth.
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Figure 2. Optimal state trajectories for living biomass, intrinsic growth, burned area, and carbon
capture for the three scenarios: (a) represents the dynamics of living biomass, (b) represents carbon
sequestration, (c) represents the dynamics of burned area, and (d) represents intrinsic growth.

Figure 3 shows that the carbon accumulated in 200 years is 6050, 5240, and 2560 Tn C for
the optimistic, realistic, and pessimistic scenarios, respectively. Overall, the optimistic scenario
is 57.69% higher than the pessimistic scenario and 13.4% higher than the realistic scenario.

Figure 3. Cumulative carbon in the three scenarios for a period of 200 years.

As abovementioned, the optimal control theory was applied in [18,29] by indepen-
dently assessing incentives that promote reforestation, the use of clean technologies, or
other factors that modify the rotation age as control strategies to maximize carbon capture.
However, in the present work, optimal control theory is applied with four strategies ac-
cordingly in three simulation scenarios (Figure 4). The results indicate that in the realistic
and optimistic scenarios the felling strategy considers an optimal rotation age of 29 and
27 years, and no maximum felling effort is applied, while in the pessimistic scenario the
optimal rotation age is shorter and maximum felling effort should be applied throughout
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the plantation life cycle, and the maximum effort has a limit value of one (Equation (10)).
The previous facts are due to the presence of fire risk, which decreases the optimal rotation
age [20]. Then, as fires increase, short rotations could be used and maximum felling effort
applied as in the pessimistic scenario, so as not to increase the release of CO2 to the atmo-
sphere and not compromise the forest owner business. As previously mentioned, in the
case of the optimistic and realistic scenarios, no maximum felling effort is applied. This
coincides with the Chilean national reality since, despite the increase in demand for timber
in the country in the last 15 years, the felling rate has dropped from 55,000 ha year−1 to
25,000 ha year−1 [63,64]. While this is positive from an environmental point of view, as
more planted hectares are being maintained and contribute to mitigating climate change, it
could lead to a shortage of wood for processing plants, which would increase the pressure
to shorten the rotation age. However, this hypothesis needs further analysis. According to
the IPCC, a significant percentage of GHGs (30%–40%) can be reduced by avoiding felling,
forest degradation, and the recovery of forest areas.

 

Figure 4. Optimal trajectories for the control variables in the three scenarios. The first column
represents the realistic scenario, the second column the pessimistic scenario, and the third column the
optimistic scenario.

On the other hand, in all three scenarios, the reforestation strategy is applied when
felling begins. The model shows that maximum reforestation effort should be applied
for the pessimistic and optimistic scenarios, while in the realistic scenario no maximum
reforestation effort is applied. Thus, the model reports that today 100% of the reforestation
rate is not reached, despite the Paris Agreement and the Kyoto Protocol that offer financial
incentives to governments to increase forest area. According to Chilean Decree Law 701,
between 1998 and 2015 36% of the area was forested, 39% of the area corresponds to
reforestation, and more than 20,000 hectares are subsidized for forest management, which
meant an investment of 388 million USD for the State in that period. According to [29] they
suggest that it is more efficient to invest in reforestation than other practices such as clean
technologies, since forested areas can contribute to climate change mitigation in a more
efficient and environment friendly way. However, even though maximum reforestation
effort is applied in the pessimistic scenario, the biomass volume is lower than in the other
two scenarios (Figure 2a), which corroborates the negative effect of the larger burned area
on biomass growth.

In the fire prevention strategy, the model suggests that in the three scenarios presented,
the maximum prevention effort should be applied years after reaching the maximum biomass
volume since the plantation in its adult state forms a continuous mass of fuel that is more
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difficult to control in case of fire. Therefore, the model based on this strategy, considering
all plantations, suggests investing in fire prevention on average four years before and four
years after felling (Figure 2c). Prevention applied before helps to minimize the fire risk in
plantations ready to be felled, whereas prevention applied after helps to manage the forest
residues in the soil (i.e., fuel) by felling operations. On the other hand, in the pessimistic
scenario, it is observed that there is a decrease in the prevention strategy of the following
rotation cycles because the biomass decreases (Figure 2a). Therefore, the model communicates
that the owner should invest according to the amount of existing biomass.

Finally, for the thinning strategy in the three scenarios, it is observed that the maximum
thinning effort should be applied from the initial moment to the moment of fire prevention.
It is also observed that in the case of the pessimistic scenario the thinning periods are longer
because the forest is more prone to burning.

In general, the optimal rotation age for the realistic scenario in the following rotation
cycles turned out to be 29 years, whereas for the optimistic scenario in the following rotation
cycles this is shortened to 24 years; this is because the presence of fires shortens the rotation
age. Even though the rotation age is shortened there is a greater biomass and therefore
greater carbon capture than in the other two scenarios (Figure 2a,b). However, in the
pessimistic scenario in the following cycles, the rotation age is prolonged to ca. 45 years,
because forests need a long time to recover from the fire. Therefore, the rotation age should
be applied at the maximum time that the burned area reaches.

4. Conclusions

In this study, we determined optimal management strategies that maximize carbon
capture in fast-growing forest plantations using the optimal control theory. The model
effectively simulates the optimal dynamics of live biomass, intrinsic growth, and burned
area to consider four strategies such as reforestation, felling, fire prevention, and thinning.
To evaluate the effectiveness of the model, three scenarios have been considered: realistic,
pessimistic, and optimistic. The parameters for modeling the realistic scenario were based
on real data for the exotic species P. radiata.

The model predicts a higher biomass volume for the optimistic scenario, with a
consequent higher carbon capture than in the other two scenarios. The optimal solution
for the felling strategy suggests that, in order to increase carbon capture, the rotation
age should be extended and the felling rate decreased. Likewise, the model corroborates
that reforestation should be carried out immediately after felling, applying maximum
reforestation effort in the optimistic and pessimistic scenarios. It is suggested that in
order to increase CO2 capture, large forestry companies and government agencies should
increase investment in afforestation and reforestation. On the other hand, the model
indicates that, although maximum prevention effort should be applied during the life
cycle of the plantation, it should be proportional to the volume of biomass. Finally, the
optimal solution for the thinning strategy indicates that in all three scenarios maximum
thinning effort should be applied until the time when the fire prevention strategy is applied.
Here, the optimistic scenario is considered as a possible alternative in forestry activities
to maximize carbon capture. While this scenario yields the largest carbon capture, its
implementation requires joint efforts between forest companies and the government to
prolong the rotation age and economically incentivize reforestation, respectively.
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Appendix A. Existence of Solutions to the Optimal Control Problem

Then, from the system (4), we denote u(t) = (R(t), F(t), T(t), S(t)) four control
variables and are associated with the three state variables E(t) = (B(t), r(t), I(t)), they are
bounded and measurable

U = {u : is measurable according to Lebesgue on [0, 1], 0 ≤ F, R, T, S ≤ 1}, (A1)

where U is the class of admissible controls. We will now mission the following theorem
that guarantees the existence of solutions to the optimal control problem.

Theorem A1. Assuming that ω4 + ω5 ≥ ω2 + ω3, ω2 < 1 − κ1, 0 < κ1 < 1 and
ω3 < 1 − κ2, 0 < κ2 < 1, there is a quadruple of optimal control (R∗, F∗, S∗, T∗) ∈ U ,
such that

J(R∗, F∗, S∗, T∗) = max
(S,R,F,T)∈U

(J(S, R, F, T)) (A2)

subject to the system of differential Equation (4) with non-negative initial conditions. If the following
conditions are satisfied:

1. The set of admissible controls and state variables of the problem is non-empty;
2. The admissible control class U is convex and bounded;
3. The right-hand side of the system Equation (4) is bounded by a nonlinear function that depends

on the state and control variables;
4. The integral of the objective function is concave;
5. There exist positive constants d1, d2 > 0 and γ > 1 satisfying the integrating J of the

objective functional, such that

(R, F, S, T) = d2 − d1

(
S2 + R2 + F2 + T2

)γ/2

Proof of Theorem A1

1. The solutions of the system (4) are considered to be bounded in a finite time interval
and making use of a result from [65], the existence of a solution for the controlled
system can be assured;

2. From Equation (A1) the set of admissible controls U is known to be topologically
closed and convex by definition;

3. For this point, let us represent the system (4) as follows:

.
E(t) = AE +F (E) + Y(u) (A3)

in its matrix form

E=

⎛
⎝B

r
I

⎞
⎠, A =

⎛
⎝βR − (σF + τT) 0 0

0 −ρ 0
0 0 h

⎞
⎠,

234



Forests 2023, 14, 82

F (E) =

⎛
⎜⎜⎝

rB
(

1 − B
K

)
− μ1 IB

0
μ2 I
(

B
1+B

)
⎞
⎟⎟⎠, Y(u) =

⎛
⎝ 0

r0 + νT
−θS − ηT

⎞
⎠

The system (A3) is a nonlinear system with a bounded coefficient. So, now the
system (A3) is defined as follows:

G(E) = AE +F (E) + Y(u). (A4)

From the second term of Equation (A4), we apply the inequality of Hölder we obtain

|F (E1)−F (E2)| =
∣∣∣(r1B1

(
1 − B1

K

)
− μ1 I1B1

)
−
(

r2B2

(
1 − B2

K

)
− μ1 I2B2

)
+
(

μ2 I1

(
B1

1+B1

)
− (μ2 I2

(
B2

1+B2

))∣∣∣
≤ |r1B1 − r2B2|+

∣∣∣∣ r2B2
2

K − r1B2
1

K

∣∣∣∣+ μ1|I1B1 − I2B2|

+μ2|I1B1 − I2B2|
≤ Z1|B1 − B2|+ Z2|r1 − r2|+ Z3|I1 − I2|
≤ max(Z1, Z2, Z3)(|B1 − B2|+ |r1 − r2|+ |I1 − I2|)

where Z1 =
[
rm + (μ1 + μ2)

(
Bm(rm+βR)
μ1(1+Bm)

+ rm

)
+ rm

K (2Bm)
]

, Z2 =
(

Bm + B2
m

K

)
, and

Z3 = Bm(μ1 − μ2). In addition, by the constraints of the solutions of Equation (4)
rm = r0+νT

ρ and Bm = K + K βR
rm

[33]. Then, the constant Z is positive, taking
Z = max(Z1, Z2, Z3, ||A|| < ∞ which is independent of the state variables, we have that

|G(E1)− G(E2)| ≤ Z|E1−E2|. (A5)

Following Equation (A5), it is stated that the function G(E) is Lipschitz uniform
continuous. From the definition of U and the restriction of B, r and I we can guarantee
the existence of the solution of the controlled system [66,67].

4. To show the concavity of the integrand of the objective functional, let us denote as follows

N (t, E, u ) = ω1C(t) + ω2S2(t) + ω3R2(t)−ω4F2(t)− ω5T2(t),

for this, we must prove that

(1 − q)N (t, E, u ) + qN (t, E, v ) ≤ N (t, E, (1 − q))u + qv) (A6)

let u, v be two control vectors and q ∈ (0, 1). Applying Equation (A2), the definition
of convex set, we obtain

(1 − q)N (t, E, u ) + qN (t, E, v )−N (t, E, (1 − q)u + qv ) ≥

ω2

[√
q(1 − q)u1 −

√
q(1 − q)v1

]2
+ ω3

[√
q(1 − q)u2 −

√
q(1 − q)v2

]2

−ω4

[√
q(1 − q)u3 −

√
q(1 − q)v3

]2 − ω5

[√
q(1 − q)u4 −

√
q(1 − q)v4

]2

therefore if ω4 + ω5 ≥ ω2 + ω3 one obtains from Equation (A6)

(1 − q)N (t, E, u ) + qN (t, E, v)−N (t, E, (1 − q)u + qv) ≤ 0

then the integrating of the objective function N (t, E, u ) is concave.
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5. Finally, considering that ω1 < 1 − κ1, 0 < κ1 < 1 and ω3 < 1 − κ2, 0 < κ2 < 1 it
follows that

N (t, E, u ) ≤ ω1C + (1 − κ1)S2 + (1 − κ2)R2 − ω4F2 − w5T2

N (t, E, u ) ≤ ω1C + S2 + R2 − κ1S2 − κ2R2 − ω4F2 − ω5T2

N (t, E, u ) ≤ 2 + ω1αB − κ1S2 − κ2R2 − F2 − ω5T2

N (t, E, u ) ≤ d2 − d1
(

R2 ++S2 + F2 + T2)
where d2 depends on B, while for d1 = min(κ1, κ2, ω3, ω5) and γ = 2 the required is ob-
tained. It is satisfied that there exists an optimal control quadruple J(R∗, F∗, S∗, T∗)
such that J(R, F, S, T) which was given in Equation (5) is maximized. �

Appendix B. Description of Parameters

The carrying capacity of live biomass (K) for a rotation age of 24 years in the species
P. radiata reaches 400–450 m3 ha−1 [68]. In this study, K = 400 m3 ha−1 has been con-
sidered. Knowing that relative humidity is related to mean annual temperature and an-
nual precipitation [69], and that relative humidity could contribute positively to reduc-
ing fire propagation [70], in [71] they evaluated the volume growth between sites in a
range of six and seven years; the site with higher precipitation (1492 mm year−1) and
lower mean annual temperature compared to other sites (10.5 ◦C) obtained 47.3 m3 ha−1

and the mean annual increase is 6.4 m3 ha−1 year−1. Then, the relative humidity rate is
h = 6.4/47.3 = 0.135 year−1. According to [72], a reforestation rate of 34304 ha was obtained in
2017, then β = 1/34304 = 0.00002 ha−1. If the current situation is maintained, in which the
annual planting rate does not increase and corresponds only to reforestation, which is the
replacement of felled areas [72], then the felling rate is σ = β. In the case of the thinning, there
is an instantaneous decrease in biomass because, with intensive silvicultural management,
50% of the trees per hectare are extracted [73,74]. Then, the rate of biomass declines due
to the effects of thinning τ = σ/2 = 0.00001 ha−1. On the other hand, according to [75]
thinning reduces fire risk, in [76,77] the variation of leaf area before and after thinning is 0.008
m2, and per hectare and year is 0.0001164 ha−1year−1. Therefore, the thinning rate acts on
the biomass decrease, which could decrease the fire risk and, therefore, there will not be an
increase in the burned area, given η = 0.008× 0.0001164 = 0.000000093 m2 ha−1 year−1. In
addition, biomass also decreases due to the occurrence of forest fires. In Chile, the area of
forest plantations affected by forest fires in the last 5 years corresponds to 3,960,000 m2 [78].
Then, the rate of biomass decrease due to fires is the ratio between the area burned with
respect to forest plantation species and the number of total fires recorded in Chile in the
last thirty years, giving μ1 = 218,413/3,960,000 = 0.055 m−2. In [77], they show that the
mean annual increment is 29.1 m3 ha−1. Then, the maximum intrinsic growth rate is the
quotient between the mean annual increment and the carrying capacity, and we obtain
r0 = 29.1/400 = 0.07275 year−1 (for simulation convenience we leave it at year−1). The
natural mortality of P. radita plantations is almost zero due to the high intensity of silvicul-
tural treatments. However, due to the lack of silvicultural operations in our model, plants
may die due to lack of fertilization and plague control which is not included in this model, then
ρ = 0.06 year−1 is considered. For the contribution of thinning to intrinsic growth,
according to [71] 356 trees were thinned out of 1,156 trees that obtained an increase of
3.153 m, also have a volume increase of 5 m3 ha−1 after thinning, leaving
ν = (5 m3 ha−1 ha−1)/(3.153 m)3 = 0.159 ha−1. On the other hand, according to [64] the area
affected by fires in the last ten years for forest plantations of the genus Pinus on average
corresponds to 34,541.98 ha, but in the year 2020 the area affected was 14,152.54 ha year−1.
Then, the increase in the burned area is the ratio between the burned area of Pinus in 2020 and
the total area affected by fires in the last ten years is μ2 = 14,152.54/34,541.98 = 0.4097 year−1.
In Chile large forestry companies have an estate of approximately 3 million hectares with
exotic plantations, with a budget of approximately 20 million USD per year. Therefore, the
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fire prevention budget is θ = 3/20 = 0.15 ha USD−1 year−1 [79]. The biomass dry weights
were converted to carbon weight and, assuming a carbon content of 50% of the total biomass
weight, the carbon capture rate is α = 0.50 Tn C m−3 year−1 [80].
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Article

Modeling Climate Effects on Site Productivity of Plantation
Grown Jack Pine, Black Spruce, Red Pine, and White Spruce
Using Annual/Seasonal Climate Values

Mahadev Sharma

Ontario Forest Research Institute, Ontario Ministry of Natural Resources and Forestry, 1235 Queen St. East,
Sault Ste Marie, ON P6A 2E5, Canada; mahadev.sharma@ontario.ca; Tel.: +1-(705)-992-9775

Abstract: Site index (SI) is a commonly used measure of forest site productivity and is affected by
climate change. Therefore, climate effects on site productivity were analyzed and modeled for jack
pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) B.S.P.), red pine (Pinus resinosa Ait.),
and white spruce (Picea glauca (Moench) Voss) plantations using annual/seasonal values of climate
variables. Jack pine and black spruce trees were each sampled from 25 plantations (sites), and red
pine and white spruce trees were sampled from 30 and 31 plantations, respectively, from across
Ontario, Canada. Stem analysis data collected from 201 jack pine, 211 black spruce, 90 red pine,
and 93 white spruce trees were used in this study. To analyze and model climatic effects on site
productivity, parameters of the stand height models were expressed in terms of climate variables.
A nonlinear mixed-effects modelling approach was applied to fit the stand height models. Climate
effects on site productivity was evaluated by predicting stand heights in three areas (the central,
eastern/southeastern, and western parts of Ontario) for the period 2021 to 2080 under three emissions
trajectories (representative concentration pathways (RCP) 2.6, 4.5, and 8.5 watts m−2). Climate effects
on site productivity depended on tree species and location. For jack pine, climate effects were positive
and pronounced only in western Ontario under all emissions scenarios. The effects were negative
and mild after breast height age (BHA) 50 in central Ontario for black spruce. Similarly, the effects
were negative and more pronounced at all areas after BHA 35 for red pine. On the other hand, for
white spruce the effects were negative and highly pronounced from a young age under all scenarios,
mainly in the southeast. For all species except for jack pine, climate effects were more pronounced
under RCP 8.5 than the other two scenarios.

Keywords: height growth functions; dynamic site index models; climatic effects on tree growth;
nonlinear height growth models; stand/top height

1. Introduction

Site productivity influences growth, mortality, and recruitment of trees in a stand [1].
It is commonly measured in terms of a site index (SI), with SI defined as stand height
(average height of dominant and codominant trees) at a specified stand age [2]. Most stand
scale growth and yield models that are used in developing forest management plans are
driven by SI. Consequently, accurate SI estimates are fundamental for informed forest
management decisions.

The site index depends on species, site, growing environment, and climate [3]. Re-
searchers have used different approaches to examine and model climate effects on site
productivity. Some have regressed SI in terms of climate/environmental variables di-
rectly [4–7]. However, Ung et al. [5] indicated that linear relationships between the SI and
biophysical variables were inadequate for use in growth and yield models.

Similarly, Albert and Schmidt [6] found less than 40% variation in SI explained by
biophysical variables for Norway spruce (Picea abies (L.) Karst.) and common beech
(Fagus sylvatica L.) trees in Lower Saxony, Germany. On the other hand, Weiskittel et al. [7]
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reported that 68% of the variability in SI was explained by climate-related variables for tree
species grown in western U.S. forests.

Bergh et al. [8] used a process-based simulation model, to compute and compare the ef-
fect of increased temperature on net primary productivity (NPP) for Norway spruce (Picea
abies), Scots pine (Pinus sylvestris), black cottonwood (Populus trichocarpa), and European
beech (Fagus sylvatica) growing in the Nordic countries (Finland, Denmark, Norway, Ice-
land, and Sweden). Their results showed that if the temperature is increased by 4 degrees
C, Norway spruce and Scots pine NPP would increase by 24%–37% in spring. In another
study, Pedlar and McKenney [9] used published and provenance trial data to assess the
estimated growth response of five northern conifers to climate change. They reported that
climate warming could have a significant positive effect on cold-origin (northern) popula-
tions, but negative effects on warm-origin (southern) populations. Similarly, Guo et al. [10]
investigated local adaptation process of bud phenology of five black spruce populations
originating from the latitudinal range of boreal forest. They found a relationship between
bud phenology and the mean annual temperature at the sites of tree origin.

Since climate is not the sole factor influencing site productivity, SI expressed solely in
terms of climate variables would not provide accurate estimates of forest site productivity.
To improve model efficiency, other researchers defined the parameters of SI models in terms
of climate- and site-related variables [11–13]. However, other than stating that incorpo-
rating biophysical variables (including climate) improved fit statistics, these researchers
did not quantify the magnitude and nature (positive or negative) of climate effects on
site productivity.

Recently, stand height growth/SI models have been developed by incorporating climate
variables in stand height growth models for several tree species in Ontario, Canada: planta-
tion grown jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana Mill. B.S.P.) [14],
red pine (Pinus resinosa Ait.) [15], white spruce (Picea glauca (Moench) Voss) [16], and white
pine (Pinus strobus L.) [3] and natural origin mixed stands of jack pine and black spruce [17]
and black spruce and trembling aspen (Populus tremuloides Michx.) [18].

When climate-sensitive SI models were developed for jack pine, black spruce, red
pine, and white spruce plantations, only 30-year average values of climate variables were
available for evaluation [14–16]. Therefore, the average values of climate variables over the
lifespan of sample trees were used to develop climate-sensitive stand height growth/SI
models for these tree species. These models were evaluated using projected average values
of climate variables significant in the models for a 30-year period under different climate
change scenarios.

However, in the case of white pine plantations and natural origin mixed stands,
annual and seasonal values of climate variables were available for past and future growth
periods. Past and future annual/seasonal values of index variables derived from climate-
related variables (e.g., climatic moisture index) were also available. Therefore, Sharma and
Parton [3] and Sharma [17,18] analyzed climate effects on site productivity of these tree
species using annual/seasonal values of temperature- and precipitation-related climate
and derived variables and developed climate-sensitive stand height growth/SI models for
these plantations and mixed stands. In these studies, model evaluation included the use of
projected annual/seasonal values of climate variables for a future 80-year growth period
under three climate change scenarios.

Since the values of climate variables fluctuate every year/season, it is intuitive to
use annual/seasonal values of climate variables to examine and model climate effects
on site productivity. Models developed using annual/seasonal values of original and
derived climate variables will provide more accurate information about the climate effects
on tree growth than those developed using the average values over the period of tree
growth. Therefore, the objectives of this study were to derive stand height growth/SI
models for jack pine, red pine, black spruce, and white spruce plantations by incorporating
yearly/seasonal values of climate variables and to assess the effects of future climate
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scenarios on stand height growth of these tree species using projected yearly/seasonal
values of climate variables.

2. Methods

2.1. Height and Age Data

Data used in this study were collected from jack pine, red pine, black spruce, and
white spruce trees grown in plantations. Twenty-five even-aged monospecific plantations
were sampled for each of jack pine and black spruce. Similarly, 30 and 31 monospecific
plantations were sampled for red pine and white spruce, respectively. These plantations
were selected from across the species’ range [19] in Ontario (Figure 1). Details of sampling
trees and collecting stem analysis data have been provided in studies by Sharma et al. [14]
for jack pine and black spruce and Sharma and Parton [15,16] for red pine and white spruce.

Figure 1. Distribution of jack pine and black spruce plantation sites sampled across Northern Ontario,
Canada. Latitude and longitude ranged from 47◦ N to 50◦ N and 80◦ W to 92◦ W, respectively.

Height growth of all tree species used in this study was erratic before trees reached
breast height [14–16]. Therefore, unless otherwise specified, height from breast height and
age from breast height (breast height age, BHA) were used for all analyses reported in this
study. As a result, tree height refers to height above breast height and age to BHA.

Since height growth below breast height was irregular, BHA of trees sampled from
three plots at a site did not necessarily reach a particular BHA during the same calendar
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year. Combining the growth series from the three plots would result in averaging height
growth across years, precluding analysis of climate effects on stand height growth (mean
height of three trees sampled from a site) using a climate variable value associated with a
specific calendar year. Therefore, in this study growth series from the three plots at each
site were not combined to obtain site-scale estimates.

Observed heights were plotted against their ages to form height–age curves for each
tree. Trees for which curves indicated possible injuries or early height growth suppression
were discarded. This resulted in 201 and 211 jack pine and black spruce trees, respectively,
to be used for analysis. None of red pine or white spruce trees sampled had any noticeable
defect, so all trees (90 and 93 for red pine and white spruce, respectively) were used in
analyzing climate effects and developing stand height/SI models. Summary statistics for
total age, total height, diameter at breast height (DBH), and BHA for the trees used in this
study are presented in Table 1.

Table 1. Summary statistics (N = number of samples, Std Dev = standard deviation) for total height,
diameter at breast height (DBH), total age, and breast height age (BHA) of plantation grown trees
in Ontario, Canada and climate variables that best explained the variation in stand height growth
of tree species used in this study. (CMI = climatic moisture index, MDTR = mean diurnal tempera-
ture range, PWQ = precipitation of warmest quarter, GSMT = growing season mean temperature,
AnMxT = annual maximum temperature).

Variable N Mean Std Dev Minimum Maximum

Jack pine

Height (m) 201 16.71 2.38 11.80 23.02

DBH (cm) 201 19.59 4.02 9.90 34.30

Total age (year) 201 42.22 10.26 26.00 63.00

BHA (year) 201 38.68 10.00 23.00 60.00

CMI (April) 2700 2.92 2.45 −5.62 14.54

CMI (May) 2700 0.58 3.18 −6.85 10.03

MDTR (◦C) 2700 12.25 1.31 7.2 16.2

Black spruce

Height (m) 211 12.55 2.23 6.82 17.85

DBH (cm) 211 16.39 2.81 10.10 24.80

Total age (year) 211 38.34 8.40 24.00 84.00

BHA (year) 211 32.01 7.10 20.00 46.00

CMI (July) 2700 −1.35 3.39 −10.1 12.28

PWQ (mm) 2700 243.67 47.72 97 406

Red pine

Height (m) 90 21.83 4.10 13.25 30.90

DBH (cm) 90 31.39 6.23 21.30 56.20

Total age (year) 90 59.90 18.12 27.00 97.00

BHA (year) 90 55.26 18.07 23.00 93.00

CMI (March) 3456 4.02 2.18 −1.52 14.36

CMI (April) 3456 2.72 2.62 −6.22 14.5

CMI (Oct) 3456 3.68 3.66 −6.22 19.45

CMI (Nov) 3456 5.40 2.73 −0.63 17.89

GSMT (◦C) 3456 13.18 0.73 10.87 15.82
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Table 1. Cont.

Variable N Mean Std Dev Minimum Maximum

White spruce

Height (m) 93 20.98 2.91 15.25 29.35

DBH (cm) 93 29.97 6.67 16.30 52.90

Total age (year) 93 55.62 10.26 42.00 87.00

BHA (year) 93 49.86 10.18 35.00 82.00

AnMaxT (◦C) 2700 7.44 0.52 6.14 8.05
CMI = mean monthly precipitation–monthly potential evapotranspiration.

2.2. Climate Data

All climate variables for each plot location for each tree species were estimated using
Canadian climate models [20]. These models were generated from continuous climate
grids using ANUSPLINE based on corrected Canadian weather station data [21,22], which
includes many stations in Ontario. For each plot location, estimates of average seasonal and
yearly values of these variables were calculated for each year, starting when the sampled
tree reached breast height, until 2018.

A total of 68 climate-related variables were computed, including minimum, mean, and
maximum air temperatures and total precipitation, estimated for each month of the year,
for each quarter (consecutive three-month periods), and annually. The 68 variables also
included longitude, latitude, and elevation (site-related variables). Details of calculating
climate data were documented by Sharma et al. [14] and Sharma and Parton [15,16]. In
addition, potential evapotranspiration (PET) was subtracted from mean monthly precipita-
tion (MMP) to estimate climatic moisture index (CMI) for each year (see [23]). These values
were also calculated for each plot for each species.

Total or partial CMI values were then computed by summing the 12-month or partial-
month (months for which CMI was significant in the regression) values of CMI for each year
for each sample site. Estimates for all climate variables were provided by Dan McKenney
(Canadian Forest Service, 2018, pers. comm.). Summary statistics of climate variables that
explained the variation in stand height growth of jack pine, black spruce, red pine, and
white spruce plantations are included in Table 1.

2.3. Stand Height/Site Index Equations

Sharma et al. [14] and Sharma and Parton [15,16] evaluated variants of Chapman-
Richards and Hossfeld IV functions for the tree species used in this study and found a
variant of the Hossfeld IV function (Equation (1)), also known as McDill–Amateis growth
function (see [24] p. 126), provided the best fit statistics (R2 and MSE). This variant also
produced the most consistent and biologically realistic height estimates across productivity
classes for all four species studied. The variant (model form) was:

H =
α0

1 −
(

1 − α0
H1

)(
A1
A

)α1
+ ε (1)

where H and H1 are stand heights (from breast height) at BHAs A and A1, respectively, α0
and α1 are model parameters and ε is the error term. This model form was used in this
study as the base function to examine and model climate effects on stand height growth.
In general, α0 defines the asymptote of the curve, and α1 determines the shape. α1 is also
called the rate parameter that determines the growth rate. To analyze and model the climate
effects on stand height growth, the asymptote and rate parameter (α0 and α1, respectively)
in Equation (1) were expressed in terms of climate variables.
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2.4. Model Fitting and Evaluation

The data used in this study came from stem analysis. These data are hierarchical
(i.e., height–age series within sites), resulting in two sources of variation: among sites and
within a site. Observations within a site (height–age series) (correlated) are dependent as
they originate from the same tree. However, observations among sites are independent. To
address the problem of autocorrelation, a mixed-effects modelling approach was used to fit
the stand height growth model for all tree species.

To examine and model climate effects on site productivity, climate- and site-related
variables were partitioned into three groups (precipitation, temperature, and site) and
introduced to Equation (1) successively from each group. The climate- and site-related
variables that were significant and resulted in the lowest Akaike information criterion
(AIC; [25]) value were selected and incorporated into the stand height models. Quadratic
transformations and two-way interactions of the climate variables that were significant in
the regression were also introduced one by one in the presence of their original variables.
All climate and site variables, their two-way interactions, and transformations that were
both significant and improved model fit were selected as climate variables.

Random effects parameters were added successively to the fixed-effects coefficients
of climate variables as necessary. Goodness-of-fit criteria such as log-likelihood (twice
the negative log-likelihood) ratio, assessment of model residuals, and AIC were used to
evaluate the model with random effects. The model with the smallest goodness-of-fit value
was considered best. The model form that resulted in the smallest value of AIC was used
as the final model for each species.

Estimated values of stand heights of jack pine, black spruce, red pine, and white
spruce trees using the models with climate variables were used to evaluate climatic effects
on future stand height growth for three areas. These areas were in the center (near Hearst),
the eastern (north of Sudbury for jack pine and black spruce and near Barrie for red pine
and white spruce), and western (near Dryden for jack pine and black spruce and near Red
Lake for red pine and white spruce) parts of Ontario, where the trees were sampled (see
Figure 1).

The evaluation of climate effects was performed under three emissions trajectories (2.6,
4.5 and 8.5 Watts/m2). These trajectories, known as representative concentration pathways
(RCPs), produce different levels of warming at the end of the century using the Canadian
model [20]. The projected values of climate variables (from [20]) that were significant
in expressing the asymptote and rate parameter in Equation (1) were used in evaluating
climate effects. Height growth curves were also generated for the 80-year growth period
(2021–2100) for all tree species for all emissions scenarios.

3. Results

The base model (Equation (1)) coefficient estimates were provided in studies by
Sharma et al. [14], Sharma and Parton [15], and Sharma and Parton [16] for jack pine and
black spruce, red pine, and white spruce, respectively. Those estimates remain the same
and, hence, are not reported here. Any differences would be associated with the climate
variables since annual/seasonal values were used in this study instead of the average
values over the trees’ past growth periods used in the previous studies.

Climate effects on stand height growth were analyzed by expressing parameters (α0
and α1) in Equation (1) in terms of climate variables as described earlier. For jack pine,
mean diurnal temperature range (MDTR), its quadratic transformation, and April CMI
(CMIApr) explained the variation in asymptote. Similarly, MDTR and May CMI (CMIMay)
were significant in explaining the rate parameter for this tree species. For black spruce,
precipitation of warmest quarter (PWQ) and July CMI (CMIJul) explained the variations in
the asymptote and rate parameter, respectively.

For red pine, growing season mean temperature (GSMT) and the sum of March, April,
October, and November CMIs (CMISum) explained the variation in the asymptote and rate
parameter, respectively. On the other hand, only one temperature-related variable (annual
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maximum temperature (AnMaxT)) was significant in explaining the variation in the rate
parameter for white spruce.

As stated, random effects parameters were sequentially added to the fixed-effects
coefficients, starting with the intercept in the expression for asymptote. Only site-level
random effects associated with the intercept in expressions for both asymptote and rate
parameter were significant for all species. However, no random effects associated with the
fixed-effects coefficients attached to climate variables were significant. Final models with
climate variables and random effects for jack pine, black spruce, red pine, and white spruce
can be mathematically expressed as:
jack pine

Hijk =
β0 + b0i + β1 ∗ CMIApr + β2 MDTR + β3 MDTR2

1 −
(

1 − β0+b0i+β1∗CMIApr+β2 MDTR+β3 MDTR2

Hijl(l �=k)

)( Aijl(l �=k)
Aijk

)β4+b4i+β5CMIMay+β6 MDTR + εijk (2)

black spruce

Hijk =
β0 + b0i + β1PWQ

1 −
(

1 − β0+b0i+β1PWQ
Hijl(l �=j)

)( Aijl(l �=k)
Aijk

)β2+b2i+β3CMIJul
+ εijk (3)

red pine

Hijk =
β0 + b0i + β1GSMT(

1 − β0+b0i+β1GSMT
Hil(l �=k)

)( Aijl(l �=k)
Aijk

)β2+b2i+β2CMISum
+ εijk (4)

white spruce

Hijk =
β0 + b0i(

1 − β0+b0i
Hijl(l �=k)

)( Aijl(l �=k)
Aijk

)β1+b1i+β2 AnMaxT + εijk (5)

where Hijk is the stand height at age Aijk (kth observations of series j and site i), Hijl is the
stand height at age Aijl at the same series and site (lth observations of series j and site i and
l �= k), b0i is site-scale random effect associated with the intercept expressing the asymptote,
and bmi (m = 1, 2, and 4) is also site-scale random effect but associated with the intercept
that expressed the rate parameter. Both random effects are independent of εijk. Random
effects, b0i and bmi, are normally distributed with mean zero and variances σ0

2 and σ1
2,

respectively, and covariance σ0σ1. β0–β6 are fixed effects parameters to be estimated. Other
variables are as defined earlier.

Estimated parameters and fit statistics are listed in Table 2. For all species, fit statistics
(RMSE, log-likelihood, AIC) decreased when climate variables were included in the model.
Equations (2)–(5) incorporated climate variables that significantly improved fit statistics.
As a result, these equations could be used to explain the effects of climate on stand height
growth for jack pine, black spruce, red pine, and white spruce. As mentioned, only site-level
random effects associated with the intercept of functions used to express both asymptote
and rate parameter were significant for all species.

Estimated parameter values are consistent with biological expectations. For jack
pine, the coefficients of April CMI and MDTR are negative. On the other hand, the
coefficient for the quadratic transformation is positive. MDTR decreases as the rate of
climate change increases. Therefore, decreasing MDTR has positive effect on the asymptote
if evapotranspiration exceeds precipitation in April. However, the effect diminishes as the
rate of climate change increases because of the opposite sign in the quadratic transformation
of MDTR. Similarly, coefficients of both climatic variables (May CMI and MDTR) are
negative in the expression for the rate parameter. This finding indicates that growth rate
increases with the rate of change in climate if evapotranspiration is higher than total
precipitation in May.
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Table 2. Parameter estimates, their standard errors (SE), and fit statistics (MSE (σe
2), variance of b0

(σ0
2), variance of b1 (σ1

2), covariance of b0 and b1 (σ0 σ1), and the Akaike information criterion (AIC)
for the models with climate variables (Equations (2)–(5)) for jack pine, black spruce, red pine, and
white spruce trees grown in plantation across Ontario, Canada.

Jack Pine Black Spruce

Parameters Estimates SE Estimates SE

β0 104.810 30.622 30.002 7.0212

β1 −0.5135 0.1667 0.0890 0.0319

β2 −14.8825 5.5186 1.0922 0.0126

β3 0.8107 0.2499 0.0048 0.0012

β4 1.3133 0.0740 – –

β5 −0.0062 0.0012 – –

β6 −0.0191 0.0057 – –

σe
2 0.0184 0.0003 0.0116 0.0002

σ0
2 83.010 37.304 200.00 83.210

σ1
2 0.0060 0.0020 0.0026 0.0010

σ0σ1 −0.3189 0.2001 −0.3313 0.2165

AIC −8620 – −10.492 –

Red pine White spruce

β0 78.9872 9.9897 68.606 6.9399

β1 −2.1957 0.6933 1.3575 0.0986

β2 1.0851 0.0204 −0.0246 0.0109

β3 0.0025 0.0006 – –

σe
2 0.0066 0.0001 0.0152 0.0003

σ0
2 260.00 117.27 1232.99 680.89

σ1
2 0.0078 0.0022 0.0086 0.0028

σ0σ1 −1.1933 0.4377 −1.5901 0.9488

AIC −10452 – −5829 –
All parameter estimates were statistically significant (p < 0.05).

For black spruce, the coefficients of climate variables expressing the variation in
asymptote and rate parameters (PWQ and CMIJuly, respectively) are positive, i.e., the
asymptote increases as the precipitation of the warmest quarter increases. Similarly, the
growth rate increases if July precipitation exceeds evapotranspiration during that month.

For red pine, the coefficient of GSMT expressing the variation in asymptote is negative.
Similarly, the coefficient of the climate variable (CMIsum) that was significant in explaining
the variation in the rate parameter is positive. This indicates that the increase in growing
season mean temperature negatively affects the asymptote. On the other hand, an increase
in the sum of March, April, October, and November CMIs will increase the growth rate of
red pine plantations.

For white spruce, no climate variable significantly explained the variation in the
asymptote. However, the rate parameter could be expressed in terms of one climate
variable (AnMaxT), and the coefficient of this variable was negative. Thus, for this tree
species, the asymptote is not affected by the change in climate, but height growth is reduced
if the AnMaxT increases.

To evaluate climate effects on site productivity of different tree species, future stand
heights were predicted for jack pine, black spruce, red pine, and white spruce trees at three
areas in Ontario under three climate change scenarios (Figures 2–5). These estimates were
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made for an 80-year (2021–2100) growth period using only fixed-effects coefficients in the
models. For all species, the average height value at age one BHA (0.35 m for jack pine
and black spruce and 0.5 m for red pine and white spruce) was used as the initial height
for generating height–age curves. Under all climate change scenarios, projected values of
annual/seasonal climate variables were used to estimate future stand heights for all species.
Height–age curves were also produced for a no climate change scenario for all species.

  

(a) (b) 

 
(c) 

Figure 2. Stand height profiles for jack pine trees generated using projected values of climate variables
for the period 2021 to 2080, assuming climate remains stable (no climate) or warms (RCPs 2.6, 4.5,
and 8.5), in Equation (2) for (a) eastern (near Sudbury), (b) central (near Hearst), and (c) western
(near Dryden) Ontario, Canada. Climate variables were projected for locations close to sample sites
using three emissions trajectories known as representative concentration pathways (RCPs).

Jack pine height growth was positively affected by climate change in the west (Figure 2).
At BHA 80, stand heights were higher by 4.4, 4.6, and 3.2% under 2.6, 4.5 and 8.5 emission
scenarios, respectively, compared to those under the no climate change scenario. However,
height growth was not significantly affected by climate change for the east and central
areas of Ontario. The positive effect in the west increased from RCP 2.6 to 4.5 but decreased

248



Forests 2022, 13, 1600

from RCP 4.5 to 8.5. Thus, the positive effect of climate change in the west is not linear but
concave down.

  

(a) (b) 

 
(c) 

Figure 3. Stand height profiles for black spruce trees generated using projected values of climate
variables for the period 2021 to 2080, assuming climate remains stable (no climate) or warms (RCPs 2.6,
4.5, and 8.5), in Equation (3) for (a) eastern (near Sudbury), (b) central (near Hearst), and (c) western
(near Dryden) Ontario, Canada. Climate variables were projected for locations close to sample sites
using three emissions trajectories known as representative concentration pathways (RCPs).

The climate change effect on black spruce height growth was not pronounced for
stands in the east and west (Figure 3). However, the effects on height growth were negative
and minimal for stands in central Ontario. The negative effect was more pronounced under
RCP 8.5 than the other two (2.6 and 4.5) emission scenarios. At BHA 80, stand heights were
lower by 2.2, 2.9, and 5.3% under RCP 2.6, 4.5, and 8.5 emission scenarios, respectively,
compared to those under the no climate change scenario.

At all locations, red pine stand height growth was negatively affected by climate
(Figure 4). However, the differences in stand heights under RCP 2.6 and 4.5 and the no
climate change scenario were not pronounced in southeastern Ontario across stand age. At
BHA 80, under RCP 8.5 stand heights were 6.4% shorter than those under the no climate
change scenario. For the other two areas, stand heights under all three emission scenarios
were affected by climate change. At the end of the same growth period, in central Ontario,
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stand heights under RCP 2.6, 4.5, and 8.5 were shorter by 3.7, 5.8, and 10.5%, respectively,
compared to those under the no climate change scenario. Similarly, in the west, stand
heights under RCP 2.6, 4.5, and 8.5 were shorter by 5.4, 7.5, and 9.3%, respectively, relative
to the no climate change scenario.

  
(a) (b) 

 
(c) 

Figure 4. Stand height profiles for red pine trees generated using projected values of climate variables
for the period 2021 to 2080, assuming climate remains stable (no climate) or warms (RCPs 2.6, 4.5,
and 8.5), in Equation (4) for (a) southeastern (near Barrie), (b) central (near Hearst), and (c) western
(near Red Lake) Ontario, Canada. Climate variables were projected for locations close to sample sites
using three emissions trajectories known as representative concentration pathways (RCPs).

For white spruce, the difference in stand heights under all emission scenarios relative
to the no climate change climate scenario was not pronounced for central and western
Ontario across stand age (Figure 5). However, stand heights under all three emission
scenarios were lower relative to the current climate scenario in the southeastern part of the
province (near Barrie). At BHA 80, stand heights under RCP 2.6, 4.5, and 8.5 in this area
were lower by 18.3, 18.3, and 21.0%, respectively.
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(a) (b) 

 
(c) 

Figure 5. Stand height profiles for white spruce trees generated using projected values of climate
variables for the period 2021 to 2080, assuming climate remains stable (no climate) or warms (RCPs 2.6,
4.5, and 8.5), in Equation (5) for (a) southeastern (near Barrie), (b) central (near Hearst), and (c) western
(near Red Lake) Ontario, Canada. Climate variables were projected for locations close to sample sites
using three emissions trajectories known as representative concentration pathways (RCPs).

4. Discussion

Site productivity is affected by climate and other environmental conditions [26]. Cli-
mate effects on site productivity have recently been analyzed and modelled for jack pine,
black spruce, red pine, white spruce, and white pine plantations [3,14–16] and for natural
origin jack pine and black spruce [17] and black spruce and trembling aspen [18] mixed
stands in Ontario. Climatic conditions such as changes in temperature and precipitation
regimes were used to analyze climate effects in these studies. The nature and magnitude of
effects varied by species and geographic region.

As mentioned, [14–16] used average seasonal and annual values of climate variables
over the lifespan of trees to analyze climate effects on site productivity of jack pine, black
spruce, red pine, and white spruce plantations. They reported that stand height growth of
jack pine and black spruce plantations was affected by both precipitation- and temperature-
related variables (growing season total precipitation (GSTP) and growing season mean
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temperature (GSMT)). Similarly, stand height growth of white spruce plantations was
affected by warmest quarter total precipitation (WQTP) and warmest quarter mean tem-
perature (WQMT). However, red pine plantation height growth was affected only by a
temperature-related variable (GSMT).

Values of climate variables fluctuate almost every year. Therefore, the effects of climate
on tree growth vary from year to year. Now we have the projected annual/seasonal
values of climate variables available for a future 80-year growth period to evaluate climate
effects. Moreover, derived values of climate variables (e.g., CMI) are also available for use
in analyzing and evaluating of climate effects. Therefore, in this study annual/seasonal
values of climate variables including CMI were used to reanalyze climate effects on site
productivity of jack pine, black spruce, red pine, and white spruce plantations.

In contrast to findings by Sharma et al. [14] that GSTP and GSMT explained the
variation in both the asymptote and rate parameters of the jack pine and black spruce
height growth models, in this study MDTR, its quadratic transformation, and April CMI
explained the variation in the asymptote of the jack pine height growth model and PWQ
that of black spruce. Similarly, MDTR and May CMI significantly affected the rate of
height growth for jack pine and July CMI affected that of black spruce. The climatic effects
found by Sharma et al. [14] were negative for both species, minimal for jack pine and more
pronounced for black spruce. In this study, however, the effects were positive for jack pine
and negative for black spruce, and for both species, they were minimal where present.

When the average values of climate variables over tree lifespan were used, only GSMT
explained the variation in the rate parameter of the red pine height growth model [15]. The
effect of climate on site productivity was highly negative in all three areas evaluated. In this
study, however, the sum of March, April, October, and November CMI was also significant
in the model for red pine. GSMT and the sum of CMIs explained the variations in the
asymptote and the rate parameter, respectively. The effects were negative and pronounced
only after BHA 30 for all three areas.

In another study, Sharma and Parton [16] reported both temperature- and precipitation-
related variables (WQTP and WQMT) explained the variation in both the asymptote and
rate parameter of a white spruce height growth model. The effect of climate was negative
and more pronounced for white spruce than for jack pine, black spruce, and red pine. In this
study, however, only AnMaxT was significant in explaining variations in the rate parameter
of the height growth model for white spruce plantations. The effects were negative and
highly pronounced in central Ontario. However, the effects were minimal in the other areas.

For white pine plantations, only MDTR affected stand height growth [3]. The ef-
fect was mild and positive in central Ontario and negative in the south. It was not pro-
nounced in other areas. For jack pine and black spruce natural origin mixed stands, a
temperature-related variable (GSMT) was important in explaining the variation in stand
height growth for both jack pine and black spruce trees [17]. The effect was negative and
not pronounced for jack pine but positive and pronounced after BHA 35 years for black
spruce. Annual/seasonal values of climate variables were used in analyzing and modelling
the climate effects in these studies.

Sharma [18] also examined the climate effects on site productivity of black spruce and
trembling aspen natural origin mixed stands using annual/seasonal values of climate vari-
ables. A temperature-related variable (MDTR) was important in explaining the variation
in stand height growth for both black spruce and trembling aspen trees. The effect was
positive for both species but not pronounced in three of the four areas evaluated.

Sharma [18] reported that even in natural origin mixed stands, climate variables that
explained the height growth of black spruce grown with different tree species were not
the same. Stand height growth of black spruce was explained by GSMT and MDTR in
the presence of jack pine and trembling aspen, respectively. The climate variable that
explained the variation in the stand height growth of trembling aspen grown with black
spruce was also MDTR. Although MDTR was the significant climate variable in the stand
height growth models for both black spruce and trembling aspen, it explained the variation
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in the asymptote for black spruce but in the rate parameter for trembling aspen [18]. These
findings indicated that climate effects on site productivity depend not only on tree species
but also on stand type (plantations vs. natural origin mixed stands) and species mixture
(other tree species growing in the stands).

Climate effects on site productivity also depended on the time over which climate
variable values were calculated. First, the climate variables significant in the model aver-
aged over trees’ lifespan differed from those significant based on annual/seasonal values
linked to growth period. Second, the nature and magnitude of the effects differed. Since
climate varies annually, climate effects analyzed using the annual/seasonal values would
be more accurate than those using average values. Therefore, annual/seasonal values are
recommended for analyzing climate effects on tree/forest growth.

A site index expressed in terms of biophysical variables alone does not provide
an accurate estimate of site productivity because it is determined by more than climate
and other environmental variables. Climate and environmental variables are estimated
at landscape scale, but several microsite variables (e.g., soil type, available nutrients)
also influence site productivity. Therefore, climate effects on SI should be analyzed by
incorporating climate variables in SI/stand height growth models. The effects of microsite
variables on SI/stand height growth are reflected by the initial values of stand heights
required in the models presented here. Better soil with more available nutrients may
produce higher initial height values at a particular stand age.

The results presented here are consistent with other studies conducted in other geo-
graphic regions. As Bergh et al. [8] reported, net primary production of Scots pine grown
in Nordic countries could increase with the increase in temperature. Similarly, the study
by Pedlar and McKenney [9] showed that the growth response of five northern conifers to
climate change could be positive on cold-origin (northern) populations, but negative on
warm-origin (southern) populations. As mentioned earlier, climate effects on jack pine site
productivity were positive in the north and severely negative for white spruce in the south.

The models presented here can be readily applied to statistical growth and yield
models to estimate site productivity more accurately under a changing climate. These
models characterize not only stand height growth models that can be used under a changing
climate but also a means to evaluate the effect of climate on site productivity that depends
on tree species and geographic location. For a given tree species, the climatic effect on site
productivity can be explained by interpreting the sign and magnitude of the coefficients of
the climate variables significant in the models.

The estimates for the coefficients of base model (Equation (1)) have been presented by
Sharma et al. [14] for jack pine and black spruce, by Sharma and Parton [15] for red pine,
and by Sharma and Parton [16] for white spruce. Those estimates remain the same and,
hence, are not reported here.

5. Conclusions

Climate effects on site productivity were reanalyzed and modelled for jack pine
(Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) B.S.P.), red pine (Pinus resinosa
Aiton), and white spruce (Picea glauca (Moench) Voss) plantations using annual/seasonal
values of climate variables. For this analysis, parameters of the stand height growth model
were expressed in terms of climate variables for all tree species. A nonlinear mixed-effects
approach was applied to fit the models with climate variables. Including climate variables
improved the model fit statistics for all four tree species.

Climate effects on site productivity depended on tree species and location. For jack
pine, the effects were positive and pronounced only in the west of Ontario under all three
emissions scenarios (2.6, 4.5, and 8.5 watts m−2). For black spruce, effects were negative
and minimal after BHA 50 in central Ontario. Similarly, the effects were negative and
more pronounced in all areas (southeast, central, and west of Ontario) after BHA 35 for red
pine. On the other hand, the effects were negative and notable from when white spruce
were young under all scenarios in the southeast. The effects under RCP 8.5 were more
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pronounced than those under other two scenarios for all species except jack pine. The
difference between the effects under RCP 2.6 and 4.5, however, was not as pronounced as
those between RCP 4.5 and 8.5 for all areas for all species.

The climate effects analyzed using annual/seasonal values of climate variables differed
in nature (positive or negative) and magnitude from those estimated using the average
values of climate variables over the trees’ lifespan. Since climate effects analyzed using the
annual/seasonal values of climate variable would be more accurate than those estimated
using the average values, the former are best to be used in forest management planning.
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