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1. Introduction

Currently, robots are playing significant roles in industry [1], life sciences [2], edu-
cation [3], medicine [4], social services [5], and the military [6]. Robots will undoubtedly
play increasingly important roles in the future life of human beings [7]. Sensors are key
components of robots, enabling them to perceive additional environmental information,
just like the scanners of the famous R2D2 Robot in Star Wars movies [8]. They are the basis
of the self-adaptive abilities and automation control abilities of robots. Therefore, novel
sensing techniques and advanced sensor applications for robots have received increasing
attention worldwide [9].

Novel sensor technologies for robotics have been developed to detect new environ-
mental parameters or improve the measurement accuracy of the present parameters [10].
To achieve this, novel design [11], fabrication [12], and calibration methods [13] have been
invented to improve the detection sensitivity of the sensors. Besides the aforementioned
sensor innovations, advancements in the integration [14], diffusion [15], and processing
methods [16] of the detected signals have been made to improve the SNR and acquire
useful information from gross signals. Based on these new technologies, novel force [17],
vision [18], tactile [11], and auditory [19] sensors have been reported in recent years.

With the rapid development of swarm robots and multi-agent systems, multi-sensors [20],
reconfigurable sensors [21], and cyber–physical sensing systems [22] have been developed
to detect the parameters of each robot or agent. Because each body of the above system
is usually far from the other, wireless sensor networks [23], multi-sensing intelligent
systems [20], and sensor systems for human–robot interactions [24] have been developed
to facilitate the communication and processing of the signals of each robotic body.

With the widespread application of robots, sensors for novel robotic applications have
made significant progress. For example, vision sensors and vision algorithms for motive
object tracking and robot navigation have been widely applied in mobile robots [25], un-
manned aerial vehicles [26], and underwater vehicles [27]. In addition to the applications in
traditional research areas, robot sensing technologies have also been widely applied in in-
terdisciplinary areas, including life science [2], material sciences [28], physical sciences [29],
and micro-nano manipulations [30].

2. Overview of Contribution

In this context, this topical collection includes ten papers focusing on the latest ad-
vancements in the field of sensors for robots and robotic sensing applications. Each of
the ten original contributions accepted for publication in this Special Issue has under-
gone a rigorous review process involving a minimum of two expert reviewers across at
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least two rounds of revision. The studies featured in the current topical collection are
summarized as follows.

In Contribution 1, the authors proposed a multi-path scattering model for virtual
vegetation. On this basis, a passive microwave imaging algorithm was introduced to recon-
struct vegetation images based on the scattering data from the multi-path model received
by the UAV (Unmanned Aerial Vehicle) robot. The combination of the electromagnetic
scattering model and image processing method contributes to understanding the image
results and the multi-path scattering mechanisms of vegetation, which provide a reference
for the research and development of microwave imaging systems of UAV robot networking
using satellite transmitting signals.

In Contribution 2, the authors proposed a novel reinforcement learning-based hier-
archical control framework to enable a snake robot with an onboard camera to realize
autonomous self-localization and path following. A series of simulations and hardware
experimental results validate that the proposed method is capable of achieving precise
and fast convergence for the path-following tasks for a snake robot with autonomous
visual perception.

Contribution 3 by Yang et al. discussed the coverage of practical models with varying
intensities. This study analyzed the properties of the effective coverage of multi-node teams
consisting of a given number of nodes. Numerical analyses and simulations for 3-node
and n-node teams (n ≥ 4) were conducted separately. For the 3-node cases, the relations
between the side lengths of equilateral triangle formation and the effective coverage of
the team equipped with two different types of models were inspected. For the n-node
cases (n ≥ 4), the effective coverage of a team in three formations, namely regular polygon,
regular star, and equilateral triangular tessellation (for n = 6), were investigated. This
study provides useful insights and guides for the development of practical devices for
coverage applications.

In Contribution 4 by Imtiaz et al., the target was to have the agent learn to perform
prehensile and non-prehensile robotic manipulations to improve the efficiency and through-
put of the pick-and-place task. To achieve this target, this study specified the problem as a
Markov decision process (MDP) and deployed a deep reinforcement learning (RL) temporal
difference model-free algorithm known as the deep Q-network (DQN). Experiments carried
out under a range of complex scenario test cases show promising results compared to a
baseline deep learning approach and a ResNet architecture-based approach.

In Contribution 5, Shi et al. presented a design and a control algorithm for a robot
used for grinding the surfaces of large, curved workpieces with unknown parameters, such
as wind turbine blades. First, the structure and motion mode of the grinding robot were
determined. Considering that fuzzy PID has the advantages of variable parameters and
strong adaptability, this study proposed a force/position hybrid control strategy based
on fuzzy PID. The experimental results of robotic grinding verified the feasibility and
effectiveness of the proposed control strategy compared with the artificial results.

Contribution 6 by Li et al. proposed a robotic intracellular pressure measurement
method using a traditional micropipette electrode system setup, in which intracellular
pressure, a key physical parameter of the intracellular environment, has been found to
regulate multiple cell physiological activities and impact cell micromanipulation results.
This measurement method does not necessitate specialized and expensive equipment and
causes limited damage to cell viability. The experimental intracellular pressure measure-
ment value for porcine oocytes, which is consistent with the value reported in the relevant
literature, verifies the effectiveness of the proposed measurement method. Moreover, a
90% survival rate of operated oocytes was obtained after measurement, indicating limited
damage to cell viability.

In Contribution 7, Isabel et al. presented a novel active device for shoulder rotation
based on force control. This device is designed for shoulder rehabilitation and can perform
three different exercises. This device uses a force-control architecture and an adaptive-
speed PI controller. The study conducted in 12 shoulder rehabilitation sessions showed a
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significant improvement in shoulder rotation. The patients reported high levels of device
acceptance. This device could be a valuable tool for shoulder rehabilitation and improve
the efficiency of physiotherapy services.

In Contribution 8, Shu et al. proposed a method for the accurate 3D posture sensing
of soft actuators. It utilizes miniaturized sponge-resistive materials and LSTM neural
networks. This method considers the hysteresis and non-linear sensing signals. It was
demonstrated on a 3-DOF pneumatic bellow-shaped actuator with nine sensors. The
sensors exhibited a low error rate in predicting the position of the actuator tip.

In Contribution 9, Rostkowska et al. focused on appearance-based localization using
catadioptric cameras. The authors proposed an efficient neural network architecture for
recognizing indoor scenes from distorted images. The system was optimized for real-
time inference on edge devices. Transfer learning and fine-tuning of a limited number of
catadioptric images yielded the best results. The system was tested on small-scale datasets
and compared with state-of-the-art systems. The proposed system performed well in
terms of accuracy and inference time, providing a cost- and energy-efficient solution for
appearance-based localization.

In contribution 10, Weidenbach et al. discussed the challenges of estimating the
6D poses of transparent objects for robotic manipulation. Robotic manipulation requires
accurate object pose knowledge. Estimating the poses of transparent objects is challenging
because of unreliable depth data and the different effects of clutter. The authors proposed
a transparency-aware multi-segmentation approach and transparency-aware bounding
boxes. The proposed approach improves pose estimation for transparent objects without
modifying the pose estimator. The study demonstrated a 4.3% increase in the ADD-S AUC
value using transparency-aware segmentation. The transparency-aware segmentation can
be applied to any dataset that provides a 3D model of an object and its ground-truth pose.

3. Conclusions

In summary, this topical collection includes ten novel and interesting works in the
area of sensors for robots and robotic sensing applications. We would like to express our
deepest gratitude to the Managing Team of Sensors for their continuous support throughout
the preparation of this collection. We greatly appreciate all the contributing authors and
the anonymous expert reviewers for their invaluable efforts in selecting submissions of the
utmost quality.

Author Contributions: Conceptualization and supervision X.Z., writing—review and editing, M.S.,
writing—original draft preparation, Q.Z. All authors have read and agreed to the published version
of the manuscript.
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Unmanned Aerial Vehicle (UAV) Robot Microwave Imaging
Based on Multi-Path Scattering Model
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Abstract: Unmanned Aerial Vehicle (UAV) robot microwave imaging systems have attracted compre-
hensive attention. Compared with visible light and infrared imaging systems, microwave imaging is
not susceptible to weather. Active microwave imaging systems have been realized in UAV robots.
However, the scattering signals of geographical objects from satellite transmitting systems received
by UAV robots to process imaging is studied rarely, which reduces the need of load weight for the
UAV robot. In this paper, a multi-path scattering model of vegetation on the earth surface is proposed,
and then the microwave imaging algorithm is introduced to reconstruct the images from the UAV
robot receiving the scattering data based on the multi-path model. In image processing, it is assumed
that the orbit altitude of a transmitter loaded on the satellite remains unchanged, and the receiver
loaded UAV robot obtains the reflective information from ground vegetation with different zenith
angles. The imaging results show that the angle change has an impact on the imaging resolution.
The combination of electromagnetic scattering model and image processing method contributes to
understanding the image results and the multi-path scattering mechanisms of vegetation, which
provide a reference for the research and development of microwave imaging systems of UAV robot
networking using satellite transmitting signals.

Keywords: UAV robot microwave imaging; multi-path scattering model; UAV networking using
satellite transmitting signals

1. Introduction

Unmanned Aerial Vehicles (UAVs) are also known as flying robots [1]. The vision
system of a UAV robot has a computer-controlled imaging device that allows the robot to
see and adjust its flight path accordingly, which helps the UAV robot perceive, fly, avoid
obstacles, and to be successfully used for search and rescue [2]. However, the vision system
of a UAV robot based on visible light and infrared are sometimes greatly affected by haze,
cloud and rain. Microwaves can observe day and night, and are not affected by weather
and some buildings. If the UAV robot is equipped with an active microwave imaging
system, the total load will be increased. In this study, we will mainly consider UAV robot
microwave imaging using the satellite transmitting signals to the target and the ground,
and then scattering to the UAV sensors. If the UAV robot just receives the microwave
signals to process imaging, which is not equipped with a microwave transmitting source, it
will reduce the need of additional load weight for the UAV robot.

A satellite communication system can be used in UAV networking [3]. In addition, the
signals transmitted by satellite communication systems receiving by UAV can not only be
used in wireless transmissions, but also in processed imaging. Recently, the active radar
imaging method of UAV has been researched comprehensively [4]. However, the passive
imaging, not equipped with a microwave transmitting source, using multi-path scattering of
ground received by UAV robot based on the satellite communication systems is rarely studied.
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Furthermore, theoretical studies have shown that the use of a second receiver in addi-
tion to a conventional monostatic system, i.e., a transmitter–receiver, forming a multistatic
system, could improve the retrieval performance of vegetation and soil biogeophysical
variables [5,6]. The passive imaging using multi-path scattering from the ground of a
UAV robot can be considered as a multistatic system. In addition, the passive imaging
using multi-path scattering of ground received by UAV robot based on the satellite com-
munication systems possesses advantages such as collecting additional information of the
target, more flexibility and higher imaging resolution compared to UAV robot active radar
imaging because of its separated transmitter and receiver on different platforms [7–11].

To assess the performance of bistatic SAR acquisitions for crops, L. Guerriero [12]
presented a theoretical study of the microwave remote sensing of vegetated surfaces.
Although the sensitivity study of the observation angle was explored preliminarily based
on bistatic measurements, no conclusion about how different observation angles affect
the imaging results was drawn. In order to study the bistatic scattering mechanism from
the ground, S. Bellez [13] developed a volume-electric-field-integral equation based on a
method of moments to simulate bistatic radar scattering from the different sets of cylinders,
and then undertook an experiment to verify it. Lastly, a near-field reconstruction algorithm
was applied to generate images based on both theoretical and experimental scattered
fields. However, since the model is from numerical solution of volume integral equation,
the research object is limited to a simple reduced-scale model composed of dielectric
parallelepipeds, and thus the image results don’t reflect the relatively complex environment
and spatial structure of vegetation appropriately. In this paper, to study the passive imaging
using multi-path scattering from ground of UAV robot based on the satellite communication
systems, a multi-path scattering scattering model is developed to simulate a scattering field
from the virtual three-dimensional structure of vegetation, and then scattering fields of
vegetation at different frequency points and positions are processed to obtain the passive
multi-path scattering images.

This paper is organized as follows. A multi-path scattering model for vegetation is
developed in Section 2. Section 3 introduces the passive image processing algorithm using
multi-path scattering from the ground of a UAV robot. In Section 4, simulation results are
presented and reasonable analysis is given. Conclusions are drawn in Section 5.

2. Model Description

2.1. Multi-Path Scattering Model

In this study, the multi-path scattering model for virtual vegetation is established
based on Distorted Born Approximation (DBA) [14]. The virtual vegetation is composed of
dielectric cylinders and disks which stand for the trunk, branches and leaves, respectively.
The ground surface, which is described by the standard deviation of the height, correlation
length and dielectric constant, is divided into many small units equally. The total scattering
fields are added coherently from all the scatterers from vegetation and ground surface.

It is assumed that there are N scatterers in the vegetation area and M ground blocks.
The total scattering fields include five components, in which four components are about
vegetation scatterers with transmission paths inherited from Born approximation and one
component is related to ground surface, as shown in Figure 1. Direct scattering from the

scatterers in the vegetation is denoted as Eds
n (ki, x). The single bounce of the scattering with

a path of transmitter-scatterer-ground-receiver is denoted as Esg
n (ki, x), and the scattering

with a path of transmitter-ground-scatterer-receiver is denoted as Egs
n (ki, x). Furthermore, the

double bounce of the scattering with a path of transmitter-ground-scatterer-ground-receiver

is denoted as Egsg
n (ki, x). Lastly, direct scattering from the ground is denoted as Edg

m (ki, x).
Therefore, the total scattering field is the coherent summation of each component from all the
azimuth observation positions x and wave numbers ki, which can be expressed as

E(ki, x) =
N

∑
n=1

(
Eds

n (ki, x) + Esg
n (ki, x) + Egs

n (ki, x) + Egsg
n (ki, x)

)
+

M

∑
m=1

Edg
m (ki, x) (1)
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where n denotes the scatterer in the vegetation area, and m denotes the ground block. Each
component can then be expressed as

Eds
n (ki, x) =

eikr

4πr
eiϕn At(θi, φi)Ar(θr, φr)Sds

n Ei
0 (2)

Esg
n (ki, x) =

eikr

4πr
eiϕn At(θi, φi)Ar(θr, φr)S

sg
n Ei

0 (3)

Egs
n (ki, x) =

eikr

4πr
eiϕn At(θi, φi)Ar(θr, φr)S

gs
n Ei

0 (4)

Egsg
n (ki, x) =

eikr

4πr
eiϕn At(θi, φi)Ar(θr, φr)S

gsg
n Ei

0 (5)

Edg
n (ki, x) =

eikr

4πr
eiϕn At(θi, φi)Ar(θr, φr)S

dg
n Ei

0 (6)

where At(θi, φi) and Ar(θr, φr) denote the antenna patterns of the transmitter and receiver,
respectively. (θi, φi) and (θr, φr) are the transmitting and receiving angles. ϕn is phase
compensation term of the nth scatterer, which is the phase shift from the local to the
global coordinate system. Here ϕn = (ki − ks) · rn, where rn denotes position vector of
the nth scatterer in global coordinate system. ki and ks are the wave vectors of incidence
and scattering wave, respectively. In addition, ϕm = (ki − ks) · rm, where rm denotes the
position vector of the mth ground block. The expression of Sds

n , Ssg
n , Sgs

n , Sgsg
n and Sdg

n can be
written as

Sds
n =

=

Ti
n

=
Fs

n(θi, φi; θr, φr, ki)
=

Tir
n (7)

Ssg
n = eiϕn1

=

Ti
n

=
Fs

n(θi, φi; π − θr, φr, ki)
=

Trr
n

=
R

=

Ttr (8)

Sgs
n = eiϕn2

=

Tt
=
R

=
Tr

n

=
Fs

n(π − θi, φi; θr, φr, ki)
=

Tir
n (9)

Sgsg
n = eiϕn3

=

Tt
=
R

=
Tr

n

=
Fs

n(π − θi, φi; π − θr, φr, ki)
=

Trr
n

=
R

=

Ttr (10)

Sdg
m = eiϕn4

=

Ti
m

=

Fg
m(θi, φi; θr, φr, ki)

=

Tir
m (11)

where ϕ1, ϕ2, ϕ3 and ϕ4 are the time delay terms related to the first transmission paths as shown
in Figure 1, and they can be obtained by k0[(|rt − rn|+ |rr − r′n|)− (|rt − rn|+ |rr − rn|)],
k0[(|rt − r′n|+ |rr − rn|)− (|rt − rn|+ |rr − rn|)], k0[(|rt − r′n|+ |rr − r′n|)− (|rt − rn|+ |rr − rn|)]
and k0[(|rt − gn|+ |rr − gn|)− (|rt − rn|+ |rr − rn|)], respectively.rt and rr denote the coordi-
nate vectors of the transmitter and receiver, and rn and r′n denote the coordinate vectors of the
scatterer and the mirror of the nth scatterer. g is the coordinate vector of the mth ground block.
=

Tm
n (m = i, r and t) denotes transmission matrix in incident direction, representing paths of top

canopies-scatterer, ground-scatterer and top canopies-ground, respectively.
=

Tmr
n (m = i, r and t)

denotes transmission matrix in scattering direction, representing paths of scatterer-top canopies,
scatterer-ground and ground-top canopies, respectively. To obtain these transmission matrices,
the vegetation area is divided into many small cubes and Foldy’s approximation [15] is used in

the calculation process.
=
R is the specular reflection of ground surface.

=
Fs

n is the scattering matrix

of the nth scatterer.
=

Fg
m is the scattering matrix of the mth ground block, and the amplitude is

calculated by integral equation model [16], while the phase is set to be random. For both
=
Fs

n and
=

Fg
m, (θi, φi) and (θr, φr) are the direction angles of transmitting and receiving antenna patterns. The

generalized Rayleigh-Gans (GRG) approximation is used to calculate the scattering matrix from
leaves. The method of infinite cylinder approximation and the generalized GRG approximation
are used to calculate the scattering from trunk and branches [17]. The reflection matrix of ground
surface is calculated by Fresnel reflection equation of plane.

8
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Figure 1. The five scattering components: (a) Direct scattering from scatterer; (b) Single bounce from
scatterer to ground; (c) Single bounce from ground to scatter; (d) Double bounce from ground, scatter
to ground; (e) Direct scattering from ground.
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2.2. UAV Robot Imaging Configuration Based on the Satellite Communication Systems

A UAV robot imaging system based on the satellite communication is one with the
transmitter and receiver loaded on satellite and UAV platforms, respectively, as shown
in Figure 2. In this simulation, the flight tracks of the transmitter and receiver are set to
be parallel, and both transmitter and receiver operate in strip mode. Furthermore, it is
assumed that both transmitter and receiver work in “work-stop-work” mode based on
the fact that the motion velocity of this UAV and satellite is very small compared with
the signal transmitting velocity. Therefore, the satellite can transmit and the UAV robot
can receive the signals at a series of discrete positions. In this study, the orbit altitude
of the transmitter remains unchanged, while the heights of the receivers loaded on UAV
networking are considered to obtain scattering signals at different zenith angles, which
contribute to analyze the multi-path scattering mechanisms of vegetation based on UAV
networking using a satellite communication system.

 
Figure 2. UAV robot observation configuration.

The working frequency is chosen at C band, and proper bandwidth is selected ac-
cording to the system, as listed in Table 1. The altitude of the transmitter is 800 km, while
the height of receiver is 8 km. The incident angle of the transmitting signal is 45◦, and it
can be demonstrated that the horizontal distance between the transmitter and the target
vegtation is approximately 800 km. For the receiver, six typical zenith angles: 26◦, 36◦, 46◦,
56◦, 66◦ and 76◦ are chosen to study how the zenith angle affects the multi-path scattering
imaging results. The horizontal distance between the receiver and the target vegetatioin
can be calculated according to the zenith angle and flight height. Other parameters in this
simulation are listed in Table 1.

10
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Table 1. Parameters of the observation geometry.

Parameters Value

Start frequency 6 GHz
Frequency bandwidth 300 MHz

Frequency sampling numbers 50
Flight height of the transmitter 800 km

Flight height of the receiver 8 km
Space sampling interval of transmitter 500 m

Space sampling interval of receiver 5 m
Space sampling numbers 201

Polarization HH

3. Imaging Method

In this study, the passive imaging of the UAV robot using the satellite communication
systems is developed from the field imaging algorithm [18]. The basic idea of this algorithm is
to obtain the target equation from the measurement field through the inverse Fourier transform.
The target equation is a function of the target position. To realize the target imaging, the
scattering fields from multiple observing angles and frequencies need to be measured.

In this study, both transmitter and receiver work in “work-stop-work” mode which
is applied to observe the vegetation scene as shown in Figure 2, and the field imaging
algorithm suitable for this observing system is adopted to process the data. The UAV and
satellite move in two straight lines parallel to the edge of the target area, respectively. The
received signal of the UAV robot can be expressed as

E
(

k
)
=

N

∑
n=1

eik·→r n Fn

(
k
)

, (12)

where k = ki − ks. ki and ks are the wave vectors of incident and scattered wave. N denotes
the total number of scatterers. Fn

(
k
)

is the scattering amplitude of the nth scatterer. It is
known that the received signal is an equation about the wave number and the receiving
antenna position. Here, the orbit altitude of the transmitter of the transmitting radar
remains unchanged.

In the actual calculation of the target function Fn

(
k
)

, the received signal E
(

k
)

is not
directly transformed by the inverse Fourier transform but by the conjugate multiplication
and integration of received signal and the reference signal. The target of this study is
virtual vegetation. The echo signal comes from the coherent scattering model of vegetation.
The field imaging algorithm is to conjugate and multiply the echo signal at frequency km
and position xn with the reference signal, and then add and sum the echo signal at all
frequencies and receiving antenna positions. Furthermore, the observation area is divided
into K × L pixel units according to the requirement of imaging equality as shown in Figure 3.
Each unit has a pixel center, which can be employed for the coordinate position of reference
phase. The scattering intensity of pixel unit at r0 can be expressed as

Es
est(r0) =

1
Nk Nx

Nk

∑
m=1

Nx

∑
n=1

E(km, xt
n, xr

n)E0(km)
∗e−ikm(|Rt(xt

n)−r0|+|Rr(xr
n)−r0|), (13)

where Nx and Nk represent the number of spatial sampling points of receiving antenna
and discrete frequency points, respectively. The variable Rt(xt

n) = xt
nx̂ + yt

nŷ + zt
nẑ and

Rr(xr
n) = xr

nx̂ + yr
nŷ + zr

nẑ represent the position vectors of transmitting and receiving
antennas in the global coordinates. The position of the pixel center (k, l) is r0 = xkx̂ + yl ŷ +
0ẑ in the global coordinates. E0(km) is the reference signal. E(km, xt

n, xr
n) can be calculated

by Equation (1). If we chose the different position r0 in Figure 3, Equation (13) can then be
mapped into the imaging plane to reconstruct the multi-path scattering map.
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Figure 3. The grid division of imaging scene.

4. Results

In this simulation, we assume that the transmitter moves from −50 km to 50 km in the
azimuthal direction, and that the receiver moves from −500 m to 500 m in the azimuthal
direction. The frequency of signal gathering is from 6 GHz to 6.3 GHz with a step of 6 MHz.
In the following, the visual vegetation is introduced firstly, and then the passive imaging
results using multi-path scattering from single tree and multiple trees are presented.

4.1. Virtual Vegetation

In this study, L-system [19,20] is used to generate the 3-D spatial structures of trees,
and the structure parameters of the tree are shown in Table 2. The dielectric constants of
the tree elements and the ground surface at C band used in this simulation model are listed
in Table 3.

Table 2. Structure parameters of trees.

Height of Trees 4 m 5 m 6 m

Leaf
Radius (m) 0.04 0.04 0.04

Thickness (mm) 0.15 0.15 0.15
Density (N m−3) 1360.0 580.0 250.0

Branch
Range of radius (cm) 0.1–1.6 0.1–2.2 0.1–2.7
Range of length (cm) 1.0–103.8 1.0–178.8 1.0–195.0

Density (N m−3) 180.0 60.0 45.0

Crown
Height (m) 2.0 3.0 3.2
Width (m) 1.2 1.5 2.2

Table 3. The dielectric parameters of scatterers.

Parameters Value

Leaves 20.24 + i6.78
Trunks 12.30 + i4.16

Branches 12.30 + i4.16
Ground 9.6 + i2.04

The ground surface is divided into many blocks according to the cell size used in calculating
the canopy attenuations. The side length of the ground surface is 1 m. Moreover, the rms height
and correlation length of the ground surface are set to be 1.5 cm and 15 cm, respectively.
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4.2. The Passive Imaging Results Using Multi-Path Scattering from a Single Tree

Firstly, the simulation results of a single 5 m high tree located at the position (10 m,
10 m) in the coordinate system is presented and discussed. The height of the flight track
of the transmitter and receiver remains unchanged, while the position of the receiver is
changed to be at six different zenith angles. The model presented in Section 2 is used to
simulate the electric field of this tree at different frequency points from 6 GHz to 6.3 GHz,
with a step of 6 MHz and a position from −500 m to 500 m with a step of 5 m. Next, the
simulating electric fields received by UAV robot are processed by the imaging method
described in Section 3 to obtain the images. The following six images are obtained by
above methods at zenith angles of 26◦, 36◦, 46◦, 56◦, 66◦ and 76◦, respectively, as shown in
Figure 4a–f. The scene size is 20 m × 20 m, and the size of each pixel is 0.2 m × 0.2 m.

Figure 4. Cont.
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Figure 4. UAV imaging results of a single tree at different receiver zenith angles: (a) receiving zenith
angle = 26◦; (b) receiving zenith angle = 36◦; (c) receiving zenith angle = 46◦; (d) receiving zenith
angle = 56◦; (e) receiving zenith angle = 66◦; (f) receiving zenith angle = 76◦.

From the images, it can be seen that the simulation results demonstrate good perfor-
mance of the autofocus based on the passive imaging algorithm using multi-path scattering.
The energy concentrates on two main parts; the left part is mainly from the direct scattering
of the scatterer in the vegetation, and the right part is the summation of a single bounce
between the scatterer and the ground. The double bounce of ground-scatterer-ground is
too weak to be shown in the images.

4.3. The Passive Imaging Results Using Multi-Path Scattering from Multiple Trees

Furthermore, multiple trees in an area of 30 m × 30 m are generated by the L-system.
The distributions and heights of trees in this area are shown in Figure 5.

14
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Figure 5. The distribution and height of each tree in a stand.

Figure 6 shows the bistatic UAV microwave imaging results of multiple of trees in this
stand. The height of flight track of the transmitter and receiver also remains unchanged,
while the position of the receiver is changed to be at six different zenith angles. The rest of
the bistatic UAV microwave imaging parameters are the same as those in Section 2.2. Six
imaging results of multiple trees are obtained at zenith angles of 26◦, 36◦, 46◦, 56◦, 66◦ and
76◦, respectively, as shown in Figure 6a–f.

Figure 6. Cont.
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Figure 6. UAV imaging results of trees at different receiver zenith angles: (a) receiving zenith
angle = 26◦; (b) receiving zenith angle = 36◦; (c) receiving zenith angle = 46◦; (d) receiving zenith
angle = 56◦; (e) receiving zenith angle = 66◦; (f) receiving zenith angle = 76◦.

5. Discussion

From above simulation results, based on the imaging method proposed in this study,
it can be seen that the larger the receiver’s zenith angle is, the closer the distance between
two parts of energy becomes. This is because the distributions of scattering energy in these
images are related to the travel path and the imaging algorithm. When the receiver’s zenith
angle is larger, the lengths of propagation paths from direct scattering and single bounce
become closer. For this imaging configuration, it can be inferred that when the receiver’s
zenith angle becomes large enough, the two parts will overlap.

In addition, it can be observed that the range resolution of Figure 6c–f is relatively
clear among the six images. The resolution of the image shown in Figure 6b is somewhat
worse than that in Figure 6c, but better than that in Figure 6a. These results might be due
to the variation in the receiver’s zenith angle. Equation (14) presents the range resolution
formula [21], where c is the velocity of an electromagnetic wave propagating in free
space, and B is bandwidth. θt and θr are the zenith angles of transmitter and receiver,
respectively. The range resolutions as a function of zenith angle of receiver are calculated
based on Equation (14), as shown in Figure 7. The range resolutions of six zenith angles of
receivers shown in Figure 6 are listed in Table 4. The calculation results contribute to the
understanding of the aforementioned imaging results.

ΔLrange =
c

B(sin(θt) + sin(θr))
(14)

Table 4. Range resolution of different receiving angles.

Zenith Angle of Receiver (◦) Value (m)

26 0.87
36 0.77
46 0.70
56 0.65
66 0.62
76 0.60
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Figure 7. The range resolutions as a function of the zenith angle of a receiver.

Furthermore, from Figure 6, it is noticed that the zenith angle of the receiver also affects
the signal strength received from the ground surface. Direct scattering from the ground
surface is clearly shown in Figure 6a. However, as the zenith angle of the receiver increases,
the signal strength from the ground surface becomes weaker and weaker. For Figure 6c,
the signal strength received from the ground surface is too weak to be distinguished. In
addition, it can be seen from the figures that the scattering strength of a single tree from the
left part is gradually stronger than that on the right part. We have suggested in Section 4.2
that the image of a single tree includes two main parts: the left part is mainly from direct
scattering of the scatterer in the tree, and the right part is the summation of a single bounce
between the scatterer and ground. For a large receiving angle, the signal strength received
from the ground surface is relatively weak. Furthermore, the strength from right part in
the figure will also weaken because the right part depends on a single bounce between the
scatterer and the ground. Therefore, it can be seen that the signal strength from the left part
becomes gradually stronger, as shown in Figure 6a–f.

For imaging results of multiple trees in a stand as shown in Figure 6, it can be found
that when the receiver zenith angle is large, the distribution of trees in this area is relatively
clear, and different scattering components of a single tree are relatively close. When the
receiver zenith angle is small, the scattering component received from the ground surface
is strong. To a certain extent, some scattering components of the tree are suppressed by
direct scattering components of the ground surface, as shown in Figure 6a. In Figure 6a, we
cannot clearly distinguish the complete scattering information of every tree, we can only
roughly distinguish the position of every tree from the image.

6. Conclusions

This article presents the simulation results of UAV robot passive imaging using the
satellite communication systems based on the multi-path scattering model. In this UAV
robot imaging configuration, the incident angle of the transmitter remains unchanged,
while the different flight tracks of receivers loaded on different UAVs result in different
zenith angles. Furthermore, the simulated signals received from the multi-path scattering
model at each position are processed by a passive imaging algorithm. From the imaging
results of vegetation, we can see that different zenith angles of the receiver affect the
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imaging results. When the receiving and transmitting antenna is located at the same side of
the target area, the greater the zenith angle of the receiving antenna is, the higher the range
resolution of the UAV robot passive imaging is. The combination of multi-path scattering
model and the imaging algorithm provides an effective method to study the scattering
mechanism based on vegetation. At the same time, the method can be utilized to study the
effects of vegetation scattering. The simulation results offer a reference for the development
and research of UAV robot passive imaging using the satellite communication systems in
the field of ground microwave monitoring.
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Abstract: For path following of snake robots, many model-based controllers have demonstrated
strong tracking abilities. However, a satisfactory performance often relies on precise modelling and
simplified assumptions. In addition, visual perception is also essential for autonomous closed-loop
control, which renders the path following of snake robots even more challenging. Hence, a novel
reinforcement learning-based hierarchical control framework is designed to enable a snake robot
with an onboard camera to realize autonomous self-localization and path following. Specifically,
firstly, a path following policy is trained in a hierarchical manner, in which the RL algorithm and gait
knowledge are well combined. On this basis, the training efficiency is sufficiently optimized, and the
path following performance of the control policy is greatly improved, which can then be implemented
on a practical snake robot without any additional training. Subsequently, in order to promote visual
self-localization during path following, a visual localization stabilization item is added to the reward
function that trains the path following strategy, which endows a snake robot with smooth steering
ability during locomotion, thereby guaranteeing the accuracy of visual localization and facilitating
practical applications. Comparative simulations and experimental results are illustrated to exhibit
the superior performance of the proposed hierarchical path following the control method in terms of
convergence speed and tracking accuracy.

Keywords: snake robots; visual localization; path following; reinforcement learning control

1. Introduction

Over the past decades, many researchers have been devoted to the control of snake
robots due to their complex multi-joint structure and high motion flexibility [1–3]. As the
application tasks of snake robots become more complex, the requirement for accomplishing
a safe and accurate path following tasks with independent perception continues to increase.
Specifically, path following, as one of the most fundamental and indispensable motion
skills, requires the robot to move along a specific curve. Visual self-localization provides
the real-time position of the robot via visual perception, which plays an important role
in assisting a robot in completing autonomous motions. However, the highly redundant
degrees of freedom and unique serpentine motion gait introduce many challenges to the
path following of snake robots with visual self-localization.

Snake robots typically move forward by mimicking the motion gait of biological
snakes. One of the most efficient and widely used motion gaits is the lateral undulatory
gait; that is, it periodically propagates a wave along the body, presenting an S-shaped
movement trajectory, which is named a serpenoid by Hirose [1]. For snake robots, the lat-
eral undulatory gait can be mathematically approximated by a gait equation that imposes
a sinusoidal signal for each joint. The path following control of snake robots has been
investigated for years based on the gait equation. There is substantial research that focuses
on designing a control law for the gait equation to adjust the motion direction and thus
control the robot in moving towards the desired path with the desired turning angle, which
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is calculated by the line-of-sight (LOS) guidance law [4–6]. Furthermore, for more com-
plicated application scenarios, path following controllers with an adaptive LOS guidance
law or gait equation are adopted for faster convergence speed, and higher stability [7–9].
In addition, for holonomic snake robots, virtual constraints are employed to regulate the
orientation, and forward speed of the snake robot via a state-dependent undulatory gait
equation, which replaces time-dependent signals in the lateral undulatory gait equation
with state-dependent constraints [10–13]. However, the methods mentioned above heavily
rely on precise modelling and laborious parameter tuning, which cannot guarantee optimal
path following performance.

Reinforcement learning (RL), as a popular machine learning algorithm that constantly
interacts with the environment to maximize expected returns, has made much progress in
robotic control [14–16]. Unlike traditional control methods, RL algorithms endow robots
with various motion skills without acquiring the exact robot model and exhibit excellent
robustness and flexibility regarding environment variations. In addition, in RL, the control
objectives and constraints can be conveniently added as terms to the reward function to
guide robots to complete the specified task, e.g., manipulator manipulation, tracking a
target velocity, mimicking human motor skills, etc. Model-free (MF) RL has shown its
unique advantages in mastering specific skills or accomplishing specific tasks. However,
end-to-end MFRL training often suffers from sample inefficiency and is prone to generating
weird and unnatural actions, which seriously reduce training speed, and the learned
policy may even damage the practical robot. Consequently, it is essential to integrate
RL algorithms with gait knowledge to improve training efficiency and generate natural
actions that make deployment on a practical robot easier. Recently, RL algorithms assisted
by gait knowledge have made great progress in the fields of quadruped robots, bipedal
robots, etc. [17–21]. For snake robots, the gait equation can reflect the shape of the motion
trajectory; thus, it is an ideal source of gait knowledge. However, incorporating the gait
equation with the RL algorithm for path following tasks is still a difficult problem. In our
prior work [22], a two-stage control framework that combines PI2 with the gait equation is
proposed for the snake robot to perform goal-driven tasks, but the gait equation is only
adjusted at each gait cycle. As a result, the robot cannot promptly correct its gait according
to the position error, so the control accuracy of this method is too low for performing path
following tasks.

In addition to path following control, satisfactory visual self-localization of snake
robots is also a challenging topic. Due to the slender body structure and serpentine
motion gait, a snake robot obtains forward momentum using whole-body motion; thus,
the camera installed on the robot also shakes accordingly, which brings difficulties to stable
visual perception and localization. To solve this problem, the robot is usually required
to remain stationary or to move slowly during the imaging process, which optimizes
localization accuracy but sacrifices locomotion efficiency [23,24]. Ref. [25] proposes a pan-
tilt compensation strategy to realize visual self-localization without reducing the robot’s
locomotion efficiency, in which the position of the robot is updated by an external visual
marker. The camera is mounted on a pan-tilt that actively rotates to compensate for head
motions, which ensures that the visual marker is always within the camera’s field of view.
Consequently, this method requires relatively smooth head swings at adjacent moments
to guarantee the successful compensation of the pan-tilt. However, during the training of
the path following policy using RL algorithms, a snake robot is prone to learning a policy
that gains a higher reward for approaching the desired path faster, leading to an aggressive
policy; i.e., it vigorously wiggles the entire body from side to side to gain stronger forward
momentum, based on which, the pan-tilt cannot promptly compensate for the motion of
the head; thus, the camera installed on the pan-tilt will lose the target marker.

To solve the above-mentioned problems, a novel hierarchical path following the
control method is proposed for snake robots, which presents high training efficiency and
promising tracking performance. Specifically, the hierarchical path following the control
method is developed by combining the RL algorithm and the gait equation. On the

21



Sensors 2022, 22, 9867

one hand, the hierarchical control method generates motion gaits by modifying the gait
equation, which provides gait knowledge for the RL algorithm and thus accelerates the
training process. In addition, it ensures that the resulting motor gait belongs to the lateral
undulatory gait so that the learned policy can be directly transferred to the practical snake
robot without any retraining. On the other hand, the proposed hierarchical method adjusts
the gait equation in real-time via the RL algorithm, which expands the feasible gait set
of the gait equation, thus enabling a snake robot to change the motion gait based on the
feedback state promptly. In addition, in order to enable a snake robot to achieve visual
self-localization using the pan-tilt compensation strategy, a visual localization stabilization
item is added to the reward function of RL policy training, which effectively limits the
swing amplitude of the head at adjacent moments. The contributions of this paper are
summarized as follows:

• A novel hierarchical control method that combines the RL algorithm and the gait
equation is developed for the path following of snake robots, which guarantees
efficient training and is satisfactory following the accuracy.

• A visual localization stabilization term is introduced into the reward function to
avoid excessive head swings, which ensures successful pan-tilt compensation, thereby
optimizing the accuracy of visual localization.

• To verify the effectiveness of the algorithm, real-world experiments are implemented
on a practical snake robot, and the experimental results demonstrate the promising
path following the performance of the proposed method.

2. Materials and Methods

2.1. Problem Statement

The path-following task of snake robots can be formulated as a Markov decision
process (MDP) defined by the tuple (S ,A,R,P , γ), where S denotes the state space, A
represents the action space, R is the reward function, P indicates the state transition
probability, and γ stands for the discount factor. At each timestep, the snake robot samples
and then executes the action at ∼ π(at | st) based on current state st observed from
the environment, and then the robot transfers to a new state st+1 ∼ p(st+1 | st, at) and
receives a reward rt = r(st, at, st+1), where the subscript �t depicts the current timestep
t. The objective of this MDP is to train a policy π∗

ψ with parameter ψ that maximizes the
expected cumulative discounted return J, as indicated in Equations (1) and (2), so as to
equip a snake robot with the excellent path following skill:

π∗
ψ = arg max

a∈A
J (1)

J = Eτ∼p(τ|π)

[
T−1

∑
t=0

γtrt

]
(2)

where T denotes the planning horizon of each episode, and τ denotes a trajectory {s0, a0, r0,
s1, . . . , sT−1, aT−1, rT−1, sT}.

2.2. Hierarchical Path Following Control

In this paper, the objective is to design a controller that enables a snake robot to follow
the given path with visual self-localization. To this end, we proposed a hierarchical RL
path following method to guarantee satisfactory following the ability for various desired
paths in terms of efficient training, strong robustness, and excellent following accuracy.
The proposed hierarchical algorithm effectively incorporates the RL algorithm with the
gait equation and consists of two layers, namely the RL policy training layer and the gait
execution layer. Specifically, compared with the motion gait produced by the traditional gait
equation, the proposed method tends to generate a forward gait with slighter head swings,
which improves the accuracy of visual localization and further guarantees satisfaction
following accuracy. In addition, compared with the end-to-end RL algorithm, the designed
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hierarchical RL method not only greatly accelerates the training speed but also learns a
natural and robust policy that can be directly implemented on a practical snake robot.

The overall architecture of the proposed control method is presented in Figure 1, which
consists of two stages, namely the visual localization and hierarchical RL path following
policy training. Specifically, for a n−link snake robot, at each timestep t, firstly, the pan-tilt
compensate strategy proposed in [25] is adapted to provide the real-time position of a
snake robot, which can be used to obtain the current system state; subsequently, the RL
policy training layer outputs an action to modify the gait parameter of the gait equation
based on the state, with the aim of changing the motion direction of the robot to make it
close to the desired path. Finally, the gait execution layer sends the corresponding joint
angles to the snake robot for executing the path following task.

( , )t tx y

Joint angles at last time -1
i
t

Distance from target point ed
Distance from desired path pd

Hierarchical Path Following Policy

o

( ) sin( ( 1) ) o
i t t its ta

Visual Positioning

i
tJoint angles

Environment Information:

Pan-tilt Compensation:

Camera 
optical axis

Position

RL Policy 
Training Layer: Gait Executive Layer:

Figure 1. The overall control architecture of the proposed path following method, which consists of
two stages: visual self-localization and hierarchical path following control.

2.2.1. Visual Localization

Due to the head swings caused by the lateral undulatory gait, the camera mounted
on the robot head always loses the visual marker, so the position of the robot cannot be
updated in real-time. Therefore, Ref. [25] proposes a pan-tilt compensation strategy to
always keep the camera plane parallel to the visual marker plane via active compensation,
where the compensation angle of the pan-tilt θPT

t is represented as follows:

θPT
t = −θhead

t (3)

where θhead
t is the orientation angle of the head of a snake robot at timestep t, and the

compensation angle θPT
t is only related to θhead

t with the same value and the opposite
direction; that is, if the head turns to the left, the pan-tilt automatically rotates the same
angle to the right to keep the camera facing the visual target. θhead

t can be indicated in the
following manner:

θhead
t =

π

2
− θac

t − θPT
t−1 (4)

where θac
t denotes the current deviation angle between the visual marker plane and the cam-

era plane after the last pan-tilt compensation. After the pan-tilt compensation, the position
of the head of a snake robot can be calculated through visual localization and coordinate
transformation as follows:

Xw
cam = Rw

tgtX
tgt
cam + pw

tgt

Xw
head = Rw

camXcam
head + Xw

cam

(5)

where Xw
cam is the coordinate of the camera mounted on the head, which can be calculated by

rotation matrix Rw
tgt and translation matrix pw

tgt from the visual target coordinate system to

the world coordinate system and the position of camera Xtgt
cam in the visual target coordinate

23



Sensors 2022, 22, 9867

system. Furthermore, Xw
head is the position of the head of the snake robot, Rw

cam denotes the
rotation matrix between the camera coordinate system and the world coordinate system,
and Xcam

head expresses the coordinate of the head in the camera coordinate system.
Based on the above introduction, it can be derived that the angle of the robot head

plays an important role in determining the accuracy of the visual localization. Excessive
head swings lead to loss of visual markers, which further results in the failure of path-tilt
compensation. Consequently, a visual localization stabilization term is proposed to reduce
head swings during motion and embedded in the training process of the path following
strategy, which will be described in detail below.

2.2.2. Rl Policy Training Layer

As the first stage of the hierarchical control framework, the training objective of the
RL policy training layer is to find a policy that outputs the optimal action according to the
current state of the whole system, which will be used to modify the gait equation [1] in the
later control stage to ensure good path following performance. To this end, the high-level
control law of the hierarchical control framework is defined as follows:

uhigh = at ∼ πψ(at | st) (6)

In order to achieve satisfactory path following performance, a snake robot is expected
to approach the desired path as close as possible; in addition, to prevent the robot from
stopping as soon as it approaches the path, random target points are selected on the desired
path along the forward direction of the robot to guide its forward motion while continuing
the path following.

The state of the path following task is embedded in vector st ∈ R
n+1, which consists

of the distance between the real-time position of the snake robot and the desired path
dp, the distance between the robot and the endpoint de, and the joint angles command
φi

t−1, i = 1, 2, ..., n − 1 at the last timestep.
According to state st, action at ∈ R

1 drives the snake robot to follow the desired path
by adjusting the parameter of the gait equation, which generates the lateral undulatory gait
as the Equation (7), with α, ω, δ, and φo denoting the gait amplitude, angular frequency,
phase difference, and offseting of the lateral undulatory gait, respectively.

φi(t) = α sin(ωt + (i − 1)δ) + φo (7)

where φi(t), i = 1, 2, ..., n − 1 is the i-th joint angle of the snake robot at time t. Different
groups of four gait parameters generate different forms of the motion trajectory of the
lateral undulatory gait. To drive the robot to follow the desired path, the joint offset φo,
which can modify the motion direction in real-time, is selected as the action and then
generated by the policy network.

at = φo (8)

To improve the accuracy and efficiency of the path following, the reward function is
designed as follows:

rt = rp + re − ph (9)

where rp encourages the snake robot to approach the desired path with a defined tolerance,
the second term re rewards the robot for moving forward towards the endpoint as soon as
possible, and the last term ph is the visual localization stabilization term, which penalizes
the robot for excessive head swings in adjacent moments. Specifically, the three terms are
constructed as follows:

rp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cp if
∣∣∣dp

t+1

∣∣∣ < d1

cp exp (d1 −
∣∣∣dp

t+1

∣∣∣) if d1 ≤
∣∣∣dp

t+1

∣∣∣ ≤ d2

0.0 if
∣∣∣dp

t+1

∣∣∣ > d2

(10)
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re = ce(de
t − de

t+1) (11)

where cp and ce are the weighting constants, and d1 and d2 are the distance thresholds at
which the reward approaching the goal path can be obtained.

In order to improve the accuracy of the visual localization mentioned in Section 2.2.1,
the visual localization stabilization term ph is depicted as follows, with ch being a negative
constant and φ∗ being the angle threshold:

ph =

{
ch if

∣∣φ1
t+1 − φ1

t
∣∣ ≥ φ∗

0.0 if
∣∣φ1

t+1 − φ1
t
∣∣ < φ∗

(12)

where φ1
t and φ1

t+1 are the head angles of the snake robot at timestep t and t + 1.
The Proximal Policy Optimization (PPO) algorithm is adopted to train policy πψ, which

is represented by a fully connected network with 3 Tanh hidden layers of [64, 32, 32] units.

2.2.3. Gait Executive Layer

The gait executive layer is the second stage of the hierarchical control framework,
which is controlled by the high-level action at and presents a modified motion gait via the
gait equation shown in Equation (7). The low-level control law is illustrated as follows:

ulow = φi(t) (13)

The generated control command ulow of the joint angels is directly sent to a snake
robot and helps it to change the motion direction and then converge to the desired path.

3. Results

In this section, the hierarchical path following policy is firstly trained and then tested in
the simulation, and the training efficiency and the effectiveness of the proposed algorithm
are verified. Subsequently, the trained policy is directly transferred to real-world experi-
ments, and several experiments are implemented on a practical snake robot to validate the
actual following performance for different desired paths.

3.1. Simulations

The simulation environment is developed based on the Mujoco [26] simulator, and the
model of the snake robot is composed of nine connection modules with a pair of pas-
sive wheels and eight yaw joints. During training, the start point of the snake robot is
(0 m, 0 m). The desired paths are straight lines y = y∗ ∈ [−1.5 m, 1.5 m], sinusoidal curves
y = A sin ωx + φ, A ∈ [0.2 m, 1.0 m], ω ∈ [π

2 rad, πrad], φ ∈ [−1.5 m, 1.5m], and circles
x2 + y2 = R2, R ∈ [1.5 m, 3.0 m], respectively. The target point is a random point on the
desired path with an x−coordinate x∗ ∈ [4.0 m, 5.0 m]. The end-to-end PPO algorithm,
which takes the same state as the input and directly outputs joint angles, is selected as the
comparative method to demonstrate the training efficiency and tracking performance of
the proposed algorithm. Firstly, the comparison of the mean reward of an episode between
the two methods is depicted in Figure 2.

The training results demonstrate that the proposed hierarchical control method achieves
a superior training performance with a higher episode reward and faster convergence speed
compared with the comparative method. Specifically, the proposed method converges to
higher episode reward within about 1M timesteps, while the comparative method slowly
converges to a reward value that is less than one-third of that of the proposed method at
about 2M timesteps, which clearly indicates the strong path following ability and reliable
training efficiency of the proposed method.
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Figure 2. Mean reward of an episode for the proposed hierarchical method and the end-to-end
comparative method.

To verify the following performance of the learned policy, the path following tests are
performed on three different types of desired paths, and the following results are shown in
Figures 3–5. It is indicated that the snake robot converges to the desired path agilely and
accurately, and then it keeps following the path with small tracking errors driven by the
proposed method, implying the superior path following ability of the hierarchical trained
policy; in comparison, under the control of the end-to-end comparative method, the snake
robot requires longer convergence time and presents larger tracking errors.

Figure 3. Simulation path following results of the desired line for the proposed hierarchical method
and the end-to-end comparative method.
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Figure 4. Simulation path following results of the desired sinusoidal curve for the proposed hierar-
chical method and the end-to-end comparative method.

Figure 5. Simulation path following results of the desired circle for the proposed hierarchical method
and the end-to-end comparative method.

3.2. Experiments

To validate the actual performance of the proposed method, two groups of hardware
experiments are conducted on a self-built practical snake robot, and the results and analyses
are provided in this part. Specifically, the snake robot is composed of visual localization
module and motion modules, where the visual localization module contains a RealSense
D435i camera for capturing images and a Dynamixel AX-12A actuator serving as the
pan-tilt, and each 3D-printed body module has a mass of 0.416 g; it consists of a Hitec
HS-5585MH actuator, a lithium battery pack with a voltage of 7.4 V, a wireless serial port
and a pair of passive wheels.
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Firstly, to examine whether visual localization stabilization term ph improves the localiza-
tion accuracy by reducing head swings, we compare the accuracy of the visual localization for
the trained policies with and without the stabilization item ph, and the comparative results are
depicted in Figure 6. To intuitively present the accuracy of the visual localization, the position
and orientation results obtained by visual localization are compared with the results of the
motion capture system Qualisys Track Manager (QTM). The desired path is y = −0.1, the start
point of the snake robot is (1.0 m, 0.6 m), and the initial orientation is π

2 .

(a) (b)

Figure 6. Results of visual localization for the trained policies with and without the visual stabilization
item ph. (a) Position results. (b) Orientation results.

From the results depicted in Figure 6, it is clear that the results of the visual localization
are close to the actual results regardless of the position or orientation under the control of
the proposed method. In contrast, under the control of the comparative method without
the stabilization item ph, the position and orientation of the snake robot (denoted by the
solid blue lines shown in Figure 6) are only obtained at the beginning of the experiment,
and subsequently, this information cannot be updated and the robot fails to follow the
desired path, which is caused by the loss of visual target by the camera mounted on the
head. At the beginning of the path following, the comparative method tends to generate a
relatively large joint angle of the head to rapidly change the motion direction of the robot,
thereby improving the convergence speed of the robot. However, the large head angle
leads to a violent head swing, so the camera mounted on the head loses the visual target
and thus, the pan-tilt cannot successfully compensate the joint angle of the head.

Subsequently, different actual experiments for a straight line and a circle are carried
out to evaluate the following accuracy of the proposed hierarchical path following method.
For the straight-line path following, y = 0.0 is taken as the desired path, and the start
point of the snake robot is (0.0 m,−0.9 m). Then, circle x2 + y2 = 4 is chosen as the
desired path, and the start point is (−0.25 m, 2.0 m). The following results are illustrated
in Figures 7 and 8, which denote that the learned hierarchical path following policy can
be directly transferred to the practical system and successfully drive the snake robot to
converge to and then follow the desired paths.
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Figure 7. Path following results of the desired line for the proposed hierarchical method.

Figure 8. Path following results of the desired circle for the proposed hierarchical method.

4. Discussion

We can observe that the experimental results shown in Figure 8 exhibit the following
performance of a snake robot for a quarter circle rather than an entire circle. This is because
the number of the visual marker and the maximum rotation angle of the pan-tilt in our
experiment are both limited; that is, there is only one fixed visual marker, and the rotation
angle of the pan-tilt is limited to (−140◦, 140◦). When the snake robot tracks the remaining
three-quarters of the circle, the direction of the robot head will be opposite to the direction
of the visual marker so that the angle that the pan-tilt needs to compensate for is larger than
the maximum rotation angle, and the visual localization cannot be successfully completed.

Additionally, it is noteworthy that the accuracy of the path following in simulations
and experiments mainly depends on the accuracy of localization. However, in this paper,
an external visual marker is employed to assist positioning, which introduces additional
systematic errors. In addition, the lack of diversity of the input data sources, i.e., only a
monocular camera, limits the robustness and stability of the localization.

Future work: In future, we will focus on more intelligent methods to solve the prob-
lems mentioned above. Firstly, we will adopt multiple visual markers to assist the visual
localization. When the direction of the head changes, a snake robot will autonomously
select a visual marker in the corresponding direction to update its position so as to achieve
the all-around visual positioning and track the path in any direction. In addition, we will
focus on multi-sensor fusion technologies, where the sensors include GPS, IMU, camera,
radar, etc., to complete autonomous perception without any external assistance, which
will further improve the intelligence of perception and expand the application scenarios of
snake robots. Finally, in order to further improve the robustness of the proposed method,
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some extrinsic perturbations will be imposed on a snake robot during training, including
external force disturbance, sensory information noise and changes in physical parame-
ters, thereby promoting the adaptability of a snake robot to system errors and changes in
different application scenarios.

5. Conclusions

In this paper, a hierarchical RL-based control method is proposed to achieve satisfac-
tory path following performance for snake robots with an onboard camera. Specifically,
firstly, the hierarchical path following method, consisting of the RL policy training layer
and the gait executive layer, optimizes the learning efficiency, exhibits reliable path fol-
lowing ability, and guarantees the transferability of the learned policy to the practical
system by sufficiently combining the advantage of the RL policy network and the gait
equation. Subsequently, the position of a snake robot can be updated in real time via
visual localization due to the introduction of the visual localization stabilization item in the
reward function. A series of simulation and hardware experimental results validate that
the proposed method is capable of achieving a precise and fast convergence with respect to
the path following tasks for a snake robot with autonomous visual perception.
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Abstract: For the area coverage (e.g., using a WSN), despite the comprehensive research works on
full-plane coverage using a multi-node team equipped with the ideal constant model, only very few
works have discussed the coverage of practical models with varying intensity. This paper analyzes
the properties of the effective coverage of multi-node teams consisting of a given numbers of nodes.
Each node is equipped with a radial attenuation disk model as its individual model of coverage,
which conforms to the natural characteristics of devices in the real world. Based on our previous
analysis of 2-node teams, the properties of the effective coverage of 3-node and n-node (n ≥ 4)
teams in regular geometric formations are analyzed as generalized cases. Numerical analysis and
simulations for 3-node and n-node teams (n ≥ 4) are conducted separately. For the 3-node cases,
the relations between the side lengths of equilateral triangle formation and the effective coverage
of the team equipped with two different types of models are respectively inspected. For the n-node
cases (n ≥ 4), the effective coverage of a team in three formations, namely regular polygon, regular
star, and equilateral triangular tessellation (for n = 6), are investigated. The results can be applied to
many scenarios, either dynamic (e.g., robots with sensors) or static, where a team of multiple nodes
cooperate to produce a larger effective coverage.

Keywords: coverage control; multi-robot; cooperative sensors; optimization

1. Introduction

1.1. Background

Many static devices and autonomous robots (collectively named “nodes”) can collab-
oratively sense or influence their surroundings. Coverage (area coverage) and effective
coverage [1] are important metrics that reflect the sensing or influencing ability, or the
performance of a node or a node team, such as a light array, air-conditioner team, wireless
sensor network, etc. The analysis of a team’s effective coverage depends on the prob-
lems to be solved and their adopted models of coverage. The most common categories
of problems—optimal tessellation patterns (e.g., sensor placement issue) in a given plane
have been extensively studied. Most of them have adopted the simplest binary disk model
(having a constant value within the disk region centered at the node), which focuses on
k-coverage [2,3]; only a very few have analyzed the effective coverage of cooperative
sensors within an infinite plane using a non-binary (non-constant) sensing model [4,5].

Compared to this category of problems, the optimization of the effective coverage
of a node team containing a given number of nodes in a certain operational setting
(i.e., the inverse problem) has been rarely studied due to its difficulties in mathematics.
For practical models with non-constant intensities (i.e., non-constant models), both maxi-
mizing the team’s effective coverage and maintaining its connectedness are much more
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complicated than the ideal binary model [6,7] with which the nodes may move freely to
independently produce some effective coverage. If the coverage intensity of one node is
already larger than the requirement, the team can achieve its maximum coverage by simply
avoiding any overlap among the individual coverage disks. However, for non-constant
models, the area and the connectedness of a team’s effective coverage have complicated
relationships with the team’s formation; any change in the team’s formation causes changes
in its effective coverage. However, it is useful in and can be applied to many dynamic
problems involving moving robots, such as mobile WSNs, cooperative illumination, animal
husbandry, and agriculture (for birds detection/driving), etc. [1,8]. Hence, maximizing
the effective coverage of a node team and maintaining the connectedness of its effectively
covered region are desirable in such practical applications, which motivates our study in
this article.

1.2. Literature Review

The optimal tessellation pattern problem (to fully cover a plane) using the binary disk
model (a constant non-zero intensity within the coverage disk) has been extensively studied
(e.g., [2,3,9–14]) based on the binary disk coverage model. Many other works involving
multi-node cooperative coverage (e.g., [15–17]) also adopt this model. However, such a
model is too simple to characterize most realistic devices.

Some new non-constant models (with varying intensity) have been proposed [4,5,7,18]
for sensing activities, where multiple sensors are cooperatively used to enlarge the sensing
area and to improve the sensing accuracy. For example, in [5], Zhu et al. proposed that
a point is “confident information covered” if the root-mean-square error of its estimated
signal value is below the application requirement. Using attenuation sensing models,
cooperative sensors can produce a larger “confident information coverage” than the sum of
individual sensor coverages. These works found the optimal placement pattern (with the
lowest sensor density) for an infinite plane under their model assumption. This model was
also adopted in several later works [19,20]. Yáng et al. proposed the concept of effective
coverage based on the coverage intensity to characterize the coverage behavior of practical
devices equipped with attenuation models [1]. Their model follows the superposition
principle, which focuses on influencing activities (output coverage) and can approximate
the behavior of sensing activities. Effective coverages of 2-node teams equipped with
different models were analyzed. Meng et al. proposed a learning method for the effective
coverage of points of interest, where the sensing quality of an agent is a decreasing function
of the distance from this agent [21].

In this paper, we study the effective coverage of n-node homogeneous teams with
n ≥ 3. The nodes are equipped with radial attenuation disk models to approximate realistic
devices. A team’s (cooperative) coverage follows the superposition principle. Optimal
separation distances that maximize a team’s effective coverage are analyzed and simulated,
respectively, for two types of models of coverage. The results can be directly applied to
practical applications such as mobile air-conditioner teams [22] and birds driving robots,
for output applications [1]; and for input applications, e.g., mobile wireless sensor networks,
the approximation using our models and analysis is much more accurate and practical than
the existing binary models. To the best of our knowledge, this is the first work to study
the effective coverage optimization of a team containing a given number (≥3) of nodes
equipped with a non-constant model of coverage.

The rest of the paper is organized as follows. Section 2 formulates our model and then
analyzes 3-node teams and n-node teams, respectively. The analysis and simulation of
some example models are presented in Section 3. Finally, we conclude in Section 4.

2. Coverage of an n-Node Team in Regular Polygon Formation

The situation of an n-node team with n ≥ 3 is much more complicated compared to
2-node teams. It is hard to find their explicit analytical relationship (function) with the
team’s effective coverage, and there are infinite possibilities of formations on a 2D plane.
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Therefore, for n > 3, only some symmetric cases are analyzed, where the teams are in
regular polygon and regular star formations.

We consider a set of n nodes located at planar positions si with i = 1, 2, . . . , n. As the
vertices of a polygon, they are in the formation of an n-sided regular polygon with a
circumradius R. This set of nodes can be represented as a network S = {s1, . . . , sn}.
We establish a polar coordinate system so that the pole is at the circumcenter O of the
n-sided regular polygon, and the polar axis crosses the node sn. We use D to represent
the side length of the polygon formation, i.e., the separation of any two adjacent nodes

on the polygon vertices. So, si =

(
R,

2πi
n

)
and R = 0.5D csc(π/n), as illustrated in

Figure 1. The distance between any point p(ρ ≥ 0, θ) and node si located at the polygon

vertex
(

R,
2πi
n

)
is then di =

√
R2 + ρ2 − 2Rρ cos

(
θ − 2πi

n

)
.

sn

s1

s2

s3

si

sn 1

O

Figure 1. Illustration of an n-node team forming an n-sided regular polygon, with the nodes being
located on its vertices. The shaded gray region is the effectively covered region (an example) by
the team, while the n dashed circles show individual effective coverages with radius r̄. The polar
coordinate system is established in such a way where the pole is located at the circumcenter of the
polygon, and the polar axis points towards sn.

The coverage intensity induced by a node si ∈ S at a point p ∈ R
2 is represented

as a non-constant function I(di) : R → R, where di = ‖p − si‖ is the distance from si to
p. The coverage of a node si (denoted by Ci) is Ci =

∫∫
R2 δi(p)dp, where δi(p) = 1 if

I(di) > 0 and δi(p) = 0 otherwise. The individual coverage radius is denoted by r ∈ R
+.

With a certain threshold γ ∈ R
+, the effective coverage of a node si (denoted by C̄i) is

C̄i =
∫∫

R2 δ̄i(p)dp, where δ̄i(p) = 1 if I(di) ≥ γ, and δ̄i(p) = 0 otherwise. From this
definition, we know that C̄S =

∫∫
R2 δ̄(p)dp, where δ̄(p) = 1 if Φ(p) ≥ γ and δ̄(p) = 0

otherwise. For one team, there are two critical separation distances:

1. “Max distance”, which yields the maximum team’s effective coverage.
2. “Last-connection distance”. Any separation D greater than this distance will make

the team’s effectively covered region disconnect into more than one part.
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2.1. Three-Node Teams

For a three-node team forming an equilateral triangle, the nodes are located at the
polar points (R, 2π/3), (R,−2π/3), (R, 0). The coverage intensity at any point p(ρ ≥ 0, θ)
induced by the team is

Φ(p) =I

(√
R2 + ρ2 − 2Rρ cos

(
θ − 2

3
π

))

+ I

(√
R2 + ρ2 − 2Rρ cos

(
θ +

2
3

π

))
+ I

(√
R2 + ρ2 − 2Rρ cos θ

)
(1)

and its first-order and second-order partial derivative w.r.t. ρ are

∂Φ(p)
∂ρ

=
dI
dd

∣∣∣∣
d=

√
R2+ρ2−2Rρ cos(θ− 2

3 π)

ρ − R cos
(
θ − 2

3 π
)

√
R2 + ρ2 − 2Rρ cos

(
θ − 2

3 π
)

+
dI
dd

∣∣∣∣
d=

√
R2+ρ2−2Rρ cos(θ+ 2

3 π)

ρ − R cos
(
θ + 2

3 π
)

√
R2 + ρ2 − 2Rρ cos

(
θ + 2

3 π
)

+
dI
dd

∣∣∣∣
d=
√

R2+ρ2−2Rρ cos θ

ρ − R cos θ√
R2 + ρ2 − 2Rρ cos θ

, (2)

∂2Φ(p)
∂ρ2 =

d2 I(d)
dd2

∣∣∣∣
d=d1

[
ρ − R cos

(
θ − 2π

3
)]2

R2 + ρ2 − 2Rρ cos
(
θ − 2π

3
) + dI(d)

dd

∣∣∣∣
d=d1

R2 sin2(θ − 2π
3
)

[
R2 + ρ2 − 2Rρ cos

(
θ − 2π

3
)]1.5

+
d2 I(d)

dd2

∣∣∣∣
d=d2

[
ρ − R cos

(
θ + 2π

3
)]2

R2 + ρ2 − 2Rρ cos
(
θ + 2π

3
) + dI(d)

dd

∣∣∣∣
d=d2

R2 sin2(θ + 2π
3
)

[
R2 + ρ2 − 2Rρ cos

(
θ + 2π

3
)]1.5

+
d2 I(d)

dd2

∣∣∣∣
d=d3

[ρ − R cos θ]2

R2 + ρ2 − 2Rρ cos θ
+

dI(d)
dd

∣∣∣∣
d=d3

R2 sin2 θ

[R2 + ρ2 − 2Rρ cos θ]
1.5 (3)

where d1 =
√

R2 + ρ2 − 2Rρ cos
(
θ − 2

3 π
)
, d2 =

√
R2 + ρ2 − 2Rρ cos

(
θ + 2

3 π
)
, and

d3 =
√

R2 + ρ2 − 2Rρ cos θ. At the circumcenter O(0, 0),

Φ(O) = 3I(R) (4)

∂Φ(p)
∂ρ

∣∣∣∣
ρ=0

= − dI
dd

∣∣∣∣
d=R

[
cos

(
θ − 2

3
π

)
+ cos

(
θ +

2
3

π

)
+ cos θ

]
= 0 (5)

Obviously, if I(d) is a concave model, dI(d)/dd < 0 and d2 I(d)/dd2 < 0, and Equation (6)
is negative; otherwise if I(d) is a convex model, Equation (6) is positive; see Appendix B
for the proof. Hence, the circumcenter O is a local minimum point of coverage intensity
when the nodes are equipped with a convex model of coverage; and it is a local maximum
point of coverage intensity when the nodes are equipped with a concave model of coverage
and R < r, i.e., the coverage overlapping region of the n nodes exists.

Next, we establish the general approach for finding the “last-connection” distance and
the coordinate of its corresponding connection point. We only discuss the situations where
the nodes are equipped with the unbounded convex model as an example. For the truncated
convex models and concave models, the methods are similar to the unbounded models in
the overlapping region centered at O(0, 0), and the same with their corresponding 2-node
cases [1] out of that overlapping region.
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∂2Φ(p)
∂ρ2

∣∣∣∣
ρ=0

=
d2 I(d)

dd2

∣∣∣∣
d=R

cos2
(

θ − 2
3

π

)
+

dI(d)
dd

∣∣∣∣
d=R

sin2(θ − 2
3 π
)

R

+
d2 I(d)

dd2

∣∣∣∣
d=R

cos2
(

θ +
2
3

π

)
+

dI(d)
dd

∣∣∣∣
d=R

sin2(θ + 2
3 π
)

R

+
d2 I(d)

dd2

∣∣∣∣
d=R

cos2 θ +
dI(d)

dd

∣∣∣∣
d=R

sin2 θ

R

=
d2 I(d)

dd2

∣∣∣∣
d=R

3 + cos
(

2θ − 4
3 π
)
+ cos

(
2θ + 4

3 π
)
+ cos 2θ

2

+
dI(d)

dd

∣∣∣∣
d=R

3 − cos
(

2θ − 4
3 π
)
− cos

(
2θ + 4

3 π
)
− cos 2θ

2R

=
d2 I(d)

dd2

∣∣∣∣
d=R

3
2
+

dI(d)
dd

∣∣∣∣
d=R

3
2R

=
3
2

[
d2 I(d)

dd2

∣∣∣∣
d=R

+
dI(d)

dd

∣∣∣∣
d=R

1
R

]
(6)

From the property of the convex decreasing functions, it is obvious that with any fixed
θ value and ρ ∈ [0,+∞), Φ(p) has only two local extrema. The local minimum happens
at O(0, 0), which we already derived above. When ρ increases, Φ(p) increases up to its
global maximum value and then decreases asymptotically to zero (see Figure 2). Based
on symmetry, the “last-connection” points must be on the mirror line between every two
nodes: their angle coordinates θ = π/3, π,−π/3, as shown in Figure 3. So, the ρ coordinate
of these “last-connection” points can be found by determining the global maximum point
of Φ(p) on any of the three rays θ = π/3, π,−π/3. Let’s look at the “last-connection”
point q1,2(ρ, π) on the ray θ = π (between s1 and s2), where the coverage intensity and its
first-order derivative w.r.t. ρ are:

Φ(q1,2) = 2I
(√

R2 + ρ2 − Rρ

)
+ I(R + ρ) (7)

∂Φ(q1,2)

∂ρ
=

dI
dd

∣∣∣∣
d=
√

R2+ρ2−Rρ

(
2ρ − R√

R2 + ρ2 − Rρ

)
+

dI
dd

∣∣∣∣
d=R+ρ

(8)

The “last-connection distance” (D =
√

3R) and the ρ coordinate of its corresponding
“last-connection” point can be found through solving the following equations:

⎧⎪⎪⎨
⎪⎪⎩

Φ(q1,2) = γ
∂Φ(q1,2)

∂ρ
= 0

ρ > 0

(9)

An example analysis will be provided in Section 3.

2.2. General n-Node Team

After analyzing the effective coverage of 3-node teams, we now generalize it to n-node
teams in n-sided polygon formations. We apply the usual notion of topological simple
connectedness to characterize the effective coverage of a team. Consider the effectively
covered region of team S. If there exist one or more “holes” within this region that are
not effectively covered by S, then we say that the effectively covered region of S is not
simply connected. Next, we establish a theory that enables us to easily examine whether
the effectively covered region of the team equipped with an unbounded convex model of
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coverage is simply connected, i.e., whether any hole (that is not effectively covered) exists
as a subregion within the effectively covered region.

(a) (b)

Figure 2. Coverage intensity of a 3-node team forming an equilateral triangle, with the nodes being
located on the vertices. (a) Three-dimensional illustration, where the z-axis is the coverage intensity
and the three peaks locate the three nodes; (b) contour plot with four arbitrary example rays.

Figure 3. The “last-connection” points are on the mid-perpendicular line of every two adjacent nodes.

Theorem 1. Weakest Point Theorem.
For an n-node team S = {s1, s2, . . . , sn} in the formation of an n-sided regular polygon where
each node is equipped with a convex model of coverage and n ≥ 3, its circumcenter O is effectively
covered if and only if the entire effectively covered region is simply connected.

Proof. The sufficient condition is obvious. We only prove the necessary condition, which is
equivalent to proving that the circumcenter O(0, 0) is the only local minimum of coverage
intensity Φ along any radial direction of the polar coordinate system (i.e., for any fixed
θ value).
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The first-order partial derivatives of I w.r.t. ρ and θ are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I(di)

∂ρ
=

dI(di)

dd
∂d
∂ρ

=
dI(di)

dd

ρ − R cos
(

θ − 2πi
n

)
√

R2 + ρ2 − 2Rρ cos
(

θ − 2πi
n

)
∂I(di)

∂θ
=

dI(di)

dd
∂d
∂θ

=
dI(di)

dd

Rρ sin
(

θ − 2πi
n

)
√

R2 + ρ2 − 2Rρ cos
(

θ − 2πi
n

)
(10)

When ρ = 0, i.e., at the circumcenter O(0, 0),

∂Φ(p)
∂ρ

∣∣∣∣
ρ=0

=
n

∑
i=1

∂I(di)

∂ρ
= − dI(d)

dd

∣∣∣∣
d=R

n

∑
i=1

cos
(

θ − 2πi
n

)
= 0 (11)

for any θ. See Appendix A for proof.
Then, the second-order partial derivative w.r.t. ρ is

∂2 I(di)

∂ρ2 =
dI(di)

dd
∂ρ

∂d
∂ρ

+
dI(di)

dd
∂2 d
∂ρ2

=
d2 I(di)

dd2

[
ρ − R cos

(
θ − 2πi

n

)]2

R2 + ρ2 − 2Rρ cos
(

θ − 2πi
n

) +
dI(di)

dd

R2 sin2
(

θ − 2πi
n

)
[

R2 + ρ2 − 2Rρ cos
(

θ − 2πi
n

)]1.5 . (12)

So, at the circumcenter O,

∂2Φ(p)
∂ρ2

∣∣∣∣
ρ=0

=
d2 I(d)

dd2

∣∣∣∣
d=R

n

∑
i=1

cos2
(

θ − 2πi
n

)
+

dI(d)
dd

∣∣∣∣
d=R

1
R

n

∑
i=1

sin2
(

θ − 2πi
n

)

=
d2 I(d)

dd2

∣∣∣∣
d=R

n

∑
i=1

1 + cos
(

2θ − 4πi
n

)
2

+
dI(d)

dd

∣∣∣∣
d=R

1
R

n

∑
i=1

1 − cos
(

2θ − 4πi
n

)
2

=
d2 I(d)

dd2

∣∣∣∣
d=R

n
2
+

dI(d)
dd

∣∣∣∣
d=R

n
2R

=
n
2

[
d2 I(d)

dd2

∣∣∣∣
d=R

+
1
R

dI(d)
dd

∣∣∣∣
d=R

]
> 0 (13)

Therefore, the circumcenter O is the local minimum point of the coverage intensity.
On the other hand obviously, when I(d) is concave and di < r, Equation (12) is always

negative. Therefore,
∂2Φ(p)

∂ρ2 =
n

∑
i=1

∂2 I(di)

∂ρ2 < 0 when R < r (14)

which reveals that the coverage intensity Φ(O) at the circumcenter is the local maximum
value in the coverage overlapping region of the n nodes equipped with a concave model.

For a team where each node is equipped with an unbounded convex model of coverage,
Theorem 1 implies that the circumcenter of the polygon formation is the weakest point
in terms of the intensity throughout the team’s effectively covered region. When the
separation distance D (side length of the polygon) increases, the effective coverage hole
will appear at the circumcenter. The critical separation can be simply determined from
D = 2I−1(γ/n) sin(π/n). Besides determining the hole existence of the effectively covered
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region of S, with Theorem 1, we can also determine the “last-connection distance” and its
corresponding “last-connection” points by solving Equation (9), for this n-node team.

Although the connectedness of the effectively covered region is clearly analyzed, it is
still impossible to find the explicit relation between team formation and the maximum
team’s effective coverage. Some examples with explicit I(d) expressions will be derived,
simulated, and compared in the Simulations section below.

3. Simulations

For 3-node teams, unbounded convex models and concave models are discussed,
and the teams are in equilateral triangle formations. For n-node teams where n ≥ 4,
both regular polygon and regular star formations are involved, and equilateral triangular
tessellation is simulated for the 6-node team. Optimal separations that maximize the
corresponding effective coverages are found. Example plots of intensity vs. separation
are presented. All simulations are performed in Matlab R2022a on Linux (Debian 10) OS,
Intel Core i9-12900KF CPU.

3.1. Unbounded Convex Model for a 3-Node Team in Equilateral Triangle Formation

Let’s analyze the most common convex model

I(d) =
β

dλ + α
(15)

where the scaling factor and the exponent β, λ ∈ R
+, and the offset constant α ≥ 0.

Its first-order derivative is
dI
dd

= − βλdλ−1

(dλ + α)2 (16)

and the individual effective coverage radius is r̄ = λ
√

β/γ − α. Substitute them into
Equation (9):

dΦ(q1,2)

dρ
=

dI
dd

∣∣∣∣
d=
√

R2+ρ2−Rρ

(
2ρ − R√

R2 + ρ2 − Rρ

)
+

dI
dd

∣∣∣∣
d=R+ρ

=− βλ
(

R2 + ρ2 − Rρ
) λ−1

2(
(R2 + ρ2 − Rρ)

λ
2 + α

)2
2ρ − R√

R2 + ρ2 − Rρ
− βλ(R + ρ)λ−1(

(R + ρ)λ + α
)2

=− βλ

⎡
⎢⎣

(
R2 + ρ2 − Rρ

) λ
2 −1

(
(R2 + ρ2 − Rρ)

λ
2 + α

)2 (2ρ − R) +
(R + ρ)λ−1(

(R + ρ)λ + α
)2

⎤
⎥⎦ = 0 (17)

Since β �= 0 and λ �= 0, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2

(R2 + ρ2 − Rρ)
λ/2 + α

+
1

(R + ρ)λ + α
=

1
r̄λ + α(

R2 + ρ2 − Rρ
) λ

2 −1

(
(R2 + ρ2 − Rρ)

λ
2 + α

)2 (2ρ − R) +
(R + ρ)λ−1(

(R + ρ)λ + α
)2 = 0

ρ > 0

(18)

This is a set of hyper equations when λ �= 2 or α �= 0. To make the equations solvable
without losing universality, we set λ = 2 and α = 0, and the equations above become
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
R2 + ρ2 − Rρ + 0

+
1

R2 + ρ2 + 2Rρ + 0
=

1
r̄2 + 0

2ρ − R

(R2 + ρ2 − Rρ + 0)2 +
R + ρ

((R + ρ)2 + 0)2 = 0

ρ > 0

(19)

After some algebras, we obtain
⎧⎨
⎩

R4 + ρR3 − 3r̄2R2 + (ρ2 − 3r̄2)ρR + ρ4 − 3r̄2ρ2 = 0
ρ
(
ρ3 + Rρ2 + 2R2ρ − R3) = 0

ρ > 0
(20)

The two real roots of the second equation are ρ = 0 and 0.3926R. Substitute ρ = 0.3926R
back to the first equation. Since R �= 0, we get

1.4770R2 − 4.6405r̄2 = 0 (21)

Hence,
R = 1.7725r̄ (22)

Therefore, for a 3-node team in equilateral triangle formation, the effectively cov-
ered region’s “last-connection” distance between the nodes (i.e., the side length of this
equilateral triangle) happens at D =

√
3R = 3.0701r̄. At this critical separation dis-

tance, the whole region is only connected at three points (0.6960r̄, π/3), (0.6960r̄, π),
(0.6960r̄,−π/3). Any distance farther than this will result in the team’s effectively covered
region being disconnected into three unconnected parts.

3.2. Concave Model for a 3-Node Team in Equilateral Triangle Formation

Many sensors follow concave models within their near field (short distances from the
sensor). We use the quadratic difference equation to approximate the individual model
of coverage:

I(d) =
{

α
(
r2 − d2) , d ≤ r

0 , d > r
(23)

where α ∈ R
+. The superposed coverage intensity in the overlapping region of the three

nodes is
Φ(p(x, y)) = α

(
3r2 − 3x2 − 3y2 − D2

)
(24)

Let Φ(p(x, y)) ≥ γ; with individual effective coverage radius r̄2 = r2 −γ/α, we obtain
the increased effective coverage region boundary in the overlapping region of the three
nodes as

x2 + y2 ≤ 2r2 + r̄2 − D2

3
(25)

when R < r, which is still a disk or part of a disk region.
Next, we simulate this model with different D and r̄ values. The scaling factor α = 1

and the individual coverage radius r = 10. r̄ = 0.1r to 0.9r and D = 2r̄ to r̄ + r are
examined, whose team’s effective coverage is meshed in Figure 4. The optimal separation
Dm vs. these r̄ values are plotted in Figure 5. The effective coverages vs. D under three
thresholds r̄ = 0.3r, 0.5r, 0.7r are selected to be plotted in Figure 6, and their effectively
covered regions are shown in Figure 7.
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Figure 4. Three-dimensional mesh of team’s effective coverage vs. separation D and r̄. Nodes are
equipped with concave models. r = 10. α = 1. The red curve illustrates the maximum effective
coverage at every r̄ value.

Figure 5. Relation between the optimal D and r̄ corresponding to the maximum team’s effective coverage.
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(a) (b) (c)

Figure 6. Team’s effective coverage vs. separation D under three different thresholds: (a) r̄ = 0.3r,
(b) r̄ = 0.5r, (c) r̄ = 0.7r. Nodes are equipped with concave models. r = 10. α = 1. The red cross in
each plot marks the maximum effective coverage.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Illustration of resultant effective coverages of the 3-node team equipped with concave
models I(d) = α(r2 − d2) under different thresholds γ (intuitively reflected as r̄). Each row represents
one value of γ: they are r̄ = 0.3r, 0.5r, 0.7r, respectively. Each column represents a different separation
distance D: the first column (a,d,g) is the “tangent column”, where the individual effectively covered
regions in light green dashed circles are tangent to each other, i.e., D = 2r̄; the second column
(b,e,h) is the “max column”, where the team’s effective coverage is maximized with corresponding
separations D; the third column (c,f,i) shows configurations where D = r + r̄. r = 10. α = 1.
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As we can see from Figure 7, the maximum effective coverage may or may not have
effective coverage hole(s). In the case that the threshold γ is low (resulting in large r̄), it will
have holes. When separation D increases, three effective coverage holes first appear at the
three corners of the 3-node overlapping region, and then merge into one hole; after the
effectively covered region in the center overlapping region disappears, the entire effectively
covered region becomes simply the combination of the 2-node case.

From Figures 4 and 5, it is clearly seen that when the threshold γ is high (r̄ is small),
the optimal separation is r̄; when r̄ is roughly larger than 0.3r, the optimal separation Dm
falls between 2r̄ and r+ r̄. Figure 8 shows that the coverage intensity has seven local maxima
located at the three nodes, three midpoints between every two nodes, and the circumcenter.

Figure 8. Three-dimensional illustration of coverage intensity of the 3-node team equipped with a
concave model of coverage, in an equilateral triangle formation, with the nodes located on its vertices.
The z-axis is the coverage intensity. r = 10. α = 1.

3.3. n Nodes in Regular Polygon and Regular Star Formations

For n-node teams where n ≥ 4, n-sided regular polygons and (n − 1)-vertex regular
star formations, and the 6-node team in equilateral triangular tessellation formation are
simulated and compared. The term “(n − 1)-vertex regular star” refers to the formation of
an (n − 1)-sided regular polygon with another node placed at its circumcenter. Each node
is equipped with the unbounded convex model I(d) = β/d2, where β ∈ R

+. In this
subsection, the scaling factor β = 1.

The effectively covered regions of 4, 5, 6, 7-node teams in the polygon and star for-
mations are illustrated in Figures 9 and 10, respectively. In both the regular polygon and
regular star formations, the maximum teams’ effective coverages are achieved when the
individual effective coverage disks are apart from each other (neither tangent nor secant),
but the entire effectively covered region is still connected. In regular polygon formations,
an effective coverage hole is observed in each maximum effective coverage illustration at
the circumcenter, which also verified in Theorem 1. Additionally, the effectively covered
regions of the six-node team in equilateral triangle formation are illustrated in Figure 11.
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Its maximum effective coverage is found to be slightly larger than the previous two forma-
tions, with n = 6.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 9. Illustration of effective coverages of n-node teams equipped with model I(d) = β/d2 where
n = 4, 5, 6, 7. The teams are in regular polygon formations. r̄ = 10. Each row represents an n value.
In the first column (a,e,i,m), individual effective coverage disks of every other node (i.e., i and i + 2)
on the polygon vertices are tangent. In the second column (b,f,j,n), the individual effective coverage
disks of every adjacent node pair are tangent. The third column (c,g,k,o) is the “max column”, where
teams’ effective coverages are maximized. Each effectively covered region in the fourth column
(d,h,l,p) has an effective coverage hole inside, while the region is still connected.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 10. Illustration of effective coverages of n-node teams equipped with model I(d) = β/d2,
where n = 4, 5, 6, 7. The teams are in regular star formations. r̄ = 10. Each row represents an n
value. In the first column, individual effective coverage disks of every adjacent node pair are tangent
in (a,e,i), and individual effective coverage disks of every other node on the polygon vertices are
tangent in (m). In the second column (b,f,j,n), the individual effective coverage disks of nodes on the
vertices are tangent to that of the center node. The third column (c,g,k,o) is the “max column”, where
teams’ effective coverages are maximized. The fourth column (d,h,l,p) shows the effective coverages
at randomly picked separations while the region is still connected.

The effective coverages of a team and per node are plotted in Figure 12. From Figure 12a,
it is seen that the team’s effective coverage naturally increases with the number of nodes
in both formations. It can be observed that with n = 4, 5, regular polygon formations
generate larger maximum effective coverages than regular star formations; while with
larger n values (n = 6, 7), the regular star formations instead generate larger maximum
effective coverages than regular polygon formations. This trend is further revealed in
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subplot (c). From Figure 12b, it is found that for both regular polygon and regular star
formations, the maximum effective coverage per node increases with the number of nodes n.
This is further revealed in subplot (d), where we can see that the single-node contribution
to effective coverage tends to increase slower when the number of nodes n increases.
The optimal side lengths of both polygon and star formations decrease as the number of
nodes n grows, which is shown in Figure 12e.

(a) (b) (c) (d)

Figure 11. Illustration of effective coverages of n-node teams equipped with model I(d) = β/d2,
where n = 6. The teams are in equilateral triangle formations. r̄ = 10. (a) D = r̄; (b) D = 2r̄,
individual effective coverage disks of adjacent nodes are tangent with each other; (c) the team’s
effective coverage maximized; (d) the effective coverage at randomly picked separation while the
region is still connected.

4
4

5
5

6
6

7

7

(a)

4

5

6

7

4

5
6

7

(b)

(c) (d) (e)

Figure 12. Plots of effective coverages of n-node teams equipped with model I(d) = β/d2, where
n = 4, 5, 6, 7. The team formations are in regular polygons () and regular stars (*). r̄ = 10.
(a) Team’s effective coverage; (b) Effective coverage per node; (c) Maximum team’s effective coverage
vs. The number of nodes; (d) Maximum effective coverage per node vs. The number of nodes;
(e) Optimal distance (polygon side length) vs. The number of nodes.
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3.4. Comparison

To justify the effectiveness of our work in solving the given problem, a comparison
with the existing binary model and the non-constant models in infinite planes (e.g., [5])
is conducted. By applying Equation (15) as the real sensing quality (confidence) function,
the team’s cooperative sensing quality at a point p is Φ(p) = 1 − ∏n

i=1(1 − I(di)) =

1 − ∏n
i=1

(
1 − α

dλ
i +α

)
. Let’s examine n = 4 as an example. By using the same method with

previous subsections, the optimal side length Dm and the largest effective coverage of the
team are obtained and logged in Table 1. With the binary model (r̄ = r), the team in regular
polygon formation achieves the maximum effective coverage at D ≥ 2r obviously; while to
keep its connectedness, its Dm has to be 2r.

From Table 1, it can be easily seen that our model obtains the closest optimal formations
and their corresponding effective coverage values with the ground truth. This is because
the mathematical expression of the binary model is too far from that of a real device.
The models for solving the coverage problem of an infinite plane only consider the portion
inside a polygon lattice of the infinite plane; the rest of the portion outside of the polygon
lattice is considered as simple repetitions in other neighboring polygons, thus causing
larger errors in approximation.

Table 1. Comparison of Dm and C̄ values with n = 4.

α Ground Truth Our Convex Model Binary Model Infinite Plane Model (e.g., [5])

1 2.835r̄ , 2229.882 2.84r̄ , 2235.9219 2r̄ , 1256.6371 2.845r̄ , 3222.7623
3 2.845r̄ , 2241.6723 2.86r̄ , 2259.9843 2r̄ , 1256.6371 2.87r̄ , 3271.84
5 2.855r̄ , 2253.7023 2.88r̄ , 2283.6948 2r̄ , 1256.6371 2.89r̄ , 3317.76
7 2.865r̄ , 2265.4527 2.9r̄ , 2307.0858 2r̄ , 1256.6371 2.915r̄ , 3364
10 2.88r̄ , 2282.5741 2.93r̄ , 2342.5067 2r̄ , 1256.6371 2.945r̄ , 3436.362

4. Conclusions

In this article, the general properties of the effective coverage of an n-node team
(n ≥ 3) equipped with radial attenuation disk models following the superposition principle
have been studied. For the 3-node team equipped with an unbounded convex model in
the equilateral triangle formation, the general approach for finding the “last-connection”
distance and its corresponding point coordinates are established. Example analyses and
numerical simulations on both the unbounded convex model and the concave model have
been conducted. For an n-node team (n ≥ 4) in regular polygon formation where nodes
are equipped with an unbounded convex model, it is proven that the circumcenter of
the formation is the point with the weakest coverage intensity in the team’s effectively
covered region. Formations of regular polygons, regular stars, and an equilateral triangular
tessellation (for six nodes) are simulated, through which the optimal formations are found.
From the numerical result, for the 3-node team equipped with a concave model, the optimal
distance is the individual effective coverage radius r̄ when the threshold is high (r̄ is small),
and it falls between two times the individual effective coverage radius, the sum of the
individual coverage radius, and the individual effective coverage radius (r + r̄) when the
individual effective coverage radius is roughly larger than 0.3 times the individual coverage
radius. For 4- and 5-node teams, regular polygon formations have larger maximum
effective coverages than their corresponding regular star formations, while when the
number of nodes is larger than 6, the situation is just the opposite. For a 6-node team
equipped with an unbounded convex model, the equilateral triangle formation is the
optimal one with the largest maximum effective coverage among the three formations.
For both the regular polygon and the regular star formations, the more the cooperative
nodes, the larger the maximum effective coverage per node. The single-node contribution
to the effective coverage of the team increases more slowly when the number of nodes
increases. It is seen that the simulation results comply with the theoretical analysis and
validate our propositions and theories. The comparison among our model, the binary
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model, and the method used for covering an infinite plane shows that our model is more
accurate. This study provides useful insights and guides to the deployment of practical
devices (e.g., sensors and other output devices) in coverage applications.
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Appendix A. Sum of a Sine Function with Equidistant Phases

The following equation holds for θ ∈ R, n ∈ Z
+, n ≥ 2:

n

∑
i=1

cos
(

θ − 2πi
n

)
= 0

There are three ways to prove this:

Appendix A.1. Proof by Contradiction Using a Vector Rotation Approach

Let’s construct a group of n vectors cos
(

θ − 2πi
n

)
x + sin

(
θ − 2πi

n

)
y for i = 1, 2, . . . , n

with a common initial point at the origin. Assume the sum vector

n

∑
i=1

[
cos

(
θ − 2πi

n

)
x + sin

(
θ − 2πi

n

)
y

]

is a non-zero vector. When the entire vector group is rotated about the origin for 2π/n, it
becomes exactly the same as before rotation, but the non-zero sum vector is also rotated
for 2π/n. Hence, to be equal before and after the rotation, the sum vector must be a zero
vector, i.e., ∑n

i=1 cos
(

θ − 2πi
n

)
= ∑n

i=1 sin
(

θ − 2πi
n

)
= 0 holds for any θ ∈ R.

Appendix A.2. Vieta’s Formula Approach

We know that the ith root of equation xn = 1 is cos 2πi
n + j sin 2πi

n . From Vieta’s
formulas of relations between roots and coefficients, we have

n

∑
i=1

(
cos

2πi
n

+ j sin
2πi
n

)
= 0 (A1)

which implies ∑n
i=1 cos 2πi

n = ∑n
i=1 sin 2πi

n = 0. Hence,

n

∑
i=1

cos
(

θ − 2πi
n

)
= cos θ

n

∑
i=1

cos
2πi
n

+ sin θ
n

∑
i=1

sin
2πi
n

= 0. (A2)
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Appendix A.3. Eular’s Formula Approach

From Eular’s formula, we have

n

∑
i=1

cos
(

θ − 2πi
n

)
+ j

n

∑
i=1

sin
(

θ − 2πi
n

)

=
n

∑
i=1

ej
(

θ− 2πi
n

)

=ejθ
n

∑
i=1

e−j 2πi
n

=ej
(

θ− 2π
n

)
1 − e−i2π

1 − e−j 2π
n

=ej
(

θ− 2π
n

)
1 − 1

1 − e−j 2π
n

=0. (A3)

Hence, ∑n
i=1 cos

(
θ − 2πi

n

)
= ∑n

i=1 sin
(

θ − 2πi
n

)
= 0 holds for any θ ∈ R.

Appendix B. Relation between First- and Second-Order Derivatives of a Convex

Decreasing Function

For a convex model of coverage I(d), ∀R ∈ R
+, the following inequality always holds:

d2 I(d)
dd2

∣∣∣∣
d=R

+
1
R

dI(d)
dd

∣∣∣∣
d=R

> 0 (A4)

Proof. Convex models of coverage possess the following properties:

• I(d) > 0 on d ∈ R
+

•
dI(d)

dd
< 0 on d ∈ R

+

•
d2 I(d)

dd2 > 0 on d ∈ R
+

• lim
d→+∞

I(d) = 0

• lim
d→+∞

dI(d)
dd

= 0

According to the above properties, we approximately draw the curve for the first
derivative dI/dd v.s. d, which entirely falls in the fourth quadrant and is asymptotic to
d-axis, as shown in Figure A1a. Then, we flip the function image about the d-axis to obtain
a new curve for −dI(d)/dd, as shown in Figure A1b. Next, we flip the new image again
about the line d = R to obtain the final curve for −dI(2R − d)/dd, as shown in Figure A1c.
On the final curve, the derivative at d = R equals that on the original curve:

−d2 I(2R − d)
dd2

∣∣∣∣
d=R

=
d2 I(d)

dd2

∣∣∣∣
d=R

> 0 (A5)
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d

(a)

d

(b)

d
RdT

(c)

Figure A1. Plots of the first-order derivative of a convex model of coverage and its mirrors: (a) original
first-order derivative of the convex model (blue), (b) mirrored about d axis (gray), and (c) further
mirrored about d = R (violet).

We draw the tangent line on curve −dI(2R − d)/dd at d = R, which intersects d-axis
at dT, as shown in Figure A1. Since dI(d)/dd is concave, −dI(2R − d)/dd is convex,
and dT > 0. So, we have

− dI(d)
dd

∣∣∣∣
d=R

= −d2 I(2R − d)
dd2

∣∣∣∣
d=R

(R − dT) <
d2 I(d)

dd2

∣∣∣∣
d=R

R (A6)

Therefore,
1
R

dI(d)
dd

∣∣∣∣
d=R

+
d2 I(d)

dd2

∣∣∣∣
d=R

> 0 (A7)
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Abstract: In this study, we develop a framework for an intelligent and self-supervised industrial
pick-and-place operation for cluttered environments. Our target is to have the agent learn to perform
prehensile and non-prehensile robotic manipulations to improve the efficiency and throughput of
the pick-and-place task. To achieve this target, we specify the problem as a Markov decision process
(MDP) and deploy a deep reinforcement learning (RL) temporal difference model-free algorithm
known as the deep Q-network (DQN). We consider three actions in our MDP; one is ‘grasping’ from
the prehensile manipulation category and the other two are ‘left-slide’ and ‘right-slide’ from the non-
prehensile manipulation category. Our DQN is composed of three fully convolutional networks (FCN)
based on the memory-efficient architecture of DenseNet-121 which are trained together without
causing any bottleneck situations. Each FCN corresponds to each discrete action and outputs a
pixel-wise map of affordances for the relevant action. Rewards are allocated after every forward
pass and backpropagation is carried out for weight tuning in the corresponding FCN. In this manner,
non-prehensile manipulations are learnt which can, in turn, lead to possible successful prehensile
manipulations in the near future and vice versa, thus increasing the efficiency and throughput
of the pick-and-place task. The Results section shows performance comparisons of our approach
to a baseline deep learning approach and a ResNet architecture-based approach, along with very
promising test results at varying clutter densities across a range of complex scenario test cases.

Keywords: prehensile; non-prehensile; robotic manipulation; Markov decision process; deep
reinforcement learning; deep Q-network; fully convolutional network; DenseNet-121

1. Introduction

The term Industry 4.0 has been around for more than a decade now. As the fourth
industrial revolution was all about automation, industry became familiar with various
cutting-edge technologies that were crucial to achieving the goal of automation, such as
digital twins, cyber–physical systems, smart manufacturing, Internet of Things (IoT), etc.

The deployment of robotics in the industry, in one way or another, can be traced back
almost 50 years. Usually, robotic manipulations can be divided into two kinds: prehensile
and non-prehensile manipulation. Prehensile motion [1] involves grasping or capturing,
whereas non-prehensile motion [2] is where propelling or pushing is involved instead
of grasping. An example of prehensile and non-prehensile motion is shown in Figure 1
from [3]. Well-learned coordination between these two robotic manipulations can lead to
higher success rates of pick-and-place; for instance, non-prehensile manipulation can create
space between tightly packed objects, thus making grasping possible.

On the other hand, prehensile manipulation will pick objects and facilitate collision-
free and more accurate pushing. A substantial amount of work has been conducted on
prehensile and non-prehensile robotic manipulations in the past, but mostly, they have
been researched independently of each other [4]. There is still a considerable research gap
and potential for exploration in the area of the combination of these robotic manipulations.
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Non-prehensile manipulation has been primarily used to accurately deal with the poses of
the objects [2]. In a combined approach involving grasping and pushing, pushing goals are
quite flexible; for example, they can create space between objects, change the pose of objects,
and crack clutter [5]. This flexibility factor was not addressed in different model-based [6–8]
and data-driven [9–11] approaches in the past. Model-based approaches are those which are
based on a static model, whereas data-driven approaches are those which involve any kind
of machine learning through data. In the area of prehensile manipulation, there have been
different approaches to learning successful grasping policies, some based on optimizing
affordances by learning from previous experiences [12–14] and some learnt through grasp
stability measures [15–17]. These approaches do not address the planning or learning of
sequences of prehensile and non-prehensile manipulation actions to maximize the success
rate of grasping and pushing. There are some hard-coded techniques that are dependent on
domain knowledge for implementing single-action push–grasp but, obviously, they have
very limited scope [2].

 
Figure 1. An example of prehensile and non-prehensile manipulations.

In this study, we present a framework in which the agent learns to perform a sequence
of prehensile and non-prehensile robotic manipulations through model-free temporal
difference off-policy deep reinforcement learning (Q-learning). This approach does not
require any kind of prior domain knowledge or geometrical pose information like some
previous approaches, which will be further discussed in the next section. The major
objectives achieved in this study are as follows:

• We designed a self-supervised deep reinforcement learning-based data-driven frame-
work. We deploy a memory-efficient joint network in this framework, unlike the
approaches in the past. This framework successfully enables the agents to learn and
perform a sequence of prehensile and non-prehensile operations together on regular-
and irregular-shaped objects without causing any bottleneck situations, unlike preced-
ing work. This learning is achieved through trial and error.

• The sliding or pushing operations are learnt in a bidirectional manner (left and
right), which then further enables grasping operation. This learning of bidirectional
non-prehensile manipulation directly elevates the progress of unidirectional non-
prehensile manipulation. This contrasts with approaches in the past using hard-
coded techniques, domain-based knowledge such as heuristics, or unidirectional
prehensile manipulations [2].

• Our agents learn and converge to the optimal policies through a joint framework of end-
to-end memory-efficient deep networks. In end-to-end networks, the model learns all
the steps between the initial input phase and the final output result; therefore, memory
management is essential to avoid bottleneck situations while using minimal resources.
This joint framework takes the visual state of the workspace as an input, and in return,
outputs the Q-values depicting the expected return for three different potential actions:
grasping, sliding left, and sliding right. Once the Q-values are received, the action
associated with the highest Q-value is selected as it predicts the maximum expected
future reward. This whole procedure will be explained in detail in Section 3 but even
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this brief overview clearly shows that our approach contrasts with the approaches of
the past, where each and every object was considered individually and hand-designed
features and heuristics were crucial for the action selection part [18].

In light of the abovementioned research objectives of this paper, the following three
elements represent the novelty of this proposed research framework:

• (i) Efficient memory management: this paper avoids any kind of bottleneck situation
at the GPU end through the deployment of a memory-efficient variant of DenseNet-
121 [19], unlike the preceding works.

• (ii) Bi-directional Sliding operations: learns bi-directional non-prehensile manipulation
(left and right direction sliding) in contrast to unidirectional pushing in the existing
approaches.

• (iii) Additional overhead avoidance: our framework avoids any kinds of additional
overheads incurred by previous approaches due to the use of object segmentation and
singulation techniques.

There are some existing mini production line setups, i.e., robotic arms and conveyor
belts [20,21], available on the market for pick-and-place tasks but they are completely
hard-coded and do not have any learning capability unless linked with a learning-based
frame such as the one proposed in this paper.

With the approach described in the above-mentioned manner, the problem can be seen
as a labeling problem where every pixel is labeled. Every pixel in the current state correlates
with the prehensile and non-prehensile robotic manipulations. These manipulations are
carried out at the three-dimensional location of the pixel in the current state. In the case
of prehensile motion, the pixel location will be considered as the center point of grasping,
whereas in the case of non-prehensile robotic manipulation, it will be taken as the initiation
point of the left or right-slide. We train a fully convolutional network and supply it with
the RGB-D images of the current scene of the workspace and obtain a pixel-wise prediction
table as the output. This pixel-wise prediction table helps the agent select the appropriate
pixel for robotic manipulation. These pixel-wise predictions procedures, also known as
fully convolutional action-value functions [12], provide us with the expected future reward
values for all the pixels whereby the pixel predicted to have the highest expected reward is
chosen for robotic manipulation on the three-dimensional surface. These pixel-wise action-
value functions make our agent learn and perform three different robotic manipulation
policies after just a few hours of training.

In summary, our overall contribution is a data-driven framework that involves in-
terlinked prehensile and non-prehensile robotic manipulations learned and performed
through end-to-end deep networks based on the concept of pixel-wise parameteriza-
tion. The main advantage of this work over others is that it deploys prehensile and
non-prehensile manipulations in a sequential manner such that it outputs a high success
rate for pick-and-place of regular and irregular objects in cluttered environments. Clutter
can be seen as a randomly closely packed group of regular- and irregular-shaped objects.
Cluttered objects are a common scenario in bin picking jobs in the industry. Similar to
simple or sparse pick-and-place, bin picking where objects are to be picked from clutter
has applications for implementation in all types of sectors such pharmacy, automotive,
logistics and many others [22]. A few examples are: the world’s largest shock absorber
manufacturer in Indiana, US requiring the picking of steel metal cylinders from clutter and
their placement for further processing [23]; a leading door manufacturing company in the
US requiring the packing of two different plastic parts after picking them from randomly
organized clutter in two separate bins [23]; and the Italian sports gun manufacturer Benelli
requiring small parts in clutter to be picked from bins and kitted in plastic boxes every day
at its factory [23]. Responding to this worldwide demand, several research approaches
have been presented for pick-and-place from clutter. The popular competition the Amazon
Picking Challenge, which took place from 2015 to 2017 [24], was also focused on bin picking
owing to its importance in industrial operations. Pixel-wise parameterization achieved
through end-to-end deep networks is the key concept in our approach and will be ex-
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plained in later sections. We present the results of various experimentations performed in a
simulated environment designed using a V-REP simulator.

2. Related Work

Grasp planning’s history can be traced back to the beginning of the robotic manipula-
tion era. Some studies consider the classification of grasps on the basis of their potential
to restrict or limit the mobility of the object [25], while some other studies involve the
modeling of contact forces and their opposing relation to grasping [4,26]. Some approaches
work with pre-computed grasp poses at runtime by linking them with the point cloud data
being used for object pose estimation [27]. These pre-generated grasps for translating the
abovementioned approaches to real-life environments are usually created from databases
of 3D object models [28]. A such, they require detailed knowledge beforehand, such as
the poses, shapes, contact points, etc., of the objects under consideration, which is almost
impossible to guarantee when dealing with novel objects in real-life environments. Aside
from model-driven studies, various data-driven approaches have also recently emerged.
Several studies have been carried out to train model-independent grasping policies in
which an agent learns to detect potential grasps without having any prior object knowledge
of factors such as the object’s pose, shape, contact points, etc. These policies are trained
by learning the visual features instead [5,12,13,15,16,29]. Studies such as [5] present the
idea of using pre-trained models on other robotic manipulations to decrease the learning
effort while learning the target robotic manipulation (for instance, a model pre-trained on
poking trying to learn grasping). In [12], deep networks were used to predict pixel-based
affordances in order to make agents learn grasping policies. Similar to these studies, the
approach presented in this paper is model-independent but involves the learning of a
sequence of prehensile and non-prehensile robotic manipulations, leading to an efficient
pick-and-place agent.

Non-prehensile motion can be dated back to the 1970s [30]. Most approaches presented
in the early days tackled the task by modeling it based on frictional forces [7,8]. While
these approaches motivated the research in this area, their assumptions while modeling
the task, such as variability and the non-uniform distribution of friction, were not good
enough to hold in real-world settings [10]. This caused these kinds of non-prehensile robotic
techniques to fail in a real-world setting by making inaccurate predictions. Data-driven
approaches to learn and perform non-prehensile robotic manipulation have also been pre-
sented [31]. Most of these data-driven approaches focused on training the agents to consider
one object at a time. It is still a complex challenge to model clutter-based non-prehensile
manipulation and develop solutions that can be proven effective in real-world scenarios.

Significant benefits can be obtained by combining both prehensile and non-prehensile
approaches. The study presented in [2] is a pioneering model-driven approach to per-
forming a push–grasp operation, a robotic manipulation in which grasping is performed
within non-prehensile manipulations. With this method, grasping chances are increased.
The study targets clutter-based workspace and it also focuses on achieving the ability
to move objects in clutter. However, this whole technique requires domain knowledge
beforehand, i.e., it is completely handcrafted. In contrast, the data-driven approach in
this paper requires no domain knowledge while learning through self-supervision. There
are some other approaches where grasping policies are already known and the task is to
move objects using non-prehensile robotic manipulation to certain locations. These certain
locations are locations where grasping can be performed according to the grasping policies
known beforehand [9,32]. A reinforcement learning-based approach has been presented
in [18] where the agent is trained to learn policies based on handcrafted features. The agent
must choose between prehensile and non-prehensile manipulation in order to perform a
pick-and-place task in a cluttered environment. The flow of their approach can be seen as
first performing segmentation on RGB-D images received from the sensor. Through the
segmentation, objects are identified. Once objects have been identified, multiple instances
of actions are sampled (prehensile and non-prehensile manipulation) for each object. For
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each sampled instance, hand-crafted features are extracted and, finally, an action instance is
performed that is predicted to have the maximum expected reward. The limitations to this
approach are that it is trained for mostly convex objects only. The non-prehensile policy or
pushing policy involved requires handcrafted features such as prediction of the motion of
the pushed object. This prediction is made with the help of a simulator. The future effect of
this pushing policy on the prehensile manipulation also needs to be known. In [33], the
authors present two linear push policies to push objects away from the walls in bin-picking.
Singulation techniques through reinforcement learning have been also presented but are
limited to regular-shaped objects and unidirectional pushes [34,35]. Some approaches in the
recent past have also been presented where pixel-wise-parameterization techniques have
been used for the robotic manipulation of only regular-shaped objects, but mostly, they
did not address non-prehensile motion [36] or movement in a limited and unidirectional
manner [12,37,38]. In such approaches, memory management is a key limitation to be ad-
dressed. In contrast, the approach presented in this paper involves policies that are trained
with end-to-end memory-efficient deep networks through pixel-wise-parameterization for
prehensile and bidirectional non-prehensile robotic manipulation. These policies do not
require or assume any kind of object knowledge of factors such as pose, shape, contact
points, etc. Our results show that our approach performs successfully in various test cases
involving many regular and irregular objects in clutter.

3. Methodology

In our framework, the agent learned to perform picking of regular and irregular-
shaped objects in clutter from a conveyor belt and to place them in a bin with the help of a
series of prehensile and non-prehensile robotic manipulation operations. In reinforcement
learning, an agent is the entity that uses a policy to maximize the expected return gained
from transitioning between states of the environment. In our case, the robotic arm UR5 can
be seen later as an agent interacting with the environment, which is the workspace. We
used reinforcement learning where a policy is learnt to solve the task through sequential
decision-making. As this is a learning-based data-driven framework, the success lies in
learning to predict the most suitable pixel of the workspace for the grasping and sliding
actions. The secondary success, as shown by the results, is the successful learning of
synchronization between the prehensile (grasping) and non-prehensile (sliding) actions.
The RL agent learns to perform such non-prehensile manipulations which lead to success-
fully rewarding prehensile manipulations in the near future and vice versa, whereas the
grasping pose is considered static in our work, always from the top angle, and robotic arm
motion planning is dynamic and controlled by the Open Motion Planning Library (OMPL)
built into the V-REP simulator. The overall success of the framework was calculated by
measuring the attempts taken to clear the workspace of all the objects, which could only be
achieved efficiently if the agent was able to learn the abovementioned factors and the policy
converged successfully. According to the design of the problem, an MDP was formulated.
The basic elements of the MDP are as follows:

• s ∈ S (RGB-D heightmap), where RGB-D heightmap represents the heightmap gener-
ated from the current scene of the workspace at any time instance. In this approach, we
used vision sensors to obtain the view of the current state of the workspace. Two types
of vision sensors were used in the environment: an orthographic projection vision
sensor and a perspective projection vision sensor. The basic difference between these
two is their field of view. Orthographic projection vision sensors have a rectangular
projection view, whereas perspective projection vision sensors have a trapezoidal
field of view. Figure 2 shows the location and fields of view of these vision sensors
in our designed simulation setup. We captured RGB-D images through these fixed
position vision sensors and aggregation was performed to gather maximum RGB
and depth information. Basically, an RGB-D image constitutes an RGB image and
its corresponding depth image. A depth image contains information relating to the
distance of the surfaces of scene objects from a viewpoint, which, in our case, was
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the height-from-bottom information. While an RGB image has three channels (red,
green, and blue), the depth image has one channel in which each pixel is in relation
to the distance between the image plane and the corresponding object in the RGB
image [39]. From these RGB-D images, we created RGB-D heightmaps. We followed
the method of heightmap computation from the RGB-D images used in [12] where
the RGB-D data are projected onto a 3D point cloud, which is then orthographically
back-projected upwards in the gravity direction, leading to a heightmap representa-
tion of the workspace with both color (RGB) and height-from-bottom (D) channels.
Thus, each RGB-D heightmap representation was taken as the state st at time t, as
shown in Figure 3. The RGB-D heightmaps created through this process comprised
224 × 224 pixels—the size of our workspace. Each pixel in the heightmap represents a
unique three-dimensional location in the physical workspace.

Figure 2. Location and field views of vision sensors in the simulated setup.

Figure 3. A sample of current view image from the workspace at timestep t and its generated RGB-D
224 × 224 pixel heightmap representation of the state st.

• a ∈ A: (grasp, left-slide, and right-slide), where grasp, left-slide, and right-slide are
three unique available actions in this MDP. We designed each robotic manipulation as
a distinct action, i.e., grasping (prehensile), left-slide and right-slide (non-prehensile).
The motive behind choosing actions from both categories is that non-prehensile ma-
nipulations will assist and lead to prehensile manipulation. Each action at, at a given
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time t, will be performed at a three-dimensional location p′ corresponding to a pixel
p of the RGB-D heightmap or state st. This formulation can be seen as p → p′ ∈ st ,
where p′ is the mid-point of the grasping. As we have top-mounted vision sensors,
our grasping will be carried out from above using an RG2 gripper [40], which is a
parallel-jaw grasper that went approximately 2 cm deeper than the p′’s z coordinate,
as shown in Figure 4, for a firm grasp. On the other hand, if left-slide or right-slide is to
be performed, p′ is the three-dimensional location that will serve as the starting point
of an approximately 8 cm linear straight push with the tip of the closed parallel-jaw
grasper in the left or right direction of the gripper, respectively, as shown in Figure 4.
The left-slide and right-slide actions will be performed with reference to the robotic
arm and the red and blue arrows show the direction of the right-slide and left-slide,
respectively, in Figure 4. For instance, if we imagine ourselves as the robotic arm, our
right hand points in the direction of the right-slide and our left hand points in the
direction of the left-slide. These grasping and sliding actions can be seen in Figure 5,
where Frame 1 shows the grasping action and, upon close inspection, Frames 2 to 6
show the sliding action where the green cuboid object is being slid/pushed by the
robotic gripper. To accurately assess the sliding action, one can notice the distance
between the green cuboid object and the brown triangular object reducing frame by
frame, especially from Frames 4 to 6.

• r ∈ R (1, 0.8, 0.5, 0), where 1, 0.8, 0.5, and 0 are the unique rewards in our rewarding
scheme. A reward scheme in a reinforcement learning approach is designed based on
possible outcomes. In our approach, we considered four possible outcomes. Firstly,
the object is grasped and placed at the designated location successfully; secondly, the
object is grasped successfully but falls during displacement to the designated location
(in the basket); thirdly, a successful left- or right-slide is performed; and finally, any
other outcome occurs. For the first outcome, the agent is awarded 1; for the second
outcome, which is verified by an infrared sensor between the gripper jaws, the agent is
awarded 0.8; and for the third outcome, verified by finding changes in the workspace
by comparing current and previous heightmaps, the agent is awarded 0.5. Any other
outcome is considered a complete failure, so the agent is awarded 0 as a reward.

According to the flow of our designed MDP, our agent, i.e., the robotic arm, at any
given state st at time t, according to the policy π, can choose and execute an action at
from the list of available actions, ending up in a new state st+1. It then receives a reward
rat(st, st+1), meaning a reward is earned after performing action a at time t during the
transition from state st to state st+1. The goal of this task is to discover the optimal policy π*
through which we can achieve the goal of maximization of the expected rewards in future,
given by Equation (1) as follows:

Rt = Σ∞
i=t γRai(si, si+1) (1)

where γ denotes the discount factor, usually ranging between 0 and 1, thus making the
agent learn at a faster pace. In this paper, we designed our approach based on an off-policy
model-free temporal difference learning algorithm known as Q-learning. We aimed to
achieve convergence of a policy π, which is greedy in nature and performs action selection
based on the maximization of the action–value function, also known as the Q-function.
A Q-function, which can be described as Qπ(st, at), is actually our tool that predicts the
expected reward for performing an action at while being at state st at any time t. We can
formally see our Q-function working in Equation (2).

Q(st, at) ← Q(st, at) + α
[
Rat(st, st+1) + γQ

(
st+1, argmax

(
Q
(
st+1, a′t

))− Q(st, at)
)]

(2)

where α denotes the learning rate and a′ denotes the list of all available actions.
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Figure 4. Grasp action (left) and left-slide and right-slide actions (right).

Figure 5. Frame 1 shows the grasping action whereas Frame 2 to Frame 6 show the sliding action
being performed on the green square object.

3.1. Q-Function Design

We used deep Q-networks for Q-function approximation to obtain the state-action val-
ues that predict the expected future rewards for carrying out an action at at a state st [41,42].
The Q-function that we designed is a combination of feed-forward fully convolutional
networks (FCNs) [43]. For more efficient learning of features, we created a distinct FCN for
each of the available actions, which are denoted as {FCNGrasp, FCNLe f tSlide, FCNRightSlide}.
Each of these FCNs is supplied with state s, which is represented as a heightmap, processes
it, and generates a pixel-wise map as the output. The values in this map are the Q-values.
As mentioned earlier, the state is represented by a heightmap of 224 × 224 pixels in ac-
cordance with the workspace size and the dense pixel-wise map generated by the FCN
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as the output is also of the same 224 × 224 size. Each value in this dense pixel-wise map
corresponds to each corresponding pixel in the heightmap representation of the state. Each
value in this pixel-wise map is a prediction of the expected future reward the agent will
earn after performing the corresponding action at p′, with the three-dimensional location
corresponding to the pixel p. All three FCNs {FCNgrasp, FCNLe f tSlide, FCNRightSlide} have
the same architecture, i.e., DenseNet-121 [44], whose general architecture is presented in
Figure 6.

Figure 6. DenseNet-121 general architecture.

The main difference between other traditional convolutional networks and DenseNet
is the number of connections. A traditional convolutional network comprising L layers
has L connections, which means every layer is connected to its immediate successor layer;
on the other hand, DenseNet comprises L(L + 1)/2 connections, where any layer will
obtain the feature maps from all its predecessor layers as inputs and will supply its own
feature map to all its successor layers as their input. This is mainly the reason behind
adopting the DenseNet architecture in our approach. With the help of DenseNet, feature
reuse is enabled, feature propagation is made better, the vanishing gradient problem is
addressed, and parameter reduction is achieved. However, at the same time, all these
benefits lead to quadratic growth of the features as the network becomes deeper and deeper,
which results in choking of whole network and the formation of a bottleneck scenario.
Therefore, we addressed this issue in a different manner, which will be stated in future
sections. DenseNet-121 was used in two manners: trained from scratch and also pre-trained
on ImageNet [45]. The structure of DenseNet-121 was extended with two additional
1 × 1 convolutional layers along with rectified linear unit (ReLU) activation function [46]
and batch normalization [47] procedures. We used the multimodal approach shown in
Figure 7 as in [12], and within an FCN, we created two trunks of DenseNet-121; one was
supplied with color channels (RGB) from the heightmap representation of the state, and
the other trunk was supplied with clones across the three-channel depth (DDD) of the
heightmap, which was normalized by subtracting the mean and dividing by the standard
deviation. This cloning of depth across channels was performed to exploit the weights
pre-trained on ImageNet RGB images. Features learned through both these trunks were
concatenated and supplied to the extended 1 × 1 convolutional layers.

To enhance the learning of features for robotic manipulations, we brought in the
rotation of heightmaps. Initially, we rotated the input heightmaps by 90 degrees, leading
to 4 rotated heightmaps in total. Later, we experimented with rotating heightmaps at
45 and 22.5 degrees, leading to 8 and 16 rotated heightmaps in total, respectively. Figure 7
shows all three rotation modes; the first row shows the 90-degree rotations, adding the
second row shows the 45-degree rotation, and all the rows together show the 22.5-degree
rotations. The results show that features were learn better when heightmaps are rotated
at 22.5 degrees, generating 16 heightmaps, so that the factor of different orientations is
handled well. In this way, each FCN is supplied with 16 rotations of heightmaps and, in
turn, outputs 16 dense pixel-wise Q-values maps. So, the total output generated from all
the three FCNs {FCNGrasp, FCNLe f tSlide, FCNRightSlide} is 48 dense pixel-wise maps, out
of which 16 are for grasping, 16 are for the left-slide, and 16 are for right-slide. Simply
put, the 48 maps are an extension of the 16-rotation scheme instead of being two different
schemes. Processing was carried out for all three actions (grasp, left-slide, and right-slide)
at parallel; each action’s processing obtained 16 rotated pictures, and collectively, they
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amounted to 48 (16 + 16 + 16). In other words, when we consider a single action, it is
16 inputs and 16 outputs, but when we collectively consider all three action, it becomes
48 inputs and 48 outputs. In all these Q-values from the total 48 dense pixel-wise maps, the
maximum one is selected for the particular action corresponding to the FCN it is generated
from. Action was performed on p′, the three-dimensional location of the pixel p whose
corresponding maximum Q-value was selected. This is depicted as in Equation (3).

max Q(st, at) = max
(

FCNGrasp(st), FCNLe f tSlide(st), FCNRightSlide(st)
)

(3)

In our pixel-wise affordances approach, these FCNs were used as Q-function ap-
proximators. FCNs have proven their worth in pixel-wise scenarios through efficient
computation mechanisms. In each forward pass in our network, 2,408,448 Q-values are
computed in a time-efficient manner. This total number of Q-values is calculated as each
pixel-wise map is of 224 × 224 size, and such 48 pixel-wise maps are generated in every
forward pass (224 × 224 × 48). The convergence of our policies was achieved with a lower
training data requirement due to this pixel-wise parameterization and the involvement of
rotation functionality (helping with learning various orientations), thus enabling the agent
to learn at the maximum rate.

Figure 7. RGB-D heightmap rotations at 90 degrees (first row), 45 degrees (first and second row), and
22.5 degrees (all four rows).

3.2. Training

In each iteration, after receiving RGB-D images from the vision sensors, the heightmap
representations are generated as the current state. The rotation function, shown in Figure 7,
is then performed on the heightmaps, the rotated heightmaps are fed to the network,
and pixel-wise maps are generated as outputs in return, as shown in Figure 8. As the
same workspace state is being supplied, all three FCNs’ outputs are shown on the same
workspace image, but the difference or the actual output is the RED dot in all three output
pictures labeled as the best location for each action. For instance, the top image shows
the best location (red dot on the left edge of the white rectangular object) for the grasp
action according to the 16 pixel-wise Q-value maps generated by its FCNGrasp. The middle
image shows the best location (red dot on almost the lower corner of the orange rectangular
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object) for the left-slide action according to the 16 pixel-wise Q-values maps generated by
its FCNLeftSlide. The bottom image shows the best location (red dot on the upper corner
of the orange rectangular object) for the right-slide action according to the 16 pixel-wise
Q-value maps generated by its FCNRightSlide. The highest Q-value of these all three pixels
(locations) will be selected for the corresponding action. These pixel-wise maps can be
visualized in heatmap format as shown in Figure 9, where hot regions depict higher Q-
values. For the backpropagation, we used the Huber loss function [48], which can be
considered as a trade-off between the mean square error (MSE) and mean absolute error
(MAE). In our backpropagation scheme, gradient passing was only performed through
a particular FCN and pixel p, which gave the maximum Q-value for action selection,
whereas 0 loss was backpropagated for all the remaining pixels. FCNs were trained using
stochastic gradient descent with momentum [49], which is considered more efficient and
rapid compared to traditional stochastic gradient descent (SGD). The traditional SGD
calculates noisy derivatives of loss, whereas the SGD with a momentum variant involves
exponentially weighted averages. The traditional SGD is outperformed by the momentum
variant because these exponentially weighted averages are much closer to the actual loss
compared to the SGD’s noisy values. Therefore, an SGD with momentum helps gradient
vectors to move in the right direction, leading to faster convergence. While training our
network, the values of momentum, learning rate, and weight decay were set at 0.9, 1 × 10−2,
and 1 × 10−3, respectively. In our training phase, we also used experience replay, where the
agent keeps a record and reuses its experiences from the past. We adopted the stochastic
prioritization approach developed in [50] for experience replay. To address the exploration
vs. exploitation dilemma, we deployed epsilon-greedy action selection, where the epsilon
value was 0.3 at initiation and gradually decreased down to 0.1. Our framework was
developed and trained on a NVIDIA GeForce RTX 2080/PCIe/SSE2 with dedicated 8 GB
memory using an Intel® Core™ i7-9700K CPU @ 3.60 GHz × 8 processor along with 16 GB
RAM. The development and training of the models was performed in PyTorch version 1.7.1
using CUDA version 11.4, cuDNN version 8.2.2, and NVIDIA Driver version 470.103.01.

Figure 8. The flow of the whole approach is shown in this figure. RGB-D heightmaps comprising RGB
and DDD channels generated as state representations are rotated by 22.5 degrees and all 16 rotations
are fed to all three FCNs {FCNGrasp, FCNLeftSlide, FCNRightSlide} based on DenseNet-121 architecture. A
pixel-wise map of affordances is generated by each FCN against each rotation of RGB-D heightmap.
This map constitutes Q-values, shown in the heatmap format. The maximum Q-value is chosen out
of all 48 pixel-wise maps for relevant action to be performed.
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Figure 9. Heatmap visualizations of pixel-wise maps of Q-values generated against 16 rotations of an
RGB-D heightmap at 22.5 degrees.

DenseNet is one of the most efficient architectures due to its maximized links leading to
maximum feature reuse. However, at the same time, if it is not managed properly, due to its
contagious convolutional operations its features, maps can start growing quadratically, thus
creating a bottleneck in the GPU. Therefore, we implemented a memory-efficient variant as
in [19], where shared memory schemes are used for concatenation, batch normalization,
and gradients.

In our simulated environment, all agents are trained via self-supervision through trial
and error. At the start of the training process, the workspace on the conveyer belt has N
number of regular and irregular objects in a random clutter. The agent starts trying to
pick and place these objects and keeps on doing so until the workspace is cleared of all the
objects. Once all objects have been placed inside the basket, one iteration is completed and
a new random clutter of objects appears in the workspace for the next iteration, and the
process goes on. In our training, we kept the value of N = 10 for training, which means
a random clutter of 10 different regular and irregular 3D objects (shown in Figure 10) in
each iteration.

 
Figure 10. Ten regular and irregular 3D objects randomly used in the approach.
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3.3. Simulation and Motion Planning Specifications

The Virtual Robot Experimentation Platform (V-REP) is a 3D robotic simulator with
integrated development and coding support [51]. It also has the physics engines Bullet and
ODE, providing a real-time experience of the objects involved in the simulation [52,53]. The
API and threaded/non-threaded Lua scripting functionalities make it a reasonable option
for combining multiple platforms such as python, java, C++, etc., for experimentation.
Using this API, we were able to make our python-based RL agent communicate with the
Lua-scripted simulated environment.

V-REP provides various motion planning calculation modules including the forward
and inverse kinematics module. Forward kinematics means using kinematic equations,
taking joints parameters as inputs, to calculate the position of an end-effector, whereas
inverse kinematics is the reverse process, calculating joint parameters for the given position
of an end-effector [54]. The collision detection module is another important module in
V-REP used to highlight collisions if there are any. We used the UR5 robotic arm [55], a well-
known cobot, for our approach, which is a 6-degrees-of-freedom robotic arm, and we used
an RG2 gripper for grasping and sliding purposes. The whole simulation scene designed
in V-REP can be seen in Figure 11. A conveyor belt was used in our experimentation.
A ray-type infrared sensor is installed at the workspace end of the conveyor belt. The
conveyor belt keeps moving, and as soon as the clutter of objects reaches the infrared sensor
and breaks the ray, they are detected by the sensor. The sensor resultantly sends a signal
to the conveyor belt controller to stop and to the vision sensor controller to capture the
workspace RGB-D images for processing. As the workspace clears, the infrared sensor ray
is reinstated and the conveyor belt starts moving again, thus bringing the next clutter, and
in this way, the cycle continues.

Figure 11. Whole simulation scene designed in V-REP.

We explored a number of options for performing our motion planning task such as
OpenRave and Trajpot [56,57]. However, the best fit with our simulated environment was
the Open Motion Planning Library (OMPL) [58] as it provided us with a certain degree
of customization and control over the motion planning algorithms. The OMPL contains
a number of geometric and control-based planners. Some of the many sampling-based
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planners available are Single-query Bi-direction Lazzy (SBL), Expansive Space Trees (EST),
Rapidly exploring Random Trees (RRT), and the Probabilistic Roadmap Method (PRM),
along with their many variants. In a similar way, many commonly used path planning
state-spaces are readily available in an implemented form. The planner we used for motion
planning and path calculations is a single-query planner, a bidirectional variant of Rapidly
exploring Random Trees (RRT), known as RRT-Connect [59]. The core logic behind RRT-
Connect is to develop two RRTs, one at the start point and the other at the end, and then,
connect them. Due to this, the RRT-Connect planner tends to outperform the RRT planner.

4. Experimental Results and Discussion

In this section, we present a series of experiments carried out in order to see to what
extent our goals can be achieved. Through these experiments, we assess the learning ability
of the agent to perform pick-and-place tasks, the efficiency of prehensile manipulation, and
the role of non-prehensile manipulation in doing so.

To evaluate the performance of our agent, we compared it with a deep learning
baseline framework. We name our original approach G&S, which is the abbreviation
for grasp and slide. The baseline approach is quite like our original approach. It is also
designed around the idea of pixel-wise parameterization, but it is a deep learning-only-
based supervised binary classification approach, i.e., there is no RL component. The same
method of state representation and the same number of actions are formulated. As the
number of actions is the same in both cases, the same number of FCNs are used. Like
the concept of the original approach, each FCN will generate a dense pixel-wise map of
affordances for the corresponding action. The only difference will be that the FCNs will
be trained with binary classification (0 and 1) in a supervised manner and will generate
a dense pixel-wise map of affordance values between 0 and 1. The labels for supervision
will be generated on the basis of the success of grasping and sliding so that if grasping
is successful, leading to placement of the object in the basket, it will be labeled as 1,
and otherwise, as 0; moreover, if a change is detected in the workspace scene after left-
or right-slide action is performed, it will be considered successful and labeled 1, and
otherwise, as 0. Backpropagation was also performed in the same manner as in our G&S
approach, as gradient passing was only performed through a particular FCN and pixel
p, which gave the maximum corresponding value in the pixel-wise dense map for action
selection, whereas 0 loss was backpropagated for all the remaining pixels. This supervised
learning approach policy is considered greedy as it will go for the action with the maximum
pixel-wise affordance value at any timestep. This baseline approach revolves around the
concept of a pixel-wise affordance-based grasping approach designed in [12], but for an
accurate comparison, we used similar DenseNet-121 [44] architecture and weights from the
pretraining on ImageNet [45]. The comparison of the performance of our agents trained
from scratch using the G&S approach and the baseline binary classification approach can
be seen in Figure 12. In this comparison, both agents were trained for 3000 episodes,
where each episode involved 10 randomly chosen regular- and irregular-shaped objects
and ended when all the objects were placed, or at least ten actions consecutively failed to
bring any change to the workspace. The blue line represents the success rate of our G&S
approach, which is around 84%, and next to it, the green line represents the success rate of
the binary classification approach, which is around 57%. This measure of success rate is
estimated as the number of successfully placed objects in the episode over the total number
of actions performed in the episode. A probable explanation for the reduced efficiency of
our baseline binary classification approach may be its greedy approach. Instead of building
and following strategies based on future perspectives as our G&S approach does through
reward schemes, it focuses only on selecting actions based on the maximum pixel-wise
affordance value at the current timestep.
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Figure 12. Performance comparison of original G&S approach and binary classification baseline approach.

We also designed another variant of our G&S approach, and the only difference
between the original and this variant is that it uses the ResNet-101 architecture pre-trained
on ImageNet [45] instead of DenseNet-121. ResNet [60], also known as a residual network,
is made up of residual blocks. It was designed to tackle the fact that every network has a
certain threshold value for its depth; as more and more layers pile up over the top of the
network, its performance starts falling due to the notorious vanishing gradient problem. In
the vanishing gradient problem, during backpropagation, as the gradient is transmitted
through the depth, i.e., previous layers, it shrinks to an infinite level due to repetitive
multiplications. ResNet resolves the vanishing gradient problem by introducing identity
shortcut connections, also known as skip connections, which skip one or more layers, thus
providing better gradient flow. The performance comparison of our original G&S approach
based on DenseNet-121 pre-trained on ImageNet and its variant based on ResNet-101
pre-trained on ImageNet is shown in Figure 13. The original approach outperforms the
ResNet-based variant by a margin of around 13%. The possible reason may be that ResNet
performs a summation of feature maps of the layers, but DenseNet performs concatenation
of feature maps, thus allowing for feature reusability at the maximum level. Whereas the
identity shortcut connections restrict the representation capacity in ResNet, the multi-layer
concatenation of feature maps through L(L + 1)/2 links among the L layers in DenseNet
enables it.

Figure 13. Performance comparison of original G&S approach and ResNet-based approach.

As the motive of our study is to train our agents in such a manner that they can
learn the pick-and-place task through a combination of prehensile (grasping) and non-
prehensile (left-slide and right-slide) robotic manipulations, we explored the role of non-
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prehensile actions in the convergence of the policy being learnt through trial and error
under self-supervision. To understand the contribution of sliding manipulations to the
overall learning of the pick-and-place task, we trained another variant of our original
G&S approach with the difference that reward allocation for non-prehensile manipulations
(left-slide and right-slide) was discontinued. Rewards were only awarded for prehensile
manipulations (grasping) so that whenever an object was moved, the agent earned no
reward. Figure 14 shows the performance of the original G&S approach in the blue
line and the reward-less sliding variant in the cyan line. Removing rewards for sliding
manipulations shows performance degradation of around 22% in terms of success rate.
This highlights the importance of the contribution of non-prehensile manipulations in the
learning of agents. The delayed rising curve of the success rate depicts the slower pace of
the agent in learning the policy because the non-prehensile manipulation rewards are not
there; thus, the agent is, by default, learning a policy that is more grasping-oriented. In
this situation the importance of sliding manipulation can only be learnt indirectly through
the rewards earned through grasping performed in the future after sliding manipulation;
therefore, a lower rate of improvement is indicated by the delayed rising curve compared
to the original G&S approach.

Figure 14. Performance comparison of original G&S approach and no-sliding-rewards approach.

In our G&S approach, we deployed DenseNet-121 architecture pre-trained on a pop-
ular ImageNet subset [61] comprising around 1,431,167 training, validation, and testing
images in total belonging to around 1000 object classes. In our work, we also investigated
the role and contribution of pre-trained weights, gained through training over ImageNet,
in the learning process and the convergence of our learning policies by training a variant of
our original G&S approach from scratch, in other words, involving no pre-trained weights.
Figure 15 shows the success rates of both our original G&S approach in the blue line and
its variant without pre-trained weights in an orange color. The results show that these
pre-trained weights do not play much of a part in the process of learning the pick-and-place
task, as the performance of both agents’ is similar. Usually, pre-trained weights are involved
in an architecture to decrease training time and increase accuracy. However, this scheme
of using pre-trained weights does not make much difference in our case. We surmise that
the likely reason may be the different kind of pixels pattern in our RGB-D heightmaps
generated by following the approach presented in [12] compared to those in the images of
the ImageNet dataset. In Figure 15, one can see the success rate’s early curve increase in
the orange line, representing the variant with no pre-trained weight. The delayed curve
increase of the original G&S approach, represented by the blue line, can be seen in Figure 15.
We suspect that the likely reason behind the delayed curve increase is the fact that the
agent’s initial training steps were consumed to escape the local optima problem due to
pre-trained weights.
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Figure 15. Performance comparison of original G&S approach, no-pre-trained-weights approach,
and no-depth-channels approach.

Another element in our approach that is worth exploring is the depth information
or the depth channels in our heightmaps. In Section 3.1, we explained that we cloned the
depth across three channels to exploit weights pre-trained on ImageNet images. As such, as
we already created a variant of our approach which is trained from scratch instead of using
pre-trained weights, we removed the depth channels providing information regarding
height from the bottom; then, for each FCN, we created only one trunk of DenseNet-121
to learn features from RGB channels instead of two trunks, because no second trunk was
required to learn features from the cloned depth channels (DDD), and then, we further
concatenated them with the features learnt from the RGB channels. In Figure 15, the
magenta line represents the success rate of the variant of our G&S approach, which is
trained from scratch without being provided with depth channels for feature extraction,
and thus, no information regarding the height from the bottom. Excluding the feature
learning from the depth channels led to performance deterioration as the success rate
dropped to around 51% over the period of 3000 episodes. This clearly shows that the depth
information or height-from-the-bottom information is quite crucial in the learning process
of the agent and optimal convergence of the learning policies.

Further, we also reviewed our G&S approach’s performance under unseen circum-
stances, which were not experienced during the training phases. As described in Section 3.2
during our training phases, the workspace on the conveyer belt has N number of regular
and irregular objects in a random clutter and the agent starts picking and placing those
objects and keeps on doing it until the workspace is cleared of all the objects. During the
training phases, the number of random objects N was kept at 10. After training our agent
for 3000 episodes consecutively on a clutter of 10 objects, we tested our agent by varying
the clutter density. To bring variations in clutter density, we created three categories of
clutter, as shown in Figure 16.

The first category is named the minimum density clutter, where regular and irregular
objects are randomly distributed, and the number of objects ranges from 6 to 10. The second
category is the medium density clutter, where the number of objects remains between 15 to
20 and they are distributed randomly. The third and last category, named the maximum
density clutter, also comprises randomly distributed regular and irregular objects ranging
from 25 to 30 in number. In addition to this, we designed several complicated cases
comprising at least three and at maximum three objects, as shown in Figure 17, in order to
test the behavior of our agent in these complicated scenarios. In these complicated scenarios,
one or two objects were always kept free, whereas the remaining five to six regular and
irregular objects were placed in some kind of locking manner so that these objects caused
resistance while the agent tried to grasp or slide them.
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Figure 16. Three categories based on clutter densities.

 
Figure 17. Complicated scenarios comprising 3 to 7 regular and irregular objects, designed for testing.

The average performance results of these clutter variations and complicated test cases
are shown in Table 1.

Table 1. Average Test Results (%).

Category Success Rate Grasping Success

Minimum Clutter 84% 96%

Medium Clutter 82% 95%

Maximum Clutter 74% 82%

Complicated Scenarios 65% 73%

We can see in Table 1 that we compared the grasping success of our agent along with
the overall success rate. This grasping success is calculated as the number of successful
grasps over the total number of grasps performed in the whole episode. For instance, if
10 grasping actions were performed during the episode and 8 of them were successful,
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then grasping success will be calculated as 8/10 × 100 = 80%. The results show that our
agent performs well in minimum and medium clutter density test cases, but in maximum
clutter density, performance degrades a little in both overall success rate and grasping
success. The major reason behind this degradation of performance is the factor of objects
appearing in the workspace on the conveyer belt at random locations, and due to high
density, these objects are placed on each other in random weak poses. This is also visible in
maximum density clutter, as shown in Figure 16. As soon as the robotic gripper goes to
grasp an object that is weakly posed on other objects, they all slip and fall, leading to failed
grasping and degradation of the overall performance. In the case of complicated scenarios,
we intentionally placed objects in locking poses such that it became difficult for the agent to
pick and place them. For instance, in some places, there was not enough space for grasping
or sliding, and at the same time, some objects were too wide to be grasped. These scenarios
were met by the agent for the very first time, as the object arrangements were completely
random and not hand designed. Another reason for the decrease in overall performance is
the smaller number of objects in the scenario. For instance, if the test case has only three
objects, the agent clears the workspace in four actions, which is a very good performance,
but still, the overall success rate will fall to 3/4 × 100 = 75%. Therefore, we can say that the
agent has truly shown its learning in our test cases in a very reasonable manner.

5. Conclusions and Future Work

In this study, we have presented a framework designed to enable intelligent and
self-supervised industrial pick-and-place operations involving cobots. Our framework
deals with the learning of both prehensile (grasping) and non-prehensile (sliding) robotic
manipulations in a memory-efficient manner, therefore allowing the agent to learn and
perform a sequential combination of prehensile and non-prehensile robotic manipulations
to increase the efficiency and throughput of the pick-and-place task at hand. This approach
deals with three unique actions and does not require any kind of prior domain knowledge
or geometrical pose information like some previous approaches. In this our approach, we
made our agent learn one prehensile manipulation—grasping—and two non-prehensile
robotic manipulations—left-slide and right-slide. We used the pixel-wise parameterization
method along with deep Q-learning to obtain pixel-wise maps of Q-values. The action with
the highest Q-value is performed at the 3D location of the pixel that is predicted to have
the maximum Q-value. Rewards are awarded accordingly for successful actions. Through
the process of self-supervised trial and error, our agent learns and converges to the optimal
policy, which enables the agent to perform successful non-prehensile manipulations at such
moments where they lead to the possibility of successful prehensile manipulation in the
future. Our agents learn these policies and perform successfully, as shown in our Section 4,
where we show comparison results of different variants and baseline approaches and the
test results for varying clutter densities and different test cases.

Thus, our approach shows many promising results, but at the same time, it also has
some limitations. In our approach, the agent was trained on a limited number of 3D
block shapes, which could be enhanced and extended to objects found in daily life such
as bottles, cups, balls, etc. By doing so and redesigning the whole approach structure on
ROS/ROS2, we intend to perform testing on a real UR5 robotic arm using daily life objects,
too. Efficient management requirements due to the feature map concatenation factor of
DenseNet-121 can also be seen as a kind of limitation. Another limitation can be seen in the
factor of our approach only involving a sequential combination of robotic manipulations,
for which, in the future, the number of actions can be increased and parallel robotic
manipulation combinations can be brought in, along with other new robotic manipulations
such as stacking, rolling, rotating, etc. By implementing these extensions, the system may
become so large that the overestimation of future rewards will undoubtedly cause problems.
Therefore, to resolve this issue, Double Q-learning [62] and Dueling Q-learning [63] variants
can be explored in the future in order to increase the chances of efficiency and throughput.
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Abstract: To improve the quality and efficiency of robot grinding, a design and a control algorithm for
a robot used for grinding the surfaces of large, curved workpieces with unknown parameters, such
as wind turbine blades, are proposed herein. Firstly, the structure and motion mode of the grinding
robot are determined. Secondly, in order to solve the problem of complexity and poor adaptability of
the algorithm in the grinding process, a force/position hybrid control strategy based on fuzzy PID
is proposed which greatly improves the response speed and reduces the error of the static control
strategy. Compared with normal PID, fuzzy PID has the advantages of variable parameters and
strong adaptability; the hydraulic cylinder used to adjust the angle of the manipulator can control the
speed offset within 0.27 rad/s, and the grinding process can be carried out directly without obtaining
the specific model of the surface to be machined. Finally, the experiments are carried out, the grinding
force and feed speed are maintained within the allowable error range of the expected value, and
the results verify the feasibility and effectiveness of the position tracking and constant force control
strategy in this paper. The surface roughness of the blade is maintained within Ra = 2~3 μm after
grinding, which proves that the grinding quality meets the requirements of the best surface roughness
required for the subsequent process.

Keywords: grinding robot; constant force control; surface tracking; fuzzy PID control; wind
turbine blade

1. Introduction

The development of the wind power industry is of great significance to environmental
protection, and there has been rapid development, with increasing requirements for wind
turbines in recent years [1]. Therefore, the manufacturing process of wind turbine blades
and other components is gradually becoming more intelligent and automated [2], and
the process of grinding wind turbine blades is essential. The roughness after grinding
affects the blade’s subsequent effectiveness, and the grinding process itself determines the
production cost and service life of the blade. Due to the irregular shape and large size of
a wind turbine blade’s surface, artificial grinding, which is currently the most common
method of treatment, is not merely inefficient, but also struggles to achieve uniformity,
and polished glass fiber dust can cause environmental pollution and damage to workers’
health [3,4]. In consequence, the design of, and research into, wind turbine blade grinding
robots has gradually attracted more interest in recent years. Some of them employ a gantry
structure [5,6] equipped with a grinding head on each side, whereby the gantry moves
along a guide rail to perform the grinding of the blades. This model achieves high grinding
efficiency but requires much space. Others use mobile platforms equipped with multi-
degree-of-freedom manipulators and grinding devices [7], which can effectively adapt to
the site, but with more difficult manipulator control.
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With the gradual increase in industrial automation in recent years, the requirements
relating to the control and repetitive positioning accuracy of robots have increased, and the
environmental aspects of robots need to be improved. The surfaces of wind turbine blades
are complex, with curvature variation in the axial and circumferential directions; thus,
the control of the grinding robot is particularly important. To ensure a suitable grinding
effect, it is essential to maintain a constant grinding force and the real-time tracking of the
blade surface.

Most previous studies have focused on force control, which can be divided into passive
control and active control [8]. Guo et al. [9] proposed a new two-dimensional adjustable
force mechanism that does not require additional sensors. However, because of the low
accuracy and poor stability of this method of passive constant force control, active force
control has become a research hotspot.

Active force control includes impedance control and force–position hybrid control.
Shen et al. [10] proposed a fuzzy-based impedance control algorithm, with which the contact
force error could be controlled within 2N for the external environment with unknown
stiffness. Wahballa et al. [11] used an OSRDF impedance controller to offset the damping
force and the contact force tracking error, which improved the system stability.

PID control is a common method applied to achieve active force control. The process
is proportional, integral and differential, enabling quick responsiveness and high stability
in control, and the robustness of the mode of PID control is strong. To resolve the issues
of model construction and algorithm complexity that arise in the active flexibility control
method, Yao et al. [12] proposed a fuzzy PID smooth grinding control algorithm based on a
two-degree-of-freedom constant force grinding device driven by pneumatic force, wherein
the position and force are decoupled and controlled separately, and verified that the control
precision and response time of the fuzzy PID control algorithm were better than those of the
conventional PID control method. In addition, Sun et al. [13] confirmed the effectiveness of
the fuzzy PID control algorithm. Dai et al. [14] also presented a backstepping + PID control
method to closely track the applied force.

As such, many scholars use PID as the control strategy in their research. Xu et al. [15]
proposed the combination of an active strategy, based on PI/PD control, and a passive
strategy, based on PID control, which was shown to improve the accuracy and efficiency
of the controlled force and avoid over- and under-cutting. Zhang et al. [16] presented a
method for optimizing the parameters of a robot PD constant grinding force controller
using deep reinforcement learning DRL Rainbow, which can ensure that a constant force
is applied during grinding by adjusting the grinding depth. Further, some studies have
been carried out on the normal vector of the surface; in establishing the positioning of
the grinding tool during processing, Zhao et al. [17] proposed an adaptive PD constant
force controller and a normal vector search algorithm, which together ensure that constant
force is applied during the grinding of workpieces with unknown shapes. Wang et al. [18]
put forward a force–position hybrid control method based on a PD constant force control
algorithm. Han et al. [19] presented a fuzzy gain scheduling PID controller, which could
reduce the influence of dynamic characteristics on the control system.

As regards the influence of curvature variance, beginning with an improved material
removal model, Li et al. [20] took the material to be removed from different positions on the
object being machined as the research object, and constructed a hybrid force–position con-
trol algorithm to ensure the contour accuracy of workpieces with complex curved surfaces.

Some scholars have proposed other new algorithms to ensure constant force control. In
order to resolve the shortcomings of traditional robots’ constant force output, Jia et al. [21]
combined the PID control method with a particle swarm optimization algorithm (PSO) to
realize the constant force output of a cylinder and drive the grinding device. Zhao et al. [22]
developed a strategy for constant force grinding that reconstructs the surface of the work-
piece based on the point cloud data obtained via visual measurements, without requiring
an accurate CAD model of the workpiece. In the grinding process, noise in the machining
environment will affect the constant force control of the robot. Dai et al. [23] proposed a new
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force control method using an extended state observer (ESO) that can reduce fluctuations
in the grinding force in the normal direction. Due to the impact between the grinding
tool and the surface being machined, there is constant fluctuation in the contact force, and
so Xiao et al. [24] put forward an active disturbance rejection method. Here, in order to
achieve constant force control during machining, an RBF neural network model and an
iterative algorithm are combined. Zhang [25] presented a variable-gain iterative learning
force–position hybrid control method with ideal contour force as the contact point process-
ing idea, which could still ensure the control accuracy of contour force when the tracking
error was not accurate enough. Li et al. [26] used the force–position hybrid control method
to estimate and adjust the contact state between the robot and the unknown workpiece,
which could provide a constant normal contact force. Zhang et al. [27] proposed a constant
force grinding controller based on proximal strategy optimization, which improved the
response ability of the system.

The roughness of the outer surface of the wind turbine blade before grinding is
about Ra = 0.8~1.5 μm, and the requirements are met when this value after grinding is
Ra = 1.5~8 μm. A roughness of Ra = 2.0~3.0 μm yields the best results in the subsequent
painting of the blade.

In this paper, a wind-turbine-blade-grinding robot, along with its control strategy
and related algorithms, are introduced. Given the size and complexity of the surfaces of
wind turbine blades, this paper considers the surface tracking and constant force control of
blades simultaneously, so as to enhance the surface quality of wind turbine blades after
grinding. Firstly, the structure of the grinding robot is described, and the method for
planning the motion of the robot is designed. Then, the strategies of surface tracking and
constant force control are established; fuzzy PID control is applied to the power source of
the manipulator, and gravity compensation for the grinding robot is conducted. Finally,
the controlling algorithm constructed in this paper is applied to the operation of a grinding
robot to validate the reliability of our method of surface tracking and constant force control;
by comparison with artificial grinding, the feasibility of the effectiveness of the scheme is
confirmed. The experimental results are discussed at the end of the paper.

2. Grinding Robot

2.1. Structure of the Grinding Robot

The grinding robot addressed in this paper is composed of three main parts: an omni-
directional motion chassis, a five-degree-of-freedom manipulator and a flexible grinding
device, as shown in Figure 1. The omnidirectional motion chassis is equipped with a
five-degree-of-freedom manipulator to enable the maneuverability of the grinding robot,
and a flexible grinding device is installed at the end of the manipulator.

 

Figure 1. Grinding robot.
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The structure of the pose adjustment system of the flexible grinding device is shown
in Figure 2. Four small springs are arranged around the directional connecting block in
the pose adjustment system to ensure that the flexible grinding device can move around
the axial surface of the blade, and a micro displacement sensor is included under the large
spring in the center, so the normal force of the grinding device on the blade is governed by
measuring the compression distance of this spring.

Figure 2. Pose adjustment system.

2.2. Motion Planning and Control Scheme

Unlike the structure of a traditional manipulator, the wind-turbine-blade-grinding
robot addressed in this paper is a type of vehicle-mounted combined manipulator. For
simplicity, the control of the total motion of the grinding robot is separated into two steps.
First is the position adjustment of the whole machine; the grinding robot is moved to
the correct area for blade processing in this stage. Here, only the control of the moving
chassis is considered, while the control of the manipulator is not considered. Second is
the grinding stage, during which the mechanical arm maneuvers the front-end grinding
device to carry out the grinding of the blade. At this stage, the moving chassis is stationary,
and only the control of the motion and force of the mechanical arm are considered, so
as to ensure the surface tracking of, and the control of force applied to, the blade. After
completing a given grinding area, the above stages are repeated in the next area. In this
paper, a longitudinal-spacing grinding method is adopted, and the planning of the overall
motion of the grinding robot is illustrated in Figure 3.

Figure 3. Motion planning of the grinding robot.
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In the first stage, only the position of the moving chassis needs to be adjusted, and
must be kept at a distance of 1.5~2.5 m from the blade. Figure 4 shows the control method
employed in this stage.

Figure 4. Strategy of controlling the grinding robot in the position-adjustment stage.

In the second stage of the grinding operation, due to the presence of different normal
vectors at each grinding point on the outer surface of the wind turbine blade, each part
of the grinding robot that can be manipulated needs to be coordinated and controlled to
enable pose adjustment. Based on the Peterson equation, the empirical formula of the
material removal rate during the grinding process [28,29] is

r = CAKAkt
Vb

Vwlw
FA (1)

where r is the instantaneous removal rate of material, CA is a constant determined via
experimentation, KA is the resistance coefficient, kt is the durability coefficient of the
grinding tool, Vb is the cutting speed, Vw is the feed rate, lw is the width of the grinding
area and FA is the grinding force. The factors that most determine the impact of the
grinding robot on the blade are the grinding force and the feed rate, so these two factors
should be controlled in all following steps. The control strategy applied is shown in
Figure 5, and this strategy enables real-time surface tracking and the constant control of
the grinding force.

Figure 5. Control strategy of grinding robot applied in the grinding stage.

In summary, the control scheme applied to the grinding robot, in which the moving
chassis, the manipulator and the front-end grinding device are hierarchically controlled, is
shown in Figure 6. The commands controlling the chassis are sent via a remote controller,
and each wheel group is controlled separately. Data on the distance and angle of movement
are collected by the encoder and angle sensors and are sent back to the host computer.
Information on the positioning of the manipulator and the grinding device is collected by
multiple sensors and transmitted to the host computer. The two laser sensors installed on
the upper and lower edges of the grinding device ensure that the tangent of the grinding
roller and blade is perpendicular to the normal vector of the grinding point of the blade,
and the displacement sensor included in the pose adjustment system described above
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controls the pressure of the grinding device on the blade. Cable sensor 1 on the lifting
part of the manipulator, the angle sensor incorporated in the angle adjustment mechanism,
and cable sensor 2 on the telescopic part jointly control the grinding force and speed of
the robot.

Figure 6. Scheme of control unit.

3. Control Strategy of Grinding Robot

In the above analysis, the grinding robot is divided into two parts: the manipulator
and the moving chassis, the latter of which can be controlled by the human operator.
Therefore, control of the chassis is not addressed in detail in the subsequent discussion,
wherein we consider the real-time tracking of the blade’s surface and the maintenance of
consistent grinding via the control of the manipulator.

3.1. Surface Tracking Control Strategy
3.1.1. Surface Tracking of Blade Surface

Due to the changing curvature and irregular shape of wind turbine blades, it is very
important for a grinding robot to track its position on a blade’s surface during grinding,
and so it is necessary to establish a reasonable control strategy [30]. Two PANFEE L2S laser
ranging sensors are included above and below the front-end polishing device to track the
blade surface, as shown in Figure 7a.
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(a) (b) 

Figure 7. Surface tracking diagram. (a) Surface tracking method; (b) Different grinding areas of blade.

Here, the parameters L1 and L2 represent the distance between the grinding device
and the surface of the wind turbine blade as measured by the laser sensors above and
below the grinding device, respectively; D represents the distance between the two laser
sensors, and θ represents the angle of offset between the attitude of the grinding device
and the deviation of the blade, the calculation formula of which is

θ = arctan
(

L2 − L1

D

)
(2)

After calculating θ, the pitch angle of the grinding device can be adjusted using fuzzy
PID control until θ reaches zero and the parameters L1 and L2 are equal, which ensures
that the grinding device is parallel to the tangent line of the blade’s surface at the point of
grinding, and this process is carried out in real time during grinding.

In addition, when the two relevant degrees of freedom—of the three degrees of
freedom of lifting, stretching and angle adjustment in the manipulator—are determined,
the end of the grinding roller can be moved along any trajectory. Therefore, in order
to optimize the control algorithm, the position surface tracking of the robot is planned
according to the three limit conditions in the grinding process, as shown in Figure 7b.

Firstly, when the grinding area is the trailing edge of the blade, the grinding surface
is almost an inclined plane and the curvature change is comparatively small. Therefore,
combining the two degrees of freedom of lifting and stretching, the robot can realize the
grinding work at the trailing edge of the blade.

Secondly, when the grinding area is the middle shell, the curvature of the blade begins
to change significantly, and the effect of the telescopic manipulator is small, so the degrees
of freedom of lifting and angle adjustment are used at this time.

Finally, when the grinding area is the leading edge of the blade, the surface shape
is convex, and it is also the bottom end of a single grinding process. At this time, the
lifting degree of freedom no longer applies; in consequence, combining the two degrees of
freedom of stretching and angle adjustment, the grinding action can satisfy the surface of
the leading edge of the blade.

In this way, the tracking of blade surface in a single grinding process can be realized.

3.1.2. Adjustment of the Robot’s Position

To ensure the safe operation of the grinding robot and improve the overall performance,
the grinding robot must keep a safe vertical distance from the blade (set at about 1.5~2.5 m
in this paper), which is measured using laser sensor 3, shown in Figure 8. In order to
prevent the lift height of the robot’s grinding device from exceeding its stroke distance, the
top edge of the blade should be monitored to prevent the grinding device from sticking
and causing failure. In this paper, two laser sensors are included at different heights on
the lifting manipulator. Laser sensor 3 is set horizontally to detect the horizontal distance
between the grinding robot and the wind turbine blade. Laser sensor 4 is attached at the
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top of the grinding robot to detect the distance between the robot and the highest point of
the blade.

Figure 8. Detection of the blade’s highest edge.

Here, d1 is the vertical distance between the grinding robot and the real-time position
of the blade, β is the angle of laser sensor 4, d2 is the distance measured by laser sensor 2,
and dx is the distance as roughly calculated from angle β and d1, the relevant formula for
which is

dx =
d1

sin β
(3)

dx as calculated by Equation (3) is compared with the distance d2 measured by laser sensor
4. If d2 is much larger than dx, the grinding robot has reached the highest edge of the wind
turbine blade; when d2 gives the distance from laser sensor 2 to the ground, then the lift
manipulator is commanded to stop moving and rise no further.

Figure 9 shows the control process of ensuring the grinding robot’s safe positioning.
Firstly, it is determined whether the vertical distance d1 between the robot and the blade, as
measured by laser sensor 3, is within the safe distance of 1.5~2.5 m. If it is within this range,
the chassis stops moving. Then the distance d2 is compared with dx, and if d2 � dx, then
the lift manipulator stops rising; otherwise, it commences the grinding action. If d1 ≤ 1.5 m,
the robot is alerted and will stop moving forward. If d1 ≥ 2.5 m, the robot will continue to
move closer to the wind turbine blade until it reaches a safe distance.

Figure 9. Flowchart showing the safe position control of the grinding robot.
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3.2. Constant Force Grinding Control Strategy

According to the above analysis, the strategy used for controlling the grinding force
and feed speed of the device is the key to realizing the constant control and compliance of
the force of grinding. There are five degrees of freedom between the manipulator and the
grinding device of the robot. The synchronous control strategy is illustrated in Figure 10,
the ideal output of which is the hydraulic cylinder that controls the driving manipulator
and the servo motor that drives the grinding device. In order to improve the response
speed of the hydraulic system, fuzzy PID is used to control each hydraulic cylinder in
the manipulator.

Figure 10. Five-axis synchronous control strategy diagram.

In the control strategy, the input variable used to control the grinding device is its
tangential angle from the surface being processed, and the grinding speed and direction of
the grinding force are the final outputs. The input variables used to control the grinding
force are the blade parameters and the preset grinding force, and the final output is the
grinding speed and the grinding force. The control of the input variable related to the
manipulator is the final output of the former two inputs; the controller outputs the running
speed of each part of the manipulator in order to maintain the grinding force and grinding
speed required. Using the methods described above, the relevant control strategies for
adjusting the grinding speed and the direction of grinding force are adjusted. Figure 11
shows the analysis method used to control the grinding speed and the grinding force.
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Figure 11. Diagram of the control strategy for grinding force and speed.

Here, vH and vg are the lifting speed of the lifting arm and the telescopic speed of the
telescopic arm, respectively, and vα is the speed of the hydraulic cylinder used for angle
adjustment, which is not equal to the actual angular rotational velocity of the manipulator.
Their corresponding relationship is

dα

dt
L4 = vα sin γ (4)

where dα
dt is the angular velocity of the opening and closing of the mechanical arm and

represents the actual speed of the grinding device; L3 and L4, respectively, represent the
distances between the installed position of the hydraulic cylinder used for angle adjustment
and the rotational center of the manipulator being adjusted; α is the angle between the
lifting and telescopic manipulators; and γ is the angle between the telescopic manipulator
and the hydraulic cylinder used to adjust the angle. α can be measured in real time by the
angle sensor, and γ can be obtained via the following relationship:

γ = arctan
(

L3 sin α

L4 − L3 cos α

)
(5)

Combining Equations (4) and (5), to meet the required opening and closing speed
of the manipulator, the speed provided by the hydraulic cylinder for angle adjustment
must be

vα =
dα

dt
· L4

sin
[
arctan

(
L3 sin α

L4−L3 cos α

) ] (6)

The grinding device adjusts the pressure applied on the blade by changing the dis-
placement l, which is measured by the micro displacement sensor installed in the pose
adjustment device. The resultant vector of the differentiated feed speed vF and the stretch-
ing speed of the grinding device must both be adjusted in real time to ensure the correct
grinding force, as shown by the following equation:

−−−−−−→vFintegration = −→vF +
→
v =

−→
dl
dt

+
→
v (7)

The mathematical relationship between the coordinate systems of the grinding robot
and those of each joint is essentially nonlinear, and can be expressed by the following
nonlinear vector value function:

x(t) = f [q(t)] (8)
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So, the operating speed ultimately required is given by

.
x =

[ .
x1,

.
x2, · · · .

xm
]T

= vintegration (9)

To provide the speed ultimately required, the speed required from each joint is

.
q =

[ .
q1,

.
q2, · · · .

qn
]T (10)

The relationship between the required speed of the end and the speed of each link
can be obtained by applying a kinematic calculation to the robot, which is shown in the
following expression:

.
x = J

.
q (11)

where J is the Jacobi matrix of the robot, the specific value of which can be derived from
the kinematics of the grinding robot, as shown in the following expression:

T J(q) =
[

T J1(q) T J2(q) T J3(q) T J4(q) T J5(q)
]

(12)

The elements in the formula are

T J1(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
(d2 − d4cθ3)(cθ5sθ3 − cθ3sθ5) + (d4sθ3 + a2)(sθ3sθ5 − cθ3cθ5)

d4sθ3 + a2
cθ5sθ3 − cθ3sθ5
−sθ3sθ5 − cθ3cθ5

0

⎤
⎥⎥⎥⎥⎥⎥⎦

T J2(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
−1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T J3(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−d4sθ5

0
sθ5
cθ5
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T J4(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T J5(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

The above-designed control strategy ensures that the correct speed is provided by
each connecting rod at any given time in order to meet the grinding requirements, as

q(t) = J−1(q)
.
q(t) (14)

In order to resolve the problem whereby the inverse Jacobian matrix of the grinding
robot does not exist because of the redundancy of the mechanical arm, the following
expression can be used [31]:

C =
1
2

.
qT A

.
q + λT[ .

x − J(q)
.
q
]

(15)

where C is an m × m symmetric positive definite matrix, and λ is the cost judgement. By
minimizing C, the speed of each link and λ, we can obtain the following expression:

.
q(t) = A−1 JT(q)λ (16)

.
q(t) = J(q)

.
q(t) (17)

By combining the above two expressions, λ can be derived as

λ = [J(q)A−1 JT(q)]−1 .
x(t) (18)
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By combining Equations (16) and (18), the desired speed x(t) is given for the end of
the grinding device, and the speed of each joint is obtained according to Equation (18):

.
q(t) = A−1 JT(q)[J(q)A−1 JT(q)]−1 .

x(t) (19)

where A is an identity matrix. Equation (19) can be simplified to Equation (14), which
relates the grinding blade’s position and time. The position of the end of the grinding
device, which is related to the sample taken at any given time, is a fixed value, and the
sampling period is 200 ms.

Due to the redundancy of the grinding robot, there are multiple solutions to determin-
ing the expected speed of the robot end at any time. In order to ensure optimal control of
the robot, the change in speed of the connecting rod must be as small as possible in any
sampling period. Using the sensor and a calculation of the mathematical relationship, the
angle between the desired direction of travel at the end and the direction of each connecting
rod at any given time can be obtained, as shown in Figure 12.

Figure 12. Instantaneous velocity relationship of contact force control strategy.

Give its three-part structure, the robot can be moving in two directions at any given
time. For example, the lifting system can be raising or lowering at any time. In order
to ensure its compliance to control, the angle between its direction of motion and the
desired direction of the end must be as small as possible [32]. The speeds required of each
connecting rod are calculated by Equation (19). On this basis, the required driving force,
or torque, which is also the force provided by the hydraulic cylinder at any time, can be
obtained by the following expression:

f4 = D44
..
q4(t) + D45

..
q5(t) + D433

.
q3(t)

.
q4(t) (20)

where Dijk(q) is the inertial matrix of the grinding robot.

3.3. Control Strategy of Mechanical Arm Power System

In maintaining constant control over the force of the grinding robot, the position of the
manipulator will change at any given time, so the PID parameters of the hydraulic control
system need to be dynamically adjusted in real time. Based on the necessity of real-time
surface tracking of the turbine blade and the application of constant force during grinding,
the fuzzy PID control principle used to control the hydraulic system is shown in Figure 13.
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Figure 13. Fuzzy PID control principle.

Through the analysis of the grinding control system, it is finally determined that
the inputs of the fuzzy PID control are the deviation and deviation increment of the
combined vector of the expected grinding feed speed and the expected grinding force and
the combined vector of the two vectors at any time, which is used as the input to control
the adjustment of the fuzzy parameters Kp, Ki and Kd in real time.

3.3.1. Fuzzy Input Value

In order to achieve fuzzification, it is necessary to fuzzify the calculated values. In this
design, the fuzzy subset is {NB, NM, NS, ZO, PS, PM, PB}, the domain is {−6, −5, −4, −3,
−2, −1, 0, 1, 2, 3, 4, 5, 6}. There is an interval for the measured force and velocity signals,
which is made as same as the PID adjustment time. Deviation and deviation change rate
are shown as:

f (e) =
6·e

Vmax − Vmin
(21)

f (e) =
6·ec

2(Vmax − Vmin)
(22)

where e is the deviation and ec is the deviation increment. The quantization of input
error and error change rate can be obtained by using the above equation. The functional
relationship of the linear membership function is shown in Figure 14.

Figure 14. Membership function of fuzzy controller.

3.3.2. Establish Fuzzy Rule Table

After modeling the input, Kp, Ki and Kd in the PID control are adjusted. The specific
fuzzy rules are shown in Table 1. According to the fuzzy rule table and the deviation and
its change rate calculated by the value collected by the sensor and the expected value, the
fuzzy subsets corresponding to ΔKp, ΔKi and ΔKd are obtained.
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Table 1. Fuzzy control rules table.

Kp Ki Kd
ec

NB NM NS ZO PS PM PB

e

NB PB NB PS PB NB NS PM NM NB PM NM NB PS NS NB ZO ZO NM ZO ZO PS
NM PB NB PS PB NB NS PM NM NB PS NS NM PS NS NM ZO ZO NS NS ZO PS
NS PM NB ZO PM NM NS PM NS NM PS NS NM ZO ZO NS NS PS NS NS PS ZO
ZO PM NM ZO PM NM NS PS NS NS ZO ZONS NS PS NS NM PM NS NS PS ZO
PS PS NM ZO PS NS ZO ZO ZO ZO NS PS ZO NS PS ZO NM PM ZO NB PB ZO
PM PS ZO PB ZO ZO NS NS PS PS NM PS PS NM PM PS NM PB PS NB PB PB
PB ZO ZO PB ZO ZO PM NM PS PM NM PM PM NM PM PS NB PB PS NB PB PB

3.3.3. Demoulding Processing

Since Kp, Ki and Kd are adjusted in the actual fuzzy control, it can be quantified by
using the center of gravity calculation according to the triangular membership function, as
shown in Equation (23).

v0 =
∑n

i=0 MiFi

∑n
i=0 Mi

(23)

where M is membership and F is fuzzy quantization value. The sum of membership is
1, so the denominator can be omitted, so that the calculation of each object is actually a
matrix operation:

K = [Me1 Me2]

[
Fa Fb
Fe Fd

]
[Mec1 Mec2]

T (24)

Coefficients can also be introduced to enlarge and reduce the variation of Kp, Ki and
Kd after the increment is obtained.

K(n) = K(n − 1) + ΔK·λ (25)

where λ is set to 1 in this control strategy and ΔK is the calculated value. The hydraulic
cylinder driving the lifting manipulator is taken as an example for this experimental
analysis. The performance indices of the hydraulic cylinder with fuzzy PID control and
without fuzzy PID control are compared, as shown in Figure 15, and their specific indices
are shown in Table 2.

 
(a) (b) 

Figure 15. The performance indices. (a) with fuzzy PID control and (b) without fuzzy PID control.
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Table 2. Comparison of specific indicators of hydraulic cylinders with different control methods.

Control Mode Maximum Overshoot Rise Time Peak Time Steady State Error Accommodation Time

fuzzy PID control 3.58% 700 ms 1500 ms ±0.5 cm/s 3100 ms
proportional servo valve control 5.58% 1500 ms 2700 ms ±2 cm/s 5300 ms

It can be seen that, when using fuzzy PID control, the hydraulic cylinder shows a
small degree of overshoot and fast response, and the errors arising from the designed static
control strategy can be greatly reduced.

3.4. Analysis of Gravity Compensation

The grinding device of the robot described in this paper is attached to the end of the
manipulator by a fixed connection, and a schematic diagram of the robot’s coordinates of
movement is shown in Figure 16. In addition to the parameters relevant to the control strat-
egy, the factors influencing the stability of the control strategy also include the contribution
of the grinding device’s own gravity to the force applied.

Figure 16. Diagram of relative positional coordinates.

The overall force includes the contact force FE, the gravity of the grinding device
GT and the inertial force of acceleration during the movement of the manipulator FI , so
the force measured by the sensor cannot be directly used in the algorithm. The influence
of inertial force can be ignored because the acceleration of the manipulator is negligible,
and gravity compensation can be incorporated to eliminate the influence of the grinding
device’s gravity. Figure 17 shows the analysis of the force measured by the sensor in the
grinding device, and the relation is shown in Equation (26).

Figure 17. Analysis diagram of force measured by sensor.

−→
FS =

−→
FE +

−→
GT +

−→
FI (26)
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This can be simplified as −→
FS =

−→
FE +

−→
GT (27)

Using the rotation transformation matrix of the robot, the force of the gravity of the
grinding device as measured by the sensor can be expressed as

SGT = S
ERE

OROGT (28)

where SGT is the gravitational force vector of the front-end grinding device in the coordinate
system given by the displacement sensor, S

ER is the rotation matrix derived from the system
of axes of the terminal part of the robotic arm in relation to the sensor’s coordinate system
and E

OR is the rotation matrix of the frame of the axes of the grinding device in relation to
the basal coordinate system, the relative expression of which is

E
OR =

⎡
⎣cθ1(cθ3cθ5 + sθ3sθ5) cθ1(sθ3sθ5 − cθ3sθ5) −sθ1

sθ1(sθ3cθ5 + sθ3sθ5) sθ1(sθ3cθ5 − cθ3sθ5) cθ1
sθ3cθ5 − cθ3sθ5 −sθ3sθ5 − cθ3sθ5 0

⎤
⎦ (29)

where θi (i = 1~5) is the angle of the joints between mechanical arms I to V. There is a fixed
deflection θ between the fixed system of axes of the grinding device and the system of axes
of the sensor used to measure the pressure, as shown in Figure 18.

 
Figure 18. The grinding device and the sensor’s coordinate systems.

The rotational transformation of the system of axes of the sensor relative to the flange’s
coordinate system is

S
ER =

⎡
⎣cθ −sθ 0

sθ cθ 0
0 0 1

⎤
⎦ (30)

Combining the above four formulas, the following expression can be obtained:
⎡
⎣Fx

Fy
Fz

⎤
⎦ =

⎡
⎣cθ −sθ 0

sθ cθ 0
0 0 1

⎤
⎦·
⎡
⎣cθ1(cθ3cθ5 + sθ3sθ5) cθ1(sθ3sθ5 − cθ3sθ5) −sθ1

sθ1(sθ3cθ5 + sθ3sθ5) sθ1(sθ3cθ5 − cθ3sθ5) cθ1
sθ3cθ5 − cθ3sθ5 −sθ3sθ5 − cθ3sθ5 0

⎤
⎦·
⎡
⎣ 0

0
−GT

⎤
⎦ (31)

Simplifying Equation (31), the following expression can be given:

cosθ =

√
F2

x + cos2(θ3 + θ5)

cos2(θ3 + θ5) + sin2(θ3 − θ5)
(32)
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Multiple sets of data pertaining to the installation deflection angle θ can be derived
from information on the angles of the robot’s different poses, and an average value can be
obtained. Because the micro displacement sensor is used to collect force information, the
force that is measured is only unidirectional, and its calculation formula is

sFE = F − GTcos(θ3 − θ5)cos(θ + θ1)/cos2θ5

tan2θ5 + (cos2θ3 + sin θ3sin θ1) + cos θ3tan θ5(sin θ3 − sin θ1)
(33)

where sFE is the grinding force as a component of the coordinate system measured by the
pressure sensor, and F is the grinding force calculated by the displacement sensor. In the
process of grinding a given area, the rotational angle of the grinding robot is always ±90◦,
so Equation (34) can be simplified as

sFE = F − GTcos(θ3 − θ5)sinθ/cos2θ5

tan2θ5 + cos2θ3 + cos θ3tan θ5sin θ3
(34)

The operational flow of gravity compensation in the grinding robot is as follows:

• The grinding device performs a profiling movement on the blade’s surface when it is
not in contact with the blade and the grinding force is zero, after which time the mea-
surements of the pressure sensor and the manipulator in each attitude are collected;

• The force and attitude information collected are substituted into Equation (33) to
obtain the installation deflection angle;

• The above two steps are repeated to collect multiple different sets of information and
thus obtain multiple installation deflection angles, which can be used to calculate the
average installation deflection angle θ;

• The deflection angle obtained in the previous step is substituted into Equation (34) to
determine whether the result is 0; if it is not 0, the above steps are repeated until the
contact force obtained is 0.

In this way, gravity compensation can be realized; the influence of the gravitational force
of the grinding device can be eliminated using the above formula, and the real contact force
can thus be obtained, which can then be applied in the constant force control algorithm.

4. Experiments

To verify the feasibility of our control strategy, the surface tracking and constant force
control of the grinding robot have been experimentally verified in a grinding operation.
The experimental results of robotic grinding are here compared with the artificial results,
and this verifies the feasibility of the designed control strategy, according to which the
grinding robot can meet the requirements of a given processing site.

4.1. Control Algorithm Comparison Experiment

Taking the driving hydraulic cylinder at the opening and closing manipulator as an
example, the experimental analysis is carried out. The performance indices of hydraulic
cylinders using fuzzy PID control and normal PID control when the length of the tele-
scopic arm is 218.5 mm are compared as shown in Figure 19. The maximum overshoot is
0.27 rad/s.

The reason for the large difference between the two response curves is that the opening
and closing angle corresponds to the expansion length of the hydraulic cylinder. Normal
PID has different control effects when the hydraulic cylinder telescopic length is different.
However, the three parameters Kp, Ki and Kd of fuzzy PID are variable, which can adapt to
the different lengths of hydraulic cylinder. The experiment shows that fuzzy PID control is
more adaptable and superior than normal PID control.
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Figure 19. Curve of velocity response.

4.2. Surface Tracking Experiment

This surface tracking experiment uses time intervals of 200 ms. The coordinate sizes
of the tangent point of the grinding device and the blade relative to the base coordinates of
the grinding robot are calculated using data given by the five laser sensors installed on the
manipulator, enabling us to monitor the actual trajectory of the blade.

In a given grinding area, the grinding robot does not change direction on the x-axis,
and this value is always 0. The formulae for calculating the coordinates of the tangent point
of the robot and the wind turbine blade in the y-direction and z-direction are

y = d4 sin
(

πθ3

180◦

)
+ 600 cos

(
π

θ3 + θ5 − 180
◦

180◦

)
(35)

z = d2 − d4 cos
(

πθ3

180◦

)
+ 600 sin

(
π

θ3 + θ5 − 180
◦

180◦

)
(36)

where d2 is the position of the lifting manipulator, d4 is the telescopic length of the telescopic
manipulator, θ3 is the opening and closing angle of the mechanical arms, and θ5 is the pitch
angle of the polishing device. The calculated trajectory of the cutting point coordinates in a
grinding area is shown in Figure 20, and they are shown to be very close to the contours of
the processing area, which verifies the utility of this control strategy for surface tracking
during grinding.

Figure 20. Trajectory of grinding cutting point.
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4.3. Grinding Force Tracking Experiment

The expected values of the grinding force and feed speed are set to 1500 N and
150 mm/s, respectively, and these are compared with data collected for a grinding area at
sampling periods of 200 ms. Other factors affecting the grinding are set to constant values,
such as the revolution speed of the grinding device, which is 1500 r/min. Figure 21 shows
the grinding contact force and feed speed, collected from top to bottom during the grinding
of a processing area. The grinding contact force is maintained at about 1500 N, and the
grinding feed speed remains basically stable at about 150 mm/s after contact, which verifies
the utility of our strategy.

Figure 21. Feedback values of grinding force and grinding feed speed.

4.4. Field Processing Experiment

Actual processing experiments of the grinding robot also needed to be carried out to
verify that it could meet the needs of field processing. In the artificial grinding area and the
robot grinding area, two square areas with side lengths of 500 mm were randomly selected.
Within these areas, detection points were set every 100 mm along the axial direction of the
grinding device and the grinding feed direction to measure the roughness of the machined
surface, and the measured data are shown in Figure 22. The average roughness yielded
by artificial grinding was 5.0934 μm. The average roughness yielded by robot grinding
was 2.4828 μm, and all measurement points yielded data that met the surface roughness
requirements for an optimal subsequent painting process.

Figure 22. Grinding surface roughness.

5. Discussion

In this paper, we introduced a robot that can be used for grinding the surface of wind
turbine blades, and we proposed related control and motion planning algorithms; we
found that tracking the blade’s surface and employing the constant force control algorithm
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improved the grinding effect. Fuzzy PID control of the power source, focusing on the
hydraulic cylinder of the manipulator, was carried out, and this greatly improved the
response speed and reduced errors in the static control strategy. In order to eliminate the
impact of the weight of the grinding device on the information collected regarding grinding
force, a gravity compensation method for the grinding device was designed.

The experiments show that fuzzy PID has excellent adaptability and can meet the
design requirements. The effect of tracking the blade’s surface during the grinding process
is very impressive, enabling the average grinding force and grinding feed speed to be
maintained at near the predicted values. In the actual processing experiment, the surface
qualities of blades after robot grinding and artificial grinding were compared. The mean
roughness of the blade after grinding by robot was Ra = 2.4828 μm, which is within the
optimal range of Ra = 2.0~3.0 μm, and this makes the quality of the blade surface benefit
the subsequent painting process.

Future work should study the joint motion of the chassis and the manipulator of the
grinding robot. In addition to the grinding force and feed speed, other factors that influence
the grinding effect, such as the grinding speed and the amount of sandpaper in the grinding
device, can also be further studied.
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Abstract: Intracellular pressure, a key physical parameter of the intracellular environment, has been
found to regulate multiple cell physiological activities and impact cell micromanipulation results. The
intracellular pressure may reveal the mechanism of these cells’ physiological activities or improve the
micro-manipulation accuracy for cells. The involvement of specialized and expensive devices and
the significant damage to cell viability that the current intracellular pressure measurement methods
cause significantly limit their wide applications. This paper proposes a robotic intracellular pressure
measurement method using a traditional micropipette electrode system setup. First, the measured
resistance of the micropipette inside the culture medium is modeled to analyze its variation trend
when the pressure inside the micropipette increases. Then, the concentration of KCl solution filled
inside the micropipette electrode that is suitable for intracellular pressure measurement is determined
according to the tested electrode resistance–pressure relationship; 1 mol/L KCl solution is our final
choice. Further, the measurement resistance of the micropipette electrode inside the cell is modeled
to measure the intracellular pressure through the difference in key pressure before and after the
release of the intracellular pressure. Based on the above work, a robotic measurement procedure of
the intracellular pressure is established based on a traditional micropipette electrode system. The
experimental results on porcine oocytes demonstrate that the proposed method can operate on cells
at an average speed of 20~40 cells/day with measurement efficiency comparable to the related work.
The average repeated error of the relationship between the measured electrode resistance and the
pressure inside the micropipette electrode is less than 5%, and no observable intracellular pressure
leakage was found during the measurement process, both guaranteeing the measurement accuracy
of intracellular pressure. The measured results of the porcine oocytes are in accordance with those
reported in related work. Moreover, a 90% survival rate of operated oocytes was obtained after
measurement, proving limited damage to cell viability. Our method does not rely on expensive
instruments and is conducive to promotion in daily laboratories.

Keywords: intracellular pressure; electrode circuit model; micropipette electrode; micro-nano operation

1. Introduction

Cells are able to maintain positive intracellular pressure compared to the extracellular
environment. Intracellular pressure is an important component of the intracellular environ-
ment, which ensures the normal physiological function of cells. It has been found to play
an important role in cell division [1,2], differentiation [3,4], migration [5], diseases [6,7],
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and embryonic tissue development [8,9]. Moreover, the existence of intracellular pressure
affects the results of cell micromanipulation. For example, during cell microinjection, the
positive intracellular pressure increases the resistance to the material delivery, resulting in
lower deposition volume [10,11]. Furthermore, intracellular pressure supports cell swelling,
making the cell membrane more resistant to external pressure. This can affect the measure-
ment results of cell elasticity. Therefore, intracellular pressure measurement is beneficial
for revealing the mechanism of cells’ physiological activities and improving the accuracy
of cell micromanipulation.

At present, some methods have been developed to measure the intracellular pressure
of different types of cells, according to references. For example, according to Laplace’s law,
intracellular pressure has been estimated indirectly from the cortical tension of cells [12,13].
However, assuming the cell to be a liquid ball makes that method applicable to cells with
thin membranes. For oocytes or embryos with thick zona pellucid (ZP), the measurement
errors of that method may be too large to be applicable. Before and after the release of
intracellular pressure caused by cutting off part of the ZP [14], the variations in the ob-
tained poking force–cell deformation curves have been utilized to measure the intracellular
pressure. Although this method is applicable for oocytes or embryos with thick ZPs, it uses
laser cutting to release intracellular pressure and microforce sensors to obtain the poking
force–cell deformation curves, which requires multiple, expensive pieces of equipment,
significantly limiting its application. In previous research, we proposed an intracellular
pressure measurement method based on the modeled relationship between the applied
pressure and the deposition volume of oil into cells [11]. Although this method can be real-
ized on a traditional cell manipulation system setup, the oil droplets injected into the cells
cause significant damage to cell viability, limiting its application. Commercial intracellular
pressure measurement devices with pressure feedback have also been used to measure
intracellular pressure [15–17]. Although this system can measure the intracellular pressure
of a variety of cells with limited harm to cell viability, the measurement device is very
expensive, thus, significantly limiting its widespread use. Therefore, a simple intracellular
pressure measurement method that is applicable to traditional cell manipulation tools and
causes less harm to cell viability is still highly desired.

This paper proposes a robotic intracellular pressure measurement method using
a traditional micropipette electrode. First, the measured resistance of the micropipette
electrode filled with KCl solution and immersed inside the culture medium is modeled
to analyze its variation trend when the pressure inside the micropipette increases. Then,
the concentration of KCl solution producing a “steep slope” in the electrode resistance–
pressure curve is determined as the one suitable for intracellular pressure measurement.
Further, the measured resistance of the micropipette electrode inside the cell is modeled
to obtain the intracellular pressure. Intracellular pressure is measured by the difference
between two key pressures, which correspond to injection pressures PI1 and PI2, when the
micropipette electrode resistance reaches a quasi-stable state before and after the release
of intracellular pressure. Based on the above work, a robotic measurement procedure
of the intracellular pressure is established based on a traditional micropipette electrode
system. After two weeks of continuous practice, scholars are able to successfully measure
approximately 10 cells per day using commercial equipment. An experienced expert
should expect to be able to measure 50–100 cells per day [15]. The experimental results
on porcine oocytes demonstrate that the proposed method can operate on cells at an
average speed of 20~40 cells/day with measurement efficiency comparable to commercial
measurement devices. The average repeated error of the relationship between the measured
electrode resistance and the pressure inside the micropipette electrode is less than 5%, and
no observable intracellular pressure leakage was found during the measurement process,
which guarantees the measurement accuracy of intracellular pressure. The measured results
of the porcine oocytes are in accordance with those reported in related work. Moreover, a
90% survival rate of operated oocytes was obtained after measurement, proving limited
damage to cell viability.
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2. Materials and Methods

2.1. System Setup

We conducted the intracellular pressure measurement experiment on the micropipette
electrode system developed in our laboratory. The system setting is shown in Figure 1. The
35 × 10 mm culture dish was placed on a fixed platform on the vibration isolation platform,
in which the cell operating fluid and experimental samples were placed. A standard upright
microscope (Eclipse FN1, Nikon, Tokyo, Japan) capable of movement in the XY plane with
a repeatability of ±0.1 μm over an area of 2 × 2 cm2 was used to observe cells in the
intracellular pressure measurement experiment. The motorized focusing device on the
microscope was used to automatically focus the cells with a repeatability of ±0.1 μm in the
vertical direction. On the left arm was an X-Y-Z micromanipulator model MP285 (stroke
space 2 × 2 × 2 cm3, maximum speed 1 mm/s, repeatability ±0.1 μm) for mounting
micropipette electrodes. The right arm was a scientific model X-Y-Z micromanipulator
(stroke space 2.5 × 2.5 × 2.5 cm3) for mounting the holding pipette (HP). An in-house
developed pneumatic chamber [18] was used to provide pressure inside the micropipette.
A charge-coupled device (CCD) camera (IR-2000, DAGE-MTI, Michigan City, IN, USA)
was mounted on the microscope to acquire images of the cells at 60 frames per second. A
host computer was used for microscopic image processing, electrical signal acquisition,
suction pressure control, and motion control of the microscope and manipulator. The entire
robot system was covered with an electromagnetic shield to isolate electrical interference
from the external environment. A human–machine interface based on Qt programming
(see Figure 2) was developed to provide visual feedback and display information about
the process of measuring intracellular pressure, suction pressure, electrical signals, output
pressure, etc. This interface allows the operator to update the pressure applied inside the
micropipette and the distance the micropipette electrode moves at each step. The electrical
signal detected by the micropipette electrode was amplified using an amplifier (MultiClamp
700B, Molecular Devices, San Jose, CA, USA), then converted into a digital signal, and
finally transmitted to the host computer.

Figure 1. System setup.
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Figure 2. Human–machine interface.

2.2. Fabrication of Micropipette Electrode and Oocyte Preparation for Intracellular
Pressure Measurement

The micropipette electrode used in the intracellular pressure measurement experiment
was made of a glass tube (BF150-117-10, Sutter, Sacramento, CA, USA) with an inner
diameter of 1.17 mm and an outer diameter of 1.5 mm. The glass tube was pulled with a
micropuller (P97, Sutter) to form a tapered tip with a diameter of ~2 μm (see Figure 3a).
If that micropipette were mounted directly on the robot arm, the micropipette electrode
would penetrate the cell at an oblique 30◦. This is because the electrode holder on the robot
is installed at an inclination of 30◦ (see Figure 3b) in consideration of the use limitation of
space, the stroke of the robot, etc. Therefore, to reduce the torsional effect of micropipette
penetration on cells, we used a micropipette forging instrument to bend the tip of the
micropipette by 30◦ (see Figure 3c). In this way, the tip can be horizontal after being
installed on the robot. In the same way, we also bend the holding micropipette by the same
degree before mounting it on the right arm. In this way, the axes of the cell, micropipette
electrode, and holding pipette are in a horizontal state during the experiment.

Then, the micropipette was backfilled with 20 μL electrode liquid. Before the mea-
surement, the cell culture medium was replaced by extracellular fluid (g/L: HEPES 0.6911,
C16H18N2O4S 0.05, NaHCO3 2.2504, NaCl 1.7532, C21H39N7O12 0.06, M199 9.5, pH 7.0~7.2)
for electrical signal recording. A silver electrode wire with a diameter of 0.2 mm was
inserted into the micropipette to form the micropipette electrode. One section of the mi-
cropipette electrode was immersed in the extracellular fluid, and the ground wire connected
at the other end was directly placed in the extracellular fluid, thus forming a complete circuit.

The oocytes we used in the experiment were obtained using the following methods.
We collected pig ovaries from the local slaughterhouse and used a sterile 10mL syringe
with an 18-gauge needle to aspirate ovarian follicles with a diameter of 3–6 mm to obtain
cumulus–oocyte complexes (COCs). At this time, there are many tissue impurities in the
COCs liquid. To obtain clean COCs, we poured them into Tyrode’s lactate (TL)–Hepes-PVA
(polyvinyl alcohol, 0.1%) for washing. After washing, we waited for their precipitation for
20 min and then poured out the supernatant to wash and precipitate again, repeating three
times. Then, 20~40 COCs were picked up and transferred to 100 μL mature medium (TCM-
199 supplemented with 15% FBS, 10 ng/mL EGF, 10% porcine follicular fluid, 10 IU/mL
of eCG, 5 IU/mL of hCG, 0.8 mM L-glutamine, and 0.05 mg/mL gentamicin) for 42 h at
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38.5 ◦C, 5% CO2, and saturated humidity. At the MII stage, we selected target oocytes
that had a clear perivitelline space, integrated cell membrane, and a visible polar body
(PB1) (Figure 3d).

Figure 3. Fabrication of micropipette electrode and oocyte preparation: (a) Imaging of a drawn
micropipette under a 40× microscope; (b) The angle between the micropipette electrode and the
horizontal plane is 30◦; (c) The micropipette is bent on the forging needle instrument; (d) Porcine
oocytes with first polar body.

2.3. Resistance Analysis for Micropipette Electrode Out of the Cell

It is well known that when the glass micropipette is filled with electrolyte solution
inside and outside, and an electromotive force is applied, the glass micropipette can form a
stable resistance.

The tip diameter used in our experiment was ~2 μm pipette, whose geometric structure
is similar to an infinite cone (Figure 4). We chose KCl solution as the internal solution of
the electrode and assumed that KCl diffusion, just like in isotropic homogeneous media,
increases the KCl flux due to a large amount of flow:

∂C
∂t

= D
∂2C
∂r2 +

2D
r

∂C
∂r

− v(r)
∂C
∂r

(1)

where C = KCl concentration (moles/liter), D = KCl diffusion coefficient (cm2/s), r = dis-
tance from origin of cone (cm), and v(r) = fluid velocity at r (cm/s).

Cout

ro

 
r

A(r)

v(r)

Cin

Figure 4. Schematic diagram of micropipette structure.

It is assumed that the fluid velocity is the same on any given cross-section (“plug” flow),
and the velocity passes through the origin of the cone (which allows a one-dimensional
solution in a spherical coordinate system). For a given flow, the speed of each cross-section
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will be inversely proportional to the square of the radius of that cross-section (Equation (2))

v(r) = (k/r2 )(Pout − Pin) (2)

where k = a constant containing geometrical terms and pipet hydraulic resistance, Pin = pres-
sure applied to the inside of the pipet (mm Hg), and Pout = outside pressure (mm Hg).

We can calculate the total pipette resistance by integrating the conductivity on the
length of the pipette.

R =

∞∫
ro

1
Ksp A(r)

dr (3)

where R = total pipet resistance (Ω), ro = distance of the tip from the origin of the cone (cm),
and A(r) = cross-sectional area at r (cm2).

The electrode resistance is affected by the solution concentration. When the solution
concentration decreases, the measured electrode resistance increases. When the solution
concentration (less than the solubility of the solution itself) increases, the measured elec-
trode resistance decreases.

When the micropipette electrode is out of the cell, the measurement micropipette
electrode circuit is shown in Figure 5a. The micropipette electrode measurement resistance
RM is composed of the silver wire electrode resistance RE, the solution resistance RL, and
the resistance RI caused by the concentration gradient field of the electrode solution and
the extracellular solution near the micropipette electrode opening, namely

RM = RE + RL + RI (4)

PI

PC

KCl(concentrated electrolyte solution)

extracellular fluid

V1

VC

A1
A2RL RE

cell

Rf
(a) (b)

silver electrode
micropipette electrode

Figure 5. Resistance analysis for micropipette electrode out of the cell: (a) The measurement mi-
cropipette electrode circuit; (b) Ion concentration distribution in micropipette electrode.

Among them, RE and RL can be considered to be constant when the volume of the
liquid enters or comes out of the micropipette is negligible in comparison to the whole
volume of liquid inside the micropipette and the environment. For RI in Equation (4),
the ion concentration gradient field corresponding to RI outside of the cell is formed by
the combined action of the following two factors: capillary pressure PC between the tube
wall and the liquid in the electrode and the injection pressure PI in the microtubule, as
shown in Figure 5b. When PI is small, capillary pressure PC will press extracellular fluid
(dilute electrolyte solution) into the electrode to form a stable ion concentration gradient
and PI value. When the PI increases, the ion concentration distribution at the tip will
shift to the opening, resulting in an increase in the concentration of KCl at the tip, which
will lead to a decrease in the resistance of the electrode. When PI is larger enough, the
concentration gradient area will be pushed out of the micropipette opening. In that case,
RM will reach a stable state with a further increase in PI if the deposition volume of the
solution into the environment is negligible in comparison to the whole volume of solution
inside the micropipette.

In summary, a “downslope” section of measurement resistance of the micropipette can
be obtained with an increase in PI. When the micropipette enters intracellular space, the
intracellular pressure leads to a shift of concentration gradient inside the micropipette and
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subsequently changes the measured resistance of the micropipette electrode. Thus, the varia-
tion of the measured electrode resistance can be utilized to measure the intracellular pressure.

2.4. Prepare the Required Electrode Internal Liquid and Measure the Working Range of the Probe
Micropipette Electrode

As aforementioned, the variation in the measured resistance of the micropipette
electrode can be utilized to measure intracellular pressure. In the experiment, we chose
KCl solution as the electrode solution. To guarantee measurement accuracy, an appropriate
concentration of the solution producing a steep downslope in the RM-PI relationship
is preferred because the RM is more sensitive to the variation of PI in that case, which
improves the measurement accuracy of PI. An increase in KCl concentration increases the
height of the downslope, according to the analysis in Section 2.3. However, a too-large KCl
concentration will increase the crystallization of KCl molecules and increase the blocking
issues of the micropipette opening. Thus, an appropriate KCl concentration needs to be
determined through tests.

The concentration gap of the KCl solution starts to increase from 0.1 mol (pure water)
to 3 mol with an interval of 0.1 mol until the experiment is stopped due to the crystal
blocking of the nozzle due to the excessive concentration of the solution. According to
testing results, we found that the decreasing speed of RM increases in the slope area as
the concentration of KCl solution increases at the beginning. After the concentration is
larger than 1 mol, the blocking incidences start to occur, and its occurrence rate grows as
the concentration increases. Therefore, in the following experiment, we chose KCl with a
concentration of 1 mol/L as the electrode internal solution. Figure 6 shows the obtained
RM-PI curve. It can be found that a steep downslope section, which is the ideal working
section for intracellular pressure measurement, exists in the obtained RM-PI curve.

Figure 6. The RM-PI curve with a downslope section.

2.5. Intracellular Pressure Measurement Based on Electrode Resistance Model

To measure the intracellular pressure, the measurement resistance of the micropipette
electrode is modeled, as shown in Figure 7a. When the micropipette electrode enters the
cell, the zona pellucida resistance RZP and the cytoplasmic resistance RC also become part
of the measurement resistance RM, namely

RM = RE + RL + RI + RC + RZP (5)
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Figure 7. Electrode resistance model for measuring intracellular pressure: (a) The resistance model
of micropipette electrode; (b) The ion concentration distribution in the micropipette electrode after
cell penetration.

Among them, RE, RL, and RZP can be regarded as constants in the experiment. The
cytoplasmic resistance RC can be regarded as constant on the premise that the micropipette
electrode is sealed with the ZP and the amount of injected material is far less than the cyto-
plasmic volume during the puncture process. After the micropipette electrode is inserted
into the cell before the intracellular pressure is released, the ion concentration gradient
field corresponding to RI is formed by the joint action of the intracellular pressure PIn, the
injection pressure PI, and the capillary pressure PC, as shown in Figure 7b. Adjusting the PI,
RI, and RM will also change accordingly. When the applied PI remains unchanged and the
change amplitude of RM within a certain period of time does not exceed 3% of the current
value, it is considered to have reached a quasi-stable state. Record the PI1 at this time and
retreat the micropipette electrode. Then, the micropipette electrode enters intracellular
space again after the release of intracellular pressure. The ion concentration gradient field
corresponding to RI is formed again by injection pressure PI and capillary pressure PC.
Then, a new stable state of RM similar to the former one before intracellular pressure release
can be achieved through adjustment of PI again. The difference between the two injection
pressures PI forming the stable states of RM before and after the release of intracellular
pressure separately can be considered as the released intracellular pressure value.

2.6. Robotic Measurement Procedure of Intracellular Pressure Measurement

A robotic measurement procedure of intracellular pressure was developed based on
the above work. Figure 8 summarizes the robotic measurement procedure.
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Figure 8. Flow chart for robotic measurement of intracellular pressure.
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Before measurement, the micropipette electrode and the holding micropipette were
moved into the field of vision manually. Then, one oocyte was put into the field of view.
The system automatically focuses and 3D localizes the micropipette electrode, holding
micropipette, and the target oocyte [19,20], corresponding to the frame “localization of
microelectrode and cell” in Figure 8. Then, the system controlled the holding micropipette
to approach the target oocyte and immobilize it with aspiration pressure [21].

Before cell membrane (zona pellucid (ZP) for porcine oocyte in this paper) penetration,
the injection pressure inside the micropipette electrode was adjusted to make the resistance
of the micropipette electrode within the working range (downslope section). After that,
the micropipette electrode was controlled to penetrate the cell membrane along the central
axis of the holding micropipette, and the system automatically detected the resistance
of the micropipette electrode, corresponding to the frame “microelectrode moving” in
Figure 8. Once the micropipette electrode contacts the cell, the detected resistance will
start to rise, and the resistance will continue to rise as the micropipette electrode advances.
When the detected micropipette electrode resistance begins to decrease, which means the
micropipette has entered the intracellular space, the system assumes that the cell membrane
has been punctured, corresponding to the frame “resistance begins to drop?” in Figure 8.
To reduce the squeezing of micropipette electrode cells, which usually generates a false
larger intracellular pressure, the system controls the micropipette electrode to retreat until
the cytoplasm contour recovers its sphere shape, which means the deformation resulting
from cell membrane penetration fully recovers, corresponding to the frame “microelectrode
retreat” in Figure 8. The contour detection method for cytoplasm has been reported in our
previous research [22].

After the cell membrane penetrates, the system increases PI, and RM decreases accord-
ingly, corresponding to the frame “apply injection pressure” in Figure 8. This is because a
1 mol/L KCl solution is a concentrated electrolyte solution compared to the intracellular
fluid. When the applied PI remains unchanged and the amplitude of RM change within
5 s does not exceed 3% of the current value, it is considered to have reached a quasi-stable
state, corresponding to the frame “the quasi-stable state has been reached?” in Figure 8.
PI1 was recorded at this time, and the micropipette electrode was withdrawn from the
cell along the axial direction of the holding micropipette and waited for 60 s to release
the intracellular pressure, corresponding to frames “record the injection pressure PI1” and
“withdraw the microelectrode and wait” in Figure 8. Then, the system controlled the
holding pressure of the holding micropipette to first spit and then hold the cell again.
In this way, the cell rotated by some degrees relative to the original position. Then, the
micropipette electrode entered the cell again along the axis direction, retreated to let the cell
recover its shape, increased the injection pressure again to reach the quasi-stable state, and
recorded the required injection pressure PI2 at this time. The intracellular pressure of cells
is then determined by the difference in injection pressure before and after the release of
intracellular pressure. The corresponding PI2 is considered valid only when the difference
in resistance values between two quasi-stable states does not exceed 100 Ω, which means
that the measurement results can be adopted. We have established a flowchart for the
robotic measurement of intracellular pressure (see Figure 8).

The reason why we make the cell rotate relative to the original position before entering
the cell again is given as follows. The micropipette electrode usually releases a small
amount of electrode fluid (concentrated electrolyte solution) around the point it stays after
the first puncture. Due to the poor diffusion of the KCl solution inside the cell in comparison
to that outside the cell, there may still be some KCL solution around the previous point. If
the micropipette tip stays at the same position after the second entry, the existence of the
left KCl solution may weaken the concentration gradient and the variation of RM along PI,
increasing the difficulty of obtaining PI2. Therefore, cell rotation before the second entry
is required to make the position it stays inside the cell different from the first one. This
ensures that the micropipette electrode tip is filled with KCl solution on the inner side and
pure intracellular liquid on the outside during the two penetration processes of the cell.
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3. Results

3.1. Intracellular Pressure Measurement Results

We used porcine oocytes in the MII period as experimental samples. The extracellular
fluid was the cell operating fluid (H199) that could keep the oocytes active in vitro. The
micropipette electrode was filled with 1 mol/L KCl solution. All experimental animal pro-
tocols were approved by the Institutional Animal 129 Care and Use Committee of Nankai
University and carried out following the national 130 ethical guidelines for laboratory
animals (permission number SYKX 2019-0001).

Figure 9a shows the first penetration of the micropipette electrode into the cell,
while Figure 9b shows the second penetration after the release of intracellular pressure.
Figure 9c–f shows the detection resistance and injection pressure in our experiment, respec-
tively. Figure 9c,d shows data sampling after the first puncture. Figure 9e,f shows data
sampling after the intracellular pressure is released and then inserted again. From Figure 9,
we can see that after the micropipette electrode is inserted into the cell for the first time and
the detection resistance reaches the quasi-stable state, the corresponding injection pressure
PI1 = 1288 Pa. The corresponding injection pressure PI2 = 681 Pa after the second insertion
and the detection resistance is stable. Based on the above research, we can calculate the
intracellular pressure of this oocyte as Pin = PI1 − PI2 = 607 Pa. According to statistics, the
intracellular pressure of porcine oocytes we measured is 200~700 Pa with an average value
of 500 ± 50 Pa (n = 20), which is basically consistent with the numerical range reported in
the relevant literature [13,14]. This consistency proves the effectiveness and feasibility of
our measurement method.

Figure 9. Intracellular pressure measurement results: (a) Micropipette electrode penetrates cell
before releasing intracellular pressure; (b) Micropipette electrode penetrates cells after the release
of intracellular pressure; (c,d) Resistance value and corresponding pressure in the first quasi-stable
state; (e,f) Resistance value and corresponding pressure in the second quasi-stable state.

Finally, after one week of practice, the average measurement speed of the proposed
method is 8 ± 2 cells/h. During the experiment, it is usually necessary to change a new
micropipette after measuring a cell. This is because multiple punctures into the cells will
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cause some cytoplasm to adhere around the micropipette nozzle, which will lead to unstable
detection resistance. Actually, the replacement and preparation of new micropipette costs
most of the operation time for each cell (about 5 min). The measurement success rate
is 50% (n/m) at present. With this measurement efficiency, the system is expected to
measure about 20~40 cells a day, totally comparable to that of the method using commercial
devices [15], which are usually able to measure 10 cells per day after two weeks of practice.
We compare the operating time of our method with that of using commercial equipment
methods in Table 1. Our method is fast enough to measure intracellular pressure compared
to previous methods.

Table 1. Comparison between our method and previous work.

Comparison Our Method Commercial Equipment Oil Injection Method

number of cells operated 20~40 cells/day 10 cells/day 20 cells/day
practice time

cell survival rate
1 week 2 weeks /

90% / 0%

3.2. Leakage Test for Intracellular Pressure during the Measurement Process

During the measurement process of intracellular pressure, the ZP and outside wall of
the micropipette need to be well sealed to avoid leakage of intracellular pressure. Otherwise,
the leakage of intracellular pressure leads to a falsely smaller value of measured intracellular
pressure than its original one. In this part, the fluorescent dye solution was backfilled into
the micropipette to detect possible leakage of intracell pressure during measurement.

First, a fluorescent dye (HTPS, 5 mM) solution was backfilled into the micropipette
before measurement. After ZP penetration, a positive pressure pulse was exerted inside the
micropipette to deposit about 2 pL volume of solution, only about 0.25% of the total volume
of the oocyte calibrated by the method mentioned in previous research [11]. Then, the field
of view switches to the fluorescent field to check the diffusion scope of the fluorescent dye.
If any fluorescent dye diffuses outside of the cell through the wound, it means that the seal
between the micropipette and the ZP has failed, and leakage of intracellular pressure occurs
during measurement. According to the experimental results on 10 oocytes, we found no
leakage of intracellular pressure during the measurement process (see Figure 10), which
guarantees the measurement accuracy of the intracellular pressure using our method.

Figure 10. Leakage testing of intracellular pressure: (a) Micropipette electrode penetration into cells
under bright field; (b) Observation of fluorescence diffusion within cells under fluorescence field;
(c) Synthesis of two images under bright and fluorescent fields.

3.3. Repeatability Validation Experiment

Unfortunately, as an invasive measurement method, our method is not able to measure
the intracellular pressure of one cell more than once because the intracellular pressure leaks
from the wound after the first measurement. Thus, the repeatability of our measurement
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method cannot be evaluated through comparison among the obtained intracellular pressure
multiple times for the same cell. However, as a measurement method relying on the RM-PI
relationship, the repeatability of our measurement method can be indirectly evaluated
through the repeatability of the obtained RM-PI curves. Due to the aforementioned poor
diffusion rate of the released KCl solution inside the cell, the local concentration gradient
at the opening of the micropipette and the obtained RM-PI curves can be easily varied
because of the KCl solution released from the micropipette during the test. Thus, the test
was conducted in H199 fluid outside the cell, where the diffusion of the KCl solution is
much faster. Further, compared to the volume of KCl injected by the micropipette electrode,
the volume of H199 fluid can be assumed to be infinite. Thus, the environment can be
considered stable in multiple experiments.

After the test starts, the micropipette electrode is immersed in the H199 solution.
Then, injection pressure inside micropipette PI is back-and-forth adjusted to record the
corresponding measurement resistance, RM, repeated three times. The obtained RM-PI
curves are summarized in Figure 11. We can see that when the recorded pressure is greater
than 300 Pa, the obtained RM-PI curves almost coincide with each other. When the resistance
value is the same, the pressure value error is less than 47 Pa. The average error is 22 Pa,
which is only 4.4% of the average measured intracellular pressure. It is worth noting that
the consistency of the three curves reduces when PI is less than 300 Pa. This is mainly
because the openness of the valve to adjust the PI is almost closed when the output pressure
is less than 300 Pa, which easily produces an unstable air flow, resulting in unsteady RM.
Fortunately, the diameter used in this article is ~2 μm. To keep the resistance value of
the micropipette electrode within the working range (downslope section) and prevent
the tip from being blocked in the process of penetrating the cell, the system will give
the micropipette electrode a positive pressure greater than 300 Pa before the penetration.
Therefore, RM disturbances below 300 Pa have no significant impact on our measurement
results. The good repeatability of the RM-PI curve obtained ensures the repeatability of the
proposed intracellular pressure measurement method.

Figure 11. Repeatability validation experiments.
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3.4. Cell Survival Rate Testing Results after Measurement

The survival rate of the measured oocyte was tested after intracellular pressure mea-
surement to evaluate the harm caused by the proposed method to the oocyte viability. The
operated oocyte is considered to survive if a clear and integrated cytoplasm membrane
exists (see Figure 12a), which means the wound has healed after 2 h of culture. If part of
the cytoplasm membrane still breaks at that time (see Figure 12b), which means the wound
is still open, the viability of the oocyte is considered to be damaged, and the oocyte may
be dead. According to the observation results, only two oocytes with a broken cytoplasm
membrane were found from the twenty oocytes with successful measurement. The above
results demonstrate that the survival rate of the oocyte measured by the proposed method
is up to 90% (18/20), proving limited harm to cell viability. This is very important for
biological applications requiring alive oocytes or embryos, such as oocyte or embryo mi-
croinjections. For these applications, the in situ measurement of intracellular pressure can
be achieved using our method before operations.

Figure 12. Oocyte images after 2 h of culturing after the measurement: (a) The oocyte with part of a bro-
ken membrane which may be a dead oocyte. (b) Alive oocyte with an integrated cytoplasm membrane.

The use of the oil injection method to measure intracellular pressure is also an invasive
measurement method [11]. However, as is well known, mineral oil is a harmful substance
to cells, and cells measured using this method are almost unable to maintain activity.
Table 1 compares our method with the oil injection method in terms of cell survival rate
after measuring intracellular pressure. Our method causes less damage to cells compared
to the oil injection method.

4. Discussion

Our method can be conducted using a common microoperation system with the mea-
surement ability of the micropipette electrode resistance. Because it does not involve expen-
sive specific commercial measurement devices, which usually cost USD 80,000–90,000 [23],
the proposed system is expected to have more widespread applications. Through com-
paring the required PI making RM reach a quasi-stable state before and after the release of
the intracellular pressure, the influences of the cytoplasm and ZP on the RM are excluded,
which may improve the measurement accuracy of intracellular pressure in comparison to
the method based on commercial devices [15].

Although our system is only able to measure one cell at one time at present, it is highly
expected to achieve robotic measurement of batch cells in the future. We proposed a robotic
enucleation method [20] for batch oocytes in the previous study. In that method, the system
automatically scanned the entire area of oocytes and established a global map containing
all the target oocytes before operation. With the global localization of the target oocytes,
the system was able to pick up the target cell with the holding micropipette, move the cell
to another place with movement of the microstage, and then operate it with the injection
micropipette one by one. Further, the pancreatin solution has been proven to be able to
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clear the inner surface of the micropipette and remove the adherent cell materials on it [24].
With a droplet of pancreatin solution to wash the micropipette after measurement on each
cell, the replacement of the micropipette can be saved. Similar functions can be integrated
into our system for the robotic measurement of batch cells in the future. After that, the time
cost in search of each cell and replacement of the micropipette can be saved, which will
significantly accelerate the operation speed of our method.

At present, the success rate of the proposed system is about 50%. The two main reasons
for the measurement failures are the blockage of the micropipette electrode opening and
failures of quasi-stable state formation after ZP penetration. Apparently, the increase in
the diameter of the micropipette electrode and the decrease in the concentration of KCl
concentration are both able to reduce the blockage of the micropipette opening. However, a
micropipette tip with a larger opening increases the cut size generated during penetration
and subsequently increases the leakage incidences of the intracellular pressure. Moreover,
the decrease in KCl concentration may further reduce the concentration gradient at the
micropipette opening after ZP penetration, which finally reduces the formation success rate
of the quasi-stable state of RM. Sharpening the tip with a tilt opening may be a better way to
reduce the blockage in the future, as it can increase the opening area of the micropipette and
does not enlarge the wound. Increasing the diffusion speed of the solution may increase
the formation success rate of the quasi-stable state. Thus, a compound solution with a
diffusion speed higher than KCl is expected to replace the KCl solution in the future for the
improvement of the formation success rate of the quasi-stable state of RM. In addition, after
completing the experiment, some KCl solution will be left in the cell, which may affect the
osmotic pressure of the cell. Therefore, we speculate that the left KCL has an impact on
cell viability. However, from our conclusion in Section 3.4, we can see that the cell survival
rate reaches 90%, so we can infer that the impact of left KCL on the cell survival rate is
very small.

Additionally, it has been reported that the speed at which the micropipette penetrates
cells can have an impact on cell deformation and damage, and optimizing the penetration
speed can reduce the damage caused by micropipette penetration to cells [25]. This inspires
the potential improvement of the work in this paper. Currently, in our experiment, the
micropipette electrode penetration into cells is at a constant speed of 10 μm/s. In the future,
we can control the penetration speed to reduce cell damage.

5. Conclusions

In this paper, a method of intracellular pressure measurement based on a micropipette
electrode circuit model is proposed. We first introduced the fabrication method of the
micropipette electrode used in the experiment. Secondly, according to the change principle
of electrode detection resistance, we established the circuit model of the micropipette elec-
trode outside the cell and carried out the extracellular injection experiment to determine
the appropriate concentration of the electrode liquid used in the experiment. Then, we
established the circuit model of the micropipette electrode inside the cell. Finally, a robotic
measurement procedure was established based on the above work. We carried out our
intracellular pressure measurement experiment on the patch clamp system in our labo-
ratory and obtained the intracellular pressure of porcine oocytes (200~700 Pa), which is
basically consistent with the value reported in the relevant literature. The effectiveness and
feasibility of our proposed method were validated through experiments. Although our
experiment was implemented on a patch clamp system, this method is easy to generalize to
conventional micropipette electrode resistance measurement systems, so it does not require
expensive systems and helps achieve in situ detection.
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Abstract: This article describes a one-degree-of-freedom haptic device that can be applied to perform
three different exercises for shoulder rehabilitation. The device is based on a force control architecture
and an adaptive speed PI controller. It is a portable equipment that is easy to use for any patient, and
was optimized for rehabilitating external rotation movements of the shoulder in patients in whom
this was limited by muscle–skeletal injuries. The sample consisted of 12 shoulder rehabilitation
sessions with different shoulder pathologies that limited their range of shoulder mobility. The
mean and standard deviations of the external rotation of shoulder were 42.91 ± 4.53◦ for the pre-
intervention measurements and 53.88 ± 4.26◦ for the post-intervention measurement. In addition,
patients reported high levels of acceptance of the device. Scores on the SUS questionnaire ranged
from 65 to 97.5, with an average score of 82.70 ± 9.21, indicating a high degree of acceptance. The
preliminary results suggest that the use of this device and the incorporation of such equipment
into rehabilitation services could be of great help for patients in their rehabilitation process and for
physiotherapists in applying their therapies.

Keywords: force control; haptic; upper limb; rehabilitation; shoulder movements; medical
rehabilitation

1. Introduction

Shoulder rotator cuff injuries include tendinopathies and partial or complete tendon
ruptures, mostly related to the supraspinatus tendon [1]. Exercise is a key component of
treatment for shoulder soft tissue injuries of the shoulder. Evidence recommends exercise-
based interventions to reduce pain and increase shoulder function. Evidence also suggests
that progressive shoulder strengthening and stretching are effective in the management
of rotator cuff injuries [2]. Exercises should be introduced as early as possible. However,
in clinical practice, the actual referral rate to physical therapists is low due to the lack of
access to publicly funded physical therapy in health care systems [3]. Waiting for outpatient
physiotherapy services has been shown to have mixed results in clinical and health system
outcomes. The review by Deslauriers et al. [4] suggests the possible detrimental effects
of waiting on pain, disability, quality of life, and psychological symptoms in people with
shoulder disorders. There is also evidence of higher healthcare utilization and costs for
patients who wait longer before physiotherapy services [4]. The effects of waiting caused by
lack of access to physiotherapy services could be mitigated by the implementation of robotic
devices with which more patients can be treated at the same time with a lower number of
physiotherapists. Rehabilitation robots can significantly reduce the burden of therapists by
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providing repetitive and precise therapy to people with upper limb impairments over a
long period of time [5].

Most upper extremity devices for rehabilitation available on the market are designed
to improve flexion and abduction, and not external rotation, which is a fundamental move-
ment in the performance of activities of daily living. Rotation movements are fundamental
for performing activities below the horizontal and to execute coordinated movements with
the hand for an individual to locate themselves in space [6]. In addition, most studies have
been carried out in stroke patients [7,8]. This equipment is based on exoskeletons [9] or
haptic devices [10]. The exoskeletons typically cover the arm and forearm and are linked to
the trunk using flexible components. Meanwhile, haptic devices are attached to the hand to
guide the movement while exerting force.

There is great interest in developing more specific equipment for rehabilitation [11].
This equipment is focused specifically on rehabilitation and solve the constraints of generic
exoskeletons, particularly, the difficulties of supporting complex movements of joints such
as the shoulder. The rigid exoskeletons use special mechanisms that increase its complexity.
At the end, the goal is to adjust the actuated degree of freedom of the exoskeleton to the
desired rotation plane of the shoulder/arm for each specific rehabilitation treatment. In
some cases, textile or other flexible materials are used to avoid movement constraints.

This article describes a one-degree-of-freedom haptic device that can be applied to
perform three different exercises for shoulder rehabilitation. This device implements force
control behavior. This force control entails resistance to the patient’s shoulder rotation that is
customized according to the patient’s status. Therefore, the same equipment can be adapted
to the patient’s evolution and all session activities can be recorded for clinician studies. A
portable and compact equipment has been designed for shoulder rehabilitation treatments.

2. Materials and Methods

For the present study, a pre- and post-treatment study was performed for an inter-
vention session using a one-degree-of-freedom haptic device to perform three different
exercises for shoulder rehabilitation.

2.1. Device

The rehabilitation device consists of the following components: the actuator, transmis-
sion components, force sensor, handle, and controller. The architecture used is shown in
Figure 1. The actuator is based on a DC motor; the Maxon DCX22S has been selected for
this application. Its rated operation is at 38 VDC, 5.9 Nm, and 10.5 revolutions per minute
(RPM). This motor generates the required force that is applied to the patient. The controller
calculates the reference value according to the desired force and information provided by
sensors; then, the driver (H-bridge max14870) sets the power to the motor. The controller
is run on a Texas Instruments board, specifically, the LAUNCHXL-F28379D model. This
board contains a 32-bit dual-core TMS320F2-8379D microcontroller, which runs at 200 MHz.
The controller closes the force control loop at 1 kHz. The transmission is made up of a
cable and a pulley that transmit the actuator torque to the patient; the ratio between the
motor and the pulley is 100:1 mm. A force sensor is located at the end of the cable and is
also linked to the handle. The force sensor is implemented by a load cell manufactured by
Futek, which is used to measure the force reflected by the motor. The sensor model used in
this work is LSB205 connected to the Analogue Strain Gauge Signal Conditioner IAA100; it
offers a load measurement range from 0 to 11 Kg, corresponding to 0 to 5 DC volts.

The patient’s hand is positioned inside the handle, which is made of a flexible textile
for a comfortable grip. Figure 2 shows an image with all the components. The patients
sit in a chair, and the described components are mounted in an aluminum structure that
provides a comfortable workspace.
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Figure 1. Proposed general architecture. The prototype consists of two electronic cards. the Jetson
nano sends the setpoint parameters selected in the interface to the microcontroller (UC) Texas F28379D,
and stores the values generated by the controller and the sensors. The H-bride transforms the PWM
signal generated by the UC into a voltage to move the motor. The interaction between the patient
and the motor is detected by the Futek load cell sensor.

 
Figure 2. Main components of the rehabilitation device: actuator (1), transmission components (2),
force sensor (3), handle (4), and controller (5).
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2.2. Control Algorithm Design

In this work, a force controller is proposed based on the cable tension exerted by
the patient and an adaptive speed PI controller. The force sensor provides a range of
detection from 0 N to 111 N; therefore, the maximum configurable payload of the prototype
is 11.32 Kg. The proportional gain Kp is modified as a function of the ratio between the
force error and the reference; the proposed values are shown in Figure 3. The integral gain
Ki was set at a value of 2. Kp and Ki were tuned experimentally.

 
Figure 3. Value of the gain Kp according to the ratio between the force error and the reference. When
the ratio increases, a higher gain is applied. The minimum value is adjusted for the recovering cable.

2.3. Controller Performance

Some trials were performed in the laboratory to properly tune the controllers. Figure 4
shows the performance of the force exerted by the motor when applied to the reference. As
we can see, the information provided by the force sensor oscillates around the reference.
This oscillation is due to the interaction with the patient; the different movement speed is
directly transformed to an incremental variation of the reflected force. This is the usual
behavior of a force control loop that maintains a reflected force.

Figure 4. Evolution of the force exerted by the motor according to the force reference. Oscillations
over the reference are due to the interaction with the patient to account for differences in resistance
during the movement.
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2.4. Participants

The inclusion criteria established for the selection of patients were as follows: upper
limb musculoskeletal injury, no pathology for which rehabilitation treatment is contraindi-
cated, and over 18 years of age. Patients who met any of the following exclusion criteria
were not admitted to the study: cognitive impairment that prevented the understanding of
simple commands, neurological lesion affecting the upper extremity, dermatological lesion
of the upper extremity preventing the use of device material, and/or any other type of
injury impeding the use of the device.

This protocol was approved by the Research Ethics Committee of the Rey Juan Carlos
University Institute. The ethical principles for medical research in humans from the
Declaration of Helsinki were followed. All subjects signed the informed consent form prior
to participation. Trials were carried out at the Getafe Clinical Centre (Madrid, Spain).

2.5. Intervention

The clinician adjusted the controller parameters for each patient according to the
predefined exercise (in this case, the shoulder rotation movement). These parameters define
the shoulder rotation range and the stress of the reflected force on the patient, which is in
an interval of 5 N to 15 N. Furthermore, it was verified that the pulley was in the same
plane as the patient’s forearm. This alignment makes movements more comfortable as the
forces directly oppose shoulder rotation with no movement at the elbow.

Each session lasted 15 min and consisted of repeating a cycle of external rotation and
internal rotation 30 times, returning to the starting position. These cycles were carried
out with the patient sitting down, in a chair with a backrest, and with their feet on the
floor. Initially, the arm was positioned close to the body with a 90◦ elbow flexion, and from
this position, the rotation movements were performed. Figure 5 shows a patient during
a session.

 
Figure 5. Patient performing shoulder rotation in the horizontal plane. The patient pulls the cable by
means of a tape held in her hand. The cable is circled in red.
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To perform the rotation movements, the patient started the external rotation movement
from the initial position up to the maximum rotation they were able to achieve. In this
half-cycle, the patient exerted a force greater than that generated by the motor. In the
second half of the cycle, when the patient returned to the initial position, performing an
internal rotation; this movement was in the opposite direction and the force applied by
the motor was greater than that exerted by the patient. Figure 6 shows the limits of the
cyclical movement. The force reflected by the actuator was fixed throughout the cycle and
measured by the load cell. This load cell was located close to the patient’s hand to obtain
an accurate estimate of the force reflected on the patient; otherwise, the forces caused by
friction might affect the information processed by the controller.

Figure 6. Range of movement for horizontal shoulder rotation. The rehabilitation session consists of
the repetition of movements from the starting position to the end position. The starting position is
defined by the physician and the end position is set according to the evolution of the patient.

2.6. Outcome Measures

The range of motion (ROM) of external rotation was measured using a double-armed
360◦ goniometer. The patients were in a supine position with the humerus abducted at 90◦
and the elbow flexed at 90◦. Measurements were performed twice and averaged for further
analysis [12].

The system usability scale (SUS) was used to assess patient satisfaction with the device.
This questionnaire was developed by Brooke [13] as a usability tool and has been widely
used in the evaluation of a variety of systems. The SUS provides a quick and reliable tool
for measuring the usability of a device. It is a simple and short questionnaire to answer;
a final score is provided with an interpretation based on a well-established reference
standard. It has excellent reliability (0.85). It consists of a 10-item questionnaire with five
response options, from strongly agree (score of 5) to strongly disagree (score of 1). There
are five positive and five negative statements, which are presented in alternatingly. The
odd-numbered questions (Q1 “I think I would use this device frequently’, Q3 “I think the
device was easy to use’, Q5 “The functions of this device are well integrated’, Q7 “I imagine
that most people would learn to use this device very quickly’, and Q9 “I feel safe using this
device’) are positive questions, and the recorded scores are the original scores subtracted by
1. The even-numbered questions (Q2 “I find this device unnecessarily complex’, Q4 “I think
I would need help from a person with technical knowledge to be able to use this device’, Q6
“I think the device has a lack of consistency’, Q8 “I find the device very difficult to use’, and
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Q10 “I needed to learn many things before able to use this device”) are negative questions
with recorded scores being subtracted from 5. Once the results for the ten questions are
treated, the score of each question is added, and the result is multiplied by a factor of 2.5.
The SUS score, therefore, ranges from 0 to 100, where a higher score means better usability,
with a threshold of 68 to establish the usability of the device [14].

2.7. Statistical Analysis

Statistical analysis was performed using the SSPS statistical software system (SSPS Inc.,
Chicago, IL, USA; version 27.0). A descriptive analysis of all the variables was performed.
The results were expressed as average and standard deviation and median and interquartile
range. The normal distribution of the variables was verified using the Shapiro–Wilk test.
The hypothesis that the variables did not have a normal distribution was accepted, given
the results of this test, the verification of each variable’s histograms, and the sample size.
We used the Wilcoxon test, a nonparametric test for related samples. Statistical analysis
was performed with a confidence level of 95%, and therefore significant values were those
whose p was < 0.05.

3. Results

The sample consisted of 12 shoulder rehabilitation sessions with 11 patients (n = 11)
(5 men and 6 women) with different shoulder pathologies that limited their range of
shoulder mobility. In one of the patients, both shoulders were treated. One patient
performed two sessions for the rehabilitation of both shoulders, while the rest performed
only one rehabilitation session. The ages ranged from 35 to 66 years (54.92 ± 3.16 years).
Table 1 shows the data of the patients who participated in the testing of the device.

Table 1. Data of patients that tested the device. S11 and S12 were performed by the same patient, but
with different shoulders (left and right, respectively).

Shoulder Session Gender Age Pathology

1 M 66 Supraspinatus tendon rupture

2 F 45 Fracture with dislocation and calcified
supraspinatus tendinosis

3 M 67 Complete rotator cuff rupture
4 M 57 Calcified supraspinatus tendinosis

5 M 46 Supraspinatus tendon suture due to
subacromial syndrome

6 F 42 Supraspinatus tendinosis
7 M 66 Recovery after arthrolysis due to shoulder capsulitis
8 F 52 Supraspinatus tendon rupture
9 F 65 Rotator cuff tendinopathy
10 F 35 Supraspinatus tendinosis
11 F 61 Supraspinatus and infraspinatus rupture (left)
12 F 61 Tendinosis of the rotator cuff (right)

The analysis shows statistically significant changes for the ROM of external shoul-
der rotations. The mean and standard deviations of the external rotation of shoulder
were 42.91 ± 4.53◦ for the pre-intervention measurements and 53.88 ± 4.26◦ for the post-
intervention measurements. Figure 7 and Table 2 show the data and range of movement of
the patients during the rehabilitation sessions.

The patient scores on the SUS questionnaire ranged from 65 to 97.5, with an average
score of 82.70 ± 9.21, suggesting a high degree of acceptance. These scores are higher than
68, indicating that this device can be rated “excellent” in the acceptability range. Table 3
shows the means of the scores obtained for each question. Questions Q1, 3, 5, 7, and 9 were
positive questions and the averages obtained in these questions were above 4. It is worth
noting that Q1 “I think I would use this device frequently” presented an average score of
4.75 ± 0.59 and Q9 “I feel safe using this device” showed an average score of 4.91 ± 0.27.
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Meanwhile, questions Q2, 4, 6, 8, and 10 were negative questions. The mean scores in these
questions were 1, except in Q2 “I find this device unnecessarily complex” which had a
mean score of 2.5 ± 1.55 and Q4 “I think I would need help from a person with technical
knowledge to be able to use this device” with a mean score of 2.91 ± 1.49.

 
Figure 7. Ranges of motion after one rehabilitation session. A total of 10 out of 12 shoulders present
improvements, while 2 present slight deteriorations, likely due to lack of familiarity with the device.

Table 2. Comparison of range of motion of shoulder external rotations.

Variable
Pre-Intervention

Median (Interquartile Range)

Post-Intervention
Median

(Interquartile Range)

Intragroup
Analysis
Median
p-Value

Range of motion
Shoulder external
rotations (degrees)

42.00 (33.00) 55.00 (25.50) 0.008 *

Data are expressed as the median and interquartile range. * p < 0.05 using the Wilcoxon test for related samples.

Table 3. Results of the system usability scale questionnaire.

Question Score

Q1 4.75 ± 0.59
Q2 2.5 ± 1.55
Q3 4.66 ± 0.47
Q4 2.91 ± 1.49
Q5 4.08 ± 1.11
Q6 1.83 ± 1.28
Q7 4.58 ± 1.11
Q8 1.58 ± 1.32
Q9 4.91 ± 0.27

Q10 1.08 ± 0.27
TOTAL 80.71 ± 9.79

Data are expressed as mean ± standard deviation.
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4. Discussion

The present study showed the use of an active device for shoulder rehabilitation based
on a force control architecture. This preliminary study is based on a single treatment session
to treat the external rotation movements of the shoulder in the patients in whom this was
limited by musculoskeletal injuries. It also described the patient’s acceptance of the device,
and the results show a high level of approval from the patients after the first trial.

It has been demonstrated that robotic and haptic technologies, such as force control
and real-time signal processing, have an effective contribution in upper limb rehabilitation.
There are many examples of complex exoskeletons [15,16] and robot-like equipment applied
in upper limb rehabilitation [17]. Physical therapy can be a long, lengthy, and costly
process, which can lead to loss of interest in individuals undergoing therapy. Reducing
recovery time is a potential solution that may motivate individuals to participate and
continue physical therapy. Rehabilitation with an exoskeleton can reach more patients
while reducing physician interactions and overall rehabilitation costs [18].

This equipment can perform a wide variety of movements but is specifically pro-
grammed for executing rehabilitation tasks. It is also necessary to design the proper patient
interface to fix or attach the patient’s upper limb to the robot structure. These kinds of
solutions have the advantage of being able to adapt to different rehabilitation activities.
Cost-effective automation devices, such as exoskeletons, are critical to the success of these
interventions and rehabilitation programs.

With a single treatment session, this active device for shoulder rehabilitation based
on force control was found to significantly increase the external rotation movement of the
shoulder in the patients who used it. The pre-intervention mean and standard deviations of
the ROM of the external rotation of the shoulder were 42.91 ± 4.53◦, and 53.88 ± 4.26◦ in the
post-intervention measurements. In addition, patients reported high levels of acceptance of
the device; their scores on the SUS questionnaire ranged from 65 to 97.5, with an average
score of 82.70 ± 9.21, indicating a high degree of acceptance. These very promising results
were obtained with minimal hardware and a user-friendly interaction with the patient.

This device is in line with a new generation of compact and simple rehabilitation
equipment that is portable and easy to use for the patient [19], in contrast to the classical
robotic solutions mentioned above. The main advantage of this kind of solution is the
simplicity and cost-effective aspects. Only one degree of freedom is enough to perform
shoulder rehabilitation, and this equipment can be adapted for horizontal and vertical
rotations. Moreover, the reduced size of the device allows it to be easily transported to the
rehabilitation workspace, which can be located in a clinic or at the patient’s home.

This prototype is currently being improved in order to provide more functionalities to
clinicians for performing new rehabilitation exercises and software is also being developed
to better characterize the rehabilitation sessions.

5. Study Limitations

This study has several limitations. First, the small sample size cannot allow extrapola-
tion of the results. Second, the ROM was evaluated with a manual goniometer. Futures
studies are necessary using objective measures such as using a electrogoniometer or 3D
motion analysis. Third, the sample was heterogeneous in respect to the injury and age. It
is necessary to take this into account. Finally, the lack of follow-up does not allow us to
conclude if the ROM improvement lasted over time.

6. Conclusions

In this paper, a compact and cost-effective prototype for shoulder rehabilitation was
described. The most important features are the simplicity of the hardware and its effective-
ness in rehabilitation exercises. The equipment is designed to repeat a shoulder rotation
while reflecting a force on the patient’s hand. This exercise allows muscle activation, while
also increasing the range of shoulder movement.
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This device allows patients to perform exercises for rehabilitation sessions that are an
ideal complement to clinician manipulation. The preliminary results suggest that the use of
this device and the incorporation of such equipment into rehabilitation services could be of
great help for patients in their rehabilitation process and for physiotherapists in applying
their therapies.
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Abstract: This paper proposes a method for accurate 3D posture sensing of the soft actuators, which
could be applied to the closed-loop control of soft robots. To achieve this, the method employs
an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-
term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators.
The method takes into account the hysteresis of the soft robot and non-linear sensing signals from
the flexible bending sensors. The proposed approach uses a flexible bending sensor made from
a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used
to model the posture of the soft actuator. The effectiveness of the method has been demonstrated
on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible
sponge resistive sensors placed on the soft actuator’s outer surface. The sensor-characterizing results
show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which
has an insignificant impact on the actuator motion based on the working space test of the actuator.
Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with
error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is
expected to contribute to the advancement of soft robot dynamic posture perception by using thin
sponge sensors and LSTM or other machine learning methods for control.

Keywords: soft robotics; soft sensors; flexible porous structures; deep learning; long short-term memory

1. Introduction

Soft robots, a novel category of robots that has emerged in recent decades, are charac-
terized by their high flexibility, compliance, and safety [1]. Compared with conventional
rigid robotics, soft actuators and robotic devices have advantages in human–robot interac-
tion, range of motions, fabrication difficulties, and adaptations to varying environments [2].
However, the perception of posture, which can be easily represented by the status of joints
and links in rigid-link robots, presents a significant challenge in the development of soft
robotics due to the difficulty in accurately modeling elastic continuous structures.

Researchers have developed sensing methods, which can be broadly categorized into
two main groups: on-board sensing and external sensing of robot posture. On-board
sensors, such as flexible bending gauges [3,4] and inertial measurement units (IMUs) [5,6],
may lack flexibility and restrict the robot’s motion. Fully soft sensors embedded in flexible
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materials [7–10] require complex fabrication methods or specialized equipment. To over-
come these challenges, researchers have also utilized external sensing methods, such as
vision-based sensing [11–13] and magnetic tracking [14–16], to obtain posture information
for soft robots, particularly for proof-of-concept use in laboratory environments.

As a result, there is an increasing need to develop advanced and flexible sensing
techniques that can accurately detect the postures of soft robots. In [17,18], researchers
developed a piezoresistive actuator body by mixing carbon fiber with elastomer, resulting
in changes in resistance values during deformation. In [19], researchers achieved soft robot
posture sensing by utilizing a kirigami-inspired sensor and a deep learning calibration
method, representing an innovative approach to the closed-loop control of soft robots. In
the recent work of Ye et al. [20], a significant breakthrough has been achieved in robotics by
utilizing a kirigami-inspired porous sensor for robot teleoperation. In addition to their use
in detecting robot postures, flexible sensing techniques have found extensive applications
in other areas that require safe and comfortable human–robot interactions, such as the
development of artificial skins [21,22] and the monitoring of human body conditions and
motions [23–25]. In this paper, we propose an end-to-end method that effectively captures
the dynamic behavior of soft actuators, with potential applications for perceiving the
posture and dynamic behavior of objects during deformation, such as bellow-shaped soft
actuators, where deformation is mainly driven by buckling [26]. Specifically, the neighbor
wall angle α (see Figure 1) changes during actuator deformation, allowing us to indirectly
perceive the posture of the soft robot through the observation of angle changes.
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Figure 1. Proprioception of posture in a pneumatic soft actuator. On the side of the actuator (left),
there are nine distributed flexible bending sensors (scale bar = 1 cm) made by a thin conductive
sponge via the planar fabrication method. The neighbor wall angle α was indicated. A trained
neural network was employed to calibrate the sensor, and the 3D representation of the posture of soft
actuator is shown on the right. (The perspective of the right figure is a top–down view along the x−z
plane, parallel to the vector (3, 0, 1)).

In this study, we utilized commercially available thin conductive sponges as the sensor
material, which were attached to the lateral surface of a three-degree-of-freedom (DoF)
soft actuator. Previous research has demonstrated that the piezoresistive properties of
thin conductive sponges enable the detection of deformation and tactile information of
attached objects [22,27–33]. Due to their flexible and lightweight nature, sensors developed
with sponge materials have been widely employed in human–robot interactions, including
tactile sensing [22,27,29,30] and human motion detection [28]. The porous and flexible
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nature of the conductive sponge structure minimizes impediments to the movement of
attached objects induced by sensor deformation.

Although recent research work has explored the feasibility of collecting the tactile
information of robots using conductive sponge sensors [31,34,35], only a few studies have
employed sensors developed with conductive sponge material to detect or estimate the
deformation of soft robots. In our previous work [36], we proposed a kirigami-inspired
flexible sponge sensor that could estimate the bending angle of a single degree-of-freedom
flexible fiber-reinforced bending actuator. By connecting the sensor information and cali-
bration neural network organically, we achieved highly accurate robot posture estimation.
In this paper, we simplified the sensor structure to make it suitable for bending detection
and increased the sensor number, enabling us to achieve dynamic 3D posture perception
of soft robots. To the best of our knowledge, this is the first study to seamlessly combine
sponge sensors and a neural network calibration method to achieve soft robot dynamic 3D
posture perception.

We employed an end-to-end method in our study to calibrate our sensing system via
RNN deep learning. This approach obviates the need for developing a complex kinematic
model. The idea has been widely explored and validated in the soft robotics commu-
nity [9,19,36–39] as a means of addressing the non-linearity and hysteresis issues associated
with data. We utilized a long short-term memory (LSTM) neural network [40], which
is a specialized type of recurrent neural network (RNN) that can handle sequential data
with the aforementioned difficulties. We trained an LSTM neural network using feedback
sensing signals from nine sensors distributed on the side wall of the actuator. The posture of
a 3-DoF soft actuator was predicted using this network in conjunction with the input sensor
value, and the overall root mean square error (RMSE) value was calculated to gauge the
accuracy of our sensing system. Despite the acceptable prediction accuracy of the sensor,
certain issues were uncovered during the study. The primary issue concerns the saturation
of sensor readings when the sensor approaches full compression, thereby leading to a loss of
prediction accuracy in situations where the attached object undergoes extreme deformation,
which would be indicated in the experimental results of sensor characterization.

Overall, this paper makes the following contributions:

(1) An end-to-end (indirect) method for soft robot posture perception with flexible porous
piezoresistive sensors via the RNN deep learning approach.

(2) The design and characterization of a scalable miniature flexible bending sensor that
can be quickly attached to existing bellow-shaped actuators to perceive the posture and
dynamic behaviors as sensing units while minimizing the effect of motion restriction.

(3) The validation of our proposed method on a small-scale 3 DoF bellow-shaped soft
robot actuator with three pneumatic chambers.

2. Design Overview and Rationale

2.1. Soft Robot and Flexible Porous Piezoresistive Sensor Design

Fluidic elastomer actuators (FEAs) are widely used in soft robotics. To perceive the
posture of FEAs, researchers have employed various methods, including flexible bending
gauges [3], sensors with micro-channels and liquid metal [9], piezoresistive materials
embedded in the actuator body [41], fiber optic intensity-based sensors [42], and others.
As mentioned in Section 1, these sensing methods can either restrict the motion of soft
actuators or require bulky serving systems. Consequently, researchers have pursued
a sensing method that can integrate independent sensors into the FEA body. Such a method
was first developed in [19], which bypassed the need for designing both the soft actuators
and their sensing systems. In this study, we present a robot sensing system that utilizes
a similar distributed sensing method, employing bending-based thin conductive sponge
sensors. Our approach can be easily applied to the surface of soft actuators that undergo
deformation during changes in posture.

We designed and fabricated a negative pressure-powered bellow-shaped FEA. The
FEA body was fabricated using casting techniques and silicon material (Smooth-Sil 945,
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Smooth-On Inc., East Texas, PA, USA). The actuator comprises three hexagonal bellow-
shaped chambers, with hex-edge lengths of 5 mm, bonded in parallel using silicon adhesive
(Sil-Poxy, Smooth-On Inc., USA). The angle between two bellow walls is 55 degrees, and
each chamber was constructed by bonding two half-chambers and two sealing caps with
the same silicone adhesive. The fabrication process of the FEA is illustrated in Figure 2c–e.

(a)

(b) (c)

(d) (e) (f)

Acrylic Assemble Base

Bottom Layer: Adhesive

Top Layer: Conductive Sponge

11mm

2mm

1mm

Figure 2. Fabrication of flexible bending sensor and pneumatic soft actuator. (a) Sketches of planer
fabrication process of sensor body. (b) Flexible bending sensor via planar fabrication method.
(c) Molds for silicone casting. (d) Half-chamber of the soft actuator made by silicon after the de-
molding process. Two half-chambers were combined to form one air chamber using silicon adhesive.
(e) Three air chambers combined via silicon adhesive with top and bottom caps. (f) Soft pneumatic
actuator with distributed flexible bending sensors. Sensors were attached to the actuator side via
silicon adhesive. Four reflective makers are used to determine the true posture of the soft actuator
(scale bar = 1 cm).

The planar fabrication method has been applied in the sensor fabrication, similar to
the methods used in [36,43]. By employing such manufacturing techniques, it is possible
to produce the sensors in small batches. The sketches of the planer fabrication process are
shown in Figure 2a. Each flexible bending sensor comprises two layers fabricated using
planar fabrication methods and cut by a laser cutter. The top layer is made of a 1 mm thin
layer and 2 mm wide PU conductive sponge material (Beilong Inc., Wujiang, China) with
a constant thickness, while the bottom layer is composed of adhesive (300LSE, 3M, Saint
Paul, MI, USA). Copper electrodes with leading wires were attached to the two ends of
the sponge using silver conductive adhesives (3703, Sinwei, Shanghai, China) (Figure 2b).
After drying at room temperature for 12 h, the sensors were trimmed and the undesired
portions were removed. The sensors were then affixed to the actuator body using the
aforementioned silicon adhesive (Figure 2f). To fit the finger-sized bellow-shaped actuator,
the length, width, and thickness of the flexible bending sensor were selected to be 11 mm,
2 mm, and 1 mm, respectively. The length and width of the flexible bending sensors can
be varied by changing the laser cutting pattern to match the dimensions of different soft
actuators, while the thickness of the sensors can be adjusted by selecting a conductive
sponge sheet with a different thickness. The number of sensors attached to the soft actuator
depends on the required level of accuracy. In our design, we bonded nine thin sponge
sensors to the actuator body.

2.2. Working Mechanism of Flexible Porous Piezoresistive Sensor

The resistance of our thin sponge sensor follows the relationship Rs = C(l/A) since
porous structures are evenly distributed inside, where C is a constant relative to the resistiv-
ity and porosity of the material. l and A represent the length and cross-sectional area of the
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sensor, respectively. The schematic diagram of the flexible sponge sensor and its operative
principle is depicted in Figure 3. The left-hand side of the figure illustrates the fundamental
components of the flexible sponge sensor. The electrical resistance of the sensor is sensitive
to the angle of the attached object, as denoted by the variable α as shown on the right-hand
side of Figure 3. By subjecting the attached object to external deformations, the angle α
is likely to vary, thereby causing a change in the compression region of the sensor. This
alteration in the compression region affects the electrical resistance of the sensor. Hence,
the resistance of the flexible sponge sensor provides an indirect measure of the posture or
deformation of the attached object. It is noteworthy that the object under investigation in
this study is the bellow-shaped FEA. Developing a mathematical model for the sponge
sensor would be inefficient due to the uncertain nature of its porous structure. Therefore,
a learning-based method is more appropriate, and we utilized an LSTM neural network as
our calibration neural network. The design of our LSTM neural network is presented in
Section 2.4.

Flexible Bending Sensor

Electrode
Conducting

Wire

Attached

Object

Object 

Deformation

α

α

Sponge

compression

Figure 3. The cross-view sketch in the left panel shows the flexible sponge sensor, while its working
mechanism is depicted in the right panel. When there is deformation on the attached object, the
sponge compression region changes, resulting in a change in electrical resistance.

2.3. Soft Robot Kinematic Description

We utilized the parameter vector q = (k, φ, L) to represent the posture of the soft
actuators (Figure 4), where k is the curvature of this bellow-shaped FEA. Here, we used a
constant-curvature model to simplify the problem. Therefore, we have k = 1/r, where r is
the radius of the actuator arc. φ represents the angle between the x− z plane of the reference
frame and the plane of the actuator arc. L represents the length of the actuator, which is
relative to the length of the three parallel chambers l1, l2, and l3. For our actuator, the length
of each chamber li (i = 1, 2, 3) is relative to β, which is the angle between neighboring walls.
For simplicity, we have li = n · a · sin(β/2), where n is the number of bellow units, and a is
the length of the bellow wall segments.

r

Tip Point (x,y,z)

x

y

z

o

θθφ 

Actuator Arc Center

Figure 4. Kinematic representation of soft pneumatic actuator. The principle axis of reference frames
was indicated.
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In our case, we can directly measure the coordinates of the tip point P1 = (x1, y1, z1)
and the rear point P2 in the task space of the actuator. To transfer these coordinates to the
configuration space, some manipulations are required. We set P2 as the origin, and then φ
can be calculated based on the tangent values of x1 and y1 if the projection of the actuator
on the x − y plane does not lie on the primary axis.

φ = arctan
(

y1

x1

)
(1)

When the tip is located on the z-axis, the actuator is at singularity. In this case, we set
φ to be zero.

Then, we rotate the actuator arc to the x − z plane by multiplying a rotational matrix
about the z-axis. Then, we could obtain P′

1 = (x1, y1, z1) on the x − z plane,

⎡
⎣x′1

y′1
z′1

⎤
⎦ =

⎡
⎣cos (−φ) − sin (−φ) 0

sin (−φ) cos (−φ) 0
0 0 1

⎤
⎦
⎡
⎣x1

y1
z1

⎤
⎦ (2)

After that, we have

x′1 = r(1 − cos θ)

z′1 = r sin θ (3)

Solving Equation (3), we can obtain the values of r and θ. Then, the actuator length
L can be calculated using L = r · θ. Reference [44] provides more details on posture
representations. In the rest of the paper, we will use either the parameter vector q or the
tip point coordinates P1 to represent the posture of the bellow-shaped FEA. We will use an
LSTM neural network as a function approximator for the time-series response of sensors.
The velocity, i.e., dynamic behavior, of the tip point of the actuator can be determined by
taking the first-order differentiation of the tip coordinates, which is suitable for both the
predicted value and the ground truth.

2.4. Neural Network Design

We employed an LSTM neural network to establish the relationship between the values
of the thin sponge sensor and the posture of the bellow-shaped actuator. As previously
discussed in Section 2.1, the development of an accurate mathematical model for the sponge
sensor is an inefficient process. Hence, a learning-based approach was deemed optimal for
our purposes.

The neural network architecture comprises an input layer, a fully connected layer, and
an output layer, with the number of hidden layers ranging from one to four (validation
results with different numbers of hidden layers are compared in Figure 5). Dropout
layers follow the hidden layers to prevent overfitting. The inputs consist of a time-series
sensing signal feedback from each sensor (R1, R2, R3. . . R9), and the output represents the
absolute spatial position (x, y, z). The LSTM neural network’s structure is illustrated in
Figure 6. The use of dropout layers helps to prevent overfitting. Furthermore, fine-tuning
hyperparameters such as the number of hidden layers, number of hidden states, and
dropout layer rate is critical to achieving optimal performance, which is compared and
determined in Section 4.2. The overall root mean square error (RMSE) is selected as the cost
function to evaluate the performance of the trained LSTM neural network, representing its
ability to perceive the 3D dynamic posture of the bellow-shaped FEA in the presence of
non-linear and hysteretic sensor feedback response. The MATLAB Deep Learning Toolbox
is utilized to train and test the LSTM neural network, as detailed in Section 3.2.
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Figure 5. RMSE of validation set prediction for LSTM neural network with different neural network
parameters (unit: mm).
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Figure 6. Structure of LSTM neural network. The neural network contains the input layer, hidden
layer, fully connected layer, and output layer.

3. Experiment Setup

3.1. Sensor Response Experiment Setup

In this experiment, we investigated the electrical resistance and rotating torque re-
sponse of a thin sponge bending sensor as a function of the bending angle. One end of
the sensor was affixed to a fixed plate, while the other end was attached to a rotational
plate with a virtually fixed axis of rotation. The experimental setups for the electrical
resistance and sensor torque response tests are illustrated in Figure A1a,b, respectively. In
the experiment, to measure the electrical resistance response of the sensor, the rotational
plate was driving by a worm gear and stepper motor, which allow the plate to rotate
with a speed of 4◦/s accurately. To mitigate the impact of fabrication defects, an enlarged
sensor with dimensions of 30 mm in length, 5 mm in width, and 2 mm in thickness was
employed for the resistance measurement test. The sensor was connected in series with
a 220 Ω resistor in the measuring circuit. The value of angle β varied between 10◦ and
100◦ periodically for the diverse test. The electrical resistance of the sensor during the first
ten cycles was recorded and calculated during the diverse cycle test. The average electrical
resistance of the sensor when values of β are round numbers of ten are calculated with
mean and standard deviation (S.D.) value. For the sensor torque testing setup, a torque
sensor with a measuring range of ±0.1 Nm (SBT850A, Simbatouch, China) was positioned
at the bottom of the rotational plate. Both the enlarged sensor and the sensor attached on
the soft actuator were tested. The electrical conducting wires were removed to eliminate
the effects of cable tension on the testing results. The torque was recorded once it reached
a stable state. The sensor torque was measured in increments of 10◦.
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3.2. Soft Robot Operation and Data Acquisition

The experimental setup for soft robot operation and data acquisition included a vacuum
pump that generated negative pressure, an MCU (Portenta H7, Arduino, Ivrea, Italy)
equipped with three proportional valves (ITV2090-212L, SMC Corporation, Tokyo, Japan)
to regulate the pressure inside each actuator chamber, a data acquisition card (USB-6212,
National Instrument, Austin, USA), and a motion capture system (Bonita 10, Vicon Inc.,
Yarnton, UK).

To characterize the robot’s performance, the pressure inside each chamber was se-
quentially varied from 0 to −70 kPa at a rate of 2.44 kPa/s to explore the soft actuator’s
working space. A comparison was made between soft actuators with and without sensors.
During the data acquisition period for neural network training, the pressure within each
actuator chamber was randomly varied within the range of 0 to −70 kPa with a 25 Hz
refresh rate. Within each refreshing period, the pressure changed randomly from 0 to
−70 kPa. Consequently, the pressure within each actuator exhibited a random triangular
wave pattern.

In the data acquisition circuit, the resistance Rs of the thin sponge sensors was con-
verted into voltage information Vout using voltage divider circuits with the relationship
Vout = VccRs/(R0 + Rs), where Vcc and R0 are 0.5 V and 20 Ω, respectively. The sensor
information Vout was collected by a DAQ card at a frequency of 1000 Hz, which was suffi-
cient for capturing the motion of pneumatic soft robots. During data processing, the sensor
data was downsampled to a frequency of 100 Hz. A low-pass filter with a cut-off frequency
of 20 Hz was applied to the sensor data to remove high-frequency noise.

The Vicon motion capturing system employed nine cameras distributed on the ceiling
to capture the coordinates of reflective markers at a frequency of 100 Hz. The diameter
and mass of the sphere markers were 1 cm and 0.42 g, respectively, and they did not
significantly affect the performance of the soft actuator. One marker was placed on the top
of the actuator to obtain the coordinates of the top point (P1), while three markers were
placed on the fixed rear part to obtain the coordinates of the rear point (P2). The overall
measuring error of the motion capturing system was less than 0.5 mm.

3.3. Neural Network Training

The data used to train the LSTM network were collected from random movements,
with the pressure in the three chambers being randomly varied between 0 and −70 kPa.
The training and validation data were obtained within 10 min and 400 s, respectively, with
70 s of validation data presented in Section 4.

The LSTM network training and generation were performed using the MATLAB
Deep Learning Toolbox, with the default RMSE cost function and the Adam optimizer
algorithm [45]. L2 regularization was adopted to prevent overfitting of the data. The
initial learning rate was set to 0.001, and network performance was validated using
a test set every 30 iterations, with overall iteration stopping after 100 epochs. The time-
series data were sequentially divided, with 85% of the samples assigned to the train-
ing set and 15% assigned to the test set. The time series spanned 150 s and contained
9000 data points. Training the network with different sets of hyperparameters, includ-
ing the number of hidden layers, number of hidden states, and dropout layer rate, was
critical to optimizing network performance. These parameters were varied in the ranges
[1, 2, 3, 4], [25, 50, 100, 200], and [0.1, 0.25, 0.5]. The root mean square error (RMSE)
was used to evaluate the prediction accuracy, with RMSE =

√
mean[(error∗)2], where

error∗ =
√
(xpred − xtrue)2 + (ypred − ytrue)2 + (zpred − ztrue)2 represents the distance be-

tween the predicted and true actuator tip positions. The results of these calculations are
summarized in Section 4.2. For the neural network with the lowest RMSE value, the neural
network parameters were employed to estimate the data in the validation dataset, which is
discussed in Section 4.3.
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4. Experiment Results

4.1. Soft Sensor and Actuator Characterization
4.1.1. Soft Actuator Working Space

In this experiment, the response characteristics of the soft actuator and sensors were
explored, and the working space of the actuator with and without thin sponge bending sen-
sors was determined. The tip point was treated as the origin in the experiment to facilitate
comparison. When the pressure inside the three air chambers was varied from 0 to −70 kPa,
the bending angle θ (as shown in Figure 4) varied between 0 and 90.69 degrees, while the
actuator length L varied between 80.2 and 64.2 mm. Figure 7 shows the coordinates of
the actuator tip point during changes in air pressure inside the chambers. The red curve
represents the trajectory of the tip point when sponge bending sensors are attached to the
actuator, while the blue curve represents the tip point trajectory when no sponge bending
sensor is attached. These two working spaces are almost identical. Therefore, we can
conclude that the attachment of distributed sponge bending sensors does not significantly
affect the working space of the soft actuator.
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Figure 7. Working space of bellow−shaped actuator with (red curve) and without (blue curve)
sponge bending sensor. (a) Top view of working space. (b) Side view of working space. The bending
angle θ of the actuator could vary between 0 and 90.69 degrees. This shows that the thin sponge
sensor has negligible influence on the soft actuator’s motion.

4.1.2. Response of Flexible Bending Sensor

The electrical resistance response of the sensor is presented in Figure 8a. The small
cycles on the figure represent the mean value of the electrical resistance during the ten cycles
test when the value of angle β is the round numbers of ten. The error bars are representing
the correspondence standard deviation (S.D.) value. The resistance of the enlarged sponge
bending sensor varied from 8 to 31 Ω as the angle between two rigid plates β changed
from 10 to 100 degrees. The sensor’s resistance in the ten-cycle diverse test would go up
gradually (Figure 9). Calibrating such sensor drifting using the conventional model-based
calibration method would be challenging. In this work, by combining the flexible sensors
and LSTM neural network calibration method, we can overcome the sensor drifting issue
and predict the posture of the soft actuator with acceptable accuracy, which is presented
Section 4.2. The sensitive region of the sponge bending sensor with these dimensions
was found to be between 10 and 60 degrees. When the angle β exceeded 60 degrees, the
sensor became less sensitive, while when the angle β was less than 10 degrees, most parts
of the sensor were fully compressed, leading to saturation, as also shown in Figure 10.
The sensitive region of the sponge bending sensor may vary depending on the sensor
dimensions, but it can typically be divided into the aforementioned three sections.
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Figure 8. Experimental results of flexible bending sensor in (a) electrical resistance response test and
(b) sensor torque response test. The responses of sensors when the bending angle decreased and
increased are indicated by the blue line and red line, respectively.
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60 s data before test are presented to indicate sensor responses.

As discussed in Section 3.2, the response of the flexible bending sensor when attached
to soft pneumatic actuators was recorded, and the resulting voltage changes were plotted
in Figure 10. Sensors #1–3, #4–6, and #7–9 were attached to the same bellow side wall from
bottom to top, as shown in Figure 10a, resulting in similar responses of the three sensors
with respect to actuator shape-changing. In this experiment, we determined the saturation
region of the thin sponge bending sensor. When the air pressure was lower than −50 kPa,
the voltage change due to actuator deformation was small and smooth (Figure 10b). Beyond
this range, the sensor output saturated as the sponge edges fully contacted each other. This
phenomenon is further discussed in Section 4.3.

Figure 8b depicts the sensor torque response of the sensor as a function of the sensor
angle β. The torque exhibits an inverse relationship with respect to the angle β, with the
blue and red lines representing the response of the sensor during angular decreases and
increases, respectively. The maximum torque values for the enlarged sensor and the sensor
attached to the actuator were found to be 16 mNm and 4.7 mNm, respectively. These results
support the notion that the attached sensor does not significantly affect the working range
of the bellow-shaped actuator, as discussed in Section 4.1.1.
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Figure 10. Characterization of thin sponge bending sensor integrated pneumatic soft actuator.
(a) Photos show that −70 kPa negative pressure was applied to air chambers 1, 2, and 3, respectively
(scale bars = 1 cm). (b) Sponge bending sensor (#1, #4 and #7) response (voltage changing) with respect
to pressure changing in three air chambers with an interval of 1 kPa. (c) Tip displacement of actuator
versus deflation pressure applied to each air chamber with same actuation pattern shown in (a). The
tip point was treated as the original point. Index 1, 2, and 3 in each figure indicating each actuated
air chamber. In both (b) and (c), filled lines and dashed lines are representing bending and relaxing
processes, respectively. A median filter was applied in the plotting of (b).

4.2. Calibration Neural Network Performance

As delineated in Section 3.3, the process of optimizing the LSTM calibration neural
network entailed fine-tuning three key parameters: the quantity of hidden layers, the num-
ber of hidden neurons, and the dropout rate in dropout layers. To gauge the performance
of these neural networks, root mean square error (RMSE) values corresponding to the
predicted tip point coordinates were computed, and the results are presented in Figure 5.
An analysis of Figure 5 reveals that the LSTM neural network configuration with a single
hidden layer, 100 hidden neurons, and a dropout rate of 0.5 yields the most favorable RMSE
value of 12.57 mm. Subsequently, this LSTM neural network will be utilized to validate the
3D posture prediction of the soft actuator.
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4.3. Validation of 3D Posture and Dynamic Behavior Prediction

Using the trained LSTM neural network discussed in Section 4.2, we were able to
predict the 3D postures and dynamic behaviors of soft actuators, as demonstrated in
Figure 11. The validation results presented in Figure 11a show three moments captured
with time steps in the actuator random motions. Figure 11b presents 3D representations of
actuator postures plotted with prediction and ground truth. For each moment, we calcu-
lated and listed parameter q based on the algorithm described in Section 2.3. Throughout
the validation period, the predicted and ground truth displacements of the tip points are
shown in Figure 11c, with displacements in the x-, y-, and z-axis directions represented by
blue, red, and green colors, respectively. The dashed lines represent the ground truth of
displacement in each direction. The RMSE values of the predicted value in the x-, y-, and
z-axis directions were found to be 7.37 mm, 6.35 mm, and 3.70 mm, respectively. To assess
the accuracy of the prediction, we evaluated the mean value and standard deviation (SD)
value of prediction error in the coordinate axis direction, as reported in Table 1. The error
percentage was computed by the absolute values of mean prediction error value divided by
the working space of the actuator in the x-,y-, and z- axis direction. It is worth noting that
the primary source of error was the saturation region, which can occur when the bending
angle of the soft actuator is too large, causing the sensor to enter the saturation region. In
our study, we found that a minimum of three sensors was required to estimate the robot’s
posture. We present the posture estimation results for sensors arranged at low (sensors #1,
#4, and #7), middle (sensors #2, #5, and #8), and high (sensors #3, #6, and #9) levels (shown
in Figure 10) in Table 2.

Table 1. Prediction accuracy of actuator tip position for validation data set.

Direction Prediction Accuracy (mm) Error Percentage

x-axis −0.31 ± 7.37 0.37%
y-axis 2.00 ± 6.03 2.38%
z-axis 1.33 ± 3.46 1.58%

Table 2. Prediction accuracy of actuator tip position for validation data set using single-layer thin
sponge flexible sensors.

Sensors
Prediction Accuracy
in x-Axis (mm)

Prediction Accuracy
in y-Axis (mm)

Prediction Accuracy
in z-Axis (mm)

#1, #4 and #7 3.21 ± 11.82 0.43 ± 9.53 1.78 ± 5.47
#2, #5 and #8 −5.19 ± 11.41 4.39 ± 14.38 6.91 ± 7.05
#3, #6 and #9 −2.46 ± 9.99 −4.97 ± 9.39 4.83 ± 6.62

By computing the differentiation of the coordinates of the tip points, we were able
to obtain the linear velocity of the actuator tip, which characterizes the dynamic behavior
of the soft actuator. Figure 12 illustrates the predicted tip velocities in the x-, y-, and
z-axis directions compared to the ground truth, demonstrating the ability of our method
to capture the dynamic behavior of soft actuators. The RMSE values for the predicted tip
speeds in the x-, y-, and z-axis directions were found to be 3.14 mm/s, 3.17 mm/s, and
1.44 mm/s, respectively. To evaluate the accuracy of the speed prediction, we computed
the mean and standard deviation of the prediction errors, which are reported in Table 3.

Table 3. Prediction accuracy of actuator tip speed for validation data set.

Direction Prediction Accuracy (mm/s)

x-axis 0.48 ± 3.11
y-axis −0.25 ± 3.16
z-axis 0.11 ± 1.44
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Figure 11. Validation results on random actuator motions. (a) Photos with time step. (b) Respective
3D representations of postures of the soft actuator. Kinematic parameters k, φ, and L are shown
in the figure. In (b), the blue curve represents predictive posture; the red curve represents ground
truth. (c) Plots of ground truth (dashed lines) and predictive displacement in the x−axis direction
(blue curve), y−axis direction (red curve), and z−axis direction (green curve) of the reference frame.
Dashed lines are representing ground truth. Time steps in (a,b) are represented by a gray shaded
vertical bar (scale bar = 1 cm. The perspectives of (b) are top−down view along the x−z plane,
parallel to the vector (3, 0, 1)). Actuator motions in (c) are included in Video S1.
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5. Conclusions and Discussion

This paper presents a novel end-to-end method for perceiving the 3D posture and
dynamic behaviors of bellow-shaped soft actuators using distributed miniature flexible
porous piezoresistive sensors. Additionally, we demonstrate the calibration of non-linear,
hysteresis sensors using a trained RNN neural network. The scalable design of the sensor
can be achieved by selecting a conductive sponge sheet with different thicknesses and
laser-cutting patterns, making it applicable to different scales of soft robots. The porous
structure and flexible material of the sensor minimize the influence on actuator motions,
providing an advantage over previously developed flexible sensors, particularly in small-
scale applications. A comparison between our flexible sponge sensor and recent typical
works where RNN was applied in flexible sensor calibration is presented in Table 4. In
comparison with the sensors developed in [38,46,47], we separated the design and fabrica-
tion of sensors from that of the attached actuator, thereby reducing fabrication difficulties
and increasing design flexibility. Our flexible sponge sensor outperforms the sensors de-
veloped in [19] in capturing the velocity information due to the low inertia of the sponge
material. Furthermore, compared with our previous work in [36,39], we have increased the
degree-of-freedom of the motion.

5.1. Discussion on Kinematic Description of Soft Actuator

Although the posture of the soft actuator in this study was estimated based on the
constant curvature concept, our end-to-end posture-perceiving method can be expanded
to non-constant curvature situations. For soft actuators, this method is also suitable for
estimating posture based on piecewise constant curvature (PCC), Bezier curves, or splines.
The number and position of the sensor depend on the accuracy of the single sensor and the
model employed to estimate the actuator posture, respectively. In this study, redundant
sensors (theoretically only one sensor on each sub-chamber is necessary) were employed to
improve the overall accuracy. For the piecewise constant curvature situation, each divided
segment can be treated as having constant curvature, and the procedures in this study
can be followed. For Bezier curves/splines situations, the sensor can be combined with
the Bezier/spline model that enables non-constant curvature measurement. The neural
network-based method can be used to find the parameters in the models or together with
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the model. The joint angle can be measured based on the method in this study, after which
the joint angle distribution can be estimated. Finally, the overall posture of the soft actuator
can be estimated.

Table 4. Comparison among our work and recent typical works where RNN was applied in flexible
sensor calibration.

Research
Work

Sensor Material
/Structure

Design
Method

Advantages Drawbacks

#1 Truby et al. [19]

Conductive Silicon

Separated 3-DoF Posture
Estimation

Only Steady-State
Estimation

#2 Shu et al. [39] Separated Dynamic Posture
Estimation

Only Performs on
Single DoF Motion

#3 Thuruthel et al. [38] Integrated
2-DoF Posture and
Contact Force
Estimation

Low Sampling Frequency
(10 Hz)

#4 Truby et al. [46]

Sealed Air Chamber

Integrated
3-DoF Dynamic
Posture Estimation
and Tactile Detection

Require Specific Fabrication
Equipment (High-Resolution
DLP 3D Printers)

#5 Ang et al. [47] Integrated
2-DoF Dynamic
Posture and Contact
Force Estimation

Low Sampling Frequency

#7 Shu et al.
(This Work) Conductive Sponge Separated 3-DoF Dynamic

Posture Estimation
Saturation Region Affects
Estimation Accuracy

5.2. Discussion on Sensor Characterization and Performance of the Sensing Method

As discussed in Section 4.1.2, both the sensitivity and resistive torque of the flexible
sponge sensor exhibit a negative correlation with the angle β. Based on the results of
ten diverse cycles of testing, it was observed that the electrical resistance of the flexible
sponge sensor exhibited variations across different cycles. This issue poses a challenge for
conventional model-based sensor calibration methods. However, the LSTM calibration
neural network proposed in this paper was found to effectively address this challenge,
enabling accurate calibration of the sensor and estimation of the posture of the soft actuators.
It is worth noting that a saturation region arises when the sensor is consistently pressured.
Specifically, when the sensors are adhered to the ravine of the bellow, the saturation occurs
when the bellow is fully compressed by negative pressure. In the context of the present
study, this saturation is reflected in the 3-DoF actuator under investigation when the
actuator is fully compressed (i.e., all three bellows are fully compressed) or the bending
angle θ is substantial (i.e., one or two bellows are fully compressed). Consequently, under
these two conditions, the estimation error of the sensing system would be more pronounced,
as evidenced by the data at 45 s when the bellow actuator is in random motion (see
Figure 11). It is worth noting that this issue cannot be resolved by employing a calibration
neural network, as there is an absence of effective training data.

The performance of velocity prediction is closely linked to the quality of the base
material of the sensor, particularly its bandwidth with respect to mechanical vibration.
With a larger bandwidth, the sensors can react to faster deformations of the attached objects.
In the present study, we used an off-the-shelf conductive sponge whose base material is PU
sponge, which has a slow recovery time to its original shape when pressure is removed.
Consequently, when tracking the velocity of the actuator, the estimation error is substantial
when the acceleration is large (reflected in Figure 12). Fortunately, for soft actuators, the
response is typically slow.

During testing, it was observed that the flexible sponge sensor may experience fatigue
after prolonged use, which is possibly due to damage of the conductive coatings. In the
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fabrication process of the conductive PU sponge, the base PU sponge was merged with
a conductive solution. After drying, the internal fibers of the sponge were enveloped by
a layer of conductive coating. During the use of the sensors, the coating may come into
contact with neighboring coatings, leading to damage after prolonged use. Another issue
pertains to the operating temperature, as the PU material is sensitive to high-temperature
environments. The heat generated by friction during operation may also shorten the
sensor’s lifetime. The presence of noise resulting from bare enameled wire during sen-
sor resistance measurement may also have an impact on the predictive accuracy of the
calibration neural network.

Moving forward, we aim to enhance the sensitivity, accuracy, and longevity of the
sensor. Moreover, we plan to investigate additional applications of the proposed sensing
system within the realm of soft robotics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23136189/s1, Video S1: Actuator Motions in Figure 10c.

Author Contributions: Conceptualization, J.S., J.W. and R.K.-y.T.; methodology, J.S. and J.W., K.C.-C.C.,
L.-F.Y. and R.K.-y.T.; validation, K.C.-C.C., L.-F.Y. and R.K.-y.T.; writing—original draft preparation,
J.S. and J.W.; writing—review and editing, J.S., J.W. and R.K.-y.T.; supervision, R.K.-y.T. and Z.L.;
funding acquisition, R.K.-y.T. and Z.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The research is co-funded by the Guangdong Science and Technology Research Council (Ref.
No. 2020B1515120064) and the Innovation and Technology Fund, HKSAR (Ref. No. ITS/156/20FP).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Chinese University of Hong Kong for
providing us with the opportunity to work in soft robotics research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DOF Degree of Freedom
PCC Piecewise Constant Curvature
CC Constant Curvature
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
SD Standard Deviation

Appendix A. Experimental Setup for Sensor Characterizing
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Figure A1. Experimental setup for sensor (a) electrical resistance response test and (b) sensor torque
test (scale bar = 1 cm).
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Abstract: This paper considers the task of appearance-based localization: visual place recognition
from omnidirectional images obtained from catadioptric cameras. The focus is on designing an effi-
cient neural network architecture that accurately and reliably recognizes indoor scenes on distorted
images from a catadioptric camera, even in self-similar environments with few discernible features.
As the target application is the global localization of a low-cost service mobile robot, the proposed
solutions are optimized toward being small-footprint models that provide real-time inference on
edge devices, such as Nvidia Jetson. We compare several design choices for the neural network-based
architecture of the localization system and then demonstrate that the best results are achieved with
embeddings (global descriptors) yielded by exploiting transfer learning and fine tuning on a limited
number of catadioptric images. We test our solutions on two small-scale datasets collected using
different catadioptric cameras in the same office building. Next, we compare the performance of our
system to state-of-the-art visual place recognition systems on the publicly available COLD Freiburg
and Saarbrücken datasets that contain images collected under different lighting conditions. Our
system compares favourably to the competitors both in terms of the accuracy of place recognition
and the inference time, providing a cost- and energy-efficient means of appearance-based localization
for an indoor service robot.

Keywords: omnidirectional vision; mobile robot; localization; deep learning; edge computing

1. Introduction

The rapid development of robotics and artificial intelligence applications is leading
to the proliferation of mobile service robots [1,2]. Technological advancements, such as
artificial intelligence and machine learning, have significantly improved the capabilities and
autonomy of these robots, making them more efficient and reliable in performing various
tasks. Additionally, the increasing demand for automation and efficiency in industries such
as healthcare, hospitality, and logistics has created a strong market incentive for developing
and deploying service mobile robots.

Also, the growing need for eldercare robots has become increasingly evident as the
global population ages. These robots can provide valuable assistance and companionship to
older adults, monitoring their health and enhancing their overall well-being [3]. However,
these robots must be affordable to ensure widespread accessibility and adoption among
families and caregivers [4].

A common requirement in these service robots is to be able to localize within their
workspace, which is usually a man-made indoor environment [5]. Although precise
position tracking can be provided by a SLAM (simultaneous localization and mapping)
system using vision or RGB-D data, the issue of global localization remains a problem
when the robot’s previous position data cannot be used [6]. Such a problem in practice
arises, for example, in dynamic environments due to occlusions. There are practical global
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localization algorithms, such as the one proposed in our previous work [7], but they have
two functional limitations, namely, they require long-range sensors to extract features that
are distant from the robot and are computationally expensive. These features make them
unsuitable for a small and inexpensive service robot.

Therefore, we propose a solution to the problem of global localization in a known
(entirely or partially) environment using a passive catadioptric camera and the principle of
recognizing places previously visited by the robot (Figure 1). The applied sensor with a
catadioptric camera is a variant of the biologically inspired sensor with a hybrid field of view
that we introduced in [8]. This sensor uses a catadioptric camera to achieve omnidirectional
vision, an analogue of the peripheral vision found in vertebrates [9]. It allows animals to
orient themselves to changes and hazards in the environment quickly. The sensor described
in [8,9] is complemented by a moving perspective camera that performs the functions
of foveal vision, the more accurate but spatially limited vision mode in animals. This
function is not used in the research presented in this article, as we limit the scope to global
appearance-based localization, i.e., the assignment of the robot’s current location to one
of the previously recognized (visited) places. Our approach yields information about
the similarity of the places observed in the current perception and locations stored in a
reference map.

Figure 1. Overview of the proposed method—a flowchart of the appearance-based localization
system. The service robot is shown with the latest, larger-field-of-view catadioptric camera, but
without the perspective camera, which is not used in this research.

Although appearance-based localization does not provide an accurate metric position
of the robot in a global reference system, the ability to tell if the robot is close to one of
the known locations is often sufficient for indoor navigation [10]. If a map of reference
places is collected at high density (e.g., based on a grid with cells of one meter in size or
smaller), this kind of localization may be sufficient for the service robot’s tasks. In addition,
appearance-based localization can be supplemented by visual odometry or the recognition
of artificial landmarks deployed at a given location [11]. The perspective camera of a hybrid
sensor can be used to perform these functions. The main objectives of this research work
are the following:

• Experimental analysis of neural network architectures in search of an architecture for
an image-based place recognition system suitable for implementation on an embedded
computer of an intelligent vision sensor with limited power and resources.

• Experimental verification of the possibility of using catadioptric camera images in the
appearance-based localization task without developing them into panoramic form
significantly reduces the computational load.

• Analysis of the strategy for creating training sets in a place recognition task, assum-
ing that the obtained solution should be generalized to different image acquisition
conditions, mainly depending on illumination.

We propose a novel approach that adopts a convolutional neural network (CNN)
architecture to directly process the omnidirectional images for real-time place recognition
to meet these objectives. CNNs are specialized for processing grid-like data, particularly
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images, using convolutional layers and parameter sharing to capture spatial patterns
effectively. The proposed system leverages the concept of global image descriptors, which
are already proven to be efficient in place recognition [12]. We employ a CNN to produce the
descriptors in the form of embedding vectors directly from the omnidirectional images, thus
avoiding the processing overhead required for computing undistorted panoramic images,
which are often used in appearance-based localization with catadioptric cameras [13]. The
proposed architecture is optimized for inference on the Nvidia Jetson TX2 edge computing
platform integrated with our sensor. The low-cost Jetson TX2 board is designed for peak
processing efficiency at only 7.5 W power. Regarding energy consumption for image
processing, the Jetson TX2 has a clear advantage over an x86-based platform [14]. While the
exact power consumption will depend on the specific image processing workload, the Jetson
TX2 is designed to provide a good balance between performance and energy efficiency [15].
Hence, by applying an integrated sensor with an edge computing platform and developing
a matching small-footprint neural network architecture, we obtain a self-contained, energy-
efficient, and compact system for real-time appearance-based localization that can be
integrated with practically any mobile service robot, providing this robot with reliable
global localization capabilities at low cost. The contribution of this paper is threefold:

1. A novel, simple-yet-efficient CNN-based architecture of the appearance-based local-
ization system that leverages a lightweight CNN backbone trained to apply transfer
learning to produce the embeddings and the K-nearest neighbours method for quickly
finding an embedding matching the current perception.

2. A thorough experimental investigation of this architecture, considering several back-
bone network candidates and omnidirectional or panoramic images used to produce
the embeddings. The experiments were conducted on three different datasets: two
collected with variants of our bioinspired sensor and one publicly available.

3. An investigation of the strategies for creating the training set and the reference map
for the localization system conducted on the COLD Freiburg dataset. This part
of our research allowed us to test how our neural network model generalizes to
images acquired under different lighting/weather conditions. It resulted in the
recommendation of using data balanced concerning their acquisition parameters,
improving generalization.

The remainder of this article is structured as follows. Most important related works
are reviewed in Section 2. Section 3 introduces the proposed architecture of the localization
system and details the neural networks being used. Next, Section 4 describes the exper-
imental setups and dataset used to test various aspects of the proposed solution, while
Section 5 provides the results of experiments and contributes an in-depth analysis of the
performance of different variants of the investigated system. Finally, Section 6 concludes
the article and proposes future extensions.

2. Related Work

Appearance-based localization from omnidirectional images has garnered significant
attention in computer vision and robotics. Researchers have developed various techniques
to address the challenges posed by the distortion and wide field of view of omnidirectional
cameras. This section reviews the most relevant works that have contributed to the state of
the art in this area.

The application of passive vision sensors for localization was extensively researched
in robotics, resulting in several visual Simultaneous Localization and Mapping (SLAM)
algorithms [16]. However, the applications of visual SLAM on commercially viable mobile
robots are limited by the often-insufficient on-board computing resources of such robotic
platforms and due to problems raised by the changing lighting conditions, rapid changes
of viewpoint while the robot is moving, and the lack of salient local features in some indoor
environments. Moreover, SLAM does not guarantee to solve the global localization problem
whenever the robot loses track of its pose due to any of the issues mentioned above [17].
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Therefore, the appearance-based recognition of locations becomes an exciting addition
to visual SLAM for closing the loops and relocalizing a lost robot [18]. This approach,
in many variants, is also considered a localization method on its own, which is particu-
larly suitable for large-scale outdoor scenarios [10]. Unlike the visual SLAM algorithms,
appearance-based localization methods only determine if the observed scene resembles an
already visited location. However, the place recognition methods scale better for large envi-
ronments than typical SLAM algorithms [19]. In this context, catadioptric cameras yielding
omnidirectional images improve the reliability of place recognition for robot localization in
comparison to the narrow-field-of-view perspective cameras, as demonstrated by the work
on the COsy Localization Database (COLD) dataset [20], which we also use to evaluate our
localization system. An interesting research direction is to use image sequences instead
of individual images, which decreases the number of false positives in place recognition
for environments with self-similarities and increases the robustness of scene dynamics [12].
We applied this idea in our earlier work on place recognition for mobile devices [21], mak-
ing it possible to implement robust place recognition on a smartphone with very limited
computing power, while still using nondistorted perspective images.

In the appearance-based methods, each image is described by descriptors of salient
features contained in this image, or is directly described by a whole-image descriptor.
Although SURF features were used directly in appearance-based localization perform-
ing image retrieval in a hierarchical approach [22], the direct matching of local features
is considered inefficient for place recognition [10] if point feature descriptors are used
(such as the popular SIFT, SURF, and ORB [23]). Hence, the bag of visual words (BoVW)
technique [24] is commonly used, which organizes the features into a visual vocabulary.
Next, images described by visual words can be efficiently matched by comparing binary
strings or histograms. One prominent example of a location recognition algorithm employ-
ing the BoVW technique is FAB-MAP [25,26], which efficiently compares images with a
histogram-based approach.

Global image descriptors have proven effective for capturing the overall appearance of
omnidirectional images [27]. Earlier works focused on adapting existing, general-purpose
feature extraction and matching algorithms. Menegatti et al. [28] proposed using the
Fourier transform to handle geometric distortions in catadioptric images. More recently,
Payá et al. [29] introduced a method based on the Radon transform to extract global envi-
ronmental descriptions from omnidirectional images. These works provided foundations
for subsequent research by addressing the specific characteristics of omnidirectional images.
Examples of hand-crafted descriptors adopted for the global description of omnidirectional
images include HOG (histogram of oriented gradients) [30] and Gist [31], which were
applied to omnidirectional images from a catadioptric camera in appearance-based local-
ization by Cebollada et al. [32]. While both these methods of image description provided
relatively efficient descriptions of the images, allowing the localization system to recognize
the places accurately, the descriptor construction algorithms initially developed for per-
spective camera images required the catadioptric images to be undistorted and converted
to panoramic images, which creates a significant computation overhead.

Machine learning methods have gained popularity in place recognition, also from om-
nidirectional images [33]. Working with typical perspective images, Li et al. [34] proposed
an image similarity measurement method based on deep learning, which combines local
and global features to describe the image and can be used for indoor place recognition for
a robotic agent. Significant progress in appearance-based localization and navigation was
achieved by the NetVLAD approach [35], a CNN-based method that aggregates local fea-
tures for global image representation. The NetVLAD network consists of a CNN for feature
extraction and a layer based on vector of locally aggregated descriptors—VLAD [36]. In this
architecture, VLAD is a feature quantization technique similar in concept to the bag of visual
words idea, as it captures information about the statistics of an image’s local descriptors. The
VLAD is a method for combining descriptors for both instance-level searches [37] and image
classification [38]. Although Cheng et al. [39] used NetVLAD with panoramic images from
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an omnidirectional system, this approach was demonstrated successfully, mainly in outdoor
scenarios working with perspective camera images. For indoor scenarios, [13] introduced
the omnidirectional convolutional neural network (O-CNN) architecture, which, similarly
to our approach, is trained to retrieve the closest place example from the map. Whereas the
O-CNN architecture takes advantage of the omnidirectional view by incorporating circular
padding and rotation invariance, it requires the omnidirectional images to be converted
to their panoramic counterparts. Also, Cebollada et al. [40] demonstrated the benefits of
solving localization problems as a batch image retrieval problem by comparing descriptors
obtained from intermediate layers of a CNN. A CNN processing rectangular panoramic
images reconstructed from the original catadioptric input is used in this work.

As the construction of invariant feature descriptors for omnidirectional images is
problematic, Masci et al. [41] proposed to learn invariant descriptors with a similarity-
preserving hashing framework and a neural network to solve the underlying optimization
problem. Ballesta et al. [42] implemented hierarchical localization with omnidirectional
images using a CNN trained to solve a classification task for distinguishing between
different rooms in the environment and then a CNN trained for regression of the pose
within the recognized room. Although this solution does not require converting the
catadioptric images into panoramic ones, its performance is limited by the employed
two-stage scheme with separated classification and regression steps. More recent work
from the same team [43] solved the appearance-based localization problem by applying
a hierarchical approach with the AlexNet CNN. Assuming an indoor environment, they
first accomplished a room retrieval task and then carried out the fine localization step
within the retrieved room. To this end, the CNN was trained to produce a descriptor,
which was compared with the visual model of the selected room using a nearest neighbour
search. This approach does not require panoramic conversion of the collected catadioptric
images and is overall most similar to the solution proposed in this paper. However, we
introduce a much simpler, single-stage architecture based on a recent, lightweight CNN
backbone, and the concept of direct retrieval of the image stored in the environment
map, which is most similar in appearance to the query image. The efficient process of
constructing the embeddings from a pretrained CNN, followed by a fast comparison
of these embeddings/descriptors in the KNN framework, allowed us to give up with
separated room retrieval in favour of a single-stage architecture, which suits our embedded
computing platform well. We compare it directly to the results shown in [43] on the
COLD Freiburg dataset, demonstrating our approach’s superior performance and real-
time capabilities.

3. Localization System Architecture

In the proposed localization system, the robot figures out its current location by
determining the similarity between the currently captured image (query image) and images
stored in a database (map) describing the environment. This task refers to efficient, real-time
image retrieval [10]. The localization procedure involves comparing a global descriptor
constructed in real time from the image currently captured by the robot with a previously
prepared database of descriptors representing the images of previously visited places and
finding the image with the highest possible similarity in the feature space (Figure 2). Each
location has its representation in the prepared database of images, and the locations where
the images were taken are assumed to cover the entire robot’s workspace. Images from the
database are recorded at known locations, so finding one with the minimum distance (in
the sense of similarity of appearance) to the current perception allows our robotic agent to
approximate its location in the real world.

144



Sensors 2023, 23, 6485

Figure 2. Diagram of the CNN-based image description blocks that produce embeddings used
as global descriptors in the localization system. The global map is built from ni images (i1 . . . ini )
converted to embedding vectors�di that are stored in the map Dembeddings of ni embeddings (global
descriptors). Note that panoramic images can be used as well instead of the omnidirectional ones.

The proposed localization system uses a CNN to determine the set of natural features
for a given location, and the K-nearest neighbours (KNN) [44,45] algorithm to find the
closest image from the provided database of images.

CNN and KNN are both machine learning techniques, but differ in their approach and
application. CNN learns hierarchical representations of data through multiple convolu-
tional layers, pooling, and fully connected layers. In contrast, KNN is a simple and intuitive
algorithm for classification and regression tasks. It makes predictions based on the similar-
ity of new data points to the existing labelled data points in the feature space. One can use
CNN to extract features from images and then apply KNN to those extracted features for
classification. This hybrid approach leverages the strengths of both algorithms, with CNN
capturing intricate patterns and KNN using the extracted features for classification [46].
This idea is used in our localization system. The backbone CNN creates descriptors, which
hereinafter are also called “embeddings”, directly from the omnidirectional images, avoid-
ing the additional computations required to obtain undistorted panoramic images. The
KNN algorithm uses the embeddings that encode the most salient features of the observed
places, to find in the database (i.e., the global map) the images that best match the cur-
rent observation. In Section 4, we demonstrate that the accuracy of localization with raw
catadioptric images is at least as good as with the converted panoramic images, while it
demands less computing power.

The preparation of the CNN model is based on training the network to correctly
recognize places, with the specific aim of training the higher layers of the network to extract
feature maps specific to each location properly. Because the CNN used as the backbone of
our system is pretrained on images unrelated to the target domain (ImageNet dataset [47]
was used in pretraining), the network was fine-tuned before use by unfreezing several
layers and training on the target domain images using cross-entropy as a loss function.
Cross-entropy defines the distance between two probability distributions according to
the equation:

H(P(y, 1 − y), P(ypred, 1 − ypred)) = P(y) log
(

P(ypred)
)
+ P(1 − y)log

(
P(1 − ypred)

)
, (1)
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where y—the actual location; ypred—the location obtained via a neural network; P(y, 1 − y)—the
probability distribution of the actual location; P(ypred, 1 − ypred)—the probability distribution
of the location determined via a neural network (prediction).

At first, the images are processed by the trained convolutional neural network, from
which the output layer was removed, to obtain descriptors (in the form of embedding
vectors) that describe the global characteristic features of each image in the database,
i.e., each unique place visited by the robot. In this way, a global map of all locations
based on reference images is created. Not all convolutional network architectures from
the literature can be used on a robotic onboard computer with fewer computational and
memory resources.

This research uses backbone networks from the MobileNet [48] and EfficientNet [49]
families, which are optimized for mobile devices while ensuring high accuracy with a min-
imal number of parameters and mathematical operations. The MobileNet model uses
depth-separated convolution layers consisting of depth-wise convolution and point-wise
convolution. Convolution concerning depth (spatial convolution) is used to apply a single
filter for each input channel. In MobileNet V2, a new module with inverted residual
structure has been introduced, there are two types of blocks. One is an inverted residual
block of width 1. The other one is a block of width 2 to reduce the size of the feature
map. There are three layers for both types of blocks. The first layer is a 1 × 1 convolution
with the ReLU activation function, and the second layer is a convolution against depth. The
third and final layer is another convolution of size 1 × 1, with linear bottlenecks. Residual
blocks connect the beginning and end of the convolutional block via a skip connection.
Adding these two states allows the network to access previous activations not modified in
the convolution block. This approach has proven to be essential for building networks of
large depths. In MobileNet V2, the basic convolutional layer is called MBConv and contains
an inverted residual block with linear bottleneck and depth-separated convolution, with
batch normalization behind each convolutional layer.

The EfficientNet model, which we have selected for our final architecture, can be
seen as a further step towards efficiency compared to the MobileNet model. EfficientNet
uses a complex model scaling technique based on a set of specified coefficients. Instead of
randomly scaling width, depth, or resolution, compound scaling uniformly scales each di-
mension using some fixed scaling coefficient set. Such scaling only increases the predictive
ability of the network by replicating the underlying convolutional operations and structure
of the network. EfficientNet uses the MBConv blocks as in the MobileNet V2 network, but
with a squeeze-and-excitation (SE—[50]) block being added. This structure helps reduce
the overall number of operations required and the model’s size.

The backbone CNN extracts from the image features that uniquely describe different
locations and builds embedding vectors that serve as global image descriptors in our
system. In the next step, the algorithm creates an index from the global map, which is
used for efficient similarity search. The original images collected by the robot are no longer
needed for localization and the obtained global map has a compact form. All operations to
produce the global map are performed offline.

Then, to localize the robot, we need to query the global map (database of embeddings)
with the descriptor/embedding produced from the current perception of the agent, which
boils down to a similarity search task. Similarity search is a typical issue in machine
learning solutions using embedding vectors, and becomes increasingly difficult as the
vectors’ dimensions and/or size increase. Classic methods for finding similarity between
vector-described elements in an extensive database include linear search and search in
K-D-trees [51]. K-D-trees are binary trees used to organize points representing data in
a K-dimensional space and allow for a very efficient search of points in that space, including
a nearest neighbour (NN) search, which we are interested in [52].

Each node in the tree represents a K-dimensional point. Each nonleaf node in the
tree acts as a hyperplane, dividing the space into two parts. Using a K-D tree for nearest
neighbour search involves finding the point in the tree that is closest to a given query
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point. For this purpose, the algorithm traverses the tree and compares the distance between
the query point and points in each leaf node. Starting from the root node, it recursively
moves down the tree until it reaches the leaf node, following the same procedure as when
inserting a node. Many implementations of the nearest neighbour search using K-D-trees
are known in Python, including the very popular SciKit-Learn library. However, for this
project, we selected the Facebook AI Similarity Search (Faiss) library [53], written in C++
with wrappers for Python and support for GPU, which suits our implementation on Nvidia
Jetson well. The Faiss library solves our similarity search problem using indexing and
searching with the KNN method. Once the index type is selected, the algorithm processes
the embedding vectors obtained from the neural network and places them in the index.
The index can be stored on disk or in memory, and searching, adding, or removing items to
the index can be performed in real-time. In addition, the Faiss library has an autotuning
mechanism that scans the parameter space and selects those parameters that provide the
best possible search time at a given accuracy.

Place recognition begins by loading the learned CNN model and index of images (map)
into memory, and then the captured images (queries) are compared with the previously
created image database using the KNN algorithm in the space of embedding vectors. The
embeddings are compared using L2 (Euclidean) distance, which has been shown to be more
computationally efficient than feature binarization followed by the comparison applying
Hamming distance [36,54].

Once the similarity between the query image and the map is determined, the results
are presented in the form of the image retrieval accuracy and the position error between
the query image and the map image determined as the most similar one. As we assume
that ground truth positions for all map images and query images are known, as in the
COLD dataset [55], we simply use the Euclidean distance in metric space to quantify this
error. The averaged Euclidean distance is used to calculate the position error over an entire
experiment involving many queries. The arithmetic mean is calculated over all places
according to the equation:

bL =
∑n

i=1

√
(xgti − xei)

2 + (ygti − yei)
2

n
, (2)

where bL—the average position measurement error; n—the number of query images;
xgti —the x coordinate for the ground truth location of the i-th query image; xei —the x
coordinate for the estimated location of the i-th query image; ygti —the y coordinate of the
estimated location of the i-th query image; yei —the y coordinate for the estimated location
of the i-th query image.

The architecture of the localization system shown in its general form in Figure 1 was
tested in several variants differing in the type of neural network used as an extractor of
image embeddings and the use of catadioptric camera images directly or images converted
to panoramic form. The suitability of the NetVLAD approach in the described system was
also investigated. The investigated variants are described in the next section of this paper.

4. Experiments

To confirm the proposed solution’s effectiveness and determine the best-performing
CNN architecture, experiments were carried out at the Mechatronics Centre of Poznań
University of Technology using two catadioptric cameras with different parameters. Then,
experiments with the publicly available COLD database were carried out to demonstrate
the performance of our approach with respect to selected state-of-the-art solutions in
appearance-based localization on this dataset.

4.1. Experiment 1: Integrated Sensor on a Mobile Robot

A Labbot robot (Figure 3a) with an integrated catadioptric vision sensor was used in
the first scenario. The catadioptric camera in this sensor consists of a Microsoft LifeCam

147



Sensors 2023, 23, 6485

and a hyperbolic mirror, which provides a field of view of 360◦ and produces images with
a resolution of 640 × 480. The images are processed by a Nvidia Jetson TX2 computer
integrated with the sensor [8] The Jetson TX2 offers a 256-core Pascal architecture General
Purpose Graphics Processing Unit (GPGPU) to support the real-time operation of the
localization system.

Figure 3. Labbot mobile robot with the integrated sensor with a catadioptric camera (a); robot paths
during image collection—different colours indicate different paths (b).

The considered dataset contains 606 images (Figure 4a,b), which were recorded
on three floors of the Poznań University of Technology Mechatronics Centre building
(Figure 3b). All images were subjected to a masking process (Figure 4c) to remove ar-
eas that did not contain useful information. Using the localization system described in
Section 3, embeddings of 2048 × 1 in size were calculated for each image and registered in a
database of 2048 × n in size, which is a global map based on n reference images (n = 484 in
the experiment). The robot’s main localization task uses the integrated sensor’s Jetson
platform in real time. The configuration of the localization system in this experiment was
the following:

• Raw catadioptric images were used (cf. Figure 4) without converting them to panoramic
images.

• The neural network used to produce the embeddings was EfficientNet, which was
selected upon literature-based analysis.

The EfficientNet architecture has gained prominence as an effective solution for image
processing on edge devices due to its remarkable balance between accuracy and efficiency.
By leveraging techniques like compound scaling, which uniformly scales the network
width, depth, and resolution, EfficientNet optimizes the model’s architecture to maximize
accuracy while minimizing the number of parameters and computations. This enables
real-time inference and efficient utilization of resources on edge devices, ensuring faster and
more responsive image processing capabilities even with limited computing power [56].
Moreover, in the considered application, the input size of the available pretrained Efficient-
Net B5 models matches the resolution of our target images.

The used EfficientNet B5 has 577 layers and the input image size is (456,456,3). This
network has high accuracy with a relatively small number of model parameters, which pos-
itively affects the processing speed of the embedded system. The network was fine-tuned
before use because EfficientNet B5 was pretrained on images from the ImageNet dataset.
This process was implemented using a dataset of about 10,000 augmented omnidirectional
images produced from the previously collected database of 606 original images. Only
standard augmentation methods available in the TensorFlow environment were applied to
the images.
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Figure 4. Omnidirectional images of different locations (a,b) in the Mechatronics Centre and an
example image after masking (c).

A practical problem in the scenario considered in Experiment 1 was the high similarity
of the indoor environment in the Mechatronics Centre building. Images were obtained
approximately every 0.5 m along the robot’s path, and adjacent images in the database are
very similar and often indistinguishable, even by a human. Therefore, the entire dataset
was manually divided into 17 different sections, each describing a topologically different
location (represented by different colours in Figure 3b). Due to this organization of the
dataset, no ground truth positions are provided for particular images, and we can assess
the localization results only in terms of the image retrieval accuracy for particular sections.
The localization process is then performed only for these 17 locations, with each location
represented by 30 to 40 acquired images that partially overlap. In the training process, each
section was divided into training sequences (60%), validation sequences (20%), and test
sequences (20%).

4.2. Experiment 2: Stand-Alone Catadioptric Camera

The good results obtained in the preliminary experiment with the mobile robot moti-
vated us to extend this research with a catadioptric camera of a different mechanical design
and better parameters, as the relatively small horizontal field of view and often blurred
images were the main drawbacks in the previous experiment.

The field of view of a catadioptric camera depends on the shape and size of the mirror
being used [57]. A catadioptric sensor captures a wider field of view by using lenses
and mirrors that need to be arranged carefully. Designing the mirrors is crucial to ensure
a single effective viewpoint, which is necessary for generating pure perspective images
from the sensed images [58]. In the new experiment, the integrated sensor was replaced by
a catadioptric vision sensor consisting of a professional Basler acA2440-35uc camera with
a Kowa 4.4–11 mm lens [59] and a hyperbolic mirror, whose field of view is much larger
than the mirror used in the previous experiment. A hyperbolic mirror allows us to obtain
the single effective viewpoint of the camera–mirror system using typical camera lenses [60],
while the mirror we use in this design is larger than the previous one, and is attached at
a larger distance from the camera. Both these factors contribute to a much larger horizontal
field of view.

Images with a resolution of 1080 × 1440 were taken for two floors of the same Mecha-
tronics Centre building: the first floor was divided into 144 places (Figure 5a) and the
3rd floor into 106 places (Figure 5b). Ground truth positions of the acquired images were
obtained by measuring the position of the sensor manually with tape with respect to the
known floor plan of the Mechatronics Centre building. Due to the augmentation process
(Figure 6), the collection of images for training purposes increased to about thirty thousand
images (details are given in Table 1).
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Figure 5. Blueprint of the first floor (a) and third floor (b) of the Mechatronics Centre building, with
marked places (blue crosses) where images were taken.

Figure 6. Example of omnidirectional image augmentation: (a)—original picture; (b,c)—augmented
images.

In this experiment, the collected set of images was used to compare the quantitative
results of place recognition for panoramic and omnidirectional images for three different
CNN architectures: EfficientNet B7 [61], EfficientNet V2L [62], and MobileNetV2 [48].
Moreover, to investigate different strategies for creating the reference database (global
map), the dataset was tested in three different configurations:

• Configuration A—the entire dataset was divided into a training set (60%), a validation
set (20%), and a test set (20%) for each place. The validation set was then used as the
reference database of embeddings.

• Configuration B—the entire dataset was divided into a training set (60%), a validation
set (20%), and a test set (20%) in such a way that the locations next to the places
represented in the test set were always represented in the map of embeddings. The
global map of embeddings was created from a combination of the training and the
validation set, but the places from the test set, used then as queries, were not directly
represented in the map.

• Configuration C—all images of the places located on the first floor were divided into
a training set (80%) and a validation set (20%). The set of images recorded on the third
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floor was used to test the proposed solution. The 106 places for which images were
recorded on the third floor were divided into the database of embeddings (80%) and
a test set used as queries (20%), in such a way that the locations next to the places
included in the test set were represented in the map of embeddings.

For each network configuration and dataset, the training process was conducted as in
Experiment 1, with the pretrained backbone network, and by fine-training the last layers of
this network on the target training dataset constructed according to the concept defined
above for the given configuration.

Table 1. Number of images in training and validation datasets for Configurations A, B, and C.
Numbers in brackets denote the number of images after augmentation.

Configuration A Configuration B Configuration C

Training Validation Training Validation Training Validation
Dataset Dataset Dataset Dataset Dataset Dataset

omnidirectional 994 (25,844) 250 (6500) 959 (24,934) 241 (6266) 753 (19,578) 288 (7488)
panoramic 2982 (77,532) 750 (19,500) 2611 (67,886) 653 (16,978) 2259 (58,734) 864 (22,464)

As a follow-up of this experiment, we tested with the same dataset the NetVLAD
architecture for comparison with our approach. It was shown in [35] that the NetVLAD
architecture achieves the best-placed recognition results with the AlexNet and VGG-16 used
as backbone networks. Hence, in order to compare our approach to place recognition,
which is relatively simple, to the state-of-the-art NetVLAD architecture, we used a Python
language implementation of NetVLAD [63] with the VGG-16 backbone. The NetVLAD
model was subject to the same training process as in the case of our system, with the
training sets defined in Configurations A, B, and C.

4.3. Experiment 3: COLD Datasets

An important related work to our research is the article by Cabrera Mora et al. [43],
which presents several different configurations of the AlexNet network producing em-
beddings used for appearance-based localization with omnidirectional images without
panoramic conversion. The task of the trained neural network is to perform rough lo-
calization (room identification) and then metric localization for the identified room by
searching for the place closest to the query embedding. The experiments presented in [43]
used images available in the Freiburg dataset, which is part of the publicly available COsy
Localization Database [55]). This inspired us to replicate some of the experiments from [43]
using our approach to localization. Using the same dataset and experiment design gives
a chance for a fair comparison of quantitative results, which is usually not available in the
not-so-common research on localization with omnidirectional images.

Moreover, we consider COLD Freiburg an interesting dataset on its own, as it contains
omnidirectional images captured by a robot that followed a number of different paths
in a building at the University of Freiburg. The robot visited various rooms, such as the
kitchen, corridors, printer areas, bathroom, and offices (Figure 7). These rooms have wide
windows and glass walls, making visual localization a particularly challenging task. The
collection of images was collected under real conditions, e.g., changes in furniture, people
being on the move, changes in lighting conditions (cloudy days, sunny days and nights),
etc. Moreover, the images were captured while the robot was moving; therefore, they
may contain blurring effects or other dynamic changes. What is important is that accurate
ground truth positions of the captured images are provided in this dataset thanks to the
laser scanner localization of the robot. The ground truth positions were used exclusively to
measure the metric localization errors.
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Figure 7. Maps of the two parts of the laboratory in Freiburg with approximate paths followed by
the robot during data acquisition (map and trajectories data adopted from the COLD dataset web
page https://www.cas.kth.se/COLD/cold-freiburg.html).

In order to evaluate the influence of the changing lighting conditions on the localization
task, it was proposed in [43] to use as training data only images recorded on cloudy days,
whose acquisition locations are about 20 cm apart. On the other hand, in order to assess the
robustness of the location to changes in illumination, images captured on sunny and cloudy
days and at night were used for testing. The COLD Freiburg dataset contains images
captured in nine different rooms: a kitchen, a bathroom, a printer area, a stairwell, a long
corridor, and four offices (Figure 8).

Figure 8. Example images from the COLD Freiburg dataset: (a) one-person office (1PO-A); (b) kitchen
(KT-A); (c) stairs area (ST-A); (d) printer area (PA-A).

In order to evaluate the appearance-based localization system proposed in this paper,
a direct comparison was made with the solution presented in [43]. To facilitate a fair
comparison, we made an attempt to replicate the sets of images used in the experiments
described in [43]. However, starting from the same images of the Freiburg dataset, we
used only our own processing pipeline; in particular, each training set was augmented by
darkening random portions of the images, rotating them, and changing the illumination.
In our case, the training set was also the global map of embeddings.

Training dataset number one, which is an exact replication of the dataset from the
work of [43], was obtained from a set of images taken during a cloudy day, and it was
downsampled to obtain a set of images describing locations at an average distance of
20 cm between the acquisition points of successive images along the robot’s path. Detailed
information on the number of images contained in the training set depending on the type

152



Sensors 2023, 23, 6485

of lighting conditions and room is provided in Tables 2 and 3. Verification of the correctness
of the obtained model for embedding generation was carried out for three test sets of query
images: the first set consists of images captured on cloudy days but not included in the
training set (2595 images); the second test set contains all images captured on sunny days
(2807 images); and the third test set consists of all images captured at night (2876 images).

Table 2. The number of images of each room depending on the weather for three training sets, where
n.i. is the number of images and % is the percentage of images of a particular room depending on
the weather conditions. Dataset 1—a set of images recorded only on cloudy days. Dataset 2—set
1 extended by the missing acquisition points found in the sets for sunny days and nights. Dataset
3—a set of images showing acquisition points located every 20 cm for images recorded in all types of
weather conditions.

Training Dataset 1 Training Dataset 2 Training Dataset 3
(575 Images) (820 Images) (1801 Images)

Cloudy Cloudy Sunny Night Cloudy Sunny Night

n.i. % n.i. % n.i. % n.i. % n.i. % n.i. % n.i. %

Room 575 100 576 70.2 139 17.0 105 12.8 573 31.8 651 36.2 577 32.0

1PO-A 45 100 47 69.1 15 22.0 6 8.8 46 31.3 54 36.7 47 33.0
2PO1-A 52 100 50 79.4 8 12.7 5 8.0 48 36.9 47 36.3 35 26.9
2PO2-A 33 100 30 58.8 8 15.7 13 25.5 34 30.4 40 35.7 38 33.9
CR-A 248 100 249 76.9 43 13.3 32 9.9 247 33.2 267 35.9 229 30.8
KT-A 43 100 41 42.3 31 32.0 25 25.8 40 19.9 79 39.3 82 40.8
LO-A 32 100 31 62.0 12 24.0 7 14.0 34 33.7 35 34.7 32 31.7
PA-A 58 100 58 82.9 8 11.4 4 5.7 58 37.2 55 35.3 43 27.7
ST-A 31 100 33 76.7 5 11.6 5 11.6 31 31.3 36 36.4 32 32.3
TL-A 33 100 37 68.5 9 16.7 8 14.8 35 31.3 38 33.9 39 34.9

Table 3. The number of images of each room depending on its type in a given training set, where n.i.
is the number of images and % is the percentage of images of a given room depending on weather
conditions. Training dataset 1—a set of images recorded only on cloudy days. Training dataset
2—dataset 1 extended by the missing acquisition points found in the datasets for sunny days and
nights. Training dataset 3—a set of images showing acquisition points located every 20 cm for images
recorded in all types of weather conditions.

Training Dataset 1 Training Dataset 2 Training Dataset 3
(575 Images) (820 Images) (1801 Images)

Room. n.i. % n.i. % n.i. %

1PO-A 45 7.83 68 8.29 147 8.16
2PO1-A 52 9.04 63 7.68 130 7.22
2PO2-A 33 5.74 51 6.21 112 6.22
CR-A 248 43.13 324 39.51 743 41.25
KT-A 43 7.48 97 11.83 201 11.16
LO-A 32 5.57 50 6.1 101 5.61
PA-A 58 10.09 70 8.54 156 8.66
ST-A 31 5.39 43 5.24 99 5.50
TL-A 33 5.74 54 6.59 112 6.22

5. Results and Discussion

This section presents and discusses the results of the three experiments described
in this paper. Quantitative results in terms of place recognition (i.e., image retrieval)
accuracy are presented for all experiments. For experiments no. 2 and no. 3, we also
present quantitative results in terms of the metric localization accuracy, as the datasets used
in these experiments provide ground truth for positions of the place images in a global
reference system. Moreover, we discuss qualitative localization results, pointing out the
most common sources of localization errors and providing recommendations for training
strategies of the deep neural networks that make the resulting models robust to changes in
the environment.
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5.1. Experiment 1

As defined in Section 4, in Experiment 1, appearance-based localization was conducted
for 17 sections, each of them containing several image acquisition locations, and being
a description of a larger corridor space. The best network training results were obtained for
the unfrozen last 50 layers of the backbone CNN, a learning rate of 1 × 10−4, and a batch
size of 16, with a learning error of 0.1605, learning accuracy of 0.9596, validation error of
0.1183, and validation accuracy of 0.9796 (Figure 9).

Figure 9. Model training results in Experiment 1.

On the test dataset containing 122 query images, the average accuracy of place recog-
nition was 98%, with very few misclassified queries, as shown by the confusion matrix in
Figure 10. The average processing time of a single query image was 480 ms, with a standard
deviation of 83ms and a maximum time of 1313 ms, allowing for real-time localization.
A qualitative example of place recognition is given in Figure 11. Visual inspection of the
results and the confusion matrix suggest that the most common section mismatch is when
the same place is at the start of a new section and the end of a previous section. However,
errors also are caused by blurred images and bright spots of sunlight or artificial light in
the images.

Figure 10. Confusion matrix for 17 sections.
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This experiment allowed us to conclude that the proposed approach to appearance-
based localization with embeddings produced by a lightweight CNN suits the target
application in terms of both image retrieval accuracy and real-time performance. However,
the used sensor, having rather a small field of view and mechanical structure prone to
decalibration and defocusing (causing blurred images), did not allow us to extend these
investigations to a larger dataset with ground truth positions of images.

Figure 11. Results of sample section predictions. The image in the first column is a query; the other
columns are the four closest neighbours. In square brackets, there is the section number (i.e. [12], [02]),
and next to it, the L2 distances between the query and the presented image are given. An example of
(a) correct place recognition and (b) mismatched sections having slightly overlapping ranges.

5.2. Experiment 2

The conclusions drawn from Experiment 1 were taken into account while designing
the next experiment involving the use of a different catadioptric sensor and a more extended
and diversified dataset of indoor images with ground truth positions.

In Experiment 2, the convolutional neural networks EfficientNet B7, EfficientNet V2L,
and MobileNet V2 were compared for Configurations A, B, and C. The quantitative results
presented in the graphs show the percentage of Cartesian locations found in the given
distance intervals expressed in meters, and the average Euclidean distance measurement
error: for Configuration A—Figure 12; Configuration B—Figure 13; and Configuration
C—Figure 14. Moreover, Table 4 shows the average time of processing a single query image
with the proposed solution based on embeddings and Faiss KNN search.

Table 4. Mean Euclidean distance error (bL) and mean time (t) of location determination on the Jetson
TX2 computing platform for original (omnidirectional) and panoramic images.

Experiment 2

Neural Image Configuration A Configuration B Configuration C

Network Type bL [m] t [s] ttr [h] bL [m] t [s] ttr [h] bL [m] t [s] ttr [h]

EfficientNet B7 omni 0.00 0.52 2.15 3.06 0.48 3.25 4.43 0.47 2.16
EfficientNet B7 panoramic 0.03 0.56 37.21 3.21 0.49 16.24 3.92 0.50 11.30
EfficientNet V2L omni 0.00 0.35 1.98 2.34 0.35 3.84 4.94 0.34 2.07
EfficientNet V2L panoramic 0.00 0.39 14.54 3.11 0.37 15.46 3.60 0.36 12.14
MobileNet V2 omni 0.02 0.08 2.24 3.86 0.07 3.15 5.01 0.07 1.55
MobileNet V2 panoramic 0.36 0.11 16.32 4.33 0.11 15.56 6.87 0.11 11.53

A mismatch of the neighbouring places occurs only when the images overlap signifi-
cantly (note that the catadioptric camera used in Experiment 2 has a much larger field of
view that the previously used one) and are very similar to each other due to the self-similar
nature of the environment. No significant difference was noticed between the results
obtained for omnidirectional and panoramic images, which indicates that for appearance-
based localization with our approach, it is unnecessary to convert the omnidirectional
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images to panoramic images. Hence, we can avoid the time-consuming conversion and
rectification procedure [8], without compromising the results.

Figure 12. Quantitative results for Configuration A: (a)—a percentage of matches that are within
a range of distance from the actual distance (the units on the x-axis are the ranges of distances);
(b)—average distance measurement error.

As a follow-up of Experiment 2, a comparison of localization results was performed
between the NetVLAD approach with VGG-16 and VLAD layer, and our approach with
two variants of the EfficientNet backbone. This comparison was performed for all three con-
figurations of the reference map (A, B, and C) and both the omnidirectional and converted
panoramic images.

Figure 13. Quantitative results for Configuration B. (a)—the percentage of matches that are within
a range of distance from the actual distance (the units on the x-axis are the ranges of distances);
(b)—the average distance measurement error.

Quantitative results of the average Euclidean distance measurement error for all
configurations considered in this test are shown in Table 5. As can be seen in this table,
for the panoramic images, the proposed solution has a smaller average error for distance
measurement than NetVLAD. On the other hand, for original omnidirectional images, the
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proposed solution with EfficientNet and embedding has the same or larger average error
for distance measurement than NetVLAD with VGG-16.

From Experiment 2, we conclude that the CNN architecture performing best in our
system is EfficientNet V2L, a model from a recently introduced family of convolutional
networks that achieve faster training and better parameter efficiency than older network
models [62]. This model, being up to 6.8 times smaller than state-of-the-art models, suits
our embedded computing platform well. Moreover, our approach performs as a pair
with the much more complicated and much bigger NetVLAD architecture. On the other
hand, Experiment 2 shows that NetVLAD can handle raw omnidirectional images without
converting them to panoramic images if it is trained on a representative dataset. As to the
strategy of defining the reference map and the training dataset, the results of Experiment
2 show that it is possible to find a correct neighbouring place, even if the very exact image
of the queried place is not included in the reference map. However, these results also
show that the generalization ability of the investigated deep learning solutions, including
NetVLAD, is somewhat limited if the query images come from a different environment
than the training set. This is suggested by the worse results in Configuration C, no matter if
omnidirectional or panoramic images are being used. Therefore, the generalization ability
of the proposed architecture should be further investigated.

Figure 14. Quantitative results for Configuration C: (a)—the percentage of matches that are within
a range of distance from the actual distance (the units on the x-axis are the ranges of distances);
(b)—the average distance measurement error.

Table 5. Comparison of mean Euclidean distance error for the network architecture presented in this
paper (EfficientNet B7/EfficientNet V2L + embeddings) and NetVLAD network for omnidirectional
and panoramic images.

Experiment 2

Configuration A Configuration B Configuration C

Omni Panoramic Omni Panoramic Omni Panoramic

Neural Network bL [m] bL [m] bL [m] bL [m] bL [m] bL [m]

EfficientNet B7 + embeddings 0.00 0.03 3.06 3.21 4.43 3.92
EfficientNet V2L + embeddings 0.00 0.00 2.34 3.11 4.94 3.60
NetVLAD (VGG16 + VLAD) 0.00 0.10 2.27 3.77 2.24 4.60
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5.3. Experiment 3

Conclusions about the limited generalization ability of the proposed localization
system drawn from Experiment 2 were one of the main motivations behind the concept of
Experiment 3, which applies the publicly available COLD Freiburg dataset and compares
side-by-side to the results obtained on the same dataset and published recently in [43].

In [43], the best results were obtained for the retrained AlexNet, with 97.11% of correct
room identifications obtained for images captured during cloudy daytime, 93.48% for
sunny days, and 96.77% for nighttime.

Following the methodology of replicating the selected experiments from [43] with
respect to the used images, we achieved the following results for appearance-based local-
ization using embeddings with EfficientNet V2L: 98.03% for cloudy days, 97.01% for sunny
days, and 97.77% for nights. The full quantitative results are presented in Figure 15. Thus,
better accuracy of room recognition was obtained for cloudy days by 0.92%, by 3.53% for
sunny days, and by 1% for images recorded at night. The average distance measurement
error for the room was also analysed, and the results obtained are presented in Figure 15b.
The proposed solution achieved a smaller average distance measurement error than in [43]
for cloudy days by 0.05 m, and by 0.24 m for sunny days; only for images taken at night
was the average error increased by 0.04 m.

Figure 15. Success ratio for EfficientNetV2L and the set of embeddings acquired from the training set
for the room search task for the COLD Freiburg dataset. The result obtained under cloudy (blue),
night (black), and sunny (yellow) conditions for the model learned on the training set, namely, a set of
images on cloudy days (a), a set of images on cloudy days extended by missing acquisition locations
found in images for sunny days and night (b), and a balanced set of images obtained on cloudy and
sunny days and at night (c). Average location error in meters for a set of images on cloudy days
(d), a set of images on cloudy days extended by missing acquisition locations found in images for
sunny days and at night (e), and a balanced set of images obtained on cloudy and sunny days and at
night (f).
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During the analysis of the results, it was noticed that the images recorded on sunny
days and nights have different acquisition spots (positions) than those acquired for cloudy
days, and some of them are farther than 20 cm from the acquisition spots for cloudy days,
e.g., for the room labelled CR-A, the farthest acquisition spot on sunny days was 0.5 m
away from the farthest acquisition spot on a cloudy day. For this reason, an extension of
the training set no. 1 was made, only with images taken at the missing acquisition spots for
sunny days and for nighttime (Tables 2 and 3). Note that the images added to the learning
set were removed from the test sets, and never used as queries. The results obtained with
this amendment of the training set are shown in Figure 15c,d. However, neither in the
case of room identification accuracy nor for position determination errors did the results
improve significantly.

Based on the data from Table 2, it was noticed that the training dataset number 2 is
not balanced in terms of images of a given room depending on lighting conditions. In
deep learning, several techniques are commonly used to handle imbalanced datasets of
images. One approach is oversampling, where the minority class samples are replicated to
match the majority class. Another technique is undersampling, where random samples
from the majority class are removed to balance the dataset. Additionally, there are meth-
ods like synthetic data generation, cost-sensitive learning, and ensemble techniques [64].
However, these methods have certain drawbacks. Oversampling can lead to overfitting
and a loss of generalization ability. Undersampling can discard valuable information and
result in underrepresented classes being ignored. Synthetic data generation may intro-
duce unrealistic patterns. Cost-sensitive learning requires careful tuning of class weights.
There is no technique that universally addresses all imbalanced dataset challenges. For
this reason, a third training set was created (no. 3), which contains images representing
acquisition locations about 20 cm apart for each room at night and on sunny and cloudy
days (Tables 2 and 3). Finally, for this illumination-balanced training set, the best results
were obtained for room identification: 98.56% for cloudy days, 97.44% for sunny days, and
98.31% for nights (Figure 15e). Also, the smallest average distance measurement error was
obtained for training with the set no. 3: 0.22 m for cloudy days, 0.27 m for sunny days,
and 0.2 m for nights (Figure 15f). Based on the data from Table 3, it can be seen that the
percentages of the images of each room in each training set are very close to each other,
but only by balancing the set by the lighting conditions (i.e., sunny, cloudy, night) were
satisfactory results obtained.

In order to explore the generalizability of the proposed system to other environments,
we also demonstrate localization results for the Saarbrücken sequence from the COLD
dataset. This is a sequence of images collected in a different location within a building
having different characteristics than the one used for the Freiburg sequence [20]. Both
Freiburg and Saarbrücken sequences from the COLD dataset were used in the research
on mobile robot’s localization presented in [32], although the inaccurate description of
the dataset used in this paper does not allow us to replicate the Saarbrücken sequence
experiment for direct comparison, as it was accomplished for the Freiburg sequence used
in [43]. Therefore, considering the analysis of the influence of an imbalanced training
dataset on the localization accuracy of the system, it was decided to use only part B of the
Saarbrücken sequence, since it is the only one with images for all weather and lighting
conditions. The results presented in Figure 16 confirm that our approach generalizes well
to different indoor environments, achieving a similar success rate of image retrieval and
a similar average localization accuracy as the Freiburg sequence.
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Figure 16. Success ratio for EfficientNetV2L and the set of embeddings acquired from the training set
for the room search task for COLD Saarbrücken dataset for part B. Results obtained under cloudy
(blue), night (black), and sunny (yellow) conditions for the model learned on the training set are
a balanced set of images obtained on cloudy and sunny days and night (a). Average location error in
meters for a balanced set of images obtained on cloudy and sunny days and night (b).

The hierarchical localization of the mobile robot in [43] is divided into two subtasks:
the first one is room recognition, and the second one is accurate localization within the
known room. Accurate localization involves estimating the position in which the test
image was captured using a nearest neighbour search method in the space of global
descriptors obtained from the convolutional network, which is similar to our approach. In
the paper, several experiments with the COLD dataset were performed based on different
configurations of the networks and training sets used in the room classification task. Finally,
the authors of [43] selected the CNN network trained in experiment number 2 and the fully
connected layer numbered 6 in their network as the one producing the global descriptors
from images, because this configuration showed the greatest robustness to changes in
lighting conditions in the preliminary experiments. This configuration is referred to as
CNN2 + FC6. Another configuration considered in [43] is the CNN network trained in
experiment 8 and the output of the sixth layer (CNN8 + FC6).

Table 6 presents the quantitative results and computation times obtained for our
appearance-based localization. The average processing time per image was 0.32 seconds
(achieving 3.13 FPS), making appearance-based localization in real-time in the context of
the typical motion speed of our service robot. For comparison purposes, this table also
contains results for the two selected configurations of the system from [43], and results of
other hierarchical localization methods (not learning-based) investigated in [32] and used
for comparison in [43]. Note that the numerical results from [32,43] are taken from the
respective papers, as we did not attempt to reimplement these systems, replicating only
the training and test sets for Experiment 3.

Table 6. Comparison of results for different approaches to place recognition (appearance-based
localization) using images from a catadioptric camera. Best results shown in bold.

Global Descriptor bL [m] bL [m] bL [m]
Cloudy Sunny Night

EfficientNet V2L
(training dataset 3) 0.22 (t = 0.32 s) 0.27 (t = 0.31 s) 0.20 (t = 0.31 s)

EfficientNet V2L
(training dataset 1) 0.24 (t = 0.32 s) 0.44 (t = 0.32 s) 0.33 (t = 0.32 s)

CNN2 + FC6 [43] 0.29 0.69 0.29
CNN8 + FC6 [43] 0.25 0.93 0.24
HOG [32] 0.31 1.57 0.95
GIST [32] 0.08 1.23 1.31

The appearance-based localization methods studied in [32] include the global HOG
and Gist descriptors. HOG is a feature decoder often used in image processing for object
detection. The Gist descriptor, on the other hand, is used to extract global features of the
environment by combining visual and semantic information through a set of perceptual
dimensions that represent the dominant spatial structure of the scene. Both HOG and

160



Sensors 2023, 23, 6485

GIST are descriptors that do not use machine learning algorithms, providing an interesting
reference point for the method proposed in the article.

The results shown in Figure 15 and in Table 6 document that the approach to appearance-
based localization proposed in this paper, despite being simple and lightweight, outper-
forms some recently published results in this area. Considering the fact that our solution
turned out to be similar in performance to the state-of-the-art NetVLAD deep learning
architecture, which requires many more computing resources, we conclude that our re-
search reached its goal, demonstrating a versatile and accurate deep learning architecture
that is suitable for the low-cost Nvidia Jetson TX2 computing platform. However, the
main scientific outcome of Experiment 3 seems to be demonstrating how important it is to
prepare a balanced dataset for training, particularly in the context of generalization over
various image acquisition characteristics.

6. Conclusions

The results of the tests of the place recognition software for catadioptric cameras
and the edge computing platform allow us to conclude that the proposed neural network
architecture and parallel processing make it possible to obtain a real-time localization
system that works with raw catadioptric images, despite their distorted nature.

The extensive study of the algorithm of appearance-based localization and comparison
of results with similar solutions known from the literature demonstrate that the proposed
approach makes it possible to obtain highly descriptive embeddings of the observed
locations, and consequently, efficient appearance-based localization.

The most important conclusions, summarizing the remarks discussed in Section 5,
concern the best performance of the EfficientNet V2L CNN backbone for generating the
embeddings and the pivotal importance of preparing a well-balanced training set for this
network, even if transfer learning with pretraining on a large dataset of general purpose
images is used. A practical conclusion is that the not-so-recent and low-cost Nvidia Jetson
TX2 embedded computer is enough to run a carefully engineered deep learning system
for appearance-based localization. This opens interesting opportunities for developing
affordable service and social indoor mobile robots utilizing a catadioptric camera as the
main localization sensor.

However, a limitation of the proposed appearance-only approach to global localization
is the limited accuracy of the obtained metric position of the robot. This accuracy depends
on the density of the global map, because the obtained position of the robot is defined by
the known location of the most similar image. If the images were collected close to each
other, then the position of the robot can be determined more accurately, but if the distances
between the points where the images were captured are large, the accuracy is decreased.
This limitation will be addressed in our further research by implementing a neural network
that will regress the position of the robot with respect to the reference image retrieved from
the map. Further research on this system will also concern the implementation of triplet
loss with hard negative mining, as this training scheme turned out to be very effective
in a number of localization systems. This training strategy should allow the network to
develop more specific features, thus making the localization system more effective in highly
repetitive indoor environments.
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Abstract: Robotic manipulation requires object pose knowledge for the objects of interest. In order
to perform typical household chores, a robot needs to be able to estimate 6D poses for objects such
as water glasses or salad bowls. This is especially difficult for glass objects, as for these, depth data
are mostly disturbed, and in RGB images, occluded objects are still visible. Thus, in this paper, we
propose to redefine the ground-truth for training RGB-based pose estimators in two ways: (a) we
apply a transparency-aware multisegmentation, in which an image pixel can belong to more than
one object, and (b) we use transparency-aware bounding boxes, which always enclose whole objects,
even if parts of an object are formally occluded by another object. The latter approach ensures that
the size and scale of an object remain more consistent across different images. We train our pose
estimator, which was originally designed for opaque objects, with three different ground-truth types
on the ClearPose dataset. Just by changing the training data to our transparency-aware segmentation,
with no additional glass-specific feature changes in the estimator, the ADD-S AUC value increases by
4.3%. Such a multisegmentation can be created for every dataset that provides a 3D model of the
object and its ground-truth pose.

Keywords: neural networks; training data; transparent objects; bounding box; segmentation; pose
estimation

1. Introduction

Household robotics is a challenging topic as it includes a lot of different tasks in a
dynamic environment. For example, robots should be able to set the table, fetch objects,
and place them in different places. To be able to manipulate any object, the robot needs
to know that the object exists and where it is located in the world. This can be achieved,
for example, with cameras perceiving color and depth information of the environment.
Many works have been published about 6D pose estimation of opaque objects in different
scenarios [1–9]. However, humans tend to use drinking devices, salad bowls, or decanters
made out of glass; thus, the robot needs to be able to cope with transparent objects as well
as opaque objects. There are two big differences between those objects: depth data are
often unreliable, and clutter has a different effect. The problem with the depth data is that
normal depth cameras rely on infrared light and laser range finders use high-frequency
light. This may work fine with opaque objects where the light can be reflected but not
really with transparent objects, as light just passes through and is either lost or reflected by
objects or walls somewhere behind the actual object. This can distort the depth data quite a
lot. There are different common approaches to tackle this problem: trying to reconstruct
the depth data, as performed for example in [10–12], simply trying to solve the 6D pose
estimation with stereo RGB images [13] or by just using single RGB images [14,15]. The
latter is what our work focuses on.

Another difference between opaque and transparent objects is that clutter might not
have the same visual effect. If an opaque object stands in front of another object, it covers
the other object to a certain degree, and the object behind is only partly visible. With
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transparent objects, however, this is not always the case. A big glass object in front of
another usually only covers small parts on its edges where the light reflects differently. But
because its main part is just transparent, it is possible to see the object behind it quite well.
Figure 1 highlights that the big salad bowl on the table (Figure 1a) stands in front of four
other objects, but those are still visible, as a closer look on the wine glass in Figure 1c shows.
Nevertheless, the ground-truth segmentation and the resulting bounding box Figure 1b are,
by definition, only on the directly visible part of the object. This adds another difficulty
for two-stage approaches. Usually, they first detect the object within a bounding box and
scale the bounding box to a fixed size to then run a second network on that image. Now, if
an object is largely occluded, the remaining part is scaled (Figure 1b), and consequently,
the object has a much different scale than if not occluded. It might be quite helpful to
prevent the wrong scaling and extend the bounding box to the whole object (Figure 1c)
and teach the network that the hidden but visible part also belongs to the object. Thus, we
propose to rethink the bounding box and segmentation for transparent clutter. We call this
transparency-aware segmentation (TAS) and transparency-aware bounding box (TAB). The
contributions of this paper are to

• modify ground-truth segmentation and bounding boxes to cover whole objects in
cluttered transparent scenes,

• compare training with transparency-aware and original segmentation and its influence
on the pose,

• apply our approach to a cluttered challenging glass scene using only RGB data without
modifications specific to the glass dataset.

(a) (b) (c)

Figure 1. Example crops from a scene in the ClearPose [16] dataset with typical glass clutter, a wide
overview (a) of the scene. The original bounding box (b) and an object transparency-aware bounding
box (c), as well as their resulting regions of interest for the second stage.

2. Related Work

As knowing the 6D pose of an object is probably essential for any robotic manipulation,
there exist various methods to estimate it. They can be differentiated between direct
methods that directly output a 6D pose such as PoseNet [17] and GDR-Net (geometry-
guided direct regression) [18], or indirect methods that produce intermediate outputs and
use RANSAC or PnP solvers to estimate the pose [1,15]. Another conceptual difference
is the number of input images. Zebrapose [1] is a single-image approach that involves
splitting the object into multiple regions with several sub-regions, interpreting every region
as a certain class and as a multi-class classification problem before solving the resulting
correspondences via a PnP solver. A multiple-view approach is, e.g., CosyPose [6], which
uses a single image for initial object candidates, matches those candidates across other
views, and globally refines object and camera poses. Another approach improving most
results is to include depth data. FFB6D (full-flow bidirectional fusion network for 6D pose
estimation) continuously fuses information from RGB and depth data within their encoder
and decoder structured networks, followed by a 3D key-point detection and instance
segmentation and least-square fitting [3].
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All those methods, as well as most other work in this area, focus on texture-less, clut-
tered, and opaque objects; however, only a few works have been published specifically on
transparent objects. As pointed out before, transparent objects face some further difficulties.
There are some approaches using depth data, with some work on depth completion, as
in [10], which uses affordance maps to reconstruct the depth data. Another approach is
made by Xu et al. [11]. They try to reconstruct the depth image with by surface normal
recovery from the RGB image and use this to calculate an extended point cloud. Using
the RGB image and the constructed point cloud, another network estimates the final pose.
Because of this depth problem there are also direct methods to use only RGB images like
[14]. They adapt the idea of GDR-Net to use geometric features of objects and fuse those
with edge features and surface fragments specified for transparent objects. From these
fused features, a dense coordinate and confidence map is obtained and processed by GDR’s
patch-PnP. An indirect approach is [15] by Byambaa et al. They also take only a single RGB
image, but apply a two-stage approach where a neural network extracts 2D key points,
followed by a PnP algorithm afterwards. These works have in common that they adapt
their networks somehow to the specific characteristics of transparent materials, making
them more specific and less suitable for general-purpose object pose estimation. We want
to keep our network and training structure identical to previous work and rather change
the ground-truth definition of the training data itself in a glass-dependent way. The idea
is to enhance pose estimation on transparent objects without reducing the generality of
the estimator.

In previous work, our group has proposed an indirect general approach for RGB and
RGB-D images to estimate 6D poses [4] with a specific focus on symmetrical objects [19]. It
splits the process into two stages, based on the idea that neural networks have been proven
to predict well which object is where in the image and that mathematical algorithms can
solve 2D-3D correspondence problems. In the first stage, a neural network is trained to
predict a segmentation, an object image, and an uncertainty map of the predicted object
image. This object image represents in each pixel the corresponding 3D point of the object
in object coordinates in a second stage. These learned correspondences of the 2D pixels with
the 3D object points within the object image are then solved by a generalized PnP algorithm,
taking the uncertainty into account. This approach works well on symmetrical and opaque
objects. In contrast to Xu et al., we do not change the structural training network and
extend it with specific features for glass but rather reuse our general approach and simply
adjust the training data to achieve better results on transparent objects.

Definitions for bounding boxes and segmentation of objects, which are necessary
for most training processes in the area of 6D pose estimation, are hardly mentioned and
discussed. Sometimes, it is implicitly displayed in figures [14] or encoded in the choice of the
object detector [1] but rarely explicitly declared or discussed. In the case of bounding boxes,
most works estimate axis-aligned bounding boxes, as in [20–22], and only few estimate
object-oriented bounding boxes [23,24], but to our knowledge, there is no discussion about
segmentation and the fact that one pixel can belong to more than one object, e.g., in the
case of transparent objects or scenes seen through a window.

3. Approach

We want to investigate whether changing the training data considering the specialities
of transparent objects enhances the pose estimation without having to adapt the network
with special glass features. To achieve this, we use a multisegmentation. Conceptually
speaking, we extend the normal segmentation mask, where each pixel is assigned to exactly
one object or background, by assigning multiple objects to pixels in cases where clutter
normally hides object pixels. The idea is visualized in Figure 2b. The implementation
is performed as one segmentation image for each object individually within the image.
Modifying and testing different training data with our indirectly working pose estimator
requires different processes for training and prediction.
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(a) (b)

Figure 2. Example RGB image of the dataset (a) and the corresponding multisegmentation mask (b),
where the fully colored pixels represent the original ground-truth segmentation, and the object border
indicates that the objects continue. The pixels within the borders belong to all overlapping objects,
not just to the object in front.

3.1. Training

In the training processes, sketched in Figure 3, we consider three different variants in the
segmentation and bounding box process. We want to investigate and assess the effect of a
consistent size and scale of the object (transparency-aware bounding box), as well as of the
transparency-aware segmentation definition. Figure 4 visualizes the three differences. In the
first variant (Figure 4a), the original ground-truth mask and the resulting bounding box are used.
The second variant (Figure 4b) also uses the ground-truth mask, but the transparency-aware
bounding box (TAB) encloses the whole object plus an additional five pixels to every side. This
ensures a consistent size and scale of the object and adds some more context around the object.
The third training set is built by using the transparency-aware segmentation (TAS) mask and
bounding box (Figure 4c), including even the formally occluded parts of the object. As glass
is transparent, i.e., even though there might be some glass in front of the object of interest, the
object of interest is still partly visible. Only the edges of the occluding objects really disturb the
image. Having a fixed quadratic input size of the networks requires using the bounding boxes
and calculating a region of interest that fits the networks’ needs. As in our previous work [4],
we use the longest side of the bounding box to fit a square around the object (uniform scaling).
The resulting ROI is used to crop the segmentation, RGB image, and our ground-truth object
image. The images are either upscaled or downscaled to meet the second stage input size. Then,
the two networks are trained independently of each other.

Figure 3. In the training phase, a multisegmentation is used to create our novel segmentation masks
and bounding boxes, which is our main contribution (blue box). The dimensions of the bounding box
are used to derive a squared region of interest. This region is used to crop the RGB input image as
well as the ground-truth object image and segmentation. The two networks are trained independently,
the segmentation network is trained to predict a segmentation map based on the defined ground
truth, and the object image network is trained on the ground-truth object image. As its loss is on a
pixel level, the ground-truth segmentation mask is used to only account for the loss for the pixels that
are actually part of the object.
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(a) (b) (c)

Figure 4. Different mask and bounding box sizes for the RGB image crops of Figure 1. (a) Displays the
original mask and resulting bounding box, and (b) also uses the original mask but the transparency-
aware bounding box. The right image (c) displays the transparency-aware segmentation and its
resulting bounding box.

3.2. Prediction

At prediction time, an external set of bounding boxes of specific objects of the complete
image is needed. To obtain these bounding boxes, any object detection algorithm can be
used. This bounding box detection is a slightly different problem and out of the scope of
this paper. Many methods were developed to find and classify specific objects within an
image and produce bounding boxes [20–22,25,26]. These boxes can then be used to find
more attributes like the color, materials, a text description of the object, and the 6D pose of
the object. We focus on 6D pose estimation. Thus, for the prediction phase in our approach,
we use the ground-truth boxes and the transparency-aware boxes, respectively, for the
network training. For a real-life application, any object detector could be connected in front
of our workflow, which is visualized in Figure 5.

Figure 5. In the prediction phase, a bounding box for the object of interest is needed. It can come
from any object detector. The dimensions of the bounding box are used to create a square around the
object and use this as a region of interest for further processing. The incoming RGB image is cropped
and scaled by this ROI and fed into a pre-trained segmentation and object image network. The object
image network estimates the 3D points in object coordinates and an uncertainty map in pixel space.
These two are used pixel-wise to solve the 2D-3D correspondence with the gPnP, while only the pixels
are taken into account that belong to the object estimated by the segmentation network. This resolves
into a 6D pose for this object.

4. Dataset

We chose the ClearPose dataset [16] to test our approach because it contains several
real image scenes, in total over 350,000 annotated images, with many transparent, symmet-
ric objects within cluttered scenes and annotated ground-truth segmentation maps and
ground-truth poses. Other known available real-world datasets are ClearGrasp [27] and
TransCG [28], which use plastic glasses instead of realistic real glass and include almost
no glass clutter, making them uninteresting for our comparison. The complete ClearPose
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dataset includes several sets of scenes of different types, for example, normal objects placed
jumbled on a table but also objects with filled liquors or with an additional translucent cover.
We focus on set number 4. Set 4 includes about 43,000 RGB-D images with segmentation
masks and poses. It consists of 6 scenes, all of them including the same 12 different objects:
drinking glasses, bottles, bowls, and a knife and a fork, either made of glass or plastic,
placed on a table. The difference between the scenes is their colorful tablecloth and the
arrangement of the objects. This arrangement is random but physically correct, i.e., glasses
are standing upright or upside down or lying flat on the table but do not balance on edges
or lean on each other. The lighting seems to be realistic indoor room light, produced by
fluorescent tubes and spotlights. To obtain the different images, a camera was moved
around the table at different heights. This results in different light reflections and blurriness
in the images. Sometimes, the unstructured environment of the lab where the images were
taken is visible, depending on the camera position.

The ground-truth data were generated by a digital twin scene of the real scene and an
estimated camera movement using ORB-SLAM3. With this information, the ground-truth
segmentation and the true-depth image were rendered. This makes total sense for opaque
objects but not so much for transparent objects. As visible in Figure 1, some pixels show
different objects at the same time, where the bowl and the wine glass are behind it. The
ground-truth segmentation is a gray image, with only one channel, encoding for each pixel
if it is background or belongs to a specific object, but it does not represent multiple objects
at the same pixel. Thus, for our experiment, we extended the ground-truth segmentation
mask by using the provided 6D pose of the object and the provided 3D model and rendered
a transparency-aware segmentation for each object in each image. For training, we used
the included ground-truth and our own multisegmentation. Figure 2 shows one example
image of the test set and our rendered multisegmentation.

5. Experiments

To evaluate our idea, we built expert networks for each object in Set 4, meaning we
have one network for each object. In theory, this enables us to be unlimited in the number
of objects we can process. However, in practice, this is limited by the memory needed. As
we use these networks to evaluate Set 4 of the ClearPose dataset, we have 12 networks, one
for each object, which we evaluate sequentially.

5.1. Network Architecture

Our network is not new, but for the sake of completeness, we would like to present
the used network architecture. In contrast to our approach in [19], we separate the original
network into two networks for the segmentation and for the object image and train both
of them independently. Although both have the same structural encoder (Table 1) with
three layers of a pre-trained MobileNet and additional convolution layers, the decoder
(Table 2) is different. This is schematically shown in Figure 6. The segmentation network
predicts the segmentation, and the object image network predicts the object image, as well
as an uncertainty map representing the uncertainty of each pixel in image space. The object
image network from Figure 3 is in detail divided into one encoder and three heads as
sketched in Figure 6. Table 2 shows the used structure of layers for each head, where they
only differ in their output layer.

5.2. Training

We trained our networks on three NVIDIA A40 and two NVIDIA TITAN V using
TensorFlow 2.11 and Python 3.8. To train the segmentation networks, we used a batch
size of 64 and Adam as the optimizer with a fixed learning rate of 0.0001 and trained for
300 epochs. The object image network was trained with a batch size of 128 and used Adam
as the optimizer with a fixed learning rate of 0.001 for 100 epochs on the object image
and for another 200 epochs on the uncertainty map. The differences between the learning
parameters resulted from the different computation powers. For each training set, we
trained both networks for all objects, keeping all structural parameters the same, with no

170



Sensors 2024, 24, 432

extra modification for any object or the training set. The networks have an input size of
224 × 224 and produce a segmentation mask, an object image, and an uncertainty map,
each of size 112 × 112. Training and evaluation are performed on these three different
training sets for each individual object to investigate the differences in 6D pose estimation.
For a real-life application, an additional bounding box detector would be necessary.

As a metric, we use a symmetry-aware average point distance error (ADD-S) because
almost all objects are somehow symmetrical. Only the knife and fork do not have a rotation
symmetry axis. This is based on the pairwise average distance (ADD) [29] but includes the
fact that points are ambiguous. Pure ADD would require the network to learn to guess the
annotated rotation, which is arbitrarily set by the annotation. ADD-S is suitable to handle
symmetrical and asymmetrical objects. We calculate the area under the curve (AUC) for
thresholds from 0.0 m to 0.1 m, as in [16].

structurally identical
RGB

Encoder

pO'pO* wpx seg

Segmentation NetworkObject Image Network

MobileNet

RGB
Encoder

MobileNet

shortcuts

feature output

Figure 6. A more detailed sketch of our used network structure. The object image network has three
heads. pO∗ and pO′

represent two different aspects of the object image points pO, which is described
in more detail in [19]. As this is just a technical detail, we will refer to pO∗ and pO′

together as an
object image in the following. The pixel weight wpx estimates the uncertainty in pixel space. In the
first training stage, only the object images (pO∗ and pO′

) are trained. In the second stage, the weights
of the encoder are set and only the pixel weight head (wpx) is trained. The segmentation network has
a simple common encoder–decoder with a shortcut structure. The layers of the encoder and decoder
are listed in Tables 1 and 2.

Table 1. RGB encoder structure.

Layer Name
Nr. of

Output
Channels

Filter Size Stride
Output

Size
Nr. of
Layers

MN block_3_project_BN 32 - - 28 × 28 -
Conv1 100 5 × 5 2 14 × 14 1
Dense1 64 - 1 14 × 14 12 × 3
Conv2 128 1 × 1 1 14 × 14 1
Dense2 64 - 1 14 × 14 12 × 3
Conv3 128 1 × 1 1 14 × 14 1
Conv4 70 5 × 5 2 7 × 7 1
Dense3 70 - 1 7 × 7 6 × 3
Conv5 140 1 × 1 1 7 × 7 1

MN block_3_project_BN—the used output layer of the MobileNet v2 version of keras, ConvX—a 2D convolution
operation, DenseX—a custom dense block as described in Table 3.
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Table 2. Decoder structure.

Layer Name
Nr. of Output

Channels
Filter Size Stride Output Size Nr. of Layers

Up1 140 - - 14 × 14 1
Concat2 268 Conv3 (Enc.) & Conv5 (Enc.) 14 × 14 1
Conv6 50 3 × 3 1 14 × 14 1
Dense4 25 - 1 14 × 14 12 × 3
Conv7 50 1 × 1 1 14 × 14 1

Up2 50 - - 28 × 28 1
Concat3 82 Dense4 & MN block_3_project_BN 28 × 28 1
Conv8 32 3 × 3 1 28 × 28 1
Dense5 16 - 1 28 × 28 6 × 3
Conv9 32 1 × 1 1 28 × 28 1

Up3 32 - - 56 × 56 1
Concat4 56 Dense5 & MN block_2_project_BN 56 × 56 1
Conv10 24 3 × 3 1 56 × 56 1
Dense6 12 - 1 56 × 56 4 × 3
Conv11 24 1 × 1 1 56 × 56 1

Up4 24 - - 112 × 112 1
Concat5 56 Dense6 & MN bn_Conv1 112 × 112 1
Conv12 16 3 × 3 1 112 × 112 1
Dense7 8 - 1 112 × 112 4 × 3
Conv13 16 1 × 1 1 112 × 112 1

Conv (pO∗/pO′
/

wpx/seg)
3/3/4/1 1 × 1 1 112 × 112 1

Enc.—Layer from the Encoder, ConvX—a 2D convolution operation, ConcatX—a concatenation layer, UpX a 2D
upscaling layer, DenseX—a custom dense block as described in Table 3, MN X—the used layer of the MobileNet
v2 version of keras.

Table 3. Dense block structure.

Layer Name
Nr. of

Output
Channels

Filter Size Stride Output Size Nr. of Layers

ConvI input
channels 1 × 1 1 input size 1

ConvII input
channels 3 × 3 1 input size 1

Concat Input Layer & ConvII input size 1
ConvX—a 2D convolution operation, ConcatX—a concatenation layer. The number of channels and the output
size depends on the layer before, where the input channels and input size is determined.

6. Results

We trained both networks separately. The segmentation network can not only give
insights on their individual performance but also whether the network structure is suitable
to identify the object at all. As stated before, the encoder structure of both networks is
identical, and only the decoder differs.

6.1. Segmentation

The segmentation networks were trained for each object individually, each on the three
different training sets: original, transparency-aware bounding box (TAB), and transparency-
aware segmentation including the bounding box (TAS). Table 4 displays the recall and
precision values on a pixel level averaged over all objects. The highest values were achieved
by our transparency-aware segmentation. However, it is interesting that the transparency-
aware bounding boxes have the lowest values. This might be because, for the additional
context, without TAS, a lot more background pixels are added, producing a slight bias to
background pixels as the precision is similar, but the recall values are worse. Overall, this
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also means that our network structure is, in general, suitable to detect object pixels within
the image. Otherwise, the segmentation would not be as good.

Table 4. Results of the test set segmentation on a pixel level. Best results in bold.

Original TAB TAS

recall 83.64% 79.13% 89.53%
precision 93.10% 93.82% 97.22%

6.2. 6D Pose Estimation

For the pose estimation, we use the prediction stage as displayed in Figure 5. The
bounding boxes are either based on the original segmentation or the transparency-aware
segmentation, depending on what data the respective network was trained on. The overall
results on Set 4 are displayed in Table 5. Changing the ground-truth definition from original
to TAS increases the AUC by 4.33% over all objects.

In order to compare our results with a reference value on this glass data set and to
put them into a context, we compared them to Xu et al. [11] and FFB6D [3]. However, we
do not claim to compete against their full approaches, as we use ground-truth bounding
boxes without using any object detector. Even though [14,15] are methodologically more
similar to our approach, we cannot compare ourselves to them as they use different data
sets with little to no occlusion. Xu et al. developed a network with specific glass features,
and FFB6D was a state-of-the-art network for pose estimation at the time when the dataset
was published. Both have better results; however, both use RGB-D data, whereas our
network only uses RGB data. In previous work, including depth data achieved an increase
of up to 24% percent [4]. When FFB6D was trained and tested with ground-truth depth
data, it achieved an improvement of almost 15%.

To highlight the difficulty of the dataset, we show two example images and the
resulting pose in Figure 7. The used networks were trained with TAS.

We evaluated our networks sequentially and a 6D estimation prediction step took
0.175 s on average. This includes the segmentation and object image network as well as the
complete gPnP stage for all objects in the image. However, this excludes the time needed
to load the networks, which would be necessary if the RAM is not big enough to keep all
networks needed in memory. In our experiments, we needed around 42GB RAM to have all
12 networks running at the same time. It is worth noting that an additional object detector
would also need some resources in a real-world application.

To distinguish and have a more fine-grained result, in Figure 8 we calculated the
ADD-S accuracy-threshold curve for all objects up to a threshold of 0.1 m, which is the
same as the threshold for the ADD-S AUC. Interestingly, the results are quite different for
different objects. It seems to work best on tall objects with a continuous symmetry axis. Not
surprising is the fact that the knife and fork do not perform well. The special properties of
these two objects are discussed in detail in Section 6.4. As our network could not deal with
these two objects, we omit them in the next evaluation step.

Table 5. Results of the test set. The results from Xu et al. and FFB6D are taken from [16].

Xu et al. [11] FFB6D [3] Original TAB TAS

ADD-S AUC 45.23% 43.45% 36.27% 38.27% 40.60%
without knife+fork - - 43.26% 45.85% 48.36%

173



Sensors 2024, 24, 432

(a) (b)

Figure 7. Two examples of difficult images where the estimated pose is rendered as a green contour
on top of the RGB image. In (a), the wine glass is almost completely covered by another wine glass
with reflections from the fluorescent tubes and has another glass in the back which also causes some
edge distractions. The salad bowl (b) has multiple objects in the front and much background clutter.
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Figure 8. ADD-S accuracy-threshold curve of all 12 objects in Set 4 trained by using TAS.

6.3. Dependence on Level of Occlusion

To investigate the effect of the different training data, we performed an ablation study
comparing the original bounding box and segmentation approach to our TAB and TAS.
To obtain a more fine-grained result in relation to covered glass, we split the test data by
their visibility using the percentage of the number of originally assigned ground-truth
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pixels to the number of TAS-rendered segmentation pixels (Figure 9). It is noticeable that
our transparency-aware segmentation increases the AUC by 20% in the range of visibility
up to 40% compared to the original. The strong effect leverages out as more of the object
becomes visible, which makes sense because the training data is becoming similar. It is
also noteworthy that the TAB also increases the AUC up to 14% in the range of 20–40%
visibility and also performs better on all other images compared to the original. It seems
like having the right object size and scale helps obtain a good object image, which encodes
the geometric form, because even though the segmentation is worse than in the original
approach, the 6D pose is significantly better, up to a visibility of 80%. This effect vanishes
in the last scenario with 80–100% visibility. The difference in the aspect ratios of the two
versions is not that big anymore as the original also encloses the whole object. The only
real difference is the additional context. This was created by adding five pixels in each
direction. The results indicate that this has only little influence as original and TAB are
almost equivalent. An interesting effect occurs in the area 40–80%. The TAB achieves
higher values than our TAS training data. Manual insights into test data in this range (see
four examples in Figure 10) indicate that in these images, there is a lot of overlapping,
disturbing the view of the object behind, as the edges reflect the light differently. This can
result in actual hiding as in Figure 10a, where the right part is just not visible anymore,
or in deforming the object as in Figure 10b, where the bottom of the bowl visually bends
as seen through the glass in front of it. In these cases, it seems logical that the TAS might
be too big, covering parts that do not belong to the object visually. It still achieves better
results than the original training data.
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Figure 9. Results of the different training data distributed over the visibility of the objects, e.g., the
bar of 0–20% visibility includes all images where the object is, based on the ground truth, only up to
20% visible.
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(a) (b) (c) (d)

Figure 10. Example images of one bowl and wine glass with different visibility values around
50–70%: (a) bowl, 71% visibility; (b) bowl, 54% visibility; (c) wine glass, 55% visibility; (d) wine glass,
66% visibility.

6.4. Knife and Fork

There are two very challenging objects within the dataset: a transparent knife and fork
(see examples in Figure 11). Both objects were hardly recognized by our network and did
not profit from the different training settings. These two objects probably profit the most
from the depth data, as they always lay flat on the table. Even if the depth camera does
not recognize the object, it will detect the table underneath it. The fork has a maximum
height of 15 mm and a knife of about 2 mm, meaning that the table depth is still a good
approximation of the depth data for these objects. But without depth data, in RGB-only
networks like ours, these objects could be anywhere in the room, making it really hard
to predict. If we exclude these two objects, we obtain an AUC value of 43.26% with the
original input and 48.36% for our transparency-aware approach.

(a) Fork (b) Fork (c) Knife (d) Knife

Figure 11. Example images of the fork (a,b) and the knife (c,d). Even if only the object is present,
no distractions, (a), it can be really hard to see the fork (it is centered and points upwards). In (b,c)
other glasses are within the bounding box and it is almost impossible to see the objects of interest.
The right image highlights that even if the knife is visible, it has a completely different appearance
because of reflections along the whole object.

7. Conclusions

We introduced a new way of defining segmentation masks and bounding boxes
for transparent objects, being aware of the characteristics of glass and other transparent
materials, to improve RGB-based pose estimation without having to adapt the network
itself. With only a little effort, we render the multisegmentation mask, which can be used
to create transparency-aware segmentation and bounding boxes. This can be achieved
independently of the dataset if 3D object models and ground-truth poses are available.
Using these instead of the original training data in the training process benefits the 6D pose
estimation of a given RGB estimator if the objects can be recognized by the network at all.
This is particularly true when there is strong occlusion and objects are only partially visible
according to the original definition.

One downside of our approach is that a 3D object model and a ground-truth pose
have to exist to generate the transparency-aware segmentation mask. This is not as easily
applicable if the objects of interest are parameterizable or articulated without a fixed model.
However, most work is still required on fixed and stable objects; thus, it seems like a good
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and easy option to increase the accuracy of 6D pose estimation for transparent objects just
by adapting the training set. The success of TAB suggests the hypothesis that presenting
the objects in the right scale, even if they are occluded in the training data, as it is with the
original segmentation, might also help 6D pose estimation on opaque objects.

Author Contributions: Conceptualization, M.W., T.L. and U.F.; methodology, M.W., T.L. and U.F.;
software, M.W.; validation, M.W.; formal analysis, M.W., T.L. and U.F.; investigation, M.W.; resources,
M.W.; data curation, M.W.; writing—original draft preparation, M.W.; writing—review and editing,
T.L. and U.F.; visualization, M.W.; supervision, T.L. and U.F.; project administration, U.F.; funding
acquisition, U.F. All authors have read and agreed to the published version of the manuscript.

Funding: The research reported in this paper has been supported by the German Research Foun-
dation DFG, as part of Collaborative Research Center 1320 EASE—Everyday Activity Science and
Engineering. https://ease-crc.org/ (accessed on 24 December 2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/opipari/ClearPose accessed on: 24 December 2023.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ADD-S Symmetry-aware average point distance
AUC Area under the curve
TAB Transparency-aware bounding box
TAS Transparency-aware segmentation
ROI Region of interest

References

1. Su, Y.; Saleh, M.; Fetzer, T.; Rambach, J.; Navab, N.; Busam, B.; Stricker, D.; Tombari, F. ZebraPose: Coarse to Fine Surface
Encoding for 6DoF Object Pose Estimation. arXiv 2022, arXiv:2203.09418.

2. Park, K.; Patten, T.; Vincze, M. Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

3. He, Y.; Huang, H.; Fan, H.; Chen, Q.; Sun, J. FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation. arXiv
2021, arXiv:2103.02242.

4. Richter-Klug, J.; Frese, U. Towards Meaningful Uncertainty Information for CNN Based 6D Pose Estimates. In Proceedings of
the Computer Vision Systems; Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A., Eds.; Springer: Cham, Switzerland, 2019;
pp. 408–422.

5. Wang, C.; Xu, D.; Zhu, Y.; Martin-Martin, R.; Lu, C.; Fei-Fei, L.; Savarese, S. DenseFusion: 6D Object Pose Estimation by Iterative
Dense Fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 15–20 June 2019.

6. Labbé, Y.; Carpentier, J.; Aubry, M.; Sivic, J. CosyPose: Consistent multi-view multi-object 6D pose estimation. arXiv 2020,
arXiv:2008.08465.

7. Li, Y.; Wang, G.; Ji, X.; Xiang, Y.; Fox, D. DeepIM: Deep Iterative Matching for 6D Pose Estimation. Int. J. Comput. Vis. 2019,
128, 657–678. [CrossRef]

8. Krull, A.; Brachmann, E.; Nowozin, S.; Michel, F.; Shotton, J.; Rother, C. PoseAgent: Budget-Constrained 6D Object Pose
Estimation via Reinforcement Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017.

9. Rad, M.; Lepetit, V. BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging
Objects Without Using Depth. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017.

10. Jiang, J.; Cao, G.; Do, T.T.; Luo, S. A4T: Hierarchical affordance detection for transparent objects depth reconstruction and
manipulation. IEEE Robot. Autom. Lett. 2022, 7, 9826–9833. [CrossRef]

177



Sensors 2024, 24, 432

11. Xu, C.; Chen, J.; Yao, M.; Zhou, J.; Zhang, L.; Liu, Y. 6DoF Pose Estimation of Transparent Object from a Single RGB-D Image.
Sensors 2020, 20, 6790. [CrossRef] [PubMed]

12. Tang, Y.; Chen, J.; Yang, Z.; Lin, Z.; Li, Q.; Liu, W. DepthGrasp: Depth Completion of Transparent Objects Using Self-Attentive
Adversarial Network with Spectral Residual for Grasping. In Proceedings of the 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 5710–5716. [CrossRef]

13. Liu, X.; Jonschkowski, R.; Angelova, A.; Konolige, K. Keypose: Multi-view 3d labeling and keypoint estimation for transparent
objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June
2020; pp. 11602–11610.

14. Yu, H.; Li, S.; Liu, H.; Xia, C.; Ding, W.; Liang, B. TGF-Net: Sim2Real Transparent Object 6D Pose Estimation Based on Geometric
Fusion. IEEE Robot. Autom. Lett. 2023, 8, 3868–3875. [CrossRef]

15. Byambaa, M.; Koutaki, G.; Choimaa, L. 6D Pose Estimation of Transparent Object From Single RGB Image for Robotic
Manipulation. IEEE Access 2022, 10, 114897–114906. [CrossRef]

16. Chen, X.; Zhang, H.; Yu, Z.; Opipari, A.; Jenkins, O.C. ClearPose: Large-scale Transparent Object Dataset and Benchmark. arXiv
2022, arXiv:2203.03890.

17. Kendall, A.; Grimes, M.; Cipolla, R. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. arXiv 2016,
arXiv:1505.07427.

18. Wang, G.; Manhardt, F.; Tombari, F.; Ji, X. GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose
Estimation. arXiv 2021, arXiv:2102.12145.

19. Richter-Klug, J.; Frese, U. Handling Object Symmetries in CNN-based Pose Estimation. In Proceedings of the 2021 IEEE
International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13850–13856. [CrossRef]

20. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

21. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv
2016, arXiv:1506.01497.

22. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.

23. Zand, M.; Etemad, A.; Greenspan, M. Oriented Bounding Boxes for Small and Freely Rotated Objects. IEEE Trans. Geosci. Remote
Sens. 2022, 60, 1–15. [CrossRef]

24. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Xian, S.; Fu, K. SCRDet: Towards More Robust Detection for Small,
Cluttered and Rotated Objects. arXiv 2019, arXiv:1811.07126.

25. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

26. Yoo, D.; Park, S.; Lee, J.Y.; Paek, A.S.; Kweon, I.S. AttentionNet: Aggregating Weak Directions for Accurate Object Detection.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 2659–2667. [CrossRef]

27. Sajjan, S.S.; Moore, M.; Pan, M.; Nagaraja, G.; Lee, J.; Zeng, A.; Song, S. ClearGrasp: 3D Shape Estimation of Transparent Objects
for Manipulation. arXiv 2019, arXiv:1910.02550.

28. Fang, H.; Fang, H.S.; Xu, S.; Lu, C. TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and a
Grasping Baseline. IEEE Robot. Autom. Lett. 2022, 7, 7383–7390. [CrossRef]

29. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes. arXiv 2018, arXiv:1711.00199.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

178



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-1676-7


