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Abstract: Seismic wave exhibits the characteristics of anisotropy and attenuation while propagating
through the fluid-bearing fractured or layered reservoirs, such as fractured carbonate and shale
bearing oil or gas. We derive a linearized reflection coefficient that simultaneously considers the
effects of anisotropy and attenuation caused by fractures and fluids. Focusing on the low attenuated
transversely isotropic medium with a vertical symmetry axis (Q-VTI) medium, we first express the
complex stiffness tensors based on the perturbation theory and the linear constant Q model at an
arbitrary reference frequency, and then we derive the linearized approximate reflection coefficient of
P to P wave. It decouples the P- and S-wave inverse quality factors, and Thomsen-style attenuation-
anisotropic parameters from complex P- and S-wave velocity and complex Thomsen anisotropic
parameters. By evaluating the reflection coefficients around the solution point of the interface of
two models, we analyze the characteristics of reflection coefficient vary with the incident angle
and frequency and the effects of different Thomsen anisotropic parameters and attenuation factors.
Moreover, we realize the simultaneous inversion of all parameters in the equation using an actual
well log as a model. We conclude that the derived reflection coefficient may provide a theoretical tool
for the seismic wave forward modeling, and again it can be implemented to predict the reservoir
properties of fractures and fluids based on diverse inversion methods of seismic data.

Keywords: fluids-bearing fractured reservoirs; Q-VTI effective medium model; seismic attenuated
anisotropic characteristics; AVOF reflection coefficient

1. Introduction

Development of seismic acquisition and processing technology makes it possible to
sufficiently employ useful information embedded in seismic data, e.g., amplitude variation
with offset, azimuth and frequency (AVO, AVAz, AVF), to estimate fluids and fractures. Re-
cently, many studies revealed that seismic wave exhibit velocity dispersion and anisotropy
while propagating in attenuated fractured media and attenuated finely layered media [1–9].
The seismic wave velocity dispersion refers to the phenomenon that the velocity varies
with the frequency, and it accompanies with the seismic wave amplitude attenuation,
which means amplitude decreases with the increase of distance. Therefore, the modeling
of frequency-dependent attenuation and anisotropy of seismic waves, and the inversion
for attenuation factors and anisotropic parameters using frequency-dependent seismic
amplitude data, may help improve the reliability of the detection of fractured reservoirs
and infilling fluids [10,11].

Under the assumption of static equivalent effective medium model, the rock physics
models are employed to model how fractures induce the frequency-independent anisotropy,
e.g., the linear slip model proposed by Schoenberg [12], the isolated fracture model of Hud-
son [13], the uniform pore model of Thomsen [1], and the model combining the linear slip

Energies 2021, 14, 8506. https://doi.org/10.3390/en14248506 https://www.mdpi.com/journal/energies1
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model and anisotropic Gassmann equation proposed by Gurevich [14]. Meanwhile, Thom-
sen [1] demonstrates that the exchange of fluids between pores and fractures during the
seismic wave propagation can affect the anisotropic elastic properties. On the other hand,
dynamic equivalent medium models are proposed to describe how seismic wave propa-
gates in fractured rocks in the case of considering the effect of frequency variation [2–9].
Typically, Chapman [15] proposed a model which considers coupled fluid motion on both
the grain scale and fracture scale, which concludes that frequency-dependent anisotropy
and strong anisotropic attenuation can occur in the seismic frequency band when large
fractures are present, and it reveals that fracture and fluid properties can be estimated from
frequency-dependent seismic data.

To model how the seismic amplitude varies with incident angle and frequency, we
consider the effects of the parameters of anisotropy and attenuation on the reflection
coefficient. Under the assumption of slight changes in properties across the reflection
boundary, Aki and Richards [16] proposed linearized reflection coefficients which are
the analytical solutions of the Zoeppritz equations. However, it is complicated to solve
the Zoepprtitz equations that are extended to viscoelastic anisotropic media. Based on
the Born approximation, Shaw and Sen [17] presented an approach to derive linearized
reflection coefficients for arbitrary anisotropic media using the perturbation in stiffness
matrix of anisotropic media. Following them, Zong [18] derived the seismic wave scattering
coefficient in terms of P-wave and S-wave quality factors in a viscoelastic medium, Moradi
and Innanen [19,20] derived the expressions for scattering potentials of PP wave and
proposed a frequency-independent linearized reflection coefficient in the attenuated VTI
medium. Chen [21,22] presented a linearized azimuthal and frequency-dependent PP-
wave reflection coefficient in terms of dry rock elastic properties, dry fracture weaknesses
and a new indicator of oil-bearing fractured reservoirs. Pan [23] used Born formalism
and first-order perturbation assumption to derive a matrix-fluid-fracture decoupled-based
linearized PP-wave reflection coefficient for a fluid-saturated fractured porous medium.

In the present study, we focus on the case of Q-VTI medium with low-loss attenuation
and weak anisotropy, which means we neglect the term proportional to higher orders of
the attenuation factors and Thomsen anisotropic parameters, and we let P-wave, SV-wave
and SH-wave propagate in the linear constant Q attenuation reference media. We express
the PP wave scattering potentials and derive the linearized frequency-dependent reflection
coefficient for the Q-VTI medium. Utilizing the reflection coefficients, we analyze the
variation of reflection coefficients with the incident angle and angular frequency in two
reservoir models, and we also model how the attenuation factors and Thomsen anisotropic
parameters affect the reflection coefficients. We conclude that, combining the rock physics
effective model, the derived reflection coefficient may provide a theoretical tool to model
how pore-, fracture-, and fluid-related parameters (e.g., porosity, fracture density, fluid
modulus) affect the seismic wave amplitude, and can also be employed to estimate these
parameters from incident angel- and frequency-dependent seismic data.

2. Theories and Methods

2.1. Approximation of Frequency-Dependent Complex Stiffness Tensors for Q-VTI Model

Seismic wave velocity in viscoelastic media is expressed as a function of v0, a phase
velocity at an arbitrary reference frequency ω0, and Q, a quality factor describing absorption
and attenuation. Kjartansson [24] derives the complex and frequency-dependent phase
velocity ṽ based on the linear constant Q model as,

ṽ(ω) = v0

(
i

ω

ω0

) 1
π Q−1

, (1)

where, the accent mark ‘~’ indicates the complex velocity in viscoelastic medium. Using
Equation (1), the quality factor is computed as Q = ṽRe/ṽIm, where ṽRe and ṽIm are the
real and imaginary parts of the complex velocity ṽ.

2
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We approximate the complex velocity using the Maclaurin series expansion of the
exponential function, and preserve the first two terms of the expansion. The complex
velocity is given by,

ṽ(ω) ≈ v0

[
1 +

1
π

Q−1 ln
(

i
ω

ω0

)]
. (2)

Similar to the derived approximate complex velocity, we express the complex stiffness
tensor c̃I J as,

c̃I J(ω) = c0
I J

[
1 +

2
π

Q−1
I J ln

(
i

ω

ω0

)]
, (3)

where, c0
I J is the elastic stiffness tensor at an arbitrary reference frequency ω0, and Q−1

I J is
the corresponding inverse quality factors.

A consistent description of P-wave property in VTI medium with weak anisotropy is
given in terms of Thomsen anisotropic parameters [25,26]. For Q-VTI media, the complex
Thomsen parameters are given by,

ε̃ = c̃11−c̃33
2c̃33

γ̃ = c̃66−c̃44
2c̃44

δ̃ = (c̃13+c̃44)
2−(c̃33−c̃44)

2

2c̃33(c̃33−c̃44)

(4)

where, the Thomsen-style attenuation-anisotropic parameters εQ, γQ and δQ are given by
Zhu and Tsvankin [27,28] as,

εQ =
Q−1

11 −Q−1
33

Q−1
33

γQ =
Q−1

66 −Q−1
44

Q−1
44

δQ =
(Q−1

13 +Q−1
44 )

2−(Q−1
33 −Q−1

44 )
2

2Q−1
33 (Q−1

33 −Q−1
44 )

(5)

The parameters εQ and γQ represent the difference between the horizontal and vertical
attenuation coefficients of P- and SH-waves, respectively, however, δQ is defined through
the second derivative of the P-wave attenuation coefficient in the symmetry direction,
which refers to the coupling between the attenuation and velocity anisotropy.

We stress that in this study we consider the Q-VTI medium with constant attenu-
ation and weak anisotropy (i.e., |ε|, |δ|, |γ| � 1), which means the second and higher
orders of quality factors and Thomsen parameters are neglected in the approximation
process of the complex tensors. Consequently, the components of frequency-dependent
complex stiffness tensor c̃I J(ω) are expressed in terms of two inverse quality factors, three
Thomsen anisotropy parameters and corresponding Thomsen-style attenuation-anisotropic
parameters,

c̃11 = ρv2
p(1 + 2ε) + ρv2

pQ−1
p (1 + 2ε + εQ)Iω

c̃13 = ρv2
p(1 + δ)− 2c55 + ρv2

pQ−1
p (1 + δ + δQ)Iω − 2ρv2

s Q−1
s Iω

c̃33 = ρv2
p + ρv2

pQ−1
p Iω

c̃55 = ρv2
s + ρv2

s Q−1
s Iω

c̃66 = ρv2
s (1 + 2γ) + ρv2

s Q−1
s (1 + 2γ + γQ)Iω

(6)

3
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where, Iω = 2
π ln ω

ω0
+ i. The approximate results above decouple the effective factors

from the complex tensors and distinguish the real and imaginary parts, elasticity and
attenuation parameters.

2.2. Approximation of Frequency-Dependent Reflection Coefficient for Q-VTI Model

A scattering model of seismic wave interaction in an attenuated anisotropic medium is
shown in Figure 1, which consists of a homogeneous reference medium and perturbations
described by eleven properties. Taking density as an example, the term Δρ = ρ − ρ0 in
Figure 1, represents the perturbation in density, which represents the difference between
the rock density ρ and the reference density ρ0.

Background 

x 

z 

Incidence Scattering 

  
A⃑  

P⃑  P⃑  

PSc-wave 

 

 A⃑  
PIn -wave 

∆ , ∆ ,  ∆ ; ∆ , ∆ ;   ∆ ,  ∆ , ∆ ; ∆ , ∆ , ∆ . 
, , ; , .  

y 

Perturbation 

Figure 1. Schematic of seismic wave propagate in an attenuation anisotropy medium based on the
perturbation theory. It is characterized by three elastic parameters P-wave velocity α, S-wave velocity
β and density ρ; two viscoelastic parameters P-wave quality factor QP and S-wave quality factor QS;
three anisotropic Thomsen parameters ε, γ, δ and corresponding attenuation Thomsen parameters
εQ, γQ, δQ. Note that the subscript ‘0′ stands for the properties of background (reference medium)
and the mark ‘Δ’ stands for the properties of small perturbation.

Hence, the complex stiffness matrix of the Q-VTI medium can be re-expressed as the
sum of the anisotropic perturbation and the stiffness matrix of a homogeneous isotropic
background based on the perturbation theory. It has been shown in the Appendix A
Equation (A1).

Since the quasi-Zoeppritz equation of Q-VTI medium is very complicated, we aim to
derive the approximation reflection coefficient for P-to-P wave based on the Born approx-
imation. A relationship between the reflection coefficient and the scattering functions is
given by Shaw and Sen [29], and we extend it to the attenuated anisotropic medium in the
present study,

R̃(θ, ω) =
1

4ρ0 cos2 θ
S̃(r0), (7)

where, ρ0 is the density of the background medium, and S̃(r0) is the scattering function
related to the perturbations of stiffness tensors and density, which is given by,

S̃(r0) = Δρξ + Δc̃I JηI J , (8)

where, ξ = tmt′m
∣∣
r=r0

, ηI J = t′m p′
ntk pl

∣∣
r=r0

. t and p are the polarization and the slowness
vectors, respectively, which are given in the Equation (A2). Δρ and Δc̃I J represent the
perturbation in density and complex elastic stiffness, respectively. The position vector r0 is

4
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the point on a horizontal interface separating two weak anisotropic media, where Snell’s
law of reflection for a source-receiver pair is satisfied. The subscripts I and J refer to Voigt’s
concise notation.

The Einstein summation convention over repeated indices applies to Equation (8),
and the scattering function for the frequency-dependent Q-VTI medium is written as,

S̃(r0) = Δρ cos 2θ +
1
α2

0

[
Δc̃11 sin4 θ + 2(Δc̃13 − 2Δc̃55) sin2 θ cos2 θ + Δc̃33 cos4 θ

]
. (9)

Substituting the Equation (10) into Equation (7), we finally obtain the linearized
approximate incident angle and frequency dependent PP-wave reflection coefficient (AVOF)
for the Q-VTI medium,

R̃QVTI
PP (θ, ω) = Ã(ω) + B̃(ω) sin2 θ + C̃(ω) sin2 θ tan2 θ, (10)

where,

Ã(ω) = 1
2

[(
Δρ
ρ0

+ Δα
α0

)
+ 1

2 ΔQ−1
P Iω

]
B̃(ω) = 1

2

[
Δα
α0

− 4 β2
0

α2
0

(
Δρ
ρ0

+ 2 Δβ
β0

)
+ Δδ + 1

2

(
ΔQ−1

P − 8 β2
0

α2
0

ΔQ−1
S + 2Q−1

P0 ΔδQ

)
Iω

]
C̃(ω) = 1

2

[
Δα
α0

+ Δε + 1
2

(
ΔQ−1

P + Q−1
P0 ΔεQ

)
Iω

] (11)

in which, the first term Ã(ω) denotes the amplitude of P-wave at zero offset or normal
incidence, the second term B̃(ω) sin2 θ characterizes reflection coefficient at intermediate
angles, and the third term C̃(ω) sin2 θ tan2 θ describes the result approached to critical
angle. Similar to the analysis of amplitude versus offset (AVO) in the isotropic elastic
medium, the coefficient Ã(ω) is called intercept, B̃(ω) is called gradient and the third
coefficient C̃(ω) is called curvature. The derived reflection coefficients involve three elastic
parameters P-wave velocity α, S-wave velocity β and density ρ; two attenuation parameters
P-wave inverse quality factor Q−1

P and S-wave inverse quality factor Q−1
S ; two Thomsen

anisotropic parameters ε, δ; and two Thomsen-style attenuation-anisotropic parameters
εQ, δQ. The subscript ‘0′ stands for the properties of background (reference medium)
and the mark ‘Δ’ stands for the properties of small perturbation. We normally take the
average value and the difference value of two layers as the background and perturbation
properties, respectively.

Note that, if we neglect frequency dispersion and attenuation, Equation (11) becomes
the linearized reflection coefficient for elastic VTI medium derived by Rüger [30,31]. If we
let the perturbation of anisotropy be zero, Equation (11) is exactly the same as the linearized
PP-wave reflection coefficient for elastic isotropic media given by Shuey [32].

In addition, we obtain the form of reflectivity of each parameters using the Equation (11)
to exhibits their contributions,

R̃QVTI
PP (θ, ω) = RISO

PP (θ) + RQISO
PP (θ, ω) + RANI

PP (θ) + RQANI
PP (θ, ω), (12)

where,
RISO

PP (θ) = sec2 θRP − 8g sin2 θRS + (1 − 4g sin2 θ)RD

RQISO
PP (θ, ω) = 1

4 sec2 θ IωΔQ−1
P − 2g sin2 θ IωΔQ−1

S

RANI
PP (θ) = 1

2 sin2 θΔδ + 1
2 sin2 θ tan2 θΔε

RQANI
PP (θ, ω) = 1

2 Q−1
P0 sin2 θ IωΔδQ + 1

4 Q−1
P0 sin2 θ tan2 θ IωΔεQ

(13)

where, RP = 1
2

Δα
α0

, RS = 1
2

Δβ
β0

, RD = 1
2

Δρ
ρ0

, g =
β2

0
α2

0
, Iω = 2

π ln ω
ω0

+ i.

5
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Similar to the approximate formula of elastic isotropic reflection coefficient proposed
by Aki-Richards [14], this is the mathematical bridge and basis for obtaining all elastic,
attenuated and anisotropic parameters of Q-VTI model through simultaneous inversion.

3. Test and Analysis

3.1. Characteristics of Reflection Coefficients for Q-VTI Model

To analyze the characteristics of reflection coefficients, we compute the reflection
coefficients around the solution point of the interface of two models using the derived
reflection coefficient equation. Parameters of two models are shown in Tables 1 and 2
separately. For Model 1, we take the mud shale as the upper layer and oil shale as the lower
layer, and for Model 2, we take the mud shale as the upper layer but calcareous sandstone as
the lower layer. The properties of background and perturbation are the average value and
the difference value of two layers, respectively. The elastic and anisotropic parameters of
two models come from the compiled table of Thomsen [25] about the measured anisotropy
in sedimentary rocks.

Figures 2 and 3 show the variation of reflection coefficients with the incident angle θ
and frequency f for Model 1 and 2, respectively. We consider four cases of (1) elastic
isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated anisotropy to
compute the reflection coefficients using the derived reflection coefficient equation. The
results show in sub-Figure (a,b), (c,d), (e,f) and (g,h), respectively and the value of colors
represent in corresponding colorbars, where sub-Figure (a,c,e,f) and (b,d,f,h) exhibit the
real part and the imaginary part of reflection coefficients separately. We stress that all
parameters of the same properties on the vertical axis have the same scale so that the
different degree of various influence can be observed directly.

In the case of elastic isotropic assumption, the derived reflection coefficient becomes
the linearized P-P reflection coefficient given by Aki and Richards [16]. Therefore, the
reflection coefficients are real numbers and controlled only by P-wave velocity α, S-wave
velocity β and density ρ. In Figure 2a, we observe the real parts of reflection coefficients
increase with the incident angle but frequency-independent. It exhibits the fourth AVO
type in the case of the interface separating the mud shale and oil shale model. In Figure 2b,
we observe that the imaginary parts of reflection coefficients are equal to zero.

Table 1. The parameters of attenuated anisotropic model 1.

Layer
α

(km/s)
β

(km/s)
ρ

(g/cm3)
ε δ Q−1

P Q−1
S εQ δQ

Mud-shale 5.073 2.998 2.68 0.010 0.012 0.001 0.001 0.001 0.001
Oil-shale 4.231 2.539 2.37 0.200 0.100 0.205 0.118 0.046 0.025

Table 2. The parameters of attenuated anisotropic model 2.

Layer
α

(km/s)
β

(km/s)
ρ

(g/cm3)
ε δ Q−1

P Q−1
S εQ δQ

Mud-shale 5.073 2.998 2.68 0.010 0.012 0.001 0.001 0.001 0.001
Calcareous
Sandstone 5.460 3.219 2.69 0.000 −0.264 0.177 0.056 −0.025 0.050
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Figure 2. The variation of reflection coefficient with the incident angle θ and frequency f for model 1.
(a,b), (c,d), (e,f) and (g,h) show the real part and imaginary part of reflection coefficients in four cases
of assumption: (1) elastic isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated
anisotropy separately. Different reflection coefficient values represent in corresponding colorbars.
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Figure 3. The variation of reflection coefficient with the incident angle θ and frequency f for model 2.
(a,b), (c,d), (e,f) and (g,h) show the real part and imaginary part of reflection coefficients in four cases
of assumption: (1) elastic isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated
anisotropy separately. Different reflection coefficient values represent in corresponding colorbars.

The derived reflection coefficient is exactly the same as the reflection coefficient
proposed by Rüger [30,31] when we only take the effect of anisotropy into consideration.
The reflection coefficients are frequency-independent, as shown in Figure 2c, and the
imaginary parts are also zero, as shown in Figure 2d. We conclude that the anisotropic
parameters ε, δ just affect the value of reflection coefficients, however, the AVO type is the
same as Figure 2a.

It shows slightly difference in the case of attenuated isotropic assumption. The
reflection coefficients become complex numbers, and vary with both incident angle and
frequency, as shown in Figure 2e. We emphasize that the AVO type has not been changed
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by the attenuation parameters Q−1
p , Q−1

s . In Figure 2f, we observe the imaginary part of
reflection coefficients vary with incident angle but frequency-independent.

Figure 2g,h show the characteristics of the complex reflection coefficients in the case of
attenuated anisotropic assumption, which are the similar to the results of reflection coeffi-
cients for the attenuated isotropic assumption. We observe the Thomsen-style attenuation-
anisotropic parameters εQ, δQ have litter effect in larger incident angles and higher fre-
quency on the reflection coefficients.

Then, we compute the reflection coefficients around the solution point of the interface
separating the mud shale and calcareous sandstone. The same characteristics appear in
this model, as shown in Figure 3. We observe the reflection coefficients decrease with the
incident angle but frequency-independent in Figure 3a. It exhibits the second AVO type
in the case of model 2 due to P-wave velocity α, S-wave velocity β and density ρ. The
anisotropic parameters ε, δ also only affect the value of reflection coefficients and the AVO
type doesn’t change, as shown in Figure 3c. Figure 3e–h show that the reflection coefficients
are complex numbers and the real parts vary with frequency caused by the attenuation.
However, the Thomsen-style attenuation-anisotropic parameters εQ, δQ contribute much
smaller to the reflection coefficient than Q−1

p and Q−1
s because they exist in the terms of

high order.
In the following, we focus on the effect of the crucial parameters of anisotropy ε, δ

and attenuation Q−1
p , Q−1

s . We proceed to the analysis of how perturbations in anisotropic
parameters and attenuation factors affect reflection coefficients. The P-wave velocity α,
S-wave velocity β and density ρ are set up as the same as the model 1 (Table 1), and nine
groups of perturbations in anisotropic Δδ, Δε and six groups of perturbations in attenuation
ΔQ−1

p , ΔQ−1
s , as shown in Tables 3 and 4. Using the derived reflection coefficient equation,

we obtain the reflection coefficients variation with incident angle and frequency in the case
of different perturbations.

Table 3. The effect of elastic anisotropic perturbation on the reflection coefficient.

Anisotropic Perturbation 1 2 3

Δδ 0.3 0 −0.3
Δε 0.2, 0, −0.2 0.2, 0, −0.2 0.2, 0, −0.2

Table 4. The effect of attenuated isotropic perturbation on the reflection coefficient.

Attenuated Perturbation 1 2 3

ΔQ−1
P 0 0.02 0.2

ΔQ−1
S 0 0, 0.012 0, 0.012, 0.12

We first consider the effect of perturbations in anisotropy Δδ and Δε on the reflection
coefficients, as shown in Figure 4. For this case, the derived linearized reflection coefficient
is equal to the reflection coefficient proposed by Rüger [30,31] because the attenuation
parameters are neglected. In Figure 4a we observe the reflection coefficients are frequency-
independent, and in Figure 4b we observe the imaginary part of reflection coefficients are
equal to zero. In Figure 4a, the intercept of reflection coefficients is a constant, and equals
to the result computed for the isotropic model (the red solid line). By comparing three sets
of the same type of lines (dashed lines, solid lines and doted dashed lines), respectively, we
observe the gradients of curves vary with Δδ. For example, the gradients of blue dashed
line, red dashed line and black dashed line increase with Δδ when Δε is equal to a constant
0.2, but the curvature of them are the same. In the meanwhile, we observe the curvatures
vary with Δε by comparing three sets of same color of lines (black lines, red lines, and blue
lines), respectively. For example, the curvatures of black doted dashed line, black solid line
and black dashed line increase with Δε when Δδ is equal to a constant 0.3, but the gradient
of them is a constant. It appears the same characteristics in the rest groups.
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Figure 4. The effect of anisotropic parameters Δε and Δδ on the reflection coefficients. At this point,
the reflection coefficients are real numbers and frequency-independent. (a) shows the real part of it
in nine combinations of anisotropy parameters, and (b) shows the imaginary part equal to zero.

Next, we analyze the effect of perturbations in P- and S-wave attenuation factors
ΔQ−1

p , ΔQ−1
s on the reflection coefficients, as shown in Figure 5. For this case, we neglect

the parameters of anisotropy and attenuation anisotropy. Figure 5a–f show the real and
imaginary parts of reflection coefficients computed using six combinations of attenuation
parameters presented in legend in three case of frequency: (1) 5 Hz, (2) 25 Hz and (3) 65 Hz.
We mention that the reference frequency is 25 Hz. In Figure 5, we observe that the reflection
coefficients are complex numbers, and the real part is frequency-dependent; however, the
imaginary part is frequency-independent.

Figure 5a shows the effect of ΔQ−1
p , ΔQ−1

s on the real part of reflection coefficients
when the frequency is equal to 5 Hz. The red solid line represents the result computed
for the elastic isotropic model because the attenuation parameters are equal to zero. By
comparing the solid line of red, black and blue, the intercept, gradient and curvature of
them all decrease with the inverse quality factor of P-wave ΔQ−1

p . Three blue lines illustrate
the inverse quality factor of S-wave ΔQ−1

s only affects the gradient of the real parts and
increases it. Figure 5c shows the real part of reflection coefficients are equal to the result
of elastic isotropic assumption in 25 Hz since the natural logarithm of frequency term
becomes zero when the frequency we took is equal to reference frequency. Figure 5e shows
the effect of ΔQ−1

p , ΔQ−1
s on the real part of reflection coefficients when the frequency is

equal to 65 Hz. By comparing the solid line of red, black and blue, the intercept, gradient
and curvature of them all increase with the inverse quality factor of P-wave ΔQ−1

p . Three
blue lines illustrate the inverse quality factor of S-wave ΔQ−1

s only affects the gradient of
the real parts but decreases it.

We conclude the imaginary part of reflection coefficients are frequency- independent,
as shown in Figure 5b,d,e. By comparing the solid line of red, black and blue, the intercept,
gradient and curvature of the imaginary parts all increase with the inverse quality factor
of P-wave ΔQ−1

p . However, the gradient of the imaginary part decreases with the inverse
quality factor of S-wave ΔQ−1

s which is illustrated by three blue lines.
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Figure 5. The effect of attenuation parameters ΔQ−1
p and ΔQ−1

s on the reflection coefficients. At
this point, the reflection coefficients are complex numbers and frequency-dependent. (a–f) show
the real part and imaginary part of reflection coefficients in three cases of 5 Hz, 25 Hz and 65 Hz
separately. Different lines exhibit the results of six combinations of attenuation parameters. The
reference frequency is set to 25 Hz.

3.2. Inversion Test for Q-VTI Model

We use the synthetic seismic data to verify the feasibility of the proposed equation
for inversion. At first, we choose a well logging data to build a fractured model which is
shown in Figure 6. We find that the places with high calcite content developing pores and
fractures bearing fluids, and there is no good correspondence of the basis elastic parameters
P- and S-wave velocity with it.

Then, we calculate the complex stiffness matrix using Chapman model [4–6] and
further obtain the P- and S-wave velocity, density, inverse quality factors, anisotropic
parameters and Thomsen-style attenuated anisotropic parameters. As is shown in Figure 7,
we acquire these new parameters which is vary with different frequency and incident angle.
The P- and S-wave velocities exhibit in this figure are their real parts, and the P- and S-wave
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velocity we estimated match well with the measured value except some differences in the
place of pore, fracture and fluid anomaly. Significantly, the inverse quality factors of P- and
S-wave show obvious differences in both frequency and incident angle especially in pore,
fracture and fluid anomaly. These small differences are apparent because they are orders
of magnitude smaller. They represent the ratio of the imaginary and real parts of P- and
S-wave velocity, which is reflect the attenuation characteristics of P- and S-wave. What’s
more, the trends of Q−1

p , Q−1
s and ε are more consistent with that of porosity, fracture

density and fluid saturation than α and β.

Figure 6. The well logging data of a fractured model which is ready to calculate the attenuated and anisotropic parameters.

Figure 7. The estimated results of the attenuated and anisotropic parameters using Chapman model in different frequency
and incident angle. The black lines are the measured values from well-logging.

12
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Next, we generate synthetic seismic data in small incident angles utilizing Ricker
wavelets with different frequencies, as is shown in Figure 8. We add Gaussian random
noise into the synthetic seismic data to generate noisy seismic data of signal-to-noise ratio
being 5. The result is shown in Figure 9 and used as the observed seismic data for inversion
through the Equation (12).

Figure 10 plots comparisons between true values of model and inversion results of
each parameter. We take the average value estimated by the Chapman model as the true
value for comparison, and calculate the relative error of each inverted parameter, as shown
in Figure 11. We observe a close match between inversion results and true values given
data with a moderate noise.

Figure 8. The synthetic seismic data for a set of frequency in small incident angles.

Figure 9. The synthetic seismic data which added Gaussian random noise with S/N of 5. These results will be used as the
observed seismic data for inversion. The lower frequency data affected more by noises.
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Figure 10. Comparison of the inverted results and true values of the P- and S-wave velocity, density, inverse quality factors,
anisotropic parameters and Thomsen-style attenuated anisotropic parameters.

Figure 11. The relative errors between inverted result and model value of each parameter.

4. Result and Discussion

It is possible to obtain relatively simple approximations for the PP-wave reflection
coefficient of the linear constant Q-VTI model under the assumption of weak anisotropy
and low-loss attenuation of velocities. One of the advantages is the Q-VTI model considers
frequency dispersion and anisotropy of velocities at the same time. Another advantage
is the equation decouple the inverse quality factors of P- and S-wave and the Thomson-
style attenuation anisotropic factors from the complex velocities and Thomson anisotropy
parameters. Based on the derived reflection coefficient, we analyze some characteristics of
reflection coefficients in the case of different reservoirs and groups of parameters.

The type of AVO is determined by the differences in P-wave velocity, S-wave velocity
and density across the interface. Both the anisotropic parameters and the attenuation
parameters only change the value of the reflection coefficient; however, they don’t affect
the type of AVO. The perturbations of anisotropy Δδ and Δε contribute to the gradient and
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the curvature. The perturbations in attenuated anisotropy ΔδQ and ΔεQ also contribute to
the gradient and the curvature, but the contribution is much smaller than that of Δδ and
Δε. The attenuation factor of P-wave ΔQ−1

p affects the intercept, gradient and curvature at
the same time, however, the attenuation factor of S-wave ΔQ−1

s only affects the gradient.
The reflection coefficients become complex numbers when we consider the effect of

the attenuation, in which the real part represents the amplitude and the imaginary part
represents the phase. The real parts of reflection coefficients vary with the frequency caused
by the attenuation terms, however, the imaginary parts are frequency-independent. The
real part of reflection coefficient is inversely proportional to ΔQ−1

p but proportional to
ΔQ−1

s because the natural logarithm of frequency term is negative when the frequency is
less than the reference frequency. In the same way, the real part of reflection coefficient is
proportional to ΔQ−1

p but inversely proportional to ΔQ−1
s because the natural logarithm of

frequency term is positive when the frequency is greater than the reference frequency. In
particular, the reflection coefficient to be equivalent to the elastic cases because the natural
logarithm of frequency term becomes zero when the frequency we took is equal to the
reference frequency.

The contribution of the attenuation anisotropic term that the high order to the reflection
coefficient is very small compared with other properties. In the meanwhile, the value of
third term which affects the reflection coefficient at a large incident angle is much smaller
than the first two terms when the P-wave incident at a small angle.

We observe that the relative error of inverse quality factors seems to be large, which
is still caused by their relatively small order of magnitude than other parameters, but the
trend of their inversion results is completely consistent with the true values. Thus, we
still regard the inversion test shows a well result to verify the feasibility of the proposed
equation. In addition, the attenuated and anisotropic parameters are not only the better
indicators of pores, fractures and fluids than the P- and S-wave velocity, but also enable us
to avoid further inversion of physical parameters such as porosity, fracture density and
fluid saturation.

5. Summary and Conclusions

Under the assumption of low-loss attenuation and weak anisotropy of velocities, we
derive the linearized approximate frequency-dependent reflection coefficient based on the
linear constant Q-VTI model. We observe that the reflection coefficient is related to the
parameters of anisotropy and attenuation simultaneously, and varies with both the incident
angle and frequency. It appears that the analysis of the AVOF characteristics may guide us
to identify the characteristics of anisotropy and attenuation in the real working area, and
we can take full advantage of the seismic data of different incident angles and frequencies
to predict the fluid-filled pores and fractures in the reservoirs using our derived reflection
coefficient equation.

Moreover, the attenuated anisotropic medium is more suitable for modeling how
seismic wave propagates in underground layers than that proposed under the assumption
of elastic isotropic or anisotropic medium. Focusing on the attenuated anisotropic medium,
we consider the effects of Thomsen parameters that are related to anisotropy caused by
fractures and the attenuation factors that are sensitive to attenuation caused by intrinsic
attenuation and the fluid-filled in pores and fractures on the reflection coefficient, which
may provide more useful information for detecting fractures and fluids using the observed
seismic data. We conclude that we present a valuable expression of reflection coefficient,
which can be employed for the analysis of seismic wave response modeling for different
types of reservoirs, and the derived reflection coefficient can also guide the inversion
for the properties that are related to fractures and fluids using frequency components of
seismic amplitudes.
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Appendix A

The complex stiffness matrix of the Q-VTI medium can be re-expressed as the sum
of the anisotropic perturbation and the stiffness matrix of a homogeneous isotropic back-
ground based on the perturbation theory.

c̃QVTI =

⎡⎢⎢⎢⎢⎢⎢⎣

c̃11 c̃11 − 2c̃66 c̃13 0 0 0
c̃11 − 2c̃66 c̃11 c̃13 0 0 0

c̃13 c̃23 c̃33 0 0 0
0 0 0 c̃55 0 0
0 0 0 0 c̃55 0
0 0 0 0 0 c̃66

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

c̃0
33 c̃0

33 − 2c̃0
55 c̃0

33 − 2c̃0
55 0 0 0

c̃0
33 − 2c̃0

55 c̃0
33 c̃0

33 − 2c̃0
55 0 0 0

c̃0
33 − 2c̃0

55 c̃0
33 − 2c̃0

55 c̃0
33 0 0 0

0 0 0 c̃0
55 0 0

0 0 0 0 c̃0
55 0

0 0 0 0 0 c̃0
55

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

Δc̃33 Δc̃33 − 2Δc̃55 Δc̃33 − 2Δc̃55 0 0 0
Δc̃33 − 2Δc̃55 Δc̃33 Δc̃33 − 2Δc̃55 0 0 0
Δc̃33 − 2Δc̃55 Δc̃33 − 2Δc̃55 Δc̃33 0 0 0

0 0 0 Δc̃55 0 0
0 0 0 0 Δc̃55 0
0 0 0 0 0 Δc̃55

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

c̃11 − c̃33 c̃12 − c̃33 + 2c̃55 c̃13 − c̃33 + 2c̃55 0 0 0
c̃12 − c̃33 + 2c̃55 c̃11 − c̃33 c̃13 − c̃33 + 2c̃55 0 0 0
c̃13 − c̃33 + 2c̃55 c̃13 − c̃33 + 2c̃55 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 c̃66 − c̃55

⎤⎥⎥⎥⎥⎥⎥⎦

(A1)

where, the stiffness coefficients in the square brackets on the right-hand side represent
isotropic attenuated background, isotropic attenuated perturbations and anisotropic atten-
uated perturbations, respectively.
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The polarization vectors and slowness vectors corresponding the incident and reflected
waves are given by,

t = [sin θ cos ϕ, sin θ sin ϕ, cos θ]

t′ = [− sin θ cos ϕ,− sin θ sin ϕ, cos θ]

p = (1/ṽ)[sin θ cos ϕ, sin θ sin ϕ, cos θ]

p′ = (1/ṽ)[− sin θ cos ϕ,− sin θ sin ϕ, cos θ]

(A2)
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Abstract: In order to solve the problem that elastic parameter constraints are not taken into account
in local lithofacies updating in multi-point geostatistical inversion, a new multi-point geostatistical
inversion method with local facies updating under seismic elastic constraints is proposed. The main
improvement of the method is that the probability of multi-point facies modeling is combined with
the facies probability reflected by the optimal elastic parameters retained from the previous inversion
to predict and update the current lithofacies model. Constrained by the current lithofacies model, the
elastic parameters were obtained via direct sampling based on the statistical relationship between the
lithofacies and the elastic parameters. Forward simulation records were generated via convolution
and were compared with the actual seismic records to obtain the optimal lithofacies and elastic
parameters. The inversion method adopts the internal and external double cycle iteration mechanism,
and the internal cycle updates and inverts the local lithofacies. The outer cycle determines whether
the correlation between the entire seismic record and the actual seismic record meets the given
conditions, and the cycle iterates until the given conditions are met in order to achieve seismic
inversion prediction. The theoretical model of the Stanford Center for Reservoir Forecasting and the
practical model of the Xinchang gas field in western China were used to test the new method. The
results show that the correlation between the synthetic seismic records and the actual seismic records
is the best, and the lithofacies matching degree of the inversion is the highest. The results of the
conventional multi-point geostatistical inversion are the next best, and the results of the two-point
geostatistical inversion are the worst. The results show that the reservoir parameters obtained using
the local probability updating of lithofacies method are closer to the actual reservoir parameters. This
method is worth popularizing in practical exploration and development.

Keywords: local updating; permanent updating ratio of probability; multi-point geostatistical inver-
sion; cyclic iteration; correlation coefficient; Xinchang gas field

1. Introduction

Seismic inversion is an important approach to lithology identification and oil–gas
interpretation. It converts conventional seismic reflection records into acoustic impedance
properties and reservoir parameters in order to give them a more definite geological
meaning. It is a common concern of oil and gas geophysicists and geologists to directly
apply seismic inversion methods to fine reservoir characterization and modeling. However,
due to the noise of seismic data, the finite frequency of seismic waves, and the incomplete
mapping of geological attributes to the seismic physical parameters, the inversion and
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interpretation of seismic records into reservoir attributes are not unique and pose great
challenges. Some scholars have conducted a lot of research on eliminating the impact
of noise, Ghaderpour [1] proposed a method of seismic data regularization and random
noise attenuation via least-squares spectral analysis in frequency wavenumber domain,
due to the accuracy of the estimated wavenumbers, the total number of iterations of the
method is significantly reduced and the efficiency is significantly improved. However, there
are still many problems in the process of connecting seismic property with geology. The
design and development of advanced seismic inversion methods that integrate geological,
rock geophysics, and even the production of dynamic data, have been important topics
for exploration geophysicists, and two types of inversion methods, namely, deterministic
inversion and (geological) statistical inversion [2], have gradually formed. Deterministic
inversion obtains the maximum posteriori probability model through an optimization
algorithm and minimizes the error. Although strong reflector information can be recovered
well and the inversion results have a good lateral continuity, the resolution of the inversion
results can only reach the resolution of the seismic data due to the limited bandwidth
of the seismic data [3]. In order to improve the resolution, the consensus is that it is
necessary to integrate various geological (logging) information into the reservoir inversion
using spatial reservoir correlation [2]. In geological modeling, this spatial correlation is
mainly represented by the variogram function. Journel and Huijbregt [4] first developed
the reservoir geological modeling method integrating seismic data, which laid a solid
theoretical foundation for seismic stochastic inversion. In 1994, Hass and Dubrule [5]
proposed stochastic inversion based on sequential simulation in the First break, which
is the prototype of the geostatistical inversion method. Since the spatial correlation is
characterized by the vertical variogram function of the borehole data, the planar continuity
is obtained from the seismic data. Therefore, the inversion effectively makes use of the
vertical resolution of the well data, makes up for the limitation of the seismic bandwidth,
and improves the inversion resolution [2,4–8]. In addition, the inversion probabilities are
inferred using the Kriging method, and the Markov chain Monte Carlo (MCMC) method
is used for sampling posterior probabilities [9–11], which satisfy the needs of statistical
inversion uncertainty analysis and evaluation. Azevedo and Demyanov [12] have also
conducted research on multi-scale uncertainty evaluation in geostatistical seismic inversion,
this method combines geostatistical seismic inversion with a stochastic adaptive sampling
and Bayesian inference of the metaparameters to provide more accurate and realistic
uncertainty prediction without being limited by a large number of assumptions of large-
scale geological parameters. Pereira [13] proposed iterative geostatistical seismic inversion
combined with local anisotropy, this method adopts a random sequence simulation and
joint simulation method, which can deal with the information of spatial variation, and
uses local and independent variogram models to reduce the spatial uncertainty related
to underground characteristics. Therefore, the geostatistical inversion method has been
widely used and has achieved good results in practical applications.

With the development of geological modeling research, more and more modelers have
pointed out that the variogram-based method is difficult to integrate more information in
order to describe a complex curved reservoir morphology, and it cannot fully reveal the
spatial variability [6,14–18]. It is necessary to combine the spatial distribution of multiple
points to determine the reservoir’s characteristics. Based on this idea, Guardiano and
Srivastava [19] proposed the concept of a spatial multi-point joint distribution to represent
complex reservoir structures, and they obtained the multi-point probability through re-
peated scanning of a training image (a quantitative grid-based reservoir lithofacies model)
and data samples (i.e., the spatial multi-point combination model) and applied it to the
prediction of the points to be estimated. Strebelle [15] improved this method by designing
a search tree to store and access the multi-point probability, which improved the simulation
efficiency. Multi-point geostatistics were formally introduced into actual reservoir model-
ing [15] and gradually replaced the traditional two-point geostatistics method based on the
variogram function. This has also aroused the attention of geostatistical inversion scholars.
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Gonzalez [8], who first attempted to apply multi-point geostatistics to reservoir inver-
sion, used the improved Simpat method to obtain the lithofacies distribution, sampled the
seismic attributes through the relationship between the lithofacies and seismic attributes,
and finally used the likelihood function to determine the optimal matching elastic pa-
rameters. Their method emphasizes the control of the relative sedimentary facies quality;
that is, the spatial continuity of the elastic parameter field and its sampling are controlled
by a specific geological lithofacies model. They named the method mSIMPAT. However,
the calculation efficiency of the mSIMPAT is low in the process of updating facies, which
creates difficulties in actual seismic inversion. Jeong [20] replaced mSIMPAT with the
direct sampling method, which they combined with the adaptive spatial resampling (ASR)
method to improve the operation efficiency. However, the ASR method retains the optimal
matching facies data and adds conditional data to guide the multi-point geostatistical
facies modeling. The inverted elastic parameters were obtained through integral iteration
without local lithofacies updating. Especially in lithofacies modeling, the elastic parameters
obtained during previous iterations cannot be used as constraints. Liu [21] replaced mSIM-
PAT with the SNESIM method and combined it with the probability perturbation method
(PPM) to accelerate the inversion iteration efficiency. The updating of the lithofacies model
is conducted by disturbing the entire geological model using the probabilistic perturbation
method without updating the local lithofacies. Although this disturbance satisfies the actual
seismic observation data through annealing optimization, it is likely to be at the expense
of disturbing the local specific deposition patterns. Because the specific lithofacies model
plays an important role in the inversion, it not only determines the inversion’s efficiency,
but also the accuracy of the inversion [22–25]. Therefore, it is necessary to reconsider the
local probability updating in facies modeling.

In this study, the iterative inversion method of Gonzalez [8] is revised. In the iterative
process, the theory of the permanent probability updating ratio is used to integrate the
early elastic parameters for the local lithofacies prediction. In addition, the inversion results
of the current iteration are not only evaluated but are also compared with the previously
partially retained lithofacies and the elastic parameters to determine whether to update.
The theoretical model tests reveal that the improved method can reflect the distribution of
the reservoir lithofacies and the elastic parameters better, and its calculation efficiency is
high. Practical inversion of the Xinchang gas field data in China also demonstrates that
the improved method has a higher inversion accuracy. The results of this research provide
technical support for oil and gas exploration and development.

2. Principle and Methods

2.1. Inversion Principle and Multi-Point Geostatistical Inversion Method

All inversion processes can be regarded as the process of obtaining synthetic seismic
records of the elastic parameters in a certain way and matching the real seismic records
within an allowable error range, the principle of which can be expressed by the Bayesian
formula [26].

σM(m) = cγM(m)γD(g(m)), (1)

where c is the correction parameter and is a constant, γM(m) is the prior probability, and
γD(g(m)) is the likelihood function. M is the simulation region, m is the initial model or
pattern group, g(m) is the forward operator, and σM(m) is the posterior probability.

Inversion is an inference process in which the prior probability is updated and made
faithful to the actual seismic data, and the maximum posterior probability is the core objec-
tive. γD(g(m)) is used to measure the matching degree between the forward simulation
record and the actual observed seismic track. Its elastic parameters are generally obtained
from the prior probability sampling, and the wavelet comes from the actual seismic work-
ing area. Therefore, the core of the inversion lies in the method of obtaining the prior
probability γM(m) [17].
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Haas and Dubrule [5] used a sequential Gaussian simulation to obtain the impedance
data, in which the prior probability of the impedance was predicted using the variogram
function, which also constituted the most initial geostatistical inversion. Subsequently,
different scholars discussed the influence of the prior information on the Bayesian inversio.
Accurate prediction of the prior probability is the key to improving the accuracy of the seis-
mic inversion. Considering that multi-point statistics can obtain higher-order prior statistics
from training images and can integrate more information than the second-order statistics
of the variogram function, using multi-point geostatistics to predict the prior impedance
information is a potential development direction. However, multi-point geostatistics is
mainly applicable to discrete variables, and it is difficult to predict continuous variables. In
seismic inversion, it is often necessary to establish statistical rock physics models; that is,
the statistical relationship between the elastic parameters melas (such as the impedance and
velocity) and the reservoir properties mres (such as the lithofacies). According to the chain
rule of conditional probability, the prior probability can be written as

γM(mres, melas) = Pprior(mres, melas) = Ppetro(melas|mres)Pprior(mres). (2)

Thus, the prior probability of the lithofacies can be predicted using multi-point statis-
tics, and the current joint prior probability distribution of the elastic parameters–lithofacies
can be obtained from the lithofacies and elastic parameter probability [8].

The likelihood function γD(g(m)) is used to measure the error between the forward
simulated record and the actual observed seismic trace. Selecting a specific likelihood
function is essential to determining what is a good enough fit. It can be based on the
distribution of the measurement errors, or it can be assessed subjectively, for example,
using the seismic root mean square error or correlation coefficient. The likelihood function
is generally expressed as the sum of the residuals between the forward simulated record and
the actual seismic data (assuming that the seismic noise has a Gaussian random distribution
with mean value of 0 and a variance of σe):

γD(g(m)) =
1

(2πσ2
e )

2 exp

[
−∑

(d − g(m))2

2σ2
e

]
(3)

where D is the observed seismic trace, and g(m) is the synthetic seismic trace. By combining
Equations (1)–(3), the posterior probability can be expressed as

σM(m) = γM(mres, melas|d) = c

[
1

(2πσ2
e )

2 exp

[
−∑

(d − g(m))2

2σ2
e

]][
Ppetro(melas|mres)Pprior(mres)

]
. (4)

Once the a posteriori probability distribution is calculated, it can be used several
times for sampling and characterization of the a posteriori probability of the reservoir
model. Each model in the model set is consistent with the geological knowledge and the
prior information in the training image. Lithofacies and the actual seismic data have a
better matching relationship. This sampling is usually achieved using MCMC sampling.
However, it takes a long time for the Markov chain to visit all the state spaces, and it
converges slowly to a stationary distribution. Gonzalez [8] cleverly designed the internal
and external double iteration method to achieve an inversion effect using a limited number
of iterations. Its two core processes of this method are preprocessing and inversion. Pre-
processing is the preparation of the information required for the inversion, including
training images, statistical relationship between lithofacies and elastic parameters, and well
data. Inversion is an iterative process. First, a random path is defined, the prior probability
of the lithofacies is obtained through multi-point scanning of the training images, and the
geological model library is established. The selection of different geological models can
be regarded as the external iteration. Then, according to relationship between lithofacies
and elastic parameters, the attribute values, such as the acoustic velocity and density are
extracted, which is the internal iteration. According to the attribute values obtained from
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the simulation, the reflection coefficient sequence is obtained, and the forward simulation
record is obtained through seismic wavelet convolution and is compared to the actual
seismic record. If the error between them meets the set condition, the attribute value of
the point to be estimated is retained; otherwise, it is extracted and simulated again. If the
internal iteration is completed, and the best matching geological model is not found, the
cycle is broken out and a new geological model is searched from the model library. The
above steps are repeated until the given conditions are met in order to achieve seismic
inversion and reservoir prediction.

2.2. Method Improvement

Gonzalez [8] introduced multi-point statistical inversion (mSIMPAT), which has been
widely applied and studied. Because the mSIMPAT method is used to search for the best
matching deposition pattern, the entire training image must be scanned repeatedly each
time. When the size of the training image and the data sample is slightly larger, the overall
scanning will seriously increase the computational load. In the process of internal and
external double iteration, the optimal elastic parameters and lithofacies data obtained from
the previous external iteration inversion do not provide information and constraints for the
next inversion iteration cycle, resulting in each iteration cycle being independent. Thus, it
is difficult to iteratively update the local lithofacies model. To solve the above problems,
the iterative inversion algorithm was improved.

In view of the low computational efficiency of the mSIMPAT method, scholars replaced
it with the direct sampling (DS) method and the SNESIM method. The DS method is a direct
matching method [27]. Since it does not need to store the multi-point conditional probability,
it avoids the storage problem when the probability of the training image scanned is larger.
Because of the non-integral scanning, its computational efficiency is significantly better.
Local areas can be selected during scanning, which can ensure the reproduction of the local
characteristics of the sedimentary model and reflect the non-stationary reservoir structure
to a certain extent, and it is more suitable for reservoir prediction involving complex
changes. Therefore, the DS method is a natural choice to replace the mSIMPAT method as
the prior probability method [20]. However, the DS method is still difficult to implement
in terms of local updating under synthetic elastic parameter constraints. In contrast, the
SNESIM method has a high computational efficiency because it stores all of the multi-point
probabilities through one scan. Single point prediction more easily integrates multiple
sources of information, especially the elastic parameters obtained in the previous iteration.
Therefore, in this study, the SNESIM method was chosen to replace the mSIMPAT method.

In view of the local updating of the lithofacies in the inversion process, the statisti-
cal relationship between the elastic parameters and the lithofacies is attained using the
permanent ratio of the updating theory in the inner cycle [28]:

P(A|B, C ) =
1

1 + x
=

a
a + bc

∈ [0, 1], (5)

a =
1 − P(A)

P(A)
=

P(Ã)

P(A)
∈ [0,+∞), (6)

b =
1 − P(A|B )

P(A|B )
=

P(Ã|B )

P(A|B )
, (7)

c =
1 − P(A|C )

P(A|C )
=

P(Ã|C )

P(A|C )
, (8)

x =
1 − P(A|B, C )

P(A|B, C )
=

P(Ã|B, C )

P(A|B, C )
≥ 0. (9)

P(A|B,C) is the current joint statistical probability of the training images and the
elastic parameters. P(A|B) is the multi-point probability under the condition of only
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lithofacies data. P(A|C) is probability under the condition of the optimal elastic parameters
of the previous inversion, which is known from the elastic parameters–lithofacies statistical
probability. P(A) is the lithofacies statistical probability obtained from the geological
analysis; hence, a in Equations (6) and (10) can be interpreted as a prior distance to the
event A occurring. Likewise, the values b and c in Equations (7), (8) and (10) state the
uncertainty about occurrence of A, given information B and C, respectively. x is the
uncertainly when knowing both B and C.

To describe the relationship between B and C, the τ factor is introduced:

x
b
= (

c
a
)

τ(B,C)
, τ(B, C) ≥ 0. (10)

τ(B, C) is an evaluation of the correlation degree between the seismic elastic parame-
ters and the lithofacies, and it indicates whether the seismic elastic parameters reflect the
type and distribution of the lithofacies, and it is generally obtained through trial and error.

According to Equations (5) and (10), the elastic parameters obtained from the previous
iteration inversion can be used to constrain the local lithofacies prediction and update
the local lithofacies model. In order to determine the optimal elastic parameters in the
local inversion, the current forward simulation records are compared with the previous
forward simulation records, including the optimal records retained in the earlier stage of
the outer cycle.

In the outer cycle, the current overall inversion results are compared with the actual
error to decide whether to retain the inversion results of the elastic parameters and repeat
the cycle iteration. This continues until the local elastic parameter inversion and the global
inversion satisfy the given conditions. Then, the cycle terminates and the inversion results
are output.

2.3. Inversion Steps

Based on the above improvements, a multi-point geostatistical inversion method based
on the local probability updating method for the inversion of lithofacies (LPUMI) was
developed in this study. The main steps are as follows (Figure 1).

Step 1: Preprocessing

a. Check the data. Check whether the seismic data and well data are complete, including
lithology, density, p-wave velocity, and s-wave velocity information.

b. Statistical analysis of the data. When the shear wave information cannot be obtained
from the logging data, it can be estimated using empirical formulas. The probability
density functions of the different elastic parameters of the lithofacies are established
to provide a basis for the subsequent elastic parameter sampling. The plot of the
lithofacies versus the elastic parameters is established to provide a basis for the fluid
prediction.

c. The attribute values of the initial reservoir elastic parameters are given. According to
the statistical well data, the initial elastic parameter attribute values, including the
density, p-wave velocity, and s-wave velocity, are assigned to the simulation grid.

d. Build training images. Commonly, unconditional modeling methods such as object-
based stochastic modeling, sedimentary process modeling, multi-point simulation
results, outcrop and modern deposition models, digital geological sketches, and
physical simulation interpretation are used to confirm the working area’s reservoir
characteristics for the training images.

e. Scan the training images to establish a search tree. Only the data events that actually
appear in the training image are saved in the search tree. In order to limit the
geometric configuration of the data events and prevent it from being too large, the
maximum number of searched data needs to be defined. Build a search tree based on
the sample of the largest search data.
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Figure 1. New multi-point geostatistical inversion flow chart considering local updating.

Step 2: SNESIM simulation using LPUMI

i. Griding and assignment of the well data and elastic parameters. Each conditional
data point is assigned to the nearest grid node in the simulation grid. If multiple
conditional data points are assigned to the same grid node, the nearest one is assigned
to the center of the grid node.

ii. Define the path through the remaining nodes of the simulated grid. A path is a vector
that contains all of the indexes of the grid nodes to be simulated in sequence. Random,
one-way (i.e., the nodes are accessed in a regular order starting from one side of the
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grid), or any other path can be used. The simulation path is from a dense well area to
a sparse well area and finally to a no well area.

iii. Search for domains that simulate node X. They consist at most of n nodes {x1, x2, . . . ,
xN} that have recently been assigned to or simulated in the simulation grid. If the
field of X is not found in the first iteration (such as the first unconditionally simulated
node), a node Y is randomly selected in the TI, and its value (Z(y) to Z(x)) is assigned
in the simulation grid. Then, proceed to the next node of the path.

iv. Determine the search tree’s conditional probability P(A|B).
v. Determine whether there is a point at which in the previous simulation, the elastic

parameters were reserved. If there is, using the permanent ratio of the updating
theory, probability P(A|B) will update to P(A|B,C). Otherwise, the update is still the
conditional probability P(A|B).

Step 3: Prestack inversion

According to the reservoir’s elastic parameters obtained from the logging data, the
density and p-wave velocity are uniformly sampled in the suggested data mode to obtain
the p-wave impedance ZP of the sample.

According to the relationships between the p-wave impedance ZP and the s-wave
impedance ZS and the p-wave impedance ZP and the density ρ given by Hampson and
Russell (2005), in general, ZS and ρ can be expressed as follows:

ln(ZS) = k ln(ZP) + kc + ΔLS, (11)

ln(ρ) = m ln(ZP) + mc + ΔLD. (12)

They are looking for deviations away from a linear fit in logarithmic space. k and m
are the corresponding slop. kc and mc are the corrsponding intercept. The deviations away
from this straight line, ΔLS and ΔLD, are desired fluild anomalies. The seismic forward
modeling record calculation of the proposed elastic parameters in the proposed data model
is conducted as follows:

g(θ) = c̃1W(θ)DLP + c̃2W(θ)DΔLS + W(θ)DΔLD, (13)

where c̃1 = 1
2 c1 +

1
2 kc2 +mc3, c̃2 = 1

2 c2, c1 = 1+ tan2θ, c2 = −8γ2tan2θ, c3 = −0.5tan2θ +
2γ2sin2θ, γ = VS/VP. W(θ) is the incident angle of the wavelet, D is the differential op-
erator, LP = ln(ZP), LS = ln(ZS), LD = ln(ρ), and g(θ) is the seismic forward model-
ing record.

The likelihood function Equation (3) and the posteriori probability Equation (4) are
determined from the forward simulation record and the actual seismic record. Gonzalez’s
(2008) method is adopted to select the elastic inversion parameters that retain the maximum
likelihood function as the results; or according to the Metropolis–Hasting optimization
criterion, a large number of implementations of the lithofacies and elastic parameters are
generated from the posterior function, and these implementations represent the probability
distribution of the posterior function. The acceptance criteria of the model are proposed to
determine the optimal inversion elastic parameters.

Paccept = min (1,
P( f ∗)
P( f )

· exp

⎡⎢⎣∑
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)2 −
(

m∗ − μ f

)2

2σ2
f

+ ∑
(d − g(m))2 − (d − g(m∗))2

2σ2
e

⎤⎥⎦
⎞⎟⎠. (14)

In consideration of the computational efficiency and algorithm continuity, Gonza-
lez’s [8] method was adopted in this study to select the optimal matching inversion results
through iterative comparison of the multiple sampling (generally 25–30).
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Step 4: Iteration

All of the simulation grids are visited to realize a single inversion.
According to the matching degree of the synthetic seismic records and the actual

records, it is judged whether the iteration should be terminated. If the conditions are not
met, start again from Step 2 for the next external iteration. Usually, after six iterations, the
average correlation coefficient of the seismic data is greater than 85% and the inversion
results are output.

3. Model Testing

3.1. Theoretical Model Testing

The meandering river model with a low curvature in the first layer of the Stanford
VI-E reservoir was taken as the test object, which is a 150 × 200 × 80 model. The lithofacies
were subdivided into point bar, channel, and floodplain mudstone deposits (Figure 2).
The different microfacies have different elastic parameter distributions (Figure 3). By
designing 68 virtual wells, the seismic inversion method was tested based on the given
elastic parameters and the lithofacies interpreted from the well data. In order to verify
the accuracy of the method, only 63 wells were selected as the condition wells, and the
remaining five wells were used as the test wells to analyze the inversion results.

 

Figure 2. Stanford VI-E theoretical model.

 

Figure 3. Statistical distribution of the elastic parameters of the different microfacies.
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The theoretical lithofacies model was selected as the training image, and the tests
were carried out using the traditional two-point statistical inversion method (TPI), the
conventional multi-point statistical inversion method (MPI), and the multi-point statis-
tical inversion with local probability updating method (LPUMI). The results show that
compared with two-point statistical inversion, multi-point statistical inversion can repro-
duce the reservoir lithofacies better, and the inversion results are more consistent with the
theoretical model. The synthetic seismogram is more similar to the actual seismogram
(Figures 4–6). The average matching rate of the multi-point statistical inversion is 83.5%,
while that of the two-point statistical inversion is 81.5%, indicating that the multi-point
statistical inversion produced a more accurate prediction of the inter-well reservoir prop-
erties (Figure 7). According to the correlation coefficient of the seismic record calculated
via the inversion, the correlation coefficient increases gradually as the number of iterations
increases. After six iterations, the correlation between the inverted synthetic seismic track
and the actual seismic track is close to 80%. The LPUMI has the largest correlation coeffi-
cient, reaching 0.78; the correlation coefficient of the MPI is in the middle (0.76); and the TPI
has the lowest correlation coefficient (0.75) (Figure 8). The results show that the reservoir
parameters obtained using the LPUMI are closer to the actual reservoir parameters. This
shows that the proposed method is more reasonable and can be applied to actual reservoir
inversion prediction.

Figure 4. Lithofacies and forward modeling records of the inversion (left) TPI, (middle) MPI, and
(right) LPUMI.

3.2. Real Reservoir Testing

The Xinchang gas field is located in the western part of the Sichuan Basin, China. The
main gas-bearing horizon is the second member of the Xujiahe Formation, and the main
sandbodies are braided delta front distributary channels and mouth bars. The thicknesses
of the sand bodies are large and their horizontal distributions are wide. The horizontal
distribution of the sweet spot reservoir is not uniform, which causes difficulties in the
exploration and development of the gas reservoir.
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Figure 5. Lithofacies profiles of the five validation wells (from top to bottom, real reservoir, TPI, MPI,
and LPUMI).

 

Figure 6. Seismic records obtained through well inversion (from top to bottom, real reservoir, TPI,
MPI, and LPUMI).
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Figure 7. Comparison of the lithofacies distribution in five wells obtained using the different methods.
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Figure 8. Correlation coefficients between the inversion trace and actual trace.

In this study, three methods, including the TPI, MPI, and LPUMI, were applied to the
prediction of the TX3

2 − TX7
2 sand formation in the study area. Because this was mainly

undertaken to test the proposed inversion method and compare it to the two existing
methods, the inversion prediction was not performed for the entire region. Instead, a
relatively regular local area with a relatively simple stratigraphic structure and no-fault
development was selected to carry out the study. The total thickness of the vertical direction
of the intercepted area is about 235 m, and the length in the I direction and J direction on
the plane is about 4000 m (Figure 9). The grids were 100 × 100 m in the plane and 2 m in
the vertical direction, and the total number of simulated grids was 40 × 40 × 118 = 188,800.
Figure 10 shows the pre-stack track sets at different angles (5◦, 15◦, and 25◦) in the test
block. Figure 11 shows the spatial distribution and attribute interpretation for 11 wells.
The analysis shows that the main body of the channel is composed of sand and silt, with
little mud. The p-S wave velocity has an obvious linear relationship, with a small p-S
wave velocity ratio and a low gamma ray (GR) value. The interchannel region is mainly
composed of clay deposits with a small amount of silt and fine sand. The p-S wave

30



Energies 2022, 15, 299

velocity has an obvious linear relationship, with a high p-S wave velocity ratio and a
high GR value. The mouth bar is composed of fine and silty sand, with fine sorting
and a pure quality, and it has a small S-wave velocity ratio and low GR value, which
is similar to the main body of the channel (Figure 12). The statistical analysis of the
elastic parameter–lithofacies was conducted based on the data for these 11 wells, and its
probability distribution was established for the elastic parameter sampling under lithofacies
control during the subsequent inversion (Figure 13). The seismic wavelets from different
angles were extracted based on the seismic records of the sidewalks (Figure 14). After
comprehensive analysis, 25 Hz theoretical Rick wavelets were selected for the inversion
seismic record synthesis. Based on geological analysis, a three-dimension training image
of the study area was established (Figure 15), which was used to calculate the two-point
variogram function and to extract the multi-point prior probability.

 

Figure 9. Drilling distribution map of the actual working area and the location of the inversion block.

Figure 10. Pre-stack seismic track set for the inversion block: (a) 5◦, (b) 15◦ and (c) 25◦.
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Figure 11. Data interpretation results for the 11 wells in the inversion block: (a) lithofacies, (b) density,
(c) p-wave velocity, and (d) s-wave velocity.

Figure 12. Statistical diagram showing the relationship between the elastic parameters and the
lithofacies.

Figure 13. Analysis of the elastic parameters of the different lithofacies in the wells: (a) density, (b)
p-wave velocity, and (c) shear wave velocity.
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Figure 14. The synthetic and observed seismic traces.

Figure 15. Training image of the inversion block.

The inversion profile results obtained using the different method were captured for
wells Xins1–X201 for comparison (Figure 16). As can be seen from the profiles, overall, all of
the inversion lithofacies profiles are mainly composed of channel sand bodies. The mouth
bar deposits are locally developed, and the mudstone deposits are relatively scarce and
are mainly developed in the upper part. The lithofacies inversion is relatively continuous
and the distribution of the channel sand body is reflected well. However, in terms of the
structure, the sand body continuity of the TPI is too good to reflect the complex heterogene-
ity. The distributions of the MPI and LPUMI are highly variable and are connected locally,
and the overall structure is close to that of the actual reservoir. In terms of the seismic track
records, the inversion seismic records of the MPI and LPUMI are close to the actual seismic
records, while the TPI exhibits chaotic reflection characteristics, which are quite different
from the actual continuous lithofacies distribution. The results show that the MPI and
LPUMI are able to reflect the sand body and elastic parameters better.

Gonzalez [8] pointed out that the accuracies of the inversion iterations can be compared
using the absolute error recorded by the forward simulation or the seismic trace correlation.
Due to the possible errors in the time–depth conversion, direct comparison may cause large
errors. However, the underground reservoir prediction is more likely to reveal the sand
body and the spatial structure of the interlayer. If the reflected structure is similar, the
overall similarity of the seismic records will increase. Therefore, the correlation between
the forward simulation records and the actual records was used to compare the results of
the different methods. The correlations between the forward modeling records and the
actual seismic track were calculated. The results show that the correlation coefficient of
the TPI is 0.72. The correlation coefficient of the MPI is 0.74, and that of the LPUMI is 0.77.
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This demonstrates that the LPUMI results are closer to the actual seismic record and have a
higher accuracy.

Figure 16. Inversion of the lithofacies model and synthetic seismic record through wells xins1–X201
for the training image and the different methods: (a) Training image, (b) TPI model, (c) MPI model,
and (d) LPUMI model.

Furthermore, the cross-validation method was used to test and compare the methods.
The cross section of well X853 was used to compare the prediction accuracies of the different
methods. Both the MPI and LPUMI can reflect the characteristics of the upward transition
of the mouth bar sand body, which is consistent with the migration trend of the lithofacies
in the training image. However, the TPI can hardly reflect this characteristic. Compared
with the actual seismic record, the synthetic seismic records of the MPI and LPUMI are
closer to the actual seismic profile (Figure 17).

Figure 17. Training image and lithofacies model inversions obtained using the different methods and
forward simulation records of well X853 through the drainage: (a) Training image, (b) TPI lithofacies
model, (c) MPI lithofacies model, and (d) LPUMI lithofacies model.

According to the comparison of the elastic parameters across well X853 (Figure 18),
the different inversion methods can reflect the variations in the elastic parameters in
the area around the well successfully, with a good degree of matching. In terms of the
elastic parameter errors, the TPI performed the best, followed by the MPI and the LPUMI.
However, the differences are not significant. In terms of the correlation of the elastic
parameters, the overall difference is not significant. The correlation of the LPUMI is 0.74,
that of the MPI is 0.73, and that of the TPI is 0.72. However, the degrees of lithofacies
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matching are different. The results show that the best method is the LPUMI (0.862), followed
by the MPI (0.856), and the TPI is the worst (only 0.78). This indicates that the LPUMI has
more advantages.

 

Figure 18. Comparison between the predicted results and the actual lithofacies and elastic parameters
of the well.

4. Discussion

Seismic records are a comprehensive representation of subsurface lithofacies, physical
properties, elastic parameters, and fluids. The essence of statistical inversion is to seek the
optimal solution that reflects the underground reservoir parameters through convolution of
the elastic parameters. The distribution of the elastic parameters is mainly revealed through
rock physics modeling. In the field of geological modeling, due to the intrinsic relationship
between the lithofacies and physical properties, developing facies-controlled reservoir
parameter modeling method has become an important means of improving the accuracy of
physical property modeling. Therefore, introducing the idea of facies control into seismic
inversion can improve the inversion accuracy. In fact, Azevedo and Soares [29] compared
the inversion results of the given lithofacies model with conventional inversion results and
showed that the inversion elastic parameter distribution of the given lithofacies model is
more reasonable and the iteration convergence is faster. Based on the theoretical model
and practical model developed and tested in this study, the multi-point inversion method
considering facies control is significantly better than the traditional two-point statistical
inversion method without facies control. Therefore, making full use of lithofacies control in
seismic inversion should be an important direction in the future. In a sense, the accuracy of
the constrained lithofacies model determines the effectiveness of the final inversion effect.

In this improvement, the seismic elastic parameters are mainly used for local lithofacies
updating. The SNESIM method is a single-grid point lithofacies forecasting method. When
using elastic parameters to update the local lithofacies, only the information provided
by the elastic parameters of the points to be estimated is used, which has no significant
improvement effect compared with the conventional multi-point geostatistical inversion.
This may be due to the fact that grid by grid updating of lithofacies does not significantly
change the sedimentary facies model. In addition, probabilistic statistical sampling er-
rors inevitably exist and are transmitted to the subsequent updates, resulting in limited
improvement of the inversion accuracy. Another disadvantage of the SNESIM lithofacies
prediction is that all reservoir predictions based on statistical methods require a stable
lithofacies distribution model, but in reality, the lithofacies distribution is very complex
and has non-stationary characteristics. This is one of the reasons why multi-point statistical
methods such as the SIMPAT, Filtersim, and DS methods have been developed. This is also
the reason why Gonzalez [8] used SIMPAT as the lithofacies inversion method.
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Arpat (2005) pointed out that seismic information can be integrated in SIMPAT ge-
ological modeling; that is, a seismic reference image with a good correspondence to the
lithofacies can be constructed, and its contribution to the distance can be taken into account
in the lithofacies matching to constrain and guide the selection of the optimal lithofa-
cies mode:

s〈·, ·〉 = sh

〈
devT(u), patk

T

〉
+ ss

〈
sdevT(u), spatk

T

〉
, (15)

where sh

〈
devT(u), patk

T

〉
is the similarity between the model at the point to be estimated

devT(u) and the data model patk
T in the lithofacies training image ss

〈
sdevT(u), spatk

T

〉
and

the similarity between the seismic attribute model sdevT(u) at the corresponding point
to be estimated and the seismic attribute model spatk

T in the training image. It should be
noted that the contribution of the seismic attributes (i.e., soft data) is different from that of
well data (i.e., hard data), so it is necessary to effectively measure the contribution of the
seismic attributes. The similarity value of the seismic training images is multiplied by a
weight to represent the contribution of the seismic attributes in the similarity calculation. In
addition, because the scale of the seismic attributes is not consistent with that of the facies
attributes, the seismic attributes must be normalized before the similarity calculation in
the application of the seismic data in order to avoid the absolute superiority of the seismic
similarity in the entire similarity due to the different scales.

Lithofacies training images can be obtained from the geological anatomy and through
sedimentary simulation. However, seismic attribute training image is often difficult to
obtain. Based on rock physics modeling, the forward modelling can be conducted many
times and the optimal matching seismic attributes can be calculated, which can be ap-
plied to Equation (15) to update the overall local lithofacies and improve the accuracy of
the inversion.

The efficiency of the mSIMPAT algorithm is relatively low, and adding seismic attribute
constraints will further increase the computational burden. Therefore, using parallel
computing and deep learning theory to accelerate the inversion iteration is an important
direction in future research.

5. Conclusions

This paper proposed a new multi-point geostatistical inversion through local iterative
updating rock facies using the constrains of elastic parameters. An internal and external
double cycle iteration mechanism was adopted to execute the iteration and updating.
During the internal cycle iteration, the optimal elastic parameters obtained in the previous
external cycle were combined with the statistical probability of the lithofacies and elastic
parameters, and the elastic parameters were combined with the permanent ratio of the
updating theory to achieve local lithofacies updating. Based on this, inversion prediction
of the lithofacies and elastic parameters was carried out. In the outer loop, the current
global inversion results were compared with the actual error to determine whether the
inversion results of the elastic parameters meet the conditions, and the cycle iteration was
carried out again until local elastic parameter inversion and global inversion satisfy the
given conditions. Then, the cycle was terminated and the inversion results were output.

Both the theoretical and practical model tests conducted confirm that the correlation
between the actual seismic track and the synthetic seismic track obtained using the LPMUI
is the best, and the degree of lithofacies matching is the highest. The results of the MPI
are the next best, and the results of the TPI are the worst, indicating that the reservoir
parameters obtained using the LPMUI are closer to the actual reservoir parameters. This
method is worth popularizing in practical exploration and development.

The calculation efficiency of double iteration in the LPMUI is much better than tra-
ditional MPI; however, it is still lower than the TPI. In future, the deep learning method
or parallel computing method can be introduced to improve the calculation efficiency.
Another improvement may exist in the use of the elastic parameters for rock lithofacies
updating. Here, only the elastic property in the un-simulated grid was used to update the
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rock lithofacies in the same grid, a multi-point geostatistical simulation for sedimentary
pattern reproduction and updating was not conducted, which may have caused the failure
of the reproduction of a continuous geobody. How to use elastic parameters in a multi-point
data template to update rock lithofacies patterns, is still a challenge for future work.
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Abstract: The petrophysical properties of Miocene mudstones and gas bearing-heteroliths were the
main scope of the work performed in one of the multihorizon gas fields in the Polish Carpathian
Foredeep. Ten boreholes were the subject of petrophysical interpretation. The analyzed interval cov-
ered seven gas-bearing Miocene horizons belonging to Sarmatian and Badenian deposits. The water
saturation in shaly sand and mudstone intervals was calculated using the Montaron connectivity
theory approach and was compared with Simandoux water saturation. Additionally, the Kohonen
neural network was used for qualitative interpretation of four PSUs (petrophysically similar units),
which represent the deposits of comparable petrophysical parameters. This approach allowed us to
identify the sediment group with the highest probability of hydrocarbon saturation. Then, the spatial
distribution of PSUs and reservoir parameters was carried out in Petrel. The resolution of the model
was selected to reflect the variability of log-derived parameters. The reconstruction of the spatial
distribution of shale volume, porosity, and permeability was performed with standard parametric
modeling procedures using the Gaussian random function simulation stochastic algorithm, while
PSU distribution and hydrocarbon saturation (SH) required a separate approach. The distribution
into PSU groups was carried out by facies classification. Predefined ranges of clay volume, effective
porosity, and permeability were used as discriminators to achieve spatial distribution of the PSU
groups. The spatial distribution of hydrocarbon saturation was performed by creating the meta-
attribute of this parameter and then reducing the derived pseudo-saturation model to physical values.
Results included the creation of maps of hydrocarbon saturation that show the preferable areas with
the highest hydrocarbon saturation for each gas horizon.

Keywords: shaly-sand; low resistivity gas reservoir; Montaron equation; clastic reservoir evaluation;
Miocene sediments; heteroliths

1. Introduction

Research on hydrocarbons in Miocene sediments of the Carpathian Foredeep con-
ducted in recent years has led to the discovery of many gas horizons located in thin-layer
heteroliths, mudstones, and sandstones. Many geophysical and geological research has
been performed to recognize the possibilities of hydrocarbon accumulation in Miocene
sediments [1–7]. The main influence on the formation of gas accumulations was the struc-
tural and facies factors, which define the horizons lithological boundaries [1]. There are
three main sedimentary complexes in the study area: deltaic deposits, submarine fan sedi-
ments and fine-rhytmic turbidyte sediments of basin plain. The lowest part of the upper
Baden-Sarmatian is dominated by heterolithic deposits formed in the environment of the
basin plain. They consist of claystones and siltstones covered with thin layers of fine and
medium-grained sandstones, the thickness of these sediments can be up to about 200 m.
Higher in the profile the turbidite sediments of submarine fans can be observed. They are
spread under the Carpathian thrust and along its present border. The thickness of these

Energies 2022, 15, 1890. https://doi.org/10.3390/en15051890 https://www.mdpi.com/journal/energies39



Energies 2022, 15, 1890

sediments can reach several meters and are the result of sedimentation within the distribu-
tion channels of the upper fan. Finer turbidite sediments are associated with sedimentation
along the riverbed shafts. These sediments are about 300 m thick. Towards the top of the
profile, the series of submarine fans turbidite deposits are gradually replaced by deltaic
deposits of rather constant thickness. Deltaic deposits are characterized by a clay-sandy
lithology and generally high collateral continuity. The sandstones of deltaic sediments,
especially occurring in thin-bed heterolithic and mudstone lithofacies, are characterized by
low textural and mineral maturity. The sandstones grain skeleton is composed of a very
fine to medium-grained fraction [1–3].

The interesting is that despite there is sandstones complex with thickness of even
250 m, formed as submarine fans sediments with the excellent porosity and permeability,
the existing hydrocarbon horizons mainly occurs in sandstones up to 50 m of thickness.
It is probably due to dispersion of hydrocarbons in layers of large thickness [1]. There
are not enough sealing units to prevent migration of hydrocarbons. The morphology of
Precambrian basement had the main impact for developing of the deepest located gas
accumulations mainly within fine-rhytmic turbidyte heteroliths being the subject of the
interpretation in the presented work. The detail recognition and reconstruction of sedi-
mentary environment and building a proper structural model is a main task to predict the
stratigraphic traps which constitute favorable areas for hydrocarbon accumulations [1].
Seismostratigraphic works performed in the area of Wielkie Oczy—Graben and Markowce-
Lubliniec elevation allowed to subdivide the Machow formation into seven genetic se-
quences composed mostly of deltaic deposits. The work allowed to detect the upplaping
pinchouts that constitute structural-stratigraphic traps for gas generated in front-prodelta
heteroliths [6]. In the area seismic-scale deltaic clinoforms can be observed on the south,
these forms developed a shelf-to-basin floor relief of over 300 m [3].

However, the detection of hydrocarbon-saturated intervals still remains the greatest
challenge. Resistivity logs measured in shaly-sand intervals show low values, as the
occurrence of clay minerals constitute additional conductive components apart from water
present in the rock. Shaly-sand formations are usually related to the high content of
capillary water occupying the matrix micropores. Due to the high volume of clay minerals,
there are many intervals with ambiguous saturation characteristics. Thus, a novel approach
is required to detect low-resistivity gas-saturated zones. Mudstones are “non-Archie rock”,
where the saturation exponent (n) is not a constant, but its values change throughout
the reservoir. It is expected that the saturation exponent in mudstones is low, as these
sediments are likely to be wet. Thus, the Montaron equation [8] was adopted to calculate
water saturation, where rock wettability is expressed through the water connectivity index
(WCI). Additionally, the artificial neural network approach was used to identify the unit
of the best gas accumulation properties and particularly to separate gas-saturated and
water-saturated intervals. The process of water saturation estimation was supported by
the modified qualitative Passey’s [9] and Bowman’s [10] methods primary dedicated the
calculation of TOC content. A successful result of the analyses carried out in the profiles
of the boreholes consequently raises the issue of the spatial distribution of these reservoir
parameters. Thus, the authors attempt to reliably recreate the spatial continuity of the
reservoir’s parameters obtained from well logs through the use of geostatistical analyzes,
multiple linear regression and neural network techniques in the face of the availability
of seismic data. As seismic data are available, the results were integrated into the spatial
seismic response through the use of supervised neural network methods. Finally, an
attempt was made to identify the areas preferable for planning future wells with high gas
accumulation potential.

2. Materials and Methods

2.1. Study Area

The location of the study is an area of multihorizon gas deposits typical of Miocene
formations (Figure 1A). The analyzed area is in the central part of the Carpathian Fore-
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deep, a short distance from the edge of the Carpathian overthrust, and is characterized
by an uncomplicated geological structure, both in terms of stratigraphy and tectonics,
which consists of three main complexes: (1) Precambrian basement with a strongly eroded
morphological surface; (2) autochthonous Miocene sediments subdivided into Sarmatian
and Badenian; and (3) Quaternary cover. Eroded Precambrian basement, consisting of
quartzite sandstone and shales, is unconformably overlain by Badenian and Sarmatian
sediments where many gas-bearing horizons were discovered. The Badenian formation
consists of clays, marly clays, marls with thin laminas of mudstones, sandstones, and
anhydrites. The Upper Badenian deposits are represented in the entire area by clay and
clay–calcareous shales, sometimes interbedded with sandstone. The Sarmatian sediments
consist of sandstone, mudstone, and claystone layers of similar thickness. The Sarmatian
claystones are represented by gray, dark gray, and marly clayey shales with inserts and
interlayers of light gray and gray fine-grained calcareous sandstones. The upper part of
the Lower Sarmatian is associated with the presence of silty sands and claystones, while
more sandstone layers are observed at greater depths. The Quaternary cover, up to 30 m,
consists of clay, silt, sand, and gravel, from which gas exhalations from the underlying
unsealed deposits or uninsulated boreholes were observed. This is related to the nature of
hydrocarbon migration processes resulting from pressure differences, capillary forces, dif-
fusion phenomena, etc. [11–13]. Gas-bearing horizons associated with the Lower Sarmatian
are formed as sandstone and mudstone layers with good reservoir properties, which have
an anticlinal structure. The series of sandstone and mudstone were also found to dip at
small angles (1–2 degrees). Their average thickness is approximately 11 m (from 1 to 25 m
effective thickness) with an average gas saturation of 63% (gas saturation from 52 to 83%).
The average porosity and permeability of the gas horizons of this area are, respectively,
7.4% and 26 mD, with the maximum recorded values of these parameters equal to 30% and
2700 mD. Reservoir properties decrease due to compaction and the increase in calcite in
the lithologic composition. The interbeds of claystones constitute an impervious barrier
to the migration of gas, which is characterized by high methane content (not less than
95.77% CH4) [14]. The individual gas accumulation is determined by the water–gas contact
or lithological barrier related to changes in the sedimentary depositional environment.
There are also gas accumulations related to fractures and cracks in the upper part of the
Precambrian deposits, isolated by impervious anhydrite layers, but these gas occurrences
are not a subject of this study.

2.2. Input Data

The petrophysical interpretation was carried out using data from 10 boreholes within
several hundred meters of Miocene sediments covering 7 gas-bearing horizons. The gas
deposit formed as anticline with the location of the wellbores is presented in Figure 2.

K-6, and K-9 wells, drilled in the 1970s and 1980s, represent a much lower technical
level than the wells drilled in recent years (2011–2015). Thus, the analyzed wells differ
significantly in quality, technical conditions, and available well log data. The standard
dataset from the 1970s and 1980s included the following well logs: gamma ray (GR), neutron
porosity (NPHI), resistivity logs (EN64, EN16, EL18), diameter (CALI), and spontaneous
potential (PS).
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Figure 1. (A) Scheme of a typical deposit complex in the Miocene formations of the Carpathian
Foredeep. (B) Well log identification of different Miocene sedimentary environments.

The first stage of the work was to collect the available laboratory and stratigraphic data,
core descriptions, reservoir test information, and well logs available from individual bore-
holes. For wells K-17, K-18, K-19, K-20, and K-21K, the following laboratory measurements
were performed: porosity measurement by MIP (mercury injection porosimetry) method,
permeability measurements, NMR, XRD, and measurement of the Archie parameter (ce-
mentation exponent (m)). These boreholes were used to establish the relationships between
well logs and laboratory data. They were the basis for the interpretation of older wells char-
acterized by inferior technical conditions and limited sets of well logs. Laboratory analyses
carried out on the cores were the basis for the calibration of effective porosity (correlation
between laboratory-measured bulk density and effective porosity), the definition of the re-
lationship between porosity (PHIE) and permeability (K), and calculation of the irreducible
water content (Swi_Kapilar) based on NMR data. Moreover, the XRD data enabled us to
calibrate the calculated clay volume. Datasets of new boreholes additionally include the fol-
lowing logs: PE (photoelectric factor), DT (compressional slowness), bulk density (RHOB),
and medium (ILM) and deep (ILD) induction resistivity logs. Table 1 contains the input
data used in the interpretation, and Figure 3 is a graphical presentation of the input data
from the K-17 well. In boreholesK-25K and K-27, there were also available measurements
of potassium (POTA), thorium (THOR), and uranium (URAN) concentration.
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Figure 2. Interpreted gas deposit formed as anticline with the location of wellbores.

Table 1. Well log data available for the interpreted wells.

Well Name Available Well Logs
Laboratory Core
Measurements

K-2 CALI, GR, SP, NPHI, EL18, EN16, EN64 PHIE, Perm., RHOB
K-6 CALI, GR, SP, NPHI, EL18, EN16, EN64 PHIE, Perm., RHOB
K-9 CALI, GR, SP, NPHI, EL18, EN16, EN64

K-17 CALI, GR, PE, NPHI, DT, RHOB, PE, ILM, ILD PHIE, NMR, XRD
K-18 CALI, GR, PE, NPHI, DT, RHOB, PE, ILM, ILD PHIE, NMR, XRD
K-19 CALI, GR, PE, NPHI, DT, RHOB, PE, ILM, ILD PHIE, NMR, XRD
K-20 CALI, GR, PE, NPHI, DT, RHOB, PE, ILM, ILD PHIE, NMR, XRD

K-21K CALI, GR, PE, NPHI, DT, RHOB, PE, ILM, ILD,
URAN, POTAS, THOR

K-25K CALI, GR, PE, NPHI, DT, RHOB, PE, ILM, ILD,
URAN, URAN, THOR

K-27 CALI, GR, PE, NPHI, DT, RHOB, PE, ILM, ILD
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Figure 3. Well log data used in the interpretation of the K-17 well.

2.3. Evaluation of Reservoir Parameters from Well Logs (Vcl, Phie, Swi)

The shaly-sand reservoir, due to high clay volume content and rather low porosity,
belongs to unconventional gas accumulation, and the applied methodology of water
saturation differs from the classical methods used in the analysis of conventional deposits.
The approach to calculate other reservoir parameters such as clay volume (Vcl), effective
porosity (Phie), and irreducible water saturation (capillary-bound water) (Swi_kapilar)
was based on well logging and laboratory measurements from cored intervals together
with the results of well tests. In order to evaluate the key reservoir parameters, a simple
petrophysical model was built. The results of X-ray diffraction laboratory measurement
and crossplots of Potassium and Thorium concentration indicate show that the dominant
clay minerals are: illite and montmorillonite, while rock matrix consists of quartz with
admixtures of K-Feldspar, Plagioclase, Calcite and Dolomite.

clay volume + matrix + porosity
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The best calibration of the volumetric content of clay minerals with the results of
laboratory measurements of total clay mineral content using the X-ray diffraction method
was obtained using the Stieber model for Miocene and Pliocene deposits in the form of
Equation (1).

Vcl =
GRindex

3 − 2 × GRindex
(1)

where
GRindex =

GR − GRmatrix
GRcl − GRmatrix

,

and GRcl is the gamma ray for clay, and GRmatrix is the gamma ray value for the sandstones.
The calculations assumed values of GR, namely, 30–40 API for sandstones and 120–160 API

for claystones. These values were determined during optimization procedures. Moreover,
the correlation between GR and laboratory XRD measurements of total clay mineral content
was also performed. The following relationship was obtained Equation (2):

Vcl = 0.455 × GR − 29.95 (2)

This dependence was used to estimate the clay volume in individual wells. The
effective porosity values (Phie) were calculated using two approaches from neutron density
log crossplots and using laboratory-measured effective porosity (PHIE) and bulk density
(RHOB) (Figure 4A). The neutron porosity of clay, NPHI_Vcl = 0.4, and bulk density of
clay, RHOB_Vcl = 2.45, were empirically derived. The total porosity was estimated on the
assumption that the clay porosity was Phiecl = 0.2. The assumption of clay porosity was
based on the relationship between total clay volume obtained from the X-ray diffraction
analysis technique (XRD) and clay-bound water saturation from NMR data.

PhiT = Phie + Vcl × Phicl (3)

Figure 4. (A) Correlation of the measured effective porosity and the bulk density; (B) correlation of
laboratory-measured porosity and capillary water content measured by NMR.
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Calculation of capillary water content (Swi_Kapilar), water bound in small pores in
the matrix, was also performed with the use of NMR laboratory measurements. A trend
line was determined between capillary water saturation and effective porosity (NMR)
(Figure 4B), and based on this relationship, Swi_Kapilar was calculated. Each equation
based on the use of well logs required the assumptions of certain coefficients; some of
these parameters are often unknown and challenging to calculate, especially in shaly-sand
or mudstone formations. Errors during the stage of calculating the effective porosity
undoubtedly have a large effect on errors in gas resource estimation. More particularly, if
the reservoir has moderate to low effective porosity, then much attention should be given
to the precise estimation of this parameter.

2.4. Qualitative and Quantitative Methods of Identifying Perspective Gas-Saturated Zones

The most important step during petrophysical interpretation is detection of perspective
gas-saturated intervals (qualitative methods), which is followed by calculation of water
saturation. Interpretation of gas accumulation present in mudstones is difficult due to high
clay volume, which, due to high conductivity, lowers the values of recorded resistivities.
Clays, similar to water, are additional conductive media in the formation. This usually
leads to underestimation of gas resources.

According to Archie’s assumption [15], the presence of hydrocarbons in rock is related
to the difference between the resistivity of the unflushed zone (Rt) and the water-saturated
zone (R0). Then, knowing the values of the saturation coefficient (n), one can determine
the values of Sw. However, when the interpretation of water saturation is carried out
through a formation with a thickness of several hundred meters, consisting of thin layers
of sandstone, mudstones, and claystones, proper determination of the saturation exponent
(n) is very difficult. The values of this parameter are closely related to the irreducible
water content, size of the pores, and wettability of the rock. The resistivity of the water-
saturated zone (R0) can be calculated based on formation water resistivity (Rw) and Archie
parameters: cementation exponent (m), and saturation exponent (n). Calculation of Rw
values requires information about the temperature in the borehole and the salinity. While
the temperature in the borehole can be determined based on the results of temperature logs
performed in some boreholes in evaluated gas fields or calculated based on temperature
gradients for a given area, the salinity/mineralization of water is often unknown. Even
the laboratory-measured mineralization of a water sample collected from the evaluated
borehole does not guarantee that this sample is not a mixture of mud filtrate and formation
water. A more reliable method to determine R0 could be based on well logs measured in
situ that reflect the reservoir conditions. The analyzed interval consists of gas-saturated
sandstones/mudstones and water-saturated sandstones/mudstones. On the crossplot
of bulk density (RHOB) and formation resistivity (Rt), the separation between the gas-
saturated zone and the water-saturated zone is clearly visible, especially in the intervals
with low clay volume. Thus, the resistivity of the water-saturated zone R0 can be calculated
with the use of exponential Equation (4):

R0 = a × RHOBb (4)

where a and b are empirically derived constants; for this study, a = 0.0008 and b = 8.8554.
If the bulk density log is not available, the neutron porosity log can also be used.
The presence of hydrocarbons can be defined by the RI (resistivity index) Equation (5):

RI =
Rt
R0

=
Rt

a × RHOBb (5)

Then, the RI obtained can be calibrated with laboratory-measured Sw values, deter-
mined, for example, by the Dean–Stark method. During Dean–Stark extraction, a fresh
core sample is weighed and subjected to fluid extraction by boiling solvent. Then water is
condensed and collected. These laboratory measurements are highly recommended for this
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type of formation in order to calibrate the water saturation. Unfortunately, there were no
laboratory water saturation data available in the evaluated gas field. In this case, the values
of Sw were calculated with the use of the generalized connectivity Equation (6) [16,17]:

RI =
(

1 − Sc
Sw − Sc

)μ

(6)

where Sc is critical water saturation.
Assuming as a conductive medium: irreducible water bound in clay minerals (CBW),

irreducible capillary water held by capillary forces in matrix micropores (KBW) and free
water (FFW), and with the assumption that CBW has different resistivity than KBW and
free water (FFW), the following equations can be derived [18]:

σ = [(CBW + KBW + FFW)× PhiT − WCIsh]
1
μ (7)

WCIsh
= (CBW + KBW + FFW)× PhiT

−
[

CBW×PhiT×σcw
1
μ +KBW×PhiT×σw

1
μ +FFW×PhiT×σw

1
μ

σw
1
μ

] (8)

WCIsh = (CBW + KBW + FFW)× PhiT

−
[

CBW×PhiT×σcw
1
μ

σw1/μ + KBW×PhiT×σw
1
μ

σw1/μ + FFW×PhiT×σw
1
μ

σw1/μ

]
Then,

WCIsh = CBW × PhiT
[

1 − (
σcw

σw
)

1/μ
]

WCIsh = CBW × PhiT

[
1 − (

Rw

Rcw
)

1/μ
]

Sc =
WCI
PhiT

Sc = −CBW ×
[(

Rw

Rcw

) 1
μ − 1

]
(9)

WCI—water connectivity index
CBW—clay-bound water, water bound in clay minerals
KBW—capillary-bound water, water bound in the micropores of the rock matrix
FFW—free fluid water, moveable water
σw—conductivity of free water and KBW
σcw—conductivity of CBW
Rw—free fluid water (FFW) and capillary-bound water (KBW) resistivity
Rcw—clay-bound water resistivity
μ—conductivity exponent
Swir = CBW × PhiT and Swi_Kapilar = KBW × Phie

Thus, the final water saturation (Sw) can be calculated as

Sw =
(1 − Sc) + μ

√
RI × Sc

μ
√

RI
(10)

The values of the conductivity coefficient μ are generally constant, and their range of
variation is small (1.6–2).
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2.5. Determination of Critical Water Saturation (Sc)

Although RI index can be calculated based on in situ measurement, the estimation of
Sc values may require the values of Rw and Rcw. Thus, formation/free water resistivity
(Rw) was calculated on the basis of the salinity of the water measured in the laboratory
and the temperature measured in the borehole. The (Rw) values decreased with depth. In
the interval below 1000 m, the Rw values ranged from 0.02 to 0.058 ohm. Resistivity of
clay-bound water was calculated as follows Equation (11):

Rcw =
CBW × PhiT

m
× Rvcl

a
(11)

The cementation exponent (m) was calculated based on the relationship between
laboratory-measured values of m and measured porosity, performed in well K-17 (12).

m = 0.089 × log (Phie) + 1.952 (12)

However, if there are difficulties in cementation exponent calculation, no measure-
ments of m are performed in the evaluated gas field. The simple equation proposed by
Peeters &Holmes [19] can be used to calculate conductivity (Ccw) and resistivity (Rcw) of
clay-bound water (CBW) Equation (13):

Ccw =
Ccl

Phi2cl
, Rcw =

1000
Ccw

(13)

where Ccl is conductivity of clay, and Phicl is clay porosity.
The calculated water saturation values are SwT, which represents water saturation in

total porosity. The following equation can be used to calculate effective water saturation
(Sw) Equation (14):

Sw = 1 −
[

PhiT
Phie

× (1 − SwT)
]

(14)

2.6. The Use of Artificial Neural Networks

Artificial neural networks are often used when conventional methods of analysis
fail. In qualitative analyses of the presence of hydrocarbons in rock, appropriate sets of
measured data are often used that allow one to observe so-called crossover, for example
on a neutron–acoustic or density–neutron crossplot. This allows qualitative analysis to be
performed and perspective zones to be distinguished [20–24]. There are two types of neural
network: supervised and unsupervised. This research used unsupervised self-organizing
maps (SOMs) [25] which are especially suitable for data surveys. This method creates a
set of vectors to represent the input data and carries out topology preserving projection of
the prototypes from the input space onto a low-dimensional grid [26]. The neurons and
connections that transfer information are the basic elements. In this study, the input was
the well logging measurements, and the output was the lithological classification in the
form of PSU units. During the learning phase, an input–output correlation is established.
The SOM is a fully connected neural network, where the output is generally organized into
a 2D arrangement of neurons. SOMs are based on soft competition between neurons in
the output layer. Training of the network is about finding similarities among input data
and can be performed without a priori information, which is called unsupervised learning.
Kohonen [25] described three complimentary processes—competition, cooperation, and
synaptic adaptation—that are involved in the SOM algorithm. Neurons in the SOM are
connected to adjacent neurons by neighborhood relations. In the training phase, vector x
from the input is chosen, and the activation function is used to activate each unit. Usually,
the activation function is expressed by the Euclidian distance between the weight vector
(wi) and input vector (x) [25]. If assumed that M is the size of SOM array, the unit number i
ranges from 1 to M and adjacent units on the grid are celled neighbours; the neuron with
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the weight vector closest to the input vector x is called the best-matching unit (BMU). It has
the smallest Euclidian distance and is described by Equation (15).

ck = argmin||xk − wi|| (15)

where:
ck is a winner index on the SOM for a data snapshot k, and c ranges from 1 to M. The

“arg” states for “index”. The weight vector of the winner is moved toward the presented
input data as indicated by a time-decreasing learning rate α. While function h modifies
the weight vectors of the neighboring units [27]. The rule of the learning is described by
Equation (16) [28].

wi(t + 1) = wi(t) + α(t)hci(t)[x(t)− wi(t)] (16)

where:

t—is learning iteration
x—states for an input pattern
wi(t) is the weight vector indicating the output unit’s location in the data space at time t;
x(t) is an input vector drawn from the input dataset at time t;
α(t) is the learning rate at time t;
h—spatial-temporal neighborhood function
hci(t) is the neighborhood kernel around the ‘winner’ unit c.

In this study, the calculations were performed using Techlog Schlumberger software
with the ISPOM module, which enables electrofacies detection based on Kohonen SOMs.

The presence of hydrocarbons, especially gas, affects not only resistivity logs but also
porosity logs, such as RHOB, DT, and NPHI. Thus, the presence of hydrocarbons causes an
increase in the interval time (DT) and a decrease in the values of bulk density and neutron
porosity. While the presence of hydrocarbons in sandstone intervals significantly affects
the recorded values of porosity logs, changes might be slight and not always unambiguous
in mudstones. The decrease in neutron porosity and the increase in resistivity may also be
associated with a higher content of calcite or dolomite in a given interval; however, in this
case, we also observe an increase in bulk density values and a decrease in compressional
slowness values.

Neural networks were used to classify data into PSUs (petrophysically similar units).
They did not constitute a facies classification, but indicated intervals with similar petro-
physical properties. Based on the knowledge of the geology in a given area and information
concerning the influence of individual minerals on the different well logs, it indicates the
hydrocarbon potential of each group and constitutes an alternative tool for qualitative
identification of water-saturated and gas-saturated intervals. In the research area selected,
the variability of the input data was small, related to the rather monotonous structure
of Miocene sediments constituting a series of interspersed layers, namely sandstones,
mudstones, and claystones of various thicknesses and variable carbonate content. These
sediments were characterized by the lack of evident differentiation on gamma rays, causing
significant difficulties in the interpretation of these types of deposits, which are the result of
fine-grained, fine-rhythmic turbidite sedimentation [1] (Figure 1B). All curves used as input
were normalized. The classification into petrophysically similar units (PSUs) was made in
10 wells covering the interval of seven gas-bearing horizons. The selected interval lies at a
depth of about 1000–1500 m and includes mostly thin-layer sediments. In seven of ten in-
terpreted wells, six well logs were used as input: gamma ray (GR), compressional slowness
(DT), bulk density (RHOB), neutron porosity (NPHI), photoelectric factor (PE), and deep
induction resistivity log ILD (Rt). Artificial neural networks based on the Kohonen [29]
algorithm available in Techlog Schlumberger software were used for data classification.
The fuzzy logic classification method was chosen. The network was trained on data from
the K-19 well and the results validated for K-17. The network dimension of 10 × 10 was
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assumed. The trained network was applied to the wellbores K-17, K-18, K-20, K-21K, K-25K,
and K-27.

In three archival wells where only three well logs (GR, NPHI, and Rt) were available,
the supervised neural network method was used, with the reference to PSUs from well
K-19. Despite that fact, the identified PSU groups corresponded to these from new wells,
where six input data were used. Table 2 presents the mean values of the input data within
the four PSUs and descriptions of their petrophysical properties.

Table 2. Average values of petrophysical parameters for individual groups.

Units

PSU 1.
Mudstone/Claystone

with Higher
Carbonate Content

PSU 2. Porous
Sandstone, Mostly

Water Saturated

PSU 3. Mudstones
Mostly

Water-Saturated

PSU 4. Gas-Saturated
Shaly-Sands/
Mudstones

Variables Mean Variance Mean Variance Mean Variance Mean Variance

Compressional
Slowness μs/m 326.329 28.985 322.360 36.055 339.215 24.054 323.570 51.090

Bulk Density g/cm3 2.495 0.000 2.362 0.001 2.455 0.001 2.444 0.001

Gamma Ray API 106.158 8.848 83.506 43.401 104.500 20.555 96.040 17.988

Formation
Resistivity ohm.m 3.661 0.012 2.870 0.583 3.248 0.069 3.973 0.084

Neutron
Porosity 0.263 0.000 0.243 0.001 0.283 0.000 0.243 0.000

Photoelectric
Factor b/elec 3.182 0.009 2.711 0.009 3.127 0.008 2.971 0.006

PSU 1 represents claystone and mudstones with carbonates, sediments with high
clay-bound water content, and an average bulk density of 2.5 g/cm3. This group was
comparable to PSU 3 (mudstone); however, the values of neutron porosity for the first
group were lower, and the bulk density and resistivity were higher. This was due to
the admixture of carbonates present in this electrofacies. XRD measurements indicated
between 20 and 30% of carbonates (calcite and dolomite) for this group, which is a group
of sediments that constitute sealing layers; it has low effective porosity and is almost
impermeable. However, the analysis of high resolution microresistivity logs from well
K-19 showed several-meters-thick interbeds of gas-saturated sandstones present within
this group of sediments. Unfortunately, these layers were too thin to be properly resolved
by conventional well logs. A petrophysical approach to interpretation of this thin-bed
formation required the use of high-resolution logs [30–35]. At this stage of interpretation,
PSU 1 was treated as a sealing unit, as applied methods of interpretation did not allow
the hydrocarbon potential of this unit to be properly estimated. The photoelectric factor
values were the highest for this group, on average 3.18 b/elec. PSU 2 corresponded to
porous sandstone or sandstone/mudstone heterolites. The average gamma ray value
for this group was 83.5 API. The bulk density values in this group were the lowest, on
average 2.36 g/cm3. The average value of the photoelectric factor was equal to 2.71 b/elec.
Average neutron porosity was 0.24. However, the resistivity of this group was very low
at 2.87 ohm.m, which suggests that sandstones were mostly water saturated or were in
the transition zone with the presence of both gas and water. This unit does not constitute
the dominant group associated with gas accumulation. Effective porosity of sandstone
layers was high and reached up to 23%. PSU 3 consisted of siltstones/mudstone with
the highest neutron porosity of 0.28, compressional slowness value of 339 us/m, and an
average resistivity equal to 3.2 ohm.m. These features may suggest that mudstones are
organic-rich. However, the uranium content measurements available in the K-25K and
K-21K wells were very low and generally did not exceed 4 ppm. The increase in uranium
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content did not show a relationship with PSU 3. In that case, this group probably is related
to mudstones with high irreducible water content; it also might consist of higher volumes
of swelling clays such as smectite [36] and low carbonate content. PSU 4 corresponded
to layers with the highest hydrocarbon potential. It was characterized by the highest
resistivity values of 3.97 ohm.m; the average value of neutron porosity was 0.24 and was
similar to that of sandstones of PSU 2. The average gamma ray was 96 API, higher than
for sandstones (83.5 API) and lower than for mudstones PSU 3 (104.5 API). The intervals
corresponding to PSU 4 coincided with the intervals where calculated water saturation
was low. PSU 3 and 4 showed similar parameters, both representing mudstones, but low
values of neutron porosity and high values of formation resistivity definitely indicate gas
saturation in PSU 4. These petrophysical interpretation results were used in Petrel to model
the spatial distribution of clay volume, effective porosity, and hydrocarbon saturation
(SH_FIN) within defined PSUs.

2.7. Spatial Distribution of Petrophysical Parameters

The spatial distribution of facies or petrophysical (clay volume, porosity, permeability,
hydrocarbon saturation), geomechanical, and geochemical parameters can be presented
through 3D models. Recognition of the variability of reservoir properties within the
research area (e.g., a gas field) is an important part of hydrocarbon exploration. On the
basis of spatial distributions or maps of individual parameters, one can make a decision
that helps to minimize the exploitation costs and maximize production. The maps of
the reservoir properties in the gas field, in addition to the structural model, are the basic
elements of planning the exploration works, carrying out the calculations of resources, and
preparing development projects for the discovered hydrocarbon accumulation. In addition
to planning the location of boreholes, the spatial form of mapping the parametric variability
of the analyzed reservoir also permits the selection of the well-type (vertical, horizontal). In
order to spatially distribute the results of the PSU classification obtained in the profiles of
the analyzed boreholes, a number of realizations were generated to reduce the geological
uncertainty of the model assessment for the petrophysical PSUs, porosity, and hydrocarbon
saturation model. The first stage of work was related to the construction of the structural
model. The authors used the structural model created by K. Sowiżdzał. In the next step,
definition of the vertical cell size based on the vertical heterogeneity of the log resolution
was established. High resolution increased the probability of capturing important changes
in reservoir parameters. Applying modern methods of data grouping also allowed us to
capture details related to the reservoir and variability of petrophysical properties revealed
in the wellbore profiles.

The final structural model consisted of seven gas-bearing horizons (marked in yellow)
separated by layers that had not been subjected to the spatial modeling process (gray layers)
(Figure 5). Due to the thin-bed nature of the Miocene deposits, the individual gas-bearing
horizons, being the subject of the analysis, had an average vertical resolution of the grid
of about 1 m (Figure 6). The total number of model cells in the intervals covered by the
analysis was 6,925,200 (Table 3).

Table 3. Quantitative characteristics of the individual intervals that were the subject of the research.

Horizon Average Thickness (m) Number of Grid Cells

XI 22.2 875,600
XII 9.6 398,000
XIII 64.5 2,587,000
XIV 31.8 1,273,600
XIVa 14 597,000
XV 15.4 636,800
XVI 13.5 557,200
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Figure 5. Cross-section through the structural model of the analyzed deposit complex (view from the
west side) with a location map of the wells and cross-sectional lines.

The final model showed the spatial distribution of individual petrophysical groups
through the variability of reservoir parameters in each PSU group. The range of variability
for reservoir parameters in each PSU group was defined based on the interpretation
performed for the boreholes (Table 4).

Table 4. The range of variability of the most important reservoir properties for each PSU group.

PSU Vcl (v/v) Phie (v/v) K (mD)
Swi_Kapilar

(v/v)
SH-Hydrocarbon
Saturation (1-Sw)

1 0.55–0.7 0.03–0.05 0.01–0.1 0.8–0.9 1—sealing unit
2 0.1–0.35 0.15–0.23 10–20 0.3–0.4 SH
3 0.4–0.5 0.05–0.12 0.05–1 0.4–0.6 SH
4 0.35–0.45 0.08–0.15 0.1–10 0.4–0.5 SH

For hydrocarbon saturation, no predefined values for each group were applied (except
PSU1, which was treated as a sealing unit), but the continuous curve of SH was used. First,
the data analysis was carried out (defining the physical values of the modeled parameter)
and the parametric modeling process itself.
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Figure 6. Well log data (solid black line) averaged at the vertical resolution of the grid.
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2.8. Defining the Direction and Extent of Variograms

The analysis of the semivariogram function was carried out on the basis of a graph in
which the x-axis showed the distance between the tested locations of the analyzed variable,
the y-axis corresponded to 12 variances (i.e., semivariances), and the points were the values
of the experimental variogram. Variogram analysis consists of adjusting the type of theo-
retical model to the nature of the variability observed in the data population, represented
by the points of the experimental variogram by determining a number of parameters. The
results are applied at the stage of parametric modeling of individual parameters

2.9. Parametric Modeling

At the parametric modeling stage, for each gas-bearing horizon, the results of data
analyses carried out in the previous step were applied, and a computational algorithm
was selected. For clay volume, effective porosity, and permeability, a stochastic Gaussian
random function simulation algorithm was selected.

For each of the modeled parameters, 25 equally probable realizations of the spatial
distribution were generated, which were finally subjected to the averaging process.

Parametric modeling results were verified by comparison of the histograms of the
input data (well logs) with the data averaged in the resolution of the grid (upscaled logs)
and models.

Based on the parametric models constructed in the previous step (Phie, Vcl), the
reconstruction of the spatial distribution of reservoir parameters within the analyzed gas-
bearing horizons was carried out. The procedure of spatial electrofacies classification
consisted of the application of parametric models and the classifier formula in the form
of an interpretation of electrofacies (the results of the PSU classification carried out with
the use of the IPSOM module on well log data). The classification algorithm defined the
membership of each grid cell to the PSU showing the highest degree of probability, also
showing the value of this probability.

Finally, reconstruction of the spatial distribution of hydrocarbon saturation (SH) was
performed. Neural networks were used to recreate the meta-attributes (pseudo-attributes)
of this parameter (parameter with nonphysical values). Even so, pseudo-attributes can
still be valuable information of a qualitative nature. The quantitative nature of the data
was ensured by the procedure related to data analysis. At this stage, ranges of values
(minimum, average, maximum) and a distribution curve for the value of a given parameter
were defined based on information from the borehole.

3. Results

The results of well log data interpretation of the selected wells and spatial distribution
of reservoir properties and PSUs in the form of property maps are presented below. Table 5
is a detailed description of each column’s contents from Figures 7 and 8.

Table 5. Description of mnemonics and interpretation results of individual paths from Figures 6 and 7.

Track Number Mnemonic Description

1 MD Measured depth

2 perforations Perforated interval

3 GR Normalized gamma ray

4 PE, NPHI, DT, RHOB Normalized: photoelectric factor, neutron porosity,
compressional slowness, bulk density

5 Rt Normalized formation resistivity

6 Vcl Clay volume

7 Phie, PhiT, PHIE Effective porosity, total porosity, and
laboratory-measured porosity (PHIE)
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Table 5. Cont.

Track Number Mnemonic Description

8 XI, XII, XII, XIV Horizon names

9 PSU groups
1—claystones/mudstones, 2—sandstones,
3—mudstones, 4—mudstones with high

hydrocarbon potential

10 probability Probability of occurrence of each facie at a specific
depth

11 NPHI_base, NPHI

Qualitative method of detection of gas-saturated
zones based on modified Passey’s method:

yellow—gas-saturated zones; brown—water
saturated zones

12 Rt, R0_RHOB Qualitative method of detection of gas-saturated
zones based on difference between RT and R0

13 Swe_SIM, Swi_kapilar
Effective water saturation calculated from the

Simandoux [37] formula (Swe_SIM), irreducible
water saturation—Swi_kapilar

14 Swe_mont,
Swi_kapilar

Effective water saturation calculated from the
modified Montaron equation (Swe_mont),
irreducible water saturation—Swi_kapilar

15 WCI Water connectivity index

Calculated water saturation from the modified Montaron method indicates higher
gas saturation in sandstones intervals comparing to Simandoux results. Simandoux model
is basically dedicated shaly formations but if there is high variability of shale volume
content as it is in heteroliths reservoirs there will be a necessity to subdivide reservoir
into high number of thin beds and use different saturation model in each kind of facie,
which may be confused and will lead to discontinuity, rapid changes in water saturation
profile. Additionally, Simandoux method is only resistivity sensitive, it does not account
for i.e., neutron porosity or bulk density changes, which may lead to underestimating water
saturation in intervals where increasing resistivity is not related to the presence of hydrocar-
bon, for example, higher calcite content. Moreover, if there is little contrast or no contrast
between gas saturated and water saturated zone Simandoux model will consequently show
gas saturation through the whole interpreted interval or water saturation depending on
assumed claystone resistivity. Involving RHOB or NPHI logs at stage of Sw calculation will
give extra indicator that may confirm or not the presence of gas. The more input data taken
into account, the lower the uncertainty of the calculated Sw. The advantage of Montaron
model is also the fact of using measured “in situ” well logs as an input. The method does
not rely on calculated parameters as Vcl or Phie that may have a high level of uncertainty.
Via spatial propagation of petrophysical properties from boreholes, one can determine the
favorable areas potentially gas saturated. The distribution of reservoir parameters was
performed within the defined PSU’s. Moreover, even the sole spatial propagation of PSU’s
might be a good qualitative hydrocarbon indicator, as PSU 4 is highly related to existing gas
accumulations. This may give a first look at the perspective of the area before petrophysical
interpretation is carried out.
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Figure 7. The results of petrophysical well log interpretation for well K-21K.
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Figure 8. The results of petrophysical well log interpretation for well K-27.

High resolution of the model allowed for more reliable spatial variability of the
individual layers that constitute the Miocene formation. Figure 9 present the effective
porosity within the modeled horizons while Figure 10 show the spatial distribution of PSUs
in horizon XV.

Figures 11 and 12 present the distribution of the hydrocarbon saturation (SH) in
individual gas-bearing horizons. Finally, the works presented in this paper allowed for
reconstruction of hydrocarbon saturation in the analyzed area and the generation of maps
of average values of this parameter for each of the analyzed gas horizons.

57



Energies 2022, 15, 1890

 

Figure 9. Final spatial distribution of effective porosity.

 

Figure 10. Spatial distribution of PSUs in gas horizon XV.
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Figure 11. Maps of average hydrocarbon saturation in gas-bearing horizons: (A) XI, (B) XII, (C) XIII,
(D) XIV, (E) XIVa, and (F) XV. White represents areas beyond the lithological barrier of the horizon.
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Figure 12. Maps of average hydrocarbon saturation in gas-bearing horizon XVI. White represents
areas, beyond the lithological barrier of the horizon (Precambrian basement).

The analyses of the results presented in the form of maps of average hydrocarbon
saturation indicate best perspectivity for horizons XV and XVI showed high hydrocarbon
saturation in the north-west part of the anticline; in addition, the thickness of several
dozen meters make these horizons attractive for the future exploitation. Additionally, the
morphology of Precambrian basement constitutes the traps which preserve hydrocarbons
from migration. In turn horizon XIVa showed high hydrocarbon saturation in the central
and south part of the evaluated gas field, but the coverage of this horizon was significantly
limited by the lithological changes, the increase in clay volume, and decrease in effective
porosity. In addition, horizons XI and XIV indicate gas saturation in the northern and north-
east part of the anticline that pointing out that area favorable for the exploration and drilling
works. Horizon XIII was dominated by PSU 1 with low porosity and permeability. Detail
interpretation of perspectives of this horizon requires the availability of high resolution
well logs and much higher vertical resolution of the model.

4. Discussion

The interpretation of the Miocene multihorizons gas field allowed us to characterize
the reservoir parameters of sandy-clay and silt sediments, in which most gas accumulation
can be observed. Simultaneously, qualitative methods of detecting gas-saturated intervals
were proposed based on well log data. An alternative modified connectivity equation for
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shaly-sands was applied to calculate water saturation. The model enabled us to calculate
the value of Sw in the deposits formed as mudstones or sandstones with clay content
higher than 35%, without the need to determine Archie’s saturation exponent (n). This
method is mainly based on the results of well log data that reflect the reservoir properties.
The results of the Sw estimation are consistent; water saturation based on the Montaron
method shows correlation with the Sw obtained from the Simandoux equation and clearly
indicates intervals with high hydrocarbon potential. However, the Montaron method,
which also uses the porosity logs (RHOB or NPHI) in the intervals with low resistivity
contrast (LRC) zones, shows lower values of water saturation compared to Sw from the
Simandoux equation. This indicates that porosity logs (RHOB, NPHI, DT) could constitute
valuable additional input at the stage of water saturation calculation in formations of high
clay content. On the basis of the interpretation, it is possible to define the properties of the
sediments in which most of the gas accumulation is observed. The effective porosity of
shaly gas horizons ranges from 5 to 15%, and the water saturation ranges from 26 to 50%.
The effective porosity of these sediments is reduced by the irreducible water, the capillary
water (Swi_kapilar), the content of which ranges from 40 to 70%. The qualitative analysis of
mudstone and claystone heteroliths classified as PSU 1 did not clearly show the possibility
of gas saturation in these formations, as the water saturation coefficient is very high, at
80–90%. However, the detailed analysis of high-resolution microresistivity measurements
in the K-19 well confirmed the presence of thin layers of gas-saturated sandstones within
these sediments (horizon XI and XIII). Proper calculation of the reservoir parameters within
these rare sandstone inserts due to their thin-layer nature requires a separate interpretation
approach based on high-resolution microresistivity logs. Moreover, spatial modeling of
reservoir parameters within this group of sediments requires a significant increase in the
resolution of the model.

Propagation of the petrophysical properties of individual PSU groups was carried
out based on the well log interpretation and predefined ranges of variability of reservoir
parameter for the individual group. The reconstruction of the spatial distribution of
clay volume and porosity was performed with standard parametric modeling procedures
using the Gaussian random function simulation stochastic algorithm, while for the two
key parameters for this study, PSU grouping and SH hydrocarbon saturation, different
approaches were used. The distribution of the classification into PSU groups was carried
out by the facies classification procedure, which enabled us to define the membership
of each grid cell to the group (1, 2, 3, 4) showing the highest degree of probability of its
occurrence. The spatial distribution of hydrocarbon saturation was based on the use of
the SH parameter calculated on the basis of the Montaron method and the petrophysical
classification of PSU. The results of petrophysical interpretation indicate the presence of
hydrocarbons, including those beyond predefined gas horizons. Thus arises the necessity
of verification and redefinition of horizon boundaries.

5. Conclusions

Presented work confirmed the nature of gas deposits developed in the Miocene forma-
tion. As was noted in the previous works, the favorable conditions for gas accumulations
provide the thin layers of sandstones and mudstones sealing by the laminas of impermeable
claystones with admixtures of calcite and dolomite. The thick massive sandstones with
effective porosity of 25–29% usually cannot keep hydrocarbons as there are not enough
thick impermeable layers that will prevent the hydrocarbons from migration. Although the
existing gas accumulation in the heteroliths of basin plain deposits have moderate reservoir
properties porosity of several percent and higher level of clay volume, their thickness can
reach even 100 m. That makes these multihorizons, consist of thin laminas of gas saturated
mudstones and sandstones layered by impermeable claystone, economically important.
The perforations documented the gas flow from these horizons of several dozen cubic
meters per minute. Unfortunately, we still suffer from the small amount of laboratory
measurements performed on core samples. There is need for an accurate recognition of
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lithological composition of these horizons that may be provide both by the X-ray diffraction
tomography measurements of core sample and new well logging profiling. The most
important from exploration point of view become the accurate calculation and core cal-
ibration of irreducible and free fluid volume. Miocene deposits are often thin-bedded
thus new well logging technology should be used to collect data with higher resolution.
Very useful in pay zone detection could be measurements of vertical (Rv) and horizonal
(Rh) resistivities. Xaminer Multicomponent Induction (MCI) is dedicated to evaluation
anisotropic thin-bedded formations and is a tool that measures formation resistivity both
vertically and horizontally at different depths of investigation. When run with a directional
tool, it also provides structural dip and azimuth. However, horizontal microresistivity
can also be measured with the use of imagers of borehole walls (XRMI). The paper shows
that even using basic well logs we can roughly assess the potential of Miocene heteroliths.
New looks at conventional well log data in combination with laboratory measurements
and propagation within the reservoir allowed indication of potentially gas saturated areas.
We can deal with low resistivity contrast between gas and water saturated intervals by
involving other available logs, usually dedicated porosity calculation (NPHI, DT, RHOB),
at the stage of water saturation calculation.
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14. Myśliwiec, M. Exploration for gas accumulations in the Miocene deposits of the Carpathian Foredeep using direct hydrocarbon
indicators—Verification of anomalies (southern Poland). Prz. Geol. 2004, 52, 307–314.

15. Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. J. Pet. Technol. 1942, 1, 55–62.
[CrossRef]

16. Montaron, B. A Quantitative Model for the Effect of Wettability on the Conductivity of Porous Rocks SPE. In Proceedings of the
SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 11–14 March 2007. [CrossRef]

17. Jarzyna, J.; Krakowska, P. Dobór Parametrów Petrofizycznych Węglanowych Skał Zbiornikowych w Celu Podwyższenia
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Abstract: The Lower Paleozoic carbonate strata experience multi-stage tectonic activity and post-
depositional volcanic activity in the Dongying Depression, Bohai Bay basin. These tectonic and
magmatic activities have caused the reservoir to undergo severe diagenesis, resulting in strong
reservoir heterogeneity. This study aims to identify the characteristics of dolomite, various reservoir
spaces’ characteristics, the origin of different types of dolomite, and the porosity evolution. According
to crystal size and morphology, dolomites can be divided into three kinds of matrix dolomites and
four kinds of dolomite cements. The petrology and geochemistry of the dolomite suggests that
matrix dolomite is formed from seawater. The medium-to-coarse-crystalline dolomite cement (D3)
has a higher 87Sr/86Sr ratio (0.7119 to 0.7129) and a higher homogenization temperature (>125 ◦C),
suggesting that the fluid for the precipitation of D3 is a mixed fluid formed by hydrothermal fluid
eroding the 87Sr-rich feldspar sandstone. The strikingly negative δ18O values (−23.7 to −25.7‰
VPDB) of saddle dolomite (D4) indicate that D4 precipitated from hydrothermal fluids and the Mg2+

source may be due to dissolution of the host dolomite that formed in the evaporation environment.
The reservoir spaces of the target strata in the study area mainly include fractures, dissolution vugs,
intercrystalline pores, and moldic pores. Dissolution is the basis for forming high-quality dolomite
reservoirs. The faults and fractures provided favorable conditions for dissolution. Hydrothermal fluid
and organic acid were the main dissolution fluids for the dolomite reservoir, which were beneficial
to the development of secondary pores. In the study area, organic acid dissolution was shown to
contribute more than hydrothermal dissolution in the study area.

Keywords: buried hill reservoir; the lower Paleozoic; dolomitization; diagenesis; pore evolution

1. Introduction

Dolomite reservoirs are important hydrocarbon reservoirs. According to the statistics
of 226 large–medium-scale carbonate hydrocarbon fields, dolomite reservoirs account for
90% of the world’s carbonate hydrocarbon fields [1,2]. The development of the dolomite
reservoirs is also related to the changes in climate that took place during the geological
period. Older carbonate strata commonly have higher ratios of dolomite reservoirs [3].
Domestically, dolomite reservoirs are located in the Majiagou Formation in the northern
Ordos Basin [4], in the Qixia and Dengying Formation and in the Sichuan Basin [5–9], in
the Changxing–Feixian Formation in the Puguang Oilfield, and in the Lower Paleozoic in
the Tarim Basin [10].

As for the genesis of dolomite reservoirs, most dolomite reservoirs are considered to
have been initially formed by reflux dolomitization in an arid climate environment and
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capillary concentration [11,12]. Furthermore, assuming that there was enough Mg2+ and a
dynamic mechanism, this microbial-induced dolomitization can also occur in carbonate
formations [13,14]. Since the 1990s, hydrothermal dolomitization and buried dolomitization
under the deep-buried environments have been proposed by scholars [15–19]. Additionally,
dolomitization under high-temperature and deep-buried environments might improve the
permeability and porosity of dolomite reservoirs [20].

Previous studies have suggested that carbonate rocks are more susceptible to the
alteration of multi-type and multi-stage diagenesis during diagenetic evolution. The devel-
opment of reservoir spaces and the quality of the late physical properties are significantly
controlled by diagenesis [21,22]. Carbonate reservoirs that have been influenced by the
diagenesis have more complicated pore evolution [23–25]. In recent years, the qualities
of carbonate rock reservoirs have been the focus of many studies [26]. There are sev-
eral types of diagenesis that affect the reservoir properties of carbonate rocks, including
dolomitization, fracturing, dissolution, compaction, and cementation. Dolomitization, dis-
solution, and fracturing are the main constructive types of reservoir diagenesis [22,27,28],
while cementation and compaction represent the destructive forms of reservoir diagene-
sis [29,30]. In recent years, research on carbonate diagenesis has mainly focused on the
structurally controlled hydrothermal alteration of carbonate reservoirs, and studies have
pointed out that the effects of tectonic-controlled hydrothermal alteration on reservoirs are
multifaceted [15,31–33]. Therefore, it is difficult to clearly delineate the time boundaries of
different types of diagenesis. Meanwhile, studies still present some doubts regarding the
dissolution mechanism of carbonate minerals by deep hydrothermal fluids [34].

In the last few decades, many studies have been carried out on the carbonate reservoir
in the Paleozoic strata of the Dongying Depression [35], many of which have focused on the
reservoir characteristics of the buried hill zone in the western portion of the depression and
the Caoqiao-Guangrao buried hill zone in particular [36], and these studies have proposed
that carbonate reservoirs can be divided into the two following categories: weathering crust-
type buried hills and inner dissolution-type buried hills [37]. The development of these
carbonate reservoirs was mainly controlled by karstification and fracture development, and
it has been suggested that the dolomite formations are more likely to form high-quality
reservoirs [38]. Dolomite reservoirs have been explored in the Ordovician Badou Formation
in the Zhuanghai area, which were previously predicted to be favorable reservoir areas [39].
In recent years, the dolomite reservoir of the Yeli-Liangjiashan Formation has also become
a key exploration target in the Shengli Oilfield, especially in the Zhuanghai area [40].
Most studies have concluded that dissolution and dolomitization are the key factors for
forming favorable reservoirs. However, there are insufficient studies on the lower Paleozoic
carbonate reservoirs in the Gaoqing-pingnan area. There is little research on dolomite
reservoirs and dolomite cement types in this area.

Although scholars have studied the southwest area of the Dongying Depression,
most of these studies have focused on the influence of atmospheric fresh water on buried
hill reservoirs. However, these ignored the fact that the matrix dolomite and dolostone
cement are the most important factors influencing the formation of high-quality reservoirs.
Therefore, this study focuses on the matrix dolomite and all types of dolostone cement of
the Lower Paleozoic formation in the southwest of the Dongying Depression. The major
goals of this study are to (1) analyze the genesis of the dolostone cements, diagenesis, and
the pore evolution characteristics under the different diagenesis, utilizing petrographic,
geochemical data; (2) carry out the study on the relationship between diagenesis and
reservoir pore evolution in the study area. This study is conducive to understanding the
reservoir characteristics and their distribution laws, providing some geological basis for
later exploration.

2. Geological Setting

The Dongying Depression is located on the southeast of the Jiyang Sag, with an area
of 5700 km2 [41] and mostly faces northeast. The Dongying Depression belongs to a sub-
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tectonic unit in the Jiyang Sag, Bohai Bay Basin [42]. The study area mainly comprises
the Gaoqing-Pingnan area in the southwest of the Dongying Depression (Figure 1a). The
southern upper plate of the Gaoqing fault belongs to the Gaoqing uplift, and the eastern
falling plate belongs to the Boxing depression [43].

Figure 1. (a) Tectonic setting of the Dongying Depression, Bohai Bay Basin; (b) characteristics of
formation development in NE-trending strata profile; section line is shown in (a); (c) stratigraphy of
the Lower Paleozoic Formation in Dongying Depression, Bohai Bay Basin (modified after [44]). The
map of China is quoted from [45].

In the study area, the Lower Paleozoic carbonate strata have experienced multiple
periods of tectonic activity and post-depositional volcanic activity. Tectonic activity in the
study area is divided into two main periods. The first large tectonic activity occurred during
the Indosinian (Late Permian–Triassic period). The tectonic activity in the Indosinian period
caused strong denudation of the Paleozoic strata in the relatively uplifted area of the study
area. The second large-scale tectonic activity occurred in the Yanshan period (Jurassic–Early
Cretaceous period). This tectonic activity was an extremely frequent and violent tectonic
activity following the Indosinian period, and this tectonic activity was also accompanied
by strong volcanic activity.

The objective strata consist of the Lower Paleozoic Ordovician and Cambrian car-
bonate reservoir [46]. The Cambrian strata consist of the Mantou Formation, Maozhuang
Formation, Zhangxia Formation, Gushan Formation, Changshan Formation, and Fengshan
Formation. The whole Cambrian is about 10–760 m thick. The Ordovician strata include the
Yeli-Liangjiashan Formation, Majiagou Formation, and Badou Formation. The Ordovician
strata is about 20–240 m thick [47]. The Badou Formation is missing from the study area
due to uplift and denudation (Figure 1b,c). Due to the strata of uplift that took place during
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the tectonic activity period, Carboniferous and Permian strata are absent in the higher
parts of the structure. Therefore, the Lower Paleozoic strata is in contact with the overlying
Mesozoic unconformity [48].

The sedimentary facies in the Paleozoic portions of the Dongying Depression comprise
clastic sedimentary facies series and carbonate sedimentary facies series according to
sedimentary rock types. The clastic sedimentary facies series were formed in supratidal
and intertidal flat environments. The clastic sedimentary facies series can be further divided
into mud flat and sand beach sedimentary subfacies according to their environment and
lithology. Due to the decrease in the terrigenous material supply, the study area is mainly
composed of argillaceous dolomite or limestone deposits. In one section of the study area,
shale and mudstone are interbedded with dolomite and limestone. Carbonate sedimentary
facies series can be further divided into evaporative platform facies, restricted platform
facies, and open platform facies. The sedimentary facies comprise supratidal and intertidal
zones from the Mantou and Xuzhuang periods, the main lithology is composed of oolitic
limestone interbedded with shale; high-energy subtidal shoals and open seas were widely
developed during the Zhangxia and Gushan periods. Intertidal flat and restricted sea
facies were widely developed during the Changshan and the Early Ordovician periods.
The main rock types comprise argillaceous limestone, silty limestone, and dolomite. The
deposited environment gradually changed to shallow-water supratidal and intertidal zones
and deeper-water subtidal zones during the Middle Ordovician period [44,48]

The Dongying Depression is a fault depression basin that was developed on the
background of bedrock paleotopography. This basin went through stable lifting during the
Paleozoic period, fold uplifting during the Triassic to middle Jurassic periods, preliminary
fault depression between the late Jurassic and Cretaceous periods, and rifting and spreading
in the Cenozoic periods, resulting in whole depression [44,49]. These complex tectonic
activities laid the foundation for the formation of multiple diageneses. Additionally, the
magmatic hydrothermal activity that accompanied these tectonic activities provided a
source of materials for the development of hydrothermal cement.

3. Analytical Methods

All samples were collected from the southwest section of the Dongying Depression,
specifically in the Gaoqing-pingnan area. Wells Bg 26, Bg 22, Bgx 15, and Bg 11 were
included for sample collection (Figure 1a). A total of 70 thin sections were half-stained
with a mixture of potassium ferricyanide and alizarin red to qualitatively discriminate
between dolomite types, which was carried out according to the different petrographic
characteristics of the different dolomites after they had been stained (Table 1).

Cathodoluminescence (CL) analysis was performed at the Analytical Laboratory of the
Beijing Research Institute of Uranium Geology (BRIUG) to determine the cement generations.

The oxygen and carbon stable isotope analyses were carried out at the Analytical
Laboratory of the Beijing Research Institute of Uranium Geology (BRIUG). Carbonate
powders were reacted with 100% phosphoric acid for 4 h at 25 ◦C for calcite and at 50 ◦C for
dolomite, and the resultant CO2 was measured to determine its oxygen and carbon isotopic
ratios on a Delta plus mass spectrometer. The isotope values were determined relative to
the Vienna Peedee Belemnite standard (VPDB). Reported in the standard notation relative
to standard VPDB for carbonate ratios and VSMOW for oxygen ratios. δ18O (VSMOW)
values were converted to δ18O (VPDB) values. The reproducibility values of the isotopic
measurements for both C and O were better than ±0.06‰ and ±0.08‰, respectively.
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Table 1. Information on the samples used in this study.

Well Sample Depth (m) Formation Lithology Description Sample Analysis

Bg26 2515.6 Yeli-Liangjiashan Limestone Microscopic
observation

Bg26 2790.5

Zhangxia

Oolitic limestone Microscopic
observation

Bg26 2791.2

Bioclastic limestone

C, O isotope; 87Sr/86Sr

Bg26 2791.5 Microscopic
observation

Bg26 2793.2 C, O isotope; 87Sr/86Sr

Bg26 2795.4 Microscopic
observation

Bg26 2795.5 Grain limestone Cathodoluminescence

Bg26 2798.2 Dolomitic bioclastic
limestone C, O isotope; 87Sr/86Sr

Bg26 2801.9 Calcareous dolomite C, O isotope; 87Sr/86Sr;
Cathodoluminescence

Bg26 2803.5 Algal limestone Microscopic
observation

Bg22 2211.17

Ordovician

Microcrystalline
dolomite

Microscopic
observation

Bg22 2219.27 Microscopic
observation

Bg22 2233.04 C, O isotope; 87Sr/86Sr

Bg22 2236.4 C, O isotope; 87Sr/86Sr

Bg22 2236.76 Argillaceous dolomite Microscopic
observation

Bg22 2246.89 Microcrystalline
dolomite

Microscopic
observation

Bg22 2348.95 Microcrystalline
dolomite C, O isotope

Bg22 2398 Fine-crystalline
dolomite

Microscopic
observation

Bg22 2399.1 C, O isotope

Bgx15 2238.9 Ordovician Microcrystalline
dolomite C, O isotope

Bg11 2233.04

Ordovician

Microcrystalline
dolomite

87Sr/86Sr;
Cathodoluminescence

Bg11 2434.5

Argillaceous limestone

C, O isotope

Bg11 2435.24 C, O isotope; 87Sr/86Sr

Bg11 2449.5 Cathodoluminescence

The 87Sr/86Sr isotope ratios were determined for selected matrix dolomite and dolomite
cements using a Thermal Ionization Mass Spectrometer (TIMS, Phoenix) at the analytical
Laboratory of the Beijing Research Institute of the Uranium Geology (BRIUG). The analyti-
cal precision of the individual runs was determined to be 0.00005 (2σ). The mean standard
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error of the mass spectrometer performance was ±0.00003 for standard GB/T 17672-1999.
The measured 87Sr/86Sr isotope values were normalized using the following formula

(87Sr/86Sr) St = (87Sr/86Sr) Sa × (1 + 2f) (1)

f = [(87Sr/86Sr) St/(87Sr/86Sr) Sa] ÷ 2 (2)

(87Sr/86Sr) Nor = (87Sr/86Sr) Sa × (1 + f) (3)

where (87Sr/86Sr) St is the standard 87Sr/86Sr values, (87Sr/86Sr) St = 8.37521; (87Sr/86Sr) Sa
is the measured value of samples; (87Sr/86Sr) Nor is the normalized value of samples.

In this work, the primary fluid inclusions of the dolomite and calcite in the fractures
and vugs were selected for systematic microscopic temperature measurement. Fluid
inclusion microthermometry measurements were carried out using a microscopic heating
and cooling stage (Linkam THMSG600) at the Institute of Geology Chinese Academy of
Geological Science, and the measurements were taken within a temperature range of −196
to +600 ◦C and at a test accuracy between ±0.5 ◦C and ±2 ◦C. The temperatures of the
fluid inclusions were obtained by freezing and warming. First, liquid nitrogen was used
to cool the fluid inclusions. The changes that took place in the fluid inclusions during
the temperature drop were observed. The inclusions were slowly warmed back up after
freezing. When performing the homogenization temperature measurements, the heating
rate was 5 ◦C/min, and the changes in the two gas–liquid phases were observed during
the heating process. The heating rate was controlled to 1 ◦C/min in order to accurately
record the homogenization temperature when the first phase was close to disappearing.

4. Results

4.1. Petrography

Based on the core, thin section observation, the dolomites were able to be divided
into two types: matrix dolomite and dolomite cements. The matrix dolomite mainly
included argillaceous dolomite (M1), microcrystalline dolomite (M2), and fine-crystalline
dolomite (M3). The dolomite cement filling the fractures and vugs included powder-
to-fine-crystalline dolomite cement (D1), fine-crystalline ferroan dolomite cement (D2),
medium-to-coarse-crystalline dolomite cement (D3), and saddle dolomite (D4).

4.1.1. Argillaceous Dolomite (M1)

In this type of dolomite, the crystals were smaller in size, less than 10 μm, with
a euhedral–subhedral texture. There was no development of intercrystalline pores or
intercrystalline dissolution pores between the dolomite crystals. The fractures were filled
with seepage silt or clay minerals during uplift periods (Figure 2a,b). Argillaceous dolomite
is commonly found in Middle Ordovician strata.
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Figure 2. Petrological characteristics of various matrix dolomites in the Lower Paleozoic strata
in the Dongying Depression, Bohai Bay Basin. (a) Argillaceous dolomite (M1), Well Bg22
2236.67 m, Ordovician formation, plane-polarized light; (b) same field of view as A, orthogonal
light; (c) microcrystalline dolomite (M2), Well Bg22 2211.17 m, Ordovician formation, the structural
fractures developed and filled by dolomite, orthogonal light; (d) microcrystalline dolomite (M2),
Well Bg22 2233.04 m, Ordovician formation, dissolution vugs are developed, plane-polarized light;
(e) fine-crystalline dolomite (M3), Well Bg22 2398 m, Ordovician formation, plane-polarized light;
(f) multi-stage fractures are developed in fine-crystalline dolomite, Well Bg22 2399.1 m, Ordovician
formation, plane-polarized light.

4.1.2. Microcrystalline Dolomite (M2)

This type of dolomite is defined as having a dolomite mineral of more than 90% in
the dolomite rocks. This type of dolomite also shows the development of fractures, which
are filled by medium-coarse-crystalline dolomite cements (Figure 2c). As the burial depth
increases, selective dissolution vugs can be observed in the microcrystalline dolomite
(Figure 2d). Microcrystalline dolomite mainly developed in the middle to lower parts of
the Ordovician strata.

4.1.3. Fine-Crystalline Dolomite (M3)

This type of dolomite is defined as having a dolomite mineral content of more than
90% in the dolomite rocks, and the dolomite mainly comprises euhedral–subhedral crystals.
Fine-crystalline dolomite is larger than 100 μm. Anhydrite cements can be seen, and part
of the rhombic fine-crystalline dolomite is dispersed in the anhydrite cements (Figure 2e),
indicating that the dolomite may have been formed by evaporation in an arid environment.
Structural fractures developed in the fine-crystalline dolomite, which were successively
filled with dolomite, calcite, and anhydrite (Figure 2f).
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4.1.4. Powder-to-Fine-Crystalline Dolomite Cements (D1)

This type of dolomite cement is different from the fine-crystalline matrix dolomite.
According to the different occurrence characteristics of the powder-to-fine-crystalline
dolomite cements (D1), it can be divided into three types: (1) Most of the powder-to-fine-
crystalline dolomites are distributed along stylolite (Figure 3a–c). Powder-to-fine-crystalline
dolomite is about 46 μm in size. Powder-to-fine-crystalline dolomite cements (D1) are
commonly rhomboid crystals and tend to have a euhedral structure, allowing them to
form more intercrystalline pores. This type of dolomite is commonly nonluminous under
the CL (Figure 4b). (2) The other type of powder-to-fine-crystalline dolomite mainly
comprises the dolomite patches found in limestone and has euhedral crystals and poorer
sorting (Figure 3e). This dolomite ranges from 39 μm to 88 μm in size. (3) Powder-to-fine-
crystalline dolomite cements fill in the oolites. The early fluid selectively dissolved the
interior of the oolite, and the late Mg-rich fluid recrystallized into the interior of the oolite
to form rhombic dolomite crystals (Figure 3f). This dolomite ranges from 69 to 218 μm in
size. Its crystals are usually characterized by “mist core bright edges” and are commonly
nonluminous under the CL, only faint dull red cathodoluminescence can be seen at the
edges of these dolomite crystals (Figure 4d). This type of dolomite is mainly distributed in
the Zhangxia Formation of the Cambrian strata.

Figure 3. Petrological characteristics of the powder-fine dolomite and dolomite cements (D1).
(a) Lower angle stylolite in the core, Well Bg26 2801.9 m, Zhangxia formation; (b) the character-
istics of the powder-to-fine-crystalline dolomite cements (D1) around the stylolite. Stylolite is filled
with black organic matter, Well Bg26 2801.9 m, Zhangxia formation; (c) local amplification of b; (d) the
characteristics of the dolomite patch, the outside of the dolomite patch is argillaceous limestone,
Well Bg26 2515.6 m, Yeli-Liangjiashan formation; (e) local amplification of d, intercrystalline pores
(yellow arrow); (f) the characteristics of the powder-to-fine-crystalline dolomite cements (D1) interior
of the oolite, Well Bg26 2790.5 m, Zhangxia formation; (g) the petrological characteristics of the
fine-crystalline ferroan dolomite cement (D2) and the relationship between the fracture and stylolite,
Well Bg26 2801.9 m, Zhangxia formation; (h) algal limestone. The petrological characteristics of the
fine-crystalline ferroan dolomite cement (D2), Well Bg26 2803.5 m, Zhangxia formation; (i) dolomitic
bioclastic limestone. The petrological characteristics of the fine-crystalline ferroan dolomite cement
(D2), Well Bg26 2803.7 m, Zhangxia formation.
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Figure 4. Thin section and the cathodoluminescence photomicrographs showing different kinds
of dolomite cements in the Lower Paleozoic strata in the Dongying Depression, Bohai Bay Basin.
(a) The powder-to-fine-crystalline dolomite cements (D1) along with the stylolite, Well Bg11 2449.5 m,
Ordovician formation, plane-polarized light; (b) characteristics of cathodoluminescence in the same
field of view as a. The powder-to-fine-crystalline dolomite cements within the yellow dotted line, CL;
(c) the powder-to-fine-crystalline dolomite cements (D1) filled in the oolite and have the characteristics
of “mist core bright edges”, Well Bg26 2795.5 m, Zhangxia formation, plane-polarized light; (d) the
powder-fine-crystalline dolomite cements (D1) filled in the oolite within the white dotted line. The
powder-fine-crystalline dolomite cements (D1) filled in the oolite in the same field of view as c, within
the white dotted line, CL; (e) fractures developed in the microcrystalline dolomite (M2), which were
filled in with fine-crystalline ferroan dolomite cements (D2), Well Bg22 2233.04, Ordovician formation,
plane-polarized light; (f) characteristics of cathodoluminescence in the same field of view as e, and
there are fine-crystalline ferroan dolomite cements (D2) in the white dotted line showing the weak
dark red cathodoluminescence characteristics, CL; (g) the medium-to-coarse-crystalline dolomite
cements (D3) filled in the fractures, Well Bg26 2801.9 m, Zhangxia formation, plane-polarized light;
(h) characteristic of cathodoluminescence of the medium-to-coarse-crystalline dolomite cement (D3)
filled in the fractures in the same field of view as g, and showing the weak cathodoluminescence, CL;
(i) the characteristics of the medium-to-coarse-crystalline dolomites (D3) filled in the fractures, Well
Bg26 2795.5 m, Zhangxia formation, plane-polarized light; (j) characteristics of cathodoluminescence
of the medium-to-coarse-crystalline dolomite cements (D3) in the same field of view as i. The medium-
to-coarse-crystalline dolomite cements with the obvious luminous bands, CL; (k) the characteristics
of the saddle dolomite (D4), Well Bg22 2233.04 m, Ordovician formation, plane-polarized light;
(l) characteristics of cathode luminescence of the saddle dolomites (D4) in the same field of view as k,
CL. CL is a cathode luminescence characteristic.

4.1.5. Fine-Crystalline Ferroan Dolomite Cements (D2)

Fine-crystalline ferroan dolomite cements mainly filled in the fractures. It can be
inferred that the fine-crystalline ferroan dolomite cement was formed after the stylolite
(Figure 3g,h). This kind of dolomite cement is dyed blue by alizarin red mixed with
potassium ferric hydroxide (Figure 3g–i). The crystal size of the ferroan dolomite depends
on the fracture scale. In general, fractures with a width less than 0.25 cm are highly likely to
be filled with fine-crystalline ferroan dolomite cements (D2). This type of dolomite cement
commonly has a weak dull red color under CL (Figure 4f).

4.1.6. Medium-to-Coarse-Crystalline Dolomite Cements (D3)

Medium-to-coarse-crystalline dolomite cements consist of 250 μm to 500 μm crystals,
with some being larger than 500 μm. The dolomite crystals mostly display a planar texture
(Figure 5b,c,e,f). This type of dolomite cement fills in dissolution or structure fractures
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(Figure 5a,d). The dolomite crystals were partially dissolved by late organic acid fluid,
forming dissolution pores (Figure 5b,c,e). This type of dolomite is mainly present in the
Cambrian strata and in smaller amounts in the Ordovician strata. The medium-to-coarse-
crystalline dolomite cements have red cathodoluminescence characteristics, with obvious
luminous bands in the dolomite crystals (Figure 5h–j)

Figure 5. Petrological characteristics of the medium-to-coarse-crystalline dolomite cements (D3)
and saddle dolomite (D4). (a) The medium-to-coarse-crystalline dolomite cements (D3) filled in the
vertical fractures, and there is an obvious hydrocarbon charging phenomenon, Well Bg26 2793.2 m,
Zhangxia formation, core; (b) microcrystalline dolomite; the developed dissolution fractures are filled
in with medium-to-coarse-crystalline dolomite cements. The hydrocarbon dissolved the dolomite
crystals and formed the dissolution vugs, shown by the white arrow, Well Bg22 2246.89 m, Ordovician
formation, plane-polarized light; (c) bioclastic limestone; the medium-to-coarse-crystalline dolomite
cements are filled in the structure fracture and formed the intercrystalline pores, shown by the
black arrow. Some of the dolomite crystals were dissolved by the hydrocarbon and formed the
dissolution vugs, shown by white arrow, Well Bg26 2793.2 m, Zhangxia formation, plane-polarized
light; (d) the vertical fracture dissolved by the fluid and formed the dissolution vugs (shown by the
white arrow), which are filled by coarse dolomite crystals, Well Bg26 2795.1 m, Zhangxia formation,
core; (e) bioclastic limestone; structure fracture is developed and is filled in with medium-to-coarse-
crystalline dolomite cements. Additionally, dolomite crystals are dissolved by fluid, forming the
dissolution vugs (shown by white arrow), Well Bg26 2795.4 m, Zhangxia formation, plane-polarized
light; (f) bioclastic limestone; medium-to-coarse-crystalline dolomite cements are tightly filled in the
dissolution fractures. The dolomite crystals at the edge of the fracture are mainly medium-crystalline
dolomite cements, while the size of the dolomite crystals at the center of the fracture increases
gradually, Well Bg26 2798.2 m, Zhangxia formation, plane-polarized light; (g) microcrystalline
dolomite; structural fractures developed, Well Bg22 2211.17 m, Ordovician formation, core; (h)
microcrystalline dolomite; saddle dolomites are filled in the fracture, Well Bg22 2211.17 m, Ordovician
formation, plane-polarized light; (i) saddle dolomites in the same view as h, perpendicular polarized
light; (j) microcrystalline dolomite; high-angle structural fractures are filled by the saddle dolomites,
Well Bg22 2236.4 m, Ordovician formation, core; (k) microcrystalline dolomite; characteristic of saddle
dolomites are filled in fractures, and intercrystalline pores are formed by saddle dolomite crystals (the
black arrow), Well Bg22 2246.89 m, Ordovician formation, plane-polarized light; (l) saddle dolomite
in the same view as k, perpendicular polarized light.

73



Energies 2022, 15, 2155

4.1.7. Saddle Dolomite (D4)

Saddle dolomites are coarse crystalline, are much larger than 500 μm, and exhibit
curved crystal faces. Under perpendicular polarized light, the saddle dolomites show
wavy extinction (Figure 5i,l). Small-scale intercrystalline pores are developed between the
saddle dolomites (Figure 5h,k). Parts of the edge of the saddle dolomites are dissolved
and form the dissolution vugs (Figure 5h). Saddle dolomite has been observed in fractures
(Figure 5g,j) and is mainly present in pores or cavities in the Ordovician strata. Previous
studies have shown that the saddle dolomite is related to fractures and is possibly due to
hydrothermal events [31,50].

4.2. Dolomite Reservoir Characteristics

There are various reservoir spaces in the dolomite reservoir of the Lower Paleozoic
strata in the Dongying Depression. Reservoir spaces can be divided into pores and fractures
according to the observations of the cores and thin sections.

4.2.1. Pore

The pores types include moldic pores, intercrystalline pores, and dissolution vugs.

Moldic Pore

Moldic pores are formed by the selective dissolution of early calcite or gypsum cements
by meteoric water [51], and the morphology of the dissolved particles is retained. The pore
diameter (long axis) of the moldic pores in the study area is between 211 μm and 655 μm
(Figure 2d).

Intercrystalline Pore

Intercrystalline pores occupy a large proportion of all types of reservoir space. These
intercrystalline pores are between mineral crystals [52]. Dolomite crystals with different
structures form intercrystalline pores of different sizes. The powder-to-fine-crystalline
dolomite cements (D1) mainly form micro intercrystalline pores (Figure 3e). Saddle
dolomite (D4) overgrowth also forms small-scale intercrystalline pores (average size
288 μm) (Figure 4h,i,k,l and Figure 6a). Medium-to-coarse-crystalline dolomite cement
(D3) tends to form relatively large intercrystalline pores (Figures 4c and 6b).

Figure 6. The reservoir space characteristics of the dolomite reservoir in the Dongying Depression, Bohai
Bay Basin. (a) The intercrystalline pores (yellow arrow) between the saddle dolomites (D4), Well Bg22
2246.89 m, Ordovician formation, plane-polarized light; (b) the intercrystalline pores (yellow arrow)
between the medium-to-coarse-crystalline dolomite cements, Well Bg26 2793.2 m, Zhangxia formation,
plane-polarized light; (c) intercrystalline-dissolved vugs (black arrow) between the saddle dolomites (D4),
Well Bg22 2236.4 m, Ordovician formation, plane-polarized light; (d) intracrystalline dissolved vugs (black
arrow) within the saddle dolomites (D4), Well Bg22 2233.04 m, Ordovician formation, plane-polarized
light; (e) microcrystalline dolomite (M2) high-angle structural fractures, Well Bg22 2348.4 m, Ordovician
formation, core; (f) microcrystalline dolomite (M2), dissolved fractures (white dotted line), the saddle
dolomites fill in the fracture, Well Bg22 2235.84 m, Ordovician formation, core.
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Dissolution Vugs

Dissolution vugs include intercrystalline-dissolved vugs and intracrystalline-dissolved
vugs. Dolomite were dissolved and enlarged by supergene and late diagenetic dissolution,
forming enlarged dissolution pores [53]. Dissolution vugs commonly have harbor shapes.
The dissolution fluids are mainly composed of hydrothermal fluid and/or organic acid
fluid. Black bitumen can be seen in or around the edge of the dissolution vugs.

4.2.2. Fracture

Fractures can be divided into structural fractures and dissolution fractures according
to their genesis [54,55]. Tectonic stress promotes the formation of structural fractures,
including low-angle fractures, oblique fractures, and high-angle fractures, which are rela-
tively straight (Figure 6e). Since then, diagenetic fluids have mainly dissolved (expand)
the structural fractures or unstable rocks, causing the fracture edge to be curved and
smooth. Hydrothermal minerals and black residual bitumen filled within the dissolution
fractures, indicating that the dissolution fluid may be hydrothermal fluid or organic acid
fluid (Figures 4b and 6f).

4.3. Isotope Data
4.3.1. Stable Isotopes

The results of the O isotope VPDB and C-isotope VPDB values are presented in
Figure 7. The argillaceous dolomites (M1) have δ18O VPDB values of about −6‰, and the
δ18O values of the microcrystalline dolomite (M2) range from −9.3‰ to −6.2‰. The fine-
crystalline dolomite (M3) has δ18O values of about −9.3‰. The dolomite cements filling in
the fractures or dissolution vugs have more negative δ18O values than the matrix dolomites
do. The δ18O values of the powder-to-fine-crystalline dolomite cements (D1) range from
−10‰ to −5.2‰, the δ18O value of the fine-crystalline ferroan dolomite cements (D2) is
−14.1‰. The δ18O values of the medium-to-coarse-crystalline dolomite cements (D3) range
from −15.7‰ to −12.7‰. The saddle dolomites have more negative δ18O values than other
types of the dolomite in the study areas, ranging from −25.7‰ to −23.7‰. The δ13C values
of the dolomites range from −1.9‰ to 0.5‰.

Figure 7. Stable isotope values for the dolomites of the Lower Paleozoic strata in the Dongying
Depression, Bohai Bay Basin. M1: argillaceous dolomite; M2: microcrystalline dolomite; M3: fine-
crystalline dolomite; D1: powder-to-fine-crystalline dolomite cement; D2: fine-crystalline ferroan
dolomite cement; D3: medium-to-coarse-crystalline dolomite cement; D4: saddle dolomite.
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4.3.2. Strontium Isotope

The Sr isotope ratios of the dolomites are displayed in Figure 8. The microcrystalline
dolomite (M2) 87Sr/86Sr ratio is about 0.7091, within the range of the Latest Cambrian to
Middle Ordovician seawater [56,57]. The 87Sr/86Sr ratio of the powder-to-fine-crystalline
dolomite cements (D1), fine-crystalline ferroan dolomite cements (D2), and the medium-
to-coarse-crystalline dolomite cements (D3) range from 0.7119 to 0.7129, which are higher
than those of the microcrystalline dolomite. The 87Sr/86Sr ratio of the saddle dolomite (D4)
has a wide range, from 0.7093 to 0.7112.

Figure 8. Comparison of radiogenic strontium isotope ratios between Lower Paleozoic dolomite
and Latest Cambrian to Middle Ordovician seawater. The 87Sr/86Sr ratios of Latest Cambrian to
Middle Ordovician seawater from [56,57]. M2: microcrystalline dolomite; D2: fine-crystalline ferroan
dolomite cements; D3: medium-to-coarse-crystalline dolomite cements; D4: saddle dolomite.

5. Discussion

5.1. Diagenesis of the Dolomite Reservoir

Carbonate rocks may undergo a variety of diagenesis mechanisms after deposi-
tion, changing the physical properties of carbonate reservoirs. According to the thin
sections and core study, the dolomite reservoirs in the study areas mainly experienced six
types of diagenesis: dolomitization, dissolution, fracturing, cementation, compaction, and
pressure solution.

5.1.1. Dolomitization

Dolomitization is widely developed in the limestone at the bottom of the Ordovician
formation and the oolitic limestone in the Cambrian formation. The 87Sr/86Sr ratios
of the fine-crystalline dolomite cements have similar 87Sr/86Sr ratio values to those of
argillaceous dolomite (M1) and microcrystalline dolomite (M2), and the Latest Cambrian to
Middle Ordovician seawater [56,57]. D1 are associated with stylolite and anhydrite. These
characteristics indicate that powder-to-fine-crystalline dolomite cements (D1) may have
been formed by the evaporation and condensation of Cambrian–Ordovician seawater in
the early stage.

5.1.2. Dissolution

In the area around where dissolution occurs, the residual black bitumen can be seen
around the edges of the dolomite crystals and in some dissolution fractures (Figure 5b)
and dissolution vugs (Figure 6c), indicating the charging of the organic matter fluid. The
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margin of the dissolution fracture is not straight and is an embay in shape, and the local
enlargement of the fractures appeared (Figure 5c). Pyrite, saddle dolomite, quartz, and
other hydrothermal minerals have been observed in the dolomite reservoirs, indicating
hydrothermal fluid activity. Additionally, these hydrothermal minerals are accompanied
by dissolution pores (Figure 9a). This evidence indicates that organic acid fluids and hy-
drothermal fluids are the main dissolution fluids for the dolomite, leading to the dissolution
of dolomite and the formation of dissolution fractures or dissolution vugs.

Figure 9. Diagenesis types of dolomite reservoirs in the Dongying Depression, Bohai Bay Basin.
(a) Microcrystalline dolomite; hydrothermal dissolution vugs. The pyrite filled in the vugs (yellow
arrow), and medium-to-coarse-crystalline dolomite cement was dissolved and formed intragranular
dissolution pores, Well Bg22 2246.89 m, Ordovician formation, backscattered image; (b) microcrys-
talline dolomite; low-angle fracture, filled with calcite cements; Well Bg26 2515.2 m, Yeli-Liangjiashan
formation, core; (c) oblique fractures (white arrow) formed before high-angle fractures (black arrow),
Well Bg26 2803.7 m, Zhangxia formation, core; (d) microcrystalline dolomite; vertical fracture (yellow
arrow), filled with saddle dolomite; Well Bg22 2236.4 m, Ordovician formation, core; (e) the stylolite
(white arrow) was formed by compaction and pressure solution, and filled argillaceous material;
Well Bg22 2219.27 m, Ordovician formation, thin section; (f) the stylolite (red arrow) formed by
compaction and pressure solution, and filled with organic matter; Well Bg22 2348.95 m, Ordovician
formation, thin section. D3: medium-to-coarse-crystalline dolomite cements; D4: saddle dolomite.

5.1.3. Fracturing and Cementation

Tectonic stresses cause rocks to fracture and can form a series of fractures. The main
types of fractures include low-angle fractures, high-angle fractures, and vertical fractures.
The sequence of fractures can be distinguished according to the intersecting relationships
between fractures. In the early stages, low-angle fractures and oblique fractures were
mainly formed and were filled by the calcite cements (Figure 9b,c). In the late stages,
high-angle fractures and vertical fractures were formed and were filled by the medium-to-
coarse-crystalline dolomite cements (D3) and saddle dolomites (D4) (Figure 9d).

5.1.4. Compaction and Pressure Solution

A large number of stylolites were found in the study area, indicating that the reservoir
underwent strong compaction and pressure solution (Figure 9e,f).

5.2. Origins of the Different Types of Dolomite
5.2.1. Matrix Dolomites

Matrix dolomites mainly include argillaceous dolomite (M1), microcrystalline dolomites
(M2), and fine-crystalline dolomites (M3) from the restricted and tidal flat face and tend
to be mainly microcrystalline to fine crystals with a euhedral–subhedral crystal texture.
M1 and M2 have the smallest crystal size. This indicates that M1 and M2 grow during
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the early stages of diagenesis [58]. The δ13C values of the matrix dolomites (0.5~−1‰,
VPDB) are similar to those of contemporaneous limestone (−1.5~−1.1‰). The δ18O val-
ues of M1 and M2 range from −9.3 to −6‰ VPDB. Using the dolomite–water oxygen
isotope fractionation equation 1000Lnα(dolomite-water) = 3.14 × 106T−2 − 2.0 proposed by
Land [59], and assuming a temperature of 25 ◦C, the δ18O values of the water present
during the growth of M1 and M2 were calculated. The results of the calculations show that
the δ18O values of the water present during the growth of M1 and M2 ranged from −12.1 to
−8‰ VSMOW. The δ18O values of the brachiopods from the Cambrian–Ordovician strata
commonly range from −10 to −3‰ VPDB [60]. Using the calcite–water oxygen isotope
fractionation equation 1000Lnα(calcite-water) = 2.78 × 106T−2 − 2.89 proposed by Friedman
and O’Neil [61], the δ18O values of seawater during the growth of brachiopods were calcu-
lated. The δ18O values of the seawater during brachiopod growth are between −9.2 and
−2.1‰ VSMOW (Figure 10). It can be seen that the δ18O values of the argillaceous dolomite
(M1) and microcrystalline dolomite (M2) were more negative than the δ18O value of the
Cambrian–Ordovician seawater (−9.2 to −2.1‰, VSMOW). However, the 87Sr/86Sr ratio of
microcrystalline dolomite (M2) is about 0.7091, falling within the 87Sr/86Sr range of Latest
Cambrian to Middle Ordovician seawater. These indicate that seawater may be the main
diagenetic fluid for M1 and M2 formation. M1 and M2 have more negative δ18O values than
that of seawater and are likely to be affected by the hydrothermal fluid or meteoric water.
Fine-crystalline dolomite (M3) have a larger crystal size than M1 and M2, indicating that
M3 were formed relatively later than M1 and M2. Moreover, early diagenetic gypsum (now
transformed to anhydrite) is present in the dolomite strata. This supports sabkha capillary
zone dolomitization [62,63] and reflux dolomitization models [64]. Anhydrite cements have
been observed in the formation where M3 are developed in the study area. Additionally,
the main sedimentary environments in the study area are the gypsum dolomite flat with
strong evaporation and supratidal–intertidal flat during the deposition period of Majiagou
formation [65]. Therefore, M3 could have been formed by the seepage reflux of seawater in
an evaporative environment.

5.2.2. Powder-to-Fine-Crystalline Dolomite Cements (D1)

Power-to-fine-crystalline cements (D1) are commonly planar rhombic textures, indi-
cating that D1 were formed at relatively low temperatures during the early shallow burial
stage [66]. D1 are distributed along the stylolite in limestone samples, indicating that
the formation of D1 is related to stylolite. D2 is generally distributed on both sides of
the stylolite. Some dolomites are dissolved and have uneven crystal edges (Figure 3b,c).
Some studies have reported that the dissolution of the limestone along the stylolite may
accelerate dolomitization through the flow of Mg-rich fluids [67]. Therefore, the powder-
to-fine-crystalline dolomite cements associated with stylolite may be formed at the same
time as or after stylolite. Stylolite was formed by the chemical compaction and is of vari-
ous scales and sizes. Some scholars have considered that pressure dissolution can occur
at the depth of 610~914 m, forming stylolite [68], and can also occur at the deep burial
environment [69]. In recent years, pioneers have proposed that stylolite forms at a depth
of between 500 m and 1 km [70]. According to the burial history in the study areas. D1
may have been formed by metasomatic calcite from lower Ordovician dolomites. The δ18O
values of the powder-to-fine-crystalline dolomite cements (D1) ranged from −5.2‰ to
−10‰ (VPDB). Using the dolomite–water oxygen isotope fractionation equation proposed
by Land 1000Lnα(dolomite-water) = 3.14 × 106T−2 − 2.0, the δ18O values of fluid forming
dolomite precipitates were calculated. The calculation results show that the δ18O values of
the fluid-forming dolomite precipitates are between −8 and −3.8‰ VSMOW. The δ18O
values of fluid forming dolomite precipitates are similar to the oxygen isotope values of the
Paleozoic seawater (−9.2 to −2.1‰, VSMOW) [71]. This suggests that seawater is the main
dolomitic fluid. However, Figure 8 shows that the 87Sr/86Sr ratio of the D1 dolomite is
greater than that of the Latest Cambrian to Middle Ordovician seawater, further indicating
that D1 may be influenced by the continental formation of water rich in radioactive Sr in
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the shallow burial environment [72]. In some samples, unstable calcite carbonate filled
in ooids replaced by D1 (Figure 3f). Calcite that filled in the ooids is dissolved to form
moldic pores, the dolomitizing fluid then enters the moldic pores. When the fluid is highly
saturated, recrystallization development occurs to form the powder-to-fine-crystalline
dolomite cements (D1) [58,66]. Sparry calcite cements developed in the intercrystalline
pores (Figure 3f), suggesting that the powder-to-fine-crystalline dolomite cements were
formed relatively early in diagenetic history.

5.2.3. Fine-Crystalline Ferroan Dolomite Cements (D2) and Medium-to-Coarse-Crystalline
Dolomite Cements (D3)

D2 and D3 dolomite cements have a larger crystal size than D1 dolomite cements,
indicating that D2 and D3 dolomite cements are formed in higher-temperature condi-
tions [58,73]. The most obvious difference between the D2 and (D3) dolomite cements and
D1 dolomite cements is that the D2 and D3 dolomite cements are stained blue and exhibit
the ferroan dolomite cement characteristics under the microscope. The iron-rich dolomite
is the result of hydrothermal fluids action in a deep burial environment [74,75]. Dolomite
crystals have obvious cathodoluminescence bands, suggesting that the D2 and D3 dolomite
cements have multi-stage recrystallization [76]. The D2 and D3 dolomite cements filled in
the fractures. Previous studies have analyzed the carbon and oxygen isotopes of calcite
filling in high-angle fractures formed in the Yanshan period and found δ18O values between
−19‰ and −15‰ VPDB, δ13C values between −0.5‰ and −3.0‰ VPDB [77], and the fluid
inclusions homogenization temperatures are between 120 ◦C and 150 ◦C. Using the calcite–
water oxygen isotope fractionation equation 1000Lnα(calcite-water) = 2.78 × 106T−2 − 2.89
proposed by Friedman and O’Neil [61], the δ18O values of fluid-forming calcite pre-
cipitates were calculated. The δ18O values of fluid forming calcite precipitates ranged
from −1.4 to 0.18‰ VSMOW. The δ18O values of D2 and D3 ranged from −15.8 to
−12.7‰ VPDB. Using the ferroan dolomite–water oxygen isotope fractionation equa-
tion 1000Lnα(dolomite-water) = 2.78 × 106T−2 + 0.11 proposed by Fisher and Land [78], the
δ18O values of fluid forming D2 and D3 precipitates were calculated (Figure 10). The results
show that the δ18O values of fluid forming D2 and D3 precipitates are between −1.4‰
and 0.2‰ VSMOW. This result shows a high degree of overlap with the δ18O values of the
diagenetic fluids from the calcite in the Yanshan veins in the study area, indicating that
the diagenetic fluid of D2 and D3 is likely to be similar to the vein calcite cements formed
during the Yanshan period. The calcite cement and D2, and D3 in the veins, were formed
from precipitation from hydrothermal fluids during the Yanshan period. The crust was
folded and uplifted, and the platform was activated, forming a series of fault depressions
and uplifting the fault blocks during the Late Triassic–Early Jurassic periods, forming
the fracture systems [79]. The Yanshan Movement, which began at the end of the Early
Jurassic period, was the initial stage of volcanic activity in the Bohai Bay Basin [80,81]. In
particular, the second act of the Yanshan Movement was characterized by intense magmatic
activity accompanied by intense faulting [82], providing a sufficient heat source and Fe2+

for iron-rich dolomite cements. Furthermore, the homogenization temperatures of fluid
inclusions, which were shown to range in temperature from 120 to 181 ◦C, are higher
than the maximum burial temperature (140 ◦C) in the study area [83], suggesting that D2
and D3 may be formed by hydrothermal fluid. D2 and D3 dolomite cements have higher
87Sr/86Sr ratios (0.7119 to 0.7129) than Cambrian–Ordovician seawater (Figure 8) and are
close to the crust source of hydrothermal fluids [84]. A higher 87Sr/86Sr ratio indicates
that 87Sr-enriched fluids were involved in the diagenesis of the dolomite. 87Sr-enriched
fluid may derive from the fluid formed by the eroding of siliciclastic sediments containing
argillaceous and/or feldspathic components. The Maozhuang and Xuzhuang formations
are deposited with shale and sandstone with a total thickness of about 200 m. When the
sandstone is dominated by feldspar, migrating hydrothermal fluids may be able to acquire
radioactive Sr isotope. Therefore, D2 and D3 have the characteristics of a high temperature
of hydrothermal fluid and high 87Sr/86Sr ratio of crust source.
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5.2.4. Saddle Dolomite (D4)

Saddle dolomites in the Ordovician formation are filled with high-angle fractures, have
largest crystals, curved crystal faces, and wavy extinction characteristics, suggesting that
D4 may have been formed by the rapid precipitation of high temperatures of Mg-rich fluids
during late diagenesis [17,63]. Previous studies and the high homogenization temperature
of the inclusions (>200 ◦C) have indicated that D4 was formed by hydrothermal fluids.

The δ18O values of dolomite can reflect the environmental conditions and temperature
during the formation and diagenesis of carbonate rocks [85,86]. Saddle dolomites (D4) show
that the δ18O values (−23.7 to −25.7‰ VPDB) are more negative than other types of the
dolomite cements (Figure 7). Utilizing the formula 103Lnα(dolomite-water) = 3.14 × 106T−2 − 2.0
proposed by Land [59], the δ18O of the water present during the growth of D4 was between
–6.7‰ and −5.0‰ VSMOW. The δ18O values of the D4 are more negative compared to the
δ18O VSMOW values of the magmatic water (Figure 10). Additionally, this result is more
negative than that of common hydrothermal saddle dolomites. The δ18O value of D4 fluid
is significantly lower than that of normal saddle dolomite, which may be caused by the
following reasons: (1) The δ18O values of the dolomite are controlled by temperature. As
the temperature increases, 18O are depleted, Therefore, dolomite has a lower δ18O. The
homogenization temperature of the saddle dolomite inclusions in the lower Paleozoic in
the southwest of the Dongying Depression is more than 200 ◦C (Figure 10), which is higher
than that of common saddle dolomite inclusions (100~180 ◦C) [17,87]; (2) there may be
18O depleted hydrothermal fluids injection during diagenesis. The host dolomites can
be dissolved by the hydrothermal fluids. Saddle dolomites are mainly developed in the
Ordovician microcrystalline dolomite strata. The main sedimentary environment of the
Majiagou period is gypsum dolomite flat with strong evaporation and supratidal–intertidal
flat in the study area [65]. The evaporation phase is enriched with light oxygen, so the host
dolomites also have low δ18O values. When the host dolomites with low δ18O values were
dissolved by hydrothermal fluids with low δ18O values, saddle dolomite may have had
extremely negative δ18O values. The 87Sr/86Sr ratios of some host dolomites are similar to
that of saddle dolomite. Which also supports this inference.

Figure 10. Crossplots of fluid inclusion homogenization temperature (Th) against oxygen signature
for the matrix dolomite and various dolomite cements in the southwest of the Dongying Depression,
Bohai Bay Basin. The data for mantle-derived magmatic water are quoted from [88]. M1: argilla-
ceous dolomite; M2: microcrystalline dolomite; D1: powder-to-fine-crystalline dolomite cements;
D2: fine-crystalline ferroan dolomite cements; D3: medium-to-coarse-crystalline dolomite cements;
D4: saddle dolomite.
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5.3. Implications for Porosity Development
5.3.1. Diagenetic Pore Evolution

On the basis of petrological observation, this study identified the diagenesis and
diagenetic sequence of the reservoir and summarized the diagenetic pore evolution model
of the reservoir (Figure 11).

Figure 11. Diagenetic events and pore evolution of dolomite reservoir of the Lower Paleozoic strata
in the Dongying Depression, Bohai Bay basin. Y represents Yanshan movement; D1: powder-to-fine-
crystalline dolomite cements; D2: fine-crystalline dolomite cements; D3: medium-to-coarse-crystalline
dolomite cements; D4: saddle dolomite.

In the early diagenetic stage, early calcite cements filled in the space between grains
(oolites or rubble), reducing the primary porosity. The Cambrian–Ordovician strata were
uplifted and affected by Caledonian movement [89], and the oolites were selectively dis-
solved by diagenetic fluids and formed moldic pores. At the moment, the powder-to-fine-
crystalline dolomite cements (D1) formed by the seepage reflux mechanism are cemented
in residual oolites. However, the plane porosity produced by the powder-to-fine-crystalline
dolomite cements (D1) are commonly lower than 0.1%. Dolomitization at the early diage-
nesis is not the main diagenesis to increase the porosity. With the increase in the buried
depth, the strata enters the subsidence stage, and pore reduction such as compaction oc-
curs. Compaction reduces rock volume, dissolves grains, and decreases the proportion of
intercrystalline pores, leading to a sharp decrease in porosity [90].
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5.3.2. The Influence of Diagenesis on Reservoir Properties

Studies have shown that the fracture system, dissolution, and cementation play impor-
tant roles in the formation of reservoir spaces [17,32,91,92]. The plane porosity of the rocks
can reach 48% in the early stages of fracture formation. After the fault system is formed,
hydrothermal fluids along with the fractures move upward, the matrix dolomite dissolves,
and dissolution vugs and dissolution fractures begin to form. The saturability of the fluid
changes as the fluids react with the host rocks. Subsequently, D3 and D4 dolomite cements
begin to form during the intermediate-deep burial diagenesis. The D3 and D4 dolomite
cements are fully filled in (or semi-filled in) the fractures. This cementation process causes
serious damage to the previously formed fracture reservoir system [93]. After cementation,
the plane porosity of the rocks is only 6% and can be even less than 1%. The residual pores
after cementation are the main sites of late organic acid dissolution.

Petrological observations reveal high-temperature dolomite cements, pyrite, and
secondary dissolution (irregular edges of pores and fractures), and the residual bitumen
observed in the interior of the dissolution pores and fractures. In summary, the study area
is extensively influenced by hydrothermal fluids and organic acids.

Fluid migration is controlled by faults [17,87,94]. The more developed the fault, the
more obvious the fluid action. Dissolution is the main diagenesis to form effective reservoir
spaces in the study area [40,95]. A series of needle-like dissolution vugs are formed
as hydrothermal fluids migrate up the fractures and faults [91]. Dissolution is the key
factor to form high-quality reservoirs. Due to the striking volcanic activity, hydrothermal
dissolution is a main dissolution process during the intermediate-to-deep burial stages.
When the reservoir is closer to the intrusions and faults, the dissolution phenomenon is
more obvious, and more dense dissolution vugs are developed. The reservoir shows good
productivity. Since the dissolution and precipitation of the hydrothermal fluid are usually
accompanied and since fluid saturation increases, hydrothermal dissolution gradually turns
into hydrothermal precipitation [16]. The cements formed by hydrothermal precipitation
fill the fractures.

In general, the plane porosity of saddle dolomite is lower than that of medium-to-
coarse-crystalline dolomite (Figure 12), which may be due to the joint influence of the crystal
structure and mineral filling degree of the fractures. Saddle dolomite has larger crystals
than medium-to-coarse-crystalline dolomite, and the fractures are usually fully filled in
with saddle dolomite. Therefore, the rock is less affected by fluid dissolution, and the plane
porosity of the rock is relatively low (Figure 12a,b). Medium-to-coarse-crystalline dolomite
partially fills in fractures, and fractures with high residual pores. Additionally, the rocks
that developed medium-to-coarse-crystalline dolomite have a higher degree of dissolution
than the rocks that developed saddle dolomite (Figure 12). Magmatic activity mainly
developed during the Yanshan movement, and some magmatic activity developed during
the late Triassic period [79,96,97]. Residual bitumen is commonly filled between dolomite
cements formed by high-temperature fluids. The oil and gas charging period represent
the sedimentary period of the Shahejie Formation [98]. All of this evidence indicates that
the dissolution of organic acids occurs after hydrothermal dissolution. Therefore, the
dissolution vugs that are formed by organic acid dissolution can be better preserved [99].
Organic acid dissolution can form higher plane porosity than hydrothermal dissolution
according to other plane porosity statistics (Figure 12). Additionally, the reservoirs are
closer to the source layer or basin and the dissolution of organic acids is more intense.

Dolomite is more likely to form effective fractures than limestone due to its greater me-
chanical strength [100,101]. Thus, dolomite reservoirs are more likely to form high-density
fractures as well as fractured reservoir systems. Additionally, the closer the formations and
wells are to the fault plane, the higher the density of the structural fractures according to
the statistic of the cores and thin sections (Figure 13). These fractures are interconnected
to form a large fractured reservoir system, which plays a constructive role in reservoir
reconstruction. The rocks with a high fracture density and low fracture filling degree
are often subjected to more intense dissolution, and the rocks have higher plane porosity
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(Figure 12c). On the contrary, the dissolution of rocks is not obvious and the plane porosity
percentage is relatively low (Figure 12d).

Figure 12. The total plane porosity of all kinds of dolomite cements with different textures and the
rate of contribution of different fluids to the percent of area pores. (a) The contribution of dissolution
to the plane porosity of the rocks that developed saddle dolomite and its microscopic characteristics
when dissolution is strong; (b) when the dissolution is not obvious, the contribution of dissolution
to the plane porosity of the rocks developed saddle dolomite and its microscopic characteristics;
(c) the rock developed with a high-density fracture area, and the image shows the contribution of
dissolution to the plane porosity of the rocks; (d) the rock developed a low-density fracture area,
and the image shows the contribution of dissolution to the plane porosity of the rocks; red arrow:
dissolution vugs; yellow arrow: residual bitumen.

Figure 13. Relationship between fracture density and its distance to fault in the southwest of the
Dongying Depression, Bohai Bay Basin. A part of data are taken from [46].
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There are differences in the diagenetic process of different formations in a single well.
The diagenesis observed in well Bg22 is relatively simple due to the relatively simple
lithology of the host rock and the fact that the well did not drill through the Ordovician
formation. Controlled by the physical properties of the original lithology, the fracturing
widely developed, and the host rock is mostly breccia. Burial dissolution is also well
developed in brecciated dolomite formation, which results in higher porosity. Well Bg22
coring is incomplete due to strong fracturing and dissolution. The main cements in well
Bg22 are saddle dolomite and anhydrite. A small amount of fine-crystalline dolomite
formed in deeper strata. Anhydrite cements formed in the evaporative phase can be
observed in the fractures of the dolomite development strata (Figure 14).

Figure 14. The stratigraphic log of well Bg22 and differences of diagenesis in different strata.
M1: argillaceous dolomite; M2: microcrystalline dolomite; M3: fine-crystalline dolomite;
D4: saddle dolomite.

In well Bg26, dissolution mainly occurs in the Ordovician strata close to unconformity
and faults. In the Cambrian strata, oolitic limestone and bioclastic limestone with better
original porosity also have obvious dissolution. Stylolites formed by pressure solution are
developed in the Ordovician and Cambrian strata. However, the density of the stylolites
in the Ordovician strata are higher than that of the Cambrian strata. Dolomitization is
widely developed in well Bg26 and the main products are powder-to-fine dolomite cements
(D1). With the increase in the burial depth, the properties of the powder-to-fine-crystalline
dolomite cements (D1) change obviously. The crystal size gradually increases. D1 is usually
associated with stylolites or formed dolomite patches in the Ordovician strata, while in
the Cambrian strata, D1 is mainly filled in oolitic or bioclastics due to changes in the
depositional environment. D2 and D3 are products of hydrothermals, so D2 and D3 are
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developed in Cambrian strata close to the intrusion, and are widely developed in the
Gushan and Zhangxia formation (Figure 15).

Figure 15. Differences of diagenesis in different strata in well Bg 26. D1: powder-to-fine-crystalline
dolomite cements; D2: fine-crystalline ferroan dolomite cements; D3: medium-to-coarse-crystalline
dolomite cements.

Four wells (Bg26, Bg22, Bgx15, Bg11) were selected for the study. Bg26 is the closest
to the Gaoqing-pingnan fault and oil-generating zone, and suffered the most complicated
diagenesis. Dolomitization products are power-to-fine-crystalline dolomite filling inside
the oolitic or associated with the stylolites (Figures 15 and 16a). In the Yeli-Liangjiashan
formation, dolomitization results in the formation of patchy dolomite in micritic limestone
(Figure 16b). Well Bg26 was more easily affected by the hydrothermal fluids and organic
acid. The hydrothermal fluid cement associated with dolomite are mainly fine-crystalline
dolomite cement (D2) and medium-to-coarse-crystalline dolomite cement (D3) (Figure 16c).
Organic acid dissolution is most obvious in well Bg26 due to it is closest to the oil-generating
depression (Boxing depression). Well Bg22 did not drill through the Ordovician formation.
Bg22 is located in a higher tectonic position than Bg26, and the sedimentary environment is
dolomitic flat with strong evaporation for a period of time and forms dolomite with higher
original porosity and brittleness. Additionally, the high tectonic position and development
of the unconformity plane ensures the host dolomite is easily affected by meteoric water,
and it is dissolved by meteoric water to form pores and fractures, which also makes the host
dolomite have the geochemical characteristics of meteoric water. Then, hydrothermal fluids
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enter the dolomite reservoirs along these pores or fractures. Hydrothermal fluids react
with the host dolomite and precipitate saddle dolomite cement (D4) with meteoric water
geochemical characteristics in the fractures and pores (Figure 16d). Due to dolomite’s high
mechanical fracture strength, it is affected by both hydrothermal and tectonic processes. In
well Bg22, the fracturing is obvious and the overall coring is incomplete. Well Bgx15 did
not drill through the Ordovician formation. Selective dissolution pores are developed in
the Ordovician microcrystalline dolomite, forming moldic pores (Figure 16e).

Figure 16. The difference of diagenesis between different wells. (a) Oolitic limestone, Well Bg26
2790.5 m, Zhangxia formation; (b) argillaceous limestone, well Bg26 2540 m, Yeli-Liangjiashan
formation; (c) bioclastic limestone, well Bg26 2793.2 m, Zhangxia formation; (d) microcrystalline
dolomite, well Bg22 2227.87 m Ordovician formation; (e) microcrystalline dolomite, well Bgx15
2238.9 m, Ordovician formation, moldic pores (yellow arrow); M2: microcrystalline dolomite; M3:
fine-crystalline dolomite; D1: powder-to-fine-crystalline dolomite cement; D3: medium-to-coarse-
crystalline dolomite cement; D4: saddle dolomite.

6. Conclusions

The following conclusions can be drawn based on petrographic and geochemical
investigations of the dolomites at the Lower Paleozoic Formation in the southwest of the
Dongying Depression, Bohai Bay Basin:

(1) Dolomites can be divided into the matrix dolomite and dolomite cements. The
diagenetic fluid of matrix dolomite is mainly seawater. Dolomite cements can be divided
into powder-to-fine-crystalline dolomite cement (D1), fine-crystalline ferroan dolomite
cement (D2), medium-to-coarse-crystalline dolomite cement (D3), and saddle dolomite (D4).
The powder-to-fine-crystalline dolomite cement (D1) could form by the seepage reflux of
sea water or Mg-enriched pore fluids followed by recrystallization during the burial period.
The fracture filling dolomite cements, such as D2 and D3 are most likely related to the
mixed fluids formed by hydrothermal fluid erosion of the 87Sr-enriched feldspar sandstone
in the Maozhuang and Xuzhuang formation. Under the hydrothermal conditions, the host
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dolomite formed by the evaporative phase was dissolved by hydrothermal fluids, then
Mg-enriched fluid precipitation to form saddle dolomite, resulting in saddle dolomite with
the negative δ18O value.

(2) The results of the petrology show that there are six types of diagenesis: dolomitiza-
tion, dissolution, fracturing and cementation, compaction, and pressure solution. Diagene-
sis in different diagenetic environments has different effects on reservoirs.

(3) Faults and fracture systems are key control factors for dolomite reservoirs and
can be used as effective reservoir spaces. The stronger the tectonic activity is, the more
faults develop, and the higher the fracture density, the more high-quality reservoirs can be
formed. In addition, faults can be used as effective migration channels for fluids that are
helpful for later dissolution.

(4) Hydrothermal fluid dissolution and organic acid dissolution result in dolomite
reservoirs having better reservoir performance. Due to the late action time of organic acid
dissolution, the dissolution vugs can be well preserved. In the study area, organic acid
dissolution contributes more than hydrothermal dissolution.

Author Contributions: Conceptualization, X.Z. and Q.L.; methodology, X.Y.; software, L.W.; vali-
dation, A.J.; formal analysis, X.Y.; investigation, L.W.; resources, W.T.; data curation, A.J.; writing—
original draft preparation, X.Z.; writing—review and editing, Q.L.; visualization, X.Z.; supervision,
L.M.; project administration, Q.L.; funding acquisition, L.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant num-
ber 41602137, 41972107), the National Natural Science Foundation of China (grant number U19B6003),
the Strategic Cooperation Technology Projects of CNPC and CUPB (grant number ZLZX2020-02), and
the Science Foundation of China University of Petroleum, Beijing (grant number 2462020YXZZ022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this research are easily accessible by downloading the
various documents appropriately cited in the paper.

Acknowledgments: The authors greatly appreciate the Exploration and Production Research Institute
of Shengli Oilfield Company for providing samples and data access and for permission to publish
the results.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bai, G.P. Distribution patterns of giant carbonate fields in the world. J. Palaeogeogr. (Chin. Ed.) 2006, 8, 241–250.
2. Halbouty, M.T. Giant Oil and Gas Fields of the Decade 1990–1999. AAPG Memoir. In Proceedings of the 4th AAPG Conference,

Denver, CO, USA, 7–10 April 1991.
3. Zhao, W.Z.; Shen, A.J.; Zheng, J.F.; Qiao, Z.F.; Wang, X.F.; Lu, J.M. Discussion on pore genesis of dolomite reservoirs in Tarim,

Sichuan and Ordos Basin and its guiding significance to reservoir prediction. Sci. Sin. 2014, 44, 1925–1939.
4. Zhang, J.T.; Jin, X.H.; Gu, N.; Bian, C.R.; Yang, J.Q.; He, Y.L. Differences and development patterns of karst reservoirs in Majiagou

Formation, northern Ordos Basin. Oil Gas Geol. 2021, 42, 1159–1168.
5. Hao, Y.; Zhou, J.G.; Zhang, J.Y.; Ni, C.; Gu, M.F.; Xin, Y.G. Characteristics and controlling factors of dolomite reservoir of Middle

Permian Qixia Formation in northwest Sichuan Basin. Sediment. Geol. Tethyan Geol. 2013, 33, 68–74.
6. Hu, A.P.; Pan, L.Y.; Hao, Y.; Shen, A.J.; Gu, M.F. Origin, Characteristics and Distribution of Dolostone Reservoir in Qixia Formation

and Maokou Formation, Sichuan Basin, China. Mar. Orig. Pet. Geol. 2018, 23, 39–52.
7. Shu, X.H.; Zhang, J.T.; Li, G.R.; Long, S.X.; Wu, S.X.; Li, H.T. Characteristics and genesis of hydrothermal dolomites of Qixia and

Maokou Formations in northern Sichuan Basin. Oil Gas Geol. 2012, 33, 442–448.
8. Zhu, Y.D.; Jin, Z.Y.; Sun, D.S.; Deng, Y.M.; Zhang, R.Q.; Yuan, Y.R. Hydrothermal dolomitization of Sinian Dengying Formation in

south China and its influence on reservoir formation: A case study of Central Guizhou Uplift. Chin. J. Geol. (Sci. Geol. Sin.) 2014,
49, 161–175.

9. Ma, Y.S.; Guo, T.L.; Zhao, X.F.; Cai, X.Y. Formation mechanism of deep high-quality dolomite reservoir in Puguang Gasfield. Sci.
Sin. 2007, 37, 43–52.

87



Energies 2022, 15, 2155

10. Zheng, H.R.; Wu, M.B.; Wu, X.W.; Zhang, T.; Liu, C.Y. Oil-gas exploration prospect of dolomite reservoir in the Lower Paleozoic
of Tarim Basin. Acta Pet. Sin. 2007, 28, 1–8.

11. Sibley, D.F. Climatic Control of Dolomitization, Seroe Domi Formation (Pliocene), Bonaire, NA; The Society of Economic Paleontologists
and Mineralogists: East Lansing, MI, USA, 1980; pp. 247–258.

12. Shinn, E.A.; Ginsburg, R.N.; Lloyd, R.M. Recent Supratidal Dolomite from Andros Island, Bahamas. In Dolomitization and
Limestone Diagenesis; Pray, L.C., Murray, R.C., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1965; pp. 112–113.

13. Vasconcelos, C.; Bernasconi, S.; Grujic, D.; Tien, A.J.; Mckenzie, J.A. Microbial mediation as a possible mechanism for natural
dolomite formation at low temperatures. Nature 1995, 377, 220–222. [CrossRef]

14. Vasconcelos, C.; Mckenzie, J.A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions
(Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sediment. Res. 1997, 67, 378–390.

15. Jiang, L.; Pan, W.; Cai, C.; Jia, L.; Pan, L.; Wang, T.; Li, H.; Chen, S.; Chen, Y. Fluid mixing induced by hydrothermal activity in the
ordovician carbonates in Tarim Basin, China. Geofluids 2015, 15, 483–498. [CrossRef]

16. Smith, L.B. Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in
New York. AAPG Bull. 2006, 90, 1691–1718. [CrossRef]

17. Davies, G.R.; Smith, L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull. 2006, 90,
1641–1690. [CrossRef]

18. Spencer, C.C.; Mullis, J. Chemical study of tectonically controlled hydrothermal dolomitization: An example from the Lessini
Mountains, Italy. Geol. Rundsch. 1992, 81, 347–370. [CrossRef]

19. White, T.; Al-Aasm, I.S. Hydrothermal dolomitization of the Mississippian Upper Debolt Formation, Sikanni gas field, northeast-
ern British Columbia, Canada. Bull. Can. Pet. Geol. 1997, 45, 297–316.

20. Ronchi, P.; Masetti, D.; Tassan, S.; Camocino, D. Hydrothermal dolomitization in platform and basin carbonate successions
during thrusting: A hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy). Mar. Pet. Geol. 2012, 29, 68–89.
[CrossRef]

21. Du, Y.L.; Li, S.Y.; Wang, B.; Zhao, D.Q.; Yang, D.D. Diagenesis of the Lower-Middle Permian Carbonate in the Wuwei-Chaohui
area, Anhui Province. Acta Geol. Sin. 2011, 85, 543–556.

22. Giles, M.R.; De Boer, R.B. Origin and significance of redistributional secondary porosity. Mar. Pet. Geol. 1990, 7, 378–397.
[CrossRef]

23. Ali, M.Y. Carbonate cement stratigraphy and timing of diagenesis in a Miocene mixed carbonate-clastic sequence, offshore Sabah,
Malaysia: Constraints from cathodoluminescence, geochemistry, and isotope studies. Sediment. Geol. 1995, 99, 191–214.

24. Paradis, S.; Lavoie, D. Multiple-stage diagenetic alteration and fluid history of Ordovician carbonate-hosted barite mineralization,
Southern Quebec Appalachians. Sediment. Geol. 1996, 107, 121–139. [CrossRef]

25. Heydari, E. Porosity loss, fluid flow, and mass transfer in limestone reservoirs: Application to the Upper Jurassic Smackover
formation, Mississippi. AAPG Bull. 2000, 84, 100–118.

26. Esteban, M.; Taberner, C. Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or
cooling of brines. J. Geochem. Explor. 2003, 78, 355–359. [CrossRef]

27. Wang, L.; Shi, J.A.; Wang, Q.; Wang, J.P.; Zhao, X.; Sun, X.J.; Zhao, L.B. Analysis on main controlling factors of Ordovician
carbonate reservoir in southwest margin of Ordos Basin. Pet. Geol. Recovery Effic. 2005, 12, 10–13.

28. Choquette, P.W.; Cox, A.; Meyers, W.J. Characteristics, distribution and origin of porosity in shelf dolostones; Burlington-Keokuk
Formation (Mississippian), US Mid-Continent. J. Sediment. Res. 1992, 62, 167–189.

29. Xie, G.P. Diagenesis and Porosity Evolution of Crystal Garin Dolomite in the Upper Section of the 4th Member of Leikoupo
Formation in the Western Sichuan Depression. J. Yangtze Univ. (Nat. Sci. Ed.) 2015, 12, 24–26.

30. Mo, J.; Wang, X.Z.; Xie, L.; Zhou, Z.; Lin, G.; Xiong, J.W. Diagenesis and Pore Evolution of Carbonate in Sinian Dengying
Formation in Central Sichuan Province. J. Oil Gas Technol. 2013, 35, 32–38.

31. Lavoie, D.; Jackson, S.; Girard, I. Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of
Canada. Sediment. Geol. 2014, 305, 58–68. [CrossRef]

32. Biehl, B.C.; Reuning, L.; Schoenherr, J.; Lüders, V.; Kulka, P.A. Impacts of hydrothermal dolomitization and thermochemical
sulfate reduction on secondary porosity creation in deeply buried carbonates: A case study from the Lower Saxony Basin,
northwest Germany. AAPG Bull. 2016, 100, 597–621. [CrossRef]

33. Ardiansyah, K.; Hilary, C.; Jack, S.; Peter, K.S.; Adrian, B.; Hamish, R.; Fiona, W.; Cathy, H. Evaluating new fault controlled
hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology
2020, 67, 2945–2973.

34. Huang, S.J.; Wang, C.M.; Huang, B.B.; Zou, M.L.; Wang, Q.D.; Gao, X.Y. Scientific research frontiers and considerable questions of
carbonate diagenesis. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2008, 35, 1–10.

35. Liu, W.; Xiao, C.T.; Lv, Y.L. Analysis of Burid-hill Reservoir Forming Conditions in the East Section of South Slope of Dongying
Depression. J. Oil Gas Technol. 2004, 26, 6–7.

36. Ge, X. Buried Hill Reservoir Forming Research of Ordovician System in Caoqiao Oilfield. Master’s Thesis, Ocean University of
China, Qingdao, China, 2015.

37. Qiu, Z.J. Study on the Geological Characteristics and Control Factors of Caoqiao Buried Hill Reservoir in Dongying Depression,
Shandong. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2016.

88



Energies 2022, 15, 2155

38. Jiang, W. Characteristics of High-Quality Reservoir of the Palezoic Carbonate Buried Hills in the Donging Depression. Master’s
Thesis, China University of Petroleum (East China), Dongying, China, 2017.

39. Wei, X. Evaluation of Karst Reservoir in the Ordovician Badou Formation in the Zhuanghai Area, Jiyang Depression. Master’s
Thesis, Chengdu University of Technology, Chengdu, China, 2019.

40. Guo, Y.X. A study on constructive diagenesis of the dolomite reservoir within the Yeli-Liangjiashan Formation In the ZHuanghai
area of Jiyang Depression. Acta Mineral. Sin. 2021, 41, 163–170.

41. Li, C.G. Control of fault systems on oil and gas distribution in Dongying Depression. Oil Gas Geol. 1994, 15, 87–93.
42. Xiong, Z.; Wang, L.S.; Li, C.; Shi, X.B.; Guo, S.P.; Wang, J. Distribution geotemperature in Dongying Depression, Shengli oil and

gas field, North China basin. Geol. J. China Univ. 1999, 5, 312–321.
43. Jiang, Y.L.; Rong, Q.H. Formation pattern of oil-gas pools and distribution of hydrocarbon in Gaoqing area. Pet. Geol. Exp. 1998,

20, 14–19.
44. Chen, X.; Cao, Y.C.; Yuan, G.H.; Wang, Y.Z.; Zan, N.M. Origin and distribution model of the lower Paleozoic carbonata reservoirs

in Pingfangwang-Pingnan buried hills, Dongying Sag. J. China Univ. Pet. (Ed. Nat. Sci.) 2020, 44, 1–14.
45. Li, G.Y. Atlas of China’s Petroliferous Basins; Petroleum Industry Press: Beijing, China, 2002; pp. 58–276.
46. Fan, C.T.; Feng, Y.L.; Fu, J.P. Analysis on conditions and rules of reservoir forming of buried hill in Dongying sag. Pet. Geol.

Recovery Effic. 2002, 9, 35–37.
47. Zan, N.M.; Wang, Y.Z.; Cao, Y.C.; Yuan, G.H.; Chen, X.; Jiang, W.; Zhai, G.H.; Song, M.S. Characteristics and development of

reservoir space of the Lower Paleozoic buried hills in Dongying Sag, Bohai Bay Basin. Oil Gas Geol. 2018, 39, 355–365.
48. Lin, S.H.; Wang, H.; Zhang, G.X.; Wu, Y.X.; Chen, H.Y.; Wei, H.B. Pool features of buried hill in west part of Dongying Depression.

Oil Gas Geol. 2000, 21, 360–363.
49. Tian, Y.M. Structural Evolution and Oil-Gas Accumulation Analysis of Buried Hill in the South of Dongying Sag, Bohaiwan Basin.

Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2005.
50. Machel, H.G. Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction. Geology 1987, 15,

836–940. [CrossRef]
51. Dun, T.J. Reservoir research status and development trend. Northwestern Geol. 1995, 16, 1–15.
52. Xue, H.; Han, C.Y.; Xiao, B.Y.; Han, J.Y. Origin of Reservoirs in the Lower Cambrian Xiaoerbulak Formation, Tarim Basin. Acta

Sedimentol. Sin. 2019, 43, 79–88.
53. Jin, C.G.; Liu, J.W. Characteristics of Ordovician Karst reservoir in southern Zhidan, Ordos Basin. Ground Water 2016, 38, 239–241.
54. Yang, N.; Lü, X.X.; Pan, W.Q. Feature of fracture development in Ordovician carbonate reservoir of Lunnan burial hill. J. Xi’an

Shiyou Univ. (Nat. Sci. Ed.) 2004, 19, 40–42.
55. Zhao, J.L.; Gong, Z.W.; Li, G.; Feng, C.Y.; Bai, X.; Jian, J.; Fu, B.; Hong, Y. A review and perspective of identifying and evaluating

the logging technology of fractured carbinate reservoir. Prog. Geophys. 2012, 27, 537–547.
56. Burke, W.H. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 1982, 10, 516–519. [CrossRef]
57. Mcarthur, J.M.; Howarth, R.J.; Bailey, R.T. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope

Curve for 0–509 Ma and Accompanying Look-up Table for Deriving Numerical Age. J. Geol. 2001, 109, 155–170. [CrossRef]
58. Gregg, J.M.; Shelton, K.L. Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis

formations (Cambrian), southeastern Missouri. J. Sediment. Res. 1990, 60, 549–562.
59. Land, L.S. The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments.

In Stable Isotope in Sedimentary Geology (SC10); Arthur, M., Anderson, T., Kaplan, I., Veiser, J., Land, L., Eds.; The Society of
Economic Paleontologists and Mineralogists (SEPM): Tulsa, Oklahoma, USA, 1983; Chapter 4.

60. Veizer, J.; Bruckschen, P.; Pawellek, F.; Diener, A.; Ala, D. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeogr. Palaeocl.
1997, 132, 159–172. [CrossRef]

61. Friedman, I.; O’Neil, J.R. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest; United States Government Printing
Office: Washington, DC, USA, 1977; Volume 440, Chapter KK.

62. Kinsman, D.J.J. Gypsum and anhydrite of recent age, Trucial Coast, Persian Gulf. North. Ohio Geol. Soc. Clevel. Ohio 1966, 1,
302–326.

63. Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Lond. Spec. Publ. 2004, 235, 7–63. [CrossRef]
64. Adams, J.E.; Rhodes, M.L. Dolomitization by seepage refluxion. AAPG Bull. 1960, 44, 1912–1920.
65. Wang, S.H.; Song, G.Q.; Xu, C.H.; Chen, L. Early Palaeozoic Sedimentary Facies in the Shengli Oil Province, North China Platform.

Sediment. Facies Palaeogeogr. 1997, 17, 34–40.
66. Sibley, D.F.; Gregg, J.M. Classification of dolomite rock textures. J. Sediment. Res. 1987, 57, 967–975.
67. Merino, E.; Canals, À. Self-accelerating dolomite-for-calcite replacement: Self-organized dynamics of burial dolomitization and

associated mineralization. Am. J. Sci. 2011, 311, 573–607. [CrossRef]
68. Dunnington, H.V. Stylolite development post-dates rock induration. J. Sediment. Res. 1954, 24, 27–49. [CrossRef]
69. Tang, J.C.; Chen, H.H.; Wang, J.H.; Chen, K.Q.; Qi, K.L. The Diagenesis of the Upper Paleozoic Carbonate Rocks in the Southeast

Xiang Depression. J. Southwest Pet. Univ. (Sci. Technol. Ed.) 2007, 29, 43–46.
70. Beaudoin, N.; Koehn, D.; Lacombe, O.; Lecouty, A.; Billi, A.; Aharonov, E.; Parlangeau, C. Fingerprinting stress: Stylolite and

calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte
Nero anticline in the Apennines, Italy. Tectonics 2016, 35, 1687–1721. [CrossRef]

89



Energies 2022, 15, 2155

71. Veizer, J.; Ala, D.A.K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y. 87Sr/86Sr, δ13C and
δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [CrossRef]

72. Friedman, G.M. Highest Phanerozoic strontium isotopic ratios of pre-rift Late Cambrian passive margin in New York State, USA:
Products of continental weathering and orogenesis. Sediment. Geol. 2002, 147, 143–153. [CrossRef]

73. Gregg, J.M.; Sibley, D.F. Epigenetic dolomitization and the origin of xenotopic dolomite texture. J. Sediment. Res. 1984, 54, 908–931.
74. Zhang, J.T.; He, Y.L.; Yue, X.J.; Sun, Y.P.; Jin, X.J. Genesis of iron-rich dolostones in the 5th member of the Majiagou Formation of

the Ordovician in Ordos Basin. Oil Gas Geol. 2017, 38, 776–783.
75. Zheng, C.B.; Zhang, G.S.; Wang, F.Y. Hot Water Karst Characteristics of Ordovician Period in Ordos Basin. Acta Sedimentol. Sin.

2001, 19, 524–529.
76. He, P.W.; Xu, W.; Zhang, L.J.; Fu, M.Y.; Wu, D.; Deng, H.C.; Xu, H.L.; Sun, Q.M. Characteristics and Genetic Mechanism of Qixia

Formation Dolomite in Moxi-Gaoshiti Area, Central Sichuan Basin. Acta Sedimentol. Sin. 2021, 39, 1532–1545.
77. Li, P.L.; Zhang, S.W.; Wang, Y.S. Genesis, Accumulation and Exploration of Diversity Buried Hill: A Case Study of Jiyang Depression;

Petroleum Industry Press: Beijing, China, 2003; pp. 30–120.
78. Fisher, R.S.; Land, L.S. Diagenetic history of Eocene Wilcox sandstones, South-Central Texas. Geochim. Cosmochim. Acta 1986, 50,

551–561. [CrossRef]
79. Xia, B.; Huang, X.X.; Cai, Z.R.; Jia, H.Y.; Lu, B.F.; Wang, R. Relationship Between Tectonics and Hydrocarbon Reservoirs from

Indo-Chinese Epoch to Stage of Yanshan in Jiyang Depression. Nat. Gas Geosci. 2007, 18, 832–837.
80. Li, D.S. Tectonic pattern of Bohai Bay petroliferous basin. Pet. Explor. Dev. 1979, 2, 1–10.
81. Kang, Y.; Zou, L.; Liu, Z.Y.; Han, M.; Lu, H.; Yao, S.C. Fault structure and its effect on oil-gas reservoir forming in Qingcheng arch.

Pet. Geol. Recovery Effic. 2014, 21, 45–48.
82. Yang, P.R.; Chen, J.; Cai, J.G.; Yang, H.Y. Structural transitional stages in Jiyang depression and their significance on petroleum

geology. Pet. Geol. Recovery Effic. 2001, 8, 5–7.
83. Qiu, N.S.; Li, S.P.; Zeng, J.H. Thermal History and Tectonic-thermal Evolution of the Jiyang Depression in the Bohai Bay Basin,

East China. Acta Geol. Sin. 2004, 78, 263–269.
84. Faure, G.; Mensing, T.M. Isotopes: Principles and Applications, 3rd ed.; Wiley: Columbus, OH, USA, 2004; pp. 363–460.
85. Epstein, S.; Buchsbaum, R.; Lowenstam, H.; Urey, H.C. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull.

1953, 64, 1315–1326. [CrossRef]
86. Grossman, E.L.; Ku, T.L. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem. Geol. Isot.

Geosci. Sect. 1986, 59, 59–74. [CrossRef]
87. Smith, L.B.; Davies, G.R. Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction. AAPG Bull. 2006,

90, 1635–1640. [CrossRef]
88. Mattey, D.; Lowry, D.; Macpherson, C. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 1994, 128, 231–241.

[CrossRef]
89. Wu, Q. Fault System and Tectonic Evolution of Mesozoic-Paleozoic in Gaoqing Area. Master’s Thesis, China University of

Petroleum (East China), Dongying, China, 2017.
90. Cai, J.X. Characteristics and genesis mechanism of stylolite. Acta Petrol. Sin. 1990, 5, 51–61.
91. Murray, R.C. Origin of porosity in carbonate rocks. J. Sediment. Res. 1960, 30, 59–84. [CrossRef]
92. Waldschmidt, W.A.; Fitzgerald, P.E.; Lunsford, C.L. Classification of Porosity and Fractures in Reservoir Rocks1. AAPG Bull. 1956,

40, 953–974.
93. Qian, Y.X.; He, Y.L.; Chen, Q.L.; Li, H.L.; Lu, Q.H.; Cai, X.R.; You, D.H. Sealing capacity of the Ordovician carbonate rocks in

Tazhong area, the Tarim Basin. Oil Gas Geol. 2012, 33, 1–9.
94. Katz, D.A.; Eberli, G.P.; Swart, P.K.; Smith, L.B. Tectonic-hydrothermal brecciation associated with calcite precipitation and

permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming. AAPG Bull. 2006, 90, 1803–1841.
[CrossRef]

95. Huang, Q.Y.; Zhang, X.N.; Zhang, S.Y.; Liu, D.; Ye, N. Textural Control on the Development of Dolomite Reservoir: A study from
the Cambrian-Ordovician Dolomite,Central Tarim Basin, NW China. Nat. Gas Geosci. 2014, 25, 341–350.

96. Hou, G.T.; Qian, X.L.; Song, X.M.; Fan, L.X.; Xu, S.G. The Origin of Car bondioxide Gas Fields in J iyang Basin. Acta Sci. Nat. Univ.
Pekin. 1996, 32, 35–41.

97. Zeng, J.H.; Jin, Z.Y.; Zhang, L.P. Mantle-derived fluid activity characteristics and reservoir-forming effect of Gaoqing-Pingnan
fault zone in Dongying Depression. Geol. Rev. 2004, 50, 501–506.

98. Li, Y.; Yan, Y.S.; Song, Z.J.; Tang, Z.Q. Study on Fracture Movement and Petroleum Poo-l matured Phases of Pingnan Oilfield
—Based on the Evidence of Liquid Inclusions. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2010, 29, 14–19.

99. Shang, X.F.; Sun, X.J. The influences of Organic Liquid’s on Reservoir Diagenesis-Taking Dongying Sag as an Example. J. Libr. Inf.
Sci. 2011, 21, 184–188.

100. Sun, S.Q. Dolomite Reservoirs: Porosity Evolution and Reservoir Characteristics. AAPG Bull. 1995, 79, 186–204.
101. Hugman, R.H.H.; Friedman, M. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate

rocks. AAPG Bull. 1978, 63, 1478–1489.

90



Citation: Mao, Y.; Yan, C.; Zhang, R.;

Li, Y.; Lou, M.; Dou, L.; Zhou, X.;

Wang, X. Application of Far-Gather

Seismic Attributes in Suppressing the

Interference of Coal Beds in Reservoir

Prediction. Energies 2022, 15, 2206.

https://doi.org/10.3390/

en15062206

Academic Editor: Reza Rezaee

Received: 20 February 2022

Accepted: 14 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Application of Far-Gather Seismic Attributes in Suppressing
the Interference of Coal Beds in Reservoir Prediction

Yunxin Mao 1, Chunjing Yan 2, Ruoyu Zhang 1, Yangsen Li 1, Min Lou 1, Luxing Dou 2, Xinrui Zhou 2

and Xixin Wang 2,*

1 Shanghai Branch of CNOOC China Limited, Changning District, Shanghai 200050, China;
maoyx@cnooc.com.cn (Y.M.); zhangry10@cnooc.com.cn (R.Z.); liys9@cnooc.com.cn (Y.L.);
loumin2@cnooc.com.cn (M.L.)

2 School of Geosciences, Yangtze University, Wuhan 430100, China; 2021710351@yangtzeu.edu.cn (C.Y.);
luxingdou@yangtzeu.edu.cn (L.D.); 2021710354@yangtzeu.edu.cn (X.Z.)

* Correspondence: wangxixin86@yangtzeu.edu.cn

Abstract: The sandstone reservoir of the Pinghu Formation in the Xihu Depression, East China Sea
is characterized by great depth, small thickness, radical facies change and a widespread coal bed.
It is difficult to describe the reservoir accurately using conventional reservoir prediction methods.
In order to analyze the influence of coal-bearing strata on the prediction of the mid-low thickness
sandstone reservoir, the seismic response of different sandstone–coal stratigraphic assemblages was
simulated by seismic forward modeling. The modeling result indicates that the post-stack seismic
response is dominated by coal bed, whereas the response of sandstone can hardly be recognized. In
contrast, the difference between the pre-stack AVO (amplitude versus offset) response characteristics
of coal seams and gas-bearing sandstones has been clarified based on the statistics pertaining to
AVO characteristics of drilled wells. Therefore, we propose a method to reduce the interference
of coal beds in sandstone reservoir prediction using far-gather seismic information. This method
has significantly improved the accuracy of reservoir prediction and sand description in sand–coal
coupled environments and has been applied successfully in the exploration of coal-rich strata in the
Pingbei slope belt, Xihu Depression.

Keywords: coal strata; seismic response; pre-stack AVO forward; dominant far-offset; reservoir prediction

1. Introduction

The western slope zone of the Xihu Depression, which has a high success rate for
hydrocarbon drilling and considerable hydrocarbon resources, is one of the most favorable
hydrocarbon enrichment areas in the East China Sea [1–3]. However, coal-bearing strata
are widespread in the study area. It is difficult to accurately predict the distribution of
reservoirs because coal seams and gas reservoirs have many similarities in post-stack
seismic analyses, such as low velocity, low P-impedance and bright spots. Consequently,
an effective method of suppressing coal bed interference would be of great benefit to
reservoir prediction and sustained hydrocarbon production in the East China Sea. Many
previous studies on the distribution, formation mechanism and prediction methods of
coal beds have been conducted [4,5]. Diessel [6] studied the development of coal seams
based on sequence stratigraphy theory for the first time and proposed that coal seams
are mainly developed from late Lowstand System Tracts to early Transgressive System
Tracts, and from late Transgressive System Tracts to early Highstand System Tracts. The
seismic response of reservoirs adjacent to coal seams is difficult to identify because the
oil and gas target layers can be affected by the strong amplitude of the coal seam. Many
methods focused on strong-amplitude suppression of coal seams have been proposed [7–9].
Based on the amplitude characteristics of weak seismic signals in thick and thin layers, Han
and Zhang [10], and Ping [11,12] analyzed the spectrum characteristics of seismic weak
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signals, including how they are influenced by noise. The Wigner–Ville distribution, which
is a time–frequency analysis method, is used along with multi-wavelet decompression–
reconstruction technology to identify coal beds and to exclude the interference of coal beds.
A nail-type wavelet and compressed sensing technology were used to remove the strong
shield interference so that the seismic response of the target layer was highlighted, and the
ability to predict sandstone reservoirs was improved [13]. Zhang et al. [14] successfully
suppressed the subwave parametrization using subwave spectral shaping of the raw
seismic data; by implementing this technique in combination with compressed sensing
processing, they were also able to achieve rejection of strongly shielded signals. Gu
et al. [15] adopted a new high-resolution inversion technology that makes full use of lateral
seismic waveform space change information instead of a traditional variogram, and they
achieved high-precision thin reservoir prediction even under a strong shielding effect.
However, it is difficult to describe thin coal seams by seismic data alone due to the small
thickness and random distribution of coal. Seismic forward modeling is a valid method
of identifying the seismic response of coal seams [16–18]. Moreover, an approach based
on AVO characteristics has advantages in detecting special lithology and fluids. Pre-stack
seismic analysis highlights special lithological information better than post-stack seismic
analysis [18–25]. Therefore, it is also necessary to investigate the reflection mechanism of
coal seams so that the influence of coal seams on reservoir prediction can be reduced.

Based on petrophysical characteristics of the coal seams in the study area, we investi-
gate the differences in elastic parameters between coal seams and sandstone or mudstone
and identify the distinguishing parameters that can indicate coal seams. The seismic
response of different sand–coal stratigraphic assemblages is simulated by seismic for-
ward modeling. The modeling result indicates that the post-stack seismic response is
dominated by coal bed, whereas the response of sandstone can hardly be recognized. In
contrast, the difference between the pre-stack AVO response characteristics of coal seams
and gas-bearing sandstones has been clarified based on the statistics pertaining to AVO
characteristics of drilled wells. Therefore, we propose a method to reduce the interfer-
ence of coal beds in sandstone reservoir prediction using far-gather seismic information.
This method has significantly improved the accuracy of reservoir prediction and sand
description in sand–coal coupled environments and has been applied successfully in the
exploration of coal-rich strata in the Pingbei slope belt, Xihu Depression.

2. Geological Setting

The East China Sea Shelf Basin (ECSSB) is a Meso-Cenozoic superimposed basin lying
in the east margin of the Eurasian continental plate. The basin is bounded by the Chinese
mainland to the west and by the Okinawa Trough to the east. The Xihu Depression, which
is located in the eastern part of the ECSSB and is predominantly NNE-striking, is the largest
depression of the ECSSB [26,27]. The Xihu depression can be divided into three tectonic
elements: The Western Slope Belt, the Central Inversional Structural Belt and the Eastern
Half-graben Belt. The area studied in this paper, the Pingbei slope belt, is located in the
north of the Western Slope Belt (Figure 1). The Xihu Depression has been developed since
the end of the Mesozoic and is predominantly filled with Cenozoic clastic sediments. The
basin’s evolution is composed of two phases: the early syn-rift phase was due to extension
from the end of the Cretaceous to the Paleocene, and the following post-rift phase was due
to thermal subsidence from the Eocene to the Oligocene [28–30].
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Figure 1. Primary geological structures and the regional stratigraphy in the study area. Locations of
wells and seismic profiles in Figure 9 are indicated.

The Pinghu Formation was deposited during the Eocene and comprises interbedded
mudstone, siltstone and thin coal beds. Comprehensive analysis of data from the Pinghu
Formation in the study area, including seismic phase, drilling core, and logging data,
suggests that the coal seam developed mainly in the sedimentary environment of the tidally
influenced deltaic plain, the tidally influenced deltaic foreshore divergent interfluve, the
supratidal zone and the braided river deltaic foreshore divergent interfluve. The coal beds
are interbedded with sandstone and mudstone in the Pinghu Formation. The interbedded
layers have small thicknesses ranging from 0.5 to 2 m. The coal beds are difficult to
recognize throughout the study area because their lateral change is radical (Figure 2).
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Figure 2. Litho-stratigraphic units of the Pinghu Formation in the Xihu Depression. For locations of
the wells, see Figure 1.

3. Data and Methods

We investigate the distribution and reflective characteristics of coal-bearing strata,
sandstone and mudstone by means of petrophysics, post-stack forward modeling and
pre-stack wave equation forward modeling. First, the petrophysical properties of different
lithology assemblages are clarified based on statistics. Second, a series of post-stack and
pre-stack forward models are designed and simulated according to the petrophysical
characteristics. The modeling result indicates that post-stack seismic analysis demonstrates
ambiguity due to the interference of coal seams with the amplitude, frequency and phase
of sandstone. Finally, we suppress the interference of coal seams using far-offset partial
stacked seismic analysis, taking advantage of the fact that the energy of coal seams decreases
as the offset angle increases.

3.1. Analysis of Petrophysical Characteristics

The target layers in the study area are generally buried deeper than 4000 m. The distri-
bution characteristics of P-impedance differ based on lithology (Figure 3), with sandstone
P-impedance being the largest, mudstone P-impedance the second largest, and coal seam
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P-impedance the smallest. The sandstone P-impedance decreases when the sandstone
contains gas, such that the sandstone and mudstone P-impedance are indistinguishable.
Hence, only coal seam lithology can be effectively distinguished by P-impedance. In con-
trast, statistics concerning the ratio of compressional and shear wave velocity (hereafter
referred to as Vp/Vs) of different lithologies show that Vp/Vs can effectively distinguish
between the lithology of sand and mud (Figure 4). Vp/Vs of sandstone shows low-value
characteristics, while those of mudstone and coal seam both show high-value characteris-
tics. Thus, reservoir prediction and fine description of the sand body in this area can be
conducted using Vp/Vs.

Figure 3. P-impedance distribution characteristics of different lithologies.

Figure 4. Distribution characteristics of the velocity ratios of compressional and shearing waves for
different lithologies.
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3.2. Analysis of Factors That Influence Seismic Amplitude

Based on the above petrophysical analysis, the coal seams are characterized by low
P-wave impedance and a strong-amplitude trough response in post-stack seismic data.
In order to analyze the influence of thin coal seams on the sandstone reservoir, forward
models of sand–coal coupling with different numbers of coal seams and seam spacing are
designed: the model parameters are shown in Table 1. The seismic forward models of
coal seams and sand–coal coupling are compared (Figure 5). Both the coal seams and the
gas-bearing sandstone mostly show the characteristics of strong trough bright spots on
post-stack seismic data, while a small number shows the characteristics of weak amplitude
response due to the influence of coal seam spacing. With the same coal seam spacing, the
reflective amplitude of both coal seams and gas-bearing sandstone-top surfaces are stronger
the larger the number of coal seams is. With the same number of coal seams, the reflective
amplitude of the sandstone-top surfaces gradually increases when the sand–coal spacing
decreases. The above analysis suggests that the seismic reflection from the sandstone top
is influenced by both the number and spacing of coal seams. It is difficult to analyze the
seismic response of sand and coal assemblages on post-stack seismic data because the
distribution of coal seams, which is affected by tides, is random in number and spacing.

Table 1. Model parameters of thin gas-bearing sandstone with different AVO types.

Lithology
P Wave Velocity

(m/s)
S Wave Velocity

(m/s)
Density
(g/cm3)

Vp/Vs

Mudstone 4150 2220 2.63 1.87
Sandstone 4027 2430 2.43 1.65
Coal seam 2700 1350 1.90 2.0

Figure 5. Cont.
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Figure 5. Forward models with coal seams and sand–coal assemblages. (a) Geological models with
only coal seams; (b) geological models with both coal seams and sandstone (without coal seams,
the sandstone-top surface shows trough reflection, while the sandstone–coal assemblage may show
stronger or weaker amplitude and the response of sandstone cannot be recognized).

3.3. A Method to Suppress Coal Seam Interference Based on Partial Stacked Seismic Analysis

Given that the seismic response characteristics of sandstone–coal assemblages are
complex, the response characteristics of coal seams and sandstone cannot be effectively
distinguished by conventional seismic data alone, and other means of analysis are required.
The statistics for all coal seams and gas-bearing sandstone in the study area (Tables 2 and 3)
show that most of the coal seams exhibit low P-impedance, positive gradient and IV AVO
type, while gas-bearing sandstone exhibits low P-impedance, negative gradient and II-III
AVO type. In the near-gather seismic data, the difference between gas-bearing sandstone
and coal seams is not obvious, which is the fundamental reason why their responses cannot
be effectively distinguished using only post-stack seismic analysis. However, in the far-
gather seismic data, coal seams gradually decrease in energy, while gas-bearing sandstone
gradually increases in energy. Thus, the influence of coal seams can be eliminated through
the far-gathers of partial post-stack seismic analysis.

Table 2. Statistics concerning elastic parameters and AVO characteristics of drilled coal seams in the
Pingbei slope belt.

Lithology
P-Wave Velocity

(m/s)
S-Wave Velocity

(m/s)
Density
(g/cm3)

Intercept Gradient
AVO
Type

Mudstone 4150 2220 2.63 — — —

Coal
seam

2700 1350 2.00 −0.3477 0.4657 IV
2639 1300 2.13 −0.3276 0.4525 IV
2900 1378 2.10 −0.2894 0.4271 IV
2698 1290 2.15 −0.3125 0.4504 IV
2617 1300 2.14 −0.3293 0.4503 IV
2747 1362 1.90 −0.3646 0.4873 IV
2956 1605 2.14 −0.2708 0.3237 IV
2801 1600 2.00 −0.3301 0.3625 IV
2900 1627 2.02 −0.3085 0.3461 IV
2760 1529 1.80 −0.3885 0.4535 IV
2849 1600 2.18 −0.2794 0.3124 IV
2736 1654 2.07 −0.3245 0.3154 IV
2619 1344 1.75 −0.4271 0.5417 IV
2895 1337 1.80 −0.3655 0.5192 IV

97



Energies 2022, 15, 2206

Table 3. Statistics concerning elastic parameters and AVO characteristics of drilled sandstone in the
Pingbei slope belt.

Lithology
P-Wave Velocity

(m/s)
S-Wave Velocity

(m/s)
Density
(g/cm3)

Intercept Gradient
AVO
Type

Mudstone 4150 2220 2.63 - - -

Sandstone

4027 2518 2.43 −0.0546 −0.1309 II
4114 2492 2.42 −0.0459 −0.1004 II
4300 2402 2.39 −0.0115 −0.0414 II
4273 2517 2.44 −0.0229 −0.0966 II
4080 2485 2.47 −0.0399 −0.1148 III
4361 2743 2.49 −0.0026 −0.2247 III
4136 2492 2.40 −0.0474 −0.0919 II
4062 2575 2.45 −0.0461 −0.1643 III
4000 2415 2.41 −0.0621 −0.0708 II
4230 2473 2.46 −0.0239 −0.0838 II
4157 2480 2.38 −0.0491 −0.0769 II
4235 2550 2.42 −0.0314 −0.1151 III
4070 2515 2.39 −0.0575 −0.1117 III

We simulated pre-stack forward modeling using the wave equation method in the
frequency domain because thin coal seam assemblages do not meet the semi-infinite-space
hypothesis condition of the Zoeppritz equation. The acoustic wave equation in the time
domain can be expressed as

∂2u(x, z, t)
∂x2 +

∂2u(x, z, t)
∂z2 − 1

v(x, z)2
∂2u(x, z, t)

∂t2 = − f (x, z, t) (1)

where v(x, z) is the wave velocity in the media, which is a function of position when the me-
dia is anisotropic. f is the source function, which is usually set as Ricker wavelet. Take the
Fourier transform of t to transform Equation (1) into the frequency domain. u(x, z, t) is trans-
formed into u(x, z, ω) , and f (x, z, t) is transformed into f (x, z, ω). Therefore, Equation (1)
is transformed into

∂2u(x, z, ω)

∂x2 +
∂2u(x, z, ω)

∂z2 − ω2

v2 u(x, z, ω) = − f (x, z, ω) (2)

The study area is grided according to a geological model. A finite-difference operator
is used to discretize the continuity equation at each grid element. The difference equation
is solved, and an approximation of the solution at each grid element is obtained. Surface
receivers are designed based on an actual observation system so that the real seismic
reflection records can be obtained. Figure 6 shows a comparison of the forward modeling
results as obtained by the Zoeppritz equation and the wave equation. The amplitude energy
of coalbed-top surface decreases with an offset in the wave equation model, whereas
it increases with an offset in the Zoeppritz equation model. These results indicate the
wave equation model agrees better with the actual seismic response of coal beds than the
Zoeppritz equation model.
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Figure 6. Comparison of the forward modeling results obtained using the Zoeppritz equation and
the wave equation. (a) Zoeppritz equation modeling result; (b) wave equation modeling result.

In order to confirm that the far angle partial stacked seismic data can eliminate the
interference of coal seams, forward models with different sand–coal spacing are designed.
The parameters of the models are the same as in Table 1, where the thickness of each coal
seam is 1 m, and the sand–coal spacing gradually changes from 1 m to 80 m. The finite-
difference wave equation forward modeling method, using the aforementioned frequency
domain and a Ricker wavelet of 25 Hz, is employed. The partial stacked seismic data
with different angles (Figures 7 and 8) show that, in the near-gather stack seismic data, the
trough energy of the sandstone top is enhanced by the influence of the coal seam, and the
amplitude of the gas-containing sandstone increases by 1.7 times relative to the sandstone
without a coal seam. With the increase in the partial stack angle, the influence of the coal
seam on the amplitude of the sandstone-top surface becomes weaker and weaker. The
amplitude of the sandstone with a coal seam is the same as that of the sandstone without a
coal seam in the far-gather seismic data. Based on the above analysis, it is believed that a
far-angle partial stacked seismic analysis can better eliminate the influence of the coal seam
and improve the accuracy of sandstone prediction.

Figure 7. Cont.
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Figure 7. Seismic response of the partial stacked seismic analysis for sandstone–coal assemblage at
different stack angles: (a) geologic model; (b) partial stacked seismic analysis 0–7◦; (c) partial stacked
seismic analysis 7–14◦; (d) partial stacked seismic analysis 14–21◦; (e) partial stacked seismic analysis
21–28◦; (f) partial stacked seismic analysis 28–35◦.

Figure 8. Partial stacked seismic amplitude of sandstone-top surface at different stack angles.

4. Results

Fault-block traps, which are dominated by faults, and structure-lithostratigraphic
traps, which are dominated by faults and channel sands, are the main trap types in the
study area, so it is important to recognize lithologic boundaries accurately. Sand–coal and
mud–coal assemblages have been encountered during the drilling of many wells in the
Pinghu Formation. Both the sand–coal and mud–coal assemblages show strong-amplitude
bright spot reflections in seismic analyses due to the effect of coal seams. Consider the
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seismic profile across Wells X-2 and X-3 as an example (Figure 9a). The P4 layer of Well
X-2 is mainly characterized by sand–coal coupling and shows strong-amplitude trough
reflection in its seismic profile. The P8 layer of Well X-2 is mainly mud–coal coupling
and shows strong-amplitude trough reflection. It is difficult to identify the distribution of
sandstone channels in post-stack seismic analysis.

Figure 9. Cont.
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Figure 9. Post-stack and partial stacked seismic profiles across Wells X-2 and X-3. For locations of
the profiles, see Figure 1. (a) The post-stack seismic profile; (b) the near offset partial stacked seismic
profile; (c) the far-offset partial stacked seismic profile; (d) P + G hydrocarbon detection profile.

In order to eliminate the influence of the coal seam, the partial stack seismic profiles at
different angles are analyzed (Figure 9b,c). It is found that the coal seam exhibits a very low
P-impedance and a strong-amplitude reflection characteristic on the near-gather seismic
data, which is a similar result to that of the post-stack seismic data, and is not conducive
to a fine characterization of the sandstone. However, in the far-offset partial stack seismic
profile, the coal seam shows a class-IV AVO signature with a strong amplitude in the
near angle and a weak amplitude in the far angle, so the amplitude of the mudstone–coal
stratigraphic assemblage (P8 in Well X-2) is significantly weakened in the far angle gather
and in the P + G hydrocarbon detection profile (Figure 9d). In contrast, the sand–coal
stratigraphic assemblage (P4 in Well X-2) shows a strong-amplitude reflection signature in
the far-offset partial stack seismic profile and exhibits a stream channel in the downward
direction of the strong trough. Moreover, gas-containing characteristics can be found in
P4 in the P + G hydrocarbon detection profile (Figure 9d). Weak amplitude in the far-
offset partial stack seismic analysis should be considered a predictor of a coal seam, while
strong amplitude in the far-offset partial stack seismic analysis should be considered a
predictor of gas-containing sandstone. The actual drilling result is reliably consistent with
the predictions. The sand–coal assemblage can show either a strong or a weak amplitude
in the minimum amplitude attribute of the P4 layer due to variation in sand–coal spacing
and in the number and thickness of coal seams, and a large number of false bright spot
reflections can also be seen (Figure 10a). In the minimum amplitude attribute of the far-
offset partial stack seismic analysis, the false bright spot reflections have been effectively
eliminated, and the pattern of braided channels is more clearly defined. Thus, it is evident
that the far-offset partial stack seismic analysis is of great benefit in advanced reservoir
prediction and description.

We evaluated a structure-lithostratigraphic trap and designed Well X-3 in the footwall
based on the temporal and spatial relationships between the braided channels and faults.
A 22 m thick gas-containing layer with 12.6% porosity in P4 was encountered by Well X-3,
and the proven reserve of natural gas in the P4 layer increased by about 1.4 billion cubic
meters. Three wells were successfully drilled, and the drilling success rate improved from
50% to 80% thanks to the method introduced in this paper. The far-gather seismic attribute
was applied successfully and was proven helpful in the exploration of low-porosity, low-
permeability reservoirs in the coal-bearing strata in the study area.
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Figure 10. Minimum amplitude attribute of the P4 layer in the study area: (a) the minimum am-
plitude of post-stack seismic analysis; (b) the minimum amplitude of far-offset partial stacked
seismic analysis.

5. Discussion

Although the interference of coal seams can be effectively reduced by far-offset partial
stacked seismic analysis, multi-layer coal seams will cause residual energy illusions in
far-gather analysis. In order to exclude the energy abnormality illusion and to demonstrate
the applicability of the method described in this paper, we designed a pre-stack forward
model of a multi-layer coal seam. The model uses a horizontally layered medium. Three
types of strata are simulated: sandstone, a sandstone–coal assemblage (the thicknesses of
the three coal seams are 1.0 m, 0.5 m and 1.0 m, and the distance between sandstone and
coal is 5 m) and a coal seam (Figure 11).

Figure 11. Seismic response of forward models with a sandstone–coal assemblage at different
stack angles: (a) post-stack seismic analysis; (b) partial stacked seismic analysis 1–15◦; (c) partial
stacked seismic analysis 15–30◦; (d) partial stacked seismic analysis 30–45◦; (e) P + G hydrocarbon
detection profile.

The simulation results are shown in Figure 10. The sandstone model exhibits a class-IIb
AVO feature, and the trough energy increases as the offset angle increases. The sandstone–
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coal assemblage model exhibits a class-IV AVO feature, and its trough energy and frequency
are lower than the sandstone model. The coal seam model exhibits a typical class-IV AVO
feature, and the trough energy decreases as the offset angle increases. There is a residual
energy illusion in the far-gather of the coal seam model, which disturbs the prediction of
sandstone, and the greater the thickness of coal seam, the stronger the interference. We
analyzed the P + G attribute to exclude the energy abnormality of the multi-layer coal seam.
The coal seam shows high Vp/Vs in the P + G attribute, whereas sandstone shows low
Vp/Vs. Therefore, we can suppress the coal-bearing interference and improve the drilling
success rate using the far-gather seismic attribute integrated with the P + G attribute.

6. Conclusions

We investigated the seismic response of sandstone–coal assemblages, both by analyz-
ing the petrophysical and AVO characteristics of sandstone and coal seams and by forward
modeling sandstone–coal assemblages. A method of suppressing coal seam interference to
improve predictions of reservoirs using far-gather seismic attributes has been proposed.
Based on these analyses and a successful case study, we draw the following conclusions:

(1) Coal seams are widespread within the Pinghu Formation and have small thicknesses
and low impedance characteristics. P-wave impedance can only be used to detect coal
seams, whereas Vp/Vs can be used to detect sandstone reservoirs.

(2) The finite-difference acoustic wave equation in the frequency domain can effectively
eliminate the interference of the far-offset waveform distortion that is typical of coal
seams, and the simulation results are consistent with the actual seismic response
characteristics. The forward modeling of sandstone–coal assemblages indicates that
the responses of coal seams and sandstone cannot be distinguished by post-stack
seismic data, but the interference of coal seams can be eliminated by far-offset partial
stacked seismic analysis.

(3) The far-gather seismic attribute has been applied successfully in reservoir prediction
and sand body description in the study area, which contributed to the successful
exploration of coal-rich strata in the Pingbei slope belt.

(4) The value of popularizing the method introduced in this paper has been proven in
both the ECSSB and the Ordos Basin, where the accuracy of reservoir prediction in
coal-bearing strata has been improved.
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Abstract: The carbonate gas reservoir is one of the most important gas formation types; it comprises a
large proportion of the global gas reserves and the annual gas production rate. However, a carbonate
reservoir with weathering crust formation is rare, and it is of significant interest to illustrate the
geological characteristics of this kind of formation and present the emerging problems and solution
measures that have arisen during its exploitation. Therefore, in this research, a typical carbonate gas
reservoir with weathering crust formation that is located in Ordos Basin, China, was comprehensively
studied. In terms of formation geology, for this reservoir, the distribution area is broad and there
are multiple gas-bearing layers with low abundance and strong heterogeneity, which have led to
large differences in gas well production performance. Some areas in this reservoir are rich in water,
which seriously affects gas well production. Regarding production dynamics, the main production
areas in this gas reservoir have been stable on a scale of 5.5 billion cubic meters for more than a
decade, and the peripheral area has been continually evaluated to improve production capacity.
Nevertheless, after decades of exploration and development, the main areas of this reservoir are
faced with several problems, including an unclear groove distribution, an unbalanced exploitation
degree, low formation pressure, and increases in intermittent gas wells. To deal with these problems
and maintain the stability of gas reservoir production, a series of technologies have been presented.
In addition, several strategies have been proposed to solve issues that have emerged during the
exploration and exploitation of peripheral reservoir areas, such as low-quality formation, unclear
ancient land and complex formation-water distribution. These development measures employed in
the carbonate gas reservoir with weathering crust formation in the Ordos Basin will surely provide
some guidance for the efficient exploitation of similar reservoirs in other basins all over the world.

Keywords: Ordos Basin; carbonate gas reservoir; weathering crust formation; geological characteris-
tics; development technologies

1. Introduction

Carbonate reservoirs play an important role in the global oil and gas industry. They
comprise about 72% of global oil and gas reserves, and nearly 60% of global oil and gas
production is produced from carbonate reservoirs [1–4]. In China, carbonate reservoirs
comprise nearly 30% of natural gas reserves and 20% of gross gas production, and they have
an important position in the supplement of natural gas. There are three basins in China
that have large-scale carbonate reservoirs: the Tarim Basin (e.g., Tazhong and Lunnan), the
Sichuan Basin (e.g., Gaoshiti, Moxi, Eastern Sichuan, Longgang, Yuanba, and Puguang),
and the Ordos Basin (e.g., Jingbian and Gaoqiao). Globally, basins with giant carbonate
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gas reservoirs include the Persian Gulf Basin (e.g., North Field, Pars South, and Northwest
Dome), the Pre-Caspian Basin (Astrakhan and Karachaganak), and the Zagros basin (Rag-E-
Safid) [2]. These carbonate gas reservoirs can be divided into four categories depending on
formation type: the fractured-vuggy reservoir, reef flat reservoir, bedded dolomite reservoir,
and weathering crust reservoir [5–10]. The first three reservoirs are found all over the world
and have been studied sufficiently, but the weathering crust carbonate reservoir is raw and
has not been deeply investigated. Therefore, in this research, we studied the geological
characteristics and optimal development strategies for a typical carbonate gas reservoir
with weathering crust formation. This study can provide some insights into the exploration
and development of similar carbonate gas reservoirs, such as the tight carbonate reservoirs
in the north of Iraq, which possess Turonian–Campanian Kometan formations with low
porosity and permeability [11].

Structures for weathering crust formation can be qualitatively separated according
to color, mineral features, core properties, and other chemical indicators [12–16]. There
are two main division schemes for this kind of formation: one identifies different layers,
such as iron crust, fracture, lamination, and sandy weathering layers, and the other scheme
identifies layers with different kinds of weathering zones, such as severely, weakly, and
slightly weathered zones [13,16]. To date, many investigators have conducted studies
regarding different kinds of formations with weathered crust features. Tian et al. [17]
proposed a multi-layer artificial intelligence workflow to map the seismic attributes and
represent the dissolution values of volcanic weathered crust formations. Zhu et al. [18]
analyzed the vertical structure characteristics of granite weathering crusts for reservoirs
in the western segment of the northern belt of Dongying Sag, Bohai Bay Basin, China,
which possesses sandstone formations. Sidorova et al. [19] reported that the widespread
weathering crust of crystalline basements can be used to study the mineral formation
process of ancient weathering crust, though they did not study formation characteristics.
However, these studies mainly focused on volcanic or sandstone reservoirs with weathering
crust formation, and there has been a lack of the research regarding carbonate reservoirs.

There have been many geologic studies of the targeted gas reservoir, Jingbian gas field.
Influenced by environmental variation at the end of the Middle Ordovician, the Ordos
Basin was uplifted by the Caledonian movement and experienced 130–150 million years
of weathering and erosion. In this period, the topography of the Jingbian platform was
a large karst slope, in which the western area was higher than the eastern area and the
surface water flowed from west to east. During this period, the effects of supergene leachate
karsts were strong, which led to the formation of dendrite erosion grooves. In addition,
the continuous replenishment of atmospheric and acidic aquifers caused the expansion of
micro-cracks, solution pores, and intergranular solution pores, thus leading to the formation
of large-area and layered area with porphyritic and honeycomb solution pores, as well as
intensive weathering fractures and mechanical crusting fractures [20–22]. To determine the
rock type, sedimentary characteristics, and environments of subsections 1 and 2 of member
5 in the Majiagou Formation, Xu et al. [23] distinguished sedimentary microfacies via
geological laboratory analysis. The origins and gas sources of Ordovician paleo-weathering
crust reservoirs can be determined with geochemical gas evidence, such as the carbon
isotope reversal for the Ordos Basin [24,25]. To reconstruct the paleo-geomorphology
of the weathering crust from the end of the Ordovician in the eastern part of the Ordos
Basin, Wei et al. [26] studied paleo-geomorphic characteristics, the thickness of residual
strata, and paleo-karsts. Li et.al [27] found that gases were accumulated in stratigraphic
traps related to karst paleo-geomorphology and lithologic traps associated with the late
diagenetic features of carbonate rocks. On the other hand, to study production dynamic
in the Ordos Basin, Zhang et al. [28,29] used productivity testing in tandem with pressure
build-up data and the “one point method” to estimate well productivity in the initial stages.
Zhang et al. [30] and Yan et al. [31] analyzed the decline law of wellhead pressure under a
constant production rate via geological modelling, numerical simulations, and gas reservoir
engineering. Geologic investigations, well-logging, water production performance analysis,
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and the study of formation-water components and formation-water layer distribution have
been used to determine the origins of the water produced in the Ordos Basin, and the
produced water wells can be divided into four categories [32,33].

This comprehensive review of studies on the reservoir of interest (Jingbian gas field)
clearly demonstrates that although many investigators have studied the geological charac-
teristics and production performance of this reservoir, there is little understanding of its
overall geologic features and development technologies. Most researchers have focused
on one aspect, such as gas sources, sedimentary accumulation, gas well production behav-
ior, and formation-water distribution. Therefore, the authors of this study describe the
geological characteristics of this reservoir in general and then present the problems and
solution strategies that have emerged during the exploration and development process.
The innovations for this research mainly lie in the presentation of optimal exploitation
technologies for the peripheral area based on comprehensive illustrations of the geology
characteristics and encountered problems for this area, which have generally been ignored
in previous studies. This study will be a significant reference for the efficient development
of carbonate reservoirs in the Ordos Basin and similar gas reservoirs around the world.

2. Background of Gas Reservoir

The Jingbian gas field is a lower Paleozoic carbonate reservoir in the Ordos Basin,
which is the first supergiant carbonate gas field in China. This reservoir is a typical
weathering crust reservoir that is a part of the Changqing oil and gas field. The Ordos Basin
is located in western North China Craton. Tectonic units are more stable in the central
area than the margin areas. The Ordos Basin uplifts in the south and north margins and
thrusts from west to east, which leads to the rise of the east margin. The whole basin
can be subdivided into six tectonic units: Yimeng uplift, Weibei uplift, Jinxi flexing belt,
western margin thrust belt, Yishan slop, and Tianhuan depression, as shown in Figure 1.
Note that Yishan slop is the most significant tectonic unit for hydrocarbon accumulation.
Lower Paleozoic carbonates in the Ordos Basin mainly were developed in the Cambrian
and Ordovician periods. The Ordovician Majiagou Formation in the middle-east of the
basin is the most important gas-bearing interval; it consists of six lithologic members, with
member 1 at the bottom. Members 1, 3 and 5 of the Majiagou Formation are composed of
dolomite with gypsum and salt rock. Members 2, 4, and 4 of the Majiagou Formation are
composed of dolomite and limestone. Member 5 of the Majiagou Formation can be divided
into 10 sub-members, starting from the top, among which sub-members 1, 2, and 4 are
principal producing formations in the Jingbian weathering crust gas field and sub-members
5–10 comprise the gas reservoir formed by dolomite. The discovery of the Jingbian gas field
suggested good development prospects for marine carbonate reservoir in the Ordos Basin
and prompted the search for a large-scale gas reservoir in the basin [34]. developments
of carbonate reservoirs under salt rock in the middle-east of basin and reef flat carbonate
reservoirs in the western margin have achieved early success [34], thus reflecting the
great potential for the exploitation of the lower Paleozoic carbonate gas reservoir in the
Ordos Basin.

Regarding production dynamics, this gas field has experienced four development
stages: the early comprehensive evaluation and testing production stage (1991–1996), the
pre-production for well exploration stage (1997–1998), the large-scale development stage
(1999–2003), and the stable production stage (from 2004 to present). The discovery of a
lower Paleozoic gas field stimulated the large-scale development of natural gas in the
Ordos Basin, and its successful exploitation has provided enormous support for successful
implementation of a west–east major project for gas transmission in China. During the
development of the lower Paleozoic gas field, a series of techniques have been proposed to
develop large-scale carbonate reservoirs that can guarantee long-term stable gas production
for the Jingbian gas field and provide great support for the 5000 × 104 t target in the
Changqing oil and gas field. Moreover, stable gas supplementation can decrease the
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consumption of coal and other unclean resources in large urban areas, thus implicitly
protecting the atmospheric environment.

 

Figure 1. Division of tectonic units and location of the Jingbian gas field in the Ordos Basin.

3. Formation Geological Characteristics

The carbonate gas reservoir in the Ordos Basin, Jingbian gas field, is a weathering
crust reservoir. It has unique features influenced by primary deposits, tectonic evolution,
paleo-topography, ancient surface runoff, paleo-climatology, and gas source sufficiency.
An analysis of carbonate rock composition showed that these rocks are composed of silty
dolomite, dolomicrite, grained dolomite, gray dolomite, and cargneule, of which the silty
dolomite is the primary mineral. For the formation-water, the main ions in the water are
Ca+ and Cl-, which are formed in the closed environment.
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(1) Dominated by reservoir sedimentation, crustal uplift and water level lowering, the

reservoir has stable horizons, widespread distribution area and multiple gas layers.

The studied gas reservoir with weathering crust formation in the Ordos Basin is a
combined-stratum lithologic subtle trap dominated by paleo-tectonics, lithofacies paleo-
geography, and karst paleo-geomorphology. Morphologically deep and slope areas com-
prise the western Ordos Basin, and the central basin mostly comprises paleo-high tidal
flat facies. The depression in the eastern basin is shallow and primarily composed of salt
rocks. In this tectonic setting, the northeastern side of the central paleo-uplift is restricted
to sea deposits that are composed of carbonates and evaporates. This kind of Paleozoic gas
reservoir has stable horizons and large distribution areas that are influenced by a tidal flat
environment. As discovered during drilling operations, anhydrite tubercles with dissolved
pores are densely distributed in multiple layers, which causes the overlap of vadose and
underflow zones. The rhythmical changes of shaliness during the original sedimentation,
crustal uplifting, and water level lowering caused overlaps of the above-mentioned zones.

(2) Controlled by reservoir lithology, karst development degree, direct runoff, and

paleo-geomorphology, reservoirs are influenced by grooves of different grades that

have caused the formation to have a thin effective thickness, low abundance, and

strong heterogeneity.

Although the distribution area for this kind of reservoir is large (affected by original
sedimentation characteristics and lithology difference), its effective thickness is small.
Statics analysis has shown that gas reserves per square kilometer are between 0.03 × 108 m3

and 1.46 × 108 m3, with an average value of only 0.54 × 108 m3 in the main area, which
means the abundance of gas reserves in the weathering crust gas reservoir is poor.

Weathering crust gas reservoirs have shown strong heterogeneity that is controlled by
paleo-geomorphology, direct runoff, and karst development degree. The type and intensity
of karstification in different geomorphic units have shown great differences that have led
to the vertical partition of karst-rocks and reservoirs. Since the paleo-topography of the
western Gaoqiao area is higher than that of the eastern area, the weather denudation is more
intense in the west than in the east during Caledonian movement. Karst highlands and karst
slopes were developed in karstic paleo-geomorphology from west to east (a karst basin was
not developed), and these secondary paleo-geomorphologies can be divided into third-level
paleo-geomorphologies. Direct runoff, karst development degree, and weathering crust
depth are different in different areas. The Karst highland in the West Gaoqiao area is steeper,
so the wells for direct runoff and karst water can reach the stratums beneath member 4 of
the Majiagou Formation that penetrates mudstone interlayers. Gypsum rock mainly exists
in sub-members 2, 3, and 4 of member 5 of the Majiagou Formation, with karstification
in which vertical, deep, and dissolved fractures have intensely developed. Due to the
high karst degree and the distribution of effective reservoirs in a paleo-hammock with
well-preserved strata, sub-members 1 and 2 of member 5 of the Majiagou Formation are
incomplete. Influenced by its relatively small slope angle, the central karst slope area does
not have direct runoff. However, direct runoff has wells in grooves that are distributed
between karst slope areas. Generally, an abrupt slope favors the rapid infiltration and
lateral migration of surface water. The horizon outcropping gypsum rock gradually turns
from west to east for the formation of sub-members 2, 3, and 4 of member 5 of the Majiagou
Formation. The depth of the vertical leaching grows shallow, which shows that karst water
flows slowly lengthwise and that karstification is weak. All of these factors have determined
the strong heterogeneity of carbonate reservoirs with weathering crust formation.
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(3) Dynamic behaviors of gas wells show great differences influenced by serious for-

mation heterogeneity.

The statistical analysis of 677 producing wells in the main area of the Jingbian gas field
showed that the cumulative gas production rates and gas reserves have great discrepan-
cies among various gas wells. The average cumulative gas production for these wells is
1.06 × 108 m3, and the maximum value is 7.6 × 108 m3 for well G10-14. However, there are
284 producing wells (45% of total wells) for which the cumulative gas production is less
than 0.5 × 108 m3. The average gas reserve controlled by per well is 2.2 × 108 m3, and the
maximum value is 11.4 × 108 m3 for well Longping1. Nevertheless, there are 298 producing
wells (44% of total wells) for which the dominant gas reserve is less than 1 × 108 m3.

(4) Influenced by current formation structure, reservoir heterogeneity, paleo-geomorphology,

tectonic reversal, and gas source abundance, gas reservoirs generally have no uni-

fied bottom and edge water, though they do have remaining interlayer water under

sealing conditions, which has caused water-rich zones to be formed in some areas.

Typically, the weathering crust gas reservoir showed no unified edge or bottom water,
though interlayer water is retained in local areas and forms water-rich zones. The Gaoqiao
area is located at the convergence of L-form water-rich areas in the Jingbian gas reservoir,
which has a complex formation-water distribution pattern. The distribution of gas and
water is controlled by regional tectonic setting, gas source abundance, low-amplitude
structure, reservoir heterogeneity, and tectonic reversal. Regional tectonic setting is the
basic condition that affects formation-water distribution, and insufficient gas sources are
the primary reasons for the formation of water-rich zones. Low-amplitude structures and
reservoir heterogeneity also play decisive roles in the distribution of local formation-water.
The key factor that determines the complex distribution of gas and water is the distribution
of ancient grooves and tectonic reversals.

(5) The production performance of gas wells is seriously impacted by formation-water

in some local areas.

In the zone with retained interlayer water, the proportion of wells that produce water
during production testing was shown to be significant. For these wells, gas and water
are simultaneously produced, and water production rate variations are large. The water
production rate and the probability of water breakthrough for horizontal wells is always
larger than those of vertical wells. In the Gaoqiao area, for example, 38 of 150 vertical wells
(25.3%) were found to produce water during production testing. The gas production rate
was found to be between 0 and 7.97 × 104 m3/d, with an average value of 1.43 × 104 m3/d.
The water production rate was found to be 0.5~33.5 m3/d, with an average value of
6.7 m3/d. In contrast, 10 of 18 total horizontal wells (55.5%) were found to produce water.
The gas production rate for these wells was calculated as 0.86~20.41 × 104 m3/d, with an
average value of 5.6 × 104 m3/d. The water production rate was calculated as 8~90 m3/d,
with an average value of 31.0 m3/d. An illustration of these statistical results is shown
in Figure 2. These results can be attributed to the chances of encountering water-rich
zones. The probability of drilling into water-rich areas during acid fracturing is low for
the vertical wells but high for the horizontal wells. Furthermore, the improvement of
reservoir stimulation during production testing has been shown to be able to increase the
gas production rate and water production.
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Figure 2. The distribution histogram of gas well testing production in Gaoqiao.

On the other hand, the production wells located in the area with retained interlayer
water were found to be significantly influenced by formation-water. The Paleozoic gas
reservoir in the Gaoqiao area was chosen as an example for the following reasons:

(1) Well-log interpretation showed that the reservoir is a gas–water formation, as illus-
trated in Figure 3.

(2) Production testing showed that water production is greater than 2 m3 and the wa-
ter/gas ratio is larger than 1 m3/104 m3.

(3) The producing water–gas ratio is larger than 0.5 m3/104 m3.
(4) The content of Cl- is larger than 20,000 mg/L.
(5) The degree of mineralization is larger than 100 g/L.
(6) When the wellhead pressure is equal to 10 MPa, gas production is larger than

1.4 × 104 m3.

Currently, there are 88 production wells in the Gaoqiao lower Paleozoic gas reservoir
with similar characteristics, and 41 of these wells produce water (46.6%). The daily gas
production rate for wells that produce water was found to be 0.13 × 104 m3∼5.29 × 104 m3,
and the daily water production rate was calculated as 0.2 m3∼18.59 m3. The average daily
gas and water production rate for these wells were shown to be 1.12 × 104 m3 and 1.53 m3,
respectively, and the water–gas ratio was maintained at 0.19∼14.2 m3/104 m3. It is obvious
that the water and gas production rates for water-producing wells vary greatly, which
indicates strong formation heterogeneity. Some gas wells, particular for horizontal wells,
are seriously influenced by formation-water, which has led to the shut-down of some wells.
For instance, Jingnan 57-9H2 comprises sub-members 1 and 2 of member 5 of the Majiagou
Formation, and the dilled length ratio for effective formation is 62%. After the utilization
of acid fracturing for five stages, gas well productivity was found to be 147.37 × 104 m3,
which demonstrates great production capacity. The gas production rate at the initial stage
was calculated as 15∼20 × 104 m3/d and was shown to be influenced by formation-water;
after 5 months of production, it rapidly decreased. This well only had been producing for
12 months and is now shut down. The production curve for this well is shown Figure 4.
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Figure 3. Typical well-log curve and its interpretation results. (Ma51
1, Ma51

2, Ma51
3, and Ma51

4

represents the first, second, third, and fourth layers, respectively, of sub-member 1 of member 5,
Majiagou Formation; Ma52

1 and Ma52
2 represent the first and second layers, respectively, of sub-

member 2 of member 5, Majiagou Formation).

Figure 4. Cont.
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Figure 4. Production curves of well Jingnan 57-9H2.

4. Geology and Production Problems

At present, the development of the lower Paleozoic carbonate gas reservoir requires
stable production in the main area and productivity construction in the peripheral area.

Problems for the stable production of the main area include:

(1) As the gas reservoir has entered into the middle or later stage of development, the
fine characterization of secondary grooves in the main area is the key to the success of
infill wells. Additionally, the basis of long-term stable production for this gas field is
reserve distribution.

(2) The prominent contradiction for gas reservoir development is unbalanced exploita-
tion, which has led to the unbalanced distribution of pressure (the pressure in the
middle-high and low yield areas is low and high, respectively) and the unbalanced
domination of reserves (in the middle-high yield area, the dynamic reserve degree is
high, and it is less in the low yield area; in the vertical direction, the dynamic reserve
degree for principal producing formation is high, and it is low for other layers). This
unbalanced exploitation was found to strongly influence the stable production and
regulation ability.

(3) Wellhead pressure is low. We found that the pressure distribution in middle zone and
surrounding areas was low and high, respectively. In August 2009, the average reser-
voir pressure was 11.23 MPa and the wellhead pressure in middle-high production
area was 9.37 MPa, which was close to the transport pressure.

(4) Belching wells, low production wells, and water production wells are increasing in
number, and the management of gas reservoirs has thus become more difficult.

All these problems have hindered the improvement of gas reservoir recovery and
long-term stable gas production in the main area.

The productivity problems of the peripheral area are as follows:

(1) Influenced by sedimentation, diagenism, and paleo-geomorphology, reservoir quality
has become worse and the optimization of enrichment areas has become harder.

(2) The reconstruction of paleo-geomorphology in the peripheral area is difficult due to
the scarce wells and tiny grooves.

(3) The distribution of formation-water in the western part of weathered crust is compli-
cated.

These problems have increased the complexity of early evaluation and the risk of
productivity construction.

5. Optimal Development Techniques and Results

To address the different problems that have emerged in the main and peripheral
areas of the low Paleozoic gas reservoir in the Ordos Basin, a series of techniques that can
help maintain stable production in the main area and enlarge the scale of productivity
construction in the peripheral area have been established.
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5.1. Stable Production Techniques and Results in the Main Area
5.1.1. Production Techniques

Five key techniques have been proposed to solve the problems in the main area
and aid stable production in the Jingbian gas reservoir: the fine description of grooves
with a comprehensive geological modeling technique, a gas reservoir dynamic analysis
technique, a pressure-charged mining technique, an optimization technique for horizontal
well locations in thin reservoir, and a fine management technique for the gas reservoir.

(1) Fine description of grooves and comprehensive geological modeling technique.

Grooves are formation deficiencies that are developed in slope areas with surface
runoff and caused by surface water erosion and chemical eluviation. The paleo-grooves
for Ordovician weathered crust in the Jingbian gas field were mainly formed by surface
runoff erosion and filling, which were controlled by paleo-tectonics, paleo-climate, paleo-
hydrodynamic power, and formation lithology. The development of the Jingbian gas
field has demonstrated that accurately recognizing the small grooves between wells can
significantly influence the success of well drilling. Though restrained by well locations,
secondary and tertiary level grooves can be recognized and tracked via the utilization of
different groove surfaces in well-logging and seismic analysis—as well as the combina-
tion of static and dynamic data—to provide a fine description of the distribution of low
Paleozoic grooves.

However, due to the complexity and heterogeneity of erosion grooves, for the geolog-
ical modeling of weathering crust gas reservoirs, many investigators have proposed the
concepts of groove and stratum facies under the consideration of carbonate reservoir pecu-
liarities in the Jingbian gas field, which can be studied with controlled facies modeling [35].
Some researchers have divided the study area into groove facies, reservoir facies, and dry
layer facies for geological modeling [36]. The distribution features of grooves should be
characterized by facies-controlled modelling techniques, and then a property model can be
developed with the aid of well testing, dynamic monition, and gas production data.

(2) Comprehensive gas reservoir dynamic analysis technique.

In terms of the unbalanced exploitation of gas reservoirs, the formation pressure in
the main area and dynamic reserves can be evaluated with pressure, well, and production
testing data, and then comprehensive gas reservoir dynamic analysis technique can be
used. Due to different percolation characteristics and dynamic features for gas wells, there
are few formation pressure testing data and an unstable schedule for gas wells; accordingly,
multi-method evaluation techniques based on pressure-drop and production rate transient
analyses have been proposed for the estimation of gas reserves for low-permeability and
heterogeneous reservoirs. These techniques can provide support for the evaluation of
single-well dynamic reserves and their varied features in the Jingbian gas field. On the
other hand, because formation permeability is low and the recovery of wellhead pressure
after shutting down wells is slow, some pressure evaluation methods—such as corrections
for wellhead pressure and the extension of deliverability equations—have been proposed
to provide support for the fine evaluation of change laws and distribution features in gas
field formation pressure. A diagram illustrating these methods is shown in Figure 5.

 

Figure 5. The evaluation technology for formation pressure measurements of shut-in gas wells.
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(3) Pressure-charged production technique.

Following decades of development in the main area of the Jingbian gas field, the gas
well pressure is continually decreasing. However, pressure-charged production can be used
to improve gas reservoir recovery in the main area for long-term stable production. The
surface pressure system in the main area of the Jingbian gas field was found to be 6.4 MPa.
The abandonment pressure was found to be 9.7 MPa, with a depleted gas production
rate of 1000 m3/d. However, the abandonment pressure could be reduced to 6.1 MPa
in the Jingbian gas field using the pressure-charged production technique, which has
enormous potential due to the reservoir’s large scale. However, the large area, many wells,
and seriously unbalanced development also mean that the single-well pressure-charged
technique has limitations. Table 1 compares the pros and cons of different pressure-charged
techniques (Table 1).

Table 1. Comparison of different pressure-charged methods.

Pressurization
Method Advantages Disadvantage

Prediction Gas Recovery
after 30 Years (%)

(Wellhead Pressure
2 MPa)

Total Investment
(One Hundred
Million Yuan)

Single-well pressurization

No need for pipe network
reconstruction and the

consideration of unbalanced
gas field exploitation

Too many pressurized
points, heavy workload,

maintenance difficulty, and
poor development benefits

56.3 23.7

Gas gathering station
pressurization

Small workload and
easy management

Too many stations,
difficulties in compressor
choice and management

56.2 15.3

Regional pressurization

Efficient reduction in station
numbers and lowering of
difficulties in production

and management

Hard to divide compress
cells due to pressure

drawdown desynchrony
between wells

56.4 17.6

Concentrated
pressurization

Least required stations and
little maintenance work

High pipe network
reconstruction costs and

high operation risks
56.3 25.1

The results show that the gas field development effects of different pressure-charged
techniques are almost identical, and the selection of optimal pressure-charged techniques
depends on economic and engineering factors [37].

(4) Optimization technique for horizontal well locations in thin reservoir.

Sub-members 1 and 2 of member 5 of the Ordovician Majiagou Formation in the
Jingbian gas field comprise a trap that combines paleo-geomorphology and lithology and
that has low porosity, low permeability, thin layers, and strong heterogeneity. The gas
production rate and dynamic well gas reserves for conventional vertical wells are low, and
there is significant unbalanced development. Fully developing geological reserves and
improving single-well production and gas recovery are the keys to the long-term stable gas
field production. For horizontal wells in weathering crust reservoirs that are full of erosion
grooves and have thin primary formation, low-amplitude structure variation, and strong
reservoir heterogeneity, optimization can be accomplished presented through the utilization
of 3D seismic technology, geological formation evaluation, techno-economic analysis, and
gas reservoir numerical simulation [38]. Firstly, an analysis of the relationship between
formation permeability and the net present value (NPV) conducted with a comprehensive
technical and economic evaluation method showed that the area that could be exploited
with horizontal wells can be determined when permeability is larger than 0.1 × 10−3μm3.
Secondly, according the distribution law of abundant natural gas resources and karst paleo-
geomorphology analysis, geomorphic units of karst monadnock and gentle slope were
chosen as the areas that can be exploited within horizontal wells. Finally, five principles for
deployment with horizontal wells were determined as follows:
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1. The results of reservoir evaluation demonstrated that the residual thickness of sub-
members 1 and 2 of member 5 of the Majiagou Formation is larger than 20 m and that
the horizontal distribution of formation is steady.

2. The thickness of sub-member 1 of member 5 of the Majiagou gas-bearing formation is
greater than 2 m.

3. Reservoir physical properties is strong, and the formation is of class I or II.
4. The formation structure is relatively flat.
5. Production testing for adjacent vertical wells demonstrated that gas production is

stable. The vertical distance between horizontal wells meets the requirement for
production without interference.

(5) Fine gas reservoir management.

In recent years, development techniques and management system for the Jingbian
gas field have been continually optimized, which has led to the development of a suitable
management pattern. To propose a novel gas management pattern, which can be used to
improve the accuracy of flowing unit evaluation and determine the necessary steps for gas
reservoir developments, the authors considered the flowing element as the management
object and conducted experiments that considered a combination of geology, engineering,
and operator factors. According to the gas–water distribution, production dynamics,
reservoir properties, monitored fluids properties, current formation pressure, and other
static parameters, criteria for flowing unit classification were established. Additionally,
various technical strategies for the stable production and enhancement of gas recovery
were formulated for each unit. Table 2 shows the three primary classes.

Table 2. Classification criteria and results for developed units in Jingbian gas field.

Types Class I Class II Class III

Dynamic reserve ratio/% >30.0 15∼30

Located in
water-rich area

Average absolute open-flowing
gas rate/(104 m3/d) >20.0 <20

Average cumulative gas
production for unit pressure

drop (104 m3/MPa)
>900 <900

Recovery factor/% >10 <10

Average allocating gas
production rate/(104 m3/d) >3.0 2.0∼3.0

Water–gas ratio (m3/104 m3) <0.18 <0.20 >0.60

Division results 13 17 6

Class I: This kind of flowing unit is characterized by four large factors and one low
factor that refer to a large ratio between dynamic and static reserves, a high recovery extent,
a high gas well productivity, a large cumulative gas production rate with a unit pressure-
drop, and a low gas well pressure, respectively. This kind of unit is primarily located in
the main area of the gas field and should be addressed with the technical strategies of
fine characterization, deep potential exploitation, and enhanced gas recovery. For areas
that are not dominated by this well pattern, infill wells should be drilled to improve the
area-dominated extent of gas reserves. The dominated degree in the vertical direction for
this gas field can be improved by perforating the new gas-bearing layer and side-tracking.

Class II: This kind of flowing unit can be characterized by four low factors and one
large factor: a low ratio between dynamic and static reserves, a low recovery factor, a low
gas productivity, a low cumulative gas production rate with a unit pressure-drop, and a
high formation pressure. This kind of unit is primarily located in the eastern part of the
gas field and should be addressed with the technical strategies of block optimization, scale
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enlargement, and improvements in single-well gas production rate. Horizontal wells are
preferable for use during development to improve individual well producing rates.

Class III: This kind of unit can be characterized by two large factors and one low
factor: a high water production rate, a high water–gas ratio, and a low formation pressure.
Influenced by water production, this kind of unit should be addressed with the technical
strategies of evaluation enhancement, internal water drainage, and external water control;
of these, drainage is the primary measure that can improve gas recovery. A pattern in which
the flowing unit is the management object can improve the efficiency of gas management,
which also can allow for fine gas reservoir evaluation.

5.1.2. Development Strategies with the Presented Techniques

The development plan and results of the use of the presented techniques in the main
area are as follows:

(1) Ten first-order grooves, seventy-two second-order grooves, three hundred and eighty-
two third-order grooves, and some fourth-order grooves were characterized. Fine
descriptions for different ranks of grooves have allowed for a more accurate character-
ization of low Paleozoic reservoir architecture, which has provided a good foundation
for comprehensive reservoir geological research. Following four steps regarding
facies-control, formation, physical properties, and gas content, a 3D geological model
for the main area of gas reservoir could be developed. The new geological model
could be used to recalculate the main area reserves in combination with production
data to form the basis of stable production and gas recovery improvements for the
main area.

(2) The ratio between static and dynamic reserves was found to be 34.06% in the main
area and 19.89% in the east of Qiantai, which indicates that the exploited gas reser-
voir extent is low for the whole reservoir and has great potential for gas recovery
enhancement. According to the evaluated pressure distribution and fine gas reservoir
description, the north Beier district, the Shan66 district, the Shan175 district, the south
Naner district, and the Shan106 district are the best places for new well drilling, which
can enhance the produced gas reserve degree in the main area.

(3) Based on production dynamics and surface construction in gas field, the regional
pressure-charged and gas collection pressure-charged techniques were determined
to be main and auxiliary ways to enhance gas recovery. The principle of integrated
planning and implementing by steps has also been employed, and the gas reservoir
has been divided into thirty elements that can support the arrangement of the pressure-
charged project. The pressure-charged experiments showed that the stable production
period can be prolonged for 2–3 years, and the recovery degree of the gas reserves
can be increased by 14.6% in the Jingbian gas field.

(4) The gas well production rate can be greatly increased with the horizontal well develop-
ment technique in thin gas formation, and development benefits also can be improved.
In 2011, nine horizontal wells with an average length of 1145 m were drilled. The
average absolute gas flow rate for five wells was found to be 108 × 104 m3/d, which
was nine times that of surrounding vertical wells. Horizontal length for the well
Jingbian 012-6 was found to be 1161 m, and the drilled effective reservoir thickness
was found to be 1048 m, which accounted for 90.3% of total drilled formation length.
After acid fracturing for seven segments, the absolute gas flow rate was found to be
219.27 × 104 m3/d.

(5) The main area in the Jingbian gas field can be divided into 36 units, and the well-
spacing density, recovery factor, and remaining gas reserves can be calculated for
each unit to provide the basis for the adoption of development strategies in different
flowing units.
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5.2. Techniques for Improvement of Production Scale in Peripheral Area

Enrichment area optimization, paleo-geomorphic restoration, and formation-water
distribution evaluation techniques have been established to solve problems and strongly
support productivity construction in the peripheral area.

5.2.1. Production Techniques

(1) Optimization technique for enrichment area.

Each method for the evaluation of reservoir properties has disadvantages in carbon-
ate reservoirs with strong heterogeneity. Therefore, during the optimization process for
enrichment areas in the peripheral zones of the Jingbian gas field, a method that com-
bines multiple factors was applied to screen for some quantitative and qualitative factors
including micro-facies, reservoir/gas-bearing formation thickness, residual thickness for
weathered crust, porosity, permeability, gas saturation, and shale content distribution.
Then, a weight index was normalized and evaluated, and the weighted average process
was conducted. Finally, reservoir properties could be comprehensively evaluated and the
reserve for each layer could be determined. After the superposition and selection of these
enrichment layers, the areas that are suitable for development could be determined.

(2) Paleo-geomorphic restoration technique.

Conventional paleo-geomorphic restoration techniques include the sedimentology
restoration, impression, residual thickness, layer flattening, and high-resolution paleo-
geomorphic sequential stratigraphy restoration methods. Each of these methods needs well
drilling, well-logging, core, slice, and seismic data. Considering each method’s advantages
and disadvantages, the dual-interface paleo-geomorphic restoration method has been
established as the most suitable method for the evaluation stage of gas reservoirs.

This method is based on two interfaces, namely a typical horizon for overlying strata
and a basic horizon for underlying strata. The typical horizon for overlying strata is similar
to the top reference surface in the impression method and the top flattening surface in the
layer flattening method. The selection of the typical horizon for overlying strata is based
on high-resolution sequence stratigraphy theory. The overlying isochronal stratigraphic
framework was developed through the utilization of corrections for the high-resolution
base level cycle. The transfer surface (sequence boundary or maximum flooding surface) of
the base level cycle was chosen as overlying marker zone while considering sedimentary
analysis results. The overlying marker surface is a horizon that lies on the flattened
formation. This marker surface is the transfer surface in the base level cycle that can
be easily correlated between wells and has good isochroneity. The formation’s bottom
morphology beneath the marker surface can reflect the original paleo-geomorphology
features before formation deposition and after flat marker surface deposition. The basic
underlying stratum is the starting horizon for the calculation of easily selected paleo-
geomorphology values. The first well-developed formation under a weathering crust’s
unconformable surface should be determined first. Then, the maximum thickness (H3,
constant) from the overlying marker surface to the formation’s bottom can be calculated.
The underlying marker surface is a horizon that is lower than overlying marker surface
for the value of H3 (Figure 6). The paleo-geomorphology value of a drilled well should be
defined after the recognition of two interfaces and a contour map for paleo-geomorphology,
which should be drawn according to seismic data. Finally, a paleo-geomorphic unit can be
divided by regional paleo-geomorphology features.

119



Energies 2022, 15, 3461

Figure 6. Geomorphology division principle for dual-interface method.

(3) Evaluation technique for formation-water distribution.

The distribution of formation-water in the peripheral area of the Jingbian gas field
is complicated. It has been difficult to find an effective way to avoid drilling formation-
water during development. To solve this problem, we comprehensively utilized stationary
and dynamic methods to characterize the distribution of gas and water; after identifying
various types, a classification standard could be established for permeable formation bodies
(Table 3). This standard subdivided the permeable reservoir bodies into six types: high-
permeability formation without water, high-permeability formation with condensed water,
high-permeability formation with sealed water, low-permeability formation with sealed
water, low-permeability formation with condensed water, and low-permeability formation
without water. The distribution of different types of permeable formation bodies was
characterized with a combination of comprehensive evaluation results regarding the gas
reservoir (Figure 7). Consequently, optimal well locations were determined according to the
following order: high-permeability formations without water, low-permeability formations
without water, high-permeability formations with condensed water, and low-permeability
formations with condensed water.

Table 3. The dynamic and static classification standard of permeable formation bodies.

Permeable Formation Body Types

Static Criterion Dynamic Criterion

Permeability
(mD)

Saturability
(%)

Gas Output
(104 m3/d)

Gas–Water Ratio
(m3/104 m3)

High-permeability formation without water
≥0.6

≥75
≥1.2

≤0.2

High-permeability formation with condensed water ≥45–75 0.2–0.6

High-permeability formation with sealed water <45 >0.6

Low-permeability formation with sealed water
<0.6

<50
<1.2

>0.6

Low-permeability formation with condensed water ≥50–80 0.2–0.6

Low-permeability formation without water ≥80% ≤0.2
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Figure 7. Distribution map of permeable formation bodies in Gaoqiao area, Ordos Basin.

The comprehensive evaluation of formation-water distribution with stationary and
dynamic methods can guide the development of wells in areas rich in retained interlayer
water in the peripheral area of the Jingbian gas field.

5.2.2. Development Strategies with the Presented Techniques

Through the utilization of the three presented production techniques for the peripheral
area, the development plan for this area is as follows:

(1) With the optimization technique, the gas reserve for the enrichment area of the
Shenmue gas field was found to be 44.2 billion cubic meters; this information can be
used to guide the optimization of well placement and production facility construction.

(2) The paleo-geomorphology of the top Ordovician karst weathering crust in the Gaoqiao
area was assessed using the dual-interface paleo-geomorphic restoration method. The
first order paleo-geomorphic unit of weathering crust in the Gaoqiao area can be
subdivided into two kinds of second order paleo-geomorphic units, namely karst
highland and karst slope. Meanwhile, there are seven kinds of third order paleo-
geomorphic unit, namely flat, platform, depression, monadnock, main monadnock,
groove, and main groove. This classification scheme can guide the setting of well
patterns in the Gaoqiao area.

(3) According to the evaluation results regarding the distribution of formation-water in
the Gaoqiao area and data of the 21 horizontal wells in the lower Paleozoic, seven
wells that can normally produce are located in an area with a low risk of water
breakthrough and all other wells save one cannot produce normally and are located
in zones with a high risk of water breakthrough (sealed aquifer).

Through the utilization of the presented optimal production techniques for the main
and peripheral areas in the Ordos Basin, it is predicted that gas production can be main-
tained at 5.5 billion m3 per year and be stable before 2025. It should be noted that the
presented techniques have been conducted in practice. The techniques have been addi-
tionally used in geological exploration, gas reservoir development, and well operation,
which has made it difficult to compare the results of different methods across the entire
development process. Different comparative methods can be used to select optimal tech-
niques. Therefore, a scheme that integrates all techniques will be optimal and lead to the
most benefits.
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6. Conclusions

The lower Paleozoic carbonate gas reservoir in the Ordos Basin is a typical karst
weathering crust carbonate gas reservoir that has a large distribution area, low abundance,
strong heterogeneity, and multiple gas layers. Currently, this reservoir faces many problems,
including the complexity of groove distribution, a low degree of gas reservoir recovery,
an unbalanced exploitation degree, and a low wellhead pressure. In addition, some local
regions are rich in water, which significantly influences the production of gas wells.

To deal with the emerging problems of this carbonate gas reservoir, five key techniques
have been presented to maintain stable gas production in the main area: (1) the fine descrip-
tion of grooves and comprehensive geological modeling, (2) the comprehensive dynamic
analysis of the gas reservoir, (3) pressurized development, (4) the optimization of horizontal
well locations in the thin reservoir, and (5) the fine management of the gas reservoir. For the
peripheral area, which has faced worse reservoir quality, complicated formation-water dis-
tribution, and unclear paleo-geomorphological distribution, three key techniques have been
developed: (1) the optimization of the enrichment area, (2) dual-interface paleo-geomorphic
restoration, and (3) the evaluation of formation-water distribution, with the division of
permeable formation bodies conducted via stationary and dynamic methods.

With the presented techniques, the gas production of the main area can be maintained
at 5.5 billion cubic meters per year and be stable before 2025. The predicted natural
gas reserve of the peripheral area was found to comprise 1 trillion cubic meters in the
preliminary evaluation, and the potential gas production rate for this area could reach a
value of 4.5 billion cubic meters per year, which would greatly contribute to the goal of
one billion cubic meters of gas production per year for the lower Paleozoic carbonate gas
reservoir in the Ordos Basin. Furthermore, considering the middle and lower gas layers
in the east basin and the potential carbonate gas-bearing formations in the west basin.
The Lower Paleozoic carbonate gas reservoir in the Ordos Basin has good prospects for
exploration and development.
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Abstract: During the sedimentary period of the Ordovician Yingshan Formation, the carbonate
platform of the Gucheng area in the Tarim basin was characterized by a distally steepened ramp.
Relative sea-level changes exerted a strong influence on the shoal facie dolomite reservoirs of the 3rd
Member of the Ordovician Yingshan Formation (the Ying 3 member), sedimented in the context of
a shallow water environment on the carbonate ramp. However, previous studies that lacked high-
frequency sea-level changes in the Gucheng area prevent further dolomite reservoir characterization.
The current work carries out systematic sampling based on the continuous core from the upper and
middle parts of the Ying 3 member in two newly drilled exploration wells (GC17 and GC601) and
a series of geochemistry analyses, such as C-O isotope, Sr isotope, and rare earth elements (REE),
which helps to investigate the features of the shoal facies dolomite reservoir development against
high-frequency sea-level changes. With the help of Fischer plots of these two wells, high-density
δ13C data (sample interval is about 0.272 m) were merged to construct a comprehensive curve,
contributing to characterizing the high-frequency sea-level changes of the upper and middle parts of
the Ying 3 member in the Gucheng area and validating the relationship between the pore-vug vertical
distribution and high-frequency sea-level changes. Results revealed that the porosity of dolomite
reservoirs increased when the high-frequency sea-level fell and decreased when it rose. Furthermore,
the karst surface can be found at the top of the upward-shallowing cycle during the high-frequency
sea-level falling; the pore-vug reservoirs are concentrated below the karst exposure surface, and
porous spaces are more developed closer to the top of the cycle. The high frequency sea-level curve
built in this study can be used as a standard for further research of regional sea-levels in the Gucheng
area, and this understanding is highly practical in the prediction of shoal facies carbonate reservoir in
carbonate ramp.

Keywords: high-frequency sea-level cycle; shoal facies dolomite reservoir; carbonate ramp;
Ordovician Ying 3 member; Tarim basin

1. Introduction

Studies on paleo-relative sea-level changes are widely applied in many fields, such
as carbonate sedimentology, paleoenvironment reconstruction, and hydrocarbon explo-
ration [1–3]. In general, relative sea-level changes dominate the carbonate platform margin
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type and the structure of carbonate sediments [4]; these sediments thus record that in-
formation in their sedimentation, allowing researchers to study paleo-relative sea-level
changes despite a lack of direct access to its measurement [1]. The most extensively used
methods are as follows: sequence stratigraphy and sediment structure oriented [5–8], geo-
chemistry oriented [9,10], natural gamma-ray spectral logging oriented [11–14], and Fischer
plot oriented [6,15,16]. It is clear that the cycle order of relative sea-level changes varies
since each method allows for individual scale, data density, and time-space resolution.
Moreover, the conception of higher sea-level cycle orders requires more continuous data
with better time-space resolution. In other words, characterizing the 4th and above order,
especially to high-frequency sea-level cycles [17] in a region, must be based on obtaining
high-frequency, high-continuity data. The methods in the previous studies mentioned
above all have certain drawbacks when used alone. For example, although the seismic
data used in the study of sequence stratigraphy have good lateral continuity, the vertical
resolution is insufficient. Geochemical analysis requires a large amount of continuous data.
It is relatively easy to sample outcrops in the field [18], but in underground hydrocarbon
exploration, a continuous core is very precious and the cost is very high. Although the
vertical resolution of the logging curve is high, it is necessary to analyze the sensitivity to
reduce ambiguity. Thus, a combination of multiple methods seems sensible to pursue a
better outcome.

With the deepening of China’s marine carbonate hydrocarbon exploration, break-
throughs in shoal facies dolomite reservoirs inspired researchers, including the Deyang-
Anyue area in the Sichuan basin and the Gucheng area in the Tarim basin [19–23]. These
exploration examples demonstrate a strong link between the shoal facies dolomite reser-
voirs and the distribution of shoal facies carbonate sediments under the control of sea-level
changes [22]. Relative sea-level changes influenced the productivity and type of carbonate
by controlling sedimentary patterns and water energy changes and further influenced
the sequence structures of carbonate rocks [24]. For the carbonate ramp, shoal facies
dolomite reservoirs cover a broader range with greater gross thickness [25], owing to their
long-distance migration along the shoreline and the swing of the high hydrodynamic
energy zone; however, high-frequency relative sea-level changes produce more frequent
facies migration, because of their gentle declivity and absence of barriers [5,26], which
makes the stacking of thin shoal facies dolomite reservoirs more complex [27]. It can even
show a mosaic-like distribution pattern lacking clear and regular trends in facies-to-facies
transitions [18].

The 3rd member of the Ordovician Yingshan Formation (the Ying 3 member) in the
Gucheng area of the Tarim basin witnesses considerable cycled thin intervals in pore-
vug beds of its shoal facies dolomite reservoirs, and karst exposure surfaces as well,
which indicates a strong relationship with high frequent sea-level changes. However,
the restriction of incomplete coring formation and low sampling density in the existing
exploration wells leaves studies on paleo-relative sea-level changes crude, let alone high-
frequent sea-level changes, preventing further fine correlation and description. Therefore,
the current work carries out a systematic sampling, based on the continuous core from
the upper and middle parts of the Ying 3 member in two newly drilled exploration wells
(GC17 and GC601), and a series of geochemistry analyses, such as the C-O isotope, Sr
isotope, and rare earth elements (REE), which helps to investigate the features of the shoal
facies dolomite reservoir development in the context of high-frequency sea-level changes.
With the help of Fischer plots of these two wells, high-density δ13C data contribute to
characterizing high-frequency sea-level changes of the upper and middle parts of the Ying
3 member in the Gucheng area and validating the relationship between vertical pore-vug
distribution and high-frequency sea-level changes. The current work fills the blank of
the high-frequency sea-level cycle in the Ying 3 member of the Gucheng area. The high
frequency sea-level curve built in this study can be used as a standard for further research
of regional sea-levels in this area, which is also highly practical in the prediction of shoal
facies carbonate reservoir in carbonate ramps.
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2. Geological Background

The Gucheng area is situated in the mid-south of the North Depression in the Tarim
Basin, on the slope of the Tazhong uplift [28]. It is a second-order structural unit located on
the southeast margin of the West Tarim platform [29], adjacent to the Manxi low bulge in
the north, and to the Tadong uplift to the east [30,31]. The top surface of the Ordovician
carbonate rocks in the target area is structurally a large-wide nose-like uplift inclining
toward the northwest, cut by NE faults into several fault blocks with grabens alternating
with horsts [28] (Figure 1a).

 

Figure 1. (a) Ordovician lithofacies paleogeography of Tarim basin and location of the Gucheng area;
(b) Strata column of the Gucheng area.

In the weak extensional tectonic setting of the Cambrian–Early Ordovician period [32],
carbonate platforms developed widely in the Gucheng area with a general rise in sea-level.
The seismic response showed that the platform style was a distally steepened ramp in the
period of the Yingshan Formation [33,34]. Additionally, practice experience of the shoal
facies reservoirs shows that the Ordovician Yingshan Formation in this area developed
an extensive inner platform shoal and marginal shoal composed of dolomites. Among
them, the lower Yingshan Formation (including the Ying 3 member) was dominated by
fine- to medium-crystal dolomite with residual granular structures, which were considered
favorable reservoir rocks, while the upper Yingshan Formation by calcarenite and dolomite
grainstones [28] is a lower quality reservoir than the lower Yingshan Formation (Figure 1b).

After the extensive analysis of lithofacies, several distinct microfacies were found,
namely sand shoals (Figure 2a,b), dolomitized shoals (Figure 2c,d), inter-shoal marine
(Figure 2e,f), and tidal flat (Figure 2g,h). Moreover, sedimentary structures, such as cross
bedding (Figure 2c,d), karstic mosaic (Figure 2i), and seepage silt (Figure 2j), are common
in dolomitized shoals, indicating the hydrodynamic environment, during the depositional
period, generally featured relatively high-energy turbulence. When it comes to cathodo-
luminescence analysis, the fine-medium crystalline dolomite of dolomitized shoals is
generally the most common in dim, or tan light, and brown light under the cathode rays
(Figure 2k,l). This indicates that shoal facie dolomite is mainly affected by the burial process
and may be partially transformed by late hydrothermal fluids.
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Figure 2. Macroscopic and microscopic scale images of typical facies and sedimentary phenomenon in
the Ying 3 member. (a) Calcarenite, core sample, GC601 6065.25 m, sand shoals; (b) Calcarenite, plane-
polarized light, GC601 6044 m, sand shoals; (c) Dolomite, core sample, cross bedding, GC601 6046.5
m, dolomitized shoals; (d) Dolomite, plane-polarized light, GC601 6061.87 m, dolomitized shoals;
(e) Micrite, core sample, pelitic strip, GC601 6162.42 m, inter-shoal marine; (f) Micrite, plane-polarized
light, pelitic strip and dolomite crystal, GC601 6047 m, inter-shoal marine; (g) Crystal powder
dolomite, core sample, GC601 6067.05 m, tidal flat; (h) Crystal powder dolomite, plane-polarized
light, GC601 6067.05 m, tidal flat; (i) Dolomite with karstic mosaic, core sample, GC601 6131.52
m; (j) Crystal dolomite with seepage silt, plane-polarized light, GC601 6066.64 m; (k) Dolomite,
plane-polarized light, GC601 6111.36 m, dolomitized shoals; (l) CL image in the same field of vision
with (k).

3. Materials and Methods

3.1. Experimental Materials and Methods

GC17 and GC601, two exploration wells, were drilled in Guchengarea within the
last 5 years, which have collected over 150 m of continuous core in the Ying 3 member,
lower Ordovician, as well as wire logging data, such as GR logging, natural gamma-ray
spectral logging, and resistivity logging. In this study, oxygen and carbon stable isotope
analysis was performed on 547 dolomite and limestone wall rock samples taken from core
and sidewall coring at an average sampling interval of about 0.272 m, with the average
data density reaching about 3.68 per meter. Among these samples, 52 were tested by hole
rock element analysis and rear earth element (REE) analysis, and 85 were analyzed by
the strontium isotope. Two batches of these geochemistry experiments were carried out
in different laboratories: the Key Laboratory of Carbonate Reservoirs, CNPC, and the
Experiment Center of Exploration and Development Research Institute of Daqing Oilfield.
At the same time, the porosity test data of 679 carbonate rock samples in the Ying 3 Member
of these two wells were collected.

The oxygen and carbon stable isotope values adopted the Vienna Peedee Belemnite
standard (VPDB). Carbonate powders were reacted with 100% phosphoric acid for 4 h
at 25 ◦C for calcite and at 50 ◦C for dolomite, and the resultant CO2 was measured to
determine its oxygen and carbon isotopic ratios using a Delta V advantage + Gasbench
mass spectrometer. The reproducibility values of the isotopic measurement for both carbon
and oxygen isotopes were better than ±0.01%.
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The REE analysis method and process follow the general method of inductively cou-
pled plasma mass spectrometry (ICP-MS) with an Element XR inductively coupled plasma
mass spectrometry instrument, whose limit of detection is 10−12, and the measurement
error can be regulated to within 5%, meeting the measurement accuracy standards. Se-
lected samples are then crushed to 75 μm in the agate mortar and put into paper sample
bags for later use. Acetic acid and nitric acid are used to dissolve and purify, and scaling
solution is added to fix the volume to 10 mL. Then, the sample well is shaken for the final
instrument test.

The 87Sr/86Sr isotope ratios are tested for selected matrix dolomite and dolomite
cements using a Neptune Plus mass spectrometer (MC-ICP-MS). The test temperature
was 20 ◦C, the humidity was 40% RH, the single band was Ta band, and the ionization
temperature was 1450 ◦C The analytical precision of the individual runs is determined to
be 0.00005 (2σ). The 87Sr/86Sr of the instrument test standard NBS987 is 0.710244 ± 0.000004.
The mean standard error of the mass spectrometer performance was ±0.00003, which
conforms to the Chinese national standard GB/T 17672-1999.

3.2. High-Frequency Sea-Level Curve Reconstruction Methods

In the study of paleo-relative sea-level changes, the oxygen and carbon stable isotopes
set a solid foundation for capturing information on sea-level fluctuation [1,9,35,36], with
δ13C having been widely applied [36,37], whose principle lies in the fact that the increase of
δ13C in carbonate rocks usually relates to the grown biological productivity or the deepened
burial of organic matter when the relative sea-level rises. Therefore, there is a positive
correlation between δ13C and the relative sea-level in geological history—specifically, δ13C
increases when the sea-level climbs up and declines when it drops [38–41]. Given this, the
carbon isotope data of Wells GC601 and GC17 were used to characterize the high-frequency
sea-level cycles of the Ying 3 Member in the target region. In order to exploit the collected
data of Wells GC17 and GC601 as fully as possible, and to develop a more complete pattern
of sea-level changes, we managed to merge the data vertically and get a comprehensive
curve on the following conditions:

First, the consistent features that are correlative between Wells GC17 and GC601 must
be recognized, which helps to identify the depth correlation between these two wells that
can be mapped to a vertical axis. However, it is hardly possible to directly apply lithologic
characteristics and well-logging features to finish the stratigraphic correlation. The Fischer
plot is thus introduced in this study to assist the task. It is a semi-quantitative graphic
of sea-level changes drawn by cumulative departure from mean cycle thickness (CMDT)
proposed by Fischer in 1964 [42,43]. After further improvement by Sadler et al. [44] and
Day [45], this method has been widely used to research relative sea-level changes based
on data from outcrop sections and subsurface cores. Generally, the vertical axis of the plot
is the CDMT, while the horizontal axis is the cycle number in the time domain (which
can be transformed into a depth domain). In addition, the average cycle thickness is
chosen as the subsidence correction factor, and the difference between the thickness of a
given cycle and the average thickness brings about the net variation (growth/reduction)
of the accommodation, so the overall accommodation variation tendency (Figure 3) can
be illustrated by the continuous connection of the net variation with polygonal lines. In
the carbonate sedimentary environment of shoal facies, for instance, the accommodation
change has a close relation with the change of relative sea-levels, where the plots can lead
to a visually quantitative determination of the relative sea-level changes trend. The cycle
thickness for Fischer plots can be obtained either from cores or outcrops but also from cycle
statistics in indirect data (e.g., well logs), which makes this method highly applicable.

129



Energies 2022, 15, 4287

 

Figure 3. (a) Original concept of Fischer plots introduced by Fischer (1964); (b) Schematic form
of Fischer plot in time domain; (c) Schematic form of Fischer plots in depth domain. Cited from
Yang et al., 2021 [2].

Secondly, errors and anomalies are inevitable, so it is neither realistic nor desirable to
blindly pursue a restoration of the original variation tendency of carbon isotopes with depth.
Instead, it is necessary to refine the curve smoothing method to obtain a better reflection of
the high-frequency variation tendency of carbon isotopes, with a simultaneous reduction of
the interference of random errors and anomalies of data. In this study, the moving average
smoothing method was used to process the original carbon isotope data, which is used to
successively calculate the arithmetic mean of a given set of values by dividing data into
several sets according to a specified time span to reflect the long-term trend. The moving
average method can eliminate the influence of periodic and random fluctuations in the
time series and capture the development orientation and trend of data changes [46], which
is more practical for highlighting the trend of continuous time-dependent sea-level changes
during geological history. The moving average can be expressed as follows:

Ti =
1

2m + 1

m

∑
k=−m

Ti+k (1)

Ti: The data point to be smoothed.
m: The data interval centered at point Ti.
Finally, we need to verify whether the established carbon isotope ratio variation with

depth can reflect high-frequency sea-level cycles. In this study, the anomalies of the REE
cerium (δCe) and strontium isotope ratios were used to prove the pattern of sea-level
changes. As the result of the ionic Ce in the oxidation state, the anomaly of the REE Cerium
(Ce) was first proposed by Elderfield and Greaves (1982), and its value is usually presented
by δCe [47].

δCe = log [3Cen/(2Lan + Ndn)] (2)

where Cen, Lan and Ndn are normalized values to the North American shale composite
(NASC; Gromet et al., 1984) [48].

Wilde et al. pointed out that δCe is a potential indicator of paleo-relative sea-level
changes that can serve as supplemental evidence in the study [49].The negative δCe devia-
tion of the bulk rock indicates more of a reducing environment or sea-level rising, while the
positive deviation suggests a more oxidizing environment or sea-level falling [50]. As a sym-
bol of the level of oxygen deficiency and eustatic changes, independent of sedimentological
or seismic factors, the bulk rock δCe has been applied in research on sea-level changes and
marine environments from the early Paleozoic to Precambrian worldwide [49,51]. However,
the 87Sr/86Sr isotope ratio of sedimentary carbonate rocks are mainly dominated by two
factors: the mantle-derived strontium with lower initial values, and crust-derived strontium
with higher initial values from weathering of ancient aluminosilicate rocks in the conti-
nental crust. Without extensive submarine volcanic activities, the input of crust-derived
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strontium is the main controlling factor of the marine strontium isotope ratio. Additionally,
the intensity of weathering has a primary influence on sea-level changes—the rise in sea-
levels leads to a decrease in the weathering rate, a decrease in the input of the crust-derived
strontium, and ultimately a drop in the marine strontium isotope ratio; on the contrary, the
fall of sea-levels results in the growth of the marine strontium isotope ratio [35].

According to the methods shown above, 4 steps and a workflow were designed to
realize this study (Figure 4).

 
Figure 4. Steps and workflow of this study.

4. Experimental Results

The results of the C-O isotope PDB values, Sr isotope ratios, and calculated δCe
values from the Wells GC601 and GC17 samples are presented in Figure 5 and Table 1,
with all original data mapped in depth domain. The δ18O values of the samples ranged
from −14% to −2%, and the δ13C values of the dolomites ranged from −3.9% to 0.5%.
Moreover, a fluctuation pattern can be drawn from the C-O isotope values. However, δ13C
values display more convergence and fluctuation than δ18O values. The Sr isotope ratios of
over three-quarters of the samples are within the range of the Latest Cambrian to Middle
Ordovician seawater (0.7079–0.7092) [52]. In addition, δCe values show some fluctuation
pattern as well, despite their sparse distribution.

Table 1. An overview of experimental data statistics.

Well No. Analysis Amount Result Range

GC 601
C-O isotope 396 δ13C: −2.802%~−0.537%

δ18O: −13.917%~−4.085%
87Sr/86Sr 73 0.708896~0.712001

δCe 40 −0.0746~0.0287

GC 17
C-O isotope 151 δ13C: −2.927%~−0.740%

δ18O: −10.190%~−5.909%
87Sr/86Sr 12 0.708927~0.710174

δCe 12 −0.0456~−0.0031
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Figure 5. Original testing data of samples from well GC601 and GC 17.

5. Discussion

5.1. Correlation by Fischer Plot

In the current work, the Python program coded by Yang [2] was employed for au-
tomatic plotting based on GR curves, overcoming the subjectivity caused by manual
identification of cycles. The Fischer plots (Figure 6) of the two wells, highly correlated
with one another, demonstrate that sea-levels of the middle and upper parts of the Ying
3 member fluctuate and the variation is characterized by falling, then rising, subsequently
maintaining, and finally dropping again. This trend is consistent with the second-order
sea-level fluctuation of the Tarim Basin [10], and the third-order sea-level change curve
of the Ying 3 member in the southeast Tarim [3], which provides good support for the
application of such a method. A comparison of the Fischer plots of the middle and upper
parts of the Ying 3 Member of these two wells shows that there are locally minor differ-
ences in high-frequency cycles, with overall consistency, which may result from multiple
interpretations of GR logs or local differences in sedimentary palaeogeomorphology. GR
logs work with the key inflection points in the Fischer plots together to fulfill the depth
correlation between the two wells—5995 m in Well GC601 corresponds to 6223 m in Well
GC17 (Figure 6).

5.2. Reconstruction of Carbon Isotope Comprehensive Curve

Geochemical features of ancient carbonate rocks are prone to changes triggered by later
diagenesis, resulting in partial or complete loss of geochemical information of seawater
in the original sedimentary period [38,52]. It is necessary to ensure that the carbon and
oxygen isotope data are reliable to reflect the characteristics of the original seawater. A
commonly used method for reliability evaluation is to check whether the carbon and
oxygen isotope values of the samples are correlated [54]. Because of a more sensitivity of
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the oxygen isotopes, rather than the carbon isotopes, to the diagenetic alteration, higher
correlations between carbon and oxygen isotope values indicate that the carbon and oxygen
isotopes are subjected to coordinated changes during diagenesis, and the data are far from
reliable; on the contrary, when the correlation is low, samples are less affected by the
diagenetic alteration, of which isotopic values can reflect the isotope composition of the
original seawater [55]. Therefore, when the carbon and oxygen isotope values of Wells
GC601 and GC17 were cross plotted, it was found that δ13C and δ18O of the two wells
are highly scattered with no distinct linear correlation (Figure 7), and the data are thus
considered reliable.

 

Figure 6. Fischer plots of well GC601 and GC 17 and their comparison with the previous third-order
sea-levels. The global sequence is cited from Reference [53], the sea-level fluctuation of the Tarim
Basin is cited from References [3,10].

 

Figure 7. Cross plot of carbon and oxygen isotope values. (a) GC601. (b) GC17.
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When the δ13C data of Wells GC601 and GC17 were mapped by depth (Figure 5) and
displayed with a proper vertical scale and identical horizontal scale range, a fluctuating
pattern can then be identified, which is consistent with the periodic rise and fall of sea-
levels. Due to the periodic and random fluctuations, the original δ13C data fluctuated
fiercely; it is not easy to make a direct comparison or to identify high-frequency cycles.
However, by comparing the envelopes of the data points, it can still be found that the
δ13C fluctuation at 6267–6300 m of Well GC17 and 6043–6076 m of Well GC601 are in line
with each other (Figure 8), and the corresponding depth correlation complies with that
drawn from the Fischer plots (Figure 6), indicating that this correlation makes the carbon
isotope curve mergence feasible. After the implementation of the 5-point moving average
smoothing, the data points become more convergent, and the fluctuation trend becomes
more obvious (Figure 9, smoothed δ13C column). The smoothed δ13C data can be merged
by the depth correlation drawn from the Fischer plots, and then the high-frequency carbon
isotope fluctuation curve of the whole middle and upper parts of the Ying 3 member in the
Gucheng area can be obtained (Figure 9).

Figure 8. Comparison of carbon isotope variation with depth between the two wells.

5.3. Verification of Carbon Isotope Comprehensive Curve

In this study, bulk rock REE analysis was carried out in 52 core samples from Wells
GC17 and GC601, with δCe calculated. The REE analysis and δCe calculation results were
then mapped by depth, revealing that the interval with a positive carbon isotope value
anomaly is accompanied by the negative deviation of δCe; on the contrary, the positive
deviation of δCe tends to occur in the case of negative deviation of the carbon isotope value.
In addition, the strontium isotope ratio of the interval with the negative carbon isotope
deviation is often higher than that of the Ordovician seawater, implying the influences of
the meteoric freshwater. Therefore, it is concluded that the high-frequency carbon isotope
value fluctuation can work as the high-frequency sea-level changes, and four fourth-order
cycles, and 21 high-frequency cycles were identified by the curve (Figure 10).

134



Energies 2022, 15, 4287

 

Figure 9. The developed comprehensive curve of carbon isotope variation with depth.

 

Figure 10. Verification of the effectiveness of the merged carbon isotope variation curve with depths
to represent sea-level changes. Red arrows showed the trend of δ13C and δCe.
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5.4. Relation between High-Frequency Sea-Level Changes and Reservoir Characteristics

The current work carried out some analyses to explore the way high-frequency sea-
level changes affect the carbonate ramp shoal facies dolomite reservoir, namely macroscopic
core observation, thin section microscopic analysis, reservoir physical property testing, and
geochemical testing. More than 20 cyclic karst surfaces as a result of the penecontempo-
raneous exposure dissolution were identified based on the systematic observation of the
dolomite cores of the Ying 3 member in Wells GC17 and GC601 (Figure 11). These karst
surfaces are commonly filled with sparry calcuate, due to the irregular space created by
karstification, and macroscopically feature chaotic and mottling and a common geopetal
texture. The microscopy also reveals typical karst features, such as the geopetal fabric
and the vadose zone of silts (Figure 2i,j and Figure 12). Additionally, the δ13C has seen
considerable negative deviations near karst surfaces.

 

Figure 11. Cyclic karst exposure surfaces in Wells GC17 and GC601.

The measured porosity of the shoal facies dolomite cores from 6280–6300 m of Well
GC17 is mapped by depth (trend is marked in red line) and compared with the high-
frequency sea-level change curve of the interval at the same depth of the Ying 3 member
issued from the carbon isotope value (Figure 13). In general, there is an obvious negative
correlation between both, with dolomite porosity increasing when the high-frequency
sea-level falls and decreasing when it rises. Furthermore, at 6295–6300 m, the Sr isotope
ratios of the high-porosity samples are much higher than those of the Ordovician seawater
(ranging 0.7079–0.7092) [52]. As shown in the high-frequency sea-level change curve, the
interval mentioned above responds to one maximum sea regression; however, the distinct
positive deviation of the Sr isotope ratio indicates that the exposure dissolution intensifies
when the sea-level falls, and thus, a mixture with the terrigenous Sr occurs due to the
meteoric freshwater invasion contributing to the development of pores in this interval.

Similarly, when it comes to mapping the porosity of the continuously-cored shoal
facies dolomite ranging from 6040–6150 m (nearly 90 m, trend is marked in red line) of
Well GC601 by depth (Figure 14), we find that the correlation between the porosity and
the high-frequency sea-level change is negative as well, even over an extensive interval,
which is consistent with the pattern in Well GC17. In addition, the Sr isotope ratio is often
higher in the intervals with high porosity than that of the seawater of the same period. The
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REE pattern of samples from the karst surface showed a negative anomaly of element Eu
(Figure 15), which means they experienced modification by low temperature and oxidizing
fluid in the penecontemporaneous period. This is also evidence of exposure.

 

Figure 12. Macroscopic characteristics of the karst exposure surfaces in Well GC601. Karst surfaces
are marked in dashed lines. (a) 6167.52 m. (b) 6125.37 m. (c) 6109.81 m. (d) 6067.15 m. (e) 6167.7 m.
(f) 6122.12 m. (g) 6079.12 m. (h) 6057.84 m.

 

Figure 13. Correlation between reservoir porosity and high-frequency sea-levels and Sr isotope ratio
characteristics in GC17. The red line showed the trend of porosity.

Core analysis of Well GC601 shows that such penecontemporaneous exposure dis-
solution occurs frequently during the sea-level falling, with the corresponding cycle thick-
ness even at the meter scale. For example, the interval ranging from 6080–6089 m responds
to an obvious high-frequency sea-level fall (Figure 14, marked by dashed box). When the

137



Energies 2022, 15, 4287

vertical scale is enlarged (Figure 16), we can recognize several obvious meter-scale cycles
in the carbon isotope value variation, which is highly consistent with the core records,
showing that the high-frequency sea-level falling is associated with the frequent exposure
and modification of the shallow-water ramp belt. Furthermore, pore-vug intervals are
primarily found near the karst exposure surface. Such intervals, recognized either by cores
or thin sections, are generally located under the karst exposure surface (Figure 13). The
tight dolomite with less porosity of the grain shoal facies occurs in an alternating manner
with the porous dolomite of the grain shoal facies, resulting in many upward-shallowing
cycles. Pores tend to develop closer to the top cycle, which demonstrates that the physical
properties of the dolomitized reservoirs of the shoal facies are dependent on the periodic
penecontemporaneous exposure dissolution.

 

Figure 14. Correlation between reservoir porosity and high-frequency sea-levels and other geochemi-
cal evidence in GC601. The red line showed the trend of porosity. The part in dashed box will be
showed in Figure 16.

5.5. Limitations and Future Work

In the current work, a relatively reliable high-frequency sea-level change curve of
the Ying 3 member has been built. With the help of this curve, the relation between the
shoal facies dolomite reservoir and the high-frequency sea-level cycle was established
and examined in Wells GC17 and GC601. Moreover, this study proves that the Fischer
plot can be applied in bridging data from different wells. However, there are still several
limitations that need to be overcome in future work. For example, in the current work,
the GR curve was used to build the Fischer plot, which is the key step to correlate these
two wells. However, when it comes to some other wells in this area, they may show a less
comparable result. This may have resulted in the loss of original sea water environment
information during the burial process and diagenesis. To solve this problem, it is necessary
to further optimize the logging curve and to do more work on sample selection. If this can
be overcome in future work, more data can be applied in the study to build a more accurate
sea-level curve. With more wells involved, it may be possible to build a general model of
the shoal facies dolomite reservoir.
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Figure 15. The REE pattern of samples from the karst surface. Each line with colors represents one
sample from karst surface.

 

Figure 16. Variation pattern of the meter-scale cycles in Well GC601. Red arrows showed the trend
of δ13C.
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6. Conclusions

With the Fischer plots used as the basis for the inter-well merging, the carbon isotope
data of Wells GC17 and GC601 with high sampling density (the sampling interval is about
0.272 m) were integrated to develop a relatively reliable high-frequency sea-level change
curve for the Gucheng area of the Tarim Basin, where four fourth-order cycles and 21 high-
frequency cycles have been identified. Moreover, the merged curve shows that the vertical
distribution of the porosity of the carbonate ramp shoal dolomite reservoir is closely related
to the high-frequency sea-level change. Specifically, the porosity of the dolomite increases
with the high-frequency sea-level falling and decreases when it rises. Meanwhile, the karst
exposure surface is developed at the top of the upward-shallowing cycle due to the frequent
exposure and modification of the shallow-water ramp belt when the high-frequency sea-
level falls. The pore-vug reservoirs are concentrated below the karst exposure surface, and
pores are more developed closer to the top of the cycle, indicating that the properties of
the dolomitized reservoirs of the shoal facies are dominated by the penecontemporaneous
periodic exposure dissolution.

Author Contributions: Conceptualization, T.L. and K.Z.; methodology, K.Z. and T.L.; software, Y.Z.;
validation, Y.Z., K.Z. and X.Z.; formal analysis, K.Z. and T.L.; investigation, T.L.; resources, T.L. and
Y.Z.; data curation, K.Z.; writing—original draft preparation, T.L. and K.Z.; writing—review and
editing, Y.Z., X.Z., Q.Y. and B.L.; visualization, K.Z., T.L. and B.L.; supervision, Z.F. and Y.Z.; project
administration, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the Scientific Research and Technology Development Project of
CNPC (grant number 2021DJ0501).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the reviewers, whose comments greatly improved
the original manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xiao, J.; Wang, L.; Chen, M.; Chen, Z.; Zhou, J.; Chen, P. Multiple scale fluctuations of the Early Triassic sea level and its influence
on reservoirs in the Sichuan Basin. Pet. Geol. Exp. 2017, 39, 618–624.

2. Yang, D.; Huang, Y.; Chen, Z.; Huang, Q.; Ren, Y.; Wang, C. A Python Code for Automatic Construction of Fischer Plots Using
Proxy Data. Sci. Rep. 2021, 11, 10518. [CrossRef] [PubMed]

3. He, F.; Lin, C.; Liu, J.; Zhang, Z.; Zhang, J.; Yan, B.; Qu, T. Migration of the Cambrian and Middle-Lower Ordovician carbonate
platform margin and its relation to relative sea level changes in southeastern Tarim Basin. Oil Gas Geol. 2017, 38, 711–721.

4. Read, J.F. Carbonate Platforms of Passive (Extensional) Continental Margins: Types, Characteristics and Evolution. Tectonophysics
1982, 81, 195–212. [CrossRef]

5. Mei, M. From vertical stacking pattern of cycles to discerning and division of sequences: The third advance in sequence
stratigraphy. J. Palaeogeogr. 2011, 13, 37–54.

6. Wang, Q.; Han, J.; Li, H.; Sun, Y.; He, H.; Ren, S. Carbonate sequence architecture, sedimentary evolution and sea level fluctuation
of the Middle and Lower Ordovician on outcrops at the northwestern margin of Tarim Basin. Oil Gas Geol. 2019, 40, 835–850, 916.

7. Zhang, Y.; Chen, J.; Zhou, J.; Yuan, Y. Sedimentological Sequence and Depositional Evolutionary Model of Lower Triassic
Carbonate Rocks in the South Yellow Sea Basin. China Geol. 2019, 2, 301–314. [CrossRef]

8. Jamaludin, S.N.F.; Pubellier, M.; Menier, D. Structural Restoration of Carbonate Platform in the Southern Part of Central Luconia,
Malaysia. J. Earth Sci. 2018, 29, 155–168. [CrossRef]

9. Li, W.; Zhang, J.; Hao, Y.; Ni, C.; Tian, H.; Zeng, Y.; Yao, Q.; Shan, S.; Cao, J.; Zou, Q. Characteristics of carbon and oxygen isotopic,
paleoceanographic environment and their relationship with reservoirs of the Xixiangchi Formation, southeastern Sichuan Basin.
Acta Geol. Sin. 2019, 93, 487–500.

10. Bao, Z.; Jin, Z.; Sun, L.; Wang, Z.; Wang, Q.; Zhang, Q.; Shi, X.; Li, W.; Wu, M.; Gu, Q.; et al. Sea-Level Fluctuation of the Tarim
Area in the Early Paleozoic: Respondence from Geochemistry and Karst. Acta Geol. Sin. 2006, 80, 366–373.

140



Energies 2022, 15, 4287

11. Gao, D.; Lin, C.; Hu, M.; Huang, L. Using Spectral Gamma Ray Log to Recognize High-frequency Sequences in Carbonate Strata:
A case study from the Lianglitage Formation from Well T1 in Tazhong area, Tarim Basin. Acta Sedimentol. Sin. 2016, 34, 707–715.

12. Zong, Y.; Shen, Y.; Qin, Y.; Jin, J.; Liu, J.; Tong, G.; Zheng, J.; Zhang, Y. High Frequency Cyclic Sequence Based on the Milankovitch
Cycles in Upper Permian Coal Measures in Panxian, Western Guizhou Province. Geol. J. China Univ. 2019, 25, 598–609.

13. Wang, G.; Deng, Q.; Tang, W. The application of spectral analysis of logs in depositional cycle studies. Pet. Explor. Dev. 2002,
29, 93–95.

14. Zhang, Z.; Zhang, C.; He, Z. Recognition of Stratigraphic High-frequency Cyclical Properties with Sliding Window Spectrum of
Logs. J. Oil Gas Technol. 2003, 25, 56–58.

15. Yi, H. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks. J. Palaeogeogr. 2011,
13, 456–466.

16. Shao, C.; Fan, T.; Sun, Y. A case study on Yaojia formation of Changyuan district: Fischer plot analysis based on natural gamma
data. Resour. Ind. 2013, 15, 64–70.

17. Liu, Y.; Meng, X. The sea-level change forcing cycies of oolitic carbonate and cycioc-hrological applications. Chin. J. Geol. 1999,
4, 442–450.

18. Amour, F.; Mutti, M.; Christ, N.; Immenhauser, A.; Benson, G.S.; Agar, S.M.; Tomás, S.; Kabiri, L. Outcrop Analog for an Oolitic
Carbonate Ramp Reservoir: A Scale-Dependent Geologic Modeling Approach Based on Stratigraphic Hierarchy. AAPG Bull.
2013, 97, 845–871. [CrossRef]

19. Ma, X.; Yang, Y.; Wen, L.; Luo, B. Distribution and exploration direction of medium- and large-sized marine carbonate gas fields
in Sichuan Basin, SW China. Pet. Explor. Dev. 2019, 46, 1–13. [CrossRef]

20. Chen, Y.; Zhang, J.; Li, W.; Pan, L.; She, M. Lithofacies paleogeography, reservoir origin and distribution of the Cambrian
Longwangmiao Formation in Sichuan Basin. Mar. Orig. Pet. Geol. 2020, 25, 171–180.

21. Wang, Z.; Yang, H.; Qi, Y.; Chen, Y.; Xu, Y. Ordovician gas exploration breakthrough in the Gucheng lower uplift of the Tarim
Basin and its enlightenment. Nat. Gas Ind. 2014, 34, 1–9.

22. Zhang, Y.; Li, Q.; Zheng, X.; Li, Y.; Shen, A.; Zhu, M.; Xiong, R.; Zhu, K.; Wang, X.; Qi, J.; et al. Types, evolution and favorable
reservoir facies belts in the Cambrian-Ordovician platform in Gucheng-Xiaotang area, eastern Tarim Basin. Acta Pet. Sin. 2021,
42, 447–465.

23. Liu, Y.; Hou, J.; Li, Y.; Dong, Y.; Ma, X.; Wang, X. Characterization of Architectural Elements of Ordovician Fractured-cavernous
Carbonate Reservoirs, Tahe Oilfield, China. J. Geol. Soc. India 2018, 91, 315–322. [CrossRef]

24. Chen, H.; Zhong, Y.; Hou, M.; Lin, L.; Dong, G.; Liu, J. Sequence Styles and Hydrocarbon Accumulation Effects of Carbonate
Rock Platform in the Changxing-Feixianguan Formations in the Northeastern Sichuan Basin. Oil Gas Geol. 2009, 30, 539–547.

25. Zhu, Y.; Ni, X.; Liu, L.; Qiao, Z.; Chen, Y.; Zheng, J. Depositional Differentiation and Reservoir Potential and Distribution of Ramp
Systems during Post-rift Period: An example from the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin, NW China.
Acta Sedimentol. Sin. 2019, 37, 1044–1057.

26. Huang, X.; Fu, M.; Zhao, L.; Zhou, W.; Wang, Y. Identification and sgnificance of meter-scale cycle of carbonate rocks in Mishrif
Formation, HF Oilfield, Irag. Mar. Orig. Pet. Geol. 2019, 24, 44–50.

27. Handford, C.R.; Loucks, R.G. Carbonate Depositional Sequences and Systems Tracts–Responses of Carbonate Platforms to
Relative Sea-Level Changes: Chapter 1. 1993. Available online: http://archives.datapages.com/data/specpubs/seismic2/data/
a168/a168/0001/0000/0003.htm (accessed on 9 May 2021).

28. Feng, J.; Zhang, Y.; Zhang, Z.; Fu, X.; Wang, H.; Wang, Y.; Liu, Y.; Zhang, J.; Li, Q.; Feng, Z. Characteristics and main control factors
of Ordovician shoal dolomite gas reservoir in Gucheng area, Tarim Basin, NW China. Pet. Explor. Dev. 2022, 49, 45–55. [CrossRef]

29. Zhang, J.; Hu, M.; Feng, Z.; Li, Q.; He, X.; Zhang, B.; Yan, B.; Wei, G.; Zhu, G.; Zhang, Y. Types of the Cambrian platform margin
mound-shoal complexes and their relationship with paleogeomorphology in Gucheng area, Tarim Basin, NW. Pet. Explor. Dev.
2021, 48, 94–105. [CrossRef]

30. Cao, Y.; Wang, S.; Zhang, Y.; Yang, M.; Yan, L.; Zhao, Y.; Zhang, J.; Wang, X.; Zhou, X.; Wang, H. Petroleum geological conditions
and exploration potential of Lower Paleozoic carbonate rocks in Gucheng Area, Tarim Basin, China. Pet. Explor. Dev. 2019,
46, 1099–1114. [CrossRef]

31. Zhang, J.; Feng, Z.; Li, Q.; Zhang, B. Evolution of Cambrian mound-beach gas reservoirs in Gucheng platform margin zone, Tarim
Basin. Pet. Geol. Exp. 2018, 40, 655–661.

32. Shen, A.; Fu, X.; Zhang, Y.; Zheng, X.; Liu, W.; Shao, G.; Cao, Y. A study of source rocks & carbonate reservoirs and its implication
on exploration plays from Sinian to Lower Paleozoic in the east of Tarim Basin, northwest China. Nat. Gas Geosci. 2018, 29, 1–16.

33. Ren, Y.; Zhang, J.; Qi, J.; Zhang, Y.; Zhang, B.; Liu, Y. Sedimentary characteristics and evolution laws of Cambrian-Ordovician
carbonate rocks in tadong region. Pet. Geol. Oilfield Dev. Daqing 2014, 33, 103–110.

34. Zhang, Y.; Gao, Z.; Li, J.; Zhang, B.; Gu, Q.; Lu, Y. Identification and distribution of marine hydrocarbon source rocks in the
Ordovician and Cambrian of the Tarim Basin. Pet. Explor. Dev. 2012, 39, 285–294. [CrossRef]

35. Jiang, M.; Zhu, J. Carbon and strontium isotopic characteristics of Ordovician carbonate rocks in the Tarim Basin and their
responses to sea level changes. Sci. Sin. 2002, 32, 36–42.

36. Zhao, G. Middle-Late Ordovician Sea-Level Changes in the Bachu Area, Tarim Basin, Xinjiang: Carbon, Oxygen and Strontium
Isotope Records. Ph.D. Thesis, Jilin University, Changchun, China, 2013.

141



Energies 2022, 15, 4287

37. Kaufman, A.J.; Knoll, A.H. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemi-
cal Implications. Precambrian Res. 1995, 73, 27–49. [CrossRef]

38. Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin, Germany, 2009.
39. Liu, C.; Zhang, Y.; Li, H.; Cao, Y.; Zhao, Y.; Yang, M.; Zhou, B. Sequence stratigraphy classification and its geologic implications of

Ordovician Yingshan formation in Gucheng area, Tarim basin. J. Northeast. Pet. Univ. 2017, 41, 82–96.
40. Wenzel, B.; Joachimski, M.M. Carbon and Oxygen Isotopic Composition of Silurian Brachiopods (Gotland/Sweden): Palaeo-

ceanographic Implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 122, 143–166. [CrossRef]
41. Cramer, B.D.; Saltzman, M.R. Sequestration of 12C in the Deep Ocean during the Early Wenlock (Silurian) Positive Carbon Isotope

Excursion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 219, 333–349. [CrossRef]
42. Fischer, A.G. The Lofer Cyclothem of the Alpine Triassic. In Symposium on cyclic sedimentation. Kans. State Geol. Surv. Bull.

1964, 169, 107–149.
43. Read, J.F.; Goldhammer, R.K. Use of Fischer Plots to Define Third-Order Sea-Level Curves in Ordovician Peritidal Cyclic

Carbonates, Appalachians. Geology 1988, 16, 895–899. [CrossRef]
44. Sadler, P.M.; Osleger, D.A.; Montanez, I.P. On the Labeling, Length, and Objective Basis of Fischer Plots. J. Sediment. Res. 1993,

63, 360–368.
45. Day, P.I. The Fischer Diagram in the Depth Domain: A Tool for Sequence Stratigraphy. J. Sediment. Res. 1997, 67, 982–984.

[CrossRef]
46. Guo, Y.; Wang, F.; Gan, F.; Yan, B. Forecasting of Spring Flow based on Moving Average Model and Exponential Smoothing

Model. J. Hebei GEO Univ. 2020, 43, 19–25.
47. Elderfield, H.; Greaves, M.J. The Rare Earth Elements in Seawater. Nature 1982, 296, 214–219. [CrossRef]
48. Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American Shale Composite”: Its Compilation, Major and Trace

Element Characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [CrossRef]
49. Wilde, P.; Quinby-Hunt, M.S.; Erdtmann, B.D. The Whole-Rock Cerium Anomaly: A Potential Indicator of Eustatic Sea-Level

Changes in Shales of the Anoxic Facies. Sediment. Geol. 1996, 101, 43–53. [CrossRef]
50. Li, G. The Carbon Isotope Fluctuations and Its Paleoenvironmental Significance of the Upper Jurassic Bulk Carbonate from Amdo

Area, Tibet. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2020.
51. Yang, J.; Sun, W.; Wang, Z. Variations in Sr and C Isotopes and Ce Anomalies in Successions from China: Evidence for the

Oxygenation of Neoproterozoic Seawater? Precambrian Res. 1999, 93, 215–233.
52. Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.; Diener, A.; Ebneth, S.; Godderis, Y. 87Sr/86Sr, Δ13C

and Δ18O Evolution of Phanerozoic Seawater. Chem. Geol. 1999, 161, 59–88. [CrossRef]
53. Haq, B.U.; Schutter, S.R. A Chronology of Paleozoic Sea-Level Changes. Science 2008, 322, 64–68. [CrossRef]
54. Horacek, M.; Brandner, R.; Abart, R. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps:

Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 252, 347–354. [CrossRef]
55. Mazzullo, S.J.; Harris, P.M. An Overview of Dissolution Porosity Development in the Deep-Burial Environment, with Examples

from Carbonate Reservoirs in the Permian Basin. West Tex. Geol. Soc. Midl. TX 1991, 89–91.

142



Citation: Moore, P.J.;

Fernández-Ibáñez, F. Non-Matrix

Quick Pass: A Rapid Evaluation

Method for Natural Fractures and

Karst Features in Core. Energies 2022,

15, 4347. https://doi.org/10.3390/

en15124347

Academic Editors: Yuming Liu and

Bo Zhang

Received: 22 March 2022

Accepted: 9 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Non-Matrix Quick Pass: A Rapid Evaluation Method for
Natural Fractures and Karst Features in Core

Paul J. Moore 1,* and Fermin Fernández-Ibáñez 2

1 ExxonMobil Research Qatar, Doha, Qatar
2 ExxonMobil Upstream Research Company, Houston, TX 77098, USA;

fermin.fernandez.ibanez@exxonmobil.com
* Correspondence: pj.moore@exxonmobil.com

Abstract: Mechanical and chemical processes experienced by carbonate rocks result in a complex
network of natural fractures and dissolution features that have direct implications on porosity,
permeability, and connectivity in reservoirs. Characterization of natural fractures is best done in
core; however, it can be time-consuming due to the large amounts of individual features present
and the long list of attributes typically collected for each feature. Additionally, karst features in core,
such as vugs and small cavities, are seldom characterized in a quantitative way or are overlooked.
We introduce a new methodology, called the non-matrix quick pass (NMQP), which allows for
the collection of non-matrix features in a rapid yet quantitative fashion at a rate of 12 to 20 m of
core per hour. The NMQP methodology offers enough vertical resolution so that observations can
be integrated with other wellbore data types (e.g., wireline logs, well tests, and production logs).
This method also yields estimates of density and porosity that are rigorous enough to provide the
technical basis to build first-generation dual-porosity models describing the non-matrix component
of a carbonate reservoir and its potential impact on field performance.

Keywords: dual porosity; core logging; carbonate reservoir characterization; non-matrix characteri-
zation; karst; fractures

1. Introduction

Conventional core is a key dataset used to understand the geologic processes occurring
within a reservoir. The wealth of information gained comes from observations made on the
core and subsequent analyses done on core samples. Geologic descriptions from core focus
on understanding how the processes of sedimentology, stratigraphy, and chemical and
mechanical diagenesis have evolved over time [1,2]. Such observations typically evaluate
changes in rock fabric, grain size and sorting, stacking patterns, porosity, and structural
discontinuities. This information is critical in deciphering the geologic history of a reservoir,
such as developing a sequence stratigraphic framework or modeling the intensity and
distribution of natural fractures [3,4].

In carbonate reservoirs and aquifers, geologic core has been instrumental in addressing
the complexity of the carbonate pore system, which can be separated into two main
categories of matrix and non-matrix porosity. Matrix porosity is represented by pore types
that are equal to or smaller than the surrounding host grains. The matrix pore system has
been studied using core by a number of methods, including by classifying pore types by
genetic origin [5], differentiating pore types by connectivity of the pore space [6,7], relating
pore space to petrophysical rock properties [8–11], characterizing pore throat size and
distributions [12,13], quantifying pore types and geometries [14–17], and characterizing
and defining microporosity [18–24].

In contrast to matrix porosity, non-matrix porosity is represented by pore types that are
larger than the surrounding host grains and can extend several orders of magnitude larger
in size compared to matrix pores. The two processes responsible for non-matrix porosity are
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through the development of natural fractures and karstification, which results in features
including joints, faults, touching vugs, and caves. Although the multiscale nature of the
non-matrix pore system often requires multiple datasets for proper characterization [25,26],
there is a wealth of knowledge to be gained from utilizing geologic core for characterizing
fractures and karst because of the ability to address the processes responsible for their
development [25–34]. For example, Tinker et al. [25] utilized more than 8500 m of core
and complimentary wireline logs to quantify the contribution of karst porosity within the
Permian Yates field in southwest Texas, USA. Ibrayev et al. [34] used a combination of static
(e.g., core, wireline, and image) and dynamic (e.g., drilling data and well tests) datasets
to develop a genetic-based understanding of fracture development in the Carboniferous
Kashagan field in the North Caspian offshore, Kazakhstan. Ahdyar et al. [26] incorporated
static (core, wireline, image, and 3D seismic) and dynamic (drilling data, production
logs, and pressure transient analysis) datasets to characterize the distribution and pore
volume associated with non-matrix processes within the Oligo-Miocene Banyu Urip field
onshore, Indonesia.

Non-matrix features are often observed and described in core [28,30,34]; however,
typically, only the fracture portion of the non-matrix pore system is cataloged in a systematic
way that addresses fracture geometries and spacing [33,35]. Although karst features are
commonly recognized in core, such observations are rarely cataloged along with and in
addition to the fracture observations to understand the impact that these combined features
may have on the non-matrix pore system. Instead, observations of karst features are often
used to support the building of a sequence stratigraphic framework or to understand the
diagenetic processes that likely occurred in the reservoir [30,36,37]. Nonetheless, the non-
matrix pore system is a combination of chemical and mechanical processes that often occur
in similar locations, e.g., along the margin of carbonate platforms. Consequently, in order
to be predict the magnitude and distribution of all non-matrix features and their associated
pore volume within a given field, systematic cataloging of these different non-matrix
features is warranted.

In this paper, we present a methodology that arose from the need to collect an inte-
grated karst and fracture dataset from a large amount of core in multiple wells, i.e., total
lengths in excess of 5000 m per study. We were tasked with collecting quantitative data
from non-matrix features observed in cores that could be used for reservoir characterization
and development of initial geologic concepts. The description of such large amounts of
core had to be achieved using a rapid yet adequate quantitative data collection strategy so
that business deadlines could be met while ensuring the technical integrity of our work.
Therefore, detailed data collections strategies such as those employed in traditional fracture
characterization [2] were not an option, as they cover less than about 20 m of core per
day [38,39]. The data collected should also be quickly processed and suitable for integration
with other wellbore-based datasets (e.g., drilling data, wellbore images, wireline logs, and
seismic and production data) while providing some basic inputs for geostatistical reservoir
models. The fast and quantitative yet simple data collection approach allows a team of two
to cover more than 100 m of core in less than two days of work. The final methodology
described herein has been successfully implemented as standard practice for the charac-
terization of non-matrix in cores collected in several carbonate reservoirs that we have
worked. Obviously, non-matrix observations collected using this method are not free of
sampling bias inherent to core. For example, bias due to fracture spacing and the likelihood
of intersecting a fracture must be considered [40,41].

2. Methodology and Workflow

Non-matrix quick pass (NMQP) is based on a set of rules and methodologies that
ensures consistency within and between cored wells. This workflow was developed based
on a balance between time spent on the core and ensuring that sufficient observations were
made and recorded to capture the variability in non-matrix features observed in core, which
can be used to compliment additional datasets. This method does not replace detailed
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data collection. Instead, it provides a means for describing large amounts of core that can
identify specific areas for further detailed work. The methodology is designed to be run
in teams of two. Although each individual reports on the observable non-matrix features,
one person is tasked with measuring (i.e., quantifying) each feature, and the other person
inputs the data directly in a computer.

2.1. Ground Rules

In order to ensure consistency, the first step of the data collection process is to establish
some ground rules and clearly define how the data will be collected, as well as the amount
of detail required to meet the objectives of the study. The list below highlights some
key rules that we have found useful in collecting the appropriate amount of detail while
optimizing the time spent on each core interval described with the NMQP methodology:

1. Always utilize the whole core whenever possible, i.e., use both sides of a slabbed
core to ensure maximum core coverage. Refrain from using core photos. Most core
descriptions are performed on a 1/3 slabbed portion. Although this portion of the
core is sufficient for making observations on sedimentology, NMQP works best if
non-matrix observations are made on the 2/3 portion of the core. The logic is simple.
The larger sample size allows for the recognition of non-matrix features that are often
under-sampled in the 1/3 portion. We have also found that many non-matrix features
are often found on the backside of the core due to the core being slabbed to avoid
intersecting non-matrix features that can compromise the integrity of the 1/3 slabbed
portion. In the case of fractures, the spacing, orientation, and angle of the fracture
with respect to the core can lead to significant sampling bias.

2. Define a collection interval. For simplicity, we use the length of core that fits in the
box used to store the core. This length is usually one meter and provides enough
resolution to identify trends and intervals of interest for further analyses or data
collection. Alternatively, the user can define custom intervals that could be driven by
lithologic or mechanically distinctive units or simply a smaller regular interval for
higher-resolution results.

3. Evaluate the integrity and layout of the core. This step is meant to account for core
handling and previous sampling efforts, which can create issues with core quality,
incorrect orientation (e.g., upside-down core), mislabeled core boxes, and missing core.
Core integrity is also a flag for reliability or confidence with respect to the collected
data, analysis, and derived results. In our experience, non-matrix features are easily
overlooked when core integrity is low. Low core integrity can result from the presence
of non-matrix features but also from poor core handling or drilling operations.

4. Define a target maximum amount of time to be spent on each interval (or core box).
We have determined that no more than five minutes per core box (assuming one meter)
is a target sufficient to capture the proper amount of information. Of course, there
might be core intervals with a large amount of features and complex relationships
that might require more than the maximum specified time, and this is appropriate
as long as the majority of the core intervals are completed within five minutes. If the
analysts spends more than an average of five minutes per interval, too much detail is
being collected and perhaps the ground rules need to be revisited. Figure 1 shows the
distribution of times spent collecting data in more than 300 boxes of core with different
levels of non-matrix abundance and complexity. On average, we spent just under
three minutes to collect all the information we deemed necessary in a typical interval.
Boxes that took longer than five minutes usually corresponded to a high density
of non-matrix features or low core integrity, which required some degree of core
reconstruction. The time per interval reported in Figure 1 includes data collected by
different analysts with varying degrees of experience with the NMQP methodology.

5. Define a minimum size and amount of features to be characterized. We typically log
only fractures that are >2 cm in length with apertures ≥0.05 mm and more than 10 cm
cumulative length per box. In the case of karst features, we only log features that are
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>1 cm2 with evidence of dissolution, i.e., molds and other depositional pores, such
as fenestrae, are excluded. For simplicity in the NMQP, we refer to any dissolution-
enhanced pore as a vug. A touching vug implies that multiple dissolution-enhanced
vugs are connected in the core [42]. The lower limits of recorded observations, e.g., vug
>1 cm2 and fractures >2 cm in length, were set to increase efficiency while on the core.
The main idea here is that smaller features, regardless of abundance, are not expected
to significantly contribute to the non-matrix pore system flow.

6. Agree on the threshold between fracture and karst feature. Although this might be
an overstatement, we have run into many situations where fractures are enhanced so
much by dissolution that they develop vug-like aspect ratios (e.g., Figure 4C in [43]).
Therefore, it is critical to make appropriate observations on cross-cutting relationships,
such as by establishing whether a vug was intersected by a fracture or developed
along a fracture. In any case, do not capture the same observation twice, i.e., classify
as both fracture and karst.

Figure 1. Histogram showing the distribution of time spent collecting non-matrix observations on
more than 345 boxes of core using the NMQP method.

2.2. Data Collection

Measuring tape, a small ruler or a comparator [43], a hand lens, a computer, and a
clean core surface are the minimum requirements to get started. Figure 2 illustrates the
spreadsheet format we use to collect the information that is reported during an NMQP.
Data are easily recorded using an alphanumerical system that can easily be translated
into other software packages optimized for well log analysis. Table 1 shows an example
key that can be used to record information in the spreadsheet. With a bit of practice, the
alphanumeric key can be easily remembered by analysts, which reduces the time spent
on each interval. Each row in the spreadsheet represents a single core box. For each core
box, the top and base of the interval are recorded, along with the core dimensions, which
include the core diameter and cut, such as the 1/3 or 2/3 portion of the slabbed core. Core
integrity is typically input on this first pass of the core, together with the top and bottom of
each interval (or core box). The core integrity scale ranges from 1 to 5 (Figure 3). Once the
depth, dimensions, and quality of the core have been captured, each core box is evaluated
for the presence of fractures and karst features.
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Figure 3. Examples showing variations in core integrity. (A) rubble, (B) rubble with intact sections,
(C) partially intact, (D) mostly intact, (E) completely intact. Core intervals with missing pieces or
being broken does not impact the core integrity call.

2.2.1. Fracture Metrics

In an ideal situation, some sort of fracture paragenesis work should have been done
prior to collecting these data. This can be achieved by using geochemical techniques that
analyze cement types and paragenesis or more simply by observing the type of cement
fills and cross-cutting relationships. When a fracture paragenesis exists, the first step is
to identify the genetic fracture types present in the analyzed interval. Genetic types refer
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to the relative timing and processes responsible for fracture development, which also has
implications for the type of fill that may be present. For example, early fractures that
form contemporaneously with sediment deposition are commonly open at the surface [34].
Consequently, such fractures are often filled with carbonate debris and soil-derived clays.
Conversely, late fractures that develop during burial often crosscut the early fractures and
are filled with calcite cement. Conducting NMQP within a fracture-paragenetic sequence
allows the user to distribute properties and fracture types in a model using a genetic-based
approach. This effectively means being able to define areas with a higher probability
of finding certain types of fractures and assigning different properties of each fracture
generation. NMQP can also be performed in the absence of fracture paragenesis work;
however, there will be uncertainty on understanding what controls fracture distribution
within the reservoir. Regardless, NMQP can still be used to identify general distribution
trends and sweet spots or make inferences about mechanical stratigraphy. The following
fracture metrics should be collected independently for each fracture generation (or type):

• Count: number of fractures of a given genetic type that meet the conditions defined
by the ground rules. When counting fractures, one should avoid counting the same
fracture twice at the intersection with the slabbed face and the back of the core. The
user should not forget that the number of fractures sampled by the core is highly
dependent of fracture spacing and orientation; therefore, the core is only a partial
representation of fractures in the subsurface.

• Cumulative Length: summation of all fracture trace lengths of the same fracture genera-
tion.

• Characteristic width: a rough estimate of an average or most representative width of
each fracture type observed in the core interval. Width is defined as the distance from
wall to wall of a given fracture, regardless of whether the fracture is filled or open. A
simple measuring scale or comparator [44] can be used.

• Maximum width: the maximum observed width of a given fracture type. In reservoirs
with evidence of dissolution, maximum widths correspond with vugs that developed
along fractures.

• Openness: the amount of visible open space in a fracture under the naked eye. We use
a Likert-type scale [45] with 5 classes (Table 1) that covers non-uniform ranges in an
attempt to account for human bias and the inability to visually quantify the proportion
of the fracture that is open. The classes range from 0 (completely filled with cement)
to 4 (more than 90% of the fracture is open).

• Fill type: describes the different types of cements that can be observed with the assis-
tance of a hand lens. In the case of multiple cement generations, the order in which
they are recorded in the spreadsheet represents the relative timing of the cements, from
late to early. For example, in box 7 (interval 1915.17–1916.27 m), the numeric codes
1,2 depict two cement generations observed, where the fractures are coated by calcite
cement, followed by a lining of bitumen (Figure 2). As this is a general description
over a meter-long interval, the fill sequence described here would be the one that is
most commonly observed.

• Distribution: defines in which third(s) of the core the described features occur. This
attribute is an attempt to further refine the vertical distribution of features within a box.
For instance, a 1,3 distribution means that the fractures occur in the upper and lower
thirds of the interval under consideration; a 1,2,3 distribution implies that fractures
occur throughout the entire box.

One advantage of the NMQP approach is that it is highly adaptable. For example, in
our experience, we typically have wireline image logs that cover the cored intervals. In
such cases, we use the image logs to determine dip and orientation of fractures as a way
to optimize our time on the core. Conversely, if image logs do not exist over the cored
intervals, then recording orientation and dip information can easily be added to the NMQP
workflow; however, time allocation per interval will need to be considered.
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2.2.2. Karst Metrics

For this workflow approach, we define karst as either an early epigenic process associ-
ated with subaerial exposure and meteoric water or a late hypogenic process during burial
that results from acids and fluids decoupled from the overlying surface [46]. Although
there is difficultly in differentiating between early meteoric karst features and late burial-
related karst features solely from core, there are some key observations that can be made to
distinguish the two karst types. For example, meteoric karst features are associated with
an exposure horizon in core. Additional lines of evidence for meteoric karst includes the
development of touching vugs (i.e., multiple vugs that are connected [42]), the presence
of cave deposits, such as speleothems or collapse breccia associated with early fill, and
rubble zones associated with karst voids. Evidence of burial karst features can be more
challenging to determine in core. Nonetheless, some observations that point to porosity
generation during burial include vugs that develop along stylolites or burial fractures, as
well as further enlargement of syndepositional fractures and early meteoric karst features.

Because of the time consumption that can happen with detailed differentiation of early
and burial karst processes during the NMQP process, we focus efforts on the quantitative
geometric description of these features that arise from such processes. Qualitative observa-
tions of early versus burial features are recorded as comments. Deciphering of the relative
abundance of early versus burial karst comes after the NMQP and requires integration with
additional datasets, including a sequence stratigraphic framework, optical petrography, and
diagenetic studies [31,37]. The following karst metrics should be collected for each karst type:

• Count: number of karst features of a given genetic type that meet the conditions
defined by the ground rules. The most common example of karst at the core scale is a
combination of isolated dissolution-enhanced voids and touching vugs, reflecting the
earliest stages of coastal karst development [47,48], which are often associated with
carbonate reservoirs [26–28,37,41,49].

• Average size: an estimate of the mean cross-sectional area of the same karst type, which
is calculated by multiplying the approximate length of the short and long axes that
define each feature.

• Maximum size: the maximum measured cross-sectional area of a certain type of karst
feature.

• Openness: amount of visible open space in a karst features. We use the same Likert-type
scale [45] used for fractures.

• Fill type: describes the different types of cements that can be observed with the assis-
tance of a hand lens. Rules for fill type reporting and data collection are similar to
those described in the case of fractures.

• Distribution: similar to the fracture metrics, distribution indicates which third(s) of the
core contain(s) the features being described.

2.3. Data Processing

The data collection strategy described in the prior section is geared towards this step
of the workflow, where information is processed to provide reasonable estimates of non-
matrix properties and their vertical variations. The main objective of the data processing
step is to deliver a quantitative interpretation of density and porosity associated with the
non-matrix pore system. Although there might be a certain degree of uncertainty with
respect to the absolute values, this methodology provides early insights on non-matrix
variations along the core and in between wells.

Fracture density. The fracture density derived from this workflow yields a P21 (as
defined by [50]), which is calculated as the summation of all fracture trace lengths (of the
same generation) divided by the core surface area:

P21 = ∑n
1 L/A, (1)

where L is fracture trace length, and A is the core surface area.
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Fracture porosity. Fracture porosity (P22, [4]) is calculated as the product of the cumula-
tive fracture length multiplied by the characteristic fracture width, minus the amount of
pore space occupied by any filling cement:

P22 = ∑n
1 L × α × [1 − f ], (2)

where L is fracture length, α is characteristic width, and f is the proportion of the fracture
filled with cement (defined as the midpoint of the reported interval range). Potential
fracture porosity (P22pot) is defined as the porosity that would result from removing all
fracture-filling cements (i.e., f = 0 in Equation (2)).

Karst porosity. Karst porosity (∅k) is derived from the average vug size multiplied by
the number of vugs over a given area:

∅k =
KA × Kn

A
(1 − f ), (3)

where KA is the average vug size, Kn is the total count of vug features, and A is the core
surface area. The area should include the slab face area and the area of the core outer
surface to account for the vugs in the back of the core. Potential karst porosity (∅kpot)
is defined as the porosity that would result from removing all filling cements (i.e., f = 0
in Equation (3)). A different approach to estimate karst porosity involves calculating an
equivalent radius (based on average vug cross-sectional area) and the volume of the vugs,
assuming that they approximate spheres, and therefore taking into account the volume of
the core interval. We found that this approach, which is an oversimplification of the vug
pore geometry, tends to produce lower porosity numbers than the method in Equation (3).
Nonetheless, incorporating both estimations provides a range of karst porosity that can be
useful for addressing uncertainty.

3. Results and Discussion

The following section is dedicated to showcasing three examples where NMQP was
used to describe core. These cases are not related to each other. They are intended to show
how NMQP can be applied in different scenarios. The first case is an example of core from
a single well with a variety of non-matrix features that includes both fractures and karst
features. The second case is an example of multiple cores wherein epigenic karst is the
main diagenetic process, resulting in a high density of vug features with variable vertical
distribution. The third case illustrates how to compare NMQP with additional datasets,
including borehole acoustic image log and previous fracture interpretation, as well as the
beginning of an interval in the well where total losses occurred. We will use these examples
as an opportunity to discuss some of the details and direct implications of this methodology
for aquifer/reservoir characterization purposes.

3.1. Case 1: Single-Well NMQP

Case 1 represents a detailed example of the NMQP workflow. Figure 4 illustrates the
type of dataset that captures the variability expected within carbonate reservoirs. In our
experience, carbonate reservoirs can exhibit a range of non-matrix features, whereby some
reservoirs are mostly karst-dominated [26], fracture-dominated [51], or a mix of both karst
features and fractures [41,52]. This dataset reflects what one can expected to find in core
from a carbonate reservoir that has experienced both karst and fracture processes. Figure 4
demonstrates how the NMQP methodology provides a holistic view on the magnitude and
distribution of non-matrix features observed in core, which can be compared with numerous
datasets, including sedimentary core descriptions, wireline and image logs, and dynamic
data, such as production logging tools (PLTs) and well tests. Together, the integration of these
datasets provides key insight on the controls driving the total carbonate pore system within a
given reservoir [24,26,41]. The following subsections step through the types of observations
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and classifications that can be made on the core, as well as what considerations should be
made to understand the potential impact of non-matrix features within the reservoir.

Figure 4. Single well showing the vertical distribution of non-matrix observations obtained with the
NMQP methodology.
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3.1.1. Core Quality

Results from NMQP show that the overall core quality is good with 88% ranging
from fair (22%) to good (31%) to excellent (35%). Only 12% of the core is of poor quality.
In reservoirs where non-matrix features are known to exist, missing core and rubble
intervals need to be evaluated to determine the cause of little-to-no core recovery. Although
drilling operations and wellbore conditions can commonly lead to poor core retrieval, these
intervals may reflect non-matrix features, including fracture zones or karst. An evaluation
of the core integrity demonstrates 97% core recovery, with two intervals that account for
3.5 m of missing rock from 1981.00 m to 1982.5 m and from 1992.0 m to 1994.0 m. These
two missing intervals may indicate non-matrix features, which needs to be corroborated
with additional data, such as caliper, image log, or a PLT run showing flow. Our experience
has shown that numerous rubble zones and missing intervals are indications of non-matrix
features that were previously misinterpreted as the result of coring operations or wellbore
integrity (e.g., breakout) during drilling.

3.1.2. Non-Matrix Types

Non-matrix types within this example include a combination of fractures and small-
scale dissolution features that can be diagnostic of incipient karst processes. Fractures
account for 68% of the observed non-matrix features. We classify fractures based on
their relative timing, e.g., syndepositional, early burial, and late burial [34]. Similarly to
the proposal of Ibrayev et al. [34], first-generation fractures correspond to fractures that
developed contemporaneously with sediment deposition. These fractures often exhibit
large apertures (≥1 cm) and are filled with carbonate debris derived from the platform
top and early marine calcite cements. Second-generation fractures develop during early
burial due to loading and compaction. Such fractures typically have apertures of less than
1 mm and are often associated with stylolites. Late fractures can often be differentiated by
cross-cutting relationships with earlier fractures due to continued burial or tectonics.

Breccia accounts for 6% of the observed non-matrix types. Karst-related breccia
observed in core typically results from cave collapse or exposure, i.e., epikarst. Dissolved
vugs and touching vugs account for 20% and 3% of the observed non-matrix features,
respectively. Although such features may not be explicitly defined as karst, e.g., small-
scale vugs that have experienced varying degrees of dissolution, their presence provides
insight into areas within the reservoir where dissolution may have been favorable for karst
development under the right flow conditions. This type of understanding can be extremely
useful when predicting where karst processes may impact reservoir properties, such as
connected pore volume and high-permeability zones. Consequently, we also flag any vugs
that are present within the breccia and along fractures, as such observations may indicate
possible flow paths within these features.

3.1.3. Fracture Properties

The fracture properties collected during NMQP include a total count and summation
of the total fracture length per box, as well as the degree of open pore volume, average and
maximum aperture, and fill material. Per Rule 5, the minimum total sum of fractures > 2 cm
in length with apertures ≥ 0.05 mm must be at least 10 cm per box.

At 1920 m, core box 12 has eight fractures with a combined total of 160 cm in length
(Figure 4). Another core box at 1982 m (core box 80) also has a total fracture length of
160 cm with a fracture count of sixteen. This core box is also next to an interval with no
core recovery, whereas there is a box just above the missing core interval at 1979 m with
twelve fractures for a total of 120 cm (core box 78). Given the high values of total fracture
lengths above and below the missing core interval, additional data should be evaluated to
determine whether the interval has any non-matrix features. One straightforward approach
would be to examine drilling data to determine whether any losses were recorded during
coring at this depth. If so, the volume versus rate (VvR) plot described by Fernández-
Ibáñez et al. [52] would be of use, as it utilizes information collected within lost circulation
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zones to determine whether the mud losses are due to fractures or karst (see also Case 3
below). If no losses occurred, then an evaluation of image logs would help to determine
whether this missing interval is the result of non-matrix features [33].

Second-generation fractures account for 91% of all fractures observed, with 70% of
these fractures with an average width in the range of 0.05 to 0.1 mm. The remaining
20% of second -generation fractures have an average width ranging from 0.15 to 0.5 mm.
Maximum width is useful to understand the variability of the fracture sets within one
box. For example, core box 3 has 40 cm of total fracture length with both an average and
maximum width of 0.5 mm. Conversely, core box 32 also has 40 cm of total fracture length,
but the average and maximum width are 0.1 mm and 1 cm, respectively, and the number
of fractures is less than that observed in core box 3 (Figure 4). Recognizing such variation
and distribution of fracture density and width in core can provide insight that can help to
address the impact that these features have on variations in non-matrix flow [53].

First-generation fractures account for 9% to the total observed fractures. This type of
distribution between first- and second-generation fractures is common in many carbonate
reservoirs that we have studied [34]. Although first-generation fractures are often fewer in
number compared to second-generation fractures, their commonly wider apertures and
vertical extent can have a significant impact on large-scale flow in certain portions of a
reservoir [54]. An evaluation of fracture fill material shows that all but one box (core box
109) have less than 30% open pore volume per fracture. Most of the fracture fill is in the
form of bitumen and calcite crystals.

3.1.4. Karst Properties

The karst properties collected during NMQP include a count of individual karst
features per box, as well as the degree of open pore volume, average and maximum size of
each feature, and fill material. According to Rule 5, only vugs that are greater than 1 cm2

and show evidence of dissolution are recorded, i.e., molds and other isolated pores are
excluded. The idea is that vugs that have experienced dissolution are in the earliest stages
of karst development. All large karst features, such as caves, start out as small-scale pre-
solution openings that include bedding-plane partings, fractures, and/or pores associated
with the matrix host rock. Depending on the hydrogeologic conditions under which caves
form, the result may be angular or curvilinear conduits, maze-like networks, or meter-scale
isolated voids [46]. Although not all vugs that have experienced dissolution are sensu
stricto karst, their presence indicates specific locations within the reservoir where karst
processes may have occurred beyond what can be explicitly viewed in core. Touching vugs,
on the other hand, demonstrate areas where dissolution has progressed enough to generate
a well-connected pore system at a local scale, i.e., core.

There are 74 individual karst features observed in the core, with a maximum count
of five features in a box. The average and maximum size is about 12 cm2 and 130 cm2,
respectively. The 130 cm2 feature is in core box 77 and is a karst breccia that still has an
open pore volume estimated at 30%. In core boxes 19 and 20, the observed features are one
touching vug and one isolated vug, respectively. Although there is only one feature per box,
their proximity and size (about 50 cm2 each) suggest that sufficient dissolution and fluid
flow could have been favorable for karst development within this portion of the reservoir.
The degree of open pore volume within the karst features ranges from less than 10% to
90%, with 65% of all features ranging between 25% and 70% open. In our reservoir studies,
we have used such observations of open pore volume to guide estimates of field-wide karst
porosity [41].

3.1.5. Density and Porosity

Estimates of non-matrix properties and their vertical variations are evaluated through a
quantitative interpretation of density and porosity (Equations (1)–(3)). Such values provide
an understanding of the potential impact that non-matrix features may have on flow and
storativity at the core scale. Fracture density (P21) was calculated using Equation (1).
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Fracture density over the entire cored interval has an average of 0.005 fractures/m, with a
minimum and maximum density of 0.001 and 0.018 fractures/m, respectively. There are
two intervals where density is elevated above the average range: from 1911 m to 1920 m
and from 1973 m to 1983 m. Within the interval from 1973 m to 1983 m, the fracture density
reaches a maximum above and below a section with missing core (Figure 4), suggesting
that the missing section may have resulted from poor core recovery due to the presence of
non-matrix features.

Fracture porosity, as estimated here, represents an attempt to capture the range of
pore volume associated with fractures as observed in core using Equation (2). The range of
pore volume associated with fractures is estimated by observing the amount of open pore
volume seen on core (P22open), i.e., accounting for fill within the fractures, and estimating
the maximum amount of fracture pore volume, assuming no fill (P22pot). The average
values of fracture porosity is a P22open of 0.02% and a P22pot of 0.1%, suggesting that 80%
of the fractures are filled mostly with a combination of bitumen and calcite (Figure 4).
Maximum values for P22open and P22pot are 0.2% and 0.5%, respectively. Similar to fracture
porosity, karst porosity evaluates the range of actual pore volume (∅k) versus maximum
possible pore volume (∅kpot) associated with karst features in core using Equation (3). The
average values for ∅k and ∅kpot are 0.9% and 2%, respectively, indicating that only 56% of
karst is filled. Maximum values for ∅k and ∅kpot are 4% and 15%, respectively. Combined,
these average and maximum values of non-matrix porosity provide insight into uncertainty
related to pore volume estimates as observed at the core scale.

3.2. Case 2: Using NMQP to Correlate across Wells

NMQP results can also be used to evaluate lateral and vertical trends between wells.
In the Case 2 example, NMQP was used to quantify the distribution and porosity associated
with the non-matrix features observed in core from a shallow carbonate aquifer. In this
case, non-matrix features are in the form of dissolution-enhanced vugs, i.e., karst. Wells in
this aquifer are drilled to an average depth of ~25 m, and core is collected in every well
with core recovery >95%. Lateral distance between wells ranges from about 0.5 to 1 km.

Figure 5 shows the karst porosity distribution from core collected in seven wells using
a common depth scale reference to mean sea level. Vug size and count were used to estimate
∅k and ∅kpot for each well. The NMQP results highlight a preferential concentration of
vugs around 12 m below mean sea level (m bmsl). There is also an increase in vuggy
features below ~20 m bmsl. Whereas the vugs at ~12 m bmsl in most of the cases are open,
the features located below ~20 m show a varying degree of openness, which appears to
reflect a regional trend. For example, the cluster of wells located in the northern part of
the field that run west to east (to the left of Figure 5) show a mostly open, vuggy pore
system. Conversely, the cluster of wells in the south part of the field run north to south
and shows a vug system that is mostly occluded with cement (Figure 6). We interpret
the concentration of vug porosity at two distinct levels as the result of freshwater lens
diagenesis. The observations and regional trend derived from NMQP in these wells provide
a general framework for describing non-matrix distribution in the aquifer, as well as to
impose a decreasing aquifer porosity and permeability trend towards the south.
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Figure 5. Cross section of multiple wells showing the lateral and vertical distribution of dissolution-
enhanced vugs (karst) observed using the NMQP methodology. Attributes displayed correspond to
ϕ22pot and ϕ22 (Kpot and Kopen, respectively, in log headers), with the well name preceding each
of them (e.g., C1 Kpot). The blue fill represents the proportion of vug porosity that is open, and the
green fill corresponds to the proportion of vug porosity filled with cements.

Figure 6. Images showing increase in cementation and decrease in vug size moving from north to
south, as shown in Figure 5. Both images are from thin sections collected at 25 m depth from each
well. Blue represents porosity. (A) Well C9; (B) Well C16.

3.3. Case 3: Combining NMQP with Additional Datasets

The integration of NMQP results with additional datasets can provide key insights
with respect to how non-matrix features enhance dynamic performance, including mud
losses during drilling or flow potential during production. For example, Case 3 shows the
results of NMQP over 33 m of core from a carbonate reservoir, which also has a borehole
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acoustic image log, associated fracture interpretation from image log, and lost circulation
zone (LCZ), where severe losses during drilling started at 5075 m (Figure 7). The fracture
interpretation suggests that fractures start where losses initiated, i.e., 5075 m, and continue
within the LCZ. Conversely, results from NMQP show the presence of vugs throughout the
core, with an increased concentration of vugs starting at 5068 m, where minor losses were
recorded, and just above the LCZ, where total losses occurred (Figure 7). Equations (1)–(3)
were used to estimate the fracture density and porosity of both fractures and karst. The
increase in observed non-matrix features in the core just above and at the start of losses
suggests the presence of a well-connected non-matrix pore network that promotes high
flow rates. Interpretations using only image logs indicate that fractures alone are the main
feature responsible for the losses; however, integration with NMQP clearly demonstrates
the occurrence of dissolution-enhanced vugs that also play a role.

Figure 7. Single well showing the vertical distribution of non-matrix observations using the NMQP
methodology compared with additional data, including borehole acoustic image log, fracture inter-
pretation from image, and lost circulation zone (LCZ). From left to right: depth, core integrity, vug
count, vug porosity (V-P22) and vug potential porosity (V-P22pot), stratigraphic unit, fracture count
(Fx-count), fracture density (Fx-P21), fracture porosity (Fx-P22) and fracture potential porosity (Fx-
P22pot), acoustic image log (amplitude), tad poles to image log fracture interpretation and fracture
frequency, and top and base of lost circulation zone with volume lost (LCZ). In the vug and fracture
potential porosity tracks, the blue fill represents the actual open porosity, and the green represents
the proportion of space filled by cements.

Recognizing the difference between fracture and karst development is critical when
characterizing reservoirs and developing conceptual models. For example, predicting the
magnitude and distribution of fractures away from well control requires an understanding
of local and regional paleostress regimes that could be responsible for their development.
Conversely, the development of dissolution-enhanced vugs and other karst features require
processes including controls on fluid flow and dissolution reactions, which are often tied to
exposure horizons and freshwater lens diagenesis. Although karst processes are commonly
superimposed on fractures, e.g., dissolution-enhanced fractures, the development of karst
pore volume does not require a pre-existing fracture network [47]. Consequently, the
integration of multiple datasets, as illustrated in Figure 7, provides insight into the processes
responsible for the development of non-matrix features and how to accurately model their
presence in the subsurface.
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4. Further Applications

The NMQP method provides a fast-pass, semi-quantitative characterization of non-
matrix features in core. It requires minimal prior expertise and delivers an integrated
approach to extracting basic metrics of both karst features and fractures. NMQP is especially
useful in fields with long lengths of core distributed between many wells, as it offers a
glance at the types and distribution of non-matrix features. In our experience, this is one of
the first tasks to be completed when core is available. The following subsections highlight
some benefits and additional applications of the NMQP approach.

4.1. Time Management and Efficiency

Other non-matrix data collection methods, especially those designed for detailed
fracture characterization, are typically tedious and time-consuming. Having a NMQP
log available first has helped us to target further detailed fracture data collection efforts.
Detailed fracture work includes recording properties for individual fractures of all types,
lengths, spacing, width, openness, and roughness; as well as exhaustive information on
the lithology of the host rock. Although results from such efforts deliver world-class
databases used to generate robust statistical inputs to fracture models, the pace at which
data is collected is extremely slow, i.e., between 0.5 and 5 m of core described per hour,
depending on the complexity of the non-matrix network. When these types of meticulous
core descriptions are performed, it is often difficult to decide when a sufficient amount of
data has been collected or whether the selected wells are appropriate. Such efforts often
result in scope creep and overspending of time and resources.

In our experience, having an available NMQP log provides an opportunity to develop
a detailed data collection strategy that allows for targeting of specific intervals in the most
representative cored wells. NMQP can help optimize time and resources in situations where
business needs typically set a limited time for acquiring core data. For example, consider a
case in which we have only one week to characterize 120 m of core. With the standard times
per meter reported in Figure 1, one should be able to become familiarized with the main
non-matrix core types and complete NMQP within the first few days. This information can
then be used then to target detailed data collection in certain intervals of interest (e.g., areas
of increased fracture density or areas with a certain type of non-matrix feature). By doing
so, we ensure a balanced dataset that contains enough detailed measurements to develop
suitable statistical distributions of properties while describing, at a more general level, the
non-matrix properties throughout the available core.

4.2. Rapid Data Acquisition and Testing of Concepts

NMQP allows for rapid acquisition of data that can facilitate the testing of concepts
in real time, such as by determining whether the presence of increased fracture density
represents clusters, corridors, or fault zones. Another example of rapid integration of the
NMQP approach is to compare fracture width populations between multiple wells as a
proxy for strain. Figure 8 shows an example of how NMQP results can be quickly evaluated
to observe differences in fracture widths between wells. In this example not related to any
case discussed above, a box plot of fracture widths from four different wells shows that
wells B and D have wider fractures, on average, compared to wells A and C (Figure 8).
Such differences could be interpreted as variations in the amount of strain experienced
by the rocks and thus provide insight into how fracture properties vary spatially within a
given reservoir or aquifer.
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Figure 8. Box plot of fracture widths for four different wells using NMQP data.

NMQP results can also be used test concepts of mechanical stratigraphy. In this
situation, the mechanical units can be smaller than the selected interval (core box), in which
case the interval could be further subdivided using the distribution attribute and compared
with sedimentological core descriptions to observe changes in lithology. Additional uses of
NMQP results include areal controls on non-matrix density or types, impact of proximity
to platform margin, or relations to paleotopography and stratigraphy.

4.3. Input for Numerical Modeling

Data collected with the NMQP approach can also be used to develop early realizations
of discrete fracture network (DFN) models, which can later be upgraded with more detailed
fracture data collection or calibrated to a well test. Figure 9A shows a cumulative frequency
distribution of fracture width constructed using NMQP characteristic width data from
185 core boxes. A similar approach can be employed to model vug distribution (Figure 9B).
The collection of width values fits a log-normal distribution (dashed line) that can be use as
input for a DFN model (Figure 9).

Figure 9. Cumulative frequency distributions of fractures (A) and vugs (B) based on NMQP of
185 core boxes. Blue lines represent width data collected on core. Dashed lines represent log-normal
distributions of widths.

Additionally, carbonate reservoirs with abundant non-matrix features and high-
permeability contrast typically require dual-porosity, dual-permeability formulations for
more accurate forecast during reservoir simulation and performance prediction. Dual-
permeability simulations require a non-matrix porosity input to initialize the models.
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NMQP is a reliable source for quantifying non-matrix porosity, not only for the fracture
component but for the karst component of the total non-matrix systems.

5. Summary

• NMQP is a comprehensive method for collecting non-matrix (karst and natural frac-
tures) quantitative information in a rapid yet adequate fashion that allows a group of
two researchers to describe 12–20 m of core per hour.

• NMQP provides a first-pass approach to understanding non-matrix types and dis-
tribution that can be used for reservoir characterization purposes. It also provides
useful context for designing and targeting intervals of interest for further detailed
data collection.

• NMQP offers enough vertical resolution to define trends and integrate observations
with other wellbore data types, such as borehole image logs, losses during drilling,
mechanical stratigraphy, or upscaled log properties.

• NMQP-based porosity and density logs provide reasonable values that can be used
as input to discrete fracture network models and to initialize dual-porosity, dual-
permeability reservoir simulations.
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Abstract: Nowadays, there are significant issues in the classification of lithofacies and the identifica-
tion of rock types in particular. Zamzama gas field demonstrates the complex nature of lithofacies
due to the heterogeneous nature of the reservoir formation, while it is quite challenging to identify
the lithofacies. Using our machine learning approach and cluster analysis, we can not only resolve
these difficulties, but also minimize their time-consuming aspects and provide an accurate result
even when the user is inexperienced. To constrain accurate reservoir models, rock type identification
is a critical step in reservoir characterization. Many empirical and statistical methodologies have
been established based on the effect of rock type on reservoir performance. Only well-logged data
are provided, and no cores are sampled. Given these circumstances, and the fact that traditional
methods such as regression are intractable, we have chosen to apply three strategies: (1) using a
self-organizing map (SOM) to arrange depth intervals with similar facies into clusters; (2) clustering
to split various facies into specific zones; and (3) the cluster analysis technique is used to identify rock
type. In the Zamzama gas field, SOM and cluster analysis techniques discovered four group of facies,
each of which was internally comparable in petrophysical properties but distinct from the others.
Gamma Ray (GR), Effective Porosity(eff), Permeability (Perm) and Water Saturation (Sw) are used to
generate these results. The findings and behavior of four facies shows that facies-01 and facies-02
have good characteristics for acting as gas-bearing sediments, whereas facies-03 and facies-04 are
non-reservoir sediments. The outcomes of this study stated that facies-01 is an excellent rock-type
zone in the reservoir of the Zamzama gas field.

Keywords: self-organizing map; cluster analysis; lithofacies; Zamzama gas field; rock type

1. Introduction

Machine learning emerged as a subfield of artificial intelligence (AI) in the second
decade of the twentieth century, using self-learning algorithms that gathered information
from data to make predictions [1–4]. Machine learning offers a more efficient option
to capture the information in data to gradually improve the performance of prediction
models and make data-driven decisions [5–8], rather than needing humans to manually
create rules and build models from analyzing massive volumes of data [9–11]. Machine
learning is divided into three categories: supervised learning, unsupervised learning, and
reinforcement learning [12,13]. Each type has its application and algorithm; however,
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because of the lack of outcome information in our case study, we primarily focused on
unsupervised learning. Furthermore, unsupervised learning takes into account the fact
that it may automatically extract hidden patterns without human instruction, making it
more similar to machine learning than other varieties [14]. We used a machine learning
model to categorize the facies for Zamzama gas field and tested the findings against real
facies data in this study. Our model likewise uses data from this field, but we used a novel
model called the self-organizing map (SOM) to tackle the problem [15]. In the situation
of a lack of facies data or geologically inexperienced users, our model would be the best
fit [16]. The principal component analysis (PCA) is our model’s first unsupervised learning
approach [17]. This is a linear mathematical strategy for condensing a big set of variables
(seismic characteristics) into a smaller set that retains the majority of the independent
information variation found in the larger data set [18,19]. One can distinguish sedimentary
units with similar log characteristics by gathering data from several good logs [20–24]. In
the literature, sedimentary units established on this basis and characterized from wireline
logs were referred to as electrofacies or logfacies [17,25–27]. One of the most accurate
and impactful procedures in oil-bearing clastic reservoirs is multivariate cluster analysis
(referred to as the best method of data grouping in the literature) [8,16].

The aim of this research is to classify gamma-ray, porosity, permeability and water
saturation into logfacies and rock types. Our study compares and evaluates lithofacies and
various rock type identifications, utilizing SOM and cluster analysis, via hierarchical and
non-hierarchical approaches to calibrate the appropriate model for researching lithofacies
and rock-type identification. The rock type classification is performed using the cluster
analysis method, which aims to discover groups of well-log data with similar characteristics.
This classification is based on the unique properties of well-log measurements, which reflect
lithofacies within the recorded interval, and does not require any artificial segmentation of
the data population [28].

A cluster analysis can be performed using a variety of methods. Furthermore, un-
supervised learning is more similar to machine learning than other forms since it can
automatically extract hidden patterns without human assistance [29–31]. For lithofacies
classification, there is an unsupervised learning model called support vector machine
(SVM). The SVM is a useful approach for higher-dimensional datasets that is also versatile,
as alternative kernels can be specified according to the user’s needs. The SOM is the
next step in the process. There are massive data analysis challenges, particularly in the
classification of lithofacies and the identification of rock types, both of which generate large
amounts of data, as well as the fact that humans are unable to fully appreciate the link
between seismic properties [32]. Using the advanced machine learning approach and clus-
ter analysis, we can not only solve these problems, but also reduce their time-consuming
nature, and deliver an accurate result even when the user is unskilled. Finally, clustering is
used to classify subgroups (facies) based on their dissimilarity. In this research, we want to
systematize the essential background of the SOM and then apply this workflow to facies
classification in two real examples. Based on the final results, which are compared, several
discussions are presented of lithofacies identification.

General Geology and Stratigraphy of the Study Area

The Zamzama gas field is located on the eastern edge of the Kirthar Foldbelt and is
a broad, trust-related anticline northeast of the fields of Bhit and Badhra, and south of
the fields of Mehar, Sofiya, and Mazarani (Figure 1a). In the frontal folds on the Kirthar
foredeep, these field are situated along the western edge of the Lower Indus Basin [33,34].
The Zamzama gas area is situated along the Kirthar folds and thrust belts of Pakistan’s
Southern Indus Basin. The southern Indus Basin is limited by the Indian Shield to the east
and the Indian plate’s marginal zone to the west, as well as the Sukkur rift from the north to
the offshore Indus in the south [35,36]. The Kirthar Foldbelt in Pakistan is part of the lateral
mountain belt linking Makran’s accretionary wedge to the Himalayan orogeny. Parallel to
the regional plate motion vector, the area is undergoing oblique deformation (Figure 1b).
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In 1998, with estimated wet gas in place at discovery, the Zamzama Field was discovered
and has provided condensate cumulatively to date [25,26].

 
(a) 

 
(b) 

Figure 1. (a) Satellite map showing the locations of the major oil and gas filed within the Middle and
Southern Indus Basin. Zamzama gas field is present in the middle towards the eastern side of the
map. (b) Regional tectonic map of Pakistan, showing the major basins and tectonic regions.

Most of the production comes from late Cretaceous Pab Formation fluvial and shallow
marine sandstones, but the Zamzama area also produces sandstones from the estuarine
Palaeocene Khadro formation, which are from the Pab formation in stratigraphic pressure
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isolation. In the Zamzama region, the Sembar’s Cretaceous shales and the Goru formations
are regarded as the principal source rock [37–40]. Through a majority of the Southern Indus
Basin, the Sembar Formation was deposited in marine settings [41–43]. The Lower Goru
Formation was deposited over the whole basin of the Southern Indus [33,37]. The early
Cretaceous Goru Formation, which is divided into two sections (the Lower Goru Formation
(LGF) and Upper Goru Formation (UGF)), superimposes the Sembar Formation [44,45]. The
Goru Formation was accumulated in a shallow marine environment such as a shoreface to
the fluvial-based proximal delta-front depositional framework [1,41]. Quite coarse to fine,
porous, and permeable sediments are preserved in fluvial networks and create reservoirs in
fluvial-based depositional systems [9,37,39]. The Lower Goru Formation, which includes
quite coarse to fine sediments, is the largest reservoir rock in the Lower Indus Basin [33,34].
However, in our study area, Goru formation is acting as a source rock, while Pab sandstone
is the main reservoir rock within the Zamzama gas field (Figure 2). The main producing
reservoir in the Zamzama gas field is the Maastrichtian Pab Formation, which shows the
deposition of the sand-rich fluvio-deltaic coastal plain and shoreface depositional system
that passes westwards into deep marine turbidites. An alternative target is sandstone
reservoirs within the underlying Palaeocene Khadro Formation, which are separated by
varied thicknesses of coastal plain shales and mudstones, across the top Pab Formation
unconformity. The Khadro Formation sandstones are made up of estuary, intertidal, and
shoreface deposits, with the shoreface units cut by tidal channels, and are hence very
discontinuous and variable in distribution. The Palaeocene Girdo (Ranikot) Formation
marine shales serve as the top seal for the Khadro Formation reservoir sand, which is
present throughout the field and offers a durable continuous pressure barrier, even when
cut by thrusts. Because the basal Khadro Formation shales form a good seal from the
underlying Pab Formation reservoir, Khadro Formation sandstones are anticipated to be
closer to virgin field pressures, unless depleted by production from Khadro Formation
producing wells [22–25].

 

Figure 2. Generalized lithostratigraphy of the Lower Indus Basin [34].
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2. Data and Methods

2.1. Dataset

For the interest, a dataset of four wells (well-2, -3, -4, and -5) were used in the current
study. The model was trained in well-3, and the experiment models were verified in the
other wells. We have focused on the gas-bearing zone in the Zamzama gas field, which
is present within the Lower Goru formation of Cretaceous age. The primary goal of the
study was to fix the machine learning model’s configuration settings to attain the maximum
classification accuracy feasible in the dataset. Many unsupervised learning algorithms
were performed for classifying lithofacies and rock type identification in the Zamzama
gas field, as evidenced by the majority of the evaluation’s findings being validated on
well dataset samples. The study compares and evaluates lithofacies and identification
of various rock types, using methods such as SOM and cluster analysis to calibrate the
appropriate model for researching lithofacies and rock type identification. Lithofacies
distributed the reservoir interval by combining sedimentological explanations and reacting
to gamma-ray log response. We have used the commercial “Interactive Petrophysics (IP)
Software” and coding for machine learning throughout the whole study. The IP software
is used to incorporate all the well-logged data for computing and then evaluating the
inputs of several petrophysical properties for accurate and adequate assessment of the
formation’s lithofacies.

2.2. Methods
2.2.1. SOM

The SOM is a mathematical technique for organizing data into groups to build a map.
It is a neuro-computational clustering approach that uses supervised and unsupervised
learning processes to uncover new and valuable knowledge hidden in massive datasets [11].
Geoscientists can use the SOM to analyze rock characteristics and reservoir fluids since it
delivers high-quality data. SOM’s capacity to learn and organize data without requiring
associated dependent output values for the input pattern is one of its most attractive
features [15]. The topology of SOM is determined by several nodes (varying from a
few dozens to thousands) linked to surrounding nodes and organized on a regular low-
dimensional grid. The nodes for the entire dataset are created by a training method in SOM.

Electro facies assessment is an important stage in determining the accuracy of reservoir
rock evaluation. To decrease the uncertainties and evaluate the electro facies, a type of
artificial neural network (ANN) called SOM was utilized in this study. It is a model of
unsupervised learning. The SOM is followed as

Wv1 = Wv(s) + θ(u, v, s).a(s).[D(t)− Wv(s)] (1)

where s represents the current iteration, t represents the index of the target input data vector
in the input dataset, D(t) represents the vector of target input data, v represents the node
index in the map, Wv (s) represents the current weight vector of node v, u represents the
index on the map for best matching units (BMUs) (SOM node having the shortest aggregate
distance to one of the input vectors), θ(u, v, s) represents even though due to the distance
from BMU, commonly referred to as the neighborhood and α represents, based on iteration
development, the learning restriction.

To begin the training process, the weights in each node are assigned to a random value.
After the map has been initialized, the input data is sent to it. For each level of input data,
the BMU is determined, which is the node that most closely represents the input data. The
Euclidean distance represents the weight vectors of each node and the provided input
vector is calculated as follows:

Distance =
√

∑i=n
i=0 (Vi − Wi)

2 (2)

Here, V is the present input vector and W is the weight vector of the node. The BMU
is the node where such a distance evaluates to the smallest value. The following equation
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is used to change the weight vectors of the successful node such that they are closer to the
input vector:

Wt+1 = Wt + Lt (Vt − Wt) (3)

where ‘t’ is the current training pass (or time-step), ‘W’ is the weight vector, ‘V’ is the input
vector and ‘L’ is a variable called the learning rate:

0 < L < 1 (4)
The learning rate lowers over time (per training pass) and declines with the following

equation for every repetition of the training pass.

Lt = L0 exp
(
− t
λ

)
(5)

where L0 represents the initial learning rate before training, ‘t’ represents the current
training pass repetition, and ‘λ ‘ represents a time constant determined by the equation:

λ =
t

logσ0

(6)

where σ0 is the initial radius of the neighborhood of effect, as discussed below.
The node with the least Geometric difference between the input vector and all nodes

is picked, and its neighboring nodes within a specific radius are slightly altered to match
the input vector. The neighborhood radius is set to half of the map grid width at the start.
However, as time passes, the radius of the neighborhood reduces, and at the end of the
training, the radius is reduced to a single node. With training passes, the neighborhood
radius decreases as follows:

σ0 exp
(
− t
λ

)
(7)

where the radius of the neighborhood is denoted by ‘σ’.

Wt+1 = Wt + θtLt(Vt − Wt) (8)
Here, ‘θ’ is the impact of a node’s distance from the BMU on its weighting correction,

as calculated by the equation.

θt = exp

(
−dist2

2σ2
t

)
(9)

Here, ‘dist’ is the distance between the node and the BMU, as measured by Pythagoras’
theorem. σ(t) is the radius of the neighborhood function, which controls how far neighbor
nodes are checked. It becomes smaller and smaller over time.

The technique described above is carried out for the specified number of training
iterations. The weights of the input dataset are optimized at each iteration step until the
best and most reliable set of weights for the network is found. The above exercise is ended
to guarantee that a minimum error criterion is met. It is worth noting that geological
heterogeneities influenced the number of clusters; the more heterogeneous the geology,
the more clusters; hence, process levels use SOM weight planes and local geological
information at the same time. SOM can be used to analyze financial stability in addition to
facies evaluation for oil and gas exploration.

2.2.2. Clustering Procedure

Due to various factors that affect the logs, similar facies may have distinct log re-
sponses. Because statistical methods and processes are required, data are clustered with a
minimal distance and maximum homogeneity in the clustering procedure. It is self-evident
that different geological factors can be linked to a set of data known as logfacies, which
geologists can utilize for further interpretation. All log readings are treated as “observa-
tions” in this calculation, and the user logs are treated as “values of the observations.”
The lowest distances are joined together to form a pair in cluster analysis. Because the
number of logfacies is usually smaller than the number of readings, pairs of vectors are
linked to form a cluster (logfacies). To create higher rank kinds, lower-rank clusters are
joined together. This process is repeated until a single cluster (representing all of the data)
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is formed. There are several methods for connecting two clusters. To link the cluster
components in some of them, the least distance between them is used. Using IP software,
the clustering module was completed in two stages: To begin, the data (gamma-ray log,
porosity, and water saturation) are separated into easily understandable data clusters. The
number of clusters should be sufficient to cover all of the data ranges seen in the logs. For
most data sets, fifteen to twenty clusters appear to be an acceptable quantity. The second,
more labor-intensive phase is to organize these 15 to 20 clusters into a reasonable number of
geological facies. This could mean condensing the data into five or six groups. The K-mean
statistical technique is used in the first stage of “Facies Clustering” to cluster the data into
a known number of clusters. To make this work, an estimate of the mean value of each
cluster for each input log must be made first. The starting assumption can have an impact
on the findings; therefore, make sure the beginning values cover the entire range of the
logs. Each input data point is assigned to a cluster in K-mean clustering. The method tries
to reduce the sums of squares of the difference between the data point and the cluster mean
value inside each cluster. The method works by computing the sum of squares difference
between a data point and each cluster mean, then allocating the data point to the cluster
with the smallest difference. The new mean values in each cluster are determined when all
of the data points have been assigned to the clusters. The programs begin with reassigning
the data to the clusters using the updated mean values. This loop is repeated until the mean
values between loops do not change. Before starting, all input log data are adjusted so that
each input log has the same dynamic range. The mean and standard deviation of the log
are calculated, and the data are then normalized by subtracting the mean and dividing by
the standard deviation.

Stage-2 Cluster Consolidation

Cluster consolidation can be carried out entirely by hand, utilizing the cross plot
and log plot output to group data, or using a hierarchical cluster approach to group data.
Hierarchical clustering works by calculating the distances between all clusters and then
combining the two clusters that are the most closely related. After that, the new cluster
distance to all other clusters is recalculated, and the two closest clusters are combined once
more. This technique is repeated until only one cluster remains. A dendrogram can be
made from the results. The dendrogram depicts how and in what order the clusters were
fused. The merging sequence is shown by the numbers at the top of each branch. The
original K-mean clustering findings are presented at the bottom of the plot. There are five
main clustering strategies in IP software that determine how the clusters are combined.
The outcomes of the various strategies will be vastly different. The distance calculation is
updated differently in each of the five approaches after two clusters have been connected.
Assume that clusters “A” and “B” have recently been linked to from cluster “Z,” and that
we need to compute the distance between “Z” and another cluster, designated “C”, in the
diagram below.

The computations for the various techniques are as follows: (1) the minimum distance
between all clustered objects—the distance between Z and C is the shortest of the distances
(A to C and B to C). (2) Maximum distance between all clustered objects—the distance
between Z and C is the greatest of the distances (A to C and B to C). (3) Average distance
between merged clusters—the distance from Z to C is the average distance between all
objects in the cluster generated by merging clusters and C. (4) Average distance between all
objects in clusters—the distance between clusters Z and C is the average distance between
cluster Z and cluster C (Figure 3).

2.2.3. Non-Hierarchical or K-means Clustering Methods

In these methods, the required number of clusters is specified in advance, and the best
solution is selected. When working with big data sets, non-hierarchical cluster analysis is
frequently utilized since it allows individuals to shift from one cluster to another, which is
not possible with hierarchical cluster analysis [11,34,46]. The k-mean cluster analysis has
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two drawbacks: first, determining how many clusters are likely to exist is challenging, and
hence the analysis may need to be performed several times; second, it is very dependent
on the initial cluster selection. There are two stages to the clustering process. To begin,
the good log data are organized into manageable data clusters, with enough clusters to
cover all of the different data categories that can be found in the log data [18,46]. For most
data sets, 15 to 20 clusters are a good number. The second phase is grouping these 15 to
20 clusters into a manageable number of rock types and condensing the data into four to
five homogeneous groups.

 

Figure 3. Diagram of Cluster Z.

3. Results and Discussion

3.1. Self-Organizing Feature Map (SOFM) Approach for Lithofacies Identification

A self-organizing feature map (SOFM) was used to determine the accuracy of lithofa-
cies. The findings of the SOFM model reveal four distinct lithofacies: Gamma Ray (GR),
Neutron (NPHI), Sonic (DT4P), and Density (RHOB). The low and high scale represents
that the relevant color code facies type is shown as a horizontal distribution to determine
the lithological characteristics (Figures 4 and 5). Vertical distribution features to determine
the lithological characteristics of the interpreted well-3 are shown in Figure 6 and represent
the calibration phase, in which we can clearly identify the vertical facies variation. These
two figures cannot be combined because the (Figure 4) is the training phase, where is the
(Figure 5) indicates the calibration phase, in which we can easily identify the horizontally
facies variation. The found facies’ sedimentological elements vary little between reservoir
intervals. The remaining facies “2” and “3” show a silty clay component, whereas facies “1”
reveals pure sandstone. This approach also predicts the volume and hydrocarbon potential
fluctuation of lithofacies. Sandstone with a small proportion of clay has moderate and low
gas-bearing lithofacies, whereas sandstone with a small proportion of clay has moderate
and low lithofacies. Lithology interpretation has been optimized as a result of the constant
performance of the SOFM framework.

3.2. Cluster Analysis for Lithofacies Identification

The current study uses a cluster analysis technique to evaluate the efficacy of reservoir
rock typing (RRT) of the identified sand masses. Cluster analysis is a multivariate strategy
that seeks to divide a sample of subjects with a specific variable evaluated into a different
number of groups, with like subjects grouped. An electrofacies is a unique set of log
answers that characterizes the rock’s physical characteristics and fluids in the volume
under investigation by logging tools. The rock types reflect reservoir bodies with a distinct
relationship between effective porosity, deliverability, the potential for oil and gas storage,
and the quantity of specific water saturation. It gives a good idea of how much oil is in
the reservoir and how much is being recovered. The results of the cluster analysis show
that the current study looked at rock intervals classified into four log facies. Each facies
are described using the mean values of input log curves, and the “cluster means” findings
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for each well are shown in (Table 1). The results of the cluster assessment suggest that log
facies 1 and 2 in the Cretaceous reservoir are the most interesting zones for the research area.
Figure 7 shows the cluster analysis among the input data curves obtained using k-means
clustering for facies groups, as well as the reservoir rock type properties of these log facies
(Table 2).

 

Figure 4. Self-organising map before calibration.

 

Figure 5. Component SOM model planes for the four input parameters after calibration.
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Figure 6. SOM vertical distribution model showing the interpreted lithofacies for the four input
parameters after calibration.

Table 1. The results of “cluster means” plus other statistics of user data for each cluster.

K-Mean Cluster Results

GR eff Perm Sw

Facies Points Rock Typing Mean Mean Mean Mean
1 13 Excellent-quality rock type 19.44 0.12 32.49 0.16
2 50 Good-quality rock type 20.32 0.10 8.94 0.26
3 62 Moderate-quality rock type 22.59 0.05 0.37 0.77
4 35 Poor-quality rock type 33.34 0.02 0.01 34.69

 

Figure 7. The final graphical result of clustering analysis.
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Table 2. The properties for groups of Facies.

S. No Rock Typing GR eff Perm Sw

Facies-01 Excellent-quality rock type Very low Good to excellent Good to excellent Very low
Facies-02 Good-quality rock type low Good Good low
Facies-03 Moderate-quality rock type Medium Fair to Good Fair to Good Medium
Facies-04 Poor-quality rock type High Low Low Very high

3.3. Hierarchical and Non-Hierarchical

After calculating the distance between objects in the dataset, connecting distance data
can be used to identify how objects in the dataset should be grouped into clusters. The
objects with the shortest distance between them were joined together to form new clusters.
These newly generated clusters link to one other and to add items to form larger clusters,
eventually linking all of the objects in the original dataset in a hierarchical tree. In general,
“minimum distance between all things in clusters” produces long, thin clusters, whereas
“maximum distance between all objects in clusters” produces larger spherical clusters. The
“minimize the within-cluster sum of squares distance” and “average distance between all
objects in clusters” are likely to produce clusters that are comparable to those created with
“average distance between all objects in clusters.” The clusters (electro-facies) were then
constructed based on the data cluster tree or dendrogram (Figure 7). A dendrogram is
a hierarchical tree with many U-shaped lines connecting things. The distance between
two objects being connected is represented by the height of each U. Two objects with the
shortest distance connect in the cluster tree to form a new, larger cluster. This sequence
would repeat itself until just one cluster remained. For the dataset from all available wells,
the procedure described above was used. As seen in Figure 8 of the dendrogram, the
default approach “minimize the within-cluster sum of squares distance” produces good
results for splitting the distinct log lithologies into different clusters. Stopping the grouping
at a specific cutoff level makes it simple to divide the clusters into a defined number of
groups. It is feasible to examine the groupings to determine whether adding another cluster
adds more information or merely adds noise at which level. This information can be found
in the “Cluster Randomness Plot.” The “Cluster Randomness Plot” that determines the
perceived randomness of the data for each cluster group is shown in (Figure 9). The greater
the score, the less random the clusters are, indicating that the data are more structured. The
average number of depth levels per cluster, for example, the average thickness of a cluster
layer, is used to determine unpredictability. This is carried out on the original log data. The
theoretical average thickness is then determined, assuming that the clusters are assigned at
each depth level at random. The ratio of the two is randomness. A value of 1 would be
completely random, whereas higher values would be less so.

average thickness = number of depth levels/number of cluster layers

random thickness = ∑
pi

(1 − pi)

where pi is the proportion of depth levels assigned to the ith cluster.
Randomness index = average thickness = random thickness. The plot is interpreted by

picking the number of least random clusters (highest peaks).
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Figure 8. Cluster grouping dendrogram of the Zamzama Gas Field.

 

Figure 9. Cluster groups randomness of Zamzama Gas Field.

4. Discussion

The Zamzama Gas field in Pakistan was investigated using unsupervised learning
and cluster analysis to categorize lithofacies and identify rock types. As both classifiers,
hierarchical and non-hierarchical and SOFM produced more trustworthy results in litho-
facies classification and rock type identification. These classifiers were able to accurately
predict shaly sandstone and precision sandstone. However, when compared to other facies,
the PR-area-under-curve score for shale was below average, indicating machine learning
misclassification in predicting one facies to other facies despite the usually good accuracy.
In comparison to the other facies, the existence of a mixture of shaly sand and sandstone
has similar rock physical properties. Sandstone and shaly sandstone can be accurately
categorized using the results of log-facies classification. On the other hand, shale distribu-
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tion has been inconsistent. Furthermore, despite differences in rock physical properties
between the different depths regions due to different rates of compaction and diagenetic
processes, the machine learning model was able to properly predict lithofacies and rock
type in both sections [27]. Due to the post-depositional processes that each formation
underwent, the sensitivity of such a result may vary at deeper intervals, but despite this,
the machine learning model has an overall high result and has effectively supported the
geological investigation in a much shorter period [29,32]. The main contributions of this
work were a simple approach for lithofacies classification and rock type identification in the
Zamzama Gas field in Pakistan using SOM and cluster analysis, as well as hierarchical and
non-hierarchical approaches, evaluation of each multiclass of unsupervised learning meth-
ods, high accuracy results despite some misclassification, log-facies classification analysis,
and rock physics analysis based on unsupervised learning [33,34]. Most importantly, this
study has demonstrated that the effectiveness of hierarchical and non-hierarchical SOFM
can be evaluated from both a machine learning and geological perspective [29,35,36].

5. Conclusions

We have systematized the fundamental background of the SOM in this work. The
U-matrix can also be used to view it, and BMUs can be seen directly. In addition, certain
new changes have been made, such as normalization to standardize the input data and
eliminating the scale value gap between curves. These contribute to a more accurate and
realistic outcome. We also offered certain mathematical calculations, such as SOM, to help
illustrate the process. Furthermore, attributes of the facies log are shown, such as the shape,
measurement, and depth values. The input of the clustering process is also detailed in
terms of SOM building. Based on log data, cluster analysis is a straightforward approach
for determining the rock type for a reservoir. As illustrated in the roundness figure, cluster
analysis of log data for wells that penetrated the reservoir were classified into four groups.
Based on the cluster analysis, four facies have been identified; the findings of each facies
are shown in (Table 1) and the behavior of each facies indicated in (Table 2). The results of
these facies are shown in (Table 1) and (Table 2). Gamma Ray (GR), Effective Porosity(eff),
Permeability (Perm) and Water Saturation (Sw) are used to generate these results. The
Facies-01 zone in the reservoir for the Zamzama gas field is the most productive in the
reservoir, as shown by plotting rock type in the continuous form in the well.
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Nomenclature

SOM Self-Organizing Map
SOFM Self-Organizing Feature Map
PCA Principal Component Analysis
LGF Lower Goru Formation
UGF Upper Goru Formation
BMU Best Matching Unit
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Abstract: Due to the complexity imposed by all the attributes of the fracture network of many
naturally fractured reservoirs, it has been observed that fluid flow does not necessarily represent a
normal diffusion, i.e., Darcy’s law. Thus, to capture the sub-diffusion process, various tools have been
implemented, from fractal geometry to characterize the structure of the porous medium to fractional
calculus to include the memory effect in the fluid flow. Considering infinite naturally fractured
reservoirs (Type I system of Nelson), a spatial fractional Darcy’s law is proposed, where the spatial
derivative is replaced by the Weyl fractional derivative, and the resulting flow model also considers
Caputo’s fractional derivative in time. The proposed model maintains its dimensional balance and
is solved numerically. The results of analyzing the effect of the spatial fractional Darcy’s law on
the pressure drop and its Bourdet derivative are shown, proving that two definitions of fractional
derivatives are compatible. Finally, the results of the proposed model are compared with models
that consider fractal geometry showing a good agreement. It is shown that modified Darcy’s law,
which considers the dependency of the fluid flow path, includes the intrinsic geometry of the porous
medium, thus recovering the heterogeneity at the phenomenological level.

Keywords: Weyl fractional derivative; Caputo fractional derivative; fractal porous media; naturally
fractured reservoir

1. Introduction

The modeling of physical phenomena is always a complex task in which hypotheses
and idealizations are used in order to implement already studied laws or similar models.
In particular, modeling the transient pressure behavior in naturally fractured reservoirs is a
task that has been studied and worked on by various researchers over decades, where the
heterogeneity of the porous medium and anomalous fluid flow has been a challenge for
which more complex models have been generated and implemented, obtaining results that
constantly improve the understanding of the phenomenon.

Considering the complexity of the porous medium, Chang and Yortsos [1] are the
pioneers that considered the porous medium as a fractal system, allowing them to describe
reservoirs with spatial disorder and, therefore, a complex fluid flow path.

In recent years, fractional calculus has become a useful tool that, applied to diffusion-
type problems, explains the behavior of anomalous flow (where the movement of the fluid
does not have a Brownian-type behavior) by demonstrating that the fluid has memory [2].
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The study of Metzler et al. [3] has become an important reference when studying the
phenomenon of anomalous diffusion in a medium with a fractal structure, allowing endless
researchers to explore the implications considering different approaches [4–7].

Although all these models have allowed a more precise understanding of the phe-
nomenon in non-homogeneous reservoirs; the task of understanding this complex phe-
nomenon has also included modifications to Darcy’s law. When considering non-Darcy
flows, i.e., a sub-diffusive process, to include the memory effect, the fractional derivative
approach is used.

To include the memory effect in Darcy’s law, Caputo’s fractional time derivative is
used in Darcy’s law modeling, to account for the effect of a decrease in permeability with
time [8]. Raghavan [9] shows that using the properties of the fractional derivative, one can
translate the fractional time derivative into the continuity equation.

Several variants of the temporal fractional derivative have been applied to Darcy’s law.
Chang et al. [10] replace the spatial derivative in Darcy’s law with the Riemann–Liouville
fractional derivative to quantify the spatial path dependence of a fluid flow. El-Amin [11]
constructs the fractional mass equation and combines it with variants of Darcy’s law that
include adding the fractional time derivative and replacing the space derivative with
Caputo’s fractional derivative. Chang and Sun [12] replace the time derivative with
Caputo’s fractional time derivative to describe the heavy tail decay at long times and the
space derivative with the Riemann–Liouville fractional time derivative to describe the
dependence of non-local concentration change on a wide range of spatial areas.

Likewise, Caputo and Plastino [13], considering infinite media, add a term propor-
tional to the spatial fractional derivative of the Caputo type to the classic Darcy’s law, which
represents the effect of spatial memory, i.e., the pressure gradient investigated from the
initial point to the measured point.

Obembe et al. [14], in their excellent review work, show a model of Darcy’s law, among
others, where the temporal fractional derivative is applied to a complex combination of a
spatial fractional derivative and complementary temporal fractional derivative; that reflects
the presence of flow hindrances, while the spatial fractional derivatives consider flow buffers.

Finally, in order to consider the intrinsic geometry of the porous medium, Cloot and
Botha [15] replace the spatial derivative in Darcy’s law with Weyl’s fractional derivative;
they consider that the fluid flow at a given point is governed not only by the properties of
the pressure field at a specific position but also depends on the global spatial distribution
of that field.

Therefore, in order to model the transient pressure behavior in a naturally fractured
reservoir, including spatial and temporal memory, a new model will be proposed that
incorporates both the fractional time derivative in the Caputo sense, in the continuity
equation, and the fractional Weyl derivative, in Darcy’s law. This work is organized as
follows: Section 2 describes the essential mathematical tools used; Section 3 shows the
development of the model, explaining the modified Darcy’s law used and the spatial
fractional diffusion model developed; Section 4 shows the results of solving this model and
the effect of every parameter of the model, Section 5 compares the proposed model with
models that consider the porous medium as fractal; in the end, Section 6 describes the main
conclusions reached.

2. Mathematical Background

This section presents the mathematical tools that will be applied throughout this work.
For more details, see [16–18].

Definition 1. Let t0 < ∞. The Riemann–Liouville fractional integral RL Iα
t0+

y of order α ∈ R is
defined by (

RL Iα
t0+y

)
(t) =

1
Γ(α)

∫ t

t0

(t − τ)α−1y(τ)dτ, t > t0 (1)

where Γ(·) is Euler’s gamma function.
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The Caputo fractional derivative, expressed from the fractional integral, is defined as
follows:

Definition 2. Let t0 < ∞. For α ∈ R, the Caputo fractional derivative, CDα
t0+

y is defined by

(
CDα

t0+y
)
(t) =

1
Γ(n − α)

∫ t

t0

(t − τ)n−α−1y(n)(τ)dτ =
(

RL In−α
t0+

Dny
)
(t), t > t0 (2)

where D = d/dt and n ∈ N with n − 1 < α ≤ n.

Proposition 1. The Caputo fractional derivative provides an inverse operator to the Riemann–
Liouvile fractional integral, that is(

CDα
t0+

RL Iα
t0+y

)
(t) = y(t); (3)(

RL Iα
t0+

CDα
t0+y

)
(t) = y(t)−

n−1

∑
k=0

y(k)(t0)

k!
(t − t0)

k. (4)

The above definitions consider t0 < ∞; however, similar definitions exist on the whole
axis R.

Definition 3. The Weyl fractional integral of order β ∈ R is defined by(
W−βy

)
(t) =

1
Γ(β)

∫ ∞

t
(τ − t)β−1y(τ)dτ, t > 0. (5)

Indeed, the Weyl fractional integral is interesting; however, care should be taken when
using this definition because it may not be applied to all functions.

Partcularly, if y(t) is integrable on any finite subinterval of J = [0, ∞), and, if y(t)
behaves like t−μ for t large, then the Weyl fractional integral of y of order β will exist if
0 < β < μ.

Definition 4. If y(t) is a function for which W−βy(t) exists and has n continous derivatives; then,
the Weyl fractional derivative of y of order ν ∈ R is defined by

Wβy(t) = (−1)nDn
[
W−(n−β)y(t)

]
(6)

where D = d/dt and n ∈ N with n − 1 < β ≤ n.

Before finishing this long list of definitions, some interesting properties of fractional
operators will be shown.

Proposition 2. Let μ, β ∈ R and n ∈ N with n − 1 < β ≤ n. Both, the fractional Weyl integral
and the fractional Weyl derivative satisfy the following:

• Dn[W−βy(t)
]
= W−β[Dny(t)].

• W−μ
[
W−βy(t)

]
= W−β[W−μy(t)] = W−(μ+β)y(t).

• W−β
[
Wβy(t)

]
= y(t) = Wβ

[
W−βy(t)

]
.

• Wμ
[
Wβy(t)

]
= Wβ[Wμy(t)] = Wμ+βy(t).

3. Model Development

In this section, the proposed Darcy’s law will be presented, which integrates the
fractional derivative of Weyl, and the flow equation with spatial fractional Darcy flow will
be constructed.

We consider a fully penetrated well in an infinite porous media with a single porosity
system, i.e., a Type I fractured system of Nelson [19], constant initial pressure, permeability,
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density and viscosity. Furthermore, we consider that the fluid flow at a given point is
governed not only by the properties of the pressure field at that specific position but also
depends on the global spatial distribution of that field, and lastly, we consider that the radial
symmetry is valid. The model in dimensionless variables with a fractional time derivative
for the fluid transfer equation, resulting from the combination of the continuity equation
and Darcy’s law, in radial coordinates and considering a Euclidean porous medium, is
given by

τα−1
D

∂α pD
∂tα

D
= − 1

rD

∂

∂rD
(rDqD), qD = −∂pD

∂rD
; (7)

whereas, when considering a fractal porous medium, that is, a fractal reservoir, the model is

∂α pD
∂tα

D
= − 1

r
dm f −1
D

∂

∂rD

(
rγ

DqD
)
, qD = −∂pD

∂rD
, (8)

where γ = dm f − θ − 1. Additionally, it is defined ν = 1−γ
θ+2 [20].

In Equations (7) and (8), the fractional time derivative is the Caputo fractional deriva-
tive, ∂α pD

∂tα
D

≡ CDα
0+pD, with 0 < α ≤ 1. For both models, the following initial and boundary

conditions are considered.

• Initial condition
pD(rD, tD = 0) = 0. (9)

• Inner boundary condition

lim
rD→1

rDqD(rD, tD) = −1. (10)

• Outer boundary condition
lim

rD→∞
pD(rD, tD) = 0. (11)

The dimensionless variables are defined as follows:

rD =
r

rw
; pD =

2πhκ

Q0B0μ
(Pi − p); qD =

2πhrw

Q0B0
q;

tD =
κ

φcr2
wμ

t; τD =
κ

φcr2
wμ

τ;

where τ is a constant introduced for the purpose of maintaining dimensional balance.
The proposed model considers a slightly compressible liquid; that is, all the com-

plexities due to the multiphase gas–oil interactions are not taken into consideration [21].
Furthermore, the model presented in this paper does not consider petrophysical proper-
ties dependent on the stress state, which even for a Nelson Type I reservoir, imposes a
challenge [22].

3.1. Spatial Fractional Darcy’s Law

Figure 1 shows the solution of Equations (7) and (9)–(11), i.e., the behavior of the
pressure drop, pD, throughout space for different times and values of the fractional time
derivative order, α.
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Figure 1. Spatial pressure behavior at different times, considering the Euclidean porous medium.

Figure 1 shows the decreasing behavior of the pressure drop in space and, therefore,
shows that it is valid to apply the Weyl fractional derivative to pD.

For that reason, it is proposed to modify Darcy’s law by substituting the spatial
derivative for the Weyl fractional derivative, obtaining the following spatial fractional
Darcy’s law:

qβ,D = −δβ,D
∂β

∂rβ
D

pD, with
∂β

∂rβ
D

pD := −Wβ pD and δβ,D = r1−β
w δβ−1; (12)

where 0 < β < 2 and δ is a constant term included to maintain dimensional balance in the
flow equation. Note that setting β = 1, ∂β

∂rβ
D

pD = ∂
∂rD

pD and, therefore, the classical Darcy’s

law is recovered.

3.2. Spatial Fractional Diffusion Model

Given the continuity equation, the first equation in (7), the traditional Darcy’s law, qD,
is replaced by the spatial fractional Darcy’s law, Equation (12), where the spatial fractional
diffusion model is obtained, namely

τα−1
D

∂α pD
∂tα

D
=

1
rD

∂

∂rD

(
rDδβ,D

∂β

∂rβ
D

pD

)
. (13)

As a consequence of the spatial fractional Darcy’s law, the inner boundary condition is
also modified, namely

lim
rD→1

rDqβ,D(rD, tD) = −1. (14)

Therefore, the spatial fractional diffusion model to be solved is the one constituted by
Equations (9), (11), (13) and (14).

With these modifications, it is intended that the fluid flow at a given point in the
porous medium be governed by the global spatial distribution of the pressure field and not
only by the behavior in the direct neighborhood of the pressure around that point.
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4. Results

In this section, the solution of the spatial fractional diffusion model will be shown, as
well as its behavior when its parameters vary, and such behavior will be compared with
the model that considers a fractal reservoir.

The spatial fractional diffusion model was solved using the finite difference method,
considering an implicit scheme in time and Crank–Nicholson in space.

Figure 2 shows the numerical solution of solving the spatial fractional diffusion model
considering the classical time derivative, α = 1, and varying the order in the fractional
Darcy’s law, β. The solution in the well, pwD = pD(rD = 1, tD), and its Bourdet semi-
logarithmic derivative, p′wD [23], are shown.

Figure 2. Effect of spatial fractional Darcy’s law with Weyl’s fractional derivative, considering the
classical time derivative α = 1 with δβ,D = 1. The solid lines denote the pressure drop in the well,
pwD, and the dashed lines their respective Bourdet derivative, p′wD.

In Figure 2, two important features can be described when modifying β in the spatial
fractional Darcy’s law.

At short times, the pressure drop is lower than the pressure drop of the classical case,
β = 1, which corresponds to a higher order in the spatial fractional Darcy’s law; while if β
is lower than one (i.e., classical case), a higher pressure drop will be obtained. However,
in the Bourdet derivative, β in the spatial fractional Darcy’s law does not seem to have a
remarkable impact, except by keeping a power-law behavior with a slope of 0.5.

At long times, when β < 1, the pressure drop is lower than that in the classic case
and its respective Bourdet derivative shows a decrease following a power-law behaviour,
showing a greater connectivity of pores that provide preferential flow paths; while for
β > 1, the pressure drop is greater than in the classic case following a power-law behaviour,
and the same happens with the pressure derivative. Both power-law behaviors are parallel,
evidencing the creation of flow buffers in the porous medium.

Figure 3 shows the combined effect of the fractional temporal derivative and the
spatial fractional Darcy’s law, that is, for different values of β in the space fractional Darcy’s
law, on the pressure drop and its Bourdet derivative for different values of the order of the
fractional time derivative, α.
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(a) (b)

Figure 3. Effect on the pressure drop and its Bourdet derivative of the combined effect of the fractional
temporal derivative and the spatial fractional Darcy’s law. (a) For β < 1, the behavior when varying
the order of the fractional time derivative. (b) For β > 1, the behavior when varying the order of the
fractional time derivative. In both cases, δβ,D = 1.

It is necessary to highlight that the results shown in Figure 3 demonstrate the com-
patibility of two different definitions of fractional derivative; that is, Caputo’s fractional
derivative for the temporal derivative and Weyl’s fractional derivative for the spatial deriva-
tive in Darcy’s law, which allows better modeling of a complex phenomenon by making
each fractional derivative capture different characteristics of this phenomenon.

Figure 3a shows for β < 1 the effect of varying the order of the fractional time
derivative, α. In the case with the integer time derivative, α = 1, the effect of spatial
fractional Darcy’s law creates a larger short-time pressure drop that quickly loses its effect,
making the long-time pressure drop smaller the smaller α is; this is a consequence of a
greater connectivity of pores that provide preferential flow paths. In the case of β = 0.5,
Figure 3a, we can observe that the influence of α is not as big as that observed in the
pressure derivative, where we observe power-law behaviors at late times, which could be
an indication of flow restrictions.

Figure 3b shows for β > 1 the effect of varying the order of the fractional time
derivative, α, on the pressure deficit and its Bourdet derivative. For the case with an
integer time derivative, α = 1; at short times, the spatial fractional Darcy’s law causes
the fluid flow velocity to have a behavior similar to the case with the classical Darcy’s
law, i.e., a linear flow behavior; however, the pressure drop is smaller. Subsequently, for
long times, the pressure drop is lower than in the classical case, the lower α is; this is
caused by the displacement of dead pores that creates preferential flow paths, which is
reflected in the increase in flow velocity and, therefore, in the decrease of the pressure
drop. By incorporating the memory effect of the fluid flow, the dependence of the previous
pressure on the subsequent pressures is observed; that is, the flow of the fluid receives an
increase in the phenomenon that is reflected in the decrease of the pressure drop and its
Bourdet derivative.

It is important to point out that in all cases with β = 1.5 and α less or equal to one,
Figure 3b, at late times, there is parallel power-law behavior for both the pressure drop and
semilog pressure derivative. This behavior is similar to the fractal behavior, and both cases
are expressions of anomalous diffusion; in this case, there is a super-diffusion because of
the memory effect, and in the fractal case, there is sub-diffusion.

Figure 4 shows the effect of δβ,D, the dimensionless variable introduced in the spatial
fractional Darcy’s law to maintain the dimensional balance in the fractional flow equation,
for the cases β < 1 and β > 1 with α = 1.
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Figure 4. Effect of δβ,D in pressure drop and Bourdet derivative of the spatial fractional diffusion
model with α = 1.0.

The effect of δβ,D is remarkable throughout the whole phenomenon. For β < 1 and in
short times, it is observed that the greater the value of δβ,D, the greater the value of pwD,
also affecting the transition phase, presenting itself at different times for each value of δβ,D
and finally reaching the same value of pwD in the stability phase. Bourdet’s derivative
shows that although in short times, the greater the value of δβ,D the greater p′wD will be and
the faster the decrement in p′wD to such a degree that upon reaching the stability phase, it
will be shown that the higher the value of δβ,D, the lower the value of p′wD, also showing a
parallel behavior for all the values of δβ,D.

On the other hand, for β > 1 at short times, it is observed that in the same way as in
the previous case, the greater δβ,D, the greater the value of pwD, changing the growth rate in
the transient phase and subsequently having a constant growth rate for each value of δβ,D.
This behavior is maintained in the Bourdet derivative, where, in short times, the higher the
value for p′wD, the higher the δβ,D, followed by a parallel growth for the different values
of δβ,D, changing the growth rate during the transient phase until reaching a constant and
parallel growth for the different values of δβ,D.

5. Discussion

In this section, the spatial fractional diffusion model, derived from the equation of
continuity with a fractional time derivative and the proposed spatial fractional Darcy’s law,
and the results from the fractal model are compared.

Figure 5 shows, on the one hand, the model of Razminia et al. [4], which considers a
fractal reservoir, Equations (8)–(11); and on the other hand, the spatial fractional diffusion
model, Equations (9), (11), (13) and (14).

The purpose is to compare, through the results shown, the approaches considered
by both models. The spatial fractional diffusion model shows a great agreement with
the data of the model that considers a fractal reservoir, both for the pressure drop and its
Bourdet derivative; thereby, it can be considered that by including the spatial fractional
Darcy’s law, the heterogeneity of the porous medium is recovered through the use of the
fractional approach.
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Figure 5. Effect of fractal spatial variables versus the spatial fractional Darcy’s law with δβ,D = 1.

Furthermore, the above makes sense considering that the spatial fractional Darcy’s
law takes into account the geometry of the porous medium in two ways; on the one hand,
the geometry of the porous medium is implicitly included through the parameter in the
Weyl fractional derivative, β; while, on the other hand, it is explicitly included through the
δ parameter, which also helps with dimensional balance.

With the above, it is shown that the spatial fractional Darcy’s law, by including the
dependence on the fluid flow path, i.e., spatial memory, also takes into account the intrinsic
geometry of the porous medium.

The proposed model can be part of a robust deep learning model, such as the one
suggested by [24], for the automated analysis of pressure tests.

6. Conclusions

Considering the hypotheses that the Type I naturally fractured reservoir of Nelson
is embedded in an infinite porous medium, with a slightly compressible fluid and stress-
independent petrophysical properties, we have the following conclusions:

1. Fluid flow at a given point is governed not only by the properties of the pressure field
at that specific position but also depends on the global spatial distribution of that field;
it is proposed to modify Darcy’s law by replacing the spatial derivative with the Weyl
fractional derivative.

2. The proposed model, with the Caputo fractional time derivative and Weyl fractional
derivative on the gradient, proves that two different definitions of the fractional
derivative can be compatible.

3. The results show that the spatial fractional Darcy’s law can, on the one hand, reflect
the preferential flow paths, and on the other hand, the creation of flow buffers during
the phenomenon, whereas the time-fractional derivative incorporates the memory
effect of the fluid flow.

4. The proposed model not only resembles the results obtained in models that incor-
porate fractal geometry, but it also incorporates the intrinsic geometry of the porous
medium and, therefore, allows recovering the heterogeneity of the porous medium.
This is important because it is confirmed for the first time that both the fractal and
fractional approaches represent two possible ways of capturing anomalous diffusion.
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Nomenclature

The following abbreviations are used in this manuscript:

pD Dimensionless pressure of the porous medium
pwD Dimensionless pressure at the well
tD Dimensionless time
rD Dimensionless distance
qD Dimensionless flow rate of fluid of the porous medium
α Order of the fractional time derivative

τD
Auxiliary constant to get dimensional balance in the dimensionless fractional
differential equation

dm f Mass fractal dimension
θ Conductivity index
Pi Constant initial pressure (Pa)
p Pressure in the porous media (Pa)
φ Porosity of the porous media (m3/m3)
c Compressibility of the porous medium (Pa−1)
κ Permeability of the porous medium (m2)
μ Dynamic viscosity of the fluid (Pa·s)
t Time (s)
r Distance variable (m)
rw Well radius (m)
h Reservoir height (m2)
Q0 Flow rate of extracted fluid (m3·s−1)
B0 Oil formation volume factor, RB/STB
q Flow rate of fluid per unit area of the porous medium (m/s)
τ Auxiliary constant to get dimensional balance in the fractional differential equation (s)
qβ,D Dimensionless spatial fractional Darcy’s law

δβ,D
Auxiliary constant to get dimensional balance in the dimensionless spatial fractional
Darcy’s law

δ Auxiliary constant to get dimensional balance in the spatial fractional Darcy’s law (m)
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Abstract: Carbonate reservoirs commonly have significant heterogeneity and complex pore systems
due to the multi-scale characteristic. Therefore, it is quite challenging to predict the petrophysical
properties of such reservoirs based on restricted experimental data. In order to study the heterogene-
ity and size of the representative elementary volume (REV) of vuggy dolostones, a total of 26 samples
with pore sizes ranging from micrometers to centimeters were collected from the Cambrian Xiao-
erbulake Formation at the Kalping uplift in the Tarim Basin of northwestern China. In terms of
the distribution of pore size and contribution of pores to porosity obtained by medical computed
tomography testing, four types of pore systems (Types I–IV) were identified. The heterogeneity
of carbonate reservoirs was further quantitatively evaluated by calculating the parameters of pore
structure, heterogeneity, and porosity cyclicity. The results indicate that different pore systems yield
variable porosities, pore structures, and heterogeneity. The porosity is relatively higher in Type-II and
Type-IV samples compared to those of Type-I and Type-III. It is caused by well-developed large vugs
in the former two types of samples, which increase porosity and reduce heterogeneity. Furthermore,
the REV was calculated by deriving the coefficient of variation. Nine of the twenty-six samples reach
the REV within the volume of traditional core plugs, which indicates that the REV sizes of vuggy
dolostones are commonly much larger than the volume of traditional core plugs. Finally, this study
indicates that REV sizes are affected by diverse factors. It can be effectively predicted by a new model
established based on the relationship between REV sizes and quantitative parameters. The correlated
coefficient of this model reaches 0.9320. The results of this study give more insights into accurately
evaluating the petrophysical properties of vuggy carbonate reservoirs.

Keywords: medical-CT; vuggy carbonate; representative elementary volume; quantitative characterization
of heterogeneity; Xiaoerbulake Formation

1. Introduction

Carbonate reservoirs are widely investigated because they host more than 60% of
oil and gas worldwide [1–3]. It is well known that carbonate reservoirs are generally het-
erogeneous [4–6]. Diverse depositional environments and complex diagenetic alterations
commonly lead to the development of pore systems with sizes ranging from micrometers
to centimeters [7–10]. The heterogeneity of carbonate reservoirs brings a series of chal-
lenges in evaluating their petrophysical properties. Therefore, a quantitative evaluation
of heterogeneity is extremely significant. Heterogeneity, defined as an inherent, ubiqui-
tous, and critical attribute of ecological systems, has been extensively studied in previous
studies [11–13]. It is significantly affected by the spatio-temporal scale of observation and
measurement methods [14,15]. For example, carbonate samples may be homogeneous on a
macro-scale, but heterogeneous at a micro-scale in terms of pore structures [13,16,17].
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A representative elementary volume (REV) is proposed to quantitatively character-
ize heterogeneity and could provide a link between the pore scale and continuum scale.
The REV is defined as the minimum volume of a porous medium that is large enough
to represent the macroscopic property of a heterogeneous rock [18–21]. The schematic
diagram of the REV is shown in Figure 1, where V is defined as the volume of porous
medium and n is defined as the property of the rocks, e.g., porosity [22–25]. It is note-
worthy that REV is various when different physical properties are investigated, even for
the same porous medium [26–28]. Porosity is the most common property to determine
the REV [28,29]. The other properties include permeability [26,30–32], tortuosity [23,33],
coordination number [34], specific surface area [32], moisture saturation [35], local void
ration [36], and fractal dimension [25,37].

Figure 1. Schematic graph of the representative elementary volume (REV) (modified from [18,30]).

Porosity generally varies with the sample’s volume in carbonate rocks. During mea-
surements, the testing data of traditional core plugs (a cylinder with a diameter of 2.5 cm
and a height of 5 cm) have been commonly used to represent the data of whole cores. How-
ever, the porosity of whole cores is usually higher than that of traditional core plugs [38].
When the volume of the analyzed sample is smaller than the REV, there will be a large
discrepancy between the measured and real porosity of the sample. As such, precisely
determining the REV sizes is very crucial for accurately calculating the petrophysical prop-
erty and evaluating the reservoir. Extensive papers have been published on determining
REV sizes [22,39–41]. However, they have mainly focused on determining REV sizes in
microscopic domain microstructures of rocks by semi-quantitative to quantitative methods.
Only a few studies were conducted on the REV sizes of vuggy carbonate rocks with sizes
ranging from micrometers to centimeters [26].

Recently, X-ray computed tomography (CT), as a non-destructive technique, has been
widely used to characterize the pore structure of a porous medium [42–44]. High-resolution
CT such as micro-CT and nano-CT can capture the microstructures of the pore system.
However, the trade-off between the sample size and spatial resolution makes the targeted
field of high-resolution CT relatively microscopic. Therefore, it is very challenging to
display the macroscopic pore space [45–48]. For vuggy carbonate rocks, medical-CT is
an effective technique to characterize the pore system as it is both more efficient and
cost-effective compared with micro-CT and nano-CT [43,49]. More importantly, the image
resolution of medical-CT is more suitable for studying the pore structure and REV of vuggy
carbonate reservoirs with pore sizes ranging from micrometers to centimeters. The aims of
this study are to quantitatively characterize the heterogeneity and precisely determine the
REV size of dolostones with well-developed vugs. This study can provide a foundation for
accurately calculating physical properties and precisely evaluating the reservoirs.

190



Energies 2022, 15, 5817

In this study, a total of 26 samples were collected from the Shihuiyao section at
the Kalping uplift in the northwestern Tarim Basin to study the heterogeneity of vuggy
dolostones. The samples were firstly prepared as cylinders with diameters of 5 cm and
heights of 49–100 cm. Then CT was used to characterize the types of pore systems and
calculate the parameters of pore structure and heterogeneity. Subsequently, the REV size
was determined by deriving the coefficient of variation. Finally, a prediction model of
REV was established based on the parameters of pore geometrical and heterogeneity. The
potential of this model to predict the REV sizes of vuggy carbonates is also discussed.

2. Geological Setting

The Tarim Basin is a foreland basin with a total area of 5.6 × 105 km2 in the Xinjiang
Province in northwestern China (Figure 2a). It is bordered by the Kunlun-Altyn Mountains
to the south and the Tianshan Mountains to the north [50–52]. The Tarim Basin has suffered
a complex tectonic evolution and consists of one low uplift, four uplifts, and six depressions,
namely, the Shuntuo Low Uplift, Tabei Uplift, Bachu Uplift, Tazhong Uplift, Tadong Uplift,
Kuqa Depression, Awati Depression, Manjiaer Depression, Southwest Depression, Tanggu
Depression, and Southeast Depression (Figure 2b) [53,54]. The Kalping Uplift is located in
the northwest, along the edge of the Bachu Uplift (Figure 2b,c).

 
Figure 2. (a) Location of the Tarim Basin (modified from [50]). (b) Structural units of the Tarim
Basin (modified from [51]). (c) Geological setting of outcrop section in the northwestern Tarim Basin
(modified from [52]).

The Shihuiyao section, located at the northeastern edge of the Kalping Uplift (Figure 2c),
is exposed with consecutive Cambrian strata [53,55,56]. The Lower Cambrian strata, from
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bottom to top, comprises the Yuertusi, Xiaoerbulake, and Wusongeger Formations. The
Xiaoerbulake Formation at the Shihuiyao section is 138.5 m thick and composed of two
sequences: the upper Xiaoerbulake and the lower Xiaoerbulake intervals (Figure 3). Algal
lamina silty-micritic crystalline dolostone, silty-micritic crystalline dolostone, rubble dolo-
stone, algal clot dolostone, and fabric-obliterated fine-to-medium-crystalline dolostone are
well developed in the lower Xiaoerbulake interval, whereas foam spongy texture dolostone,
stromatolithic dolostone, algal arene dolostone, and oncolite dolostone are present in the
upper Xiaoerbulake interval.

Figure 3. Simplified stratigraphic framework of the Early Cambrian from the Shihuiyao section.

3. Samples and Methods

A total of 26 dolostones with well-developed vugs were collected from the Xiaoer-
bulake Formation in the Shihuiyao section (Figure 4). Rock types of these samples were
determined through detailed field and microscopic investigation (Figure 5).
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Figure 4. Image of the vuggy dolostones with millimeter-to-centimeter-scale vugs in the Xiaoerbulake
Formation from the Shihuiyao section. (a) Image of cylinders of vuggy dolostones. (b) Image of
sample SHY002, flat vugs are developed with a diameter of 2–6 mm. (c) Image of sample SHY007, the
sample develops vugs and fissures and the vugs are half-filled by secondary carbonates. (d) Image of
sample SHY016, flat vugs are developed and the distribution of vugs is scattered.

Figure 5. Plane polarized light microscopic images of porous dolostones in the Xiaoerbulake Forma-
tion from the Shihuiyao section. (a) Rock Type i, fabric-obliterated fine-crystalline dolostone with
grain ghosts, intercrystalline pores, and intercrystalline pores. (b) Rock Type ii, rubble dolostone,
intercrystalline pores. (c) Rock Type ii, rubble dolostone, intercrystalline pores, some intercrystalline
pores filled with calcite. (d) Rock Type iii, the thrombolite dolostone with fabric obliterated by
dolomitization or recrystallization, dissolution enlarged pores and fissures. (e) Rock Type iii, the
thrombolite dolostone with fabric obliterated by dolomitization or recrystallization, intercrystalline
pores. (f) Rock Type iv, crystalline dolostone, dissolution enlarged pores and intercrystalline dissolu-
tion pores. (g) Rock Type iv, crystalline dolostone, intercrystalline pores, and intercrystalline pores.
(h) Rock Type v, foam spongy texture silty crystalline dolostone with fabric partly preserved. (i) Rock
Type vi, oncolite dolostone, intercrystalline pores, and intercrystalline pores.
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The 26 samples were prepared as cylinders with diameters of 5 cm and heights of 49–
100 cm, which were subsequently scanned using Philips Brilliance iCT at a resolution with
a voxel size of 97.66 × 97.66 × 335.00 μm3. An operating voltage of 140 kV and a filament
current of 188 mA were applied. To obtain high-quality images, three preprocessing steps
were used to reduce the drawbacks. The first step was filtering, which was beneficial in
reducing high frequencies and noise. The second step was ring-artifact removal, where rings
were removed from the images by comparing and adjusting all the voxel values of each
ring. The third step was a beam-hardening correction, which reduced the homogeneous
effect of the cylindrical samples. Finally, solid and void phases were distinguished by
binarization and threshold segmentation.

Wavelet transform has been widely used in different disciplines of earth science,
especially in the quantitative research of sequence stratigraphy [57,58], which hence is used
in this study to quantitatively characterize the cyclicity of porosity.

The REV size of the vuggy dolostones was determined by a conventional statistical ap-
proach in which porosity was measured using medical-CT images. A total of 10 cylindrical
subsamples were randomly selected from the individually large cylinders (Figure 6). The
volume of these subsamples was gradually increased from a diameter of 1 mm and height
of 1 mm until it was close to the volume of the largest cylinders. As shown in Figure 1, the
REV size can be determined based on the covariation of property and volume. In region
I, the fluctuation of n reduces with an increasing V, where the fluctuation is dominated
by microscopic properties. In region II, the value of n is essentially consistent, which
means that the observed property is not affected by the increase in the sample volume.
Therefore, the boundary of regions I and II is defined as the REV. In region III, the value of
n may remain stable or fluctuate with an increasing V as it depends on whether the porous
medium is homogeneous or not. The fluctuations are dominated by macroscopic properties
in this region.

Figure 6. Schematic of subsamples selection.

4. Quantitative Calculation of Parameters

4.1. Pore Geometrical Parameters

The following parameters are calculated to better evaluate the influences of pore
volume and morphology on heterogeneity.

(1) The dominant pore volume

The pore volume fraction on the cumulative curve at 50% is defined as the dominant
pore volume (V50). In other words, a half of sample’s porosity is composed of pores with
volumes larger than V50. This parameter indicates the dominant size of the well-developed
vugs in the sample.

(2) The number of large vugs

When the cumulative pore volume fraction is greater than 50%, the total number
of vugs is defined as the number of large vugs (NLV). This value is then adopted to
characterize the heterogeneity of pore distribution.
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(3) Average shape factor

The average shape factor (Ave_SF) is used to quantitatively characterize pore shapes.
The parameters equal to 1 indicate regular spherical pores, whereas the larger the parame-
ters are, the more irregular the pore shapes are. The average shape factor is defined as

Ave_SF =
1
n
∗ ∑n

i=1
S3

i

36 ∗ π∗V2
i

, (1)

where Si is the area of the ith pore, Vi is the volume of the ith pore, and n is the total number
of pores.

4.2. Heterogeneity Parameters

(1) Coefficient of variation

The coefficient of variation (Cv) is calculated to show the variability relative to the
mean value [15]. Since the Cv value of a homogeneous sample is zero, positive Cv values
thus indicate heterogeneous samples. In this paper, the Cv values based on CT images of
subsamples (Cv_sub) and along the slice direction (Cv_sli) were calculated.

Cv =

√
Var(x)

x
, (2)

where Cv is the coefficient of variation,
√

Var(x) is the standard deviation, and x is the
arithmetic mean value.

(2) Heterogeneous factor

The heterogeneous factor (H) can magnify the effect in the large vugs of carbonate
rocks on heterogeneity [59].

V = VBi + VBo, (3)

VBo = VBm + VBp, (4)

where V is the bulk volume of the sample, VBi is the bulk volume of the inner large vugs of
the sample (the volume of each vug is greater than or equal to V50), VBo is the volume of
the sample excluding VBi, VBm is the volume of the rock matrix, and VBp is the pore volume
excluding VBi (Figure 7).

ϕi =
VBi
VBi

= 1, (5)

ϕ =
Vp

V
=

VBi ϕi + VBo ϕo

VBi + VBo
=

VBi + VBo ϕo

VBi + VBo
, (6)

where ϕ is the porosity of the sample, Vp is the pore volume, ϕi is the porosity of the inner
large vugs, and ϕo is the porosity of the sample excluding the inner large vugs.

Figure 7. Schematic of volume introduction of each component of the sample.
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If the ratio of the bulk volume of the inner large vugs compared with the bulk volume
of the sample is defined as F, then

F =
VBi
V

and (1 − F) =
VBo
V

. (7)

Substituting Equation (7) into Equation (6),

ϕ = ϕo + F(1 − ϕo) (8)

If the ratio of ϕi to ϕo is defined as R, then

R =
ϕi
ϕo

=
1
ϕo

. (9)

If the heterogeneous factor (H) is defined as (ϕ − ϕo)/ϕo, then

H =
(ϕ − ϕo)

ϕo
= F(R − 1). (10)

4.3. Cyclicity of Porosity

REV can be clearly defined only in two situations: (i) materials displaying periodic
geometry and (ii) a sample volume containing a very large set of microscale elements
of statistically homogeneous and ergodic properties [60,61]. The periodic distribution of
sample porosity is analyzed based on a wavelet transform.

C(α, β, f (t), Ψ(t)) =
∫ ∞

−∞
f (t)· 1√

α
Ψ∗

(
t − β

α

)
dt, (11)

where α is the scale parameter (α > 0), β is the position parameter, f (t) is the signal, and
Ψ(t) is the analyzing wavelet. The wavelet used here is a complex wavelet.

For a better comparison, the number of periodicities is calculated per unit length due
to the different slice numbers of CT. It is defined as NP

NP =
P
L
∗ 100, (12)

where P is the total number of periodicities, and L is the number of CT slices.

5. Results

5.1. Rock Type

The Lower Cambrian Xiaoerbulake Formation has been deeply buried, during which
it has suffered intense and prolonged diagenetic modifications, resulting in complex rock
types. Based on detailed field and microscope investigation, we have found that most of
the dolostone shows, originally, depositional and microbial fabrics. In addition, some dolo-
stones have been recrystallized with their original fabrics having vanished. In view of the
rock fabrics and genesis, for the samples investigated, classification divided the 26 samples
into three major categories, namely, microbial dolostone, hydrodynamic dolostone, and
crystalline dolostone. In addition, the microbial dolostones can be further subdivided by
their textures into thrombolite dolostone, foam spongy texture silty crystalline dolostone,
and oncolite dolostone. The hydrodynamic dolostones were further subdivided into rubble
dolostone and fabric-obliterated fine-crystalline dolostone. The twenty-six samples were in
classified into six rock types (Figure 5).
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5.2. Pore System Classification

To study the influence of variation in pore size on heterogeneity and REV in the
samples, four types of pore systems (Types I–IV) were classified based on the distribution
of pore size and the contribution of pores to porosity (Figure 8, Table 1).

Figure 8. Examples of carbonate types of pore system classification from CT images. (a) Type-I,
sample SHY026, mainly developed small vugs with a diameter of 1–2 mm, locally developed, and
large vugs with a diameter of 7–8 mm. (b) Type-II, sample SHY002, flat vugs with a diameter of
2–6 mm. (c) Type-III, sample SHY006, cracks. (d) Type-IV, sample SHY009, a multitude of flat vugs
with a diameter of 3–4 mm.
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Table 1. The calculating parameters and determining the REV.

Sample
Name

Pore
Type

Porosity
(%)

V50 NLV Ave_SF Cv H CREV DREV

SHY001 I 1.11 1.14 × 109 139 1.19 0.92 1.00 3.30 × 1013 2.27 × 1013

SHY002 II 13.90 1.43 × 1011 13 1.84 0.17 0.87 1.04 × 1013 1.55 × 1013

SHY003 II 8.43 3.31 × 1010 43 1.68 0.31 0.92 6.64 × 1013 4.54 × 1013

SHY004 II 7.05 5.14 × 109 299 1.53 0.17 0.93 1.19 × 1013 1.82 × 1013

SHY005 II 9.13 2.00 × 1010 56 1.54 0.34 0.91 1.78 × 1013 2.23 × 1013

SHY006 III 1.11 1.72 × 1011 2 1.54 0.54 1.38 3.27 × 1013 3.77 × 1013

SHY007 III 1.14 9.47 × 1010 3 2.54 0.41 1.03 5.98 × 1013 5.98 × 1013

SHY008 I 3.12 1.71 × 1010 22 1.90 0.76 0.99 2.27 × 1013 2.44 × 1013

SHY009 IV 4.84 1.34 × 1011 3 1.50 0.50 1.10 1.42 × 1013 1.88 × 1013

SHY010 I 2.82 2.42 × 1010 30 1.61 0.80 0.99 2.41 × 1013 2.61 × 1013

SHY011 II 8.22 4.07 × 1010 20 1.90 0.31 0.94 1.82 × 1013 1.98 × 1013

SHY012 IV 5.62 4.20 × 1011 6 2.07 0.74 0.98 6.87 × 1013 2.18 × 1013

SHY013 I 0.69 2.98 × 109 50 1.28 0.19 1.00 4.00 × 1013 4.00 × 1013
SHY014 I 0.15 1.14 × 109 32 1.14 0.65 1.03 6.58 × 1013 4.61 × 1013

SHY015 I 1.12 1.13 × 1010 36 1.50 0.55 0.99 5.39 × 1013 5.03 × 1013

SHY016 I 2.81 1.16 × 1010 72 1.54 0.75 0.98 3.42 × 1013 3.69 × 1013

SHY017 I 1.85 8.36 × 109 47 1.37 0.43 0.98 3.42 × 1013 2.75 × 1013

SHY018 I 1.40 1.76 × 1010 35 1.55 0.54 0.99 5.44 × 1013 4.02 × 1013

SHY019 I 0.67 2.78 × 109 58 1.29 0.44 1.01 2.71 × 1013 4.23 × 1013

SHY020 I 1.28 2.81 × 109 32 1.08 0.40 1.00 2.88 × 1013 2.70 × 1013

SHY021 I 0.20 8.21 × 108 60 1.08 0.74 1.01 2.37 × 1013 4.83 × 1013

SHY022 I 2.83 1.03 × 109 952 1.08 0.73 0.97 1.71 × 1013 3.41 × 1013

SHY023 I 3.96 2.19 × 1010 39 1.41 0.29 0.97 1.53 × 1013 1.67 × 1013

SHY024 I 2.10 1.47 × 109 409 1.07 1.11 0.98 3.24 × 1013 3.97 × 1013

SHY025 I 1.12 2.81 × 109 112 1.26 0.36 0.99 - 8.45 × 1013

SHY026 I 3.23 5.89 × 109 86 1.43 0.60 0.97 5.81 × 1013 6.15 × 1013

The Type-I pore system is present in all rock types except for Rock Type ii (Figure 9),
and mainly comprises small vugs with diameters of 500–5000 μm (Figure 8a). These small
vugs contribute to more than 60% of the total porosity. No large vugs with diameters larger
than 10,000 μm were observed in the Type-I pore system. The porosity of this type is lower
than 4% (Figure 9).

Figure 9. Porosity plotted against rock type. Marker color represents pore type.

The Type-II pore system comprises vugs with diameters mainly of 500–5000 μm
(Figure 8b). However, large vugs with diameters greater than 10,000 μm are also observed.
The porosity of this type of pore system is the highest among the four types, which ranges
from 7.05% to 13.90% (Figure 9). This type of pore system is developed in Rock Type ii and
Rock Type iii.

The Type-III pore system, developed in Rock Type iii and Rock Type iv (Figure 9),
consists of vugs with diameters mostly between 5000 and 10,000 μm. Larger vugs with
diameters greater than 10,000 μm are not developed (Figure 8c). The porosity of this type
of pore system is lower than 4%.

The Type-IV pore system is mainly composed of large vugs with diameters greater
than 10,000 μm (Figure 8d). The samples characterized by this type of pore system have
a porosity which is generally greater than 4% (Figure 9). This type of pore system is
predominantly developed in Rock Type iii.
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5.3. Quantified Pore Geometrical Parameters

The 50% threshold on the curve of the cumulative pore volume fraction can be used to
calculate parameters of V50 and NLV. The calculated parameters are summarized in Table 1
and illustrated on Figure 10a,b. Figure 10a shows the lowest NLV value and a relatively
high V50 value in sample SHY006, whereas Figure 10b shows the highest NLV value and
a relatively low V50 value in sample SHY022. The parameters of V50 and NLV thus reveal
distinct pore structures of the studied samples. A smaller V50 and a larger NLV indicate
more uniform pore sizes of the sample and vice versa. On the plot of porosity versus
log10V50 (Figure 10c), different pore system types can be well distinguished. In detail,
Type-I samples have low V50 values and high NLV values, with the V50 values ranging from
8.21 × 108 to 2.42 × 1010 μm3 and NLV values greater than 22 (Table 1). The V50 values for
Type-II samples, however, are in a relatively large range with NLV being greater than 13.
Type-III and Type-IV samples have relatively higher V50 and lower NLV values, indicating
that the pore size distribution in these samples is more uneven than those of Type-I and
Type-II samples. The parameter of Ave_SF, depicting pore circularity, is broadly positively
correlated with porosity (Figure 10d). Samples with low porosity have low Ave_SF values,
demonstrating that pore structures are relatively uniform in these samples (Table 1).

Figure 10. Cross plots of porosity and pore geometrical parameters and heterogeneity parameters.
Marker shape represents pore type. (a) Pore volume cumulative curve of sample SHY006. Long axial
vugs are developed along the cracks, with a diameter of 3–4 mm. (b) Pore volume cumulative curve
of sample SHY022. A multitude of flat vugs are developed with a diameter of 1–2 mm and distributed
in a laminar structure. (c) Cross-plot of porosity and dominant pore volume (log10V50) with the
number of large vugs superimposed in color. (d) Cross-plot of porosity and average shape factor
(Ave_SF) with dominant pore volume (log10V50) superimposed in color. (e) Cross-plot of porosity
and the coefficient of variation of CT slices with dominant pore volume (log10V50) superimposed
in color. (f) Cross-plot of porosity and heterogeneous factor with dominant pore volume (log10V50)
superimposed in color.
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5.4. Quantification of Heterogeneity

Based on the values of Cv, the heterogeneity of the samples can be divided into three
grades, namely highly heterogeneous (Cv > 1.0), heterogeneous (0.5 < Cv < 1.0), and
homogeneous (0.0 < Cv < 0.5). To quantitatively analyze the heterogeneity of carbonates,
the coefficient of variation is calculated using CT slices along with the whole sample
(Table 1). The values of Cv_sli show an evidently decreasing trend with the increase of
porosity (Figure 10e). The Cv_sli values range from 0.19 to 1.11 in Type-I samples. For a
given low porosity, these samples yield variable Cv_sli values from high heterogeneity
to homogeneity. The Type-II samples have lower Cv_sli values and a higher porosity
compared with the other pore system types. The values of Cv_sli of Type-II samples are
below 0.5, suggesting that they are homogeneous. The Cv_sli values range from 0.41 to
0.74 in Type-III and Type-IV samples. Meanwhile, they yield relatively higher log10V50
values than the other pore system types.

The values of heterogeneous factor H decrease with increasing porosity within indi-
vidual types of pore systems (Figure 10f). However, the slope varies among the different
types of pore system. The H values range from 0.97 to 1.03 in Type-I samples that have
low log10V50 values (Table 1). Samples of Type-II have the lowest H values among the four
types of pore system, which are less than 0.94. Type-III and Type-IV samples generally
have high H and log10V50 values (Figure 10f).

5.5. Cycle Analysis of Porosity

As shown in Figure 11, porosity periodically fluctuates along with the slices, ranging
from 8.36% to 19.35%. The cycles of porosity were quantitatively calculated using the
complex wavelet transform. The rightmost part of Figure 11 is the number of calculated
cycles, which shows three cycles in this sample.

Figure 11. Identification of the porosity cyclicity based on complex wavelet transform. The red line is
porosity and the green line is the cycles of porosity.

In the plot of porosity versus Np (Figure 12), the data of Type-I samples are dispersive
with Np values ranging from 0.92 to 1.98, while those of Type-II samples range from 1.46 to
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1.95 (Table 1). The Np values are greater than 1.6 in Type-III samples, but less than 1.6 for
Type-IV samples. Clearly, Np decreases with increasing porosity when the porosity is less
than 6%.

Figure 12. Cross-plot of porosity and porosity cyclicity with rock type superimposed in color. Marker
shape represents pore type.

6. Discussion

6.1. Evaluation on Heterogeneity of Pore Systems

The classification schemes for carbonate pore systems have been proposed in view of
pore geometry, rock fabric, genesis, flow properties, and pore-scale modeling [62–64]. In
addition, definitions and classifications for vug or vuggy porosity have been discussed in
previous works [63,65–67]. Choquette and Pray [63] defined a pore to be a vug if it is (1)
approximately equant and not remarkably elongated; (2) large enough to be visible with the
naked eye (pore diameter exceeding 1/16 mm); and (3) not fabric selective. Lucia stated that
vugs that are within crystals or grains or that are markedly larger than crystals or grains
are considered pore spaces [65–67]. The authors further subdivided vuggy pore spaces into
separate vugs and touching vugs based on whether the vugs are interconnected or not. Luo
and Machel [68] proposed a new pore size classification for complex carbonate reservoirs:
microporosity (diameter < 1 μm), mesoporosity (diameter 1–1000 μm), macroporosity
(diameter 1–256 mm), and megaporosity (diameter > 256 mm). The vugs of that study were
grouped into mesoporosity. Li et al. [69] quantitatively divided the carbonate rock into
matrix, fractured, and vuggy based on a new function of the carbonate rock index. Based on
the definition of vugs by Lucia [65–67], the classification scheme in this paper is proposed
by taking into account the pore size distribution and contributions of pores to porosity.
Four types of pore systems (Types I–IV) were classified in this study (Figure 8). The scheme
is rewarding for studying the influence of pore size distribution on heterogeneity and REV.

Large vugs with diameters greater than 10,000 μm are both developed in Type-II
and Type-IV samples. The difference between these two types is their distinct pore size
distributions that contribute to the total porosity (Figure 8b,d). The vugs’ diameters in Type-
II samples are mainly in the range of 500–5000 μm (Figure 8b), whereas those in Type-IV
samples are greater than 10,000 μm (Figure 8d). The small vugs, with diameters less than
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500 μm, contribute less to the rock porosity in all types (Figure 8), suggesting that large
vugs are the main source for the reservoir space of vuggy dolostones. The relationships
between rock types and types of pore systems are complex due to the dual control of
the deposition environment and diagenesis. Individual types of pore systems could be
developed in multiple rock types (Figure 9). Moreover, different degrees of dissolution in
the same rock type could result in variation in the pore systems. The Rock Type ii samples
have a relatively high porosity (Figure 9), indicating that the development degree of vugs
is the highest in these samples.

Quantifying reservoir heterogeneity is an important but difficult process. Many dia-
genetic parameters and pore structure parameters could result in variations of reservoir
properties. The values of log10V50 and Ave_SF in Type-I samples are relatively low, in-
dicating a more uniform pore structure. Nevertheless, heterogeneity could be high for a
given low porosity in these samples (Figure 10c–f). Type-II samples are characterized by a
relatively low heterogeneity but high porosity, indicating that the intensive development
of vugs leads to low heterogeneity in carbonate reservoirs. However, the heterogeneity
of the samples will increase only if a small number of large vugs is developed at a low
porosity, such as Type-III samples (Table 1). The heterogeneity of different pore systems is
highly variable in the vuggy carbonate reservoirs (Figure 10e,f). As such, it is a challenging
task to select suitable samples for analysis. Therefore, precisely determining the REV sizes
is very crucial for accurately calculating the petrophysical properties and evaluating the
reservoir quality.

6.2. REV Analysis

This paper applies two methods to determine the REV size. One method is to de-
termine the size of the representative elementary volume based on the cutoff value of
Cv_sub when it is less than 0.1 (CREV), then the REV is obtained. Another method is
to take the derivative of Cv_sub to determine the size of the representative elementary
volume (DREV), where the REV is considered to be reached when the derivative of Cv_sub
is between −9 × 10−15 and 9 × 10−15 (Figure 13). As shown in Figure 13a,c and e, the
values of the DREV are greater than the CREV. There will be slight fluctuations when the
value of Cv_sub is less than 0.1, resulting in a certain change in the derivative of Cv_sub.
However, the DREV values could be equal to (Figure 13b) or less than (Figure 13d) the
CREV, indicating that the value of Cv_sub is relatively stable when it is equal to or larger
than 0.1, respectively. Figure 13f shows that the REV can be determined by the derivative
of Cv_sub, but the size of the REV cannot be determined based on the cutoff value of
Cv_sub. There are nine samples with values of the DREV which are lower than the CREV
(the REV size of sample SHY025 cannot be obtained based on the cutoff value of Cv_sub.),
two samples with a DREV equal to the CREV, and fifteen samples with a DREV greater
than the CREV (Figure 14, Table 1). The REV determined based on the derivative of Cv_sub
(DREV) is more accurate compared to the cutoff value of the Cv_sub (CREV), so the DREV
is used for the following REV analysis.

Factors affecting the REV size have been studied in previous works based on rock
samples and numerical models at different scales. Gitman et al. [61] stated that the REV
sizes depended on the investigated petrophysical properties, the contrast of properties,
volume fractions of the microstructure, required relative precision, and the number of
realizations of the microstructure. Tavakoli [17] demonstrated that primary depositional
settings and diagenesis controlled the REV sizes of the reservoirs. Moreover, the REV size
also depends on the scale of observation [17]. Compared to previous studies, we mainly
focused on the influence of measurement methods, porosity, type of pore systems, and
heterogeneity of pore structures on the REV sizes, with an aim to reveal the effect of the
heterogeneity of the developed vugs on REV sizes.
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Figure 13. Determination of REV for porosity. (a) Sample SHY002 developed flat vugs with a diameter
of 2–6 mm. (b) Sample SHY007 developed vugs and cracks, and vugs half-filled by secondary
carbonates. (c) Sample SHY009 developed a multitude of flat vugs developed with a diameter
of 3–4 mm. (d) Sample SHY014 developed small amount of vugs with a diameter of 0.5–1 mm.
(e) Sample SHY022 developed a multitude of flat vugs with a diameter of 1–2 mm. (f) Sample SHY025
developed flat vugs with a diameter of 2–6 mm and partially filled by secondary carbonates. The
insets in the six images are magnifications of light yellow rectangle indicated in individual images.
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Figure 14. Cross-plot of DREV versus CREV.

The REV sizes are variable when using different methods, and the results obtained
by the derivative of Cv_sub (DREV) are relatively more accurate (Figure 14). In addition,
porosity is one of the important factors that influences the REV size. Clearly, the values
of the DREV decrease as porosity increases (Figure 15). Nine of the twenty-six samples
investigated have DREV values of less than 2.45 × 1013 μm3 (the volume of the cylinder
with a diameter of 2.5 cm and a height of 5 cm) and a porosity greater than 3.5%, except for
one outlier (Figure 15). Type-II and Type-IV samples required smaller volumes to attain
REV compared to those of Type-I and Type-III samples, indicating that the development of
large vugs has negative impacts on the REV size. In addition, the REV size was affected by
the parameters of heterogeneity and pore structure. However, compared with porosity, the
correlation between these parameters and the DREV was not high, as revealed by the weak
correlations in Figure 16. As such, the REV size is very likely the result of the interplay of
multiple factors. It is necessary to comprehensively consider the multiple parameters of a
sample to accurately determine the REV size.

Figure 15. Cross-plot of porosity and DREV with rock type superimposed in color. Marker shape
represents pore type.
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Figure 16. Cross-plots of DREV and five parameters with porosity superimposed in color. Marker
shape represents pore type. (a) DREV versus log10V50. (b) DREV versus log10NLV. (c) DREV versus
Ave_SF. (d) DREV versus Cv_sli. (e) DREV versus H. (f) DREV versus Np.

6.3. The REV Prediction Model

Several researchers have attempted to determine the REV sizes of porous media.
Clausnitzer et al. [39] showed that the side length of the REV for porosity was approximately
5.5 times of the diameter of a random pack of uniform glass beads. Bažant [40] found
that the REV size could be calculated by V = �nd , where � is the characteristic length,
and nd is the number of spatial dimensions. The characteristic length is approximately
2.7 times the maximum inclusion size [41]. Razavi et al. [34] suggested a systematic method
to quantify the calculation of the REV, in which the REV radius of spherical glass beads
was approximately two to three times the identified average diameters. The REV radius
of silica sand was between 5 and 11 times the d50 (the median particle size). The REV
radius of Ottawa sandstone was between 9 and 16 times the d50 (the median particle size).
Vik et al. [26] showed that the REV sizes were close to the average values of all porosity
measured when the bulk sample volume was greater than 1300 cm3, which was expected
to be above the REV. Clearly, the REV sizes determined by the above studies were mainly
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based on the characteristic length or diameter. For significantly heterogeneous carbonate
rocks, any single parameter is inadequate to properly evaluate it, as addressed above
(Figure 16).

Multiple statistical regressions (MLRs) are a useful method to analyze the effect of
multiple independent variables on the dependent variable [70,71]. The model is defined by
Equation (13).

Pm = θ + θ0Pe + θ1X1 + θ2X2 + . . . θnXn, (13)

where Pm is the determined property, Pe is the predicted property, Xn represents indepen-
dent variables, and θn are coefficients determined by the regression. The adjusted coefficient
of determination (R2) is used to determine how this statistical model fits to the data of the
determined property.

R2
= 1 −

(
1 − R2

) m − 1
m − p − 1

, (14)

where m is the sample size, p represents the total number of independent variables in
the linear model, and R2 is the determination coefficient. R2 is different to R2 because it
considers the degree of freedom of the data set. R2 will increase when a new independent
variable is included, with an exception that it improves R2 more than expected by chance.

To reduce the uncertainties of the estimated REV, MLRs was used to evaluate the
best statistical fit between the DREV and the calculated multi-factors using the adjusted
coefficient of determination (R2). The independent variables were added one by one to
the equation (Table 2). The independent variable was removed if the added independent
variables did not contribute much to the fitted equation (e.g., parameters of Cv_sli and NP)
(Figure 17b,d). It is worth noting that parameter NP is not used in the predicting model,
but this parameter is the premise of whether the sample can obtain the REV or not (see
Section 4.3). Combinations of various factors have been tested (Figure 17, Table 2). Of
which, the best model consists of parameters of logϕ, H, Ave_SF, and logNLV that yield
the maximum R2 of 0.9320 with a p-value below 0.05 and D-W greater than 1.5. This final
model passes the tests of the significance and sample independence. The REV sizes can
be obtained by a non-destructive CT technique in this method, meaning there are intact
sample aspects for later petrophysical tests. More importantly, the REV sizes obtained for
multiple parameters are more accurate than those obtained for a single parameter.

Table 2. Adjusted Coefficient of Determination between Determined and Estimated REV.

Dependent
Variable

Independent Variables R2 ¯
R

2
p-Value D-W

log(DREV/V50)

(a) ϕ 0.3559 0.3290 0.0013 1.5702
(b) ϕ + Cv_sli 0.3570 0.3012 0.0062 1.5708
(c) ϕ + H 0.5853 0.5492 0.0000 1.6838

(d) ϕ + H + NP 0.5874 0.5311 0.0002 1.6674
(e) ϕ + H + Ave _SF 0.8195 0.7949 0.0000 1.3571

(f) ϕ + H + Ave_SF + NLV 0.8366 0.8054 0.0000 1.2550
(g) log ϕ + H + Ave_SF + NLV 0.8713 0.8468 0.0000 1.4798

(h) log ϕ+H+Ave_SF+ logNLV 0.9429 0.9320 0.0000 1.5530

206



Energies 2022, 15, 5817

Figure 17. The fitting prediction model of DREV. (a) Fitting model established for ϕ. (b) Fitting model
established for ϕ and Cv_sli. (c) Fitting model established for ϕ and H. (d) Fitting model established
for ϕ, H and NP. (e) Fitting model established for ϕ, H and Ave_SF. (f) Fitting model established for
ϕ, H, Ave_SF and NLV. (g) Fitting model established for log ϕ, H, Ave_SF and NLV (h) Fitting model
established for log ϕ, H, Ave_SF and logNLV.

The link between the REV sizes and porosity, pore structure parameters, and het-
erogeneity parameter is thus established based on the prediction model. In other words,

207



Energies 2022, 15, 5817

REV sizes can be obtained if these parameters are known. This potentially makes it a
very effective model to predict the REV sizes of vuggy dolostones. This study provides a
foundation for accurately calculating petrophysical properties and precisely evaluating the
reservoir’s quality.

7. Conclusions

(1) A total of 26 vuggy dolostones collected from the Cambrian Xiaoerbulake Formation
at the Kalping uplift are classified into four types of pore systems based on the pore
size distribution and contribution of pores to porosity.

(2) The different degrees of dissolution in different types of pore systems yield variation in
porosity, pore structure parameters, and heterogeneity. The development of numerous
vugs increases porosity and reduces heterogeneity, while the development of a small
amounts of large vugs increases the sample’s heterogeneity.

(3) The REV determined by the derivative of Cv_sub is more accurate than that deter-
mined by the cutoff value of Cv_sub. Only nine out of twenty-six samples have a
DREV less than the volume of traditional core plugs (2.45 × 1013 μm3), hence the
traditional core plugs are unrepresentative for most vuggy carbonate rocks.

(4) The REV sizes are influenced by various factors. Any individual parameter only
is inadequate to properly evaluate the REV sizes, so that multi-factors should be
considered. A prediction model has been established based on the relationship
between the REV sizes and the quantitative parameters of V50, NLV, Ave_SF, ϕ, and
H, with the correlation coefficient reaching 0.9320. Thus, our model could be very
effective for predicting REV sizes of vuggy dolostones.
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Nomenclature

REV the representative elementary volume
V50 the dominant pore volume
NLV the pore number on the cumulative curve at greater than 50%
Ave_SF the average of the shape factor
Si the area of the ith pore
Vi the volume of the ith pore
n the total number of pores
Cv the coefficient of variation√

Var(x) the standard deviation
x the arithmetic mean value
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Cv_sli the coefficient of variation of the medical-CT along the slice direction
Cv_sub the coefficient of variation when determining the REV.
H the heterogeneous factor
V the bulk volume of the sample
VBi the bulk volume of the inner large vugs of the sample (the volume of each vug is greater

than or equal to V50)
VBo the volume of the sample, excluding VBi
VBm the volume of the rock matrix
VBp the volume of pores, excluding VBi
ϕ the porosity of the sample
Vp the volume of the pores
ϕi the porosity of the inner large vugs
ϕo the porosity of the sample, excluding the inner large vugs
F the ratio of the bulk volume of the inner large vugs to the bulk volume of the sample
R the ratio of the porosity of the inner large vugs to the porosity of a sample excluding the

inner large vugs
α the scale parameter (α > 0)
β the position parameter
f (t) the signal
Ψ(t) the analyzing wavelet (the wavelet used is a complex wavelet)
NP the number of periodicities per unit length
P the total number of periodicities
L the number of CT slices
CREV the determining REV based on the cutoff value of Cv_sli
DREV the determining REV based on the derivative of Cv_sub
� the characteristic length
nd the number of spatial dimensions
d50 the median particle size
Pm the determined property
Pe the predicted property
Xn independent variables
θn coefficients determined by the regression
R2 the adjusted coefficient of determination
m the sample size
p the total number of independent variables
R2 the determination coefficient

References

1. Ahr, W.M. Geology of Carbonate Reservoirs: The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate
Rocks; Wiley: Hoboken, NJ, USA, 2008. [CrossRef]

2. Jia, C. Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep
Formation Traps; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]

3. Bagrintseva, K.I. Carbonate Reservoir Rocks; John Wiley & Sons: Hoboken, NJ, USA, 2015.
4. Apolinarska, K. Book Reviews. Origin of Carbonate Sedimentary Rocks; De Gruyter Open: Berlin, Germany, 2017. [CrossRef]
5. Issoufou Aboubacar, M.S.; Cai, Z. A Quadruple-Porosity Model for Consistent Petrophysical Evaluation of Naturally Fractured

Vuggy Reservoirs. SPE J. 2020, 25, 2678–2693. [CrossRef]
6. Zhang, H.; Ait Abderrahmane, H.; Arif, M.; Al Kobaisi, M.; Sassi, M. Influence of Heterogeneity on Carbonate Permeability

Upscaling: A Renormalization Approach Coupled with the Pore Network Model. Energy Fuels 2022, 36, 3003–3015. [CrossRef]
7. Gundogar, A.S.; Ross, C.M.; Akin, S.; Kovscek, A.R. Multiscale pore structure characterization of middle east carbonates. J. Pet.

Sci. Eng. 2016, 146, 570–583. [CrossRef]
8. Sadeghnejad, S.; Gostick, J. Multiscale Reconstruction of Vuggy Carbonates by Pore-Network Modeling and Image-Based

Technique. SPE J. 2020, 25, 253–267. [CrossRef]
9. Radwan, A.E.; Trippetta, F.; Kassem, A.A.; Kania, M. Multi-scale characterization of unconventional tight carbonate reservoir:

Insights from October oil filed, Gulf of Suez rift basin, Egypt. J. Pet. Sci. Eng. 2021, 197, 107968. [CrossRef]
10. Li, J.; Zhang, H.; Cai, Z.; Zou, H.; Hao, F.; Wang, G.; Li, P.; Zhang, Y.; He, J.; Fei, W. Making sense of pore systems and the

diagenetic impacts in the Lower Triassic porous dolostones, northeast Sichuan Basin. J. Pet. Sci. Eng. 2021, 197, 107949. [CrossRef]

209



Energies 2022, 15, 5817

11. Chen, J.; Yang, S.; Mei, Q.; Chen, J.; Chen, H.; Zou, C.; Li, J.; Yang, S. Influence of Pore Structure on Gas Flow and Recovery in
Ultradeep Carbonate Gas Reservoirs at Multiple Scales. Energy Fuels 2021, 35, 3951–3971. [CrossRef]

12. Jiang, Z.; van Dijke, M.I.J.; Sorbie, K.S.; Couples, G.D. Representation of multiscale heterogeneity via multiscale pore networks.
Water Resour. Res. 2013, 49, 5437–5449. [CrossRef]

13. Nader, F.H. Multi-Scale Quantitative Diagenesis and Impacts on Heterogeneity of Carbonate Reservoir Rocks; Springer: Berlin/Heidelberg,
Germany, 2017.

14. Frazer, G.W.; Wulder, M.A.; Niemann, K.O. Simulation and quantification of the fine-scale spatial pattern and heterogeneity of
forest canopy structure: A lacunarity-based method designed for analysis of continuous canopy heights. For. Ecol. Manag. 2005,
214, 65–90. [CrossRef]

15. Fitch, P.J.R.; Lovell, M.A.; Davies, S.J.; Pritchard, T.; Harvey, P.K. An integrated and quantitative approach to petrophysical
heterogeneity. Mar. Pet. Geol. 2015, 63, 82–96. [CrossRef]

16. Cooper, S.D.; Barmuta, L.; Sarnelle, O.; Kratz, K.; Diehl, S. Quantifying Spatial Heterogeneity in Streams. Freshw. Sci. 1997, 16,
174–188. [CrossRef]

17. Tavakoli, V. Carbonate Reservoir Heterogeneity: Overcoming the Challenges; Springer International Publishing AG: Cham,
Switzerland, 2019.

18. Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company: Princeton, NJ, USA, 1972.
19. Brown, G.O.; Hsieh, H.T.; Lucero, D.A. Evaluation of laboratory dolomite core sample size using representative elementary

volume concepts. Water Resour. Res. 2000, 36, 1199–1207. [CrossRef]
20. Rozenbaum, O.; du Roscoat, S.R. Representative elementary volume assessment of three-dimensional x-ray microtomography

images of heterogeneous materials: Application to limestones. Phys. Rev. E 2014, 89, 053304. [CrossRef] [PubMed]
21. Yio, M.H.N.; Wong, H.S.; Buenfeld, N.R. Representative elementary volume (REV) of cementitious materials from three-

dimensional pore structure analysis. Cem. Concr. Res. 2017, 102, 187–202. [CrossRef]
22. Shah, S.M.; Crawshaw, J.P.; Gray, F.; Yang, J.; Boek, E.S. Convex hull approach for determining rock representative elementary

volume for multiple petrophysical parameters using pore-scale imaging and Lattice–Boltzmann modelling. Adv. Water Resour.
2017, 104, 65–75. [CrossRef]

23. Wu, M.; Wu, J.; Wu, J. A three-dimensional model for quantification of the representative elementary volume of tortuosity in
granular porous media. J. Hydrol. 2018, 557, 9. [CrossRef]

24. Wang, Y.; Wang, L.; Wang, J.; Jiang, Z.; Wang, C.-C.; Fu, Y.; Song, Y.-F.; Wang, Y.; Liu, D.; Jin, C. Multiscale characterization of
three-dimensional pore structures in a shale gas reservoir: A case study of the Longmaxi shale in Sichuan basin, China. J. Nat.
Gas Sci. Eng. 2019, 66, 207–216. [CrossRef]

25. Wu, H.; Yao, Y.; Zhou, Y.; Qiu, F. Analyses of representative elementary volume for coal using X-ray μ-CT and FIB-SEM and its
application in permeability predication model. Fuel 2019, 254, 115563. [CrossRef]

26. Vik, B.; Bastesen, E.; Skauge, A. Evaluation of representative elementary volume for a vuggy carbonate rock-Part: Porosity,
permeability, and dispersivity. J. Pet. Sci. Eng. 2013, 112, 36–47. [CrossRef]

27. Gonzalez, J.L.; de Faria, E.L.; Albuquerque, M.P.; Albuquerque, M.P.; Bom, C.R.; Freitas, J.C.C.; Cremasco, C.W.; Correia, M.D.
Representative elementary volume for NMR simulations based on X-ray microtomography of sedimentary rock. J. Pet. Sci. Eng.
2018, 166, 906–912. [CrossRef]

28. Singh, A.; Regenauer-Lieb, K.; Walsh, S.D.C.; Armstrong, R.T.; van Griethuysen, J.J.; Mostaghimi, P. On Representative Elementary
Volumes of Grayscale Micro-CT Images of Porous Media. Geophys. Res. Lett. 2020, 47, e2020GL088594. [CrossRef]

29. Shahin, G.; Desrues, J.; Pont, S.D.; Combe, G.; Argilaga, A. A study of the influence of REV variability in double-scale FEM ×
DEM analysis. Int. J. Numer. Methods Eng. 2016, 107, 882–900. [CrossRef]

30. Norris, R.J.; Lewis, J.J.M. The Geological Modeling of Effective Permeability in Complex Heterolithic Facies. In Proceedings of the
SPE Annual Technical Conference and Exhibition, SPE-22692-MS, Dallas, TX, USA, 6–9 October 1991. [CrossRef]

31. Nordahl, K.; Ringrose, P.S. Identifying the Representative Elementary Volume for Permeability in Heterolithic Deposits Using
Numerical Rock Models. Math. Geosci. 2008, 40, 753–771. [CrossRef]

32. Katagiri, J.; Kimura, S.; Noda, S. Significance of shape factor on permeability anisotropy of sand: Representative elementary
volume study for pore-scale analysis. Acta Geotech. 2020, 15, 2195–2203. [CrossRef]

33. Borges, J.A.R.; Pires, L.F.; Cássaro, F.A.M.; Roque, W.L.; Heck, R.J.; Rosa, J.A.; Wolf, F.G. X-ray microtomography analysis of
representative elementary volume (REV) of soil morphological and geometrical properties. Soil Tillage Res. 2018, 182, 112–122.
[CrossRef]

34. Razavi, M.R.; Muhunthan, B.; Al Hattamleh, O. Representative Elementary Volume Analysis of Sands Using X-Ray Computed
Tomography. Geotech. Test. J. 2007, 30, 212–219. [CrossRef]

35. Costanza-Robinson, M.S.; Estabrook, B.D.; Fouhey, D.F. Representative elementary volume estimation for porosity, moisture
saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications. Water Resour. Res. 2011,
47, W07513. [CrossRef]

36. Al-Raoush, R.; Papadopoulos, A. Representative elementary volume analysis of porous media using X-ray computed tomography.
Powder Technol. 2010, 200, 69–77. [CrossRef]

37. Zhang, J.; Yu, L.; Jing, H.; Liu, R. Estimating the Effect of Fractal Dimension on Representative Elementary Volume of Randomly
Distributed Rock Fracture Networks. Geofluids 2018, 2018, 1–13. [CrossRef]

210



Energies 2022, 15, 5817

38. Wei, C.; Tian, C.; Zheng, J.; Cai, K.; Du, D.; Song, B.; Hu, Y. Heterogeneity Characteristics of Carbonate Reservoirs: A Case Study
using Whole Core Data. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu
Dhabi, United Arab Emirates, 14–16 September 2015; p. D021S004R002. [CrossRef]

39. Clausnitzer, V.; Hopmans, J.W. Determination of phase-volume fractions from tomographic measurements in two-phase systems.
Adv. Water Resour. 1999, 22, 577–584. [CrossRef]

40. Bažant, Z.P. Stochastic models for deformation and failure of quasibrittle structures: Recent advances and new directions. In
Computational Modelling of Concrete Structures; A.A. Balkema Publisher: Lisse, The Netherlands, 2003; pp. 583–598.

41. Bažant, Z.P.; Pijaudier-Cabot, G. Measurement of Characteristic Length of Nonlocal Continuum. J. Eng. Mech. 1989, 115, 755–767.
[CrossRef]

42. Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A review on pore structure characterization
in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [CrossRef]

43. Moslemipour, A.; Sadeghnejad, S. Dual-scale pore network reconstruction of vugular carbonates using multi-scale imaging
techniques. Adv. Water Resour. 2021, 147, 103795. [CrossRef]

44. Razavifar, M.; Mukhametdinova, A.; Nikooee, E.; Burukhin, A.; Rezaei, A.; Cheremisin, A.; Riazi, M. Rock Porous Structure
Characterization: A Critical Assessment of Various State-of-the-Art Techniques. Transp. Porous Media 2021, 136, 431–456.
[CrossRef]

45. Vogel, H.J.; Weller, U.; Schlüter, S. Quantification of soil structure based on Minkowski functions. Comput. Geosci. 2010, 36,
1236–1245. [CrossRef]

46. Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and
applications. Earth-Sci. Rev. 2013, 123, 1–17. [CrossRef]

47. Qajar, J.; Arns, C.H. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1:
Assessment of pore-scale mineral dissolution and deposition. J. Contam. Hydrol. 2016, 192, 60–86. [CrossRef] [PubMed]

48. Chaves, J.M.; Moreno, R.B. Low- and High-Resolution X-Ray Tomography Helping on Petrophysics and Flow-Behavior Modeling.
SPE J. 2021, 26, 206–219. [CrossRef]

49. Pini, R.; Madonna, C. Moving across scales: A quantitative assessment of X-ray CT to measure the porosity of rocks. J. Porous
Mater. 2015, 23, 325–338. [CrossRef]

50. Ye, N.; Zhang, S.; Qing, H.; Li, Y.; Huang, Q.; Liu, D. Dolomitization and its impact on porosity development and preservation in
the deeply burial Lower Ordovician carbonate rocks of Tarim Basin, NW China. J. Pet. Sci. Eng. 2019, 182, 106303. [CrossRef]

51. Chen, L.; Zhang, H.; Cai, Z.; Hao, F.; Xue, Y.; Zhao, W. Petrographic, mineralogical and geochemical constraints on the fluid origin
and multistage karstification of the Middle-Lower Ordovician carbonate reservoir, NW Tarim Basin, China. J. Petrol. Sci. Eng.
2022, 208, 109561. [CrossRef]

52. Liu, P.X.; Deng, S.B.; Guan, P.; Jin, Y.Q.; Wang, K.; Chen, Y.Q. The nature, type, and origin of diagenetic fluids and their control on
the evolving porosity of the Lower Cambrian Xiaoerbulak Formation dolostone, northwestern Tarim Basin, China. Pet. Sci. 2020,
17, 873–895. [CrossRef]

53. Zhang, D.; Bao, Z.; Pan, W.; Hao, Y.; Cheng, Y.; Wang, J.; Zhang, Y.; Lai, H. Characteristics and forming mechanisms of evaporite
platform dolomite reservoir in Middle Cambrian of Xiaoerbulake section, Tarim Basin. Nat. Gas Geosci. 2014, 25, 498–507.

54. Deng, S.; Li, H.; Zhang, Z.; Zhang, J.; Yang, X. Structural characterization of intracratonic strike-slip faults in the central Tarim
Basin. AAPG Bull. 2019, 103, 109–137. [CrossRef]

55. Shen, A.; Zheng, J.; Chen, Y.; Ni, X.; Huang, L. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle
Cambrian, Tarim Basin, NW China. Pet. Explor. Dev. 2016, 43, 375–385. [CrossRef]

56. Zheng, J.P.; Wenqing, P.; Anjiang, S. Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping
outcrop area, Tarim Basin, NW China. Pet. Explor. Dev. 2019, 47, 392–402. [CrossRef]

57. Zhang, J.; Song, A. Application of Wavelet Analysis in Sequence Stratigraphic Division of Glutenite Sediments. In Proceedings
of the 2010 International Conference on Challenges in Environmental Science and Computer Engineering, Wuhan, China, 6–7
March 2010.

58. Kadkhodaie, A.; Rezaee, R. Intelligent sequence stratigraphy through a wavelet-based decomposition of well log data. J. Nat. Gas
Sci. Eng. 2017, 40, 38–50. [CrossRef]

59. Allshorn, S.L.; Dawe, R.A.; Grattoni, C.A. Implication of heterogeneities on core porosity measurements. J. Pet. Sci. Eng. 2019,
174, 486–494. [CrossRef]

60. Ostoja-Starzewski, M. Material spatial randomness: From statistical to representative volume element. Probabilistic Eng. Mech.
2006, 21, 112–132. [CrossRef]

61. Gitman, I.M.; Askes, H.; Sluys, L.J. Representative volume: Existence and size determination. Eng. Fract. Mech. 2007, 74,
2518–2534. [CrossRef]

62. Archie, G.E. Classification of Carbonate Reservoir Rocks and Petrophysical Considerations. AAPG Bull. 1952, 36, 278–298.
63. Choquette, P.W.; Pray, L.C. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bull. 1970,

54, 207–250.
64. Lønøy, A. Making sense of carbonate pore systems. AAPG Bull. 2006, 90, 1381–1405. [CrossRef]
65. Lucia, F.J. Petrophysical Parameters Estimated From Visual Descriptions of Carbonate Rocks: A Field Classification of Carbonate

Pore Space. J. Pet. Technol. 1983, 35, 629–637. [CrossRef]

211



Energies 2022, 15, 5817

66. Lucia, F.J. Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization1. AAPG Bull. 1995,
79, 1275–1300.

67. Lucia, F.J. Carbonate Reservoir Characterization; Springer: Berlin/Heidelberg, Germany, 2007. [CrossRef]
68. Luo, P.; Machel, H.G. Pore size and pore throat types in a heterogeneous dolostone reservoir, Devonian Grosmont Formation,

Western Canada sedimentary basin. AAPG Bull. 1995, 79, 1698–1720.
69. Li, B.; Tan, X.; Wang, F.; Lian, P.; Gao, W.; Li, Y. Fracture and vug characterization and carbonate rock type automatic classification

using X-ray CT images. J. Pet. Sci. Eng. 2017, 153, 88–96. [CrossRef]
70. Archilla, N.L.; Missagia, R.M.; Hollis, C.; de Ceia, M.A.R.; McDonald, S.A.; Lima Neto, I.A.; Eastwood, D.S.; Lee, P. Permeability

and acoustic velocity controlling factors determined from x-ray tomography images of carbonate rocks. AAPG Bull. 2016, 100,
1289–1309. [CrossRef]

71. Oliveira, G.L.P.; Ceia, M.A.R.; Missagia, R.M.; Lima Neto, I.; Santos, V.H.; Paranhos, R. Core plug and 2D/3D-image integrated
analysis for improving permeability estimation based on the differences between micro- and macroporosity in Middle East
carbonate rocks. J. Pet. Sci. Eng. 2020, 193, 107335. [CrossRef]

212



Citation: Li, X.; Wang, J.; Zhao, D.;

Ni, J.; Lin, Y.; Zhang, A.; Zhao, L.; Liu,

Y. Quantitative Evaluation of

Water-Flooded Zone in a Sandstone

Reservoir with Complex

Porosity–Permeability Relationship

Based on J-Function Classification: A

Case Study of Kalamkas Oilfield.

Energies 2022, 15, 7037. https://

doi.org/10.3390/en15197037

Academic Editor: Reza Rezaee

Received: 12 August 2022

Accepted: 21 September 2022

Published: 25 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Quantitative Evaluation of Water-Flooded Zone in a Sandstone
Reservoir with Complex Porosity–Permeability Relationship
Based on J-Function Classification: A Case Study of
Kalamkas Oilfield

Xuanran Li 1, Jingcai Wang 1, Dingding Zhao 2,3,*, Jun Ni 1, Yaping Lin 1, Angang Zhang 1, Lun Zhao 1

and Yuming Liu 2,3,*

1 PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
2 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing,

Beijing 102249, China
3 College of Geosciences, China University of Petroleum-Beijing, Beijing 102249, China
* Correspondence: 2019310048@student.cup.edu.cn (D.Z.); liuym@cup.edu.cn (Y.L.)

Abstract: The water-flooded zone in a sandstone reservoir with a complex porosity–permeability
relationship is difficult to interpret quantitatively. Taking the P Formation of Kalamkas Oilfield in
Kazakhstan as an example, this paper proposed a reservoir classification method that introduces
the J-function into the crossplot of resistivity and oil column height to realize the classification of
sandstone reservoirs with a complex porosity–permeability relationship. Based on the classification
results, the initial resistivity calculation models of classified reservoirs were established. The oil–water
seepage experiment was performed for classified reservoirs to measure the lithoelectric parameters
and establish the relationship between water production rate and resistivity for these reservoirs, and
then water production was quantitatively calculated according to the difference between the inverted
initial resistivity and the measured resistivity. The results show that the reservoirs with an unclear
porosity–permeability relationship can be classified by applying the J-function corresponding to
grouped capillary pressure curves to the crossplot of oil column height and resistivity, according to
the group average principle of capillary pressure curves. This method can solve the problem that
difficult reservoir classification caused by a weak porosity–permeability correlation. Moreover, based
on the results of reservoir classification, the water production rate and resistivity model of classified
reservoirs is established. In this way, the accuracy of quantitative interpretation of the water-flooded
zone in the reservoir can be greatly improved.

Keywords: complex porosity–permeability relationship; water-flooded zone; oil column height;
reservoir classification; capillary pressure; resistivity; water production rate

1. Introduction

Kalamkas Oilfield is a typical high water-cut layered sandstone reservoir, which
has been developed for 42 years, in North Ustyurt Basin, Kazakhstan. The water cut
has reached 94%, while only 25% of the original oil in place (OOIP) has been recovered.
Most wells suffered from water-out, which severely affected the enhanced oil recovery
(EOR) [1–3]. The target strata in the Kalamkas Oilfield are characterized by complex
lithology (including coarse sandstone, silty-fine sandstone, and argillaceous sandstone)
and diverse reservoir fluids, consisting of gas zone, low-resistivity oil zone, normal oil zone,
and oil–water zone, as well as water-flooded zone and water zone. The sandstone reservoir
is highly heterogeneous, with the porosity and permeability not clearly correlated, making
the permeability calculation and reservoir classification very challenging [4]. Currently,
most calculations of water cuts in water-flooded zones are less precise, or quantitative
classifications of water-flooded zones involve too many procedures in a long period, so
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they are far behind the field applications [5,6]. Accordingly, a quantitative evaluation
of the water-flooding intensity of such high water-cut reservoirs with complex porosity–
permeability relationship is fundamental for predicting and recovering the remaining oil in
many similar high water-cut sandstone oilfields.

A reasonable reservoir classification is crucial to the evaluation of water-flooded
zones in reservoirs with weak porosity–permeability relationships and strong heterogene-
ity [7–10]. There are mainly three reservoir classification methods [11–15]: (1) porosity
and permeability, the key physical properties of reservoirs, are taken as the main pa-
rameters to classify the reservoirs as, for instance, high-porosity and high-permeability
reservoirs, medium-porosity and medium-permeability reservoirs, and low-porosity and
low-permeability reservoirs; (2) porosity and permeability are combined with microscopic
parameters (e.g., pore structure) to classify the reservoirs through probability statistics of
numerous physical property parameters, which is a multivariate evaluation method [16];
and (3) the concept of flow unit is followed, that is, the identical flow units have similar
physical features and flow capacity, generally leading to similar water-flooding and remain-
ing oil distribution characteristics. The first and third methods are essentially rooted in the
function of porosity and permeability, but they cannot work well when there is no clear
correlation between the two parameters. The second method yields relatively low-accurate
results in reservoirs with strong heterogeneity and complex pore structure and requires
a vast amount of data that can reflect the pore structure, such as grain size, pore throat
radius, and sorting.

In recent years, with the development of computer technology, the combination
of well logging curves and artificial intelligence methods has also been widely used to
identify water-flooded zones. These methods include: the fuzzy neural network method,
general neural network method, hybrid computing neural network method, and integrated
classifier method [17–20]. In these methods, the fuzzy neural network needs multiple
factors to make a comprehensive judgment, and too many input factors are likely to limit
application; the general neural network has low convergence speed, and it is easy to fall
into local optimal solution; the hybrid computing neural network method has higher
requirements for the original data as a whole. The process neural network introduces
the original form of the well logging curve as the sample input, which has improved the
recognition efficiency to a certain extent. However, the interpolation fitting will produce
fitting errors, resulting in large cumulative errors. Due to some limitations of the above
methods, there are still problems of lower recognition accuracy and efficiency [21–23].

With P Formation in Kalamkas Oilfield as an example, based on the knowledge that
reservoir resistivity is the comprehensive reflection of pore structure and oil column height,
the resistivity vs. oil column height crossplot was established, and the J-function of capillary
pressure curves was established and incorporated into the resistivity vs. oil column height
crossplot. On this basis, the reservoirs with the complex porosity–permeability relationship
were classified. For each class of reservoirs, the initial resistivities under different oil column
heights were inverted by using the fitted relationships of multiple parameters; the oil–water
flow experiment was performed to determine the oil–water relative permeability, which
was then combined with the Archie formula to build the water cut and resistivity model
for dividing the water-flooding levels of reservoirs. The initial and current resistivities
were compared to fix the decline of resistivity, by which the water-flooding intensity of
reservoirs was quantitatively evaluated. This paper proposes a simple method for reservoir
classification by using only conventional well logging data. In particular, this method has a
good application effect in the reservoirs with the worse porosity–permeability relationship.
It requires a large number of capillary pressure test data and is not applicable to the oilfields
with few coring data and incomplete capillary pressure tests.

2. Regional Geology

The Middle Jurassic P Formation, the major producing system in Kalamkas Oilfield, is
a layered, unsaturated, stratigraphically-unconformable reservoir with a gas cap and edge
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water. The P Formation pay zones are mainly composed of fine sandstone and siltstone,
with a high shale content (20–35%). The core porosity experiments show that the reservoir
has a medium-high porosity (avg. 28.6%) and a medium-high permeability (avg. 357.4 mD),
and it is a kind of clastic rock reservoir common in Central Asia. The P Formation was
initially developed by water injection in 1980. Currently, it is in the stage of development
with a high water cut (93%), with 20.4% of geological reserves recovered, and daily oil
production of 0.5–55 t, and a water cut of 0–98% for new wells, indicating greatly different
water flooding degrees in the reservoir. A large number of core analysis and production
data show that the P Formation sandstone reservoir in Kalamkas Oilfield is complex and
diverse in pore structure, obviously different in reservoir quality [24,25], and very strong in
heterogeneity. The core grain size analysis reveals (Figure 1) that the reservoir rocks contain
a generally high content of fine particles, of which, 37.4% exhibit the components with
grain size less than 0.01 mm, and which are mainly clay mineral particles, except for a small
part of fine silts. According to the porosity–permeability relationship, the lithology and
pore structure are complex, and the correlation between porosity and permeability is very
weak (Figure 2). After long-term water flooding, fine particles, such as clay minerals, block
the port throats, thereby aggravating the reservoir heterogeneity, so the water flooding
law is very complex [26,27]. With the further development, the quantitative research on
water-flooded zone is particularly important.

Figure 1. Grain size analysis of P Formation in Kalamkas Oilfield.

Figure 2. Porosity–permeability relationship of P Formation in Kalamkas Oilfield.
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3. Research Method and Data Source

3.1. Research Method

The research is completed in five steps (Figure 3).

Figure 3. The quantitative evaluation process of the water-flooded zone in sandstone reservoir with
complex porosity–permeability relationship.

Step 1: Group the capillary pressure curves and calculate the average value of each
group (J-function). Capillary pressure curves were obtained on a CPPP-300 group capil-
larimeter using the semi-permeable membrane method.

Step 2: Collect the logging data and oil test data of existing old wells, and establish the
crossplot of oil column height and resistivity; incorporate the grouped capillary pressure
curves to the crossplot, and classify the reservoirs with the complex porosity–permeability
relationship.

Step 3: Collect the conventional logging data of existing old wells, analyze the laws
of initial reservoir resistivity, oil column height, and natural gamma, and establish the
expression of the relation between initial reservoir resistivity, oil column height, and natural
gamma by using multiple regression methods.

Step 4: Obtain the initial resistivity of each reservoir by using the relational expression
in the above step for newly drilled production wells, and determine the resistivity decline
rate from the current resistivity obtained from new well logging and the calculated initial
resistivity.

Step 5: Perform a relative permeability test for each class of reservoirs, and establish
the water cut and resistivity decline rate model of classified reservoirs by using the Archie
formula and fractional flow equation, to accurately predict the water-flooding degree of
each reservoir of the new well.
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3.2. Data Source

This study used the capillary pressure test data of 33 samples of P Formation in
Kalamkas Oilfield (Table 1). It is found that the irreducible water saturation is 11–41%,
the saturated median pressure is 0.02–0.35 MPa, the gas logging porosity is 21–37%, and
the gas logging permeability is (1.88–1140) × 10−3 μm2. The grain size analysis was made
on 161 samples from 10 coring wells, basically covering all target horizons, with a grain
density of 2.47–2.96 g/cm3 and a rock density of 1.67–2.19 g/cm3 (Table 2). The reservoir
classification was completed with a logging interpretation data of 502 wells and a resistivity
of 2.3–40 ohm (avg. 6.52 ohm). It was determined that the porosity is 23–38% (avg. 27.5%),
the permeability is 4.8–3520 mD (avg. 425 mD), and the shale content is 3–45% (avg. 18%)
(Table 3).

Table 1. Capillary pressure test data of P Formation core samples.

Core
No.

Core
Length/cm

Core Diame-
ter/cm

Porosity
(Water)/%

Porosity
(Gas)/%

Gas Logging
Permeability/

10−3 μm2
RQI

Saturated
Median

Pressure/Mpa

Minimum Wet Phase
Saturation

(Irreducible Water
Saturation)/%

486 5.3 3.8 25.6 25.7 18.4 8.5 0.1 25.0
488 5.4 3.4 25.1 25.1 1.9 2.7 0.1 33.0
489 5.2 3.7 21.0 21.1 2.7 3.6 0.4 41.0
491 5.5 3.8 22.8 22.9 5.3 4.8 0.3 11.0
495 5.2 3.5 26.6 26.8 15.0 7.5 0.2 30.0
41 5.2 3.8 25.9 25.9 12.3 6.9 0.2 37.0
496 5.0 3.5 29.7 29.7 51.6 13.2 0.2 25.0
497 5.1 3.8 30.7 30.8 53.6 13.2 0.2 24.0
492 5.2 3.6 29.7 29.8 81.4 16.5 0.2 26.0
493 5.5 3.1 30.1 30.2 60.4 14.2 0.2 26.0
494 5.5 3.3 29.8 30.1 58.5 13.9 0.1 22.0
487 5.2 3.5 29.5 29.6 36.8 11.2 0.1 26.0
503 5.2 3.8 33.6 33.8 533.8 39.7 0.1 21.0
513 4.9 3.5 32.9 33.2 475.4 37.9 0.2 22.0
514 5.2 3.2 32.1 32.1 404.7 35.5 0.1 21.0
515 5.3 3.4 32.0 32.1 309.7 31.1 0.1 20.0
516 5.5 3.5 32.3 32.4 482.2 38.6 0.1 21.0
517 5.6 3.5 30.8 30.8 345.2 33.5 0.2 24.0
527 5.3 3.8 33.0 33.1 448.4 36.8 0.1 21.0
528 5.3 3.8 32.6 32.7 414.6 35.6 0.1 20.0
518 5.2 3.8 32.2 32.2 1020.0 56.3 0.2 21.0
519 5.2 3.8 34.1 34.2 845.4 49.7 0.1 17.0
520 5.4 3.7 30.6 30.7 1140.0 60.9 0.1 18.0
521 5.0 3.8 30.8 30.8 721.5 48.4 0.2 23.0
522 5.3 3.8 32.2 32.3 1120.0 58.9 0.1 18.0
523 5.2 3.7 30.9 31.0 758.5 49.5 0.1 21.0
524 5.1 3.5 32.6 32.7 1070.0 57.2 0.1 16.0
525 4.8 3.2 33.5 33.5 880.9 51.3 0.1 18.0
526 5.3 3.1 31.0 31.1 951.4 55.3 0.1 19.0
3 5.2 3.6 36.9 36.9 821.9 47.2 0.0 18.0
6 5.7 3.2 30.8 30.8 394.7 35.8 0.0 22.0
23 4.9 3.1 35.1 35.1 654.9 43.2 0.2 19.0
28 5.7 3.3 35.8 35.8 522.4 38.2 0.2 19.0

Table 2. Grain size analysis results of P Formation.

Formation >1 1.0–0.5 0.5–0.25 0.25–0.1 0.1–0.01 <0.01

Coarse sand Medium sand Fine sand Silty sand Mud

P 0.00 0.01 0.66 26.13 35.81 37.38
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4. Result

4.1. Logging Responses of Water-Flooded Zone

After long-term water injection development, the water cut of the sandstone reservoir
increases continuously. After entering the reservoir, the injected water interacts with the
reservoir, changing the fluid properties, pore structure, rock physicochemical properties,
and oil–water distribution of the reservoir to a certain extent. This change will cause the
variation of logging curves. Determining the logging responses is fundamental for locating
the water-flooded point and confirming the water-flooding degree [28–30].

4.1.1. Resistivity Logging

Resistivity is an important parameter reflecting the fluid properties of the reservoir. The
P Formation has been developed for 41 years by reinjecting the waste water. The salinity of
injected water is close to the initial salinity of the formation, being about 105,000–150,000 mg/L.
The water saturation during water flooding is a gradual process, which can be roughly
divided into the early stage with low water cut, the middle stage with medium water cut,
and the late stage with high water cut. In the early stage with low water cut, injected water
displaces the movable oil in the reservoir and exchanges ions with the initial formation
water in the swept zone. Since the P Formation reservoir is developed by waste water rein-
jection, and the initial formation water is close to the injected water in salinity, the reservoir
fluid can reach dynamic balance very quickly, and the reservoir resistivity decreases with
the increase in water saturation Sw. At this time, there is no water at the outlet end. With
the progress of development, the oilfield enters the middle stage with a medium water
cut, resulting in a water breakthrough at the outlet end. The injected water continues to
drive out the movable oil and further mixes with the liquid mixture in the swept zone. In
this process, the resistivity of the liquid mixture changes greatly. In the late stage with
high water cut, the reservoir is completely flooded, the injected water can only drive out a
small amount of oil, and the resistivity of the liquid mixture almost reaches the resistivity
of the injected water [28,29]. The resistivity generally decreases with the increase in water
saturation. The resistivity of the water-flooded zone in the P Formation shows an obvious
downward trend. When water flooding is serious, the resistivity of the water-flooded zone
is very close to that of the water zone (Figure 4).

 

Figure 4. Interpretation of water-flooded zone of Well xx36 in P Formation.
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4.1.2. Spontaneous Potential Logging

The spontaneous potential (SP) logging response was analyzed to locate the water-
flooded point in the reservoir. According to the previous study [24], in the interpretation of
water-flooded zones in the sandstone reservoir, the comprehensive influence of injected
water and oil saturation on SP can be expressed by Formula (1) below. Since the salinity
of the injected water in the P Formation is close to that of the initial formation water, the
baseline shift of SP and the amplitude change of SP are not obvious after water flooding of
some reservoirs (Figure 4).

SP = −KC × log
Rm f

Rw
+ K × log

R′
w

Rw
= −KC × log

Rm f

Rw
− K × log Sw (1)

where the first term represents the influence of injected water on spontaneous potential
(SP), and the second term represents the influence of oil saturation on SP. The change of SP
log in water flooding results from the stacking of these two processes.

4.2. Classification of Sandstone Reservoirs with a Complex Porosity–Permeability Relationship
Based on Average Capillary Pressure (J-Function)

When logging data are used to identify water-flooded zones, reservoir classification
is an effective way to improve the identification accuracy of water-flooded zones in het-
erogeneous reservoirs. Reasonable reservoir classification is particularly critical in the
interpretation of water-flooded zones in reservoirs with no obvious porosity–permeability
relationship. Many scholars classify reservoirs according to the principle that the same
flow units have similar physical properties and flow capacity. Wang et al. [14] classified
the reservoirs with permeability as the primary parameter and porosity as the second
parameter. Yang et al. [10] proposed a multivariate evaluation method combining porosity
and permeability with microscopic parameters. Gunter et al. [13] classified the reservoirs
according to the concept of flow unit. Essentially, these methods are based on the function
of porosity and permeability, but are limited for reservoirs with a very unclear porosity–
permeability relationship. According to the conventional core analysis, capillary pressure
curve shape, logging responses, and analysis of logging facies and lithofacies, the capillary
pressure curves of Kalamkas Oilfield are divided into three groups (Figure 5): Type 1,
Type 2, and Type 3. Type 1 capillary pressure curves are the longest in the middle gentle
segment and the lowest in position, and represent the reservoirs with the best sorting and
the largest throat radius, being the reservoirs with the best physical properties. Type 2
capillary pressure curves have a slightly shorter middle gentle segment and higher posi-
tion than Type 1, and represent the reservoirs with moderate physical properties. Type 3
capillary pressure curves have the shortest and highest gentle segment, and represent the
reservoirs with the worst physical properties. Accordingly, the average value of each group
of capillary pressure curves (J-function) was obtained. Figure 6 shows the J-function of
the P Formation in Kalamkas Oilfield. It can be seen that the data points are concentrated,
indicating that the grouping of capillary pressure curves is reasonable.

Oil column height, porosity, pore connectivity, and oil–water density difference are the
main factors affecting the initial resistivity of the reservoir. The higher the oil column height,
the better the pore structure, the stronger the hydrocarbon charging capacity, and the higher
the resistivity [30–33]. Accordingly, the crossplot of resistivity and oil column height can be
established to characterize the pore structure and reflects the physical properties gradually
deteriorating from the data point to the right. According to the Archie formula [33], there
is a direct relationship between reservoir resistivity and water saturation. According to
the concept of capillary force, the capillary pressure is directly proportional to the rising
height of the wetting phase in the capillary. Therefore, the height of the oil column in the
reservoir is a direct reflection of the value of capillary pressure. According to the above
principle, the crossplot of resistivity and oil column height can be combined with the
capillary pressure curves. According to the capillary pressure measured in the laboratory
test of cores, the J-function (average capillary pressure) of three classes of reservoirs (good,
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moderate, and poor) was established, as shown in Figures 5 and 6. Based on the J-function
of existing coring wells, the continuous capillary pressure curves can be reconstructed
for the non-coring intervals [34,35]. The reconstructed multiple capillary pressure curves
are applied to the crossplot. The reservoirs of the P Formation can be classified as I,
II, and III (Figure 7), corresponding, respectively, to good, moderate, and poor porosity
and permeability, which are arranged in turn from left to right on the crossplot. This
classification can eliminate the influences of permeability and porosity and realize the
classification of highly heterogeneous reservoirs with no obvious porosity–permeability
relationship.

Figure 5. Grouping of capillary pressure curves.

Figure 6. J-functions of grouped capillary pressure curves.

Figure 7. Crossplots of resistivity and oil column height of P Formation reservoirs.
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According to the analysis of logging interpretation results of Classes I, II, and III
reservoirs (Table 4), Class I reservoirs, with the porosity of more than 28% and the rel-
ative GR value of less than 76%, are mainly composed of fine sandstone, with a small
amount of medium and coarse sandstone, and contain the sedimentary facies dominated
by underwater distributary channel of delta front; Class II reservoirs, with the porosity of
22–28% and the relative GR value of 76–85%, are mainly composed of siltstone, and contain
both distributary channel and estuarine bar; and Class III reservoirs, with the porosity
of less than 22% and the relative GR value of greater than 85%, are mainly composed of
argillaceous sandstone, and contain a distal bar and bar margin deposits.

Table 4. Logging interpretation results of reservoirs.

Class of
Reservoirs

Porosity
(%)

Permeability
(mD)

Relative GR
Value (%)

Shale
Content (%)

Lithology

I >28 >600 <76 <21 Mainly sandstone
and fine sandstone

II 22~28 30~600 76~85 21~32 Mainly siltstone

III <22 <30 >85 >32 Mainly argillaceous
sandstone

4.3. Initial Resistivity Inversion and Water Production Rate Calculation

The resistivity is sensitive to the water flooding degree. The change of resistivity is
the main parameter to identify the water-flooded zones. The water-flooded zones exhibit
the decline of resistivity to different degrees, while the non-flooded zones basically do not
have a change in resistivity. Therefore, the water-flooded zone can be identified according
to the difference between the initial resistivity and the current resistivity.

4.3.1. Initial Resistivity Inversion of Classified Reservoirs

Archie [33] discussed the relationship between resistivity, water saturation, and poros-
ity under the condition that the rock skeleton is not conducive. Generally, the larger the
porosity and the better the pore connectivity, the stronger the oil charging capacity. When
the oil saturation and formation water resistivity are higher, the resistivity of the reservoir
is higher and the oil column height is larger. When the oil saturation and formation water
resistivity are lower, the resistivity of the reservoir is lower and the oil column height is
smaller. Through the analysis of the correlation between resistivity, oil column height,
relative GR value, and shale content of P Formation reservoirs in old wells, it is found that
the correlation between relative GR value, oil column height, and resistivity of the reservoir
is good (Figure 8), which shows that oil column height and pore structure are the key
parameters to control reservoir resistivity. For the classified reservoirs, the initial resistivity
was calculated by multiple regression of oil column height and shale content. Based on
the data of 141 old wells (these representative data basically cover all target horizons both
vertically and horizontally), multiple regression was conducted for the classified reservoirs
with the formulas as follows:

Class I: reservoirs: Ri = 26.6858 + H × 0.145736 − DGR × 0.2447 (2)

Class II: reservoirs: Ri = 11.75654 + H × 0.078969 − DGR × 0.11312 (3)

Class III: reservoirs: Ri = 3.53265 + H × 0.039465 − DGR × 0.02916 (4)

DGR = 100 × (GR/GRmax) (5)

where Ri is the inverted initial resistivity of the reservoir, ohm; H is the oil column height,
m; DGR is the relative GR value, %; GR is the measured natural gamma value, API; and
GRmax is the value of mudstone marker layer.
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Figure 8. Crossplots of resistivity and relative GR value of P Formation reservoirs.

4.3.2. Calculation of Water Production Rate of Water-Flooded Zone

Relative permeability is one of the basic parameters for analyzing the multiphase flow
in a reservoir. The water production rate can be calculated directly by using the relative
permeability [32]. The oil–water relative permeability ratio in the relative permeability
curve is relative to the water saturation. The relationship between resistivity and water
saturation can be obtained through the Archie formula. Thus, the relationship between
resistivity and water production rate can be established. In particular, m, n, a, and b in
the Archie formula are determined from core litho-electric experiment and Rw from water
analysis data statistics. In this study, a = 1.1, b = 1, m = 1.77, n = 1.9, formation water
resistivity Rw = 0.05 ohm.

Fw = Qw/(Q0 + Qw) = 1/
(

1 + B × kro

krw

× μw

μo

)
(6)

where Kro is the oil relative permeability, 10−3 μm2; Krw is the water relative permeability,
10−3 μm2; and μw/μo is the viscosity ratio of water to oil.

Sw =

[
abRw

RtΦm

] 1
n

(7)

where Rt is the resistivity of undisturbed formation, Ω·m; Sw is water saturation, decimal; a,
b, m, and n are lithology coefficient, cementation index, and saturation index in litho-electric
parameters, respectively; Φ is the effective porosity, decimal; and Rw is the formation water
resistivity, Ω·m.

As classified, the reservoirs with the porosity ∅ < 23 are Class III reservoirs, the
reservoir with the porosity of 23 < ∅ < 27 is a Class II reservoir, and the reservoir with
the porosity ∅ > 27 is a Class I reservoir. The relative permeability test was carried out
for each class of reservoirs (Figure 9). In Figure 9a, the oil–water two-phase flow area
is wide, the endpoint permeability is high, and the irreducible water saturation is low,
indicative of reservoirs with large and well-connected pores. In Figure 9b, the oil–water
two-phase flow area is narrower, the endpoint permeability is lower, and the irreducible
water saturation is higher than that in Figure 9a, indicative of reservoirs with relatively poor
physical properties, and small but moderately-connected pores. In Figure 9c, the oil–water
two-phase flow area is narrow and the endpoint permeability is low, indicative of sandstone
reservoirs with high shale content and poor connectivity. According to the Specification for
Logging Data Processing and Interpreting of Water-flooded Zone (SY/T 6178-2017) [31],
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the water cut of the water-flooded zone can be divided into: f w ≤ 10% (clastic rocks),
10% < f w ≤ 40% (low level), 40% < f w ≤ 80% (moderate level), 80% < f w < 90% (high
level), and f w ≥ 90% (ultra-high level); accordingly, by the water-flooding intensity, each
class of reservoir can be divided into non-water-flooded (oil zone), weakly water-flooded,
moderately water-flooded, and highly water-flooded. Based on the relative permeability
test, the relationship between water cut and water saturation is established for each class
of reservoirs, and the relationship between water saturation and resistivity (or resistivity
decline rate or RDR) under the experimental conditions is calculated from the Archie
formula. Therefore, the relational expression between water cut and RDR for each class of
reservoirs can be obtained (Figure 10a–c), and then the quantitative evaluation model of
water-flooded zones can be built. According to Formulas (2)–(5), the initial resistivity can
be determined from the basic logging parameters. Then, the difference between the initial
resistivity and the measured resistivity after water flooding is obtained, and the difference
(i.e., RDR) is brought into the relational expression between RDR and water cut (Figure 10),
so as to realize the quantitative evaluation of water-flooded zones. In Class I reservoirs,
those with RDR > 80% are extremely highly water-flooded zones, those with 69% < RDR <
80% are highly water-flooded zones, those with 41% < RDR < 60% are moderately water-
flooded zones, and those with RDR < 41% are weakly water-flooded or oil zones. In Class II
reservoirs, those with RDR > 68% are extremely highly water-flooded zones, those with 62%
< RDR < 68% are highly water-flooded zones, those with 43% < RDR < 62% are moderately
water-flooded zones, and those with RDR < 43% are weakly water-flooded or oil zones. In
Class III reservoirs, those with RDR > 57% are extremely highly water-flooded zones, those
with 49% < RDR < 57% are highly water-flooded zones, those with 37% < RDR < 49% are
moderately water-flooded zones, and those with RDR < 37% are weakly water-flooded or
oil zones.

  
(a) (b) (c) 

Figure 9. Oil–water relative permeability of classified reservoirs. (a) Class I reservoirs, (b) Class II
reservoirs, and (c) Class III reservoirs.

   
(a) (b) (c) 

Figure 10. Relationship between resistivity decline rate (RDR) and water production rate of classified
reservoirs. (a) Class I reservoirs, (b) Class II reservoirs, and (c) Class III reservoirs.
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According to the above classification criteria and the latest model established, water-
flooded zones in 177 reservoirs of 37 new wells in the P Formation of Kalamkas Oilfield
were identified. It is found that Class I reservoirs account for about 54%, Class II reservoirs
account for about 39%, and Class III reservoirs account for about 7%. The remaining oil in
the P Formation is mainly distributed in relatively poor Class III and Class II reservoirs
(Table 5).

Table 5. Water-flooded zones in classified reservoirs in P Formation, Kalamkas Oilfield.

Class of
Reservoirs

Proportion
Highly
Water-

Flooded

Moderately
Water-

Flooded

Weakly
Water-

Flooded

Non-Water-
Flooded

I 54% 60% 23% 7% 9%
II 39% 25% 31% 9% 33%
III 7% 2% 19% 15% 63%

5. Application

According to the research results, water-flooded zones in 315 reservoirs of 75 new
wells in the study area from 2019 to 2021 were evaluated, and the coincidence rate (Table 6)
of quantitative calculation of water production rate of water-flooded zones is as high as
91%. The interpretation results of some wells are inconsistent with the actual production
data, which is believed to attribute to the fact that the error of oil column height is amplified
in the zone close to the oil–water contact, so the calculation error of initial resistivity of oil
zone is large to affect the calculation accuracy of water cut.

Table 6. Interpretation results of some new wells in the P Formation.

Well Depth_T Depth_B
Class of

Reservoir
Regression
Resistivity

Calculated Water
Production Rate, %

Water-Flooding Level
Well Production

Data

XX28 790.9 793.2 II 7.74 32.2 Moderately water-flooded
fw = 62.9%XX28 794.7 801.2 II 7.02 85.0 Highly water-flooded

XX36 800.4 804.5 I 17.94 96.9 Highly water-flooded

fw = 94.1%
XX36 804.5 806.6 I 18.07 99.5 Highly water-flooded
XX36 811.0 812.7 I 17.21 92.5 Highly water-flooded
XX36 810.7 814.0 II 12.31 99.5 Highly water-flooded

XX46 816.3 817.6 II 6.08 12.2 Weakly water-flooded

fw = 57.6%

XX46 818.9 824.4 I 9.15 64.0 Moderately water-flooded
XX46 826.0 826.6 II 9.29 75.5 Moderately water-flooded
XX46 829.6 838.9 I 12.83 99.2 Highly water-flooded
XX46 840.5 841.0 II 4.42 67.8 Moderately water-flooded
XX46 842.0 842.8 III 2.50 −55.3 Non-water-flooded

XX37 787.2 790.7 II 8.28 89.05 Highly water-flooded
fw = 79.6%XX37 791.9 794.4 I 8.05 73.59 Moderately water-flooded

6. Conclusions

The resistivity is directly related to the water saturation, and the oil column height is
the reflection of the capillary pressure. The J-functions of grouped capillary pressure curves
are applied to the resistivity vs. oil column height crossplot to realize the classification
of reservoirs with an unclear porosity–permeability relationship. Oil column height and
GR are the key controls on the initial resistivity of the reservoirs in the study area. The
initial resistivity can be reconstructed by using the multiple regression method. The
relative permeability test is performed for the reservoirs. For each class of reservoirs, the
relationship between water cut and resistivity decline rate is established, and the water-
flooding intensity is finely divided. This method can help improve the accuracy of the
quantitative evaluation of water-flooded zones.

Field application reveals that the classification of sandstone reservoirs with a complex
porosity–permeability relationship and quantitative evaluation of water-flooded zones
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contribute a coincidence rate of more than 90%, which meets the required interpretation
accuracy of water-flooded zones in oilfields. However, this method yields a relatively low
accuracy in evaluating the water-flooded zones close to the oil–water contact.
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Abstract: The high-resolution seismic characterization of gas hydrate reservoirs plays an important
role in the detection and exploration of gas hydrate. The conventional AVO (amplitude variation
with offset) method is based on a linearized Zoeppritz equation and utilizes only the reflected wave
for inversion. This reduces the accuracy and resolution of the inversion properties and results in
incorrect reservoir interpretation. We have studied a high-resolution wave-equation-based inversion
method for gas hydrate reservoirs. The inversion depends on the scattering integral wave equation
that describes a nonlinear relationship between the seismic wavefield and the elastic properties of
the subsurface medium. In addition to the reflected wave, it considers more wavefields including
the multiple scattering and transmission during inversion to improve the subsurface illumination,
so as to enhance the accuracy and resolution of the inversion properties. The results of synthetic
data from Pearl River Mouth Basin, South China Sea, demonstrate the validity and advantages of the
wave-equation-based inversion method. It can effectively improve the resolution of inversion results
compared to the conventional AVO method. In addition, it has good performance in the presence of
noise, which makes it a promising method for field data.

Keywords: gas hydrate reservoir; wave-equation-based inversion; scattering integral theory; high-resolution

1. Introduction

Gas hydrate is an ice-like solid formed of water and gas. It is composed of a methane
molecule enclosed within a crystalline structure of water molecules [1–4]. There is abundant
methane in gas hydrate. The carbon stored in gas hydrate is about twice the total carbon
content of all fossil fuels (including coal, oil, and natural gas) [5]. The advantages of gas
hydrate make it a potential energy resource in the future. However, from the environmental
aspects, the methane in gas hydrate is a powerful greenhouse gas. It is 20–30 times more
potent at trapping heat in the atmosphere than carbon dioxide [6,7]. Climate and ocean
warming may reduce the stability of gas hydrates, leading to hydrate dissociation and thus
the release of methane into the ocean and overlying sediments. The released methane may
eventually reach the atmosphere and aggravate the greenhouse effect [6]. Thus, gas hydrate
reservoirs have a possible impact on climate change. The detection and exploration of gas
hydrate reservoirs are important from both the energy and environmental perspective.

The occurrence of gas hydrate is controlled by the geological environment. Sufficient
concentrations of methane are necessary to form the gas hydrate reservoir. The methane
may be generated by biological activities in sediments, and it may also migrate from the
organic matter at depth. Therefore, natural gas hydrate is most likely to be formed at
locations wherein active upward fluid migration occurs, such as oceanic and lacustrine
sediments [8]. In addition, gas hydrate in nature is usually found in areas with high
pressure and low temperature, such as the seafloor and permafrost sediments. The pressure
and temperature conditions in these areas can keep gas hydrate stable [9]. According to the
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geological environment and physical properties, the geological gas hydrate deposits can
be categorized into five major types [10]. The regionally disseminated low-concentration
hydrate is primarily found in mostly impermeable clays. In this case, methane hydrate
fills pores and/or displaces sediment grains to form crystals or nodules from a few tens
of meters below the seafloor to the base of the gas hydrate stability zone (GHSZ). The
saturation of methane hydrate is less than ~10%. The fracture-filling hydrate is usually
found in clay-dominated fracture sediments at non-vent sites. This type of hydrate is
distributed at a shallow depth (e.g., 50–300 mbsf) below seafloor with a low-to-moderate
saturation. In addition, the hydrate may be enriched at the base of the GHSZ in muddy
sediments. The saturation of this type of hydrate commonly increases abruptly, with depth
from the background value in the muddy sediments, to more than 10% near the base of
the GHSZ. The fourth type is concentrated hydrate at vent sites. This type of hydrate may
exist from near the seafloor to approximately 50 mbsf, or it may be as deep as ~160 mbsf.
The saturation ranges from 40% to >90%. The final type is concentrated hydrate in sandy
sediments. It may be found above the base of the GHSZ and is composed of gas hydrate in
thin sandy or silty beds bounded by sandy sediments. It may also be found in thick sandy
sediments that cross or near the base of the GHSZ.

Seismic technology plays an important role in the detection and exploration of gas
hydrate reservoirs. Seismic data have been successfully applied in the identification of
gas hydrate reservoirs together with other geophysical methods, including seismic facies
analysis. Yoo et al. have studied multichannel seismic reflection and well-log data from the
Ulleung Basin, East Sea [11]. These data have revealed several seismic features indicative of
gas hydrate occurrence, including the bottom-simulating reflector (BSR), seismic chimneys,
acoustic blanking, enhanced reflection below the BSR, and seafloor gas-escape features. The
BSR is formed by a strong impedance contrast between the overlying sediments containing
gas hydrate and the underlying sediments containing free gas [12,13]. It is usually parallel
to the seafloor and has high amplitude and reversed polarity with respect to the seafloor
reflection. However, the BSR does not necessarily translate into the existence of gas hydrate
because it might be present in the sediments without gas hydrate [14]. Seismic chimneys
are characterized by low-to-high, upward-bending internal reflections. The velocity inside
the chimney is higher than that in the surrounding sediments, which is caused by the
active migration of fluid gas into the GHSZ. The acoustic blanking in the seismic profile
may be attributed to the energy attenuation due to the presence of free gas or the poor
seismic energy penetration due to the strong reflection from a layer of gas hydrate. The
enhanced reflection below the BSR is correlated with the strong impedance contrasts due
to free gas accumulation below the BSR. When the upward-migrating gas escapes into
the water column through the seafloor pockmarks and mud mounds, gas seepage at the
seafloor can be found [15]. Riedel et al. have added an additional element into a regional
assessment strategy of gas hydrate occurrence by including the depositional environment
defined through seismic facies classes [16]. The seismic facies classification is attempted
using regional 2D seismic data and a 3D seismic volume, as well as core and log data from
two gas hydrate drilling expeditions carried out in the Ulleung Basin, East Sea, to conduct a
fully integrated gas hydrate assessment. Wu et al. have analyzed the drilling results in the
Shenhu Area, South China Sea [17]. In the case that free gas exists beneath hydrate deposits,
the frequency of the hydrate deposits will be noticeably attenuated, with the attenuation
degree mainly affected by pore development and free gas content. Thus, frequency can be
used as an important seismic attribute to identify hydrate reservoirs. These parameters
could indicate the occurrence of gas hydrate; however, they fail to quantify it.

Amplitude variation with offset (AVO) is a conventional technique for quantitative
reservoir characterization [18,19]. It can predict the elastic parameters of formation (P-wave
velocity, S-wave velocity, and density) from the seismic data. Then, the rock and fluid
properties of the reservoir (lithology, porosity, permeability, and saturation) can be esti-
mated from the predicted elastic parameters based on rock physics models. Chen et al.
applied AVO inversion to calculate the P- and S-wave velocities and density and then to
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estimate the gas hydrate and free-gas concentrations above and below the BSR interface.
The estimated gas hydrate and free-gas concentrations are at a 90% credibility level. The
results indicate that this method cannot provide enough accuracy for resolving the gas
hydrate and free-gas concentrations independently [20]. Ojha and Sain performed an
amplitude versus angle (AVA) modeling of seismic data from a BSR to calculate the P-
and S-wave velocities and then derived the saturation of gas hydrate with rock physics
modeling. The results can help to understand the origin of BSR [21]. Zhang et al. performed
AVO forward modeling and AVO attribute inversion to the seismic data from the Shenhu
area [22]. Their results confirmed that the AVO attributes depend on the content of gas hy-
drate and free gas. However, most of the current AVO method only considers the reflected
wave for inversion. It is built based on the approximation of the Zoeppritz equation [23,24].
The simplified equation indicates a linear relationship between the reflected wavefield
and the contrast variables of P- and S-wave velocities and density (i.e., ΔVP/VP, ΔVS/VS,
and Δρ/ρ). In fact, the seismic wavefield is usually non-linear with respect to the elastic
properties of the subsurface medium. Therefore, the conventional AVO method based on
the linearized Zoeppritz equation reduces the accuracy and resolution of the inversion
properties, resulting in incorrect reservoir interpretation.

Different methods have been proposed to improve the accuracy and resolution of the
conventional seismic inversion method. Alemie and Sacchi proposed a high-resolution
three-term AVO inversion by introducing a Trivariate Cauchy probability distribution. This
distribution can model the prior distribution of the AVO parameters with sparsity, thus
leading to a high-resolution estimate of subsurface models [25]. Zhang et al. introduced
low-frequency information to improve the resolution [26]. Niu et al. proposed a data-
driven method to improve the linear approximation of the conventional AVO inversion
method. Well-logging data were used to correct the inaccurate linearized AVO operators.
The results of synthetic and field data demonstrated that the accuracy and resolution of
the inverted results were improved using the proposed method [24]. Yi et al. proposed a
new method using stepwise seismic inversion and 3D seismic datasets with two different
resolutions [27]. The proposed method can track a thin gas hydrate-bearing sand layer
compared with the conventional seismic inversion method with a maximum resolution
of ~10 m. The gas hydrate distribution around the UBGH2-6 well in Ulleung Basin was
estimated successfully using their method.

In this study, we have studied a high-resolution seismic characterization of a gas
hydrate reservoir using a wave-equation-based method. Besides the reflected wave, more
wavefields including multiple scattering and transmission are considered in the inversion
process. We first present theories of the wave-equation-based inversion method. Then, a
synthetic model from Pearl River Mouth Basin, South China Sea, is used to demonstrate
the performance of this method in the high-resolution seismic characterization of the gas
hydrate reservoir. Finally, we discuss the obtained results and the advantages of this
method and provide the conclusions.

2. Methods

2.1. The AVO Inversion Method

The conventional AVO (amplitude variation with offset) inversion method is based
on the approximation of the Zoeppritz equation, which describes the change of reflected
amplitude with incident angle. The Zoeppritz equation is derived for the case of two half-
space media separated by a horizontal interface [28]. As we know, the half-space media
can be characterized by three elastic properties, namely P-wave velocity (VP), S-wave
velocity (VS), and density (ρ). When an incident P-wave hits the interface, it is split into
the reflected P- and S- waves and transmitted to the P- and S- waves. According to the
Zoeppritz equation, the reflection and transmission coefficients are functions of the incident
angle and the three elastic properties. Therefore, the elastic properties can be inverted
from the observed reflection coefficient, which is the basis of the AVO inversion method.
Considering the complexity of the Zoeppritz equation, some approximations are usually
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used to simplify the Zoeppritz equation and provide an intuitive understanding of the
relationship between reflection amplitude and elastic properties. One of the commonly
used approximations, the Aki and Richards approximation [28], is shown in Equation (1).
It assumes that the perturbation in the elastic properties is small.

RPP(θ) ≈ 1
2
(1 − 4γ2 sin2 θ)

Δρ

ρ
+

1
2

sec2 θ
ΔVP

VP
− 4γ2 sin2 θ

ΔVS

VS
(1)

where VP, VS, ρ, and θ represent the average VP, VS, ρ, and incident angle, respectively,
across the interface. ΔVP, ΔVS, and Δρ represent the change of VP, VS, and ρ, respectively,
across the interface. γ represents the ratio of VS to VP.

Equation (1) can be expressed in the following matrix form.

⎡⎢⎣ RPP(θ1)
...
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2
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1
2
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1
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ρ
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where M represents the number of incident angles. As seen from Equation (2), it describes
a linear relationship between the reflection coefficient and elastic properties. It can be
rewritten as

Gx = d (3)

where G is the linear operator defined by Equation (2), x the unknown elastic properties,
and d the input seismic data.

The objective function of the conventional AVO inversion method is built based on
Equation (3) and is shown as follows:

x = argmin‖d − Gx‖2
2 (4)

The elastic properties are easily obtained by solving Equation (4) using the least
squares algorithm.

As seen from Equation (2), the conventional AVO method is built based on the ap-
proximation of the Zoeppritz equation [23,24]. The simplified equation considers only
the reflected wave for inversion. It indicates a linear relationship between the reflected
wavefield and the contrast variables of P- and S-wave velocities and density (i.e., ΔVP/VP,
ΔVS/VS, and Δρ/ρ, respectively). In fact, the seismic wavefield is usually non-linear with
respect to the elastic properties of the subsurface medium. Therefore, the conventional AVO
method based on the linearized Zoeppritz equation reduces the accuracy and resolution of
the inversion properties, resulting in incorrect reservoir interpretation.

2.2. The Wave-Equation-Based Inversion Method

The wave-equation-based inversion is employed to realize the high-resolution seismic
characterization of the gas hydrate reservoir [29]. Given an initial subsurface model, the
wave-equation-based inversion method first simulates the seismic wavefields using the
given model and updates the model from the differences between the simulated wavefields
and real data. The seismic wavefields are simulated based on the scattering integral
equation for elastic waves [30,31]. As we know, the three elastic properties, namely VP, VS,
and ρ, can be expressed in terms of the elastic moduli as follows:

VP =

√
1
ρ
(

1
κ
+

4
3M

) (5)

VS =

√
1

Mρ
(6)
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where the compressibility κ is related to the bulk modulus K as κ = 1
K , and the shear

compliance M is related to the shear modulus μ as M = 1
μ . Assuming that the smooth

background medium (κ0, M0, ρ0) is known, the contrasts against the background (χκ , χM,
and χρ) are formulated as

χκ =
κ − κ0

κ0
(7)

χM =
M − M0

M0
(8)

χρ =
ρ − ρ0

ρ0
(9)

Therefore, the scattering integral equation for elastic waves in the frequency domain
is expressed by the contrast functions as

p(z, zs, ω) = p0(z, zs, ω) +
∫
D

G(z, z′, ω)χ(z′)p(z′, zs, ω)dz′ (10)

where p(z, zs, ω) represents the total seismic wavefield propagating in the true medium,
and p0(z, zs, ω) the incident wavefield propagating in the background medium. They are
excited by a source at zs and recorded at each depth z in the subsurface medium. The second
term on the right of the equal sign in Equation (10) represents the scattered wavefield field.
G(z, z′, ω) is the Green’s function. D defines the objective domain of interest. p0(z, zs, ω)
and G0(z, z′, ω) are pre-calculated using the known background medium. As seen from
Equation (10), the relationship between the total seismic wavefield and the elastic properties
of the subsurface medium is nonlinear. This nonlinearity indicates that multiple scattering
and transmission are considered for the inversion of medium properties, not only the
reflected wavefield. Therefore, the inversion method based on Equation (10) can improve
the accuracy and resolution of the inversion properties compared with the conventional
AVO method based on Equation (2). However, it has a higher computational cost.

According to Equation (10), the total wavefield p(z, zs, ω) is obtained once the contrast
function χ(z′) is known. After the total wavefield p(z, zs, ω) is calculated, the seismic data
pd(zr, zs, ω) recorded at the receiver zr are given as follows:

pd(zr, zs, ω) =
∫
D

G(zr, z, ω)χ(z)p(z, zs, ω)dz (11)

The wave-equation-based inversion scheme is built based on the above Equations (10)
and (11), and is implemented in an iterative manner by alternately updating the contrast
models with a current best knowledge of the total wavefield and then updating the total
wavefield with a current contrast model. The objective function of the contrast model
update is based on the misfit between actual and synthetic data and is shown as follows:

χ = argmin‖d(zr, zs, ω)− pd(zr, zs, ω)‖2
2 (12)

where d(zr, zs, ω) is actual seismic data and pd(zr, zs, ω) is synthetic data calculated by
Equation (11). The total wavefield in Equation (11) is the incident wavefield at the first
iteration and fixed at the current best estimate in the subsequent iterations.

The inversion process defined by the objective function in Equation (12) is unstable
because there are always some forms of noise in the actual seismic data. Therefore, a
regularization term is introduced to stabilize the inversion process. There are many different
regularization methods, such as Tikhonov regularization [32,33] and total variation (TV)
regularization [34] et al. We use a Sobolev norm-based regularization [35,36] which is
shown as follows:

W1
p = ∑

z
(∇χz · ∇χz + ε)p/2, ε > 0 (13)
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Equation (13) becomes TV regularization when p = 1. It becomes Tikhonov regu-
larization when p = 2. Therefore, the Sobolev norm-based regularization is a blend of
the Tikhonov regularization and the TV regularization. In this study, we set p to decrease
gradually from 2 to 1 in a logarithmic decreasing manner during the inversion process.
This can ensure the smoothness of the inverted models in the early iteration of inversion
and preserve the boundary of the models in the later iteration.

The regularization term can be added in an additive and multiplicative manner. Com-
pared with additive regularization, multiplicative regularization can avoid the selection of
a regularization parameter that balances the data misfit and regularization term. There-
fore, we select multiplicative regularization in this study. The final objective function is
defined as:

χ = argmin(‖d(zr, zs, ω)− pd(zr, zs, ω)‖2
2)(∑

z
(∇χz · ∇χz + ε)p/2) (14)

Once the contrast model is updated, the total wavefield is updated based on Equation (10)
by fixing the updated contrast model. However, the update of the total wavefield is not
realized at one time. Instead, it is updated iteratively by a Krylov subspace method in
Equation (15):

pn(z, zs, ω) = p0(z, zs, ω) +
n

∑
i=1

αiΦi(z, zs, ω) (15)

where αi is the weighting coefficient, and n is the number of iterations. Φi(z, zs, ω) is the
difference between two successive wavefields and is defined as follows [29]:

Φi(z, zs, ω) =
∫
D

G(z, z′, ω)[χi(z′)pi−1(z′, zs, ω)− χi−1(z′)pi−2(z′, zs, ω)]dz′ (16)

The weighing coefficients αi are solved when the calculated wavefields by Equations (10)
and (16) fit well. One more order of scattering is added in each iteration of the wavefield up-
date. All orders of scattering are considered until the last iteration in the inversion process.

After the total wavefields are updated, they are substituted into Equations (11) and (12)
again to obtain an improved estimate of the contrast models. This process is iterated until
the synthetic data fits well with the real data. Finally, characteristics (VP, VS, and ρ) of the
subsurface media are obtained by substituting the inversion models into Equations (5) and
(6). Figure 1 summarizes the workflow of the wave-equation-based inversion method. As
shown in Figure 1, the models and total wavefield are updated iteratively in an alternating
manner during the inversion process. The subsurface models are first updated given the
initial background models. Then, the wavefield is updated based on the updated models.
The two processes are repeated until the misfit between the real and synthetic seismic
wavefield is small. The total wavefield is regarded as the summation of the background
wavefield and scattering wavefield. One more order of scattering is considered at each
iteration. As more order scattering fields are included, the inversion models become closer
to the real models. Finally, the total wavefields used for inversion include all multiple
scattering and transmission.
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Figure 1. Workflow of the wave-equation-based inversion method.

3. Synthetic Model and Data

A synthetic model from Pearl River Mouth Basin, South China Sea, is used to verify
the wave-equation-based inversion method. In this section, we first present the geological
setting in the studied area and introduce how the synthetic model and data were derived.

3.1. Geological Setting

The Pearl River Mouth Basin is located in the northern part of the South China Sea.
The Baiyun Sag, located in the southern Pearl River Mouth basin, is the largest and deepest
subbasin in the Pearl River Mouth Basin (Figure 2). It has a water depth of 200~2000 m and
an area of more than 20,000 km2 [37–39]. The Baiyun Sag has experienced complex tectonic
evolution, including rifting, depression, and fault block rise and fall. The depositional
environment in the Baiyun Sag evolved gradually from continental into shallow marine
and continental slope deep water facies and finally, substantial deep-water sediments were
developed [40]. The formations from the base to top are the Wenchang Formation of Eocene,
the Enping Formation and Zhuhai Formation of Oligocene, the Zhujiang Formation, the
Hanjiang Formation, the Yuehai Formation of Miocene, the Wanshan Formation of Pliocene,
and the Quaternary sediment [41–43]. The Wenchang Formation and the Enping Formation
are the high-quality source rock that provide gas for the shallow gas hydrate deposits. The
former is lacustrine sediment during the rifting period. The latter is lacustrine sediment
during the fault-depression period. The Zhuhai Formation is a transitional deltaic deposit.
It is composed of littoral sandy mudstone. The Zhujiang, Hanjiang, Yuehai, and Wanshan
formations are shelf edge delta to slope-deep water deposits. They are composed of littoral
mudstone, marine mudstone, and neritic sandstone and mudstone. These strata develop
three sets of reservoir-cap assemblage. A large number of faults are developed in the
study area. They migrate the deep gas to the shallow gas hydrate stable zones. Some thin
gas hydrate reservoirs have been found in the shallow layer. They are distributed tens to
hundreds of meters below the seabed.
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Figure 2. Location of the studied area. The red line indicates the location of the 2D seismic line that
was used to build the geological model in Figure 3.

Figure 3. The geological model for synthetic data analysis. The black lines indicate the stratigraphic
horizons and the red lines indicate the faults.

3.2. Synthetic Model and Data

The geological structure of the Pearl River Mouth Basin has been investigated in
detail [37–43] in previous studies. Several geological models have been published. We used
a geological model (in Figure 3) [44] built based on the study of a 2D seismic line indicated
by the red line in Figure 1. The horizontal and vertical intervals of the model are both 5 m.
The seawater depth at this location is about 400~1000 m. As mentioned above, there are
nine different strata below the sea floor defined by their sedimentary environment. A large
number of faults are developed in the study area, indicated by the red lines in Figure 3. The
gas hydrate reservoir was formed in the Wanshan Formation and lies at a depth of 800 m
according to a bottom-simulating reflector in the seismic profile. The thickness of the gas
hydrate reservoir is about 15 m.
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Based on the well log information and fine velocity modeling in the study area [45,46],
the P-wave velocity (VP), S-wave velocity (VS), and density (ρ) are assigned to the geological
model to simulate seismic wavefields, as shown in Figure 4. Then, seismic wavefields are
modeled using the reflectivity method [47,48]. A total of 850 angle gathers are simulated.
Figure 5 shows examples of obtained seismic angle gathers at 1.25 km, 2.25 km, 3.25 km,
and 4.25 km.

Figure 4. The true models for the synthetic data: (a) P-wave velocity, (b) S-wave velocity, and
(c) density. The black lines indicate the stratigraphic horizons and the red lines indicate the faults.

 

Figure 5. The noise-free seismic angle gathers at (a) 1.25 km, (b) 2.25 km, (c) 3.25 km, and (d) 4.25 km
of the model.

4. Results

4.1. Inversion of the Synthetic Gas Hydrate Reservoir Model

To compare with the wave-equation-based inversion method, the conventional AVO
inversion method is first applied to all the input gathers to invert the P-wave velocity,
S-wave velocity, and density models. Then, the wave-equation-based inversion method
is performed. The background models used in the conventional AVO inversion and the
wave-equation-based inversion method are obtained by applying Gaussian smoothing
to the real models in Figure 4. The stratigraphic horizons in the background models are
almost unrecognizable, as shown in Figure 6.
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Figure 6. The background models used in the inversion method: (a) P-wave velocity, (b) S-wave
velocity, and (c) density. The black lines indicate the stratigraphic horizons and the red lines indicate
the faults.

Figure 7 shows the inverted P-wave velocity, S-wave velocity, and density models
using the conventional AVO method. The stratigraphic horizons and faults indicated by
the black and red lines in Figure 2 are added to the inverted models to compare with the
true models in Figure 2. The black lines indicate the horizons and the red lines indicate the
faults. As shown in Figure 7, the obtained models using the conventional AVO method are
smooth and have a low resolution. The gas hydrate reservoir cannot be well identified from
the inversion results. The inverted stratigraphic horizons indicated by the black arrows
do not agree well with the real ones. Figure 8 compares the true models (red lines) with
the inverted models (blue lines) at 2.25 km. As shown by the black arrows, it is difficult to
identify the boundary of the gas hydrate reservoir, especially for the S-wave velocity and
density models. The synthetic seismic angle gather after the final inversion at 2.25 km is
shown in Figure 9a. It has a large error with the real seismic gather in Figure 5b, as shown
in Figure 9b. This is because the conventional AVO inversion method only considers the
reflected wavefield and a linear relationship between the reflected wavefield and the elastic
properties of the subsurface medium, thus leading to lower accuracy and resolution.

Figure 7. The inverted models from the noise-free data using the conventional AVO method:
(a) P-wave velocity, (b) S-wave velocity, and (c) density. The black lines indicate the stratigraphic
horizons and the red lines indicate the faults. The inverted stratigraphic horizons indicated by the
black arrows do not agree well with the real ones.
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Figure 8. Comparison between the true model at 2.25 km and the inverted model from the noise-free
data using the conventional AVO method: (a) P-wave velocity, (b) S-wave velocity, and (c) density.
The black arrow indicates the location of the gas hydrate reservoir.

 

Figure 9. (a) Synthetic seismic angle gather at 2.25 km after the conventional AVO method, (b) differ-
ence between the real seismic gather in Figure 5b and synthetic seismic gather in (a).

The inverted models using the wave-equation-based inversion method are shown
in Figure 10. The gas hydrate reservoir is clearly reconstructed with high accuracy and
resolution. More details are shown in the inverted models than in the conventional AVO
inversion results in Figure 7. The inverted stratigraphic horizons agree well with the real
ones. Figure 11 compares the true models (red lines) with the inverted models (blue lines)
at 2.25 km. The inversion results are almost the same as the true models (red lines). The
synthetic seismic angle gather for the final inverted models in Figure 12a exhibits a good
agreement with the real seismic gather in Figure 5b. The error between the two gathers
is small, as shown in Figure 12b. As described in the theory of the wave-equation-based
method, the total wavefields including all multiple scattering and transmission are used for
inversion. This contributes to improving the subsurface illumination by considering more
wavefields. Therefore, the accuracy and resolution of the inversion results are improved.
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Figure 10. The inverted models from the noise-free data using the wave-equation-based inversion
method: (a) P-wave velocity, (b) S-wave velocity, and (c) density. The black lines indicate the
stratigraphic horizons and the red lines indicate the faults.

 
Figure 11. Comparison between the true model at 2.25 km and the inverted model from the noise-free
data using the wave-equation-based inversion method: (a) P-wave velocity, (b) S-wave velocity, and
(c) density. The black arrow indicates the location of the gas hydrate reservoir.

 

Figure 12. (a) Synthetic seismic angle gathers at 2.25 km after the wave-equation-based inversion
method, (b) difference between the real seismic gather in Figure 3b and synthetic seismic gather in (a).
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4.2. Reliability Analysis for the Noisy Data

Due to the sensitivity to noise of inversion methods, the reliability analysis for the
noisy data is studied to test the influence of noise on the inversion. The noisy seismic
gathers are generated by adding Gaussian random noise. The signal-to-noise ratio of noisy
gathers in Figure 13 is of 10 dB. Then, the wave-equation-based inversion method is applied
to the noisy data. Figure 14 shows the final inverted 2D models. As seen from the results,
the models are still well inverted in the presence of noise. The gas hydrate reservoir is easy
to identify from the inverted models. The inverted stratigraphic horizons still agree well
with the real ones. Figure 15 shows the true (red lines) and inverted (blue lines) models for
the seismic angle gather at 2.25 km. The boundary of the gas hydrate reservoir is clearly
characterized. The synthetic seismic angle gathers after the final inversion in Figure 16a are
similar to the real seismic angle gather in Figure 5b. The noise in the input angle gather is
not fitted, as shown in Figure 16b.

Figure 13. The noisy seismic angle gathers at (a) 1.25 km, (b) 2.25 km, (c) 3.25 km, and (d) 4.25 km of
the model.

 

Figure 14. The inverted models from the noisy data using the wave-equation-based inversion method:
(a) P-wave velocity, (b) S-wave velocity, and (c) density. The black lines indicate the stratigraphic
horizons and the red lines indicate the faults.
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Figure 15. Comparison between the true model at 2.25 km and the inverted model from the noisy
data using the wave-equation-based inversion method: (a) P-wave velocity, (b) S-wave velocity, and
(c) density. The black arrow indicates the location of the gas hydrate reservoir.

Figure 16. (a) Synthetic seismic angle gathers at 2.25 km after the wave-equation-based inver-
sion method, (b) difference between the real seismic gather in Figure 10b and synthetic seismic
gather in (a).

5. Conclusions

The high-resolution seismic characterization of gas hydrate reservoirs is important for
the accurate evaluation of gas hydrate resources, especially for thin gas hydrate reservoirs.
We have studied a wave-equation-based inversion method for gas hydrate reservoirs in this
work. It is based on the scattering integral wave equation, and a Sobolev norm-based regu-
larization is considered during the inversion. Compared to the conventional AVO method,
the wave-equation-based inversion method can characterize the gas hydrate reservoir with
high resolution by taking into account all the multiple scattering and transmission. The
advantages of this method are validated by a synthetic model from Pearl River Mouth
Basin, South China Sea. Thin gas hydrate reservoirs are distributed in the studied area.
They are buried shallowly and distributed tens to hundreds of meters below the seabed.
The results demonstrate that the wave-equation-based inversion method can provide a
higher resolution and accuracy than the conventional AVO inversion method. It shows
good performance in the presence of noise. This makes it a promising method for the
accurate evaluation of gas hydrate resources, especially for thin gas hydrate reservoirs.
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Abstract: Seismic, core, drilling, logging, and thin-section data are considered to analyze the reservoir
diversity in the east, middle, and west fan of the Liushagang Formation in the steep-slope zone
of the Weixinan Sag, Beibuwan Basin. Three factors primarily affect the reservoir differences for
steep-slope systems: (1) Sedimentary factors mostly control reservoir scales and characteristics
and the drainage system and microfacies. Massive high-quality reservoirs have shallow burial
depths. Channel development and sediment supply favor the formation of these reservoirs. The
sedimentary microfacies suggest fan delta plain distributary channels. (2) Lithofacies factors primarily
control reservoir types and evolution. The diagenesis of high-quality reservoirs is weak, and a weak
compaction–cementation diagenetic facies and medium compaction–dissolution diagenetic facies
were developed. (3) Sandstone thickness factors primarily control the oil-bearing properties of
reservoirs. The average porosity and permeability of high-quality reservoirs are large, the critical
sandstone thickness is small, the average sandstone thickness is large, and the oil-bearing capacity
is high. Furthermore, the reservoir prediction models are summarized as fan delta and nearshore
subaqueous fan models. The high-quality reservoir of the fan delta model is in the fan delta plain,
and the lithology is medium–coarse sandstone. The organic acid + meteoric freshwater two-stage
dissolution is developed, various dissolved pores are formed, and a Type I reservoir is developed. The
high-quality reservoir of the nearshore subaqueous fan model is in the middle fan, and the lithology
is primarily medium–fine sandstone. Only organic acid dissolution, dissolution pores, and Type I–II
reservoirs are developed. Regarding reservoir differences and models, the high-quality reservoir of
the steep-slope system is shallow and large-scale, and the reservoir is a fan delta plain distributary
channel microfacies. Weak diagenetic evolution, good physical properties, thick sandstone, and
good oil-bearing properties developed a Type I reservoir. The study of reservoir control factors of
the northern steep-slope zone was undertaken in order to guide high-quality reservoir predictions.
Further, it provides a reference for high-quality reservoir distribution and a prediction model for the
steep-slope system.

Keywords: Weixinan Sag; reservoir diversity; Liushagang Formation; northern steep-slope

1. Introduction

Since the concept was first proposed in the 1960s, the fan delta depositional system has
received increasing attention. With the development of research, studying the fan delta has
gradually deepened from the initial study of sediment characteristics and outcrops to the
sedimentary model and fan delta reservoirs [1–6]. With the gradual deepening of studies
on the fan delta depositional system, we found that the fan delta depositional system
is widely developed in the continental lacustrine basins in the early stage of structural
development and belongs to a type of accumulation of coarse debris [7–11]. Furthermore,
the nearshore subaqueous fan comes from the deep-water fan, primarily manifesting as
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a submarine fan, with coarse-grained sediment and developed in the lowstand system
tract [12–15]. Research on the nearshore subaqueous fan depositional system is becoming
increasingly hot and can be divided into inner, middle, and outer fans and shows different
characteristics according to the lithology, grain size, and structure [16–19]. The fan delta and
the nearshore subaqueous fan have similar sedimentation; however, as an unconventional
reservoir, some reservoir diversity problems of the nearshore subaqueous fan and fan
delta exist [20–25]. Based on the different sedimentary reservoir factors [26–29], this is a
comprehensive study on the reservoir diversity in the northern steep-slope zone of the
Weixinan Sag, Beibuwan Basin.

The Beibuwan Basin is a Cenozoic-faulted sedimentary basin under the background
of a Mesozoic regional uplift. After more than 40 years of exploration and development,
the Weixinan Sag of the Beibuwan Basin is currently proven to be a hydrocarbon-rich
sag [30–32]. Located on the northwest edge of the Beibuwan Basin, Weixinan Sag is
a primary battlefield for oil exploration and development in the western South China
Sea. The production situation of existing oil fields is challenging, and an urgent need
exists to find large-scale, high-quality reserves. Studies have defined the sedimentary
system and characteristics of the steep northern slope of the Liushagang Formation in
the Weixinan Sag. The Weixinan Sag was in the early stage of tectonic evolution during
the Liushagang Formation and developed a fan delta and nearshore subaqueous fan
sedimentary system [33]. However, different areas in the northern steep-slope zone of the
No. 1 fault in the Weixinan Sag are affected by large differences in burial depth, differences
in the overall sedimentary environment, and varying oil and gas reservoir types [34–36].
There are still many problems in the prediction of high-quality reservoirs in the northern
steep-slope zone. The specific influencing factors and the distribution law of high-quality
reservoirs are still unclear.

Fan delta and nearshore subaqueous fan deposits are developed in the Liushagang
Formation of the steep-slope belt to the north of the study area. Under the constraints
of general sedimentary facies, a series of high-quality reservoir distribution problems
exist in the northern steep-slope zone of the Weixinan Sag in the Beibuwan Basin. In this
contribution, we choose the slope belt of a faulted lacustrine basin to dissect the high-quality
reservoir and origin. (1) The abundant data show differences in reservoir development
in the northern steep-slope zone’s western, central, and eastern areas. (2) Through the
reservoir differences of different areas in the northern steep-slope zone, the reasons for
controlling the reservoir differences are clarified, and it is considered that the sedimentary,
lithofacies and sandstone thickness factors jointly control the reservoir differences. (3) By
studying the controlling factors of high-quality reservoirs in different areas, two high-
quality reservoir development models, a fan delta model and a nearshore subaqueous
fan model, are summarized to provide a corresponding basis for studying high-quality
reservoir distribution.

2. Geological Setting

The Beibuwan Basin to the north of Hainan Island, south of Guangxi, and connected
with the Yinggehai Basin in the west, is the primary petroleum-bearing basin north of the
south China Sea, with an area of approximately 39,000 km2 (Figure 1A). The entire basin
contains eight sags and three uplifts. The Weixinan Sag northwest of the Beibuwan Basin
has an area of 3000 km2 (Figure 1B). It is bounded by the Yuegui Uplift to the northwest,
the Weixinan Uplift to the southwest, and the Qixi Uplift to the east and southeast. The
Weixinan Sag is surrounded by mountains to the north and south and connects the east to
the west. The Weixinan Sag can be divided into three subsags: the A subsag to the north,
the B subsag in the middle, and the C subsag to the west [37–39]. In the Cenozoic era,
the Weixinan Sag experienced complex tectonic evolution activities and can be divided
into two stages of tectonic evolution: the rifting stage (the Changliu Formation to the
Weizhou Formation) and the depression stage (the Weizhou Formation to the Wanglougang
Formation) [40–43]. The fault activity is noticeable during the rifting period, and faults
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control the basin’s development. However, during the depression period, the fault activity
weakened or disappeared, and sedimentation controlled the basin development. Faults
are widely developed in the Weixinan Sag. The No. 1 fault system is developed in the
northern boundary area, and the No. 2 fault system is in the basin’s center (comprising
many en-echelon faults) (Figure 1C).

 

Figure 1. (A). Location map of sedimentary basins in the south China Sea. (B). Location map of the
Weixinan Sag and other sags in the Beibuwan Basin. The Beibuwan Basin is shown in (A). (C). The
division of the specific depositional system of the Liushagang Formation in the northern steep-slope
zone in the Weixinan Sag. The Weixinan Sag is shown in (B).
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The entire Cenozoic strata are presented in the Weixinan Sag, with a thickness of
6700 m, including continental sedimentary strata in the Paleogene and marine sedimentary
strata in the Neogene and Quaternary.

From the bottom to the top, the Changliu, Liushagang, and Weizhou Formations are
developed in the Paleogene, and continental sediments, such as lake and delta facies, are
primarily developed (Figure 2). The Changliu Formation (65.5–55.8 Ma) is typically less
than 300 m. The lithology is brownish-red and purplish-red sandy mudstone, mudstone,
sandy conglomerate, and pebbly sandstone. Alluvial fluvial facies deposits are developed.
In the early rifting stage, the Liushagang Formation’s strata (55.8–35 Ma) have a thickness
of approximately 2000 m [38,41]. Sequence stratigraphy analysis shows that the Liushagang
Formation can be divided into three members. The lower sequence is the Liushagang For-
mation’s third member, the middle sequence is the second member, and the upper sequence
is the first member. In the Liushagang Formation’s third member (T90–T86), the lake level
was low, and the lithology was pebbly sandstone mixed with thin mudstone. A set of fan
delta and shore shallow lake deposits developed. In the Liushagang Formation’s second
member (T86–T83), the lake level rose, and the lithology was dark mudstone, oil shale, and
thin sandstone, and a set of lacustrine deposits developed. In the Liushagang Formation’s
first member (T83–T80), the lake level dropped again. The lithology is medium–fine sand-
stone mixed with mudstone, and a set of braided river delta deposits developed [38,44–46].
The thickness of the Weizhou Formation (35–23 Ma) is large and the maximum is over
3000 m. The lithology is the interbedding of sandstone, conglomerate, and mudstone, and
the meandering river delta depositional system developed (Figure 2). The study area is in
the eastern, central, and western areas of the A subsag northwest of the No.1 fault system.
A set of fan delta sedimentary systems from the Yuegui Uplift developed.

 

Figure 2. Stratigraphic evolution histogram of the Weixinan Sag, Beibuwan Basin.
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3. Materials and Methods

Much three-dimensional seismic, core, logging, and thin-section data from identifi-
cation, analysis, and testing are used to analyze the reservoir diversity in the northern
steep-slope zone of the Weixinan Sag. All data are from the CNOOC Hainan Branch.

The three-dimensional seismic data cover 500 km2 of the entire northern steep-slope
zone, and the dominant seismic frequency is 30–35 Hz. The data are used for sequence
stratigraphic analysis, restoring paleogeomorphology and the drainage system, and study-
ing the scale of the sedimentary channel and system in the northern steep-slope zone of the
Weixinan Sag to distinguish the differences between the west, middle, and east areas [47].
Therefore, based on the identification of denudation areas, denudation/downlap areas, and
downlap areas, the source and sink areas should be considered in the restoration process.
The specific steps include: (1) eliminating the subsidence difference caused by post-rifting
tectonic movement; (2) dividing the source-to-sink systems; (3) recovering the denudation
volume in the denudation/downlap area of each source-to-sink system; (4) calculating the
denudation volume in the denudation area of each source-to-sink system; and (5) restoring
the geomorphology.

This area has 3 coring wells (Wells W1, W3, E1), and the overall coring length of the
Liushagang Formation section is more than 50 m. The analysis of typical core photos is used
for the lithologic discrimination and fine description of different sedimentary microfacies
to analyze the oil–gas properties of high-quality reservoirs. The Liushagang Formation
has more than 10 wells drilled. The statistics of lithology combination and sand content
for several wells are used for analyzing the sedimentary microfacies and the statistics of
reservoir sandstone thickness, clarifying the critical sandstone thickness for reservoirs.

Fourteen wells in the Liushagang Formation were identified by thin sections and
scanned by an electron microscope (Wells W1, W3, W5, C2, C3, E1, E2, E3) to analyze the
reservoir mineral type, reservoir type, reservoir diagenesis, and reservoir diagenetic facies
distribution (Wells W1, W2, W3, W4, W5, C1, C2, C3, C4, E1, E2, E3, E4, E5).

A few wells were analyzed for reservoir oil–gas properties, porosity, and permeability.
By combining various data using the theories of sedimentology, sequence stratigraphy,
and sedimentary reservoirs, this study summarizes the control factors of the differences
between high-quality reservoirs in the study area and predicts the development model of
high-quality reservoirs.

4. Results and Interpretations

Analysis of the exploration data on Weixinan Sag confirms noticeable differences
between the reservoirs in the western, central, and eastern areas of the northern steep-slope
zone of Weixinan Sag, including the following three sections:

4.1. Catchment-Fan Systems along the Steep-Slope Zone

(1) Drainage system

By combining 3D seismic data and denudation restoration, we restored the Wanshan
Uplift’s landform and drainage system [47]. The western and central areas have a large
source area and adequate material supply. The short-axis steep-slope source-to-sink and
drainage systems are developed. It is a composite drainage system, and the entire source
area is connected, showing a composite linear source.

The eastern source area is small, and the material supply is inadequate. The short-axis
slope source-to-sink system is developed, and the drainage system is undeveloped. It is a
single drainage system, and the entire source area is isolated, showing a single-point source
(Figure 3).

(2) Supply flux

Four aspects of the supply flux are counted: channel (slope), valley (width, depth, and
area), fault (activity), and sedimentary system (burial depth, sedimentary area, thickness,
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and extension length). The differences between the west, middle, and east areas are
compared (Figure 4 and Table 1).

 

Figure 3. Distribution map of paleogeomorphology and drainage system in different areas of the
northern steep-slope zone of the Weixinan Sag (The Aa, Bb, Cc, Dd and Ee are seismic section).

 

Figure 4. Interpreted seismic section Aa and Bb (SW–NE) of the gully and interpreted seismic section
Cc, Dd, and Ee (NW–SE) of the sedimentary system in the northern steep-slope zone of the Weixinan
Sag, Beibuwan Basin (the location of the section is shown in Figure 3).
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Table 1. The channel information of the west, middle, and east areas in the northern steep-slope zone
of the Weixinan Sag.

Area Number

Channel Valley Fault Deposition System

Slpoe/◦ Depth/m Width/m Area/m2 Activity/m/Ma
Deposition
Depth/ms

Deposition

Area/m2 Thickness/m Extend/m

West Area
V1-1 4 0.2 4 0.6 500

1850–2150 200 0.6 15.5
V1-2 3 0.15 3 0.5 550

Middle
Area

V2-1 6 0.2 4 0.7 300
2000–2250 300 0.45 25V2-2 7 0.2 6 0.65 200

V2-3 8 0.3 4 0.8 150

East Area
V3-1 8 0.25 3 0.5 700

2750–3000 125 0.3 10
V3-2 7 0.23 2.5 0.4 610

The western area is characterized by a small slope, medium gully, strong fault activity,
shallow burial depth of the sedimentary system, and medium-scale development. The
central area is characterized by a medium slope, large gully, medium fault activity, medium
burial depth of the sedimentary system, and large-scale development. The eastern area is
characterized by a large slope, small gully, strong fault activity, large burial depth of the
sedimentary system, and small-scale development.

The drainage system in the western area is developed, the sediment supply is large,
and the reservoir scale is medium to large. The central area is far from the fault, the sediment
supply is weak, and the reservoir scale is large. The eastern area has an undeveloped
drainage system, a small sediment supply, and a small reservoir scale. (Figure 4 and
Table 1).

(3) Sedimentary facies

Different sedimentary facies represent different sedimentary environments and control
the reservoir types [6,10,13,14,26,27]. Fan delta and nearshore subaqueous fan depositional
systems are developed in the study area.

In the Liushagang Formation of well W1 in the west, fan delta plain distributary
channel microfacies are developed. A large set of thick sandstone developed between
2100 and 2200 m (Figure 5). The core shows that the lithology is grayish-brown massive
oil-bearing medium sandstone. The reservoir’s thin section at 2118.1 m shows that the
content of matrix and muddy is low, and many primary and secondary pores are developed
(Figure 5). It is a suitable reservoir type.

The fan delta front underwater distributary bay microfacies are developed in the
middle area. The overall lithology is fine, the content of muddy and matrix is high, the
primary porosity is reduced, and the secondary porosity is increased, making it a medium
reservoir type.

During the Liushagang Formation of well E1 in the east, the middle fan branch channel
microfacies are developed (Figure 5). The core at 3049.37 m shows that the lithology is gray,
massive siltstone. The reservoir’s thin section at 3062 m shows that the matrix and muddy
content is high, and the proportion of primary pores is reduced and undeveloped. The
proportion of secondary pores is high, and a small amount is developed, making it a poor
reservoir type (Figure 5).

Fan delta plain distributary channel microfacies are developed in the west and are the
primary reservoirs. Fan delta front distributary bay microfacies are developed in the central
area, making them medium reservoirs. In the eastern area, nearshore subaqueous fan and
middle fan branch channel microfacies are developed, making it the worst reservoir.
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Figure 5. Single-well cores, logging, and reservoir thin sections in the west and east areas (well W1
(the well location is shown in Figure 1C) in the west, with good physical properties, and well E1 (the
well location is shown in Figure 1C) in the east, with poor physical properties).

4.2. Diagenetic Processes and Facies

(1) Diagenesis type

Various reservoir diagenesis types exist [48,49]. This study clarifies the differences
between diagenesis in the east, middle, and west areas regarding compaction, cementation,
and dissolution and guides the study of diagenetic facies. Through the analysis of typical
well thin sections in the northern steep-slope zone of the Liushagang Formation, the
west area is shallow buried and has weak compaction, and the detrital grains contact is
primarily the point contact (Figure 6A); interstitial materials are argillaceous cementation
(Figures 6F and 7A), and carbonate and siderite cementation also developed. The primary
pores are well developed, two-stage acid corrosion of meteoric freshwater + organic acid is
developed, and the corrosion pores are developed (Figure 6G).

The middle area is moderately buried and moderately compacted, and the detrital
grains are the line contact (Figure 6B); the interstitial materials are cemented by argillaceous,
carbonate, and clay minerals (Figures 6F and 7B), and the primary and secondary pores
are developed. The late organic acid dissolution is primary, and the dissolution pores are
medium (Figure 6H).

The east area is deeply buried, strongly compacted, and the detrital grain contact
is concave–convex (Figure 6C). The interstitial materials are cemented by argillaceous
and carbonate minerals (Figures 6F and 7C), and the secondary pores are primary. The
dissolution of meteoric freshwater is limited, and the dissolution of late organic acids is
primary, and the dissolution pores are small (Figure 6I).

(2) Diagenetic facies

Different diagenetic facies control different reservoir types and predict high-quality
reservoir development [27,28,50]. Diagenetic facies types were divided by thin section
observation, logging curve classification, and cross-plots of different logging curves. Five
types of diagenetic facies occur in the study area: Type I is weak compacted and cemented
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diagenetic facies, Type II is medium compaction and dissolution diagenetic facies, Type III
is strong compaction and medium dissolution diagenetic facies, Type IV is compaction and
argillaceous filling diagenetic facies, and Type V is dense compaction diagenetic facies.

 

Figure 6. The thin section and scanning electron microscope photographs of the diagenesis of a typical
well in the northern steep-slope zone of the Weixinan Sag. (A). Well W5, 2053.2 m, the point contact
of detrital grains. (B). Well C3, 3158.44 m, the line contact of detrital grains. (C). Well E3, 3566.74 m,
the concave–convex contact of detrital grains. (D). Well W3, 1935.9 m, the argillaceous cementation.
(E). Well C3, 3229.31 m, the carbonate cementation. (F). Well E3, 3571.82 m, the argillaceous and
carbonate cementation. (G). Well W1, 2152.65 m, the early meteoric freshwater leaching kaolinite.
(H). Well C2, 2677.16 m, the late organic acid dissolution of kaolinite. (I). Well E2, 3047.85 m, the
page-like accumulation of kaolinite and typical late dissolution.

 

Figure 7. The cement types and contents of west area (A), Middle area (B) and East area (C) of the
Liushagang Formation in the northern steep-slope zone of the Weixinan Sag.
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We mainly used two methods to divide diagenetic facies:

1. Typical thin sections and quantitative statistics

Through thin-section observation of typical wells, we have summarized the character-
istics of five types of diagenetic facies: Type I, weak compacted and cemented diagenetic
facies (weak compacted, many primary pores are developed, porosity > 20%); Type II,
medium compaction and dissolution diagenetic facies (the primary and secondary pores
are developed, the porosity ranges from 15% to 20%); Type III, strong compaction and
medium dissolution diagenetic facies (strong compacted, the secondary pores are de-
veloped, the porosity ranges from 10% to 15%); Type IV, compaction and argillaceous
filling diagenetic facies (strong compacted, the content of matrix and muddy is high, the
porosity ranges from 6% to 10%); and Type V, dense compaction diagenetic facies (strong
cementation, a small amount of secondary pores are developed, porosity < 6%).

2. Logging curve and cross-plot identification (GR, RD, DEN, CNC, AC)

The range of logging curve values of different diagenetic facies types can be deter-
mined through the cross-plots of logging curves. In combination with AC, CNC, DEN, RD,
and GR logging curves, we divided the diagenetic facies in the study area (Table 2).

Table 2. Typical logging curves of reservoir diagenetic facies.

Diagenetic Facies Type AC/(um/S) CNC/(v/v) DEN/(g/m3) RD/(Ω/m) GR/(API)

Type I weak compacted and cemented diagenetic facies 100–130 0.3–0.5 2.0–2.3 0.7–6 40–60

Type II medium compaction and dissolution diagenetic facies 70–90 0.1–0.2 2.3–2.5 5–20 50–75

Type III strong compaction and medium dissolution
diagenetic facies 60–70 0.05–0.15 2.4–2.6 20–45 70–85

Type IV is compaction and argillaceous filling diagenetic facies 70–90 0.1–0.2 2.3–2.5 5–20 80–95

Type V is dense compaction diagenetic facies 60–70 0.05–0.15 2.4–2.6 20–45 90–110

1. Type I weak compaction and weak cementation facies: high GR, AC, and CNC and
low RD and DEN.

2. Type II medium compaction medium dissolution facies: high GR, AC, and CNC and
low RD and DEN.

3. Type III strong compaction medium strong dissolution facies: high GR, AC, and CNC
and low RD and DEN.

4. Type IV compaction argillaceous filling facies: low GR, CNC, and AC and high RD
and DEN.

5. Type V tight cementation facies: low GR, CNC, and AC and high RD and DEN
(Table 2).

Combined with various diagenetic facies, we studied the diagenetic facies in different
areas by connecting wells. The west area primarily develops thick massive pebbly sand-
stone with Type I weak compaction and cementation diagenetic facies, Type IV compaction
argillaceous filling diagenetic facies at the root, and Type V dense cementation diagenetic
facies at the thin-front sandstone (Figure 8).

The middle area is dominated by Type II medium compaction and dissolution dia-
genetic facies and Type III strong compaction and medium dissolution diagenetic facies.
Unlike the west area, Type V tight cemented diagenetic facies are more developed (Figure 8).

The east area is dominated by Type III strong compaction and medium dissolution
diagenetic facies of an underwater distributary channel sandstone reservoir (Figure 9). The
thin layer primarily comprises Type V dense cemented diagenetic facies.
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Figure 8. The diagenetic facies correlation section from wells W1 to C4 showing the diagenetic
evolution of the west and middle areas in the Weixinan Sag (the section location is shown in Figure 1).

 

Figure 9. The diagenetic facies correlation section from wells E1 to E3 showing the diagenetic
evolution of the east area in the Weixinan Sag (the section location is shown in Figure 1).

4.3. Porosity, Permeability, and Oil Saturation

(1) Porosity and permeability

Through physical property statistics, the physical property characteristics of the three
areas in the steep-slope zone of the Weixinan Sag are as follows.
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The porosity of the western area ranges from 0.6% to 28.5%, averaging 15.1% (Figure 10A).
The permeability is between 0.01 and 4481 mD, averaging 184.4 mD (Figure 10B). The
porosity of the central area ranges from 0.3% to 25.6%, averaging 12.7% (Figure 10A),
and the permeability is between 0.01 and 2335 mD, averaging 62.1 mD (Figure 10B). The
porosity of the eastern area ranges from 1.7% to 13.6%, averaging 8.8% (Figure 10A), and
the permeability is between 0.06 and10.2 mD, averaging 0.97 mD (Figure 10B).

 
Figure 10. The relationship between (A) porosity and (B) permeability and depth in the western,
central, and eastern areas.

Further, we divided these reservoirs into different types by adopting the following criteria:

1. Type I conventional reservoir: porosity > 12% and permeability > 10 mD;
2. Type II low permeability reservoir: porosity range from 6% to 12% and the permeabil-

ity is between 1 and 10 mD;
3. Type III tight reservoir: porosity < 6%, permeability < 1 mD (Table 3).

Table 3. The reservoir classification standards table.

Reservoir Type Porosity/(%) Permeability/(mD)

Type I
Conventional Reservoirs >12% >10 mD

Type II
Low Permeability Reservoirs 6–12% 1 mD–10 mD

Type III
Tight Reservoirs <6% <1 mD
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(2) Oil saturation

First, the reservoir grade controls the reservoir’s oil–gas properties, and we clarified the
relationship between different reservoirs and oil saturation. The western region primarily
developed Type I conventional reservoirs, with oil saturation from 35 to 90%. In the central
area, Type II low permeability reservoirs are developed, with Type III tight reservoirs
developed around them. The oil saturation is 20–68%. In the eastern region, the range of
Type I conventional reservoirs is small, and most areas develop Type II low permeability
reservoirs and Type III tight reservoirs with oil saturation of 10–45%. (Figure 11).

Sandstone thickness is another crucial factor controlling oil saturation. In the northern
steep-slope zone of the Weixinan Sag, the critical sandstone thickness (the oil saturation in
most areas exceeding the critical thickness is more than 50%) in different areas is determined
from the statistical analysis of sandstone thickness and oil saturation in the western, central,
and eastern areas. The critical sandstone thickness in the west area is the smallest at
approximately 3 m, while that in the middle area is medium at approximately 5 m and that
in the east area is the largest at approximately 8 m (Figure 12A,B).

Simultaneously, we studied the distribution of the average sandstone thickness in
different areas. The sandstone thickness in the west is the largest (average sandstone
thickness 40 m), and the sandstone thickness in the middle area is medium (average
sandstone thickness 25 m). The sandstone thickness in the east is the thinnest (average
sandstone thickness < 20 m) (Figure 13).

The critical sandstone thickness in the western region is small, the average sandstone
thickness is large, and the oil-bearing property is the best. The critical sandstone thickness
in the central region is medium, the average sandstone thickness is medium, and the
oil-bearing property is medium. The critical sandstone thickness in the eastern region is
large, the average sandstone thickness is small, and the physical property is the worst.

Figure 11. The oil saturation characteristics of different reservoirs.
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Figure 12. (A) Statistical relationship between critical sandstone thickness and oil saturation in
different areas of the northern steep-slope zone of the Weixinan Sag. (B) Sandstone thickness and
oil–gas bearing analysis of typical well logging in different areas.

 

Figure 13. Average sandstone thickness in different areas of the Liushagang Formation in the northern
steep-slope zone of the Weixinan Sag (with an average of 40 m in the west, 25 m in the middle, and
20 m in the east).
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5. Discussion

Combined with the reservoir differences in different areas, the control factors and
models of high-quality reservoirs were studied, and finally, the distribution of high-quality
reservoirs was predicted.

5.1. Factors Controlling Reservoir Quality

For the steep-slope sedimentary system, comparing the reservoir differences in the
western, central, and eastern areas of the Weixinan Sag, macro-to-micro-reservoir control
factors are summarized. It is considered that sedimentary, lithofacies and sandstone
thickness factors jointly control the differences between reservoirs.

Sedimentary factors are macroscopic aspects of reservoir development. Different sedi-
mentary environments control different reservoir scales and types, primarily including the
drainage system and sedimentary microfacies. The dominant sedimentary characteristics
of the steep-slope sedimentary system are, to a considerable extent, shallow burial depth,
adequate material supply, large reservoir scale, and the development of microfacies in the
distributary channel of fan delta plain.

Lithofacies factors play a decisive role in high-quality reservoirs, primarily controlling
high-quality reservoirs from microscopic distribution, including diagenesis and diage-
netic evolution. The dominant lithofacies characteristics of high-quality reservoirs in the
steep-slope sedimentary system are weak diagenesis and diagenetic evolution, developing
Type I reservoirs.

The sandstone thickness factor controls the reservoir’s oil-bearing property, including
porosity, permeability, and oil saturation. The dominant sandstone thickness characteristics
of the steep-slope sedimentary system are larger average sandstone thickness, smaller
critical sandstone thickness, and higher oil-bearing properties.

5.2. Models of High-Quality Reservoirs

In combination with the reservoir differences and controlling factors in different
areas, high-quality reservoir prediction models for different sedimentary systems were
established. Fan delta sedimentary systems were developed in the western and central
areas, and fan delta reservoir prediction modes were developed.

The characteristics of the fan delta reservoir model are as follows. It is a Type I
reservoir in the fan delta plain. The lithology is medium–coarse sandstone containing a
small amount of gravel. The two-stage acid fluid of organic acid + meteoric freshwater
is active, the dissolution is strong, and the dissolved material migrates out of the system.
Intergranular, intragranular, and matrix dissolved pores are developed, and the physical
properties are the best. The Type II reservoir is in the fan delta front, the lithology is
medium–fine sandstone, and argillaceous fine sandstone can be seen in the outer front
area. The clay matrix and debris contents are high, and only organic acid dissolution is
developed. The Type III reservoir is in the pre-delta, comprising mudstone, fine grain size,
poor sorting, high shale content, compaction, and mostly tight layers (Figure 14A).

The nearshore subaqueous fan sedimentary system in the eastern areas belongs to the
nearshore subaqueous fan prediction model. The reservoir characteristics of this model
are as follows. The Type I reservoir is located in the middle fan and is dominated by
medium–fine sandstone, with only organic acid fluid, intergranular, intragranular, and
matrix dissolution pores developing. The physical properties are the best. The Type II
reservoir is located in the inner and middle fan edge and is dominated by medium–fine
sandstone and argillaceous fine sandstone. Organic acid fluid dissolution is weakened,
argillaceous and mica contents are high, authigenic clay mineral content is high, and clay
mineral intercrystalline pore development and the physical properties are moderate. The
Type III reservoir is in the outer fan area, primarily mudstone, with a fine grain size, poor
sorting, high shale content, compaction, and mostly dense layers (Figure 14B).

258



Energies 2023, 16, 804

 

Figure 14. Reservoir prediction model of the (A) fan delta and (B) nearshore subaqueous fan in the
Weixinan Sag.

5.3. Implications for Reservoir Development along the Steep-Slope Zone

Through the main controlling factors and development models of reservoirs in dif-
ferent areas, we predicted the distribution characteristics of high-quality reservoirs in the
study area. In the western area, sweet spot reservoirs are distributed surrounded by wells
W1 and W3, and Type I conventional reservoirs and Type II low permeability reservoirs are
developed around them. A small number of Type III tight reservoirs is distributed in the
edge area, mainly developing oil layers and dry layers.

In the central area, well C3 in the sweet spot reservoir’s distribution area is small. The
Type I conventional reservoir and Type II low permeability reservoir are widely distributed,
and the Type III tight reservoir is slight. It develops oil, oil–water, and dry layers.

In the eastern area, with well E5 and E3 as the center, sweet spot reservoirs and
Type I conventional reservoirs are developed around them, and Type II low permeability
reservoirs are developed around them. Type II low permeability reservoirs account for the
largest proportion, and Type III tight reservoirs are less distributed in the marginal area,
developing oil, water, and dry layers (Figure 15).

The shallowly buried western area is dominated by Type I reservoirs with high oil-
bearing properties, the moderately buried central area is dominated by Type II reservoirs
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with medium oil-bearing properties, and the deep-buried eastern area is dominated by
Type II and III reservoirs with low oil-bearing properties.

 

Figure 15. The high-quality reservoirs in the northern steep-slope zone of the Weixinan Sag.

6. Conclusions

1. The Liushagang Formation in the Weixinan Sag of Beibuwan Basin develops a
steep-slope sedimentary system with different reservoir characteristics in the west, middle,
and east areas. Integrating the reservoir variety in different areas, we summarize the
controlling factors and development models for high-quality reservoirs and finally predict
the location of high-quality reservoirs.

2. Combined with the reservoir differences between the western, central, and eastern
areas, the macro-to-micro-reservoir controlling factors of the steep-slope system are de-
fined. Sedimentary, lithofacies, and sandstone thickness factors jointly control the reservoir
differences. The sedimentary factor is a prerequisite for affecting reservoirs, controlling
their scale, material source, and type. Lithofacies factors play a decisive role in high-quality
reservoirs. Different lithofacies control the diagenesis and diagenetic evolution of reservoirs.
Sandstone thickness plays a significant role in the exploration of high-quality reservoirs,
with different sandstone thicknesses controlling the oil-bearing properties. High-quality
reservoirs in the steep-slope systems are characterized by shallow burial depths, adequate
material supply, weak diagenesis, shallow diagenetic evolution, large sandstone thickness,
and developing Type I reservoirs.

3. The reservoir prediction models for fan delta and nearshore subaqueous fans are
summarized. The high-reservoir for the fan delta model is the fan delta plain. Organic acid
+ meteoric freshwater dissolution is developed, all types of dissolved pores are developed,
and it has the best physical properties. The high-reservoir of the nearshore subaqueous
fan model in the middle fan develops only organic acid dissolution, all types of dissolved
pores develop, and the physical properties are moderate.
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Abstract: A reservoir with a thickness less than 0.5 m is generally considered to be a thin reservoir,
in which it is difficult to directly identify oil-water layers with conventional logging data, and
the identify result coincidence rate is low. Therefore, a support vector machine method (SVM) is
introduced in the field of oil-water-dry layer identification. The basic approach is to map the nonlinear
problem (input space) to a new high-dimensional feature space through the introduction of a kernel
function, and then construct the optimal decision surface in the high-dimensional feature space and
conduct sample classification. There are plenty of thin reservoirs in Wangguantun oilfield. Therefore,
63 samples are established by integrating general logging data and oil testing data from the study
area, including 42 learning samples and 21 prediction samples, which are normalized. Then, the
kernel function is selected, based on previous experience, and the fluid identification model of the
thin reservoir is built. The model is used to identify 21 prediction samples; 18 are correct, and
the prediction accuracy reaches 85.7%. The results show that the SVM method is feasible for fluid
identification in thin reservoirs.

Keywords: support vector machine; thin reservoir; fluid identification; Wangguantun oilfield

1. Introduction

The oil fields previously developed in China are now entering the “double extra-high”
development stage, with a high water cut and a high recovery degree, and the oil field
output continues to decline. In the early stages of development, the main oil layer con-
tributes to the main output of the reservoir, while the thin oil layer is labeled as “poor
physical property” and “poor production” due to its own physical conditions [1], and is
often not given priority in a development plan. In order to ensure the stable production
of old oilfield areas, many oil fields transfer to explore potential objects and change the
development mode. The potential of non-major oil reservoirs, such as thin and differential
oil reservoirs, cannot be ignored [2–4]. For example, the proven geological reserves of
medium-thin and low-margin oil reservoirs in Sazhong Development Zone of Daqing
Changyuan are more than 300 million tons, accounting for 2/5 of the total geological
reserves. The exploitation and utilization of the medium-thin and low-margin oil reservoirs
have contributed to the production of Changyuan and provided a guiding direction for the
production growth of old block. The exploitation and utilization of the medium-thin and
low-margin oil reservoirs have contributed to the production of Changyuan and provided
a guiding direction for the production growth of old block.

This paper takes the thin oil layer of the third member of the Shahejie Formation in
the Guan187 area as the research object. The main oil-producing reservoirs in the Guan187
area are the first member of the Shahejie Formation and the third member of the Shahejie
Formation of Paleogene. In recent years, the water content of the block has been high and
liquid production has been low, and most of the oil wells have been shut down at low
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energy. There are a lot of potential reservoirs in the three oil formations of the third member
of the Shahejie Formation, which can be interpreted as a dry reservoir, a low yield reservoir,
and a poor oil reservoir, which are suitable for the research aim of this paper. In this paper,
the identification method of a thin differential reservoir is established by comprehensively
using various logging curves. This research can play a key role in the future development
of unutilized reserves of similar reservoirs.

For most thin oil layers, the 2.5 m and 4.4 m apparent resistivity and spontaneous
potential charts can distinguish between oil and water layers. Liu Jiang [5] adopted the
conventional identification method to establish the four relationships between the oil layer,
the water layer, and the dry layer, to establish the interpretation template, determine the
lower limit value of thin differential oil layer, and identify it. The identification results
have a high coincidence rate. Guo Hongyan [6] proposed an effective method for the fluid
identification of thin differential reservoirs. Carbon-oxygen ratio energy spectrum logging
was used to improve the interpretation accuracy of thin differential reservoirs. The inter-
pretation chart was drawn combined with spontaneous potential, and the interpretation
results were highly consistent with the oil test results. Shan Xuguang [7] used the Fourier
spectrum method, the resolution matching method, and other methods for comparative
processing to improve the resolution of thin layer identification, more accurately restore the
real logging value of thin oil layer, and make the prediction results more in line with reality.
Tang Hong [8] used variance functions to correct logging curves, improve logging identifi-
cation resolution, and accurately interpret thin differential oil formations. Hou Jun [9] used
wave impedance inversion to simulate the deep lateral resistivity prediction reservoir sand
body and effectively identify the thin sand body with a thickness of 0.5 m.

For thin reservoirs, the logging response value of the target layer is greatly affected
by the surrounding rock. It is difficult to quantitatively identify oil and water layers by
conventional logging interpretation methods. Under the conditions of very limited sample
data, it is necessary to seek a method that can integrate various logging and geological
information to identify oil and water. Because the lithology of the reservoir is complex, its
shale content is high, and the reservoir is mainly thin interbedded, resulting in the logging
response being distorted and affected to different degrees. The identification of oil and
water layers is difficult, the log interpretation coincidence rate is low, and the traditional
empirical log interpretation is gradually unable to meet the production needs. Therefore,
this paper proposes the artificial intelligence method of support vector machine (SVM) to
identify thin layers.

Support vector machine (SVM) is a machine learning algorithm proposed by VAPNIK
in the mid 1990s [10,11]. It is a pattern classifier based on VC dimension theory of statistical
learning theory and structural risk minimization principle [12]. It has the advantages
of complete theory, strong adaptability, global optimization, a short training time, and
great generalization performance. It can successfully solve the “dimensionality disaster”
problem in traditional learning methods, and has been widely used in pattern recognition,
regression estimation, reservoir prediction, and other fields, which are research hotspots in
the field of machine learning.

2. Overview of Research Area

The study area is Guan187 area in Wangguantun oilfield, south area of Huanghua
Depression. Huanghua Depression is located in the central part of Bohai Bay Basin with
a total area of 1.7 × 104 km2. It is adjacent to Yanshan Fold in the north, Cangxian Uplift
in the west, and Chengning Uplift and Bozhong Depression in the southeast. It is spread
in a long strip in the direction of NEE-SW, and the width of the depression is up to 70 km.
Wangguantun oilfield is located on the Kongdian tectonic belt in the southern area of the
Huanghua Depression, and is divided into two parts by the Kongdong fault zone [13–15].
It is adjacent to Cangdong Depression in the north, the Liupu tectonic belt in the Xiaoji fault
in the south, and the Changzhuang Depression in the east. The Guan187 area is located in
the middle of Wangguantun oilfield and is on the east side of the Kongdong fault zone. It

265



Energies 2023, 16, 1638

contains two major development fault blocks, Guan187 and Guan913, with an area of about
9.6 km2 (Figures 1 and 2). Among them, the third member of Shasan-3 contains a large
number of non-major formations, such as low-producing and thin oil formations, which
are the main research objects of this paper.

 

Figure 1. The tectonic location of study area.

 

Figure 2. Top structural map of Es33 in Guan187.
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Located in the east of the Kongdong fault zone and controlled by the Kongdong fault,
the Guan187 area is high in the north and low in the south, and its interior is divided by
several faults [16,17]. The whole study area is divided into the northern Guan187 fault
block and the southern Guan913 fault block by the central fault. The highest point of the
structure in the whole area is near well G187, which gradually decreases to the four sides,
forming an anticlinal trap. There is a secondary high near Wang 34-2, which gradually
decreases to the four sides (Figure 2).

The target horizon of this paper is the third oil formation of the third member of
Shahejie Formation, which belongs to the Shahejie Formation. The lower strata are the
Paleogene Kongdian Formation, and the upper strata are the Dongying Formation, Guantao
Formation, and Minghuazhen Formation. In the Shahejie Formation, the lower part of the
first member of the Shahejie Formation and the third member of the Shahejie Formation
are the main oil-producing reservoirs in this area. The third member of the Shahejie
Formation can be subdivided into three oil groups. Affected by paleotopography, strata in
the study area show a trend of thickening in the south and thinning in the north, with large
thicknesses in low parts and thin thicknesses in high parts as a whole. The thickness of
sandstone in the reservoir also has a certain thinning trend. There are a large number of thin
layers of light green fine sandstone and argillaceous siltstone in the third oil formation of
the third member of the target formation, which are mainly characterized by “mud-coated
sand”. The upper part of the Sha32 oil Formation contains a set of stable volcanic rock
sedimentary layers, and the lower part of the Zao 0 oil Formation of the first member of the
Kongdian Formation is lake deposition, with a set of stable paste rock layers. Therefore, the
target interval can be accurately identified and divided. Most of the wells can be drilled
into the third oil group of the third member of the Shahejie Formation. In some areas, due
to the influence of the central fault, the target strata have a formation loss phenomenon to
varying degrees (Table 1).

Table 1. Sedimentary characteristics of Guan187 of Wangguantun oilfield.

Stratigraphic System
Oil Group Lithologic Character

System Series Group Section

Neogene Pliocene Minghuazhen
Formation

Light gray green, gray green sandstone, brown,
brown red mudstone

Miocene Guantao
Formation

Relatively thick light green, gray white sandstone,
mixed with gray green, purple mudstone

Paleogene

Oligocene

Dongying
Formation

Gray argillaceous siltstone, mudstone, the lower
mudstone is rich in ostracoda fossils

Shahejie
Formation

Sha1 It is mainly composed of biological limestone and
dolomitic limestone, with oil shale and mudstone

Sha2 Light green and gray sandstone interbedded with
purple red and gray mudstone

Sha3

Sha31 Biolithite limestone

Sha32 Thick layer volcanic rock segment, dark basalt

Sha33 Gray mudstone, mixed with thin layer of light
green fine sandstone, medium sandstone

Eocene Kongdian
Formation

Kong1

Zao 0 Huge thick layer of paste rock

Zao I Brown red mudstone, mixed with brown siltstone,
fine sandstone

Zao II
It is mainly composed of gray-brown coarse

sandstone and pebbled sandstone, mixed with
gray-green and purplish red mudstone

Zao III

It is mainly composed of brown fine sandstone,
coarse sandstone and pebbled sandstone, mixed

with gray-green and purple-red mudstone, and the
bottom is mainly purple-red mudstone

Zao IV Grey sandstone, brown red mudstone

Zao V Grey sandstone, brown red mudstone
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3. SVM Classification Principle

Support Vector Machine (SVM), first proposed by Vapnik, is a new machine learning
method based on statistical theory [18]. The basic approach is to map the nonlinear problem
(input space) to a new high-dimensional feature space by introducing a kernel function,
and then construct the optimal decision surface in the high-dimensional feature space
and conduct sample classification (Figure 3). Support vector machines (SVM) have the
advantages of high accuracy, fast speeds, strong versatility, and perfect theory when solving
nonlinear problems related to research targets and multiple uncertain features [19].

Figure 3. Support vector machine (SVM) classification principle [19].

SVM’s core idea is that, for a given learning task with a limited number of training
samples, there is a trade-off between the accuracy of the given training set and machine
capacity with the preferable generalization capability [20]. Since the final solution of the
SVM is a convex optimization problem, the obtained solution must be the global optimal
solution, which is not found in other algorithms, including neural networks.

This paper uses the support vector machine (SVM) algorithm with strong nonlinear
processing ability to classify and identify thin layers. The structure diagram of the support
vector machine algorithm and the thin layer division process are shown in Figures 4 and 5.
The implementation process of the algorithm is as follows: the known samples are selected
to form learning samples to train the model, so as to establish the thin layer quantitative
recognition model; the prediction model is verified by the test samples; and the thin layer
of unknown samples is predicted by the verified prediction model.

Figure 4. Structure chart of the support vector machine (SVM) method.
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Figure 5. Flowchart of the support vector machine (SVM) method.

3.1. Two-Class SVM

Assume that sample set (xi, yi), i = 1, 2, · · · , n, xi ∈ Rd, yi ∈ y = {+1,−1}. For
the case of a linearly separable sample set separated by a hyperplane. Remember the
hyperplane w·x + b = 0, where w is the normal line of the classification surface, b is the
outlier that represents the position of the modified normal with respect to the origin [21].
The optimal hyperplane not only separates the two types of samples error-free, but also
maximizes the classification interval. The problem of optimal hyperplane construction can
be translated to calculate the minimum of the formula{

ϕ(w) = 1
2 ‖ w ‖2

s, t, yi(xi·w + b) � 1 i = 1, 2, · · · , n
(1)

The problem can also be transformed into a simpler dual problem to calculate the
maximum of the formula:⎧⎪⎪⎨⎪⎪⎩

Q(α) =
n
∑

i=1
ai − 1

2

n
∑

i=1

n
∑

j=1
αiαjyiyj

(
xi·xj

)
s, t,

n
∑

i=1
yiαi = 0 αi � 0

(2)

where, αi is the Lagrange multiplier for each sample. According to the condition of Kuhn-
Tucher, the optimal solution must satisfy the following conditions:

αi[yi(w·xi + b)− 1] = 0 i = 1, 2, · · · , n (3)

Therefore, only the support vector coefficients α∗i are a non-zero value. If αi is the
optimal solution,

w∗ =
n

∑
i=1

α∗i yixi (4)

By choosing the corresponding i when αi �= 0, we can obtain the value of b using
Formula (3). Then, the optimal classification function can be obtained by substituting w*

and b into the formula sgn(w∗·x + b).
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For a linearly inseparable case, we can introduce a slack vector ξ, which satisfies:{
yi[(w·xi) + b]− 1 ≥ ξi
ξi ≥ 0 i = 1, 2, · · · , n

(5)

The generalized optimal classification surface can be obtained by changing the objec-

tive to find the minimum value of formula ϕ(w, ξ) = 1
2‖w‖2 + C

n
∑

i=1
ξi, where C stands for

penalty function, it shows the penalty for misclassification.
For nonlinear problems, it can be transformed into a linear problem in a higher

dimensional space by nonlinear transformation and obtain the optimal classification surface.
The linear classification of a nonlinear problem after transformation can be realized by
using the proper kernel function. In this case, the classification function named SVM is:

f (x) = sgn
{
∑ α∗i yiK(xi, x) + b∗

}
(6)

The function’s remarkable feature is that data only appear in the inner product. It
is not necessary to know the specific nonlinear mapping process before calculation, only
to select an appropriate model to replace the inner product, so as to economize the com-
plex calculation. It should be noted that the model here must satisfy the conditional
kernel parameters.

3.2. Multi-Class SVM

SVM technology was originally proposed for the two-class problem, but the oil-water-
dry layer identification problem belongs to the multi-class problem. In order to effectively
use the SVM method to divide the oil-water-dry layers, it is necessary to extend the SVM
and build a reasonable multi-class coding scheme [22,23]. At present, there are two main
methods for constructing SVM multi-class: one is the direct method, represented by the
multi-class algorithm proposed by Weston [22], which has a high degree of complexity
and is difficult to implement. The other is the indirect method, which mainly includes
“one-to-one”, “one-to-many”, and a SVM decision tree. This paper mainly adopts the
“one-to-one” method and uses the Libsvm classifier for training [24]. Libsvm is a simple,
practical, fast, and effective SVM pattern recognition and regression software package. The
algorithm combines the ideas of SMO and SVM-Light, and adopts a voting strategy to
support multi-class. By training k(k − 1)/2 classifiers, the samples are labeled with the
highest votes. The principle of the “one-to-one” algorithm is as follows: if there are k types
of data, select the i-th type of data and the j-th type of data to construct a classifier, where
i < j, so that k(k − 1)/2 classifiers need to be trained. For the i-th and j-th types of data, a
two-class problem needs to be solved:

min
wij ,bij ,ξ ij

1
2

(
wij

)T
wij + C∑

t
ξ

ij
t (7)

If yt = i, (
wij

)T
ϕ(xi) + bij ≥ 1 − ξ

ij
t (8)

If yt = j, ξ
ij
t ≥ 0, (

wij
)T

ϕ(xi) + bij ≤ −1 + ξ
ij
t (9)

Solve this problem by using the voting method: If sign
[(

wij)T , ϕ(xi) + bij
]
, consider

x as the i-th type, i-th type plus one vote; else j-th type plus one vote. Finally, x belongs to
the type with the most votes.
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4. Application of SVM in Thin Reservoir Identification

The identification of an oil layer, a water layer, and a dry layer belongs to the problem
of multi-class discriminant pattern recognition, so it can be completed by using the SVM
method to establish a fluid identification model. The basic idea is to collect modeling
samples and perform data preprocessing to generate feature quantities first, and then
perform parameter optimization to determine the best combination of parameters for
modeling, and finally use the established model to predict targets and identify oil-water-
dry layers.

4.1. Model Building

Model construction mainly includes the determination of the kernel function and
penalty factor C. The most common kernel functions in SVM mainly include the Gaussian
radial basis kernel function, the multi-layer perceptron kernel function, and the polynomial
kernel function. In this section, the well logging curve is optimized, the sample points are
collected, and then the kernel function is optimized to establish a model to identify the
thin layer.

4.1.1. Sample Set Selection

The identification of an oil-water-dry layer is an important feature of logging eval-
uation. The logging curve indirectly reflects the properties of the fluid in the reservoir.
Different logging curves will show a certain degree of difference and regularity for different
fluid characteristics, such as oil-water-dry layers [25]. Through the description of log-
ging characteristics, integrate the interpretation experience of experts and the correlation
analysis and comparison of coring wells. Finally, we select the logging curves closely
related to reservoir fluid, such as: acoustic (AC), true formation resistivity (RT), neutron
(CNL), density (DEN), natural gamma ray (GR), spontaneous potential (SP); porosity (POR),
used as input eigenvalues for the sample. The output positive integer represents the fluid
identification result, where 1 represents the oil layer, 2 represents the water layer, and
3 represents the dry layer. By stratifying the logging curve and combining it with the oil
test data, the typical characteristics of oil, water, and dry layers of seven wells were selected
as the training objects and the remaining four wells were selected as the testing objects in
the study area. Several reliable and representative logging data from each study interval
were selected as training samples for this interval. Finally, a total of 203 logging data
from 42 characteristic layers in seven wells were selected as the training sample dataset.
According to the oil test data, the test sample dataset was obtained from the remaining four
wells using a logging curve from twenty-one layers when building test samples.

4.1.2. Normalization of Sample Data

There is no standardized format data obtained from logging data. Therefore, the data
should be normalized first [26] in order to avoid the difficulty of calculating the inner
product of the kernel function caused by the difference of each parameter dimension and
improve the prediction accuracy. This can avoid some eigenvalue ranges that are too
large and other eigenvalue ranges that are too small, resulting in large numbers drowning
the decimal.

The normalization formula adopted is: X = (x − xmin)/(xmax − xmin), where x is
the actual logging value, xmax, xmin are the maximum and minimum values among all
sampling points of the logging curve, X is the log value after normalization, X ∈ [0, 1].
The training and test samples are located in the normalized interval, which ensures the
reliability of the classification results [27–29].

4.1.3. Model Selection

The identification of oil, water, and dry layers belongs to the problem of multi-class
discriminant pattern recognition. In theoretical analysis, the determination of the classifica-
tion function is mainly the determination of the kernel function r and penalty coefficient C.
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These two parameters have great influence on the prediction results, and their reasonable
determination directly affects the accuracy and generalization ability of the model. The
Gaussian radial basis function (GRBF) is usually used to establish the identification model
of reservoir fluid. The cross-validation method is used to optimize the C and r [30–34].
The Gaussian radial basis kernel function has a wide convergence domain, has a high
applicability for a variety of sample cases, and has only one kernel parameter r. It has a
high flexibility, is currently the most widely used and the best effect of the classification
kernel function. Therefore, the Gaussian radial basis kernel function is used to build the
prediction model of support vector machine. The Gaussian radial basis kernel function
formula is:

K(xi, x) = exp
−‖x − xi‖2

r2 (10)

Finally, the optimal parameter combination is calculated as C = 4.1541 and r = 0.7218.

4.2. Application Effect and Analysis

Using MATLAB R2019a software, with forty-two logging data of eight single layers in
seven wells of Wangguantun oilfield as training samples, the SVM model for identifying
oil-water-dry layers in this area was established. The model was used to identify twenty-
one layers in four other wells in the area. Finally, the identification results of inspection
with the production testing results were compared, where 18 of the 21 layers were correctly
identified; recognition accuracy was 85.71% (Figure 6), which was better than conventional
cross-plot identification results at 80.95% (Figure 7).

Figure 6. Confusion matrix of oil and water classification of training samples. Green means accurate
prediction, pink means wrong prediction.

In order to evaluate the reliability of the SVM method for layers fluid identification,
the identified results were compared with the cross-plot method. The comparison results
are shown in Table 2. Through comparison and analysis, the SVM method has the highest
accuracy (85.71%) in identifying oil-water-dry layers, which is higher than the cross-plot
identification accuracy (80.95%). The identification results show that the SVM method
based on the principle of structural risk minimization has a more stable performance when
solving thin reservoirs and small sample problems.
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Figure 7. Crossplot of AC and RT of thin oil layer of Es33.

Table 2. Comparison table of identification results of test samples.

Well Layer
Production

Testing
Depth/m

Production
Testing
Result

SVM
Identification

Result

Cross-Plot
Identification

Result

G913-1

311 2235.6~2236.2 Dry Dry Dry
312 2243.7~2245.6 Oil Oil Oil
313 2250.4~2251.9 Oil Oil Oil
321 2259.0~2259.5 Dry Dry Dry
322 2263.0~2264.2 Dry Dry Dry
323 2270.7~2272.9 Dry Dry Dry
324 2284.1~2286.3 Water Oil Oil

G913-2

311 2228.5~2229.5 Dry Dry Dry
312 2237.6~2238.6 Oil Oil Oil
313 2243.6~2245.4 Oil Oil Oil
321 2252.3~2258.8 Dry Dry Dry
322 2262.9~2264.8 Dry Dry Dry
323 2272.8~2275.1 Dry Dry Dry
324 2280.4~2282.1 Water Water Water

G918-2

311 2203.1~2205.0 Dry Dry Dry
312 2226.1~2228.2 Dry Oil Oil
313 2230.0~2231.9 Dry Dry Dry
323 2239.3~2240.5 Dry Dry Dry

G12-13
321 2248.7~2251.0 Oil Dry Dry
323 2260.9~2262.3 Dry Dry Dry
324 2265.7~2268.0 Water Water Water

Accuracy 85.71% 80.95%

The method was applied to other wells in the study area to identify thin layer fluids,
and well G9-14-4 was used as an example (Figure 8).
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Figure 8. Identification of thin oil layer of well G9-14-4.

5. Conclusions

(1) The logging curves indirectly reflect the properties of the fluid in the reservoir. Well
log data can be used to comprehensively identify the thin layers.

(2) The accuracy of the SVM method for reservoir fluid identification is obviously higher
than that of the conventional cross-plot identification method.

(3) The SVM-based reservoir fluid identification model has high convergence accuracy
and strong generalization ability, and can make full use of limited logging data
information to obtain the optimal identification results. Especially in areas where the
test data are lacking or the oil-water system is complex, this method can improve
the identification accuracy of the oil-water dry layer. It has good reference values in
actual logging reservoir evaluation and can be extended to lithology identification
and reservoir parameter prediction.
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Abstract: Shale oil stored in the shale system occurs mainly in adsorbed and free states, and ascertain-
ing the amount of adsorbed crude oil in shale is a method of ascertaining its free oil content, which
determines the accuracy of shale oil resource evaluation. Both inorganic minerals and kerogen have
the ability to adsorb crude oil, but there is controversy surrounding which plays the greatest part in
doing so; clarifying this would be of great significance to shale oil resource evaluation. Therefore,
in this study, the evolution states of inorganic minerals and kerogen in shale were changed using
pyrolysis, and the adsorbents were prepared for crude oil adsorption experiments, to explore the
effects of inorganic minerals and kerogen on the crude oil adsorption of shale. The results showed
that the differences in kerogen’s structural units and content in organic-rich shale (TOC = 1.60–4.52%)
had no obvious effects on its crude oil adsorption properties. On the contrary, inorganic minerals, as
the main body of shale, played a dominant role in the adsorption of crude oil. The composition and
evolution of the inorganic minerals controlled the surface properties of shale adsorbents, which is the
main reason for the different crude oil adsorption properties of the different types of adsorbents. The
results of this study are helpful in improving our understanding of the performance and mechanisms
of shale in adsorbing crude oil and promoting the development of shale oil resource evaluation.

Keywords: oil; adsorption experiment; inorganic minerals; kerogen; thermal simulation of adsorption

1. Introduction

Shale oil is a liquid petroleum resource that is retained and enriched in the shale
system after hydrocarbon generation and expulsion from source rocks, and it will be an
essential replacement resource in the future. Shale oil stored in the shale system occurs
mainly in its free and adsorption states; because the former is the main contributor to
productivity, the accurate evaluation of free shale oil content is an important prerequisite to
shale oil exploration and development [1,2]. However, there is usually some deviation in
the results upon directly quantifying the free oil content, so the indirect calculation of free
oil content through adsorbed and total oil content is attracting increasing attention [3–6].
Previous studies indicated that the liquid hydrocarbon adsorption properties of kerogen per
unit mass are much higher than those of inorganic minerals; thus, previous studies mainly
considered the adsorption of total organic carbon (TOC) on liquid hydrocarbons [7–11],
among which the most intuitive and widely accepted method for evaluating the potential
producibility of shale oil is the oil saturation index (OSI) (S1/TOC) [1,10–13]. However,
when evaluating the potential of continental shale oil resources in some areas of China,
the results of OSI do not precisely match the actual exploration results, which indicates
that it is not sufficient to consider only the adsorption of liquid hydrocarbons on organic
carbon [4,14,15].

Actually, the inorganic minerals (such as clay, quartz, feldspar, pyrite, carbonate, etc.)
in shale still have a certain effect on the adsorption of liquid hydrocarbon [16–18]. Despite
the adsorption properties of organic matter being much higher than those of inorganic
minerals, with inorganic minerals forming the main part of shale, their relative content is
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much higher than the content of kerogen; so, the liquid hydrocarbon adsorption capacity
of inorganic minerals cannot be ignored [19–21]. Meanwhile, the changes in the pore char-
acteristics and surface properties of shale will affect its hydrocarbon adsorption properties
because of the process of sedimentation and the evolution of inorganic minerals and kero-
gen in shale [22–24]; thus resulting in the capacity of shale to adsorb liquid hydrocarbons
not being equivalent to summing the capacity of purified kerogen and different types of
purified inorganic minerals to adsorb liquid hydrocarbons [21,25]. Therefore, to research
the overall crude oil adsorption capacity of organic-rich shale, the adsorption properties of
inorganic minerals and kerogen must be considered simultaneously. At present, there are
many reports of different types and maturities of purified kerogen adsorbing pure hydro-
carbon liquids [9,26,27], and the purified inorganic mineral (or mixed purified inorganic
mineral) adsorption of liquid hydrocarbons has also been explored [17,28,29]. However, at
present, the results of these studies cannot completely or effectively guide the exploration
of shale oil [25,30]. Therefore, using actual shale as an adsorbent and actual crude oil as an
adsorbate in crude oil adsorption experiments may have more practical significance and
facilitate guidance.

In order to clarify the influence of kerogen’s structural and inorganic mineral com-
position and evolution in shale on its crude oil adsorption properties, this experiment
used actual shale and crude oil from the same region. Under the condition of inorganic
minerals and kerogen existing simultaneously, the shale samples underwent pyrolysis, and
extracts were prepared of the shale adsorbents that contained different kerogen content and
structures and different transformation degrees of inorganic minerals. After performing
the crude oil adsorption experiments, according to the organic carbon content and the
composition characteristics of inorganic minerals in the shale adsorbents, we analyzed the
effects of inorganic minerals and kerogen on crude oil adsorption in shale.

2. Samples

The shale samples were collected from the Cheng 2 well in the central deep sag area of
the Biyang Depression. A total of five shale samples ( 1©~ 5© in Figure 1) were selected from
the fifth shale layer of the third member of the Hetaoyuan formation (Eh3), at a vertical
depth of 2771−2797 m. This depression is a secondary structural unit of the Nanxiang
Basin, located in Tanghe County and Biyang County, Henan Province, China. Covering
an area of about 1000 km2, it is a Meso-Cenozoic (Cretaceous–Paleogene–Neogene) rift
depression [31]. According to the structure, the depression can be further divided into three
subunits, including the northern slope belt, central deep sag, and southern steep slope
belt. The central deep sag sedimented the thickness strata of the Paleogene (which is the
main enrichment area for lithologic and shale oil reservoirs [32]), includes the Dacangfang,
Yuhuangding, Hetaoyuan (Eh1, Eh2, Eh3) and Liaozhuang formations from the bottom to
the top. Moreover, the third member of the Hetaoyuan formation (Eh3) can be divided into
eight sand formations (Eh3

I~Eh3
VIII). There are six layers of organic-rich shale developed in

Eh3
III~Eh3

VI in the central deep depression [5,33]. Based on wireline logs and core sampling
analysis (Rock-Eval, GC-MS, etc.), the fifth shale layer was the thickest and most widely
distributed, was abundant in retained hydrocarbons, and was the main target layer of shale
oil exploration in this area [5,32].

Previous studies have shown that the third member of the Hetaoyuan formation (Eh3)
in the deep sag of the Biyang Depression is mainly composed of dark-gray and gray shale
interbedded with dolomite and sandstone [32]. The types of kerogen are mainly type I
and type II1, with little type II2 [34]. The maturity of organic matter is at the low stage
(Ro% ≈ 0.7%; average Tmax ≈ 446.35 ◦C) [5]. The crude oil samples used in the adsorption
experiment were from the same layer in the same area, and the characteristics of the crude
oil group were as follows: saturated hydrocarbon (Sat.): 60.7 wt%, aromatic hydrocarbon
(Aro.): 13.5 wt%, non-hydrocarbon and asphaltene (Res. + Asp.): 25.7 wt%; this is normal
crude oil.
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Figure 1. Location and generalized stratigraphic columns of the Biyang Depression and sample
locations (Adapted with permission from Ref. [5]. 2016, Elsevier, adapted with permission from
Ref. [33]. 2019, Elsevier).

3. Methodology

3.1. Preparation of Adsorbents

Organic carbon in shale includes insoluble kerogen and soluble asphaltene. Kerogen
is the organic adsorptive carrier (adsorbent) for soluble asphaltene, and soluble asphaltene
is the adsorbed object (adsorbate); so, it is more scientific to determine the amount of oil
adsorbed by kerogen than by total organic matter [27,35,36]. According to the principle of
the hydrocarbon generation of kerogen and the theory of the kerogen structure model [37],
in the process of hydrocarbon generation, part of the reactive kerogen can be directly
converted into oil and gas (this is called effective carbon); meanwhile, the other part,
despite participating in the process of hydrocarbon generation, is not converted into
hydrocarbon but into residual carbon (RC). However, the inert kerogen neither participates
nor is affected by hydrocarbon generation, so it can be called dead carbon (in this paper,
the residual carbon and dead carbon are collectively called ineffective carbon, dividing the
organic carbon in kerogen into two parts: effective carbon and ineffective carbon) [10,38].
Because reactive kerogen and inert kerogen represent a theoretical model, we could not
obtain separate kerogen with these structural units, but we could measure the effective
carbon (TOC > RC) and ineffective carbon (TOC ≈ RC) in kerogen via pyrolysis to measure
the reactivity and inertia of kerogen. In this way, we could explore the oil adsorption
properties of different kerogen structural units for crude oil.

Before preparing the adsorbents, the carbonate minerals in shale needed to be removed
using hydrochloric acid (HCl). The main reason for this was that the upper layer of Eh3
in the Biyang Depression was formed in an alkaline environment, which limited the
dissolution of carbonate minerals in the early period of diagenesis and resulted in the
precipitation and cementation of carbonate minerals in the late period of diagenesis [39].
However, during the process of preparing the adsorbents via thermal treatment, carbonate
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minerals tended to decompose after 650 ◦C. This will lead to a significant increase in
the specific surface area (SSA) of the samples, and the CO2 generated will affect the
measurement of TOC [40–42]. The former will seriously affect the adsorption performance
of shale adsorbents [19,21,25,29], while the latter will affect the evaluation of kerogen’s
adsorption properties in shale adsorbents. Therefore, in order to keep the inorganic mineral
composition of shale adsorbents obtained via pyrolysis treatment as consistent as possible,
it was necessary to remove carbonate minerals in shale via hydrochloric acid treatment
before pyrolysis treatment of the shale samples.

The temperature conditions for preparing the adsorbents were those of the Rock-Eval
analysis method. A shale sample treated with hydrochloric acid (abbreviated as THCl) was
heated in a N2 flow at 300 ◦C for 1 h to remove the pyrolytic hydrocarbon S1. Then, on
the pyrolysis products, we used DCM (dichloromethane) and MeOH (methanol) (93:7,
v/v) for extraction for 72 h; after that, extraction was conducted for 72 h using methanol,
acetone, and benzene (MAB) (2:5:5, v/v/v) to remove as much of the soluble organic
matter in the pyrolysis products of shale as possible. After finishing the above process, the
Type-A (abbreviated as TA) adsorbent that contained the effectiveness of carbon in kerogen
(containing available carbon+ and ineffective carbon+ inorganic minerals) was prepared.
To prepare the Type-B adsorbent (abbreviated as TB) that contained the carbon in kerogen
ineffective (containing ineffective carbon+ inorganic minerals), a fresh shale sample of
THCl was heated in a N2 flow at 650 ◦C for 1 h to remove the pyrolytic hydrocarbons S1
and S2; then, we treated the pyrolysis products with the same extraction process as the
extract for TA, removing as much of the soluble organic matter as possible. To prepare the
Type-C (represented by TC) adsorbent that removed kerogen (containing only inorganic
minerals), a fresh shale sample of THCl was heated in an O2 flow at 900 ◦C for 1 h to remove
all organic carbon; then, we treated the pyrolysis products with the same extraction process
as the extract for TA, removing the soluble organic matter. The adsorbents and THCl were
subsequently analyzed using XRD and Rock-Eval to verify the quality.

X-ray diffraction (XRD) analysis of the adsorbents was performed using a German
Bruker AXS D8 Advance, with a Cu target; a ceramic X-ray tube; operation at 40 kV and
40 mA; a focal spot size of 0.4 × 12 mm; a LynxEye XE detector; test mode: wide angle of
5◦−90◦; and a rate of 5◦/min. XRD analysis was completed in the Analysis and Test Center
of the School of Materials and Chemistry, China University of Geosciences (Wuhan).

Rock-Eval analysis of the adsorbents was performed according to Lafargue et al.
(1998) [6]. The powder samples (20 g and about 80 mesh, ≤178 μm in grain size) were
analyzed using Rock-Eval 6 (manufactured by Vinci Technologies in France). Rock-Eval
analysis and data processing were performed by the Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences (GIG, Guangzhou, China). Subsequently, we obtained the
pyrolysis data of S1, S2, total organic carbon (TOC), residual organic carbon (RC), mineral
carbon (MinC), Tmax (◦C), and the hydrogen index (HI) of the adsorbents.

3.2. Adsorption Experimental Method

Generally, an adsorbate solution with a low or high concentration can reach ad-
sorption equilibrium with the adsorbent within a certain period of time (many liquid
adsorption experiments measure the concentration of the adsorbate solution in the adsorp-
tion equilibrium stage by spectrophotometry to estimate the adsorption capacity of the
adsorbent [17,43]. Therefore, there is still fluidity of the unadsorbed adsorbate molecules
in the adsorbate solution at the adsorption equilibrium state); when the concentration
of adsorbate reaches a certain level at which the adsorbent reaches saturated adsorption
equilibrium, the adsorbent will no longer receive adsorbate. Even if the concentration of the
adsorbate increases further, it will not affect the adsorption capacity of the adsorbent [21,28].
In other words, the crude oil (adsorbate) in the formation fluid (such as the oil–water so-
lution containing salt and other soluble substances), under geological conditions, does
not need to satisfy saturated adsorption by inorganic minerals and kerogen (adsorbents).
After the crude oil in the formation fluid and the inorganic minerals and kerogen reach
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adsorption equilibrium, the unadsorbed crude oil still has mobility. This principle is often
used to reduce the adsorption equilibrium concentration of crude oil and improve its
mobility by injecting hot water, gas, and other polymer solutions to enhance oil recovery
(EOR) in the secondary and tertiary oil recovery stages of the oilfield [44,45]. Therefore, the
setting of the adsorbate content (crude oil) in the experiment should be close to the content
of chloroform bitumen A in geological samples. At the same time, in many studies on the
organic matter adsorption properties of inorganic minerals, most choose single or mixed
standard samples as adsorbates or adsorbents [17,20,46,47]. However, when crude oil is
adsorbing on shale, different types of compounds and multifunctional carbon compounds
in crude oil compete for the chemical bonds of the adsorbent for adsorption, so using crude
oil as an adsorbate could more effectively reflect practical geological problems.

Ertas et al. [8] tested kerogen swelling under high-pressure and closed conditions,
and found that the average swelling ratio at 150 ◦C was slightly higher than that at
30 ◦C and 90 ◦C, indicating that temperature affects kerogen swelling [26]. Therefore,
the simulated temperature of this adsorption experiment was set at 90 ◦C, which was
close to the actual formation temperature of the sample. Pernyeszi et al. conducted the
adsorption of asphaltenes on clay and reservoir rocks by shaking them at 298 K for 24 h, and
adsorption equilibrium was reached after the reaction [17]. Daughney [28] reported that
adsorption equilibration was achieved within 24 h for the sorption of oil onto powdered
quartz in both the presence and absence of an aqueous phase. Ertas et al. (2006) also verified
that an adsorbate solution could reach adsorption equilibrium within 24 h at 30 ◦C, 90 ◦C,
and 150 ◦C [8]. In fact, in many reports, it was found that the adsorption equilibrium time
of organic matter on inorganic minerals only took tens to hundreds of minutes [43,48,49].
Furthermore, previous studies have shown that an increase in temperature reduced the
time taken to reach adsorption equilibrium [50,51]. Therefore, because the simulated
temperature of this experiment was close to the temperature of the formation where the
shale sample was located (90 ◦C), combined with the above experience, continuing the
experiment at 90 ◦C for 24 h was enough to reach adsorption equilibrium.

The conditions for each adsorption experiment are shown in Table 1. To ensure the
adsorbate was evenly distributed in the adsorbents, it was necessary to dilute the crude oil
with DCM and fully mix it with the adsorbent in the lining of the autoclave (25 mL), and
then, wait for the DCM to evaporate completely. The adsorption experiment continued at
90 ◦C for 24 h, and then, the unadsorbed hydrocarbons were recovered via extraction.

Table 1. Conditions used in the adsorption experiments.

Sample No.
Chloroform
Bitumen C

(wt.%)

Temperature of
Adsorbent

Preparation (◦C)
Adsorbent No.

Weight of Adsorbent/Adsorbate (g)

Adsorbent
Content

Calculate
Adsorbate

Content

Adsorbate
Content

1 0.597

300 1-TA 10.0534 0.0601 0.0603

650 1-TB 10.0457 0.0600 0.0601

900 1-TC 10.0285 0.0599 0.0600

2 0.589

300 2-TA 10.1000 0.0595 0.0591

650 2-TB 10.3014 0.0607 0.0606

900 2-TC 10.3354 0.0609 0.0606

3 0.479

300 3-TA 10.0139 0.0480 0.0478

650 3-TB 10.2368 0.0490 0.0490

900 3-TC 10.3310 0.0495 0.0498
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Table 1. Cont.

Sample No.
Chloroform
Bitumen C

(wt.%)

Temperature of
Adsorbent

Preparation (◦C)
Adsorbent No.

Weight of Adsorbent/Adsorbate (g)

Adsorbent
Content

Calculate
Adsorbate

Content

Adsorbate
Content

4 0.986

300 4-TA 9.6927 0.0956 0.0989

650 4-TB 10.0054 0.0987 0.0975

900 4-TC 10.0219 0.0988 0.0989

5 0.575

300 5-TA 9.9344 0.0571 0.0574

650 5-TB 10.1426 0.0583 0.0582

900 5-TC 10.3579 0.0596 0.0601

Here, in Table 1, 1-TA represents the Type-A adsorbent of sample 1 that was treated
with hydrochloric acid to remove the pyrolytic hydrocarbon S1 (heated in a N2 flow at
300 ◦C for 1 h) and the soluble organic matter; 1-TB represents the Type-B adsorbent of
sample 1 that was treated with hydrochloric acid to remove the pyrolytic hydrocarbons
S1 and S2, (heated in a N2 flow at 650 ◦C for 1 h) and the soluble organic matter; 1-TC
represents the Type-C adsorbent of sample 1 that was treated with hydrochloric acid to
remove all of the organic matter (heated in an O2 flow at 900 ◦C for 1 h). Furthermore, 2-TA,
2-TB and 2-TC represent shale adsorbents prepared by the same thermal decomposition
and extraction process as 1-TA, 1-TB and 1-TC, respectively, for shale powder samples after
hydrochloric acid treatment. The other adsorbent codes also represent the corresponding
treatment procedures for the corresponding samples.

4. Results

4.1. Adsorbent Properties

The quality of the adsorbent is the key to a successful adsorption experiment; so, it
was necessary to test the quality of the adsorbent before the adsorption experiment. For the
detection of adsorbent properties, we mainly used XRD analysis to detect the composition
and content of inorganic minerals, and Rock-Eval analysis to detect various indicators of
organic matter.

THCl and the adsorbents of TA (heated in a N2 flow at 300 ◦C), TB (heated in a N2 flow
at 650 ◦C), and TC (heated in an O2 flow at 900 ◦C) were analyzed via XRD (Figure 2), and
the relative contents of the main inorganic minerals were statistically analyzed (Figure 3).
The result showed that THCl and the adsorbents mainly contained quartz (Q), orthoclase
(Or), plagioclase (Pl), illite (I), illite/smectite (I/S), and a little chlorite (Ch), among which
quartz had the highest relative content. Pyrolysis treatment under different conditions had
a great influence on the composition and content of inorganic minerals in shale.

With the increased temperature in the adsorbent preparation, the illite diffraction
peak intensity increased significantly (Figure 2), which was due to the transformation
of illite/smectite to illite [52–54]. At the same time, the diffraction peak intensity of pla-
gioclase also increased. This was due to the consumption of K+ in the transformation
of illite/smectite to illite; as long as the conversion exists, the dissolution of orthoclase
will continue until exhausted [55]. Moreover, plagioclase will be difficult to dissolve,
even when precipitated, because of the buffering of Na+ produced by the transformation
of illite/smectite to illite [55,56]. Subsequently, when the temperature of the adsorbent
preparation reaches about 650 ◦C, the illite/smectite is completely transformed, and the
plagioclase gradually decomposes and its diffraction peak intensity is reduced [57]. Mean-
while, the dehydroxylation reaction of illite will also reduce its diffraction peak intensity.
When the temperature of the adsorbent preparation reaches about 900 ◦C, the diffraction
peak intensity of illite decreases further due to the high degree of the dehydroxylation
reaction and a certain degree of amorphous transformation (sintering phenomenon) [58–63].
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Figure 2. XRD pattern of THCl and adsorbents. The identified minerals are Q: quartz; Or: orthoclase;
Pl: plagioclase; Py: pyrite; H: hematite; I: illite; S: smectite; I/S: illite/smectite; and Ch: chlorite.
* THCl represents sample treated with hydrochloric acid.

For the samples treated with hydrochloric acid (THCl) and the adsorbents of TA (heated
in a N2 flow at 300 ◦C), TB (heated in a N2 flow at 650 ◦C), and TC (heated in an O2 flow at
900 ◦C), after being analyzed via Rock-Eval (Table 2), it was found that the mineral carbon
(MinC%) content was very low (0−0.23 wt.%, average of 0.1 wt.%), which indicated that
the measurements of TOC, S2, and RC were little affected by the thermal decomposition
of carbonate minerals. The TOC content in TA (containing effective carbon) was high
(2.01−4.84 wt%), and S1 almost disappeared, indicating that pyrolysis and solvent extrac-
tion substantially removed free hydrocarbons from TA. TB (including ineffective carbon)
contained almost no S1 and S2, and the TOC was close to the RC, which indicated that
the free hydrocarbons and effective carbon in TB were substantially removed by pyrolysis
and solvent extraction. While TB had a higher content of RC (1.60−3.29 wt%) than of TA,
indicating that part of the reactive kerogen was converted into inert kerogen through hy-
drocarbon generation, TC contained no organic carbon (TOC ≈ RC ≈ MinC ≈ 0), indicating
that all organic carbon was removed by oxidation at 900 ◦C, and only inorganic minerals
remained. The results of the pyrolysis data show that the three types of adsorbents satisfied
the requirements of the adsorption experiment and eliminated the interference factors of
the experiment.
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Figure 3. Relative contents of main inorganic minerals in THCl and adsorbents. I + S: illite + smectite
+ illite/smectite.

Table 2. Rock-Eval analysis data of THCl and adsorbents.

No.
S1

(mg/g)
S2

(mg/g)
TOC (wt.%) RC (wt.%) MinC (wt.%) Tmax (◦C)

HI
(mg/g)

1-THCl 2.58 21.18 4.81 2.83 0.15 446 440
1-TA 0.04 18.44 4.49 2.94 0.15 445 411
1-TB 0.01 0 3.29 3.28 0.07 486 0
1-TC 0 0 0 0 0 486 0

2-THCl 0.06 6.55 2.41 1.84 0.16 440 272
2-TA 0.08 4.45 2.03 1.64 0.09 440 219
2-TB 0.06 0.01 1.76 1.75 0.12 297 1
2-TC 0 0 0.01 0.01 0.01 399 0

3-THCl 0.26 22.42 4.82 2.92 0.07 444 465
3-TA 0.04 20.44 4.52 2.8 0.14 445 452
3-TB 0.07 0.06 3.03 3.01 0.13 305 2
3-TC 0.03 0 0.01 0 0.01 327 0

4-THCl 0.47 14.19 3.98 2.75 0.23 443 357
4-TA 0.06 10.52 3.51 2.62 0.14 443 300
4-TB 0.06 0.01 2.71 2.7 0.17 293 0
4-TC 0.01 0 0 0 0.01 392 0

5-THCl 0.2 4.89 2.01 1.57 0.16 439 243
5-TA 0.04 1.91 1.72 1.54 0.07 440 111
5-TB 0.06 0.01 1.6 1.59 0.05 290 0
5-TC 0.01 0 0 0 0 376 0

4.2. Results of Adsorption Experiment

After the adsorption experiment, we referred to the calculation method of adsorbed
hydrocarbon by Zhang et al. [25] and took the volatility of crude oil into account. The
product of the adsorption experiment was extracted with a mixed solvent of DCM and
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MeOH (93:7, v/v) for 72 h, and the unadsorbed hydrocarbons (adsorbate) were recovered.
After weighing it, we performed a calculation using the following formula:

q = [moil × (1 − Koil) − mext]/ma (1)

Q = [1 − mext/(moil − moil × Koil)] × 100% (2)

Here, q (mg/g) is the crude oil adsorption capacity; moil (mg) is the weight of the
adsorbate (crude oil); Koil (%) is the volatilization ratio of the adsorbate (crude oil) during
the process of the adsorption experiment, which was 14.27% (the date is the average value
that measured multiple times in under the experimental conditions of continued the crude
oil comparison group at 90 ◦C for 24 h); mext (mg) is the unadsorbed hydrocarbons that
were extracted in the adsorption experiment; ma (g) is the wight of adsorbent; and Q (wt.%)
is the crude oil adsorption ratio. Then, we obtained the adsorption capacity (Equation (1))
and the crude oil adsorption ratio (Equation (2)) of different types of adsorbents (Table 3).

Table 3. The date of adsorption capacity and adsorption ratio.

No. Adsorption Capacity (mg/g) Adsorption Ratio (wt.%)

1-TA 1.14 19.02
1-TB 1.96 32.76
1-TC 0.97 16.23

2-TA 1.32 22.34
2-TB 1.86 31.55
2-TC 1.00 17.02

3-TA 0.84 17.55
3-TB 1.27 26.48
3-TC 0.54 11.36

4-TA 2.23 22.64
4-TB 3.31 33.51
4-TC 1.15 11.67

5-TA 1.47 25.52
5-TB 2.24 38.98
5-TC 0.93 16.23

The date of the adsorption capacity and adsorption ratio (Table 3) showed that the
different samples of three types of adsorbents had the same trend of adsorption ratio for
crude oil, among which TB had the highest crude oil adsorption ratio and adsorption
capacity per unit mass, followed by TA, and then, TC. This indicated that the evolution
state of the adsorbent had a great influence on its own adsorption performance of crude oil.
Meanwhile, the crude oil adsorption ratio of the same types of adsorbent were obviously
different; it was evident that the difference of the samples had an influence on the adsorption
properties of the same type of adsorbent. So, it was necessary to analyze the influence of
kerogen and inorganic minerals on the crude oil adsorption properties.

Based on Table 3, the adsorbate content with the adsorption capacity (Figure 4a) and
the adsorbents with the adsorption ratio (Figure 4b) were drawn. Upon combining Figure 4
with Figure 2, it was found that although TC contained only inorganic minerals and lost
more clay minerals than TA and TB, the crude oil adsorption ratio of TC was not much
lower than that of TA and TB, which implies that the more clay minerals contained in TA
and TB is more important for its adsorption properties. Meanwhile, after the pyrolysis
treatment, the changes in the kerogen content and structure, inorganic mineral content,
and surface properties of TB were much greater than those of TA, which may be the main
reason that TB had the highest crude oil adsorption capacity. Therefore, further analysis of
the crude oil adsorption capacity of TB is needed.

284



Energies 2023, 16, 2386

 

Figure 4. Adsorbate content with adsorption capacity (a), and adsorbents with adsorption ratio (b).

Figure 4a shows that, with an adsorbate content increase, the adsorption capacity
gradually approached saturation. In this process, and with the adsorbents in an unsatu-
rated adsorption equilibrium state, the adsorbate content (corresponding to the chloroform
bitumen C content of THCl) determined the adsorption capacity in the adsorption equilib-
rium stage. This result conformed to the original intention of this experiment’s design: to
observe the adsorption properties of the different shale adsorbents of crude oil under the
condition of the content of adsorbate being close to the oil content of geological samples.
Figure 4b shows that when the TA of samples 1, 2, and 4, the TB of samples 2 and 4, and the
TC of samples 3 and 4 had different adsorbate contents, the adsorption ratio of crude oil
was basically the same, indicating that adsorbate content cannot determine the crude oil
adsorption ratio of shale.

The adsorbents prepared from different shale samples had obvious differences in
their crude oil adsorption ratios. For example, the different types of adsorbents in sample
3 had the lowest crude oil adsorption ratios. As shown in Figure 2, among the same types
of adsorbent, sample 3 had the lowest levels of clay and feldspar mineral content. Other
adsorbents with higher contents of clay and feldspar minerals generally had higher crude
oil adsorption ratios, indicating that the content of inorganic minerals in shale adsorbents
had a significant effect on crude oil adsorption performance in shale. However, compared
with TA, TB lost more clay minerals, but its crude oil adsorption ratio was higher than that
of TA. The reasons for this phenomenon also need to be analyzed.

5. Discussion

5.1. Crude Oil Adsorption Ratio of Kerogen

As TC does not contain organic carbon, only the organic carbon content of TA and
TB needs to be compared with the crude oil adsorption ratio. By comparing the organic
carbon content of the same types of adsorbents with the crude oil adsorption ratio, it was
found that there was a negative correlation between the crude oil adsorption ratio and the
TOC of the adsorbents. The crude oil adsorption ratio generally increased with decreasing
TOC (Figure 5a,b). This phenomenon is contrary to previous adsorption experiments
using purified kerogen that showed that the kerogen content was the main controlling
factor in the adsorption of crude oil, but similar to some studies that demonstrated that
kerogen in shale was not the main adsorbent of hydrocarbon [26,64,65]. As can be seen
from Figures 2 and 5b, the adsorbent prepared from sample 5 had the highest crude oil
adsorption ratio and the highest I + S content among the same types of adsorbent. The
adsorbent prepared from sample 3 had the lowest crude oil adsorption ratio and the lowest
I + S content among the same types of adsorbent. Both of these results indicate that in
actual shale, an increase in organic carbon (TOC = 1.60–4.52%) content cannot improve
the crude oil adsorption ratio in shale and cannot dominate crude oil adsorption in shale.
However, the crude oil adsorption ratio may be more affected by clay minerals.
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Figure 5. Relationship between the adsorption ratio of crude oil (a) and the TOC of adsorbents (b).

Meanwhile, only RC was retained in TB after pyrolysis (TOC ≈ RC), and the TOC
was decreased compared with that of TA. The ineffective carbon in kerogen in TB had a
stable molecular structure and fewer side chains; however, the effective carbon in kerogen
in TA was more similar to that in crude oil in terms of its molecular structure and side
chains. According to the chemical principle of “like attracts like”, the crude oil adsorption
properties of ineffective carbon in kerogen in TB may be lower than those of the effective
carbon in kerogen in TA. However, the crude oil adsorption ratio of TB was in fact higher
than that of TA (Figure 5a). Considering the conditions of preparing for TA and TB, there
were obvious differences in the composition and content of inorganic minerals (Figure 2).
Therefore, in determining the reasons for the increase in the crude oil adsorption ratio in
TB, we need to consider the impact of inorganic minerals.

Using theoretical calculation, Tian et al. [66] considered that the oil adsorption ca-
pacity of type I and II1 kerogen was 130−150 mg/g. Using adsorption experiments,
Zhang et al. [25] found that the crude oil adsorption capacity of the purified kerogen in
two shale samples was 123.07 mg/g and 142.29 mg/g. If the TOC (2.78% and 1.89%, re-
spectively) of the two shale samples was taken into consideration, the crude oil adsorption
capacity of kerogen in shale is calculated, respectively, to be 3.42 mg/g and 2.69 mg/g.
However, the crude oil adsorption capacity on the residues of the two shale samples after
ternary extraction, respectively, was 3.03 mg/g and 3.74 mg/g, among which the crude oil
adsorption capacity of inorganic minerals was between 2.72 and 3.13 mg/g. The weighted
sum of the crude oil adsorption capacities of kerogen and inorganic minerals were much
higher than in reality. We can see that the close combination of kerogen and inorganic min-
erals in shale may limit the crude oil adsorption of kerogen [67], so the crude oil adsorption
capacity of inorganic minerals needs further consideration.

5.2. Adsorption Ratio of Inorganic Minerals to Crude Oil

There was a correlation between the crude oil adsorption ratio and the relative content
of the main inorganic minerals in the adsorbent (Figure 6). Among them, the relative
content of different inorganic minerals in TA and TB had a positive correlation with the
adsorption ratio of crude oil, but had a negative correlation with the relative content of
quartz (Figure 6a,c,e). The correlation between the relative content of different inorganic
minerals in TA and the adsorption ratio of crude oil was poor, which suggests that the type
of inorganic minerals was not the only factor affecting the adsorption capacity of shale
adsorbents for crude oil, which may also be related to the evolution state of shale. In the
adsorbent prepared from the same shale sample, the change in the content of different
inorganic minerals also had an obvious response to the crude oil adsorption ratio of shale
(Figure 6b,d,f). When the relative content of clay minerals and feldspar decreased, the crude
oil adsorption ratio also generally decreased, but the change in relative quartz content
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and the crude oil adsorption ratio was the opposite. It follows that the differences in the
composition and evolution state of inorganic minerals in different shale samples may have
been the main reason for the differences in the crude oil adsorption properties of the same
type of adsorbent.

Figure 6. Relationship between the adsorption ratio of crude oil and the relative content of minerals.
The adsorption ratio of crude oil and relative content of I + S (a), Or + Pl (c), Quartz (e) of three
types of adsorbent (TA, TB, and TC); The adsorption ratio of crude oil and relative content of I + S
(b), Or + Pl (d), Quartz (f) of five types of shale adsorbent (Sample-1, Sample-2, Sample-3, Sample-4,
Sample-5).
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Therefore, it is necessary to analyze the ability of inorganic minerals to adsorb liquid
hydrocarbon. Daughney [28] experimentally demonstrated that the maximum crude oil
adsorption capacity of powdered quartz was close to 2 mg/g. Clay minerals have a wide
crude oil adsorption range due to their complex structure and surface properties [68,69]; for
example, Pernyeszi et al. [17] indicated that the amount of bitumen adsorbed on kaolin and
illite was 33.9 mg/g and 17.1 mg/g, respectively. Li et al. [21] indicated that the maximum
crude oil adsorption capacity of purified clay and quartz was 18.0 mg/g and 3.0 mg/g,
respectively. In this experiment, more than 40% of the minerals in TA were quartz, and
about 10–40% were clay minerals. Compared with TA, the content of clay minerals in TB
decreased and the content of quartz increased slightly. The average mineral composition of
TC was more than 70% quartz and about 10% clay minerals (Figure 3). According to this,
we estimated that the crude oil adsorption capacity of inorganic minerals in TA and TB
should be between the adsorption capacity of quartz and clay minerals, and the adsorption
capacity of inorganic minerals in TC should be slightly higher than the adsorption capacity
of quartz, which is close to the experimental values.

However, the crude oil adsorption capacity of inorganic minerals in the actual shale
is not equal to the weighted sum of the adsorption capacity of all inorganic minerals.
The change in the pore characteristics of shale also need to be considered because of the
evolution of inorganic minerals. For example, the content of I + S in TB is less than that in
TA, and according to the weighted sum of the mineral crude oil adsorption capacity, the
crude oil adsorption ratio of TA is higher than that of TB. However, the crude oil adsorption
capacity of TB is in fact significantly higher than that of TA and TB. Therefore, it is necessary
to further discuss the mechanism of shale’s adsorption of crude oil.

5.3. Discussion of the Adsorption Mechanism

Previous adsorption experiments have shown that the specific surface area (SSA) of
adsorbents significantly affected their adsorption properties [70,71]. Moreover, based on
the theoretical adsorption model, the SSA of the adsorbent is calculated using the amount
of gas adsorption. Many scholars have studied the SSA of common minerals (Table 4), and
the statistical results showed that for smectite > illite/smectite > illite > feldspar > quartz,
the SSA of feldspar was slightly higher than that of quartz and much lower than that of
clay minerals; this sequence is consistent with the sequence of the adsorption properties of
inorganic minerals to hydrocarbons [17,19,21,29,72–76].

Table 4. Specific surface area (SSA) of common minerals in petroliferous basins.

Almon et al. (1981) [72] Zhao et al. (1995) [74] Zhang et al. (2020) [75]

Minerals
Specific Surface

Area (SSA) (m2/g)
Minerals

Specific Surface
Area (SSA) (m2/g)

Minerals
Specific Surface

Area (SSA) (m2/g)

smectite 820 smectite 470 orthoclase 5.745
illite 113 illite-smectite 220~297 plagioclase 3.380

chlorite 42 illite 78.66
kaolinite 23 chlorite 65
quartz 0.15 kaolinite 32

Figure 7 shows a compilation of data from other authors collected by Li et al. (2016),
which demonstrates a positive relationship between the specific surface area and the adsorp-
tion capacity of minerals in reservoir [21]. Meanwhile, conditions of 300~650 ◦C during the
preparation of TA and TB, accompanied by organic hydrocarbon generation and inorganic
mineral transformation (especially the transformation of I + S) [52–54,63], led to a decrease
in the relative content of I + S in TB; however, with the formation of organic and inorganic
pores, the SSA of shale adsorbents gradually increased [22,77,78]. This also resulted in the
adsorption properties of TB being higher than those of TA. When prepared for TC (900 ◦C),
the SSA of the adsorbents were greatly reduced due to the high degree of the dehydrox-
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ylation reaction and the amorphous transformation (sintering phenomenon) of illite and
other minerals [61,79,80]; this resulted in the adsorption properties of TC being higher than
those of TB. Some collected data show that the SSA changes during the pyrolysis of shale
samples (before carbonate decomposition) and during the high-temperature calcination of
clay minerals (Figure 8) were consistent with the above argument [42,80]. Therefore, the
relative content of clay minerals in TB is reduced because of the transformation, but more
inorganic pores are generated, which leads to the SSA of TB being higher than that of TC
and TA. This should be the main reason that the content of clay minerals in TB is decreased
while the crude oil adsorption ratio is highest.

 

Figure 7. Diagram of specific surface area and adsorption capacity of minerals and reservoir rocks
(Adapted with permission from Ref. [21]. 2016, Elsevier).

Meanwhile, the statistical results of the relative contents of feldspar (Pl + Or) in
adsorbents varied slightly (Figures 2 and 3), so the crude oil adsorption properties of
feldspar minerals were small and stable. However, the K+ provided by the dissolution of
orthoclase will promote the transformation of illite/smectite to illite, and the inorganic
pores formed in this process will change the SSA of the adsorbent to a certain extent; so,
the existence of orthoclase will indirectly affect the crude oil adsorption properties of shale
by affecting the transformation of illite/smectite to illite.

In conclusion, it was seen that the contribution of kerogen to the overall adsorption
properties of shale was smaller. Meanwhile, the relative content of kerogen in the adsor-
bents was increased because of the removal of carbonate minerals via hydrochloric acid
treatment, which meant that the relative content of kerogen in the actual shale sample
was lower, and the impact of kerogen on shales to adsorption of crude oil was further
reduced. Combining these two factors and the above analysis, we can conclude that in
the selected general organic-rich shale (TOC = 1.60–4.52%), because the relative content of
inorganic minerals is much higher than that of kerogen, and the combination of kerogen
with inorganic minerals limits the contact between kerogen and crude oil, the change in
kerogen’s structural unit and content cannot dominate the crude oil adsorption of actual
shale. On the contrary, the composition and evolution of inorganic minerals dominate the
crude oil adsorption of actual shale samples.
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Figure 8. Effect of temperature on the specific surface area of shale samples and clay minerals. Left:
Four groups of data on shale samples, referenced and adapted with permission from Ref. [42], marked
with “a”. These shale samples were not treated with hydrochloric acid, and the carbonate minerals
were largely decomposed when the temperature was higher than 600 ◦C, which increased the SSA
of the shale samples. Therefore, only data for temperatures lower than 600 ◦C can represent the
pyrolysis characteristics of TA and TB in this experiment. Right: Five groups of data on clay minerals,
referenced from Dabare and Svinka [80], marked with “b”. The changes in SSA in several clay
minerals (calcination at 700−1050 ◦C) were not affected by the thermal decomposition of carbonate.
Moreover, the composition of the main inorganic minerals was basically consistent with that of THCl,
so this study can approximately reflect the changes in the SSA of TC in this experiment.

6. Conclusions

(1) Under the condition of the adsorbate content being close to the oil content of geo-
logical shale samples, the crude oil adsorption capacity of TA (containing kerogen
effective carbon) ranged from 1.39 to 3.66 mg/g, and the adsorption ratio ranged from
17.56 to 25.52%. The crude oil adsorption capacity of TB (containing kerogen ineffec-
tive carbon) ranged from 1.77 to 4.12 mg/g, and the adsorption ratio ranged from
26.48 to 38.98%. The crude oil adsorption capacity of TC (only inorganic minerals)
ranged from 1.18 to 2.40 mg/g, and the adsorption ratio ranged from 11.36 to 17.02%.
The change in the surface properties of shale adsorbents during thermal evolution
was the main reason for the different crude oil adsorption properties of different types
of adsorbent.

(2) In the adsorbents prepared from general organic-rich shale samples (TOC = 1.60−4.52%),
because of the wide content difference between kerogen and inorganic minerals,
resulting in a change in kerogen’s structural units and content, it cannot dominate
the crude oil adsorption of shale. On the contrary, the composition and evolution
of inorganic minerals are closely related to the crude oil adsorption properties of
shale, and they play a dominant role in shale’s adsorption of crude oil. Among them,
the content and evolution characteristics of illite + smectite in shale had the most
significant effect on the adsorption of crude oil, and orthoclase can indirectly affect
the crude oil adsorption properties of shale by affecting the conversion process of
illite/smectite to illite.
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Abstract: In view of the key geological factors restricting reservoir development, the reservoir
heterogeneity of an alluvial fan sandy conglomerate reservoir in the Qie12 block of Qaidam Basin,
Northwest China, and its influence on remaining oil distribution, were studied according to geology,
wireline logging data, and dynamic production data. This study illustrates that the difference
in pore structures, which are controlled by different sedimentary fabrics, is the main cause of
reservoir microscopic heterogeneity. Besides, the temporal and spatial distribution of architectural
units in the alluvial fan controls reservoir macroheterogeneity. Our results show that the thick
sandy conglomerate develops two types of pores, two types of permeability rhythms, two types
of interlayers, two types of interlayer distribution, two types of effective sand body architecture,
and four types of sand body connecting schemes. The strongest plane heterogeneity is found in the
composite channel unit formed by overlapping and separated stable channels of the middle fan, and
the unit’s permeability variation coefficient is >0.7. However, the variation coefficient in the range
of 0.3–0.5 is found in the extensively connected body unit sandwiched with intermittent channels
of the inner fan. The distributions of the remaining oil vary significantly in different architectural
units because of the influence of reservoir heterogeneity, including distribution patterns of flow
barriers, permeability rhythm, and reservoir pore structures. The composite channel unit formed by
overlapping and separated stable channels, or the lateral alternated unit with braided channel and
sheet flow sediment of the middle fan, is influenced by the inhomogeneous breakthrough of injection
water flowing along the dominant channel in a high-permeability layer. The microscopic surrounding
flow and island-shaped remaining oils form and concentrate mainly in the upper part of a compound
rhythmic layer. Meanwhile, in the extensively connected body unit sandwiched with intermittent
channels of the inner fan, poor injector–producer connectivity and low reservoir permeability lead to
a flake-like enrichment of the remaining oil.

Keywords: reservoir heterogeneity; remaining oil; sandy conglomerate reservoir; alluvial fan;
Qaidam Basin

1. Introduction

Reservoir heterogeneity is the term used to describe the uneven alternations in spatial
distribution and internal attributes, which are caused by the influences of sedimentary
environments, diagenetic processes, and tectonism during the formation of oil and gas
reservoirs [1–3]. It is an important content of reservoir characterization manifested in both
macroscale (plane, intrabedding, and interbedding) and microscale (pore space and struc-
ture). Additionally, it is the main geological factor determining the reservoir quality, which
constricts the adjustment of a reservoir development scheme and affects the distribution of
the remaining oil [4–6].
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Conglomerate reservoirs are widely distributed, and they include the Permian–Triassic
succession on the northwest edge of Junggar Basin, China; Paleogene Shahejie Formation
of Dongying Depression, China; Yingcheng Formation of Songliao Basin, China; Barrancas
Formation of Mendoza area, Argentina; and Upper Morrow in Anadarko Basin and Bend
Conglomerate in Boonsville Gas Field of Fort Worth Basin, USA [7–12]. In general, they are
strongly heterogeneous because of depositional and diagenetic alternations; however, their
main controlling factors and specific characteristics on the macrolevel and microlevel are
different. In this study, the research area is the Qie12 block in Qaidam Basin, which is a
typical sandy conglomerate reservoir. Qie12 block was put into production according to
the “thick massive reservoir” geological model during the initial stage of its development;
however, the model caused prominent problems such as rapidly declining productivity,
quickly declining water volume fraction, uneven injection production, and unclear law
of remaining oil distribution. Although research on the characteristics of its sandy con-
glomerate reservoir has been reported [13], studies on its reservoir heterogeneity have not
been conducted. Therefore, this study deeply analyzed the heterogeneous characteristics
of Qie12 block’s sandy conglomerate reservoir according to geology, logging data, and
dynamic production data and determined their influence on the distribution of remaining
oil in the research area. On the basis of the results, we provide a theoretical basis for
establishing the potential of remaining oil and comprehensive reservoir management.

2. Geological Background

The research area is the Qie12 block, which is located in the Kunbei oilfield of the
Qaidam Basin, northwest China. Kunbei oilfield is composed of several tertiary oil-bearing
structures, and it is located specifically in the Kunbei fault step zone on the western
depression of the Qaidam Basin. Meanwhile, the Kunbei fault step zone is distributed
in front of the East Kunlun structural belt, and it is developed by compression from
the East Kunlun Mountain to the basin. It has a large piedmont compression torsional
thrust structural belt and shows a structural pattern of north–south zoning and east–west
blocking [14,15]. In particular, the Qie12 block reservoir is distributed on the west side of the
step zone, whereas the block’s structural form is an anticline, and its axis is NNE (Figure 1).
The lower member of the Ganchaigou Formation (E3

1), comprising four oil groups, I, II, III,
and IV (from top to bottom of Figure 1), was deposited during the Paleogene. In this study,
the target layer is oil group IV, which has an average thickness of 55 m and is subdivided
into seven small layers.

In the research area, the dominant colors of sediments are brown and brown–red,
which are oxidation colors reflecting the characteristics of near-source and rapid accumu-
lation. Meanwhile, the area’s sandy conglomerate reservoir shows low composition and
structure maturity. The two main types of hydrodynamic mechanisms affecting the area’s
bedding structure, which can be further used for representing the sedimentary environment,
are traction current and gravity flow. The traction current resulted in tabular crossbedding,
trough crossbedding, scouring–filling structure, parallel bedding, and gravel orientation
structures (Figure 2a–d), whereas the massive bedding and matrix-supported suspended
gravel structure were formed by the gravity flow (Figure 2e–g). The lithology types in
the block include conglomerate, glutenite, pebbly coarse–fine sandstone, siltstone, pebbly
sandstone, and mudstone. We defined eight lithofacies within this study area according to
bedding structures, and their characteristics and genesis are summarized in Table 1.
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Figure 1. (a) Tectonic location of the research area, which is marked with a red box, is the west block
of the Kunbei thrust structural belt. (b) Diagram showing the composite columnar of the reservoir,
where oil layers are concentrated at the bottom of the target stratum. There are six lithofacies and
two types of logging interpretation conclusions along the target stratum.

Figure 2. Typical sedimentary structures charts found in the Qie12 block: (a) Q12−10−8,
2059.1 m, tabular crossbedding; (b) Q12−7−28, 1829.4 m, tabular crossbedding; (c) Q12p1, 1809 m,
tabular crossbedding; (d) Q125, 2026.5 m, trough crossbedding, gravel orientation arrangement;
(e) Q12−23−6, 1917 m, massive bedding, gravel upright; (f) Q12−7−28, 1842.4 m, massive bedding,
gravel upright; and (g) Q121, 1842.7 m, massive bedding. T is the top surface, and B is the bottom
surface of the core in these figures.
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Table 1. Characteristics and genesis of the lithofacies in the Qie12 block.

Code Lithology Type Bedding Structure Genesis
Amplitude Difference

of SP Curve
RHOB (g/cm3) GR (API)

Gmm Argillaceous
conglomerate–glutenite

Massive bedding,
matrix support Debris flow/sheet flow moderate 2.36–2.57 85–117

Gei Sandy
conglomerate–glutenite

Massive bedding, grain
support, gravel

orientation arrangement

Braided channel
floor lag large 2.36–2.57 85–100

Gt Sandy
conglomerate–glutenite Trough crossbedding Braided

channel-filled deposit large 2.36–2.57 73–105

Gp Sandy
conglomerate–glutenite Tabular crossbedding Braided

channel-filled deposit large 2.36–2.57 73–105

St Pebbly sandstone Trough crossbedding Braided
channel-filled deposit large 2.23–2.44 73–105

SSh Siltstone Parallel bedding
Abandoned

channel/silted channel
deposit/runoff channel

large 2.23–2.44 73–105

Sm Anisometric sandstone Massive bedding Sheet
flow/runoff channel moderate 2.23–2.44 80–125

Mm Sandy mudstone Massive bedding,
flat bedding Flood plain small 1.75–2.41 100–125

By integrating the aforementioned geological features, we believe that the Qie12
block is an alluvial fan, which is a genetic type of thick sandy conglomerate. In the
alluvial fan, there are five sedimentary microfacies: a fourth-order architectural element [16]
that includes a braided channel, debris flow, sheet flow, runoff channel, and flood plain.
According to the vertical assemblage of different architectural elements and the distribution
pattern of interlayers [17,18], we also identify four fifth-order architectural units: the
extensively connected body unit sandwiched with intermittent channels, the composite
channel unit formed by overlapping and separated stable channels, the lateral alternated
unit with braided channel and sheet flow sediment, and the runoff channel inlaid in flood
plain mudstone.

Based on the theory of high-resolution sequence stratigraphy [19], we established the
sequence stratigraphy framework in this study area. We divided 1 long-term, 7 medium-
term, and 24 short-term base-level cycles in the target stratum. The time span of the
medium and short-term cycles is approximately 0.23 and 0.07 Ma, respectively. The vertical
assemblage of different sedimentary microfacies constitutes the sedimentary sequence of the
alluvial fan. Its sediments show an upward-fining grain-size distribution, which suggests
that the sedimentary sequence is a retrogradation sequence. The physical properties of
the reservoir structures include low porosity and ultra-low permeability, and they have
average porosity and permeability values of 10.5% and 7.8 mD, respectively.

3. Data and Methods

The reservoir data in the Qie12 area contain various data types: geology, wireline
logging, seismic, and production dynamic. The area houses 13 coring wells, including
3 systematic coring wells, and the total core length of the target layer is 309 m. After more
than 1000 analyses, the resulting test data, including microreservoir analysis, reservoir
sensitivity, and microseepage test, are corrected using core and ground gamma data. These
data are detailed and reliable, and they provide data support for the microheterogeneity
evaluation of reservoirs. All 127 wells are well-logged, and logging interpretation was
performed on these wells. By evaluating the four properties of the reservoir, we established
the identification charts of effective reservoirs and interlayers, interpreted and divided the
effective reservoirs and interlayers, and clarified the structures of effective reservoirs and
distribution styles of interlayers. The three-dimensional seismic work area is approximately
100 km2. The quality of seismic data obtained at main frequency, frequency band range,
and sampling rate values of 30 Hz, 10–50 Hz, and 2 ms, respectively, is good. The research
area has been in development and has rich production dynamic data. Its geology, wireline
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logging, seismic data, and dynamic production data provided a basis for our reservoir
macroheterogeneity evaluation.

There are various methods to evaluate reservoir heterogeneity [20–24]. In this study,
we used geological origin, geostatistics, logging interpretation, and analysis of production
performance to evaluate the macroheterogeneity of the studied reservoir. Additionally, an
experimental method was used to analyze the microheterogeneity of the reservoir. The
geological origin affecting reservoir heterogeneity was studied initially using a geological
origin method, and the results revealed the main factors that influence heterogeneity and
depicted the strength of reservoir heterogeneity. We found that sedimentary factors are
the main geological causes of reservoir heterogeneity. Different configuration units of
alluvial fans directly determined the strength of macroheterogeneity. Geostatistics is a
widely used method for studying reservoir heterogeneity, and this method uses statistical
analysis of reservoir permeability to judge the strength of reservoir heterogeneity. It also
includes the statistical analysis of the thicknesses and frequencies of reservoir interlay-
ers and the scales and distributions of effective reservoir sand bodies. Meanwhile, the
logging interpretation method provides continuous reservoir permeability data through
elaborate logging interpretation. The method provides effective reservoir and interlayer
identification charts with four-property evaluation, interpretation of effective reservoirs
and interlayers on a single well, development positions of interlayers and intralayers, and
qualitative description of macroheterogeneity. Continuous reservoir permeability data
are also basic data for geostatistics. An analysis of production performance provides a
verifiable and effective way to determine reservoir heterogeneity using various dynamic
data that directly reflect the strength of reservoir heterogeneity. Experimental analysis is
an important tool for studying microheterogeneity. The dynamic conditions of alluvial
fans are complex. The lithofacies are diverse, and the microheterogeneity of reservoirs
is strong. Thus, with the help of different experimental analysis methods, the following
can be achieved: characteristics of the pore structure of the reservoir, insights into the
microseepage mechanism of the reservoir, and sensitivity characteristics of the reservoir.
These achievements will provide a geological basis for reservoir reconstruction, remaining
oil potential tapping, and reservoir management.

4. Results

4.1. Reservoir Microheterogeneity

In this study area, reservoir petrology is characterized by low compositional and
structural maturity. The compositional maturity index (Q/(F + R)) is 0.23. The reservoir is
poorly sorted, and the main contact method among its particles is the line–point contact
relationship. The average mass fraction of its mud base is approximately 8.4%, and its aver-
age cement content of 2.1% is relatively low. We utilized various experimental techniques,
including thin-section observation, scanning electron microscopy (SEM), mercury injection,
and computed tomography (CT) scanning, and their results confirmed the dual porosity
media characteristics of the space-type sandy conglomerates in this study area [25,26].
Four types of pores were found in the reservoir: primary intergranular (Figure 3a–d), intra-
granular dissolution (Figure 3h–j), diagenetic fracture (Figure 3e–g) [27], and argillaceous
micropores (Figure 3k,l), and the proportion of primary intergranular pores is >60%. In
this study, the diagenesis affecting the sand conglomerate reservoir includes compaction,
cementation, and dissolution [28]. Compaction is the main diagenesis to reduce the primary
intergranular pores, the average compaction pore reduction and compaction pore reduction
rates are 19% and 53%, respectively. The compaction intensity is medium. Additionally,
the diagenetic fractures developed due to compaction increased the reservoir pore space
and partially improved the reservoir’s permeability; this had a certain constructive effect
on the reservoir transformation. Cementation is another important factor contributing to
the reduction of the primary intergranular pores, with a pore reduction of 3% and a pore
reduction rate of 8%. Calcite, anhydrite, and dolomite are mostly distributed in porphyry
pores; moreover, they are only partially enriched in the unconformity surface between
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the sand conglomerate and the basement rock. Dissolution plays a constructive role in
modifying reservoir performance. In this study, dissolution either selectively dissolved
feldspar and igneous rock debris to form intragranular pores or spread along diagenetic
fractures to create dissolution pores. The dissolution pore enhancement and dissolution
pore enhancement rates are 2% and 5%, respectively.

Figure 3. Characteristics of reservoir storage space in the Qie12 block: (a) Well Qie12−10−8,
1857.01 m, medium-coarse-grained feldspar lithic sandstone, primary intergranular pores; (b) Well
Qie11, 1920.13 m, gravel-bearing coarse sandstone, primary intergranular pores, (-) × 25; (c) Well
Qie11, 1924.79 m, sandy conglomerate, primary intergranular pores; (d) Well Qie12−10−8, 1850.82 m,
gravel-bearing coarse sandstone, primary intergranular pores; (e) Well Qie11, 1928.3 m, sandy con-
glomerate, cracked fracture; (f) Well Qie121, 1944.36 m, cracked fracture; (g) Well Qie121, 1946.2 m,
cracked fracture; (h) Well Qie12, 1818.6 m, gravel-bearing sandstone, detritus dissolution pores,
(-) × 25; (i) Well Qie12, 1820.5 m, pebbly sandstone, feldspar dissolution pores, (-) × 25; (j) Well
Q12−7−28, 1831.72 m, sandy conglomerate, feldspar dissolves along the joint; (k) Well Qie11,
1917.87 m, sandy conglomerate, argillaceous micropores; and (l) Well Qie12, 1820.96 m, argilla-
ceous micropores.

The microheterogeneity of the reservoir is mainly due to various pore structures,
which are formed by different sedimentary fabrics [29,30]. Under the same geological
background and identical dynamic diagenetic conditions within the reservoir, the grain
sizes and cement contents of different sedimentary microfacies are the same. The mud
content is the most intuitive reflection that describes the differences in control sedimentary
fabrics found in various facies belts of alluvial fans. The high or low contents of the mud
controlled the pore structure of the reservoir, and it also determines the strength of the
reservoir’s microheterogeneity. SEM images of thin sections and particle size data showed
two types of pore structures in the reservoir of this study area; furthermore, these structures
are bimodal and multimodal.

The bimodal pore structure of the reservoir is supported by gravel, forming a skeleton
that is filled with sandy debris. Alternatively, the gravel is suspended in the sandy debris,
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the grain-size histogram is bimodal, and the main grain-size interval is fine gravel and giant
sand–fine sand with low clay content (Figure 4a,b). The reservoir space is characterized by
combinations of primary intergranular pores, intergranular dissolved pores, and diagenetic
fractures. The proportion of primary intergranular pores is >70%, and the pores observed
in thin sections are well developed. We performed two experimental analyses, namely
conventional and constant-rate mercury intrusions, to characterize the pore structure of the
reservoir. The conventional method mainly reflects the change in the pore volume during
mercury intrusion, while the constant-rate method highlights the number distribution of
pores and throat tracts. In pore structure analysis and statistics, the quantity distribution
is more accurate than the volume distribution, particularly the quantity distribution of
the throat tract, which can better characterize the reservoir’s seepage characteristics. The
results of mercury intrusion experiments revealed pore structures in the reservoir of coarse
skewness, well sorted, low drainage pressure, and median pressure. Macropores and
mesopores are the dominant pore sizes, and their main peak value is approximately
125 μm, which suggests a unimodal distribution. The distribution of throats, which are
mainly fine throats, is not significant, and the radii of the mainstream throats are in
the range of 3.05–10.22 μm. Local large throats are also found, and the average pore–
throat ratios obtained for the reservoir are in the range of 58.51–130.94. CT scanning
revealed that the percentage of pore–throat volume is 52%. This modal type is developed
in most braided channel microfacies and the minority of runoff channel microfacies that
are effective reservoirs.

(a) (c)

(b) (d)

Figure 4. A chart of the reservoir structure model for the Qie12 block: (a) Well Qie12−10−8,
1858.06 m, gravel-bearing medium-coarse feldspar sandstone, primary intergranular pores; (b) Well
Qie12−10−8, 1858.06 m, histogram of particle size distribution; (c) Well Qie12−10−8, 1859.4 m,
argillaceous sandy conglomerate, dissolution pores, and argillaceous pores are the main pore types,
rarely with visible pores; and (d) Well Qie12−10−8, 1859.4 m, histogram of particle size distribution.
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The multimodal pore structure of the reservoir is complex, and it is composed of
gravel, sand, and clay. The clay content is high, and the histogram of the grain size
distribution shows multiple peaks (Figure 4c,d). The reservoir space is characterized by
a combination of intergranular dissolved pores and argillaceous micropores. Although
the primary intergranular pores under thin sections are poorly developed, they seem to be
filled mostly with argillaceous interstitial fillers. The pore structures of the reservoir are
characterized by fine skewness, poorly sorted, high displacement pressure, pore–throat
distribution, multi-peak forms, and small pore–throat radius. This mode type is mainly
developed in debris flow, diffuse deposition, and the majority of runoff channel microfacies,
and it is manifested in poor reservoir and nonreservoir.

4.2. Reservoir Macroheterogeneity

Reservoir macroheterogeneity is controlled primarily by the spatial and temporal
distribution of different sedimentary configuration units of the alluvial fan. This hetero-
geneity determines the depositional architecture, rhythm, geometry, and connection mode
of sand bodies of different origins; thus, it directly affects the characteristics and strength of
macroheterogeneity [31,32].

4.2.1. In-Layer Heterogeneity

In-layer heterogeneity refers to the variation rule of vertical reservoir parameters in
small layers (e.g., rhythmic characteristics of vertical permeability, interlayer types, and
distribution styles) [33,34], and it is a key geological factor controlling the swept volume of
vertical injectors and the remaining oil distribution in small layers.

Characteristics of Rhythms

Based on the data obtained from the core physical property analysis, the permeability
rhythmic characteristics of the single sand body in this study area have two rhythm types:
compound and homogeneous. The former is a typical characteristic of the sand body in
the braided channel. The median grain size of sands in the sand body shows positive
and compound positive rhythms, and the wellbore logging curve characteristics show bell
and box shapes. WellQ11, with a depth range of 1929–1932 m, has a typical permeability
compound rhythm that is composed of a single-granularity positive rhythm (Figure 5a).
The bottom of a rhythm is controlled by hydrodynamic conditions, and it has coarse
grains that are mainly composed of gravel with poorly sorted sedimentary fabric and
poor permeability. In the middle section of the rhythm, the hydrodynamic energy is
moderate, and the sand is mainly coarse-medium in grain size and well-sorted with low
mud content and good permeability. In the upper section of the rhythm, the channel energy
is attenuated, which turns the grain sizes to fine (mainly fine-silty sand), and the fabric
sorting is medium. The mud content in this section is high, and its permeability is poor. Its
permeability rush coefficient and ratio are 3.3 and 126, respectively. Finally, this section has
strong heterogeneity.

WellQ11, with a depth range of 1923.0–1926.5 m, has a composite permeability rhythm
composed of two or more single-granularity positive rhythms that are superposed on top of
each other (Figure 5b). It is formed by aqueduct accretion, and it has strong heterogeneity.
The change in its permeability in the longitudinal direction is very complicated. Its perme-
ability rush coefficient and ratio are 3.6 and 175, respectively. The primary rhythm type in
its sheet flow and debris flow sand body is homogeneous. It has poor fabric sorting, mixed
base support, massive structure, and no obvious grain rhythm. Its reservoir permeability is
poor, but the reservoir is relatively homogeneous.

WellQ12-10-8, with a depth range of 1872–1875 m, is a homogeneous rhythmic de-
bris flow deposit (Figure 5c). Its permeability rush coefficient and ratio are 1.7 and 18,
respectively.
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Figure 5. Rhythm characteristics of the Qie12 block in the Kunbei oilfield: (a) Well Qie11, 1929–1932 m,
single-granularity positive rhythm; (b) Well Qie11, 1923.0–1926.5 m, composite permeability rhythm;
(c) Well Qie12−10−8, 1872–1875 m, homogeneous rhythm.

Quantitative Evaluation of the Range of Permeability Difference

Quantitative evaluation of the intralayer permeability difference in this study area
includes the following parameters: average permeability, permeability ratio, and permeabil-
ity rush coefficient. The distribution histograms of permeability difference and permeability
rush coefficient are shown in Figure 6. For IV-6 and IV-7 layers, the permeability difference,
rush coefficient, and average permeability ranges are 33–43, 2.5–2.7, and 0.10–1.56 mD,
respectively. These values reflect the lack of a high-permeability braided channel reservoir
in the extensively connected body unit sandwiched with intermittent channels of the inner
fan. They also suggest poor reservoir storage performance and medium heterogeneity. For
IV-4 and IV-5 single layers, the permeability difference, rush coefficient, and mean perme-
ability ranges are 72–74, 3.8–4.1, and 4.71–25.41 mD, respectively. These values suggest
good reservoir performance in the composite channel unit formed by overlapping and
separated stable channels in the alluvial fan. This unit has a high-permeability section that
intensifies reservoir heterogeneity, and it is the most heterogeneous configuration unit in
the alluvial fan. The IV-3 single layer has values for permeability difference, rush coefficient,
and average permeability of 45, 3.3, and 3.2 mD, respectively. These values reflect poor
reservoir performance and low heterogeneity in the lateral alternated unit with braided
channel and sheet flow sediment of the middle fan; however, the overall heterogeneity is
still high. In the IV-1 and IV-2 single layers, mudstone in their flood plain is regional cap
rock, and the reservoir is poorly developed.

In-Layer Type and Distribution Style

Systematic coring wells reveal the absence of mudstone interlayers in the thick sandy
conglomerate section. However, the characteristics of the oil-bearing sections, oil infiltra-
tion, oil spot, and oil trace, are discontinuous, showing the interbedded distribution of
these sections and the oil-free section. On the basis of the oil test results, the oil-free section
is not a water layer. The main reason for the vertical difference in oil content is the presence
of muddy interlayers and part of partial calcareous interlayers, which are controlled by the
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different sedimentary fabrics or cements. The pore structure of the muddy interlayer is
multimodal. This interlayer has a high content of clay mineral matrix and tight physical
characteristics. The wellbore logging curve suggests the following features: high natural
gamma-ray, high acoustic time, low resistivity, high nuclear magnetic total porosity, and
mainly argillaceous micropores. The pore structure of the calcareous interlayers is also
multimodal. These interlayers have high cement carbonate content and medium clay min-
eral matrix. In contrast to the muddy interlayer, the wellbore logging curve of a calcareous
interlayer suggests the following features: low natural gamma-ray, low acoustic time, high
resistivity, and low nuclear magnetic total porosity. We determined the lower limit of
physical property, the upper limit of muddy content, and the logging curve parameters of
the effective reservoir and interlayer using a four-property relation analysis. These enabled
us to establish the quantitative identification plate (Table 2) of the effective reservoir and
interlayer.

Figure 6. Distribution histograms of permeability difference and permeability rush coefficient.

Table 2. Identification plate of effective reservoir and interlayer in the Qie12 block.

Type Permeability (mD) Porosity (%) Shale Content (%) AC (μs·m−1) ΔGR LLD (Ω·m) Sedimentary Facies

Effective
reservoir >0.6 >8.5 <5 >230 <0.55 >8 Braided channel

Muddy
interlayer <0.6 <8.5 >8 >230 >0.55 5–8

Debris flow/sheet
flow/abandoned

channel/silted channel
deposit/runoff channel

Calcareous
interlayer <0.6 <8.5 5–8 <230 <0.6 >8

Riverbed detention
deposit of braided

channel/runoff
channel/glutenite above
the unconformity surface

The identification and division of effective reservoir and interlayer are performed
for all wells using the quantitative identification plates. After comparing the effective
reservoir and interlayer, we conclude the presence of two interlayer distribution patterns:
(1) layer-cake architecture and (2) generally scattered and locally interlaced (Figure 7). The
former pattern is formed primarily at the extensively connected body unit sandwiched with
intermittent channels of the inner fan. This pattern is laminar with stacked interlayers that
divide the lenticular effective reservoir sand body, and its seepage barrier has the strongest
shading capacity among all the alluvial fan architectural units. The latter pattern develops
in the composite channel unit formed by overlapping and separated stable channels and
the lateral alternated unit with braided channel and sheet flow sediment of the middle
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fan. It is manifested as partial discontinuities in the grid of “plywood” high-permeability
reservoirs. As the channels gradually shrink and die out, the pattern’s sheet flood deposits
increase, and the scale of its interlayer development increases gradually.

Figure 7. The interlayer distribution of the Qie12 block.

The isolation ability of an interlayer mainly depends on its permeability, which in-
creases variably with increasing interlayer thickness. Parameters such as thickness, density,
and frequency are often used to quantitate the distribution pattern of an interlayer [35].
On the basis of our measurements, the thickness and density of the interlayer in this study
area from bottom to the top showed a characteristic change from large to small and then to
large, whereas its frequency increased gradually. The highest and lowest density values are
found in layers IV-7 (0.78%) and IV-5 (0.38%), respectively. Meanwhile, the highest and lowest
frequency values are found in layers IV-3 (0.23 bars/m) and IV-7 (0.09 bars/m), respectively.

4.2.2. Interlayer Heterogeneity

Interlayer heterogeneity, which refers to the differences between sand bodies, includ-
ing cyclicity of strata system, distribution of sand barrier, and characteristics of interlayer
fractures, is an important cause of interlayer interference and water displacement differ-
ences during water injection development. We focused on the characteristics of interlayer
barriers and found that barriers between layer IV-7 and its overlying basement rock are the
most developed. These 1.1–2.8-m-thick barriers showed a stable lateral distribution and
good continuity. The barriers between layers IV-6 and IV-7 have a more continuous lateral
distribution, and their thickness is in the range of 0.5–2.3 m. The barriers between layers
IV-5 and IV-6 and layers IV-3 and IV-4 have a discontinuous lateral distribution, and their
thickness in the range of 0.4–1.6 m is small. Meanwhile, the barriers between layers IV-4
and IV-5 are developed on a small scale, and their thickness is in the range of 0.3–0.5 m.
They are also poorly continuous, and their isolation ability is limited. The development
scale and distribution pattern of the interval layers are controlled by the architectural
unit type; thus, serious heterogeneity in the development of water injection is present in
different architectural units, which limits the effectiveness of reservoir waterflood.

4.2.3. Horizontal Heterogeneity

Reservoir horizontal heterogeneity is caused by the geometry, scale, and continuity of
the sand body and its permeability planar variation. It directly affects the waterflood-swept
area and planar water displacement efficiency.

Sand Body Geometry

Sedimentary facies determine the geometry of sand body distribution. The 5.8–62.0-m-
thick alluvial fan sandy conglomerate in this study area is distributed with a thin western
to thick eastern distribution. Controlled by the development scale of the braided channels
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in different sedimentary architectural units, the effective sand body developed two types
of reservoir architecture. One is jigsaw-puzzle reservoir architecture, which developed in
the composite channel unit formed by overlapping and separated stable channels of the
middle fan. The plane geometry is fan-shaped, but with the channel shrinkage, the plane
geometry becomes dendritic. The other is the labyrinth architecture, which is developed in
the extensively connected body unit sandwiched with intermittent channels. The lenticular
effective sand body is distributed sporadically, and its geometric shape is similar to a potato.

Sand Body Connectivity

Through a good correlation comparison of effective sand bodies with interlayers in this
study area, we concluded the presence of four sand body connectivity mode types: discon-
nected, weakly connected, connected multilayer, and connected multilateral type, which
are shown in Figure 8a–d, respectively. The disconnected, weakly connected, and two-
connected types account for 20%, 35%, and 45% of the total, respectively. The disconnected
type mainly develops in the extensively connected body unit sandwiched with intermittent
channels. The weakly connected type develops mainly in the lateral alternated unit with
braided channel and sheet flow sediment. Meanwhile, the connected types mainly develop
in the composite channel unit formed by overlapping and separated stable channels, and
they play an important role in controlling water injection and well pattern arrangement.

Figure 8. Sand body connecting type of the Qie12 block: (a) disconnected; (b) weakly connected;
(c) connected multilayer; (d) connected multilateral.

Distribution of Reservoir Permeability and Permeability Variation Coefficient

We analyzed the horizontal distribution characteristics of reservoir parameters using
a geostatistics method with E3

1-IV-4 as an example. The average permeability, mean
variation coefficient, mean range difference, and rush coefficient of the selected single
reservoir are 7.8 mD, 0.86, 66.3, and 3.4, respectively. A comprehensive evaluation of
reservoir heterogeneity is strong. The permeability distribution map of the reservoir
is shown in Figure 9a. The long axis of the isoline is in the direction of northwest to
southeast. The permeability changes from low to high and then to low from west to east,
and the composite channel in the middle fan has the best permeability. The permeability
variation coefficient is distributed in a circular band, as shown in Figure 9b. The composite
channel unit heterogeneity in the inner side of the middle fan is the strongest, and its
variation coefficient is >0.7. This unit is followed by the lateral alternated unit with braided
channel and sheet flow sediment on the lateral side of the middle fan, and its variation
coefficients are in the range of 0.3–0.9. The extensively connected body unit sandwiched
with intermittent channels in the inner fan showed moderate reservoir heterogeneity, with
its variation coefficients in the range of 0.3–0.5.
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Figure 9. (a) Permeability and (b) variation coefficient distribution of the E31-IV-4 formation in the
Qie12 block.
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5. Discussion

Reservoir heterogeneity from macroscopic to microscopic and from intralayer to inter-
layer and plane is the main factor that controls the distribution of remaining oil [36–38].
Thus, the geological factors that control the distribution of the remaining oil in alluvial
fan glutenite reservoirs include the distribution pattern of flow barriers, permeability
rhythm characteristics, and reservoir microscopic pore structure of the sedimentary archi-
tectural unit.

5.1. Influence of Flow Barrier Pattern on Remaining Oil Distribution in Architectural Units

The hydrocarbon distribution in this study area is uneven and segmented according
to the description of the systematic coring of Well Q12-10-8. There are four oil segments
from bottom to top. The segment at the bottom contains the least oil and a significant
amount of massive barren argillaceous conglomerates. The middle segment contains a
relatively continuous oil distribution segment, which is regarded as the best oil-bearing
interval in the alluvial fan. This segment is mainly composed of oil-immersion, oil-bearing,
and oil-patch sandy conglomerates or pebbly coarse-medium sandstones. It also contains
thin barren muddy glutenite. The upper segment has a discontinuous property of oiliness
and is composed of oil-patch and oil-immersion sandy conglomerates, pebbly sandstone,
barren muddy glutenite, and anisometric sandstone. The topmost segment is barren, and it
contains massive mudstones that do not have oil and gas.

After analyzing the relationship between hydrocarbon enrichment characteristics and
the liquid production profile of architectural units, we found that the effective reservoir
architecture and flow barrier distribution pattern of different architectural units control the
vertical “four-segmentation” enrichment law of hydrocarbon and affect the macroscopic
distribution of remaining oil (Figure 10).

In the extensively connected body unit sandwiched with intermittent channels, the
effective reservoir with a lenticular shape distribution is isolated by “layer-cake architecture”
interlayers, resulting in poor oiliness properties. The reservoir has poor permeability and
injection–production connectivity, and it has a high starting water pressure that slows
waterline advancement. It manifests as under-injection or no injection and has a relative
water absorption of <20%. It has poor sweep efficiency of injected water and degree of
water driving and produces flake-like remaining oil.

In the composite channel unit formed by overlapping and separated stable channels,
some interlayers have a “generally scattered and locally interlaced” distribution in the
unit’s effective reservoir, having a plate-like synthesis distribution. Therefore, the best
oiliness property and most continuous hydrocarbon distribution are found in the proximal
part of the middle fan. The injection–production connectivity rate, sweeping efficiency
of water injection, and degree of water driving in this unit are high. A total of 90% of
daily oil production and 80% of relative water absorption occur in this unit. In the lateral
alternated unit with braided channel and sheet flow sediment, there is gradual shrinkage
of the braided channel and a gradual increase of sheet flow sediments. In addition, the
thickness of the effective reservoir reduces, whereas the thickness and the frequency of
interlayers increase. Meanwhile, hydrocarbon distribution becomes discontinuous in the
distal part of the middle fan, and both liquid production and water absorption significantly
decrease. In the aforementioned two units, according to the perforation plan of “large
diameter casing pipe and mixed injection,” the injected water passes quickly along large
channels in the high-permeability reservoir, resulting in water flooding, and the unswept
area of injected water forms plaque-like remaining oil.
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Figure 10. Relationship between production profile and sedimentary architectural units.

5.2. Influence of Permeability Rhythm on Macroscopic Remaining Oil Distribution

The water absorption profile of the 1922- to 1935-m braided channel sand body in
Well Qie11 is shown in Figure 11. We used this profile as an example to analyze the
influence of reservoir permeability rhythm characteristics on the macroscopic remaining
oil distribution. There are four permeability composite rhythms developed vertically in
this section reservoir. In the middle and lower parts of the rhythm, the injected water flows
easily along the large pores of the high-permeability layer because of the superposition
of gravity and intralayer heterogeneity effects. Relative water absorption accounts for
approximately 85% of the reservoir’s total in Well Qie11 water absorption profile. After the
water injection front breaks through, the water cut of the production well rises rapidly, and
the injected water circulates ineffectively. In the upper part of the rhythm layer, the water
breakthrough flow is slow, relative water absorption accounts for approximately 15%, oil
displacement efficiency is low, and the remaining oil is enriched.
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Figure 11. Relationship between permeability compound rhythmicity and water absorption.

5.3. Influence of Reservoir Microheterogeneity on Microscopic Remaining Oil Distribution

The flow in the large pores of the bimodal reservoir pore structure is the main factor
that leads to the strong heterogeneity of microscopic seepage [39,40]. The microscopic flow
experiment shows the following results: the water displacement process is characterized
by heterogeneous flooding, the water-free oil recovery period is short, and oil displace-
ment efficiency is relatively low. In the process of water displacement, the heterogeneous
intrusion and flow around the water flooding front form a large area of remaining oil that
is not displaced by the surrounding flow and island-shaped remaining oil, as shown in
Figure 12a,b, respectively. Water phase permeability is low in the presence of remaining oil;
thus, the injected water is more likely to penetrate along the pore channels that have been
broken through. Therefore, it is difficult to displace oil with the injected water, resulting in
low oil displacement efficiency and a rapid increase in water content.

In summary, reservoir heterogeneity plays an important role in controlling the distribu-
tion of remaining oil. We note that deep profile control and oil displacement technique are
key to the comprehensive management of the composite channel unit formed by overlap-
ping and separated stable channels or the lateral alternated unit with braided channel and
sheet flow sediment. Meanwhile, to tap the potential of the remaining oil in the extensively
connected body unit sandwiched with intermittent channels, we need to depressurize,
increase the injection, and improve the quality of the reservoir. The study effectively guided
the deep profile control of the test well group, and it achieved practical results. Under
the premise of an unchanged production system and after profile control, the daily fluid
production of a single test well (i.e., Q12H13-9) was stable (Figure 13). The test well’s
daily oil production increased by approximately 40%, whereas its water content decreased
by 35%.
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(a) (b)

Figure 12. Distribution model of the remaining oil in the Qie12 block. (a) Surrounding flow remaining
oil, Well Qie12−7−8, 1814.92 m; (b) island-shaped remaining oil, Well Qie12−7−28, 1844.12 m.

Figure 13. Oil production rate curve of the Q12H13−9 well in the Qie12 block.

6. Conclusions

The results of this study showed that the alluvial fan reservoir exhibited strong het-
erogeneity. By considering sedimentary architectural units as the research object, we
qualitatively and quantitatively investigated the microheterogeneity and macroheterogene-
ity of a sandy conglomerate reservoir. Based on these results, we discussed the effect of
heterogeneity on the remaining oil distribution and highlighted the main measures required
to tap the remaining oil in different architectural units.

Note that reservoir heterogeneity is the geological basis of reservoir management. This
is the first study to propose the concept based on sedimentary architectural units. These
are important for the comprehensive reservoir management in the Qie12 block, but would
also be relevant in other alluvial fan reservoirs.

(1) The difference in reservoir pore structures that are controlled by the different sedi-
mentary fabrics is the main cause of reservoir microheterogeneity, whereas the spatial
and temporal distribution of alluvial fan sedimentary architecture units is the main
factor that controls reservoir macroheterogeneity.

(2) Reservoir heterogeneity affects the distribution of remaining oil through the flow
barrier distribution pattern of sedimentary architecture units, permeability rhythm,
reservoir pore structure, and other aspects. The remaining oil distribution of different
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structural units is different. The composite channel unit formed by overlapping and
separated stable channels or the lateral alternated unit with braided channel and sheet
flow sediment is affected by the inhomogeneous inching of injected water along the
large pore–throat channel. The remaining oil is formed in patchy distributions, such as
flow around an island, and it is enriched in the upper part of the composite rhythmic
layer. Therefore, deep profile control and oil displacement technologies are keys to the
comprehensive management of these units. In the extensively connected body unit
sandwiched with intermittent channels, poor injection–production connectivity and
low reservoir permeability caused flake-like remaining oil distribution. To fully realize
the potential of the remaining oil, the fundamental requirements are depressurization,
increase in injection, and improvement of reservoir quality.

(3) The research results have guiding significance for comprehensive reservoir manage-
ment. Daily oil production increased by approximately 40%, whereas water content
decreased by 35%.
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Abstract: As an unconventional oil and gas reservoir, helium gas reservoirs have gradually become
a focus of attention. In recent years, with the continuous increase in demand for helium gas, the
uneven distribution of global helium resources has attracted China’s attention to helium resources.
In this study, a method for predicting favorable areas of helium gas was proposed based on the
natural gas exploration theory and the idea of “finding gas in enrichment areas”. We conducted an
in-depth study and analysis of the types of helium gas formations in China by comprehensively using
geochemical and isotope-testing data, identifying the distribution of helium source rocks in China.
Based on this, we conducted directed analyses of the transport channels and caprock conditions for
helium gas, and summarized the enrichment modes of helium gas. Using this method, we predicted
five favorable areas for the enrichment of helium gas in China, providing an important basis for the
future exploration and development of helium resources in China.

Keywords: helium resources; unconventional oil and gas reservoirs; resource distribution; helium
formation; favorable area forecasts

1. Introduction

Unconventional oil and gas reservoirs are currently a key area of oil and gas devel-
opment worldwide, and in recent years, helium gas reservoirs have become a new hot
spot in this field. Research on helium gas dates back to the 1930s, and there have been
various opinions regarding its source. Ruedemann [1] believed that the helium gas in
the Panhandle, which is a large and rich helium gas field in the United States, primarily
originated from the decay of U and Th in granite and pegmatite in the reservoir. Pierce [2]
believed that helium gas originates from source rocks, while Katz [3] believed that helium
gas comes from sedimentary rocks containing ammonium minerals and organic matter.
However, Nikonov [4] believed that helium gas originates from the crust, and Maione [5]
believed that helium gas comes from the basement. Gold [6] and others inferred that
helium gas is generated jointly from basement rocks and basement source rocks. Currently,
scholars believe that helium gas primarily originates from deep mantle-source fluids and
the decay of U and Th in granitic rocks.

In addition to identifying the source of helium, it is also necessary to determine the
transport pathways and migration modes of helium gas during the accumulation process.
Different scholars have proposed various viewpoints regarding the transport modes and
pathways of helium gas. Some scholars believe that helium gas is transported through
diffusion, and can also be upwardly transported with fluids [7]. Other scholars propose
that the main pathways for helium gas are basement faults and fractures [4,6,8]. Studies
by Ballentine [9] and Brown [10] suggest that the helium gas in the Panhandle gas field
is transported via groundwater. Qin [11] and colleagues suggest that in the Weiyuan
gas field, helium gas is dissolved in water before degassing and accumulation. In the
research conducted by Zhang [12] and his team, they suggest that helium gas generated

Energies 2024, 17, 1530. https://doi.org/10.3390/en17071530 https://www.mdpi.com/journal/energies314



Energies 2024, 17, 1530

from radioactive minerals initially dissolves in water, and then dissolves in a carrier gas
before being transported into the reservoir.

For a long time, China has relied heavily on imports to obtain sufficient amounts of
helium gas, as its own production and resource reserves are very inadequate. This situation
is mainly due to the past underestimation and neglect of helium resources in China, which
prevented adequate exploration and development work from being carried out. In addition,
the incomplete theories on the formation of helium reservoirs have further hindered the
exploration and development of China’s helium resources. Therefore, it is necessary to
predict the favorable areas for helium gas in China to provide a sufficient theoretical basis
for finding and developing helium resources.

2. Global Helium Situation

2.1. Global Distribution of Helium Resources

The global distribution of helium gas is uneven, and according to a report from the
US Geological Survey in 2023 [13], the average recoverable helium reserves in known
natural gas reservoirs in the United States is 8.49 × 109 m3. Except for the United
States, the estimated global helium resources are about 3.13 × 109 m3. They are in Qatar
with 10.1 × 109 m3, Algeria with 8.2 × 109 m3, Russia with 6.8 × 109 m3, Canada with
2.0 × 109 m3, and China with 1.1 × 109 m3, indicating the extremely uneven distribution
of global helium resources. Overall, the world’s proven and remaining helium reserves are
gradually decreasing, but at the same time, some large helium fields have been discovered.
For example, the “world-class” helium field discovered in the East African Rift Valley in
Tanzania is estimated to have reserves of up to 2.8 × 109 m3 [14].

According to the US Geological Survey and Danabalan’s article on the distribution
of helium gas in the United States, the helium resources of the United States are mainly
distributed in the Panhandle-Hugoton gas field in Kansas, Oklahoma, and Texas, the Riley
Ridge gas field in Wyoming, the Greenwoods gas field in Kansas, the Keyes gas field in
Oklahoma, and the Cliffside gas field in Texas. In addition, some helium-rich natural
gas resources have also been discovered in sedimentary basins to the east of the Rocky
Mountains and in New Mexico (Figure 1) [8,15,16].

 

Figure 1. Distribution of helium resources in the United States (from Danabalan D. 2017 [16]).
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According to Akutsent’s research in 2014, it was found that the helium resources
discovered in Russia are mainly distributed in natural gas fields on the West Siberian
Plateau. In addition, there are also some helium-rich natural gas fields in the Orenburg
field in the Northern Caspian region, the Chayanda gas field in the Yakutia region, and
some areas in the Irkutsk region and Komi Republic (Figure 2) [17]. From the distribution
maps of the helium contents in the United States and Russia, uneven distributions also
occur within these countries.

  

Figure 2. Distribution of helium resources in Russia (from Akutsent V.P. 2014 [17]).

2.2. Global Helium Supply and Demand

In 2021, the helium production capacity in the United States was about 77 million
cubic meters, accounting for about 48.13% of the global production, while Qatar’s produc-
tion capacity was about 51 million cubic meters, accounting for about 31.88%. Together,
their production capacity accounts for almost 80% of the global production, while China
only accounts for about 0.63%. Helium resources are almost completely owned by a few
countries such as the United States and Qatar [18].

The United States is the world’s largest producer and supplier of helium. Prior to
1996, 90% of the world’s helium production came from the United States. After 2000, most
of the helium-rich natural gas fields in the United States entered a depletion phase of
development. Since 2012, US helium production has been declining at an annual rate of
about 10%. Since 2005, the helium production in Qatar has rapidly increased to 5 × 107 m3

after being put into operation. As Qatar, Algeria, and other countries increased their helium
production, the proportion of US helium production in the global total decreased from
90% in the 1990s to 55% in 2016. Among the global helium production proportions, Qatar
accounts for 32%, Algeria for 6.5%, Australia for 2.6%, Russia for 1.9%, and Poland for 1.3%
(Figure 3) [14].
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Figure 3. Pie chart showing the proportion of global helium production capacity.

Due to the impact of the reduction in US helium production, the global helium supply
has been in an overall downward trend since 2013. As the economy and high-tech industries
continue to develop rapidly, the application scope of helium has gradually expanded, and
global helium demand is growing at an annual rate of 4% to 6% [19]. This has led to a
current supply shortage of helium, which is expected to last for a long time.

In 2016, the global helium demand was 2.3 × 108 m3, but the annual production was
only 1.54 × 108 m3. According to the United States Geological Survey, the global helium
resource amount was approximately 520 × 108 m3 in 2020, of which the United States
accounts for about 206 × 108 m3, followed by Qatar with a helium resource reserve of about
10 × 108 m, while China’s helium resource amount is about 11 × 108 m3, accounting for
only 2% [13].

China’s demand for helium was very small prior to 1990, and the highest production
of helium before 1989 was only 3 × 104 m3 [20]. In 2005, China imported 2 × 106 m3 of
helium, and by 2012, the total amount of imported helium had reached 5 × 106 m. In 2017,
China imported approximately 20 × 106 m3 of helium [21], which means that the amount of
imported helium has increased by 10 times that amount in just 10 years. Currently, China’s
helium supply is heavily dependent on imports, mainly from Qatar, the United States, and
Australia, so the situation for helium resources in China is very severe.

3. Materials and Methods

Based on natural gas exploration theory and the “finding gas in enrichment zones”
concept, this article proposes a method for predicting favorable areas for helium gas
exploration. The Combination of Functional Elements to Control Reservoir Formation
Method (CPH) involves using three functional elements, including the caprock (C), effective
migration pathway (P), and helium source rock (H). With the distribution and development
of CPH, this method predicts favorable areas for the enrichment of helium in China. Using
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the helium content of discovered oil and gas reservoirs, the rationality of the subdivision
scope of the predicted favorable areas has been confirmed.

We reprocessed the geological, geochemical, and isotopic data of nine samples col-
lected from seven regions, conducted an in-depth analysis, and studied the types of helium
gas geneses in China. Through this analysis, we discovered the laws governing the sources
of helium gas and the distribution patterns of helium source rocks in China. We also con-
ducted directional analyses of the migration pathways and caprock conditions for helium
gas, and summarized the enrichment patterns of helium gas. Based on these findings, we
predicted favorable areas for helium gas exploration and verified their rationality using
the helium content of discovered oil and gas reservoirs. This study provides an important
foundation for the future exploration and development of China’s helium resources. The
research outcomes of this study hold significant practical and theoretical implications,
which will promote the development and utilization of helium resources.

4. Results

4.1. Genetic Types and Distribution Characteristics of Helium in China
4.1.1. Types of Helium Geneses

Helium gas in natural gas reservoirs has various sources and origins. The origin and
source of helium can be effectively identified using the composition of helium and rare gas
isotopes. Helium has two stable isotopes, 3He and 4He. 3He is mainly derived from mantle
degassing, while 4He is mainly derived from the decay of radioactive elements like 238U,
235U, and 232Th. The main radioactive decay reactions are as follows [19]:

238 U→8 4He + 6β + 206Pb (1)

235 U→7 4He + 4β + 207Pb (2)

232 Th→6 4He + 4β + 208Pb (3)

The classification of helium gas origin types is determined by isotopic ratios. The
isotopic signature of the sample helium is expressed as the 3He/4He ratio (R) relative to the
atmospheric helium 3He/4He ratio (Ra), to determine the helium isotope characteristics of
the gas sample.

R/Ra = (3He/4He) sample/(3He/4He) atmosphere (4)

In natural gas reservoirs, the composition of atmospheric helium is so small that
it can be neglected. Therefore, the source of atmospheric helium can be ignored, and a
binary composite model can be used to calculate the proportions of crustal and mantle
helium in natural gas samples. When the isotopic ratio R/Ra is used to express the isotopic
distribution characteristics of the gas sample, if (R/Ra) > 3.94, then the proportion of mantle
helium is greater than 50%; if (R/Ra) > 0.1, then the proportion of mantle helium is greater
than 1%; if (R/Ra) < 0.1, then it is from crustal sources [11]. Mantle-source helium gas
will ultimately enter crustal reservoirs and become accumulated. Therefore, mantle-source
helium-rich natural gas reservoirs are always mixed with crustal-sourced helium gas.

Cao, Z.X. (2001), Guo, N.F. (1999), Dai, J.X. (2003), Yu, Q.X. (2013), and Zhang,
X.B. (2020) [12,22–28] collected natural gas samples from the Hankou Gas Field and the
Huangqiao Gas Field on the Tan-Lu Fault, the Wanjinta Gas Field in the Songliao Basin,
the Weiyuan Gas Field in the Upper Yangtze Plate, the Yakra Gas Field and the Hetianhe
Gas Field in the Tarim Plate, and the Mabei, Dongping, and Niudong areas in the Qaidam
Block, respectively, and analyzed their natural gas components using mass spectrometry.
We reprocessed the test result data (Table 1). We found that helium gas is produced along
with natural gas in gas reservoirs. Helium-rich gas reservoirs with a crustal origin are
mainly composed of organic (CH4) gas reservoirs. Helium-rich gas reservoirs with a mantle
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origin are characterized by a high content of nitrogen gas. The helium-rich natural gas
can be classified into organic helium-rich gas reservoirs and inorganic helium-rich gas
reservoirs based on its geochemical composition. From a geological structural perspective,
the mantle-origin helium-rich gas reservoirs are mainly distributed in fault zones, where
there is no supply of hydrocarbon source rocks for the reservoirs, but the tectonic activity is
strong and the faults are well developed. The helium gas reservoirs with a crustal origin are
generally associated with natural gas and are distributed along the edges of tectonic plates.

Table 1. Composition and Isotopic Characteristic Data Table of Natural Gas Reservoirs.

Classification
of Causes

Geotectonic Position
Component Characteristics (%) 3He/4He

(10−8) R/Ra
Mantle Source

Share (%) Reference
CH4 C2

+ N2 CO2 He

Crustal-
source helium

Southwest edge of the
Upper Yangtze Plate 83.97 2.3 9.6 4.3 0.21~0.34 2.9~3.0 0.21~0.00 0.08~0.09 Dai et al., 2003 [29]

Northern margin of the
Tarim Plate 70.37 3.1 6.88 19.34 0.22 21.6 0.15 1.79 Yu et al., 2013 [22]

Western margin of the
Tarim Plate 80.35 3.64 10.39 1.36 0.249 11.6~12.7 0.08~0.09 0.87~0.97 Liu et al., 2009 [23]

Northern margin of the
Tsaidam plate 77~79 7.41~8.87 0.10~0.53 0.12~0.20 4.90~6.85 0.04~0.05 0.3~0.4 Zhang et al., 2019 [12]

Northern margin of the
Tsaidam plate 62~95 1~13 3~30 0.01~2.02 0.08~1.07 1.01~2.21 Zhang et al., 2020 [28]

Fenwei graben of the
North China Plate 71.70 72.38 27.20 0.567 0.395 17.64 0.13 1.42 Zhang et al., 2019 [12]

Mantle-
source helium

Songliao Basin 9.69 0.39 89.92 0.1 687 4.91 62.38 Cao et al., 2001 [26]
Tanlu Fault Zone 1.77 68.86 34.27 2.08 434 3.10 39.3 Guo et al., 1999 [27]
Tanlu Fault Zone 27.057 2.825 64.529 4.241 1.33 371 2.65 33.61 Dai et al., 2017 [25]

4.1.2. Genetic Types and Distribution Characteristics of Helium in China

We conducted an investigation and analysis of eight basins in China. Xu, Y.C. (1997) [24],
Yu, Q.X. (2013) [22], DAIJ. X. (2005), He, F.Q (2022) [30], Cao, Z.X. (2001) [26], Guo, N.F.
(1999) [27], Zhang, Y.P (2016) [31], HAN W. (2020) [32] and others collected samples
from oil and gas reservoirs in the Tarim Basin, Qaidam Basin, Junggar Basin, Sichuan
Basin, Songliao Basin, Bohai Bay Basin, Subei Basin, and San-shui Basin, respectively, and
conducted a helium isotope analysis of their natural gas using a mass spectrometer. We
have summarized their analysis results in Table 2. There are significant differences in the
helium isotopic ratios and mantle-source helium proportions among the helium-bearing
basins in China. According to the research data analyzed in this paper, the 3He/4He values
were found to range between 1.01 × 10−8 and 7.2 × 10−6, and the R/Ra values were
found to range between 0.01 and 5.14. In China, the helium-bearing basins with high
mantle-source helium proportions are mainly distributed in the eastern part of the country.
Among them, the Sanshui Basin shows a strong correlation between its helium content and
mantle-source helium proportion. The input of mantle-source helium is the main reason
for the high helium content in the Sanshui Basin and other eastern basins in China. Except
for some samples from the Junggar Basin and Tarim Basin, the R/Ra values of samples
from the central and western basins in China were mostly lower than 0.1, indicating that
the mantle-source helium proportions were less than 1.1%, and almost all the helium gas
was derived from crustal sources.

The Tarim Basin is the largest onshore oil and gas basin in China, and is a large cratonic
basin developed on the Precambrian basement. The 3He/4He values in the basin were
found to range between 1.92 × 10−8 and 2.6 × 10−7, and the R/Ra values were found to
range between 0.014 and 0.186, indicating that the helium gas is predominantly derived
from crustal sources. The Qaidam Basin is a large-scale cratonic-type oil and gas basin
in western China, with a complex fault system and Precambrian metamorphic rocks and
Hercynian granites as the basement of its northern margin. Helium isotope ratios in the
basin range from 1.01 × 10−8 to 1.3 × 10−6 for 3He/4He values and from 0.007 to 0.93 for
R/Ra values, indicating that most of the helium in the basin originates from a crustal source.
The Junggar Basin is a large oil and gas basin in northwest China that has undergone
multiple tectonic events. The 3He/4He values in the basin were found to range from
1.96 × 10−8 to 5.4 × 10−7, while the R/Ra values were found to range from 0.014 to 0.386.
The helium in the basin is mostly derived from crustal sources, with only a small amount
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of mantle-source helium mixing occurring in the southern sag area. The Ordos Basin is
a large-scale oil and gas basin developed on the craton basement. The 3He/4He values
in the basin range from 2.07 × 10−8 to 13.64 × 10−8, and the R/Ra values vary between
0.01 and 0.1, indicating that the helium gas in the basin is mostly derived from crustal
sources. The basement of the Sichuan Basin is composed of magmatic and metamorphic
rocks, and the Weiyuan gas field, which belongs to the Cambrian gas reservoirs, was the
first commercial helium production area in China. The 3He/4He values in the gas field
range from 1.4 × 10−8 to ~5.74 × 10−8, while the R/Ra values are between 0.01 and 0.04,
indicating that crustal helium is the main source of helium in the Weiyuan gas field. The
Songliao Basin is a Cenozoic continental extensional rift basin with a large-scale intrusion
of granites in the basin. The 3He/4He values in the basin are distributed within the range of
1.01 × 10−6 to 7.2 × 10−6, while the R/Ra values are between 0.72 and 5.14, indicating that
the helium gas in the basin is mainly derived from a crustal source. The Bohai Bay Basin is a
typical inland rift basin that contains six sag basins and has experienced multiple magmatic
activities. The 3He/4He values in the basin are distributed in the range of 8.97 × 10−7

to 5.22 × 10−6, while the R/Ra values are between 0.64 and 0.73. Due to the influence
of magmatic and fault activities, a large amount of mantle-derived helium has entered
the basin, making it a mixed type of crust-mantle helium. The main tectonic pattern of
the Subei Basin consists of “one uplift and two sag basins”. The 3He/4He values in the
basin are distributed in the range of 3.71 × 10−6 to 5.54 × 10−6, while the R/Ra values are
distributed between 2.63 and 3.96, indicating that the helium gas in the basin is a typical
mixture of crust-mantle sources.

Table 2. Statistical table of helium characteristics in basins in China.

Area Basin 3He/4He R/Ra Helium Genetic Type Reference

Midwest

Tarim 1.92 × 10−8–2.60 × 10−7 0.014–0.186 crustal-based Yu et al. (2013) [22]

Qaidam 1.01 × 10−8–1.30 × 10−6 0.007–0.930 crustal-based Zhang et al. (2016) [31]
Han et al. (2020) [32]

Junggar 1.96 × 10−8–5.40 × 10−7 0.014–0.386 crustal-based Xu et al., 1997 [24].
Xu et al. (1995) [33]

Ordos 2.07 × 10−8–13.64 × 10−8 0.010–0.100 crustal-based
Dai et al. (2017) [25],
Xu et al. (1997) [24],
He et al. (2022) [30]

Sichuan 1.40 × 10−8–5.74 × 10−8 0.010–0.040 crustal-based Xu et al., 1997 [24],
Dai et al. (2003) [29]

East

Songliao 1.01 × 10−6–7.20 × 10−6 0.720–5.140 crust-mantle mixing Feng et al. (2001) [34]

Bohai Bay 8.97 × 10−7–5.22 × 10−6 0.640–0.730 crust-mantle mixing Sun et al. (1996) [35],
Cao et al. (2001) [26]

Subei 3.71 × 10−6–5.54 × 10−6 2.630–3.960 crust-mantle mixing Xu et al. [24].
Guo et al. (1999) [27]

Sanshui 1.60 × 10−6–6.39 × 10−6 1.140–4.560 crust-mantle mixing Zhang et al. (2014) [21]

Based on the above data, we have found that the helium reservoirs in western China
are mainly located in the Sichuan, Tarim, Qaidam, and Junggar basins, as well as south of
the Weihe River Fault, with the crustal source being the primary source of helium. In the
eastern region, helium is mainly located in the oil and gas-bearing basins on both sides of
the Tan-Lu fault zone, such as the Subei, Songliao, Hailar, Bohai Bay, and Sanshui basins,
and is mostly of a mixed crust-mantle origin, with the mantle source being the dominant
source (Figure 4).
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Figure 4. Genetic types of helium gas in major petroliferous basins in China.

4.2. China’s Helium Accumulation Conditions and Enrichment Patterns

Under the guidance of the theoretical and enrichment zone concepts in natural gas
exploration, we believe that research on the accumulation conditions of helium in China is
essential. By studying the helium source rocks, migration pathways, and sealing layers in
China, we can understand how helium gas is enriched in different regions of the country.
This research also provides the basis for predicting the distribution of favorable areas for
helium in China.

4.2.1. Distribution Characteristics of Helium Source Rocks

Research on the genesis of helium types has shown that most basins in China have
crustal sources of helium, and the helium source rocks in China are mainly rich in uranium-
containing granites in the crust. These types of rocks are mainly distributed in tectonic-
magmatic activation zones on the edges of cratons, fold belts in orogenic zones, and
active continental margins. The fold belts on the edges of cratons generally developed
along the margins of the Archean continental nucleus and later underwent strong folding,
metamorphisms, and granite transformations to form these rocks. After multiple tectonic
movements in large orogenic belts, basement rocks and granites with a high uranium
content are the main helium source rocks. Based on the above conditions, we conducted
a survey of the strata in China and drew a distribution map of the helium source rocks
in China.

According to the distribution of helium source rocks in China (Figure 5), the main
distribution areas of helium source rocks in China are mainly in the southeast of South
China, the northern part of the Qinling Mountains, the eastern part of Tibet, the Tianshan
Mountains, the Yin Mountains, and the northern part of the Greater Khingan Mountains.
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They are also distributed in Western Sichuan, the southern part of the Qaidam Basin,
the western Kunlun Mountains, Qilian Mountains, Greater Khingan Mountains, Eastern
Liaoning, and Erguna. This also indicates that the research on the distribution of helium
source rocks is the basis for predicting the distribution of favorable areas for helium
in China.

 

Figure 5. The distribution map of helium source rocks in China.

4.2.2. Effective Migration Pathway in China

Transport pathways are an important part of the formation of a helium reservoir. There
are two main transport pathways for helium in China. One is through major deep-seated
faults, and the other is through an ancient formation of water that serves as the carrier.

The development of fault structures plays a dual controlling role in the formation of
helium deposits. On the one hand, it can serve as a pathway for the upward migration
of crustal-sourced helium, and on the other hand, it can serve as a pathway for the input
of mantle-sourced helium [36]. The process of helium transferring from mineral particles
that undergo decay to pore water is the first stage of helium transport. Then, the helium
in the pore water is fractionated and extracted by the migrating gas, which contains
helium gas or helium groundwater. This migrates through fractures, faults, and undergoes
secondary transport until it accumulates in a structural trap, forming a helium reservoir in
the geological stratum. In the crust-mantle mixed-type helium-bearing basins in eastern
China, there is a strong correlation between helium gas and the Tan-Lu fault zone [37].
Research has found that areas where helium accumulates are near the Tan-Lu fault zone.
According to survey data (Table 2), high helium samples from the Songliao Basin, Bohai
Bay Basin, and northern Jiangsu Basin are distributed on both sides of the Tan-Lu fault
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zone (Figure 6), exhibiting a strong correlation. The Tan-Lu fault zone is a crustal fault that
cuts through at a thickness of 30–40 km.

 
Figure 6. Schematic diagram of the Tan-Lu fault zone and the distribution of high helium gas blocks
on both sides.

Water-carried gas is the main transport pathway in the central and western regions,
mainly distributed in the Sichuan Basin, the Qaidam Basin, and the Tarim Basin. He-
lium source rocks provide the source for helium gas generation, and the development of
structural faults provides the pathway for helium gas to migrate upwards. However, the
movement of helium in pore water is very slow [38,39]. Moreover, helium cannot form
a separate gas stream and cannot enter a trap driven by buoyancy alone. Therefore, the
large-scale migration of helium relies on groundwater and gas-bearing layers as carriers.
As mentioned earlier, helium gas often accompanies the enrichment of natural gas. An
analysis of the gas composition in Table 2 shows that the primary transport pathway for
helium in Central and Western China is through the migration of helium in natural gas,
mainly distributed in the Sichuan Basin, Qaidam Basin, and Tarim Basin.

4.2.3. Cap Rock Distribution

After helium enters a gas reservoir, if the cap rock conditions of the overlying strata
are well-developed, it has the potential to become a helium-bearing gas reservoir and
continuously receives replenishment of helium from the groundwater in the subsequent
process. However, if the overlying strata of the gas reservoir lack cap rock conditions or the
gas-bearing layer is affected by tectonic activity, the helium-bearing gas layer may migrate
laterally along the geological stratum and eventually form a helium-enriched gas reservoir
under suitable trap conditions.

Helium gas molecules are the smallest known chemical substance in nature, so their
storage requires even stricter cap rock conditions. Helium-rich gas reservoirs are usually
capped by tight anhydrite, salt rock, and shale formations [40]. Based on the distribution of
helium source rocks and the lithology of cap rocks, we conducted directional and qualitative
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searches for cap rocks in Chinese gas reservoirs, and drew up a map showing the types
and distribution of cap rocks (Figure 7).

 

Figure 7. Types and distribution of cap rocks in China.

4.2.4. Chinese Model of Helium Enrichment

In the helium-rich reservoirs in central and western Chinese basins, shell-source
helium is the main type of helium, and the enrichment model is mainly associated with
the migration of groundwater and natural gas in the strata. Helium gas is generated by
the basal helium source rocks and dissolved in ancient formation water. Due to tectonic
movements, ancient formation water migrates upward along faults, releasing free helium
gas along the way. The helium gas then migrates to the gas reservoirs as it moves upward.
Natural gas can also serve as a carrier for helium migration. During the upward migration
process of the helium-containing groundwater, if it encounters natural gas, the helium in
the groundwater is displaced into the natural gas due to Henry’s Law and is carried along
with the natural gas until it forms a gas reservoir in a suitable trap position (Figure 8).

In the helium-rich reservoirs in the eastern Chinese basins, the helium is of a mantle-
crust mixing origin. The thinning of the lithosphere, upwelling of the mantle, and degassing
caused by magmatic activities produces mantle-source helium gas and non-organic gas
(CO2, N2). More shell-source helium is released through the thermal effects of magma.
The mantle-origin fluids containing helium, N2, and CO2 migrate upward along deep
faults. At the same time, helium generated from other strata is also trapped in the gas
reservoirs. Eventually, helium gas from different sources and natural gas combine to form
a helium-rich natural gas reservoir in an appropriate trap position (Figure 9).
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Figure 8. Helium enrichment model in western China.

 

Figure 9. Helium enrichment model in eastern China.

4.3. Prediction of Favorable Areas for Helium Exploration in China

Based on the distribution of helium source rocks, migration channels, and cap rocks in
China, we have predicted the favorable areas for helium exploration in China (Figure 10).
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Figure 10. Distribution of Favorable Areas for Helium Resources in China.

Permian helium source rocks are widely distributed in the Tarim Basin, appearing in
areas such as Shaya, Tangguba, Shuntuoguole, and the Kongque River. In the northern part
of the Tarim Basin, the Yakela structure is covered by the gypsum-mudstone segments of
the Mesozoic and Cenozoic periods, which constitute the best cap rocks. The Baomashaya
Uplift area in the northern Tarim Basin has good helium sources, various structural units,
and cap rocks, providing favorable conditions for helium enrichment and accumulation.
Therefore, it is a favorable area for helium exploration in the Tarim Basin.

Helium source rocks are well developed in both the eastern and southern parts of
the Junggar Basin, mainly from the Permian and Carboniferous systems, especially in
the areas of Kamsut and Kuposu. The Junggar Basin has complex tectonic activity and a
NNW trending basement-deep fault zone, providing good conduit systems. Overlying the
basement is Cretaceous mudstone, which forms a lithologic trap that causes the natural gas
carrying the helium gas to accumulate. The Junggar Basin has excellent conditions for the
generation of helium gas and has high exploration potential.

In the frontal zone of the southern Altyn Mountains in the southwestern margin of the
Qaidam Basin, there are widely developed helium source rocks. The Dongping-Niudong
Slope Belt has multiple north–south deep faults that serve as effective channels for the
vertical transport of the helium-bearing fluid from the deep to the shallow layers. Moreover,
regional gypsum salt rocks have been discovered in the northwest part of the basin, which
consist mainly of gypsum-mudstone and gypsum-bearing mudstone, with a small amount
of pure gypsum salt rock layers, forming excellent cap rocks. We believe that the western
part of the basin is an area of excellent potential for helium gas.
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The Ordos Basin experienced a large-scale granite intrusion in the Paleoproterozoic
era, and the Paleoproterozoic granite in the northern region is a good source rock. There
are several faults that penetrate the basement in the basin, and fractures mainly developed
from the Jurassic to the early Cretaceous period, providing good conduit systems for the
transport of helium from the basement. A thick layer of mudstone has developed in the
northern part of the Ordos Basin, forming a high-pressure mudstone cap rock and providing
conditions for the accumulation of helium. This indicates that the northern part of the basin
has great potential for helium exploration and should be given special attention.

The genesis of helium gas reservoirs in eastern China is mostly from a crust-mantle
hybrid source, and this method leads to errors in predicting favorable helium areas. The
Songliao Basin is a continental extensional basin with active faults that have developed
beneath the depression, and numerous helium sources have been discovered in this basin.
A Neogene mudstone layer has developed as a cap rock in the southeastern part of the
basin. Many faults have developed in the central depression and southeastern uplift zone of
the basin, extending to the basement and deep mantle. These faults have a good transport
capacity for helium gas and are also an important reason for the crust-mantle hybrid
genesis. The central and southern parts, the southern margin, and the eastern margin of
the Songliao Basin are favorable areas for helium gas accumulation.

5. Discussion

The validation method used in this paper is to confirm whether the location of the
discovered helium natural gas reservoirs is within the favorable areas predicted by our
method. If the location of the discovered helium natural gas reservoirs is within the
predicted areas, it indicates that our method is feasible (Table 3).

Table 3. Chinese Helium-Bearing Oil and Gas Reserve Statistical Table.

Basin Field/Regions Stratum Helium Content (%) Resource Volume (m3) Reference

Tarim Donghetang,
Hudson, Tazhong C 0.16–2.19% 1.959 × 108 m3 Zhang et al. (2005) [41]

Qaidam Qunjishan,
Tuanyushan J 0.47–1.14% Projected 4.000 × 108 m3 Zhang et al. (2020) [28]

Junggar Central Depression,
Southern Depression J About 0.2% 1.172 × 108 m3 Xu et al. (2016) [42]

Ordos Dongsheng, Sugeli T, P, J 0.016–0.478% 2.444 × 108 m3 Liu et al. (2007) [43]

Songliao

Wanjinta,
Shuangcheng-

Taiping
chuan

Mz 0.1.2–0.404% 5.588 × 108 m3 Zhao et al. (2023) [44]

The Donghetang Oilfield in the Tarim Basin and the Hudson Oilfield have relatively a
high helium content in their Carboniferous crude oil associated gas, reaching 0.40% and
0.219%, respectively [41]. The Triassic reservoirs in the Lunan and Jiefangqu oil and gas
fields have a helium content of up to 0.93%. The helium content in the Carboniferous
deposits in the Tazhong region ranges from 0.16% to 0.23%, while the overall helium
content in the Ordovician and Silurian strata is low. The estimated helium reserve in the
Tarim Basin is 1.959 × 108 m3.

The Qunjishan Gas Field in the Qaidam Basin has a tested helium content of up to
1.10%. An analysis of the dark mud shale interval of the Jurassic Daheishan Formation
in the Tuanyushan Gas Field shows a helium content ranging from 0.47% to 1.14%. The
estimated helium reserve in the Qaidam Basin is 4 × 108 m3.

The helium content in the central and southern depressions of the Junggar Basin is
around 0.2%, specifically 0.203% and 0.236%, mainly found in the Jurassic strata. The
estimated helium reserve in the Junggar Basin is 1.172 × 108 m3 [42].
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The Dongsheng Gas Field and Sulige Gas Field, both located in the central part of
the Ordos Basin, have indications of helium. The helium content ranges from 0.045% to
0.478% in the Dongsheng Gas Field and from 0.016% to 0.035% in the Sulige Gas Field. The
estimated helium reserve in the Ordos Basin is 2.444 × 108 m3 [43].

The results of our studies have confirmed the rationality of the predicted favorable
areas for helium gas exploration. The research outcomes have important implications for
the exploration and development of helium gas resources in China.

6. Conclusions

We have found that the distribution of helium resources is not only uneven globally,
but also imbalanced within a country. The formation process of helium is due to the decay
of the U-element. In China, there are two main types of helium formation, one is the
crust-mantle mixture source and the other is the crustal source. The distribution of these
sources has distinct characteristics, with the mixture source located in the east and the
crustal source located in the west. Based on the analysis of geology, the distribution of
helium source rocks, effective transport, and cap rock distribution, we have summarized
two enrichment modes. One mode involves multi-source enrichment in the east due to
the crust-mantle mixture, and the other involves crustal enrichment in the west due to the
accumulation of formations of water and natural gas. We predicted five favorable areas for
helium accumulation, namely in the northern Tarim Basin, eastern and southern Junggar
Basin, western Qaidam Basin, western Ordos Basin, and southern and eastern Songliao
Basin, which were verified by the helium contents in discovered gas fields.
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Abstract: The reservoir of the M oilfield in Tarim Basin is an unconventional fracture-cave carbonate
rock, encompassing various reservoir types like fractured, fracture-cave, and cave, exhibiting signif-
icant spatial heterogeneity. Despite the limited pore space in fractures, they can serve as seepage
pathways, complicating the connectivity between reservoirs. High-precision fracture prediction is
critical for the effective development of these reservoirs. The conventional post-stack seismic attribute-
based approach, however, is limited in its ability to detect small-scale fractures. To address this
limitation, a novel pre-stack fracture prediction method based on azimuthal Young’s modulus ellipse
fitting is introduced. Offset Vector Tile (OVT) gather is utilized, providing comprehensive information
on azimuth and offset. Through analyzing azimuthal anisotropies, such as travel time, amplitude,
and elastic parameters, smaller-scale fractures can be detected. First, the original OVT gather data
are preprocessed to enhance the signal-to-noise ratio. Subsequently, these data are partially stacked
based on different azimuths and offsets. On this basis, pre-stack inversion is carried out for each
azimuth to obtain the Young’s modulus in each direction, and, finally, the ellipse fitting algorithm is
used to obtain the orientation of the long axis of the ellipse and the ellipticity, indicating the fracture
orientation and density, respectively. The fracture prediction results are consistent with the geological
structural features and fault development patterns of the block, demonstrating good agreement with
the imaging logging interpretations. Furthermore, the results align with the production dynamics
observed in the production wells within the block. This alignment confirms the high accuracy of the
method and underscores its significance in providing a robust foundation for reservoir connectivity
studies and well deployment decisions in this region.

Keywords: fracture prediction; OVT; azimuthal anisotropy; unconventional carbonate reservoir;
Tarim Basin

1. Introduction

Fractures are widely distributed underground, and they can serve as both oil and
gas storage spaces and percolation channels for oil and gas migration, playing an impor-
tant role in the formation and distribution of oil and gas reservoirs. Especially in recent
years, with the continuous discoveries of unconventional reservoirs, such as shale, tight
sandstone, and complex carbonate rocks, fracture prediction has become a hot topic for
geophysical researchers.

The M oilfield is located in the Tabei uplift of the Tarim Basin and is a fractured-vuggy
carbonate oil reservoir with an anticline structural background. Overall, the oil–water inter-
face is relatively uniform, but it also exhibits strong “one cave, one reservoir” heterogeneity.
Studies have suggested that, due to the influence of tectonic and fault evolution and karsti-
fication, fractured, fractured-vuggy, and cave reservoirs have generally developed in the
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M oilfield. Although the fractures are usually small in scale and have limited pore space,
they have a significant impact on the connectivity between oil reservoir units. Therefore,
high-precision fracture prediction is crucial for the later development and adjustment of
the oil reservoir. At present, there are numerous seismic fracture prediction methods in
the geophysical field. Based on the type of reflected wave, they can be divided into shear
wave fracture prediction methods and compressional wave fracture prediction methods.
Of these, the shear wave or converted shear wave methods, which exploit the shear wave
splitting phenomenon induced by fractures, are theoretically the most direct and efficient
approach for fracture prediction [1–5]. However, despite its theoretical superiority, the
application of this type of method has not become widespread due to the stringent re-
quirements it imposes on field data acquisition and seismic processing, particularly in
multi-wave or multi-component exploration settings. This has limited its utilization as
a mainstream fracture prediction method. Utilizing compressional waves for fracture
prediction is currently a more commonly used approach among major oil and gas fields.
Based on the source data and methodological principles employed, it can be categorized as
post-stack and pre-stack fracture prediction. For post-stack fracture prediction, commonly
used methods involve calculating geometric attributes such as coherence, curvature, and
variance from post-stack seismic data. The fundamental principle is that, when faults
and fractures develop underground, seismic events may appear discontinuous or curved.
Detecting these geological features helps identify fractures. To highlight the seismic re-
sponse characteristics of fractures and enhance the accuracy of post-stack attribute fracture
prediction, numerous scholars have conducted extensive research on seismic data prepro-
cessing. This includes techniques such as structure-oriented filtering [6–12], seismic spectral
decomposition processing [13–16], and curvelet transform multi-scale decomposition [17].
Concurrently, research on attributes such as maximum likelihood, ant tracking, and AFE
has further diversified the methods for post-stack attribute fracture prediction [18–27].
However, different attributes have their own advantages and disadvantages in charac-
terizing various types and scales of fractures. A single attribute is often insufficient for
comprehensively representing the development patterns of fractures. Therefore, methods
utilizing the fusion of multiple attributes have been proposed to improve the accuracy of
post-stack attribute fracture prediction [28,29]. Nevertheless, due to the limitations of seis-
mic resolution, post-stack attribute fracture prediction is primarily suitable for identifying
large-scale fractures associated with structures or faults, and the prediction results cannot
be quantified. In recent years, with the promotion and application of wide-azimuth seismic
acquisition techniques and the advancements in OVT processing techniques, pre-stack frac-
ture prediction based on OVT-domain seismic data has become a research hotspot [30,31].
The primary advantage of this methodology is its ability to detect fractures of smaller scale
and quantitatively delineate their orientation and density, thereby providing significant
technical assistance in oil and gas exploration and development. In terms of the theoretical
study for fracture prediction, the azimuthal anisotropy characteristics of physical quantities
such as travel time, velocity, amplitude, frequency, and phase exhibited by compressional
waves (P-waves) propagating through fractured media play a pivotal role [32–34]. Grechka
et al. [35] derived the travel time expression for compressional waves propagating in HTI
media, revealing that travel time exhibits periodic variations with azimuth in HTI media.
Rüger et al. [36–38] conducted a study based on the theory of weak anisotropy and de-
rived formulas for the azimuthal variation of compressional wave reflection coefficients
in anisotropic media, laying a theoretical foundation for predicting fractures using dy-
namic parameters such as amplitude. Mallick et al. [39] observed a cosine-like variation
in seismic amplitudes with respect to azimuth in fractured strata, enabling the accurate
indication of fracture orientation. These theoretical studies have provided crucial guidance
for subsequent fracture prediction practices. In practical field applications, numerous schol-
ars have successfully utilized the azimuthal anisotropy characteristics of compressional
waves to predict fractures. Qu et al. [40] introduced a quantitative approach for predicting
fracture orientation and density through analyzing the variation in P-wave impedance
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with azimuth, and they successfully applied it in practical field blocks. Li et al. [41] pro-
posed an anisotropic gradient inversion method based on zero constraints, utilizing the
maximum likelihood solution of anisotropic gradients to predict fracture development.
The prediction results match well with the drilling data. Zhang et al. [42] simplified and
linearized the Rüger approximation, obtaining anisotropic strength parameters through
maximum likelihood inversion. Model tests demonstrated that the algorithm exhibited
good noise resistance. Wang et al. [43] conducted a comprehensive prediction of fractures
in practical field blocks by utilizing travel time anisotropy and AVO gradient attributes.
Zhou et al. [44] conducted an analysis of amplitude azimuthal anisotropy and frequency
azimuthal anisotropy based on OVT-domain gather data and predicted the intensity and
orientation of small-scale fractures. Chen et al. [45] introduced a statistics-based anisotropic
strength prediction technique, achieving good results in predicting fractured reservoirs in
the subsurface of the Bongor Basin in Chad. These application cases fully demonstrate the
practical value of the azimuthal anisotropy of P-waves in fracture prediction. Moreover,
in addition to directly utilizing the azimuthal anisotropy characteristics of P-waves, the
Young’s modulus—an essential physical parameter for evaluating rock brittleness and
fracturing capability—also plays a significant role in fracture prediction [46–48]. Sayers [49]
conducted studies and revealed the anisotropy of the Young’s modulus in fractured media.
Specifically, the Young’s modulus along the axis of symmetry was consistently smaller than
that along the strike direction of the fractures. Zong et al. [50] and Wang et al. [51] used
pre-stack inversion to obtain the Young’s modulus and ellipse fitting to predict fractures,
and they achieved good results. These studies provide novel ideas and methodologies for
utilizing Young’s modulus in fracture prediction.

High-angle single-group fractures are extensively developed within the target layer of
the M oilfield in the study area, serving as significant permeability channels and storage
spaces for hydrocarbons within the block. For this study, we first optimized the pre-tack
OVT gather data to suppress random noise, eliminate travel time disparities, and formulate
an appropriate stacking scheme based on azimuth angle and offset. Subsequently, we
applied pre-stack inversion techniques to the processed pre-stack OVT data to obtain
the Young’s modulus for each azimuth. Then, ellipse fitting was carried out, and the
ellipticity and direction of the major axis obtained from the fitting indicated the density and
orientation of the fractures, thus realizing the pre-stack fracture prediction of the M oilfield
in Tarim Basin, facilitating the subsequent enhanced oil recovery study of unconventional
carbonate reservoirs [52,53].

2. Geological Setting

The primary exploration and development stratum in the study area is the Yijianfang
Formation of the Ordovician, exhibiting a nearly northeast–southwest trending anticline
structure. This is a typical fractured-vuggy carbonate reservoir (Figure 1). The study area
has experienced multi-stage tectonic movements, leading to the development of diverse
fault types and an intricate faulting pattern. Within the Ordovician strata, three primary
groups of faults are particularly prominent. The first group comprises strike-slip faults and
their associated branch faults, which were formed during the middle Caledonian. These
faults trend northwest and are arranged in a nearly parallel fashion within the study area.
The second group of faults was mainly developed in the Hercynian period, which was
affected by the lateral intrusion of the Mana igneous rock on the northwest side of the study
area into the Middle Cambrian plastic strata and was formed by the arching of the supra-
salt strata. This group of normal faults presents a northwest–southeast radial distribution
pattern on the plane. Under the influence of tensile stress, this group of normal faults
developed numerous fractures, thereby improving the quality of the reservoir and further
enhancing the connectivity of the fractured-vuggy reservoir. The third group consists of
thrust faults that formed during the late Hercynian to early Indosinian, which control the
formation of the NE-trending asymmetric long-axis anticline of the M oilfield.
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Figure 1. (a) Structural location map of the study area; (b) structural map of the top surface of the
Yijianfang Formation in the target layer; (c) stratigraphic column of the Ordovician series.

The sedimentary sequence of the Ordovician strata in the M oilfield is relatively com-
plete, with the development of the Santamu Formation, Lianglitage Formation, Tumuxiuke
Formation, Yijianfang Formation, and Yingshan Formation in sequential order. Among
them, the Yijianfang Formation and the upper part of the Yingshan Formation are the main
reservoir development intervals. The lithology of the Yijianfang Formation is mainly com-
posed of sparry oolitic limestone and sparry bioclastic limestone. The lithology of the upper
part of the Yingshan Formation is dominated by micritic limestone and psammitic limestone
(Figure 1c). The formation of high-quality reservoirs in the Yijianfang–Yingshan Formation
is primarily controlled by the combined effects of high-energy facies belts, faulting, and
karstification [54–56]. The reservoir spaces are dominated by fractures and small-scale
dissolved pores and fractures, with a small number of cave-type reservoirs. The rock matrix
has poor physical properties, with porosity mostly less than 1%, mainly concentrated
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around 0.4% to 0.7%, and an average porosity of 0.5%. The permeability is generally less
than 0.1 mD. Drilling core and thin section observations reveal the presence of high-angle
fractures and dissolved pores developed along these fractures (Figure 2). Based on the
interpretation results of micro-resistivity imaging logging in the study area, fractures in this
region are primarily composed of single-set high-angle oblique and vertical fractures. The
fracture widths generally range from 0.01 to 0.1 mm. Nearly 52% of the fractures are filled,
primarily with calcite. However, the overall fracture aperture is relatively good, with an
average aperture of 77 μm [57]. From the regression relationship between fracture aperture,
permeability, and single-well production, it is evident that single-well production positively
correlates with both factors (Figure 3). Therefore, high-precision fracture prediction is very
important for efficient well deployment and later reservoir development technology policy
formulation.

Figure 2. Core photos and a thin section of the target layer of typical wells in the study area: (a–c) core
photos of M1, M2, and M3 wells, respectively; (d) thin section of M8 well. M1: residual dissolution
pores developed along high-angle fractures; M2: crude oil extravasation along high-angle unfilled
fractures; M3: crude oil extravasation along vertical unfilled fractures; M8: bright crystal psammitic
limestone with visible fractures.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90
Fracture Angle ( )

Fr
eq

ue
nc

y 
(%

)

0

1

10

100

1000

0 1 10 100 1000
Fracture Aperture (μm)

0

1

10

100

1000

0 1 10 100 1000

Fracture Permeability (mD)

(a) (b) (c)

Pr
od

uc
tio

n 
Ra

te
 (m

³/d
ay

)

Pr
od

uc
tio

n 
Ra

te
 (m

³/d
ay

)

Figure 3. (a) Statistical diagram of fracture angle; (b) relationship between fracture development and
production; and (c) relationship between fracture permeability and production in the study area. The
scatter points presented in (b) depict the measured fracture aperture and production rate data for
a well within the study area. Analogously, the scatter points in (c) illustrate the measured fracture
permeability and production rate data for a well (potentially the same or a different one) within the
study area. The dashed curves approximate the underlying trends within these measurements.

335



Energies 2024, 17, 2061

3. Data and Methods

3.1. Data Set

In the study area, high-density 3D seismic data were acquired with a wide az-
imuth, a bin size of 15 m × 15 m, full coverage of 320 times, and a shot-trace density of
1.4222 million traces per square kilometer. The data exhibited a favorable aspect ratio of
0.8, indicating good spatial coverage. Furthermore, the data quality was excellent, having
undergone targeted amplitude-preserving and fidelity-enhancing processing in the OVT
domain. This ensured the data’s suitability for subsequent pre-stack fracture prediction.
After preprocessing, the OVT gather data were fully stacked and partially stacked based on
azimuth and incident angles, generating multiple sets of 3D seismic data volumes.

The fully stacked seismic data volume Is employed for conducting detailed horizon
interpretation, from which post-stack attributes are extracted to facilitate the analysis of
fault systems and reservoir development characteristics. On the other hand, the partially
stacked data volumes are utilized for azimuthal pre-stack reservoir inversion, serving as
a basis for estimating the Young’s modulus and fracture prediction. To comprehensively
assess the accuracy of the fracture prediction results, imaging logging interpretation data
from four wells, along with drilling, logging, and production data from one well, were
collected. Subsequently, these data sets were rigorously compared and analyzed with the
prediction results, ensuring robust validation of the methodologies and enhancing the
reliability of the predictions.

3.2. Methods
3.2.1. Azimuthal Young’s Modulus Calculation

Geophysicists generally agree that the anisotropy of media in the Earth’s crust is
primarily caused by oriented fractures and thin interbeds. Specifically, the formation of
HTI media (horizontally transverse isotropic media) is often associated with vertically
aligned and parallel fractures. Based on the results of core observation and imaging logging
statistics from the M oilfield, it is evident that the block primarily exhibits the development
of high-angle fractures, so it can be approximately regarded as HTI media. The formula for
calculating the equivalent Young’s modulus of HTI media is as follows [50]:

E = ρv2
s

(
3v2

p − 4v2
s

)
/
(

v2
p − v2

s

)
(1)

where ρ represents density, vs represents shear wave velocity, and vp represents compres-
sional wave velocity.

To calculate the Young’s modulus at any given azimuth, pre-stack inversion tech-
niques are applied to obtain density and compressional and shear wave velocities. These
values are then substituted into Formula (1) so as to obtain the Young’s modulus of the
corresponding azimuth.

3.2.2. Principle of Fracture Prediction Based on Elliptical Fitting of Young’s Modulus

Sayers’ experimental research revealed the directional characteristics of the Young’s
modulus in fractured media: along the direction of the fracture, the Young’s modulus
reaches its maximum, whereas it reaches its minimum along the symmetrical axis of the
fracture [49]. In terms of theoretical research, Zong et al. [50] constructed a series of layered
models with varying fracture densities based on Thomsen’s fracture theory. Through
model analysis, it was found that the Young’s modulus exhibits periodic fluctuations
similar to a cosine curve as the azimuth angle changes. This variation pattern is consistent
with Sayers’ experimental results. Furthermore, when the Young’s modulus is projected
onto a polar coordinate system based on the azimuth angle, it exhibits an elliptical shape.
The long axis of the ellipse aligns with the orientation of the fracture, and as the fracture
density increases, the ellipse becomes flatter. Based on this pattern, the equivalent Young’s
modulus at different azimuths can be calculated by using Formula (1), and subsequently, the
ellipticity and the direction of the ellipse’s long axis can be obtained through ellipse fitting
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algorithms such as least squares. This approach enables not only quantitative prediction of
the orientation of fractures but also qualitative assessment of their density.

3.2.3. Fracture Prediction Workflow

The research is completed in five steps (Figure 4).
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Figure 4. Workflow of pre-stack fracture prediction based on OVT gather.
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Step 1: Initially, the original OVT gather data are optimized, which mainly includes
two pivotal steps: random noise attenuation and anisotropic time alignment. This opti-
mization aims to enhance the signal-to-noise ratio of the data, mitigate the travel time
disparities arising from anisotropy, maintain azimuthal amplitude variations, and ensure
the robustness of pre-stack elastic parameter inversion and Young’s modulus ellipse fitting.
Consequently, this process facilitates the generation of reliable fracture prediction outcomes.

Step 2: The OVT gather data are analyzed to formulate a reasonable stacking scheme,
followed by partial stacking based on azimuth and incident angle (offset).

Step 3: Utilizing pre-stack inversion techniques, the data obtained from each azimuth
in Step 2 are processed to derive Young’s modulus data volumes for each azimuth.

Step 4: A least-squares ellipse fitting algorithm is utilized to individually fit each trace
and sample within the Young’s modulus data volumes derived from Step 3. The orientation
of fractures is represented by the long axis of the fitted ellipse, while the ellipticity provides
an indication of the fracture density.

Step 5: The fracture prediction results obtained from Step 4 are compared and validated
against geological cognition, imaging logging data, and dynamic production data of the
block. If the fracture prediction results do not align, return to Step 3 for modifications.
Otherwise, output the final fracture prediction results.

4. Results and Discussion

4.1. OVT Gather Optimization and Processing, and Stacking Scheme Analysis

One of the key steps in pre-stack fracture prediction is to perform azimuthal stacking
of the OVT gather data, followed by stacking based on incident angles for each azimuth.
Although the OVT gathers have been denoised during the seismic processing, compared
with the full stack data, partial stack data are more sensitive to noise. Therefore, it is
necessary to optimize the original OVT gather data to improve the signal-to-noise ratio.
Figure 5 shows the typical OVT gather data in the study area. Figure 5b shows the original
gather record. It can be seen from the extracted observation system that the OVT gather
contains both azimuth and offset information. These data are systematically organized
in a spiral pattern, as shown in Figure 5a. From Figure 5b, it can be seen that there are
obvious random noise and residual time differences in the original data, which need to be
further optimized. Firstly, the Radon transform is applied to attenuate the random noise,
as depicted in Figure 5c. Analysis of the residual profile in Figure 5d indicates that the
denoising process preserves most of the effective signals while effectively eliminating ran-
dom noise components. Subsequently, time alignment is conducted on the denoised gather
data to mitigate travel time variations arising from velocity anisotropy while maintaining
amplitude differences associated with azimuth, as illustrated in Figure 5e.

As the fundamental elliptic equation encompasses five variables, it is imperative to
input at least five azimuthal Young’s modulus data points for elliptic fitting. Given the
central symmetry of the OVT gather, it is partitioned into six azimuthal sectors, as depicted
in Figure 6a: 0◦ to 30◦, 30◦ to 60◦, 60◦ to 90◦, 90◦ to 120◦, 120◦ to 150◦, and 150◦ to 180◦.
The selection of the maximum offset must strike a balance between ensuring relatively
uniform coverage across all azimuths and maximizing the incident angle near the target
layer, crucial for preserving the accuracy of pre-stack inversion. In this study, we conducted
azimuth-specific stacking tests with maximum offsets of 4500 m, 5000 m, and 6500 m. The
results of these tests are presented in Figure 6b–d.
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Figure 5. Typical OVT gather display: (a) spiral arrangement display of azimuth and offset for OVT
gather; (b) original OVT gather; (c) gather after Radon transform denoising; (d) display of random
noise; (e) gather after time alignment.

Upon analysis, it is evident that when the maximum offset is set to 6500 m (Figure 6b),
there is a significant inhomogeneity in coverage across various azimuths. Although certain
azimuths, such as 45◦, achieve a maximum incident angle of 40◦, azimuths like 75◦ and 105◦
only reach a maximum incident angle of approximately 25◦, indicating a lack of far-offset
data. This inhomogeneity in coverage can introduce spurious anisotropies. On the other
hand, when the maximum offset is reduced to 4500 m (Figure 6d), while the coverage across
azimuths becomes more uniform, the maximum incident angle is limited to approximately
25◦, significantly compromising the accuracy of pre-stack inversion. This, in turn, has a
substantial impact on the estimation of the Young’s modulus and subsequent elliptic fitting.
Finally, when the maximum offset is set to 5000 m (Figure 6c), the maximum incident angle
near the target layer is approximately 30◦, and the coverage across various azimuths is
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relatively uniform. This configuration satisfies the requirements for subsequent pre-stack
inversion and elliptic fitting of the Young’s modulus. Therefore, 5000 m was ultimately
chosen as the optimal maximum offset.

Figure 6. Analysis of azimuth angle and offset division scheme: (a) azimuth and offset distribution
of OVT gather; (b–d) gather on each azimuth when the maximum offset is 6500 m, 5000 m, and
4500 m, respectively.

4.2. Fracture Prediction and Analysis

Based on the determined stacking scheme, the processed OVT gathers were stacked,
generating partially stacked seismic data volumes for small, medium, and large incident
angles across six azimuths. Using pre-stack inversion techniques, the equivalent Young’s
moduli for each of the six azimuths were obtained. Subsequently, the least-squares ellipse
fitting algorithm was applied to fit the azimuthal Young’s moduli on a trace-by-trace and
sample-by-sample basis, yielding the direction of the ellipse’s major axis and ellipticity
for each sample point. The direction of the ellipse’s major axis indicates the orientation of
fractures, while the ellipticity reflects the difference in Young’s moduli along and perpendic-
ular to the fracture orientation. Although the absolute value of ellipticity does not directly
correspond to the linear or volumetric density of fractures, it does represent the strength of
anisotropy induced by fractures [50]. Therefore, ellipticity can indirectly reflect the density
of fractures, with higher ellipticity values indicating a higher density of fractures.

The formation and distribution of fractures are usually closely related to structures
and faults. Curvature attributes, as an effective post-stack analytical tool, are often used
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to characterize the morphological features of small-scale faults and large-scale fractures
associated with structures and faults. To verify the rationality and accuracy of the fracture
prediction method proposed in this study, the curvature attribute of the target layer’s
top surface was extracted and compared with the ellipticity attribute. Figure 7a shows a
structural map of the top surface of the Yijianfang Formation in the study area (partially
enlarged from the black dashed box in Figure 1b). The study area is located at the high
part of an anticline structure, where three main fault systems are developed. Figure 7b–d
present the curvature attribute map, the ellipticity attribute map, and a superimposed plan
view of both attributes for the top surface of the Yijianfang Formation, respectively. It can be
observed that the curvature attribute effectively characterizes the faults and the associated
fracture development zones in the study area. From the superimposed image of ellipticity
and curvature attributes, it can be seen that the predicted results of fracture density have a
good correlation with the faults, generally showing a trend that the more developed the
faults are, the higher the fracture density is. Different types of faults exert varying degrees of
control over fracture development. Specifically, the fracture development zones influenced
by thrust faults are relatively narrow and tend to concentrate near the fault planes. This
phenomenon may be related to the local compressive stress environment. In contrast, strike-
slip faults produce broader fracture zones, which extend a significant distance from the
main fault plane, aligning with field observations of strike-slip fault geological structures.
On the plane, the fractures surrounding the radially distributed tensile normal faults exhibit
the most significant development, forming complex networks of fractures. By incorporating
the tectonic evolution background of the block, it is speculated that this system of normal
faults and fractures is closely related to the deformation and arching mechanisms of the
brittle limestone strata overlying the salt layer. Overall, the prediction results of fracture
density are consistent with the tectonic geological background of this area, which proves
that the method adopted in this study is applicable and effective under the geological
conditions of this area.

Figure 7. Sub-maps of the top surface of the Yijianfang formation: (a) structural map; (b) curvature
attribute map; (c) ellipticity attribute map; (d) superimposed plan view displaying both ellipticity and
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curvature attributes. Black dots represent the well locations, red lines indicate thrust faults, purple
lines indicate strike-slip faults, and blue lines indicate normal faults, which are consistent with
Figure 1.

Imaging logging technology is capable of clearly projecting the structural features
of rock on the wellbore surface, exhibiting directionality and high resolution. It has been
widely applied in the interpretation and evaluation of reservoirs such as fractures and
dissolved pores in carbonate formations [58]. To further assess the reliability of the fracture
prediction results in this study, we collected and compared the predicted results with
fracture interpretation conclusions from imaging logging of four wells in the study area, as
shown in Figure 8 and Table 1.

Figure 8. Comparison between imaging logging fracture interpretation conclusions and prediction
results for wells such as M3 within the study area. For a given well, the sub-diagrams presented from
left to right are the statistical rose diagram of fracture orientation from imaging logging, the statistical
rose diagram of predicted fracture orientation, and the superimposed three-dimensional display of
the geological structure, fracture orientation, and density around the well area. The locations of the
wells are shown in Figure 7a.
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Table 1. Statistical table of imaging logging fracture orientations and predicted fracture orientations
for wells M3, M4, M5, and M6.

Well Name
Orientations

from Imaging Logging
Orientations

from Prediction
Match

M3 N40◦E~N60◦E N40◦E~N60◦E Matching
M4 N20◦E~N30◦E N20◦E~N30◦E Matching

M5 N10◦E~N20◦E
N30◦E~N40◦E N20◦E~N30◦E Not matching well

M6 N10◦E~N30◦E N10◦E~N30◦E Matching

Well M3 is located near the thrust fault F1. The main orientation of fractures within
the target layer is predicted to range from N40 ◦E to N60 ◦E using this method, and this
prediction aligns well with the observed fracture orientation. Wells M4 and M5 are located
near the strike-slip fault F2. The main fracture orientation in the target layer of well M4,
interpreted from well logging, is N20 ◦E to N30 ◦E, which aligns with our prediction. For
well M5, the well logging interpretation of its target layer reveals two primary fracture sets
with orientations ranging from N10 ◦E to N20 ◦E and from N30 ◦E to N40 ◦E. However,
our prediction for well M5 indicates a fracture orientation of N20 ◦E to N30 ◦E. Given
the limited resolution of seismic data compared to imaging logging, it is possible that the
prediction represents a combined response from both fracture sets. Therefore, the prediction
result is considered to be relatively consistent. Well M6 is situated near the normal fault F3.
The primary fracture orientation in its target layer, interpreted from well logging, ranges
from N10 ◦E to N30 ◦E. Our method predicts a similar orientation of N10 ◦E to 30 ◦E,
indicating a consistent result. Consequently, there is a high degree of agreement between
the predicted fracture orientations at the wellbore location using our method and the
interpretations from imaging logging. A comprehensive analysis of multiple wells reveals
that the primary fractures in the target layer generally trend towards the northeast, which
aligns with the northeast-oriented principal stress during the middle-to-late Ordovician in
the Tabei uplift [59]. Additionally, this corroborates the effectiveness of our method.

The actual drilling data from the study area indicate that the strong reflections pre-
senting as “beaded” patterns on seismic profiles represent high-quality fractured-vuggy
reservoirs, while non-beaded reflections are typically associated with dense surrounding
rocks, which function as lateral barriers or capping layers, enclosing the fractured-vuggy
reservoirs. The magnitude of Young’s modulus serves as an indicator of the stiffness of the
medium; the higher its value, the less susceptible it is to deformability, resulting in a denser
and more stable rock formation. Statistics from drilled wells within the study area indicate
that the Young’s modulus of high-quality fractured-vuggy reservoirs typically ranges from
6.7 to 7.2 × 1010 N/m2, whereas the Young’s modulus of compact surrounding rocks falls
within the range of 7.2 to 9.0 × 1010 N/m2. Figure 9a presents the seismic profile of well
M7 located within the study area, while Figure 9b–g depict the corresponding Young’s
modulus profiles along six different azimuths. The specific locations of these profiles are
shown in Figure 10a. As can be observed from Figure 9a, three “beaded” reflections are
observed around the wellbore, which manifest as three fractured-vuggy systems on the six
corresponding Young’s modulus profiles (indicated by the black dashed boxes). Although
there are differences in local details and numerical values across the six azimuths of the
Young’s modulus profiles, the overall morphologies are generally similar. The reservoirs
are located in regions with low Young’s modulus values. The drilling target of well M7 was
bead II. While drilling at depths ranging from 5914.93 to 5915.58 m and from 5917.14 to
5927.1 m, the well experienced void drilling of 0.65 m and 9.96 m, respectively, resulting
in a cumulative loss of 142 cubic meters of drilling fluid. This indicated that high-quality
fractured-vuggy reservoirs were uncovered, which aligned with the inversion results of the
Young’s modulus.
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Figure 9. (a) Seismic profile; (b–g) azimuthal Young’s modulus profiles; and (h) superimposed
waveform display of azimuthal Young’s modulus for well M7 in the study area. The locations of the
diagrams (a–h) are indicated as shown by the dashed arrows in Figure 10a.

Figure 9h displays a superimposed waveform profile of the Young’s modulus for the
six azimuths. It is evident that the variations in Young’s modulus among different azimuths
are relatively minor near bead I and bead III, whereas a significant difference is observed
near bead II. Figure 10c–e provide enlarged views of the Young’s modulus data for the six
azimuths at the centers of the three beads. It is apparent that the Young’s modulus values
for different azimuths are generally comparable and do not exhibit significant variations
for bead I and bead III. However, notable changes are observed in the Young’s modulus
curves for different azimuths near bead II. Figure 10f displays a box plot comparing the
Young’s modulus values across six azimuths at the centers of three beads. For bead I,
the Young’s modulus ranges from a minimum of 5.82 × 1010 N/m2 to a maximum of
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6.19 × 1010 N/m2, with a median value of 6.0 × 1010 N/m2. At bead II, the Young’s
modulus exhibits a wider variation, with a maximum of 6.73 × 1010 N/m2, a minimum of
5.32 × 1010 N/m2, and a median of 6.32 × 1010 N/m2. Finally, for bead III, the Young’s
modulus varies from a minimum of 6.33 × 1010 N/m2 to a maximum of 6.56 × 1010 N/m2,
with a median of 6.47 × 1010 N/m2. Notably, the dispersion of Young’s modulus data
across different azimuths is more pronounced for bead II, indicating significant differences
in the Young’s modulus among various azimuths. Based on the experimental conclusions
of Sayers [49] and Zong et al. [50], a greater difference between the long and short axes of
the azimuthal Young’s modulus ellipse indicates stronger anisotropy and a higher density
of fractures. Therefore, it is speculated that the anisotropy intensity is relatively low for
bead I and bead III, whereas it is significantly high for bead II, suggesting a greater density
of fracture within bead II.

Figure 10a displays a plan view of the maximum trough attribute surrounding well
M7. The warm colors represent the bead-like geobodies. Figure 10b presents a plan view
of the extracted fracture density and fracture orientation attributes around well M7. It
can be observed that the fractures surrounding bead II, where well M7 is located, are
more developed than those around beads I and III, albeit with limited extension lengths,
approximately 100 to 160 m from the center of the bead. Relatively less developed fractures
are observed around beads I and III. Based on the fracture prediction results, it is evident
that these three beads are not interconnected. Figure 11 depicts the production profile
of well M7. Immediately after the commencement of production, the well exhibited a
sharp decline in oil pressure and output, with a brief self-flowing period lasting only
11 days. Subsequently, a total of 29 rounds of water injection were executed to stimulate oil
displacement, resulting in a cumulative water injection volume of 0.51 million tons and a
cumulative oil production of 0.49 million tons, indicating excellent oil enhancement through
water injection. The production characteristics of well M7 closely resemble those exhibited
by a single-cavity, constant-volume well [60], thereby reinforcing the conclusion of limited
connectivity between well M7 and its surrounding reservoirs. This observation aligns with
the previously mentioned fracture prediction results. Based on a comprehensive analysis
of static fracture prediction results and dynamic production characteristics, it is concluded
that bead II, where well M7 is located, is not connected to beads I and III. Consequently, a
sidetrack drilling operation was designed to target bead I. After sidetracking, the wellbore
was tested with a 5 mm choke at the target layer, achieving an oil pressure of 5.7 MPa and a
daily oil production equivalent of 133 cubic meters, confirming the disconnectedness of
bead I and bead II. This demonstrates that the reservoir associated with bead I remains
untapped and validates the high precision and reliability of the fracture prediction method
employed in this study.

According to the fracture prediction results, a secondary sidetrack drilling operation
can be considered in the future to tap into the reserves associated with bead III. Employing
the volumetric method based on carving techniques, the geological reserves of bead III are
estimated to be approximately 86,000 tons, with an expected cumulative oil production of
12,900 tons, indicating significant economic potential. The fracture prediction methodology
introduced in this study can be further promoted and utilized to guide the deployment
of infill wells and the exploitation of untapped potential in fractured-vuggy carbonate
reservoirs, ultimately maximizing the exploitation of geological reserves.
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Figure 10. (a,b) Maximum trough attribute and ellipticity attribute plans for the M7 well area,
respectively. The purple dashed line boxes indicate the development zones of beaded reservoirs;
(c–e) enlarged local views of the 6-azimuthal Young’s modulus data extracted from the centers of
three beaded reservoirs; (f) a box plot depicting the statistical distribution of the Young’s modulus
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Figure 11. Production curves of well M7.

5. Conclusions

In this study, we conducted research on a pre-stack fracture prediction method based
on azimuthal Young’s modulus ellipse fitting for the M oilfield. Based on the obtained
results, the following conclusions were drawn:

(1) Compared with traditional post-stack attribute-based fracture prediction methods,
such as curvature analysis, the fracture prediction method utilizing OVT (Offset Vector
Tile) gather data can predict fractures of smaller scales and quantitatively characterize
fracture development.

(2) The pre-stack technology employed in this study primarily relies on azimuthal varia-
tions in Young’s modulus. Consequently, it has higher requirements for amplitude-
preserving and fidelity-enhancing processing in the seismic processing stage, as well
as optimized preprocessing of OVT gather data in the interpretation stage.

(3) The method adopted in this study is primarily suitable for scenarios involving the
development of a single set of high-angle fractures. In cases where two or more sets
of high-angle fractures exist, such as in well M5, the prediction results may manifest
as a combined response from multiple sets of fractures due to resolution limitations.
For complex areas with the simultaneous development of low-angle and multiple sets
of fractures, further research is needed on the azimuthal response characteristics of
parameters such as the Young’s modulus.

(4) A pre-stack fracture prediction technical workflow in the OVT domain for ultra-deep
unconventional fractured-vuggy carbonate reservoirs is established in this paper. The
fracture prediction results were subsequently tested against the geological cognition,
imaging logging data, and dynamic production data of the block. This validation
process confirms the applicability and reliability of the technique in unconventional
fractured-vuggy carbonate reservoirs, providing valuable insights for future fracture
prediction in similar geological settings.
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