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Abstract: Seismic wave exhibits the characteristics of anisotropy and attenuation while propagating
through the fluid-bearing fractured or layered reservoirs, such as fractured carbonate and shale
bearing oil or gas. We derive a linearized reflection coefficient that simultaneously considers the
effects of anisotropy and attenuation caused by fractures and fluids. Focusing on the low attenuated
transversely isotropic medium with a vertical symmetry axis (Q-VTI) medium, we first express the
complex stiffness tensors based on the perturbation theory and the linear constant Q model at an
arbitrary reference frequency, and then we derive the linearized approximate reflection coefficient of
P to P wave. It decouples the P- and S-wave inverse quality factors, and Thomsen-style attenuation-
anisotropic parameters from complex P- and S-wave velocity and complex Thomsen anisotropic
parameters. By evaluating the reflection coefficients around the solution point of the interface of
two models, we analyze the characteristics of reflection coefficient vary with the incident angle
and frequency and the effects of different Thomsen anisotropic parameters and attenuation factors.
Moreover, we realize the simultaneous inversion of all parameters in the equation using an actual
well log as a model. We conclude that the derived reflection coefficient may provide a theoretical tool
for the seismic wave forward modeling, and again it can be implemented to predict the reservoir
properties of fractures and fluids based on diverse inversion methods of seismic data.

Keywords: fluids-bearing fractured reservoirs; Q-VTI effective medium model; seismic attenuated
anisotropic characteristics; AVOF reflection coefficient

1. Introduction

Development of seismic acquisition and processing technology makes it possible to
sufficiently employ useful information embedded in seismic data, e.g., amplitude variation
with offset, azimuth and frequency (AVO, AVAz, AVF), to estimate fluids and fractures. Re-
cently, many studies revealed that seismic wave exhibit velocity dispersion and anisotropy
while propagating in attenuated fractured media and attenuated finely layered media [1-9].
The seismic wave velocity dispersion refers to the phenomenon that the velocity varies
with the frequency, and it accompanies with the seismic wave amplitude attenuation,
which means amplitude decreases with the increase of distance. Therefore, the modeling
of frequency-dependent attenuation and anisotropy of seismic waves, and the inversion
for attenuation factors and anisotropic parameters using frequency-dependent seismic
amplitude data, may help improve the reliability of the detection of fractured reservoirs
and infilling fluids [10,11].

Under the assumption of static equivalent effective medium model, the rock physics
models are employed to model how fractures induce the frequency-independent anisotropy,
e.g., the linear slip model proposed by Schoenberg [12], the isolated fracture model of Hud-
son [13], the uniform pore model of Thomsen [1], and the model combining the linear slip
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model and anisotropic Gassmann equation proposed by Gurevich [14]. Meanwhile, Thom-
sen [1] demonstrates that the exchange of fluids between pores and fractures during the
seismic wave propagation can affect the anisotropic elastic properties. On the other hand,
dynamic equivalent medium models are proposed to describe how seismic wave propa-
gates in fractured rocks in the case of considering the effect of frequency variation [2-9].
Typically, Chapman [15] proposed a model which considers coupled fluid motion on both
the grain scale and fracture scale, which concludes that frequency-dependent anisotropy
and strong anisotropic attenuation can occur in the seismic frequency band when large
fractures are present, and it reveals that fracture and fluid properties can be estimated from
frequency-dependent seismic data.

To model how the seismic amplitude varies with incident angle and frequency, we
consider the effects of the parameters of anisotropy and attenuation on the reflection
coefficient. Under the assumption of slight changes in properties across the reflection
boundary, Aki and Richards [16] proposed linearized reflection coefficients which are
the analytical solutions of the Zoeppritz equations. However, it is complicated to solve
the Zoepprtitz equations that are extended to viscoelastic anisotropic media. Based on
the Born approximation, Shaw and Sen [17] presented an approach to derive linearized
reflection coefficients for arbitrary anisotropic media using the perturbation in stiffness
matrix of anisotropic media. Following them, Zong [18] derived the seismic wave scattering
coefficient in terms of P-wave and S-wave quality factors in a viscoelastic medium, Moradi
and Innanen [19,20] derived the expressions for scattering potentials of PP wave and
proposed a frequency-independent linearized reflection coefficient in the attenuated VTI
medium. Chen [21,22] presented a linearized azimuthal and frequency-dependent PP-
wave reflection coefficient in terms of dry rock elastic properties, dry fracture weaknesses
and a new indicator of oil-bearing fractured reservoirs. Pan [23] used Born formalism
and first-order perturbation assumption to derive a matrix-fluid-fracture decoupled-based
linearized PP-wave reflection coefficient for a fluid-saturated fractured porous medium.

In the present study, we focus on the case of Q-VTI medium with low-loss attenuation
and weak anisotropy, which means we neglect the term proportional to higher orders of
the attenuation factors and Thomsen anisotropic parameters, and we let P-wave, SV-wave
and SH-wave propagate in the linear constant Q attenuation reference media. We express
the PP wave scattering potentials and derive the linearized frequency-dependent reflection
coefficient for the Q-VTI medium. Utilizing the reflection coefficients, we analyze the
variation of reflection coefficients with the incident angle and angular frequency in two
reservoir models, and we also model how the attenuation factors and Thomsen anisotropic
parameters affect the reflection coefficients. We conclude that, combining the rock physics
effective model, the derived reflection coefficient may provide a theoretical tool to model
how pore-, fracture-, and fluid-related parameters (e.g., porosity, fracture density, fluid
modulus) affect the seismic wave amplitude, and can also be employed to estimate these
parameters from incident angel- and frequency-dependent seismic data.

2. Theories and Methods
2.1. Approximation of Frequency-Dependent Complex Stiffness Tensors for Q-VTI Model

Seismic wave velocity in viscoelastic media is expressed as a function of vy, a phase
velocity at an arbitrary reference frequency wy, and Q, a quality factor describing absorption
and attenuation. Kjartansson [24] derives the complex and frequency-dependent phase
velocity o based on the linear constant Q model as,

1 Q*l
- LW\ T
o(w) =vg|i— , 1
() = (i) 8
where, the accent mark ‘~” indicates the complex velocity in viscoelastic medium. Using

Equation (1), the quality factor is computed as Q = o8¢ /7™, where 5%¢ and 7™ are the
real and imaginary parts of the complex velocity 7.
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We approximate the complex velocity using the Maclaurin series expansion of the
exponential function, and preserve the first two terms of the expansion. The complex
velocity is given by,

5(w) ~ o {1 + %Q*l In (1%)} ?)

Similar to the derived approximate complex velocity, we express the complex stiffness
tensor ¢y as,

@) =1+ 2 m(i2 )], o)

where, C(I)] is the elastic stiffness tensor at an arbitrary reference frequency wy, and QI_]1 is
the corresponding inverse quality factors.

A consistent description of P-wave property in VTI medium with weak anisotropy is
given in terms of Thomsen anisotropic parameters [25,26]. For Q-VTI media, the complex
Thomsen parameters are given by,

T tu—Cx
2033

5= Co6—Caq @)

P

5= (E1+2a)* ~ (E33—Cu)’?
2033(C33—Ca4)

where, the Thomsen-style attenuation-anisotropic parameters €0, 7Q and (5Q are given by
Zhu and Tsvankin [27,28] as,

_ Qﬁlth%l
SQ 7Q§3,1
oot
Yo = 66Q;41 44 ()

5o — (05 +0u)’ (05 -0i)’
2033 (Qx' —Qud')

The parameters £ and v represent the difference between the horizontal and vertical
attenuation coefficients of P- and SH-waves, respectively, however, d( is defined through
the second derivative of the P-wave attenuation coefficient in the symmetry direction,
which refers to the coupling between the attenuation and velocity anisotropy.

We stress that in this study we consider the Q-VTI medium with constant attenu-
ation and weak anisotropy (i.e., |¢|, |6|, |v| < 1), which means the second and higher
orders of quality factors and Thomsen parameters are neglected in the approximation
process of the complex tensors. Consequently, the components of frequency-dependent
complex stiffness tensor ¢jj(w) are expressed in terms of two inverse quality factors, three
Thomsen anisotropy parameters and corresponding Thomsen-style attenuation-anisotropic
parameters,

e = po3(1+2¢) +p02Q, (1426 +e0) L

C13 = pv5(1+0) — 255 + pv3Q, (1 + 6 + 0g) L — 2003Q5

G = pv%, + pv%Q;llw (6)
G55 = pv3 + pv3 Qs e

Co6 = P2 (1427) 4+ po2Qs H(1 427 + 10) L
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where, [, = %111 w% + i. The approximate results above decouple the effective factors
from the complex tensors and distinguish the real and imaginary parts, elasticity and
attenuation parameters.

2.2. Approximation of Frequency-Dependent Reflection Coefficient for Q-VTI Model

A scattering model of seismic wave interaction in an attenuated anisotropic medium is
shown in Figure 1, which consists of a homogeneous reference medium and perturbations
described by eleven properties. Taking density as an example, the term Ap = p — pg in
Figure 1, represents the perturbation in density, which represents the difference between
the rock density p and the reference density py.

Background Perturbation

Po, %o, Bo; Qrg» Qso- Ap,Aa, AB;AQRY,AQ5™;
Ae, Ay, Ad; Agg, Ay, Ady.

Figure 1. Schematic of seismic wave propagate in an attenuation anisotropy medium based on the
perturbation theory. It is characterized by three elastic parameters P-wave velocity «, S-wave velocity
B and density p; two viscoelastic parameters P-wave quality factor Qp and S-wave quality factor Qs;
three anisotropic Thomsen parameters ¢, 7, ¢ and corresponding attenuation Thomsen parameters
€0, 70, 6g- Note that the subscript ‘0 stands for the properties of background (reference medium)
and the mark ‘A’ stands for the properties of small perturbation.

Hence, the complex stiffness matrix of the Q-VTI medium can be re-expressed as the
sum of the anisotropic perturbation and the stiffness matrix of a homogeneous isotropic
background based on the perturbation theory. It has been shown in the Appendix A
Equation (Al).

Since the quasi-Zoeppritz equation of Q-VTI medium is very complicated, we aim to
derive the approximation reflection coefficient for P-to-P wave based on the Born approx-
imation. A relationship between the reflection coefficient and the scattering functions is
given by Shaw and Sen [29], and we extend it to the attenuated anisotropic medium in the
present study,

E(G,w) = S(ro), )

4pg cos? 6

where, py is the density of the background medium, and S(rp) is the scattering function
related to the perturbations of stiffness tensors and density, which is given by,

S(ro) = ApE + Acyymyy, )]

where, & = tyty, |r:r0, Ny = twPutkpl |‘r:r0' t and p are the polarization and the slowness
vectors, respectively, which are given in the Equation (A2). Ap and Acj; represent the
perturbation in density and complex elastic stiffness, respectively. The position vector r is
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the point on a horizontal interface separating two weak anisotropic media, where Snell’s
law of reflection for a source-receiver pair is satisfied. The subscripts I and | refer to Voigt’s
concise notation.

The Einstein summation convention over repeated indices applies to Equation (8),
and the scattering function for the frequency-dependent Q-VTI medium is written as,

x 1. . - o -
S(rg) = Apcos26 + o {Acll sin* 6 + 2(AC13 — 2ACss5) sin’ 0 cos? 6 + A3z cos” 9] )]
0

Substituting the Equation (10) into Equation (7), we finally obtain the linearized
approximate incident angle and frequency dependent PP-wave reflection coefficient (AVOF)
for the Q-VTI medium,

REY™(0,w) = A(w) + B(w) sin? 6 + C(w) sin® 6 tan? 6, (10)

Ap | Aw 1 -1
(p0+0;0)+2AQ,, L] 2
A By (A A 1 -1 B —1 —1

fa 4;2(7{; +2%) +A5+1 (AQP - 853005 +20p A5Q>1w} a1

& 1 pe+ 1(AQp" + Qpgdeg ) L]

S
&
I
[T ST NN

in which, the first term A(w) denotes the amplitude of P-wave at zero offset or normal
incidence, the second term B(w) sin? # characterizes reflection coefficient at intermediate
angles, and the third term C(w) sin? f tan? @ describes the result approached to critical
angle. Similar to the analysis of amplitude versus offset (AVO) in the isotropic elastic
medium, the coefficient A(w) is called intercept, B(w) is called gradient and the third
coefficient C(w) is called curvature. The derived reflection coefficients involve three elastic
parameters P-wave velocity a, S-wave velocity p and density p; two attenuation parameters
P-wave inverse quality factor Qljl and S-wave inverse quality factor le ; two Thomsen
anisotropic parameters ¢, J; and two Thomsen-style attenuation-anisotropic parameters
€0, 0g. The subscript ‘0’ stands for the properties of background (reference medium)
and the mark ‘A’ stands for the properties of small perturbation. We normally take the
average value and the difference value of two layers as the background and perturbation
properties, respectively.

Note that, if we neglect frequency dispersion and attenuation, Equation (11) becomes
the linearized reflection coefficient for elastic VII medium derived by Riiger [30,31]. If we
let the perturbation of anisotropy be zero, Equation (11) is exactly the same as the linearized
PP-wave reflection coefficient for elastic isotropic media given by Shuey [32].

In addition, we obtain the form of reflectivity of each parameters using the Equation (11)
to exhibits their contributions,

Rpp ' (6,w) = RE(0) + R5p™° (6, w) + REY(0) + R (6, ), (12)
where,
ngSPO(G) = sec?ORp — 8¢ sin? R + (1 — 4 sin®0)Rp
R$C(6,w) = L sec? 01,005 — 2gsin? 01,AQ5 !
(13)
RANL(0) = L sin? A5 + 1 sin? 0 tan? 0Ae
RI%?NI(G, w) = %Q;& sin? 01,Ad0 + %Q;& sin? § tan? 01wAeg
_ 1A _ 1A 1A o ‘;2 2 .
where, Rp = ETS/RS = Z*f/RD = jpfg,g = Tg’l“’ = ;lnw%—kz.
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Similar to the approximate formula of elastic isotropic reflection coefficient proposed
by Aki-Richards [14], this is the mathematical bridge and basis for obtaining all elastic,
attenuated and anisotropic parameters of Q-VTI model through simultaneous inversion.

3. Test and Analysis
3.1. Characteristics of Reflection Coefficients for Q-VTI Model

To analyze the characteristics of reflection coefficients, we compute the reflection
coefficients around the solution point of the interface of two models using the derived
reflection coefficient equation. Parameters of two models are shown in Tables 1 and 2
separately. For Model 1, we take the mud shale as the upper layer and oil shale as the lower
layer, and for Model 2, we take the mud shale as the upper layer but calcareous sandstone as
the lower layer. The properties of background and perturbation are the average value and
the difference value of two layers, respectively. The elastic and anisotropic parameters of
two models come from the compiled table of Thomsen [25] about the measured anisotropy
in sedimentary rocks.

Figures 2 and 3 show the variation of reflection coefficients with the incident angle 6
and frequency f for Model 1 and 2, respectively. We consider four cases of (1) elastic
isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated anisotropy to
compute the reflection coefficients using the derived reflection coefficient equation. The
results show in sub-Figure (a,b), (c,d), (e,f) and (g,h), respectively and the value of colors
represent in corresponding colorbars, where sub-Figure (a,c,e,f) and (b,d,f,h) exhibit the
real part and the imaginary part of reflection coefficients separately. We stress that all
parameters of the same properties on the vertical axis have the same scale so that the
different degree of various influence can be observed directly.

In the case of elastic isotropic assumption, the derived reflection coefficient becomes
the linearized P-P reflection coefficient given by Aki and Richards [16]. Therefore, the
reflection coefficients are real numbers and controlled only by P-wave velocity a, S-wave
velocity B and density p. In Figure 2a, we observe the real parts of reflection coefficients
increase with the incident angle but frequency-independent. It exhibits the fourth AVO
type in the case of the interface separating the mud shale and oil shale model. In Figure 2b,
we observe that the imaginary parts of reflection coefficients are equal to zero.

Table 1. The parameters of attenuated anisotropic model 1.

LS P —1 -1
(km/s) (km/s) (g/emd) °© S Q% Q g dg

Mud-shale 5073 2998 2.68 0.010  0.012  0.001 0.001  0.001  0.001
Oil-shale 4.231  2.539 2.37 0.200  0.100 0205 0.118 0.046  0.025

Layer

Table 2. The parameters of attenuated anisotropic model 2.

u 4 —1 —1
(kmfs) (km/s) (glem®) °© S Q% Q g g

Mud-shale 5.073 2998 2.68 0.010  0.012  0.001 0.001  0.001  0.001

Caleareous 5460 3219 269 0000 -0264 0177 005 —0.025 0050
Sandstone

Layer
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Figure 2. The variation of reflection coefficient with the incident angle 6 and frequency f for model 1.
(a,b), (c,d), (e,f) and (g,h) show the real part and imaginary part of reflection coefficients in four cases
of assumption: (1) elastic isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated
anisotropy separately. Different reflection coefficient values represent in corresponding colorbars.
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Figure 3. The variation of reflection coefficient with the incident angle § and frequency f for model 2.
(a,b), (¢,d), (e,f) and (g,h) show the real part and imaginary part of reflection coefficients in four cases
of assumption: (1) elastic isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated
anisotropy separately. Different reflection coefficient values represent in corresponding colorbars.

The derived reflection coefficient is exactly the same as the reflection coefficient
proposed by Riiger [30,31] when we only take the effect of anisotropy into consideration.
The reflection coefficients are frequency-independent, as shown in Figure 2c, and the
imaginary parts are also zero, as shown in Figure 2d. We conclude that the anisotropic
parameters ¢, 6 just affect the value of reflection coefficients, however, the AVO type is the
same as Figure 2a.

It shows slightly difference in the case of attenuated isotropic assumption. The
reflection coefficients become complex numbers, and vary with both incident angle and
frequency, as shown in Figure 2e. We emphasize that the AVO type has not been changed
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by the attenuation parameters Q;l, Q:!. In Figure 2f, we observe the imaginary part of
reflection coefficients vary with incident angle but frequency-independent.

Figure 2g,h show the characteristics of the complex reflection coefficients in the case of
attenuated anisotropic assumption, which are the similar to the results of reflection coeffi-
cients for the attenuated isotropic assumption. We observe the Thomsen-style attenuation-
anisotropic parameters ¢g, dg have litter effect in larger incident angles and higher fre-
quency on the reflection coefficients.

Then, we compute the reflection coefficients around the solution point of the interface
separating the mud shale and calcareous sandstone. The same characteristics appear in
this model, as shown in Figure 3. We observe the reflection coefficients decrease with the
incident angle but frequency-independent in Figure 3a. It exhibits the second AVO type
in the case of model 2 due to P-wave velocity a, S-wave velocity p and density p. The
anisotropic parameters ¢,  also only affect the value of reflection coefficients and the AVO
type doesn’t change, as shown in Figure 3c. Figure 3e-h show that the reflection coefficients
are complex numbers and the real parts vary with frequency caused by the attenuation.
However, the Thomsen-style attenuation-anisotropic parameters €Q, (5Q contribute much
smaller to the reflection coefficient than Q;l and Q; ! because they exist in the terms of
high order.

In the following, we focus on the effect of the crucial parameters of anisotropy ¢, é
and attenuation Q;l, Q5 1. We proceed to the analysis of how perturbations in anisotropic
parameters and attenuation factors affect reflection coefficients. The P-wave velocity «,
S-wave velocity B and density p are set up as the same as the model 1 (Table 1), and nine
groups of perturbations in anisotropic Ad, Ae and six groups of perturbations in attenuation
AQ, 1, AQ; 1, as shown in Tables 3 and 4. Using the derived reflection coefficient equation,
we obtain the reflection coefficients variation with incident angle and frequency in the case
of different perturbations.

Table 3. The effect of elastic anisotropic perturbation on the reflection coefficient.

Anisotropic Perturbation 1 2 3
A6 0.3 0 -0.3
Ae 0.2,0,-0.2 0.2,0,-0.2 0.2,0,-0.2

Table 4. The effect of attenuated isotropic perturbation on the reflection coefficient.

Attenuated Perturbation 1 2 3
AQp! 0 0.02 0.2
AQg? 0 0,0.012 0,0.012,0.12

We first consider the effect of perturbations in anisotropy Ad and Ae on the reflection
coefficients, as shown in Figure 4. For this case, the derived linearized reflection coefficient
is equal to the reflection coefficient proposed by Riiger [30,31] because the attenuation
parameters are neglected. In Figure 4a we observe the reflection coefficients are frequency-
independent, and in Figure 4b we observe the imaginary part of reflection coefficients are
equal to zero. In Figure 4a, the intercept of reflection coefficients is a constant, and equals
to the result computed for the isotropic model (the red solid line). By comparing three sets
of the same type of lines (dashed lines, solid lines and doted dashed lines), respectively, we
observe the gradients of curves vary with Ab. For example, the gradients of blue dashed
line, red dashed line and black dashed line increase with A when Ace is equal to a constant
0.2, but the curvature of them are the same. In the meanwhile, we observe the curvatures
vary with Ae by comparing three sets of same color of lines (black lines, red lines, and blue
lines), respectively. For example, the curvatures of black doted dashed line, black solid line
and black dashed line increase with Ae when Ab is equal to a constant 0.3, but the gradient
of them is a constant. It appears the same characteristics in the rest groups.
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Figure 4. The effect of anisotropic parameters Ae and Ad on the reflection coefficients. At this point,
the reflection coefficients are real numbers and frequency-independent. (a) shows the real part of it
in nine combinations of anisotropy parameters, and (b) shows the imaginary part equal to zero.

Next, we analyze the effect of perturbations in P- and S-wave attenuation factors
AQ;l, AQ; ! on the reflection coefficients, as shown in Figure 5. For this case, we neglect
the parameters of anisotropy and attenuation anisotropy. Figure 5a—f show the real and
imaginary parts of reflection coefficients computed using six combinations of attenuation
parameters presented in legend in three case of frequency: (1) 5 Hz, (2) 25 Hz and (3) 65 Hz.
We mention that the reference frequency is 25 Hz. In Figure 5, we observe that the reflection
coefficients are complex numbers, and the real part is frequency-dependent; however, the
imaginary part is frequency-independent.

Figure 5a shows the effect of AQ;l, AQ; ! on the real part of reflection coefficients
when the frequency is equal to 5 Hz. The red solid line represents the result computed
for the elastic isotropic model because the attenuation parameters are equal to zero. By
comparing the solid line of red, black and blue, the intercept, gradient and curvature of
them all decrease with the inverse quality factor of P-wave AQ;l. Three blue lines illustrate
the inverse quality factor of S-wave AQ; ! only affects the gradient of the real parts and
increases it. Figure 5c shows the real part of reflection coefficients are equal to the result
of elastic isotropic assumption in 25 Hz since the natural logarithm of frequency term
becomes zero when the frequency we took is equal to reference frequency. Figure 5e shows
the effect of AQ;l, AQ; ! on the real part of reflection coefficients when the frequency is
equal to 65 Hz. By comparing the solid line of red, black and blue, the intercept, gradient
and curvature of them all increase with the inverse quality factor of P-wave AQ;? Three
blue lines illustrate the inverse quality factor of S-wave AQ; ! only affects the gradient of
the real parts but decreases it.

We conclude the imaginary part of reflection coefficients are frequency- independent,
as shown in Figure 5b,d,e. By comparing the solid line of red, black and blue, the intercept,
gradient and curvature of the imaginary parts all increase with the inverse quality factor
of P-wave AQ;l. However, the gradient of the imaginary part decreases with the inverse
quality factor of S-wave AQ; ! which is illustrated by three blue lines.
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Figure 5. The effect of attenuation parameters AQ;]and AQ; ! on the reflection coefficients. At
this point, the reflection coefficients are complex numbers and frequency-dependent. (a-f) show
the real part and imaginary part of reflection coefficients in three cases of 5 Hz, 25 Hz and 65 Hz
separately. Different lines exhibit the results of six combinations of attenuation parameters. The

reference frequency is set to 25 Hz.

3.2. Inversion Test for Q-VTI Model

We use the synthetic seismic data to verify the feasibility of the proposed equation
for inversion. At first, we choose a well logging data to build a fractured model which is
shown in Figure 6. We find that the places with high calcite content developing pores and
fractures bearing fluids, and there is no good correspondence of the basis elastic parameters
P- and S-wave velocity with it.

Then, we calculate the complex stiffness matrix using Chapman model [4-6] and
further obtain the P- and S-wave velocity, density, inverse quality factors, anisotropic
parameters and Thomsen-style attenuated anisotropic parameters. As is shown in Figure 7,
we acquire these new parameters which is vary with different frequency and incident angle.
The P- and S-wave velocities exhibit in this figure are their real parts, and the P- and S-wave

11
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Sample

Sample

velocity we estimated match well with the measured value except some differences in the
place of pore, fracture and fluid anomaly. Significantly, the inverse quality factors of P- and
S-wave show obvious differences in both frequency and incident angle especially in pore,
fracture and fluid anomaly. These small differences are apparent because they are orders
of magnitude smaller. They represent the ratio of the imaginary and real parts of P- and
S-wave velocity, which is reflect the attenuation characteristics of P- and S-wave. What's
more, the trends of Q,, 1, Qs! and ¢ are more consistent with that of porosity, fracture
density and fluid saturation than « and f.

a (kmy/s) B (kmy/s) p (g/cm?) V-shale V-dolomite = V—calcite Porosity ~ Den—fracture  S-water
1280
1330
1380
1430 g’
1480 é
4 6.6 2.55 29254 2830 10 10 10 0.040 0.030 1

Figure 6. The well logging data of a fractured model which is ready to calculate the attenuated and anisotropic parameters.
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Figure 7. The estimated results of the attenuated and anisotropic parameters using Chapman model in different frequency
and incident angle. The black lines are the measured values from well-logging.
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Next, we generate synthetic seismic data in small incident angles utilizing Ricker
wavelets with different frequencies, as is shown in Figure 8. We add Gaussian random
noise into the synthetic seismic data to generate noisy seismic data of signal-to-noise ratio
being 5. The result is shown in Figure 9 and used as the observed seismic data for inversion
through the Equation (12).

Figure 10 plots comparisons between true values of model and inversion results of
each parameter. We take the average value estimated by the Chapman model as the true
value for comparison, and calculate the relative error of each inverted parameter, as shown
in Figure 11. We observe a close match between inversion results and true values given
data with a moderate noise.

10H=z 20Hz 30Hz 40Hz 50Hz 60Hz 70Hz 80Hz 90Hz
1280
1330
1380
1430
ZORRND
1480
1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31
Incident angle (" )
Figure 8. The synthetic seismic data for a set of frequency in small incident angles.
10Hz 20Hz 30Hz 40Hz 50Hz 60Hz 70Hz 80Hz 90Hz
1280
1330 é
1380
1430
R2ed
1480
1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 3L 4 31

Incident angle (° )

Figure 9. The synthetic seismic data which added Gaussian random noise with S/N of 5. These results will be used as the
observed seismic data for inversion. The lower frequency data affected more by noises.
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Figure 10. Comparison of the inverted results and true values of the P- and S-wave velocity, density, inverse quality factors,

anisotropic parameters and Thomsen-style attenuated anisotropic parameters.
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Figure 11. The relative errors between inverted result and model value of each parameter.

4. Result and Discussion

It is possible to obtain relatively simple approximations for the PP-wave reflection
coefficient of the linear constant Q-VTI model under the assumption of weak anisotropy
and low-loss attenuation of velocities. One of the advantages is the Q-VTI model considers
frequency dispersion and anisotropy of velocities at the same time. Another advantage
is the equation decouple the inverse quality factors of P- and S-wave and the Thomson-
style attenuation anisotropic factors from the complex velocities and Thomson anisotropy
parameters. Based on the derived reflection coefficient, we analyze some characteristics of
reflection coefficients in the case of different reservoirs and groups of parameters.

The type of AVO is determined by the differences in P-wave velocity, S-wave velocity
and density across the interface. Both the anisotropic parameters and the attenuation
parameters only change the value of the reflection coefficient; however, they don’t affect
the type of AVO. The perturbations of anisotropy Ad and Ae contribute to the gradient and
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the curvature. The perturbations in attenuated anisotropy Adg and Aeg also contribute to
the gradient and the curvature, but the contribution is much smaller than that of AJ and
Ae. The attenuation factor of P-wave AQ, I affects the intercept, gradient and curvature at
the same time, however, the attenuation factor of S-wave AQ; ! only affects the gradient.

The reflection coefficients become complex numbers when we consider the effect of
the attenuation, in which the real part represents the amplitude and the imaginary part
represents the phase. The real parts of reflection coefficients vary with the frequency caused
by the attenuation terms, however, the imaginary parts are frequency-independent. The
real part of reflection coefficient is inversely proportional to AQ, I but proportional to
AQ; ! because the natural logarithm of frequency term is negative when the frequency is
less than the reference frequency. In the same way, the real part of reflection coefficient is
proportional to AQ;l but inversely proportional to AQ; ! because the natural logarithm of
frequency term is positive when the frequency is greater than the reference frequency. In
particular, the reflection coefficient to be equivalent to the elastic cases because the natural
logarithm of frequency term becomes zero when the frequency we took is equal to the
reference frequency.

The contribution of the attenuation anisotropic term that the high order to the reflection
coefficient is very small compared with other properties. In the meanwhile, the value of
third term which affects the reflection coefficient at a large incident angle is much smaller
than the first two terms when the P-wave incident at a small angle.

We observe that the relative error of inverse quality factors seems to be large, which
is still caused by their relatively small order of magnitude than other parameters, but the
trend of their inversion results is completely consistent with the true values. Thus, we
still regard the inversion test shows a well result to verify the feasibility of the proposed
equation. In addition, the attenuated and anisotropic parameters are not only the better
indicators of pores, fractures and fluids than the P- and S-wave velocity, but also enable us
to avoid further inversion of physical parameters such as porosity, fracture density and
fluid saturation.

5. Summary and Conclusions

Under the assumption of low-loss attenuation and weak anisotropy of velocities, we
derive the linearized approximate frequency-dependent reflection coefficient based on the
linear constant Q-VTI model. We observe that the reflection coefficient is related to the
parameters of anisotropy and attenuation simultaneously, and varies with both the incident
angle and frequency. It appears that the analysis of the AVOF characteristics may guide us
to identify the characteristics of anisotropy and attenuation in the real working area, and
we can take full advantage of the seismic data of different incident angles and frequencies
to predict the fluid-filled pores and fractures in the reservoirs using our derived reflection
coefficient equation.

Moreover, the attenuated anisotropic medium is more suitable for modeling how
seismic wave propagates in underground layers than that proposed under the assumption
of elastic isotropic or anisotropic medium. Focusing on the attenuated anisotropic medium,
we consider the effects of Thomsen parameters that are related to anisotropy caused by
fractures and the attenuation factors that are sensitive to attenuation caused by intrinsic
attenuation and the fluid-filled in pores and fractures on the reflection coefficient, which
may provide more useful information for detecting fractures and fluids using the observed
seismic data. We conclude that we present a valuable expression of reflection coefficient,
which can be employed for the analysis of seismic wave response modeling for different
types of reservoirs, and the derived reflection coefficient can also guide the inversion
for the properties that are related to fractures and fluids using frequency components of
seismic amplitudes.
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Appendix A

The complex stiffness matrix of the Q-VTI medium can be re-expressed as the sum
of the anisotropic perturbation and the stiffness matrix of a homogeneous isotropic back-
ground based on the perturbation theory.

11 11 —2%6 €3 0 0 0
C11 — 2066 1 cs 0 0 0
_ B &5 & & 0 0 0
covrt = 0 0 0 & 0 0
0 0 0 0 &5 0
L0 0 0 0 0 G
o S o ¢35 — 205 Egs - 2f{5)5 0 0 0
583 - 2f(5J5 33 “ €3 —265 0 0 0
_ | €33 205 C33— 2055 33 0 0 0
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C12 — €33 + 2055 €11 — C33 C13—C33+25 0 0 0
4 C13 — C33 + 2055 €13 — C33 + 2055 0 00 0
0 0 0 00 0
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| 0 0 0 0 0 Gg— o5

where, the stiffness coefficients in the square brackets on the right-hand side represent
isotropic attenuated background, isotropic attenuated perturbations and anisotropic atten-
uated perturbations, respectively.
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The polarization vectors and slowness vectors corresponding the incident and reflected
waves are given by,

t = [sin 6 cos ¢, sin 6 sin ¢, cos 6]
' = [—sin @ cos ¢, — sin O sin @, cos 6]

(A2)
p = (1/9)[sin 6 cos ¢, sin O sin @, cos 6]

p' = (1/9)[—sin6 cos ¢, — sin O sin ¢, cos 0]
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Abstract: In order to solve the problem that elastic parameter constraints are not taken into account
in local lithofacies updating in multi-point geostatistical inversion, a new multi-point geostatistical
inversion method with local facies updating under seismic elastic constraints is proposed. The main
improvement of the method is that the probability of multi-point facies modeling is combined with
the facies probability reflected by the optimal elastic parameters retained from the previous inversion
to predict and update the current lithofacies model. Constrained by the current lithofacies model, the
elastic parameters were obtained via direct sampling based on the statistical relationship between the
lithofacies and the elastic parameters. Forward simulation records were generated via convolution
and were compared with the actual seismic records to obtain the optimal lithofacies and elastic
parameters. The inversion method adopts the internal and external double cycle iteration mechanism,
and the internal cycle updates and inverts the local lithofacies. The outer cycle determines whether
the correlation between the entire seismic record and the actual seismic record meets the given
conditions, and the cycle iterates until the given conditions are met in order to achieve seismic
inversion prediction. The theoretical model of the Stanford Center for Reservoir Forecasting and the
practical model of the Xinchang gas field in western China were used to test the new method. The
results show that the correlation between the synthetic seismic records and the actual seismic records
is the best, and the lithofacies matching degree of the inversion is the highest. The results of the
conventional multi-point geostatistical inversion are the next best, and the results of the two-point
geostatistical inversion are the worst. The results show that the reservoir parameters obtained using
the local probability updating of lithofacies method are closer to the actual reservoir parameters. This
method is worth popularizing in practical exploration and development.

Keywords: local updating; permanent updating ratio of probability; multi-point geostatistical inver-
sion; cyclic iteration; correlation coefficient; Xinchang gas field

1. Introduction

Seismic inversion is an important approach to lithology identification and oil-gas
interpretation. It converts conventional seismic reflection records into acoustic impedance
properties and reservoir parameters in order to give them a more definite geological
meaning. It is a common concern of oil and gas geophysicists and geologists to directly
apply seismic inversion methods to fine reservoir characterization and modeling. However,
due to the noise of seismic data, the finite frequency of seismic waves, and the incomplete
mapping of geological attributes to the seismic physical parameters, the inversion and
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interpretation of seismic records into reservoir attributes are not unique and pose great
challenges. Some scholars have conducted a lot of research on eliminating the impact
of noise, Ghaderpour [1] proposed a method of seismic data regularization and random
noise attenuation via least-squares spectral analysis in frequency wavenumber domain,
due to the accuracy of the estimated wavenumbers, the total number of iterations of the
method is significantly reduced and the efficiency is significantly improved. However, there
are still many problems in the process of connecting seismic property with geology. The
design and development of advanced seismic inversion methods that integrate geological,
rock geophysics, and even the production of dynamic data, have been important topics
for exploration geophysicists, and two types of inversion methods, namely, deterministic
inversion and (geological) statistical inversion [2], have gradually formed. Deterministic
inversion obtains the maximum posteriori probability model through an optimization
algorithm and minimizes the error. Although strong reflector information can be recovered
well and the inversion results have a good lateral continuity, the resolution of the inversion
results can only reach the resolution of the seismic data due to the limited bandwidth
of the seismic data [3]. In order to improve the resolution, the consensus is that it is
necessary to integrate various geological (logging) information into the reservoir inversion
using spatial reservoir correlation [2]. In geological modeling, this spatial correlation is
mainly represented by the variogram function. Journel and Huijbregt [4] first developed
the reservoir geological modeling method integrating seismic data, which laid a solid
theoretical foundation for seismic stochastic inversion. In 1994, Hass and Dubrule [5]
proposed stochastic inversion based on sequential simulation in the First break, which
is the prototype of the geostatistical inversion method. Since the spatial correlation is
characterized by the vertical variogram function of the borehole data, the planar continuity
is obtained from the seismic data. Therefore, the inversion effectively makes use of the
vertical resolution of the well data, makes up for the limitation of the seismic bandwidth,
and improves the inversion resolution [2,4-8]. In addition, the inversion probabilities are
inferred using the Kriging method, and the Markov chain Monte Carlo (MCMC) method
is used for sampling posterior probabilities [9-11], which satisfy the needs of statistical
inversion uncertainty analysis and evaluation. Azevedo and Demyanov [12] have also
conducted research on multi-scale uncertainty evaluation in geostatistical seismic inversion,
this method combines geostatistical seismic inversion with a stochastic adaptive sampling
and Bayesian inference of the metaparameters to provide more accurate and realistic
uncertainty prediction without being limited by a large number of assumptions of large-
scale geological parameters. Pereira [13] proposed iterative geostatistical seismic inversion
combined with local anisotropy, this method adopts a random sequence simulation and
joint simulation method, which can deal with the information of spatial variation, and
uses local and independent variogram models to reduce the spatial uncertainty related
to underground characteristics. Therefore, the geostatistical inversion method has been
widely used and has achieved good results in practical applications.

With the development of geological modeling research, more and more modelers have
pointed out that the variogram-based method is difficult to integrate more information in
order to describe a complex curved reservoir morphology, and it cannot fully reveal the
spatial variability [6,14-18]. It is necessary to combine the spatial distribution of multiple
points to determine the reservoir’s characteristics. Based on this idea, Guardiano and
Srivastava [19] proposed the concept of a spatial multi-point joint distribution to represent
complex reservoir structures, and they obtained the multi-point probability through re-
peated scanning of a training image (a quantitative grid-based reservoir lithofacies model)
and data samples (i.e., the spatial multi-point combination model) and applied it to the
prediction of the points to be estimated. Strebelle [15] improved this method by designing
a search tree to store and access the multi-point probability, which improved the simulation
efficiency. Multi-point geostatistics were formally introduced into actual reservoir model-
ing [15] and gradually replaced the traditional two-point geostatistics method based on the
variogram function. This has also aroused the attention of geostatistical inversion scholars.
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Gonzalez [8], who first attempted to apply multi-point geostatistics to reservoir inver-
sion, used the improved Simpat method to obtain the lithofacies distribution, sampled the
seismic attributes through the relationship between the lithofacies and seismic attributes,
and finally used the likelihood function to determine the optimal matching elastic pa-
rameters. Their method emphasizes the control of the relative sedimentary facies quality;
that is, the spatial continuity of the elastic parameter field and its sampling are controlled
by a specific geological lithofacies model. They named the method mSIMPAT. However,
the calculation efficiency of the mSIMPAT is low in the process of updating facies, which
creates difficulties in actual seismic inversion. Jeong [20] replaced mSIMPAT with the
direct sampling method, which they combined with the adaptive spatial resampling (ASR)
method to improve the operation efficiency. However, the ASR method retains the optimal
matching facies data and adds conditional data to guide the multi-point geostatistical
facies modeling. The inverted elastic parameters were obtained through integral iteration
without local lithofacies updating. Especially in lithofacies modeling, the elastic parameters
obtained during previous iterations cannot be used as constraints. Liu [21] replaced mSIM-
PAT with the SNESIM method and combined it with the probability perturbation method
(PPM) to accelerate the inversion iteration efficiency. The updating of the lithofacies model
is conducted by disturbing the entire geological model using the probabilistic perturbation
method without updating the local lithofacies. Although this disturbance satisfies the actual
seismic observation data through annealing optimization, it is likely to be at the expense
of disturbing the local specific deposition patterns. Because the specific lithofacies model
plays an important role in the inversion, it not only determines the inversion’s efficiency,
but also the accuracy of the inversion [22-25]. Therefore, it is necessary to reconsider the
local probability updating in facies modeling.

In this study, the iterative inversion method of Gonzalez [8] is revised. In the iterative
process, the theory of the permanent probability updating ratio is used to integrate the
early elastic parameters for the local lithofacies prediction. In addition, the inversion results
of the current iteration are not only evaluated but are also compared with the previously
partially retained lithofacies and the elastic parameters to determine whether to update.
The theoretical model tests reveal that the improved method can reflect the distribution of
the reservoir lithofacies and the elastic parameters better, and its calculation efficiency is
high. Practical inversion of the Xinchang gas field data in China also demonstrates that
the improved method has a higher inversion accuracy. The results of this research provide
technical support for oil and gas exploration and development.

2. Principle and Methods
2.1. Inversion Principle and Multi-Point Geostatistical Inversion Method

All inversion processes can be regarded as the process of obtaining synthetic seismic
records of the elastic parameters in a certain way and matching the real seismic records
within an allowable error range, the principle of which can be expressed by the Bayesian
formula [26].

ou(m) = cym(m)rp(g(m)), M

where c is the correction parameter and is a constant, yy;(m) is the prior probability, and
Yp(g(m)) is the likelihood function. M is the simulation region, m is the initial model or
pattern group, g(m) is the forward operator, and oy (m) is the posterior probability.

Inversion is an inference process in which the prior probability is updated and made
faithful to the actual seismic data, and the maximum posterior probability is the core objec-
tive. yp(g(m)) is used to measure the matching degree between the forward simulation
record and the actual observed seismic track. Its elastic parameters are generally obtained
from the prior probability sampling, and the wavelet comes from the actual seismic work-
ing area. Therefore, the core of the inversion lies in the method of obtaining the prior
probability s (m) [17].
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Haas and Dubrule [5] used a sequential Gaussian simulation to obtain the impedance
data, in which the prior probability of the impedance was predicted using the variogram
function, which also constituted the most initial geostatistical inversion. Subsequently,
different scholars discussed the influence of the prior information on the Bayesian inversio.
Accurate prediction of the prior probability is the key to improving the accuracy of the seis-
mic inversion. Considering that multi-point statistics can obtain higher-order prior statistics
from training images and can integrate more information than the second-order statistics
of the variogram function, using multi-point geostatistics to predict the prior impedance
information is a potential development direction. However, multi-point geostatistics is
mainly applicable to discrete variables, and it is difficult to predict continuous variables. In
seismic inversion, it is often necessary to establish statistical rock physics models; that is,
the statistical relationship between the elastic parameters ,,5 (such as the impedance and
velocity) and the reservoir properties 11,5 (such as the lithofacies). According to the chain
rule of conditional probability, the prior probability can be written as

YM (Mres, Melas) = Pprior (Mres, Melas) = Ppetro (Metas |mres)Ppri0r (Mres). )

Thus, the prior probability of the lithofacies can be predicted using multi-point statis-
tics, and the current joint prior probability distribution of the elastic parameters-lithofacies
can be obtained from the lithofacies and elastic parameter probability [8].

The likelihood function yp(g(m)) is used to measure the error between the forward
simulated record and the actual observed seismic trace. Selecting a specific likelihood
function is essential to determining what is a good enough fit. It can be based on the
distribution of the measurement errors, or it can be assessed subjectively, for example,
using the seismic root mean square error or correlation coefficient. The likelihood function
is generally expressed as the sum of the residuals between the forward simulated record and
the actual seismic data (assuming that the seismic noise has a Gaussian random distribution
with mean value of 0 and a variance of ¢;):

_ 2
Yp(8(m)) = %exp [2(‘157(;))] 3)

(27ma?)

where D is the observed seismic trace, and g() is the synthetic seismic trace. By combining
Equations (1)-(3), the posterior probability can be expressed as

2
exp |: Z WM} :| [Ppetra(melas |mres)Pprior(m‘res)] . 4)

O’M(m) = 'YM(mreSr melus‘d) = C|: 2(73'

(2702)?

Once the a posteriori probability distribution is calculated, it can be used several
times for sampling and characterization of the a posteriori probability of the reservoir
model. Each model in the model set is consistent with the geological knowledge and the
prior information in the training image. Lithofacies and the actual seismic data have a
better matching relationship. This sampling is usually achieved using MCMC sampling.
However, it takes a long time for the Markov chain to visit all the state spaces, and it
converges slowly to a stationary distribution. Gonzalez [8] cleverly designed the internal
and external double iteration method to achieve an inversion effect using a limited number
of iterations. Its two core processes of this method are preprocessing and inversion. Pre-
processing is the preparation of the information required for the inversion, including
training images, statistical relationship between lithofacies and elastic parameters, and well
data. Inversion is an iterative process. First, a random path is defined, the prior probability
of the lithofacies is obtained through multi-point scanning of the training images, and the
geological model library is established. The selection of different geological models can
be regarded as the external iteration. Then, according to relationship between lithofacies
and elastic parameters, the attribute values, such as the acoustic velocity and density are
extracted, which is the internal iteration. According to the attribute values obtained from
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the simulation, the reflection coefficient sequence is obtained, and the forward simulation
record is obtained through seismic wavelet convolution and is compared to the actual
seismic record. If the error between them meets the set condition, the attribute value of
the point to be estimated is retained; otherwise, it is extracted and simulated again. If the
internal iteration is completed, and the best matching geological model is not found, the
cycle is broken out and a new geological model is searched from the model library. The
above steps are repeated until the given conditions are met in order to achieve seismic
inversion and reservoir prediction.

2.2. Method Improvement

Gonzalez [8] introduced multi-point statistical inversion (mSIMPAT), which has been
widely applied and studied. Because the mSIMPAT method is used to search for the best
matching deposition pattern, the entire training image must be scanned repeatedly each
time. When the size of the training image and the data sample is slightly larger, the overall
scanning will seriously increase the computational load. In the process of internal and
external double iteration, the optimal elastic parameters and lithofacies data obtained from
the previous external iteration inversion do not provide information and constraints for the
next inversion iteration cycle, resulting in each iteration cycle being independent. Thus, it
is difficult to iteratively update the local lithofacies model. To solve the above problems,
the iterative inversion algorithm was improved.

In view of the low computational efficiency of the mSIMPAT method, scholars replaced
it with the direct sampling (DS) method and the SNESIM method. The DS method is a direct
matching method [27]. Since it does not need to store the multi-point conditional probability,
it avoids the storage problem when the probability of the training image scanned is larger.
Because of the non-integral scanning, its computational efficiency is significantly better.
Local areas can be selected during scanning, which can ensure the reproduction of the local
characteristics of the sedimentary model and reflect the non-stationary reservoir structure
to a certain extent, and it is more suitable for reservoir prediction involving complex
changes. Therefore, the DS method is a natural choice to replace the mSIMPAT method as
the prior probability method [20]. However, the DS method is still difficult to implement
in terms of local updating under synthetic elastic parameter constraints. In contrast, the
SNESIM method has a high computational efficiency because it stores all of the multi-point
probabilities through one scan. Single point prediction more easily integrates multiple
sources of information, especially the elastic parameters obtained in the previous iteration.
Therefore, in this study, the SNESIM method was chosen to replace the mSIMPAT method.

In view of the local updating of the lithofacies in the inversion process, the statisti-
cal relationship between the elastic parameters and the lithofacies is attained using the
permanent ratio of the updating theory in the inner cycle [28]:

P(A\B,C):%:ﬁe 0,1], ©)
= ) © 0
_ 1-P(A|B) _P(A|B
b= "praBy T paB) @
_1-P(A[C) _ P(

P(A[IC) ~ P(A|C) ®)

1-P(A|B,C) P(A|B,C
= = > 0.
*="P(aB,C) _ P(ABC) " ©)
P(A1B,C) is the current joint statistical probability of the training images and the
elastic parameters. P(A|B) is the multi-point probability under the condition of only

)
)
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)
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lithofacies data. P(A | C) is probability under the condition of the optimal elastic parameters
of the previous inversion, which is known from the elastic parameters-lithofacies statistical
probability. P(A) is the lithofacies statistical probability obtained from the geological
analysis; hence, a in Equations (6) and (10) can be interpreted as a prior distance to the
event A occurring. Likewise, the values b and c in Equations (7), (8) and (10) state the
uncertainty about occurrence of A, given information B and C, respectively. x is the
uncertainly when knowing both B and C.
To describe the relationship between B and C, the T factor is introduced:

X

¢, 7(BC)
5=

a) ,T(B,C) > 0. (10)

7(B, C) is an evaluation of the correlation degree between the seismic elastic parame-
ters and the lithofacies, and it indicates whether the seismic elastic parameters reflect the
type and distribution of the lithofacies, and it is generally obtained through trial and error.

According to Equations (5) and (10), the elastic parameters obtained from the previous
iteration inversion can be used to constrain the local lithofacies prediction and update
the local lithofacies model. In order to determine the optimal elastic parameters in the
local inversion, the current forward simulation records are compared with the previous
forward simulation records, including the optimal records retained in the earlier stage of
the outer cycle.

In the outer cycle, the current overall inversion results are compared with the actual
error to decide whether to retain the inversion results of the elastic parameters and repeat
the cycle iteration. This continues until the local elastic parameter inversion and the global
inversion satisfy the given conditions. Then, the cycle terminates and the inversion results
are output.

2.3. Inversion Steps

Based on the above improvements, a multi-point geostatistical inversion method based
on the local probability updating method for the inversion of lithofacies (LPUMI) was
developed in this study. The main steps are as follows (Figure 1).

Step 1: Preprocessing

a. Check the data. Check whether the seismic data and well data are complete, including
lithology, density, p-wave velocity, and s-wave velocity information.
b. Statistical analysis of the data. When the shear wave information cannot be obtained

from the logging data, it can be estimated using empirical formulas. The probability
density functions of the different elastic parameters of the lithofacies are established
to provide a basis for the subsequent elastic parameter sampling. The plot of the
lithofacies versus the elastic parameters is established to provide a basis for the fluid
prediction.

c. The attribute values of the initial reservoir elastic parameters are given. According to
the statistical well data, the initial elastic parameter attribute values, including the
density, p-wave velocity, and s-wave velocity, are assigned to the simulation grid.

d.  Build training images. Commonly, unconditional modeling methods such as object-
based stochastic modeling, sedimentary process modeling, multi-point simulation
results, outcrop and modern deposition models, digital geological sketches, and
physical simulation interpretation are used to confirm the working area’s reservoir
characteristics for the training images.

e. Scan the training images to establish a search tree. Only the data events that actually
appear in the training image are saved in the search tree. In order to limit the
geometric configuration of the data events and prevent it from being too large, the
maximum number of searched data needs to be defined. Build a search tree based on
the sample of the largest search data.
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Figure 1. New multi-point geostatistical inversion flow chart considering local updating.

Step 2: SNESIM simulation using LPUMI

i Griding and assignment of the well data and elastic parameters. Each conditional
data point is assigned to the nearest grid node in the simulation grid. If multiple
conditional data points are assigned to the same grid node, the nearest one is assigned
to the center of the grid node.

ii.  Define the path through the remaining nodes of the simulated grid. A path is a vector
that contains all of the indexes of the grid nodes to be simulated in sequence. Random,
one-way (i.e., the nodes are accessed in a regular order starting from one side of the
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Paccept = min (1/

grid), or any other path can be used. The simulation path is from a dense well area to
a sparse well area and finally to a no well area.

iii. ~Search for domains that simulate node X. They consist at most of n nodes {x1, x5 ...,
xn} that have recently been assigned to or simulated in the simulation grid. If the
field of X is not found in the first iteration (such as the first unconditionally simulated
node), a node Y is randomly selected in the TI, and its value (Z(y) to Z(x)) is assigned
in the simulation grid. Then, proceed to the next node of the path.

iv.  Determine the search tree’s conditional probability P(A | B).

v.  Determine whether there is a point at which in the previous simulation, the elastic
parameters were reserved. If there is, using the permanent ratio of the updating
theory, probability P(A | B) will update to P(A | B,C). Otherwise, the update is still the
conditional probability P(A | B).

Step 3: Prestack inversion

According to the reservoir’s elastic parameters obtained from the logging data, the
density and p-wave velocity are uniformly sampled in the suggested data mode to obtain
the p-wave impedance Zp of the sample.

According to the relationships between the p-wave impedance Zp and the s-wave
impedance Zg and the p-wave impedance Zp and the density p given by Hampson and
Russell (2005), in general, Zs and p can be expressed as follows:

In(Zs) = kIn(Zp) + ke + AL, (11)

In(p) =mIn(Zp) + mc+ ALp. (12)

They are looking for deviations away from a linear fit in logarithmic space. k and m
are the corresponding slop. k. and . are the corrsponding intercept. The deviations away
from this straight line, ALg and ALp, are desired fluild anomalies. The seismic forward
modeling record calculation of the proposed elastic parameters in the proposed data model
is conducted as follows:

¢(6) = GW(0)DLp + &W(6)DALs + W(6)DALp, (13)

where ¢; = %cl + %kcz +mc3, ¢ = %cz, c1 = 1+ tan6, ¢y = —8ytan6, c3 = —0.5tan®0 +
29%sin0, v = Vs/Vp. W(0) is the incident angle of the wavelet, D is the differential op-
erator, Lp = In(Zp), Ls = In(Zs), Lp = In(p), and g(0) is the seismic forward model-
ing record.

The likelihood function Equation (3) and the posteriori probability Equation (4) are
determined from the forward simulation record and the actual seismic record. Gonzalez’s
(2008) method is adopted to select the elastic inversion parameters that retain the maximum
likelihood function as the results; or according to the Metropolis—Hasting optimization
criterion, a large number of implementations of the lithofacies and elastic parameters are
generated from the posterior function, and these implementations represent the probability
distribution of the posterior function. The acceptance criteria of the model are proposed to
determine the optimal inversion elastic parameters.

2 2
P(f*) (m=p) = (" —wr) o (d— g(m))? — (@ g(m*))?
27 -exp 2 20% + Z 202 . (14)

In consideration of the computational efficiency and algorithm continuity, Gonza-
lez’s [8] method was adopted in this study to select the optimal matching inversion results
through iterative comparison of the multiple sampling (generally 25-30).
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Step 4: Iteration

All of the simulation grids are visited to realize a single inversion.

According to the matching degree of the synthetic seismic records and the actual
records, it is judged whether the iteration should be terminated. If the conditions are not
met, start again from Step 2 for the next external iteration. Usually, after six iterations, the
average correlation coefficient of the seismic data is greater than 85% and the inversion
results are output.

3. Model Testing
3.1. Theoretical Model Testing

The meandering river model with a low curvature in the first layer of the Stanford
VI-E reservoir was taken as the test object, which is a 150 x 200 x 80 model. The lithofacies
were subdivided into point bar, channel, and floodplain mudstone deposits (Figure 2).
The different microfacies have different elastic parameter distributions (Figure 3). By
designing 68 virtual wells, the seismic inversion method was tested based on the given
elastic parameters and the lithofacies interpreted from the well data. In order to verify
the accuracy of the method, only 63 wells were selected as the condition wells, and the
remaining five wells were used as the test wells to analyze the inversion results.

Figure 2. Stanford VI-E theoretical model.
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Figure 3. Statistical distribution of the elastic parameters of the different microfacies.
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The theoretical lithofacies model was selected as the training image, and the tests
were carried out using the traditional two-point statistical inversion method (TPI), the
conventional multi-point statistical inversion method (MPI), and the multi-point statis-
tical inversion with local probability updating method (LPUMI). The results show that
compared with two-point statistical inversion, multi-point statistical inversion can repro-
duce the reservoir lithofacies better, and the inversion results are more consistent with the
theoretical model. The synthetic seismogram is more similar to the actual seismogram
(Figures 4-6). The average matching rate of the multi-point statistical inversion is 83.5%,
while that of the two-point statistical inversion is 81.5%, indicating that the multi-point
statistical inversion produced a more accurate prediction of the inter-well reservoir prop-
erties (Figure 7). According to the correlation coefficient of the seismic record calculated
via the inversion, the correlation coefficient increases gradually as the number of iterations
increases. After six iterations, the correlation between the inverted synthetic seismic track
and the actual seismic track is close to 80%. The LPUMI has the largest correlation coeffi-
cient, reaching 0.78; the correlation coefficient of the MPI is in the middle (0.76); and the TPI
has the lowest correlation coefficient (0.75) (Figure 8). The results show that the reservoir
parameters obtained using the LPUMI are closer to the actual reservoir parameters. This
shows that the proposed method is more reasonable and can be applied to actual reservoir
inversion prediction.
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Figure 4. Lithofacies and forward modeling records of the inversion (left) TPI, (middle) MPI, and
(right) LPUML

3.2. Real Reservoir Testing

The Xinchang gas field is located in the western part of the Sichuan Basin, China. The
main gas-bearing horizon is the second member of the Xujiahe Formation, and the main
sandbodies are braided delta front distributary channels and mouth bars. The thic