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Generative Aspect Sentiment Quad Prediction with
Self-Inference Template

Yashi Qin and Shu Lv *

School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China; qinyashi1215@163.com
* Correspondence: lvshu@uestc.edu.cn

Abstract: Aspect Sentiment Quad Prediction is a research topic of paramount significance and
complexity within the Aspect-Based Sentiment Analysis task. Leveraging the generative paradigm
of the T5 model, we achieve end-to-end extraction of aspect sentiment elements by paraphrasing
the original text into sentences predefined by templates. Current research predominantly confines
templates to single sentences or directly concatenates sentiment elements using a few symbols,
limiting the model’s reasoning opportunities. In this work, we introduce a Self-Inference Template
(SIT) to guide the model in thoughtful reasoning, facilitating a step-by-step inference generation
process. This approach enables the model to more accurately identify aspect sentiment elements and
their interdependencies. Experimental results demonstrate a significant improvement in quadruplet
prediction performance under constant time costs, effectively mitigating overfitting issues caused by
limited data volume to some extent.

Keywords: aspect-based sentiment analysis; aspect sentiment quad prediction; aspect-category-
opinion-sentiment; chain of thought; prompt

1. Introduction

The research on Aspect-Based Sentiment Analysis (ABSA) mainly involves four sen-
timent elements: Aspect Term, Aspect Category, Opinion Term, and Sentiment Polarity.
The study of ABSA tasks aims to identify sentiment elements related to specific text
items, which can be individual elements such as aspect term extraction [1,2], aspect cate-
gory detection [3,4], or multiple dependent sentiment elements like aspect-opinion pair
extraction [5,6], aspect sentiment triplet extraction [7], aspect-category-sentiment detec-
tion [8], etc. Clearly, the more sentiment elements identified, the better the understanding
of aspect-level opinions in the text. In 2021, Cai [9] first proposed the Aspect-Category-
Opinion-Sentiment(ACOS) quadruple extraction task, which includes implicit aspect and
opinion elements. In the same year, Zhang [10] introduced the Aspect Sentiment Quad
Prediction (ASQP) task, excluding implicit opinions. Thus, the task of aspect sentiment
quadruple extraction officially emerged.

Zhang [10] also proposed a novel modeling paradigm based on the T5 generative
model. This paradigm involves paraphrasing the original sentence into the form “xac is xsp
because xat is xot”, making it easy to extract quadruplets from the paraphrased sentences.
In this context, xac represents the aspect category, xsp represents the sentiment polarity, xat
represents the aspect term, and xot represents the opinion term. Subsequently, numerous
studies in aspect-level sentiment analysis based on the generative paradigm emerged,
some of which explored template settings. Hu [11] investigated the impact of the order of
sentiment tuples in templates on aspect sentiment quadruplet prediction. They simplified
templates by directly connecting symbols and elements, such as “[AC] xac [AT] xat [SP]
xsp [OT] xot”. Joseph [12] also redefined model templates, setting them as “xac | the xat
is xot | xsp”. These templates, through different orders and forms of placing sentiment

Appl. Sci. 2024, 14, 6017. https://doi.org/10.3390/app14146017 https://www.mdpi.com/journal/applsci1
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elements, attempted to improve the prediction of aspect sentiment quadruplets. However,
these templates were all concise sentences, expecting the model to directly provide a
sentence containing the quadruplet. We consider the possibility of allowing the model to
think slowly to provide answers. This is because there are complex dependencies among
various sentiment elements in some sentences. For example, the aspect category is not only
determined by the aspect term but also related to the opinion term. In the two examples
in Figure 1, although the aspect terms are both “sandwiches”, the aspect categories are
different. Therefore, if we could design a template to assist the model in reasoning and
analyzing the relationships among various sentiment elements, it might be beneficial for
aspect sentiment quadruple prediction.

Figure 1. Example of Aspect Sentiment Quad Prediction.

Inspired by the chain-of-thought approach proposed by Jason [13], we incorporated
intermediate reasoning steps into our templates. This inclusion guides the model to
progressively reason through the generation process based on our template, step by step
inferring each sentiment element. We term this approach the Self-Inference Template (SIT).
Simultaneously, during this process, there might be a repetitive generation of aspect terms,
aspect categories, opinion terms, and sentiment polarities. To address this, we conduct
a voting mechanism on the repetitively generated sentiment elements to obtain the final
quadruplet. This approach helps ensure the correctness of predictions to some extent.

We transform the gold labels into a Self-Inference Template form, denoted as y, and
the original text denoted as x, is input into the model for supervised training, resulting
in a pθ(y|x) model. To train the θ parameters effectively, a large amount of supervised
data is usually required. However, due to the complexity and high cost of ABSA data
annotation, the commonly used ABSA datasets are relatively small. The rise of prompts can
help models learn in few-shot or even zero-shot scenarios [14]. Therefore, we add prefix
prompts to the text data to assist in model training.

Our goal is to extract the required sentiment elements from sentences, similar to entity
recognition, requiring the model to have a deeper understanding of the text. Some current
studies have found that using noisy text during model training can effectively improve
model performance. For instance, focusing the noise on entities within the sentence can
result in particularly high predictive performance for entities [14]. Currently, noise includes
four types: Masking, Replacement, Deletion, and Permutation. BERT [15] employs Masking
and Replacement to process training texts. To encourage the model to understand the text,
we applied MASK processing to a small number of tokens in the text, forcing the model to
comprehend the text better, thereby improving the identification of sentiment elements.

In summary, we made three improvements to the model: first, introducing a Self-
Inference Template to guide the model to think and reason step by step; second, adding
prompt prefixes to the text data to help the model quickly adapt to the data; third, imple-
menting a MASK strategy within the text to force the model to deeply understand the text,
aiding in the identification of sentiment elements.

The experiments demonstrate that the optimal model, combining the self-inferencing
template with two additional methods, outperforms the Paraphrase model. Specifically,
on the ASQP datasets Rest15 and Rest16, there is an improvement of 3.07% and 4.06%,

2



Appl. Sci. 2024, 14, 6017

respectively. In the case of ACOS datasets for Restaurant and Laptop, the improvement is
3.32% and 1.45%, respectively.

In summary, our work contributes in the following three aspects:

• We designed a Self-Inference Template that guides the model in step-by-step rea-
soning and significantly improves the results of aspect sentiment quadruplet predic-
tion. To our knowledge, this work is the first to approach aspect sentiment quadru-
plet prediction from the perspective of encouraging the model to contemplate and
reason gradually.

• We created prompt texts based on the training tasks to help the model train on
small datasets. Experiments on both Paraphrase and SIT models demonstrated the
effectiveness of prompts.

• We boldly experimented with applying MASK operations to ABSA text data to help
the model effectively identify sentiment elements, providing more possibilities for
future research on ABSA tasks.

2. Related Work

The Chain of Thought (CoT) is a prompting method that significantly enhances the
capabilities of large language models in complex reasoning tasks [13]. It achieves this by
presenting a small number of examples to the model, explaining the reasoning process
in these examples, and guiding the model to generate intermediate reasoning steps. The
introduction of the Chain of Thought has led to substantial progress in large language
models. Scholars have also applied the chain-of-thought approach to sentiment analysis.
Fei [16] utilized the CoT framework to simulate human-like reasoning processes in im-
plicit sentiment analysis, step-by-step extracting implicit aspects, opinions, and sentiment
polarity, achieving outstanding results in implicit sentiment analysis.

Currently, the main modeling paradigms for ABSA tasks are Sequence-level Classifica-
tion (SeqClass), Token-level Classification (TokenClass), Machine Reading Comprehension
(MRC), and Sequence-to-Sequence Modeling (Seq2Seq) [17]. SeqClass and TokenClass
paradigms are mostly used for single ABSA tasks and cannot meet the current demand for
extracting multiple sentiment elements. The MRC paradigm extracts sentiment elements
by constructing relevant questions, with the model predicting the start position of words
in the original text. This method requires the extracted elements to appear in the original
text, making it ineffective for texts containing implicit aspects or implicit opinions. In
contrast, the generative paradigm of Seq2Seq can be widely applied to various ABSA
tasks, offering high flexibility and providing a unified framework for ABSA task modeling.
Zhang [10] transformed the ASQP task into a paraphrase generation process, demonstrating
for the first time the excellent capabilities of generative paradigms in handling ABSA tasks.
Joseph [12] using a generative model combined with contrastive learning, achieved optimal
performance in quadruplet extraction on ACOS datasets containing implicit language. This
approach also significantly improved the extraction of implicit aspects and opinions. This
indicates that the generative paradigm has the potential for datasets containing implicit
terms and requiring strong reasoning abilities.

Inspired by the generative paradigm and the Chain of Thought approach, we propose
a Self-Inference Template based on generative aspect sentiment quadruplet prediction. By
guiding the model to generate the reasoning process for aspect sentiment elements, our
approach helps the model better comprehend the text and improves the results of aspect
sentiment quadruplet prediction.

3. Methodology

3.1. Aspect Sentiment Quad Prediction Based on the Generative Paradigm

Aspect sentiment quadruplet prediction aims to predict all aspect terms (AT), aspect
categories (AC), opinion terms (OT), and sentiment polarities (SP) within a given sentence x.
Aspect terms and opinion terms are generally words present in the sentence, but sometimes
aspect terms and opinion terms may be implicitly represented in the sentence, denoted as
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“NULL” in such cases. Aspect categories belong to a predefined set Vc. A sentence may
contain multiple quadruplets.

Currently, aspect sentiment quadruplet prediction based on the generative paradigm
involves arranging the quadruplets in the dataset into a template format to create targets.
The text and targets are then fed into a Sequence-to-Sequence model for fine-tuning training.
Finally, the trained model generates targets, which are split into quadruplets based on
the template format. The key component in achieving this task is the learning process of
the Sequence-to-Sequence model. This involves learning parameters θ, maximizing the
probability pθ(y|x), where x is the original sentence, and y is the target sentence to be
obtained. Since the target sentence is generated token by token, the i − th token of y is
determined by x and the preceding i − 1 tokens of y.

pθ(yi|x, y1, . . . , yi−1) = so f tmax(WTyi−1) (1)

In the process, W maps yi−1 to a vector of vocabulary size and subsequently utilizes
the softmax function to determine which word from the vocabulary the model should
choose as the next token.

During training, we chose the T5 model [18] to initialize the parameters. The T5
model, proposed by Google in 2020, is a pre-trained model designed to handle various
text tasks through a unified framework. It converts all tasks into text-to-text problems and
completes different tasks by adding different prefix prompts to the text, such as translation
and summarization. T5 follows the standard Transformer encoder-decoder structure. We
initialized the model parameters with T5-base and input the ABSA text data into the model.
The data are converted into a sequence of word vectors through the word embedding
layer and then passed into the Transformer encoder. The encoder transforms it into high-
dimensional hidden representations. The decoder combines the encoder’s output and the
previously generated text to autoregressively generate new words step by step. As shown
in Figure 2.

Figure 2. The architecture of the T5 model [18].

During training, T5 uses cross-entropy loss to measure the difference between the gener-
ated text and our Self-Inference Template target, updating the model parameters accordingly.

L(x, y) = −
n

∑
i=1

logpθ(yi|x, y1, . . . , yi−1) (2)

where n represents the length of the target sequence y.

3.2. Self-Inference Template

CoT provides specific thought processes in prompts, allowing large models to learn
the way of thinking provided in the thought chain. The model then follows the thought
chain, step by step, to enhance its reasoning abilities. However, in the generative model
employed in this paper, we use the T5-base model, which has fewer parameters compared
to large models. It is not suitable to train the model through examples.

Therefore, we directly formulate the intermediate reasoning process into the form of
a template, as illustrated in Figure 3. This approach guides the model to reason step by
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step according to the template’s thought process. The first half of the template initially
obtains the aspect term and opinion term, then infers the sentiment polarity based on the
opinion term. In the second half of the template, the aspect category is deduced based
on the obtained aspect term and opinion term. Finally, the aspect category and sentiment
polarity are generated again to confirm the correctness of generating sentiment elements.

Figure 3. Self-Inference Template.

In the template, the aspect term is repeated three times, while the aspect category,
opinion term, and sentiment polarity are each generated twice. Each output result may
vary, so a numerical annotation is added in the lower right corner of each sentiment element
to facilitate distinction. Leveraging CoT’s self-consistency [19], a voting aggregation is
applied to the repetitively generated sentiment elements, ultimately resulting in aspect
sentiment quadruplets. The specific model structure is illustrated in Figure 4.

Figure 4. Model Architecture.

3.3. Addition Prompt

In recent years, prompts have been widely employed in language model processing.
Research indicates that by selecting appropriate prompts, the model’s behavior can be ma-
nipulated, enabling the language model to predict the desired outputs without additional
training [20]. Our chosen T5 model [18] also supports prompt addition, aiding in model
training. Therefore, we experimented with adding prompt prefixes to the text, specifying
the task for the model. Experimental results demonstrate that prompts effectively assist the
model in improving aspect sentiment quadruplet prediction capabilities.

3.4. Mask Tokens

Bert [15] utilizes a random token masking strategy to force the model to understand
the text, enhancing the model’s error correction ability and overall accuracy.

To deepen the model’s understanding of the text and improve its ability to recognize
sentiment elements, we applied a masking strategy to the data. We masked 10% of the
text in the dataset. For the sentences to be masked, we randomly selected 10% of the
tokens. Among these, 80% of the tokens were replaced with [mask], while the remaining
20% were randomly replaced with a word from the vocabulary. Experimental results
indicate that the combined use of masking and prompt addition effectively aids the model
in predicting quadruplets.

4. Experimental Setup

4.1. Dataset

To understand the performance of our model on different datasets, we conducted
experiments on two main types of datasets, primarily focusing on explicit terms and
datasets containing implicit opinions. The first type consists of the ASQP dataset curated
by Zhang [10], including Rest15 and Rest16. This type of dataset does not include implicit
opinion terms. The second type is the ACOS dataset proposed by cai [9], including
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ACOS_Restaurant and ACOS_Laptop. In this type of dataset, over 33% of the sentiment
quadruples contain implicit opinions or aspect terms, placing higher demands on the
model’s inference capability. The specific statistics for the four datasets are provided in
Table 1. The proportions of explicit and implicit terms are illustrated in Figure 5.

Table 1. Data statistics. #C, #S, #+, #0, and #− denote the number of aspect categories, the number of
sentences, the number of positive, neutral and negative quads, respectively.

Train Dev Test

Rest15

#C 13 12 12
#S 834 209 537
#+ 1005 252 453
#0 34 14 37
#− 315 81 305

Rest16

#C 12 13 12
#S 1264 316 544
#+ 1369 341 583
#0 62 23 40
#− 558 143 176

ACOS_Restaurant

#C 12 13 12
#S 1530 171 583
#+ 1656 180 667
#0 95 12 44
#− 733 69 205

ACOS_Laptop

#C 114 71 81
#S 2934 326 816
#+ 2583 279 716
#0 227 24 65
#− 1362 137 380

Figure 5. Distribution of Explicit and Implicit Terms in the Dataset. EA represents explicit aspect
terms, EO represents explicit opinion terms, IA represents implicit aspect terms, and IO represents
implicit opinion terms. The proportions are illustrated for each category.

For ACOS_Restaurant and ACOS_Laptop, the aspect categories are in a form similar
to LAPTOP#GENERAL, which may be challenging for generative models to comprehend
semantically. Inspired by Joseph [12], we replaced the aspect categories in the ACOS dataset
with human-readable forms. For example, LAPTOP#GENERAL was replaced with “the
laptop overall” to facilitate the model’s understanding and sentence rewriting.

4.2. Experiment Details

We opted for the T5-base [18] as the pre-trained generative model, with a training
batch size set to 16, a learning rate of 3 × 10−4, and a fixed random seed of 42 to eliminate
experimental bias caused by random factors. All experiments were conducted for 20 train-
ing epochs, and during the inference process, we employed greedy decoding to generate
output sequences. Our experiments were performed on an Nvidia 4080 GPU.

6



Appl. Sci. 2024, 14, 6017

4.3. Baselines

To assess the effectiveness of our approach compared to previous methods, we selected
several strong baseline methods:

HGCN-BERT+BERT-Linear HGCN [21] jointly extracts aspect categories and sentiment
polarities, utilizes BERT to extract corresponding aspect terms and opinion terms [22], and
applies a linear layer for final aggregation.
HGCN-BERT+BERT-TFM Modification of the above model with the final linear layer
replaced by Transformer blocks (BERT-TFM).
TASO-BERT-Linear TAS [8], originally designed for extracting unified triples of aspect
categories, aspect terms, and sentiment polarities, is extended to TASO for handling ASQP
tasks. Linear classification layers are used for prediction.
TASO-BERT-CRF A variant of the TASO model with a Conditional Random Field layer in
the prediction stage.
TAS-BERT-ACOS On the basis of the TAS method, cai [9] designed a two-step pipeline
approach that incorporates BERT to extract quadruples from ACOS data.
Extract-Classify-ACOS This method first extracts aspect terms and opinion terms from
the original sentence and then classifies aspect categories and sentiment polarities based
on these extracted terms [9].
GAS A generative baseline [23], modified by [10] to directly generate aspect sentiment
quadruplets as the target sequence in the generative model.
Seq2Path Transforming the generation order of sentiments into the path of a tree, using a
constrained beam search, automatically selecting valid paths with the help of additional
tokens [24].
PARAPHRASE This method extracts (at, ac, sp, ot) by paraphrasing the original sentence
as “ac is sp because at is ot” [10].
DLO Considering the impact of the order of generating each element in the quadruplet in
generative models [11], 24 template orders were experimented with. The final template
order was chosen based on the overall quadruplet extraction performance on the dataset.
ILO Similar to DLO, after experimenting with 24 template orders, the template order for
each instance was chosen individually based on its own performance.

5. Results and Discussion

5.1. Main Results

The experimental results for various methods are reported in Table 2. For the ASQP
dataset that does not contain implicit opinions, our model significantly improves various
metrics compared to the Paraphrase method. The F1 scores for Rest15 and Rest16 are
increased by 2.05% and 2.33%, respectively. In comparison to DLO and ILO methods,
our Self-Inference Template slightly lags behind ILO on Rest15 but outperforms DLO and
ILO on Rest16 without increasing the time cost. After adding prefix prompts, the model
achieves the best results on Rest16. Combining prefix prompts and Mask operations on the
smaller dataset Rest15 leads to a substantial improvement in model performance. With the
assistance of these two methods, the model achieves optimal results on both datasets, with
improvements of 1.02% and 1.73% compared to the Self-Inference Template.

For the ACOS dataset containing implicit opinion terms, the Self-Inference Tem-
plate, compared to the Paraphrase method, showed a 2.94% improvement in F1 score on
ACOS_Restaurant. This indicates that the Self-Inference Template, by guiding the model
to think step by step, indeed enhances the model’s reasoning ability. However, for the
ACOS_Laptop dataset, the improvement in the Self-Inference Template was marginal. This
could be attributed to the excessive number of aspect categories in ACOS_Laptop, coupled
with imbalanced data distribution among different aspect categories. The training set of
ACOS_Laptop comprises a total of 114 aspect categories, with only 10 categories appearing
in the tuples more than 100 times, and over half of the aspect categories appearing in tuples
fewer than 10 times. The model struggles to adequately learn from each aspect category’s
data. Despite the guidance provided by the Self-Inference Template for thoughtful reason-
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ing, the model faces challenges in correctly classifying aspect categories with numerous
classes and limited training examples. However, with the addition of prefix prompts and
Mask operations, the F1 score for ACOS_Laptop increased by 1.44%. This indicates that
our two methods effectively assist the model in learning.

Table 2. Evaluation results compared with baseline methods in terms of precision (Pre, %), recall
(Rec, %) and F1 score (F1, %). PT stands for the Add Prompt method, MT stands for the Mask Tokens
method, and PM represents the combination of both the Add Prompt and Mask Tokens methods.
The best scores are marked in bold. The prefix prompts are the optimal prompts for each dataset in
Section 5.2. For Rest15 and Rest16, the experimental results of the baseline methods, ∗ are from [10],
and � are from [11]. For ACOS_Restaurant and ACOS_Laptop, the experimental results of the
baseline methods, ♠ are from [9], � are from [25], and ♣ are from [24]. � indicates the reproduction
of the official method on our dataset.

Methods
Rest15 Rest16 ACOS_Restaurant ACOS_Laptop

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

HGCN-BERT+BERT-Linear ∗ 24.43 20.25 22.15 25.36 24.03 24.68 - - - - - -
HGCN-BERT+BERT-TFM ∗ 25.55 22.01 23.65 27.40 26.41 26.90 - - - - - -
TASO-BERT-Linear ∗ 41.86 26.50 32.46 49.73 40.70 44.77 - - - - - -
TASO-BERT-CRF ∗ 44.24 28.66 34.78 48.65 39.68 43.71 - - - - - -
TAS-BERT-ACOS ♠ - - - - - - 26.29 46.29 33.53 47.15 19.22 27.31
Extract-Classify-ACOS �♠ 35.64 37.25 36.42 38.40 50.93 43.77 38.54 52.96 44.61 45.56 29.48 35.80
GAS ∗� 45.31 46.70 45.98 54.54 57.62 56.04 53.57 54.34 53.95 40.70 40.17 40.43
Seq2Path ♣ - - - - - - 62.38 55.02 58.47 41.46 41.00 41.23
Paraphrase ∗� 46.16 47.72 46.93 56.63 59.30 57.93 61.02 59.73 60.37 44.87 44.10 44.48
DLO � 47.07 49.33 48.18 57.92 61.80 59.79 - - - - - -
ILO � 47.78 50.38 49.05 57.58 61.17 59.32 - - - - - -

SIT 47.89 50.13 48.98 58.98 61.60 60.26 63.13 63.49 63.31 44.38 44.61 44.49
SIT+PT 48.41 49.75 49.07 60.78 63.24 61.99 63.54 63.83 63.69 43.12 42.78 42.95
SIT+MT 47.93 49.50 48.70 58.30 60.96 59.60 61.79 63.27 62.52 44.46 44.35 44.41
SIT+PM 49.63 50.38 50.00 59.22 61.66 60.44 62.88 63.38 63.13 45.95 45.91 45.93

Table 3 records the runtime of Paraphrase, SIT, and the combination of SIT with two
methods. It can be observed that, compared to the Paraphrase model, the runtime of the
Self-Inference Template has almost remained unchanged. The addition of the two small
enhancements to the model has also had no impact on runtime.

Table 3. Model Runtime (Unit: Seconds).

Methods

Running Time

Rest15 Rest16 ACOS_
Restaurant

ACOS_
Laptop

Paraphrase 152.24 224.81 266.91 501.65
SIT 151.16 225.55 263.80 495.60
SIT+PT 153.52 224.05 259.83 495.52
SIT+MT 154.39 225.97 268.03 496.58
SIT+PM 153.86 225.32 270.12 498.00

5.2. Determination of Prefix Prompts

Currently, prefix prompts can be broadly categorized into hard prompts and soft
prompts [14]. Hard prompts, also known as discrete prompts, are manually crafted prompts
typically consisting of semantically meaningful phrases. On the other hand, soft prompts,
also known as continuous prompts, are continuously updated and iterated during training,
resembling a kind of updatable parameter without clear human-interpretable semantics.
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Training with soft prompts requires a substantial amount of data for iterative updates,
and the existing datasets for aspect sentiment quadruplet prediction are relatively small,
making them unsuitable for training with soft prompts. Therefore, we opt for hard prompts,
where we manually create prompt texts to assist the model’s understanding during training.
We generated six prompt texts, as illustrated in Figure 6. Three of them were created based
on the original template, and the other three were created based on the Self-Inference
Template, informing the model about the task it needs to perform in three different forms.
The experimental results are presented in Table 4.

Figure 6. Prefix Prompt Texts.

Table 4. Experimental Results Combining Different Prefix Prompts with the Self-Inference Template.
The best scores are marked in bold.

Prompt Text
Rest15 Rest16 ACOS_Restaurant ACOS_Laptop

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

SIT 47.89 50.13 48.98 58.98 61.60 60.26 63.13 63.49 63.31 44.38 44.61 44.49

+Prompt1 48.41 49.75 49.07 60.78 63.24 61.99 63.54 63.83 63.69 43.79 43.57 43.68
+Prompt1+MT 49.63 50.38 50.00 59.22 61.66 60.44 62.88 63.38 63.13 43.18 42.96 43.07
+Prompt2 48.20 48.99 48.59 58.35 61.09 59.69 62.13 62.13 62.13 44.16 43.74 43.95
+Prompt2+MT 48.94 49.37 49.15 58.65 60.58 59.60 62.60 62.81 62.71 45.23 44.52 44.87

+Prompt3 46.99 48.11 47.54 53.50 56.15 54.79 61.43 61.22 61.33 44.20 43.74 43.97
+Prompt3+MT 45.41 46.10 45.75 57.89 60.46 59.14 61.20 62.59 61.88 44.70 44.70 44.70
+Prompt4 43.85 43.07 43.46 54.25 58.30 56.20 58.68 58.62 58.65 41.99 41.48 41.73
+Prompt4+MT 46.45 46.98 46.71 54.43 56.02 55.22 58.33 58.73 58.53 42.45 41.83 42.14

+Prompt5 47.43 48.87 48.14 59.21 61.09 60.14 63.46 63.61 63.53 43.93 43.39 43.66
+Prompt5+MT 47.27 49.12 48.18 57.95 61.47 59.66 61.88 62.59 62.23 43.46 43.30 43.38
+Prompt6 47.77 48.49 48.13 58.29 60.58 59.42 61.01 60.32 60.66 43.12 42.78 42.95
+Prompt6+MT 46.48 47.36 46.91 57.58 59.70 58.62 61.51 60.88 61.20 45.95 45.91 45.93

Based on the experimental results, it can be observed that, for the Rest15, Rest16,
and ACOS_Restaurant datasets, the first type of prefix prompt, which directly instructs
the model to rewrite, can significantly help improve the model’s reasoning ability. For
ACOS_Laptop, the third type of prefix, instructing the model to first identify the four
sentiment elements and then rewrite, combined with the Mask operation, leads to the
optimal results. The reason might be that Rest15, Rest16, and ACOS_Restaurant datasets
have fewer aspect categories, allowing the model to adequately learn the data for each
aspect category during training and understand the task requirements without the need for
prompting the model to recognize sentiment elements. However, ACOS_Laptop has more
aspect categories, and many of them have fewer occurrences, making it challenging for the
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model to fully learn each class of data, resulting in an insufficient understanding of the task
requirements. Therefore, for ACOS_Laptop, the third type of prefix, prompting the model
to recognize sentiment elements first and then rewrite, can provide the maximum assistance
in helping the model quickly understand task requirements and enhance its capabilities.

The second type of prefix prompt created in a task assignment manner yielded the
worst results, possibly due to the relatively limited parameter count of our T5-base model.
Unlike larger language models like GPT, which can engage in task-oriented dialogues,
our model may not benefit as much from prompts crafted in a task assignment format.
Therefore, describing the task directly as a prefix prompt proves to be more effective.
Interestingly, among the prefix prompts, instructing the model to rewrite the original
template resulted in a higher improvement compared to using the Self-Inference Template.
This may be attributed to the shorter nature of the prompt in the original template, mainly
informing the model about the rewriting task it is about to perform. When rewriting
sentences, the model learns the template based on the data, eliminating the need for
extensive text prompts. Therefore, based on the experimental results, for Rest15, Rest16,
and ACOS_Restaurant, selecting Prompt1 as the prefix prompt and for ACOS_Laptop,
choosing Prompt6 as the prefix prompt proves to be most effective.

5.3. Ablation Study

On the Self-Inference Template, we proposed two methods to assist in the experiments.
To understand the respective contributions of the Self-Inference Template and the two
methods, we incorporated each method separately into the Paraphrase model and the
Self-Inference Template. The experimental results are shown in Table 5. Overall, the
Self-Inference Template proves beneficial for sentiment quadruple extraction across all
four datasets. The addition of prefix prompts effectively enhances the ability of both the
Paraphrase model and the self-inference model to extract sentiment quadruples in Rest15,
Rest16, and ACOS_Restaurant datasets. The use of Mask Tokens on the Paraphrase model
results in a decrease in performance, but when combined with prefix prompts on the Self-
Inference Template, it helps the model achieve the best results on Rest15 and ACOS_Laptop.
This suggests that the combination of the Self-Inference Template and the two methods
yields impressive performance on some datasets, but the effectiveness of Mask Tokens is
unstable and requires careful experimentation.

Table 5. Results of ablation experiments for four datasets. The best results are in bold.

Methods
Rest15 Rest16 ACOS_Restaurant ACOS_Laptop

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Paraphrase 46.16 47.72 46.93 56.63 59.30 57.93 61.02 59.73 60.37 44.87 44.10 44.48
Paraphrase+PT 48.46 49.56 49.00 58.99 61.58 60.26 60.07 59.40 59.73 44.51 43.32 43.91
Paraphrase+MT 45.51 46.54 46.02 58.19 61.33 59.72 57.71 57.84 57.78 43.53 42.89 43.21
Paraphrase+PM 47.58 48.30 47.94 57.11 58.82 57.95 60.09 60.29 60.19 44.54 43.24 43.88

SIT 47.89 50.13 48.98 58.98 61.60 60.26 63.13 63.49 63.31 44.38 44.61 44.49
SIT+PT 48.41 49.75 49.07 60.78 63.24 61.99 63.54 63.83 63.69 43.12 42.78 42.95
SIT+MT 47.93 49.50 48.70 58.30 60.96 59.60 61.79 63.27 62.51 44.46 44.35 44.41
SIT+PM 49.63 50.38 50.00 59.22 61.66 60.44 62.88 63.38 63.13 45.95 45.91 45.93

5.4. Model Overfitting Analysis

Due to the limited amount of data, the original model exhibits a significant overfitting
issue, as shown in Figure 7. In all four datasets, the training set’s loss steadily decreases, but
the validation set’s loss increases instead of decreasing. After applying our Self-Inference
Template, a notable reduction in the validation set’s loss is observed. Although there is
still a subtle upward trend, it is considerably alleviated compared to the original model,
indicating a significant reduction in overfitting.
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Figure 7. Training and validation set loss for Rest15, Rest16, ACOS_Restaurant, and ACOS_Laptop.

5.5. Error Analysis and Case Study

To understand the issues our model may encounter during inference, we conducted
an error analysis and case study. We randomly sampled 100 data points from the test set of
each dataset and performed sentiment quadruple extraction. Subsequently, we compared
the quadruples inferred by the model with the ground truth labels, tallying the frequency
of errors in predicting each sentiment element. Additionally, we recorded instances where
the model overpredicted or underpredicted quadruples, as shown in Figure 8.

Figure 8. Quadruple Error Statistics.

On the Rest15, Rest16, and ACOS_Restaurant datasets, similar to the findings by [10],
the opinion term is the most challenging sentiment element to predict. The model struggles
to grasp the length of opinion term extraction. Following that, we have aspect terms and
aspect categories, where the model finds it difficult to discern implicit aspect terms. If the as-
pect prediction is incorrect, it can easily lead to further errors in predicting aspect categories,
as illustrated in Example 1 in Figure 9. Apart from predicting sentiment elements incorrectly,
the model also tends to overgenerate or undergenerate quadruples, as shown in Example 2
in Figure 9. Therefore, determining how to make the model generate an appropriate num-
ber of quadruples is a question that deserves more consideration. For ACOS_Laptop, aspect
category prediction errors are most frequent, as discussed in Section 5.1, mainly due to the
abundance and imbalance of aspect categories in ACOS_Laptop, leading to insufficient
learning, and the model tends to get confused, as shown in Example 3 in Figure 9.
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Figure 9. Cases of Quadruple Extraction Errors.

5.6. Practical Insights

In our work, in addition to the aforementioned methods, we also conducted some
other experiments. When we initially observed the model’s overfitting problem, we tried
to mitigate overfitting through data augmentation using pseudo-labels. We crawled
10,000 restaurant reviews from the internet, then cleaned the data and filtered it down
to 3000 entries. We first extracted 1000 entries and used the models trained on Rest15 and
Rest16 to infer these 1000 reviews. We then performed an intersection of the inference
results from the two models, ultimately obtaining 300 entries. We added these 300 entries
to the dataset and experimented with adding them to the training set and test set in vari-
ous proportions. We found that the model was very sensitive to the data, with different
addition proportions causing significant fluctuations in the model’s results. Therefore, we
abandoned this method. These are some of our trial-and-error experiences, which we hope
can provide some reference for future research.

6. Conclusions

In this work, we introduced a Self-Inference Template that leverages a chain of thought
to assist the model in reasoning about aspect sentiment quadruples. Without increasing the
time cost, this approach not only significantly improves the prediction results of quadruples
but also effectively mitigates the overfitting issue caused by the limited amount of data.
Additionally, we experimented with adding prefix prompts to the text and applying MASK
operations to the text to assist in model training, which improved the model’s results to
some extent. This indicates the research significance of these two methods, suggesting
potential avenues for further exploration in future studies. Finally, we conducted experi-
ments on both the ASQP dataset, which does not contain implicit opinions, and the ACOS
dataset, which contains implicit opinions. The results showed that the Self-Inference Tem-
plate improved by 3.07%, 4.06%, 3.32%, and 1.45% on Rest15, Rest16, ACOS_Restaurant, and
ACOS_Laptop, respectively, compared to Paraphrase, demonstrating significant effectiveness.
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Abstract: In this paper, we present a novel self-supervised framework for Sentiment Cue Extraction
(SCE) aimed at enhancing the interpretability of text sentiment analysis models. Our approach
leverages self-supervised learning to identify and highlight key textual elements that significantly
influence sentiment classification decisions. Central to our framework is the development of an
innovative Mask Sequence Interpretation Score (MSIS), a bespoke metric designed to assess the
relevance and coherence of identified sentiment cues within binary text classification tasks. By
employing Monte Carlo Sampling techniques optimized for computational efficiency, our framework
demonstrates exceptional effectiveness in processing large-scale text data across diverse datasets,
including English and Chinese, thus proving its versatility and scalability. The effectiveness of our
approach is validated through extensive experiments on several benchmark datasets, including SST-2,
IMDb, Yelp, and ChnSentiCorp. The results indicate a substantial improvement in the interpretability
of the sentiment analysis models without compromising their predictive accuracy. Furthermore, our
method stands out for its global interpretability, offering an efficient solution for analyzing new data
compared to traditional techniques focused on local explanations.

Keywords: sentiment cue extraction; self-supervised learning; interpretable machine learning

1. Introduction

In the rapidly evolving landscape of the information age, the prolific growth of textual
data on various online platforms has propelled Natural Language Processing (NLP) into a
position of increased importance. Within this domain, sentiment analysis [1], also referred
to as opinion mining, stands out as a critical area. This process involves the automatic
detection and interpretation of sentiments, emotions, and subjective information within
textual data [2]. The application of sentiment analysis spans a wide spectrum, from the
analysis of customer feedback in product reviews to the evaluation of public sentiment on
social media platforms [3].

In the ever-evolving digital landscape, the exponential growth of textual data across
various online platforms has elevated NLP to a critical technological frontier. Among the
myriad applications of NLP, sentiment analysis plays a pivotal role. This field, focusing
on the automatic detection and interpretation of sentiments, emotions, and subjective
information within textual content, finds widespread application from analyzing customer
feedback in product reviews to monitoring public sentiment on social media platforms.
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Despite the remarkable advances and successes in sentiment analysis, a significant
hurdle persists: the challenge of interpretability, which encompasses the difficulty of under-
standing and explaining how sentiment analysis models make their decisions, particularly
in terms of identifying specific factors or textual elements that influence these decisions [4].
Traditional sentiment analysis models are often criticized for their “black-box” nature,
which obscures the transparency of their decision-making processes [5]. This opacity
generates concerns about accountability and dependability, especially in scenarios where
precision and reliability are paramount.

To mitigate these concerns, our research introduces a novel self-supervised framework
focused on sentiment cue extraction. This approach involves the identification and extrac-
tion of crucial linguistic elements—such as specific words, phrases, or syntactic patterns,
referred to as “sentiment cues” in this paper—that significantly influence sentiment de-
termination. Our approach is instrumental in demystifying the decision-making process
of sentiment analysis models, thus contributing to a deeper understanding and trust in
these systems.

For example, in finance, discerning the exact cues that drive sentiment predictions
can be a game changer for market analysis [6–8]. Similarly, in healthcare, the analysis of
sentiment cues in patient feedback, particularly from online sources, is essential to improve
the quality of healthcare services. By evaluating positive and negative sentiments expressed
in patient reviews, healthcare providers can identify strengths and areas for improvement
in their services, such as facility cleanliness, staff behavior, and general patient care [9].

Our study introduces a groundbreaking framework based on self-supervised learning
that incorporates sequence labeling techniques to significantly improve the interpretability
of sentiment analysis models. Traditional approaches in sentiment cue extraction often
involve labor-intensive and time-consuming data annotation processes. Existing inter-
pretability methods for text classification models, while offering partial solutions, primarily
depend on local interpretative methods. These local methods typically require individual
training for each data instance, presenting significant challenges in efficiently handling
new data.

In contrast, our innovative approach uses the abundance of existing annotated senti-
ment classification data through self-supervised learning. This enables our framework to
interpret sentiment classification models in scenarios where explicit annotation is lacking, ef-
fectively facilitating sentiment cue extraction. Importantly, this methodology transcends the
boundaries of local interpretability techniques, offering a global interpretability approach.
Such a global perspective allows for a more holistic and comprehensive understanding of
the model’s decision-making process across various instances, rather than being confined
to localized, instance-specific explanations.

To the best of our knowledge, ours is the first work to combine Monte Carlo methods
with self-supervised learning to address the global interpretability issue in binary text
classification [10–12]. The key contributions of our research are as follows.

• We propose a Self-Supervised Sentiment Cue Extraction (SS-SCE) method. This
approach, inspired by the concept of interpretability in text classification models,
accomplishes the extraction of sentiment cues from texts under conditions of scarce
labeled data through a global interpretability analysis of the text classification models.

• We have developed a pseudo-label generation scheme for sentiment cue extraction
models. This scheme selects appropriate mask sequences as pseudo labels for the
sentiment cue extraction model based on the prediction results of a trained text classi-
fication model. Furthermore, we enhance the efficiency of pseudo-label generation by
employing a Monte Carlo Sampling strategy.

• We have introduced the Mask Sequence Interpretation Score (MSIS) metric, designed
to evaluate generated mask sequences based on the prediction results of a text classifi-
cation model, thereby providing a basis for the generation of pseudo labels. Empirical
evidence demonstrates the effectiveness of our MSIS metric.
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The remainder of this paper is organized as follows: Section 2 discusses related work,
providing background on sentiment analysis, self-supervised methods for information ex-
traction, interpretability in machine learning, and the use of Monte Carlo methods. Section 3
details our methodology, explaining the sentiment cue extraction process, the use of Monte
Carlo sampling, label sequence selection, and the sentiment cue extraction algorithm. In
Section 4, we present our experimental setup, the datasets used, and a thorough evaluation
of the performance of the SS-SCE framework. This includes an in-depth analysis of our
results and a comparative study with state-of-the-art interpretability methods. Finally,
Section 5 concludes the paper, summarizing our key findings, discussing the implications
and potential applications of our work, and suggesting avenues for future research.

2. Related Works

2.1. Sentiment Analysis

Sentiment analysis, also known as opinion mining, is a crucial subfield of NLP that
focuses on discerning and categorizing opinions expressed in text [13,14]. Its primary goal
is to determine the writer’s position toward specific topics or the general polarity of the
sentiment of the text. This analysis typically involves categorizing text polarity at various
levels: document, sentence, or feature/aspect level, determining whether the expressed
opinion is positive, negative, or neutral [3].

With the advent of deep learning, sentiment analysis has undergone significant ad-
vances. Models such as Bidirectional Encoder Representations from Transformers (BERT)
and its variants have been extensively employed for nuanced sentiment analysis, enhanc-
ing context and semantic understanding [15,16]. Moreover, transformer-based models
like GPT-3 have pushed the boundaries further in generating human-like text, which is
advantageous for more intricate sentiment analysis scenarios [17].

Sentiment analysis finds extensive applications across various domains, from cus-
tomer service and market research to social media monitoring and political campaigns.
It is essential for businesses and organizations to gauge public opinion, conduct market
research, monitor the reputation of the brand and the product, and understand customer
experiences [1].

In today’s era of advanced NLP technology, sentiment analysis has emerged as a
highly focused research area within the field, benefiting from a plethora of readily available
high-quality datasets, such as IMDb [18] and SST-2 [19]. This availability has injected
significant vitality into research in this direction. However, the “black box” nature of
many deep learning models used in sentiment analysis poses another major limitation.
These models, while powerful, often lack transparency in their decision-making processes,
making it difficult for users to understand and trust their predictions.

Furthermore, sentiment analysis faces challenges in detecting nuances such as sarcasm,
irony, and context-dependent meanings. Future research may involve more sophisticated
models that understand complex human emotions and incorporate multimodal data (text,
images, and videos) to better understand sentiments [20].

The field of sentiment analysis in NLP continues to be dynamic, with ongoing efforts
to enhance the accuracy and versatility of sentiment detection algorithms. As computa-
tional models evolve, their ability to discern sentiments from text is expected to become
increasingly refined and sophisticated.

2.2. Self-Supervised Methods for Information Extraction

Self-supervised learning in NLP has emerged as a fundamental approach to informa-
tion extraction, harnessing the potential of unlabeled data to train predictive models. This
paradigm involves creating learning tasks in which models predict certain parts of the
input using other parts [21–23].

By utilizing large volumes of unlabeled data, self-supervised learning allows models
to learn rich representations. These representations are beneficial for diverse downstream
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NLP tasks, especially valuable in contexts where labeled data are scarce or expensive to
acquire [16,21].

Among the popular methodologies in self-supervised learning, Masked Language
Modeling (MLM) stands out. MLM is a key technique in self-supervised learning, notably
used by BERT. It involves hiding some words in a sentence and training the model to predict
these hidden words using the surrounding context. This process aids in understanding the
context and relationships between words [16].

Permutation-based language modeling, as introduced by XLNet, is another significant
methodology. It extends the concept of MLM to predict a token based on all permutations of
tokens in a sentence. This approach offers a more comprehensive context understanding [22].

Additionally, models like BART [23] and Text-to-Text Transfer Transformer (T5) [24]
utilize a corrupted text generation task for pre-training. In this approach, models learn to re-
construct the original text from a corrupted version, thereby enhancing their understanding
of language structure and coherence [23].

In the evolving landscape of self-supervised learning models, the Generative Pre-
trained Transformer (GPT) series by OpenAI marks a pivotal juncture [17,25,26]. Unlike
BERT, renowned for its bidirectional approach to language comprehension, GPT models
excel at text generation by predicting the subsequent word in a sequence. Consequently,
while BERT shines in nuanced language understanding tasks, GPT excels in producing
coherent and contextually apt text.

Continuing this trajectory, ChatGPT (https://chat.openai.com (accessed on 19 March
2024)), a notable addition to the GPT lineage, heralds further breakthroughs. Specifically,
ChatGPT exemplifies the prowess of large-scale language models across an array of uses,
from crafting human-like narratives to conducting nuanced sentiment analyses. Its adapt-
ability for fine-tuning targeted tasks significantly expands its utility and effectiveness
in addressing diverse NLP challenges. Parallel to ChatGPT’s emergence, a myriad of
other large language models like Gemini (https://gemini.google.com/ (accessed on 19
March 2024)) and ERNIE Bot (https://yiyan.baidu.com/ (accessed on 19 March 2024)) have
surfaced, enriching the field with their distinct contributions.

However, these advancements are not without challenges. ChatGPT’s closed-source na-
ture hinders research transparency and restricts community-driven enhancements. Moreover,
the substantial computational resources required to operate or fine-tune such models often
necessitate reliance on cloud-based APIs provided by the developers. This reliance raises
concerns regarding cost-effectiveness, latency issues, and data privacy implications [27,28].

Self-supervised learning has achieved remarkable success in tasks such as named
entity recognition, relation extraction, and event extraction. By pretraining on extensive
text corpora, these models capture nuanced language patterns, significantly increasing
their task performance [29,30].

2.3. Interpretability of Deep Learning Models

The interpretability of deep learning models in NLP is a vital research area, concen-
trating on deciphering and explaining how these models make decisions. This aspect is
particularly critical in applications where trust and transparency are paramount [4,31].

Interpretability in deep learning models is essential to validate and improve model
performance, ensure fairness, and provide information on model behavior, especially in
areas such as healthcare, finance, and legal applications [31].

Several techniques have been developed to enhance the interpretability of deep learn-
ing models. These include attention mechanisms, which underscore parts of the input
data most relevant to the model decision [32], and Local Interpretable Model-Agnostic
Explanations (LIME), which approximate the model locally using interpretable models [5].
In addition, researchers also use topic models such as Latent Semantic Analysis (LSA) and
Latent Dirichlet Allocation (LDA) to achieve interpretability [33]. For example, Xiong and
Li [34] combined LDA with deep learning models to not only grade student essays but also
identify the characteristics of excellent essays in terms of language expression.
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Despite these advances, understanding deep learning models, particularly transform-
ers, remains challenging. Their black-box nature often hinders the understanding of their
predictive reasoning [4].

Future research in model interpretability is likely to focus on developing more ro-
bust generalizable techniques that offer clear explanations of model decisions, including
integrating interpretability directly into model architecture and training [35].

As deep learning models continue to advance and find application in critical domains,
the significance of interpretability will only escalate. Ensuring that these models are
transparent and that their decisions are understandable is key to their successful and
ethical application.

2.4. Monte Carlo Methods

Monte Carlo methods represent a class of computational algorithms that employ
repeated random sampling to yield numerical outcomes. In the realms of NLP and machine
learning, these methods are applied across a spectrum of tasks, including optimization,
numerical integration, and probabilistic inference [36,37].

The foundational principle of Monte Carlo methods is the utilization of randomness to
address problems that, while theoretically deterministic, are complex in nature. These meth-
ods are particularly effective in computing quantities that are challenging for deterministic
algorithms, largely because of their high-dimensional characteristics.

In the field of NLP, Monte Carlo methods have found extensive applications in lan-
guage modeling, particularly in tasks that encompass uncertainty and probabilistic models.
A notable example of their application is in Bayesian learning methodologies, where they
are instrumental in estimating the posterior distributions of model parameters [38].

Recent progress in Monte Carlo methods has geared towards enhancing both efficiency
and accuracy, especially within the context of deep learning. Techniques such as Markov
Chain Monte Carlo (MCMC) have been adapted for compatibility with complex model
structures, including deep neural networks [37].

A primary challenge in the implementation of Monte Carlo methods within NLP
pertains to the computational demands, which are accentuated when large datasets and
intricate model architectures. Consequently, future research is anticipated to focus on the
development of more efficient sampling techniques and the integration of Monte Carlo
methods with other machine learning approaches [39].

3. Task Definition

The primary aim of this study is to enhance the interpretability of sentiment classifica-
tion models applied to texts. Specifically, our focus is on identifying the key factors—words
or phrases within a text—that sentiment classification models rely on to determine the
sentiment polarity of that text. These influential words or phrases are collectively referred
to as “Sentiment Cues”. Therefore, we term the task we explore in this paper as Sentiment
Cue Extraction (SCE). This endeavor seeks to uncover and articulate the rationale behind
sentiment polarity judgments made by these models, making the decision-making process
more transparent and understandable to both users and researchers.

To clarify the task of SCE more distinctly, let us illustrate with the following two
examples:

• Instance 1: Very friendly customer service.
• Instance 2: If I could give a zero star, I would!

Here, the word “friendly” in the first instance allows us to identify its sentiment
as positive; similarly, the phrase “zero star” in the second instance indicates a negative
sentiment. Hence, “friendly” and “zero star” serve as what we define as sentiment cues.
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4. Methodology

4.1. Overview of Our Method

To address the SCE task, this paper conceptualizes SCE as a sequence labeling task.
This perspective allows for a systematic approach to identifying sentiment cues across
varying textual instances.

Given an instance X = {x1, x2, · · ·, xn}, our objective is to assign a corresponding label
set Y = {y1, y2, · · ·, yn}, where yi = 1 signifies that the element constitutes a significant
sentiment cue. For example, regarding Instance 1, the corresponding X and Y are as
illustrated in Equations (1) and (2), respectively.

X = {“Very”, “ f riendly”, “customer”, “service”, “.”}, (1)

Y = {0, 1, 0, 0, 0}. (2)

However, a principal challenge within this work is the absence of annotated data
for the SCE task, meaning that Y is unknown within the dataset. To address this, we
introduce a Self-Supervised Sentiment Cue Extraction (SS-SCE) method that employs self-
supervised learning to tackle the SCE task. In the SS-SCE framework, we utilize a sentiment
classification model, which has been widely labeled, to generate pseudo labels for the SCE
task. These pseudo labels, derived from samples X in the sentiment classification dataset,
serve as inputs and outputs for constructing the SCE training dataset, thereby enabling the
training of an SCE sequence labeling model. The fundamental steps of this approach are
depicted in Figure 1.

Figure 1. This figure illustrates the workflow of our self-supervised sentiment cue extraction method.
“Input” and “Label” represent the roles of “An Instance” and “Pseudo Label” within the “Generated
Instance”, respectively. The bold arrows indicate the process of training the corresponding models
using the dataset.

Figure 1 illustrates the basic workflow of our method. Initially, we train a sentiment
classification model based on a sentiment classification dataset. Building on this, we
generate candidate sequences of pseudo labels (referred to as the Candidate Sequences
in the figure) for an instance within the dataset and then use the sentiment classification
model to select one sequence from these candidates as the pseudo label. Thus, by taking an
instance as input and using the obtained pseudo label as the label, we can form a sequence
labeling instance (referred to as the Generated Instance in the figure). By generating such
generated instances for other instances in the sentiment classification, we can compile a
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dataset (referred to as the Generated Dataset in the figure) that is suitable for training the
SCE model. Based on this dataset, the SCE model can then be trained.

In the following sections, we will introduce our method in detail.

4.2. Generating Dataset for Sentiment Cue Extraction
4.2.1. Generation of Candidate Sequences

As described earlier, for an input X, it is necessary to generate several candidate
sequences of pseudo labels, denoted by Yc = {yc

1, yc
2, · · ·, yc

n}. Theoretically, for an input
X of length n, there are 2n possible configurations for Yc. This implies that for n = 20,
Yc could have over 1 million possible combinations—a daunting figure. This calculation
pertains to just a single data instance, whereas training the SCE model requires thousands of
such pseudo-labeled data instances. Enumerating all possible combinations is impractical,
both in terms of time and computational resources. Therefore, we employ the Monte Carlo
Sampling [40] method to randomly generate a specified number of candidate sequences,
significantly reducing the time complexity associated with generating these candidate
sequences. The Monte Carlo Sampling algorithm we use is outlined in Algorithm 1. This
approach allows us to efficiently produce a manageable subset of potential label sequences
for further analysis and selection, ensuring the feasibility of the SCE model training process.

Algorithm 1 Monte Carlo Sampling for generating one candidate sequence

Require: instance X, sampling ratio p
1: Yc ← ∅
2: for i ∈ [1, 2, . . . , n] do
3: generate g uniformly at random in the range [0, 1]
4: if g < p then
5: yc

i ← 1
6: else
7: yc

i ← 0
8: end if
9: Add yc

i to Yc

10: end for
11: return Yc

In Algorithm 1, we commence by specifying a sampling ratio p. For each element xi
in X, we randomly generate a decimal number g uniformly within the range of 0 to 1. If
g < p, then yc

i is set to 1; otherwise, it is set to 0. This mechanism ensures that each yc
i

has a probability p of being assigned the value 1. Consequently, it can be inferred that the
proportion of elements labeled 1 in the generated sequence Yc is expected, on average, to
be p.

This method does more than simply allow for the manipulation of positive label
density within candidate sequences; it also facilitates the emulation of varied labeling
densities in scenarios devoid of pre-annotated data by modulating the p-value. Ideally,
p should mirror the proportion of tokens in the text X that significantly influence the
sentiment classification model’s decision-making process, equivalent to the proportion of
elements valued at 1 in Y. However, this proportion is unknown. Therefore, to generate
candidate sequences as comprehensively as possible, we employ multiple values for p
during the sampling process, conducting sampling under these varied p-values.

4.2.2. Sentiment Classification Model

As demonstrated in Figure 1, selecting an optimal pseudo label from the array of
candidate sequences involves scoring each candidate. Within the SS-SCE framework, this
scoring process is facilitated by a sentiment classification model. Herein, we provide an
overview of the sentiment classification model used in the SS-SCE context.

In our research, the sentiment classification model is built on BERT as the encoding
mechanism, mainly due to its ability to effectively capture contextual nuances within the

21



Appl. Sci. 2024, 14, 2737

text. BERT, a transformer-based model, stands out for its dynamic encoding capabilities,
compared to static word vector methods, such as GloVe [41], which may not fully grasp the
context-dependent aspects of language.

Moreover, compared to GPT [25,26], another transformer-based architecture, BERT
is more aligned with our needs. While GPT excels in text generation tasks due to its
unidirectional nature, BERT’s bidirectional training strategy makes it particularly suitable
for understanding the nuanced expressions of sentiment in texts. This bidirectionality
allows BERT to gather context from both sides of a token, offering a richer representation
of the input text and enhancing the model’s ability to discern the underlying sentiment.

Additionally, sentiment classification models within the academic community often
leverage BERT-based architectures, facilitating straightforward comparisons with other
models in the field.

When encoding the input X using BERT for our sentiment classification model, it is
necessary to prepend a [CLS] token at the beginning and append a [SEP] token at the end of
X. Thus, the actual sequence inputted into BERT becomes X = {[CLS], x1, x2, · · ·, xn, [SEP]}.
For text classification tasks, the encoding of the [CLS] token is typically utilized to represent
the encoding of the entire sentence.

To facilitate comparisons with other models, we have constructed a remarkably
straightforward binary text classification model fsc based on the base version of BERT. In
this model, fsc, the enhanced input X is encoded using BERT, resulting in a 768-dimensional
vector representation, h768

X . This vector, specifically derived from the encoding of the [CLS]
token, is then transformed into a two-dimensional vector, h2

X , via a fully connected layer.
Subsequently, a softmax function converts h2

X into a pair of probabilities that indicate the
likelihood of X belonging to categories 0 (negative sentiment) and 1 (positive sentiment),
respectively. The sentiment classification model fsc can thus be expressed as:

fsc(X) = softmax(FC768×2(BERT(X)[CLS])) (3)

where FC768×2 denotes the fully connected layer mapping the 768-dimensional BERT
encoding to a 2-dimensional output, and BERT(X)[CLS] refers to the representation of
the [CLS] token produced by BERT, which serves as the aggregate representation of the
enhanced input text for classification purposes.

Accordingly, for an input, the model yields the following probability pair:

(pc0, pc1) = fcls(X), (4)

where pc0 and pc1 correspond to the probabilities of X being classified under negative and
positive sentiments, respectively. Consequently, the sentiment prediction for X by fcls is
determined as:

C = arg max(pc0, pc1), (5)

This procedure also facilitates the computation of the Probability Discrepancy between
the categories:

ΔP = |pc0 − pc1|. (6)

In this context, ΔP, referred to as “Probability Discrepancy”, is utilized to assess the
intensity of the sentiment inclination prediction made by fsc for X. A larger ΔP value
indicates a more pronounced sentiment inclination in X, reflecting the model’s confidence
in its sentiment classification.

4.2.3. Mask Sequence Interpretation Score

In the SCE task, for a given input X with labels Y, there exists an inverse sequence
Ȳ = {1 − y1, 1 − y2, · · ·, 1 − yn}. As defined by the task, if the token xi in X is identified as
an SC within X, then the corresponding label yi is assigned a value of 1; if not, yi is set to
0. This principle suggests that masking all tokens xi in X for which yi = 1, resulting in a
masked input XȲ, would hinder the sentiment classification model’s ability to accurately
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determine the sentiment inclination of XȲ. Conversely, retaining only the tokens in X,
where yi = 1, and masking those with yi = 0, to create a new input XY, should enable the
sentiment classification model to predict its sentiment inclination effectively.

In typical scenarios, to obtain XY, it is necessary to replace tokens xi in X corresponding
to yi = 0 in Y with a meaningless symbol like [MASK]. However, BERT provides a more
straightforward solution for us. By using Y as the attention mask directly input into BERT,
it automatically disregards tokens xi in X corresponding to yi = 0 in Y.

Therefore, for X, when using Y as the mask sequence, we obtain:

(pY
c0, pY

c1) = fsc(X, Y), (7)

yielding the sentiment category prediction:

CY = arg max(pY
c0, pY

c1), (8)

and calculating the Probability Discrepancy as:

ΔPY = |pY
c0 − pY

c1|. (9)

Similarly, when using the inverse sequence Ȳ as the mask sequence, we can determine:

(pȲ
c0, pȲ

c1) = fsc(X, Ȳ), (10)

with the corresponding sentiment category determined by:

CȲ = arg max(pȲ
c0, pȲ

c1), (11)

and the Probability Discrepancy for XȲ calculated as:

ΔPȲ = |pȲ
c0 − pȲ

c1|. (12)

When selecting a candidate sequence Y as the pseudo label, the ideal scenario aims to
maximize ΔPY while ensuring that CY = C, and simultaneously minimize ΔPȲ. However,
this approach might lead to an extreme case where all elements of Y are set to 1 and all
elements of Ȳ are set to 0. In such a scenario, XY would be identical to X, and XȲ would
contain no informative content, which, while adhering to the principle, is not desirable for
effective sentiment cue extraction. To circumvent this issue, it is preferable to have as few
elements labeled as 1 in Y as possible. To achieve this balance, we introduce the Ratio of
Cue Tokens (RCT), calculated as follows:

RCT =
∑(Y)

n
(13)

where ∑(Y) represents the number of elements valued at 1 in Y, and n denotes the total
number of elements in Y.

Moreover, within X, there may be tokens that inversely affect the prediction of X’s
sentiment inclination. Such tokens might cause fsc to predict the sentiment category of XȲ

as being entirely opposite to that of X. In these situations, it is desirable for ΔPȲ to be as
large as possible to reflect a clear differentiation in sentiment inclination.
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Taking into consideration the principles mentioned above, we propose an evaluation
metric named the Mask Sequence Interpretation Score (MSIS) as follows:

MSIS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔPY

ΔPȲ · RCT2
, C = CY ∩ ΔPȲ < ΔPY

ΔPY · ΔPȲ

RCT2 , C = CY �= CȲ ∩ ΔPȲ ≥ ΔPY

0, Others

(14)

Algorithm 2 outlines the procedure for evaluating the MSIS for a given candidate
sequence Yc associated with an instance X.

Algorithm 2 Evaluating the candidate sequence Yc

Require: instance X, the sentiment category of the instance C, length of the instance n, well
trained sentiment classification model fsc, candidate sequence Yc = {yc

1, yc
2, · · ·, yc

n}
1: Ȳc ← ∅
2: for i ∈ [1, 2, . . . , n] do
3: Add 1 − yc

i to Ȳc

4: end for
5: (pYc

c0 , pYc

c1 ) = fsc(X, Yc), (pȲc
c0 , pȲc

c1 ) = fsc(X, Ȳc)

6: CYc
= arg max(pYc

c0 , pYc

c1 ), CȲc
= arg max(pȲc

c0 , pȲc
c1 )

7: ΔPYc
= |pYc

c0 − pYc

c1 |, ΔPȲc
= |pȲc

c0 − pȲc
c1 |

8: RCTYc ← RCT(Yc, n) � Refer to Equation (13)
9: MSISYc ← MSIS(C, CY, CȲc , ΔPYc

, ΔPȲc
) � Refer to Equation (14)

10: return MSISYc

The process begins by creating an inverse sequence Ȳc, which serves as a complement
to Yc by inverting the binary values. This step ensures that we can compare the effects of
including versus excluding specific tokens identified as sentiment cues on the predictions
of the sentiment classification model.

Next, the algorithm employs fsc to calculate the probabilities of X belonging to each
sentiment category, both with and without the sentiment cues as indicated by Yc and Ȳc,
respectively. These probabilities allow the computation of the Probability Discrepancy (ΔP)
for both sequences, offering insight into the decisiveness of the sentiment classification
under different conditions.

The RCT for Yc is then calculated, providing a measure of the proportion of tokens in
X identified as sentiment cues by Yc. This ratio is crucial for ensuring that the selection of
sentiment cues is both significant and minimal, avoiding over-representation of cues.

Finally, the MSIS for Yc is determined based on the sentiment category predictions
and Probability Discrepancies for both Yc and its inverse.

4.2.4. Process of Selecting Pseudo Label for X

Algorithm 3 details the comprehensive process for generating a pseudo label for an
instance X. This process involves evaluating multiple candidate sequences generated under
various sampling ratios, each with the aim of identifying the sequence that best represents
the sentiment cues within X. The algorithm utilizes a well-trained sentiment classification
model fsc to calculate the MSIS for each candidate sequence, ultimately selecting the
sequence with the highest MSIS as the pseudo label for X.

It should be noted that in order to ensure the RCT of the candidate sequences obtained
through sampling is as uniform as possible, covering different instances, we will uniformly
select several decimals between 0 and 1 to serve as sampling ratios.

By employing this algorithm for all instances in the dataset, a collection of pseudo
labels is generated, forming a dataset that can be used to train the SCE model.
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Algorithm 3 Process of selecting pseudo label for X

Require: instance X, the sentiment category of the instance C, length of the instance n,
well trained sentiment classification model fsc, set of sampling ratios {p1, p2, . . . , pk},
sampling number m

1: Y ← ∅ � Initialize the pseudo label ad a empty set
2: MSISY ← 0 � Initialize MSIS of Y with 0
3: for p ∈ {p1, p2, . . . , pk} do
4: for i ∈ [1, 2, . . . , m] do
5: Yc ← Generate a candidate sequence with X and p � Refer to Algorithm 1
6: MSISYc ← Evaluate Yc � Refer to Algorithm 2
7: if MSISYc > MSISY then
8: Y ← Yc � Update Pseudo Label Y if a higher score is achieved
9: MSISY ← MSISYc � Update the score accordingly

10: end if
11: end for
12: end for
13: return Y

4.3. Sentiment Cue Extraction Model

Our SS-SCE approach conceptualizes the SCE task as a sequence labeling problem.
This requires performing a binary classification for each token xi within the input X.
Consequently, the architecture of the SCE model is highly analogous to that of the sentiment
classification model, with a key distinction: while the sentiment classification model
focuses on classifying the [CLS] token to infer the overall sentiment of the input, the SCE
model extends this classification to all tokens within X. Therefore, the SCE model can be
formalized as follows:

fsce(X) = softmax(FC768×2(BERT(X))) (15)

where BERT(X) produces a sequence of 768-dimensional vector representations for each
token in X. The fully connected layer, denoted as FC768×2, maps each 768-dimensional
vector to a 2-dimensional output, corresponding to the binary classification for sentiment
cue detection. The softmax function is applied to these 2-dimensional vectors, yielding a
probability distribution over two classes (cue vs. non-cue) for each token in X.

After generating pseudo labels for each instance X in the train set, these labels will be
utilized as the ground truth for training the SCE model, fsce. It is important to note that
each X is augmented with [CLS] and [SEP] tokens at the beginning and end, respectively.
While these tokens are essential for BERT’s processing, they should not be overlooked by
fsce. Consequently, their corresponding labels in the pseudo label sequence are fixed to 1.
However, we do not consider these specific tokens ([CLS] and [SEP]) as sentiment cues.

5. Experiments

5.1. Dataset

To rigorously evaluate the methodology proposed in this paper, we perform exper-
iments using the IMDb [18] and SST-2 [19] datasets, both of which are sentiment classi-
fication datasets composed of English movie reviews. It is essential to note that BERT,
the underlying model, is limited to processing sequences of a maximum of 512 tokens.
Given that the IMDb dataset contains numerous instances exceeding this token limit, we
selectively use instances with a length not surpassing 512 tokens for our experimental data.

Furthermore, we meticulously curate a subset of review data from the Yelp (https:
//www.yelp.com/dataset (accessed on 19 March 2024)) website. From the original Yelp
dataset, we extract the top 14,000 reviews with the highest ratings and the bottom 14,000 re-
views with the lowest ratings. After random swab, this dataset is divided into 20,000 re-
views for training, 4000 for validation, and 4000 for testing.
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To further extend the scope of our evaluation and validate the versatility of our
methodology across different languages, we have incorporated the ChnSentiCorp dataset
(https://aistudio.baidu.com/datasetdetail/10320 (accessed on 19 March 2024)). This
dataset consists of Chinese-language hotel reviews, providing an opportunity to assess our
model’s performance in a non-English context.

The statistical characteristics of these four datasets are succinctly summarized in
Table 1.

Table 1. This table shows the sizes of the training, validation, and test sets for four different datasets.

Dataset Training Set Size Validation Set Size Testing Set Size

SST-2 60,000 7349 872
Yelp 20,000 4000 4000

IMDb 17,008 4310 21,500
ChnSentiCorp 9146 1200 1200

5.2. Experimental Setup

We initially train sentiment classification models for each of the three datasets. Then,
for each instance X in the training and evaluation sets of each dataset, we generate candidate
sequences using Algorithm 1. Since it is not possible to predict the proportion of tokens in
X that are sentiment cues, denoted as p, we test different values of p from the set {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7}.

For both the sentiment classification model and the sentiment cue extraction model,
we employed the bert-base-uncased (https://huggingface.co/bert-base-uncased (accessed
on 19 March 2024)) architecture as our encoder and employed softmax [42] as the decoder.
The learning rate is set to 0.00001, and we use the Adam optimizer with the applied
cross-entropy loss function.

In the training phase of the SCE model, we primarily use cross-entropy loss as the
main evaluation metric. We systematically selected the model parameters that achieved the
minimum loss in the validation set as the final parameters of the model.

All computations are performed on a Tesla V100-SXM2-16GB GPU manufactured by
NVIDIA Corporation, headquartered in Santa Clara, CA, USA. Due to variations in the
maximum length of samples in the three datasets and limitations in GPU memory, the
number of candidate sequences generated per run differed. Specifically, we generated
100 mask sequences for SST-2 and Yelp in a single run, while for IMDb and ChnSentiCorp,
we could only generate 10 mask sequences per run.

In training the classification and SCE models, we adjust the batch size based on the
dataset to optimize resource utilization and training efficiency. For SST-2 and Yelp, the
batch size is set to 32, accommodating a larger number of instances per training step due to
their relatively shorter text lengths. In contrast, for IMDb and ChnSentiCorp, which consist
of longer text instances, the batch size is set to 8.

5.3. Evaluation Metrics

To assess the effectiveness of our SS-SCE approach, evaluations are conducted from
both quantitative and qualitative perspectives.

5.4. Results and Analysis
5.4.1. Computational Efficiency of Monte Carlo Sampling

To assess the computational demands of our method, we performed Monte Carlo
Sampling in the training and validation sets of the SST-2, Yelp, IMDb, and ChnSentiCorp
datasets. We generated a fixed number of 10,000 candidate sequences for each instance.

To elucidate the computational efficiency of our Monte Carlo Sampling process, de-
tailed statistics are presented in Table 2. This table shows the Average Time Per Sampling
(ATPS) in milliseconds (ms) and the Average Time for the Optimal Mask Sequence (ATOMS)
in seconds (s) for each dataset.
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Table 2. This table presents the average length of each instance in four datasets, the average time
consumed per sampling, and the average time to obtain the optimal mask sequence.

Metric SST-2 Yelp IMDb ChnSentiCorp

Average Length 32.02 79.57 265.02 90.49
ATPS (ms) 0.70 3.71 9.84 6.03
ATOMS (s) 1.49 19.84 49.68 30.27

As evident from Table 2, the time required for generating a single sample increases
with the length of the text, as does the average time to complete the sampling process
for obtaining the optimal mask sequence. This outcome indicates that our approach is
relatively less efficient for longer texts. As the length of the text increases, more time is
required to complete the sampling process.

5.4.2. Main Performance Evaluation

Given the absence of annotated data, it is challenging to directly apply traditional
sequence labeling evaluation metrics to assess SS-SCE. According to the definition of the
SCE task, the sentiment orientation of XY, obtained by masking X with the pseudo-label Y,
should align with that of X. Therefore, we can indirectly evaluate SS-SCE by comparing
the performance metrics of instances in the test set when using X as input versus using
XY as input in the sentiment classification model. Specifically, we calculate the accuracy,
precision, recall, and F1 scores for the test set when using X and XY as inputs, respectively,
and measure the performance loss caused by using XY as input.

Additionally, to statistically assess the impact of our SS-SCE method on the perfor-
mance of sentiment classification, we conduct a t-test comparing the predictions made
by the sentiment classification model for both the original input X and the input with
extracted sentiment cues XY. The null hypothesis (H0) posits that the SS-SCE method
does not significantly reduce the performance metrics of sentiment classification compared
to the original input X. The alternative hypothesis (H1), on the other hand, suggests a
significant reduction in these performance metrics, which would indicate an effect of the
SS-SCE method. We set the confidence level for this test at 0.01, meaning a p-value less than
0.01 is required to reject the null hypothesis. Rejecting H0 would imply that the SS-SCE
method significantly impacts the performance of the model, whereas failing to reject H0
would suggest that the SS-SCE method can extract sentiment cues without substantially
compromising classification accuracy.

However, relying solely on this is not sufficient, as there could be special cases where
all values of Y are 1, leading to XY = X. To avoid this scenario, we also evaluate using RCT,
which is the proportion of sentiment cues extracted by SS-SCE relative to the original input.

To demonstrate the effectiveness and detailed impact of SS-SCE on sentiment classifica-
tion accuracy, including any performance loss, Table 3 offers a comprehensive comparison.
This table contrasts the performance metrics—accuracy, precision, recall, and F1 scores—for
the original input (X) and the input with extracted sentiment cues (XY), across various
datasets. It quantifies the performance loss incurred using XY as input and includes RCT
to indicate the proportion of sentiment cues identified. Additionally, the table details the
results of the t-test, providing statistical insight into the significance of the differences
observed between the performances of X and XY.

For the SST-2 dataset, compared to the original input X, the prediction results using
XY as input show a decrease across all major metrics, but the decrease is within 0.1, and
the p-value from the t-test is greater than 0.01. This indicates that our SS-SCE method
effectively extracts the majority of sentiment cues from the SST-2 dataset, albeit with
some minor losses. The Ratio of Cue Tokens (RCT) is 0.1682, which means that tokens
identified as sentiment cues by SS-SCE constitute 16.82% of the total in the SST-2 test set.
This performance suggests that SS-SCE can extract sentiment cues without significantly
compromising the accuracy of sentiment classification.
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Table 3. This table displays accuracy, precision, recall, F1 scores, and performance loss for original
(X) versus cue-extracted (XY) inputs across SST-2, Yelp, IMDb, and ChnSentiCorp datasets. RCT
values and t-test results are also included to assess the extraction’s effectiveness.

SST-2 Yelp IMDb ChnSentiCorp

Metric X XY Loss X XY Loss X XY Loss X XY Loss

Accuracy 0.9300 0.8719 0.0585 0.9885 0.9748 0.0138 0.9328 0.8798 0.0531 0.9369 0.8367 0.1002
Precision 0.9379 0.9072 0.0307 0.9876 0.9723 0.0153 0.9305 0.8333 0.0971 0.9387 0.7940 0.1448

Recall 0.9182 0.8224 0.0958 0.9895 0.9776 0.0120 0.9359 0.9501 −0.014 0.9372 0.9174 0.0198
F1 0.9280 0.8627 0.0652 0.9886 0.9749 0.0136 0.9332 0.8879 0.0453 0.9380 0.8512 0.0867

RCT - 0.1682 - - 0.3795 - - 0.2858 - - 0.3148 -

pt-test >0.01 >0.01 <0.01 <0.01

For the Yelp dataset, the decline in metrics for XY is notably subtle, with all reductions
less than 0.02. Furthermore, the t-test results reveal no significant differences in metrics
between XY and X within this dataset. However, the relatively higher RCT indicates
that SS-SCE may employ a more lenient criterion when extracting sentiment cues on the
Yelp dataset.

Regarding the IMDb dataset, the results with XY as input show the highest decrease in
accuracy and precision among the three datasets, while the impact on recall is the opposite,
even surpassing the performance using X as input. This phenomenon could be attributed
to longer texts containing more distracting information, which our SS-SCE method is
adept at effectively filtering out. The relatively lower RCT value among the three datasets
corroborates this observation. Furthermore, the higher recall rate for XY suggests that
SS-SCE effectively extracts sentiment cues from X, improving the model’s ability to identify
relevant sentiment information. The p-value of the t-test being less than 0.01 indicates a
significant difference in the sentiment classification results between X and XY. Coupled
with the increase in recall, we consider this impact positive.

On the ChnSentiCorp dataset, the RCT is 0.3148, indicating that 31.48% of tokens in X
were extracted as sentiment cues. In this context, the loss in recall is minimal, only 0.0198,
suggesting that SS-SCE likely captures the majority of sentiment cues. However, compared
to the IMDb dataset, the performance metrics on ChnSentiCorp are noticeably poorer. This
indicates that our SS-SCE method may have certain limitations when processing Chinese
data. This could be due to BERT’s character-level processing of Chinese, whereas Chinese
semantics are typically conveyed at the word level. Therefore, during the sampling process,
words might be segmented into characters that fail to express complete semantics, thereby
affecting the model’s performance.

In summary, the experimental results prove that our SS-SCE method achieves good
results on English datasets, especially on datasets with longer text lengths, where the
extraction of sentiment cues is more effective. However, there are clear deficiencies in the
Chinese dataset. In future research, we will consider addressing the issues encountered in
the Chinese dataset.

5.4.3. Model Generalization Tests

To ascertain the adaptability and generalizability of our proposed method, we conduct
cross-testing on three English datasets. Specifically, this involves using the model trained on
each dataset to test the other two datasets. Additionally, we combine the datasets generated
by the SS-SCE method from all three datasets to train a single sentiment cue extraction
model, which is then tested on all three datasets.

Additionally, we merge the datasets sampled from the three English datasets to train
collectively and conduct tests on each dataset individually. For the amalgamated dataset,
we use the term “combined” to denote it.

In the cross-testing, we continue to use the same evaluation metrics as those presented
in Table 3. It is noted that we use subscripts to denote the training dataset of the sentiment
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extraction model. For example, XY
SST-2 represents the XY generated by the sentiment cue

extraction model trained on the SST-2 dataset.
As shown in Table 4, when models trained on Yelp and IMDb datasets are tested on

SST-2, they show a notable performance decline, particularly in accuracy and recall. The
most pronounced drop is observed in the model trained on IMDb, with a 16.97% decrease
in accuracy. This can be attributed to the disparity in text length and complexity between
IMDb and SST-2 datasets. Although the precision of the IMDb-trained model remained
relatively stable, indicating a consistent ability to identify true positives, the substantial
decrease in recall, especially for this model, suggests challenges in capturing the full range
of sentiment cues in shorter SST-2 texts.

Moreover, the recall of XY
combined shows an improvement, indicating that the incorpo-

ration of Yelp and IMDb enhances the ability to extract sentiment cues. However, this
integration also introduces additional information, which adversely affects the accuracy
and precision of the model.

Table 4. This table shows the test results on the SST-2 dataset for models trained on SST-2, Yelp,
IMDb, and the combined dataset.

Metric X XY
SST-2 lossSST-2 XY

Yelp lossYelp XY
IMDb lossIMDb XY

combined losscombined

Accuracy 0.9300 0.8716 0.0585 0.8234 0.1067 0.7603 0.1697 0.8039 0.1261
Precision 0.9379 0.9072 0.0307 0.8549 0.0830 0.9195 0.0184 0.7495 0.1884

Recall 0.9182 0.8224 0.0958 0.7710 0.1472 0.5607 0.3575 0.9234 -0.005
F1 0.9280 0.8627 0.0652 0.8108 0.1172 0.6967 0.2313 0.8274 0.1006

RCT - 0.1682 - 0.1256 - 0.1012 - 0.1489 -

In Table 5, the adaptability of the models to the Yelp dataset is more promising. The
decrease in accuracy and the F1 score is less severe compared to their performance in the
SST-2 dataset. This implies that the models are better equipped to handle the moderate text
lengths and complexity of Yelp reviews. However, the performance of the model trained on
the IMDb dataset is significantly poorer, especially in terms of recall. Similarly, the model
trained on the combined dataset also experiences some degree of performance degradation,
which may be attributed to the influence of the IMDb dataset.

Table 5. This table shows the test results on the Yelp dataset for models trained on SST-2, Yelp, IMDb,
and the combined dataset.

Metric X XY
SST-2 lossSST-2 XY

Yelp lossYelp XY
IMDb lossIMDb XY

combined losscombined

Accuracy 0.9885 0.9650 0.0235 0.9748 0.0138 0.9260 0.0625 0.9655 0.0230
Precision 0.9876 0.9722 0.0154 0.9723 0.0153 0.9853 0.0023 0.9626 0.0250

Recall 0.9895 0.9577 0.0319 0.9776 0.0120 0.8655 0.1240 0.9484 0.0411
F1 0.9886 0.9649 0.0237 0.9749 0.0136 0.9215 0.0670 0.9554 0.0332

RCT - 0.1397 - 0.3795 - 0.2698 - 0.2773 -

Table 6 indicates that models trained on shorter text datasets, such as SST-2 and Yelp,
also perform effectively on the IMDb dataset, positively influencing accuracy. However,
there is a negative impact on recall. This suggests that while the models retain their ability
to correctly identify true positives in the context of longer texts, their capacity to capture
the full range of sentiment cues across the broader dataset is somewhat diminished.

These results indicate that while models trained on shorter texts, such as SST-2, exhibit
relatively better generalization capabilities across datasets, models trained on datasets
with longer texts, such as IMDb, show limited adaptability to shorter texts. Additionally,
when conducting cross-dataset experiments, training on a combination of multiple datasets,
although generally not outperforming training on their own respective datasets, tends to
yield better results than training on any single, different dataset. This implies that when
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extending SS-SCE to new data, considering training across multiple similar datasets could
enhance model performance. This strategy may leverage the diverse characteristics of each
dataset to build a more robust and adaptable model.

Table 6. This table shows the test results on the IMDb dataset for models trained on SST-2, Yelp,
IMDb, and the combined dataset.

Metric X XY
SST-2 lossSST-2 XY

Yelp lossYelp XY
IMDb lossIMDb XY

combined losscombined

Accuracy 0.9328 0.8925 0.0403 0.8709 0.0620 0.8798 0.0531 0.8934 0.0394
Precision 0.9305 0.9205 0.0099 0.8564 0.0761 0.8333 0.0971 0.9327 −0.0020

Recall 0.9359 0.8598 0.0762 0.8918 0.0441 0.9501 −0.014 0.8474 0.0921
F1 0.9332 0.8891 0.0441 0.8737 0.0594 0.8879 0.0453 0.8880 0.0452

RCT - 0.1153 - 0.1186 - 0.2858 - 0.2478 -

5.5. Case Study: Comparing SS-SCE with Established Interpretability Methods

To evaluate the unique contributions and effectiveness of SS-SCE, we perform a com-
parative analysis with established interpretability methods in text classification, including
LIME [5], LIG [43], OCC [44], SVS [45], and LDS [46].

For this comparison, we use the Thermostat tool (https://github.com/DFKI-NLP/
thermostat (accessed on 19 March 2024)) [47], which integrates state-of-the-art interpretabil-
ity methods, offering a unified platform for analysis. This tool allowed us to apply these
methods in a standardized way, ensuring a fair and consistent comparison between differ-
ent interpretability approaches.

Our analysis aimed not to compare SS-SCE directly with these methods, but to show-
case how SS-SCE’s focused approach on sentiment cues provides a different, potentially
more nuanced perspective in understanding model decisions, especially in the context of
sentiment analysis.

Using Thermostat, we applied interpretability models trained on various datasets,
such as IMDb with pre-trained language models such as BERT and ALBERT [48]. For a fair
comparison, we chose the interpretability model trained with BERT on the IMDb dataset. To
facilitate a comparison with SOTA methods, we manually annotated two selected instances,
a positive and a negative, from the IMDb test set. We then calculated the precision, recall,
and F1 score for each method’s sentiment cue extraction on these annotated instances. The
results of this comparative analysis are presented in Tables 7 and 8.

Table 7 shows that the SS-SCE models, particularly SS-SCESST-2, demonstrate superior
performance in extracting sentiment cues from the positive text instance when compared
with SOTA interpretability methods, SS-SCESST-2 achieved the highest precision of 0.7778,
recall of 0.8235, and F1 score of 0.8000, indicating a robust capability in accurately identify-
ing and recalling relevant sentiment cues.

The SS-SCE models trained on Yelp and IMDb datasets showed varying degrees of
effectiveness, with SS-SCEYelp displaying moderate performance and SS-SCEIMDb, showing
decent accuracy but lower effectiveness compared to SS-SCESST-2. This variation suggests
the influence of training data characteristics on the model’s performance.

In contrast, the standard interpretability methods, while useful in their own right,
exhibited lower performance metrics in comparison. LIME, LIG, OCC, SVS, and LDS
demonstrated lower precision, recall, and F1 scores, indicating a potential limitation in
their ability to capture the nuanced sentiment cues as effectively as the SS-SCE approach.

Table 8 presents the performance of different interpretability methods in extracting
sentiment cues from the negative text instance. The results indicate that the SS-SCE models,
particularly SS-SCEIMDb and SS-SCESST−2, perform effectively in this context, albeit with
some variations in precision and recall.
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Table 7. This table shows the performance comparison of our Self-Supervised Sentiment Cue Extraction
(SS-SCE) model trained on three datasets with SOTA interpretability methods on a positive instance.

Method Result Precision Recall F1

human
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

- - -

SS-SCESST-2

This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.7778 0.8235 0.8000

SS-SCEYelp

This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.5556 0.6250 0.5882

SS-SCEIMDb

This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.6154 0.4706 0.5333

LIME
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.4286 0.3529 0.3871

LIG
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.5000 0.5294 0.5143

OCC
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.3600 0.5294 0.4286

SVS
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.4545 0.5882 0.5128

LDS
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.4118 0.4118 0.4118

The bold tokens represent the extracted sentiment cues.

SS-SCEIMDb achieved the highest precision (0.8571), reflecting its strong ability to
accurately identify relevant negative sentiment cues. However, its recall (0.3750) is relatively
lower, suggesting that, while it is precise, it may miss some relevant cues. Conversely,
SS-SCESST−2, with a recall of 0.5000, demonstrates a balanced performance with a precision
of 0.5714 and an F1 score of 0.5333. This balance indicates its ability to capture a broader
range of relevant cues while maintaining accuracy.

SS-SCEYelp, despite having the highest precision (0.8333), shows a lower recall (0.3125),
indicating a tendency to be very selective in cue extraction, which may lead to missing
some pertinent sentiment indicators.

In comparison, traditional interpretability methods show lower performance in both
precision and recall. LIME and LDS, in particular, demonstrate limited effectiveness in
accurately identifying negative sentiment cues. The lower performance of these methods
may be attributed to their design, which might not be as fine-tuned for sentiment cue
extraction as the SS-SCE approach.

Overall, the comparative analysis of sentiment cue extraction presented in
Tables 7 and 8 demonstrates the robustness and versatility of the SS-SCE models across
both positive and negative text instances. The SS-SCE models, especially SS-SCESST−2,
consistently exhibit a balanced performance in terms of precision and recall, highlighting
their ability to accurately and comprehensively extract sentiment cues. This is particularly
evident in SS-SCESST−2, which shows strong performance in both positive and negative
contexts. While SS-SCEIMDb and SS-SCEYelp demonstrate higher precision in specific in-
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stances, they sometimes compromise on recall, indicating a more selective extraction of
cues. In comparison to the SOTA interpretability methods, the SS-SCE approach stands out
for its enhanced capability to identify both explicit and subtle sentiment indicators.

Table 8. This table shows the performance comparison of our Self-Supervised Sentiment Cue
Extraction (SS-SCE) model trained on three datasets with SOTA interpretability methods on
a negative instance.

Method Result Precision Recall F1

human

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

- - -

SS-SCESST-2

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.5714 0.5000 0.5333

SS-SCEYelp

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.8333 0.3125 0.4545

SS-SCEIMDb

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

0.8571 0.3750 0.5217

LIME

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

0.3125 0.3125 0.3125

LIG

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

0.5455 0.3750 0.4444

OCC

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.2857 0.1250 0.1739

SVS

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

0.8571 0.3750 0.5217

LDS

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.5000 0.2500 0.3333

The bold tokens represent the extracted sentiment cues.

Simultaneously, it is important to note that our approach represents a global inter-
pretability method, which significantly outperforms traditional techniques in terms of
efficiency when applied to new data. This global perspective enables a comprehensive un-
derstanding of the model’s decision-making process across various datasets and scenarios,
rather than focusing on individual instances.

5.6. Ablation Study on MSIS

To validate the effectiveness and contribution of each component within the MSIS, we
conduct an ablation study. This study systematically examines how the removal or alter-
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ation of each MSIS component affects the overall performance of our SS-SCE framework.
The components of MSIS are as follows.

Probability Discrepancy (PD): This component, denoted as ΔPY, assesses the clarity
of sentiment cues within the candidate sequence. It ensures that elements marked with
1 in the candidate sequence effectively contribute to the sentiment classification model’s
decision-making process.

Inverse Probability Discrepancy (IPD): Represented as ΔPȲ, it evaluates the absence
of sentiment cues within the inverse attention mask Ȳ.This ensures elements marked with 0
in Y do not contribute significantly to sentiment interpretation, emphasizing the specificity
of extracted cues.

Ratio of Cue Tokens (RCT): This component aims to minimize the inclusion of irrele-
vant tokens in the candidate sequence, promoting a concise extraction of sentiment cues. It
is calculated as the proportion of 1s in Yc, with a higher RCT indicating a more focused
extraction of sentiment cues.

The results of our ablation study are summarized in Tables 9–12 . Each row represents
a variant of the MSIS, indicating the presence (+) or absence (-) of each component. Per-
formance metrics include the accuracy, precision, recall, and F1 score of the sentiment cue
extraction under each variant.

Table 9. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of SST-2 dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.8716 0.9072 0.8224 0.8627 0.1682
- + + 0.7879 0.7595 0.8536 0.8038 0.1405
+ - + 0.7397 0.6764 0.9369 0.7856 0.0540
+ + - 0.8807 0.8586 0.9167 0.8867 0.5214

Table 10. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of Yelp dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.9748 0.9723 0.9776 0.9749 0.3795
- + + 0.9635 0.9446 0.9844 0.9641 0.3928
+ - + 0.8395 0.7614 0.9869 0.8596 0.0181
+ + - 0.9838 0.9854 0.9819 0.9837 0.8910

Table 11. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of IMDb dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.8798 0.8333 0.9501 0.8879 0.2858
- + + 0.8654 0.9529 0.7728 0.8535 0.1542
+ - + 0.6207 0.9586 0.2637 0.4136 0.0038
+ + - 0.9261 0.9176 0.9385 0.9279 0.8547

Table 12. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of ChnSentiCorp dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.8367 0.7940 0.9174 0.8512 0.3148
- + + 0.8746 0.8444 0.9240 0.8824 0.5042
+ - + 0.6641 0.6392 0.7818 0.7033 0.0198
+ + - 0.9234 0.9227 0.9273 0.9250 0.8676
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As shown in Tables 9–12 , the ablation study systematically evaluates the contribution
of each component within the MSIS on the SST-2, Yelp, IMDb, and ChnSentiCorp datasets.
This study offers a nuanced understanding of how each element influences the framework’s
ability to extract and utilize sentiment cues.

Removing the PD component results in performance degradation across most metrics,
particularly evident in the reduction of precision and the F1 score. This suggests that PD
is crucial for identifying clear sentiment cues within the text, ensuring that the elements
marked as sentiment cues in the candidate sequence contribute effectively to the decision-
making process of the sentiment classification model. However, on the Chinese dataset,
the performance after removing the PD component is slightly better than the overall
performance with the complete MSIS. This may be attributed to the fact that the Chinese
language processes characters as the smallest units, rather than words. It is important to
note that while the removal of PD results in a decrease in RCT by 0.1894, the F1 score only
drops by 0.0312, illustrating the effectiveness of our method.

The absence of the IPD leads to a significant decrease in recall and a noticeable drop
in the RCT, indicating a diminished ability to exclude non-sentiment-related tokens from
being marked as sentiment cues. This highlights the IPD’s role in refining the specificity of
extracted cues by ensuring that elements marked with 0 in Y do not significantly contribute
to sentiment interpretation.

Removing RCT results in an improvement in sentiment classification performance but
at the cost of a substantial increase in RCT. This implies that while the RCT component
restricts the inclusion of irrelevant tokens in the candidate sequence, its absence leads to a
wider selection of tokens as sentiment cues, including potentially irrelevant ones.

In summary, each component of the MSIS plays a vital role in the sentiment cue extrac-
tion process. PD ensures the clarity and relevance of cues, IPD enhances the specificity of
cue extraction, and RCT promotes conciseness and focus. The ablation study demonstrates
the delicate balance between these components, underscoring their collective contribution
to the effectiveness of the SS-SCE framework.

6. Conclusions

In conclusion, our research introduces a novel self-supervised framework for senti-
ment cue extraction that significantly improves the interpretability of sentiment analysis
models. Through meticulous identification and extraction of key linguistic elements that
influence sentiment determination, our approach demystifies the decision-making pro-
cess of sentiment analysis models, thereby fostering greater trust and understanding in
these systems.

Our innovative use of Monte Carlo Sampling for efficient cue identification and
the development of the Mask Sequence Interpretation Score (MSIS) metric to evaluate
the extraction of sentiment cues represent substantial advances in the field of sentiment
analysis. Importantly, our methodology extends beyond traditional local interpretability
techniques, providing a global interpretability approach that enhances understanding
across various instances and datasets. The application of our method in diverse datasets,
such as SST-2, Yelp, IMDb, and ChnSentiCorp, demonstrates its effectiveness in extracting
pertinent sentiment cues.

However, our study is not without its limitations. The computational demands of our
approach, especially in handling longer texts, highlight the need for further optimization
to enhance efficiency without sacrificing accuracy. Additionally, while our method shows
promising results in extracting sentiment cues, the performance variability across different
text lengths and complexities suggests room for improvement in the generalizability and
adaptability of the model. Furthermore, when processing Chinese data, our method
faces additional challenges. This is partly due to BERT’s character-level processing of
Chinese, whereas Chinese semantics are more accurately represented at the word level.
Consequently, during sampling, words may be segmented into characters that fail to
convey full semantics, affecting the model’s performance. This aspect highlights the
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importance of tailoring our approach to better accommodate the linguistic characteristics
of Chinese, suggesting a direction for future research to improve the method’s applicability
and effectiveness in handling Chinese texts.

Looking forward, we see several avenues for future research. Enhancing the computa-
tional efficiency of our Monte Carlo Sampling process and exploring alternative sampling
techniques could address current limitations in processing longer texts. Further refine-
ment of the MSIS metric to better balance accuracy and interpretability could also produce
improvements in sentiment cue extraction. Moreover, extending our framework to incor-
porate multimodal data (text, images, and videos) could offer a more holistic approach
to sentiment analysis, reflecting the multifaceted nature of sentiment expression across
various media. Then, addressing the specific challenges of processing Chinese data, such
as adapting our approach to better capture the word-level semantics often lost in character-
level processing, also constitutes a critical area for future exploration. This would not only
improve the model’s performance on Chinese texts but also enhance its applicability and
effectiveness across linguistically diverse datasets.

Ultimately, our work contributes to the ongoing efforts to bridge the gap between
advanced sentiment analysis techniques and their interpretability, aiming to create more
transparent, reliable, and user-friendly NLP models. By emphasizing global interpretability,
our approach offers a scalable and comprehensive solution for understanding complex
sentiment analysis models. By continuing to refine and expand upon the foundations laid
by this study, we anticipate contributing to the development of sentiment analysis models
that are not only highly accurate but also thoroughly interpretable, ensuring their ethical
and effective application in sensitive domains.
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Abstract: The task of aspect-based sentiment analysis (ASBA) is to identify all the sentiment analyses
expressed by specific aspect words in the text. How to identify specific objects (i.e., aspect words),
describe the modifiers of the specific objects (i.e., opinion words), and judge the sentiment analysis
expressed by opinion words (sentimental classification) in one step has become a focus of research in
ASBA. ASTE (Aspect Sentiment Triplet Extraction) based on DREN (Deep Relationship Enhancement
Networks) has been proposed in this paper. It aims to extract the aspect words and opinion words in
the review text in one-step. They can judge the sentiment analysis expressed by the opinion words.
Therefore, the study defines ten kinds of word relations; then, the study uses the parts of the speech
feature, syntactic feature, relative position feature and tree distance relative feature to enhance the
word representation relationship, which enriches the table of information in the relational matrix.
Secondly, based on the word representation of BERT and GCN, the structural information of the
texts are extracted; then, further extraction of higher-level word semantic information and word
relationship information through SWDA (Sliding Window Dilated Attention) occurs, as SWDA can
capture the multi-granularity relationship in words. Finally, the experimental results show that the
proposed method is effective.

Keywords: triplet extraction; Graph Neural Networks; attention mechanism

1. Introduction

In recent years, the advancements in deep learning have led to the widespread ap-
plication of sentiment analysis technology across various fields and platforms. Public
opinion platforms enable governments to influence the course of events by monitoring
netizens’ opinions on specific matters. Similarly, on consumer platforms, businesses can
enhance their products by conducting targeted improvement based on the analysis of
consumer reviews, considering sentiment analysis [1]. Sentiment analysis can be conducted
at different levels, including sentence, paragraph, and fine-grained sentiment analyses [1,2].
Sentence-based sentiment analysis aims to identify the overall sentiment conveyed within a
single sentence, while paragraph-based sentiment analysis determines the overall sentiment
expressed in a paragraph by comprehensively analyzing each sentence [3]. In contrast to
sentence-based and paragraph-based sentiment analyses, aspect-based sentiment analysis
falls under the category of fine-grained sentiment analysis. This approach seeks to iden-
tify the sentiment associated with different aspect words in text, offering greater research
opportunities and application value. For example, in e-commerce scenarios, users often
provide mixed reviews regarding multiple aspects of a product. Similarly, in movie reviews,
users may express diverse opinions on aspects such as dubbing, plot, and casting. In such
common yet slightly complex scenarios, sentence- and paragraph-based sentiment analyses
prove insufficient. Hence, aspect-based sentiment analysis becomes particularly important.

Attribute-based sentiment analysis, also known as ABSA (aspect-based sentiment
analysis), focuses on analyzing the sentiment orientation expressed towards multiple
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aspects or aspects of a thing in a comment. For example, in the statement “The mobile
operating system is very smooth, but the battery performance is not good”, the user
assesses both the operating system and the phone’s battery, each with different sentiment
orientations. Such evaluations of multiple aspects with diverse sentiment orientations
are common in e-commerce scenarios and public opinion analyses, making aspect-based
sentiment analysis a topic of considerable interest in academia and the business community.

In recent years, with the progress in deep learning, aspect-based sentiment analysis
has witnessed significant advancement. Some studies have proposed the use of atten-
tion mechanisms and related variants to process ABSA tasks. Tang et al. [4] and Wang
et al. [5] proposed using attention mechanism networks to determine the sentiment polarity
associated with a given aspect term in the text. Ma et al. [6] suggested that there is a
mutual relationship between aspect words and their context, introducing an interactive
attention mechanism to give weights to the words in the context and aspect text. Li et al. [7]
suggested using collaborative attention mechanism to associate aspect words with their
context while concatenating the term, embedding the context of the term with the aspect
words, enhancing the interaction between aspect words and their contexts.

The advent of models like BERT (Bidirectional Encoder Representations from Trans-
formers) and GCN (Graph Neural Networks) has further fueled the emergence of a large
number of models based on BERT and GCN that are widely used in ABSA. BERT was
presented in [8], which used mask tasks and predict next sentence task to learn the semantic
information connecting words and sentences. So, Pang et al. [9] used BERT to extract
more auxiliary information about aspect words from the context of comments, while Zhou
et al. [10] used the syntactic relationship in sentences to construct a graph, and then they
used GCN to determine sentiment polarity expressed by aspect words in context. GCN [11]
realized the convolution operation on the topological graph with the help of graph theory,
and semantic information was extracted via graph instruction and convolution.

The above studies were all based on the given attributive words and the contextual
information to judge the sentiment polarity expressed by the attributive words in the
text. At present, great progress is being made in ASTE for given aspect words. However,
a pressing and challenging issue that requires urgent attention is how to determine the
polarity of aspect words and sentiment words in one step without specifying pre-existing
aspect words. In this scenario, where aspect words are not specified in advance, it is
necessary to first identify aspect words and opinion words and then combine aspect words
and opinion words to obtain aspect words and their corresponding sentiment polarity
(The aspect words, opinion words and sentiment polarity were referred to as triplets in
this paper). For example, consider the sentence “The taste is good but the service could
be better”. In this case, the aspect words are “taste” and “the service”, while the opinion
words are “good” and “could be better”. Consequently, the triplets derived from the above
sentence are (“taste”, “good”, “positive”) and (“the service”, “could be better”, “negative”).
It is worth noting that obtaining all these triplets from a comment sentence in a single
step poses a more intricate challenge compared with determining the sentiment polarity of
aspect words when the aspects are specified.

Therefore, the research questions considered in this study are as follows:
Research Question 1: What method can be used to obtain the polarity (triplet) of aspect

and sentiment in one step without giving the aspect?
Research Question 2: How can we solve the problem of possible discontinuity between

aspect and opinion in ASBA?
Research Question 3: What is the effect of the method derived from research question 1?
To solve the problem of extracting triplets from comments, Chen et al. [12] introduces

a methodology involving the construction of a term relationship matrix from all the words
present in the comments. Triplets are then extracted based on the assessment of these term
relationships. Based on Chen et al. [12], this paper introduces DREN designed to evaluate
term relationships.

39



Appl. Sci. 2024, 14, 2221

To address the above three issues, we proposed DREN. Our contribution is as follows:
first, we will transform the problem of extracting triplets into a word relationship classifi-
cation problem and define ten’s word relationships, which obtain the polarity (triplet) of
aspect and sentiment in one step. In words with more details, this paper employs BERT to
extract term information from the text to identify term relationships comprehensive, solves
the problem of nested entity term embedding, and obtains the relationship information
between words through the LBAM (Linear Biaffine Attention Mechanism) and GCN. Sec-
ondly, since aspect words and opinion words may appear non-sequentially in the sentence,
SWDA is employed to effectively capture the relationships between words situated at
varying distances from each other. Thirdly, this paper also uses the part-of-speech features,
syntactic features, relative position features, and tree distance relative features in the com-
ment to fully utilize the information in the comment text and integrates these features with
the text representation. The experimental results on a large number of publicly available
ASTE-related datasets demonstrate the effectiveness of the proposed model.

2. Review of Literature

ABSA (aspect-based sentiment analysis) is a fine-grained sentiment analysis that
involves three sequential tasks: aspect extraction, opinion extraction, and sentiment polarity
determination for aspect–opinion pairs. While existing works often focus on individual
tasks such as sentiment polarity with aspect words specified, there are also some works
on AOTE (Aspect and Opinion Term Co-Extraction). However, the identification of aspect
words, corresponding opinion words, and sentiment expressed by those opinion words
proposed in this paper belongs to a sequential task of aspect words, opinion sub-term, and
sentiment polarity judgement, and ASTE needs to be accomplished at once; therefore, this
section will provide a detailed description of these three inter-related tasks.

Since the introduction of deep neural networks for ABSA [4], numerous studies have
explored the application of deep neural networks to determine the sentiment orientation
of aspect words in text. Wang et al. [5] proposed using LSTM (Long Short-Term Memory)
combined with attention mechanism to address this task, and Ma et al. [6] proposed an
interactive attention mechanism to assess the importance of words expressing aspect words
in comments, while Li et al. [7] employed a collaborative attention mechanism to deepen
the interaction between aspect words and their contexts. Fan et al. [13] argued that when
both aspect words and contexts are long, the simplicity of the weighted sum attention
mechanism would introduce some noise; thus, they proposed a multi-granularity attention
mechanism to reduce irrelevant information. Since the application of BERT and GCN in the
field of NLP, a large number of works based on BERT and GCN have also studied ABSA,
such as Zhou et al. [10] and Zhang et al. [14].

In the AOTE task, Wang et al. [15] used the high-level semantic representation of each
term in its context through dependency syntax and recursive neural network to extract
aspect words and opinion words, the aspect words were associated with the opinion words,
and, finally, the aspect words and opinion words in the sentence were identified through
CRF (Conditional Random Fields). Dai and Song [16] proposed using BiLSTM-CRF (Bi-
Directional Long Short-Term Memory Conditional Random Fields) to extract aspect words
and opinion words. Wang et al. [17] argued that syntax-based methods exhibit low accuracy
when applied to unstructured text, and methods relying on the HMM (Hidden Markov
Model) and CRF require a large number of manual labels. Therefore, a coupled attention
mechanism is proposed to extract opinion words and aspect words. This mechanism
necessitates the use of two separate attention mechanisms for each sentence to capture
the direct and indirect relationships between aspect and opinion words. In addressing the
challenge of extracting aspect words and opinion words across domains, Wang and Pan [18]
proposed an Interaction Memory Network featuring local and global memory units, which
enabled aspect words and opinion words within the same domain to interact with each
other, as well as facilitating interaction between aspect words and opinion words across
different domains. Consequently, this approach achieved higher experimental results in
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the extraction of aspect words and opinion words across domains, eliminating the need for
additional resources. Chen et al. [19] stated that there are certain difficulties in extracting
aspect words and opinion words, such as the fact that the relationships between aspect
words and opinion words can be one-to-many, many-to-one, or even overlapping, while the
extraction of aspect words and opinion words is interdependent rather than independent;
therefore, when extracting these two types of entities, it is necessary to synchronously
determine the relationship between entities. Therefore, a new SDRN (Synchronous Double-
Channel Recurrent Network) model is proposed, which consists of an entity extraction
unit, a relationship detection unit, and a synchronization unit, enabling the simultaneous
extraction of entities and their relationships. Wu et al. [20] stated that it is unreasonable to
divide the AOTE task into multiple sub-tasks and extract them through multiple channels
and proposed a unified grid-labeling task to solve the AOTE task in an End-to-End manner.
In ASPE, the problems of small data and insufficient training are compensated by jointly
extracting aspect words and determining the sentiment classification task corresponding to
aspect words, as well as by training on other data and transferring some parameters to the
current network [21].

With the enormous prospects of social media cosmetic electronic word of mouth
(eWOM), it is imperative to examine the influence of cosmetic eWOM on social media and
for cosmetic marketers to understand the antecedents that result in cosmetic consumers
making a purchase [22]. Previous research shows that electronic word-of-mouth spread
through social media has a strong influence on customers’ purchase decisions [23]. In
recent years, the business community has delved into aspect words and their corresponding
opinion words in comments and made judgments on sentiment polarity in one step (i.e.,
ABSA triplet judgment). Since Li et al. [24] proposed this task, ASTE has received a
lot of attention from scholars. In words of triplet extraction, previous work divided it
into several parts, namely AOTE and AFOE. ASTE integrates these two tasks, with Xu
et al. [25] discovering a strong correlation between the three elements of a triplet and
designing a sequence labeling joint model that can capture the relationship between the
three elements to extract triplets. Mao et al. [26] transformed the triplet extraction task
into two Machine Reading Comprehension (MRC) problems. Firstly, the task of triplet
extraction was decomposed into tasks of AE, AOE, and SC; then, left MRC and right MRC
were used to process AE, AOE, and SC separately. Faced with the various ABSA sub-tasks,
Yan et al. [27] converted ABSA into a unified generative task. Based on the unified formula,
the model solved all ABSA sub-tasks using the End-to-End framework of the pre-trained
sequence-to-sequence model BERT and achieved good experimental results on ASTE. Chen
et al. [12] dealt with the triplet extraction task as a term relationship classification task
and defined ten categories of term relations. They used a multichannel network to extract
features such as vocabulary, grammar, syntax, and position. Experimental results on a large
dataset proved the effectiveness of this model.

In these works, the task of extracting aspect words, opinion words, and the sentiment
expressed by opinion words in a cascading way has a wider application scenario, and
cascading methods can also reduce losses and have higher accuracy.

Inspired by Chen et al. [12], we still define 10 word relationships to facilitate the
extraction of triplets and process DREN. And the following research hypotheses were made:

Research Hypothesis 1: DREN can obtain the polarity (triplet) of aspect and sentiment in one
step without giving the aspect.

Research Hypothesis 2: SWDA can solve the possible discontinuity problem between aspect
words and opinion words.

Research Hypothesis 3: DREN can achieve higher F1 values than GTS-BiLSTM and GTS-BERT.
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3. Model Building

3.1. Research Methodology

Inspired by Chen et al. and Jiao et al. [12,28], we proposed DREN to process the
ASTE, as shown in Figure 1, which is divided into encoding layer, information extraction
and fusion layer, and prediction layer. The three layers are introduced in detail in the
following text. As we described before, BERT have good presentation in semantics, and
GCN is good at extracting instruction information. So, in the encoding layer, we used
BERT, the Biaffine Attention Mechanism, and GCN to extract information, which included
semantic information, structural information, and syntactic information. We combined
other information, including part-of-speech information, dependency syntax information,
relative position information, and tree distance information, in the information extraction
and fusion layer to obtain a good representation. After that, SWDA was used to mitigate
redundancy in global attention and discontinuity between aspect words and opinion
words. Finally, triplets were extracted by predicting the relationships between words in the
prediction layer.

Figure 1. The Model of ASTE based on DREN.

When given a comment with n words, the task of the ATST was to extract the m
aspect words a, opinion words o, and s pairs of sentiment polarities from the comment,
i.e., T = {[a, o, s]m}. According to the definition in Chen et al. [12], the triplet extraction
task was transformed into a term relationship judgment task, and ten types of term rela-
tionships were defined (where o represents aspect words, while B_o,I_o,o represent the
beginning, end, and opinion words, respectively; where a represents aspect words, while
B_a,I_a,a represent the beginning, end, and opinion words, respectively; and POS, NEG,
and NEU represent positive, negative, and neutral sentiment polarity, respectively; the sign
* represents words that are not part of a triplet). Thus, the aspect term extraction, opinion
term extraction, and the sentiment orientation expressed by aspect words in the comment
were solved in one step. This paper uses the definitions of Chen et al.’s [12] pairs of triplet
relationships and further improved the accuracy of relationship categories by using DREN.
And this paper will continue to provide a detailed introduction to the model.

3.2. Encoding Layer

After obtaining the text X = [W1, W2, · · ·Wn] containing m pairs of aspect words a,
opinion words o, and sentiment polarity s, the semantic information of long dependency
and structure was fully captured. Then, the model input X into BERT, which is the
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encoder part of the Transformer [11]. A large number of studies have shown that BERT has
better semantic feature extraction ability in natural language processing tasks compared
with traditional LSTM and CNN. Afterward, through the last encoding layer of BERT,
H = [h1, h2, · · · hn] ∈ R

n×dh is obtained, where dh is the dimension of the vectors in BERT.
While this paper eventually transforms the triplet recognition task into a term relation-

ship discrimination task, it fundamentally involves the initial steps of entity identification,
followed by relationship determination between entities and subsequently sentiment polar-
ity assignment. The recognition of entities heavily depends on other information, such as
the syntactic structure, semantic structure, and part-of-speech structure within a sentence.
Hence, how to identify entities becomes one of the challenges that this paper needs to
address. To address this challenge, the obtained H, H is first input into LBAM. This mecha-
nism serves to facilitate the model in solving the nesting problem between entities. As a
classic neural network in entity recognition, the LBAM interacts through the boundaries of
entity heads and tails, thereby better identifying the boundary problems between entities.
The LBAM is shown in Formulas (1)–(5).

ha
i = MLPa(hi) (1)

ho
j = MLPo

(
hj
)

(2)

gi,j = haT
i U1ho

j + U2

(
ha

i
⊕

ho
j

)
+ b (3)

ri,j,k =
exp
(

gi,j,k

)
∑db

l=1 exp
(

gi,j,l

) (4)

B = Bia f f ine(MLPa(H), MLPo(H)) (5)

In Formulas (1)–(4), U1 and U2 are parameter matrices, and b is the bias vector, where⊕
represents a splice and MLP is a fully connected layer. Formulas (1)–(4) are used to

measure the K relationships between the words Wi and Wj in the same sentence through
the operations of full concatenation, planning etc. We used Formula (4) to normalize the kth
relationships between word i and word j. So, the db relationships of the comment sentence
with n words, namely B = [b1, b2, · · · bn] ∈ R

n×n×db , are determined. Afterward, we ob-
tained H through the Biaffine Attention Mechanism Network, where db is the dimension of
the vectors in the LBAM, in order to enhance the identification of entity and structure rela-
tionships. In this paper, B is used to further obtain the graph information features through
GCN to solve the problem of insufficient information in entity recognition. GCN [25] is
also widely used in natural language processing, such as BERT. So, GCN is a variant of
CNN (Convolutional Neural Networks). It is different from CNN and GCN regarding the
use of text as the structure of graph. Then, we obtained G = [g1, g2, · · · gn] ∈ R

n×n×dg after
convoluting the information of graph, in which dg is the dimension of the vector in GCN.

3.3. Information Extraction and Fusion Layer

Secondly, to fully exploit other information beyond semantics, this paper incorporated
part-of-speech information, dependency syntactic information, relative position informa-
tion, and tree distance information to broaden the expression of the semantic vector space
and enrich vector representation. So, it could improve the accuracy of entity recognition,
contributing to the improved judgment of relationships between words. The part-of-speech
information, dependency syntactic information, relative position information, and tree
distance information used in this paper are all provided in the dataset and are represented,
respectively, as Gpos = [g1, g2, · · · gn] ∈ R

n×n×dg , Gdepency = [g1, g2, · · · gn] ∈ R
n×n×dg ,

Gposition = [g1, g2, · · · gn] ∈ R
n×n×dg , and Gdistance = [g1, g2, · · · gn] ∈ R

n×n×dg through
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random initialization. After obtaining G, Gpos,Gdepency, Gposition, and Gdistance, this paper
first adds and subtracts matrices and normalizes them through So f tMax to integrate matrix
representations and find differences between matrices, and it fully integrates this informa-
tion and strengthens the relationships between words, as shown in Formulas (6) and (7).

Gadd = so f tmax
(

G + Gpos + Gdepency + Gposition + Gdistance

)
(6)

Gsub = so f tmax
(

G − Gpos − Gdepency − Gposition − Gdistance

)
(7)

To address the issue of discontinuity between aspect words and opinion words in
ABSA, this paper introduces a multiscale global network attention mechanism designed to
link discontinuous words. The multiscale global network attention mechanism was initially
introduced to mitigate redundancy in global attention modules in image processing [28].
Jiao et al. [28] asserts that attention mechanisms across different distances also prove
effective at addressing different distance of pixels. We think that it could also process the
discontinuity between the aspect words and opinion words. The structure of the SWDA is
shown in Figure 2.

Figure 2. Structure of SWDA.

For Gadd, when the scale r = 1, after the SWDA, Formula (8) is as follows.

X1 = SWDA(Q, K, V, r = 1) (8)

Among them, Q, K, and V are matrices of query, key, and value. They were the three
feature matrices obtained by Gadd through CNN, and each row of these three matrices
represented a query/key/value feature vector. For the query at position (i, j), in the original
feature mapping, the SWDA sparsely selected keys and values, with (i, j) as the center,
to perform the attention mechanism in sliding windows of different sizes, as shown in
Formula (9).

Xi,j = so f tmax(
qi,jKT

r√
dk

)Vr, 1 ≤ i ≤W, 1 ≤ j ≤ H (9)

W and H are the height and width of the feature map at position Xi,j. For position (i,
j), the width and height have a certain limit range:{(

i′ + j′
)∣∣i′ = i + p × r, j′ = j + p × r

} − 1 <= p. q <= 1 (10)

Similarly, when r = 3, X3 is obtained, X1 and X3 are then spliced after passing through
the linear layer. And Xadd is finally obtained. Xsub is similarly obtained. In order to better
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capture the relationships between words, the loss calculation used in this paper for G, Xadd
and Xsub consists of two parts, namely L, Ladd and Lsub, as shown in Formula (5).

L = Lg + αLadd + βLsub (11)

4. Experimental Process

4.1. Parameter Settings

In this paper, the text length n is defined as 102 because the text length of 100 can fit
the lengths of most sentences in the dataset, while the start and end characters of BERT are
+2. Therefore, any text that exceeds this limit will be truncated by experimentally looking
for hyperparameters. The BERT used is BERT-base-uncased, featuring default dimensions
of 768 and default layers of 12. The dimension of GCN is set to 300, with one layer. The
part-of-speech information, dependency parsing information, relative position information,
and tree distance information are initialized randomly with a dimension of 10. The batch
size is set to 16, the learning rate is set to 10−3, the dropout is set to 0.5, and α and β are set
to 0.1. The values r are set to 1 and 3.

In addition, this paper uses F1 as the evaluation standard for the experiment, as shown
in Formulas (12)–(14).

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2 × Precison × Recall

Precision + Recall
(14)

where TP means that the true case is positive and the predicted value is positive, FP means
that the true case is negative and the predicted value is positive, and FN means that the
true case is positive and the predicted value is negative.

4.2. Dataset Description

This paper uses two ABSA datasets of D1 and D2 from SemEval. Each dataset contains
information in the latter two domains, namely note reviews and restaurant data, in which
the note data are derived from the SemEval of 2014, while the restaurant reviews are
derived from the SemEval of 2014, 2015, and 2016. Each dataset is divided into training,
validation, and testing sets. SemEval of 2014 is split into 14res and 14lap, and SemEval of
2015 and SemEval of 2016 are selected in the res domain. Table 1 provides specific details
regarding the number of sentences in each dataset. Table 2 shows the numbers of aspect
words in each dataset.

Table 1. Statistics regarding the number of sentences in each dataset.

Dataset 14lap 14res 15res 16res

D1_train 899 1259 603 863

D1_vaild 225 315 151 216

D1_test 332 493 325 328

D2_train 906 1266 605 857

D2_valid 219 310 148 210

D2_test 328 492 322 326
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Table 2. Statistics regarding the number of aspect words in each dataset.

Dataset 14res 14lap 15res 16res

D1_train 1452 2356 1038 1421

D1_vaild 383 580 239 348

D1_test 547 1008 493 525

D2_train 1460 2338 1013 1394

D2_valid 346 577 249 339

D2_test 543 994 485 514

4.3. Comparison Experiment

To assess the effectiveness of the model of DREN in this paper, the Peng-two-stage-
IOG [27], GTS-CNN/GTS-BiLSTM/GTS-BERT [28], S3E2 [20], CMLA+ [29], RINANTE [29],
Li-unified-R [29], OTE-MTL [30], and JET-BERT [25] are chosen for comparison, in which
CMLA+, RINANTE+, Li-unified-R, and Peng-two-stage are Pipeline methods, while GTS-
CNN/GTS-BiLSTM/GTS-BERT, S3E2, OTE-MTL, and JET-BERT are End-to-End models.
The following is a description of several baselines:

Peng-two-stage-IOG: It divides the triplet extraction task into two stages. In the first
stage, BiLSTM and GCN are used to predict the possible descriptive aspect words and
opinion words; then, in the second stage, the aspect words and opinion words predicted in
the first stage are paired.

GTS-CNN/GTS-BiLSTM/GTS-BERT: It defines six kinds of word relationships, which
are encoded via CNN/BilISTM/BERT and attention mechanism on the encoder. After
pooling and some linear transformation operations, the SoftMax classifier is used to classify
the word relationships.

S3E2: In order to solve the long tail problem in the extraction of aspect words and
opinion words in review texts, the SoftProto framework makes samples related to each
other, thus allowing rare words to be extracted.

CMLA: It considers that the extractions of aspect words and opinion words need to
be correlated with each other and proposes using SWDA to correlate aspect words and
opinion words. Each layer of attention mechanism is composed of a pair of attention
mechanisms, one of which extracts aspect words and one of which extracts opinion words.
Through interactive learning, the extraction performance is improved.

RINANTE: It proposes to use BiLSTM-CRF to train the data, which is composed of
two parts: one is manually labeled data, and the other is automatically labeled based on
dependency syntax and Part-of-Speech annotators.

Li-unified-R: It uses a two-layer recurrent neural network to process the extraction
task. The first layer of the recurrent neural network is used to generate labeled results, and
the second layer is used to label the target boundary.

OTE-MTL: It proposes a multi-task learning framework for joint extraction of attribu-
tive words and opinion words while using bilinear affine attention mechanism to record
the sentiment dependency between words.

JET-BERT: It believes that attributive words, opinion words, and polarity judgments
need to be extracted in End-to-End, rather than through multiple stages. The paper
proposes using two kinds of location information to improve the extraction accuracy of
recognition: one is to mark the distance between the sentiment words and attributive words,
with attributive words as the center, and the other is to calculate the distance between
attributive words and sentiment words, with sentiment words as the center.

There are comparative experimental baseline and DREN results for two datasets in
Tables 3 and 4. Some baseline results can be found in [12,25,30,31].
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Table 3. Experimental results of the value F1 for the Dataset D1.

Model 14res 14lap 15res 16res

Peng-two-stage-IOG 59.64 47.02 48.71 58.67

GTS-CNN 65.94 51.38 56.64 64.73

GTS-BiLSTM 64.49 51.30 56.29 65.56

S3E2 66.74 52.01 58.66 66.87

GTS-BERT 70.20 54.58 58.67 67.58

DREN 72.27 56.75 61.41 65.84

Table 4. Experimental results of the value F1 for the Dataset D2.

Model 14res 14lap 15res 16res

CMLA 42.79 33.16 37.01 41.72

RINANTE 34.95 20.07 29.97 23.87

Li-unified-R 51.00 42.34 47.82 44.31

Peng-two-stage-IOG 51.46 42.87 52.32 54.21

OTE-MTL 58.71 43.42 47.13 56.96

JET-BERT 62.40 51.04 57.53 63.83

GTS-BERT 68.81 55.42 58.60 67.58

DREN 69.05 57.52 59.45 67.20

4.4. Discussion

As shown in Tables 3 and 4, Peng-two-stage-IOG, GTS-CNN, GTS-BiLSTM, S3E2,
GTS-BERT, and DREN are tested in D1, and CMLA, RINANTE, Li-unified-R, Peng-two-
stage-IOG, OTE-MTL, JET-BERT, and GTS-BERT are tested in D2. It can be seen that the
experiments on 14res, 14lap, and 15res in the DREN dataset all achieved the best results.
Peng-two-stage demonstrated poor performance on D1 and D2. CMLA+, RINANTE+,
and Li-unified-R had poor experimental results on D2, primarily attributed to the pipeline
approach, which overlooked the correlation between aspect term extraction and opinion
term extraction tasks, resulting in loss accumulation. Based on the performance of Peng-
two-stage, CMLA+, RINANTE+, and Li-unified-R on the dataset, it can be inferred that the
traditional two-step method of first identifying the attributed word and then identifying the
sentiment of the attributed word in the context is defective. GTS-CNN/GTS-BiLSTM/GTS-
BERT and S3E2 use End-to-End to identify relationships between words. GTS-BERT have
a better result than GTS- BiLSTM in D1. The reason for this result is that BERT has
been pre-trained on large-scale data and can provide a strong language understanding
ability. However, this method will overlook the importance of other information in entity
recognition, such as structural and syntactic information. OTE-MTL uses a bilinear affine
attention mechanism to recognize the boundary relationship between words, and JET-BERT
uses distance information. However, the information used by the above methods is limited,
and the task features are not fully utilized for the attribute word extraction and sentiment
orientation discrimination task. So, the DREN proposed in this paper not only considers
various available information comprehensively, thus enriching the expression of semantics,
and improves the accuracy of entity recognition, but it also further improves the accuracy of
term relationship discrimination. In the 16res dataset, the DREN’s performance is slightly
less effective than that of GTS-BERT. While enhanced with deep relationships, DREN also
introduces a small amount of noise, thus affecting the accuracy of the model.

This paper further illustrates the effectiveness of DREN through ablation experiments
on D2, as shown in Table 5, where Gother represents the comprehensive information of
Gpos, Gdepency, Gposition, and Gdistance. It can be seen that in the absence of Gpos, Gdepency,
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Gposition, and Gdistance, the F1 values of the four datasets all decline to varying degrees.
Compared with Gpos, Gdepency, Gposition, and Gdistance, SWDA makes a larger contribution,
thus further illustrating the effectiveness of SWDA on the model.

Table 5. Ablation experiment for Dataset D2.

Model 14res 14lap 15res 16res

DREN 69.05 57.52 59.45 67.20

(W/o) SWDA 67.45 55.05 58.89 65.85

(W/o) Gother 68.67 56.58 58.09 66.05

In order to validate the feasibility of the model, this section employs a case study for
illustration. The triplets in this review, “The food is surprisingly good, and the decor is nice”,
from res14 in D1, are (food, good, positive) and (decor, nice, positive). DREN successfully
identified the relationships between food and good and decor and nice. However, GTS-
BiLSTM and GTS-BERT both mistakenly considered good and nice to be opinion words for
the aspect term “food”, leading to incorrect judgments, as shown in Figure 3.

 

Figure 3. Case study.

The triplet extraction task is transformed into a term relationship judgment task,
and ten types of term relationships are defined (where o represents aspect words, while
B_o, I_o,o represent the beginning, end, and opinion words respectively; a represents aspect
words, while B_a,I_a,a represent the beginning, end, and opinion words respectively; and
POS, NEG, NEU represent positive, negative, and neutral sentiment polarity, respectively.
Compared to the method of extracting aspect and opinion words first and then combining
the two to judge sentiment. DREN can use the relationship between the words to extract the
triplet in one step. As for Research Hypothesis 2, from Table 5 and the case study that we
just discussed, we can see SWDA’s importance to our results. It is also better for processing
the difficulty of the main problem, which is how to associate aspect with opinion words.
Compared with GTS BiLSTM and GTS BERT, the DREN proposed in this paper not only
considers various available information comprehensively, thus enriching the expression of
semantics, but also improves the accuracy of entity recognition, as shown in Tables 3 and 4.

5. Conclusions

This paper proposes a DREN for identifying extracting triplet problems in ABSA in one
step. Firstly, the triplet extraction task is transformed into a relationship discrimination task
between words. To improve the conversion rate of the discrimination task, the BERT and
GCN methods are employed to enhance the semantic representation. Additionally, part-of-
speech information, dependency syntax information, relative position information, and
tree distance information are utilized to increase semantic richness and identify differences.
Then, SWDA is used to mitigate redundancy in global attention and discontinuity between
aspect words and opinion words. In capturing word relationships, the part-of-speech
information, dependency syntactic information, relative position information, and tree
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distance information enrich the representation. SWDA further improved the effect. Bert,
GCN, and LBAM are also crucial. We have noticed that in ASTE, a large number of
works are currently concentrated in the e-commerce field because there are already mature
datasets in the e-commerce field, but there are serious deficiencies in the education field,
especially in online courses and the reviews of online courses. Therefore, in the future,
we will consider generating ASTE data in the online education field, before applying
ABSA to the construction of the education field, and training the model by adding domain
information through prompts and other methods.
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Abstract: With the development of the Internet, the content that people share contains types of
text, images, and videos, and utilizing these multimodal data for sentiment analysis has become
an important area of research. Multimodal sentiment analysis aims to understand and perceive
emotions or sentiments in different types of data. Currently, the realm of multimodal sentiment
analysis faces various challenges, with a major emphasis on addressing two key issues: (1) inefficiency
when modeling the intramodality and intermodality dynamics and (2) inability to effectively fuse
multimodal features. In this paper, we propose the CCDA (cross-correlation in dual-attention)
model, a novel method to explore dynamics between different modalities and fuse multimodal
features efficiently. We capture dynamics at intra- and intermodal levels by using two types of
attention mechanisms simultaneously. Meanwhile, the cross-correlation loss is introduced to capture
the correlation between attention mechanisms. Moreover, the relevant coefficient is proposed to
integrate multimodal features effectively. Extensive experiments were conducted on three publicly
available datasets, CMU-MOSI, CMU-MOSEI, and CH-SIMS. The experimental results fully confirm
the effectiveness of our proposed method, and, compared with the current optimal method (SOTA),
our model shows obvious advantages in most of the key metrics, proving its better performance in
multimodal sentiment analysis.

Keywords: multimodality; sentiment analysis; attention mechanism

1. Introduction

Multimodal sentiment analysis (MSA) is an important branch in the field of artificial
intelligence. It aims to capture and understand human sentiment or emotion contained in
text, speech, images, or other types of data, usually including positive, negative, neutral, or
more specific emotional states such as joy, sadness, and anger [1]. In recent years, with the
popularity of online social platforms, a large amount of multimodal data has emerged on
the Internet. By analyzing data containing multiple modalities, computers can perceive
human sentiment in the data [2]. Multimodal sentiment analysis has attracted widespread
attention and it is widely applied in social media analysis [3,4], market research [5,6], and
human–computer interaction [7,8].

In early studies on multimodal sentiment analysis, researchers have mainly used
the following approaches to process multimodal data: The first one is early fusion, by
concatenating different unimodal features and subsequently processing the features using
different classifiers or models. For example, Morency et al. [9] used an HMM to process
three unimodal features simultaneously. Poria et al. used CNN- [10] and LSTM-based [11]
models to explore the contextual relationships between modalities. Zadeh et al. [12]
used Multi-Attention Block(MAB) and Long-Short Term Hybrid Memory(LSTHM) to
capture and store dynamics in multimodal features separately. Haohan et al [13]. used
a Select Additive Learning based on CNN to improve the generalization performance of
the model. The second method is late fusion, by training modality-specific classifiers for
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each modality and then predicting sentiment according to the weight of the classifier’s
results. For example, Glodek et al. [14] used Kalman filters as combiners for decision-
making. Cai et al. [15] first used several different CNNs and subsequently vectorized and
fused the output of the features from each CNN. Alam et al. [16] used Sequential Minimal
Optimization (SMO, a variant of SVM) with different kernel functions and fused their
results in decision-making.

Although these two methods were relatively simple, when dealing with modal fea-
tures, the model is unable to capture intra- and intermodality dynamics efficiently, which
may lead to poor model performance. The researchers then combined the advantages of
early and late fusion and proposed hybrid fusion. Poria et al. [17] used deep CNNs to
extract features and fused multimodal features using MKL and determine the weights of
textual modalities using a decision fusion approach in the final stage. Kumar et al. [18] used
gating mechanisms to selectively learn cross-modal interaction information and used the
results for sentiment prediction. Zhang et al. [19] used a multihead attention mechanism to
extract semantic and sentiment analysis, then train multiple base classifiers and ultimately
fuse the decisions of the base classifiers.

Word-level fusion fuses different modalities in a temporal step to obtain cross-modal
correlations. For example, Zadeh et al. [20] proposed a memory fusion network (MFN),
by simulating interactions within modalities and generalizing the temporal relationships
between different modalities, the sequence is ultimately unified based on the relationships
between unimodal word-level features. Subsequently, in [21], they proposed a Graph-
Memory Fusion Network and performed word-level fusion by using a dynamic fusion
graph. Paul et al. [22] proposed an LSTHM-based model to obtain cross-modal interac-
tions by performing a multi-stage fusion of modalities features between each time step.
Wang et al. [23] proposed a Recurrent Attended Variation Embedding Network (RAVEN),
by modeling the fine-grained structure in word segments and transforming word represen-
tations based on nonverbal dynamic information.

Tensor fusion uses different tensor-based computation methods to allow different
modalities to interact. Zadeh et al. [24] proposed Tensor Fusion Network (TFN), modal
correlations are obtained by computing the outer product between the feature tensors.
Zhun et al. [25] proposed Low-rank Multimodal Fusion (LMF) to solve the problem of
excessive complexity in tensor computation. Barezi et al. [26] introduced a modality-specific
deconstruction method in the model to reduce information redundancy. Liang et al. [27]
proposed a regularization method to learn cross-time and cross-mode correlations in low-
rank tensors. Tao et al. [28] correlated features at the same time step and further proposed
a dual low-order multimodal fusion method. Jin et al. [29] used LSTM-based and tensor-
based CNN networks to capture intra- and intermodal dynamic information encapsulated
in asynchronous sequences.

In recent years, a number of attention-based approaches have emerged. Through the
attention mechanism, the model can be made to acquire inter- and intramodal correlations
more efficiently. Poria et al. [11] used attention units to capture dynamics across modalities.
In [30–34], multihead and self-attention were used to perform cross-modal interactions,
respectively, and perceive emotional information that is not within the modality. In ad-
dition, the researchers used other attention-based methods such as Gate Recursive Units
(GRUs) [35,36] and Graph Convolutional Networks (GCNs) [37].

Nevertheless, there are still two main challenges in current multimodal sentiment
analysis research. The first one is inefficiency in modeling the intramodality and inter-
modality dynamics. Multimodal sentiment analysis requires processing data from different
modalities and correlating them to capture sentiment. It also needs to deal with sentiment
dependencies within a single modality to help the model understand sentiment more
accurately. The second one is the way in which different modal features are fused. Effective
integration of features from different modalities can improve the accuracy and robustness of
the model, which is crucial for the reliability of sentiment analysis in practical applications.
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In this paper, we use a transformer-based approach to capture sentiment information
and extract dynamics within and between modalities, and we introduce the relevant coeffi-
cient for the fusion of multimodal features. In addition, we propose a new cross-correlation
loss function for investigating the correlations between different levels of attention mecha-
nisms. Specifically, we obtain the intermodality dynamics between the global representation
and unimodal representation by using the cross-attention mechanism, which is the com-
ponent of the Transformer, so that they can strengthen themselves by learning about each
other in this process. At the same time, we obtain the intramodality information by using
the self-attention mechanism for three unimodal features, respectively. In addition, in
our research, we hypothesized that there is some correlation between different levels of
attention mechanisms, so we propose the cross-correlation loss to assess the interrelation-
ship between cross-attention and self-attention. The contributions of this paper can be
summarized as follows:

• We propose CCDA, a hierarchical model that studies intra- and intermodality correla-
tions by using self-attention and cross-attention, respectively. Moreover, we introduce
a new method to fuse multimodal features efficiently.

• We innovatively introduce a new cross-correlation loss function to study the correlation
between different levels of attentional mechanisms in more depth. The objective
function is minimized to cut down redundant information, which can help our model
to better perceive sentiment information.

• Extensive experiments demonstrate the effectiveness of our proposed methodology.
Our model achieves comparable results to the state-of-the-art (SOTA) approach in all
evaluation metrics on the CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets.

2. Related Works

Multimodal sentiment analysis aims to obtain sentiment information from different
types of data. It provides additional sources of information for affective computing and
enables computers to understand and perceive human sentiment more accurately [1–4].
A key challenge in this area is determining how to efficiently fuse data from different
modalities so that the model can recognize sentiment precisely. This section presents
related works on multimodal sentiment analysis, including early fusion, late fusion, hybrid
fusion, word-level fusion, tensor-based fusion, attention-based methods (Table 1 provides
a brief description of several of these methods), and other recent research approaches.

Early fusion combines all of the features from different modalities (text, audio, and
visual) into a single feature vector, which is then used for sentiment prediction using a
classification algorithm or model. Morency et al. input three unimodal features into the
HMM model simultaneously [9]. Poria et al. proposed a method using CNN networks [10],
by feeding unimodal features into a multikernel learning classifier. Following this, [11]
proposed an LSTM-based model to deal with different unimodal features and explored the
contextual relationships between modalities. Zadeh et al. [12] concatenated the multimodal
features at each time step, used Multi-Attention Block to capture the dynamics between
different modalities, and used a Long-short Term Hybrid Memory to store the dynamic
information associated with each modality. Haohan et al. [13] proposed a Select Additive
Learning based on CNN model (SAL-CNN) to improve the generalization performance
of the model. The advantages of these approaches are that they can take into account the
correlation between different modality features at the early stage. However, premature
fusion of unimodal features can prevent the model from capturing information about
the dynamics within the modalities, which can affect the model’s ability to perform fine-
grained classification.

In contrast to early fusion, late fusion employs independent classifiers separately for
unimodal data and then fuses the outputs of each model to generate the final multimodal
representation, or votes on the results of each model. Glodek et al. [14] used the Kalman
filter as the combiner for temporally ordered classifier decisions. It is a linear dynamical
system based on a Markov model which is well suited for real-time classifier fusion.
Cai et al. [15] used text CNN, image CNN, and multi CNN to process unimodal features
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and multimodal features, respectively; they used logistic regression as a classifier with
the vectorized features in the penultimate layer of different CNNs. In [16], Alam et al.
generated their classification models using Sequential Minimal Optimization(SMO, which
is a variant of SVM) for each feature set, and different kernel functions were used for
different feature sets. Finally, the results of classifiers for different feature sets were fused
using decision fusion. While late fusion helped the model to better integrate semantic
information. However, the model is not able to obtain the interactions between modalities
during the training process, which would prevent the model from capturing cross-modal
dynamic information. In addition, it is usually accompanied by a more complex model
structure and a larger number of parameters.

Table 1. Related works in multimodal sentiment analysis.

Method Type Description Advantages Flaws

Early fusion Combines all of the features from
different modalities into a vector.

Realizes modal interactions at the
early stage.

Time asynchrony and
information redundancy.

Late fusion Employs independent classifiers
separately for each modality.

Helps model to better integrate
semantic information.

Usually involves more complex
model structures.

Hybrid fusion Combines the advantages of early
fusion and late fusion Balance the model’s complexity.

Inefficiencies arising from the
limitations of the

backbone network.

Word-level fusion Fuses word representation in the
temporal dimension.

Helps model to understand the
intrinsic relation of
multimodal data.

Insufficient generalization.

Tensor-based
Utilizes various tensor-based

methods to integrate information
from different modalities.

Integrate multimodal data
effectively and address the

complexity and noise issues.

Excessive computation and lack
of interpretability.

Attention-based

Learns the semantic and relevant
information using different

attention mechanisms or
Transformer.

More flexible and accurate in
processing temporal information

and capturing interactions
between different modalities.

Correlations between different
attention mechanisms cannot

be captured.

Hybrid fusion combines the advantages of early fusion and late fusion, capitalizing
on their strengths and compensating for their weaknesses, respectively. Poria et al. [17]
proposed a method for extracting text features using deep CNNs and fusing multimodal
heterogeneous features using MKL, in addition to a decision-level fusion method that
determines the weights of the text modalities by the coupling of the sentiment modalities.
Kumar et al. [18] used gating mechanisms to selectively learn cross-modal interaction
information and utilized post-interaction results for sentiment prediction. Zhang et al. [19]
used multihead attention to extract accurate semantic and affective information in the rep-
resentation fusion stage, followed by training multiple base classifiers to make independent
judgments on different unimodal representations in the decision fusion stage, and finally
fusing base classifiers’ decisions. The core idea of this approach is to allow features to be
fused at different stages of the model while avoiding some of the potential problems of
early fusion and late fusion. However, the limitations of the baseline model itself at that
time made this type of fusion method not perform well enough.

Word-level fusion is a method that fuses word representations in the temporal dimen-
sion to capture the interrelationships between different modalities. This approach empha-
sizes word-level information interactions and helps to understand the intrinsic structure
and semantic relatedness of multimodal data in more detail. In [20], Zadeh et al. proposed
a Memory Fusion Network (MFN); they first modeled interactions within modalities and
generalized temporal relationships across modalities, ultimately unifying sequences based
on relationships between unimodal word-level features. Subsequently, in [21], they used a
Graph-Memory Fusion Network to perform unimodal, bimodal, and trimodal word-level
fusion for unimodal features, and captured intermodal interactions by using a dynamic
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fusion graph. Paul et al. [22] proposed an LSTHM-based model, obtaining cross-modal
interactions by performing multiple stage fusion of modalities features between each
time step. Wang et al. [23] proposed Recurrent Attended Variation Embedding Network
(RAVEN) by modeling the fine-grained structure in word segments and transforming word
representations based on nonverbal dynamic information. Word-level fusion enables the
integration of affective information from different modalities in word representations. How-
ever, this approach may result in the loss of specific affective information in the original
modality, and the complexity of word-level fusion increases further when multiple different
modalities are involved.

Tensor fusion utilizes various tensor-based methods to integrate information from
different modalities. These methods can effectively integrate multimodal data and address
the complexity and noise issues in the data. The tensor fusion network (TFN) [24] obtains
the dynamic correlation between modes by calculating the outer product of bimodal
and trimodal features. Zhun et al. [25] proposed a Low-rank Multimodal Fusion (LMF)
method to solve the problem of excessive computational complexity in TFN, and utilized
modality-specific low-rank factors for multimodal fusion to improve the efficiency. The
Modality-based Redundancy Reduction Fusion (MRRF) [26] introduces a modal-specific
decomposition method into the model, which removes redundant information from the
dependency structure and leads to fewer parameters with minimal loss of information.
Liang et al. [27] proposed a regularization method to minimize the rank of the tensor and
learn correlations across time and modes in low-rank tensors. Tao et al. [28] correlated the
features of a single time step between multiple modalities and further proposed a dual
low-order multimodal fusion method to reduce computational complexity. Jin et al. [29]
used LSTM-based and tensor-based CNN networks to discover intra- and intermodal
dynamics, and encapsulated them in an asynchronous sequence. However, tensor fusion
is often accompanied by high-dimensional data representations, which, again, increases
computational complexity while causing data sparsity. On the other hand, tensor fusion
reduces the interpretability of the model, which may limit the credibility and acceptance of
the model in practical applications.

Attention mechanism (Especially Transformer [38], proposed by Google in 2017) plays
a significant role in multimodal sentiment analysis; it helps models better understand
and leverage the interconnections and semantic information between different modalities,
and be more flexible and accurate in processing multimodal data. Chen et al. [39] and
Poria et al. [11] used an LSTM-based model as well as attentional units to capture the
dynamics across modalities. In [30–34], multihead and self-attention were used to capture
relevant information within or across modalities. In addition, the researchers additionally
used other methods, e.g., Gate Recurrent Unit (GRU) [35,36] and Graph Convolutional
Network (GCN) [37]. The Transformer exhibits strong generalization capabilities, making
it suitable for different types of multimodal sentiment analysis tasks.

In addition, there are other methods in multimodal sentiment analysis, such as multi-
task contrastive learning [40], dynamic filtering mechanism [41], bidirectional multimodal
dynamic routing mechanism [42], cross-modal hierarchical graph contrastive learning strat-
egy [43], supervised contrastive learning [20,44], dynamic refined sentiment words [45], etc.

Previous studies have viewed modality self-attention and cross-modal attention as
two separate units that cannot interact with each other. Therefore, in this study, we pro-
posed Cross-Correlation in Dual-Attention model (CCDA) to capture the correlations that
exist between the different attention layers, so that, after acquiring intra- and intermodal
information, respectively, the model can also enable them to exchange information that is
helpful for their respective learning. In addition, in the feature fusion stage, we propose a
strategy to help the model converge quickly, by calculating the relevant coefficients between
the unimodal self-attention features and the source feature representations to guide the
multimodal feature fusion.
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3. Methodology

3.1. Problem Definition

Multimodal sentiment analysis is a task that utilizes multiple modalities for the study
of human sentiment. Typically, it includes three modalities: text, speech, and images. We
define three modality feature sequences, Xm = {xm,1, xm,2, . . . xm,n}, and sample labels
Y = {y1, y2, . . . yn}, where the modality is represented as m ∈ {t, a, v} (t stands for text, a
stands for audio, and v stands for visual) and n represents the number of samples in the
dataset. Our goal is to input modality features Xm ∈ R

Tm×dm×n into a model to obtain an
accurate sentiment prediction label y ∈ R

1, where Tm and dm represent the sequence length
and the dimension of modality features separately.

3.2. Model Structure

In this section, we provide a detailed overview of the architecture of the CCDA (Cross-
Correlation in Dual-Attention) model, as shown in Figure 1. We first use three unimodal
encoders to obtain the utterance representation Udm×n

m and embedding FTm×dm×n
m by using

feature sequences Xm for each modality separately, which m ∈ {t, a, v}, Udm×n
m originate

from the feature representation in each unimodal encoder. This helps the model understand
the semantic and sentiment information in each modality.

Figure 1. The structure of CCDA. The global representation G consists of three unimodal represen-
tations {Ut, Ua, Uv}. The model processes the global representation G and the unimodal features
Fm using the dual-attention to obtain new global and unimodal representations {G′, Ũt, Ũa, Ũv} and
fuses these representations for sentiment prediction. The unimodal features {FS

t , FS
a , FS

v , FC
t , FC

a , FC
v }

generated during this process are used to learn the correlation between the two attention mechanisms.
The final objective function consists of the MSE loss LMSE and the cross-correlation loss Lc .
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Next, we delve into the dual-attention mechanism (which contains self-attention
and cross-attention), a core component of CCDA. By utilizing self-attention and cross-
attention, CCDA can capture sentiment information and dynamics within a single modality
(intramodality) and across different modalities (intermodality), respectively. This dual-
attention mechanism enables the model to comprehensively analyze multimodal data and
sentiment information, thereby improving the accuracy of sentiment analysis.

Following that, CCDA calculates cross-correlation losses between the embeddings gener-
ated by the two attention mechanisms while obtaining information about the intramodality
and intermodality dynamics. This contributes to the indirect interaction between the two
attention mechanisms and, thus, improves the model’s performance. CCDA then uses relevant
coefficients strategy to fuse the unimodal and multimodal representations obtained from these
two attention mechanisms to generate the final sentiment representation.

In the following parts, we elaborate on the three main components of CCDA: unimodal
encoders (Section 3.2.1), dual-level attention (Section 3.2.2), and fusion and prediction units
(Section 3.2.3).

3.2.1. Unimodal Encoders

Similar to EMT [33], we employ the pretrained BERT model to encode textual tokens
into context-aware word embeddings. Specifically, we notice that the [CLS] token of the
BERT model contains a sequential representation of the text modality. Therefore, we
use this token as the utterance representation for the text sequence, denoted as ut ∈ R

dt .
For the audio and visual modalities, we use LSTM recurrent neural networks to extract
temporal information from the feature sequences. Ultimately, we select the hidden state
of the last time step of the LSTM network for both the audio and visual modalities as
their respective utterance representations: ua ∈ R

da and uv ∈ R
dv . Simultaneously, we

need to process other tokens output by the BERT model and hidden states from LSTMs at
different time steps for later use in self-attention and cross-attention mechanisms. These
representations are denoted as Fm ∈ R

Tm×dm , m ∈ {t, a, v}, representing the text, audio, and
visual modalities, respectively.

Ft = BERT(Xt)

Fa = LSTM(Xa)

Fv = LSTM(Xv)

(1)

3.2.2. Dual-Level Attention

Attention mechanisms help the model better understand multimodal sentiment data
and perceive emotional information. They enable the model to capture dynamics within a
single modality or between different modalities during the multimodal sentiment process-
ing. The Transformer [38] is a language model in the field of natural language processing;
it is based on dot-product self-attention mechanisms. It employs self-attention to infuse
global semantic information and consider long-range dependencies for every word in the
sequence. Furthermore, the multihead mechanism allows the model to learn different
subspaces of semantics.

In simple terms, the Transformer processes the input sequence H ∈ R
T×d with posi-

tional encoding; it defines Query as Q = HWQ, Key as K = HWK, and Value as V = HWV ,
where W represents the weight matrices during the feature sequence mapping process.
Therefore, self-attention can be represented by Equation (2):

Sel f -Attention(H) = so f tmax(
QKT
√

dk
)V (2)

In MulT [30], the Query and K–V pair in the self-attention computation process come
from different modalities. Thus, MulT captures the interaction between the two modalities.
MulT combines three modality pairs and calculates bidirectional modality interactions for
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each pair. As shown in Equation (3), for two modality feature sequences H1 and H2, MulT
defines Query as Q1 = H1WQ, Key as K2 = H2WK, and Value as V2 = H2WV . It calculates
cross-modal attention in two directions between a pair of modalities:

Cross-Attention(H1 → H2) = so f tmax(
Q1KT

2√
dk

)V2

Cross-Attention(H2 → H1) = so f tmax(
Q2KT

1√
dk

)V1
(3)

EMT [33] concatenates three unimodal utterance representations into a multimodal
global representation. Inspired by EMT [33], we concatenate the utterance representations
from each modality um as the global representation G = Concat(ut, ua, uv) during the cross-
attention stage, where m ∈ (t, a, v). Subsequently, we utilize a Transformer to calculate
intermodality information between the modality feature sequences Fm ∈ R

len×d and the
global representation G ∈ R

3×d, as shown in Figure 2 and Equation (4).

Attention(G → Fm) = Cross-Attention(G → Fm)

Attention(Fm → G) = Cross-Attention(Fm → G) (4)

Figure 2. The structure of cross-attention. Cross-attention is used to capture dynamics between the
global representation G and unimodal representations Fm.

On the other hand, we utilize modality-specific Transformer encoder layers, de-
noted as Ls, to capture intramodality information for each modality individually (using
Equation (2)). After encoding each modality, we use the self-attention mechanism in Trans-
former to process the unimodal feature sequences separately, in which the embedding
at each position is able to learn the semantic and emotional information contained in
the sequences.

MulT [30] used directional encoders for bimodal interactions separately, and subse-
quently augmented these dynamics with self-attention mechanisms. EMT [33] achieved
cross-modal interactions by making global representations and unimodal sequences learn
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from each other, while ignoring modality-specific information present in the self-attention
unit. CCDA used both cross-modal attention and self-attention; first the two attention
mechanisms were isolated, and then it used the cross-correlation loss to make them to
interact after sufficiently learning the relevant intra- and intermodal information, respec-
tively. This preserves the specificity information of the different attention mechanisms and
optimizes the global representation by backpropagating the cross-modal feature sequences
during the training progresses. After the feature sequences in the self-attention module
learn the intermodal information of the cross-modal feature sequences, they are able to
increase the perceptual field of the final multimodal features and increase the generalization
performance of the model.

The use of dual-attention allows the model to process and analyze multimodal data
at two different levels, intermodality and intramodality, for a more comprehensive under-
standing and interpretation of multimodal sentiment data.

3.2.3. Modality Fusion

After passing through the cross-attention stage, the model obtains intermodality
information, which is reflected through the global representation G′, while in the self-
attention stage, to maintain consistency with the global representation, we employ Bi-
LSTMs to process the three single-modal feature sequences individually, obtaining each
unimodal representation. Meanwhile, we propose the relevant coefficients, which are
computed based on the relationship between the modal representation and the initial
representation. Relevant coefficients strategy can fuse the representations obtained from
dual-attention mechanisms and generate the final multimodal sentiment representation.

To be more specific, after learning intramodality information in the self-attention
stage, the model utilizes Bi-LSTMs to transform unimodal feature sequences into feature
representations U′

m ∈ R
b×d, which are specific to each modality. Subsequently, we calculate

relevant coefficients based on the correlation between this representation and the initial
modal representations Um ∈ R

b×d:

rm = ∑(Diag(tanh(U′
m)
⊗

tanh(Um))− 1)2 (5)

where
⊗

denotes matrix multiplication, and Diag(·) represents all the diagonal elements of
a square matrix. After obtaining the relevance coefficient rm for each modality, we multiply
it with U′

m to obtain the single-modal representation:

Ũm = rm × U′
m (6)

Here, rm is the relevance coefficient specific to each modality, and U′
m represents the

feature representation of the corresponding modality obtained through Bi-LSTMs.
After obtaining the representations for both intermodality and intramodality

{G′, Ũl , Ũa, Ũv}, we concatenate the unimodal representations {Ũl , Ũa, Ũv} with the global
representation G′ to create the representation for the sample. Finally, we employ sev-
eral linear layers in combination with activation functions to make predictions for the
ultimate result.

y = Pred(Concat(G′, Ũl , Ũa, Ũv)) (7)

3.3. Cross-Correlation Loss

Most of the current research uses attention mechanisms to capture relevant information
from both intramodality and intermodality, but few scholars consider the relationship
between these two different attention levels. In order to extract this relationship in dual-
attention, we propose a cross-correlation loss to obtain relevant information. By adding it
to the objective function, the model is able to accomplish an undirected interaction between
two different kinds of attention.
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As shown in Figure 3, we use linear projectors to expand the feature sequence di-
mensions of the two different attention mechanisms and perform modality-specific matrix
multiplication to obtain a set of matrices with a shape of (batch, length, length).

Cm = FS
m
⊗

FC
m (8)

where Cm represents the cross-correlation matrix of the m modality’s feature sequences in
two different attention mechanisms, m ∈ {t, a, v}. The diagonal elements in this matrix
represent the correlation between the corresponding positions of the two feature sequences,
while the off-diagonal elements represent the redundant information.

Figure 3. The cross-correlation matrix in dual-attention. We perform modality-specific matrix
multiplication on the two types of unimodal feature sequences to obtain a cross-correlation matrix,
and we use the diagonal elements of the matrix to represent the indirect interaction between these two
feature sequences. The deeper the diagonal elements in the matrix Cm, the stronger the correlation
between the two unimodal feature sequences at the corresponding positions is represented.

Taking the textual modalities of the samples in the CMU-MOSI dataset as an example,
as shown in Figure 4, the model maximizes the diagonal elements in the intercorrelation
matrix in order to capture the correlation between the different attentional mechanisms
during the training process. At the same time, nondiagonal elements are minimized in
order to reduce redundant information in this process.

Figure 4. The cross-correlation matrix.

LCorr =
1
M

·
M

∑
m
(

n

∑
i=j

(cij − 1)2 +
n

∑
i �=j

c2
ij) (9)

As shown in Equation (9). The term
n

∑
i=j

(cij − 1)2 in LCorr is the correlation term,

which denotes the correlation between the sequence of modality features of m in different

attention mechanisms, and the other term
n

∑
i �=j

c2
ij is the redundancy term. Intuitively, the

model increases the correlation between different attentional mechanisms by making the
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diagonal elements of the cross-correlation matrix close to 1. At the same time, it reduces
the redundancy term by making the off-diagonal elements of the cross-correlation matrix
close to 0.

3.4. Loss Function

We use MAE and Cross-Correlation loss as the final objective function. As shown in
Equations (10) and (11):

LMSE =
1
N

·
N

∑
i=1

|yi − ŷi| (10)

L = LMSE + λ · LCorr (11)

Where y denotes the true label of the sample and ŷ denotes the predicted label of the
model. Since the cross-correlation loss is calculated for all elements in the cross-correlation
matrix, setting the weight of the cross-correlation loss too high in the objective function can
cause the two attention mechanisms to lose their specificity and, thus, reduce the model
performance. Therefore, we set a scaling factor λ in the cross-correlation loss according to
the expansion of the feature sequence dimension. We conducted ablation experiments on
different scaling weights on two datasets, as shown in Section 4.3.

4. Experiment

4.1. Preparations
4.1.1. Datasets

A multimodal dataset collects information from different modalities, such as text,
speech, and vision, providing researchers with opportunities to gain a deeper understand-
ing and analysis of sentiment expression. Three publicly available datasets are used in
this article, including CMU-MOSI, CMU-MOSEI, and CH-SIMS. Figure 5 illustrates some
samples from the CMU-MOSI and CMU-MOSEI datasets, and Figure 6 illustrates the
CH-SIMS dataset.

Figure 5. Examples in the CMU-MOSI and CMU-MOSEI datasets.

Figure 6. Examples in the CH-SIMS dataset. The green box in the image captures the speaker’s
facial expression.
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CMU-MOSI [46] (Multimodal Opinion Level Sentiment Intensity) is a multimodal
dataset with character subjective sentiment and sentiment intensity annotations. It contains
2199 multimodal samples from 93 YouTube videos, with each video ranging from 2–5 min
and featuring 89 different speakers. Each video is annotated with sentiment intensity,
ranging from strong positive to strong negative on a scale from −3 to 3.

Another dataset is CMU-MOSEI [21] (CMU Multimodal Opinion Sentiment and
Emotion Intensity), an upgraded version of the CMU-MOSI dataset and one of the largest
sentiment analysis datasets covering multiple fields, including sentiment recognition. CMU-
MOSEI contains 23,453 manually annotated video clips from 5000 videos on YouTube,
including 1000 different speakers and 250 different topics, covering almost all topics in
daily life. CMU-MOSEI uses the same annotation method as CMU-MOSI.

In addition, considering the research on multimodal sentiment analysis in the Chi-
nese community, we also used CH-SIMS [47], a refined Chinese multimodal dataset. It
contains 2281 samples from 60 videos collected from movies, TV shows, and variety shows.
Compared to the first two datasets, it not only includes multimodal sentiment labels but
also provides independent fine-grained single-modality sentiment labels for each sample.
Each label in this dataset is manually annotated from −1 (strongly positive) to 1 (strongly
negative). The statistical information of these three datasets is shown in Table 2.

Table 2. Statistics of CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets.

Dataset Train Validation Test All

CMU-MOSI 1284 229 686 2199
CMU-MOSEI 16,326 1871 4659 22,856
CH-SIMS 1368 456 457 2281

4.1.2. Data Processing

We targeted the different modalities for processing. For the text modality, we used
the BERT-based-uncased model to encode the CMU-MOSI and CMU-MOSEI datasets.
In addition, for the Chinese multimodal sentiment dataset CH-SIMS, we used the BERT-
based-Chinese model for text encoding. This step helps to transform text data into vector
representations with rich semantic information.

When processing the speech modality, we used the COVAREP tool to extract audio
features, including pitch, glottal source parameters, and 12 Mel-frequency cepstral coeffi-
cients (MFCCs). These features capture sound frequencies, voice source properties, and
acoustic features in speech, providing important information for sentiment analysis. For
the CH-SIMS dataset, we used the Librosa toolkit in Python to extract speech features such
as log fundamental frequency, constant-Q chromatograms, and 20 MFCCs.

For visual modality, we used the Facet tool to extract 35 facial features for the CMU-
MOSI and CMU-MOSEI datasets, which record facial muscle movements related to sen-
timent. For the Chinese sentiment dataset CH-SIMS, we used the OpenFace 2.0 toolkit
to extract 17 facial action units, 68 facial landmarks, and some features related to head
posture and eye movements. These facial features capture information related to facial
expressions in sentiment expression, providing important visual data for multimodal
sentiment analysis.

4.1.3. Baseline

In the field of multimodal sentiment analysis, there exists a series of different baseline
models, each with its own characteristics. In order to comprehensively verify the perfor-
mance of the method proposed in this paper, we compared it with many current methods,
which mainly include the following:

TFN [24]. The tensor fusion network is a tensor-fusion-based method that computes
the triple Cartesian product between three modalities to explicitly capture intramodal-
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ity and intermodality dynamic information. It utilizes tensor operations to capture the
interaction and fusion of multimodal information.

LMF [25]. Similar to TFN, low-rank multimodal fusion also relies on tensor operations,
but it cleverly uses modality-specific low-rank factors to more efficiently compute multi-
modal representations, improving fusion efficiency while ensuring information quality.

MulT [30]. Multimodal Transformer adopts a bidirectional cross-modal attention
mechanism to calculate the relation between two different modalities separately. The
method is based on Transformer architecture, which can better capture dynamic information
between different modalities.

MISA [48]. Modality-invariant and-specific representations for multimodal sentiment
analysis. MISA uses a subspace learning approach to map each modality to two different
subspaces for learning, providing a comprehensive view of multimodal representation
learning and achieving better fusion results.

Self-MM [49]. The self-supervised multitask multimodal sentiment analysis network
designs an unimodal label generation module based on self-supervised learning to obtain
independent unimodal representations. It utilizes self-supervised learning to improve
model performance. Also, it jointly trains multimodal and unimodal tasks to learn modal
consistency and variability.

AMML [50]. Adaptive multimodal meta-learning uses a meta-learning approach
to train unimodal networks and applies them to multimodal inference. This method
focuses on network adaptability and optimizes unimodal representations through adaptive
learning rate adjustment for better multimodal fusion.

MMIM [51]. MultiModal InfoMax proposes a hierarchical maximization of mutual
information framework, which improves the consistency and information density of mul-
timodal representations by maximizing mutual information and preserves task-relevant
information through multimodal fusion.

EMT [33]. Efficient Multimodal Transformer proposes an efficient network based on
the Transformer architecture for integrating multimodal information. This network utilizes
unimodal encoders to obtain multimodal representations and enables mutual learning
between multimodal global representations and unimodal feature sequences.

4.1.4. Hyper-Parameter Setting

We use the Pytorch in deep learning to build our model and optimize it with the
Adam optimizer, and we adopt an early-stop strategy. Table 3 shows the parameter
settings for CCDA trained on CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets. In the
cross-attention section, we adopt the same hyper-parameter settings as EMT, and in the
self-attention section, we use the Transformer parameter settings in MulT. To reflect the
accuracy of the results, we conducted five experiments and averaged each metric in the
experimental results.

Table 3. Hyper-parameter settings of CCDA on three datasets.

Hyper-Parameter CMU-MOSI CMU-MOSEI CH-SIMS

Batch size 32 16 32
Early stop (epochs) 16 8 16
Learning rate 1 × 10−3 1 × 10−4 1 × 10−3

Optimizer Adam Adam Adam
Dimension of feature and representation 128 128 128
Transformer layers in cross-attention 3 2 4
Cross-attention heads 4 4 4
Transformer layers in self-attention 2 2 2
Attention dropout 0.1 0.1 0.1
Stacked LSTM layers for self-attention 2 2 2
Stacked LSTM dropout 0.1 0.1 0.1
λ in cross-correlation loss 5 × 10−5 5 × 10−5 1 × 10−3

Projector dims in cross-correlation loss 1024 1024 256
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4.2. Result Analysis
4.2.1. Evaluation Metrics

In regression tasks, we mainly use two metrics to measure model performance: mean
absolute error (MAE) and Pearson correlation coefficient (Corr). MAE is used to measure
the average absolute error between the model’s predicted values and the true labels, with
lower values indicating better model performance. Corr is used to measure the correlation
between the model’s predicted results and the true labels, with values closer to 1 indicating
better model performance. Additionally, we also convert the model’s output results into
classification task metrics, including Acc-k and F1-score. Acc-2, Acc-5, and Acc-7 on the
CMU-MOSI and CMU-MOSEI datasets and Acc-2, Acc-3, and Acc-5 on CH-SIMS are used
to evaluate the model’s accuracy in multiclassification tasks, with larger values indicating
better model performance. F1-score represents the harmonic mean of precision and recall
and is used to evaluate the balance between positive and negative categories. A higher
F1-score indicates better model performance in classification tasks.

4.2.2. Quantitative Analysis

The experimental data for TFN, LMF, MulT, MISA, Self-MM, and MMIM come
from [51]. For the other models, we conducted five experiments on each of the three
datasets using publicly available source code and averaged the experimental results for
each model. In all evaluation metrics, except for MAE, larger values indicate better model
performance. The experimental results are compared in Tables 4–6.

Table 4 shows the model’s results on the CMU-MOSI dataset. Compared to the EMT
model, CCDA improved by 0.009 on the regression metrics MAE and Corr. In terms of
classification task metrics, CCDA improved by 0.6% on Acc-2 and Acc-5 and 0.7% on Acc-7
and achieved a 0.6% improvement in F1-score over the best model. Similarly, as shown
in Table 5, CCDA’s performance on CMU-MOSEI improved by 0.003 on MAE, 0.006 on
Corr, 0.5% on Acc-7, 0.4% on Acc-5, 0.6% on Acc-2, and 0.7% on F1-score compared to EMT.
Table 6 shows the experimental results of the model on CH-SMIS, where CCDA achieved
better results on some metrics, such as 0.006 on MAE, 0.005 on Corr, 1.4% on Acc-3, 1.2%
on Acc-2, and 0.9% on F1-score. However, its performance on the 5-classification task was
slightly worse than that of the EMT model. We believe that while CCDA improves coarse-
grained sentiment classification, it does not improve much for fine-grained classification.

The experimental results show that the CCDA model using cross-modal attention and
self-attention is able to learn intra- and intermodal dynamics. Dual-attention makes the
model analyze the sample more comprehensively, and the cross-correlation loss enables
some degree of interaction between different levels of dual-attention mechanism. In
addition, the relevant coefficients guide the multimodal feature fusion stage, which allows
the model to improve performance while increasing the model’s generalization ability.

Table 4. Experiments on CMU-MOSI. Where ↑ indicates that the higher the metric the stronger the
performance of the model, and ↓ is the opposite. Bold numbers indicate the model with the best
results at that metric.

Models MAE (↓) Corr (↑) Acc-7 (↑) Acc-5 (↑) Acc-2 (↑) F1 (↑)

TFN [24] 0.901 0.698 34.9 - 80.8 80.7
LMF [25] 0.917 0.695 33.2 - 82.5 82.4
MulT [30] 0.846 0.725 40.4 46.7 83.4 83.5
MISA [48] 0.804 0.764 - - 82.1 82.0
Self-MM [49] 0.717 0.793 46.4 52.8 84.6 84.6
MMIM [51] 0.712 0.790 46.9 53.0 85.3 85.4
AMML [50] 0.723 0.792 46.3 - 84.9 84.8
EMT [33] 0.705 0.798 47.4 54.1 85.0 85.0

Ours 0.696 0.807 48.0 54.8 85.7 85.6
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Table 5. Experiments on CMU-MOSEI. Where ↑ indicates that the higher the metric the stronger the
performance of the model, and ↓ is the opposite. Bold numbers indicate the model with the best
results at that metric.

Models MAE (↓) Corr (↑) Acc-7 (↑) Acc-5 (↑) Acc-2 (↑) F1 (↑)

TFN [24] 0.593 0.700 50.2 - 82.5 82.1
LMF [25] 0.623 0.677 48.0 - 82.0 82.1
MulT [30] 0.564 0.731 52.6 54.1 83.5 83.6
MISA [48] 0.568 0.724 - - 84.2 84.0
Self-MM [49] 0.533 0.766 53.6 55.4 85.0 85.0
MMIM [51] 0.536 0.764 53.2 55.0 85.0 85.1
AMML [50] 0.614 0.776 52.4 - 85.3 85.2
EMT [33] 0.527 0.774 54.5 56.3 86.0 86.0

Ours 0.524 0.780 55.0 56.7 86.6 86.7

Table 6. Experiments on CH-SIMS. Where ↑ indicates that the higher the metric the stronger the
performance of the model, and ↓ is the opposite. Bold numbers indicate the model with the best
results at that metric.

Models MAE (↓) Corr (↑) Acc-5 (↑) Acc-3 (↑) Acc-2 (↑) F1 (↑)

TFN [24] 0.437 0.582 - - 77.1 76.9
LMF [25] 0.438 0.578 - - 77.4 77.4
MulT [30] 0.442 0.581 40.0 65.7 78.2 78.5
MISA [48] 0.447 0.563 - - 76.5 76.6
Self-MM [49] 0.411 0.601 43.1 66.1 78.6 78.6
MMIM [51] 0.422 0.597 42.0 65.5 78.3 78.2
AMML [50] 0.437 0.583 41.2 64.2 78.0 78.1
EMT [33] 0.396 0.623 43.5 67.4 80.1 80.1

Ours 0.393 0.628 43.3 68.3 81.1 81.0

4.3. Ablation Study

To validate the role of the dual-attention mechanism in the CCDA model and the
effects of the multimodal fusion strategy and cross-correlation loss on the performance of
the model, we conducted ablation experiments on two datasets, CMU-MOSI and CH-SIMS.

4.3.1. Dual-Attention Mechanisms

The MulT model first uses multiple cross-modal attention mechanisms between the
bimodal features and later uses a Transformer encoder. Throughout the training process,
the model does not capture modality-specific intramodal information, but, rather, directly
interacts cross-modally. While this enables unimodal features to perceive affective informa-
tion from neighboring modalities upfront, this will lose the modality specific information.
EMT splices the unimodal representation as a global representation and selects the Trans-
former encoder to interact with the global and unimodal representations, but in the process
does not model each modality individually, which can result in the model failing to capture
affective information that exists within a single modality.

We designed a set of experiments to verify the effect of different mechanisms in
dual-attention on model performance, as shown in Tables 7 and 8. The first rows of
Tables 7 and 8 validate the model performance in the case of using only the unimodal
self-attention mechanism, where we used the relevant coefficient to guide the unimodal
representations. The final multimodal feature has only three unimodal representations and
does not contain the global representation in standard CCDA. The second row verifies the
model performance in the case where only the cross-modal attention mechanism is used, in
which case the multimodal features are global representations, not containing unimodal
representations, and the relevant coefficients cannot be used. Neither of these cases uses
the cross-correlation loss. The third row indicates that we use the standard CCDA model
for training.
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Table 7. Impact of dual-attention in CCDA on CMU-MOSI. Where ↑ indicates that the higher the
metric the stronger the performance of the model, and ↓ is the opposite. Bold numbers indicate the
model with the best results at that metric.

MAE (↓) Corr (↑) Acc-7 (↑) Acc-5 (↑) Acc-2 (↑) F1 (↑)

Only self-attention 0.734 0.764 45.1 51.9 83.0 83.0
Only cross-attention 0.722 0.787 46.4 53.2 84.4 84.5
Standard CCDA 0.696 0.807 48.0 54.8 85.7 85.6

Table 8. Impact of dual-attention in CCDA on CH-SIMS. Where ↑ indicates that the higher the metric
the stronger the performance of the model, and ↓ is the opposite. Bold numbers indicate the model
with the best results at that metric.

MAE (↓) Corr (↑) Acc-5 (↑) Acc-3 (↑) Acc-2 (↑) F1 (↑)

Only self-attention 0.443 0.602 40.7 65.7 78.4 78.3
Only cross-attention 0.415 0.613 41.9 66.8 79.9 79.9
Standard CCDA 0.393 0.628 43.3 68.3 81.1 81.0

The data in the table show that when using self-attention, the model is unable to focus
on cross-modal interaction information and only fuses the representations of each modality
at a later stage. While the model performance improves when using only cross-attention,
this is due to the fact that it discriminates the sentiment attributes of the sample as a
whole from a global perspective, and compared to self-attention, cross-attention tends to
select the information that is the most beneficial to the overall judgment when performing
interactions. In the standard CCDA model, the model’s performance is optimal when
dual-attention is used at the same time, which suggests that CCDA retains as much of the
affective information in dual-attention as possible.

4.3.2. Fusion Strategy with Relevant Coefficients

Before performing multimodal fusion in the model, we adjusted the unimodal repre-
sentations based on the relevant coefficients computed between unimodal representations
and their respective initial modality representations. Subsequently, these representations
were concatenated with the global multimodal representation. To validate the effectiveness
of our proposed fusion strategy, we conducted experiments on both Chinese and English
datasets. We compared the performance of models with and without considering unimodal
relevant coefficients, where the unimodal representations, computed after self-attention
and subsequent Bi-LSTMs, were directly concatenated with the global multimodal represen-
tation, and then fed into the fusion and prediction module. We also compared these results
with the standard version of CCDA. The comparative experimental results are shown in
Tables 9 and 10.

According to Tables 9 and 10, it is evident that in multimodal fusion, the model’s
performance significantly improves when unimodal features are augmented with relevant
coefficients compared to direct concatenation. Specifically, there is a 1.5% improvement
in Acc-7. Therefore, the use of relevant coefficients in the multimodal feature fusion stage
enables the model to analyze the relations between the self-attention modality represen-
tations and the source feature representations, and, thus, to achieve higher accuracy on
multiclassification.

Table 9. Impact of correlation coefficients in fusion strategy on CMU-MOSI. Where ↑ indicates that
the higher the metric the stronger the performance of the model, and ↓ is the opposite. Bold numbers
indicate the model with the best results at that metric.

MAE (↓) Corr (↑) Acc-7 (↑) Acc-5 (↑) Acc-2 (↑) F1 (↑)

Direct Concat 0.713 0.790 46.5 53.8 85.2 85.2
Standard CCDA 0.696 0.807 48.0 54.8 85.7 85.6
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Table 10. Impact of correlation coefficients in fusion strategy on CH-SIMS. Where ↑ indicates that the
higher the metric the stronger the performance of the model, and ↓ is the opposite. Bold numbers
indicate the model with the best results at that metric.

MAE (↓) Corr (↑) Acc-5 (↑) Acc-3 (↑) Acc-2 (↑) F1 (↑)

Direct Concat 0.408 0.614 41.2 66.4 80.4 80.4
Standard CCDA 0.393 0.628 43.3 68.3 81.1 81.0

4.3.3. Cross-Correlation Loss

Additionally, this study assumes a certain degree of cross-correlation between self-
attention and cross-attention. Thus, we introduced a cross-correlation loss function to
facilitate indirect interaction between these two attention mechanisms. To assess the impact
of cross-correlation loss on model performance, we conducted ablation experiments on the
CMU-MOSI and CH-SIMS datasets, as shown in Tables 11 and 12.

Table 11. Impact of cross-correlation loss in the objective function on CMU-MOSI. Where ↑ indicates
that the higher the metric the stronger the performance of the model, and ↓ is the opposite. Bold
numbers indicate the model with the best results at that metric.

MAE (↓) Corr (↑) Acc-7 (↑) Acc-5 (↑) Acc-2 (↑) F1 (↑)

w/o corr loss 0.708 0.795 47.4 54.2 84.9 84.9
Standard CCDA 0.696 0.807 48.0 54.8 85.7 85.6

Table 12. Impact of cross-correlation loss in the objective function on CH-SIMS. Where ↑ indicates
that the higher the metric the stronger the performance of the model, and ↓ is the opposite. Bold
numbers indicate the model with the best results at that metric.

MAE (↓) Corr (↑) Acc-5 (↑) Acc-3 (↑) Acc-2 (↑) F1 (↑)

w/o corr loss 0.400 0.610 42.0 66.7 80.1 80.1
Standard CCDA 0.393 0.628 43.3 68.3 81.1 81.0

It can be observed that adding cross-correlation loss to the objective function signifi-
cantly enhances the model’s performance. This improvement is particularly pronounced in
multiclass tasks, indicating that cross-correlation loss has a substantial impact on model per-
formance in multimodal sentiment analysis. Further analysis reveals that cross-correlation
loss establishes a closer connection between self-attention and cross-attention in the model,
enabling better integration of information from multimodal data. This indirect interaction
helps the model better understand the relationships between different modalities, thereby
improving overall sentiment analysis performance. In multimodal sentiment analysis
tasks, such enhanced connectivity is highly beneficial. Moreover, the results on different
datasets demonstrate the universality of the improvement brought by cross-correlation
loss, indicating that it is not limited to specific datasets. This strengthens the scalability and
generality of our approach.

4.3.4. Scaling Factor in Cross-Correlation Loss

When calculating the cross-correlation loss, the model expands the dimensions of the
feature sequences. As a result, the values of elements in the correlation matrix become
relatively large. To balance the cross-correlation loss in the objective function, we introduced
scaling factors. Figure 7 illustrates the impact of scaling factors on the final results. Since
we set different feature dimensions for unimodal features from different datasets (128 for
CMU-MOSI and CMU-MOSEI, 32 for CH-SIMS), and applied different linear mapping
layers for dimension expansion when calculating the cross-correlation loss for different
datasets, the optimal scaling factors also vary. Specifically, we used 5× 10−5 for CMU-MOSI
and 1 × 10−3 for CH-SIMS.
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Figure 7. Impact of scaling weights in cross-correlation loss. Where a lower MAE (blue line) indicates
better model performance, showing an opposite trend to the other metrics.

5. Conclusions

In this paper, we introduced the cross-correlation in dual-attention (CCDA) model
aimed at fusing multimodal features and perceiving human sentiment analysis. We used
dual-attention to obtain information about the intra- and intermodal dynamics contained
in the samples from different perspectives, and in order to capture the relation that exists
between different attention mechanisms, we propose the cross-correlation loss, which
allows the cross-modal attention and the self-attention mechanism to complete a nondi-
rective interaction. In addition, we introduce a new fusion strategy in the multimodal
feature fusion stage by using correlation coefficients, which allows the initial unimodal
representation to guide the multimodal fusion.

We conducted comprehensive experiments on three commonly used public datasets
in the multimodal sentiment analysis domain, including CMU-MOSI, CMU-MOSEI, and
CH-SIMS. We compared the CCDA model with baseline models and found that our model
demonstrated a significant advantage on all three datasets. Through experimentation,
we demonstrated the strong performance of the CCDA model in multimodal sentiment
analysis tasks, offering new insights for further research and applications in this field.

Since the Transformer is used in this study, an issue that cannot be ignored is the
number of parameters of the model, which increases rapidly as the number of attention
block increases. In addition, the cross-correlation loss as well as the relevant coefficients
in this study were calculated using matrix multiplication, which increases the compu-
tational complexity of the model, and there is still some redundant information in the
calculation process.

Future research work:In view of the problems encountered in this study, future re-
search efforts should focus on (1) reducing the number of parameters of the model while
ensuring the model performance, (2) reducing the computational complexity of the model,
and (3) further reducing the redundant information generated during the training process
of the model.

Given the challenges faced in real-world multimodal sentiment analysis, especially in
scenarios involving missing modal information, future research could focus on enhancing the
model’s robustness and accuracy in handling missing modal information. This would ensure
the effectiveness and reliability of the model in a wider range of practical applications.
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Abstract: Researchers have recently focused on multimodal emotion recognition, but issues persist in
recognizing emotions in multi-party dialogue scenarios. Most studies have only used text and audio
modality, ignoring the video modality. To address this, we propose M2ER, a multimodal emotion
recognition scheme based on multi-party dialogue scenarios. Addressing the issue of multiple faces
appearing in the same frame of the video modality, M2ER introduces a method using multi-face
localization for speaker recognition to eliminate the interference of non-speakers. The attention
mechanism is used to fuse and classify different modalities. We conducted extensive experiments in
unimodal and multimodal fusion using the multi-party dialogue dataset MELD. The results show
that M2ER achieves superior emotion recognition in both text and audio modalities compared to the
baseline model. The proposed method using speaker recognition in the video modality improves
emotion recognition performance by 6.58% compared to the method without speaker recognition. In
addition, the multimodal fusion based on the attention mechanism also outperforms the baseline
fusion model.

Keywords: multimodal; emotion recognition; feature extraction; feature-level fusion; attention
mechanism; speaker recognition

1. Introduction

Emotions are unique and important forms of human expression [1]. When conducting
early research on emotions, Ekman [2] classified people’s basic emotions according to their
needs. In 1977, Picard proposed the concept of emotional computing [3], aiming to equip
computers with the ability to recognize, understand, express, and adapt to human emotions.
An important direction in emotional computing research is emotion recognition, which can
create more intelligent and harmonious user entities for applications such as lie detection,
audiovisual monitoring, online conferences, and human–computer interaction (HCI) [4].

Researchers often rely on unimodal emotion recognition [5]. Recently, significant
progress has been made in the research of unimodal approaches for text, audio, and video.
Particularly, facial emotion recognition (FER) technology has a wide range of applications,
including HCI, emotional chat, psychological diagnosis, and other tasks [6]. AffectNet [7]
is a widely recognized corpus for video modality emotion recognition. Currently, the
top three models in terms of accuracy for seven-class emotion recognition on AffectNet
are POSTER++ (67.49%) [8], Emotion-GCN (66.46%) [9], and EmoAffectNet (66.37%) [10].
Other studies related to FER are as follows: Bakariya et al. [11] created a real-time system
that can recognize human faces, assess human emotions, and recommend music to users.
Meena et al. [12] proposed a facial image sentiment analysis model based on a CNN. It is
discovered that more convolution layers, a strong dropout, a large batch size, and many
epochs can obtain better effects. Savchenko [13] studied lightweight convolutional neural
networks (CNNs) for FER task learning and verified the effectiveness of CNNs for FER.
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Meena et al. [14] utilized Inception-v3, along with additional deep features, to enhance
image categorization performance. A CNN-based Inception-v3 architecture was used for
emotion detection and classification. In a study by Saravanan [15], they found that CNNs
are highly effective for image recognition tasks due to their ability to capture spatial features
using numerous filters. They proposed a model consisting of six convolutional layers, two
max-pooling layers, and two fully connected layers, which performed better than decision
trees and feed-forward neural networks on the FER-2013 dataset. Li [16] used a CNN,
which extracts geometric and appearance features, and LSTM, which captures temporal
and contextual information on facial expressions. This CNN–LSTM architecture allows
for a more comprehensive representation of facial expressions by combining spatial and
temporal information. Ming et al. [17] presented a facial expression recognition method
that included an attention mechanism based on a CNN and LSTM. This model was able to
effectively extract information on important regions, better than general CNN–LSTM-based
models. Sang [18] focused on reducing intra-class variation in facial expression depth
features and introduced a dense convolutional network [19] for the FER task.

There has been an increase in the combination of transformers in various FER methods.
Xue [20] was the first to use the vision transformer for FER and achieved state-of-the-art
results. VTFF [21] excels in dealing with facial expression recognition tasks in the wild due
to its feature fusion. Chen et al. [22] introduced CrossViT, which uses dual branches to
combine image patches of different sizes to produce more reliable features. Heo et al. [23]
examined the benefits of pooling layers in ViT, similar to their advantages in CNNs.

However, in real-world scenarios, the video modality often presents complex data
formats. For example, multiple faces often appear in the same frame in multi-party dia-
logue scenarios, and the presence of non-speaking individuals’ faces can interfere with the
final emotion recognition. This is the reason why most of the existing research on multi-
modal emotion recognition in multi-party dialogues has not utilized the video modality.
Challenges such as speaker recognition, significant intra-class facial expression variations,
and subtle inter-class differences further highlight the room for improvement in emotion
recognition. Thus, there is still considerable scope for further research and exploration in
the field of emotion recognition.

It is hard to obtain accurate emotional information only through a single modality [24,25].
Compared with unimodal emotion recognition, multimodal emotion recognition can make
up for the noise interference caused by the single modality and make full use of the
complementary features between different modalities. Zadeh [26] conducted multimodal
sentiment analysis on three modalities of text, audio, and video for the first time and
released the first dataset containing text, audio, and video modalities—the YouTube dataset.
Rosas [27] proposed a multimodal research dataset—Moud—and conducted sentiment
analysis in sentences. Zadeh [28] constructed a large-scale multimodal dataset CMU-
MOSEI. In recent years, based on the above datasets, researchers have carried out many
classic multimodal emotion analysis methods based on text, audio, and video modalities.
Dai [29] combined multimodal feature extraction and fusion into a model and optimized
it at the same time, which improved the accuracy of emotion recognition in real-time
performance. Ren [30] used the self-supervised training model to fuse the features of text,
audio, and video modalities into non-standard classes and achieved better results than the
baseline model.

The focus of multimodal emotion recognition lies in how to extract features and
perform subsequent fusion. However, most of the current research on multimodal emotion
recognition only focuses on the stage of feature fusion, neglecting the initial stage of
unimodal emotional feature extraction. For example, in the case of the audio modality,
most studies directly extract audio features using open-source toolkits such as Librosa
and OpenSmile [31,32] and fuse them with features from other modalities. In the context
of multi-party dialogues, many researchers have focused on studying the text and audio
modalities while neglecting the video modality. Extracting comprehensive features from
individual modalities is a prerequisite for multimodal emotion recognition. The more
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comprehensive the extraction of emotional features from each modality, the better it can
reflect the characteristics of emotion.

There are three main methods of multimodal fusion: data-level fusion, feature-level
fusion, and decision-level fusion. The specific process of feature-level fusion is illustrated in
Figure 1. Feature-level fusion can fully leverage the advantages of each modality, effectively
integrate information from different modalities, and consider the correlation between
various data in different modalities. However, if the feature-level fusion is achieved by
directly concatenating the feature vectors, it will result in high-dimensional vectors, leading
to problems such as the curse of dimensionality.

Figure 1. The specific process of feature-level fusion, which involves extracting emotional features
from individual modalities, combining the obtained feature vectors in a specific way, and finally
using an emotion classifier to recognize the fused features.

Recently, many research works have focused on attention-based fusion and its variants,
such as self-attention, multi-head attention, and transformers [33]. The attention-based
fusion integrates the advantages of early fusion and late fusion and compensates for their
shortcomings [34]. The attention mechanism is a specialized structure that can be embedded
in the framework of machine learning models. By employing the attention mechanism, the
problem of information overload can be addressed. Furthermore, the attention mechanism
can provide an effective resource allocation scheme in neural networks [35]. As the number
of model parameters increases in deep neural networks, the model generally becomes more
expressive and capable of storing a greater amount of information. However, the increasing
number of parameters also demands significant computational resources during model
training, making it challenging. By incorporating the attention mechanism into neural
networks, it becomes possible to identify which data in the input sequence contributes more
significantly to the task at hand [36]. Consequently, more limited attention can be allocated
to the most valuable portions of information, while reducing attention or disregarding
irrelevant information, thus efficiently utilizing computational resources [37]. Hu [38]
proposed the Multimodal Dynamic Fusion Network (MM-DFN) to recognize emotions
by fully understanding multimodal conversational context. Wang et al. [34] proposed
a cross-attention asymmetric fusion module, which utilized information matrices of the
acoustic and visual modality as weights to strengthen the text modality.

Based on the above situation, we propose M2ER that optimizes the key steps of
multimodal emotion recognition in multi-party dialogue scenarios. We mainly focus
on how to fully utilize video modalities. The contributions of M2ER are summarized
as follows:

• We constructed suitable feature extraction models for text, audio, and video modalities.
Addressing the challenge of multiple faces appearing in a single frame in the video
modality, we propose a method using multi-face localization for speaker recognition,
thus extracting features from facial expression sequences of the identified speaker.

• For the multimodal fusion model, we adopted the feature-level fusion approach
utilizing a multimodal fusion model based on the attention mechanism. The extracted
unimodal emotional features are combined using cross-modal attention to capture the
intermodal interactions. Furthermore, the attention mechanism employed determines
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the contribution of each modality to the final emotion classification, enabling the
fusion with different weights.

• We conducted experiments on the Multimodal Emotion Lines Dataset (MELD) [39]
using both unimodal and multimodal fusion methods and further evaluated the
scalability of our models on the MEISD dataset [40]. The extensive experiments show
that our unimodal feature-based emotion recognition model of M2ER outperforms the
baseline models. The multimodal fusion model achieves higher recognition accuracy
compared to the unimodal emotion recognition systems. Moreover, our fusion model
of M2ER exhibits superior performance in multimodal emotion recognition tasks
compared to directly concatenated models.

The remaining parts of the paper are structured as follows: Section 2 presents the
detailed design of the proposed M2ER, including the extraction of unimodal features and
the multimodal feature fusion model. In Section 3, we outline the experiments conducted
on unimodal and multimodal emotion recognition separately and verify the scalability of
the models. Furthermore, we discuss the advantages of our work as well as the limitations
and future work in Section 4; Finally, Section 5 concludes the work of this paper.

2. Detailed Design

Figure 2 illustrates the overview framework of M2ER, which includes the extraction of
emotional features from text, audio, and video modalities, as well as the multimodal fusion
classification framework adopted in our work based on the attention mechanism. We will
introduce the detailed scheme of the unimodal extraction model in Section 2.1 and fusion
model information in Section 2.2.

Figure 2. The framework of M2ER. Detailed information will be introduced in the following
Sections 2.1 and 2.2.

2.1. The Unimodal Extraction Model of M2ER

We adopted a feature-level fusion method for multimodal emotion recognition, so we
need to perform feature extraction for each modality in the first step. The detail of feature
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extraction models of M2ER for the three modalities (including text, audio, and video) are
described in Sections 2.1.1–2.1.3.

2.1.1. Text Modality Preprocessing and Feature Extraction

We used the Embeddings from Language Model (ELMo) [41] pre-trained model to
obtain dynamic word vector features for the text modality. The core of ELMo lies in utilizing
a bidirectional Long Short-Term Memory (LSTM) [42] recurrent neural network structure
for feature extraction. During training, ELMo leverages the entire input text and considers
both forward and backward input sequence information simultaneously to obtain more
comprehensive text emotional features. We also adopted BERT [43] to extract semantic
information at the sentence level. BERT can be used to extract text emotional features, where
the proximity of words in the feature vector space reflects their semantic similarity [44]. The
BERT model utilizes the transformer as a feature extractor. When processing a task, BERT
first transforms the input text to obtain BERT input representation. Then, the transformer
encoder performs computations on the input, then the computed results serve as the input
for the next transformer encoder. This process is repeated, resulting in the representation
of the entire text.

In conclusion, in the feature extraction part of text modality, we utilized the pre-
trained model of ELMo and BERT to obtain text emotional features from the word-level
and semantic-level perspectives, respectively. Finally, the extracted features from both parts
were combined to obtain complete text emotional features. The process of text modality
feature extraction is illustrated in Figure 3.

Figure 3. Text feature extraction model.

2.1.2. Audio Modality Preprocessing and Feature Extraction

The representation of audio signals is quite diverse, and the way audio signals are
described greatly impacts the performance of subsequent feature extraction and emotion
recognition. The purpose of the preprocessing is to transform audio signals with different
quality into signals with smooth and uniform representative characteristics, which is
convenient for the subsequent feature extraction. Preprocessing includes pre-emphasis,
framing, and windowing. The next step is to process the data by transforming the raw
audio into spectrograms, which contain both temporal and frequency domain information.
These spectrograms are fed into a pre-trained model. Due to its excellent performance in
audio emotion recognition, the pre-trained DenseNet [19] network model was selected for
extracting emotional features from the spectrograms. The overall steps for audio emotion
feature extraction are illustrated in Figure 4.
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Figure 4. Audio feature extraction model.

Spectrograms visualize audio signals, and they can be regarded as color images in
terms of their representation. By using the two-dimensional image to describe the three-
dimensional information of time, frequency, and energy, the differences between different
audio data can more effectively captured. Moreover, spectrograms are two-dimensional,
colorful images, making them suitable for feature extraction using CNNs. The spectrograms
corresponding to the seven emotions are shown in Figure 5.

Figure 5. Spectrogram of seven emotions. The horizontal axis of the spectrogram represents the
temporal information of the audio signal, while the vertical axis represents the frequency of the audio
signal. The two-dimensional coordinates in the spectrogram represent the frequency of the audio at a
specific moment, and the intensity of the coordinates also reflects the energy of the audio. The darker
the color in the spectrogram, the higher the energy.

Finally, each spectrogram corresponding to each short-time frame is input into DenseNet
to extract emotional features from the spectrogram. The detailed architecture of the
DenseNet used for feature extraction is shown in Figure 6.

Figure 6. Structure of DenseNet in our method.
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2.1.3. Video Modality Preprocessing and Feature Extraction

Capturing the emotional features of facial expressions from speakers accurately is a
key challenge in implementing video-based emotion analysis. In real-life applications, the
analysis is typically focused on the emotions of the subject (usually human) in a video,
and human emotions tend to change slowly over time. Therefore, it is not necessary to
analyze every frame in the video when extracting emotional features. Sampling frames
from the video and analyzing those samples is sufficient. However, there are usually
multiple faces present in the same frame in the case of multi-party dialogue scenarios.
The facial expressions of unrelated persons can interfere with the analysis of the speaker’s
emotions. Therefore, the challenge in analyzing facial expressions in multi-party dialogue
scenarios is how to isolate the facial expressions of the speaker.

We selected MELD, which is a widely used multi-party dialogue dataset. In our study,
we first read all the sample data from the dataset. For all the video data, we sampled every
fifth frame and applied multi-face localization to locate all the faces in the sampled frames,
as shown in Figure 7. There are three persons: Rachel, Monica, and Phoebe with distinct
facial expressions, i.e., neutral and anger. The facial expressions of the non-speakers (Rachel
and Monica) in the frame can affect the emotion recognition of the real speaker (Phoebe).
Therefore, it is necessary to exclude the faces of unrelated persons from the frames. Then,
we extracted facial expression images of all the faces in the sampled frames.

Figure 7. An example of multiple face detection technology locating all faces.

The facial expression image obtained in the previous step is for everyone in the picture,
including both the speaker and the non-speaker. We use the speaker recognition method
to extract the facial expression sequence of the speaker in the video. The length of the
video modality in MELD is set to correspond to a single sentence in the text modality. The
text modality also provides speaker annotations for each sentence in the dialogue. We can
determine who is speaking in the video by loading the labels from the text modality. We
applied speaker recognition to filter out the facial images of the speaker for each video
segment. Figure 8 illustrates the changes in a speaker’s facial expressions in a specific
sequence of video segments.

Figure 8. The changes in the speaker’s facial expression. For each video segment, the number of
facial expression images obtained through the previous steps is different. To ensure a consistent
frame count for each video segment, a trimming and padding process is performed.

Firstly, the average number of facial expression frames obtained is calculated for each
video segment in the dataset after the previous steps. During the experiment, we chose
to retain a sequence of 30 frames for each video segment. For segments with fewer than
30 frames, zero-padding is used to fill the remaining frames, while for segments with
more than 30 frames the sequence is trimmed to 30 frames. After that, the 30-frame facial
expression sequence represents the entire video segment, and it can be directly input into
the facial feature extraction model.
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In the stage of feature extraction, we input the facial expression sequences of the
speaker obtained from the previous steps into a pre-trained model VGG16 [45] to extract
emotional features from each frame. Since facial expressions are slow-changing sequences,
we also adopted LSTM to capture temporal context information through multiple rounds
of training, thereby obtaining richer and more comprehensive emotional features.

The specific process for extracting emotional features from the video modality is
shown in Figure 9. The preprocessing primarily involves using the OpenCV library to read
video frame data. Then, our speaker recognition method of M2ER is applied to filter out
the facial expressions of the speaker in the video. As a result, the complete video samples
are processed into facial expression sequence images with dimensions of (30, 3, 224, 224).
The feature extraction stage utilizes a combination of VGG16 and LSTM. The output from
the fully connected layers is used as the emotional feature vector of the video modality.

Figure 9. Video feature extraction model.

2.2. Multimodal Emotion Recognition Based on Attention Mechanism

Building an effective multimodal fusion model is a crucial step in multimodal senti-
ment recognition. We adopted a feature-level fusion approach to combine the emotional
features extracted from the text, audio, and video modalities obtained by the aforemen-
tioned models. Current research on multimodal sentiment recognition often relies on
extracting a large number of features to identify emotion. However, directly concatenat-
ing these features can lead to the curse of dimensionality, and there is no distinction in
their importance, which may result in the overshadowing of relatively significant features.
Furthermore, there are often correlations among the features from the text, audio, and
video modalities. Additionally, it is observable that people express emotion differently in
real-life scenarios, but existing multimodal fusion models often overlook this phenomenon.
The attention mechanism can be used in neural networks to achieve more effective re-
source allocation. Based on these issues, M2ER explores an attention-based multimodal
fusion model.

Our fusion model consists of three main parts: (shown in Figure 2).

(1) Cross-Modal Attention Interaction—Part 1: This module utilizes cross-modal attention
to capture the intermodal relationships and obtain the feature representation of the
interaction between different modalities.

(2) Multimodal Attention Fusion—Part 2: This module employs the attention mechanism
to determine the importance of each modality in the final fusion classification. It
obtains the weight distribution of each modality’s features in the fusion process and
performs the fusion accordingly.

(3) Finally, the fused multimodal features are passed through the softmax classification
layer for emotion recognition.

2.2.1. Cross-Modal Attention Interaction

Because multimodal emotion recognition often involves a large number of features,
determining the importance of these features and capturing the relationships among
multimodal emotional features are key issues. In our fusion model, we incorporate the
emotional features extracted from the text, audio, and video modalities. This is achieved by
utilizing cross-modal attention to facilitate the interaction among different modalities. The
input to the Cross-Modal Attention Interaction—Part 1 is the emotional features of the text,
audio, and video modalities, represented as MT , MA, and MV , respectively. The specific
architecture of Part 1 is shown in Figure 10.
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Figure 10. Cross-modal attention interaction architecture.

Taking the example of inputting the text and audio modality into the Cross-Modal
Attention Interaction module, MT∗ represents the feature representation with interaction
obtained from the text through this module. The calculation formula for MT∗ is shown
in Equations (1)–(3). Similarly, MA∗

represents the feature representation with interaction
obtained from the audio modality through the T-A attention module. The calculation
formula for MA∗

is shown in Equations (4)–(6).

HTA = MT MAT
, (1)

αTA = so f tmax(HTA, (2)

MT∗
= (αTA MT) ∗ MT , (3)

HAT = MA MT T
, (4)

αAT = so f tmax(HAT , (5)

MA∗
= (αAT MA) ∗ MA, (6)

where HTA and HAT represent the cross-modal interaction information between the text and
audio modalities. αTA and αAT represent the scores obtained for the text and audio modali-
ties in the cross-modal attention interaction. By applying the soft attention mechanism to
the emotional features of the input text and audio modalities in Part 1 and multiplying MT ,
MA with the corresponding elements of their respective matrices, we obtain the feature
representation with interaction for the text and audio modalities MT∗, MA∗.

Part 1 is divided into three main parts: text–audio attention interaction (T-A), text–
video attention interaction (T-V), and audio–video attention interaction (A-V).

(1) T-A: The emotional features MT , MA of the input text and audio modalities in Part 1
are used to obtain the interaction representation between text and audio MT∗, MA∗

through cross-modal attention;
(2) T-V: The emotional features MT , MV of the input text and video modalities in Part 1

are used to obtain the interaction representation between text and video, MT1∗, MV∗

through cross-modal attention;
(3) A-V: The emotional features MA, MV of the input audio and video modalities in Part

1 are used to obtain the interaction representation between audio and video MA1∗,
MV1∗ through cross-modal attention.

Finally, we obtained the interaction feature representations of the text modality: MT∗,
MT1∗; the interaction feature representations of the audio modality: MA∗, MA1∗; and the
interaction feature representations of the video modality: MV∗, MV1∗. These represen-
tations are concatenated with the respective emotional features of each modality using
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fully connected layers to obtain the complete representation of the text, audio, and video
modalities’ emotional features. The calculation formulas for this process are shown in
Equations (7)–(9).

FT = tanh(WT [MT ⊕ MT∗ ⊕ MT1∗] + bT), (7)

FA = tanh(WA[MA ⊕ MA∗ ⊕ MA1∗] + bA), (8)

FV = tanh(WV [MV ⊕ MV∗ ⊕ MV1∗] + bV), (9)

WT , WA, WV , bT , bA, bV are the parameters to be learned, ⊕ denotes the concatenation
operation. By performing the concatenation operation, we obtain the final text emotional
features FT

i , audio emotional features FA
i , and video emotional features FV

i for Part 1.

2.2.2. Multimodal Attention Fusion

People often express emotions in different ways in reality. Some people prefer to
express their emotions through various facial expressions while others through different
tones of voice. Based on this phenomenon, it can be inferred that different modalities
of emotional features contribute differently to the final emotion classification. Therefore,
in our fusion model, an attention mechanism was adopted to determine the importance
of each modality in the final classification. Specifically, the attention mechanism is used
to allocate attention weights to the emotional features FT , FA, and FV obtained in Part 1.
Finally, these weighted features are summed to obtain the fused emotional feature, denoted
as F∗. The calculation process is illustrated in Equations (10)–(12):

HX = tanh(WX
attF

X + bX
att), (10)

βX = so f tmax(HX), (11)

F∗ = ∑
X

FX βT
X , (12)

where X represents the modality, which can be text, video, or audio. HX represents the
hidden unit state, WX

att represents the weights, and bX
att represents the biases. Equation (11)

is used to normalize the weight vector. The resulting F∗ is then fed into the fully connected
layer and the softmax classification layer for emotion classification.

3. Evaluation

3.1. Dataset Introduction

This study primarily adopted MELD for experiments. MELD is a multimodal dataset
based on dialogues which is widely used for emotion recognition. The dataset consists of
over 1400 dialogues, which contain more than 13,000 utterances. Due to the presence of
multiple speakers in the same scenario, multi-party dialogues are more challenging than
binary dialogues.

For each dialogue segment in MELD, researchers have annotated the corresponding
emotion category for each utterance. Table 1 presents the emotion distribution in MELD.
Table 2 provides several key statistical data of the dataset. By analyzing the emotion
distribution in the training, validation, and test sets, it can be observed that the emotion
distribution in the dataset is uneven. The majority of emotions are neutral, while the
categories of fear and disgust have fewer instances. So, we conducted further experiments
on the MEISD dataset with a more balanced emotional distribution to verify the scalability
of our model.
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Table 1. The emotion distribution in MELD.

Emotion Training Set Test Set Validation Set

Anger 1109 153 345
Disgust 271 22 68

Fear 268 40 50
Joy 1743 163 402

Neutral 4710 470 1256
Sadness 683 111 208
Surprise 1205 150 281

Table 2. The detailed distribution of MELD. In the training, validation, and test sets, the average
utterance length is almost the same.

MELD Statisic Training Set Test Set Validation Set

No. of modalities {a, v, t} {a, v, t} {a, v, t}
No. of unique words 10643 2384 4361

Avg./Max utterance length 8.0/69 7.9/37 8.2/45
No. of dialogues 1039 114 280
No. of dialogues dyadic MELD 2560 270 577
No. of utterances 9989 1109 2610
No. of speakers 260 47 100

Avg. No. of utterances per dialogue 9.6 9.7 9.3
Avg. No. of emotions per dialogue 3.3 3.3 3.2
Avg./Max No. of speakers per
dialogue 2.7/9 3.0/8 2.6/8

No. of emotion shift 4003 427 1003
Avg. duration of an utterance 3.59 s 3.59 s 3.58 s

3.2. Experimental Setting

In our work, the experiments primarily utilized Python with PyTorch. Table 3 displays
the hardware configuration used during the experiments. Python 3.7 with PyTorch 1.12.1
was installed on the PC via Anaconda.

Table 3. The server hardware configuration information.

Graphics Card Server RAM

NVIDIA GeForce RTX 3090 Ti AMD Ryzen 9 5950X 16-Core Processor 3.4 GHz 32 G

Our experiment used the cross-entropy loss function and optimized the model param-
eters using the Adam optimizer [46] with the learning rate of 0.001. To prevent overfitting,
We applied the dropout rate of 0.2. The model was trained for 100 epochs with the batch
size of 64, which we found to be the most effective.

The experiment was mainly divided into three processes: training, validation, and
testing. The model was trained on the training set of MELD, and the validation set was
used to observe the training progress of the model and adjust relevant parameters based
on the actual training process. Finally, the trained model was used to predict the results on
the test set.

3.3. Performance Evaluation

Precision, Recall, and F1 Score are the main key performance indicators used to
compare the performance of various models or algorithms [47]. Precision is the ability of
the classifier not to label as positive a sample that is negative, and Recall is the ability of the
classifier to find all the positive samples. The F1 Score can be interpreted as a weighted
harmonic mean of the Precision and Recall. All of them were computed for the proposed
model and other baseline models. In our experiment, the micro-F1 Score was used as the
evaluation metric.
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For binary classification evaluation metrics, the calculation formula for F1 Score is
shown in Equations (13)–(15), as follows:

Recall =
TP

TP + FN
, (13)

Precision =
TP

TP + FP
, (14)

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

, (15)

where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives.
Multiclass evaluation metrics are derived from binary classification evaluation metrics.

The micro-F1 Score takes into account the issue of class imbalance. This approach calculates
the global Precision and Recall directly based on individual samples. The calculation
formulas are shown in Equations (16)–(18), as follows:

Precisionmicro =
∑L

i=1TP

∑L
i=1TP + ∑L

i=1FP
, (16)

Recallmicro =
∑L

i=1TP

∑L
i=1TP + ∑L

i=1FN
, (17)

micro − F1 =
2 · Precisionmicro · Recallmicro
Precisionmicro + Recallmicro

, (18)

3.4. Results of Unimodal Experiments

This section primarily outlines the related experiments conducted on MELD, compar-
ing our proposed method with commonly used baseline models for emotion recognition.
Specifically, we compare the Text-CNN (text modality only) [48], bcLSTM [49], and Dia-
logueRNN [50] models with our proposed model.

In these experiments, due to the imbalanced distribution of emotions within MELD,
we utilized micro-F1 and weighted-average F1 (w-avg F1) as evaluation metrics. Table 4
presents the results for the seven emotion categories on the test set.

Table 4. Scores for unimodal emotion classification on the test set. To facilitate a clearer comparative
analysis, this table was transformed into a bar chart as shown in Figure 11.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

text-CNN text 34.49 8.22 3.74 49.39 74.88 21.05 45.45 55.02

bcLSTM text 42.06 21.69 7.75 54.31 71.63 26.92 48.15 56.44
audio 25.85 6.06 2.9 15.74 61.86 14.71 19.34 39.08

DialogueRNN text 40.59 2.04 8.93 50.27 75.75 24.19 49.38 57.03
audio 35.18 5.13 5.56 13.17 65.57 14.01 20.47 41.79

M2ER
text 40.45 15.24 5.55 53.31 77.57 37.85 52.42 60.05

audio 31.51 9.02 5.25 29.08 64.84 13.06 20.13 43.39
video 24.43 6.62 4.54 22.89 63.68 20.07 29.44 42.73

It can be observed that the emotion recognition performance in the text modality is
generally better than that in the audio and video modalities. The text modality achieved
a w-avg F1 of 60.05%, which is an improvement of 9.14%, 6.4%, and 5.3% compared to
the Text-CNN, bcLSTM, and DialogueRNN models, respectively. The audio modality
achieved a w-avg F1 of 43.39%, which is an improvement of 10.03% and 3.8% compared
to the bcLSTM and DialogueRNN models, respectively. These results demonstrate the
effectiveness of the text and audio modality feature extraction models, surpassing the
performance of popular baseline models.
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Figure 11. Performance results of different models of text and audio modalities on MELD. The figure
shows the comparison of the w-avg F1 values for different models in text and audio modality emotion
recognition on MELD.

3.5. Results of Multimodal Experiments

Relevant experiments were conducted on the training, validation, and test sets of
MELD. The experimental results are shown in Table 5. This model utilizes cross-modal
attention interaction to capture correlated information between modalities, obtaining
feature representations with interactive effects. By using the attention mechanism, it
determines the importance of each modality in the final fusion classification and combines
the multimodal information.

Table 5. Scores for the seven emotion classifications on the test set. “text + audio + video” represents
our attention-based multimodal fusion model. This table was transformed into a bar chart, as shown
in Figure 12.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

bcLSTM text + audio 43.39 23.66 9.38 54.48 76.67 24.34 51.04 59.25

DialogueRNN text + audio 43.65 7.89 11.68 54.40 77.44 34.59 52.51 60.25

M2ER

text 40.45 15.24 5.55 53.31 77.57 37.85 52.42 60.05
audio 31.51 9.02 5.25 29.08 64.84 13.06 20.13 43.39
video 24.43 6.62 4.54 24.89 63.68 20.07 29.44 42.73

text + audio + video 43.75 16.93 9.62 56.63 80.11 41.67 54.14 62.83

Comparing the results in Figure 12 shows that our three-modality fusion emotion
recognition model achieved a w-avg F1 score of 62.83%, outperforming the individual
modalities of text, audio, and video in emotion recognition. Compared to unimodal data,
multimodal data can capture more diverse emotional features. Multimodal fusion can also
compensate for the limitations of individual modalities. Furthermore, our multimodal
fusion model shows improved fusion performance compared to several baseline models.
It was found that the recognition results for disgust and fear were not satisfactory. To
address this, we further conducted a five-class emotion recognition experiment on MELD,
excluding the less frequent emotions of fear and disgust. The results of this experiment are
shown in Table 6.
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Figure 12. Results of unimodal and multimodal emotion classification of our model on the test set. They
present a comparison of the w-avg F1 values for both unimodal and multimodal emotion recognition.

Table 6. Scores for the five emotion classifications on the test set.

Model
Emotion

Anger Joy Neutral Sadness Surprise w-avg F1

bcLSTM text + audio 45.9 52.2 77.9 11.2 49.9 60.6

DialogueRNN
text 41.7 53.7 77.8 21.2 47.7 60.8

audio 34.1 18.8 66.2 16 16.6 44.3
text + audio 48.2 53.2 77.7 20.3 48.5 61.6

M2ER

text 42.1 53.2 78.6 35.9 52.3 62.9
audio 32.5 31.0 66.1 13.6 23.2 46.7
video 29.2 26.0 65.7 19.5 29.6 46.3

text + audio + video 45.6 55.1 79.4 36.3 53.9 64.3

By comparing the results in Tables 5 and 6, it can be observed that after excluding
two less frequent emotions, the five-class emotion recognition performance significantly
improved compared to the seven-class classification because there are very few samples for
the emotions of fear and disgust in the training set. Additionally, distinguishing between
anger, disgust, and fear is challenging as the differences between these emotions are subtle.
This explains why the recognition results for disgust and fear were relatively poor in the
seven-class emotion recognition experiment. Furthermore, the performance of the text
modality in emotion recognition remained generally superior to that of the audio and video
modalities in the five-class emotion recognition experiment, and the multimodal emotion
recognition outperformed the single modality.

3.6. Ablation Experiments

We conducted ablation experiments to validate the effectiveness of different compo-
nents designed in our multimodal feature fusion model by removing specific modules in
the multimodal fusion part.

Our fusion model mainly consists of two parts: Part 1 utilizes cross-modal attention
to capture the interaction between modalities; Part 2 utilizes the attention mechanism to
determine the importance of each modality for the final classification and fuses the multi-
modal information. We conducted comparative experiments between direct concatenation
and the fusion mechanism we adopted, as shown in Table 7.

Comparing the experimental results in Figure 13, Fusion 2 improved the performance
by 1.09% compared to Fusion 1. Compared with Fusion 1 and Fusion 2, Fusion 3 improved
the performance by 3.4% and 2.3%, respectively, as Fusion 2 and Fusion 3 utilize the corre-
lated information between modalities and effectively allocate importance weights to each
modality. The ablation experiments confirmed the effectiveness of each module in the
fusion model in our work—Part 1 and Part 2.
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Table 7. Results of ablation experiments for multimodal fusion emotion recognition. Fusion 1 represents
direct concatenation; Fusion 2 represents the first part of the fusion model, Part 1, which considers only
the interaction between modalities and within each modality; Fusion 3 represents the complete fusion
model, Part 1 + Part 2. This table has been transformed into a bar chart, as shown in Figure 13.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

M2ER
Fusion 1 text + audio + video 41.81 11.63 7.10 54.37 77.84 40.09 53.41 60.74
Fusion 2 text + audio + video 41.99 15.83 7.90 55.07 78.52 40.39 53.86 61.40
Fusion 3 text + audio + video 43.75 16.93 9.62 56.63 80.11 41.67 54.14 62.83

Figure 13. Experimental results of multimodal emotion recognition ablation. They present the
comparison of the w-avg F1 scores for different variants of the multimodal fusion model on MELD.

Since the baseline models on MELD did not utilize the video modality, and it was
found that most dialogue emotion recognition studies based on MELD also did not utilize
the video modality through research, A comparative analysis was performed between the
video modality emotion recognition models without speaker recognition and the models
utilizing it in order to validate the effectiveness of our proposed speaker recognition method.
The results are presented in Table 8.

Table 8. Results of the ablation experiments in the video modality. video’ represents the method where
our method was not used. video represents our proposed method of using speaker recognition.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

video’ 22.64 5.41 3.32 23.07 60.34 14.15 24.16 40.05
video 24.43 6.62 4.54 22.89 63.68 20.07 29.44 42.73

By comparing the data in Table 8, it can be observed that our model achieved a w-
avg F1 score of 42.73% for emotion classification in the video modality. Furthermore, by
comparing the data of video’ and video, it is evident that our proposed speaker recognition
method improved the emotion recognition performance in the video modality by 6.58%.
The comparison in Table 8 indicates that the method effectively enhances the efficiency of
extracting emotional features in multi-party dialogue scenarios, highlighting the role of the
video modality in emotion recognition during multi-party dialogues.

3.7. Model Scalability Verification

To validate the scalability of our multimodal emotion recognition model, we con-
ducted emotion recognition experiments on the MEISD dataset, which is also a multi-party
dialogue dataset. Additionally, we performed emotion recognition tests on some real-world
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data using the fusion model and presented the test results to visualize the generalization
performance of the model.

We further conducted multi-class emotion recognition experiments on the MEISD
dataset, using the micro-F1 score as the evaluation metric. Since the distribution of each
emotion label in the training, validation, and test sets of the MEISD dataset is relatively
balanced, the prediction performance for each emotion label is almost the same. Therefore,
we collected the overall w-avg F1 score for comparison and presentation in the experiments.
The results are shown in Table 9.

Table 9. Scores for emotion classification on the MEISD dataset. This table has been transformed
into a bar chart, as shown in Figure 14.

Model w-avg F1

text-CNN text 54.18

bcLSTM

text 57.05
audio 41.17
video 39.45

text + audio + video 59.32

DialogueRNN

text 58.73
audio 41.52
video 40.87

text + audio + video 60.57

M2ER

text 61.10
audio 43.49
video 42.91

text + audio + video 62.97

Figure 14 shows that our multimodal emotion recognition approach also performs well
on the MEISD dataset. The w-avg F1 score for text modality emotion recognition is 61.10%,
for audio modality is 43.49%, and for the video modality is 42.91%. The performance of
individual modalities in emotion recognition surpasses that of classical baseline models.
The fusion model achieves a w-avg F1 score of 62.97%, outperforming the individual
modality recognition results. These experimental results demonstrate the effectiveness and
scalability of our multimodal emotion recognition model in multi-party dialogue scenarios.

Figure 14. Emotional classification results of the MEISD. They present the comparison of w-avg F1
scores for unimodal and multimodal emotion recognition of various models on the MEISD dataset.

To better illustrate the scalability of the model, we tested it on some actual examples,
as shown in Table 10. From the table, it can be observed that in the case of Example A, the
facial image of the speaker obtained from the video modality shows an upward curvature
of the mouth, indicating a smiling expression. Additionally, the speaker’s voice has a high
pitch and a cheerful speaking rate. The text also expresses a positive emotion, leading to
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a predicted emotion of positive. In the case of Example B, the facial image of the speaker
obtained from the video modality shows a furrowed brow, and the speaker’s speech is
slow and filled with a tone of sadness. The text modality also exhibits negative sentiment,
resulting in a predicted emotion of negative, which aligns with the authentic label. In the
case of Example C, the facial expression of the speaker obtained from the video modality
is relatively neutral without a clear emotional color, but its text and audio modalities
have evident negative sentiment, so the final prediction result is also negative, which is
consistent with the real label. Through the analysis and presentation above examples, it is
evident that our multimodal emotion recognition model based on multi-party dialogue
scenarios can effectively identify the speaker and successfully fuse information from the
text, audio, and video modalities.

Table 10. Examples of multimodal emotion recognition. T represents the dialogue text, V represents
the speaker’s visual information, and A represents the audio information in the video.

Example Speaker T V A
Authentic
Emotion

Predicting
Emotion

A Phoebe Ohh! I’m gonna be
on the news.

high pitch,
cheerful tone Positive Positive

B Monica So, I hear you, you
hate me!

slow pace,
downcast tone Negative Negative

C Ross Look! I did not feel
like dancing. Okay?

downcast
tone, high
pitch

Positive Positive

4. Discussion

4.1. Strengths

M2ER has solved the problem of speaker recognition when multiple faces appear
in the same video frame, which enables utilization of the video modality for emotion
recognition. When encountering multiple people in the same scene, M2ER eliminates the
interference of other people by recognizing the speaker and using the facial expressions of
the speaker in the video and the changes during video playback.

To incorporate the multimodal fusion model into our approach, we employed a
feature-level fusion that relies on the attention mechanism. By utilizing cross-modal
attention, we combined the extracted unimodal emotional features to effectively capture
intermodal interactions.

4.2. Limitations and Future Work

In real-world scenarios, a variety of factors can cause modality absence, such as the
faces in the video not appearing within the range of the camera at some moments. The
datasets we used are also affected by modality absence, which definitely affects the accuracy
of the modality. In future work, we will focus on addressing the issue of modality absence,
which may enhance M2ER.

The proposed method involves multiple components, including face detection, face
recognition, and attention-based fusion; while these components enhance the effectiveness
of the model, they also introduce complexity that undoubtedly increases the difficulty of
implementation for others.

Another limitation is that only two datasets were utilized for the experiment, without
further testing the generalization of the model. Due to the potential impact of different data
sources on performance, it is necessary to explore how well the proposed method general-
izes to other datasets due to the potential impact of diverse data sources on performance in
the future.
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5. Conclusions

In this paper, our work primarily focuses on the research of multimodal emotion recog-
nition in multi-party dialogue scenarios. We propose a novel approach using multi-face
localization for speaker recognition in the video modality, thus enhancing the efficiency
of utilizing the video modality in the field of multimodal emotion recognition. In the
multimodal fusion part, we explore a multimodal feature fusion model based on attention
mechanism to address dimension explosion and poor correlation in the directly concate-
nated fusion model. We conducted seven-class emotion experiments, five-class emotion
experiments, and scalability experiments. The results validate the effectiveness of M2ER.
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Abstract: Social media is a crucial communication tool (e.g., with 430 million monthly active users in
online forums such as Reddit), being an objective of Natural Language Processing (NLP) techniques.
One of them (word embeddings) is based on the quotation, “You shall know a word by the company
it keeps,” highlighting the importance of context in NLP. Meanwhile, “Context is everything in
Emotion Research.” Therefore, we aimed to train a model (W2V) for generating word associations
(also known as embeddings) using a popular Coronavirus Reddit forum, validate them using public
evidence and apply them to the discovery of context for specific emotions previously reported as
related to psychological resilience. We used Pushshiftr, quanteda, broom, wordVectors, and superheat
R packages. We collected all 374,421 posts submitted by 104,351 users to Reddit/Coronavirus forum
between January 2020 and July 2021. W2V identified 64 terms representing the context for seven
positive emotions (gratitude, compassion, love, relief, hope, calm, and admiration) and 52 terms for
seven negative emotions (anger, loneliness, boredom, fear, anxiety, confusion, sadness) all from valid
experienced situations. We clustered them visually, highlighting contextual similarity. Although
trained on a “small” dataset, W2V can be used for context discovery to expand on concepts such as
psychological resilience.

Keywords: COVID-19; social media; Reddit; natural language processing; emotions; resilience

1. Introduction

Recent statistics show that there are 4.55 billion social media users around the world,
equating to 57.6% of the total global population [1].

With the outbreak of the COVID-19 pandemic, social media on platforms such as
Reddit [2] has become a critical communication tool for the generation, dissemination, and
consumption of information [3].

Therefore, social media analysis is one of the most popular areas of research in recent
days [4]. Many studies apply various Natural Language Processing (NLP) techniques to
social media content [5]. Out of them, sentiment analysis and topic models are two of the
most researched NLP topics, as concluded in a Lancet Digital Health scoping review [3].
Much less studied, word embeddings have been recently reported as a valuable text analysis
technology in the pandemic context [6–8].

Understanding the meaning of a word is at the heart of NLP [9]; the approach followed
by word embeddings is based on Firth’s notion of “context of situation.” In particular, his
famous quotation: “You shall know a word by the company it keeps” [10]. Words that
occur in similar contexts are prone to have similar meanings [11]. Firth’s distributional
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hypothesis is the foundation for the actual word embeddings implementations; one of the
most popular is word2vec, developed at Google Labs [12].

Meanwhile, in the field of social sciences, as recently remarked, “Context is everything
in Emotion Research” [13]. Few social scientists would refute that context fundamentally
shapes psychological experience: our thoughts, feelings, and actions, as well as, to some
extent, who we are, and we are all influenced by the context in which we find ourselves.

Context influences cognitions, emotions, and actions in a variety of ways, as well as
how these outcomes are seen and understood by others [14,15].

Context is at the core of emotion. “Context is what gives rise to the diversity and
depth of human emotional experience and the myriad thoughts and behaviors that stem
from such experience” [13].

Existing research indicates that positive emotions support people to cope with stressful
situations [16]. This concept is also applicable during times of extended stress, such as the
COVID-19 worldwide crisis [17].

Despite the fact that they both share context as a central component, word embed-
dings have been rarely used in providing context to specific emotions, to the best of our
knowledge.

Users of social media platforms, such as Reddit [2], often differ significantly from
comparable groups that interact in person. For example, Reddit users are more inclined to
discuss issues that they would feel uncomfortable addressing in person [18].

With more than 430 million monthly active users, the primary functionality of Reddit
is the exchange of text-based postings through subforums, which are places set aside for
users to assemble and communicate with one another on a common interest. The Reddit
site name is a play on the words “I read it.” At the end of 2021, there were more than 2.2M
Reddit subforums [19] known as subreddits.

Therefore, users can publish posts (also known as submissions) and comments to
a number of communities with shared interests called subreddits. Table 1 presents the
subreddits related to COVID-19 with the highest number of subscribers. The Rank column
shows the absolute position of each subreddit ranked by the number of subscribers as re-
ported by Reddit stats [20]. The r/Music subreddit was included for comparison purposes,
as shown in Table 1; r/music was ranked #12 with more than 20M subscribers, one of the
most popular subreddits since Reddit was launched [21].

Table 1. The top COVID-19 subreddits and their position in the global rank.

Subreddit Number of Subscribers Rank Posts per Day

r/Coronavirus 2,354,224 177 101

r/COVID19 336,253 1357 23

r/CoronavirusUS 140.913 3226 22

r/COVID-19Positive 113,778 3944 29

r/China_Flu 103,456 4261 19

r/CovidVaccinated 27,814 11,271 62

r/Music 20,350,355 12 410

Figure 1 was extracted from subreddit stats [20], and it plots the evolution of r/Coronavirus
and r/Music (from January 2019 to July 2021), showing the tremendous increase in posts
per day experienced by r/Coronavirus even when compared with one of the most popular
subreddits as is the case of r/Music.
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Figure 1. Number of posts per day for the Music and the Coronavirus subreddits.

The r/Coronavirus subreddit is a curated information platform. As presented in the
r/Coronavirus official description [22], “This subreddit seeks to monitor the spread of the
disease COVID-19, declared a pandemic by the WHO. This subreddit is for high-quality
posts and discussion.” As emphasized in the r/Coronavirus Rules: “There are many places
online to discuss conspiracies and speculate, we ask you not to do so here.” Otherwise
users get the message: “Your post or comment was removed due to being low quality
information” [22]. It is also worth noting that reposts are removed. A repost is a post that is
created by taking a post from a while ago and posting it again in the same subreddit. The
concept of reposting also covers new posts containing only information that has already
been posted [22].

The number of subscribers and posts in the other COVID-19 subreddits are clearly
lower and address more specific aspects; therefore, in this work, our data source was
r/Coronavirus.

Users submit top-level postings, known as submissions, to each subreddit, while
others respond with comments on the submissions. Submissions consist of a title (up to
300 characters) and either a web link or a user-supplied body text; in the latter case, the
submission is also known as a self-post, while comments are always made up of a body text.

In this work, we focus on analyzing the titles of Reddit posts. There are two reasons
why we believe titles will be a useful basis for NLP analysis.

First, Reddit strongly recommends double-checking the grammar, spelling, and punc-
tuation of the titles: “Read over your submission for mistakes before submitting, especially
the title of the submission. Comments and the content of self-posts can be edited after
being submitted; however, the title of a post cannot be. Make sure the facts you provide are
accurate to avoid any confusion” [23].

Second, Reddit also requests that posters make their titles factual, accurate, and
relevant to the content of the post. As remarked in Rediquette: “Please don’t editorialize or
sensationalize your submission title, keep your submission titles factual and opinion free. If
it is an outrageous topic, share your crazy outrage in the comment section. Do not be vague.
Make sure redditors know what they are getting. People do not have time to click on every
submission to find out what is inside. Contribute value to the community by writing titles
that accurately describe what is being shared. Be relevant. Subreddit subscribers like to
read about specific topics that are related to their subreddit. If your submission is out of
place, it will not gain any attention” [23].
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Another advantage of focusing on Reddit post titles is that Twitter has increased the
available character space from 140 to 280 characters since November 2017, which is very
similar to Reddit’s 300 characters limitation of the titles. This provides an opportunity for
linguistic comparisons between tweets and Reddit titles.

It is for these reasons that we focused our analysis on the titles of all posts extracted
from r/Coronavirus.

A word embedding is a vector-based representation of a word. The vector repre-
senting a word can be understood as the coordinates of a word’s position within a multi-
dimensional feature space (where the dimensions of the feature space are equal to the size
of the vector). Within the vector-based representation, the meaning of a word is encoded by
its position within the feature space relative to other words in the space. From a linguistic
semantics perspective, the concept of word embedding is related to the distributional
hypothesis for Firth [10], which can be paraphrased as “you shall know the meaning of a
word by the company it keeps.” The relationship between the distributional hypothesis
and word embeddings is that in well-trained word embedding models, words that occur in
similar contexts (i.e., that keep the same company) are positioned close to each other in the
feature space (i.e., they have similar vector representations).

Word2vec was created, patented, and published in two papers in 2013 by a team of
researchers led by Tomas Mikolov at Google to learn word embeddings from a corpus of
language [12]. It creates embeddings for the words in a corpus by training a neural network
to predict words that co-occur with other words in the corpus.

Word2Vec includes two alternative strategies for training the neural network: Contin-
uous Bag of Words (CBOW) and Skip-gram. In both of them, a preset length window is
moved along the corpus. Using the CBOW strategy, at each step, the network is trained
to predict the word in the center of the window based on the surrounding words. In the
Skip-gram strategy, the network is trained to predict the other words in the window based
on the central word. In both strategies, the learning signal for the network (and hence the
information that is encoded in the embeddings the network generates) is the likelihood of
one word co-occurring in the surrounding context of another word (i.e., within the same
window). In the present paper, we use the Skip-gram model, which has shown better
performance in semantic tasks [24].

Psychological resilience, as a general term, deals with how people manage stress and
how they recover from traumatic events, encouraging constructive growth and promoting
an optimistic outlook on the future [25]. Evidence suggests that when resilience-based
abilities are applied to people’s lives, they have many advantages (for example, a carry-over
effect on other life domains) [26]. Resilience may be improved with deliberate practice; it
is not necessary to be born with it [27]. However, within the research community, there is
a lack of a unified definition for the concept [28]. This lack of consensus in definition can
also be linked to the lack of consensus on how the concept should be operationalized in
order to address community disasters [29]. As recently reported [30], positive and negative
emotions have varied effects on developing a resilient attitude. People who go through
higher levels of positive emotions (i.e., gratitude, compassion, love, relief, hope, calm, or
admiration) exhibit a higher degree of resilience, whereas those who feel high levels of
negative emotions (i.e., anger, loneliness, boredom, fear, anxiety, confusion, sadness) are
associated with poorer resilience.

Typically, large general-purpose corpora (e.g., Wikipedia dumps with 3 billion words [31])
are used to learn word embeddings. Nevertheless, in this work, we hypothesized that
word embeddings could be extracted from publicly available social media, using open
source software, in sufficient numbers such that the embeddings (1) are relevant to provide
meaningful context to specific emotions specifically linked to an ill-defined domain such
as psychological resilience (2) verifiable by sound theoretical semantic tests such as the
Battig and Montague norm [32] (3) consistent with current related scientific publications
and (4) offering the possibility of providing actionable knowledge to on-field specialists.
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Therefore the objectives of this work are to (1) train a model (W2V) for creating word
associations (also known as embeddings) using a publicly available dataset (a subreddit on
Coronavirus from January 2020 to July 2021, a period where emotions were exacerbated)
and open access software (R libraries) able to retrieve meaningful closest terms. (2) Such
a W2V model aims to be formally validated using the semantic categorization test by
means of an updated and expanded version [33] of the Battig and Montague norm, with
65 categories; for each category, the silhouette coefficient of the model will be computed. As
a complementary validation step, the extensive scientific literature is aimed to be included,
supporting our findings. (3) We will then run W2V to discover the context for seven specific
positive and seven negative emotions recently reported as related to resilience during
the COVID-19 pandemic, and (4) such specific context will be supported using related
scientific publications.

The article is organized as follows. A literature review is presented in Section 2.
Materials and methods are introduced in Section 3. In Section 4, we initially report a
descriptive analysis of the sample; we then present the results of our W2V model at three
different levels (toy-example analogies, representative terms from a COVID-19 glossary,
and resilience related terms) for both the COVID-19 glossary and resilience related terms.
We support our findings with extensive scientific literature and then discuss performance
using the Battig and Montague evaluation. The discussion and limitations are presented in
Section 5. Lastly, in Section 6, we conclude the paper.

2. Related Work

For computer scientists and researchers, social media data are valuable assets for
understanding people’s sentiments regarding current events, especially those related to
events with worldwide impacts, such as the COVID-19 pandemic. Therefore, the classifi-
cation of these sentiments yields remarkable findings. For example, in one of the earliest
related publications, Rajput and colleagues [34] classified (negative, positive, and neutral)
tweets based on word-level, bi-gram, and tri-gram frequencies to represent word rates
by power law distribution and applied the Python built-in package TextBlob to perform
sentiment analysis. Samuel and colleagues [35] proposed machine learning models (naïve
Bayes and logistic regression) to categorize sentiment tweets into two classes (positive
and negative). Similarly, Aljameel et al. [36] analyzed a large Arabic COVID-19-related
tweets dataset, applying uni-gram and bi-gram TF-IDF with SVM, naïve Bayes, and KNN
classifiers to enhance accuracy. Muthausami et al. [37] classified the tweets into three classes
(positive, neutral, and negative). They utilized different classifiers, such as random forest,
SVM, decision tree, naïve Bayes, LogitBoost, and MaxEntropy. More recently, Jalil and
colleagues [38] classified positive, negative, and neutral tweets using various feature sets
and XGBoost (eXtreme Gradient Boosting) classifier. The authors of Rustam et al. [39]
proposed a COVID-19 tweets classification approach based on a decision tree, XGBoost,
extra tree classifier (ETC), random forest, and LSTM. Similarly, Dangi et al. [40] proposed a
novel approach known as Sentimental Analysis of Twitter social media Data (SATD) based
on five different machine learning models (logistic regression, random forest classifier,
multinomial NB classifier, support vector machine, and decision tree classifier)

Rahman et al. [41] explored the performance of ensemble machine learning classifiers
for sentiment analysis of COVID-19 tweets from the United Kingdom. Es-Sabery et al. [42]
applied MapReduce opinion mining for COVID-19-related tweets classification using an
enhanced ID3 decision tree classifier.

Basiri et al. [43] presented a model that combines five models such as naïve Bayes sup-
port vector machines (NBSVM), FastText, DistilBERT, CNN, and bidirectional gated recur-
rent unit (BiGRU) on COVID-19 tweets in eight highly affected countries. Ibrahim et al. [44]
proposed a hierarchical Twitter sentiment model (HTSM) to show people’s opinions in
short texts. Bonifazi et al. [45] proposed a novel approach for investigating the COVID-19
discussions on Twitter through a multilayer network-based model. It yielded the identifica-
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tion of influential users, which is much more important to analyze and can provide more
valuable information.

Naseem et al. [46] correspondingly proposed the use of various pre-trained embedding
representations—FastText, GloVe, Word2Vec, and BERT—to extract features from a Twitter
dataset. Furthermore, for the classification, they applied deep learning methods Bi-LSTM
and several classical machine learning classifiers, such as SVM and naïve Bayes.

Yan et al. [47] reported public sentiment toward COVID-19 vaccines across Canadian
cities by analyzing comments on Reddit. In order to identify significant latent topics and
classify sentiments in COVID-19-related English comments between January and March
2020, Jelodar et al., examined 563,079 comments from Reddit [48]. Lai et al. [49] analyzed
522 comments from a Reddit Ask Me Anything session about COVID-19. Reddit posts
evaluated in this study were manually coded by two authors of this paper.

Pal et al. [50] showed that new knowledge could be captured and tracked using the
temporal change in word embeddings from the abstracts of COVID-19 published articles.
They found that thromboembolic complications were detected as an emerging theme as of
August 2020. A shift toward the symptoms of long COVID complications was observed in
March 2021, and neurological complications gained significance in June 2021.

Jha et al. [51] observed that the word2vec model performed better than the GloVe
model on a COVID-19 Kaggle dataset. Another point highlighted by this work is that latent
information about potential future discoveries was significantly contained in past papers
and publications.

Batzdorfer et al. [52] used word embeddings to distinguish non-conspiracy theory
content from conspiracy theory-related content and analyzed which element of conspiracy
theory content emerged during the pandemic.

Didi et al. [6] proposed a tweets classification approach (negative, positive, and neutral)
based on a hybrid word embedding method, combining several widely used techniques,
such as TF-IDF, word2vec, Glove, and FastText, to represent posts.

Bhandari et al. [53] proposed a deep learning model with stacked word embeddings
to the multi-class classification problem for three and five classes (extremely negative,
negative, neutral, extremely positive, and positive). It outperformed the individual static
pre-trained embedding representation, classical machine, and deep learning approaches.

To our knowledge, no previous analysis applied word embeddings to extract knowl-
edge from Reddit to provide context about specific emotions involved in psychological re-
silience during the pandemic. Acute crisis and loss events, disruptions in many facets of life,
continuous multi-stress problems, and always-changing conditions made the COVID-19
pandemic a perfect storm of stressors. The rapid spread of COVID-19 during the 2020–2021
period, when emotions were exacerbated [54], created a unique opportunity to extract
knowledge about resilience in the face of global adversity, yet to be explored using NLP.
We believe that a better understanding of resilience is important in developing strategies to
cultivate and promote resilience.

3. Methods

Our research included different sequential phases starting with data collection from
publicly available Reddit titles from the R/Coronavirus subreddit, data cleaning using
open access R libraries, an initial descriptive analysis of the available data, word2vec model
training, the formal model validation using semantic categorization test and visualization
using hierarchical clustering and heatmaps. Each of them is described in this section.

3.1. Data Collection

Data from Reddit were obtained via pushshift.io through the pushshift.io API (Pushshift,
2023) [55]. In order to collect and distribute Reddit datasets for research purposes, aca-
demics can use Pushshift.io, a website that keeps all publicly accessible Reddit submissions
and comments. Pushshift.io has been used in a large number of publications in related
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research (e.g., Lama et al. [56]). In this work, the pushshiftr R package [57] was used as a
wrapper for the pushshift.io API.

3.2. Data Cleaning

The quanteda R library [58] was used to create the final sample for analysis. The data
cleaning process included lemmatization (where the phrases “dog,” “dogs,” and “dog’s”
are all changed to “dog”), nonprintable character removal (such as emojis), and basic
normalizing (such as removing punctuation and lowercasing all text).

All analyses used are publicly available, anonymized data and comply with Reddit’s
terms of service, usage rules, and privacy guidelines. They were also carried out with
institutional review board clearance from the authors’ institutions.

3.3. Descriptive Initial Analysis

For descriptive analysis, we first processed the data into the tidy text format as one
token (word) per row. The process of breaking text into tokens is known as tokenization.
This one-token-per-row structure differs from how text is commonly kept in current studies
(e.g., in a document-term matrix). For tidy text pre-processing, we used the tidytext [59],
dplyr [60], ggplot2 [61], and broom [62] R packages.

In order to determine if the frequency of each word is rising or decreasing over time,
we fitted a model (logistic regression) using the broom R package. Then, each term has a
growth rate (represented by an exponential term) associated with it.

In the Supplementary Materials Figure S1, we present the number of titles per week.
We confirm that the distribution is quite similar to the plot provided by the official Reddit
statistics presented in Figure 1.

Figure S2 shows the most frequent words (after excluding COVID-19, Coronavirus,
and pandemic, which due to their highest frequency, make all other terms not visible if
put together in the same plot with all other terms). The top 10 are people, vaccine, China,
positive, health, home, masks, world, death, and Trump.

Figure S3 shows the terms with the steepest increase in frequency. The highest one
is for Donald Trump, right before the day of the Presidential Election in the United States
(3 November 2020), with the highest decrease after it. When visualizing all four sub-plots
in Figure S2, shown from left to right and from top to bottom, it can be seen that each of
them refers to a specific aspect of this pandemic, each of them with special relevance at
different time points: lockdown at the early stage, masks and Trump at intermediate stages,
and vaccine increasing steadily until the final stages.

In Figure S4, we present a word cloud created using all the titles containing the
term “stress.”

3.4. Model Training: Word2vec

We applied the wordVectors [63] R package to train the word2vec model. It runs the
original C code for word2vec [12].

A metric of the degree of similarity between two embedding vectors for the two words
is provided to measure how similar the two words are. Given two vectors u and v, cosine
similarity is defined as follows [12]:

CosineSimilarity(u, v) =
u.v

‖u‖2‖v‖2
= cos θ (1)

where u.v is the dot product (or inner product) of two vectors, ‖u‖2 is the norm (or length)
of the vector u, and θ is the angle between u and v.

The cosine distance is defined as the inverse of the cosine similarity; the shorter the
cosine distance, the more similar the two vectors (words).
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3.5. Model Validation: Semantic Categorization Test

We measured the capacity of the W2V model to represent the semantic categories
based on the Battig and Montague category norms, which have been applied by researchers
in several fields in over 1600 publications in more than 200 different journals [33]. In this
work, we use Van Overschelde’s [33] expanded and updated version of the Battig and
Montague original norms.

In order to measure how well a word i is grouped in relation to the other words in its
semantic category, we used the Silhouette Coefficients, s(i), defined as:

s(i) = (b(i) − a(i))/max{a(i),b(i)}

where a(i) is the mean distance of word i with all other words within the same category,
and b(i) is the minimum mean distance of word i to any words within another category (i.e.,
the mean distance to the neighboring category). Therefore, silhouette coefficients measure
how close a word is to other words within the same category compared to words of the
closest category [64].

3.6. Model Visualization: Hierarchical Clustering and Heatmaps

We used the superheat R package [65] to visualize the word vectors (obtained from
Word2vec), highlighting contextual similarity. “The rows and columns are ordered based on
a hierarchical clustering and are accompanied by dendrograms describing this hierarchical
cluster structure” [65].

4. Results

4.1. Sample Description

We collected all 374,421 titles submitted by 104,351 different Redditors to the r/Coronavirus
subreddit between 20 January 2020 and 14 July 2021.

In Figure 2, we show representative examples of the collected titles, the top 3 containing
the term “resilience” and the bottom three randomly selected.

Figure 2. Examples of the collected titles containing the term “resilience” (top 3) and randomly
selected (bottom 3).
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4.2. A 3-Steps Validation of the Word2vec Embeddings

The train_word2vec function of the wordVectors R package was used to obtain
the model (W2V) once the data had been generated. The following settings were used:
“vectors = 200, threads = 4, window = 12, iter = 5, negative_samples = 0”. These parameters
have been applied by the wordVectors authors in related research [63].

We performed a three-step validation of W2V as in previous related research [66]. We
utilized a subset of the original Mikolov article analogies [12] for the first one.

In NLP, the task of finding a word analogy is represented as “a is to b as c is to ___.”
The classic Mikolov example is: king is to man as woman is to ___‘—also represented

as king – man + woman = ?
The human brain can recognize that the answer is the word ‘queen’. However, for a

machine to understand this pattern and fill in the blank with the most appropriate word
requires a lot of training using a huge corpus (for example, the whole of Wikipedia; in our
case, we are using only the obtained 374,421 titles from r/Coronavirus).

Using our obtained model (namely W2V), the example analogy is represented as:
W2V(“king”) − W2V(“man”) + W2V(“woman”) = ?

We obtained promising results (as presented in Table 2) for several analogies from
previous research [66], for example:

Analogy: brother − sister + husband = ?
Answer: wife (0.5985)
The number in brackets is the cosine distance between the vector embedding for

the term ‘wife’ and the vector that is the result of the operations on the left-hand side of
the equation.

Table 2. A subset of analogies from previous research [66] and the obtained results.

Category Closest Terms (Cosine Distance)

paris − france + italy = ? rome (0.584), milan (0.510)

brother − sister + husband = ? wife (0.598)

dad − mom + father = ? mother (0.546), family (0.569)

she − he + girl = ? boy (0.375)

his − her + boy = ? girl (0.570), schoolgirl (0.604)

she − he + mother = ? father (0.373), husband (0.403)

boy − girl + man = ? woman (0.553)

doctor − hospital + teacher = ? school (0.577), teen (0.548)

cnn − news + netflix = ? film (0.640), movies (0.692)

iphone − apple + android = ? ios(0.406), tablet (0.4760), app (0.487)

moscow − putin + nyc Blasio * (0.619), brooklyn (0.581)

young − teen + old 64 (0.633), aged (0.563)
* Bill de Blasio is an American politician serving as the 109th Mayor of New York City since 2014.

As the second step of W2V validation, from a representative list of specific terms
related to COVID-19, we run our W2V model on each of them (for example, the term
“anosmia”) to identify its three closest terms using the following command:

nearest_to(W2V[[“anosmia”]],3) = ?
As a result, we obtained the following set of the three closest terms to “anosmia”:
{olfactory (0.463); parkinson (0.459); aspirin (0.496)}
In Table 3, we present the closest terms retrieved by our model and their cosine dis-

tances to several COVID-19 representative terms of a known COVID-19 glossary [67]. We
proceeded through the closest terms and identified related publications and evidence sup-
porting them, noting the high relevance of all the discovered terms in order to demonstrate
the capacity of our W2V model to uncover relevant related terms (Table 3).
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Table 3. Definitions extracted from COVID-19 Canadian Glossary and our obtained closest terms.

Glossary Term Glossary Definition Closest Terms

ards Acute respiratory distress syndrome

remestemcel (0.364) [68],
glucose (0.461) [69],

epithelium (0.461) [70],
anticoagulant (0.481) [71]

anosmia The complete or partial loss of the
sense of smell.

olfactory, (0.463) [72],
parkinson (0.459) [73],

aspirin (0.496) [74]

antibody
A protein that is produced in

response to the introduction of an
antigen in an organism

monoclonal (0.436) [75],
regeneron (0.478) [76],
serological (0.475) [77],

bamlanivimab (0.539) [78]

antiviral Medication used for treating
viral infections

favipiravir (0.341) [79],
remdesivir (0.344) [80],

heparin (0.379) [81],
interferón (0.385) [82],
ritonavir (0.435) [83]

In Table 3, we show the closest terms retrieved by our model and their cosine distances
to representative definitions from the initial terms of the glossary (terms starting with the
‘A’ letter). For each of the terms identified by our trained model, we included relevant
published scientific literature. For example, the first term in the glossary was “ards” (acute
respiratory distress syndrome); our model retrieved Remestemcel, and its cosine distance
was 0.364. We referenced Mahendiratta et al. [68] because in their systematic review of
Stem cell therapy in COVID-19, results on Remestemcel were recently reported. Similarly,
for glucose, we referenced Lazzeri et al. [69] work, where they address the prognostic
role of hyperglycemia and glucose variability in COVID-related acute respiratory distress,
similarly, for all other terms in Table 3.

As the third step of W2V validation, we identified the closest terms to “resilience.”
Then we searched for all appearances of “resilience” in all 374,421 titles and identified the
titles with the highest upvotes. We present them in Figure 2.

In Figure 2 (top 3 titles), we present the most upvoted titles, which explicitly include
the term “resilience.” Therefore, we used W2V to search for the closest terms to: resilience
appearing in the same context with “older” with “indigenous” and with “tips.” The ob-
tained closest terms are presented in Table 4. We went through all the closest obtained
terms and identified related publications and evidence remarking on the high relevance of
all the identified terms.

Table 4. Resilience-related terms and our obtained closest terms.

Search Term Closest Terms

resilience
wellbeing (0.569) [84],
pessimism (0.611) [85],

psychological (0.586) [85]

resilience + tips

mindfulness (0.580) [86],
telehealth (0.588) [87],
bedtime (0.577) [88],
hobbies (0.546) [89]
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Table 4. Cont.

Search Term Closest Terms

resilience + older

addiction (0.570) [90],
stress (0.588) [91],

disability (0.588) [92],
resentment (0.598) [93],
depressive (0.617) [94]

resilience + indigenous

communities (0.520), tribe (0.565),
minority (0.618), dignity (0.618),
unequal (0.622), unicef (0.632),

disparities (0.624) [95]

For example, as shown in Table 4, for “resilience” and “older,” we identified several
closest terms and included in Table 4 different publications addressing such aspects, e.g.,
addiction [90], stress [91], disability [92], resentment [93], and depression [94].

4.3. Semantic Categorization Test

For each of the first 65 semantic categories of the updated version of the Battig and
Montague norm [33], we calculated the silhouette coefficients. The complete list of all the
terms included in each category as well as distances and silhouette calculations, is presented
in Supplementary Materials Table S1. A representative screenshot of the distances from the
first eight semantic categories to representative terms is presented in Figure 3. For example,
the first semantic category is “1. A precious stone”, as detailed in Table S1. It is integrated
into four terms (diamond, ruby, gold, and gem). We run our W2V model to calculate the
distances from a representative term from each category to all the other terms. Therefore,
as shown in Figure 3, the mean distance from the “diamond” term to all other terms in the
“1. A precious stone” category is 0.66. Meanwhile, it is 1.01 to the “2. A unit time” category
represented by the “hour” term, it is 1.00 to the “3. A relative” category represented by the
“mother” term, and so forth. Therefore, Figure 3 represents such distances as a heatmap,
with greener values to the closest distances. It can be seen that for each term, for every
semantic category, the closest distances are to those terms related to the category where the
term belongs, therefore showing encouraging results.

Figure 3. Heatmap representation of the mean distances between the first 8 semantic categories and
their representative terms.

Table 5 presents the highest silhouette values calculated in Supplementary Materials
Table S1. When analyzing the lower Silhouette scores, we identified remarkable reasons
for the miscategorization of the terms. For example, as presented in Figure 3, the mean
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distance from the “diamond” term to all other terms in the “1. A precious stone” category
is 0.66, but as shown in Table S1, when considering the “51. A type of ship/boat” category,
represented by the “cruise” term, such mean distance is 0.55, remarkably lower. A possible
explanation for this is the existence of the Diamond Princess Cruise, which is mentioned in
some of the Reddit titles used for training our W2V model.

Table 5. Top silhouette values obtained for 10 semantic categories of the updated version of the Battig
and Montague norm.

Category s

29. A sport 0.495

3. A relative 0.329

54. A city 0.233

55. A state 0.231

10. A color 0.169

58. A type of car 0.163

49. A disease 0.154

27. An occupation or profession 0.142

7. A military title 0,139

40. A science 0.137

4.4. Context for Positive and Negative Emotions

In Table 6, we present a list of specific positive emotions (gratitude, compassion, love,
relief, hope, calm, and admiration) [30]. We ran our W2V model for each of them and
identified several closest terms, providing the context where such emotions took place.

Table 6. Positive emotions and their obtained closest terms.

Search Term Closest Terms

gratitude
paramedical (0.545), doctors (0.495), appreciation (0.368),

selflessly (0.498), tirelessly (0.453), heroes (0.503), honor (0.516),
tribute (0.540), hardworking (0.555), flashmovs (0.564)

compassion dalai (0.684), lama (0.685), empathy (0.657), empathetic (0.662),
mindfulness (0.633)

love share (0.400), enjoy (0.440), friends (0.489), wish (0.519), god
(0.526), smile (0.528), constructive (0.555), entertain(0.525)

relief
funds (0.325), aid (0.339), package (0.309), fund (0.341), trillion
(0.394), billion (0.414), loan (0.409), liquidity (0.414), payments

(0.429), payers (0.397), tax (0.436)

hope
Love (0.423), enjoy (0.477), brightens (0.471), help (0.513), inspire

(0.517), smile (0.522), laugh (0.536), humor (0.569), fun (0.573),
funny (0.573)

calm
Listen (0.532), sleep (0.435), meditation (0.544), Roads (0.521),

streets (0.546), eerie (0.656), emptiness (0.668), scary (0.575), panic
(0.567), nerves (0.546), keep (0.654)

admiration
clapping (0.431), clap (0.455), applause (0.455), balconies (0.484),
applauding (0.522), windows (0.472), cheering (0.456), frontline

(0.466), healthcare (0.532),

Similarly, Table 7 presents the list of negative emotions [30] (anger, loneliness, boredom,
fear, anxiety, confusion, sadness) and their closest terms retrieved using W2V.
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Table 7. Negative emotions and the obtained closest terms.

Search Term Closest Terms

anger
frustration (0.471), confusion (0.474), tension (0.555), chaos (0.592),

dishonesty (0.630), hostility (0.617), bureaucracy (0.625), fear
(0.608), drought (0.579), outcry (0.598), outrage (0.618),

loneliness profound (0.607), addiction (0.635), neuropsychiatric (0.630),
opioid (0.658)

boredom spotify (0.615), playlists (0.599), song (0.593), halo (0.596), fortnite
(0.626), meditation (0.615), illustration (0.631), piano (0.632),

fear conspiracies (0.587), xenophobia (0.612), racism (0.621), burnout
(0.623), starving (0.636), sadness (0.532)

anxiety stress (0.251), depression (0.431), meditation (0.578), obsessive
(0.532), ideation (0.511), cope (0.529), coping (0.514), tips (0.570)

confusion anger (0.474), frustration (0.546), chaos (0.543), distrust (0.561),
tension (0.532), worries (0.522), doubts (0.533)

sadness
Disbelief (0.433), downfall (0.544), dislike (0.541), downvotes

(0.541), fear (0.532), boredom (0.533), together (0.544),
spinning (0.541)

Figure 4 graphically shows a dendrogram for the closest terms to two positive emotions
(hope and gratitude) and two negatives (anger and anxiety) presented as clusters of the
most similar closest terms. The darkest the color in the heatmap, the closest are the two
terms; therefore, three clear clusters emerge in the heatmap diagonal.

Figure 4. Dendrograms and heatmap for the closest terms to two positive (hope and gratitude) and
two negative (anger and anxiety) emotions.

5. Discussion

In this study, we proposed social media (particularly a Reddit subforum) as a con-
nection between word associations (also known as embeddings) and emotion research.
Although they both share context as a critical component, to our best knowledge, word em-
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beddings have rarely been used in the field of emotion research. Furthermore, COVID-19
created a unique opportunity for doing it.

Therefore, we trained a model for producing word embeddings using a publicly
accessible dataset (a Coronavirus subreddit) and open-source tools (R libraries) capable of
retrieving relevant content (closest words). This content was formally validated using a
standard tool and supported by public evidence (scientific publications), and applied to
the discovery of context for seven specific positive and seven negative emotions recently
reported as related to resilience during the COVID-19 pandemic.

Our results confirmed our three initial hypotheses: word embeddings may be recov-
ered in sufficient numbers from public domain-specific social media for the embedding to
(1) be relevant to offer meaningful context to specific emotions, (2) be verifiable by sound
theoretical semantic tests such as the Battig and Montague norm, and (3) be consistent
with recent related publications, in spite of working with a relative “small” number of
Reddit titles.

In relation to our fourth hypothesis (provide actionable knowledge to on-field special-
ists), current research reporting on the COVID-19 pandemic concluded that developing a
resilient mentality differs depending on whether positive or negative emotions are present.
Higher levels of positive emotions are correlated with higher levels of resilience, whereas
high levels of negative emotions are associated with lower levels of resilience [30]. We asso-
ciated seven positive and seven negative emotions to experienced situations. Specialists
could therefore promote actions encouraging participation in activities related to positive
emotions. For example, as shown in Table 6, “gratitude” and “admiration” were shown
by means of activities taking place worldwide. People congregated on balconies while
confined to their apartments to acclaim medical personnel working on the front lines, as
well as to sing or take part in impromptu flash mobs [96]. Calm and compassion were
associated with meditation and mindfulness. Hope was associated with humor, smiling,
laughing, fun, and funny.

When analyzing negative emotions, we found racism and xenophobia mainly related
to fear. Globally, migrants and minority groups were disproportionately affected by racism
and xenophobia linked to COVID-19 [97]. They have an especially negative effect on people
who already experience overlapping social, economic, and health-related vulnerabilities.
They intensify current patterns of discrimination and unfairness. Minority groups in
both the United States and Europe have endured discrimination and hate crimes. [98,99].
Anger was mainly related to frustration, bureaucracy, and confusion as in related research
(e.g., Selman et al. [100]); loneliness was associated with addictions, while boredom was
related to specific activities to overcome it, such as meditation, illustration, piano, Spotify,
playlists or videogames (Halo, Fortnite).

Several recent studies addressed social media (particularly Reddit) during the pan-
demic. For example, Gozzi et al. [101] analyzed collective responses to media coverage.
They performed mixed-methods analysis on web-based news articles, YouTube videos,
English user posts and comments on Reddit, and views of Wikipedia pages related to
COVID-19. They concluded that “collective attention was mainly driven by media cover-
age rather than epidemic progression [101]”. Compared to other social media platforms,
Reddit users were generally more concerned about health, data related to the new disease,
and interventions needed to stop its spread [101]. In order to identify significant latent
topics and classify sentiments in COVID-19-related English comments between January
and March 2020, Jelodar et al., examined 563,079 comments from Reddit [48]. Lai et al. [49]
analyzed 522 comments from a Reddit Ask Me Anything session about COVID-19 on
11 March 2020. Most posts addressed symptoms, followed by prevention recommenda-
tions. COVID-19 symptoms were also the most requested topic suggested by users for
further discussion.

Word2vec has been scarcely used in small corpora. García-Rudolph et al. [66] analyzed
96,314 Reddit comments posted in r/disability from February 2009 to December 2019 by
10,411 Redditors. The highest reported silhouette value after the semantic categorization
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test was s = 0.562 for the “3. A relative” category. Meanwhile, in our case, our highest
silhouette value was s = 0.495 for the “29. A sport” category. In the “29. A sport” category,
their reported silhouette was s = 0.475. Their top six higher silhouette values were reported
for the following categories: 3. A relative, 29. A sport, 43. A vegetable, 10. A color, 55.
A state and 49. A disease. In our case, the top six silhouette values were reported for
29. A sport, 3. A relative, 54. A city, 55. A state, 10. A color, and 58. A type of car.
Therefore, very similar semantic categories yielded the highest silhouette scores for both
studies. Nevertheless, in our case, we collected 374,421 titles (not comments) submitted by
104,351 users (ten times more users) to the Reddit/Coronavirus forum during a ten-times
shorter period.

In another study applying word2vec in small corpora using the semantic categorization
test, Stetten, the study included 37 k and 140 k documents to analyze and disambiguate
the content of dreams [102]. This research area addresses questions such as “How do
gender, cultural background, and waking life experiences shape the content of dreams?”.
To our knowledge, no previous work studied Reddit submission titles considering word
embeddings in order to expand on the concept of resilience. We offer a tool for identifying
terms of interest that can be addressed to practitioners in the field of psychology and
social work.

A number of limitations to this study need to be highlighted. The analyzed sample
was not meant to be exhaustive or representative of all titles posted by everyone living in
any specific region during the period under study. It included all titles from only one of the
COVID-19 subreddits; therefore, we did not include data from other subreddits addressing
specific COVID-19 aspects (e.g., CovidVaccinated or COVID-19Positive). Nevertheless,
r/Coronavirus was by far the subreddit with a higher number of subscribers and posts.
It has been the most active subreddit during the period under study (between 20 January
2020 and 14 July 2021). We did not include comments in our analysis. We included only
submissions’ titles. The length limit in Reddit comments is 40,000 characters, more than
100 times larger than the titles’ limit (300 characters). Therefore including comments would
involve a different analysis, with different hypotheses, which is left as future work.

The potential impact of the data-cleaning process needs to be mentioned as another
limitation, particularly in terms of the context of the text. For example, by removing
emojis and other non-printable characters, we might have been removing some contextual
information that could be relevant to understanding the sentiments or emotions. For
example, Li et al. [103] presented an approach to classify microblog review sentiments
that included emojis with an emoji-text-incorporating bi-LSTM (ET-BiLSTM) model. Their
results showed that ET-BiLSTM enhances the performance of sentiment classification.

Another aspect of Reddit worth to be analyzed, not included in this study, involves
NSFW (Not Safe For Work) posts. This term refers to user-submitted content not suitable to
be viewed in public or in professional contexts. The phenomenon of NSFW posts on Reddit
has been very little investigated, although it is very common in this social medium [104].

Other relevant factors to mention as limitations to our study include geographic
location, spatial trajectory, or the time of day a submission was posted. Such factors, as
noted by Padilla et al. [105] and Gore et al. [106], are relevant in social media. Geographic
aspects were not analyzed in our study, but Reddit is most popular in the U.S., with
American users far outnumbering those from any other country at 54% of Reddit users.
After the U.S., the United Kingdom has the second-highest share of data traffic with 8%,
while Canada ranks third with 6.4%. Reddit is most popular with young adults aged 25 to
34, who comprise more than half of the site’s users. Nevertheless, there are also a large
number of middle-aged users on Reddit. Previous studies have found that 33% of users are
between the ages of 30 and 49, suggesting that Reddit is a viable platform for reaching both
young and middle-aged adults. More than two-thirds of Reddit users are men who are
particularly active on the site [107]. Compared to people living in rural areas, urban and
suburban residents use Reddit much more frequently. Gozzi et al., also pointed out that
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Reddit has developed into a self-referential community, reinforcing the site’s propensity to
concentrate on its own content rather than outside sources [101].

6. Conclusions

This study opens up interesting opportunities for exploration and discovery using, for
the first time, a word2vec model trained with a small Coronavirus dataset of Reddit titles
leading to immediate and accurate terms that can be used to expand our knowledge on
specific concepts such as resilience, by identifying the context in which they take place. We
presented a step forward in developing a tool that can be used by practitioners in the field of
psychology or social work for identifying terms of interest describing the context in which
specific positive and/or negative emotions related to psychological resilience took place.
These may support clinicians in specific situations where individuals can be encouraged to
get involved or promote positive emotions related to psychological resilience.
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Abstract: This study mapped personality based on the newly proposed extraction method from
consumers’ textual data and revealed the relevance (attention) and polarity (affection) of words
associated with a specific personality trait. Furthermore, we illustrate how unique words are used to
predict a consumer’s behavior associated with certain personality traits. In this study, we employed
the scales of the Kaggle MBTI Personality dataset to examine the methodology’s effectiveness, extract
the personality traits from the textual data into features, and map them into the traits/dimensions
of the existing scale. Based on the results obtained in this study, we assert that using the TF-IDF
algorithm is a good way to generate a custom dictionary. Furthermore, sentiment scoring with
an AI-empowered machine learning algorithm provides useful data to filter and validate more
coherent words to understand and, thus, communicate a particular aspect of personality. Finally, we
proposed that four situations involving the interaction between attention (frequency) and affection
(sentiment) allow us to better understand the consumer and how to use the feature words in terms of
the interaction between attention (TF-IDF score) and affection (sentiment score).

Keywords: personality traits; sentiment analysis; text analytics; machine learning; MBTI

1. Introduction

An awareness of the personalities of those we interact with is beneficial because
psychographic segmentation can increase the effectiveness of advertising, promotion,
and other marketing activities and improve the measurement of job performance and
related functions [1]. Nevertheless, most people assess customers’ personality traits using
psychological tests. The most widely used measures are the Big 5 model [2] and the
MBTI model [3], the latter being a time- and energy-consuming method. Unfortunately,
consumers can be reluctant to fill out tedious surveys and, instead, use social media, blogs,
or comment threads to post text related to their interests, hobbies, lifestyles, and opinions.

Psychological research suggests that certain personality traits can correlate with lin-
guistic behavior [4]. Furthermore, the automatic detection of personality traits from written
messages has attracted significant attention from computational linguists and natural lan-
guage processors [5]. Term frequency–inverse document frequency (TF-IDF) is a weighting
scheme intended to measure how important a word is to a specific document (in our case,
a user review) within a collection (or corpus) of documents. This scheme is widely used for
information retrieval and summarization. TF-IDF can determine a word’s importance by
weighing its frequency within a particular document [6]. The highest-scoring words in a
document are the most relevant to that document, more so than any other document [7].
Therefore, any personality trait can be regarded as a document. When all the personality
traits undergo TF-IDF vectorization, those scores can then be used to classify a user’s
personality by having each document manually labeled with the aid of a psychology expert
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or via a psychological test (such as the well-known MBTI). Therefore, TF-IDF, along with
supervised data (via an expert or a psychological test), can provide a score for clusters of
words (feature words) that are highly associated with a personality trait.

Past research has been devoted to automatic personality detection via TF-IDF and
a machine learning algorithm. However, developing the predictive power of machine
learning models that use the same features to predict consumer personality via textual
data requires more exploration [1]. In other words, the stream of research devoted to the
automatic detection of personality has focused on improving the efficiency and accuracy
of personality prediction. However, the intrinsic concept of those features has not been
sufficiently explored, and little is known about words that individuals with specific person-
alities use. Thus, one of the crucial research questions in this study is how to further extract
and validate words that might reflect coherent aspects of personality.

Topic modeling, such as LDA, is a popular method for automatically categorizing
words reflecting specific personality traits to explore which words a specific personality
commonly uses. However, unsupervised topic models, e.g., LDA, often generate incoherent
aspects [8]. Furthermore, these existing methods extract many aspects that are not relevant
to the domain of interest. Scale-directed text analysis (SDTA) is a new method for gener-
ating custom dictionaries for any construct. It can even generate more valid words from
constructs; however, the method relies heavily on knowledgeable oversight in the building
process [9]. Therefore, it is worthwhile to explore more automatic semi-supervised ap-
proaches to develop sound techniques for automatic word extraction to identify consumers’
personalities. In addition, the industry needs a rapid automatic dictionary generation
method for each construct as well.

First, this study will attempt to extract words based on the TF-IDF scores to generate a
dictionary of customer personality traits, as most past research has created. Second, we
argue that the core technique of TF-IDF is to count the frequency of words, which is based
on the extent of attention rather than the extent of affection (preference or valence) [10].
Hence, this study will consider words associated with a specific aspect and apply sentiment
analysis to examine sentences that include words necessary to obtain the affection of
an aspect rather than adopting TF-IDF scores to predict or compare the questionnaire
ratings [8,11,12]. Previous research has utilized TF-IDF scores alone to compare or predict
the questionnaire ratings or for manual labeling, which is not equivalent [9,13]. The main
reason for this is that, besides focusing on attention, we also considered affection to be
equivalent, comparing it to the results of a questionnaire or psychological test.

Second, the study will employ a sentiment score of featured words instead of only a
TF-IDF score to predict the questionnaire ratings. Hence, the other crucial research question
is the following. For those sentences of feature words relevant to personality traits, their
sentiment score could be an effective source of information to filter and validate more
coherent words to understand and, thus, communicate a particular aspect of personality. In
other words, we need to identify feature words and the sentiment of the word associated
with a personality trait.

Finally, we adopt the strategic analysis grid of FTTA (From Text to Action), which is an
analysis framework based on an aspect to discover four interactions of attention (frequency)
and affection (sentiment) [10] to further explore how consumers with specific personality
traits use those featured words in term of the interaction of attention (TF-IDF score) and
affection (sentiment score). The final research question in this study is whether people with
specific personality traits intensively use specific feature words positively or negatively.

2. Research Methodology

As we mentioned in the Introduction, the personalities of those we interact with are
beneficial because psychographic segmentation can increase the effectiveness of advertis-
ing, promotion, and other marketing activities [1]. Past research suggests that by taking
advantage of insights into psychological factors, marketers can more effectively attract
buyers through emotional involvement at the expense of functionality [14]. Additionally,
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the consumer-perceived price also varies depending on the psychological traits of each
individual [15]. As for automatic personality detection via algorithm and AI technology,
some research provided evidence on improving advertising defectiveness [16,17]. There-
fore, we attempted to adopt the scales of the Kaggle MBTI Personality dataset to examine
the methodology’s effectiveness, extract the personality traits from the textual data into
features, and map them into the traits/dimensions of the existing scale to better understand
what kinds of words are more intensively used for consumers with specific personality
traits. The results should be useful for one-to-one advertising message communication.

2.1. How The Outcome Variable (MBTI) Is Transformed and Used

First, we employed the well-known scales of the Kaggle MBTI Personality dataset to
examine the methodology’s effectiveness at extracting the personality traits from the textual
data into features and mapping them onto the traits/dimensions of the existing scale. This
dataset contained over 8600 rows of data. Each row listed a person’s type (the person’s four-
letter MBTI code/type) and the last 50 items they posted. The data were collected through the
Personality Cafe forum (https://www.personalitycafe.com/, accessed on 15 December 2022).
A sample of the dataset is shown in Table 1.

Table 1. Sample data of Personality Cafe forum dataset.

Type Post

INFJ
http://www.youtube.com/watch?v=qsXHcwe3krw|||
http://41.media.tumblr.com/tumblr_lfouy03PMA1qa1rooo1_500.jpg|||enfp and intj moments
https://www.youtube.com/watch?v=iz7lE1g4XM4

ENTP
I’m finding the lack of me in these posts very alarming.|||Sex can be boring if it’s in the same position often.
For example, me and my girlfriend are currently in an environment where we have to creatively use cowgirl
and missionary. There isn’t enough...|||Giving new meaning to ‘Game’ theory.|||

INTP
Good one _____ https://www.youtube.com/watch?v=fHiGbolFFGw|||Of course, to which I say I know;
that’s my blessing and my curse.|||Does being absolutely positive that you and your best friend could be an
amazing couple count? If so, than yes. Or it’s more I could be madly in love in case I reconciled my feelings.

The Personality Cafe forum provides a large selection of people and their MBTI
personality types, as well as what they have written. The dataset originated from the
Personality Cafe forum in 2017, and its posts are predominantly in English, with an
approximate corpus of 11.2 million words in more than 420,000 labelled points. Each row
represents the last 50 posts of each user. Several studies exploring the MBTI personality
adopted the Personality Cafe dataset to examine textual messages and personality traits.
Most of the results indicated that using a dataset with an expert labelling the personality
traits seems to be effective. Hence, we decided to utilize the dataset for this study.

The Myers–Briggs Type Indicator (MBTI) is a personality indicator that was developed
based on Carl Jung’s model. The MBTI assesses 16 different personality types (INTJ, INTP,
ENTJ, ENTP, INFJ, INFP, ENFJ, ENFP, ISTJ, ISFJ, ESTJ, ESFJ, ISTP, ISFP, ESTP, and ESFP).
They all differ in their characteristics and must be treated differently [3]. Each personality
type (listed in Table 2 below) reflects a unique human psychological archetype.

Table 2. The definition of dimension and construct for MBTI personality traits.

Dimension Construct Definition

Mind Introvert (I) or Extrovert (E) shows how an individual interacts with others.

Information Intuition (N) or Sensing (S) shows how an individual sees the world and processes information.

Decision Thinking (T) or Feeling (F) shows how an individual makes decisions and copes with their emotions.

Structure Judging (J) or Perceiving (P) reflects an individual’s approach to work, making decisions, and planning
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Therefore, we collected raw data that could be arranged and scored to look like the
figure below.

No. is the sequence number of the subjects; Type is the category of the MBTI per-
sonality; and mind, information, decision, and structure are the dimensions of the MBTI
personality. The value of 0 for mind indicates the trait of an introvert, and 1 indicates the
trait of an extrovert. Please refer to Tables 3 and 4 for the operational definitions of the
other dimensions, constructs, and sample data.

Table 3. The sample data of the category of four dimensions of MBTI personality traits.

No Type Post Mind Information Decision Structure

1 ENTJ I was referring to in every careers always a
good memory is required, but 1 0 1 1

2 INTJ I be well, but I feel different psychically and I
like it. I’m sure some of 0 0 1 1

3 INTJ Hell is other people INTJs are often portrayed
as villains due to a lack of 0 0 1 1

Table 4. The operational definition of four dimensions of MBTI personality traits.

Dimension Construct Indicator

Mind
Introvert (I) Value of mind = 0

Extrovert (E) Value of mind = 1

Information
Intuition (N) Value of information = 0

Sensing (S) Value of information = 1

Decision
Thinking (T) Value of decision = 0

or Feeling (F) Value of decision = 1

Structure
Judging (J) Value of structure = 0

Perceiving (P) Value of structure = 1

2.2. Generation of a Custom Dictionary for the Construct

In this study, we attempted to extract feature words based on TF-IDF scores to generate
a customer dictionary of construct/traits, as has been carried out in previous research.
TF-IDF (term frequency–inverse document frequency) is a statistical measure that evaluates
how relevant a word is to a document in a collection of documents [7]. This evaluation is
performed by multiplying two metrics: (1) how many times a word appears in a document
and (2) the inverse document frequency across a set of documents. The higher the score, the
more relevant that word will be in that particular document but not in other documents.

Thus, the obtained MBTI scores indicated the positive or negative dimension of MTBI
regarding the mind, information, decision, and structure. We classified those written
texts as mind (1), mind (0), information (1), information (0), decision (1), decision (0),
structure (1), and structure (0), respectively, and then calculated each word of TF-IDF. We
filtered the higher and expected numbers of words to obtain more than 100 words for each
construct (please refer to Table 5). Subsequently, we obtained the sample feature words for
each dimension, as Table 6 shows (The programming language R provided the package
superml (https://www.rdocumentation.org/packages/superml/versions/0.5.5, accessed
on 20 December 2022) to easily obtain the score the TF-IDF).
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Table 5. The sample value of TF-IDF feature words of MBTI personality traits.

Mind Information Decision Structure

Construct Word TF-IDF Construct Word TF-IDF Construct Word TF-IDF Construct Word TF-IDF

mind(0) contains 2.29 × 10−5 information(0) trump 4.40 × 10−5 decision(0) rhubarb 1.79 × 10−5 structure(0) believe 1.68 × 10−5

mind(0) dirt 1.98 × 10−5 information(0) hyper 3.02 × 10−5 decision(0) sm 1.49 × 10−5 structure(0) fap 1.28 × 10−5

mind(0) rigid 1.90 × 10−5 information(0) rings 2.83 × 10−5 decision(0) empathy 1.20 × 10−5 structure(0) stoned 1.28 × 10−5

mind(0) accomplishing1.60 × 10−5 information(0) carried 2.58 × 10−5 decision(0) sighs 1.10 × 10−5 structure(0) lowered 1.08 × 10−5

mind(0) composition 1.60 × 10−5 information(0) collective 2.45 × 10−5 decision(0) snuggles 1.10 × 10−5 structure(0) luna 1.08 × 10−5

mind(0) socialism 1.52 × 10−5 information(0) hopeful 2.39 × 10−5 decision(0) alienated 9.96 × 10−6 structure(0) breasts 9.86 × 10−6

mind(0) buildings 1.45 × 10−5 information(0) atheism 2.33 × 10−5 decision(0) cheering 9.96 × 10−6 structure(0) devil 9.86 × 10−6

Table 6. The sample feature words of each dimension of MBTI personality traits.

Mind(0) Mind(1) Information(0) Information(1) Decision(0) Decision(1) Structure(0) Structure(1)

meditate banned destructive jetplane bob_toeback radiation algebra energizes

dirt cheaters hyper chow sm advantageous fap find

rigid vous rings permissive empath devout stoned plethora

mew type heal barbecued probs raping memy pufferfish

bees asounds produce bitchiest war venue shrooms query

2.3. Categorization and Sentiment Analysis of Textual Data

This study proactively proposed that the core TF-IDF technique involves counting the
occurrence/frequency of words. However, the frequency indicates the extent of attention
instead of the extent of affection (preference or valence) [7]. Hence, this study applied the
sentiment analysis of those sentences to obtain the affection of the aspect instead of adopting
the TF-IDF score to predict or compare the questionnaire ratings [10]. Past research adopted
the TF-IDF score or manual labeling to compare or predict the questionnaire ratings,
which is different. Except for the attention aspects, we considered affection equivalent to
comparing it with the results of a questionnaire or psychological tests [9,18].

The methods of personality measurement regarding sentiment are summarized as
follows. For detailed theories and verification methods, please refer to the scale-directed
text analysis (SDTA) developed by scholars [9,10]. R and PHP languages are used to de-
velop programs to convert qualitative text content analysis into quantitative marketing scale
scores based on the existing marketing scale (This study uses two word datasets, respec-
tively, the AFINN sentiment lexicon (http://www2.imm.dtu.dk/pubdb/pubs/6010-full.html,
accessed on 10 November 2022) and MBTI personality as developed by filtering the higher
score of TF-IDF as described in a previous paragraph.).

2.4. Sentiment Analysis of MBTI Personality

The AFINN sentiment lexicon was used to distinguish the word polarity (positive,
negative, or neutral) and the MBTI lexicon was used to distinguish the degree (via an
interval scale from −5 to +5) (please refer to Table 7).

Table 7. Sample sentences illustrating how to calculate the sentiment score.

ID Dimension Featured Word Featured Sentence Emotional Word Sentiment Score

1 Decision(1) technologies specific technologies meant countries denial denial −2

2 Information(0) slang

worrying essay read biography Blank
pieces paper Scattered stare blink
Squirm time minutes slang depends
word circumstance altruistic

worrying −3
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Sentiment analysis of textual data measures someone’s words to determine their
feelings. In some cases, it is considered more revealing than surveys because it is a more
organic analytical method [8]. The performance of such sentiment classifiers depends on
the domain or topic being analyzed [12]. We developed an automatic textual analysis
system in the programming languages R and PHP to scan the collected textual data and
compared it to the custom dictionaries of MBTI personalities that we developed using
TF-IDF statistics. Based on keywords in the dictionaries, the program identifies relevant
sentences and assigns each sentence to a construct of the MBTI personality dimension. The
textual data for each construct’s sentence was analyzed using sentiment analysis of the
publicly available AFINN Sentiment Word List. This is a well-known list of English words
manually developed by Finn Årup Nielsen, a researcher at the University of Denmark [19].
Specifically, the AFINN word list was used to rate the valence of each sentence using an
integer ranging from –5 to +5 based on word strength. Our automated system also identifies
and reverses the sentiment scores of sentences containing negative modifiers. Please refer
to Table 7 for two examples of categorizing the sentences and scoring the sentiment polarity
of textual data.

For example, the sentences shown in Table 7 were written by a participant. The
keywords ‘technologies’ and ‘slang’ in those sentences can be found in the ‘Decision(1)’ and
‘Information(0)’ dimensions of the MBTI personality, respectively. Furthermore, emotional
words, in this case, ‘denial’-2 and ‘worrying’-3, in those sentences were rated by the AFINN.

The categorization and sentiment analysis of the textual data revealed the sentiment
score for each document, as shown in the columns mind(0), mind(1), information(0),
information(1), decision(0), decision(1), structure(0), and structure(1) in Table 8. Those
scores indicate the extent of the valance of the personality traits.

Feature selection is the process of reducing the number of input variables when
developing a predictive model. Reducing the number of input variables is desirable to
decrease the computational cost of modeling and, in some cases, improve the model’s
performance. From the perspective of text analytics, feature selection refers to feature word
extraction when using the machine learning approach.

Statistical feature selection methods involve evaluating the relationship between each
input variable and the target variable using statistics and selecting the input variables that
have the strongest relationship with the target variable. These methods can be fast and also
effective, although the choice of statistical measures depends on the data type of both the
input and output variables. This current study, employing the machine learning approach,
uses TF-IDF and sentiment analysis.

However, what is the central criterion to determine the baseline or cut-off threshold
to filter more relative feature words for a specific trait? From the perspective of machine
learning, feature importance refers to techniques that assign a score to input features based
on how useful they are at predicting a target variable. Feature importance scores play an
important role in a predictive modeling project, including providing insight into the data,
the model, and the basis for dimensionality reduction and feature selection, which can
improve the efficiency and effectiveness of a predictive model. Thus, in this study, we
attempted to adopt a machine learning algorithm method, Random Forest, to calculate the
relative importance of feature words and provide a mechanism to tune the amount and
selection features of the words extracted from the TF-IDF and sentiment analysis.

Please refer to Table 9 for the list of feature words and scores of relative importance.
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Table 9. For the example of list of feature words and scores of relative importance.

Mind Information Decision Structure

Words Score Words Score Words Score Words Score

hate 0.004983 word 0.00083 love 0.039867 infp 0.023256

able 0.003322 believe 0.00083 feel 0.02907 makes 0.01495

made 0.002492 talking 0.00083 info 0.020764 guys 0.011628

problem 0.002492 part 0.00083 life 0.01412 help 0.009967

stuff 0.002492 start 0.00083 feeling 0.010797 general 0.009967

2.5. Validation of a Custom Dictionary for the Construct

This study employed the score for the sentiment of extracted feature words instead of
only the TF-IDF score to predict the questionnaire response. This study adopted the cross-
validation function provided by R CARET. Furthermore, XGBoost is an increasingly popular
machine learning algorithm due to its high performance and accuracy and its ability to solve
overfitting (The programming language R provides easy use and is a powerful CARET package
https://cran.r-project.org/web/packages/caret/caret.pdf (accessed on 25 November 2022) to
implement the XGBooost algorithm). Before applying the ML algorithm to train and test the
data, the input data were prepared as outlined below.

3. Results

3.1. Training Data for the MBTI Personality

The target variables in this instance were mind, information, decision, and structure,
respectively, and the TF-IDF score for the words starting from the column think, know, etc.,
were the features used to predict the target variable. Please refer to Table 10.

Table 10. The TF-IDF score for predicting the MBTI personality traits.

No Type Clean_Post Mind Information Decision Structure Think People Know Time Feel Love

0 INFJ
http://www.youtube.
com/watch?v=
qsXHcwe3krw

0 0 0 1 0.000 0.052 0.000 0.219 0.000 0.000

1 ENTP
I’m finding the lack
of me in these posts
very alarming.

1 0 1 0 0.087 0.087 0.309 0.137 0.000 0.052

2 INTP

Good one _____
https://www.
youtube.com/watch?
v=fHiGbolFFGw
Of course

0 0 1 0 0.152 0.305 0.103 0.000 0.000 0.061

3 INTJ
Dear INTP, I enjoyed
our conversation the
other day.

0 0 1 1 0.137 0.137 0.174 0.072 0.000 0.000

4 ENTJ

You’re fired. That’s
another silly
misconception. That
approaching is
logically is going

1 0 1 1 0.269 0.448 0.136 0.140 0.000 0.000

On the other hand, we prepared a dataset similar to that in Table 11. The target
variables were mind, information, decision, and structure, respectively, and the sentiment
score for each construct was the features. Please refer to Table 11.
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Table 11. Data preparation of TF-IDF and sentiment scores predicting the MBTI personality traits.

Line Mind Information Decision Structure Mind(0) Mind(1) Information(0) Information(1) Decision(0) Decision(1) Structure(0) Structure(1)

0 0 0 0 1 0 0 −15 0 0 −15 0 0

1 1 0 1 0 −3 0 2 0 0 −3 0 0

2 0 0 1 0 0 0 4 0 0 0 0 0

3 0 0 1 1 −4 0 −2 0 −2 0 0 0

4 1 0 1 1 0 −2 0 −4 1.5 0 0 0

Given the result obtained via two sorts of features, the TF-IDF score and sentiment
score of the construct, we can compare the accuracy of the kinds of features possible, as
shown in Table 12.

Table 12. The comparison of performance prediction between TF-ID and sentiment.

Metrics Mind Information Decision Structure

TF-IDF 0.78 0.80 0.70 0.59

Sentiment 0.80 0.80 0.72 0.61

TF-IDF+Sentiment 0.80 0.91 0.74 0.66

3.2. Discovering How Consumers Use the Feature Words

We adopted the strategic analysis grid of FTTA (From Text to Action), which is an
aspect-based analysis framework, to discover the four situations of the interaction of
attention (frequency) and affection (sentiment) and further explore how a consumer uses
those feature words in terms of the interaction of attention (TF-IDF score) and affection
(sentiment score).

Tsao et al., 2022 [10], proposed that the data on the topics mentioned in a text (aspect),
coupled with the data on the frequency with which they are mentioned (attention) and the
sentiment they receive (opinion), can provide useful strategic insights, namely, the FTTA
(From Text to Action) grid. This framework is based on a specific aspect or dimension, and
the grid explores the interaction between attention and affection based on textual data.

First, the words appearing in the upper right quadrant are characterized by high
attention and positive affection, which indicates that those words represent consumers
with the corresponding personality traits and more positive affection.

Second, the words in the upper left quadrant, with high attention and negative af-
fection, are most often used by consumers with the corresponding personality traits and
negative affection.

Third, the words in the lower right quadrant, with high attention and high affection,
indicate highly positive affection, but these are less used by those consumers with a
corresponding personality trait.

Fourth, the words in the lower left quadrant, with low attention and log affection,
indicate negative affection, and they are also used less frequently.

Please refer to Figure 1 for the sample words in the FTTA grid.
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Figure 1. FTTA grid of MBTI personality.

We summarized some intensively used words for positive words and negative words
for different traits of personality in Table 13.
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Table 13. Sample words of MBTI Personality.

Intensively Used Words

MBTI Dimension Positive Words Negative Words

m0 (I) realist, fulfilment, tactful, planner, myself tolerable, haunting, horrific

m1 (E) Improvising, sensational, openness cheaters

i0 (N) mathematical, produced heal

i1 (S) questioners, permissive, glided -

d0 (T) probs, edits loathed, bruises, saddens

d1 (F) standardized, meetups, devout misinformation

s0 (J) convos, democratic query, improves, fanatics

s1 (P) exhaustion, numbing, confused wimpy, ugliness, lie

Note. I (Introversion): preferring self-reflection to social interactions and preferring to observe before participating
in an activity. E (Extraversion): enjoying socializing and tending to be more enthusiastic, assertive, talkative, and
animated. N (Intuition): referring to how people process data. They easily see the big picture rather than the
details. S (Sensing): refers to processing data through the five senses. They focus on the present and prefer to
“learn by doing” rather than thinking it through. T (Thinking): referring to how people make decisions. They are
objective and base their decision on hard logic and facts. F (Feeling): they are more subjective. When making
decisions, they consider other people’s feelings and take them into account. J (Judging): referring to how people
outwardly display themselves when making decisions. They like order and prefer outlined schedules to working
extemporaneously. P (Perceiving): they prefer flexibility, live their life with spontaneity, dislike structure, and
prefer to adapt to new situations rather than plan for them [20,21].

3.3. Summary of Findings

First, in this study, we successfully obtained MBTI scores indicating the positive or
negative dimension of MTBI regarding the mind, information, decision, and structure. We
could then filter the higher value of TF-IDF for each construct to generate the feature words
for each dimension.

Second, given the result obtained via two sorts of features, the TF-IDF score and
sentiment score of the construct, we could compare the accuracy of the kinds of features
possible via an AI-empowered machine learning algorithm, as shown in Table 12. The
results support that the sentiment score is useful for filtering and validating more coherent
words to communicate a particular aspect of personality.

Finally, we adopted the FTTA strategy analysis grid, allowing us to better understand
the consumer by using the features of words in terms of the interaction between attention
(TF-IDF score) and affection (sentiment score). In other words, individuals with specific
personality traits tend to heavily use some words positively or negatively, as shown in the
upper right and upper left quadrants, respectively, in Figure 1.

4. Conclusions

The results obtained in this study confirm that the TF-IDF algorithm can be used to
generate a custom dictionary. Furthermore, sentiment scoring with an AI-empowered
machine learning algorithm is effective for extracting more coherent words to communicate
a particular aspect of personality.

In other words, we attempted to discover the association between words and their
sentiments and specific personality traits. The TF-IDF and AI-empowered sentiment
analysis can reveal intrinsic concepts of those features and words used by individuals with
specific personalities. Furthermore, the strategic analysis grid of From Text to Action (FTTA),
which is an analysis framework based on four situations of the interaction of attention
(frequency score of TF-IDF) and affection (sentiment), allows us to better understand how
consumers use feature words that are positively and negatively associated with personality
traits, as Table 13 shows. However, we still require proposing a limitation of the usage of
FTTA, that is, how to interpret the feature words is dependent on the realm and context of
the research. While a deep dive into the original textual data is required to fully understand
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the meaning behind the word mining, a domain expert is also needed to help with the
interpretation. However, the FTTA grid still provides a data-driven pathway and cue
to lead us to produce the insight. Furthermore, based on the results obtained in this
study, a potential further research question could be explored, which is how to achieve
automatic awareness of customers’ personalities and a one-to-one advertising message-
communication strategy [16,17,22].
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Abstract: Generating automatic visualization from natural language texts is an important task for
promoting language learning and literacy development for young children and language learners.
However, translating a text into a coherent visualization matching its relevant keywords is a chal-
lenging problem. To tackle this issue, we proposed a robust story visualization pipeline ranging from
NLP and relation extraction to image sequence generation and alignment. First, we applied a shallow
semantic representation of the text where we extracted concepts including relevant characters, scene
objects, and events in an appropriate format. We also distinguished between simple and complex
actions. This distinction helped to realize an optimal visualization of the scene objects and their
relationships according to the target audience. Second, we utilized an image generation framework
along with different versions to support the visualization task efficiently. Third, we used CLIP
similarity function as a semantic relevance metric to check local and global coherence to the whole
story. Finally, we validated the scene sequence to compose a final visualization using the different
versions for various target audiences. Our preliminary results showed considerable effectiveness in
adopting such a pipeline for a coarse visualization task that can subsequently be enhanced.

Keywords: scene generation; story visualization; GAN; story understanding; language learning

1. Introduction

During the period of the COVID-19 pandemic, teachers had a full-time schedule to
provide regular and online lessons to children, divided into several small groups. Both
teachers and students encountered changes in teaching and learning habits, respectively.
For instance, preparing a sequence of coherent images to visualize textual stories from an
Arabic natural language text is a very challenging problem [1]. On the other hand, using
only text-to-image retrieval methods is very inefficient for young children with special
educational needs and learning difficulties (Senld). For instance, using retrieved images
from diverse search engines to visualize non-common characters and actions from a story
often requires enormous manual effort, yet it is more difficult to adapt this to meet each
student’s effective learning needs. The same applies for aligning images within a story.
Sometimes, this task remains completely unresolved. We approached this unresolved issue
using a semi-automatic scene sequence task, i.e., a visual story task to facilitate the learning
process and inspire teachers, instructors, and students.

However, to create such story visualization efficiently, one needs to convert the story
constituents into a sequence of image frames in a proper and coherent way. A sequence of
images can illustrate the story events and characters that can contain multiple sentences.
The sequence of images is defined as a continuous stream of consistent images that are part
of the same story or event, as argued by the authors in [2]. Although visualized stories
are difficult to generate in a robust way, they are more comprehensible, memorable, and
attractive. Consequently, automatic story understanding and visualization has a broad
application prospect in storytelling, while also representing an important step in many
computer vision (CV) applications such as children learning natural language vocabularies.
Essentially, our goal was to create a sequence of images to visualize an Arabic story where
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the text was extended from sentence level to paragraph level for continuous visualization.
In prior studies on text-to-image generation [3–5], the same sentence may have a signifi-
cantly different generated image while depending largely on the contextual information;
therefore, it is also necessary to pass the essential contextual information from the story
text to the image generation framework. For instance, considering the sentences given
in Figure 1, Figure 1b will vary widely without the context of the story, i.e., without the
Figure 1a.

  
(a) (b) 

 
(c) 

Figure 1. Input sentences (translated from Arabic to English) and correspondingly generated single
images and an image sequence: (a) The elephants are standing in a grassy field; (b) There are sheep
around them; (c) The sheep approached the elephants.

To tackle the problem of objects and event extraction, we applied scene graphs [6]
to represent the detailed semantics of each sentence from the story text. A scene graph
(SG) is defined as a graph-based semantic representation having nodes and edges. The
nodes represent objects, and the edges represent relationships between them. For simplicity,
we rewrote each complex sentence in a simple form such as (object, attribute) or (object,
relationship, object) tuples. This step abstracted away most of the lexical and syntactic
challenges of natural language in the process.

To tackle the second challenge with image synthesis, we used an automatic image
generation framework to allow different versions, namely single images and a sequence of
images for common and non-common actions, respectively. However, the challenge here
was how to display the logic narrative flow of the sequence of images to visualize the story
characters and events in a coherent way. Specifically, the appearance of objects and the
layout in the background must evolve as per the story narrative flow. Our method can be
considered as a fast solution to visualize non-common characters and actions with multiple
images whenever needed.
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An emerging trend in CV combining deep learning models is regarded as a possible
solution for approaching our task. Among these models, generative models construct scenes
from sentences, either from short textual descriptions [5] or short dialog [7]. Additionally,
previous studies have assumed that a space that synthesizes both vision and language
modalities are indispensable to the performance of any text-to-image synthesis [5]. Notably,
recent studies using generative adversarial networks (GANs) have presented good results.
However, GAN cannot achieve expected results when the image to be generated contains
multiple objects. Indeed, such a requirement is more challenging when multiple objects
with complicated relationships and different locations are to be presented in the image [8].
Consequently, complex scene generation is still in the development stage and has not been
elaborated upon.

We extended our previous study [9], which attempted to generate sequences of images.
Despite producing visual sequences that capture the relevant content of the input text,
i.e., characters and events, our previous method was limited to the extracted entities and
relationships that exactly matched the model vocabulary, thereby ignoring other content
from the input text. To tackle this issue, in this extended study, we added a vocabulary
mapping module. Another limitation of our previous study was that the text–image
alignment method was made by consecutively aligning the images, which showed sharp
changes in visual content between the frames. In this study, we employed a multimodal
similarity function to dynamically align the images in a sequence based on their similarity
scores to the input text. Moreover, uncommon actions in the input text are hard to visualize
and are left behind due to many reasons such as their rarity in the dataset; thus, we
believed that a decomposition of such actions in a detailed image sequence could facilitate
the visualization of such actions. Furthermore, we compared our method with two state-of-
the-art models for generating images.

In this context, we proposed a framework based on a text-to-image approach and
CLIP to generate and return the best image in the sequence corresponding to the input
text. More specifically, the framework took the text as an input, generated a sequence of
images, and highlighted the images whose CLIP embedding was most similar to the input
text. Notably, we started with an NLP task, i.e., a story parsing task using handcrafted
syntactic rules, followed by entities and relation extraction, and vocabulary mapping. Then,
a semantic representation using SG was built upon all of the resulting triples denoted as
(object, relation, object). Afterward, an image sequence generator for generating images
from SG was applied. Subsequently, CLIP was used for image production and input text
embedding, followed by computing similarity scores. Further, we evaluated the produced
text–image alignments using different metrics.

In contrast to previous studies that have focused on single image generation, we
applied detailed image sequence generation for non-common actions using a pre-trained
model on a visual genome dataset [10] under the PyTorch framework [11]. Finally, we
applied the CLIP [12] similarity function as a metric to check the sentence-level coherence
to generated an image sequence, and it computed the cosine similarity between the feature
vectors of the story sentences and each of the images. A higher similarity meant a closer
match between the story sentence and the corresponding images. Based on these scores,
the images were reranked to form an image sequence.

The rest of the paper is organized as follows: Section 2 describes the main approaches
to scene generation, Section 3 specifically presents our method, Section 4 discusses the
experimental setup, Section 5 shows our evaluation and obtained results, while Section 6
concludes the paper.

2. Related Studies

Early studies on text visualization and illustration [13–17] traditionally relied upon
manually annotated image repositories collected from search engines using image retrieval
techniques [18,19], and by using images produced by users [20]. Retrieval-based approaches
compare texts and images across modalities [21] using different techniques such a canonical
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correlation analysis [22]. Specifically, text-to-image systems use retrieval methods that
focus on the matching of text and images. In addition, these studies have relied on
massive amounts of labeled data, as stated by the authors in [23]. One of the early story
visualization attempts was the story-picturing system [13]. The system retrieved landscape
and art images from online repositories to illustrate ten short stories. It used keywords
from the stories and image descriptions to match the linking between the images using the
similarity function. A comparative study of early story illustrations, visualization systems,
and tools can be found in [24].

A method worth mentioning was proposed by Huang et al. [14], using VizStory, as a
visualization system of fairy tales, to transform the input texts to representative pictures.
The system selected keywords from segments in the stories, while relevant pictures were
searched for using online resources based on their tags. Finally, to represent the main ideas
of the original segments, the final pictures were composed. Afterward, the authors built
in a visual storytelling dataset (VIST) that was useful for image-in-sequence to story-in-
sequence generation [25], thereby initiating the visual storytelling task.

Alternatively, the studies of the authors in [2,26] attempted to visualize a story with
image sequences. The former proposed to enhance the single sentence representation
with a global coherence vector and apply global and region matching to retrieve an image
for each sentence. The latter proposed a framework with a story-to-image retriever. It
selected relevant and inspirative cinematic images and used a storyboard creator that
further refined and rendered the images to improve the relevancy and visual consistency.
Both authors worked on VIST datasets to evaluate their work. Despite the method given
by the authors in [26] scene images with a high resolution and multiple foreground objects
were generated; however, it only used cartoon characters where the structures and shapes
were poor, resulting in poor image quality.

Recently, Fang et al. [27] used the shooting time order and the storyline behind the
images to construct a narrative collage image. First, they considered a set of semantic salient
objects from each representative image for object extraction. Then, they used an image
canvas according to layer graphs and scene graphs to visualize the extracted objects. Finally,
they synthesized a new narrative collage image. More recently, Fang et al. [28] proposed
a comprehensive text-to-image synthesis pipeline. They used segmented background
scene image and foreground objects from the COCO dataset to generate complex and
high-resolution scene images. Finally, they applied the constrained Markov chain Monte
Carlo method to generate the optimal positions and scales for all foreground objects to look
more realistic. However, these methods rely heavily on image retrieval and fail to generate
images with a realistic look, since they just focus on text understanding, object selection,
and text–object matching.

With the advances in CV using GANs [29], which are a more powerful class of implicit
generative models, they have been successfully applied to various image synthesis methods
such as text-to-image synthesis from short textual descriptions [3–5,30–32]. A key task
in text-to-image generation is understanding longer and more complex input text, as in
our case. Story visualization, however, is different from short textual descriptions, which
places more emphasis on semantic coherency rather than simple descriptive text. A story
text can contain different scene changes, many objects, different backgrounds, etc. An
interesting study [33] has demonstrated dialogue-to-image generation, where the input
was a complete dialogue session rather than a single sentence. However, this method was
simply a text–image concatenation task and used a coarse sentence condition that, as a
consequence, limited its overall performance.

Lee et al. [23] proposed the StoryGAN model to tackle the above the story visualization
challenge. Their model employed a context encoder to track the story narrative flow. It used
two discriminators; one at the story level and the other at image level to enhance image
quality and the consistency of the generated images. However, well-known difficulties in
training generative models such as instabilities in the training procedure [34] has limited
these studies of specific domains, such as cartoon characters [23]. The study of Zeng
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et al. [35] enhanced the latter study in several and significant ways, particularly in relation
to image quality and consistency. First, they integrated a universal sentence encoder to
incentive compliance of the generated images with textual descriptions. Second, they
incorporated an attention-driven word feature into their model, making it more realistic
in terms of image details. Finally, they introduced an image patches discriminator to
determine whether parts of the image were real. However, this work was limited in its
scope since only cartoons could be considered and the quality of the generated images
needed further improvement.

More recently, Song et al. [36], Li et al. [37], and the authors in [38] improved upon
StoryGAN [23] to emphasize the continuity between consecutive frames in generated video
as well as to enhance the quality and relevance of the generated images. More recently, the
authors proposed an approach [39] that decomposed the task of story visualization into
three phases, namely semantic text understanding, object layout prediction, and image
generation and refinement. In contrast to our study, only captions were considered, and
only a single image was generated at each step. In addition, their model used two-stage
image generation, aka StackGAN. A different model called Text2Scene has been proposed
by Tan et al. [40]. It is a sequential framework [41] where, at every time point, it learns
to generate objects and their associated attributes by attending to the words in the input
text and the status of the current generated scene. This approach, however, is restricted
to the composition of tasks of abstract scenes and object layouts. On the other hand, the
quality of the generated image is usually not stable in most cases. Subsequently, it is
difficult to directly apply generative models in complex and real-life scenarios such as
scene generation for stories in the wild [42].

3. The Proposed Pipeline Framework

Image generation for the task of story visualization aims to generate representative
and coherent images to convey the semantic in a given story text. This is a challenging
task since it requires a deep understanding of the objects involved in the story as well as
their mutual interactions, and semantical connections and co-relations. In this context, we
proposed a framework consisting of (i) an NLP task followed by (ii) a semantic representa-
tion using SG, (iii) an image sequence generator for generating images from SG, and (iv)
CLIP for producing images and input text embeddings followed by computing similarity
scores. Further, we evaluated the produced text–image alignments using different metrics.
Moreover, we compared our approach based on scoring images according to their semantic
relevance to the input text. In the following section, we have presented the main compo-
nents of the proposed story visualization pipeline, as depicted in Figure 2. The architecture
consists of four consecutive parts as shown below:

1. Natural language processing: The first step was the language model where we ap-
plied a preprocessing pipeline, machine translation, tokenization, stop-word removal,
co-reference resolution, and semantic parsing, i.e., the task of mapping natural lan-
guage text into its semantic representation using a scene graph parser.

2. Relation extraction and vocabulary mapping: The second step involved constructing
scene graphs of extracted triples so that the text was transformed into a directed graph
G = (O; R) of objects O (nodes) and their relations R (edges).

3. Image sequence generation: The third task was image sequence generation where
we generated images from scene graphs for all mapped triplets using two different
modes.

4. Text–image alignment: Finally, we applied CLIP similarity function to produce pre-
visualizations with different sequences. The instructor could examine each image
sequence and choose whether to use the single image version or the detailed image
sequence.
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Figure 2. The overall pipeline of the proposed approach: a story text is piped into an NLP module to
the first MT, which preprocesses and parses the sentences into scene graph triples. Then, the triples
are mapped to model vocabulary to generate single images and image sequences. After applying
CLIP model, the instructor is able to adjust the synthesized image sequences by choosing whether to
use the single image version or the detailed image sequence.

3.1. Natural Language Processing (NLP)

We considered mainly children’s stories featuring animals. After translating the stories
from Arabic to English, we extracted the characters and scene objects that were necessary
for visualization, including the relationships between them. Then, we proceeded with a
neural coreference resolution of the pronouns to prepare the text as simply as possible
for the next step. A pre-trained neural model NeuralCoref [43] was used to replace the
ambiguous mention of pronouns with its corresponding nominal pronoun.

We obtained a set of relationships based on form (subject; relation; object) by using a
scene graph parser. In many cases, the obtained list of relationships was noisy, for instance,
objects may have multiple relationships, a passive form, a plural form, etc. To prepare the
list for further processing, we pre-processed the list using different rules.

We defined a list of entities to record characters and scene objects that appeared in
the text. We traversed every relationship and confirmed whether the involved relation
and the entities existed in the vocabulary list. If they existed, they were appended in
the relationships and entities list, respectively. Otherwise, we use word2vec-based (https:
//code.google.com/archive/p/word2vec/ (accessed on 10 February 2023)) similarity
function to find the nearest token in the model vocabulary list. Finally, a dictionary output
was created that included two lists, entities = [oi, oj, . . . ] and relationships = [[xi, r, xj], . . . ],
where xi is the index of oi, xj is the index of oj in from the entities’ list, and r ∈ R is the set
of model relationship categories. The described process is shown in Algorithm 1.
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Algorithm 1: ParseStory parses input text and extracts triples as characters, entities, and relations

Input = AS: Arabic Story, args []: list of access parameters, vocabulary []
Output = DrawTriples {}, SceneGraphTriples {}, entities [], relationships []
Begin

1. rawtext = translateQCRI (AS, args)
2. rawtext = coreference_resolution (rawtext)
3. docx = nlp (rawtext)
4. SceneGraphTriples = sng_parser (docx)
5. for relation in SceneGraphTriples [‘relations’]
6. if (relation in vocabulary) then

7. xi, xj = relation [‘subject’], relation [‘object]//indices for both involved entities
8. oi, oj = SceneGraphTriples [‘entities’].value (xi, xj)//get both involved entities
9. if (oi, oj in vocabulary)
10. entities.append (oi, oj)
11. relationships.append ([xi, relation, xj ])
12. end

13. else

14. oi, relation, oj = get_mapping (oi, relation, oj)//vocabulary mapping
15. entities.append (oi, oj)
16. relationships.append ([xi, relation, xj ])
17. end

18. end

19. DrawTriples [‘entities] = entities
20. DrawTriples [‘relationships’] = relationships
21. return DrawTriples

end

3.2. Relation Extraction and Vocabulary Mapping

We considered phrases that described the main animal characters’ behavior. We also
focused on some of their common and uncommon basic behaviors. Table 1 shows some
common sample phrases used in this work as well as their related actions. It is worth noting
that animal behavior that is not listed is considered to be non-common animal behavior.
From the resultant phrases of the previous step, we obtained all of the triples in the form
<object, relationship, object> using a scene graph parser. Due to practical reasons, it was
not possible to create images for all of the extracted triples from the story text. Due to
this restriction, as in the case of the visual genome dataset [10], the vocabulary mapping
used a semantic similarity based on word2vec to find the nearest tokens from the model
vocabulary, as shown in Algorithm 2.

Algorithm 2: Get_mapping extended extracted entities and relations with model vocabulary

Input = vocabulary [], triples []
Output = similar_triples []
Begin

1. model = gensim.models.Word2Vec (vocabulary, size = 100, min_count = 1, sg = 1)//initialize
from Gensim library (https://radimrehurek.com/gensim/models/word2vec.html
(accessed on 12 February 2023))

2. for entity in triples:
3. top_similar = model.wv.most_similar (positive = entity, topn = 1)//get most similar token to

entity
4. . . . similar_triples.append (top_similar)
5. end

6. return similar_triples

end
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Table 1. An excerpt from stories’ details related to the above sentences.

Sentences Noun-Phrases Dependency Parsing Scene Graph Triples

The elephants are standing in a grassy field
The elephants nsubj

<elephants, in, field>
A grassy field pobj

The sheep are running behind the elephants
The sheep nsubj

<sheep, behind, elephants>
The elephants pobj

The sheep approached the elephants
The sheep nsubj

<sheep, approached, elephants>
The elephants dobj

Thus, the mapping also helped us to map non-common actions such as “approach”
to the similar common action in the list such as “stand” and “walk”. If we failed to find a
match, we checked for a mapping while including the verb’s preposition such as “close to”,
“next to”, etc. For instance, for the tokens of the sentences mentioned earlier in Figure 1, we
computed their similarities with the terms in the vocabularies and took the maximum value
among them all. As an example, the token “elephants” was mapped to the term “elephant”
with a similarity value of 1.0; however, the token approached was mapped to the term “stand”
with a similarity value of 0.1, using the word2vec similarity function.

3.3. Image Generation

We split the image generation step into two main tasks. One task tackled the generation
of a single image to visualize sentences in isolation. The second task was directed towards
the detailed generation of image sequences, i.e., multiple images that were highly coherent
with the whole story. After, obtaining the objects and relationships that composed the scene
graph, we used a graph convolution network [11] composed of several graph convolution
layers to process the scene graph.

Single image generation. We generated images from scene graph triples of actions
and characters using a pre-trained model for PyTorch [11]. Basically, the architecture con-
sisted of three main modules: a graph convolution network (GCN), a layout prediction
network (LN) and a cascade refinement network (CRN). First, the GCN took a scene graph
as an input and produced an embedding label vector output for each object. Then, these
object embedding vectors were used by LN to compute a scene layout by predicting a
segmentation mask and bounding box for each object. Given a scene layout, the CRN was
then responsible for generating an image that respected the object relations in the scene lay-
out. Finally, discriminators were used to generate realistic output images by adversarially
training the image generation network against a pair of image discriminator networks and
an object discriminator network. The generated realistic output images were adversarially
trained by the image generation network against a pair of discriminator networks Dimage
and Dobject to minimize the weighted sum of six losses [11]. The discriminator Dimage
attempted to classify its input x as real or fake by maximizing the following objective:

LGAN = Ex∼preal log D(x) +Ex∼p f ake log(1 − D(x)) (1)

where x ∼ preal is the ground truth image and x ∼ p f ake is the fake image that is generated
using the generator network. The discriminator Dobject guarantees that the generated
objects are identifiable by predicting the object’s category. Both Dobject and the generator
network attempt to maximize the probability that Dobject correctly classifies objects [11].

Image sequence generation. Non-common actions are typically hard to illustrate. To
enable a fair visual understanding of such actions, it was necessary to decompose these
actions into simple ones. This process enabled us to employ more detailed images rather
than only one image. However, the decomposition for actions has only been explored for
humans [44,45], even though representative actions with structured representations could
lead to improved action recognition in general. Therefore, we applied an image generation
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mode [11] to generate sequences of images rather than single isolated images. This is
because the image sequence can give more details to support the visual understanding of
complex actions. For instance, in Figure 1, it is hard to visualize the action “approaching”
using a single image only; therefore, it is necessary to generate a sequence of images that
decompose the flow of this action into several frames, similar to the way that humans
actively perceive ongoing actions, i.e., a phenomenon referred to as event segmentation
theory [46].

Specifically, for this category of actions, we generated sequences of images shot by shot
using progressive additions of objects and relations. Where the input text described only
one object, it was rendered in almost the middle of the scene. On the other hand, complex
images were rendered by starting with simple characters and progressively adding others
to build up to more complex images.

3.4. Text–Image Alignment

Once we generated all of the images, we subsequently computed the cosine similarity
using CLIP feature vectors between the story text and each of the generated images. In
CLIP, a visual encoder and a text encoder encode an input image and text independently,
and the dot-product between the two encoder’s output was used as the “alignment score”
between the input image and text based on following Formula (2):

logits = Ximage XT
text × eτ (2)

where Ximage image and XT
text are normalized encoders outputs for the image and the

text, respectively, and τ is a learned temperature parameter [12]. The CLIP model, which
was already trained over an extremely large number of images, was capable of generating
semantic encodings for arbitrary images without additional supervision.

Finally, an automatic alignment image sequence was suggested based on the CLIP
scores. The instructor could choose whether to use the single image version or the detailed
image sequence. He/she could then refine the image sequence by reordering and skipping
frames, etc.

4. Experimental Setup

At this stage, we began by preprocessing the input stories as the input data set. We
considered 80 short and simple phrases from Arabic stories in the animal domain [9]. We
translated them from Arabic to English, and the selected 20 stories had 80 key phrases. The
distribution of objects was consistent in number, where each object possessed five different
actions. We selected phrases with a simple narrative structure to introduce concepts using
animal characters and their common behaviors such as running, eating, jumping, etc., as
well as non-common behavior such as approaching, covering, looking at, etc. The characters,
objects, location, and background were explicitly mentioned in the text and were realistic.
In the experimental set up, we further applied the following steps:

Story parsing was applied; it included coreference resolution, part-of-speech tagging,
dependency parsing, relation extraction using linguistic patterns, and scene graph parser
(https://github.com/vacancy/SceneGraphParser (accessed on 17 March 2023)). For ex-
ample, we considered the sentences “The elephants are standing in a grassy field. The sheep
are running behind them. The sheep approached the elephants”. After applying the coreference
resolution using NeuralCoref (https://github.com/huggingface/neuralcoref (accessed on
25 February 2023)) and manual adjustment, we obtained the following final representation
for the sentences “The elephants are standing in a grassy field. The sheep are running behind the
elephants. The sheep approached the elephants”. Table 1 shows the story parsing outputs. Of
note, nsubj, pobj, dobj, and iobj denoted the nominal subject, object of a preposition, direct
object, and indirect object, respectively.

1. To handle out-of-vocabulary words besides those in the training data set, we applied
simple vocabulary mapping using word2vec, a pre-trained word embedding model,
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to find the nearest vocabulary of the extracted triples in the trained model vocabulary.
For example, the token approached was mapped to the terms stand and beside, with
similarity values of 0.1 and 0.2, respectively.

2. We used all extracted relation triples and their mapped tokens to generate 128 × 128
images using the same configuration as in the sg2im model [11]. The sg2im model is
pretrained on the visual genome dataset [10], a dataset with 108,077 128 × 128 images
annotated with scene graphs. Each image has an average of 21 objects, 18 attributes,
and 18 pairwise relationships between objects where animal categories are included,
in addition to their visual relationships. All experiments were executed with Pytorch
0.4, CUDA v10, Cudnn v7, and Python 3. We generated single images and sequences
of images for common and non-common actions, respectively depending on the
type of actions. Table 2 provides excerpts of such phrases and the correspondingly
generated images.

3. We applied object detection using the PixelLib (https://pixellib.readthedocs.io/en/
latest/ (accessed on 2 March 2023)) model for all generated images. The detected
object indicated whether the character mentioned in the story line also appeared in
the image frame. We exploited the output of the model to estimate, to some extent,
the coherence of the image sequence with the whole story text. We scored each correct
image frame and summed the final score for each sequence.

4. Finally, we arrange the generated images for each story sequentially, as produced
by the CLIP score, using two different versions: the single image version and image
sequences, as can be seen in Table 3 below.

Table 2. An excerpt of phrase (containing non-common actions) and corresponding generated single
images versus image sequences.

Id Non-Common Phrases
Generated Single

Image
Generated Image Sequence

1 Elephants approaching

    

2 Elephant looking at sky

   

3 Elephant attaching to tree

    

4 Elephant covering in tree

    

5 Elephant carrying wood
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Table 3. Single images, image sequences, and corresponding object detection details.

Generation
Mode

Object Detection Mask Character Relevance

Single image 1.2 correct images
(counting only correct images, 1 + 0 + 1 = 2)

Image sequence 2.3 correct images
(counting only correct images, 1 + 1 + 1 + 0 + 0 = 3)

5. Evaluation and Results

The evaluation of story visualization is complex due to the generative nature of the
method. We conducted both quantitative and qualitative assessments as follows. First,
we compared our method with BigGAN + CLIP [12] and Dall-E [47], two state-of-the-art
models for generating images from user prompts. In these models, each image prediction
was actually the result of an optimization process where the latent space of the generator
directly maximized the CLIP score between the generated image and the description.

5.1. Quantitative Results

We demonstrated the image sequence quality of our method in a score-based manner
with regard to two aspects: character relevance and the semantic relevance of the generated
images. For our approach, we adopted a character relevance score and CLIP similarity
score between the story text and each of the images.

Character relevance: Inspired by the studies of [23,35], we selected five of the most
common characters and actions. Specifically, we selected the following animal characters,
elephant, sheep, cow, zebra, and giraffe, each with five actions representing their behavior and
relations. The results obtained from the experiment with each story character, e.g., elephants,
and sheep, is summarized in Table 3. The five continuous images form a visualization
version corresponding to a single story. For each image sequence version, we counted
each image frame as correct if the characters mentioned in the input sentence appeared in
the corresponding image frame, according to the object detection model. For instance, in
Figure 1, in the second image (from left to right) the elephant character was not present
in the image, so this image was counted as being incorrect. Since the ground truth of
the object segmentation was unavailable in the visual genome dataset, we exploited a
pre-trained salient object detection model to detect objects from all generated images. The
object detection task gave an indication if the character mentioned in the story line also
appeared in the image frame.

Semantic relevance: We measured the semantic relevance between the generated image
and the story text features for each generated image sequence using CLIP. The images with
the highest scores were marked with red borders and selected for final visualization, see
also Table 4. We computed the sentence similarity score as local consistency (Table 4) and
the story similarity score as global consistency (Table 5).
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Table 4. Comparison with state-of-the-art model for real-world image synthesis for a one-sentence
story sample: the images with the highest scores were marked with red borders and selected for final
visualization.

Method Generated Images CLIP Score

BigGAN + CLIP Radford, et al. (2021) [12] 0.30

Dall-E Ramesh, et al. (2021) [47]

 

0.30

Our

 

0.32

Table 5. Comparison with state-of-the-art model for real-world image synthesis for a story sample:
the images with the highest scores were marked with red borders and selected for final visualization.

Method Generated Images CLIP Score

BigGAN + CLIP Radford, et al. (2021) [12] 0.29

Dall-E Ramesh, et al. (2021) [47] 0.30

Our 0.30

5.2. Qualitative Results

We evaluated the visual quality of image sequences, generated image sequences that
contained multiple scene objects, and visually inspected them. Table 6 shows a scenario
applied on the sentences from Figure 1. The results showed that image sequences that
were coherent and consistent were preferred over any image sequence, according to our
early evaluation. Consistent image sequence indicates visual similarity between images,
while coherent image sequences show common characters in the story in terms of overall
appearance.
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Table 6. A scenario showing the results after vocabulary mapping step.

Characters Actions and Relation Resulted Triples
Generation

Mode
Generated Images

Two Elephants Standing in <elephant, standing in, field> Single
 

Two Sheep, two elephants

Walking on <sheep, walking on, field>

Multiple
 Behind <sheep, behind, elephant>

Two Sheep, two elephants.

Stand <sheep, stand, field>

Multiple
 Beside <sheep, beside, elephant>

Our proposed story visualization pipeline saved us time and manual effort in de-
livering a robust visualization that is ready to use in schools under certain pandemic
conditions. We further demonstrated the effectiveness of the proposed pipeline in more
complex scenarios such as inter-related sentences and non-common actions. On one hand,
using coreference resolution simplified such sentences so that relation extraction reflected
the whole sentence meaning, including the story context embedded in previous neighbor
sentences. In addition, identifying non-common actions supported the provision of detailed
images, while the decomposition of such actions into simple spatio-temporal actions was
helpful in explaining how objects and their relationships change as such action occurs.

Robustness: Since our testing set contained sentences of different types, it could exag-
gerate the contributions of the relation extraction task. Therefore, we resolved this issue
by splitting them into two groups. One group included the stories as they are, while the
other group included only sentences with co-referenced pronoun resolution. We report that
relation extraction performance significantly improved in the second group. This is due to
the simplification of inter-related and complicated sentence into multiple simpler sentences,
each having a single action along with its participant characters, making it straightforward
to extract necessary relations and actions.

Quality of different versions: Concerning the obtained results, we selected some examples
from our test set which are shown in Tables 2 and 6, together with the generated images.
In the single generated images, for actions such as standing on, attaching, etc., we can
clearly see that the single images visualized the characters and the actions in some cases.
However, they were misleading for other non-common actions such as covering, looking at,
etc., as they required more supporting detailed images. In contrast, for the sequence of
images, it was observed that non-common actions such as approaching were decomposed
by starting with simple graphs and progressively building up to more additional details.
The addition of objects caused the shift of related objects so that the relationships were
respected. However, many images capturing the same type of events can be vastly different
in their visual structures, such as those seen in row#2 and row#3 in Table 6. Adding more
images promoted the understanding of the input sentence; in contrast, using a single image
with cluttered objects resulted in a crowded image plane. Moreover, we observed that
using one version instead of the other version was correct based on challenge of using
characters only.

Semantic consistency: CLIP guaranteed that each selected image was locally consistent
since each selected image matched its corresponding sentence semantically by choosing
a higher CLIP score. Our method is of global and local relevance, achieving the highest
average rank in comprehensive relevance compared to two state-of-the-art image synthesis
methods used for real-world scenarios. Visual examples are shown in Tables 4 and 5, where
our method outperformed these two models in terms of global semantic consistency.
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Character relevance: The evaluation of the story character classification results indicated
that all characters mentioned in the story also appeared in any frame of the image, as was
observed from the calculated character relevance score. Thus, this result also proves the
effectiveness of our method in maintaining story character accuracy. Essentially, generating
image sequences with a higher story coherence score can better comply with the story text,
in addition to supporting visual learning

Image quality: Regarding the quality of the generated images, however, the promising
results were still limited to generating a few categories of objects. For general stories
where multiple objects co-exist with complex relationships, the realism and diversity of
the generated images are not satisfactory and remain to be improved in relation to many
aspects. Though experimentation with CLIP, the semantic relevance between the two
modalities was enhanced.

To reduce the difficulty of synthesizing complex scenes in any real-world setting, we
aimed to enrich our pipeline to cover a wide range of characters, objects, and diverse
actions. However, we still faced some limitations and technical problems with the image
generation task such as the low quality of the synthetized images. Likewise, the generated
images still contained many obvious visual artifacts; therefore, models trained for this task
are still far from being deployed in any real-world setting. Nevertheless, our work strongly
argues that text visualization through a single image only will not produce a meaningful
visualization to help with understanding stories. However, proposing a better solution that
combines automatic image sequence generation and semi-manual adjustment can ensure
flexibility and safety in the learning process.

6. Conclusions

We presented a pipeline overview to illustrate the use of Arabic story text with a
sequence of generated images as a fast solution to support distance learning in schools. In
summary, we applied an NLP module to process the story text and to obtain an appropriate
semantic representation of the main characters, common events, and actions in each sen-
tence. Extensive experimental results on an in-domain visual story test set demonstrated
the effectiveness of the proposed pipeline, while the image generation framework was ap-
plied to complete the final visualization. Despite the challenges associated with evaluating
such systems, our preliminary results showed considerable effectiveness in the adoption
of such a pipeline for a coarse visualization task that can be subsequently enhanced. In
addition, we expect our contributions to assist with the visualization of stories with a higher
image quality when considering more detailed information regarding characters, objects,
and relationships.

We are now positioned to conduct an Arabic story annotation effort, followed by
implementation of the story visualization, following the outlined task modules detailed
previously. Our pipeline and implementation details are algorithmically comprehensible.
We anticipate state-of-the-art computer vision and language generation methodologies will
provide a number of baselines for Arabic story visualization. For instance, to compare a
computer vision algorithm that may over-identify objects against one focused on a specific
story domain. Our pipeline allows us to easily prompt for different narrative versions
and audiences. In the future, it will be necessary to compare different narrative sequences
of images in terms of the cognitive and perception degree of students. Evaluation and
release of the final image sequence must take into consideration the narrative goal and
audience to ensure a flexible and safe learning environment. In addition, the evaluation
must balance the correctness of the action flow, as well as the coherency of the generated
story visualization. In particular, new quantitative and qualitative metrics for such tasks
must be developed.

In the future, we would like to process more complex and meaningful text with
multiple paragraphs. We would also extend the work to produce more professional and
intelligent components to support the whole proposed pipeline. Indeed, such as pipeline

154



Appl. Sci. 2023, 13, 5107

for a story visualization task can be extended to a video generation task, which is more
challenging in terms of the temporal spatial consistency of the video content.
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Abstract: Aspect-level sentiment analysis aims to identify the sentiment polarity of specific aspects
appearing in a given sentence or review. The model based on graph structure uses a dependency
tree to link the aspect word with its corresponding opinion word and achieves significant results.
However, for some sentences with ambiguous syntactic structure, it is difficult for the dependency
tree to accurately parse the dependencies, which introduces noise and degrades the performance of
the model. Based on this, we propose a syntactic and semantic enhanced multi-layer graph attention
network (SSEMGAT), which introduces constituent trees in syntactic features to compensate for
dependent trees at the clause level, exploiting aspect-aware attention in semantic features to assign the
attention weight of specific aspects between contexts. The enhanced syntactic and semantic features
are then used to classify specific aspects of sentiment through a multi-layer graph attention network.
Accuracy and Macro-F1 are used as evaluation indexes in the SemEval-2014 Task 4 Restaurant and
Laptop dataset and the Twitter dataset to compare the proposed model with the baseline model and
the latest model, achieving competitive results.

Keywords: aspect-level sentiment analysis; graph attention network; feature extract

1. Introduction

The rapid development of the Internet has changed people’s way of life. For example,
information is exchanged and shared through online service platforms, which generates a
large number of comment information. These comments not only contain users’ views and
attitudes towards news events, which can help the government and other agencies monitor
public opinion, but also contain preferences for products, which can help commercial
companies quickly complete product analysis and make improvements. These comment
data have great social and commercial value. It is of great significance to use sentiment
analysis technology to study these comments. Aspect-level sentiment analysis is a subtask
in sentiment analysis. It is a fine-grained sentiment analysis task, aiming at judging the
sentiment tendency of different aspects of entities in comments. Recently, the syntax-based
model has used the dependency tree to extract syntactic information and apply it to the
aspect-level sentiment analysis task, which has achieved remarkable results. Dependency
trees capture dependencies between aspect words and their corresponding opinion words,
which can solve the problem of long-distance dependence [1]. Therefore, they are often
used to extract syntactic information. Due to the arbitrary expression of online comments,
there is no obvious syntactic structure, which leads to the introduction of noise (irrelevant
dependency relation) in the parsing of dependency-tree-based methods, reducing the ability
of a dependency tree to capture the sentiment-aware context [2].

Based on the above observations, we propose a syntactic and semantic enhanced
multi-layer graph attention network (SSEMGAT). The dependency tree is used to represent
the dependency between words at the word level; the constituent tree is introduced to
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obtain syntactic information from a higher-level perspective. The attention mechanism is
easily disturbed by other aspect words. It uses aspect-aware attention to redistribute the
attention weight between specific aspect words and context. Then, the extracted syntactic
and semantic features are fed into the multi-layer graph attention module for specific
aspects of sentiment classification.

The main contributions of this paper are as follows:

(1) For the aspect-level sentiment analysis task, we propose a syntactic and semantic
enhanced multi-layer graph attention network to extract features from syntactic and
semantic perspectives and use pre-training knowledge to integrate syntactic and
semantic features extracted to infer specific aspects of sentiment polarity.

(2) We introduce a constituent tree to make up for the defect in the dependency tree and
combine different levels of syntactic information to align the position of the aspect
word and its corresponding opinion word. At the same time, aspect-aware attention
and multi-headed attention are used to construct local attention and global attention,
respectively, to link sentiment information between specific aspects and contexts.

(3) Experimental results on three benchmark datasets show that the performance of the
SSEMGAT model exceeds the baseline model and some recent models. Our model
incorporates syntactic and semantic feature information well, which indicates that
our work is effective.

The following sections of this paper are arranged as follows: In Section 2, we introduce
the relevant work of aspect-level sentiment analysis, which is mainly divided into three
categories: attention-based approach, syntax-based approach, and pre-training-based
approach. In Section 3, we describe the proposed model in detail. In Section 4, we test our
proposed model on the public benchmark datasets and analyze it separately. Finally, in
Section 5, we summarize the whole paper and look forward to future work.

2. Related Work

Sentiment analysis (SA) is an important research direction in opinion mining. It is the
process of using natural language processing technology (NLP) to analyze and summarize
text content containing sentiment. Sentiment analysis is divided into sentence-level [3,4],
chapter-level [5,6], and aspect-level analysis. The sentence level aims at comment text, which
needs to judge its whole sentiment tendency and provide corresponding sentiment values,
generally including positive, neutral, and negative. Chapter level refers to a document, which
judges the overall sentiment tendency and provides the same sentiment value as the sentence
level. Both methods judge the whole and generally only provide sentiment value, which
belongs to coarse-grained sentiment. Aspect level aims at the multiple aspects of the entity
contained in the review text; each aspect can be composed of different sentiment values,
and different aspects can have different sentiment values, even conflict, while the sentence
level and chapter level only have one direction of sentiment. Existing studies on aspect-level
sentiment analysis can be broadly split into three categories:

(1) Attention-based methods: The attention mechanism models the dependency rela-
tionship between an aspect term and its corresponding opinion words. However,
there may be several different aspect terms in a sentence. There have been studies to
judge the sentiment of a particular aspect. Wang et al. [7] captured the importance of
different contextual information to a given aspect word through the attention mecha-
nism, and the attention mechanism and LSTM are combined to model the semantics
of sentences and solve the problem of aspect-level sentiment analysis. Ma et al. [8]
proposed an interactive attention network (IAN), which uses the attention mechanism
to link the target and context for multi-level semantic classification. Chen et al. [9]
used multiple attention mechanisms to capture connections between long-distance
sentiment features, with strong robustness to irrelevant information. Huang et al. [10]
introduced an attention-over-attention (AOA) module to capture the connection be-
tween aspects and context words. Fan et al. [11] proposed a multi-grained attention
network (MGAN) to combine coarse-grained and fine-grained attention to capture

159



Appl. Sci. 2023, 13, 5085

the interaction of aspect and context at the word level. The attention-based approach
achieves attractive results. However, due to its defect, the attention mechanism is
easily affected by the noise in the sentence, thus misjudging the sentiment polarity.

(2) Syntax-based methods: Some work explicitly uses dependency trees of a sentence to
extract syntactic information. Zhang et al. [12] first proposed building a graph con-
volutional neural network on a dependency tree to learn the dependencies between
nodes. Sun et al. [13] utilized the representation of sentence features learned from the
bidirectional LSTM and enhanced embedding with the graph convolutional network.
Zhang et al. [14] constructed a hierarchical syntactic graph and lexical graph via
convolution on GNN embedding and BiLSTM embedding, respectively, and a bi-level
interactive network was designed to learn information interaction. Chen et al. [15]
combined information from the latent graph and the dependency graph via a gated
attention mechanism. For the situation where the current node of the dependency
tree pays average attention to adjacent nodes, Wang et al. [16] constructed an aspect-
oriented dependency tree structure (R-GAT) by extending the graph attention network
to encode graphs with labeled edges. Most syntax-based models only make use of
dependency, without considering the type of dependency. Tian et al. [17] proposed
T-GCN, which uses an attention mechanism to distinguish different edges in a graph
and uses attention layer ensemble to comprehensively learn different layers of T-GCN.
The use of syntactic knowledge only cannot obtain the best results, and some re-
searchers have studied the use of other knowledge. Li et al. [18] proposed a dual
graph convolutional neural network (DualGCN) to construct syntactic graphs and
semantic graphs from the perspective of syntactic structure and semantic correlation,
respectively. Zhang et al. [2] combined the attention matrix constructed by the atten-
tion mechanism and syntactic mask matrix to accomplish the interaction of syntactic
structure and semantic information. Wu et al. [19] used a dependency tree and phrase
tree to construct a phrase dependency graph and used the PD-RGAT model on it
for the ABSA task. Compared with the attention-based model, the performance of
the syntax-based method was greatly improved, but some shortcomings cannot be
ignored. Since dependency trees have different syntactic sensitivities, the noise in-
troduced to sentences without obvious syntactic structure will make it difficult for
dependency trees to accurately capture sentiment-aspect context [17], and GCN can-
not perfectly integrate topological structure and node features [20]. These problems
limit the further development of graph neural networks.

(3) Pre-trained-based methods: Devlin et al. [21] used the left and right context to pre-
train the depth bidirectional representation, requiring only one additional output
layer to fine-tune the pre-trained BERT representation, achieving state-of-the-art
results for a variety of tasks without basic task-specific architecture modifications.
Xu et al. [22] proposed training on large-scale general domain data and fine-tuning
on a small amount of downstream data, which provides a solution for the study of
small sample data. Song et al. [23] designed an attentional encoder to generate hidden
representations, and the BERT-SPC model is designed as a comparison model for
sentence pair classification tasks. There are also some studies using a combination
of pre-training and GCN. Jawahar et al. [24] found that BERT could capture a rich
hierarchy of language information, with phrase features at the bottom, syntactic
features in the middle, and semantic features at the top. Xiao et al. [25] integrated
syntactic sequence information from BERT and knowledge from dependency trees to
enhance graph convolutional neural networks for better coding dependency graphs.
Tang et al. [26] regarded GCN as a special form of transformer and studied the
representation between GCN and a transformer interactively.

3. Methodology

In this section, we introduce the syntactic and semantic enhanced multi-layer graph
attention model, that is, SSEMGAT. The overall structure of the model is shown in Figure 1.
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It is mainly divided into four parts: input layer, extraction layer, MGAT module, and fusion
layer. Next, we will describe each module in the model in detail.

Figure 1. The framework of the proposed SSEMGAT model.

3.1. Input Layer

Given a sentence of n words s = {ω1, ω2, . . . ,a1, a2, . . . , am, . . . , ωn}, where {a1, a2, . . . ,
am} is aspect term, since BERT has a powerful representation learning capacity, we utilize
BERT as a sentence encoder to generate contextual representations. To accommodate the
input format of the BERT model, given target aspect, we follow BERT-SPC [23] to construct
a BERT-based sequence: [CLS] + {sentence} + [SEP] + aspect + [SEP]. However, there may
be multiple aspects in a sentence, so we use the form of [CLS] + {sentence} + [SEP] + aspect
+ [SEP] + aspect + [SEP] to construct the pattern sequence. Then, the output representation
H is obtained by BERT,

H =
{

ht
1, . . . , ht

n
}

(1)

3.2. Extraction Layer

The existing models based on graph structure often use the dependency tree to extract
syntactic information, the attention mechanism to extract semantic information, and use
GCN to construct syntactic graphs and semantic graphs; the above graphs are interactively
learned, and good results are achieved.

3.2.1. Syntactic Feature Extraction

Generally, a dependency tree (Dep.Tree) can capture dependencies between aspect
terms and their corresponding opinion words, maintaining valid in the long-distance
dependency problem. Therefore, dependency trees are often used to extract syntactic
information from sentences. However, not all information on the dependency tree is
beneficial to our task, and introducing noise (unrelated relations of dependencies) makes it
difficult for each aspect word to accurately capture the corresponding contextual sentiment
information. For example, the dependency tree parsing of sentences is shown in Figure 2,
and the “conj” relation between “delicious” and “terrible” is invalid for our task, but the
aspect term “taste” may be associated with the opinion word “terrible”, reducing the ability
to accurately capture “delicious” in the opinion words.
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Figure 2. The result of dependency tree parses.

Moreover, the dependency tree reveals relations between words, the relationship
between clauses and between aspects that is difficult to capture. Based on this, we use
constituent trees, which mainly consist of phrase segmentation and hierarchical structures
that help to correctly align aspect words with their corresponding opinion words of senti-
ment information. Phrase segmentation can easily divide a sentence into multiple clauses
and refine the syntactic position of each word in the sentence. The structured hierarchy
can distinguish different relationships between aspect words to infer different aspects of
sentiment information from a clause-level perspective. For example, the result of parsing
the constituent tree of sentences is shown in Figure 3. The whole sentence is divided into
four parts: clause “The taste is delicious”, phrase segmentation term “but”, clause “the
service and price are terrible”, and “.”. In hierarchical structure, according to the phrase
segmentation term “and”, we can find that the aspect words “service” and “price” have
the same sentiment polarity, while according to the phrase segmentation term “but”, it is
concluded that it has the opposite sentiment polarity towards the aspect word “taste” and
the aspect words of other clauses.

Figure 3. The result of constituent tree parses.

Integrating information from different structural levels can obtain more accurate
syntactic information. Therefore, we construct the dependency adjacency matrix DA at
the word level and the constituent adjacency matrix CA from the clause level, which is
constructed as follows:

(1) Matrix DA: Using the dependency tree as an undirected graph, if there is a connection
between the words wi and wj,

DAi,j =

{
1, i f wi, wj link directly in Dep.Tree
0, otherwise

(2)
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(2) Matrix CA: The constituent tree has a hierarchical structure, and in each layer, if words
wi and wj belong to the same clause phrase,

CAl
i,j =

{
1, i f wi, wj in same phrase o f

{
phl

u

}
0, otherwise

(3)

Then, the CA and DA matrices are combined via position-wise addition as the extracted
syntactic feature matrix Asyn:

Asyn = CA + DA (4)

3.2.2. Semantic Feature Extraction

Attention mechanism is a common way to capture the interactions between the aspect
and context words. However, the attention mechanism is easily disturbed by noise (other
irrelevant aspects of words), and as clues, misjudge the sentiment polarity of the related
aspects. Therefore, we use aspect-aware attention to learn local semantic information for a
specific aspect, while using self-attention to learn global semantic information for sentences.
After that, we fuse local attention with global attention to learn semantic correlation.

(1) Local attention: To enhance the attention of specific aspects to local contextual senti-
ment information, we use aspect-aware attention to prevent disturbance with other
aspects of word information. The aspect-aware attention mechanism utilizes the
aspect term as query conditions to calculate the attention feature information of
related aspects,

Ai
local = tanh

(
HaWa ∗

(
KWK

)T
+ b
)

(5)

where K is equal to the output H of the input layer, and Wa and WK are learnable
weights. We perform mean pool operation on output H and copy the processed output
n times as Ha.

(2) Global attention: The attention mechanism captures the semantic correlation between
any two words in a sentence. This is useful for grasping all of the semantic information
in a sentence. Therefore, we use the multi-head attention mechanism [27] to construct
the global semantic score matrix Ai

global of the sentence. The calculation process is
as follows,

Ai
global = so f t(

QWQ ∗ (KWK)T

√
d

) (6)

where WQ and WK are learnable weights

Then, we combine the local attention score with the global score to obtain semantic
matrix Asem:

Asem = Aglobal + Alocal (7)

3.3. Multi-Layer Graph Attention Module (MGAT)

To utilize rich hierarchical syntactic information, we use the MGAT block stacked
by several designed graph attention layers [28]. GAT is a new graph neural network
architecture, including an attention mechanism, which enables one to assign different
attention weights to the information provided by the feature aggregation of the central
node according to different nodes and propagate the sentiment information of node to its
neighboring nodes.
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The set of input and output in the graph attention layer is h =

{
⇀
h1,

⇀
h2, . . . ,

⇀
hN

}
and

h′ =
{

⇀

h′1,
⇀

h′2, . . . ,
⇀

h′N

}
, from which the attention coefficient between the central node and

neighboring nodes is obtained:

eij = a([W
⇀
hi||W

⇀

h′j]) (8)

where a is attention mechanism and W is the weight matrix.
GAT adopts a masked attention mechanism to prevent the dropping of all structural

information and changes the previous situation where the self-attention mechanism will
allocate attention to all nodes to allocate attention to neighboring nodes. In addition, the
attention coefficient is normalized using the softmax function, so the attention coefficient
after the update is:

αij = so f tmax
(
eij
)
=

exp
(
eij
)

∑N
k=1 exp(eik)

(9)

The multi-head attention mechanism is used to obtain the influence of adjacent nodes
on the central node, and the node features extracted by K heads are represented to complete
the splicing operation, and finally, the K average is used to replace the connection operation
to obtain the final node representation:

⇀

h′i = σ

(
1
K ∑ ∑j∈N αk

ijW
k
⇀
hj

)
(10)

where αk
ij is the normalized attention coefficients and Wk is the linear transformation

correlation weight matrix.
By stacking the above update process multiple times, node updates in a multi-layer

attention graph can be represented as follows:

HA = MGAT(A) (11)

The syntactic matrix Asyn and semantic matrix Asem are fed to the MGAT, respectively,
to obtain the syntactic feature Hsyn and semantic feature Hsem:

Hsyn = MGAT
(

Asyn
)

(12)

Hsem = MGAT(Asem) (13)

3.4. Fusion Layers

Pre-trained language models such as BERT have rich hierarchical information, with
phrase-level information at the bottom layer, syntactic feature information in the middle
layer, and semantic feature information at the top layer [24]. In addition, according to [29],
syntactic and semantic information is not completely isolated, and as the syntactic structure
changes, the semantics also have some changes. Interactive learning between syntax and
semantics can help us better understand sentences. Therefore, we combine the pre-trained
knowledge to fuse and learn the semantic and syntactic information, then feed the output
feature Ha into the softmax function for classification, and finally obtain the probability
distribution P(a) of the sentiment polarity:

Ha =
[
Hsem; Hsyn; H

]
(14)

P(a) = so f tmax
(
Wp Ha + bp

)
(15)
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3.5. Loss Function

We use standard cross-entropy with L2 as the loss function:

L = −∑i ∑
C
j=1 P log P̂ (16)

4. Experiment

4.1. Datasets

We evaluate our model on three public datasets: Restaurants and Laptops dataset
from Sem-Eval 2014 Task 4 [30] and Twitter dataset provided by Dong et al. [31]. Each
sentence in the three datasets is labeled with aspects and opinion words, and sentiment
includes three different polarities: positive, neutral, and negative. The statistics from the
datasets are in Table 1.

Table 1. Statistics from datasets.

Dataset
Restaurant Laptop Twitter

Train Test Train Test Train Test

Positive 2164 728 994 341 1507 173
Negative 807 196 851 128 1528 169
Neutral 637 196 455 167 3016 336

4.2. Experimental Environment and Parameter Setting

The computing hardware used in the experiment was GeForce GTX 2080Ti, and the
deep learning framework was PyTorch. The specific configuration of the experimental
environment is shown in Table 2. For model training, we use the bert-base-uncased version
of BERT as the sentence encoder and Adam as the optimizer. The detailed parameters are
shown in Table 3.

Table 2. Experimental environment.

Projects Configuration

Operating Platforms CUDA 11.3
Operating System Linux

Memory 16 GB
Python Versions Python 3.8
PyTorch Versions PyTorch 1.12.0

Table 3. Model parameter settings.

Parameter Name Parameter Value

batch size 12
learning_rate 0.0001
rnn_hidden 200

bert_dim 768
input_dropout 0.1

atten_head_ 2
layer_dropout 0.2

num_epoch 20
attn_head 2

4.3. Evaluation Index

Following the previous work, we used Accuracy and Macro-F1 values as evaluation
indexes of aspect-level sentiment analysis tasks.
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4.4. Baseline Methods

We selected some mainstream baseline and lasted models to compare with the pro-
posed models.

(1) IAN [8]: The aspect words and contextual representations generated by LSTM are
used to learn interactively through attention.

(2) AOA [10]: The aspect words and context representations generated by LSTM are mod-
eled by attention-over-attention neural networks to capture the interaction between
aspect and context.

(3) RAM [9]: This proposes a recurrent attention network on memory to capture sentiment
features between long distances.

(4) MGAN [11]: The alignment matrix is used to complete the coarse-grained interaction
between the aspect word and the context, and the aspect alignment loss function is
designed to complete the fine-grained interaction at the word level.

(5) TNet [32]: Use CNN to extract significant features from the transformed word repre-
sentations from the bidirectional RNN layer.

(6) ASGCN [12]: The dependency tree is used to extract syntactic information and per-
form graph convolution operations on the dependency tree to learn the representation
of nodes.

(7) CDT [13]: The feature representation of a sentence is learned by using bidirectional
LSTM, and the embedded representation is enhanced by graph convolutional networks.

(8) BiGCN [14]: The hierarchical syntactic graph and lexical graph are constructed by
convolution on GNN embedding and BiLSTM embedding, respectively, and a bi-level
interactive network is designed to learn information interaction.

(9) kumaGCN [15]: It combines information from the latent graph and the dependency
graph through a gated attention mechanism.

(10) R-GAT [16]: The dependency tree is rooted to the target aspect by reconstructing, and
pruning is performed to preserve the edges that are directly dependent on the aspect term.

(11) DGEDT [15]: Considering the dependency tree as a special form of transformer,
representations from the dependency tree and transformer are learned in an iterative
interaction manner.

(12) DualGCN [26]: Syntactic graph and semantic graph are constructed at the same time,
and a double affine mechanism is used to complete the information exchange between
syntactic and semantic, and finally, all the information is fused for classification.

(13) SSEGCN [2]: The attention matrix constructed by the attention mechanism and
syntactic mask matrix are combined to accomplish the interaction of syntactic structure
and semantic information.

(14) RAG-TCGCN [33]: Multiple attention is used to combine syntactic and semantic
features and their related features with word-level features parsed using residual
attention gates.

(15) BERT [21]: MLM is used for pre-training bidirectional transformers to generate deep
language representation, and good results can be achieved only with fine-tuning in
downstream tasks.

(16) BERT-PT [22]: The pre-training language model is trained through a large number of
general domain data and a small amount of downstream data. It provides a solution
for small sample data research.

(17) AEN-BERT [23]: This uses an attention encoding network to interact aspect words
with context and designs a processing form based on BERT word embedding.

(18) BERT4GCN [25]: Based on BERT’s rich hierarchical structure information, the feature
information in the middle layer is fused with the knowledge of the dependency tree,
the enhanced dependency graph is constructed, and the convolution operation is
performed in it.
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4.5. Experimental Results and Analysis

Our proposed model is compared with three types of baseline model: the attention-
based method, the syntax-based model, and the pre-training-based model. The attention-
based model includes IAN, AOA, RAM, MGAN, and TNet. The syntax-based model
includes ASGCN, CDT, BiGCN, kumaGCN, R-GAT, DGEDT, DualGCN, SSEGCN, and
RAG-TCGCN. The pre-training-based model includes BERT, BERT-PT, AEN-BERT, and
BERT4GCN. The main experimental results are reported in Table 4.

Table 4. Sentiment classification results. We directly introduce the result data from the original
author’s paper as the data for comparison, where “-” means that this part of the work is not revealed,
and the best experimental results are shown in bold.

Models Restaurant Laptop Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

IAN 78.60 - 72.10 - - -
AOA 80.53 69.84 72.88 67.48 72.25 69.96
RAM 80.23 70.80 74.49 71.35 69.36 67.30

MGAN 81.25 71.94 75.39 72.47 72.54 70.81
TNet 80.69 71.27 76.54 71.75 74.90 73.60

ASGCN-DG 80.77 72.02 75.55 71.05 72.15 70.40
ASGCN-DT 80.86 72.19 74.14 69.24 71.53 69.68

CDT 82.30 74.02 77.19 72.99 74.66 73.66
BiGCN 81.97 73.48 74.59 71.84 74.16 73.35

kumaGCN 81.43 73.64 76.12 72..42 72.45 70.77
R-GAT 83.30 76.08 77.42 73.76 75.57 73.82
DGEDT 83.90 75.10 76.80 72.30 74.80 73.40

DualGCN 84.27 78.08 78.48 74.74 75.92 74.29
SSEGCN 84.72 77.51 79.43 76.49 76.51 75.32

RAG-TCGCN 84.09 77.02 78.80 75.04 76.66 75.41
BERT-PT 84.95 76.96 78.07 75.08 - -

BERT-SPC 84.46 76.98 78.99 75.03 73.55 72.14
AEN-BERT 83.12 73.76 79.93 76.31 74.71 73.13
BERT4GCN 84.75 77.11 77.49 73.01 74.73 73.76

Ours 86.42 79.70 80.06 76.78 76.81 76.10

Based on the experimental results in Table 4, we offer the following analysis:

(1) Our proposed model achieves better results compared with other last and baseline
models. We believe that the primary reason is that the designed SSEMGAT model cap-
tures syntactic and semantic feature information more efficiently than other models,
which also proves the effectiveness of our work.

(2) The model that considers syntactic structure and semantic information at the same
time is better than the model that considers only semantic information or syntactic
structure, which shows that syntax and semantics do not exist in isolation, and
learning the interaction information between them is also very necessary.

(3) Compared with attention-based models, our proposed model has obvious advantages.
From the analysis of this phenomenon, we believe that the attention mechanism is
easily affected by the noise factor in the sentence when facing complex sentences
and obscure structures and cannot accurately align the contextual and sentiment
information. This reduces the performance of the model.

(4) Compared with syntax-based models, our model also has good results. This may be
because we made up for the inherent defects in dependency trees in sentence parsing,
thus enhancing their ability to capture aspect words and their corresponding opinion
words and improving the model’s ability to resist interference to noise elements
introduced in the dependency tree.

(5) Compared with the model based on pre-training, our model also has better perfor-
mance. BERT has strong representational learning ability and a rich hierarchical
structure, while the dependency tree also has an obvious hierarchical structure, which
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may be related in some way. When we use the enhanced feature extractor for extrac-
tion, we can better capture the correlation between syntax and semantics.

4.6. Ablation Study

We further conducted an ablation study to verify the validity of each module in our
model. The result is in Table 5. In the ablation experiment, we removed the dependency
tree (dep), constituent tree (con), aspect-aware attention (aaa), and multi-head attention
(mha) for comparison and verification.

Table 5. The results of the ablation study.

Restaurant Laptop Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

SSEMGAT 86.42 79.70 80.06 76.78 76.81 76.10
w/o dep 85.69 78.69 79.15 75.97 74.26 73.56
w/o con 85.52 78.16 78.80 74.67 75.62 74.43
w/o aaa 86.05 79.66 79.75 76.00 76.22 75.70
w/o mha 85.25 78.02 78.31 75.73 75.31 75.22

First, removal of the dependency tree (dep) leads to a drop in accuracy of 0.73%, 0.91%,
and 2.65% on the Restaurant, Laptop, and Twitter dataset, respectively, which demonstrates
that the dependency tree is important for extracting syntactic information. Then, with the
removal of the constituent tree (w/o con), the model performance decreases by 0.9%, 1.26%,
and 1.19%, respectively. It is shown that the constituent tree can effectively supplement
the syntactic information extracted from the dependency tree. After, the removal of aspect-
aware attention (w/o aaa) causes a decay in the accuracy of 0.37%, 0.31%, and 0.59%. As for
‘w/o mha’, the accuracy decreases by 1.17%, 1.75%, and 1.5% on the Restaurants, Laptop,
and Twitter datasets, respectively. As a result, the ablation experimental outcomes confirm
the contribution of both components.

4.7. Case Study

To better understand the work of the SSEMGAT model, we selected two samples to
review for visual case studies. In Table 6, we visualize the attention weights, predicted
labels, aspect terms, and corresponding true labels for sentences.

Table 6. Visual analysis of attention in review sample.

Model Aspect Attention Visualization Prediction Label

AOA

environment Its environment is elegant but price is expensive Negative Positive

price Its environment is elegant but price is expensive Positive Negative

room The look of the room is novel Positive Positive

ASGCN

environment Its environment is elegant but price is expensive Negative Positive

price Its environment is elegant but price is expensive Negative Negative

room The look of the room is novel Positive Positive

BERT-BASE

environment Its environment is elegant but price is expensive Positive Positive

price Its environment is elegant but price is expensive Positive Negative

room The look of the room is novel Positive Positive

SSEMGAT

environment Its environment is elegant but price is expensive Positive Positive

price Its environment is elegant but price is expensive Negative Negative

room The look of the room is novel Positive Positive
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The first sample contains two aspect terms where the corresponding sentiment polarity
is opposite, and the second sample contains only one aspect term.

In the first example, the AOA model focuses on “elegant” and “but” at the same
time, misjudges “environment” as negative sentiment polarity, while “price” focuses on
“elegant” and “expensive” and allocates positive sentiment polarity. This shows that there
is interference between different aspect terms. In the second example, with only one aspect
term, the correct sentiment polarity was identified. The ASGCN model may misjudge
sentiment by taking the relationship between “but” and “environment” as clues. The BERT
model does not correctly align the sentiment information corresponding to “price”. We
speculate that the possible reason is that the corresponding sentiment words are randomly
replaced with other irrelevant information when masking. The SSEMGAT model effectively
combined syntactic structure and semantic correlation of the feature information and
correctly predicted all aspects of terms related to sentiment tendency.

5. Conclusions and Future Work

In this paper, we proposed a syntactic and semantic enhanced multi-lay graph atten-
tion neural network (SSEMGAT) to solve the problem of introducing noise in dependent
trees in sentences without obvious syntactic structure. Given the inherent defects in
dependent trees, we introduced the composition tree structure, which can obtain more
field-of-view information at the causal level, and we enhanced the syntactic features by
merging syntactic information at different levels. The multi-head attention mechanism
may misjudge the sentiment polarity due to the noise introduced by the interference of
irrelevant words, so we construct local attention and global attention of specific aspects
based on the attention mechanism to assign the attention weight between aspect and con-
text. Facing feature information with a rich hierarchy, we used the multi-layer stacked
graph attention module to aggregate different hierarchical information separately and used
attention to give higher weight to the information most relevant to the feature. Finally, the
extracted syntactic and semantic features are fused with the pre-training knowledge to
obtain the most specific aspect of rich hierarchical feature information to achieve aspect
sentiment classification.

In future research, we will continue to apply the model to different domains to verify
the generalization performance and observe the model’s performance in multilingual
datasets. Current research still has challenges in mining deeper correlation information
between syntax and semantics, and we will further develop methods that can dig deeper
into the correlation between them.
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Abstract: Aspect Sentiment Triplet Extraction (ASTE) is a complex and challenging task in Natural
Language Processing (NLP). It aims to extract the triplet of aspect term, opinion term, and their
associated sentiment polarity, which is a more fine-grained study in Aspect Based Sentiment Analysis.
Furthermore, there have been a large number of approaches being proposed to handle this relevant
task. However, existing methods for ASTE suffer from powerless interactions between different
sources of textual features, and they usually exert an equal impact on each type of feature, which is
quite unreasonable while building contextual representation. Therefore, in this paper, we propose
a novel Multi-Branch GCN (MBGCN)-based ASTE model to solve this problem. Specifically, our
model first generates the enhanced semantic features via the structure-biased BERT, which takes
the position of tokens into the transformation of self-attention. Then, a biaffine attention module is
utilized to further obtain the specific semantic feature maps. In addition, to enhance the dependency
among words in the sentence, four types of linguistic relations are defined, namely part-of-speech
combination, syntactic dependency type, tree-based distance, and relative position distance of
each word pair, which are further embedded as adjacent matrices. Then, the widely used Graph
Convolutional Network (GCN) module is utilized to complete the work of integrating the semantic
feature and linguistic feature, which is operated on four types of dependency relations repeatedly.
Additionally, an effective refining strategy is employed to detect whether word pairs match or not,
which is conducted after the operation of each branch GCN. At last, a shallow interaction layer is
designed to achieve the final textual representation by fusing the four branch features with different
weights. To validate the effectiveness of MBGCNs, extensive experiments have been conducted
on four public and available datasets. Furthermore, the results demonstrate the effectiveness and
robustness of MBGCNs, which obviously outperform state-of-the-art approaches.

Keywords: ASTE; biaffine attention; structure-biased BERT; GCN; linguistic feature

1. Introduction

Recently, a tremendous advance has been achieved in the development of social media
platforms, which largely encourage people to express their emotional states online [1,2].
Furthermore, it has become popular to publish users’ comments or opinions about services
and products on specific electronic platforms in a timely manner. These perspectives
expressed directly by consumers are extremely important for merchants to improve their
service while in a dealing. Thus, how to extract the exact aspect terms, opinion terms, and
their corresponding sentiment from a specific sentence is a significant Natural Language
Processing (NLP) subtask [3–5]. The recent developing task, Aspect-Based Sentiment
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Analysis (ABSA), aims to mine the explicit or implicit sentiment information about the
opinion terms with regard to the specific aspect terms, which implements sentiment analysis
about consumers’ reviews effectively. Generally, the ABSA task contains seven fundamental
subtasks (Figure 1), which are Aspect Term Extraction (ATE) [6], Aspect Term Extraction
and Sentiment Classification (AESC) [7], Opinion Term Extraction (OTE) [6], Aspect-Based
Sentiment Classification (ABSC) [8], Aspect-Oriented Opinion Term Extraction (AOE) [9],
Pair Extraction (PE) [10], and Aspect Sentiment Triplets Extraction (ASTE) [11]. In particular,
as the fine-grained subtask in ABSA, the ASTE task takes aspect terms, opinion terms, and
sentiment polarities into consideration simultaneously, which is challenging but significant.
For example, as shown in Figure 1, the review “The food is good, but the service is terrible”.
contains two triplets, (food, good, positive) and (service, terrible, negative). Unlike the
other subtasks, such triplets extracted by the ASTE task can better reflect multiple emotional
factors (aspect, opinion, sentiment) from the user reviews and are more proper for practical
application scenarios.

Figure 1. Example of the task categories in (ABSA) Aspect-Based Sentiment Analysis.

In previous studies, the pipeline manner is widely applied in the approaches to
ASTE. Peng et al. [12] first introduced the ASTE task and extracted the triplet {aspect,
opinion, sentiment} via utilizing a pipeline method, which contains a two-stage framework.
The first stage provided predictions about aspect, opinion, and sentiment, respectively.
Furthermore, the second stage was designed to pair up the predictions achieved from
the first stage and output triplets. However, the interactions among them were totally
ignored, and the potential error was propagated between these two stages [13,14]. To
take the dependencies among the multiple subtasks into consideration, the multi-turn
machine reading comprehension (MRC) manner [15,16] was utilized to jointly train multiple
subtasks together, and it has achieved significant results. In addition, the fashion of end-to-
end [17,18] also attracts many researchers’ attentions, which is constructed based on the
new tagging scheme.

Although the paradigm of the framework is important to enhance the performance
of the ASTE task, the effective utilization of various linguistic relations between words
is also decisive to the task’s success [19]. Specifically, the syntactic dependency tree is
widely used to present the structure of a sentence, which tends to depict the syntactic
relations among words. Zhao et al. [20] adopted the dependency tree as the support to
capture relations between aspect and opinion terms. Furthermore, the work [21] directly
employed an interactive attention mechanism to integrate syntactic and semantic relations
between words. In addition, the contribution of part-of-speech categories to ASTE is also
noticed, which straightly impacts the semantic representation of sentences. Except for the
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dependency tree, relative position also largely influences the expression of the sentence. Xu
et al. [22] applied a position-aware tagging scheme to mark the relative position between
words in a sentence. Furthermore, the semantic features in this work are represented
by Long Short-term Memory (LSTM) with the pre-trained Glove, which cannot handle
contextual ambiguity comprehensively. Moreover, the tree-based distance and relative
position distance of each word pair in the sentence also contribute a lot to the improvement
in the ASTE task [23], and the utilization of Bidirectional Encoder Representation from
Transformers (BERT) can largely enhance the feature representation from the semantic
perspective. However, although significant progress has been achieved by previous studies,
there are still remaining limitations: the effective optimization of semantic features is not
enough, and the powerful utilization of multi-type textual features is unsolved yet.

To address these two problems, motivated by the impressive performance achieved by
BERT, we propose a novel BERT- and Graph Convolutional Network-based (GCN-based)
model Multi-branch Graph Convolutional Network (MBGCN) for the ASTE task. In detail,
in our model, to evacuate the potential capability of BERT and obtain a more exquisite
contextual representation, a structure-biased BERT [24] is firstly utilized as the semantic
feature encoder. Subsequently, depending on the generated representations, aspect-oriented
and opinion-oriented feature maps are extracted by two multi-layer perceptions (MLP).
Then, before incorporating other relations of words, a biaffine attention module is applied to
unify the aspect-oriented and opinion-oriented semantic features effectively. Unlike fusing
textual features via a single GCN, an MBGCN employs four branch GCNs to integrate
semantic representation with syntactic dependency type, part-of-speech combination, tree-
based distance, and relative position distance among each word pair, respectively. Through
the complementary of these four branches, a more precise textual representation is achieved.
Finally, a shallow interaction strategy is designed to complete the work of information
fusion before the triplet decoding layer. To validate the effectiveness of the MBGCN, a
series of experiments are conducted on four widely used and available datasets. The
experimental results prove that MBGCNs can efficiently deal with the complex relations
among sentences and outperform the state-of-the-art (SOTA) ASTE approaches.

The main contributions of this work can be summarized as follows:

• We propose a framework MBGCN to extract the aspect, opinion, and sentiment triplet
from review sentences in an end-to-end fashion, which can avoid error propagation
among different subtasks;

• We utilize a structure-biased BERT to improve the ability to extract abundant contex-
tual information, which provides rich textual features for subsequent task-oriented
operations;

• Our proposed MBGCN adopts four branch GCNs to integrate the semantic feature
with four types of linguistic relations, including syntactic dependency type, part-
of-speech combination, tree-based distance, and relative position distance of each
word pair. Furthermore, a shallow interaction layer is introduced to output the final
textual representation;

• The extensive experiments conducted on multiple ASTE datasets prove that the
proposed MBGCN outperforms the mentioned SOTA baselines.

The remainder of this article is organized as follows. In Section 2, we present a brief
overview of the development of ABSA, previous research about ASTE, and the application
of GCNs. The proposed framework MBGCN is introduced in detail in Section 3. In Section 4,
we provide detailed experimental studies and performance analyses. Finally, Section 5
provides a conclusion of this study and an outlook for future work.

2. Related Works

In the past decade, fine-grained sentiment analysis and opinion extraction have been
attractive research in the NLP community, and have firmly attracted many researchers’
attentions. In this section, we will first briefly review the development of the ABSA task.
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Secondly, a succinct summary of existing approaches for ASTE will be introduced. Lastly,
the application of GCNs in ASTE will be shortly summarized.

2.1. Aspect-Based Sentiment Analysis

ABSA is a fine-grained task that aims to recognize the explicit or implicit sentiment
information in a given sentence [25–27]. Normally, a sentence usually includes several
aspect terms and opinion terms simultaneously, which means multiple sentiment expres-
sions are contained in it. Specifically, with the development of e-commerce, this situation
usually happens in the reviews of products and services, which are published on online
platforms [28,29]. Through mining the opinions from these reviews, the merchants can
learn the real and direct requests from consumers about their services. Thus, many efforts
have been contributed to this task since it was proposed. Additionally, we can categorize
the existing ABSA approaches into three types: the lexicon-based method [30], machine
learning method [31], and deep learning method [32]. In traditional methods, the perfor-
mance of the ABSA task largely depends on feature engineering, such as bag-of-words [33]
and part-of-speech [23]. Although impressive performance has been achieved by traditional
methods, the cost of handcrafted features is unbearable for human experts. Currently, the
rapid development of deep learning promotes the improvement in contextual representa-
tion, which also encourages the progress of ABSA tasks straightforwardly [34,35]. In deep
learning methods, they usually fine-tune the pre-trained language model (PLM) with the
specific training data to generate task-oriented feature maps. As a representative of PLM,
BERT makes a remarkable impression on vast NLP researchers with its outstanding ability
to model contextual information. Thus, it is also utilized as a backbone in our proposed
model for the ASTE task.

2.2. ASTE Methods

As a subtask of sentiment analysis, ASTE has been studied by many NLP researchers
after being proposed [36,37], and aims to extract aspect terms, opinion terms, and the corre-
sponding sentiment polarity in a sentence, simultaneously. From the above investigation,
it has been known that the pipeline manner method proposed by [12] had an error prop-
agation problem between different subtasks. However, the methods with an end-to-end
manner can avoid this problem with their unique architecture. Chen et al. [11] decomposed
the ASTE task into three subtasks: target tagging, opinion tagging, and sentiment tagging.
Furthermore, a new target-aware tagging scheme was used to identify the correspondences
between opinion targets and the whole sentence. In addition, span-level features also
contribute a lot to the ASTE task. Chen et al. [38] proposed a joint training framework
to process all potential entities as independent spans, and the related representations of
the spans were utilized to classify their corresponding sentiment polarities. Moreover, to
reduce the cost of sequence tagging, a tagging-free solution was proposed by Mukherjee
et al. [39]. In the method, an encoder–decoder architecture with a pointer network-based
decoding framework was introduced, which effectively captured the interactions between
the aspects and opinions by considering the whole detected spans in predicting sentiment
polarity. To prove the simple span-based method is also effective for ASTE, Xu et al. [40]
proposed a three-layers framework, which consisted of a BERT-based encoding layer, a
span representation layer, and an aspect–sentiment–opinion prediction layer. This work
verified that the performance of the model for ASTE was impacted by explicit local con-
text information largely. Through the above summary, it is obviously learned that the
approaches with the end-to-end manner contribute a lot to the ASTE task, and it is essential
to pay more attention to the research of effectively utilizing the relations among words in a
sentence. Thus, in this work, we propose a novel model to integrate five kinds of words’
relations together to enhance the performance of ASTE.
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2.3. Application of GCN in ASTE

In (ABSA) Aspect-Based Sentiment Analysis tasks, the syntax dependency tree plays
an important role in catching the key feature from the review sentence [41–43]. Further-
more, it is well known that the regular method GCN is popular in handling dependency
graphs in previous works. Regarding ASTE, GCNs are also used widely to fuse different
sources of information. As mentioned above, Shi et al. [21] employed a GCN to enhance the
interaction between syntactic and semantic features. To fully exploit the potential informa-
tion implied in syntactic and semantic features, the work [18] also integrated semantic and
syntactic representations through a GCN module, which preserved the sequential informa-
tion and enhanced the linguistic representation, simultaneously. Moreover, to overcome
the problem of many aspect terms to one opinion term or one aspect term to many opinion
terms, Li et al. [44] combined a GCN with a base encoder to build the span representations,
which included both aspect terms and opinion terms. In [45], a GCN was also employed to
model the graph based on the concatenated representations of aspects terms and opinion
terms. Thus, it is quite clear that GCNs are extremely important in enhancing the feature
representations in the ASTE task. Motivated by their impressive ability, we also process the
work of feature fusion under the guidance of the GCN in this paper.

Conclusively, as aforementioned, ASTE is a difficult and challenging subtask in ABSA,
which attracts a lot of researchers’ attentions. In this paper, inspired by the existing
works which apply BERT and GCNs to NLP tasks, we propose a novel model MBGCN
to process semantic feature, syntactic dependency type, part-of-speech combination, tree-
based distance, and relative position distance, simultaneously.

3. Framework of MBGCN

In this section, the detailed framework of the MBGCN is described. Firstly, the
definition of the ASTE task is introduced briefly. Then, the mechanism of feature generation
through the backbone structure-biased BERT is depicted, and this step is utilized to generate
semantic features. After that, multi-branch GCNs are employed to integrate semantic
features with the other four types of linguistic feature representations. Lastly, the shallow
interaction, output layer, and training are introduced shortly. Additionally, the overall
architecture of the MBGCN is described in detail in Figure 2.

3.1. Task Formulation

Given a sentence with a sequence of words X = {w1, w2, . . . , wn} as input, where n is
the number of words, the goal of the ASTE task is to extract and output a set of triplets
{(a, o, s)k}m

k=1, where a, o, and s are the aspect term, opinion term, and the corresponding
sentiment polarity, respectively, and m is the number of triplets. Concretely, the aspect a
can be decomposed into two or more elements, i.e., (ab, ae), where b and e mean the start
and end positions. The opinion o can be decomposed as (ob, oe) similarly. Furthermore, s is
selected from the set (position, netural, negative) to represent the sentiment polarity of the
corresponding opinion term on the aspect term. For the sentence shown in Figure 1, the
triplets are collected as (food, good, positive) and (service, terrible, negative).

Specifically, to make the target of our ASTE task more explicit, ten types of relations
between words in a review are defined, which are collected in Table 1. Similarly, the
mentioned relations also can be seen as the labels, and these labels are introduced to present
the relations in the word pairs, which are also the eventual predictions of our MBGCN.
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Figure 2. The overall framework of the proposed Multi-branched Graph Convolutional Network
(MBGCN). [E1, E2, E3, . . . , En] is the input vector E of self-attention (Equations (1) and (2)).

Table 1. The definitions of our defined relations.

Items Relation Definition

1 B-A beginning of aspect term.
2 I-A inside of aspect term.
3 A aspect term.
4 B-O beginning of opinion term.
5 I-O inside of opinion term.
6 O opinion term.
7 POS sentiment polarity is positive.
8 NEU sentiment polarity is neutral.
9 NEG sentiment polarity is negative.

10 N belong to no aforementioned relations.

3.2. Embedding via Structure-Biased BERT

As aforementioned, BERT has an impressive performance in modeling contextual
representation in various NLP tasks [46–49]. Therefore, in our proposed Multi-branches
Graph Convolutional Netwrok (MBGCN),we also utilize it to generate the semantic features
by the version of the bert-uncased-base. To be precise, before feeding the review X into the
MBGCN, the input is always formulated in three formats: segment embedding Xs, position
embedding Xp, and tokens embedding Xt. Then, these three aspects of embedding are
summarized as the input to the selective feature generator, which is shown in Equation (1),

E = Xs + Xp + Xt, (1)

where E = [E1, E2, E3, . . . , En] is the input of self-attention (Equation (2)). In detail, BERT
is a PLM with the structure of a stacked transformer, which has 12 transformer layers
in total. Furthermore, in each transformer layer, the feature representations are trans-
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formed by multi-head self-attention with a residual structure (Figure 3a). Furthermore, this
transformation can be formulated as follows:

h0 = LN(E), (2)

ĥl = LN(hl−1 + MHSA(hl−1)), (3)

hl = LN(ĥl + FFN(ĥl)), (4)

where l ∈ [1, 12] is the l-th layer transformer, and h0 means the input embedding of BERT,
which is built from E with a liner function. The outputs of 12-layer transformers are
denoted as [h1, h2, . . . , h12]. FFN includes two linear functions with a ReLU activation
function between. MHSA is the core of the transformer, which has a stacked structure with
12 heads of self-attention. Thus, we can formulate the architecture of attention as follows:

ĥl
Mj = so f tmax(el

j)(h
l−1WV), (5)

el
j =

hl−1WQ(hl−1WK)
�

√
d

), (6)

ĥl
M =

N

∑
j=1

ĥl
Mj, (7)

where parameters WQ, WK, and WV are the learnable weights for query Q, key K, and
value V, and d is the head dimensionality. ĥl

Mj is the single attention, and ĥl
M denotes the

sum of N heads attention (MHSA).

Figure 3. The mechanism of structure bias utilized in BERT. Furthermore, Q, K, and V denote
the query vector, key vector, and value vector, respectively, which are standardized inputs for the
transformer module. R indicates the relation distance embedding (Equation (8)).

Inspired by the structure-biased BERT utilized in [24,50], we also introduce it into
our MBGCN for generating more informative feature maps. In the optimized approach,
self-attention is re-constructed by inserting the relative distance or the dependency between
words. Furthermore, the effectiveness of this modification has been obviously proven by
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the NLP task [51]. Thus, we describe this change in our model as Equation (8), which can
be implemented in Equation (6) directly. Additionally, the procedure is depicted below:

el
j =

hl−1WQ(hl−1WK +R
l−1)�√

d

=
hl−1WQ(hl−1WK)

�
√

d
)︸ ︷︷ ︸

Raw

+
hl−1WQ(R

l−1)�√
d︸ ︷︷ ︸

Bias

,
(8)

where Rl−1 ∈ Rk×k indicates the relative distance embedding between the word pairs of
the k-th sentence in (l − 1)-th transformer layer. Note that each dependency embedding
is independent from one layer to another layer, but it can be transformed across different
heads as an entirety. Additionally, the sketch of the difference between raw self-attention (a)
and biased self-attention (b) is shown in Figure 3.

With the backbone encoder of structure-biased BERT, the semantic features hl is obtained,
which provides more accurate contextual information to the module of biaffine attention.

3.3. Biaffine Attention

Biaffine attention has been proven to have the ability to capture the relationship among
the different words or word pairs [23,52]. Thus, in this paper, we also apply it to predict
the relation probability of word pairs in a sentence. To present the process of biaffine
attention, the hidden states hς and hτ of wς and wτ in X are extracted from hl . With the
aforementioned MLPa and MLPo, the aspect-specific feature ha

ς (Equation (9)) and opinion-
specific feature ho

τ (Equation (10)) are obtained, which are adopted into the processing of
biaffine attention directly.

ha
ς = MLPa(hς), (9)

ho
τ = MLPo(hτ). (10)

and the transformation of biaffine attention can be formulated as

gς,τ = ha�
ς Uoho

τ + Ua(ha
ς ⊕ ho

τ) + b, (11)

Rς,τ,ξ =
exp(gς,τ,ξ)

∑Ξ
ξ=1 exp(gς,τ,ξ)

, (12)

where Uo, Ua, and b are the trainable weights and biases, and ⊕ denotes the operation
of concatenation. The relations between wς and wτ are modeled as Rς,τ ∈ R

1×Ξ. Ξ is the
number of relation types. Furthermore, we use Rba to represent the relations obtained in
this manner in the following sections.

With the aspect-oriented and opinion-oriented processing of biaffine attention, the
probability of relation Rba between the word pairs in a sentence can be modeled effectively.
Furthermore, this relation will be integrated with the other four types of linguistic features
via GCNs adequately.

3.4. Multi-Branch GCN

Except for encoding text as semantic feature maps, it also can be represented in
the linguistic feature types. Furthermore, the most widely utilized type is the syntax
dependency graph, where the feature is formed in a graph G = (V, E). V is the vertex
(i.e., node or word), and E is the edge (i.e., dependency or syntactic relation) between two
nodes. Generally, we usually denote this kind of relation through a matrix, namely adjacent
matrix A. Aτ,ς = 1 if the relation between wς and wτ exists, and Aτ,ς = 0 otherwise. In
addition, in this paper, we also introduce three other types of linguistic features for each
word pair to enhance the contextual representation of the sentence, which are the part-of-
speech combination, tree-based distance, and relative position distance (Figure 4). Before
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feeding them into the GCN, they are all encoded in the fashion of adjacency matrices. Then,
these four types of linguistic features are integrated with semantic features, respectively.
For instance, we apply the GCN to integrate the Rba with Rsdt encoded from syntactic
dependency type tensor Esdt, and the process is depicted as follows:

Rsdt
τ,ς = σ(Esdt), (13)

H f 1
τ,ς = f ((Rba

τ,ς ⊕ Rsdt
τ,ς)HBert

τ,ς ), (14)

where HBert is obtained from the original contextual representation hl through a dense layer
and a ReLU activation layer; σ is the function so f tmax. Furthermore, f (·) is an average
pooling function applied on the node hidden representations of all channels. To make the
extracted relations more accurate, a refining strategy is employed to enhance the relations
among words, which can be described as

RF
τ,ς = hl

τ,ς ⊕ Esdt
τ,ς, (15)

F̂G(τ,ς)
ba+sdt = RF

τ,ς ⊕ RF
ς,ς ⊕ RF

τ,τ ⊕ H f 1
ς ⊕ H f 1

τ , (16)

FG(τ,ς)
ba+sdt = σ(LN(F̂G(τ,ς)

ba+sdt)), (17)

we use ⊕ to concatenate contextual representation hl
τ,ς and syntactic dependency type

tensor Esdt
τ,ς. Furthermore, in Equation (16), RF

τ,τ and RF
ς,ς are the main diagonal and vice

diagonal, which are used to refine the representation F̂G(τ,ς)
ba+sdt. Finally, with the operations of

a linear layer and a softmax layer, the distribution of probabilities on ten defined relations
between τ and ς is obtained, which is denoted as FG(τ,ς)

ba+sdt.

Figure 4. The example of four mentioned types of dependency relations among words in reviews.

Similarly, we integrate Rba
τ,ς with Epsc

τ,ς , Etbd
τ,ς , and Erpd

τ,ς via different branches of the

GCN to obtain the refined feature representations FG(τ,ς)
ba+psc, FG(τ,ς)

ba+tbd and FG(τ,ς)
ba+rpd, respectively.

Through the operations described in this part, we enhance the contextual feature Rba
τ,ς with

four types linguistic features, respectively.

3.5. Shallow Interaction and Output Layer

To further enhance the performance of our MBGCN, we apply a shallow interaction
layer to fuse the four types of integrated feature representations, which can be depicted as
follows:

TF
τ,ς = [α, β, γ, μ] · [FG(τ,ς)

ba+sdt, FG(τ,ς)
ba+psc, FG(τ,ς)

ba+tbd, FG(τ,ς)
ba+rpd]

�, (18)

where α, β, γ and μ are manually selective hyper-parameters to control the weights of
different feature representations. Furthermore, � is the transposition operation for the
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related matrix. With this layer, the MBGCN achieves the final textual representation fused
from four branches of the GCN, which take five types of textual features into consideration
simultaneously.

3.6. Training

Generally, the deep learning models are always optimized by minimizing a loss
function, and cross entropy is usually applied to complete this work. Without simply
applying cross entropy in the proposed MBGCN, due to various contextual information
involved, it is necessary to take these into the final fine tuning. For instance, the separated
loss Lba to measure the influence of Rba is modeled as

Lba = −
n

∑
ς

n

∑
τ

∑
ξ∈Ξ

I(yς,τ = ξ)log(gς,τ|ξ), (19)

where I(·) is the indicator function, yς,τ is the ground truth relation of word pair (wς, wτ).
Furthermore, Ξ denotes the whole relations set. With a similar operation, the other four
separated linguistic features’ losses Lpsc, Lsdt, Ltbd, and Lrpd are all obtained likewise.
Thus, with the prediction, the final loss function L in the paper is designed as

L = LTF + ρLba + κ(Lpsc + Lsdt + Ltbd + Lrpd), (20)

LTF = I(Y = Ξ)log(TF|Ξ) (21)

where ρ and κ are the manual hyper-parameters to control the influence of each part on the
final loss function. Through this manner, our MBGCN can adjust its fine-tuning from six
aspects simultaneously.

4. Experiments and Discussion

In this section, the results of the conducted experiments are depicted in Tables and
Figures, and the corresponding analyses are also provided in detail. We first introduce
the widely used ASTE datasets and the related settings of experiments. The detailed
experimental results are clearly shown in the analysis secondly.

4.1. Datasets

In this paper, extensive experiments are conducted on four benchmarks, namely
Laptop14, Restaurant14, Restaurant15, and Restaurant16, which are public and available
for ASTE tasks. Furthermore, these four datasets are all collected from the SemEval ABSA
challenges [53–55]. It’s worth noting that these four datasets are revised by Wu et al. [56]
and Xu et al. [22] for ASTE tasks, respectively, which are denoted as V1 and V2 in this paper.
Moreover, the statistics for these two versions of datasets are shown in Table 2.

Table 2. Statistics of two groups of experiment datasets.

Datasets
Laptop14 Restaurant14 Restaurant15 Restaurant16

#S #T #S #T #S #T #S #T

V1

train 899 1452 1259 2356 603 1038 863 1421
dev 225 383 315 580 151 239 216 348
test 332 547 493 1008 325 493 328 525

V2

train 906 1460 1266 2338 605 1013 857 1394
dev 219 346 310 577 148 249 210 339
test 328 543 492 994 322 485 326 514

Note: #S denotes the number of sentences; #T means the number of triplets contained in the datasets.
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4.2. Experimental Setup

To conduct the extensive experiments successfully, we use the BERT [57] with structure
bias as our review encoder, and it consists of 12 transformer layers, where 12 heads self-
attention are included in each layer. Furthermore, the size of the hidden state in self-
attention is 768. In addition, the total number of the model’s parameters is approximately
110 M. The optimizer AdamW is employed to optimize the training process, where the
learning rate is set as 2× 10−5. The dropout is set to 0.5. Moreover, we train our model with
100 epochs with a batch size of 8. The hyper-parameters α, β, γ, and μ of fusion work in
Equation (18) are set as 0.625, 0.125, 0.125 and 0.125, respectively, and the parameters ρ and
κ to control the weights of each loss in Equation (16) are set as 0.1 and 0.01, respectively. In
addition, the experiments are conducted on a system on NVIDIA GeForce RTX 3080Ti with
12GB of graphics memory. To validate our MBGCN effectively, the widely and popularly
used evaluations of Precision (P), Recall (R), and macro-F1 (F1) are employed to present the
performance of the proposed approach on four benchmarks.

4.3. Baselines

Specifically, to demonstrate the validity of the proposed MBGCN, we make comparisons
with several existing SOTA methods designed for ASTE tasks, which are shown as follows:

• GTS-BERT [56] proposes an end-to-end tagging scheme, Grid Tagging Scheme (GTS)
with cooperation with BERT, to address the extraction task;

• GTS-CNN [56] is the Grid Tagging Scheme (GTS) that cooperates with CNN;
• GTS-BiLSTM [56] is the Grid Tagging Scheme (GTS) that cooperates with BiLSTM;
• S3E2 [18] exploits the syntactic and semantic relationships between word pairs in a sentence

by a graph-sequence dual representation and modeling paradigm for the ASTE task;
• Peng-two-stage+IOG [56] is the combination of Peng-two-stage [12] and IOG [58];
• Peng-two-stage [12] is a two-stage pipeline model. It extracts both aspect–sentiment

pairs and opinion terms in the first stage, and pairs the extraction results into triplets
in the second stage;

• OTE-MTL [59] treats the ABSA task as an opinion triplet extraction work, and jointly
extracts aspect terms, opinion terms, and parses their sentiment via a multi-task
learning framework;

• JET-BERT [22] builds a joint model to extract the triplets using a position-aware tagging
approach, which is capable of jointly extracting aspect terms, opinion terms, and their
sentiment together;

• BMRC [16] transforms the ASTE task into a Multi-Turn Machine Reading Com-
prehension (MTMRC) task, and three types of queries are devised to handle the
related inputs;

• EMC-GCN [23] transforms the sentence into a multi-channel graph by treating words and
edges as nodes and edges, respectively, while ten types of relations for ASTE are defined;

• MuG-Bert [24] proposes an approach, Multi-task learning with Grid decoding (MuG),
to integrate the multi-task learning framework with grid triplets decoding from GTS;

• UniASTEBERT [11] proposes an end-to-end method that decomposes ASTE into three
subtasks, namely target tagging, opinion tagging, and sentiment tagging. Furthermore,
a target-aware tagging scheme is introduced to identify the correspondences between
opinion targets and opinion expressions;

• Dual-MRC [15] solves the ASTE task via constructing two machine reading compre-
hension problems, and trains two BERT-MRC models jointly with parameters sharing.

4.4. Main Results

In this subsection, we report the main results of ASTE tasks in Table 3 for version V1
and Table 4 for version V2, respectively. According to the results reported in these two
Tables, two observations can be concluded and stated as follows.

First, the performances of the PLM-based approaches on ASTE are much better than
the normal word2vector-based models. Furthermore, this is quite clear in the comparisons
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among GTS-BERT, GTS-CNN, and GTS-BiLSTM. Observing from Table 3, it is obvious
that our proposed MBGCN acquires the optimal performance when compared with the
previously mentioned SOTA baselines. To be precise, for experimental results in four
benchmarks, our MBGCN achieves 72.33%, 57.46%, 59.57%, and 70.43% on the main
indicator F1, respectively; while compared with the best baseline EMC-GCN†, the proposed
MBGCN obtains 1.13% (72.33–71.20), 0.92% (57.46–56.54), 1.53% (59.57–58.04), and 1.40%
(70.42–69.03) improvements on F1 in the four datasets, respectively, and it achieves the new
SOTA. This observation from the comparison indicates the effectiveness of our proposed
model with the multi-branch framework.

Second, even within the comparison with other BERT-based approaches, the MBGCN
also enhances the ASTE performance through its excellent contextual understanding. No-
tably, in Table 4, the experimental results conducted on V2 are collected clearly. For the vital
evaluation F1, the performances of the MBGCN are improved to 71.37%, 58.89%, 63.07%,
and 67.34% in four corpora, respectively, which outperform the mentioned baselines obvi-
ously and are only a little worse than EMC-GCN† on F1 in Restaurant14. Specifically, there is
a dramatic increase in F1 in Restaurant15, which is nearly 3.46% (63.07–59.61). Furthermore,
in Laptop14 and Restaurant16, the MBGCN also achieves 0.58% (58.89–58.31) and 0.31%
(67.34–66.74) increases on the F1 indicator. This can be viewed as direct evidence to support
the usefulness of the combination of structure-biased BERT and multi-branch GCNs.

Conclusively, as the results show, structure-biased BERT-based multi-branch GCNs
can further boost the performance of ASTE tasks, which is beneficial in excavating the
semantic and syntactic information in reviews comprehensively.

Table 3. The performance of Multi-branches Graph Convolutional Network (MBGCN) on V1.

Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

Peng-two-stage+IOG© [56] 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67
GTS-CNN© [56] 70.79 61.71 65.94 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73

GTS-BiLSTM© [56] 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
GTS-BERT© [56] 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58

S3E2© [18] 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87
Dual-MRC© [15] - - 70.32 - - 55.58 - - 57.21 - - 67.40
EMC-GCN † [23] 70.92 71.49 71.20 58.96 54.31 56.54 54.99 61.46 58.04 65.74 72.66 69.03

MBGCN 72.89 71.79 72.33 57.30 57.62 57.46 60.76 58.42 59.57 71.68 69.22 70.43

Note: The “†” denotes that we reproduce the models using released code with original parameters on the dataset.
The “©” denotes the results are referred from the original paper. The “-” denotes not mentioned in original paper.
And the bold format denotes the optimal performance.

Table 4. The performance of MBGCN on V2. The “§” means the results are retrieved from [8]. The “¶”
denotes the results are retrieved from [23].

Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

Peng-two-stage § [12] 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
OTE-MTL ¶ [59] 62.00 55.97 58.71 49.53 39.22 43.42 56.37 40.94 47.13 62.88 52.10 56.96
JET-BERT § [22] 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

BMRC ¶ [16] 75.61 61.77 67.99 70.55 48.98 57.82 68.51 53.40 60.02 71.20 61.08 65.75
EMC-GCN † [23] 70.35 73.14 71.72 61.48 55.45 58.31 56.33 63.30 59.61 62.46 72.32 67.03
MuG-BERT© [24] 68.40 67.64 68.00 58.30 52.21 55.06 60.65 54.12 57.10 66.26 67.39 66.74
UniASTE©

BERT [11] 72.14 66.30 69.09 62.24 51.77 56.51 64.83 54.31 59.06 69.06 65.53 67.22

MBGCN 67.92 75.18 71.37 59.96 57.86 58.89 62.25 63.92 63.07 63.76 71.35 67.34

Note: The “†” denotes that we reproduce the models using released code with original parameters on the dataset. The
“©” denotes the results are referred from the original paper. And the bold format denotes the optimal performance.
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4.5. Ablation Study

To further validate the effectiveness of each component in the MBGCN, we conduct
ablation experiments and answer the following questions:

• Is the contribution of each linguistic feature equal?
• Does the structure-biased BERT promote the performance of the MBGCN on the

ASTE task?

4.5.1. Effect of Each Linguistic Feature

We first validate whether each type of linguistic feature is equal to improve the
performance of the MBGCN in modeling the textual representation. Accordingly, a single
branch GCN is constructed to integrate semantic features achieved by structure-biased
BERT with a single linguistic feature. Moreover, the experimental results are shown in
Figures 5 and 6.

Figure 5. The Results of Ablation Study on V1. Res14 means Restaurant14, Lap14 means Laptop14,
Res15 denotes Restaurant15, and Res16 denotes Restaurant16.

Above all, we compare the effectiveness of the four types of linguistic features on
version V1 of the four benchmarks, respectively. From Figure 5, we can observe that the
approach utilizing FG

ba+psc achieves the optimal performance in the experimental results, in
which the representation is implemented by semantic feature and part-of-speech combi-
nation Rpsc only. This suggests that linguistic feature Rpsc can largely enhance the textual
representation of semantic features generated by structure-biased BERT. Conversely, the
effectiveness of FG

ba+tbd is slightly worse than the observation of the performance of the
ablation experiments, but it still contributes to improving the model’s capability to extract
triplets. In addition, FG

ba+sdt and FG
ba+rpd both have a significant impact on improving the

performance of the proposed model. Additionally, extensive experiments are conducted
on version V2 of four datasets, and the results are presented in Figure 6. Observing from
the figure, the same conclusion can be obtained from the experimental results based on
FG

ba+psc and FG
ba+tbd. Therefore, we believe that the triplets extraction task benefits from the

cooperation of all four GCN branches directly.

Figure 6. The Results of Ablation Study on V2. Res14 means Restaurant14, Lap14 means Laptop14,
Res15 denotes Restaurant15, and Res16 denotes Restaurant16.
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4.5.2. Effect of Adapter BERT

To validate the influence of structure-biased BERT on textual semantic representation,
extensive experiments are conducted on the aforementioned datasets. Table 5 shows the
results on version V1 and V2 of the four datasets. We can see that structure-biased BERT
strengthens the performance of the proposed model in extracting triplets on three datasets
(i.e., Restaurant14, Restaurant15, and Restaurant16). In particular, for V1, the model without
structure bias only achieves 71.66%, 58.55%, and 68.52% of F1 on Restaurant14, Restaurant15
and Restaurant16, respectively, which are obviously worse than structure-biased BERT
based MBGCN. Furthermore, when it comes to version V2, the method based on structure-
biased BERT also achieves higher F1 scores on three datasets, which are Restaurant14,
Laptop14 and Restaurant15, respectively. Furthermore, the corresponding improvements
are 1.53% (71.37–69.84), 0.29% (58.89–58.70), and 3.23% (63.07–59.84). Conclusively, the
above description indicates that the employment of structure-biased BERT can extract more
abundant textual semantic features in the current ASTE task.

Table 5. The contribution of adapter to MBGCN for ASTE task on V1 and V2.

Versions Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

V1
MBGCN 72.89 71.79 72.33 57.30 57.62 57.46 60.76 58.42 59.57 71.68 69.22 70.43

w/o Structure bias 70.38 72.99 71.66 60.86 54.50 57.50 56.76 60.45 58.55 64.53 73.04 68.52

V2
MBGCN 67.92 75.18 71.37 59.96 57.86 58.89 62.25 63.92 63.07 63.76 71.35 67.34

w/o Structure bias 69.49 70.19 69.84 59.77 57.67 58.70 58.88 60.83 59.84 65.36 71.74 68.40

Note: The “w/o” denotes the abbreviation for without.

4.6. Case Study

To further analyze the role of each linguistic feature in our task, two samples are
selected and visualized by attention weights on each word, and they are expressed through
Figure 7. As shown in the figure, each row means the visualization of the representation
obtained by the single branch GCN, and each column denotes the visualization of each
word presented by the four branch GCN. From Figure 7, we can conclude two observations
related to the core idea of the proposed model. First, it is obvious that the attention of
each branch of the GCN is attracted by the different words in the sentence. For example,
in Figure 7b, the key word in branch FG

ba+sdt is “is”, while “is” is the last word in sorted
attention sequence from FG

ba+psc, and FG
ba+psc gives a heavy attention weight to “this”. The

same conclusion can be summarized from FG
ba+tbd and FG

ba+rpd. Second, we find that if

one branch misses the specific word, such as “is” in FG
ba+psc and FG

ba+rpd in Figure 7b,
another branch of the GCN would provide a higher attention weight on this word, such
as FG

ba+sdt and FG
ba+tbd. Furthermore, this phenomenon directly corresponds to the core of

feature integration. In addition, Figure 7a also provides the same information to us about
the attention distributions via a four branch GCN. For this case, our proposed MBGCN
completes its work of fusing various branch features to enhance the textual representation
and finally improve the performance of the ASTE task.
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Figure 7. Attention distribution on each word in samples for case study.

4.7. Attempts via Prompt Learning

Prompt learning is the process of creating a prompt format to guide the training of
the model on the downstream tasks [60]. Furthermore, from the investigation of previous
research, we learn that creating intuitive templates based on human introspection is the
most widely used method that has been adopted in many studies [61–63]. In addition to
the mentioned strategies, we also tried to exploit the usefulness of prompt learning in our
designed experiments. Following the core idea of prompt learning, the comprehensive
prompt template in this task is designed as “the targets are aspect, opinion, sentiment”.
Thus, the input to the model is remodeled as {REVIEW, the targets are aspect, opinion,
sentiment.}, which directly tells the PLM the exact target of the current task.

Furthermore, the relative experiments are conducted both on version V1 and V2,
and the results are collected in Table 6. From the observations, first, we find that the
improvement in the model’s performance on V1 is confined to Laptop14 and Restaurant15,
and different declines happen to the experimental results in Restaurant14 and Restaurant16.
In other words, the effectiveness of prompt learning is limited for current version V1
under the framework of our proposed MBGCN. Second, while observing the experimental
results on V2 shown in Table 6, we can learn that the approach with prompts outperforms
the baseline MBGCN on three benchmarks clearly. However, it fails in the experiments
conducted in Laptop14, which suggests that the optimized model by current prompts is
not sensitive to the reviews in Laptop14. Finally, we can conclude that prompt learning
with the aforementioned template can improve the model’s capability in modeling textual
representation in some aspects, but it is not the most proper manner for the current designed
framework, which means a lot of effort is essential to improve the performance of prompt
learning in the ASTE task.

Table 6. The contribution of prompt learning to MBGCN for ASTE task on V1 and V2.

Versions Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

V1
MBGCN 72.89 71.79 72.33 57.30 57.62 57.46 60.76 58.42 59.57 71.68 69.22 70.43

w/ Prompts 73.27 70.18 71.69 56.35 59.45 57.86 58.32 64.71 61.35 64.11 68.64 66.30

V2
MBGCN 67.92 75.18 71.37 59.96 57.86 58.89 62.25 63.92 63.07 63.76 71.35 67.34

w/ Prompts 73.63 71.31 72.46 58.93 56.75 57.82 64.68 62.68 63.67 65.96 72.90 69.26

Note: The “w/” denotes the abbreviation of with.

5. Conclusions

In this work, we propose an end-to-end model MBGCN for the ASTE task, which
processes Aspect Term Extraction, Opinion Term Extraction, and sentiment polarity pre-
diction in a sentence, simultaneously. For modeling the textual semantic feature more
accurately, an optimized attention module is inserted into BERT, namely structure-biased
BERT, which is employed to enhance the representation of the specific sentence. In addition,
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to emphasize the key features in the generated representation, biaffine attention is utilized
to absorb the crucial components from both aspect-oriented and opinion-oriented feature
maps. Furthermore, a novel fusion architecture with a multi-branch GCN is proposed to
integrate the semantic feature with the linguistic feature. In this part, through each branch
GCN, attentive semantic representation is integrated with syntactic dependency types,
part-of-speech combination, relative positive distance, and tree-based distance, respectively.
Eventually, four branch features are synthesized as an entirety via a designed shallow inter-
action layer. To validate the effectiveness of our proposed model, we conduct extensive
experiments on the benchmark datasets, and the results show that the MBGCN achieves
SOTA performances.

Although outstanding performances were achieved by our proposed MBGCN, several
limitations still exist, which are the working aims of our future study. First, the working
mechanism of prompt learning should be optimized to be more proper for our current task.
Second, a more robust integration strategy is essential in our future study for feature fusion.
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Abstract: With the recent expansion of social media in the form of social networks, online portals,
and microblogs, users have generated a vast number of opinions, reviews, ratings, and feedback.
Businesses, governments, and individuals benefit greatly from this information. While this infor-
mation is intended to be informative, a large portion of it necessitates the use of text mining and
sentiment analysis models. It is a matter of concern that reviews on social media lack text context
semantics. A model for sentiment classification for customer reviews based on manifold dimensions
and manifold modeling is presented to fully exploit the sentiment data provided in reviews and
handle the issue of the absence of text context semantics. This paper uses a deep learning framework
to model review texts using two dimensions of language texts and ideogrammatic icons and three
levels of documents, sentences, and words for a text context semantic analysis review that enhances
the precision of the sentiment categorization process. Observations from the experiments show that
the proposed model outperforms the current sentiment categorization techniques by more than 8.86%,
with an average accuracy rate of 97.30%.

Keywords: autoregressive model; customer reviews; deep learning; emotion analysis; optimized
classification

1. Introduction

With easy access to the web, people now interact with brands and products in a
whole new way. Whether with physical products or online services, people can share their
opinions and reviews immediately on various platforms over the Internet. The world has
transformed dramatically as a result of current advancements. Analyzing this large volume
of consumer reviews will be helpful for consumers in making an informed decision about
a product or service. In social network analyses, the sentiment analysis is an effective
method for extracting user thoughts and determining a single user’s sentiments. Social
media, with its rich sentiments, has developed into a valuable resource for businesses and
governments to understand the opinions and sentiments of online users [1]. For instance,
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users of Twitter and other social media platforms routinely send out a lot of quick text
messages with emoticons to communicate their opinions about various subjects. A textual
sentiment analysis (SA) is not just a theoretical approach; it has applications in a variety of
fields, including finance [2], education [3], health [4], and other areas.

Machine learning models have drawn a lot of attention recently. Traditional machine
learning models almost universally use a two-step procedure. First, some manually created
features from the papers are extracted. In a later stage, the features are sent to a classifier
that performs predictions. The hand-crafted elements include the bag of words (BoW).
Support vector machines (SVM), naive Bayes, gradient boosting trees, random forests, and
the hidden Markov model (HMM) are some of the most used classification algorithms.
There are various drawbacks to the two-step procedure. To achieve good performance
relying on hand-crafted features, this necessitates time-consuming feature engineering
and analysis phases. Furthermore, it is challenging to apply the strategy to new positions
because it depends on domain expertise for feature creation.

Regarding mobile applications, the majority of apps can freely downloaded and a wide
range of possibilities are accessible for a given sort of app, meaning sentiment analyses
are made even more challenging. Users usually consult reviews or advice from other
users before making decisions. App store owners can use the reviews to increase in the
search ranks and catch fraud, while developers can use them to extract feedback (such as
features, complaints, and privacy problems) [5]. Manual analyses are quite challenging
due to the rapidly increasing volume of reviews (including false and spam reviews). As a
result, app reviews have been rated in various ways throughout the last few years, from
general exploratory research to categorization, feature extraction, review filtering, and
summarizing. Furthermore, evaluations frequently include user opinions, which can be
viewed as additional useful meta-data.

To alleviate the restrictions caused by the usage of hand-crafted features, neural
techniques have been investigated. These techniques do not require hand-crafted features
since they use a machine learning model that converts text into a low-dimensional vector
of features. An LSA (latent semantic analysis) was proposed by Dumais et al. [6] in 1989
and was one of the earliest embedding models. An LSA is a trained linear model with
200,000 words and fewer than 1 million parameters. The first neural language model was
put forth by Bengio et al. [7] in 2001, and the model worked on a feed-forward neural
network that had been trained using 14 million words. The reason they are rarely used is
that these early embedding models outperform conventional models with hand-crafted
variables. A range of NLP tasks quickly gained popularity for a collection of word2vec
models [8] that Google released in 2013, which were trained on 6 billion words. Using
Google’s Transformer [9], a fresh NN architecture, in 2018, embedding models were pro-
duced by OpenAI. For text-generating projects, their original model, GPT [10], is now
extensively used. The same year, Google created BERT [7], a bidirectional Transformer-
based system. BERT, which includes 340 million parameters and 3.3 billion words of
training data, is currently the most advanced embedding model. It is possible for con-
volutional neural networks (CNN) [8] to learn local responses from spatial or temporal
data, but not sequential correlations. Short-term dependencies in a sequence of data can
be handled by recurrent neural networks (RNNs) [9], but long-term relationships are a
problem for these networks.

To overcome the constraints of the existing systems in evaluating user sentiments for
a certain service or product, a unique methodology based on deep learning utilizing XLNet
has been developed. The existing sentiment categorization systems have two issues with
handling missing context semantics in text:

i. The existing studies primarily use language symbol information in texts to classify
sentiments. Only a few research have looked at sentiment data with punctuation
marks in the dataset. The issue of text context semantics can be resolved with the aid
of punctuation symbols that include sentimental information;
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ii. The majority of the ongoing research is focused on the extraction of emotional charac-
terizations and the modeling of textual material at the document level. On the other
hand, studies rarely take into consideration doing other levels of text content, such
as words or phrases. To overcome the lack of text context semantics in social media
assessments, sentiment information can be efficiently collected from many levels via
the extraction of sentiment features and by modeling texts from various levels.

Given the above issues in existing models for sentiment classification, a model named
the manifold and multi-level sentiment modeling method (MFMLSC) is proposed. There-
fore, the main contributions of this work are as follows:

i. Based on two dimensions, language symbols and emoticon symbols, the manifold
sentiment classification method (MFSC) is proposed. In this approach, the problem
of text context semantics missing in text reviews is tackled using the word, sentence,
and document levels;

ii. The multi-dimensional sentiment classification method (MDSC) uses two symbol
types, i.e., emoticons symbols and linguistic symbols. This approach is used to tackle
the problem of missing context information from texts, which plays a significant role
in obtaining hidden information from sentiments;

iii. Based on the effectiveness of these two models, the final model is proposed as the
multi-fold and multi-level sentiment modeling method (MFMLSC)

iv. The proposed model is implemented on three different datasets of Google Pay, Phonpe,
and Paytm mobile app reviews. Additionally, the proposed model is validated on the
IMDB benchmark dataset.

The rest of the sections are organized as follows. Section 2 discusses the related work.
Section 3 provides details and describes the workings of the proposed model. In Section 4,
various settings and evaluation parameters are discussed. In Section 5, a summary and the
conclusions are presented.

2. Related Work

This section provides a comprehensive review of the recent studies, along with rec-
ommended methodologies for addressing sentiment analysis challenges based on word
embedding and deep learning (DL) techniques. Next, the state-of-the-art literature is
addressed, with a focus on sentiment analyses in different areas.

Over the last two decades, the classification of user sentiments has attracted an
increasing number of scholars and yielded a large number of research findings [10]. The
classical machine learning and deep learning methods for classifying emotions mostly
depend on supervised learning. The challenge is that natural language processing relies
on efficient word embedding. By thoroughly training the global word–word co-occurrence
of statistical data from the corpus, Mikolov et al. [11] and Pennington [12] first revealed
that word vectors are learned through an RNN. As seen in [13], the final global vector
(GloVe) has an intriguing linear substructure in the word vector space. Tang et al. [14]
offered three models that took into account the text’s emotional propensity and learned
word embeddings with the sentiment. Word2Vec embedding was used in [15] to perform
a sentiment analysis on reviews received from the Indonesian website Traveloka. It is
estimated that their model is 91.9% accurate. The authors of [16] presented a monitoring
system based on DL and ontology to aid the traveling process. Fuzzy ontologies and
Word2vec embeddings were utilized to construct the suggested system’s feature extraction
module; the BiLSTM model was then used to classify the input text. According to Facebook,
TripAdvisor, and Twitter data, the proposed technique was tested and found to be 84%
accurate in its predictions.

A multi-layer architecture for customer evaluation approaches (such as word em-
bedding and compositional vector models) was proposed in [17]. A back-propagation
technique was used to train the network and provide weights for the various aspects of the
design once it had been integrated into a neural network. GloVe-DCNN, a brand-new de-
vice featuring a variety of sentimental qualities, was introduced in [18]. Word embedding,
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n-grams, and the polarity score properties of sentiment words were used to create a deep
CNN. The authors of [19–21] developed a document representation system using the fuzzy
bag of words paradigm (FBoW). An enhanced FBoW model that replaces the initial hard
planning module with the Word2vec approach using fuzzy mapping was developed by
replacing the original module with the Word2vec embedding. To determine the degree of
similarity between words and clusters in seven different real-world document datasets, the
researchers used three different approaches.

For the identification and condition analysis of traffic accidents, the authors of another
study proposed a system based on using ontology with LDA (OLDA) and a BiLSTM
network [22]. OLDA was employed in the proposed system to extract data and label texts.
As a result, classifiers such as FastText and BiLSTM are employed. This system was more
accurate than the previous one. In another study, BiLSTMs were used to gather data on
the long-term reliance on word and sentence locations [23]. A CNN and BiLSTM were
combined in the suggested hybrid strategy. LSTM outputs from sentence classification are
applied to the multi-channel CNN to produce n-gram features. To find ADRs (adverse drug
reactions) in electronic medical data, the authors of [24] suggested using a deep learning
approach (EHRs). The proposed approach used the joint AB-LSTM model and embeddings
based on lemmas to locate ADRs. The proposed technique had an F-measure of 73.3%
on the EHR dataset. The combined model, for example, outperformed previous models
that used a stack of CNNs and LSTM deep learning models, as shown in [25]. The dataset
representation of Word2Vec is preferable to Word2Seq. Sentiment-based and dictionary-
based representations of texts are some of the ways that texts are encoded. For extracting
sentence features, the CNN model is paired with three attention methods. They concluded
that the proposed CNN models were the most effective of all the models considered.

According to Hameed and Garcia-Zapirain [26], the accuracy of the BiLSTM ap-
proach was 85.8% on the IMDB Movie Review and SST2 (Stanford Sentiment Treebank)
datasets [27]. The authors demonstrated that the BiLSTM method is both more efficient
and suitable for sentiment analysis problems. Word2Vec, LSTM, RNN, and CNN methods
were utilized by Xu and colleagues [28] to extract emotions from Chinese hotel reviews.
The model with the highest F-score, 92%, was the BiLSTM method.

Some researchers have proposed hybrid deep learning-based models to improve
accuracy, such as the LSTM-CNN grid-search (GS) approach for Amazon and IMDB
reviews [29]. The authors utilized a grid-search technique and compared it to CNN, LSTM,
CNN–LSTM, and other approaches. Their model outperformed several baseline models
with an overall accuracy of 96%. In a similar study, the researchers [30] used Amazon
reviews to model topics before using a CNN to identify views. The authors stated that
their proposed approach improved the accuracy by 6 to 20% in comparison with the
established methods.

Further studies were conducted on the more efficient embedding approach, BERT,
and its derivatives in enhancing the analysis of sentiments for user reviews. The authors
of [31] employed BERTCNN to improve a sentiment analysis for commodities reviews,
with the results stating that the BERT-CNN (F1-score of 84.3%) outperforms the BERT (82%)
and CNN (84.3%) (70.9%) approaches. Similarly, in [32] the SenBERT-CNN (sentiment
BERT-CNN) was proposed for analyzing the feedback for JD.com, a mobile phone supplier,
by merging the BERT and CNN approaches to obtain deep characteristics of the dataset.
When the LSTM, BERT, and CNN approaches were compared, the authors found that
BERT-CNN worked the best, with a score or 95.7%. In [33], on the other hand, a dataset
from Drugs.com was used to develop neural network models for predicting reviews of
drugs. On a scale from 0 to 9, patients’ levels of happiness were given scores between 0
and 9. The authors tested many neural network models, including the BERT-LSTM model,
with the following methods: 10-class and 3-class compressed forms of the dataset. The
results showed that the BERT-LSTM model was the best-suited for the 3-class setup, even
though it took a very long time to train. Others examples include [34], who used BERT to
train different NN models on a dataset of movie reviews. The results showed that BERT
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was the most accurate, while [35] used BERT to analyze Twitter sentiments by turning
jargon into plain text for BERT training.

Additionally, in [36], the authors suggested a deep learning model using BERT for
ADE (adverse drug effect) retrieval and detection to find pharmacological side effects.
As a classifier and retrieval tool, the proposed model utilized sentence structure feature
embeddings and BERT. Furthermore, in [37], the authors developed a method for extracting
medical relations that relied on a pre-trained technique and a mechanism of fine-tuning
rather than manual labeling. For feature extraction, the suggested method combined the
BERT architecture with one-dimensional convolutional neural networks (1D-CNNs). The
suggested method was tested on three datasets: the BioCreative V chemical relation corpus
of illness, a classical Chinese literature dataset, and the i2b2 2012 temporal relation challenge
dataset, and F1 score values of 0.7156, 0.8982, and 0.7085, respectively, were obtained. It was
proposed by Ma et al. [38] that an enhanced version of Sentic LSTM be used for a joint task
that combined the target-dependent detection of aspects and targeted aspect-based polarity
classification. In another study, Sentic LSTM was developed by Ma et al. for the explicit
integration of explicit and implicit information. By refining pre-trained word vectors with
scores of sentiment intensity provided by sentiment lexicons, Gu et al. [39] presented a
word vector refinement method that improved each word vector and performed better
in the sentiment analysis. Hashida et al. [40] created a hybrid paradigm of multi-channel
decentralized representation for textual data.

Various pre-trained language models, such as ELMo [41], BERT [42], and GPT [43],
have recently demonstrated effective performance. Various Transformer-based language
models such as BERT [42], robustly optimized BERT pre-training approach (RoBERTa) [44],
and a lite BERT for self-supervised learning language representations (ALBERT) [45], have
recently obtained the highest performance in many NLP tasks. Transformer’s bidirectional
encoder representation is known as BERT. Position embedding and word embedding are
included in BERT’s inputs. BERT’s feature representation layers, unlike those of 1D-CNN
and LSTM, rely on both left and right context information. A more advanced embedding
technique, known as BERT, was also found to be useful in improving the sentiment anal-
ysis of reviews. Another study [46] examined the sentiment analysis performance of the
SVM, multi-nomial naive Bayes, LSTM, and BERT approaches. Stemming, tokenization,
lemmatization, and punctuation removal were among the preprocessing techniques used.
The dataset includes 1.6 million tweets classified as good or negative. The study deter-
mined that BERT’s performance was the best, with an accuracy rate of 85.4%. Two deep
learning algorithms were created by the authors of [47] for the analysis of sentiments in
multi-lingual social media text. During Pakistan’s 2018 general election, Twitter was used
to gather data. 80% of the dataset was used for training and 20% for testing. The XLM-
RoBERTa and multi-lingual BERT (mBERT) from Transformer approaches were studied for
their performance in this regard (XLM-R). The mBERT learning rate was set to 2 × 10−5,
and the XLM-R learning rate was set to 2 × 10−6 during the hyperparameter tweaking.
Furthermore, mBERT had a precision rate of 69%, while XLM-R had a precision rate of 71%,
according to the results of the trial. Using a deep bidirectional long short-term memory
(DBLSTM) approach, in [48] the sentiments of Tamil tweets were analyzed. The dataset
contains 1500 tweets categorized as either positive, negative, or neutral. The data were
cleaned and pre-trained using the Word2Vec model before being represented using the
DBLSTM word embedding approach. Furthermore, 80% of the dataset was utilized for
training and 20% for testing. The DBLSTM approach was shown to be 86.2% accurate in the
research. In a recent study [49], the authors proposed an adversarial strategy for handling
the domain shift problem. The adversarial meaning stems from the parallel structure
designed between the loss function on training samples and that on test samples. Using a
projector and classifier, they presented a theoretical analysis of several benchmark datasets.
In [50], the researchers performed a survey on an aspect-based sentiment analysis (ASBA).
The authors showed a comparison of several techniques used in the ASBA.
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In recent years, numerous studies have presented deep-learning-based sentiment as-
sessments, each with its own set of characteristics and performance results. The traditional
method for sentiment analyses is suitable for dealing with the categorization of small-scale
texts. In the face of huge amounts of data, the analytical efficiency is low, and locating
sentiment information is challenging. In recent years, deep learning approaches have
demonstrated promising accuracy and efficiency in textual data sentiment classification.
With the advent of Transformer-based pre-trained representations, the accuracy and effi-
cacy have increased dramatically. Consequently, this study investigates and proposes a
unique sentiment classification model based on the deep learning technique and XLNet’s
autoregressive pre-trained model.

3. Proposed Model

The proposed model primarily consists of two major components. Manifold emotion
modeling is a technique that incorporates three different components: words, sentences, and
documents. The second method makes use of language and punctuation marks to model
multi-dimensional sentiments in two dimensions. Each word in the dataset is broken up
into its unique phrase by using emoticons as separators. Through the practice of regarding
emoticons and linguistic markings as unrecognized words, every sentence is segmented
utilizing the word segmentation methodology that is currently in use. A technique for
modeling the emotions associated with textual material is presented with three levels:
word, phrase, and document. A multi-dimensional technique for classifying sentiment is
given for modeling the text content using two dimensions: language-based symbols and
emoji symbols at the word and sentence level.

The multi-fold with multi-level modeling results are inputs into the multi-level per-
ception network using the pre-trained autoregressive word representation model XLNet to
produce the final sentiment classification results (Figure 1). The algorithm of the proposed
model is shown as Algorithm 1.

The proposed model is divided into four modules. The module-wise discussions of
the proposed model are presented below.

Algorithm 1: Multi-Fold Dimensional Modeling Method for Sentiment Classification

1: input: IDocument
2: output: IDocumentDVector
3: initialization of the XLNet and Dual-LSTM models
4: IDocumentSVector = []
5: for each sentence in IDocument:
6: for each W_word, emoji in sentence:
7: WVector = BERT(W_word)
8: L_languageWVector = XLNet (L_language)
9: P_emoticonsWVector = XLNet (P_emoticons)
10: sentence WVector = [WVector, emoticon WVector]
11: SVector = Attention(Dual-LSTM(S WVector))
12: L_languageSVector = L_languageWVector
13: sentence SVector = [SVector, L_languageSVector]
14: IDocumentSVector += sentence SVector
15: IDocumentDVector = Attention(Dual-LSTM(IDocumentSVector))
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Figure 1. The proposed model.

3.1. Pre-Processing

The goal of the pre-processing phase is to remove all extraneous words from the corpus.
The following are the major stages of the pre-processing phase:

i. Using the WordPiece tokenization paradigm, each word in the social input text is
tokenized and can be broken into several sub-words;

ii. The Natural Language Toolkit (NLTK) removes stop words (is, the, a, etc.);
iii. Slang is converted to more formal forms;
iv. By eliminating texts that include indentations or by employing a widely unused set of

suffixes and indentations, such as “-ing” or “pre-,” one can restore extracted words to
the word stem format using a rule-based stemmer technique;

v. Lemmatization removes inflection endings and returns words to the dictionary format.
The proposed approach utilizes the NLTK suffix-dropping algorithm for stemming
and lemmatization to improve the lexical context and analysis;

vi. Uppercase characters are converted to lowercase characters and repeated characters
to their generic form;

vii. Spelling corrections are made using the Levenshtein distance and by selecting mis-
spelled keywords.

Punctuation marks are used to divide cleaned and pre-processed texts into sentences.
Punctuation is a collection of symbols that control and clarify the contents of various texts.
Punctuation serves to clarify the meanings of texts by connecting or separating words,
phrases, and clauses. As a result, punctuation is used to transform words into sentences.
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XLNet

XLNet is a novel NLP pretraining approach that produces cutting-edge outcomes on
several NLP tasks. Autoregressive (AR) language modeling and autoencoding (AE) are
two pretraining aims for pretraining neural networks used in transfer learning NLP that
have been proven effective. While avoiding the limitations of the two types of language
pretraining objectives (AR and AE), XLNet incorporates concepts from both.

3.2. Multi-Fold Sentiment Modeling Method (MFSC)

The majority of the current research focuses on document-level text content model-
ing and sentiment feature extraction, with minimal attention paid to the interaction and
correlation among sentences in the document. Between successive sentences in the text,
there are evident progressive (forward) and adversative (reverse) linkages, as well as clear
correlation and reciprocal influences between terms. As a result, the technique is suggested
here for multi-fold sentiment modeling. The extraction of sentiment features and modeling
content of text at several levels, such as words, phrases, and documents, helps address the
lack of context semantics in dataset texts.

The multi-fold sentiment modeling method has three stages, the (i) word, (ii) sentence,
and (iii) document levels. In the first fold of words, the input is the outcome of the
segmentation ‘of sentences. The outcome of this process is the representation of the word
vector for the given sentences. In the second fold, i.e., the sentence level, the input for
the model is the representation of vectorized words of the given set of sentences, and
the outcome is the representation of vectorized sentences from the set of sentences. The
multi-dimensional sentiment model is described in detail in the next section. The vectorized
collection of several sentences is provided as the input in the document fold, and the result
is the vectorized document.

The specifics at the document level are listed below.

i. Based on the grammatical rules and conjunctions between sentences, two types of
relations are obtained: forward relations and reverse relations;

ii. The attention-based network is provided with prior knowledge of the following two
types of relationships between sentences. Sentences with a reverse connection should
have opposing sentiment polarities as much as is feasible. Sentences with forwarding
relationships should have uniform sentiment polarity as much as is feasible. An
attention-based system at the sentence level that is based on relationship constraints
between sentences is provided here. This mechanism takes into account the two
different sorts of linkages that exist between sentences. In the research, the attention-
based method utilizes the attention formula at the phrase level;

iii. The vectorized text of every phrase is provided as the input for the dual-LSTM
network based on the limitations of the attention-based mechanism, and the vectorized
view of the given document is collected.

An output for sentiment categorization is generated by a multi-layer perception net-
work using the representation of a vectorized document that has been obtained. Equation (1)
provides a definition of the sentiment classification function that is based on multi-fold and
multi-dimensional sentiment modeling:

min
x ∑M

j=1

(
xTyj − zj

)2
+ ∂1x1 + ∂2 ∑M

j=1 ∑k �=j Sjk
(
ωj − ωk

)2
+ ∂3 ∑M

j=1 ∑k �=j Pjk
(
μj − μk

)2 (1)

Here, the total number of texts is represented by M, which represents the model of
the sentiment classification; yj is the representation of the vector of the jth text and zj is
the sentimental orientation of the jth text; ωj and ωk is the factor of attention for the word
level; μj and μk is the factor of attention for the sentence level; Sjk is the factor of similarity
of sentiment text j and sentiment phrase k; Pjk is the similarity factor of sentence j and
sentence k; ∂1, ∂2, and ∂3 represent the various hyperparameters.
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3.3. Multi-Dimensional Sentiment Classification Method (MDSC)

The primary actions involved in multi-dimensional sentiment modeling at the level of
individual words are discussed below:

(1) Since emoji and linguistic data provide information about sentiments, the dataset that
contains emoji and linguistic symbols is used as the input to the language model, i.e.,
pre-training XLNet;

(2) Emojis and linguistic symbols are processed in the same way as sentiment words
when a pre-trained model is used to model information available on social networks.
This leads to the creation of the linguistic symbol word vector as well as the emoticons
symbol word vector. This combination produces a multi-dimensional representation
of the text’s emotions.

The following are the primary steps in the multi-dimensional sentiment modeling at
the sentence level:

i. The attention network provides prior knowledge of sentimental words. An approach
based on word-level attention on the dictionary of sentiment restriction is provided,
with the attention coefficients of sentiment-related words being as similar as possible.
The attention formula is based on the attention formula at the word level;

ii. Vectorized words of language symbols and emoji symbols are given as inputs to a
dual-LSTM network integrated with attention; the output is received as the vector of
sentences of language symbols;

iii. The vectorized words of the emoji symbols are taken as outputs as the vectors of
sentences of the emoji symbols directly;

iv. Combining the obtained sentence vectors of language symbols with emoticon symbols
yields the sentence vectors.

The detailed mechanism of sub-modules is discussed below.

3.4. Sentiment Classification Using Multi-Layer Perceptron

The document vector representation is fed into a multi-level perceptron. The following
parameter settings shown in Table 1 are used in obtaining optimized performance during
sentiment classification. These parameters are obtained by performing several experiments
with different parameters.

Table 1. Parameter settings for the MLP.

Parameters Values

Optimization function sgd (Stochastic Gradient Descent)

Batch-Size 64

Learning rate 0.03

Number of iterations 20

Activation Function ReLu

Epochs 50

Using the above parameters in Table 1, the multi-layer perceptron (as shown in
Figure 2) goes through the learning process and the output class labels are obtained using
the below process, the MLP learning Procedure, as shown in Figure 3.

i. Using forward propagation, the data from the input layers are transmitted to the
output layer;

ii. The error is calculated based on the received output (the difference between the
predicted outcome and the achieved outcome);
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iii. The error is back-propagated and its derivatives are obtained concerning all weights
in the network, then the model is updated.

These three steps are repeated over multiple epochs to learn the ideal weights. Finally,
the output is achieved through a threshold function to obtain the predicted class labels.

The error, i.e., the mean square error, is calculated using the following equation:

Δw(t) = − ∈ dE
dw(t)

+ ∝ Δw(t − 1) (2)

Figure 2. The multi-layer perceptron.

Figure 3. Learning process of the MLP.
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Here, Δw(t) is the gradient of the current iteration, ∈ is the bias, dE is the error in each
iteration, the weight vector is represented by dw(t), ∝ represents the learning rate, and the
gradient of the previous iteration is denoted by Δw(t − 1).

This process continues until each input–output pair’s gradient has converged, which
means the freshly computed gradient has not changed more than the set convergence thresh-
old since the previous iteration. Here, the network updates are performed incrementally.

4. Results and Discussion

4.1. Data Acquisition

Using the Google Play Scraper package with Python APIs, the dataset for three popular
UPI mobile payment apps were collected. The three payment apps were GooglePay,
PhonePe, and Paytm. Google Play Scraper offers Python APIs for crawling the Google Play
Store without external dependencies. The details of the dataset obtained are as shown in
Table 2. Here, we considered only positive and negative reviews, while neutral reviews
were not considered.

Table 2. Datasets.

Dataset Total Reviews Positive Negative

GooglePay 45,597 20,975 24,622

PhonePe 43,209 17,715 25,494

PayTM 47,932 33,073 14,859

In this process, the equations are numbered consecutively, with equation numbers
shown in parentheses flush with the right margin of the column, as in (1). First, use the
equation editor to create the equation. Then, select the “Equation” markup style. Press
the tab key and write the equation number in parentheses. To make your equations
more compact, you may use the solidus (/),exp function, or appropriate exponents. Use
parentheses to avoid ambiguities in denominators. Punctuate equations when they are part
of a sentence, as in:

Bp + H2 = 40. (3)

4.2. Data Augmentation

A balanced dataset facilitates the establishment of unambiguous decision limits for
every class and enables models for the classification of data more precisely in any clas-
sification task. Any unbalanced dataset can be converted to a balanced one using data
augmentation techniques, guaranteeing that the dataset is consistent across labels. The
algorithm is named SMOTE [51], and is a commonly used data augmentation approach
that may be used for any dataset without any influence on predictions based on a particular
label. SMOTE samples the class with a minority with the help of a k-nearest neighbours
classifier; it selects samples close to the feature space and generates synthesized data points.
In this study, we use SMOTE to balance the dataset in terms of the labels and performs
an evaluation.

4.3. Performance Measurement

To assess how well the suggested model works, an accuracy matrix is computed. For
positive sentiment classification, true positive and false positive variables are identified. For
negative sentiment classification, the true negative and true positive variables are defined
as shown in Table 3.
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Table 3. The accuracy parameters.

Positive Class Negative Class

Identification of Positive Class X1 = True Positive Y1 = False Positive

Identification of negative Class X2 = False Negative Y2 = True Negative

Using the parameters in Table 3, the following equation is defined to assess the
accuracy of the proposed model:

Accuracy(Z) =
X1 + X2

Y1 + Y2 + X1 + X2
(4)

4.4. Performance Evaluation

For a clear view of and simplicity in the graphical representations, the models are
termed hereafter as shown in Table 4.

Table 4. The models and their aliases.

Models Alias

CNN with Word2Vec MO-01

BiLSTM with Word2Vec MO-02

CNN with BERT MO-03

BILSTM with BERT MO-04

MFSC with CNN and Word2Vec MO-05

MFSCwith CNN and BERT MO-06

MFSC with BiLSTM and Word2Vec MO-07

MFSCwith BiLSTM and BERT MO-08

MFSCwith XLNet MO-09

A hyperparameter is a value for a parameter that is used to influence the learning
process. Different hyperparameters are tuned for optimized performance accuracy. Compre-
hensive experiments are performed using several hyperparameters, such as the embedding
type, activation function, and dropout.

The deep learning methods CNN and BiLSTM with different word embedding meth-
ods, i.e., Word2Vec and BERT, are tested on different hyperparameters. The proposed
model is also tuned with several hyperparameters. The hyperparameter tuning process is
performed with different embedding combinations on 200, 300, and 400 words and with
learning rates ranging from 0.01 to 0.10. The observations of these experiments are shown
in Tables 5 and 6.

The above Table 5 provides the performance accuracy rates of different models with
an embedding size of 200 with dropout from 0.01 to 0.10. All models M01, M02, M03, M04,
M05, M06, M07, M08, and M09 are tested using this combination. It can be observed that
the proposed model achieves the highest classification accuracy rate of 96.62% using a
dropout rate of 0.10 for dataset 1.

For dataset 2, the highest accuracy can be observed for the dropout of 0.04 with
95.95% accuracy. At the same time, 96.36% accuracy is obtained for dataset 3 at a dropout
rate of 0.04. The accuracy rates of the other models vary depending on the different
dropout values. Overall, the proposed model shows the highest performance in terms of
classification accuracy as compared to the other eight models.

213



Appl. Sci. 2023, 13, 3091

Table 5. The performance accuracy (%) for an embedding size of 200.

Dropout = 0.01 Dropout = 0.02 Dropout = 0.03

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 61.66 60.35 62.33 M01 65.36 61.33 64.12 M01 66.19 64.32 62.15

M02 66.36 65.21 66.33 M02 61.32 64.22 62.14 M02 63.20 62.55 61.32

M03 70.66 68.55 68.32 M03 68.55 69.56 68.22 M03 64.32 66.25 65.32

M04 72.33 74.25 70.25 M04 71.42 72.22 70.65 M04 70.62 69.32 71.25

M05 81.65 81.56 83.22 M05 80.62 82.65 81.24 M05 81.55 84.12 83.85

M06 84.11 80.35 81.25 M06 82.15 81.25 83.36 M06 88.85 83.54 84.98

M07 86.32 84.25 83.22 M07 87.65 84.26 84.11 M07 91.65 89.55 89.99

M08 88.35 87.15 85.25 M08 89.22 88.95 88.01 M08 85.95 86.32 84.62

M09 93.28 91.56 92.36 M09 92.69 90.33 91.56 M09 95.62 95.05 95.99

(a) (b) (c)

Dropout = 0.04 Dropout = 0.05 Dropout = 0.06

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 70.15 69.66 70.69 M01 68.35 64.69 66.35 M01 64.20 60.17 62.96

M02 72.66 73.21 73.65 M02 69.36 68.32 67.35 M02 61.32 62.65 60.98

M03 71.15 75.11 76.02 M03 61.25 62.35 61.22 M03 65.21 67.32 67.06

M04 77.62 78.65 77.12 M04 69.36 70.32 68.33 M04 70.26 71.06 69.49

M05 82.15 83.62 84.12 M05 84.63 83.98 84.05 M05 85.77 84.12 83.85

M06 86.66 85.95 86.01 M06 82.65 81.63 80.62 M06 85.19 83.54 84.98

M07 90.65 90.36 91.65 M07 91.65 90.61 89.63 M07 91.20 89.55 89.99

M08 92.15 91.62 92.99 M08 86.63 87.65 89.65 M08 87.97 86.32 84.62

M09 96.33 95.95 96.36 M09 94.32 95.62 93.64 M09 95.22 95.05 95.99

(d) (e) (f)

Dropout = 0.07 Dropout = 0.08 Dropout = 0.09

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 65.32 64.12 63.25 M01 66.30 62.27 65.06 M01 62.10 63.43 61.76

M02 64.15 64.32 66.21 M02 68.74 67.70 66.73 M02 66.41 66.58 68.47

M03 61.15 62.35 65.32 M03 72.00 75.96 76.87 M03 60.60 61.70 60.57

M04 72.55 71.65 72.36 M04 69.07 69.87 68.30 M04 75.80 81.65 75.61

M05 83.15 84.13 85.65 M05 84.10 85.08 86.60 M05 85.08 86.06 87.58

M06 80.75 81.73 83.25 M06 88.31 87.60 87.66 M06 83.81 82.79 81.78

M07 85.82 86.80 88.32 M07 88.59 85.20 85.05 M07 93.91 92.87 91.89

M08 82.75 86.32 85.25 M08 90.16 89.89 88.95 M08 89.98 91.00 93.00

M09 90.72 91.70 93.22 M09 93.63 91.27 92.50 M09 93.97 92.65 93.29

(g) (h) (i)

Dropout = 0.10

Models Dataset 1 Dataset 2 Dataset 3

M01 65.95 84.32 63.88

M02 69.93 68.89 67.92

M03 67.41 88.65 69.26

M04 83.89 84.87 86.39

M05 79.83 81.30 81.80

M06 87.47 88.45 89.97

M07 87.57 88.59 90.59

M08 91.63 90.35 93.32

M09 96.62 94.32 95.32

(j)
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Table 6. The performance accuracy (%) for an embedding size of 300.

Dropout = 0.01 Dropout = 0.02 Dropout = 0.03

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 67.36 64.32 68.62 M01 71.22 70.39 70.84 M01 72.32 72.32 72.32

M02 70.35 72.15 72.44 M02 72.51 72.87 72.42 M02 66.36 65.32 67.33

M03 74.22 73.12 71.56 M03 74.84 75.48 75.88 M03 61.63 62.36 64.36

M04 63.00 83.65 82.22 M04 76.48 77.51 75.98 M04 74.33 73.66 72.35

M05 95.65 91.59 94.22 M05 91.12 90.65 93.32 M05 84.36 83.22 86.35

M06 86.31 84.32 87.35 M06 89.25 88.65 85.65 M06 88.25 87.56 86.32

M07 92.56 93.32 91.21 M07 90.32 92.35 90.36 M07 90.65 91.63 91.54

M08 84.56 85.12 85.58 M08 93.65 94.62 92.65 M08 89.99 87.25 88.63

M09 92.36 94.25 91.35 M09 94.56 95.65 93.65 M09 96.32 94.32 95.33

(a) (b) (c)

Dropout = 0.04 Dropout = 0.05 Dropout = 0.06

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 72.36 71.53 71.98 M01 70.51 67.47 71.77 M01 69.35 67.32 68.35

M02 73.65 74.01 73.56 M02 73.50 75.30 75.59 M02 72.12 71.15 73.65

M03 75.98 76.62 77.02 M03 77.37 76.27 74.71 M03 75.65 74.36 76.32

M04 77.62 78.65 77.12 M04 81.32 84.36 83.32 M04 84.35 81.36 82.35

M05 84.92 85.63 86.01 M05 85.21 86.07 84.14 M05 86.32 87.18 85.25

M06 87.16 87.9 88.1 M06 83.21 84.21 85.00 M06 84.32 85.32 86.11

M07 91.21 91.56 92.01 M07 89.14 90.41 88.25 M07 90.25 91.52 89.36

M08 93.63 94.01 93.9 M08 87.42 86.04 85.21 M08 88.53 87.15 86.32

M09 97.23 97.65 97.01 M09 95.14 93.21 94.77 M09 96.25 94.32 95.88

(d) (e) (f)

Dropout = 0.07 Dropout = 0.08 Dropout = 0.09

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 73.83 70.79 75.09 M01 72.16 71.33 71.78 M01 72.90 71.93 74.43

M02 74.84 75.20 74.75 M02 72.88 74.68 74.97 M02 77.10 77.46 77.01

M03 76.16 75.06 73.50 M03 76.83 77.47 77.87 M03 76.72 75.62 74.06

M04 80.07 83.11 82.07 M04 83.16 80.17 81.16 M04 83.32 81.65 85.32

M05 86.37 87.23 85.30 M05 87.32 88.18 86.25 M05 86.33 84.12 85.22

M06 84.37 85.37 86.16 M06 88.81 89.55 89.75 M06 84.21 86.32 82.55

M07 90.30 91.57 89.41 M07 91.26 93.29 91.30 M07 91.56 90.21 91.24

M08 88.58 87.20 86.37 M08 94.59 95.56 93.59 M08 92.56 91.25 91.11

M09 96.30 94.37 95.93 M09 95.50 96.59 94.59 M09 95.62 94.12 95.22

(g) (h) (i)

Dropout = 0.10

Models Dataset 1 Dataset 2 Dataset 3

M01 74.46 84.32 75.72

M02 74.07 75.87 76.16

M03 77.85 88.65 78.52

M04 85.14 82.93 84.03

M05 87.53 88.39 86.46

M06 85.53 86.53 87.32

M07 91.46 92.73 90.57

M08 89.74 88.36 87.53

M09 97.46 95.53 97.09

(j)
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Table 6 shows the classification accuracy performance for the embedding size of 300
and with dropout rates ranging from 0.01 to 0.10. As per the observations for the above
figure, it is clear that none of the models shows consistent performance. For example,
model M01 shows an accuracy rate of 67.36% for dataset 1, but for dataset 2 the accuracy
decreases to 64.32%, and again the model achieves a higher accuracy rate of 68.62% for
dataset 3, with a dropout rate of 0.01. Model M02 achieves its highest accuracy rate of
77.46% for dataset 2 with a dropout rate of 0.09, whereas the lowest accuracy rate of 67.33%
is achieved with a dropout rate of 0.04. The observations from the experiments with an
embedding size of 300 and dropout rate of 0.03 indicate that this combination with other
hyperparameters has shown consistent performance for all models.

Table 7 shows the accuracy performance for the embedding size of 400 and with
dropout rates ranging from 0.01 to 0.10. The observations show that except for the proposed
model, none of the models show consistency.

Table 7. The performance accuracy (%) for an embedding size of 400.

Dropout = 0.01 Dropout = 0.02 Dropout = 0.03

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 64.32 66.33 65.24 M01 66.55 67.36 68.22 M01 62.35 66.35 64.21

M02 66.55 64.32 62.33 M02 68.36 67.21 69.36 M02 66.32 67.24 65.32

M03 68.36 68.32 70.56 M03 70.22 71.56 72.32 M03 70.25 69.68 71.56

M04 70.25 71.52 72.22 M04 72.36 73.32 71.35 M04 74.65 73.22 74.01

M05 74.36 76.32 72.52 M05 75.62 78.32 74.22 M05 76.32 77.25 74.35

M06 76.32 78.25 77.85 M06 77.55 75.22 76.32 M06 81.65 82.54 80.26

M07 84.66 85.65 83.26 M07 79.65 80.25 91.56 M07 84.68 85.10 86.32

M08 89.56 88.32 90.23 M08 84.32 82.35 83.77 M08 89.62 90.21 91.25

M09 94.35 94.56 93.26 M09 90.21 91.36 91.55 M09 94.56 95.21 94.96

(a) (b) (c)

Dropout = 0.04 Dropout = 0.05 Dropout = 0.06

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 67.87 68.68 69.54 M01 69.25 66.32 68.32 M01 66.32 68.21 65.22

M02 70.76 68.53 66.54 M02 72.65 73.26 71.25 M02 68.21 69.32 70.21

M03 73.54 74.88 75.64 M03 74.32 74.21 74.88 M03 73.32 70.54 72.25

M04 78.53 79.65 77.52 M04 77.36 78.65 79.32 M04 76.95 75.32 74.55

M05 81.32 82.52 93.56 M05 81.54 80.32 81.01 M05 81.65 80.32 84.32

M06 86.32 86.21 86.55 M06 84.56 85.65 86.32 M06 86.32 87.21 85.32

M07 88.25 87.36 89.32 M07 88.32 87.36 90.32 M07 88.51 89.32 88.81

M08 91.52 91.98 92.65 M08 92.65 93.25 91.35 M08 91.56 93.35 92.80

M09 94.23 95.88 96.21 M09 92.54 94.36 95.21 M09 96.21 95.18 94.21

(d) (e) (f)

Dropout = 0.07 Dropout = 0.08 Dropout = 0.09

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 69.21 70.25 68.11 M01 65.32 67.21 66.25 M01 70.50 71.61 72.50

M02 70.22 71.56 72.54 M02 68.22 69.01 70.15 M02 73.27 72.36 75.60

M03 71.32 70.41 73.65 M03 70.21 71.15 69.32 M03 75.79 74.50 76.90

M04 76.32 79.25 78.22 M04 72.54 71.25 73.65 M04 80.00 80.70 78.90

M05 78.00 79.15 77.25 M05 78.65 79.35 77.55 M05 83.19 81.97 82.66

M06 80.21 81.56 83.32 M06 81.36 83.35 82.65 M06 87.64 87.53 87.87

M07 83.55 84.32 85.11 M07 85.65 84.32 86.35 M07 90.23 89.34 91.30

M08 88.55 89.56 88.36 M08 89.32 90.35 90.99 M08 94.88 96.67 96.12

M09 92.25 93.36 93.35 M09 94.21 92.25 91.36 M09 94.75 96.57 97.42

(g) (h) (i)
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Table 7. Cont.

Dropout = 0.10

M01 67.25 68.32 69.11

M02 70.22 71.66 69.21

M03 72.35 74.31 71.33

M04 77.55 76.32 79.65

M05 80.32 79.55 80.11

M06 83.35 84.22 85.21

M07 88.66 87.32 86.21

M08 90.32 90.11 90.56

M09 94.21 96.21 91.56

(j)

Table 8 above shows the average performance accuracy of each model for the three
datasets. The average accuracy is measured on dropout rates ranging from 0.01 to 0.10 for
an embedding size of 200. Model M01 exhibits the lowest accuracy rate of 61.45% for the
0.01 dropout rate and the highest average accuracy rate of 71.38% for the 0.10 dropout rate.
Model M02 has the lowest average accuracy rate of 61.65% for the dropout rate of 0.06 and
the highest average accuracy rate of 73.17% for the dropout rate of 0.04. For models M03,
M04, M05, and M06, the lowest observed performance results are 60.96% for a dropout rate
of 0.09, 69.08% for a 0.08 dropout rate, 80.98% for a dropout rate of 0.10, and 81.90% for a
dropout rate of 0.01, respectively. The highest accuracy rates achieved for these models are
75.11% for M03 using a dropout rate of 0.10, 85.05% for M04 on a dropout rate of 0.10, and
86.24% for M05 using a dropout rate of 0.09, while for M06, the highest average accuracy
can be observed for a dropout rate of 0.10, with 88.63%. The highest average performance
rate for model M07 can be observed for a dropout rate of 0.09%, with an accuracy rate of
92.89%, whereas the lowest average accuracy rate of 84.60% can be observed with a floor
dropout rate of 0.01%. The performance of the proposed model is the highest among all
models, with the lowest average accuracy rate of 91.53% for a dropout rate of 0.02, whereas
the highest accuracy rate of 96.21% can be observed for a dropout rate of 0.04. In Table 8,
the observations clearly show that the proposed model performs much better and is more
consistent for all dropout rates as compared to the other eight models.

Table 8. Average classification accuracy (%) results for an embedding size of 200.

Dropout

Models 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M01 61.45 63.60 64.22 70.17 66.46 62.44 64.23 64.54 62.43 71.38

M02 65.97 62.56 62.36 73.17 68.34 61.65 64.89 67.72 67.15 68.91

M03 69.18 68.78 65.30 74.09 61.61 66.53 62.94 74.94 60.96 75.11

M04 72.28 71.43 70.40 77.80 69.34 70.27 72.19 69.08 75.44 85.05

M05 82.14 81.50 83.17 83.30 84.22 84.58 84.31 85.26 86.24 80.98

M06 81.90 82.25 85.79 86.21 81.63 84.57 81.91 87.86 82.79 88.63

M07 84.60 85.34 90.40 90.89 90.63 90.25 86.98 86.28 92.89 88.92

M08 86.92 88.73 85.63 92.25 87.98 86.30 84.77 89.67 91.33 91.77

M09 92.40 91.53 95.55 96.21 94.53 95.42 91.88 92.47 94.18 95.42
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Table 9 shows the comparative observations of all models with dropout rates of 0.01
to 0.10 for an embedding size of 300. Again, the observations show that none of the models
achieve better performance than the proposed model. For an embedding size of 300, all
the models show much better performance as compared to the embedding size of 200.
Model M01 shows the lowest average accuracy rate of 66.77%, which is 5.32% more than
that of the embedding size of 200. The highest performance rate for model M01 is 78.17%
for a dropout rate of 0.1, which is again much better than the performance of model M01,
which is just 71.38% for the embedding size of 200. Model M02 has the lowest average
accuracy rate of 66.34% for the dropout rate of 0.04. The highest performance accuracy rate
for M02 of 77.19% can be observed for the dropout rate of 0.09. For the dropout rate of
0.01, an exceptional case can be identified for model M05, which shown better performance
than model M09, with an average accuracy rate of 93.82%, while the proposed model
shows a 92.65% average accuracy rate. The overall observations in Table 9 show that except
for model M09, none of the models are consistent, but the proposed model M09 shows
clear and consistent performance, with the highest average accuracy rate of 97.3% for the
dropout rate of 0.03 and embedding size of 300.

Table 9. Average classification accuracy (%) results for an embedding size of 300.

Dropout

Models 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M01 66.77 70.82 72.32 71.96 69.92 68.34 73.24 71.76 73.09 78.17

M02 71.65 72.60 66.34 73.74 74.80 72.31 74.93 74.18 77.19 75.37

M03 72.97 75.40 62.78 76.54 76.12 75.44 74.91 77.39 75.47 81.67

M04 76.29 76.66 73.45 77.80 83.00 82.69 81.75 81.50 85.00 84.03

M05 93.82 91.70 84.64 85.52 85.14 86.25 86.30 87.25 88.23 87.46

M06 85.99 87.85 87.38 87.72 84.14 85.25 85.30 89.37 85.30 86.46

M07 92.36 91.01 91.27 91.59 89.27 90.38 90.43 91.95 91.53 91.59

M08 85.09 93.64 88.62 93.85 86.22 87.33 87.38 94.58 89.57 88.54

M09 92.65 94.62 95.32 97.30 94.80 95.91 95.53 95.56 94.45 97.12

For the embedding size of 400 and using different dropout rates ranging from 0.01
to 0.10, the average classification accuracy results are shown in Table 10. As far as the
performance is considered, the same trend can also be observed here, showing that the
proposed model M09 outperforms the other models but these embedding and dropout
combinations do not achieve the highest and most consistent performance for all models as
well as the proposed model. The proposed model shows better performance than the other
models, but these hyperparameter combinations do not achieve the best performance.

Figure 4a–c depict the average performance accuracy results for all of the models
for the three datasets. Figure 4a shows the average performance accuracy results for an
embedding size of 200 and with dropout rates ranging from 0.01 to 0.10. Figure 4b shows
the average performance accuracy results for an embedding size of 300 and with the
dropout rates ranging from 0.01–0.10. Figure 4c shows the average performance accuracy
results for an embedding size of 400 and with the dropout rates ranging from 0.01 to 0.10.
The experimental findings for the three datasets demonstrate that the proposed model
shows effective and efficient performance over the other models, and except for very few
combinations of hyperparameters, the models do not show consistent performance results.
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Table 10. Average classification accuracy (%) results for an embedding size of 400.

Dropout

Models 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M01 65.30 67.38 64.30 68.70 67.96 66.58 69.19 66.26 71.54 68.23

M02 64.40 68.31 66.29 68.61 72.39 69.25 71.44 69.13 73.74 70.36

M03 69.08 71.37 70.50 74.69 74.47 72.04 71.79 70.23 75.73 72.66

M04 71.33 72.34 73.96 78.57 78.44 75.61 77.93 72.48 79.87 77.84

M05 74.40 76.05 75.97 85.80 80.96 82.10 78.13 78.52 82.61 79.99

M06 77.47 76.36 81.48 86.36 85.51 86.28 81.70 82.45 87.68 84.26

M07 84.52 83.82 85.37 88.31 88.67 88.88 84.33 85.44 90.29 87.40

M08 89.37 83.48 90.36 92.05 92.42 92.57 88.82 90.22 95.89 90.33

M09 94.06 91.04 94.91 95.44 94.04 95.20 92.99 92.61 96.25 93.99

Figure 4. Average accuracy performance results for different embedding sizes: (a) embedding size of
200; (b) embedding size of 300; (c) embedding size of 400.
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Out of all the models under consideration, and particularly as compared models M01
and M02, when Word2Vec is applied with CNN and BiLSTM, respectively, the response
of the model is very poor. If BERT is used in place of Word2Vec then some improvement
can be observed in inaccuracy, which shows the effectiveness of the BERT model in text
classification. The BERT model shows its supremacy over the Word2Vec model, with
improvements of 5% to 10% for sentiment classification. Models M05, M06, M07, and M08
also show improvements, but the proposed model shows the highest and most consistent
performance for all datasets for the embedding size of 300 and dropout rate of 0.03. Since
this combination showed consistent performance for other models, the embedding size 300
and dropout rate of 0.03 were implemented on all datasets for all models to conduct further
experiments, as shown in Table 11.

Table 11. Hyperparameters settings.
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M01 CNN Word2Vec ReLu 300 0.03 sgd 50 512

M02 BiLSTM Word2Vec ReLu 300 0.03 sgd 50 -

M03 CNN BERT ReLu 300 0.03 sgd 50 512

M04 BILSTM BERT ReLu 300 0.03 sgd 50 -

M05 MFMLSC Word2Vec ReLu 300 0.03 sgd 50 -

M06 MFMLSC Word2Vec ReLu 300 0.03 sgd 50 -

M07 MFMLSC BERT ReLu 300 0.03 sgd 50 -

M08 MFMLSC BERT ReLu 300 0.03 sgd 50 -

M09 MFMLSC XLNet ReLu 300 0.03 sgd 50 -

4.5. Evaluation of Multi-Fold Model of Sentiment Classification (MFSC)

To investigate the performance of a sentiment classification approach that relies solely
on multi-dimensional sentiment modeling, the performance of the proposed multi-fold sen-
timent modeling method with XLNet (MFSC) shown in Table 12 and Figure 5 is compared
with a CNN with Word2Vec, BiLSTM with Word2Vec, CNN with BERT, and BILSTM with
BERT. The methods are discussed below.

CNN with Word2Vec: Firstly, Word2Vec is used to initialize the vectorized word,
following which CNN is applied to extract the features of the sentiments from the dataset,
and finally a fully connected network is used for sentiment classification of the social
media text.

BiLSTM with Word2Vec: In this instance, Word2Vec is applied to achieve the word
vectors, then BiLSTM is implemented for extraction of the sentiment characteristics of
a given dataset, and finally a fully connected network is used for implement sentiment
classification of the dataset.

CNN with BERT: The initialization of the word vector is accomplished with the help
of BERT, then the CNN is applied for extraction of the sentiment features of the dataset,
and finally a fully connected network is used for sentiment classification of the dataset.

BILSTM with BERT: Here, BERT is utilized to initialize the vector of words, followed by
the BiLSTM technique being used for extraction of the sentiment features of the dataset, then
in the last phase a fully connected network is used to implement sentiment classification of
a dataset.
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Table 12. Sentiment classification accuracy (%) results using the MFSC model.

Methods Dataset 1 Dataset 2 Dataset 3 Average

M01 72.36 71.53 71.98 71.96

M02 73.65 74.01 73.56 73.74

M03 75.98 76.62 77.02 76.54

M04 77.62 78.65 77.12 77.80

M05 83.65 82.98 83.12 83.25

M06 85.61 84.52 86.32 85.48

M07 89.56 89.98 90.32 89.95

M08 91.96 92.05 92.25 92.09

M09 94.32 94.1 95.01 94.48

Figure 5. Graphical representation of the performance results with the MFSC model.

MFSM with CNN and Word2Vec: The Word2Vec, CNN, and MFSM approaches are
used to classify sentiments. To begin, emoji-based symbols are treated as language symbols
in a social media text. Next, Word2Vec is implemented to for the initialization of the word
vector, and the CNN extracts sentiment characteristics from the dataset. Finally, the senti-
ment categorization approach is accomplished through a completely connected network.

MFSM with CNN and BERT: the BERT, CNN, and MFSM approaches are used to
create a sentiment classification system. To begin, both language symbols and emoticon
symbols are handled in datasets in the same manner as language symbols. Next, BERT
is used for the initialization of the word vector, and the CNN is implemented to extract
the emotional components of the dataset. Finally, the sentiment categorization approach is
accomplished through a completely connected network.

MFSM with BiLSTM and Word2Vec: The Word2Vec, BiLSTM, and MFSM-based
sentiment categorization approaches are used. To begin, all symbols in a dataset, including
language symbols and emoticon symbols, are regarded as language symbols. The vector of
the word is then initialized using Word2Vec, and the BiLSTM model extracts features of
sentiments from the dataset. Finally, the sentiment categorization approach is accomplished
through a completely connected network.

221



Appl. Sci. 2023, 13, 3091

MFSM with BiLSTM and BERT: This is a sentiment categorization approach based
on the BERT, BiLSTM, and MFSM models. To begin, in the dataset, language symbols
and emoticon symbols are both treated as language symbols. The BiLSTM model collects
sentiment characteristics from the dataset after initializing the word vector with BERT.
Finally, a completely connected network is used to achieve sentiment categorization.

4.6. Evaluation of Multi-Level Model of Sentiment Classification (MLSC)

In the second phase of the performance evaluation of the proposed model, the evalua-
tion is conducted only with the multi-dimension model of sentiment classification (MLSC).
The MDSC model with XLNet is compared with the CNN with Word2Vec, BiLSTM with
Word2Vec, CNN with BERT, and BILSTM with BERT approaches, as shown in Table 13
and Figure 6. In addition to these models, the MDSC model is also implemented with the
abovementioned techniques.

Table 13. Sentiment classification accuracy results using the MLSC.

Methods Dataset 1 Dataset 2 Dataset 3 Average

M01 72.36 71.53 71.98 71.96

M02 73.65 74.01 73.56 73.74

M03 75.98 76.62 77.02 76.54

M04 77.62 78.65 77.12 77.80

M05 83.65 84.21 84.32 84.06

M06 86.33 85.98 86.1 86.14

M07 89.32 88.75 89.1 89.06

M08 92.62 92.78 91.92 92.44

M09 95.51 95.32 95.98 95.60

Figure 6. Graphical representation of the performance results with the MLSC.

MLSC with CNN and Word2Vec: The classification of sentiments is accomplished with
the assistance of the Word2Vec, CNN, and MLSM models. Initially, the vectorized word is
populated with the help of Word2Vec, and then with a CNN-based attention mechanism,
the emotional characteristics of the dataset are retrieved from different levels of words,
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sentences, and phrases. Lastly, the completely linked network is used to implement the
sentiment classification.

MLSC with BILSTM and Word2Vec: This is a Word2Vec, BiLSTM, and MDSC-based
sentiment categorization algorithm. Here, Word2Vec is used to initialize the word vector,
and then BiLSTM is used to extract sentiment features of the dataset from different levels of
words and sentences using an attention mechanism. Finally, the completely linked network
is used for sentiment classification in the given dataset.

MLSC with CNN and BERT: This is a BERT, CNN, and MDSC-based sentiment classi-
fication approach. The word vector’s initialization is achieved using BERT, and then the
CNN is utilized to extract the sentiment features of the dataset from different levels, as
discussed using an attention mechanism. Finally, the completely linked network is used for
the sentiment classification of the dataset.

MLSC with BILSTM and BERT: This is a BERT, BiLSTM, and MDSC-based sentiment
classification approach. BERT is used to initialize the word vector, and then BiLSTM is
utilized to extract the sentiment features of the dataset from the given levels using an
attention mechanism. In the final phase, using a fully interconnected computer network,
the dataset classification process is carried out

4.7. Assessment of Multi-Fold and Multi-Level Modeling of Sentiment Method (MFMLSC)

To assess our method’s overall performance, the performance results in terms of the
multi-fold and multi-level classification for the sentiment method are compared with the
methods discussed in the previous section.

As shown in Figure 7 and Table 14, the proposed model achieves the maximum
performance as compared to the other deep learning models that use combinations of
different deep learning and word embedding models. For the embedding size of 300 and
dropout rate of 0.03, the proposed MFMLSC shows the highest accuracy rates during
sentiment classification, with scores of 97.23%, 97.65%, and 97.01% for datset 1, dataset 2,
and datset 3, respectively. The proposed model outperforms the other models, with an
average accuracy rate of 97.30%.

Figure 7. Graphical representation of the performance with the MFMLSC.
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Table 14. Accuracy results for sentiment classification using the MFMLSC.

Methods Dataset 1 Dataset 2 Dataset 3 Average

M01 72.36 71.53 71.98 71.96

M02 73.65 74.01 73.56 73.74

M03 75.98 76.62 77.02 76.54

M04 77.62 78.65 77.12 77.80

M05 84.92 85.63 86.01 85.52

M06 87.16 87.9 88.1 87.72

M07 91.21 91.56 92.01 91.59

M08 93.63 94.01 93.9 93.85

M09 97.23 97.65 97.01 97.30

5. Conclusions

We observed that the autoregressive-based model for sentiment classification that uses
the pre-trained word vector XLNet showed the greatest classification accuracy, with an
average of 97.30% accuracy for all datasets. The proposed model solved the problem of the
lack of semantic information in reviews, which affects the accuracy during classification.
The experimental findings demonstrated that when compared to the current methods, our
method significantly increases the accuracy of the sentiment classification process for social
media datasets.
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Abstract: Sentiment analysis has become an important area of research in natural language pro-
cessing. This technique has a wide range of applications, such as comprehending user preferences
in ecommerce feedback portals, politics, and in governance. However, accurate sentiment analy-
sis requires robust text representation techniques that can convert words into precise vectors that
represent the input text. There are two categories of text representation techniques: lexicon-based
techniques and machine learning-based techniques. From research, both techniques have limitations.
For instance, pre-trained word embeddings, such as Word2Vec, Glove, and bidirectional encoder
representations from transformers (BERT), generate vectors by considering word distances, sim-
ilarities, and occurrences ignoring other aspects such as word sentiment orientation. Aiming at
such limitations, this paper presents a sentiment classification model (named LeBERT) combining
sentiment lexicon, N-grams, BERT, and CNN. In the model, sentiment lexicon, N-grams, and BERT
are used to vectorize words selected from a section of the input text. CNN is used as the deep neural
network classifier for feature mapping and giving the output sentiment class. The proposed model is
evaluated on three public datasets, namely, Amazon products’ reviews, Imbd movies’ reviews, and
Yelp restaurants’ reviews datasets. Accuracy, precision, and F-measure are used as the model perfor-
mance metrics. The experimental results indicate that the proposed LeBERT model outperforms the
existing state-of-the-art models, with a F-measure score of 88.73% in binary sentiment classification.

Keywords: natural language processing; word embeddings; BERT; sentiment analysis; convolutional
neural network; sentiment lexicon

1. Introduction

Recently, social media platforms have created opportunities for businesses and organi-
zations to obtain feedback from their customers and clients through reviews in the form
of user-generated posts. Such posts are availed through social media and worldwide web
in form of blogs, which contain data in text, audio, visual, or a combination of the three
modes. Specifically, social media text data are characterized by short sentences, which
are unstructured, semi-structured, and normally full of colloquial language, making it
messy, difficult, and time consuming to build its vector representations and sentiment
classification [1–4]. However, through sentiment analysis (SA), one of the big data analytics
techniques, the text data can provide insightful business information [4]. Sentiment analysis
is the process of classifying texts into predetermined opinion classes [3], which can be
performed at document level, sentence level, or word level. Sentence level SA is a text
classification task that assigns short texts (sentences) to predefined sentiment or opinion
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classes. Sentiment analysis of social media data is a sentence level SA task since most
posts are very short usually less than forty (40) words. Currently, few tools can perform
sentiment analysis of social media text data effectively [4]. This is attributed to the nature of
social media texts, which are unstructured, making it difficult to extract the right features at
the text representation phase. According to Zhiying Jiang et al. [1], text representation is the
second phase in sentiment analysis after text data preprocessing. In this phase, documents
or sentences are converted into numeric vectors that represent the texts by use of vector
space models (VSM).

Conversion of text to vector representation is the cornerstone of text classification mod-
els [5]. The accuracy and efficiency of sentiment analysis is dependent on whether or not
the word vector is representative of the text [5–7]. From the literature, there are two widely
used text-vector representation techniques: (1) natural language processing (NLP) tech-
niques based on bag of words, part of speech (POS) tags, and sentiment lexicons [1,8–10];
(2) deep learning-based automated vector representation approaches such as word embed-
dings [11–13]. Word Embedding is one of the most useful deep learning methods used for
constructing vector representations of words and documents in text classification tasks.
This is because of their abilities to capture the syntactic and semantic relations among
words [14]. Word embeddings models are based on deep learning Word2Vec [15], global
vectors (Glove) [16], FastText [17], and bidirectional encoder representations from trans-
formers (BERT) model [18]. Although these word embeddings methods are very effective
compared to conventional NLP-based methods [19,20], they have some limitations and
thus need improvement. For instance, effective training and vector representation of words
and word embeddings require a very large corpus. Due to these limitations, researchers use
pre-trained word embeddings for transfer learning, which may not correspond well with
their data, especially small-sized datasets [21]. Further, the pre-trained word embeddings
vectors do not consider the context of the word or other characteristics of the word, such
as semantic orientation of the word. Existing NLP techniques, such as sentiment lexicon,
POS tags, and word positions, can be used to improve performance of sentiment analysis
models based on word embeddings [14].

In this paper, we propose a deep learning-based sentiment analysis model for user
reviews, which combines sentiment lexicon, N-grams, and BERT word embeddings. In
the model, we combine pre-trained word embeddings with sentiment lexicon to generate
word representation for sentiment analysis. A text (review, sentence, or a document) is
treated as a collection of word N-grams, and a sentiment lexicon is used to identify a
section (N-grams) of the text where a sentiment may be found. BERT pre-trained word
embeddings are then used to build vector representation of the text. In addition to solving
the aforementioned limitations of word embeddings, our model reduces high feature
dimensionality and computational costs brought by building word vectors from the entire
text. We evaluate the proposed approach on the Yelp datasets in which the experimental
results show that the model improves accuracy of pre-trained word embeddings. The
main contribution of this paper, therefore, is to advance utilization of BERT pre-trained
word embeddings model for sentiment analysis. We noted that BERT is one of the state-of-
the-art models for building word vectors for NLP tasks, such as sentiment analysis. The
novelty of the proposed model is the use of sentiment lexicon with N-grams to identify a
section of input text, such as a review where sentiment is likely to be found. This approach
proactively reduces feature dimensions of word vectors in the embedding layer of deep
learning models such as CNN.

The rest of the paper is organized as follows. Section 2 presents related work. The
proposed approach is described in Section 3. Section 4 describes the experimental proce-
dures carried out. The result and discussion are presented in Section 5. Finally, Section 6
concludes the paper and recommends future work in this area of study.
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2. Related Work

Sentiment analysis (SA) is a branch in NLP, which utilizes text mining and related
technologies to classify subjective text into classes of opinions, emotions, or any other
category. Vector representation of text is a very important task in sentiment analysis since
it determines the accuracy and efficiency of the developed SA models [5]. Recently, there
are many studies that have used lexicon-based techniques, pre-trained word embeddings,
NLP techniques, and deep learning models in vector representation and generally in SA. In
Section 2.1, current research in lexicon-based techniques, N-grams, and NLP is discussed,
whereas in Section 2.2, research in pre-trained word embeddings and deep learning models
is discussed.

2.1. Lexicon-Based Techniques, N-Grams and Natural Language Processing

The lexicon-based techniques use a dictionary of words labeled with their sentiment
orientations. In such techniques, a piece of text is converted into a bag of words whose
sentiment orientations are summarized or aggregated to classify the text. This technique
is simple, but it is mostly dependent on manual labeling of the text [22]. Baharudin and
Khan [23] suggested that sentence structure and contextual information are important
for sentiment orientation and classification. In their work, each term in the sentence was
assigned a sentiment score from the Sent WordNet lexicon. The overall classification of the
sentence is the sum total score of the individual scores of the terms in the sentence. While
the approach is interesting, one of the limitations of this approach is that words can be of the
same orientation, but negating one another, thus giving the wrong sentiment classification.
The main improvements of lexicon-based techniques involve using lexicon labeled words as
input to machine learning classifiers. Mudinas et al. [24] combined lexicon-based approach
and support vector machine. In their method, they generated word sentiment labels and
used them as input to the SVM classifier. Seyed et al. [14] used several lexicons to assign
lexicon vectors to words in a text, which they referred to as Lexicon2Vec (L2V). They
combined their vector with Word2Vec and PoS2vec to obtain a hybrid vector representation.
Generally, little research has been performed on combining lexicon-based methods and
deep learning architectures. Huang et al. [25] proposed a sentiment analysis model of online
reviews, which they referred to as polymerization topic sentiment model (PTSM). In their
model, they used lexicon dictionary to extract sentiment information from online reviews.
Although their model performed well with the support vector machine, they did not test
their model with deep learning classifiers or word embedding algorithms. However, they
recommended use of lexicon-based methods to solve the over-fitting problem of sentiment
analysis models and to filter unnecessary information

Generation of word N-grams is another important NLP technique applicable in senti-
ment analysis. In text classification, word-grams are used to generate word co-occurrence
patterns and vectors for machine learning classifiers. N-gram NLP models are widely
used due to their simplicity and effectiveness [26]. However, they do not consider the
information encapsulated in the sequence of the words. For instance, words could be
negating one another in a sentence or having different meaning in different context. Kumar
et al. [27], in their recent research on use of N-grams in text representation, used bi-grams
and tri-grams to extract features from text data. Their work yielded promising results,
which is an indication that N-grams can be utilized for effective text representation. They
proposed a big data analytics framework for sentiment analysis and classification using
intelligent cognitive inspired computing. In their model, they used fuzzy cognitive maps
as classifiers. In our research, we advance this work by investigating use of hybrid NLP
techniques, including N-grams and sentiment lexicon. They also recommended future
research on deep learning architecture, an area which is also being explored in this research
work. We do so by seeking to combine pre-trained word embeddings with sentiment
lexicon and N-grams.
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2.2. Word Embeddings-Based Techniques and Deep Learning Models

Recently, word embeddings-based vector representation techniques are playing an
important role in natural language processing [28]. According to Mikolov [29], research in
word embedding feature selection gained momentum in 2013. The main word embeddings
algorithms are Word2Vec [15], Glove [16] and FastText [17,30], which are used to convert
words to vectors. Recently, bidirectional encoder representations from the transformers
(BERT) model [18] has received much attention due to its bidirectional and attention
mechanisms. Consequently, use of BERT embedding-based models outperforms other
models, thus showing remarkable performance in sentiment analysis tasks [31,32]. Word
embeddings are better than the normal bag of words representation, since they cater for
synonyms and produce vectors with lower dimensionality than the bag of words [14,15].
Garg [33] did research on word embeddings and established that Word2Vec embeddings
performed better than the other word-embedding algorithms. Currently, most researchers
use pre-trained word embeddings vectors as inputs of machine learning classifiers in their
sentiment analysis research since they are more accurate and compatible with deep learning
neural networks [22]. However, pre-trained word embeddings ignore sentiment orientation
of words and their context, hence affecting sentiment classification accuracy [14,28]. This is
because they use word distances and synonyms to calculate word vectors.

Kim [34] studied use of pre-trained Word2Vec vectors as inputs to convolutional neural
networks and improved their performance by hyper parameter tuning of the CNN model.
Wang et al. [35] used pre-trained Glove vectors as inputs for attention-based LSTM models
for aspect-level sentiment analysis. Liu et al. [21] used pre-trained Word2Vec in idiom
recommendation model in essay writing. Liu et al. [36] used pre trained Word2Vec model
and improved them for cross-domain classification by extending the vector to include
domain information. Recently D’Silva and Sharma [37] used FastText pre-trained word
embeddings and neural networks to classify Konkani texts. Hu et al. [38] used BERT to
integrate mental features and short text vector to improve topic classification and false
detection in short text. Although their work showed better performance, they did not
compare their proposal with other word embedding models. They also suggested more
research to be performed on application of BERT in other contexts of text classification.
Prottasha et al. [31] did a study to compare Word2Vec, Glove, FastText, and BERT. They
demonstrated that transformer architectures, such as BERT models, are the state-of-the-art
models for text representation and play a crucial role in sentiment analysis. The superiority
of BERT is that it can read series of words in either direction, unlike other word embedding
algorithms. Further, BERT employs the attention mechanism of the transformer that assigns
a word its vector, depending on the surrounding words. This mechanism enhances the
semantic representation of the target text. However, the series of input words to be read
by the BERT algorithm maintains the entire words of the target text. We propose that
the performance of BERT algorithm can be enhanced by focusing the input series to a
few words, which contain sentiment information and their neighbours of the target text.
This can be guided by utilization of sentiment lexicon and word N-grams. In a recent
study [13], the researchers investigated a text representation technique using sentiment
lexicon and N-grams where a Lexicon-pointed hybrid N-gram feature extraction model
(LeNFEM) was proposed and investigated. A three-word N-gram was identified, which
contains a sentiment word by use of a sentiment lexicon. The N-gram was then expanded
to form a hybrid vector containing words, POS tags, and sentiments. Although this is a
novel text representation technique, a proposal was put forth on investigation of how the
approach could be applied with deep learning models, including word embeddings. In this
paper, we extend on this work and present a text representation technique named lexicon
selected-BERT embedding (LeBERT) Model. The model combines sentiment lexicon and
BERT word embeddings via word N-grams for sentiment classification.

Based on the related work discussed, we observe that existing deep learning models
for sentiment analysis generate text representation vectors using word embeddings. We
also noted that the BERT model is one of the state-of-the-art embedding models. Thus,
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any study on improving it advances sentiment analysis and natural language processing
research. With this objective, this study suggested and investigated combination of BERT
word embedding model, sentiment lexicon, and N-grams. The novelty of the proposed
LeBERT model is that the sentiment lexicon is utilized to identify a section of a text (sentence
or a document) where sentiment information is domiciled, and the BERT algorithm is used
to build word vectors from that section only. In Section 3, we present and describe the
details of the proposed model.

3. The Proposed LeBERT Model

In deep learning, the BERT model is one of the current word embeddings and text
representation models under study for sentiment analysis. BERT, unlike other word
embedding algorithms, can effectively read series of words in either direction of the input
text, and since it uses the attention mechanism to assign a word, its vector depends on the
surrounding words, and it is efficient in word vectorization [39]. Although BERT considers
the context of a word when assigning the vector, it does so for all the words in the input
text, which leads to a resultant vector with high dimensionality. Second, word vectors built
from BERT do not contain semantic information, which is critical in sentiment classification.
Compared with BERT, the sentiment lexicon can be used to identify sentiment words in a
text and assign specific sentiment polarity to the words. However, sentiment lexicon cannot
generate representative word vectors, hence leading to high data sparseness. Thus, to
improve sentiment classification, this paper proposes the LeBERT model, which combines
sentiment lexicon, N-grams, and BERT algorithms.

The design idea of the LeBERT model is to first use N-grams to split the input text into
sections, and then use a sentiment lexicon to identify a section or sections that contain a
sentiment word. It is worth noting that text reviews, such as social media posts, contain
short text, and characteristically, semantic features in short texts are concentrated in a
certain part [39]. Thus, extracting features from such parts will lead to efficient and effective
text representation. The words of the identified section(s) are then converted into a vector
by BERT. The output word vector is then used as the input into a CNN model with a
fully connected layer where features from the vector are obtained. The features extracted
are then integrated by the dense output layer, and finally the sentiment class of the text
is performed by a SoftMax classifier. The architecture of the proposed LeBERT model is
shown in Figure 1.

Figure 1. Architecture of the proposed sentiment analysis model.
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As shown in Figure 1, the sentiment lexicon, N-grams, and BERT algorithm are used
in the embedding layer to build the word vector. The overall sentiment analysis model
using the LeBERT model is presented in Figure 2.

 

Figure 2. Sentiment analysis model using the LeBERT model.

3.1. LeBERT Embedding

There are currently two common methods used to build text vectors for sentiment
analysis: word-embedding based methods or lexicon-based methods. In our proposed
model, we sought to utilize both methods through N-grams. The sentiment lexicon is
used to identify word N-grams containing a sentiment word, and then the vector from the
N-gram words using BERT word embedding model is used.

To build the vector, we first generate word N-grams from the sentences. A N-gram is
a combination of words from a sentence, which forms a Markovian process. Normally, this
is used to predict the next word in a sequence of words. Further, Markovian process also
generates co-occurrence of words, which is a key aspect in influencing sentiment in a text.
In this case, we use N-gram sequences to partition a sentence into various sections that
represent the entire text, such as an online review or a sentence. This is because N-grams
present co-occurrence of words in a text in a more comprehensive manner than mere bag of
words (BoW). The size of the partition depends on the value of N.

For instance, if we consider a sentence S given as:

S = {w1, w2, w3, w4, w5, . . . , . . . , . . . wn} (1)
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where, wi are words.
For various values of N, we have;
N = 1, the set of N-grams N1 = {w1, w2, w3, . . . , wn}
N = 2, the set of N-grams N2 = {w1_w2, w2_w3, w3_w4, . . . , wn−1_wn}
N = 3, the set of N-grams N3 = {w1_w2_w3, w2_w3_w4, w3_w4_w5, . . . , wn−2_wn−1_wn}
The fundamental idea is that, with the set of N-grams, it is possible to select a section

of the entire input text. This ensures that we use the most significant words when building
text vectors for sentiment analysis. Once the N-gram(s) are identified from the text, it is
then reverted to a bag of words. Each word is then converted into a vector using the BERT
word-embedding algorithm.

3.2. The LeBERT Embedding Algorithm

Let L: sentiment lexicon; C: corpus of subjective user reviews (Ri); V i: vector represen-
tation of a subjective review (Ri); Wt: sentiment term; W1: the first word neighboring the
sentiment term; and W2: the second word neighboring the sentiment term.

We define the text vector, vi, of a subjective review, Ri, as the vector originating from a
selected section of the review Si using sentiment lexicon and BERT word embedding model
(Be). The algorithm listing of the sentence vector representation generation is presented in
Algorithm 1.

Algorithm 1 Contextualized Text Vector Generation

Inputs:
Ri = {w1, w2, . . . . . . , wn), input review containing n words
L = sentiment lexicon
Be = BERT word-embedding model
Output: Contextualized Text Vector (vi), representing the subjective user review
START

Set the N-gram value to N = 3
FOR each review (RiεC) with n word tokens

PRINT the word trigrams;
Call the sentiment lexicon (L)
FOR each trigram check for a sentiment word;

IF a trigram contains a sentiment word THEN

PRINT the trigram words (w1, wt, w2)
ELSE delete the trigram

ENDIF

END

Generate section vector(·)
FOR Each word (w1, wt, and w2) in the trigram

READ (wi) into gag of words (Bwi)
Call the pre-trained word-embedding (Be)

Calculate the word vector (wvi)
END

Update vectorV i:‹wv1 and wvt and wv2›

END

Return VectorV i.

3.3. The CNN Layer

The CNN deep learning model is used as the classifier, which uses the resultant vector
from LeBERT embedding as input and gives the sentiment class as the output. CNNs are
specialized types of artificial neural networks, which are capable of outperforming the
common machine learning algorithms in supervised learning tasks. CNNs’ main function is
to identify and learn the information characteristic patterns through the use of convolution
layers and thus facilitate classification of the objects. The CNN model is presented in
Figure 3. Using the convolution kernels (windows) and the nonlinear function (filter),
feature maps are obtained. A pooling operation is then applied on the feature maps to
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select the optimal features. The dense output layer then classifies the optimal features using
softmax activation function (which uses probability) into a positive or a negative class.

Figure 3. The CNN model.

4. Experiments

This section describes the dataset used; the experiments set up was carried out to
evaluate the performance of the proposed model. The tools and techniques used in model
formulation and evaluation are also discussed.

4.1. Dataset

In order to evaluate the effectiveness of the proposed model, the experiments were
carried using a dataset complied from three public datasets. The dataset contains three
world datasets including: Amazon products’ reviews dataset, with 70,000 reviews, Imbd
dataset, with 50,000 movie reviews, and Yelp dataset, with 300,000 restaurants’ reviews. In
the experiments, we used 3000 reviews, as compiled by Kotzias et al. [40] and published
in a machine learning repository. For each website, Kotzias et al. [40] randomly sampled
500 positive and 500 negative tweets, which were clearly positive and negative.

4.2. Experiment Setup

The reviews presented in the dataset were cleaned of non-English words and pre-
processed. Tokenization, N-grams generation, text vector building, and designing of the
CNN layers was conducted using python programming language in the virtual labora-
tory (Google Colaboratory). The obtained vector was split into two subsets, 80% of the
dataset was used for training the CNN model, and the other 20% was used for evaluating
the classification performance. Since the dataset contained multiple sentences (reviews),
pooled output was used in the BERT embedding. The rectified linear unit (RELU) was
used as the activation function, with 100 neurons for the hidden fully connected layer. The
output dense layer was set up with two (2) neurons since the texts were to be classified
into two classes. Softmax was used as the activation function, which was in line with the
text classification problem at hand. In the study, we used 50-dimensional Glove word
embeddings trained on Google News, 250-dimensional Word2Vec embeddings trained on
Wikipedia, and 128-dimensional BERT embeddings trained on English Wikipedia corpus.
In the experiments, we used tensor flow tools to prepare the data and build our proposed
model. Among the training set, a small potion (100) of the reviews was used for validation.
In Section 4.3, we present the model parameters of the designed CNN model.
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4.3. Model Parameters BERT, Glove, and Word2Vec Pre-Trained Word Embeddings

The model parameters for the BERT word embeddings were as shown in Table 1.

Table 1. Model Parameters for BERT word embedding.

Layer (Type) Output Shape Parameters

Keras Layer (None, 128) 4,385,921
Dense Hidden layers (None, 16) 2064
Dense Output Layer (None, 1) 17

Total Parameters 4,388,002
Trainable Parameters: 4,388,001
Non-trainable Parameters: 1

From Table 1, the Keras layer represents the shape of embedding and the preprocessor
used for the BERT model. In the experiment, the BERT word embeddings were initialized
using small BERT due to limitations of computation resources. Consequently, the dimension
of the word embedding was set to 128 and appropriate preprocessor for the BERT was set.
Glove and Word2Vec word embeddings of 50 and 250 dimensions, respectively, were used
as baseline models, and their parameters were set as shown in Tables 2 and 3.

Table 2. Model Parameters for 50-diemsional Glove word embeddings.

Layer (Type) Output Shape Parameters

Keras Layer (None, 50) 48,190,600
Dense Hidden layers (None, 16) 816
Dense Output Layer (None, 1) 17

Total Parameters 48,191,433
Trainable Parameters: 48,191,433
Non-trainable Parameters: 0

Table 3. Model Parameters for 250-dimensional Word2Vec word embeddings.

Layer (Type) Output Shape Parameters

Keras Layer (None, 250) 252,343,750
Dense Hidden layers (None, 16) 4016
Dense Output Layer (None, 1) 17

Total Parameters 48,191,433
Trainable Parameters: 48,191,433
Non-trainable Parameters: 0

From Tables 2 and 3, The Keras layer represents the input layer in which the input
vector was obtained using the Glove and Word2Vec word embeddings. The shape of the
Keras layer was determined by the dimensions of the word embeddings. The dense output
layer is for binary classification of the input text into positive or negative sentiment.

4.4. Model Performance Evaluation

To verify the effectiveness of the proposed model, a 2 by 2 contingency matrix that
shows the number of correctly predicted positive reviews (TP), true negative reviews (TN),
false positive reviews (FP), and false negative reviews [41] was used, as shown in Table 4.
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Table 4. Contingency Table.

Classified as Positive Classified as Negative

Actual Positive TP FN
Actual Negative FP TN

Four model evaluation metrics were selected: accuracy, precision, recall, and F-measure.
From Table 4, we calculated the metrics, as discussed and presented in Equations (2)–(5).

Accuracy is the ratio of the correctly classified predictions to the total sum of predic-
tions. It is given as;

Accuracy =
TP + TN

(TP + FN + FP + TN)
(2)

Precision is the ratio of accurately classified data to the total data classified in the class.
It is given as;

Precision =
TP

(TP + FP)
(3)

Recall is the ratio of accurately classified data to the actual data in the class. It is given as;

Recall =
TP

(TP + FN)
(4)

F-measure is the mean of precision and recall. It is given as;

F − measure =
2 × Precision × Recall
(Precision + Recall)

(5)

5. Results and Discussion

This section describes the results obtained from the experiments. We first sought to
test the effect of using sentiment lexicon on the input text data and the vector. We compared
the shape of Yelp dataset (restaurants reviews) before and after using the sentiment lexicon.
Table 5 presents the details of the text data.

Table 5. Details of the text data before and after using sentiment lexicon.

Text Data Item
Before Using the Sentiment

Lexicon
After Using the Sentiment

Lexicon

Characters(no spaces) 46,744 14,182
Characters(with spaces) 56,616 19,212

Number of words 10,863 2989
Number of paragraphs 996 996

Average Number of words per
Post/paragraph 11 3

From Table 5, it was evident that application of sentiment lexicon to select a section of
the input text significantly reduced the size of input text. Although the number of posts or
paragraphs remained the same, the shape of the input text changed from 11 rows to 3 rows,
which, in turn, would reduce the computation time for the model. We then designed and
performed experiments with deep learning CNN to evaluate how the LeBERT embedding
model would perform in sentiment analysis.

5.1. Ablation Study on Effect of Size of N-Grams on LeBERT Model

In order to verify the effectiveness of using LeBERT model as the embedding layer to
generate word vectors, we first did an experiment to study the effect of the size of N-grams
on the LeBERT model with CNN. In the experiment, the restaurant reviews datasets were
used. The experimental results of N = 1,2, 3 and all words were as shown in Table 6.
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Table 6. Sentiment classification results of various sizes of N-grams with the LeBERT model.

N-Grams
LeBERT-CNN

Accuracy (%) Precision (%) Recall (%) F-Measure (%)

N = 1 65.02 65.02 65.15 65.08
N = 2 79.45 79.50 80.04 79.77
N = 3 88.20 88.45 89.01 88.73
N = 4 87.65 87.65 87.80 87.72

All words 84.00 84.00 84.20 84.10

For N = 1, it implies that, for each sentence, only one word was used, which was chosen
by the sentiment lexicon. The results indicate a low performance since one word cannot
represent the sentiment of the entire text. The highest model performance was obtained
at N = 3. As shown in Table 6, we generated N-grams up to N = 4 due to computational
resources. The category of ‘All words’ implies that the sentiment lexicon was not applied
on the input text to select some words, hence, this reverts to the original BERT model. The
results indicated that N = 3 is an ideal size of N-gram for the proposed model. Section 5.2
presents the performance results of the model in comparison to the baseline models in the
three datasets.

5.2. Comparison of LeBERT Model Performance with Baseline Models

The experiment was carried out to validate the performance of the proposed LeBERT
model in terms of accuracy, recall, precision, and F-measure of the CNN on the three
discussed datasets. Glove and Word2Vec were used as baseline word embedding models.
In this experiment, tri-grams (N = 3) were used. Tables 7–9 show the performance results
on restaurants reviews, movie reviews, and product reviews datasets, respectively.

Table 7. Sentiment classification prediction under Yelp dataset (restaurant reviews).

Embedding Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Glove 78.50 78.56 78.70 78.63
Le-Glove 81.50 82.00 83.01 82.50
Word2Vec 75.50 75.50 75.80 75.65
Le-Word2Vec 82.40 82.45 83.15 82.80
BERT 84.00 84.00 84.20 84.10
LeBERT(our Model) 88.20 88.45 89.01 88.73

Table 8. Sentiment classification prediction under IMDB dataset (movie reviews).

Embedding Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Glove 79.50 79.50 80.10 79.80
Le-Glove 82.50 82.70 83.25 82.97
Word2Vec 77.45 77.46 78.01 77.73
LeWord2Vec 83.00 83.02 83.42 83.22
BERT 84.01 84.08 84.63 84.35
LeBERT (our Model) 86.10 86.71 87.00 86.85

The presented tables indicate the comparative results between the pre-trained word
embeddings, with and without the proposed fusion with sentiment lexicon. Generally,
the proposed LeBERT model performs better compared to the baseline word embeddings
models. Accuracy is considered to be a good performance evaluation metric when the
classes are balanced [41]. Since, in our experiments all the three datasets exhibited balanced
classes, we compared accuracy of the model with the various approaches for the three
datasets. The results obtained were as shown in Figure 4.
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Table 9. Sentiment classification prediction under Amazon dataset (products reviews).

Embedding Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Glove 79.00 79.00 79.65 79.32
Le-Glove 79.60 80.00 80.45 80.22
Word2Vec 79.50 79.50 80.25 79.87
Le-Word2Vec 81.50 81.50 82.05 81.77
BERT 81.72 81.75 82.04 81.89
LeBERT 82.40 82.40 82.64 82.52

Figure 4. Sentiment prediction accuracy using various embedding models.

From Figure 4, our proposed model (LeBERT) had the highest accuracy in all datasets,
with relatively lower accuracy on Amazon’s product reviews dataset. This could be
attributed to the fact that the reviews referred to various products, and thus the sentiment
terms varied from one product to another.

6. Conclusions

Sentiment analysis of social media reviews is a difficult task due to sparsity and high
dimensionality of word vectors representing the text. Use of sentiment lexicon and word
embedding algorithms can improve sentiment analysis models for text reviews. In this con-
text, we proposed a sentiment analysis model, named LeBERT, based on sentiment lexicon,
N-grams, BERT word embedding, and CNN. In the model, a section of a document or a sen-
tence where sentiment information can be highly found is selected using sentiment lexicon
and word N-grams, and then the words are vectorized using the BERT word embedding
algorithm. A CNN classifier is then used to classify the input vector into a sentiment class.
To validate the performance of the proposed LeBERT model, original Word2Vec, Glove,
and BERT word embeddings were used as baseline models on three benchmark sentiment
datasets. From the experimental results, use of sentiment lexicon significantly reduces the
dimension of the input vector, thus improving efficiency of sentiment analysis models.
Secondly, integration of sentiment lexicon and N-grams with BERT embedding algorithm
yields a better representative word vector, hence increasing the predictive performance of
the resultant sentiment analysis model. The results also indicated that sentiment lexicon
with BERT (through LeBERT model) outperformed other word embedding algorithms.

This paper had some limitations. The designed model utilized convolutional neural
network (CNN) only. In the future, the LeBERT embedding model could be implemented
and evaluated in other neural networks, such as long short-term memory (LSTM). Our
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proposed model was tested and found to be effective in binary sentiment classification,
where sentiment lexicon was used. It would be interesting to evaluate the model on other
text classification tasks where other types of lexicons are used.
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Abstract: Sentiment-controlled text generation aims to generate texts according to the given sentiment.
However, most of the existing studies focus only on the document- or sentence-level sentiment control,
leaving a gap for finer-grained control over the content of generated results. Fine-grained control
allows a generated review to express different opinions toward multiple aspects. Some previous
works attempted to generate reviews conditioned on aspect-level sentiments, but they usually suffer
from low adaptability and the lack of an annotated dataset. To alleviate these problems, we propose a
novel pre-trained extended generative model that can dynamically refer to the prompt sentiment,
together with an auxiliary classifier that extracts the fine-grained sentiments from the unannotated
sentences, thus we conducted training on both annotated and unannotated datasets. We also propose
a query-hint mechanism to further guide the generation process toward the aspect-level sentiments
at every time step. Experimental results from real-world datasets demonstrated that our model
has excellent adaptability in generating aspect-level sentiment-controllable review texts with high
sentiment coverage and stable quality since, on both datasets, our model steadily outperforms other
baseline models in the metrics of BLEU-4, METETOR, and ROUGE-L etc. The limitation of this
work is that we only focus on fine-grained sentiments that are explicitly expressed. Moreover, the
implicitly expressed fine-grained sentiment-controllable text generation will be an important puzzle
for future work.

Keywords: artificial intelligence; natural language processing; controllable text generation; review
generation; pre-trained language model; fine-grained sentiment

1. Introduction

In recent years, Transformer-based pre-trained language models (LMs) have greatly
improved the state-of-the-art of natural language processing tasks as well as natural lan-
guage generation (NLG). Large-scale autoregressive Transformer models [1] that leverage
large amounts of unannotated data and a simple log-likelihood training objective have
achieved remarkable results in many text-generation tasks, such as machine translation,
text summarization, and text style transfer. Meanwhile, for other real-world text-generation
applications, such as review generation and essay writing, users prefer the generated text to
be more controllable. However, since the LMs are trained on unannotated data, controlling
attributes of generated text becomes difficult without modifying the model architecture to
allow for extra input attributes or fine-tuning with attribute-specific data [2,3]. Therefore,
some approaches, such as Plug-and-Play-Language-Models (PPLM) [4], control generated
text through attribute models without changing the architecture or weights of pre-trained
LMs. These models usually regard controllable text generation as generating tasks condi-
tioned on the attributes, such as topic and sentiment at the sentence- or document-level,
leaving a gap for finer-grained (e.g., aspect-level) control over the content of generated texts.

The fine-grained sentiment-conditioned text-generation task aims to automatically
generate a highly relevant statement when given a series of fine-grained sentiments (e.g.,
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aspect-opinion, aspect-sentiment) as input. Zang and Wan [5] first introduced the aspect-
sentiment information to perform aspect-level sentiment-controllable review generation.
They conducted conditional training by adopting a supervised method requiring a large
dataset annotated with sentence-level aspect-sentiment labels. However, very few datasets
provide such sufficient fine-grained labels, and it is also labor-intensive and time-consuming
to conduct annotation on all data instances. Chen et al. [6] proposed a mutual learning
framework leveraging large unlabeled data through interactive learning between the
generator and the classifier. Besides the aspect-sentiment, aspect-opinion pairs also express
aspect-level sentiment information. Therefore, inspired by them, in this work, we introduce
the aspect-opinion information into the fine-grained sentiment-controllable text generation.

The aspect-opinion pairs represent the fine-grained sentiments that could be expressed
within a review sentence, where the aspect term refers to the target of an opinion, and the
opinion term refers to the sentimental words that describe the aspect term. For example, in
the sentence of Figure 1, (”hotdog”, “better”) is an aspect-opinion pair, where “hotdog” is
an aspect term, and “better” is an opinion term, together they form the backbone of fine-
grained sentiment in the review text. Therefore, the aspect-opinion conditioned generation
task aims to generate a review text X that correctly contains the sentiment information
from n non-repeated aspect-opinion pairs (a, o)1:n. Most previous works [5,7,8] used the
aspect-polarity pairs rather than the aspect-opinion pairs, and they used a straightforward
data-to-text modeling approach, which is much more difficult due to the discrete and
sparsity of the input data. To tackle this problem, relying on the natural characteristics of
aspect-opinion pairs directly presented in sentences, our approach proposed a query-hint
mechanism as a dynamic prompt strategy to guide the generation direction. Furthermore,
in order to guarantee the quality of the generated results, in the generator, we incorporate
a GPT-2 345M model [9] as the “super generator,” then by extending this state-of-the-art
model with our proposed query-hint mechanism and our sentiment control loss function
to guide the generating process toward the given controlling information. Moreover, to
further enhance the generator’s performance, with the assistance of a classifier by extracting
the fine-grained sentiments, we leveraged a large unlabeled dataset to train the generator.
The experimental results demonstrate the effectiveness of these components.

Figure 1. An illustrative example of how the aspect-opinion pairs are expressed in a review sentence.
The terms highlighted in red and blue are aspect terms and opinion terms, respectively.

Our Contributions:

• We propose our conditional generative model by extending a pre-trained state-of-the-
art Transformer-based generative model with our introduced query-hint mechanism
and sentiment control loss function to further guide the text generation at a finer-
grained level.

• To better model a text-to-text schema, we introduce the aspect-opinion pair as the
fine-grained sentiment unit to control the constrained text generation.

• Through employing an auxiliary classifier, we leverage a large unannotated dataset to
re-train and fine-tune an end-to-end conditioned text generative model.

The remainder of this paper is organized as follows. Section 2 discusses the related
works in controlled text generation, including the review generation and the aspect-level
sentiment-controlled generation, which is less studied. Section 3 introduces our proposed
approach that achieved finer-grained sentiment control in generation. In Section 4, the
experimental settings are detailed, and evaluation metrics and results are also discussed to
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demonstrate the validity of our approach. Finally, we conclude this work in Section 5 while
discussing future work.

2. Related Work

2.1. Controlled Text Generation

Recently, there has been many studies that aim to generate text conditioned on input
attributes with neural networks. Some of the earlier efforts have studied this controlled
text generation by training a conditional generative model [10,11] while fine-tuning pre-
trained models with Reinforcement Learning (RL) [3] and training a Generative Adversarial
Network [12] have also shown inspiring results. The Conditional-Transformer-Language
(CTRL) model [2] is a recent approach that trains a language model conditioned on a
variety of control codes (e.g., “Reviews” and “Legal” control the model to generate reviews
and legal texts, respectively), which prepended meta-data to the text during generation.
Although it uses a GPT-2-like architecture to generate high-quality text, the result is at
the cost of fixing the control codes and training a very large model. PPLM [4] composed
a pre-trained LM with attribute controllers guiding text generation toward the desired
attribute. At the same time, its flexible design allows it to control the generating process
through relatively small “pluggable” attribute models while keeping parameters in the LM
fixed. Chan et al. [13] incorporated a pre-trained GPT-2 model with a Content-Conditioner
(CoCon) to control the generated text under the guidance of target text content. Yu et al. [14]
proposed a simple and flexible method, infusing attribute representations into a pre-trained
unconditional LM without changing the LM parameters to achieve sentiment- and topic-
controlled generation. Different from our fine-grained sentiment-controlled text-generation
(FSCTG) task, these works focus on sentence-based sentiment and topic control in text
generation. In the FSCTG task, the text-generation process is controlled by a series of
fine-grained sentiments (e.g., aspect-opinion or aspect-sentiment).

2.2. Review Generation

Review generation [7,15], a generation task aiming to automatically generate review
text, is a related area that generates reviews conditioned on the given information. While
most of the previous approaches [7,8] have framed review generation as A2T (Attribute-
to-Text problem), leaving a gap between attributes (e.g., user, product, and rating) and
linguistic data. To tackle this problem, Kim et al. [16] proposed AT2T (Attribute-matched-
Text-to-Text) by augmenting inductive biases of attributes with matching reference reviews
to learn the rich representations of attributes.

2.3. Aspect-Level Sentiment Control

Nevertheless, most of these works only focus on sentence-level sentiments and ignore
the aspect-level sentiment control, and very few researchers have studied generating
reviews from fine-grained sentiments due to the lack of announced data. Zang and Wan [5]
gave the first attempt to generate reviews from aspect-sentiment scores, which requires the
reviews with sentence-level aspect-sentiment score annotations. This makes it impractical
in real-world applications due to the lack of labeled data. To tackle this problem, Chen
et al. [6] proposed a semi-supervised aspect-level sentiment-controllable review generation
method, under their proposed mutual learning framework with the assistance of a classifier,
it can take advantage of large-scale unlabeled data to achieve aspect-level sentiment control
in review generation with few labeled data. Fei et al. [17] combined fine-grained sentiment
classification and generation tasks as a joint dual learning system, strengthening the mutual
connection of both tasks. To overcome the defect of sparsity and discrete nature brought by
the input data in the data-to-text scheme, Yuan et al. [18] proposed a hierarchical template-
transformer (HTT); they split the generation task into two corresponding pipeline subtasks,
i.e., opinion phrase generation and review composition, which were jointly trained on the
HTT. Although in different ways, they all trained an efficient end-to-end generative model.
However, they did not attempt to dynamically adjust the attention weights during the
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model’s generation process since some contents (e.g., the completion of sentiment words
generation) are informative to the global generation and need to be notified.

3. Method

In this section, we introduce our fine-grained sentiment-controllable text-generation
task together with a conditional generative model named Aspect-level Sentiment Conditioner
(AlSeCond), which was trained with both labeled and unlabeled data to learn a fine-grained
sentiment review generator with the assistance of a classifier.

First, we give the formalization of our fine-grained sentiment-controllable text-
generation task. Specifically, given the fine-grained sentiment units (i.e., aspect-polarities
or aspect-opinions) as the input s, the model generates a target text X that covers the
input sentiments. As a straightforward approach, as other studies have used [5,7,8], the
data-to-text modeling can be much more difficult when compared with the text-to-text
modeling due to the discrete and sparsity of the input data [17]. Therefore, in this work,
we consider a translation of this task to the text-to-text formulation. More conveniently,
given aspect and polarity, it is effortless to retrieve opinion phrases from aspect sentiment
triplets (AST [19], i.e., the triplet of aspect, opinion, and sentiment polarity) extracted from
the review text. This work, therefore, set s = {(a1, o1), (a2, o2), . . . , (an, on)} and aims to
generate a review text X comprising m words (X = {x1, x2, . . . , xm}), which presents each
aspect phrase ai and its corresponding opinion phrase oi (i ∈ {1, 2, . . . , n}) properly.

In this task, we have a labeled dataset L and an unlabeled dataset U. In the labeled
dataset L, each labeled datum � ∈ L comprises a review text and a list of aspect-opinion
phrase pairs s, i.e., � = 〈X, s〉, while in the unlabeled dataset U, each u ∈ U only contains a
review text, i.e., u = 〈X〉.

In the following subsections, we first introduce our main framework for how to train
a generator on both labeled and unlabeled datasets. Then, we explain our generator and
classifier in detail.

3.1. Main Framework

To make full use of both the limited labeled dataset and the large unlabeled dataset,
inspired by Chen et al. [6], in the case of a text generator G, our proposed method addition-
ally employs a sentiment classifier C, which is incorporated to extract all aspect sentiment
triplets (aspect, opinion, polarity) in each sentence through a sequence-labeling schema,
thus yielding pseudo labels for the unlabeled dataset. We assume that the generator can
enhance itself by leveraging a large dataset with pseudo labels predicted by the classifier.

In order to benefit from both the data size of the unlabeled dataset and the correctness
of the labeled dataset, we train our model sequentially using these two datasets. Specifically,
as shown in Figure 2, following Chen et al. [6], we adopt three steps to make full use of the
large unlabeled dataset:

Figure 2. Illustration of the training steps for the generator and classifier. Note that “X”, “s”, “G”,
and “C” represent the review text, fine-grained sentiment, generator, and classifier, respectively.
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• Step 1: We train both our generator and classifier on a limited labeled dataset to get
G0 and C0, respectively.

• Step 2: The C0 is then used to extract the fine-grained sentiments in the large unlabeled
dataset, thus yielding the pseudo labels for the next step’s training.

• Step 3: Again, the generator is trained on the unlabeled dataset that is attached with
pseudo labels. Finally, the generator is fine-tuned with the labeled dataset (used in
Step 1) to receive the final generator G1.

As a result, we obtain an enhanced generator G1 trained on both the limited labeled
dataset and the large unlabeled dataset.

3.2. Generator

Unconditional language models (LMs) are trained on the huge amount of unlabeled
text data to optimize the probability of p(xi|x1:xi−1) in an auto-regressive manner [20,21]
where xi is the next token and x1:xi−1 are the previous tokens. While in the controlled text
generation, the conditional distribution p(xi|a, x1:xi−1) is optimized, where a is the attribute
for the model to control the generation.

To make use of the LM pre-trained with large unlabeled datasets, we need to infuse
attribute a into the unconditional distribution p(xi|x1:xi−1). What is more, the pre-trained
Transformer-based language model GPT-2 [9] has demonstrated remarkable natural text
generation in an auto-regressive manner in recent years. Thereby, to improve the generated
texts’ quality, our generative model incorporates a pre-trained GPT-2 model as the “super-
generator,” and we further use the fine-grained sentiment infusion blocks, which are stacked
in the AlSeCond to extend this pre-trained state-of-the-art language model’s decoder blocks.

Essentially, the GPT-2 model is stacked with numerous Transformer-Decoder blocks,
each consisting of layer normalization [22], multi-head self-attention [1], and position-wise
feed-forward operations. Therefore, our AlSeCond blocks extend this kind of decoder
block and incorporate a sentiment infusion operation together with our proposed query-
hint mechanism to conditionally infuse the fine-grained sentiments into the next-token
prediction process.

The sentiment infusion operation is performed inside the AlSeCond’s blocks. Figure 3
briefly illustrated how our AlSeCond model works. Specifically, the target fine-grained
sentiment pairs s0 are appended sequentially as a prompt to the head of the regular sequence
s1 to form the S. This special appended sequence S is then encoded to h (h = [h0; h1], h0, h1

is the hidden representation of s0 and s1, respectively) through numerous AlSeCond blocks,
thus h1

t self-attends to the hidden states of the regular sequence h1 for previous t time steps
and, further, all time steps of the fine-grained sentiment pairs h0. Therefore, the sentiment
representation h0 is infused into the intermediate representation h1 to control the next token
logits (o) and hence the generation process.

Figure 3. Illustration of how the AlSeCond model works. The curved arrow indicates where the
sentiment unit should be hinted to the review sequence. The gradient color in the square indicates
that this step is affected by the query-hint mechanism with prompt values brought by it.
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Our AlSeCond’s block (illustrated in the pink block in Figure 4) is a special Transformer-
Decoder block that incorporates our proposed query-hint mechanism to guide the con-
trolled generation process. Specifically, for fine-grained sentiment-appended hidden states,
h = [h0; h1] (h0 and h1 are the hidden states for the sentiment and regular sequence, respec-
tively.), its key, value, and a special hinted query matrix (K, V, Q′ ∈ R(ls+t)×d, ls, t is the
length of the appended sentiments and regular sequence, respectively) are computed to
perform a query-hinted self-attention. Furthermore, during the computation of the hinted
query (Q′) matrix, we infuse K0 ∈ Rls×d, the sentiments’ part of K, into Q1 ∈ Rt×d at their
corresponding time step as the query-hint:

Q = [Q0; Q1] = h × WT
q , K = [K0; K1] = h × WT

k

Q′ = [Q0; Q′1], Q′1 = fhint(K0, Q1)× WT
q′

(1)

fhint(K0, Q1) = Q1 + Mh ×

⎡⎢⎢⎣
Mean(K0:l1)
Mean(Kl1:l2)· · ·
Mean(Kln−1:ln)

⎤⎥⎥⎦
where fhint(·) is our proposed function, it strategically allocated the sentiments’ repre-
sentation to Q1 as the query-hint information, and Mh ∈ Rt×n is an adjacency matrix,
representing which sentiment pair should be hinted for each time step in Q1, and n is the
number of sentiment pairs, la (a ∈ {1, 2, . . . , n}) is the end index of the a-th sentiment pair
in S. As a result, we guide the text generation by infusing the sentiment information into
the generation process through the query-hinted self-attention operation.

Figure 4. Architecture of the generator. This model is stacked with 24 AlSeCond blocks with the
same structure. The dashed lines in the block represent the general attention, while the red solid lines
represent the attention that is hinted at with prompt key values.

3.3. Query-Hint Mechanism

Since the distance from the prompt and the next-token prediction correlates negatively
with the prompt’s influence [23], which makes it difficult to use a prompt to guide a non-
adjacent piece of text, especially when the generation time step is far away from the prompt.
In other words, prompt and regular sentences share equal importance, which is inadequate
for prompt-based generative models because the prompt tokens propagate less dominant
information to the next-token prediction as the sequence expands. Our idea is similar to
Xia et al. [24], where the actual importance of information from different sentiment units is
unequal to each token in a sentence, so they need to be attended to differently. Therefore,
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as mentioned in Section 3.2, we introduced a query-hint mechanism to further remind
each generation time step about the following content. The main idea of this mechanism is
to let the generation process understand what text to generate in order to catch the next
sentiment text.

Specifically, for each general sentiment pair, its aspect and opinion phrases have their
own corresponding subsequence to provide query-hints. As shown in Figure 5 (e.g., 1 to 1),
a sentiment pair’s member starts query-hint at the beginning of the sentence or the end
step of the previous sentiment pair and closes before its own full-presenting. The hinted
steps form a “hint-unit” (framed in the red dotted line in Figure 5).

Figure 5. Strategy of the query-hint mechanism, this illustration demonstrates two different instances
of query-hint strategy, i.e., “1 to 1” and “1 to n,” which correspond to the one-to-one and one-to-many
situations for aspect-opinion pairs, respectively.

In the source sentences, however, there are also some sentiment pairs that share the
same phrase either in aspect or opinion (e.g., (food, great), (drinks, great)). Therefore,
in order to make query-hint consistent in the training and generation process, given n
sentiment pairs that share the same aspect/opinion phrase, their query-hints are merged
into one “hint-unit”. As shown in Figure 5 (e.g., 1 to n), within the “hint-unit”, each
aspect/opinion phrase gives the query-hint sequentially.

Although our proposed strategy of query-hint in the training process is almost identical
to the generation process, there is still a slight difference between them. During the
training process, the corresponding time steps in the sentence are provided with query-hint
according to the position of each sentiment information presented in the sentence. While
in the generation process, since the part of the sentence that has not been generated is
unknown, query-hint should be allocated according to the generated part of the sentence.

3.4. Loss Functions

Generation loss function: through an LM training objective, we train our conditional
generative model with the general generating loss term conditioned on previous x:t−1 and
input sentiment information s:

LG = −∑
t

log[p(xt
′|s, x:t−1)]Ix(xt) (2)

where xt
′ is the predicted token at time step t. Ix(·) is the index function of a vector.

Sentiment control loss function: To encourage the generator to output texts incorpo-
rating the input sentiment information (phrases), we train the generator additional with
our proposed sentiment-control loss function. The main idea of this loss function is to
maximize the probability value of the one with the highest probability in terms of given
aspect/opinion word from all the next-word predictions of a sentence. Specifically, for
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every aspect phrase a and opinion phrase o presented in the source text, the training loss is
defined as:

LSenti = La + Lo

La = −∑
a

∑
t

log[Q(x′, Maska,t)]Ix(xa,t)

Lo = −∑
o

∑
t

log[Q(x′, Masko,t)]Ix(xo,t)

Q(x, Mask) = Mask � pmax(x) + (1 ⊕ Mask)× φmean

pmax(x) = MaxPooling([p(x1|s, x:0); p(x2|s, x:1); · · · ; p(xt|s, x:t−1)])

(3)

where La and Lo are the losses for aspect and opinion term inclusion, respectively. Maska,t/o,t
is a one-hot vector with the size of V (vocabulary size), and only the element in the index of
at/ot is 1. φmean is a hyper-parameter controlling how much the prediction of aspect/opinion
terms should be enhanced. pmax(·) is a max-pooling operation with a kernel size of lt × 1
(lt is the length of the target text). � and ⊕ represent the element-wise product and XOR,
respectively.

As a result, our final loss function comprehensively considers the loss of generation
quality and the loss of sentiment control:

Ltotal = λGLG + λSentiLSenti (4)

where λ values are hyper-parameters controlling how much the loss terms dominate
the training.

3.5. Classifier

In this section, first, we give the task definition of Aspect Opinion Pair Extraction
(AOPE), then we briefly introduced the model architecture of our sentiment classifier C.

The task of AOPE aims to extract aspect terms and their corresponding opinion
terms as pairs [25–27]. This task can be defined as follows: Given a sentence with m
words X = {x1, x2, . . . , xm}, the goal of this task is to extract all aspect-opinion pairs
τ = {(a, o)n}|τ|n=1 from X, where {(a, o)n} is an aspect-opinion pair presented in X and the
notations a and o denote an aspect term and an opinion term, respectively.

For the overall architecture of our classifier, the two-dimensional interaction-based
multi-task learning framework (2D-IMLF) is shown in Figure 6. Given an input sentence,
two highly related works of the extraction task (aspect term extraction and opinion term
extraction) are adopted to learn aspect-related and opinion-related features, respectively.
Then, to capture different interactive features of aspect terms and opinion terms, a 2D
interactive representation is obtained by tensor composition. Finally, the classifier model
regards the AOPE task as a grid tagging problem and in the end, obtains the final results
by applying a decoding algorithm [28].

As shown in Figure 6, we first use a group of CNN layers to encode the input sentence
and get their hidden state:

Hc
k = Conv1Dk(X)

Hc∗ = [Hc
1; Hc

2; . . . ; Hc
k ]

Hc = Conv1D3(Conv1D5(Hc∗))
(5)

where k ∈ {1, 2, 3, . . .} represents the kernel size of an 1D-CNN. Then, a Bi-LSTM layer
together with multi-head self-attention is incorporated to extract the context information
from the sentences:

Hl
t = BiLSTM(Hl

t−1, Hc
t )

Hc = MultiHeadAttention(Hl)
(6)
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Afterward, we concatenate the hidden state Hc with their transferring state HT
c to get

a grid-formed feature. We then obtain the prediction probabilities of Pc
a and Pc

o for aspect
and opinion terms, respectively, from the final logits P:

Ôc = [Hc; HT
c ]

P = Linear(Ôc)
(7)

Finally, by using a grid-formed tagging schema [28], we can easily obtain a series of
aspect-opinion pairs.

Figure 6. Architecture of the classifier. This model incorporates 2D interaction representation and
grid-formed tagging schema [28] to extract all aspect and opinion phrases in a sentence.

4. Experiments

In this section, we first introduce datasets and settings in our experiment and then
report the evaluation metrics and results.

4.1. Dataset and Settings

We conduct experiments on three real-world datasets, two labeled and one unlabeled;
the statistics of the datasets are reported in Table 1. Moreover, the experimental settings are
also listed in this subsection.

Table 1. Statistics of the labeled and unlabeled datasets. Note that “Val” is short for “Validation”, the
ASTE-Data-V2-Rest is labeled with aspect, opinion, and polarity, while the MAMS-ASTA is labeled
with only aspect and polarity.

Dataset #Instance #Positive #Neutral #Negative Sentiment Form

ASTE-Data-V2-Rest
Train 2728 3490 241 1014

Aspect-Opinion-PolarityVal 668 841 76 248
Test 1140 1497 120 376

MAMS-ASTA
Train 4297 3380 5042 2764

Aspect-PolarityVal 500 403 604 325
Test 500 400 607 329

Yelp - 1,160,546 - - - -
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4.1.1. Labeled Dataset

We conduct experiments of aspect-opinion and aspect-polarity pairs of conditioned con-
trollable text generation on English restaurant reviews with ASTE-Data-V2 from Xu et al. [29]
and MAMS-ASTA from Jiang et al. [30], respectively.

ASTE-Data-V2 (https://github.com/xuuuluuu/SemEval-Triplet-data, accessed on
accessed on 18 May 2022): From Xu et al. [29], is originally from SemEval Challenges [31–33],
and contains both aspect and opinion labels in each review datum. Specifically, we union
the 14Rest, 15Rest, and 16Rest included in the ASTE-Data-V2 as our labeled dataset.

MAMS-ASTA: From MAMS (https://github.com/siat-nlp/MAMS-for-ABSA, ac-
cessed on accessed on 14 May 2022) (Multi-Aspect Multi-Sentiment), ref. [30] is an aspect-
level sentiment-labeled dataset. Wherein, each datum instance in MAMS-ASTA is labeled
with at least two aspects and different sentiment polarities, while no opinion term is labeled.
Therefore, by using our classifier to retrieve opinion phrases according to the original pairs
of aspect-polarity, we also conduct aspect-level sentiment-controllable text generation on
MAMS-ASTA.

4.1.2. Unlabeled Dataset

To ensure that the training data are in the relevant review domain, we use Yelp’s review
dataset (https://www.kaggle.com/yelp-dataset/yelp-dataset, accessed on accessed on
18 May 2022) as the unlabeled dataset and filter out the sentences with a length greater than
150. Unlike the labeled datasets, the Yelp dataset did not contain fine-grained sentiment
labels. Therefore, we only use the sentences in the unlabeled data and discard other items,
including user information.

4.1.3. Experimental Settings

Generator: In the experiment, we train our AlSeCond model that extends from a
pre-trained GPT-2 medium 345M model [9]. The AlSeCond’s blocks clone the GPT-2 Trans-
former blocks’ parameters and settings. To ensure the generator can compute the probability
of (and also generate) any string, we apply Byte Pair Encoding (BPE) [34] for the inputs.
The max generating length was set to 32. We tune the λG together with λsenti to 1 and 8,
respectively. Adam [35] is used for optimization, while the batch size is set to 16, and the
learning rate is set to 5 × 10−5. During the period of G0, the generator is trained with the
labeled and pseudo-labeled dataset for 4 and 2 epochs, respectively. In the following G1,
the generator is fine-tuned with the labeled dataset for 24 epochs. We apply the above steps
to train our model on an RTX A4000 GPU for 20 h. Furthermore, the above steps are also
applied to train other baseline models. We ran our model and all baselines five times to
average the scores.

Classifier: Following GTS [28], we combine a 300-dimension domain-general embed-
ding from pre-trained GloVe [36] and a 100-dimension domain-specific embedding trained
with fastText [37] to initialize double word embeddings. We use Adam as the optimizer,
and the learning rate is 5 × 10−4. The batch size and dropout rate are set to 32 and 0.5,
respectively. The number of hidden units in Bi-LSTM is set to 128.

4.2. Baselines

We compare with six baselines. PPLM [4] incorporates an attribute model BoW (bag of
words) to steer a pre-trained GPT-2 model toward increasing the generating probability of
the target words. In this baseline, the BoW is formed with the words contained in the target
sentiment pairs. For HTT [18], we omit the process of opinion phrase generation and only
use its results (i.e., sentiment pairs) to compose the review. Through prepending the task
description before the input text, the state-of-the-art text-to-text model T5 [38] is pre-trained
with a multi-task objective. Following this schema, we append the sentiment pairs into
the prompt, thus forming: “generate a sentence with a1 is o1, . . . , an is on.”, and fine-tune the
model with the target sentence. Its coverage of the input sentiment pairs in the baselines
serves as an upper bound. Moreover, we also fine-tune UniLM [39], UniLM-v2 [40], and
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BERT-Gen [40] in a similar sequence-to-sequence fashion with both the large unlabeled
dataset and the limited labeled dataset.

4.3. Generated Quality Evaluation

To study the performance of these models in a diversified manner, we conduct evalua-
tions on both the quality and sentiment coverage of the generated text.

4.3.1. Fluency and Diversity Evaluation

We conduct a fluency evaluation on the generated texts with some automatic metrics:
BLEU [41], ROUGE [42], and METEOR [43], which compare the similarity between the
generated text and ground truth based on n-gram matching. Moreover, the diversity of
generations is also an important indicator. We measure diversity for the generated results
with Dist-1,-2,-3 [44] scores and Self-Bleu [45].

Table 2 shows the fluency and diversity evaluation results by the automatic evalu-
ations. From the results, we can observe that: (1) Compared with baseline models, our
AlSeCond model extended from the GPT-2 achieves better performance in fluency evalu-
ations. (2) Comparing results in diversity metrics, it can be observed that our AlSeCond
model performs much better than the rest of the baselines in the MAMS-ASTA dataset,
which means the results generated by our model are less like the template-generated text
than that generated by other models.

Table 2. Results for the fluency and diversity evaluation. Note that “↑” means the higher the better,
“↓” means the lower the better, “w/o” means “no”.

Dataset Models BLEU-3 (↑) BLEU-4 (↑) METETOR (↑) ROUGE-L (↑) Self-Bleu-4(↓) Dist-1 (↑) Dist-2 (↑) Dist-3 (↑)

ASTE-Data-V2

PPLM 0.196 0.032 14.078 13.827 7.939 0.0841 0.4102 0.7180

HTT 13.100 7.656 34.899 42.544 42.664 0.0525 0.2356 0.4113
T5-base 21.246 13.216 29.007 41.092 22.580 0.1621 0.4725 0.6101
T5-large 24.747 16.462 29.986 43.614 23.045 0.1721 0.4658 0.5934
UniLM 33.093 27.486 46.808 52.582 20.334 0.1489 0.4961 0.6663
BERT-Gen 32.693 28.050 45.223 45.162 24.149 0.1450 0.4957 0.6411
UniLM-v2 32.159 27.525 45.107 44.514 22.830 0.1451 0.5060 0.6553

AlSeCond 40.453 34.611 55.127 63.720 15.972 0.1610 0.5439 0.7073
� w/o sentiment loss 37.961 32.190 55.699 62.911 16.195 0.1552 0.5301 0.7028
� w/o query-hint 34.305 29.080 55.391 61.237 14.442 0.1551 0.5431 0.7264
� w/o unlabeled dataset 29.085 26.387 42.601 48.213 21.727 0.1444 0.4942 0.6628

MAMS-ASTA

HTT 2.279 0.412 17.193 23.197 51.373 0.0602 0.2271 0.4003
T5-base 3.653 1.479 14.400 24.181 27.671 0.1299 0.3761 0.5541
T5-large 4.212 1.767 15.180 25.828 27.626 0.1418 0.3761 0.5591
UniLM 3.178 1.251 18.833 23.872 37.890 0.1032 0.3211 0.4878
BERT-Gen 4.003 1.605 17.751 24.162 28.284 0.1284 0.4024 0.5778
UniLM-v2 3.898 1.559 17.757 23.999 27.858 0.1255 0.3989 0.5796

AlSeCond 5.159 2.113 19.736 31.738 13.714 0.1627 0.5085 0.6811
� w/o sentiment loss 4.944 1.999 23.734 31.302 14.112 0.1477 0.4978 0.7171
� w/o query-hint 4.208 1.635 23.661 29.497 10.835 0.1604 0.5538 0.7653
� w/o unlabeled dataset 3.458 1.026 20.761 28.924 15.787 0.1478 0.4728 0.6627

4.3.2. Sentiment Evaluation

As to measure the quality of sentiment containment in the generated sentence and
indicate whether the input sentiments are correctly expressed in the generated text, we
employ two metrics: Coverage (Cov.), just like in Lin et al. [46], which is the average rate of
input sentiment pairs presented in the generated texts. This metric includes Cov-a, Cov-o,
and Cov-ao, representing the presenting rate of aspect, opinion, and aspect-opinion pairs,
respectively. Accuracy (Acc.) is a rate indicating how many fine-grained sentiments are
accurately expressed in the sentence, and it is evaluated by the external sentiment classifier [30]
trained on MAMS-ASTA.

Table 3 shows the results of sentiment coverage and accuracy for generated texts. It is
worth noting that for a linguistically complicated sentence, its aspect-level sentiments are
more difficult to be correctly predicted by the external classifier than a relatively simple
sentence, so its sentiment accuracy may be lower than the actual situation. What is more,
T5’s original seq2seq architecture allows it to generate texts that highly correspond to
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the input sequences. Hence its coverage and accuracy scores serve as an upper bound,
although its generated results’ syntax is relatively simple and repetitive.

Table 3. Results for the sentiment evaluation. Note that Accuracy (Acc.) is a rate indicating how many
fine-grained sentiments are accurately expressed in the sentence, and it is automatically evaluated by
an external classifier.

Dataset Models Cov-a Cov-o Cov-ao Acc.

ASTE-Data-V2

PPLM 0.3597 0.3642 0.1094 0.1761

HTT 0.7689 0.7773 0.6050 0.6328
T5-base 0.9563 0.9764 0.9403 0.7812
T5-large 0.9633 0.9839 0.9508 0.7948
UniLM 0.9513 0.9568 0.9182 0.7450
BERT-Gen 0.9352 0.9343 0.8886 0.7521
UniLM-v2 0.9438 0.9488 0.9087 0.7475

AlSeCond 0.9824 0.9849 0.9734 0.7771
� w/o sentiment loss 0.9633 0.9649 0.9468 0.7683
� w/o query-hint 0.9412 0.9313 0.8966 0.7443
� w/o unlabeled dataset 0.8158 0.8841 0.7556 0.6306

MAMS-ASTA

HTT 0.7203 0.5123 0.3800 0.4532
T5-base 0.9610 0.9147 0.9042 0.5734
T5-large 0.9738 0.9453 0.9416 0.5698
UniLM 0.9251 0.7821 0.7590 0.5883
BERT-Gen 0.9438 0.8009 0.7807 0.6048
UniLM-v2 0.9341 0.7515 0.7305 0.6310

AlSeCond 0.9798 0.9588 0.9558 0.6267
� w/o sentiment loss 0.9318 0.8952 0.8825 0.6050
� w/o query-hint 0.8338 0.6811 0.6257 0.5447
� w/o unlabeled dataset 0.7829 0.7095 0.6325 0.5157

Comparing the above metrics results for all models on different datasets, we can
observe that our model has stable advantages over both ASTE-Data-V2 and MAMS-ASTA,
which indicates that our AlSeCond model has stronger adaptability. Additionally, Figure 7
presents the learning curves for fine-tuning all models with the labeled dataset, which also
demonstrates the strong capabilities of our model compared to baselines.

Figure 7. Learning curves for fine-tuning models with the labeled dataset. (a) illustrated the learning
curves for BLEU-4 changing with fine-tuning steps. (b) illustrated the learning curves for Cov-ao
changing with fine-tuning steps.
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4.4. Case Study

Figure 8 presents some generated cases from AlSeCond, HTT, T5, UniLM, BERT-
Gen, and UniLM-v2. From the cases, we found that: AlSeCond tends to generate more
linguistically complicated sentences, while the other baselines are more likely to focus
on generating review texts that simply express the input information and less on the
complexity of the expressions and the syntaxes.

AlSeCond:

HTT: 
T5-Large: 
UniLM:
BERT-Gen:
UniLM-v2:

AlSeCond:
HTT: 
T5-Large: 
UniLM:
BERT-Gen:
UniLM-v2:

AlSeCond:
HTT: 
T5-Large: 
UniLM:
BERT-Gen:
UniLM-v2:

AlSeCond:
HTT: 
T5-Large: 
UniLM:
BERT-Gen:
UniLM-v2:

Figure 8. Generated samples from the generative models. Red phrases represent the aspect-level
sentiment formed by aspect-opinion pairs.

5. Conclusions and Future Work

In this paper, we propose a fine-grained sentiment-controllable text-generation method
based on the pre-trained language model and the auxiliary sentiment classifier that utilizes
both the labeled and unlabeled dataset to reach the aspect-level sentiment control in text
generation. Our proposed query-hint mechanism and fine-grained sentiment control loss
function have greatly enhanced the generator in controlling the sentiment during the text-
generating process. Experiments on real-world datasets have demonstrated our generator’s
ability to generate aspect-level sentiment-controllable review statements with high quality
and diverse syntax.

For future work, we will explore the controllable text generation for implicitly ex-
pressed fine-grained sentiments (e.g., in this sentence: “We had to constantly ask the waiter to
top up water glasses.”, the reviewer had a negative opinion of the waiter although there is no
related opinion phrase in the sentence.), since the query-hint mechanism proposed in this
paper is only effective for explicitly expressed fine-grained sentiments.

253



Appl. Sci. 2023, 13, 264

Author Contributions: Conceptualization, L.Z. and Y.X.; methodology, Y.X.; software, Y.X.; vali-
dation, Y.X. and Z.Z.; formal analysis, Y.B.; investigation, L.Z. and Y.B.; resources, Y.X. and X.K.;
data curation, Y.X. and X.K.; writing—original draft preparation, Y.X. and Y.B.; writing—review and
editing, Y.X. and Y.B.; visualization, Y.X. and Z.Z.; supervision, L.Z. and X.K.; project administration,
Y.X.; funding acquisition, L.Z. and X.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (No. 62176234,
62072409).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code used to generate the results shown in this paper is
available at https://github.com/ashooha0/Alsecond, accessed on 1 November 2022. The dataset,
attached with pseudo labels by our classifier, is available at: https://drive.google.com/file/d/
1HjyTLBBlyAOn_pphWC6VjgWQ2HPZglAp/view?usp=share_link, accessed on 15 November 2022.
The ASTE-data-V2 dataset is available at https://github.com/xuuuluuu/SemEval-Triplet-data,
accessed on accessed on 18 May 2022, and the MAMS dataset is available at https://github.com/siat-
nlp/MAMS-for-ABSA, accessed on accessed on 14 May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LMs Language Models
NLG Natural Language Generation
GPT Generative Pre-Training
PPLM Plug and Play Language Model
CTRL Conditional-Transformer-Language
CoCon Content-Conditioner
FSCTG Fine-grained Sentiment-Controlled Text Generation
A2T Attribute-to-Text
AT2T Attribute-matched-Text-to-Text
HTT Hierarchical Template-Transformer
AlSeCond Aspect-level Sentiment Conditioner
AOPE Aspect Opinion Pair Extraction
2D-IMLF Two-Dimensional Interaction-Based Multi-task Learning Framework
CNN Convolutional Neural Networks
Bi-LSTM Bidirectional Long Short-Term Memory
Val Validation
AST Aspect Sentiment Triplet
ASTE Aspect Sentiment Triplet Extraction
MAMS-ASTA Multi-Aspect Multi-Sentiment Aspect-Term Sentiment Analysis
BPE Byte Pair Encoding
GTS Grid Tagging Scheme
GloVe Global Vectors
UniLM Unified Language Model
BERT Bidirectional Encoder Representations from Transformer
BLEU Bilingual Evaluation Understudy
ROUGE Recall-Oriented Understudy for Gisting Evaluation
METEOR Metric for Evaluation of Translation with Explicit Ordering
Dist Distinct
Cov Coverage
Acc. Accuracy
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