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1. Introduction

The digital era has significantly transformed the dissemination of information and
business operations, creating an intricate web of interconnected systems. As technology
continues to advance, so do the complexities of maintaining robust security and privacy
across these networks. This Special Issue, “Security and Privacy in Networks and Multime-
dia”, seeks to explore the forefront of research in protecting data networks and multimedia
systems against evolving security threats. The articles included in this issue highlight
innovative solutions and ongoing research aimed at enhancing security and privacy in
various technological environments.

2. Resilient Forecasting and Supply Chain Security

In the realm of smart cities, accurate electricity load forecasting is crucial for grid sta-
bility. Mohd Hafizuddin Bin Kamilin and Shingo Yamaguchi present a resilient forecasting
network that uses a collective intelligence predictor to mitigate the impact of missing values
induced by cyberattacks. This approach decentralizes forecasting processes, achieving
remarkable accuracy even under significant data loss scenarios.

Helen C. Leligou and colleagues delve into cybersecurity within supply chain systems,
specifically focusing on the farm-to-fork use case. Their FISHY platform integrates machine
learning and blockchain technologies to detect security threats and provide evidence
for mitigation policies. This innovative approach ensures comprehensive protection for
complex supply chain networks.

3. Advanced Detection Methods and Network Privacy

Addressing the threat of jamming in next-generation communication systems, Cem
Örnek and Mesut Kartal propose a jamming detection method leveraging the Error Vec-
tor Magnitude metric. This method enhances sensitivity and provides critical jammer
frequency information, ensuring robust protection for 5G and LTE networks.

Marko Mićović, Uroš Radenković, and Pavle Vuletić explore Format-Preserving En-
cryption for network layer privacy protection. Their LISPP system, implemented on smart
network interface cards, achieves high throughput with minimal delay, proving effective
for production networks.

4. Intrusion Detection and AI-Enhanced Security

Hyeon gy Shon and colleagues introduce a semi-supervised alert filtering method for
network security. By incorporating semi-supervised clustering, their approach significantly
reduces false alerts, conserving resources and improving detection accuracy.

The integration of artificial intelligence in network security is exemplified by Lat-
ifah Almuqren and her team’s Improved Sine Cosine Algorithm with Deep Learning-
Enabled Security Solution (ISCA-DLESS). This method combines feature selection and
hyperparameter tuning to enhance anomaly detection, achieving impressive accuracy on
benchmark datasets.
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5. Generative Approaches and Adversary Impact Mitigation

Hao Yang and co-authors tackle the class imbalance problem in Network Intrusion
Detection Systems with their SPE-ACGAN method. This resampling approach improves de-
tection performance across various classifiers, addressing the prevalent issue of imbalanced
training samples.

Mohd Anjum and his team propose a Permutated Security Framework for IoT security,
utilizing end-verifiable keys to manage transactions securely. Their approach adapts
to system changes, mitigating adversary impact and service failures while enhancing
transaction security.

6. Explainable Security Solutions and Advanced Cryptographic Techniques

Suleiman Y. Yerima and Abul Bashar focus on detecting evasive malicious PDF docu-
ments through explainable ensemble learning methods. Their system effectively detects
hidden malicious content in PDFs, offering robust security against sophisticated attacks.

Maaz Ali Awan and colleagues discuss the potential of Radio Frequency Fingerprinting
in enhancing the cybersecurity of smart grids. Their deployment framework leverages
deep learning for effective classification and rogue device detection, bolstering smart
grid security.

7. Network Layer Privacy and Anomaly Detection

Raad A. Muhajjar and his team present a hierarchical key management method for
wireless sensor networks in medical environments. Their approach ensures data confiden-
tiality and integrity, providing a secure framework for sensitive health data transmission.

Mohammad Jamoos and co-authors introduce a data-balancing approach based on
Generative Adversarial Networks for network intrusion detection systems. Their model
addresses imbalanced datasets, enhancing the detection rate of minority class attacks.

Saini and Islam focus on the security of the CAN bus, which is widely used in auto-
motive applications. They propose a hardware prototype (FPGA) of an intrusion detection
system for the CAN bus, enabling attack detection and response in case of bus-off attacks.

8. Conclusions

The articles in this Special Issue collectively advance the state of the art in network and
multimedia security, offering innovative solutions to pressing challenges. From resilient
forecasting networks and comprehensive supply chain security to advanced jamming
detection and AI-enhanced anomaly detection, these studies contribute significantly to the
ongoing efforts in securing our increasingly digital world.
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A Perfect Security Key Management Method for Hierarchical
Wireless Sensor Networks in Medical Environments

Raad A. Muhajjar 1, Nahla A. Flayh 2 and Mishall Al-Zubaidie 3,*

1 Department of Computer Science, Faculty of Computer Science and Information Technology,
University of Basrah, Basrah 61004, Iraq
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Nasiriyah 64001, Iraq
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Abstract: Wireless sensor networks (WSNs) have developed during the past twenty years as a result
of the accessibility of inexpensive, short-range, and simple-to-deploy sensors. A WSN technology
sends the real-time sense information of a specific monitoring environment to a backend for processing
and analysis. Security and management concerns have become hot topics with WSN systems due
to the popularity of wireless communication channels. A large number of sensors are dispersed in
an unmonitored medical environment, making them not safe from different risks, even though the
information conveyed is vital, such as health data. Due to the sensor’s still limited resources, protecting
information in WSN is a significant difficulty. This paper presents a hierarchical key management
method for safeguarding heterogeneous WSNs on hybrid energy-efficient distributed (HEED) routing.
In the proposed method, the Bloom scheme is used for key management and a pseudo-random number
generator (PRNG) to generate keys in an efficient method to keep sensor resources. In addition, using
cipher block chaining-Rivest cipher 5 (CBC-RC5) in this method achieved cryptography goals such as
confidentiality. A comparison is made between the proposed and existing methods such as dynamic
secret key management (DSKM) and smart security implementation (SSI) under the same circumstance
to determine the performance of the new method. The data transmission in WSN consumes about
71 percent of a sensor’s energy, while encryption computation consumes only 2 percent. As a result, our
method reduces the frequency with which data transmissions are made during the key management
process. The simulation findings demonstrated that, in comparison to earlier techniques, the proposed
method is significantly more secure, flexible, scalable, and energy-efficient. Our proposed method is
also able to prevent classifications of node capture attacks.

Keywords: bloom; cipher-block chaining (CBC); HEED protocol; heterogeneous WSN; key management;
PRNG; rivest-cipher5 (RC5); WSNs

1. Introduction

Wireless sensor networks have received much interest for using them in a diversity of
environments, including health, military, agriculture monitoring, and industrial. However,
health systems are making use of WSN technology significantly in recent years. In instances
where these sensors are able to communicate with one another wirelessly, the sensed health
data from the surrounding area is sent to the sink to be treated either through a single
hop if the sink is within the same node’s range or through multiple hops if the sink is
outside of that range [1,2]. The data routing protocol in the WSN is also important to
reduce the load on sensor sources [3]. Because of the medium, any hacker can break
through the network and obtain its health data [4]. Passive (eavesdropping hackers on the
health data exchanged between the parties without alteration or injecting false data into
the network) and active are two kinds of attacks (eavesdropping hackers on the health data

Electronics 2023, 12, 1011. https://doi.org/10.3390/electronics12041011 https://www.mdpi.com/journal/electronics4
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and conducting malicious events with it before retransmitting to nodes for the purpose of
network destruction or grabbing them) [5,6]. In order to transmit important data in this
kind of network, it should keep the information as possible, as well as prevent unwanted
parties from providing fake information to sensors. Cryptography technical is used to
address some of the health network’s security challenges, providing confidence [7] and
authentication. The sensors have limited resources from where the processing, energy, and
memory [8]. Therefore, considered cryptography traditional techniques are not suitable in
WSN because they need additional connection, memory, and processing. As a result, when
designing and implementing a key management method, it is important to keep in mind
the restricted resources available on these devices [9–12].

Cryptographic mechanisms require efficient key management. Secure communica-
tions may be compromised by inadequate key management, resulting in key disclosure to
attackers. WSN communication threats and vulnerabilities can be mitigated through key
management, which is an essential process. Confidentiality, integrity, and availability are
generally considered security requirements [13]. User/patient privacy, customer behavior,
message authentication, and control messages are the most important security requirements
before sensors are deployed [14]. The security of cryptography keys is a crucial factor in
ensuring the confidentiality and integrity of data. To maintain the security of cryptographic
keys, health systems must handle secure key management for many devices. A number of
studies have been conducted regarding key management systems in recent years. The topics
discussed in existing studies on WSNs include architectures, applications, communication,
and cyber security. Some studies, on the other hand, dealt with key management systems for
WSNs, a very critical area of research that has received surprisingly little attention. In these
studies, lightweight encryption was highlighted in addition to a key management scheme
that achieves a defensive mission in resistance to WSNs threats [15]. Therefore, an efficient
energy-aware secure key management method is significant. The key distribution scheme
in a WSN has to satisfy some objectives, such as a low memory requirement, low overhead
for computation and communication, and high connectivity and robustness. Managing key
information and data delivery in the network is another issue that needs to be addressed.
Keys of the same length as the message can be consumed by the encryption process in private
key management systems. The key is consequently a limited resource in a WSN. A network
with several communication activities will be inefficient and unstable if there is no key man-
agement [16]. It should use methods from traditional network research that handle issues
such as these to tackle this challenge and improve network activities management.

With the growth of the global population, as remote health monitoring becomes more
popular, the demand will increase extremely in the coming years. A major goal of remote
health monitoring is to transfer patient information to clinical physicians across the globe [17].
The importance of securing patients’ clinical information in this scenario grows, so that
unauthorized individuals cannot alter or read it. In terms of encryption, Rivest Cipher (RC5) is
a simple and secure cipher. For limited resources environments, such as WSNs, it is considered
a suitable block cipher because of its simplicity, fast encryption, low power consumption,
easy adaptability and low memory requirements. Key calculation with RC5 is susceptible to
attack because of its weak diffusion state. By using RC5 in combination with key management
and randomness generators, this can be overcome so that medical data can be ciphered and
protected [18] while preventing classifications of node capture attacks.

1.1. Major Contributions

To address all previous issues, we propose a reliable method based on energy-saving
routing, lightweight encryption and randomization techniques to achieve efficient key
management for WSN. First, the HEED protocol is adopted to support efficient routing
and sensor energy conservation, thus supporting energy saving as much as possible to
extend the lifetime of the WSN. Second, we use a lightweight RC5 encryption algorithm
to maintain medical environment data. Third, we generate unique randomness using
PRNG to support RC5 and prevent the attacks from breaching the encryption. Finally, we
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utilize the Bloom scheme to manage the keys in a secure manner that protects medical
environment data. All these techniques are integrated into a single security method to
protect patient/provider data and information.

1.2. Research Organization

A description of the research roadmap can be found here: A comprehensive intro-
duction is provided in Section 1. We critique related key management security works in
Section 2. The requisite preliminaries are introduced in Section 3. Our proposed method
is described in Section 4. Section 5 investigates the proposed method results. Section 6
presents the study’s conclusions and future trends.

2. Schemes Related to the Security of WSN Key Management

In this section, we will investigate key management methods and extract their prob-
lems and drawbacks.

For a heterogeneous WSN, Li and Wang [19] proposed an effective and hybrid key man-
agement strategy. While symmetric methods were used between the cluster’s sensors, elliptic
curve cryptography was used to generate the key between the cluster heads and the sink. A
low-cost, high-level security authentication and key management scheme (AKMS) was intended
to be provided as protection from hostile sensors that can appear during networking. Even if
the AKMS keys are compromised, attackers cannot utilize the prior keys or the authenticated
sensors to cheat. In particular for heterogeneous networks, simulation findings demonstrate that
their approach offers effective security with decreased energy usage. However, their scheme is
not very safe against cluster head capture attacks. The network model is hierarchical, according
to Iwendi et al. [20]. Both the pairwise key between the cluster heads and the base station and
the key between sensors and their particular cluster heads have been generated in a symmetric
manner employing OR and XOR operations. The approach provides security and makes inef-
ficient use of limited resources, but it also lacks scalability. Zhang and Pengfei [21] purposed
approach to secure hierarchical network structures. This method made use of three different
sorts of keys. In the first stage, a disposable paired key was formed using the specified function
for use in encrypting data exchanged between nodes, and the primary keys were generated
using Diffie-Hellman and the specific function. However, the authors do not address issues
of secure key storage. Furthermore, their scheme is not suitable for medical environments
that require reliable key management and lightweight data encryption. Zhang and Wang [22]
suggested a key management method in hierarchical WSNs based on a Bloom scheme with
sophisticated advanced encryption standard (AES) and a mesh module for multi-hop packet
routing, with high security and scalability. However, their scheme did not provide a mechanism
to support random health data encryption. Qin et al. [23] have developed a hybrid key manage-
ment system (KMS) for multihop WSNs that makes use of secret key-based communication and
asymmetric cryptographic approaches to minimize the computational burden on member nodes.
KSM’s security analysis demonstrates its ability to resist node capture attacks and support node
revocation. Data freshness, the number of generated typical keys, throughput, and cost of
computation were used to assess KSM’s effectiveness. However, their scheme did not provide
updating keys for the hierarchical medical WSN.

On off-the-shelf static WSNs, Moara-Nkwe et al. [24] discussed challenges and dif-
ficulties experienced during the establishment and application of physical layer secure
key generation (PL-SKG) methods. It then suggested a method for generating keys us-
ing elliptic curve cryptography (ECC) based on signals from 802.15.4 compliant sensors
that could take advantage of the power, simplicity, and diversity of frequency channels
available. However, generating keys using asymmetric encryption algorithms will add
computation and communication costs to the WSN environment. A key management
protocol presented by Chanda et al. [25] is claimed to guarantee the confidentiality, in-
tegrity, authenticity, and integrity of wireless sensor networks by handling key generation,
distribution, and maintenance. Their proposed method encrypts network information in
three levels using three auxiliary keys in addition to the main key. Unfortunately, their
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protocol fails to provide unique and sufficient keys to protect WSN data and their method
is very complicated and resource-consuming for WSN. A network model for the intelligent
building energy management system (IBEMS) was developed based on the framework
of the WSN [26]. Then, the IBEMS presented a blockchain-based dynamic key approach
as well as key management, examining the security of blockchain technology with the
Shamir scheme. Experiments were conducted to verify their plan’s feasibility. However,
the authors did not provide a clear key management technique, they relied on Shamir’s
secret sharing for key exchange but did not specify the threshold in their method.

Ahlawat and Dave [27] proposed a secure hybrid key pre-distribution scheme (HKP-
HD) for WSNs in order to prevent node capture attacks. By combining q-composite
and threshold-resistant polynomial schemes, they claimed robustness. Their scheme in-
vestigated to make the WSN more solid against the sensor capture threats. There is a
presumption that hacker is intelligent and that they frequently develop a matrix of attacks
against the network by taking advantage of various weaknesses. It attempts to destroy
the whole network with the fewest possible sensors, based on the attack matrix. In order
to counteract such vulnerabilities, a comparable threat array was created by the network
engineer by investigating sinks as major influencing factors. However, their method was
only seeking to decrease the risk of keys being compromised and not to end the problem
completely, and this in itself is a security breach. Kumar and Malik [28] examined the keys
required to develop resilient and connected WSNs that have a large number of sensors. An
improved random key distribution method based on random deployment was presented to
increase connectivity and resilience. For the large, medium, and small-scale networks, they
investigated the number of keys that are sufficient. However, they did not use a routing
protocol to reduce power consumption in WSNs. Recently, Tyagi et al. [29] discovered
several security pitfalls in previous methods, such as a man-in-the-middle, an off-line
password guessing, and session key attacks. An Internet of Things (IoT) authentication
method was created to overcome the pitfalls identified in previous methods. Furthermore,
a real-or-random (RoR) model was used to confirm the reliability of their method. Based on
computation and communication costs as well as security properties, they evaluated their
proposed method against the associated schemes. However, although the authors claimed
that their method provides key protection, their method did not provide key security man-
agement. Furthermore, although the [30,31] tested their proposed methods against node
capture attacks, their approaches are complex and inflexible in handling sensor-transmitted
parameters in medical environments.

3. Introductory Details of the Proposed Techniques for the Security of WSN
Key Management

In this section, we will outline the fundamental concepts behind the techniques em-
ployed in the proposed method.

3.1. Hybrid Energy-Efficient Distributed Clustering Protocol

A big crowd of WSN routing approaches addressed the energy conservation issue.
Hybrid energy-efficient distributed clustering (HEED) [32,33] and low-energy adaptive
clustering hierarchy (LEACH) [34,35] are the most distinguished hierarchical routing-based
WSN protocols. However, there is a negative impact on the network’s cluster heads’ (CHs)
in LEACH distribution when carrying out rounds [33]. In addition, the comparison in
Table 1 demonstrates that the HEED protocol outperforms the LEACH protocol [36].
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Table 1. Comparison of performance properties between HEED and LEACH protocols.

Properties HEED LEACH

Balanced clustering Good Moderate
Balanced loading High Moderate
CH capability Data aggregation, homogeneous Data aggregation, homogeneous
Clustering process execution Iterative Probabilistic
Cluster overlapping No No
Cluster stability High Moderate
Delay Moderate Very small
Energy efficiency Moderate Low
Mobility Stationary Stationary
Routing between clusters Single hop and Multi hop Single hop
Routing within a cluster Single hop Single hop
Scalability Moderate Low

HEED protocol maximizes network lifetime by reducing communication costs and
utilizing residual energy in sensors. In a set number of iterations, HEED completes the
clustering phase, creates well-distributed CHs, reduces control overhead, and optimizes net-
work lifetimes. Sensor distributions or sensor density in a network do not affect HEED [32].
Due to the fact that new CHs are always chosen and clustering starts after each interval of
the clustering process time (TCP) + operation time (TO). Receiving and transmitting mes-
sages from neighboring sensors within a defined range is a time-consuming process. HEED
defines a fixed percentage of CHs in order to begin clustering. Initial CHs probabilities are
set by sensors according to the formula:

CHp = Cp · (Er/Em) (1)

An initial probability, residual energy, and maximum energy of the sensors are represented
by Cp, Er and Em, respectively. In order to meet minimum probability (Pmin) = 0.0001, CHp
must not fall below Pmin. Figure 1 shows the clustering approach in HEED protocol.

Sensors periodically communicate with their neighbors about their current status during
each round. When sensors identify themselves as CHs or receive an invitation to join from
another CH, they are regarded as covered. If a node is running HEED but is still visible, it
should declare itself a CH or join the neighboring cluster. As part of the HEED protocol, wireless
sensor networks are organized into clusters. An elected sensor from each cluster gathers raw
data from its associated sensors and transmits it to the sink. As soon as the sensors for level-1
have been chosen and the HEED protocol has been employed to cluster the network [37]. By
reusing the HEED approach, super-elected sensors (level-2) are in this situation elected using
a larger cluster radius. A second run of the HEED approach will result in the network being
divided into two categories of clusters. An elected sensor of level-1 is part of a cluster comprised
of regular sensors within a radius transmission range (Tr1). Super-elected nodes receive data
collected from regular nodes within the cluster. After the second HEED protocol execution on
the level-1 chosen sensors, the second category of clusters is established. It is made up of a
cluster of elected level-1 sensors that are placed close to the Tr2 cluster and an elected level-2
sensor that is in charge of receiving information from the cluster’s various members (elected
level-1 sensors) and sending it to the sink [37].
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Figure 1. HEED approach of clustering.

3.2. Rivest Cipher 5

Ronald Rivest proposed Ron’s code or Rivest cipher (RC5) in 1994. This cipher uses
block ciphers of symmetric type and is fast. This cipher can be implemented in both
hardware and software. Rotation based on data is extensively used in RC5. Both linear
and differential cryptanalysis can be prevented by this feature. In this algorithm, the
block size and round numbers are parameterized, as well as the key length. As a result,
both performance and security are greatly enhanced. A specific RC5 algorithm is the
word/round/byte (w/r/b) algorithm. The w bit size is 16, 32 (standard value) and 64.
Because RC5 encodes two-word blocks, both plaintext and ciphertext are two words long.
Moreover, r values are (0–255), and table (t) = 2 words are included in the expanded keys
table. In addition, the number of bytes (b) with values ranging from 0 to 255 specifies the
security key. Encryption, decryption and key generation are the three elements of RC5 [38].

A comparison of RC5 with Rivest-Shamir-Adleman (RSA) and Blowfish shows that
it is more secure and faster. Sharing secret keys securely remains a challenge with RC5
since it is a symmetric key cryptosystem. This limitation was overcome by combining RC5
encryption with Honey encryption, which had a bigger buffer size and maintained RC5’s
strengths at the same time [39]. There are three block sizes for encryption: 32 bits, 64 bits,
and 128 bits. The best block size is 64-bit. RC5 keys range from 0 to 2040-bit, but 128-bit is
most commonly endorsed. Plaintext and ciphertext are stored in two 32-bit registers (A
and B). Normally, encryption takes 12 rounds (but it can take as many as 255) [40]. Figure 2
shows RC5 process. In RC5, key operations involves XORing bits, adding words modulo
2w, and shifting left (<<) and right (>>). Due to its flexibility in terms of key size, block
size, and rounds, RC5 offers high levels of security and performance.

Figure 2. RC5 process.
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3.3. Bloom Scheme

To determine whether an element is part of a set, a space-effective probability data
structure called a Bloom filter is utilized. Essentially, the matrix starts out with all bits set to
0, it is a bit matrix of length n. A Bloom filter employs k distinct hashes {h1, . . . hk} with a
range of [0, n 1] to exemplify a set S = {x1, . . . xm}. The Bloom filter’s bits hi(x) are set to 1 for
each element x ∈ S. Multiple instances of setting an index to 1 have no impact; only the initial
change does. It is necessary to determine whether all positions of hi(x) are set to 1 in order
to determine whether an element y is in S. Despite the fact that this technique is quick and
effective, it is possible to obtain false positives if the bits were accidentally changed from 0 to 1
during the intercalation of another element y where y ∈ S and y neq x. Figure 3 [41] provides
a diagrammatic representation of the general structure of a Bloom filter.

Figure 3. Bloom process.

Bloom filter-based schemes can be made more secure by using a randomly generated
key instead of the same key for every filter. Additionally, it is recommended that the
key length be at least as long as the Bloom filter, which is the second and most crucial
condition. Since absolute secrecy can only be used in specific circumstances, it is crucial
to include these qualities. A health biometric protection system based on the Bloom filter
that concurrently meets important security needs such as irreversibility and unlinkability
with other desired qualities such as recognition effectiveness and data compression. Due to
its simplicity and lack of a necessity for pre-aligning the biometric templates, the Bloom
scheme quickly gained popularity. Some threats relied mostly on the fact that the encoded
templates were somehow tied to the original health biometric information. In order to
develop some attacks, it was observed that the original biometric template and the encoded
template had the same hamming distance. To reduce extra inputs and outputs induced by
checking multiple tables, modern designs use Bloom filters in repositories stores to quickly
check the existence of a key pair in an individual table.

The IDs of revoked certificates can be fed into a Bloom filter to condense the revocation
list. In probability theory, Bloom determines whether a given element belongs to a set.
However, the member’s query either returns “possibly in the set” or “definitely not in
set”, demonstrating the possibility of the Bloom filter finding false positive results. The bit
vector for the Bloom filter has a length of m bits and is initially commenced to zero. The
certificate serial number Sensori is kept in the bit vector for certificate revocation list (CRL)
compression after being hashed using the k-hash algorithms. In order to save the element
Sensori, all addresses in the m bit vector that are pointed by the K hashes of the certificate

10



Electronics 2023, 12, 1011

are set to one. The position of the prepared Bloom is compared with the hashed location of
the given Sensori of the certificate in order to validate it in the vector of the Bloom filter.
It is possible that the given Sensori of the certificate is on the list if all bit locations are set
(matched), otherwise, it is not. In spite of this, it is possible to set the bit to one multiple
times since different hashes may point to the same place. The bit vector is made up of the
hashes of various Sensori for the certificates. As a result, a false match occurs, and the false
positive rate is computed as follows. The chance that the location Bi is set to one is given
by (1 − (1 − 1/m)KN)K, where

P(FalsepositiveRate) = (1 − (1 − 1/m)KN)K (2)

Consequently, a non-revoked certificate could be interpreted as revoked, which could
cause the search to return that is inappropriate for the filter [42].

3.4. Pseudorandom Number Generator

In wireless networks with limited resources, such as WSN, pseudorandom number
generators (PRNGs) are a well-liked option for cryptographic methods for key generation.
This is partly because of their capacity to produce distinctive sequences from various seeds.
Furthermore, these generators can produce long-period sequences devoid of repetitions. For
generating key sequences in radio-frequency identification (RFID)/WSN applications, such
algorithms have also been considered. In order to assure bit dispersion in the pseudorandom
sequence, these PRNGs might include nonlinear filter functions or use different feedback
polynomials. However, it should be emphasized that PRNG-based techniques only aid in key
generation and management; for authentication, additional methods, such as hash-based or
trusted third-party-based procedures, should be used in conjunction with them [43].

Strong foundations are necessary for the existing key management strategies. This
might be carried out by improving the basic random number generation procedure that
the BS uses to generate initial random numbers. In addition, key randomness techniques
based on PRNGs have shown strong initial energy-efficient performance for IoT nodes [44],
particularly in health systems. There are several forms of PRNGs that can be applied to
clients’ health applications. Linear feedback shift registers (LFSRs) are widely utilized as
cryptographic primitives, stream ciphers, PRNGs . . . etc. because they are highly simple,
effective, and reasonably quick circuits. However, because LFSRs are linear, predictable,
and dependent on strong seeding, they introduce flaws that have been exploited in previous
systems. The Mersenne Twister is another well-liked PRNG since many programs packages
use it as a standard PRNG. It has a very long time before repeating since Mersenne Twister
relies on the Mersenne prime (219937 − 1). It is a highly quick and effective PRNG, which
leads to its acceptance by many software platforms, including MATLAB, Java, and Python.

With the use of the National Institute of Standards and Technology (NIST) test suite,
the unpredictability of these various PRNG stream outputs was evaluated [45]. To show
that shorter LFSRs often do not produce better randomness than longer ones, two different-
length LFSRs were investigated in the previous method. The 15-tap LFSR failed a number
of the tests as was to be expected, demonstrating its lack of security as a PRNG. The
Mersenne Twister came extremely near to passing one of the tests, but it did not achieve the
minimum acceptable pass rate (98.65% vs. 98.7%). The performance of the PRNG scheme
was then assessed using session key streams produced using the same PRNGs. A stream
of 80,000 128-bit was created with each PRNG using a random 1024-bit (providing over
10 million bits for statistical testing per PRNG). The NIST test suite was then used to verify
the randomness of the produced bits. The weaker LFSR’s subpar results were effectively
concealed by the PRNG scheme, and all PRNG tests passed. Following the execution of
these two test cases, more thorough NIST statistical tests were conducted to look for further
trends and defects in the output. All PRNGs worked Absolutely fine, however, the 15-tap
LFSR failed. Therefore, using the security scheme, any PRNGs other than the 15-tap LFSR
are considered to be adequately safe. An additional layer of security is provided on top of
the PRNG depending on the size of the window utilized and the initial starting index (both
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internal states of the security scheme), which should be preserved safely in the case of a
PRNG compromise. A robust PRNG, such as a cryptographically secure PRNG (CSPRNG),
however, would still prevent an attacker from generating a correct derived key even if the
internal state of the security scheme were exposed [45].

4. The Proposed Method

This paper investigates protecting a heterogeneous WSN in which the sensors have
limited capacities and are clustered in diverse ways based on the HEED protocol. Each
cluster has a CH who is in charge of the member nodes’ communication and collecting the
information. The member node performs one task and transmits the information from the
surrounding area to the group’s leader. Each connected party in the network has to have a
secure link in order to protect the transferred information. It should share the secure key to
perform cryptographic activities and meet security requirements. Therefore, the proposed
method includes key generation, encryption and decryption procedures, key updating and
sensor add/delete.

4.1. Key Generation

Prior to placement in the target health area, each sensor is pre-loaded with a key, PRNG,
and unique identifier. After the deployment phase, clustering is carried out utilizing the
HEED protocol, as previously indicated. The key between each connected node should now
be established. The key between neighboring cluster heads and the cluster head and the BS
is managed by applying the Bloom scheme, which is utilized in our proposed method in an
efficient manner that maintains WSN resources, PRNG is used to generate keys between
cluster heads and member nodes.

4.1.1. Key Generation between CH-CH and CH-BS

The Bloom scheme provides high security, and a low amount of overhead achieves a
balance in the use of each node’s resource and provides scalability. As the standard matrix
is a square matrix with zeros and ones to simplify the components similar to the columns,
we employed an adjacency matrix to decrease processing and storage. All sensors that are
a specific sensor’s neighbors are filled with ones in this adjacency matrix, while the other
elements are provided with q-1 so that they cannot contain zeros. The adjacency matrix
lowers storing the columns in the node’s memory. Subsequently, any node can build an
adjacency matrix. As Bloom’s approach, the prime number is important to produce the
keys, which number depends on the required key length. The following array shows the
adjacency matrix in its original binary form.

∣∣∣∣∣∣∣∣
1 1 0 1
1 0 0 0
0 0 1 1
1 0 1 0

∣∣∣∣∣∣∣∣
The steps for computing the key are shown below.

• First step: We select a prime element from the field GF(q), where q is bigger than the
key length and q > N. Next, our method constructs a public matrix G based on the
sensor neighbors that is N × N in size relying on the λ, value a number of rows with
N columns.

• Second step: The BS produces a D symmetric matrix of size (λ + 1) × (λ + 1). Then, it
computes matrix A by A = (D · G)T .

• Third step: All rows of matrix A stored in a memory of the sensors. When sensor
i wishes to connect with sensor j, sensor i multiplies the row Ai with the column
Gj. Then the result is a secret key. To demonstrate the operation of the modified
Bloom’s method using an adjacency matrix. For example, the network has 6 sensors,

12



Electronics 2023, 12, 1011

for instance, N = 6, lambda = 3 (secure parameter), and q = 29 (prime numbers).
Modified adjacency matrix:

∣∣∣∣∣∣∣∣∣∣

28 1 1 28 28 28
1 28 28 1 28 28
1 28 28 1 1 28
28 1 28 1 28 28
28 28 1 28 28 28

∣∣∣∣∣∣∣∣∣∣
Public matrix (G): ∣∣∣∣∣∣∣∣

28 1 1 28 28 28
1 28 28 1 28 28
1 28 28 1 1 28
28 1 28 1 28 28

∣∣∣∣∣∣∣∣
Secret semantic matrix (D): ∣∣∣∣∣∣∣∣

3 5 2 7
5 6 9 1
2 9 3 5
7 1 5 4

∣∣∣∣∣∣∣∣
A= (D.G)Tmod 29: ∣∣∣∣∣∣∣∣∣∣∣∣

26 9 5 24
3 20 24 5
18 18 14 26
22 20 28 14
16 26 16 22
12 8 10 12

∣∣∣∣∣∣∣∣∣∣∣∣
To suppose two nodes such as sensor 2 and sensor 5, who wish to communicate with

one another, we shall multiply sensor 2’s private row from matrix A, which is A (2) in
sensor 5’s public column, by G. (5). In a similar manner, sensor 5 multiplies its private row
A (5) in node 2’s G public column (2). The previous operation will generate the shared
secret key for sensors 2 and 5.

K5,2 = A5 · G2 = |16 26 16 22| =

∣∣∣∣∣∣∣∣
1
28
28
1

∣∣∣∣∣∣∣∣
= 1214 mod 29 = 25

K2,3 = A2 · G3 = |3 20 24 5| =

∣∣∣∣∣∣∣∣
28
28
1
28

∣∣∣∣∣∣∣∣
= 808 mod 29 = 25

It used the initial key to cluster-head for encrypting any row of the A matrix. The row for
a certain cluster head and key ID should transmit. CBC-RC5 is the encryption method
utilized. CH will receive a message with its row and key ID and will work to decrypt it
before storing it in the sensor’s memory. Now each cluster head has its own unique row
and key ID. It should be formed as the shared key between CH-CH and BS-CH. Several
of CHs directly communicate to the sink over a single hop and others are not directly
connected to the sink but through neighboring cluster-head, allowing them to broadcast
data across them until they reach the base station. The shared key is calculated as follows:

Shared key Ni = Row of Node i * Public column of Node j;
Shared key Nj = Row of Node j * Public column of Node i.
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4.1.2. Key Generation between CH-Sensors

Before deployment, each sensor node was pre-loaded with an initial-key that was
utilized to form a key between the CH and the member sensors. The CH and member
sensor both through the suggested PRNG generate a shared key, and the authentication
key is derived from the shared key using the PRNG. Figure 4 shows the PRNG process
to generate the shared key. First, we divide the input initial key value into four parts (K1,
K2, K3 and K4). Second, we use a set of variables X, Y, Z, Q, T, V, F and U and a set of
operations such as XOR, not, addition and left shift (<<) to obtain high randomness and
then store the random result in four registers A, B, C and D to obtain the shared key of
64 bits.

• Step1: The initial key has been split into four parts K1, K2, K3, and K4

1. For j from 1 to 32

– Z [Bit XOR(K1, K3)]
– Y [Bit XOR(K2, K4)]
– For u from 1 to 16
– V [swapping(Y) << 5]
– End
– X addition(Z,V) module 216

– T [Bit XOR(Z,Y)]
– Q [Bit XOR(V,X)]
– For i from 1 to 16
– U [swapping(Q) << 9]
– end
– F addition(T, U) module 216

– a1 [Bit not(X)]
– end

2. For j from 1 to 16

– For s from 1 to 16
– b1 [Bit not(V)]
– end
– c1 [Bit XOR(V, F)]
– For n from 1 to 16
– d1 [Bit not(F)]
– end

end
A - [binary Vector to Hex(a1)]
B - [binary Vector to Hex(b1)]
C - [binary Vector to Hex(c1)]
D - [binary Vector to Hex(d1)]

• Step2: The four registers [A,B,C,D] combine to form the final key (shared key-64 bit).

4.2. Encryption and Decryption Procedures

For the sake of providing high security, the security requirements (confidentiality,
integrity, and authentication) should be met. A combination of CBC-RC5 is employed in
this work to do this task at once as shown in Figure 5. In order to protect the shared key
(SH-K), our proposed method inserts this key (generated from the previous random PRNG
process) into the CBC-RC5 algorithm for encryption, as this algorithm is known for its
ability to block analysis, differential and node capture classifications attacks in addition
to its speed in encryption. Hence, the output of this algorithm is the Auth-K key which is
used to securely protect the shared key of the health sensors (CH-Sensors).
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Figure 4. PRNG process with a shared key.

Figure 5. Diagram of CBC-RC5.

4.3. Key-Updating

The key must be updated on a regular basis after time has passed to prevent the hacker
from having access to existing key data. The sink transfers a new row and K-id encrypted
by initial-key to the CH. In this case, our proposed method changes the shared key between
CH-CH and CH-BS regularly (see Section 4.1.1). The PRNG is used in conjunction with the
previous Auth-K to update the Auth-K. Additionally, the shared key between CH and sensors
needs to be updated. The existing shared key between CH-sensors is used in the PRNG (see
Section 4.1.2) to create two new keys: a new SH-K and a new Auth-K between CH-Sensors.
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Sensor Add and Delete

The new sensor can be declared as a cluster head or linked as a member node to
another cluster head. If the new sensor becomes a CH, it transfers a need data to the BS,
which the sink responds to with a row and key-ID for the new sensor. Then, as mentioned in
the key establishment phase, it will generate a shared key. If the additional sensor becomes
a member sensor of one CH. To authenticate the new sensor and obtain the new member’s
initial-key the CH transfers data to the sink, after which the shared key is generated as
previously mentioned. If any sensors fail or become compromised, the sink sends out
messages to all sensors in the network, instructing them to eliminate the node’s ID from
the nearby table.

5. Results

This section will explain the performance and security results of our proposed method.
Our proposed method focuses on the use of heterogeneous WSN in medical environments
with static locations for sensors because firstly these environments are important for peo-
ple’s lives, secondly, the use of this proposal may not be suitable for other environments
such as military, natural phenomena such as earthquakes . . . etc. which depend on random
distribution of sensors, thirdly, the use of a static distribution of sensors in medical environ-
ments makes it easier for us to evaluate performance accurately and without fluctuations.

5.1. Performance Results

The proposed method depends on the distribution of 100 nodes in an area of 100 m × 100 m
where the position of the BS is (50.50). The nodes consist of two types: 80 nodes have low
resources (0.5 joules of energy, 25 bands, low compute capacity), and 20 nodes have higher
resources (2 joules of energy, 40 bands, low compute capacitance). Figure 6 depicts WSN in
our proposed method. The distribution of sensors in our method depends on the static dis-
tribution because it is applied in a healthy environment. Furthermore, MATLAB 2020b was
used to perform the simulation under Windows7 64 bits operating system with CPU i5-2540M
@ 2.60 GHz and RAM 4.0 GB. Examining the performance of our method is very important
but it is very difficult to find similar methods to our method under the same conditions and
parameters. Therefore, we tried to find the closest existing method and compare it with our
method to prove its superiority and acceptability. Our proposed method is compared with the
two existing methods: A highly dynamic secret key management (DSKM) [21] method and a
smart security implementation (SSI) [22] method for WSN nodes under the same circumstance.
Figure 7 displays the clustering stage utilizing the HEED approach. This figure shows the
correlation of the sensors to the closest CH based on the HEED method.

Figure 6. Random-distribution of the sensors.
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Figure 7. The clustering stage.

Figure 8 displays the energy expendable for generation shared keys comparison with
the DSKM and SSI methods. The result is that our method expends less energy than the
others. Where we note that our method performs significantly better than SSI in energy
conservation and slightly better than DSKM, this means that the sensors in our method
will collect health data for a longer period.

Figure 9 displays the size of memory used in cluster heads. In terms of memory expen-
diture in CHs, we notice in this figure that SSI is less memory expenditure compared with
our method and DSKM but DSKM suffers from the different and unstable fluctuation of
memory expenditure, generally, our method is relatively stable in memory usage compared
with SSI and DSKM.

Figure 10 displays the size of memory used in the member sensor. In terms of memory
expenditure in sensors, our method has a size of memory used less than precedent methods,
which require twice the amount of memory. Figure 10 shows that SSI and DSKM are very
memory-consuming compared to our method. Where we notice that the sensors in SSI
are very memory-consuming compared to DSKM and our method. However, this figure
shows that the health sensors in our method do not require large memory expenditures
because we use lightweight techniques to generate shared keys and authentication keys.
Figure 11 displays the processing time for generation shared keys. In comparison to the
two existing methods, our proposed method to generate keys is lightweight. The use of
HEED, RC5, Bloom and PRNG achieves fast and lightweight operations, which makes
the processing time of our method very fast compared to SSI and DSKM. As we notice
from Figure 11 that DSKM requires a very large processing time compared to SSI and
our method. Finally, we note that our method is superior to SSI and DSKM in terms of
energy consumption, memory expenditure in CHs, memory expenditure in sensors and
processing time. However, there are some limitations to the proposed method. First, if the
sensors are randomly distributed (in environments other than healthy ones), the results
may differ. In a healthy environment, we can put the sensors in static locations, which
provides the ability to control the stability of the results, but if they are used in a different
environment, for example, the military, which requires random distribution, which may
lead to different results. Data size and key sizes also can affect the results (it is left for future
work). Duplicate data/information or decryption without detection of the encryption
breach could consume WSN resources which are not addressed in this proposal.
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Figure 8. Energy consumption test.

Figure 9. Size of memory used in cluster-heads.

Figure 10. Size of memory used in the member sensors.
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Figure 11. Processing time for generating shared keys.

Theoretically, a comparison of some recent references with our proposed method shows
the superiority of our proposal in terms of performance. Refs. [24,25] used asymmetric crypto-
graphic algorithms such as ECC for the key generation which will add significant costs to WSN
resources while our method is based on PRNG which is a lightweight key generation method.
In addition, in [26,27], the authors did not specify a suitable method for routing information,
parameters, and sharing keys within the sensor network while our method relies on HEED
which provides a suitable routing for sensor energy conservation. Moreover, the ref. [28]
depends on randomly distributing the sensors, this leads to different distances between the
sensors which will lead to a significant increase in the sensor communication expenses, this
problem is avoided in our proposal due to the static distribution of the sensors in the medical
environment. Finally, the ref. [29] relies on hash-intensive operations as well as encryption
operations in key management which will negatively affect the computational costs of the
sensors while our method relies on Bloom-lightweight key management.

5.2. Security Results

The attacker attempts to use node capture attacks to compromise information and
WSN parameters. Five classifications of capture attacks are possible: sensor node, sensor
CH, BS, and more than one sensor node or CH. These attacks try to penetrate shared keys,
authentication keys and availability. The flaws that were exploited by capture attacks
include problems with dictionary and forward secrecy, improper parameter distribution, ir-
rational design purpose, ineffective verification, and unsecured parameter communication.

• Sensor node capture attack: When the attacker compromises a sensor and obtains
some previous parameters such as SK-K, they try to use that key in future sessions
of the WSN. In our proposed method, all sensors use new SH-K for each session.
Therefore, when a hacker performs a sensor node capture attack on our WSN it will
not affect the confidential information of other sensors.

• Sensor CH capture attack: When the hacker succeeds in executing this attack on CH.
It tries to use the previous Auth-K to make all its sensors trust it and send all data and
information to that hacker in that session. In our proposed method, the sensors within
the cluster do not handle the old Auth-K. Thus, this attack cannot compromise WSN
information by relying on a single CH, namely, our proposed method resists the CH
capture attack.

• BS capture attack: We assume that BS is safe against capture attacks. However,
assuming that the hacker was able to penetrate the BS either remotely or by stealing
the BS device. The hacker will not benefit from the previous information of sensors
or CHs because all security parameters (such as SH-K and Auth-K) in our proposed
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method are generated instantly/unique by PRNG and Bloom and are hidden by RC5.
However, the hacker may find some data collected by sensors. First, we assume
that the data is transferred periodically to a central server so that even if the hacker
tampered with this data, the original copy will be safe. Second, our research focuses
on security key management and not the data collected. Therefore, our method is able
to block BS capture attacks.

• A capture attack of more than one sensor node: If the hacker was able to compromise
two or three sensors. Then he tried to analyze the obtained security parameters (such
as Auth-Ks) for these sensors. The hacker cannot use these current parameters to hack
network information in the current session. Because our method uses the RC5 algorithm,
which has the advantage of preventing analysis and differential risks. Therefore, our
method prevents this attack from extracting security parameters from Auth-Ks.

• A capture attack of more than one CH: When a hacker can compromise two CHs or
three CHs. It tries to use the security parameters available from the compromised
CHs. However, our proposed method uses a Bloom filter between BS and CHs to
manage and verify the exchanged keys. The hacker cannot use the old parameters
to communicate with the BS because these parameters will be rejected by the BS.
Therefore, our proposed method is able to prevent this attack.

Table 2 shows the comparison of security features between the proposed method and
the security key management methods in WSN. Where Sym is symmetric encryption and
Asym is asymmetric encryption. The [23,27,30] methods are not discussed for classifications
of node capture attacks. This indicates that their methods can be an easy target for various
classes of node capture attacks. While our method and ref. [31] investigated different
classes of these attacks. However, ref. [31] did not discuss compromising multiple sensors
and CHs, nor did they specify countermeasures. Moreover, our method provides high
randomness (by using PRNG) to the shared keys which is superior to existing methods that
use low or medium randomness. The high randomness gives Auth-Ks and SH-Ks keys
resistance to analysis and deferential threats. Finally, our method uses a flexible manner
such as the Bloom scheme to manage security keys where Bloom is not used in the existing
methods.

Table 2. Comparison of key management methods with our proposed method.

Security Feature Qin et al. [23] Ahlawat and Dave [27] Liu et al. [30] Wang et al. [31] Proposed Method

Anti node capture attacks One One One Many Many
Encryption type Sym Sym/Asym Sym Sym
Flexibility Yes
Forward secrecy Yes Yes Yes Yes
Info. hiding Yes Yes Yes
Keys randomness Low Medium Low Medium High
Scalability Low Low Medium Low High

6. Conclusions and Future Trends

For continuous data collection and monitoring, a wireless sensor network generally
comprises sensor nodes dispersed in areas sensitive to data, such as the health sector. All
sensor nodes gather data, which is then transmitted either directly or indirectly to the base
station. Due to the nature and variety of applications of WSNs, Security has constantly
been a serious problem. In a heterogeneous/hierarchical WSN, for securing connections in
all hops a security method has been proposed. This approach provides strong security by
attaining confidentiality (RC5), management (Bloom) and randomness (PRNG), in which
the information is encrypted/decrypted and authenticated in each stage until it reaches
the target node, resulting in increased secrecy of the transmitted message. In addition, this
approach has great scalability and flexibility. Furthermore, our proposed method provides
high node capture resistance, as the attacker must capture (λ + 1) of cluster heads to
compromise the cluster heads’ keys. Whereas the capture of a member node has no impact

20



Electronics 2023, 12, 1011

on the other nodes because each member node possesses key information that is unique.
However, the sensor’s resource is employed in an inequality manner to ensure network
balance, resulting in a WSN method that is both efficient and secure. For future directions,
we intend to investigate more Bloom filters to support key management. In addition, the
accountability requirement will support the robustness of the key management scheme
if added to all network devices, which will enhance the security of network device key
ownership. Furthermore, we plan to extend the use of WSN within IoT applications to
quickly transmit sensor-collected health data anywhere but this will require more attack
testing and performance evaluation with more modern methods.
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Abbreviations

This paper uses the following abbreviations:

Auth-K Authentication key
BS Base station
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CH Cluster head
HEED Hybrid energy efficient distributed
ID Identifier
PRNG Pseudo-random number generator
SH-K Shared key
Sym/Asym Symmetric/Asymmetric
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Abstract: In the Internet of Things (IoT), security is a crucial aspect that ensures secure communication,
transactions, and authentication for different applications. In IoT security, maintaining the user
interface and platform security is a critical issue that needs to be addressed due to leaky security
distribution. During communication, synchronisation and security are important problems. The
security problems are caused by the adversary impact and vulnerable attacks, leading to service
failure. Therefore, the Permutated Security Framework (PSF) is designed to manage security in the
IoT by providing secure communication, transactions, and authentication for different applications.
The PSF uses time intervals to manage transaction security. These intervals are secured using
end-verifiable keys generated using the conventional Rivest–Shamir–Adleman (RSA) technique in
IoT-based communication-related applications. In this approach, the key validity is first provided
for the interval, and in the latter, the access permitted time modifies its validity. The security of
transactions is managed by dividing time into smaller intervals and providing different levels of
security for each interval. By using time intervals, the framework is adaptable and adjustable to
changes in the system, such as user density and service allocation rate, adapting parallel transactions
per support vector classifications’ recommendations. The proposed framework aims to synchronise
interval security, service allocation, and user flexibility to mitigate adversary impact, service failures,
and service delays while improving the access rate and transactions. This allows for more flexibility
and better management of transaction security. The proposed framework reduces adversary impact
(10.98%), service failure (11.82%), and service delay (10.19%) and improves the access rate by 7.73%
for different transactions.

Keywords: Internet of Things; RSA; security; support vector machine; wireless sensor networks

1. Introduction

The Internet of Things (IoT) is a rapidly growing technology that connects everyday
devices to the internet, allowing them to collect and share data. It encompasses a wide
range of devices, from smartphones and laptops to home appliances, industrial equipment,
and even automobiles. It helps to increase the communication process among users and
organisations. This technology has the potential to revolutionise many industries by
enabling more efficient and automated processes, improved decision-making, and new
business models. IoT is widely used in smart applications to enhance the system’s overall
performance and provide a better user experience [1]. As the number of connected devices
grows, so do security and privacy concerns. Additionally, IoT systems are distributed
and open; therefore, they are vulnerable to various security threats such as hacking, data
breaches, and unauthorised access. IoT nodes transfer lightweight data among the users
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and provide a better authentication process. Security is a major concern in IoT due to the
large amount of data that needs to be managed. IoT is used in smart devices and wireless
sensor networks (WSN) to enhance user services [2]. Proper authentication processes
are used to address security issues, such as Authentication and Key Agreement (AKA)
schemes. AKA schemes are applied in IoT to identify unauthorised persons from accessing
the personal information of users [3]. A secret session key is shared with the users for the
authentication process, and authentication will be declined without the key. AKA helps
protect users from attackers by providing a better authentication process and maximising
the system’s performance by ensuring users’ security and privacy. WSN is also used in
security issues to find the users’ exact location and identify intruders. While authenticating,
a device’s current location is traced, which helps to finalise the authentication process [4,5].

The IoT is widely utilised in various applications to improve communication among
organisations and users and provide better services. Data processing is one of the main
tasks in IoT, which helps to improve user performance [6]. IoT enables users to transfer
data or information from one person to another using smart devices. Data transaction or
transfer allows users to send information from their current location without travelling [7].
However, data transfer may also cause some security threats, and a proper authentication
process is needed to ensure a secure data processing system [8]. Privacy and security are
major concerns in IoT while transferring data. To address these concerns, technologies such
as radiofrequency identification (RFID) are used in IoT to enhance security and privacy.
RFID interacts with tags of the information and provides a better solution to security
issues [9]. RFID tags have electronic product codes for each transaction, which helps to
track the exact whereabouts of the data being transferred. WSN is also used in IoT and
has nodes that identify the information’s frequency and bandwidth. Using WSN in IoT
applications makes the users’ communication process safe and secure [4,10].

Synchronised security measures play a crucial role in every IoT application. WSN is
used in IoT to ensure the users’ security and prevents data processing errors. Independent
nodes identify security errors and eliminate unwanted threats [11]. WSN captures the users’
location by analysing the network’s frequency and bandwidth, which plays a vital role in
the authentication process. WSN also synchronises the security process by reducing the
latency rate in services and providing better services to the users at the needed time [12,13].
RFID is also used in IoT for communication, where interacting tags are identified based
on the device’s frequency and ensure the users’ security [14]. Electronic Product Code is
used in every transaction process to track the data’s whereabouts and secure the users’
information from attackers. RFID is analysed by a classification, which is performed based
on certain features of the users. AKA ensures the security of the users in a synchronised
form by providing a secret session key to users from the device for an authentication
process. The session key helps users to prevent cyber-attacks [11,15].

The proposed PSF aims to manage security in the IoT by providing secure communi-
cation, transactions, and authentication for different applications. One of the key features
of the PSF is the use of time intervals, which are secured by end-verifiable keys generated
using the conventional RSA technique. In this approach, the PSF creates unique security
keys for different IoT devices and applications by permuting the elements of a set. These
keys are then used to encrypt communications and authenticate transactions between
devices. However, unlike the conventional approach, the proposed approach uses time
intervals to generate the permuted keys. The keys are generated at specific time intervals
and are valid for a limited period. This approach allows for more frequent updates to the
security keys, which helps keep communications and transactions more secure. Even if a
key is compromised, it will only be valid for a short time and will be replaced by a new
key shortly. The RSA technique is used to generate the keys so that they are end-verifiable,
which means that the authenticity of the key is verified at the end of the communication,
which ensures that the communication is secure. It is a widely used and widely accepted
encryption method. It creates a pair of public and private keys used to encrypt and decrypt
data, respectively. In the PSF, the same pair of keys is used to encrypt and decrypt the
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data. This ensures that only authorised devices can communicate with each other and
that transactions are secure. Additionally, the PSF includes a mechanism for updating and
revoking the keys at regular intervals, which allows for the secure management of IoT
devices over time. The time intervals at which the keys are generated and updated can
be adjusted based on the specific requirements of the application. This allows for a more
dynamic and adaptive approach to security, which can help keep communications and
transactions more secure overall.

The paper is structured into the following sections: Section 1 introduces an overview
of the problems of security in the IoT and the need for a framework to manage security
in this context, introducing the PSF and its key features, such as the use of time intervals
and end-verifiable keys generated using the RSA technique. Section 2 illustrates the review
of existing research on security in the IoT and identifies the key contributions. Section 3
provides a detailed description of the proposed PSF, including the initial system setup
and the RSA algorithm used to generate the keys, and explains how the PSF synchronises
interval security, service allocation, and user flexibility to improve the access rate and
transactions. Section 4 presents the results of the research, including the performance
parameters of the PSF, such as adversary impact, service failure, service delay, access
rate, and service transactions, and compares the PSF with the existing system based on
all the performance parameters and analyses the results. Lastly, Section 5 summarises
the key findings of the research and describes the contributions of the PSF to managing
security in the IoT.

2. Related Works

This literature survey explores the various studies and research conducted on IoT
security and privacy issues. With the increasing popularity of IoT and the integration of
interconnected devices and systems, it has become imperative to address the concerns
surrounding the security and privacy of data transmitted over these networks. Various
authentication solutions have been proposed to address these concerns, but they often fall
short in terms of efficiency and practicality as compared to the proposed model. In this
related work, we will delve into the various studies conducted in this field and examine
the proposed solutions and their effectiveness. We will also explore the potential of new
technologies, such as blockchain and elliptic curve cryptography, in addressing these issues
and the challenges that still need to be addressed.

Biswas et al. [16] proposed a scalable blockchain framework for secure IoT transac-
tion processes using a peer network. One of the biggest challenges of combining IoT and
blockchain technology is the scalability of the ledger and the speed at which transactions
can be executed within a blockchain system. The network’s scalability is improved by
balancing the ledger and execution time during the transaction process. A peer network
assists the system in understanding every detail of the transaction and identifying the gap
between ledger bridges. The proposed solution addresses the scalability issues associated
with integrating IoT and blockchain by implementing a scalable local ledger that limits the
number of transactions entering the global blockchain while maintaining peer validation at
both the local and global levels. Experiment results show that the proposed framework
increases transaction security while decreasing network storage size and blockchain weight.
Currently, smart home environments are vulnerable to security breaches; therefore, Yu
et al. [17] created a secure and efficient three-factor authentication protocol for IoT-enabled
smart homes to address the security weaknesses found in Kaur and Kumar’s protocol.
Elliptic curve cryptosystems are used in the proposed protocol to ensure the users’ security
and privacy. The formal and informal security analysis process is done in the proposed
framework for improving users’ privacy. Compared with other existing privacy-preserving
protocols, the proposed framework increases the users’ overall security and improves the
system’s efficiency. Asheralieva et al. [18] designed a mobile edge computing network
mechanism for IoT-based applications to provide system security and scalability. The
proposed method uses the peer technique to identify the blocks of the shared nodes and
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provide better communication to the users during the transaction process. The proposed
system uses a new consensus mechanism in which each peer votes on the outputs of each
block task in its shard, using a reputation-based coalitional game model (RBCGM). RBCGM
is also used here to improve the overall services of the system. Huang et al. [19] intro-
duced a new efficient revocable large universe multi-authority attribute-based encryption
to address the security issues related to controlling access to data in constantly changing
IoT environments. This method supports user-attribute, which is used in a security pro-
cess. Integrating a cloud computing system also increases the network’s overall security.
The proposed scheme supports user-attribute revocation, prevents collusion attacks, and
protects against the collusion attack of revoked and non-revoked users. It satisfies both for-
ward and backward security requirements, making it suitable for large-scale collaborations
across multiple domains in the dynamic and cloud-assisted IoT. It increases the overall
performance of the network by ensuring the security of the users from attackers.

Sadri et al. [20] proposed an anonymous two-factor authentication protocol for pre-
serving the integrity and confidentiality of the transmitted messages in WSNs for the IoT
that addresses the security vulnerabilities of the existing state-of-the-art protocol proposed
by Wu et al. [21]. A WSN is used in the proposed protocol to extend the system’s lifetime.
The proposed method analyses formal and informal problems to secure the authenticating
user process and provide better communication services and are secure against various
known attacks such as sensor and user trace, sensor capture, offline password guessing,
and replay attacks. Dorri et al. [22] established a lightweight, scalable blockchain method
for IoT applications that address traditional blockchain technology’s computational and
scalability limitations. The proposed blockchain method uses a distributed time-based con-
sensus algorithm, which helps reduce latency and system delay rates. It helps to manage
blockchain delays and provides better services to users. Compared with other methods, the
proposed lightweight, scalable blockchain method strongly protects from various security
attacks. Simulation studies indicate that it reduces packet overhead and delay and in-
creases the overall performance and blockchain scalability compared to relevant baselines.
Vishwakarma et al. [23] developed a novel communication and authentication method for
providing identification, authentication, secure communication, and data integrity in the
IoT network. Blockchain and a hybrid cryptosystem technique are used in the proposed
scheme to enhance the security system of the applications. Angular distance based on the
cluster approach is used here to analyse the system’s securities. Analytical results show that
the proposed secure communication and authentication method reduced the computation
time and protected systems from various cyberattacks such as impersonation, message
replay, man-in-the-middle, and botnet attacks.

Peneti et al. [24] introduced a method for managing security, privacy, and confiden-
tiality in next-generation networks such as IoT and 6G by combining blockchain and a
grey wolf-optimised modular neural network approach. The proposed method creates
user-authenticated blocks to manage security and privacy properties, and the neural net-
work is used to optimise latency and computational resource utilisation in IoT-enabled
smart applications. A simulation study is performed to display the over-efficiency of the
system with respect to the multi-layer perceptron and deep learning networks, and it is
shown to have low latency and high security (99.12%). Majumder et al. [25] introduced
a constraint application protocol based on elliptic curve cryptography. It establishes a
secure session key between IoT devices and a remote server using lightweight elliptic curve
cryptography to overcome the limitations of key management and multicast security in
constraint application protocol, which is used for communication between lightweight re-
source constraint devices in an IoT network. The proposed approach provides a constraint
application protocol implementation for authentication in IoT networks, and it is found
to be lightweight and secure after analysing various cryptographic attacks. Lin et al. [26]
introduced a new settlement model for IoT data exchange services that use blockchain tech-
nology to overcome the limitations of traditional centralised models. The proposed model
includes a Bitcoin-based time commitment scheme and an optimised practical Byzantine
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fault-tolerant consensus protocol named ReBFT to ensure fairness and accountability in
the decentralised network. It also ensures users a safe and secure transaction process and
prevents unauthorised authentication. Several experiments are conducted to verify the
feasibility of the proposal. Compared with existing protocols, the proposed scheme raises
the feasibility and service efficiency.

Attarian et al. [27] proposed a communication protocol for secure and anonymous
mHealth transactions using a combination of onion routing, blockchain smart contracts,
and the user datagram protocol to protect the security and privacy of clients’ identities.
The blockchain approach is used in the proposed protocol to ensure the structure and archi-
tecture of the application. The proposed protocol aims to address challenges of anonymity,
untraceability, unlinkability, and unforgeability in healthcare transactions and can detect
malicious clients who send false data and helps to eliminate those details from the database.
The proposed protocol ensures the security and privacy of the users while transacting
data. Experimental outcomes and privacy proofs show that the proposed protocol has a
reasonable computational cost and provides sufficient protection for IoT-based mHealth
transactions. Yazdinejad et al. [28] discussed the challenges of IoT, such as security and
energy consumption. They proposed a solution to mitigate these challenges by combining
blockchain and software-defined networks in IoT networks. The proposed architecture
uses a cluster structure with a new routing protocol. It utilises both public and private
blockchains for peer-to-peer communication between IoT devices and software-defined
network controllers, which eliminates proof-of-work and uses an efficient authentication
method, making it suitable for resource-constrained IoT devices. Software-defined network
controller plays a vital role in this protocol, which helps ensure the users’ security while
processing data. The experimental results show that this proposed architecture performs
better throughput, delay, and energy consumption than other routing protocols. Compared
with other security methods, the proposed protocol increases users’ scalability, security,
and privacy and reduces the computation cost with the help of the blockchain technique.

Srinivas et al. [29] proposed a new lightweight chaotic map-based authenticated key
agreement protocol (CMAKAP) for the industrial environment that aims to increase security
using a fuzzy extractor technique for biometric verification. The authentication process
is done based on the user’s biometrics, personal information, and smart cards, which
help to prevent the users from being unauthorised. The real-or-random method is used
here to analyse the security issues in the applications. The scheme also supports adding
new devices, changing passwords/biometrics, and revoking smart cards. Formal security
analysis and simulation studies were conducted, and it was found that the proposed scheme
provides superior security compared to other existing methods. Pham et al. [30] introduced
a mutual privacy-preserving authentication protocol (MPPAP) by using an elliptic curve
cryptography approach to improve security and protect the privacy of IoT devices while
also being efficient in resource consumption. It helps to provide better communication
services to the users. A secret session key is shared with the users for the authentication
process, ensuring the users’ security and privacy. The proposed model extends previous
works and includes a distributed network architecture and secure communications. The
protocol has been formally proven correct, is resilient to attacks, and has low energy
consumption. Then, the overall summary of the existing works is summarised in Table 1.
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Table 1. Summary of the related works.

Reference Method(s) Purpose Efficiency

Biswas et al. [16] Scalable blockchain framework
To address the scalability issues
associated with integrating IoT

and blockchain.

Increases transaction security
while decreasing network

storage size and
blockchain weight.

Yu et al. [17] Three-factor
authentication protocol

To address the security
weaknesses found in Kaur and

Kumar’s protocol.

Increases the users’ overall
security and improves the

system’s efficiency.

Asheralieva et al. [18] Reputation-based coalitional
game model (RBCGM)

To identify the blocks of the
shared nodes and provide

better communication.

Improves the overall services of
the system.

Huang et al. [19]
Revocable large universe

multi-authority
attribute-based encryption

To address the security issues
related to controlling access to

data in constantly changing
IoT environments.

Ensures the security of the users
from attackers.

Sadri et al. [20] Anonymous two-factor
authentication protocol

To address the
security vulnerabilities.

Preserves the integrity and
confidentiality of the

transmitted messages.

Wu et al. [21]. Three-factor
authentication protocol

To analyse both formal and
informal problems to secure the

authenticating user process.

Manages data security
and confidentiality.

Dorri et al. [22] A lightweight, scalable
blockchain method

To address the computational
and scalability limitations

of traditional
blockchain technology.

Reduces latency and system
delay rates.

Vishwakarma et al. [23] Blockchain and a hybrid
cryptosystem technique

To resolve integrity and
security-related issues.

Reduces the computation time
and protect systems from

various cyberattacks.

Peneti et al. [24]
Blockchain and grey

wolf-optimised modular neural
network approach

To optimise latency
and computational
resource utilisation.

Low latency and high security

Majumder et al. [25] Constraint application protocol

To overcome the limitations of
key management and multicast

security in a constraint
application protocol.

Secures the information from
different cryptographic attacks.

Lin et al. [26] Byzantine fault-tolerant
consensus protocol

To overcome the limitations of
traditional centralised models.

Ensures users a safe and secure
transaction process and
prevents unauthorised

authentication

Attarian et al. [27] Combination of onion routing,
blockchain smart contracts

To protect the security and
privacy of clients’ identities

Addresses challenges of
anonymity, untraceability,

unlinkability, and unforgeability
in healthcare transactions and

can detect malicious clients

Yazdinejad et al. [28] Blockchain and
software-defined networks

To propose a solution to
mitigate these challenges by
combining blockchain and
software-defined networks.

Better performance in
throughput, delay, and energy

consumption than other
routing protocols.

Srinivas et al. [29]
Lightweight chaotic map-based

authenticated key agreement
protocol (CMAKAP)

To increase security by using a
fuzzy extractor technique for

biometric verification.

The proposed scheme provides
superior security compared to

other existing methods.

Pham et al. [30]
mutual privacy-preserving

authentication protocol
(MPPAP)

To improve security and protect
the privacy of IoT devices

Proven correct and resilient to
different attacks while having

low energy consumption.
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3. Proposed Permuted Security Framework

The design goal of PSF is to improve the user flexibility rate of the IoT applications by
reducing adversary fewer services in IoT combined end-user applications. This platform
provides secure transactions, authentication, and communication for various end-user
industrial applications. Its experience in controlling security is synchronising the IoT
platform and user interface. It provides different security threats to be distributed for secure
and dependable transactions through the IoT network. The proposed PSF is illustrated
in the IoT environment as in Figure 1. The cloud and security have the connections
that are used to manage data security. Here, security techniques are utilised to manage
data security.

 

Figure 1. Proposed permuted security framework in IoT environment.

The proposed framework can provide secure data collection and security distribution
for synchronisation between end-user applications and the platform using transaction
time intervals. In this manner, the data transactions, authentication, and communication
through the IoT platform are secured from permitting adversary fewer services to improve
user flexibility harmoniously and the service allocation rate of smart end-user applications,
as shown in Figure 1. The function of PSF assisted in providing a secure data collection and
distribution security. Data collection from the IoT cloud and user side is performed, and
security is the distribution to both sender and receiver. The applications and processing cen-
tres are linked through IoT. Permutated security in the IoT platform and the user interface
is administered to prevent leaky security distribution, adversary fewer services, and service
failures. The IoT environment ensures data transactions between the applications and
processing centres. The operations of the IoT cloud and user interface in the platform are
used for synchronisation, transactions, and authentication. Synchronising fewer services
for the applications and processing centres is processed and analysed using learning.
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Initial System Setup

The IoT network is determined using two terminals: the IoT cloud and the user
interface. The IoT cloud terminals collect data, and user interface terminals administer
security and another mitigating adversary impact. The IoT cloud terminals communicate
with IoT = {1, 2, . . . , z} set of services that can access data from all the end-user applications
from the smart technology. The above IoT transmits various quantities of data in the
different time interval DT = {1, 2, . . . , T}. Let n represent the number of adversaries and
fewer services in the end-user applications. Based on the above definition, the number of
data transfers per unit of time is i such that the collection of secure data transaction ∃i is
estimated as:

∃i =

{
IoT × i × T ∀ IoT → DT, if n = 0

Afs × z−n
IoT

× T ∀ (IoT, n) → DT, else n �= 0
such that

IoT → DT = ∏IoT
i=1 in

and
(IoT, n) → DT = ∑s

i=1 in − Afs ∑n
i=1 in

and
Afs =

Aft
Aft+i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

In Equation (1), the variables Afs and Aft denote the adversary’s fewer service rate and
data transmission in DT. The expressions IoT → DT and (IoT, m) → DT show the mapping
of the IoT cloud and the user interface terminals at the different time interval DT. The data
synchronisation or information from the IoT architecture is concealed into two levels: IoT
cloud network for security. The IoT cloud terminal, the transmission of data, and ∃i are the
sum-up metrics for securing the collection for the mapped DT, where it satisfies. For data
collection, the user interface terminal provides synchronisation and secure authentication.
The synchronisation of data between IoT ∈ i and n are operated with the help of their
mapping and transaction time. According to Equation (1), the given condition n > IoT
specifies less and insufficient data from the IoT network. The different time mapping for the
IoT cloud and the sequential process ∃i rely upon (z × i), which is the evaluating condition
for synchronisation.

Tn = ∏s
i=1

μn
Ti

; where �∃i =
∃i

(i − n)
− (μ− Aft) (2)

Based on the above equation, variables Tn and �∃i represent the different mapping
time instances and sequential collection of data. The above-derived equations are the
reliable synchronisation of the security distribution (Sr), where it is evaluated for each
access level of DT. This estimation is observed for identifying the function n �= 0 and n = 0
for all DT using the conventional RSA technique. This RSA cryptography analysis is an
approach to public-key cryptography, and it is based on random contours over each access
level in that network. The collection of the secured data sequence βTn and �∃i such that
the Sr is defined for all the output for the centre level Ou. The linear output of security
distribution of �∃i in Tn is the synchronising observation for augmenting (z × i). The Ou
and result (Z) are important in defining Sr. The different instances of IoT cloud inputs for
the determination of �∃i for both IoT → DT and (IoT, n) → DT include different mappings
sequences. If the IoT cloud is accessed in the mapping time, it is one; otherwise, it is zero.
Figure 2 presents the synchronisation mapping for linear access.
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Figure 2. Synchronisation mapping process.

The proposed framework performs a mapping based on�Ei indifferent transactions Tn.
The available resources are authenticated using sequence-based validations to improve
the transactions. The proposed framework performs a validity check if the transaction
is authenticated. Therefore, the mapping process is performed for IoT → DT , whereas
synchronisation is achieved as (IoT, n) → DT , as shown in Figure 2. This is performed
to achieve a solution until n �= 0. The solution of the centre-level access output in the
first mapping IoT → DT produces a linear limitable result whereas (IoT, n) → DT extracts
solution of z with n �= 0. The following equation shows the centre-level access output, and
the final result of Z for IoT → DT is estimated. These estimations have functioned for both
the conditions of Aft and the conditional estimation of μ = 1 or μ = 0 in DT. Hence, the
output is accessed for the entire distributed time instance DT. From the above mapping
condition, n serves as an IoT cloud input, and the synchronisation of Afs in IoT → DT
mapping is given as:

Ou
1 = �∃i1T1 + n1μ1

Ou
2 = �∃i2T2 − Aft1 +�∃i1μ

Ou
3 = �∃i3T3 − Aft2 +�∃i2μ

...
Ou

t = �∃itTDT − AftT−1 +�∃itT−1μ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3)

Instead,

Z1 = Ou
1

Z2 = Ou
2 − Afs1i2

Z3 = Ou
3 − Afs2i3
...

ZDT = Ou
t − AfsT−1iT−1

Z1 = �∃i1T1 + n1μ1
Z2 = �∃i2T2 − Aft1 +�∃i2μ− Afs1i2
Z3 = �∃i3T3 − Aft2 +�∃i3μ− Afs2i3

...
ZDT = �∃itTDT − AftT−1 +�∃itT−1μ− AfsT−1iT−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

From the above equation, the linear access solution for each level of data transactions
is determined as Z = �∃iT − Aftt +�∃iμ− Afsn and n = 0, then μ = 1 and �∃itTDT = n∃i
and therefore, Z = n∃iT + n∃i = n∃i(T + 1) is the reliable solution and Sr = 1. Here,
the synchronisation of such IoT cloud systems is retained at once. The secure transaction
requires {Sr, β, IoT} for each level of access DT and this data provides security for the IoT
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information. Therefore, (IoT, n) → DT mediate solution and results are estimated as in the
following equations, respectively.

Ou
1 = ∃i1

Ou
2 = ∃i2 − Afs1 − μi1 i1

Ou
3 = ∃i3 − Afs2 + μi2 i2

...
Ou

t = ∃iT − AfsT−1 − μiT−1
iT−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

where in Equation (5), Equation (6) is derived.

Z1 = Ou
1 = ∃i1

Z2 = Ou
2 + Tn1 −�∃i1 = ∃i2 − Afs1 − i1 + Tn1 −�∃i1

Z3 = Ou
3 + Tn2 −�∃i2 = ∃i3 − Afs2i2 + Tn2 −�∃i2

...
ZT = Ou

t + Tnt −�∃iT = ∃iT−1 − AfsT−1 − μiT−1
+ Tnt−1 −�∃iT−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

The solution, as in the above-derived equations, is obtained by verifying the functions
�∃i = (z − n)∃i and μ = 1 or μ = 0 in each level-by-level manner. If μ = 0, then
ZT = ∃i − μiT−1

it − �∃i is the final output, and if μ = 1, then Aft = 0, and therefore,
the output is Z = ∃i + Tn − �∃i. Hence, if IoT → DT , then Z = n ∃i(T + 1) is the output
and Z = ∃i + Tn − �∃i is the segregated result. From this output, Sr =

[
μ−Afs×Aft

n

]
is the synchronisation value, and this can be updated with all the outputs of Ou

t and
ZT in Equations (5) and (6). This condition is not relevant for the first estimation as in
Equations (4) and (5) because it depends upon all mapped IoT to the DT. Therefore, the Sr
together with β and IoT is accessed by the IoT platform, and hence it remains consistent.
The following instance of collecting data Sr on its existing DT defines the leaky security
distribution of acquiring data. In this condition, the consequence of transactions is observed
in n > i, and then the collection from z ∈ IoT is halted to prevent each data access level
from sender and receiver in the synchronisation, recommendation, and validation process.
The security distributions in the synchronisation of information from the IoT network pass
it on to the end-verifiable key to their participation in the DT. This overcomes permitting
adversaries fewer services and PSF by collecting unwanted or incorrect data. At the
same time, user flexibility is high. The controlled PSF makes certain service delays data
synchronisation within the IoT architecture. In the data synchronisation process, the
transaction follows the synchronisation of user interface terminals. The user interface
depends on (β, Sr, IoT) for synchronising data through end-user applications and the IoT
platform. This data security distribution is administered based on the synchronisation
recommendation and Sr Simultaneously. In this distribution of security process, the end-to-
end verifiable authentication, the keys are distributed between the terminals. Using the
RSA algorithm, the following steps are to generate an end-verifiable key:

1. Select two large prime numbers X and Y such that X �= Y, randomly and autonomous
of each other.

2. Compute
z = XY (7)

3. Compute the quotient function

∅(z) = (X − 1)(Y − 1) (8)

4. Select an integer ε such that IoT < ε < ∅(z), which is relatively prime to ∅(z).
5. Compute �d such that

�dε ≡ 1; (mod (∅(z))) (9)

The key generation process for Tn is illustrated in Figure 3.
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Figure 3. Key generation process in Tn.

The key generation process pursues in Equations (7)–(9) for the requests through the
IoT cloud. The secure transactions for ∃i is verified for N = Tn such that OT is a mediate
update. Based on this update, the DT is performed by verifying QUI such that [Tn, k] is
true, and hence the key assigning is sequential. This ensures maximum authentication
for the Tn for which DT is updated using the β factor, depicted in Figure 3. The public
key consists of the z, the modulus, and ε is the variable representing the public exponent
for sometimes performing encryption, whereas the private key consists of z, the modulus,
and ε for the private exponent and sometimes performs decryption, which can be hidden.
The transmission of data from sender to receiver keeps the private key secret. X and Y are
exposed since the factors of z and allow computation of �r have given ε.

QICT = �r × μi × IoT and QUI = �r × β

such that,
QICT :→ DT and DT :→ β ∀ IoT

QICT :→ DT and DT : → (β− μi × z)∀ (z − n)

⎫⎪⎪⎬
⎪⎪⎭ (10)

Based on the above equation, �r is the random number computation from which the
two large prime numbers �f are fetched for synchronisation. Equation (10) differentiates the
rationality of DT for either IoT Or (z − n) as classified by the support vector classifications.
Now, each level of session access keys k is distributed as:

k = QICT∗PUI ∗
∣∣�f

∣∣ = QUI∗PICT
∣∣�f

∣∣ (11)
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Each level of accessing this session key is valid until the condition T ∈ DT after which
K is synchronised based on �r. Here, the key validity is generated as:

K(∃i) = G
(
Sr|β|∃i

∣∣�f
∣∣K)

and
Security distribution =

{(
QICT

⊕
K(∃i)

⊕ �f
⊕

DT
)
, z

}
⎫⎬
⎭ (12)

Equation (12) specifies the security distribution relies on the condition of z ∈ IoT and
β in the DT. These metrics turn into verifying sequences in the end-user applications. Here,
DT is linked with the k; hence, the changes of DT is existing in �r. The user side verifies
entire security features to improve overall efficiency. The analysed synchronising data is
valid if the T ∈ DT is access level. This access level is computed in different points, such as
permitting overlapping and pursued instances of the following sessions. The classification
process is presented in Figure 4.

 

Figure 4. Classification process.

In the classification process, the access level is defined based on the previous ∃i
such that ZT defines the updates and maximum deviation. This process is differentiated
based on ZDT and ZT for which the classifier performs min-max alignment. The process is
restricted for Tn that is stuck under ZT updates wherein DT is true. This is required in the
other processes to reflect multiple instances and improve access levels, as shown in Figure 4.
In this IoT framework, user access level authentication is prohibited from decreasing the
complexity of communication and extra service delay. The user interface terminal performs
a synchronisation verification check as in the following equation. This security verification
check makes certain appropriate k, DT, and ∃i ∈ z ∈ IoT is synchronised.

[
(IoT → DT)

⊕
Tn

⊕
Y
⊕ �f

]
=

[
∃i

⊕
T ∈ DT

⊕ �r
IoT

⊕
β
]
, ∀ ∃i in DT

[QICT
⊕

μ
⊕

IoT] =
[
QUI

⊕
β
⊕ �r

]
, ∀ z ∈ IoT → DT

G(Sr|β|∃i) = H(�∃i
⊕

Tn
⊕

Sr), ∀ �∃i = z∃i

⎫⎪⎬
⎪⎭ (13)

The authentication and key verification process, Equations (12) and (13), adapts for
IoT → DT where the grouping changes as in Equation (1) do not match for the above condi-
tion. Therefore, the mediate output of Ou

t decides the different data transmission intervals
and, therefore, the mapping. Based on the integrity of the end-user applications is verified
and IoT cloud service instances and autonomous authentication are not lined up properly;
therefore, the delay does not happen. The concurrent sequence and instances-related
data integrities are verified by PSF without requiring extra computations. In addition,
concurrency and integrity-related synchronisation minimise the number of computations
during the verification. The classification procedure maximises the IoT cloud and user-side
integrity and check. On the processing side, sequences are denoted by the user interface
terminal, and security check Sr is utilised to improve the process. In the IoT cloud process,
it is performed as the getting terminal by synchronising X and Y as per β and K. This
synchronisation minimises the adversary impact, service failures, and service delays in
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the end-user application of the IoT terminal. In Table 2, the required sessions for different
transactions are tabulated.

Table 2. Required sessions for transactions.

Transactions Mapping Instances Access Level Required Sessions

40 53 0.27 29

80 93 0.36 69

120 174 0.41 121

160 316 0.68 158

200 210 0.52 136

240 355 0.93 162

Table 2 presents the required sessions for different transactions. As the transactions
increase, Tn is augmented based on �∃i and Ot

u. This improves the synchronisation in
mapping based on Z1 to ZT updates. The RSA-based authentication provides high QICT
in determining the session validity. As the mapping instances increase, the access is open
for high users, varying the required sessions, permitting diverse Tn. Table 3 presents the
session validity (%) under different access level rates.

Table 3. Session validity (%) for different access levels.

Access Level Generated Keys Actual Session Time (s) Validity (%)

0.2 40 62.3 80.7

0.4 117 324.15 85.16

0.6 165 547.37 89.62

0.8 249 625.69 91.15

1 328 710.4 94.2

Table 3 presents the session validity for the proper access level from the observed data.
The active sessions require keys in O1

u to Ot
u updates for which ∅(Z) are required. This

increases the key validity until the session is closed. Hence, ∀�∃i, the Z generation and
k(∃i) is retained at a maximum level using IoT → DT validation. Therefore, a maximum
validity (%) for the allocated access level is generated for different keys. Figure 5 presents
the self-analysis for mapping and updating instances and verification checks observed
under different transactions.

An analysis of instances (mapping and update) and verification checks for different
transactions are presented in Figure 5. The O1

u to Ot
u is assigned for different �∃i and is

mapped with the available resources for which Z1 to ZT is provided. However, Z1 to ZT
is interrupted based on mediate Ot

u solution and hence Z1 to ZDT is updated in different
instances. This is enhanced if the mapping is pursued at a high rate in k(∃i) maximised
instances. The IoT → DT is performed for ZT to ZDT modified update for improving precise
response. Therefore, the verification checks are extended for the session validity and k(∃i)
instances. This is performed under different QICT in ZT to ZDT chances requiring high
verification checks. In Figure 6, the session validity for different access levels is presented.
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Figure 5. Mapping and updating, and verification checks under different transactions.

 

Figure 6. Session validity for different access levels.

The varying access levels require high validity as the transaction increases. In the
proposed framework, the k(∃i) is performed in different QICT. This increases the O1

u to Ot
u

for IoT → DT instances, increasing the validity. The notable feature is the synchronisation
of ZDT and ZT in multiple instances (access) increases the validity requirement. Hence, the
consecutive sequence is required to improve ZDT and service distribution. Moreover, the ad-
verse impact is reduced for extended validity-based verification checks (refer to Figure 6).

4. Results and Discussion

This section elucidates the proposed framework’s performance verified using OPNET
simulations. In this simulation, 80 IoT users performed 20–240 transactions through
six resource servers. The request-to-response rate is varied between 0.7 and 1 with a
mean transaction delay of 120 ms. This experimental scenario considers a man-in-the-
middle attack for deceiving the transactions. With this setup, the metrics of adversary
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impact, service failure, service delay, access rate, and service transactions are compared for
analysis. In the comparative analysis, the following methods are considered: CMAKAP [29],
RBCGM [18], and MPPAP [30]. The NETMASTER CXC-150 modem is utilised for internet
access, Linux IPTables Firewall, Microsoft DNS server, Linux open VPN server, web server,
Windows 2008-IIS 7.0.

4.1. Adversary Impact

The comparative analysis for adversary impact is presented in Figure 7 with the ex-
isting methods. The Tn ∀ �∃i is assessed for n �= 0 and n = 0 conditions under different
transactions for reducing the adversary impact. In the proposed framework, the synchroni-
sation is performed for Sr and βTn. The synchronisation is performed to prevent (Z × i)
augmentation that injects the adversaries. However, the different instances for the above
augmentation are classified using support vectors based on k and PUI. Therefore, the ad-
versary injecting instances in ZDT are updated from which Ot

u is split, and new allocations
are made. The classifications performed for ∃i and (Afs − μ) such that the consecutive
occurrence is reduced. Therefore, the classification is instigated until Z1 to ZT is performed
for O1

u to Ot
u such that ZDT is true. The authentication using RSA performs secured trans-

actions without breaching �∃i and hence the impact is less. Moreover, for k, K (∃i) is
induced by balancing IoT → DT in retaining Tn. Therefore, for Tn and O1

u to Ot
u, validity is

improved in defining less adversary impact for transactions and access levels.

  

Figure 7. Adversary impact analysis.

4.2. Service Failure

In Figure 8, the efficiency analysis of service failure under various transactions and
access levels is presented. The proposed framework reduces service failure based on Z1
to ZT and k verification. First, the (iT−1) in Ot

u is identified as improving Tn and ∃i. If
the ZT is outraged by ZDT, then the classification process is instigated, for which QICT
is performed. The classification for −�∃i and μ = 1 condition distinguishes multiple
adversaries impacted �∃i. Hence, K(∃i) is extended ∀ (T + 1) in Z = n, and hence the
sessions are secured. In this process, ZDT is performed, requiring new z ∈ IoT such that
Tn is retained. As the Tn is retained, the available instances improve the QICT for the
consecutive n > i interval. Hence, (β, Sr, IoT) are consecutively shared in retaining the
session. Therefore, the change in �∃i or ∅(Z) requires a high k, to prevent the failure
of the session. This is recursive for Sr in different transactions, preventing additional
failures. The security is administered by validating Cdε ≡ 1 such that QICT :→ DT is
verified under different users as well. Therefore, the service failures are reduced in the
proposed framework, achieving fair results.
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Figure 8. Service failure analysis.

4.3. Service Delay

The proposed framework achieves less service delay compared to the other methods.
In the proposed framework, ∃i maximised by reducing failures, and hence reassignment
(resource) is less required. The Z1 to ZT based on O1

u to Ot
u as in Equation (3) shows up

as delay without increasing failures. In the QICT definition, QUI = Cr × β and (β− μi)
are first validated for conventional service allocations. Contrarily, if a failure occurs, then
(μi × z) ∀(z − n) is validated for detecting the time requirement. The classifier learning
devices Z1 to ZT as in Equation (6) for ZDT for identifying Sr. Based on Sr, the allocations
are performed. In this allocation, two conditions are verified, namely �∃i = n∃i and
n = 0, and hence the allocations are validated. These validations improve the swiftness
in ∃i, in a concurrent manner, under Tn, reducing additional time. The classifier instance
now relies on Z1 to ZT as in Equation (6) for improving the response. Therefore, the
delay is confined ∀ μ = 1 verified for the above conditions. This is common for different
transactions and access levels, achieving less delay, as presented in Figure 9.

  

Figure 9. Service delay analysis.

4.4. Access Rate

The proposed framework achieves a high access rate for different transactions and
access levels, which is shown in Figure 10. The adversary impacts are mitigated based on
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Z and ∅(Z) processes for securing access and service distributions. The O1
u to Ot

u based
classifications using support vectors are performed to identify ZDT in Z1 to ZT iterations.
Further, the K(∃i) is analysed for improving the access rate beyond the extended �∃i − n∃i
and hence the IoT → DT is improved. In different Tn, the �∃i is analysed for detecting
mediates in OT

u as in Equation (5). Therefore, Z1 to ZT is modified depending on QCT, this
modification has to satisfy two distinct conditions for retaining the access rate. First, n �= 0
in either μ = 1 or μ = 0 such that DT is retained. For the retained DT, Sr is performed based
on z ∈ IoT, and hence the n > i is achieved. If this condition is satisfied, then classification
is improved to reduce the adversary impact. In the second condition, IoT < ε < ∅(z) and
the authentication modes and their access levels are defined. In the proposed framework,
the defined ∅(z) is used for Cr and ε validation for maximising the access level. This leads
to further access delegation regardless of the users and Tn.

  

Figure 10. Access Rate Analysis.

4.5. Service Transactions

The proposed framework achieves high service transactions for different access levels,
which is depicted in Figure 11. The initial Tn is required for improving service distri-
butions without reducing the change in service allocation. In the proposed framework,
DT = {1 to T} is augmented to improving ∃i and hence the n �= 0 is achieved. In this case,
the change in Tn is achieved for multiple iterations as classified by the learning process.
The ZDT update in different instances is required for (T + 1) for Sr = 1, and hence the
∃i are improved. The classifier performs (Cr × β) and (z − n) differentiation for improv-
ing service transactions. In the proposed framework, the validation is performed under
different instances for |Cf|. The DT :→ β ∀ IoT mapping increases Tn for leveraging the
distribution. Therefore, for varying access levels, the transactions are improved without
increasing the overhead. The procedure is general for various ZDT overwhelming service
failures. Then, various transactions and access level-related comparative analyses are
shown in Tables 4 and 5.

The proposed framework reduces adversary impact, service failure, and service
delay by 10.98%, 11.82%, and 10.19%, respectively. Contrarily, it improves the access
rate by 7.73%.

The proposed framework achieves 11.16% less adversary impact, 12.34% less service
failure, 10.19% less service delay, 7.1% high access rate, and 10.12% high service transaction.
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Figure 11. Service transaction analysis.

Table 4. Comparative analysis summary for transactions.

Metrics CMAKAP RBCGM MPPAP PSF

Adversary Impact 7.11 5.93 4.11 2.0575

Service Failure (%) 14.4 10.07 7.28 4.673

Service Delay (s) 0.925 0.795 0.574 0.2967

Access Rate 84.77 90.08 93.89 97.311

Table 5. Comparative analysis summary for access level.

Metrics CMAKAP RBCGM MPPAP PSF

Adversary Impact 7.17 5.94 4.27 2.0718

Service Failure (%) 14.39 10.11 7.65 4.547

Service Delay (s) 0.931 0.758 0.564 0.2918

Access Rate 85.68 90.48 93.62 97.037

Service Transaction 55 89 152 251

5. Conclusions

This article presents an access and transaction adaptable PSF for mitigating the ad-
versary impact over dense IoT services. The secure transaction sequence between the
users/applications and the resources through the cloud is linearly mapped and synchro-
nised for providing high-level access. The sessions are distinguished based on access time
intervals and authenticated using RSA. In the classification process, support vectors are
employed for handling linear and synchronised access between the users. The proposed
framework fits the user and transaction flexibility without deviating from data collection
and update. For ease of service allocation, the classifications are performed based on failing
and mapping updates. This is considered by the classifier for improving the end-to-end
verification checks. Based on the verification validity, the session intervals are modified,
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and hence the synchronisation is retained. The proposed framework reduces adversary
impact, service failure, and service delay by 10.98%, 11.82%, and 10.19%, respectively.
Contrarily, it improves the access rate by 7.73% for different transactions.
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Abstract: An intrusion detection system (IDS) plays a critical role in maintaining network security by
continuously monitoring network traffic and host systems to detect any potential security breaches
or suspicious activities. With the recent surge in cyberattacks, there is a growing need for auto-
mated and intelligent IDSs. Many of these systems are designed to learn the normal patterns of
network traffic, enabling them to identify any deviations from the norm, which can be indicative of
anomalous or malicious behavior. Machine learning methods have proven to be effective in detecting
malicious payloads in network traffic. However, the increasing volume of data generated by IDSs
poses significant security risks and emphasizes the need for stronger network security measures. The
performance of traditional machine learning methods heavily relies on the dataset and its balanced
distribution. Unfortunately, many IDS datasets suffer from imbalanced class distributions, which
hampers the effectiveness of machine learning techniques and leads to missed detection and false
alarms in conventional IDSs. To address this challenge, this paper proposes a novel model-based
generative adversarial network (GAN) called TDCGAN, which aims to improve the detection rate
of the minority class in imbalanced datasets while maintaining efficiency. The TDCGAN model
comprises a generator and three discriminators, with an election layer incorporated at the end of the
architecture. This allows for the selection of the optimal outcome from the discriminators’ outputs.
The UGR’16 dataset is employed for evaluation and benchmarking purposes. Various machine
learning algorithms are used for comparison to demonstrate the efficacy of the proposed TDCGAN
model. Experimental results reveal that TDCGAN offers an effective solution for addressing imbal-
anced intrusion detection and outperforms other traditionally used oversampling techniques. By
leveraging the power of GANs and incorporating an election layer, TDCGAN demonstrates superior
performance in detecting security threats in imbalanced IDS datasets.

Keywords: Generative Adversarial Network; Intrusion Detection System; imbalanced dataset;
machine learning; unsupervised learning

1. Introduction

The process of data science comprises multiple stages, starting with the collection
of a dataset, followed by its preparation and exploration, and eventually modeling the
data to yield solutions. However, since different problem domains have varying datasets,
the data-gathering process may uncover various issues within the dataset that must be
addressed and rectified before proceeding with data modeling. Successfully handling these
problems can significantly impact the model’s accuracy.

One application where machine learning methods are widely used is intrusion detec-
tion systems (IDSs) [1,2]. IDS is employed to monitor the network traffic and identify any
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unauthorized efforts to access that network through the analysis of incoming and outgoing
actions, with the aim of detecting indications of potentially harmful actions [3].

Machine learning (ML) methods, such as supervised network intrusion detection, have
demonstrated satisfactory effectiveness in identifying malicious payloads within network
traffic datasets that are annotated with accurate labeling. Nevertheless, the substantial
growth in network scale and the proliferation of applications processed by network nodes
have led to an overwhelming volume of data being shared and transmitted across the
network. Consequently, this has given rise to significant security threats and underscored
the urgency to enhance network security. As a result, numerous researchers have focused
their efforts on enhancing intrusion detection systems (IDSs) by improving the detection
rate for both novel and known attacks, while concurrently reducing the occurrence of false
alarms (false alarm rate or FAR) [1]. Unsupervised intrusion detection techniques have
emerged as a solution that eliminates the need for labeled data [4]. These methods can
effectively train using samples from a single class, typically normal samples, aiming to
identify patterns that deviate from the training observations. However, the accuracy of
these unsupervised learning approaches tends to decline when faced with imbalanced
datasets, where the number of samples in one class significantly exceeds or falls short of
the number of samples in other classes.

To tackle the issue of imbalanced datasets, oversampling techniques are frequently
employed. Traditional approaches utilize interpolation to generate samples among the
nearest neighbors, such as the synthetic minority oversampling technique (SMOTE) [5] and
the adaptive synthetic sampling technique (ADASYN) [6]. However, a novel generative
model called the generative adversarial network (GAN) has emerged, providing a fresh
framework for sample generation [7]. GAN allows the generator to effectively learn data
features by engaging in a game-like interaction with the discriminator to simulate data
distributions. GAN has demonstrated remarkable advancements in generating images,
sounds, and texts [8–10]. As a result, researchers from various domains are increasingly
incorporating this method into their research endeavors.

This paper proposes a new oversampling technique based on GAN applied for IDS
considering the viewpoint of imbalanced data. The new model is called the triple dis-
criminator conditional generative adversarial network (TDCGAN). This model consists of
one generator and three discriminators with an added layer at the end for election. The
TDCGAN employs a structure comprising a single generator and three discriminators.
The generator utilizes random noise from a latent space as input and produces synthetic
data that closely resemble real data, with the intention of evading detection by the dis-
criminators. Each discriminator is a deep neural network with distinct architecture and
parameter settings. Their primary task is to extract features from the generator’s output
and classify the data with varying levels of accuracy, differing for each discriminator. A
new layer called the election layer is incorporated at the end of the TDCGAN architecture.
This layer receives the outputs from the three discriminators and conducts an election
procedure to determine the optimal outcome, selecting the result that achieves the highest
classification accuracy. This process resembles an ensemble method, where multiple inputs
are combined to produce a superior result. The generator model is designed as a deep
multi-layer perceptron (MLP) comprising an input layer, an output layer, and four hidden
layers. The initial hidden layer consists of 256 neurons, while an embedded layer is em-
ployed between the hidden layers to effectively map input data from a high-dimensional
space to a lower-dimensional space. The second hidden layer comprises 128 neurons,
followed by a third hidden layer with 64 neurons, and a final hidden layer with 32 neu-
rons. The ReLU activation function is applied to all of these layers, and a regularization
dropout of 20% is included to prevent overfitting. The output layer is activated using the
Softmax activation function, with 14 neurons corresponding to the number of features
in the dataset. Each discriminator within the TDCGAN architecture is implemented as
an MLP model, featuring distinct configurations in terms of hidden layers, number of
neurons, and dropout percentages. The first discriminator consists of three hidden layers,
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with each layer containing 100 neurons and a dropout regularization of 10%. The second
discriminator includes five hidden layers with varying neuron counts—64, 128, 256, 512,
and 1024—for each respective layer. A dropout percentage of 40% is applied in this case.
The last discriminator is composed of four hidden layers with 512, 256, 128, and 64 neurons
per layer, accompanied by a 20% dropout percentage. The LeakyReLU activation function
with an alpha value of 0.2 is employed for the hidden layers in all discriminators. Two
output layers are utilized for each discriminator, with the Softmax activation function
applied to one output layer and the sigmoid activation function to the second output layer.
The model is trained using two loss functions: binary cross entropy for the first output
layer and categorical cross-entropy loss for the second output layer. The output from each
discriminator is extracted and fed into the final layer of the model, where the election
process takes place to determine the best result. The dataset [11] used in this paper to
evaluate and test our model is the UGR’16 dataset. There are many datasets for IDSs, such
as KDD CUP 99-1998, CICIDS2017, DARPA-1998 and more [12]; we chose UGR’16, because
it is built with real traffic and up-to-date attacks.

This paper makes two main contributions. Firstly, it addresses the issue of high-class
imbalance by analyzing the UGR’16 dataset. Secondly, it conducts evaluations on this
dataset using several commonly used machine learning algorithms for data balancing.

The rest of this paper is organized as follows: Section 2 presents some of the relevant
studies in this topic. Section 3 gives an overview about IDS and UGR’16 dataset. Section 4
proposes the TDCGAN model. The design, execution and results are given in Section 5.
Finally, Section 6 gives the conclusion and future works.

2. Related Works

The impact of data resampling on machine learning model performance has been
analyzed in multiple studies, since this issue can result in diminished predictive capabilities
of the model.

The concept of employing GAN models to address the class imbalance problem is
introduced by Lee and Park in reference [13]. In general, GAN is an unsupervised learning
technique rooted in deep learning and generates synthetic data that closely resembles the
existing data. The authors in this work used GAN to effectively tackle fitting issues, class
overlaps, and noise through the process of resampling by explicitly defining the desired
rare class. To evaluate the classifier’s performance, the re-sampled data are trained using
the widely adopted machine learning technique called random forest (RF). The proposed
solution demonstrates superior performance compared to the methods currently utilized.
Hajisalem and Babaie in the study referenced in [14] apply swarm intelligence optimization
heuristics, specifically artificial fish swarm (AFS) and bee colony optimization (BCO), for
the anomaly detection process. The detection approach proposed in that research focuses
on reducing the subset of characteristics.

The study referenced in [15] presents a novel solution that applies an optimum allo-
cation technique to efficiently manage large datasets by selecting the most representative
samples. This approach aims to develop a new network intrusion detection system (NIDS)
based on the least support vector machine (LSVM). The samples are arranged based on
the desired confidence interval and the number of observations. The authors in [16] aimed
to tackle the problem arising from the increasing quantity and diversity of network at-
tacks, which leads to insufficient data during the training phase of machine learning-based
intrusion detection systems (IDSs). The authors addressed this issue by examining a con-
siderable number of network datasets from recent years. Each dataset’s limitations, such
as a shortage of attack instances and other issues, are identified. As a result, Kumar, et
al. proposed a new dataset that aims to resolve, or at least alleviate, the encountered
problem [17].

The authors introduced a new IDS system designed to address five common con-
ventional attacks. In this solution, the author constructs a new dataset that surpasses
the UNSW-NB15 dataset. A misuse-based strategy is employed to create a fresh dataset,
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and a gain information technique is applied to collect features from the original UNSW-
NB15 dataset.

Another IDS solution based on GAN was proposed in [18]. Due to the limited number
of known attack signatures for vehicle networks, the author employ the concept of generat-
ing unknown attacks during the training process to enable the IDS to effectively handle
various types of attacks. In the context of vehicle IDS, accuracy is of the utmost importance
to ensure driver safety, as any false positive error could have serious consequences. Tradi-
tional IDS approaches are inadequate for dealing with numerous new and undiscovered
attacks that may arise. The proposed GAN-based IDS solution successfully detects four
previously unknown attacks. The authors in [19] propose a novel method by combining
ADASYN and RENN techniques. This approach aims to tackle the imbalances between
negative and positive instances in the initial dataset, as well as addressing the issue of
feature redundancy. The RF algorithm and Pearson correlation analysis are employed to
select the most relevant features. In conclusion, the studies presented in this section cover
various approaches and techniques for addressing challenges in machine learning-based
intrusion detection systems (IDSs) and class imbalance problems. The introduction of GAN
models in reference [13] offers a promising solution by generating synthetic data to tackle
class imbalances, resulting in improved model performance. The utilization of swarm
intelligence optimization heuristics, such as artificial fish swarm (AFS) and bee colony opti-
mization (BCO), for anomaly detection as described in reference [14] focuses on reducing
the subset of characteristics to enhance detection accuracy. Another study referenced in [15]
introduced an innovative approach that efficiently manages large datasets for network
intrusion detection systems (NIDS). Addressing the problem of insufficient data during the
training phase of IDS, the study mentioned in [16] examined multiple network datasets
and proposed a new dataset to alleviate the limitations caused by increasing network
attacks. Overall, these studies contribute valuable insights and propose effective solutions
to enhance the performance and capabilities of intrusion detection systems in the face of
various challenges, such as class imbalance, limited data, and emerging attack types.

3. UGR’16 Dataset

In this paper, the UGR’16 dataset [11] is used to test the performance of the proposed
model and achieve data balancing. The data are sourced from multiple netflow v9 collectors
that are strategically positioned within the network of a Spanish ISP. An ISP is an Internet
Service Provider. It provides access to Internet for many different hosts (most of them
inside private networks, like homes or companies). The main aspects of the ISP network
infrastructure are as follows:

• Netflow probes are set up on the outgoing network interfaces of two redundant border
routers, BR1 and BR2, which enable access to the Internet. This configuration allows
for the collection of all incoming and outgoing connections.

• The ISP has two different subnetworks. One is termed the core network, where the
services that are not protected by a firewall are located. The second is the inner
network, where firewall services are provided to the clients.

• At the highest level, there is a network of attacker machines consisting of five units,
designated as A1–A5.

• Within the core network, five victim machines specifically for dataset collection pur-
poses are set up. These machines, named V11–V15, are located alongside genuine
clients in an existing network referred to as victim network V1.

• In relation to the inner network, a collective of 15 additional victim machines is
positioned across three separate existing networks, with each network consisting of
5 machines. These networks are designated as victim network V2 (machines V21–V25),
victim network V3 (machines V31–V35), and victim network V4 (machines V41–V45).

The entire dataset comprises two distinct sets: a calibration and a testing set. The
calibration set is used in constructing and adjusting the machine learning models. This
set contains attacks, but they are not controlled, nor labeled, and data that were recorded
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between March and June 2016. it includes inbound and outward ISP network traffic. The
testing set, acquired in July and August of 2016, is used to evaluate the models in the
detection process. For both the calibration and test sets, the collected files are consolidated
into a single file per week for each of the two capture periods. These files are typically
compressed tar files with an average size of approximately 14 GB. The calibration set
consists of 17 files, while the test set comprises 6 files. To anonymize the IP addresses of the
machines in the dataset, the CryptoPan prefix-preserving anonymization technique [20]
was applied. This anonymization process is carried out using the nfanon tool [21]. Table 1
contains the list of different attacks with their corresponding labels in the UGR’16 dataset.

Table 1. List of attacks in UGR’16 dataset.

Attack Label Description

DoS11 DoS One-to-one DoS (denial of service) attack, where the
attacker A1 attacks the victim V21

DoS53s DoS The five attackers A1–A5 attack three of the victims, each
one at a different network

DoS53a DoS The attacks are executed as in DoS53s, but now every
victim is sequentially selected

Scan11 Scan11 One-to-one scan attack, where the attacker A1 scans the
victim V41

Scan44 Scan14
Four-to-four scan attack, where the attackers A1, A2, A3

and A4 initiate a scan at the same time to the victims V21,
V11, V31 and V41

Botnet Nerisbotnet Mixing botnet captures recorded elsewhere in a controlled
environment with our background traffic

IP in blacklist Blacklist It is an attack of class signature

UDP Scan Anomaly-udpscan Depending on the source port of the connection, each
victim host is scanned through a specific range of 60 ports

SSH Scan Anomaly-sshscan An anomaly attack

SPAM Anomaly-spam An anomaly attack

The artificial attack traffic was generated in 2h batches, during which all attack variants
were executed. There are two possible scheduling patterns for the execution of the attack
variants within each batch:

1. Planned scheduling: every attack within the batch is executed at a predetermined and
known time, which is determined by an offset from the initial batch time, denoted
as t0.

2. Random scheduling: the initial time for the execution of each of the attacks is randomly
selected between t0 + 00h00m and t0 + 01h50m, thus restricting the total duration of
the batch to a maximum of 2h.

The UGR’16 is created based on packet and flow data. It contains 16,900,000,000 anony-
mous network traffic flows. The network flow features are derived from actual network
traffic, and these features are detailed in Table 2.

The UGR’16 dataset is divided into 23 compressed files, each of which is assigned
to a particular week. Based on this, 16 of the files are assigned to the calibration class of
datasets, and the remaining 6 to the test class. The size of each file is around 14 GB in the
compressed format, and they can be downloaded in the csv format.
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Table 2. UGR’16 dataset network flow features.

Number Feature Name Type

1 Timestamp date-time
2 Flow duration continuous numeric
3 Source IP address categorical
4 Source IP address categorical
5 Source port number discrete numeric
6 Destination port number discrete numeric
7 Protocol categorical
8 Flag categorical
9 Forwarding status numeric
10 Source type of service discrete numeric
11 Total number of packets Continuous numeric
12 Total number of bytes Continuous numeric
13 Class (Label) categorical

4. Proposed Model

4.1. Data Preparation

The UGR-16 dataset used in this paper contains 16.9 billion records. While the deep
learning algorithms require high hardware resources, such as CPU, memory and GPU
for data processing and training, a subset of data points that cover all types of normal
and anomalous traffic from UGR’16 dataset was selected. The subset selection, which
included all types of attacks, was conducted using specific measures to prevent imbalanced
distributions and bias. The following measures were put in place:

• Stratified sampling: The subset selection process employed stratified sampling tech-
niques to ensure proportional representation of each type of attack. This approach
helped maintain a balanced distribution of attacks in the subset.

• Class balancing: Additional steps were taken to balance the representation of different
attack types in the subset. This might include oversampling the minority classes or
undersampling the majority classes to mitigate the imbalanced distribution.

• Randomization: To minimize any potential bias, randomization techniques were
applied during the subset selection process. This ensured that the selection was not
influenced by any specific order or predetermined biases.

By implementing these measures, the subset selection aimed to create a representative
subset of attacks that avoided imbalanced distributions and potential biases, enabling a
more reliable analysis of the dataset.

This subset was then pre-processed, including cleaning it from the missing values and
removing the duplicate instances. The details of the selected subset are shown in Table 3.

Table 3. UGR’16 subset details.

From To Class Label Counts Percentage

27 July 2016 31 July 2016 background 197,185 98.5%
27 July 2016 31 July 2016 dos 1169 0.6%
27 July 2016 31 July 2016 scan44 578 0.3%
27 July 2016 31 July 2016 blacklist 545 0.3%
27 July 2016 31 July 2016 nerisbotnet 227 0.1%
27 July 2016 31 July 2016 anomaly-spam 170 0.1%
27 July 2016 31 July 2016 scan11 126 0.1%

Within the context of network security, normal traffic tends to occur more often than
malicious traffic, leading to imbalanced class proportions and an imbalanced dataset [22].
This poses a challenge for machine learning, as learning from imbalanced data is a common
issue. In order to address this problem, one potential solution is to either undersample the
majority class or oversample the minority classes.
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In this paper, dataset records with class labels equal to the background are major. The
other class labels are oversampled to obtain a balanced subset of the UGR’16 dataset. The
original number of records and classes of the selected subset is given in Table 3.

Since machine learning algorithms work with numerical data, some features in the
dataset need to be encoded: protocol, source IP, destination IP and class label. One-hot
encoded is used to convert these features. The dataset is then scaled using MinMaxScaler
from the Scikit-learn library to scale the values to the interval [0,1].

Random forest classifier is used to explore the features importance based on mean
decrease in impurity (MDI). The calculation for a given feature’s importance involves
summing the number of splits that incorporate the feature across all trees, proportional to
the number of samples that it splits. Figure 1 shows the highest numerical features of the
UGR’16 dataset based on MDI value. In the proposed model, all the features are included
in the process, being the most important feature is the Source_IP.

Figure 1. The highest numerical features of the UGR’16 dataset based on the mean decrease in
impurity (MDI).

4.2. Setup of Proposed Model

The generative adversarial network (GAN) is a machine learning-based deep learning
method used to generate new data. It is an unsupervised learning task that involves learn-
ing from input data to produce new samples from the original dataset. GAN is used in the
literature in many applications, such as computer vision [23], time-series applications [24],
health [25] and more, making significant advancement and outperformance in data gen-
eration. As many improvements and versions for the GAN are proposed, in order to fit
it with the application domain and increase the performance and model accuracy [26,27],
this paper proposes a new version of GAN called triple discriminator conditional gener-
ative adversarial networks (TDCGANs) as an augmentation tool to generate new data
for the UGR’16 dataset with the aim to restore balance in the dataset by increasing minor
attack classes.

In the TDCGAN, the architecture consists of one generator and three discriminators.
The generator takes random noise from a latent space as input and generates raw data
that closely resemble the real data, aiming to avoid detection by discriminators. Each
discriminator is a deep neural network with different architecture and different parameter
settings. Each discriminator’s role is to extract features from the output of the generator and
classify the data with varying levels of accuracy for each them. An election layer is added
to the end of TDCGAN architecture that obtains the output from the three discriminators
and performs an election procedure to achieve the best result with the highest classification
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accuracy in a form of the ensemble method. The model aims to classify data into two
groups: normal flows for the background traffic with 0 representation, and anomaly flows
for the attack data with 1 representation. Additionally, in the case of anomaly flow, the
model classifies it as its specific class type. Figure 2 shows the workflow of the proposed
TDCGAN model. The setting details of generator and each discriminator are given below.

Figure 2. Workflow of TDCGAN model.

The model of the generator is a deep multi-layer perceptron (MLP) composed of an
input layer, output layer and four hidden layers. Initially, the generator takes a point from
the latent space to generate new data. The latent space is a multi-dimensional hypersphere
normal distributed points, where each variable is drawn from the distribution of the data
in the dataset. An embedded layer in the generator creates a vector representation for the
generated point. Through training, the generator learns to map points from the latent space
into specific output data, which are different each time the model is trained. Taken a step
further, new data are then generated using random points in the latent space. So, these
points are used to generate specific data. The discriminator distinguishes the new data
generated by the generator from the true data distribution.

GAN is an unsupervised learning method. Both the generator and discriminator
models are trained simultaneously [28]. The generator produces a batch of samples,
which, along with real examples from the domain, are fed to the discriminator. The
discriminator then classifies them as either real or fake. Subsequently, the discriminator
undergoes updates to improve its ability to distinguish between real and fake samples in
the subsequent round. Additionally, the generator receives updates based on its success or
failure in deceiving the discriminator with its generated samples.

In this manner, the two models engage in a competitive relationship, exhibiting
adversarial behavior in the context of game theory. In this scenario, the concept of zero-sum
implies that when the discriminator effectively distinguishes between real and fake samples,
it receives a reward, or no adjustments are made to its model parameters. Simultaneously,
the generator is penalized with significant updates to its model parameters.

Alternatively, when the generator successfully deceives the discriminator, it receives a
reward, or no modifications are made to its model parameters. Whereas, the discriminator
is penalized. This is the generic GAN approach.

In the proposed TDCGAN model, the generator takes as input points from the latent
space and produces data for the data distribution of the real data in the dataset. This is done
through fully connected layers with four hidden layers, one input layer and one output
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layer. The discriminators try to classify the data into their corresponding class, which is
done through a fully connected MLP network.

MLP has gained widespread popularity as a preferred choice among neural net-
works [29,30]. This is primarily attributed to its fast computational speed, straightforward
implementation, and ability to achieve satisfactory performance with relatively smaller
training datasets.

In this paper, the generator model learns how to generate new data similar to the minor
class in the URG’16 dataset, while discriminators try to distinguish between real data from
the dataset and the new one generated by generator. During the training process, both the
generator and discriminator models are conditioned on the class label. This conditioning
enables the generator model, when utilized independently, to generate minor class data
within the domain that corresponds to a specific class label. The TGCGAN model can be
formulated by integrating both the generator and three discriminators’ models into a single,
larger model.

The discriminators undergo separate training, where each of the model weights are
designated as non-trainable within the TDCGAN model. This ensures that solely the
weights of the generator model are updated during the training process. This trainability
modification specifically applies when training the TDCGAN model, not when training the
discriminator independently. So, the TDCGAN model is employed to train the generator’s
model weights by utilizing the output and error computed by the discriminator models.

Thus, a point in the latent space is provided as input to the TDCGAN model. The
generator model creates the data based on this input, which is subsequently fed into the
discriminator model. The discriminator then performs a classification, determining whether
the data are real or fake, and in the case of fake data, the model classifies them to their
corresponding type of attck.

The generator takes a batch of vectors (z), which are randomly drawn from the
Gaussian distribution, and maps them to G(z), which has the same dimension as the
dataset. The discriminators take the output from the generator and try to classify it. The
loss is then evaluated between the observed data and the predicted data and is used to
update the weights of the generator only to ensure that only generator weights are updated.
The difference between the observed data and the predicted data is estimated using the
cross-entropy loss function, which is expressed in the following equation:

[LOSS]CE = −1/N
N

∑
n=1

yi.log(p(yi)) + (1 − yi).log[(1 − p(yi)] (1)

where yi is the true label (1 for malicious traffic and 0 for normal traffic) and p(yi) is the
predicted probability of the observation (i) calculated by the sigmoid activation function.
N is the number of observations in the batch.

The generator model has four hidden layers. The first one is composed of 256 neurons
with a rectified linear unit (ReLU) activation function. An embedded layer is used between
hidden layers to efficiently map input data from a high-dimension to lower-dimension
space. This allows the neural network to learn the data relationship and process it efficiently.
The second hidden layer consists of 128 neurons, the third has 64 neurons and the last one
has 32 neurons, with the ReLU activation function used with them all, and a regularization
dropout of 20% is added to avoid overfitting. The output layer is activated using the
Softmax activation function with 14 neurons as the number of features in the dataset.

After defining the generator, we define the architecture of each discriminator in the
proposed model. Each discriminator is a MLP model with a different number of hidden lay-
ers, different number of neurons and different dropout percentage. The first discriminator
is composed of 3 hidden layers with 100 neurons for each and 10% dropout regulariza-
tion. The second has five hidden layers with 64, 128, 256, 512, and 1024 neurons for each
layer, respectively. The dropout percentage is 40%. The last discriminator has 4 hidden
layers with 512, 256, 128, and 64 neurons for each layer and 20% dropout percentage.
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The LeakyReLU(alpha = 0.2) is used as an activation function for the hidden layers in
the discriminators. Two output layers are used for each discriminator with the Softmax
function as an activation function for one output layer and the Sigmoid activation function
for the second output layer. The model is trained with two loss functions, binary cross
entropy for the first output layer, and categorical cross-entropy loss for the second output
layer. The output is extracted from each discriminator and is then fed to the last layer in
the model, where the election is performed, to obtain the best result.

The TDCGAN model can be defined by combining both the generator model and the
three discriminator models into one larger model. This large model is used to train the
weights in the generator model, using the output and error calculated of the discriminators.
The discriminators are trained separately by taking real input from the dataset.

The model is then trained for 1000 epochs with a batch size of 128. The optimizer is
Adam with a learning rate equal to 0.0001. The proposed model allows the generator to
train until it produces a new set of data samples that resembles the real distribution of the
original dataset.

Nevertheless, this training strategy frequently fails to function effectively in various
application scenarios. This is due to the necessity of preserving the relationships within
the feature sets of the generated dataset by the generator, while the dataset used by the
discriminator may differ from it. This disparity often leads to instability during the training
of the generator.

In numerous instances, the discriminator quickly converges during the initial stages
of training, thereby preventing the generator from reaching its optimal state. To tackle
this challenge in network intrusion detection tasks, we adopt a modified training strategy,
where three discriminators with different architectures are used. This approach helps
preventing the early emergence of an optimal discriminator, ensuring a more balanced
training process between the generator and discriminators.

4.3. Training Phase

The primary objective of the training methodology employed in the GAN framework
is for the generator to generate fake data that closely resemble real data, and for the
discriminator to acquire sufficient knowledge to differentiate between real and fake samples.
Both the generator and discriminator are trained until the discriminator can no longer
distinguish real data from fake data. This mean that the generated network can estimate
the data sample’s distribution and achieve Nash equilibrium.

In order to assess the performance of our model with precision, it is customary to
divide the data into training and test sets to produce accurate predictions on unseen data.
The training set is utilized for model fitting, while the test set is employed to measure
the predictive precision of the trained model. The dataset is split into 70% for training
and validation and 30% for testing. The training set is divided into minor class data and
other class data. The TDCGAN model uses the minor class to generate data. The generator
is trained to model the distribution of the anomaly data (minor class), while fixing the
discriminator. The output from the generator is fed as input to the discriminator to predict it.
The error is estimated, and the generator’s weight is then updated. The training continues
until the discriminator cannot distinguish if the input data come from the generator’s
output or from the real anomaly dataset. In the training process, we make sure that all
architectures undergo an equal number of epochs and that the weights from the final epoch
are selected to generate artificial attack samples.

We begin by adhering to this iterative training procedure and ultimately utilize the
generator to produce attack samples. Eventually, we incorporate the generated attack
samples into the training set.

By this, we oversample minor classes in the dataset during the training phase. The
test dataset is then used to test the model performance.
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5. Experimental Results

Within this section, we methodically plan and execute a sequence of experiments, and
subsequently analyze the obtained results.

5.1. Experimental Setup

Our experiments were carried out on the Python Colab Jupyter notebook that runs in
the browser with the integrated free GPUs and freely installed Python libraries. The system
setup is shown in Table 4.

Table 4. System environment specifications.

Unit Description

Processor Intel® Xeon®

CPU 2.30 GHz with No.CPUs 2
RAM 12 GB

OS
Packages TensorFlow 2.6.0

5.2. Performance Metrics

To assess the effectiveness of our proposed model, we employ performance metrics,
such as classification accuracy, precision, recall, and F1 score.

We utilize the metric of accuracy (Acc) to quantify the correct classification of data sam-
ples, considering all predictions made by the model as measured by the following equation:

Acc = (TP + TN)/(TP + TN + FP + FN) (2)

where TP is the true positive, which represents the number of truly predicted anomalies;
TN is the true negative, which indicates the number of truly predicted normal instances;
FP is the false positive indicator that denotes the number of normal instances that are
incorrectly classified as anomalies; and FN is the false negative indicator that indicates the
number of the number of anomalies that are misclassified as normal.

Precision is employed to assess the accuracy of the correct predictions, calculated as
the ratio of accurately predicted samples to the total number of predicted samples for a
specific class as given in the following equation:

Precision = TP/(TP + FP) (3)

Recall, which is known as the true positive rate (TPR), is used to determine the ratio
of correctly predicted samples of a particular class to the total number of instances within
the same class as given by the following equation:

TPR(Recall) = TP/(TP + FN) (4)

Finally, the F1 score computes the balance between precision and recall, evaluating
the trade-off between the two metrics as given in the following equation:

F1 = 2 ∗ ((Precision ∗ Recall)/(Precision + Recall)) (5)

5.3. Experimental Results and Analysis

The performance of the TDCGAN model is evaluated on the testing dataset. The
previous metrics are used to evaluate and compare the results. The results after training
the TDCGAN model for URG’16 dataset balancing are given in Table 5.
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Table 5. Performance evaluation metrics score for TDCGAN model.

Accuracy Precision F1 Score Recall

0.95 0.94 0.94 0.96

Figure 3 shows the loss function while training the model for different numbers of
epochs: 200, 400, 600, 800 and 1000.

Figure 3. The loss function of G: generator, D_A: first discriminator, D_B: second discriminator and
D_C: third discriminator in the TDCGAN model.

We compare the performance of the TDCGAN model for data balancing on the testing
dataset with some resampling methods. The methods are as follows: (1) The synthetic
minority oversampling technique (SMOTE) is a method for oversampling that produces
artificial instances from the minor class. Its purpose is to create a training set that is
either synthetically balanced or close to balance in terms of class distribution, which is
subsequently utilized for classifier training. We use the implementations provided in
the imbalanced-learn Python library, which provides a range of resample techniques that
can be combined for evaluation comparison. (2) Random oversampling is used, which
randomly duplicates the instances from the minor class. (3) Then, we combine SMOTE
with edited nearest neighbor (ENN) SMOTEENN. (4) With Borderline-SMOTE (oversample
technique using Borderline-SMOTE), the minority instances which are near the borderline
are oversampled. (5) SVMSMOTE combines the support vector machine (SVM) with
SMOTE. (6) We oversample using SMOTE-Tomek Links. Tomek Links denotes a technique
used to detect pairs of closest neighbors within a dataset that exhibit dissimilar classes.
Eliminating either one or both instances from these pairs, particularly those from the
majority class, results in a reduction in noise or ambiguity within the decision boundary
of the training dataset. (7) SMOTE_NC (synthetic minority over-sampling technique for
nominal and continuous) is used to oversample data with categorical features. (8) CGAN
(conditional generative adversarial network) is a conditional GAN that generates data under
a conditional generation. Lastly, (9) CTGAN (conditional tabular generative adversarial
networks) models tabular data using CGAN. The results are listed in Table 6 and shown in
Figure 4.
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Table 6. Performance evaluation metrics score for TDCGAN model and other resampling methods.

Model Accuracy Precision F1 Score Recall

SMOTE 0.88 0.86 0.87 0.91
Random Oversampling 0.85 0.89 0.90 0.88

SMOTEENN 0.86 0.89 0.90 0.89
The Borderline SMOTE 0.84 0.87 0.87 0.88

SVMSMOTE 0.89 0.90 0.91 0.89
SMOTE-Tomek Links 0.90 0.87 0.89 0.87

SMOTE_NC 0.85 0.88 0.86 0.85
CGAN 0.83 0.83 0.83 0.83

CTGAN 0.76 0.76 0.76 0.76
TDCGAN 0.95 0.94 0.94 0.96

Figure 4. Performance evaluation metrics score for TDCGAN model and other resampling methods.

After conducting extensive experiments on UGR’16 dataset, our proposed model
showcases its remarkable effectiveness in generating synthetic network traffic datasets,
which in turn aids in the identification of anomalous network traffic. Through bench-
marking, our model surpassed other similar generative models, achieving an impressive
accuracy of over 0.95%.

6. Conclusions and Future Works

The imbalanced distribution of attacks in historical network traffic presents a signifi-
cant challenge for intrusion detection systems (IDSs) based on traditional machine learning
methods. These methods often struggle to effectively address the issue of imbalanced
learning. In response, this paper introduces a novel technique called TDCGAN, a tech-
nology based on generative adversarial networks (GANs), specifically designed to tackle
the problem of imbalanced datasets in IDS. The proposed TDCGAN model consists of a
generator and three discriminators, all implemented using multi-layer perceptron (MLP)
networks. This architecture allows the generator to generate synthetic data closely resem-
bling real network traffic, while the discriminators aim to differentiate between genuine and
attack traffic. To further enhance the TDCGAN framework, an additional layer is added
at the end of the network to select the optimal outcome from the outputs produced by
the three discriminators, enhancing the overall performance of the model. To evaluate the
effectiveness of the proposed approach, the UGR’16 dataset, widely used in IDS research,
is utilized for testing and evaluation purposes. A subset of the dataset is extracted and
divided into training and testing sets. The experimental results showcase the outstanding
performance of the proposed TDCGAN model across various evaluation metrics, including
accuracy, precision, F1 score, and recall. Additionally, a comparison is made with other
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oversampling machine learning techniques, highlighting the superiority of the proposed
method. While balancing datasets can be beneficial, it is important to note that it might
not always be necessary or feasible, especially in cases where the class imbalance reflects
the real-world distribution. In many real-world applications, the distribution of classes is
often imbalanced. For instance, fraud detection, disease diagnosis, or rare event prediction
typically involve imbalanced datasets. By balancing the dataset during training, the model
learns to handle these imbalances and becomes more effective in addressing real-world
scenarios. Additionally, balancing the dataset should be performed carefully to avoid
introducing artificial patterns or losing valuable information from the original data.

As for future work, the proposed TDCGAN model shows promise for application in
IDS within a vehicle ad hoc network (VANET) environment to detect unknown attacks.
This opens up avenues for further research and development in leveraging the capabilities
of TDCGAN for enhanced intrusion detection in dynamic vehicular networks.

Author Contributions: Conceptualization, O.S., M.A. and M.J.; methodology, O.S., M.A. and M.J.;
software, M.J.; validation, O.S., M.A., M.J. and A.M.M.; formal analysis, O.S., M.A., M.J. and A.M.M.;
investigation, O.S.; resources, M.J.; data curation, M.J.; writing—original draft preparation, O.S. and
M.A.; writing—review and editing, O.S. and M.A.; visualization, O.S., M.A. and M.J.; supervision,
A.M.M.; project administration, O.S., M.A. and M.J.; funding acquisition, M.J. and A.M.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by projects PID2020-113462RB-I00, PID2020-115570GB-C22
and PID2020-115570GB-C21 granted by Ministerio Español de Economía y Competitividad; as well
as project TED2021-129938B-I0, granted by Ministerio Español de Ciencia e Innovación.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Surakhi, O.M.; García, A.M.; Jamoos, M.; Alkhanafseh, M.Y. A Comprehensive Survey for Machine Learning and Deep Learning
Applications for Detecting Intrusion Detection. In Proceedings of the 2021 22nd International Arab Conference on Information
Technology (ACIT), Muscat, Oman, 21–23 December 2021; pp. 1–13.

2. AlKhanafseh, M.Y.; Surakhi, O.M. VANET Intrusion Investigation Based Forensics Technology: A New Framework. In
Proceedings of the 2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA),
Karak, Jordan, 23–24 November 2022; pp. 1–7.

3. Susilo, B.; Sari, R.F. Intrusion detection in IoT networks using deep learning algorithm. Information 2020, 11, 279. [CrossRef]
4. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with generative

adversarial networks to guide marker discovery. In Proceedings of the Information Processing in Medical Imaging: 25th
International Conference, IPMI 2017, Boone, NC, USA, 25–30 June 2017; Springer: Cham, Switzerland, 2017; pp. 146–157.

5. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

6. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, China, 1–8 June 2008; pp. 1322–1328.

7. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets Advances in neural information processing systems. arXiv 2014, arXiv:1406.2661.

8. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

9. Su, H.; Shen, X.; Hu, P.; Li, W.; Chen, Y. Dialogue generation with gan. In Proceedings of the AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

10. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.

11. Maciá-Fernández, G.; Camacho, J.; Magán-Carrión, R.; García-Teodoro, P.; Therón, R. UGR’16: A new dataset for the evaluation
of cyclostationarity-based network IDSs. Comput. Secur. 2018, 73, 411–424. [CrossRef]

12. Abdulrahman, A.A.; Ibrahem, M.K. Toward constructing a balanced intrusion detection dataset based on CICIDS2017. Samarra J.
Pure Appl. Sci. 2020, 2, 132–142.

13. Lee, J.; Park, K. GAN-based imbalanced data intrusion detection system. Pers. Ubiquitous Comput. 2021, 25, 121–128. [CrossRef]

57



Electronics 2023, 12, 2851

14. Hajisalem, V.; Babaie, S. A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection.
Comput. Netw. 2018, 136, 37–50. [CrossRef]

15. Kabir, E.; Hu, J.; Wang, H.; Zhuo, G. A novel statistical technique for intrusion detection systems. Future Gener. Comput. Syst.
2018, 79, 303–318. [CrossRef]

16. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

17. Kumar, V.; Sinha, D.; Das, A.K.; Pandey, S.C.; Goswami, R.T. An integrated rule based intrusion detection system: Analysis on
UNSW-NB15 data set and the real time online dataset. Clust. Comput. 2020, 23, 1397–1418. [CrossRef]

18. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based intrusion detection system for in-vehicle network. In Proceedings of the 2018
16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018; pp. 1–6.

19. Cao, B.; Li, C.; Song, Y.; Qin, Y.; Chen, C. Network Intrusion Detection Model Based on CNN and GRU. Appl. Sci. 2022, 12, 4184.
[CrossRef]

20. Fan, J.; Xu, J.; Ammar, M.H.; Moon, S.B. Prefix-preserving IP address anonymization: measurement-based security evaluation
and a new cryptography-based scheme. Comput. Netw. 2004, 46, 253–272. [CrossRef]

21. Haag, P. NFDUMP-NetFlow Processing Tools. 2011. Available online: http://nfdump.sourceforge.net (accessed on 16 June 2023).
22. Ndichu, S.; Ban, T.; Takahashi, T.; Inoue, D. AI-Assisted Security Alert Data Analysis with Imbalanced Learning Methods. Appl.

Sci. 2023, 13, 1977. [CrossRef]
23. Wang, Z.; She, Q.; Ward, T.E. Generative adversarial networks in computer vision: A survey and taxonomy. ACM Comput. Surv.

(CSUR) 2021, 54, 1–38. [CrossRef]
24. Jiang, W.; Hong, Y.; Zhou, B.; He, X.; Cheng, C. A GAN-based anomaly detection approach for imbalanced industrial time series.

IEEE Access 2019, 7, 143608–143619. [CrossRef]
25. Yang, Y.; Nan, F.; Yang, P.; Meng, Q.; Xie, Y.; Zhang, D.; Muhammad, K. GAN-based semi-supervised learning approach for

clinical decision support in health-IoT platform. IEEE Access 2019, 7, 8048–8057. [CrossRef]
26. Wang, X.; Guo, H.; Hu, S.; Chang, M.C.; Lyu, S. Gan-generated faces detection: A survey and new perspectives. arXiv 2022,

arXiv:2202.07145.
27. Xia, X.; Pan, X.; Li, N.; He, X.; Ma, L.; Zhang, X.; Ding, N. GAN-based anomaly detection: a review. Neurocomputing 2022, 493,

497–535. [CrossRef]
28. Durgadevi, M. Generative Adversarial Network (GAN): A general review on different variants of GAN and applications. In

Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India,
8–10 July 2021; pp. 1–8.

29. Zaidan, M.A.; Surakhi, O.; Fung, P.L.; Hussein, T. Sensitivity Analysis for Predicting Sub-Micron Aerosol Concentrations Based
on Meteorological Parameters. Sensors 2020, 20, 2876. [CrossRef] [PubMed]

30. Surakhi, O.; Serhan, S.; Salah, I. On the ensemble of recurrent neural network for air pollution forecasting: Issues and challenges.
Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 512–526. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

58



Citation: Yerima, S.Y.; Bashar, A.

Explainable Ensemble Learning Based

Detection of Evasive Malicious PDF

Documents. Electronics 2023, 12, 3148.

https://doi.org/10.3390/

electronics12143148

Academic Editor: Tomasz Rak

Received: 12 June 2023

Revised: 10 July 2023

Accepted: 12 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Explainable Ensemble Learning Based Detection of Evasive
Malicious PDF Documents

Suleiman Y. Yerima 1,* and Abul Bashar 2

1 Faculty of Computing, Engineering and Media, Cyber Technology Institute, De Montfort University,
Leicester LE1 9BH, UK

2 Department of Computer Engineering, Prince Mohammad bin Fahd University, Khobar 31952, Saudi Arabia;
abashar@pmu.edu.sa

* Correspondence: syerima@dmu.ac.uk

Abstract: PDF has become a major attack vector for delivering malware and compromising systems
and networks, due to its popularity and widespread usage across platforms. PDF provides a flexible
file structure that facilitates the embedding of different types of content such as JavaScript, encoded
streams, images, executable files, etc. This enables attackers to embed malicious code as well as to
hide their functionalities within seemingly benign non-executable documents. As a result, a large
proportion of current automated detection systems are unable to effectively detect PDF files with
concealed malicious content. To mitigate this problem, a novel approach is proposed in this paper based
on ensemble learning with enhanced static features, which is used to build an explainable and robust
malicious PDF document detection system. The proposed system is resilient against reverse mimicry
injection attacks compared to the existing state-of-the-art learning-based malicious PDF detection systems.
The recently released EvasivePDFMal2022 dataset was used to investigate the efficacy of the proposed
system. Based on this dataset, an overall classification accuracy greater than 98% was observed with
five ensemble learning classifiers. Furthermore, the proposed system, which employs new anomaly-
based features, was evaluated on a reverse mimicry attack dataset containing three different types of
content injection attacks, i.e., embedded JavaScript, embedded malicious PDF, and embedded malicious
EXE. The experiments conducted on the reverse mimicry dataset showed that the Random Committee
ensemble learning model achieved 100% detection rates for embedded EXE and embedded JavaScript,
and 98% detection rate for embedded PDF, based on our enhanced feature set.

Keywords: malicious PDF detection; PDF malware; feature engineering; reverse mimicry attack;
malicious content injection; shapely additive explanation; ensemble learning; explainable
machine learning

1. Introduction

Malicious documents have been one of the growing methods used by attackers to
propagate malware. This has been made possible due to the growing numbers of unsuspecting
document users and failure of detection by modern antivirus software [1]. Portable Document
Format (PDF) has become a major attack vector because of its flexibility, cross-platform
widespread usage, and the ease of embedding different types of content such as encoded
streams, JavaScript code, executable files, etc. Since PDF files are not perceived to be dangerous
like EXE files, they are usually treated with less caution by users. Thus, they can be used as
an effective means to launch social engineering attacks, for example to convey ransomware.
In [2], it was reported that Sophos Labs discovered a spam campaign where a variant of
the Locky Ransomware was launched by a VBA macro hidden in Word Document that is
deeply nested inside a PDF file. The malicious PDF file was spread by email as an attachment.
Such types of malicious components can be embedded in PDF files using tools such as
Metasploit. Furthermore, PDF files pose a higher risk compared to Portable Executables since
the embedded content can be encrypted or encoded [3]. PDF documents have also been used
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in targeted attacks and advance persistent threat (APT) campaigns to accomplish one or more
stages of a multi-stage attack, for instance, the MiniDuke APT campaign [4], where infected
PDF files that targeted an Adobe Reader vulnerability (i.e., CVE-2013-0640) was used for the
first stage of the attack.

The detection of malicious PDF documents is made more challenging by the fact that
its format is complex, and it is susceptible to a wide range of attacks, many of which take
advantage of legitimate PDF functionality, e.g., the embedding and encoding of a wide variety
of content types. Several static and dynamic analysis tools are available to facilitate manual
analysis of PDF documents for potentially malicious content. Examples of such tools
include PDFiD [5], PeePDF [6], PhoneyPDF [7], and PDF Walker [8]. However, the volume
of malicious PDF files that are constantly emerging makes it infeasible for the security
community to rely on manual analysis alone. While signatures can be utilized to facilitate
automated analysis to detect malicious files, this also comes with its own set of challenges,
including susceptibility to obfuscation and aging of signatures against the appearance of
new types of attacks.

To overcome these limitations, learning-based systems have been proposed by re-
searchers based on different types of features. Two popular kinds of features used in the
current learning-based PDF malware detection systems include JavaScript-based features
and structural features. Learning-based systems that utilize JavaScript-based features extract
them by analyzing embedded Javascript code to detect malicious behaviour, for example in
PJScan [9] or Lux0R [10]. Such systems, however, are only effective for detecting malicious
PDF files that contain JavaScript code. Examples of proposed learning-based systems that
rely on structural features of PDF files include PDF Slayer [11], Hidost [12], and PDFRate [13].
The use of structural features with machine learning became more widespread because it
enables fast automated detection of a wide variety of attacks including newly appearing
variants. Recently, detection systems that employ visualization-based features are also being
proposed. For example, ref. [14] proposed a system where PDF files are first converted to
grayscale images before extracting visualization-based features for machine learning.

According to [15], one of the problems with machine learning-based classifiers in the
PDF malware detection domain is that mimicry attacks and reverse mimicry attacks are
quite effective against them. A reverse mimicry attack involves injecting or embedding ma-
licious content into benign PDF files such that the features of the benign file will effectively
mask the presence of the embedded malicious content from being detected by detection
systems. It is a form of evasive adversarial attack that can be performed on a large scale
using automated tools. Existing machine learning-based solutions such as PDF Slayer [11],
Hidost [12], and PDFRate [13] have been shown to have limited robustness against reverse
mimicry attacks. Even the more recent attempt at utilizing visualization techniques for
high accuracy PDF malware detection presented in [14] did not show substantial resilience
in the reverse mimicry attack experiments.

Hence, despite the advances that have been made with learning-based malware PDF
detection, their resilience against evasive or adversarial attacks remains a significant challenge.
In order to mitigate the problem, this paper proposes a novel approach that uses an enhanced
feature set which extends existing structural features with anomaly-based ones, and utilizes
the power of ensemble learning to provide a high accuracy malicious PDF detection system
that is also resilient against injection-based adversarial attacks. The main contributions of this
paper are as follows:

• The paper proposes an ensemble learning-based system that employs an enhanced
feature set comprising structural and anomaly-based features. This feature set is a
unique one that is designed to enable robust and effective detection of malicious PDF
files including those that employ evasive techniques.

• The novel anomaly-based features that enable robust maldoc detection are described,
discussing their impact on the performance of the learning-based detection system,
as well as its resilience to reverse mimicry attacks.
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• An extensive performance evaluation of the proposed system for malicious PDF
detection is undertaken, using the recently released Evasive-PDFMal2022 dataset.
The results showed that the ensemble learners demonstrated high accuracy with the
enhanced feature set.

• Furthermore, several experiments are performed using a publicly available reverse
mimicry attack dataset consisting of three types of injection attacks. A comparative
analysis with several existing systems is presented to demonstrate the robustness of
our proposed approach against reverse mimicry attacks. We also present explana-
tions of the models prediction in each attack scenario using the SHapely Additive
exPlanation (SHAP) approach.

This paper is organized as follows: after the Introduction in Section 1, Section 2 gives an
overview of PDF file format and is followed by related works in Section 3. Section 4 presents
the development of the proposed system, and describes the new anomaly-based features that
are incorporated with structural features to enable more robust malicious PDF file detection.
The experiments and results are discussed in Sections 5 and 6. Finally the paper is concluded in
Section 7 with recommendations for future work.

2. Structure of a PDF File

PDF was created as a versatile format to enable sharing of text, rich media, images, etc.
independent of hardware or software platforms and in a consistent way. It was invented
by Adobe in 1993 and has now become one of the most widely used standards for sharing
documents. The PDF format was standardized into an ISO 32000-1:2008 [16] open standard.
The typical structure of a PDF document is shown in Figure 1 and consists of four parts:

• The header: contains PDF file version information according to the ISO standard.
• The body: This section typically contains the contents that are displayed to the user.

It shows the number of objects that define the operations to be performed by the file. The
body section also contains the embedded data such as text, images, scripting code, etc.
which are also presented as objects. Within an object, operations such as decompression
of data or decryption are defined if needed and will typically take place during the
rendering of the file.

• The cross-reference (x-ref) table: This contains a list of the offsets of each object that
are to be rendered within the file by the reader application. The offsets within the x-ref
table makes it possible to randomly access any of the objects in the file. The x-ref table
is also the section that enables incremental updates to a document, as allowed by the
PDF standard. Thus, when a document is updated, extra x-ref tables and trailers are
appended at the end of the document.

• The trailer: The trailer is a special object corresponding to the last section of the file.
It points to the object identified by the/Root tag, which is the first object that will be
rendered by the document viewer. The offset of the start of the x-ref table is also located
in the trailer. The last line of the file, which is the end of file string ‘%%EOF’ is also part
of the trailer section.

Basically, When a PDF reader displays a file, it begins from the trailer object and parses
each indirect object referenced by the x-ref table, and at the same time decompresses the
data so that all pages, texts, images, and other components of the PDF file are progressively
rendered. This means that a PDF file is organized as a graph of objects that contain
instructions for the PDF reader, which represents the operations to be performed for
presenting the file contents to the user [17].
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Figure 1. The sections of a typical PDF file.

3. Related Work

Learning-based detection of malware and malicious content in PDF documents have
proliferated in recent years due to the drive to create new approaches that will enhance or
complement existing anti-malware systems. In [3], the authors proposed an approach to detect
malicious content embedded in PDF documents. They focused on data encoded in the ‘stream’
tag along with other structural information. Their method decrypts encrypted blocks and
decodes encoded blocks within the stream tags and also utilizes other structural features.
These are given to a decision tree for classification. Although the paper claims that the method
is effective against mimicry attacks, no empirical evaluation was presented to support the claim.
In [18], a method for detecting and classifying suspicious PDF files based on YARA scan and
structural scan is presented. Their system inspects PDF documents to search for features
that are important in labelling PDF documents as suspicious. In [10], a system to detect
malicious JavaScript embedded in PDF files was presented. The system was called ‘Lux 0n
discriminant References’ (Lux0R). The authors of [9] presented PJScan, a tool which is designed
to uncover JavaScript from the malicious file and to extract its lexical properties via a tokenizer.
The output, which is a token sequence, is then used to train a machine learning algorithm to
detect malicious JavaScript-bearing PDF files.

Jeong, Woo, and Kang [19] presented a convolutional neural network (CNN) designed
to take the byte sequence of a stream object contained within a PDF file and predict whether
the input sequence contains malicious actions or not. The CNN model achieved superior
performance compared to traditional machine learning classifiers including SVM, Decision
Tree, Naive Bayes, and Random Forest. Albahar et al. [20] presented two learning-based
models for detection of malicious PDFs and experimented on 30,797 infected and benign
documents collected from the Contagio dataset and VirusTotal. Their first model was a
CNN model that used tree-based PDF file structure as features and yielded 99.33% accuracy;
the second model was an ensemble SVM model with different kernels which used n-gram
with object content encoding as features and yielded an accuracy of 97.3%. In [21], Bazzi
and Onozato used LibSVM to build a classification model which utilizes features extracted
from a report generated through dynamic analysis with Cuckoo sandbox. The study used
6000 samples for training and 10,904 samples for testing, obtaining an accuracy of 97.45%.
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In [22], a PDF maldoc detection system was proposed based on extracting features with
PDFiD and PeePDF. They used both tools to extract keyword and structural features and
used malicious document heuristics to derive an additional set of features. Trough feature
selection, the top 14 important features were selected, which led to an improved accuracy of
up to 97.9% for the ML classifier. Zhang proposed MLPdf in [23] which uses an MLP classifier
to detect PDF malware. Their system extracted a group of high quality features from two
real world datasets that contained 105,000 malicious and benign PDF documents. The MLP
model achieved a detection rate of 95.12% and low false positive rate of 0.08%. Jiang et al. [24]
applied semi-supervised learning to the problem of malicious PDF document detection in [24]
by extracting structural features together with statistical features based on entropy sequences
using wavelet energy spectrum. They then employed a random sub-sampling approach to
train multiple sub-classifiers, with their method achieving an accuracy of 94%.

The authors of [25] did a performance comparison of machine learning classifiers to
traditional AV solutions by experimenting on PDF documents with embedded JavaScript. They
used 995 samples for training, 217 samples for validation, and 500 samples for testing and
obtained 92%, 50%, and 96% accuracy with Random Forest, SVM, and MLP, respectively. In [14],
the authors applied image visualization techniques of byte plot and Markov plot and extracted
various image features from both. They evaluated the performance using the Contagio PDF
dataset, obtaining very good results when testing with samples from the same dataset. They
also evaluated their models on a reverse mimicry attack dataset, with very limited success but
showing slightly improved robustness over the PDF Slayer approach. They experimented with
both Markov plot and byte plot visualization methods, applying various image processing
techniques used in extracting features to train RF, K-Nearest Neighbor (KNN), and Decision
Tree (DT) classifiers. The best method (byte plot + Gabor Filter + Random Forest) achieved an
F1-score of 99.48%.

Al-Haija, Odeh, and Hazem proposed in [26] a detection system for identifying benign
and malicious PDF files. Their proposed system used an optimally-trained AdaBoost decision
tree and their experiments were performed using the Evasive-PDFMal2022 dataset [27] (which
is also used in this paper). Their system achieved 98.4% prediction accuracy with 98.80%
precision, 98.90% sensitivity, and a 98.8% F1-score. In [28], the authors also utilized the
Evasive-PDFMal2022 dataset and applied an enhanced structural feature set to investigate the
efficacy of the enhanced set. Seven machine learning classifiers were evaluated on the dataset
using the enhanced features, and improved classification accuracy was noticed with 5 out of
7 of the classifiers compared to the baseline scenario without the enhanced features.

In [29], a system for detecting evasive PDF malware was proposed based on Stacking
ensemble learning. The detection system is based on a set of 28 static features which were
divided into ‘general’ and ‘structural’ features. Their system was evaluated on the Contagio
dataset, yielding an accuracy of 99.89% and F1-score of 99.86%. They also evaluated the
system on their newly generated Evasive-PDFmal2022 dataset [27] for which they achieved
98.69% accuracy and a 98.77% F1-score, respectively.

From our review of related work, it is evident that several of the proposed learning-
based detectors utilized features extracted only from JavaScript obtained from the PDF files,
e.g., [9,10,19]. While such systems may be able to detect PDF files incorporating content
injection attacks that involve embedded JavaScript, they may not be effective against other
types of content embedding attacks, e.g., those involving embedded PDF, Word, EXE, or other
types of content. Other works, such as [22,23,26,29], utilized structural features in their work,
but did not evaluate their approach against any type of adversarial attacks. Different from
the existing works, this paper aims to improve the robustness of malicious PDF document
detection by enhancing structural features with novel anomaly-based features and utilizing
the enhanced feature set to train ensemble learning classifiers. Furthermore, we present
experiments to demonstrate the resilience of our proposed approach to reverse mimicry
injection attacks, enabled by the new anomaly-based features.
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4. Methodology

This section presents our proposed approach to automated ensemble learning-based ma-
licious PDF detection, which is based on an enhanced feature set consisting of 35 features
(29 structural features and 6 anomaly-based features). These features are extracted from the la-
beled files that have been set aside as the training set. The instances consisting of the 35 extracted
features are fed into ensemble learning classification algorithms to learn the distinguishing
characteristics of benign and malicious PDF files, thus enabling the prediction and classification
of unlabeled PDF files as benign or malicious, as shown in Figure 2. The methods used in
building the proposed PDF classification system are discussed in the following sub-sections.

Figure 2. Proposed enhanced features-based approach.

4.1. Datasets

Evasive-PDFMal2022 dataset: The first dataset used for the study in this paper is
a recently generated evasive PDF dataset (Evasive-PDFMal2022) [27] which was released
by Issakhani et al. [29]. This dataset has been generated as an improved version of the
well-known Contagio PDF dataset which has been utilized extensively in previous works.
According to [29], the Contagio dataset has several drawbacks which include (a) a high
proportion of duplicate samples with very high similarity, which was estimated as 44% of the
entire dataset and (b) lack of sufficient diversity of samples within each class of the dataset.
Thus, the new dataset aims to address the flaws found with the Contagio dataset and provide
a more realistic and representative dataset of the PDF distribution. It consists of 10,025 PDF
file samples with no duplicate entries (4468 benign and 5557 malicious).

PDF reverse mimicry dataset: This was the second dataset utilized in our study. It is
used to evaluate the robustness of our proposed approach to content injection attacks designed
to disguise malicious content by embedding them within benign PDF files. This is known
as the reverse mimicry attack, and it is a form of evasive adversarial attack that can be
performed on a large scale using automated tools. The reverse mimicry dataset [30] consists
of 1500 benign PDF files with embedded malicious components and is available online from
the Pattern Recognition and Applications lab (PRAlab), University of Cagliari, Italy. The
dataset consists of 500 PDF files containing embedded JavaScript, 500 PDF files containing
embedded PDF, and 500 PDF files containing embedded EXE payload. Further details on
how these reverse mimicry files were created can be found in [17]. Note that the detection of
malicious PDF files created by altering a benign file through such reverse mimicry attacks is a
challenging task. This is because the injected file will still retain the characteristics of a benign
PDF file, thus making it hard for learning algorithms to discriminate effectively.
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4.2. Feature Extraction of Structural Feature Set

Our proposed ensemble learning-based detection system is based on 35 features:
29 structural features and 6 features that are based on anomalies, i.e., properties that are
rarely observed from regular harmless files. The structural features we used are similar to
those found in previous works, however, the anomaly-based features are novel features aimed
at improving the performance of the learning-based detectors. The features were extracted
by using our extended version of the the open source PDFMalyzer tool available from [31].
PDFMalyzer is based on PDFiD and PyMuPDF and it enabled the 29 structural features to
be extracted. By extending the tool using Python scripts, we were able to extract the new
anomaly-based features and combine them with the 29 structural features into a feature vector
to represent each of the PDF files being used in our experiments. The initial set of 29 structural
features are listed in Table 1.

Table 1. Initial feature set containing 29 structural features (NK: non-keyword based, K: keyword-based).

Feature Name Type Description

pdfsize NK Size of the PDF file

metadata size NK Metadata size

pages NK Number of pages in the document (not from keyword)

title characters NK Number of characters contained in the title of the file

isEncrypted NK Whether or not the file is encrypted (not from keyword)

embedded files NK Indicates that an embedded file is present (not from keyword)

images NK Indicates whether the document contains images

text NK Indicates presence of text within the document

obj NK Number of obj tags found

endobj NK Number of endObj tags found

stream NK Number of stream tags found

endstream NK Number of endstream tags found

xref NK Number of xref tables in the file

trailer NK Number of trailers in the file

startxref NK Number of xref start indicators

/Page NK Number of pages in the PDF document

/Encrypt K Document has DRM or needs a password to be read

/ObjStm K Number of object streams that can contain other objects

/JS K Number of JS objects

/JavaScript K Number of JavaScript objects

/AA K Automatic action to be performed upon an event

/OpenAction K Automatic action to be performed on viewing document

/Acroform K Contains traditional forms authored in Adobe Acrobat

/JBIG2Decode K Indicates if the PDF document uses JBIG2 compression

/RichMedia K Presence embedded Flash or embedded media

/launch K Number of launch actions

/EmbeddedFile K Number of EmbeddedFile keywords found

/XFA K Keyword for XML Forms Architecture.

/Colors K Number of colours present in the file

65



Electronics 2023, 12, 3148

4.3. Enhancing the Structural Feature Set with New Features

Structural features are related to the characteristics of the name object present in the
PDF file [17]. Structural features have the ability to detect the presence of different types
of embedded contents such as JavaScript or ActionScript, which can aid in the detection of
malicious PDF files. Note that the keywords representing the structural features could be missed
if a deliberate attempt has been made to evade their detection, e.g., through obfuscation, or due
to errors from the analysis tools being used to extract the features. These uncertainties in feature
extraction motivated the derivation of new (anomaly-based) features to improve robustness.
The proposed anomaly-based features are described next.

When a user directly modifies an existing PDF file, this creates a new x-ref table and trailer
which are added to the file. This means that a manually updated PDF file will typically have
more than one trailer and x-ref table. Hence, the feature vector of a benign file should consist
of more than one occurrence of /trailer, /xref, and /startxref features. Thus, having only one
occurrence of those features in the feature vector should be considered an anomaly. Based on this
reasoning, we defined two new features (mal_trait1 and mal_trait2) derived by observing the
number of /trailer, /xref, or /startxref occurrences (which are typically the same) together with
keyword features that are indicative of possible malicious content. These indicators of malicious
content for each of these two new features include (a) presence of JavaScript and (b) the presence
of one or more embedded files. The anomaly-based features are explained below:

• mal_trait1: This is a new feature being proposed to represent the situation where /xref,
/trailer, and /startxref are found only once in the PDF file, but with JavaScript detected
within the file as well. This could indicate the injection or embedding of JavaScript
code with an automated tool (such as Metasploit), since having only one occurrence the
aforementioned three keywords does not suggest user modification.

• mal_trait2: This is a new feature being proposed to represent the situation where /xref,
/trailer, and /startxref are only found once in the PDF file, but an embedded file is also
detected (regardless of whether JavaScript is present or not). This could also indicate that
another file was injected or embedded within the PDF file using an automated tool (such
as Metasploit), since having only one occurrence of the aforementioned three keywords
does not suggest user modification.

• mal_trait3: The purpose of this new feature is to search for the presence of both JavaScript
code and embedded files within the PDF file. The intuition behind this feature is that the
JavaScript code can be used to launch a malicious embedded file.

• diff_obj: This feature captures anomalies observed with the opening and closing tags of
objects in a PDF file as described in [22]. Each object in the file is expected to begin with
an opening tag (obj) and have a corresponding closing tag (endObj). A difference in the
occurrences of the opening and closing tags indicates possible file corruption (usually a
missing closing tag). This is an obfuscation technique designed to bypass some parsing
tools that strictly conform to PDF standards. On the other hand, the file will still be
rendered correctly by the PDF readers, thus enabling the intended malicious activity
to occur.

• diff_stream: This feature also captures anomalies in a similar manner to diff_obj, by
recording the occurrences of ‘stream’ and ‘endStream’ which are the opening and closing
tags of stream objects. According to [22], this evasive technique of omitting a stream
object tag is intended to corrupt the file such that parsing tools within detectors will be
confused but the file will still be rendered and shown to the user by reader applications.

• mal_traits_all: This is a new composite feature that is intended to help with the identifi-
cation of files that exhibit one or more of the above five anomalous features. The intuition
behind this is to create a robust feature that will maintain its relevance even if new tech-
niques evolve to defeat a subset of the new features. For instance, the ability to obfuscate
the /trailer, /xref, or /startxref values may produce errors in capturing mal_trait1 and
mal_trait2 features or make them obsolete in the future. However, mal_traits_all will still
remain relevant in the presence of such obfuscation because it is created as a compound
feature. Moreover, the failure of extraction tools could lead to missing or erroneous values
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for some of the standard features. Mal_traits_all therefore provides an indicator that has
resilience against the occurrence of such errors.

4.4. Ensemble Learning Classifiers

In this section, we provide brief descriptions of the ensemble learners used in our
proposed system. The ensemble classifiers are first evaluated using the initial 29 structural
features, and then the 36 features, including the anomaly-based ones. The trained ensemble
learners are also evaluated on three reverse mimicry datasets. The results of these experiments
are presented in Section 5.

4.4.1. Random Committee

This is an ensemble learner that utilizes randomizable base classifiers to build an ensemble.
It builds each base classifier using a different random number seed but based on the same data.
Hence, a randomizable base classifier must be chosen as it does not accept non-randomizable
classifiers such as J48, Simple Logistic, or rule-based classifiers. Random Committee uses the
same type of base classifier, e.g., Random Tree. Different seeds are used to generate different
random numbers for the underlying base leaner which, although it uses the same mechanism,
will result in a different model as a result of being initialized differently. With the Random
Committee, since each base learner is built from the same data, diversity of models can only
come from random behaviour. The outcomes of these models are averaged to generate a
final prediction.

4.4.2. Random Subspace

Random Subspace [32] is an ensemble learner that constructs models in randomly
chosen subspaces, with the training data samples in the feature space. The output of the
models is then combined by a simple majority vote.

4.4.3. Random Forest

Random Forest [33] combines decision trees with bagging (bootstrap aggregating), and
retains many of the benefits of decision trees while being able to handle a large number of
features. Each model in the ensemble uses a randomly drawn subset of the training set,
and the combined outcome is derived from a majority vote, with each model having equal
weight. Random Forest has been widely applied to different classification problems, and
generally shows very good performance compared to other non-ensemble learners in many
problem domains.

4.4.4. AdaBoost

AdaBoost is based on Boosting, which incrementally builds an ensemble by training each
new model instance to emphasize the training instances that were miss-classified in previous
iterations. Boosting [34] iteratively builds a succession of models with each one being trained
on a dataset with previously miss-classified instances given more weight. All of the models are
then weighted according to their success and the outputs are combined by voting or averaging.
With AdaBoost, the training set does not need to be large to achieve good results, since the
same training set is used iteratively.

4.4.5. Stacking

This is also called Stacked Generalization [35]. It combines multiple base learners by
introducing the concept of a meta-learner and can be used to combine models of different
types, unlike boosting or bagging-based ensemble learners. The training set is split into two
non-overlapping sets and the first part is used to train the base learners while testing them on
the second part. Using the prediction/classification outcomes from the test set as inputs, and
correct labels as outputs, the meta-learner is trained to derive a final classification outcome.
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5. Experiments and Results

In this section, we present the results of the experiments for quantifying the impact of the
new features on the performance of ensemble learning classifiers (the core component of our
proposed overall approach). In the previous section, we already explained how the features
provide resilience against some obfuscation and extraction errors. Ideally, the new features
should not have a negative impact on the classification accuracy when incorporated with the
existing ones. First, a baseline experiment is performed where we train the five ensemble
classifiers using only the original 29 features. Afterwards, a second set of experiments is
carried out with the enhanced set containing all the 35 features. The configurations of the
ensemble learners are shown in Table 2.

Table 2. Ensemble Classifier Configurations.

Base Classifier(s) Configurations

Random Forest Decision Tree 100 trees

Random Committee Random Tree 100 iterations; 100 trees

AdaBoost Random Tree 100 iterations; 100 trees

Random Subspace Random Tree 100 trees; 100 iterations

Stacking J48, SVM, Simple Logistic LR meta classifier

5.1. Original Feature Set Results

Table 3 presents the 10-fold cross validation results of five ensemble classifiers trained
using the original 29 structural features extracted from the PDF samples in the dataset. These
results are based on the 10,025 samples of the Evasive-PDFMal2022 dataset. From the table, it
can be observed that the Random Forest, Random Committee, and Random Subspace models
yielded higher overall accuracy >99%. The Stacking and AdaBoost models obtained an overall
accuracy of 98.78% and 98.63%, respectively. These results show that the ensemble learners
performed well with the 29 baseline structural features since all of the classifiers showed
>98% accuracy.

Table 3. Ensemble classifiers results without new features (10-fold CV).

Precision Recall F1 Accuracy
Mal/Ben Mal/Ben Mal/Ben (%)

Random Forest 0.994/0.992 0.993/0.992 0.993/0.992 99.27

Random Committee 0.994/0.994 0.995/0.993 0.995/0.994 99.42

AdaBoost 0.989/0.983 0.986/0.986 0.988/0.985 98.63

Random Subspace 0.994/0.994 0.996/0.992 0.995/0.993 99.40

Stacking 0.987/0.988 0.991/0.984 0.989/0.986 98.78

5.2. Enhanced Feature Set Results

Table 4 presents the 10-fold cross validation results of five ensemble classifiers trained
using the enhanced set with 35 features. These results are based on the 10,025 samples
of the Evasive-PDFMal2022 dataset. From the table, it can be observed that there is an
improvement in the performance of Random Forest with the overall accuracy slightly
increased to 99.33%. The AdaBoost and Stacking models also increased their performance
with accuracy rising to 98.83% and 98.84%, respectively. On the other hand, the overall
accuracy of Random Subspace dropped slightly by 0.06%, while that of Random Committee
also dropped by 0.06%. These results show that the introduction of the new features did
not have a negative impact on the ensemble classifiers. However, our main goal is to
examine whether these features provide resilience by improving the performance of the
models in adversarial scenarios. Our next set of experiments on the reverse mimicry attack
dataset will underscore the impact of the novel features to the performance of the ensemble
learning models.
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Table 4. Ensemble classifiers results with the new features (10-fold CV).

Precision Recall F1 Accuracy
Mal/Ben Mal/Ben Mal/Ben (%)

Random Forest 0.994/0.992 0.994/0.993 0.994/0.993 99.33

Random Committee 0.994/0.993 0.995/0.992 0.994/0.993 99.36

AdaBoost 0.990/0.987 0.989/0.987 0.989/0.987 98.83

Random Subspace 0.993/0.994 0.996/0.991 0.994/0.993 99.34

Stacking 0.990/0.988 0.989/0.988 0.990/0.987 98.84

5.3. Investigating the Effect of the New Features against the Reverse Mimicry Attacks

As mentioned earlier, the reverse mimicry dataset consists of three content injection attacks
each with 500 samples. They include (a) embedded executable, (b) embedded JavaScript, and
(c) embedded PDF. The experiments were conducted by training the ensemble models with
all of the Evasive-PDFMal2022 samples and then using each of the 500 samples in the reverse
mimicry dataset as the testing set. The first model training was done with only the 29 baseline
structural features and then the models were evaluated on the attack samples. The same
process was repeated with the full set of 35 features including the new anomaly-based features.
The results of these experiments are shown in Tables 5 and 6. The numbers depicted in brackets
in the table heading denote the number of samples used in the evaluation (a few of the initial
samples failed during the experiments).

Table 5. Reverse mimicry attack dataset—ensemble classifiers results without the new features.

Embedded EXE Embedded JS Embedded PDF
(498) (500) (499)

Random Forest 46.78% (233) 41% (205) 5.6% (28)

Random Committee 68.7% (342) 31.8% (159) 5% (25)

AdaBoost 71.2% (355) 45.6% (228) 12.2% (61)

Random Subspace 67.9% (338) 33.4% (167) 5.2% (26)

Stacking 17.7% (88) 58.8% (293) 6.2% (31)

Table 6. Reverse mimicry attack dataset—ensemble classifiers results with the new features.

Embedded EXE Embedded JS Embedded PDF
(498) (500) (499)

Random Forest 63.6% (317) 60.2% (301) 10.6% (53)

Random Committee 90.1% (449) 39.6% (198) 11.2% (56)

AdaBoost 60.8% (303) 23.4% (117) 68.9% (344)

Random Subspace 83.7% (417) 43.6% (218) 14.4% (72)

Stacking 93.6% (466) 95.4% (477) 38.9% (194)

From Table 5 (without the new features), it can be seen that the best result for embedded
Exe was AdaBoost, with 71.2%, i.e., 355 samples detected. For the embedded JavaScript, the
best was the Stacking model which detected 293 samples (58.8%). In the embedded PDF set,
the highest was only 12.2% (61 samples) detected. This shows that the embedded PDF was the
most challenging attack to detect. One possible reason for this could be the lack of structural
features (keywords) that directly indicate when a PDF file is present in the PDF file. In the
feature set there are two keywords directly related to JavaScript, which may make it easier to
detect embedded JavaScript attacks. Another possible reason could be the way the embedded
PDF attack was crafted. The embedded PDF can be used to nest other features which will not
appear within the parent benign PDF, thus tricking the classifier into predicting the sample
as benign.

From Table 6 (with the new anomaly-based features), there is significant improvement in
the detection of the mimicry attacks. Random Committee and Stacking detected 449 (90.1%) and
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466 (93.6%) samples of the embedded EXE attack, respectively. For the embedded JavaScript,
Stacking also obtained 477 (95%) detected samples, while for the embedded PDF, the highest
was AdaBoost, with 68.9% (344 samples). Again, this highlights how challenging it is to detect
the PDF embedding attack, for the reasons mentioned earlier. However, there is improvement
compared to the results in the previous table; this can be attributed to the new anomaly-based
features introduced into the feature set. The significant improvement in the performance of
the Stacking learning model highlights the impact of the anomaly-based features introduced
into the mix. The new features mal_trait2, mal_trait3, and mal_traits_all are most likely to be
responsible for enhancing the ability of the ensemble learners to detect more embedded EXE
samples. The new feature mal_trait2 is likely to have had the most impact in improving the
models’ ability to detect embedded PDF samples. Figures 3–5 visually depict the percentages
of detected samples with and without the new features for each of the three types of reverse
mimicry attacks investigated.

Figure 3. Performance of the ensemble learners on the embedded EXE reverse mimicry samples
(with and without the new features).

5.4. Experimenting with Training Set Augmentation

At the initial stage of our investigation, we hypothesized that the detection of adversarial
samples could be facilitated by augmenting the training set with some examples from the
attack dataset. This is expected to enable the classifier models to learn the characteristics of the
adversarial samples and be equipped to classify new unseen examples correctly. Based on this
hypothesis, another set of experiments was performed, where 10% of the samples from each
type of content injection attack set was taken and used to augment the training set. The results
of the experiments are shown in Tables 7 and 8.

From Table 7, the results of the ensemble learners’ performance when trained without
the new features seem to confirm our hypothesis in the case of embedded EXE and embed-
ded JavaScript detection of reverse mimicry attack detection. Random Forest and Random
Committee models detected all the samples from both attacks. However, they still performed
poorly when tested with the embedded PDF sample set, despite having augmented the training
set with 50 samples from the embedded PDF set. Data augmentation of the training set with
adversarial examples clearly made the detection of embedded EXE and embedded JavaScript
mimicry attacks much easier to detect, even without the new features.
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Figure 4. Performance of the ensemble learners on the embedded JS reverse mimicry samples (with
and without the new features).

Figure 5. Performance of the ensemble learners on the embedded PDF reverse mimicry samples
(with and without the new features).

In Table 8, the results show dramatic improvement when the new anomaly-based features
were utilized in the training and testing sets (after augmenting the training set with adversarial
samples). Figures 6–8 visually depict the percentages of detected samples with and without
the new features, and with data augmentation for each of the three types of reverse mimicry
attacks investigated. It can be seen that Random Committee detected 98% of the embedded
PDF attacks compared to only 43.2% without the new features. These results show that data
augmentation as a means to improve detection of adversarial samples would be more effective
only if we have the right feature set. The possible reason for significant improvement in
embedded PDF detection due to the new features can be explained as follows: it is highly
likely that the combination of the anomaly-based features with other features produced new
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patterns that were learned by the ensemble models, and these patterns were present in the
samples that the training set was augmented with. In a nutshell, we can conclude that the new
anomaly-based features significantly enhanced the robustness of the ensemble learning models
against reverse mimicry attacks via content injection.

Table 7. Reverse mimicry attack dataset—ensemble classifiers results with training set augmentation but
without the new features.

Embedded EXE Embedded JS Embedded PDF
(448) (450) (449)

Random Forest 100% (448) 100% (450) 20.49% (92)

Random Committee 100% (448) 100% (450) 43.2% (194)

AdaBoost 92% (412) 98.7% (444) 27.39% (123)

Random Subspace 99.8% (447) 100% (450) 35.9% (161)

Stacking 97.1% (435) 100% (450) 12.9% (58)

Table 8. Reverse mimicry attack dataset—ensemble classifiers results with training set augmentation and
the new features included.

Embedded EXE Embedded JS Embedded PDF
(448) (450) (449)

Random Forest 100% (448) 100% (450) 90.64% (407)

Random Committee 100% (448) 100% (450) 98% (440)

AdaBoost 99.3% (445) 99.8% (449) 97.6% (438)

Random Subspace 100% (448) 100% (450) 95.1% (427)

Stacking 96% (430) 100% (450) 85.7% (385)

Figure 6. Performance of the ensemble learners on the embedded EXE reverse mimicry samples
(with and without the new features), using training set augmented with attack samples.
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Figure 7. Performance of the ensemble learners on the embedded JS reverse mimicry samples
(with and without the new features), using training set augmented with attack samples.

Figure 8. Performance of the ensemble learners on the embedded PDF reverse mimicry samples
(with and without the new features), using training set augmented with attack samples.

5.5. Explaining and Interpreting the Ensemble Model Using SHapely Additive exPlanation

In this section we will explain the ensemble model for evasive malicious PDF detection
using SHapely Additive exPlanation (SHAP). SHAP was introduced by Lundberg and Lee
in 2017 [36] as a model-agnostic method of explaining machine learning models based on
Shapley values taken from game theory. SHAP determines the impact of each feature by
calculating the difference between the model’s performance with and without the feature. Thus,
it provides an understanding of how much each feature contributes to the prediction. In Figure 9
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a SHAP summary chart can be seen from which we can visualize the importance of the features
and their impact on predictions. This plot was generated from building an ensemble model
with 80% of the dataset and testing on the remaining. The features are sorted in descending
order of SHAP value magnitudes over all testing samples. The SHAP values are also used to
show the distribution of the impacts each feature has on the prediction. The colour represents
the feature value, with red indicating high while blue indicates low.

From Figure 9, we can see that metadata size, JavaScript, and mal_traits_all were the
top three that had the most impact, according to the SHAP values. It can also explain that
when the metadata size is low (blue) the model predicts positively, i.e., as a malicious PDF in
most cases. However, when the metadata size is large (red), that impacts on the prediction
by making the model classify documents as benign. We can also see that in most cases when
Javascript or JS is present (red), the model predicts malicious PDF, while it predicts benign PDF
if it is absent (blue). When there is mal_traits present (red), then malicious PDF is predicted,
and when it is not present (blue), in many instances that led to a prediction of benign PDF.
The same is true for mal_trait2. The plot also shows us that for many test samples, when text,
images, and number of streams are low (blue endstream, stream) or number of objects are low
(blue obj and endobj), then the PDF is likely to be predicted as malicious. For text, high values
(red) indicate benign PDF in many cases; which makes sense because those will be genuine
documents as opposed to crafted PDF that have been manipulated for nefarious purposes.
The plot also shows us that the model predicts malicious PDF for many instances where XFA,
OpenAction, and EmbeddedFile were present (red). Note that these plots only relate to the
particular test set that was used and will be different from another test set which will have a
different distribution of the features.

In Figure 10, the SHAP summary chart depicts the impacts of the top 10 features on an
ensemble model’s prediction on the embedded exe reverse mimicry test set. It shows the the
presence of Acroform (which is indicative of potential manual input into the document) has a
negative impact on the prediction (i.e., benign is predicted) while the opposite is true. This also
happens when metadata size is large (red) or there is a large number of objects or pages in the
PDF document. The presence of mal_traits (i.e., any of the new anomaly features) leads to a
positive prediction, and so does the presence of embedded files.

The SHAP summary chart in Figure 11 depicts the impacts of the top 10 features on an
ensemble model’s prediction on the embedded pdf reverse mimicry test set. It shows that
high number of streams (endstream and stream being red) indicates malicious PDF while in
some cases low number of streams does also indicate malicious PDF. This could mean that a
combination with other features influences the prediction, or some of these instances could be
incorrectly classified. The figure also shows us that positive predictions (i.e., malicious PDF) are
made when metadata size is low, title characters are absent when PDF size is large (which can
be an indicator for embedded PDF) and when OpenAction (which could be used to manipulate
the embedded PDF) is present (red).

In Figure 12, the impacts of the top 10 features on an ensemble model’s prediction on the
embedded JavaScript reverse mimicry test set is shown. The model’s positive (malicious PDF)
prediction can be explained by seeing low metadata size, smaller number of objects, fewer
title characters, fewer streams, and the absence of Acroform. The presence of Acroform, JS
keyword, and AA feature seem to be indicators of negative (benign PDF) prediction amongst
the samples of embedded JavaScript from this reverse mimicry dataset used to analyze the
model with SHAP. In a nutshell, these SHAP summary charts demonstrate the explainability
of the models which is crucial in increasing the trust of our proposed approach while giving
us insight into the models’ decision-making.
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Figure 9. Each features impact on model’s predictions as determined by SHAP, for the ensemble
model’s prediction on test samples that do not contain reverse mimicry content injection.
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Figure 10. Each features impact on model’s predictions as determined by SHAP, for the ensemble
model’s prediction on test samples that consist of embedded exe within the pdf files.

Figure 11. Each features impact on model’s predictions as determined by SHAP, for the ensemble
model’s prediction on test samples that consist of embedded pdf within the pdf files.
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Figure 12. Each features impact on model’s predictions as determined by SHAP, for the ensemble
model’s prediction on test samples that consist of embedded JavaScript within the pdf files.

5.6. Comparing Our Results with Existing Works

In this section we present a comparison of our approach to other works in the literature
using the reverse mimicry dataset. In a reverse mimicry attack, malicious content is injected
into a benign file. This type of attack does not exploit any specific knowledge of the attacked
system [17]. The dataset of 1500 evasive PDF files with injected content was used in [17]
to evaluate several existing PDF detectors (Hidost, PJScan, PDFRate, Slayer Neo—Keyword
and Full versions).

Corum et al. [30] employed visualization techniques for PDF malware detection. The
results of their model on the reverse mimicry dataset is shown in Table 9. The best result
from that paper was obtained from using Byte plot + Gabor + Random Forest classifier, which
detected only 95 out of about 500 samples for EXE embedding; 176 out of 500 for JS embedding;
and 111 out of 500 for PDF embedding. In Table 9 and Figure 13 this approach is named
as Corum-BGR. Their Byte plot + Local entropy + Random Forest approach detected only
70 out of 500 for EXE embedding; 162 out of 500 for JS embedding; and 85 out of 500 for PDF
embedding. In Table 9 and Figure 13 this approach is named as Corum-BLR.

From Table 9, the results of the first two rows indicate that the visualization tech-
niques which were reported to have achieved high accuracies on the Contagio PDF
dataset performed poorly when tested with the reverse mimicry attack samples. On
the other hand, even though Slayer Neo struggled to detect embedded EXE and embedded
JavaScript, it was quite effective in detecting embedded PDF attacks. This is because of
the way the system was designed. Moreover, note that PDFRate was the only system
that detected a high percentage of Embedded JavaScript. This is because it was created
specifically to detect JavaScript-bearing malicious PDF files. Note that these tools and ap-
proaches constitute the stat-of-the-art in the domain of malicious PDF document detection.
Table 9 and Figure 13 both illustrate that the approach proposed in this paper has outper-
formed these state-of-the-art methods in terms of resilience to reverse mimicry content
injection attacks.
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Table 9. Reverse mimicry attack dataset—comparison with existing works.

Embedded EXE Embedded JS Embedded PDF

Corum-BGR [14] 19% (95) 35.2% (176) 22.2% (111)

Corum-BLR [14] 14% (70) 32.4% (162) 17% (85)

Hidost 69% 40.8% 1%

PJScan 1% 87.7% 3%

PDFRate 95.2% 28.8% 1.2%

Slayer Neo (Keywords) [17] 59.8% 17.8% 94.8%

Slayer Neo (Full) [17] 9.4% 35.9% 96%

Stacking with our enhanced feature set 93.6% (466) 95.4% (477) 38.9% (194)

Random Committee with our enhanced feature set and training set augmentation 100% (448) 100% (450) 98% (440)

Figure 13. Performance of the ensemble learners on the reverse mimicry samples, with training set
augmented with attack samples.

6. Limitations of Our Proposed Approach

In this section we discuss the limitations of the proposed approach presented in this
paper. The first one is that the extraction of the features is reliant upon existing static analysis
tools (i.e., PDFMaLyzer, which in turn utilizes PDFiD). This means that the approach is
prone to the limitations of these tools as well. Hence, if a feature can be hidden from those
tools, it would affect extraction in our proposed system as well. However, the extended
anomaly features set is designed to counteract the tools’ failure to some extent. A direction
for future improvement is to make the underlying feature extraction tools more robust or
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to extract a hybrid of complementary features that the system can use to make it resilient to
such failures. Another limitation of our proposed approach is that it could be susceptible to
obfuscation, whereby some of the features could be masked. A possible countermeasure for
this is to perform content analysis rather than relying solely on extraction of such features
from structural keywords. The content analysis-based features could also provide a hybrid
composite features approach when combined with the structural and anomaly-based features.

7. Conclusions and Recommendation for Future Work

In this paper we presented a malicious PDF detection system based on ensemble learning
with an enhanced feature set. The enhanced feature set consists of 6 new anomaly-based
features which we have added to 29 structural features derived from existing PDF static analysis
tools. In the first part of our experiments, the results have shown that the introduction of the
new features did not diminish performance after testing five ensemble learning algorithms
using the Evasive-PDFMal2022 dataset. The second part of our experiments performed on
the PDF reverse mimicry dataset showed the robustness of the new features against content
injection attacks designed to disguise malicious content by embedding them within benign
PDF files. By comparing our results with existing approaches including Hidost, PJScan,
PDFrate, Slayer Noe, and other approaches, there was a significant improvement in detection
rates by our proposed approach. The experiments conducted on the reverse mimicry dataset
showed that the Random Committee ensemble learning model achieved 100% detection rates
for embedded EXE and embedded JavaScript, and 98% detection rate for embedded PDF,
based on our enhanced feature set. The experiments also showed that data augmentation
will not enhance the detection of adversarial samples unless accompanied by effective feature
engineering, which our system incorporates through the new anomaly-based features. For
future work, we recommend investigating how to improve the resilience of other types of
existing PDF detection systems, e.g., those that utilize visualization approaches, to incorporate
more resilience against reverse mimicry attacks. Another recommendation for future work is
on how to extend the system proposed in this paper with content-based features.
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Abstract: Network Intrusion Detection Systems (NIDSs) play a vital role in detecting and stopping
network attacks. However, the prevalent imbalance of training samples in network traffic interferes
with NIDS detection performance. This paper proposes a resampling method based on Self-Paced
Ensemble and Auxiliary Classifier Generative Adversarial Networks (SPE-ACGAN) to address the
imbalance problem of sample classes. To deal with the class imbalance problem, SPE-ACGAN
oversamples the minority class samples by ACGAN and undersamples the majority class samples
by SPE. In addition, we merged the CICIDS-2017 dataset and the CICIDS-2018 dataset into a more
imbalanced dataset named CICIDS-17-18 and validated the effectiveness of the proposed method
using the three datasets mentioned above. SPE-ACGAN is more effective than other resampling
methods in improving NIDS detection performance. In particular, SPE-ACGAN improved the
F1-score of Random Forest, CNN, GoogLeNet, and CNN + WDLSTM by 5.59%, 3.75%, 3.60%, and
3.56% after resampling.

Keywords: network intrusion detection system; imbalanced network traffic; resampling method

1. Introduction

Since 2020, Corona Virus Disease 2019 (COVID-19) has spread worldwide, dramat-
ically changing people’s lifestyles, and forcing people to shift their learning, work, and
entertainment activities from offline to online. However, with the continuous development
of the network, a series of constantly evolving network attack means, such as worms and
buffer overflow, threaten the transportation, energy, education, medical and other indus-
tries. Many companies and organizations lack the experience and skills of synchronized
confrontation with network attacks, so it is difficult to detect these network attacks. NIDS
is a monitoring system for network traffic, which can detect suspicious network attack
activities from network traffic and respond to alerts in a timely manner to protect the
network before hackers intrude.

There are three main types of NIDS: misuse-based, anomaly-based and hybrid NIDS [1].
Misuse-based NIDS [2,3] uses a library of features or fingerprints of known attacks to match
each traffic feature or fingerprint, and if the match is successful, the traffic is determined to
be malicious. Anomaly-based NIDS [4,5] models normal behavior and does not require
attacks to be explicitly identified in the training data. The model describes traffic activity
in the normal state of the protected system, and any network traffic that does not match
the behavior described by the model is captured and reported. Hybrid NIDS [6,7] uses
both misuse and anomaly-based, which allows the NIDS to have a lower false alarm
rate and higher accuracy than the above two methods alone. The use of deep learning to
implement hybrid NIDS is the dominant approach today, and by learning the characteristics
within the network traffic, attack signatures can be obtained and anomalous behavior
can also be identified. The use of hybrid NIDS can compensate for the shortcomings
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of misuse-based NIDS and anomaly-based Anomaly NIDS. Deep learning models such
as Convolutional Neural Networks (CNNs) [8], Long Short-Term Memory Networks
(LSTM) [9] and GoogLeNet [10] have been proven to be effective in detecting attacks.

However, the extremely unbalanced distribution of network traffic [11,12] greatly
hinders further development of deep learning-based intrusion detection research: the
behavior of Internet users is almost normal, with only a small number of malicious attacks.
As a result, a large sample of traffic is generated in cyberspace, but only a small percentage
is malicious, and the distribution between different malicious traffic is also uneven. Deep
learning network models require a large number of samples for training, and they have
more robust performance when a large amount of data are available for training, but
the performance of deep learning algorithms also degrades significantly when learning
unbalanced data [13–15]. In general, the lack of a certain class of network traffic may cause
NIDS to favor the majority class of samples and neglect learning from the minority class.
Therefore, balancing network traffic is necessary for NIDS to fully learn the features of each
class of samples.

Many studies have resampled network traffic when training the NIDS model: over-
sampling the minority class of samples or undersampling the majority class of samples,
such as the Synthetic Minority Over-Sampling Technique (SMOTE) [16], Random Under-
sampling (RUS) [17] and Generative Adversarial Networks (GANs) [18]. SMOTE requires
traversing each minority class sample and selecting one sample to calculate its distance
from neighboring samples. This is very resource intensive in a data set with a large volume
of data. In addition, the samples generated via interpolation increase the possibility of
overlapping samples of each class and the possibility of overfitting of the classification
mode. RUS removes most class samples in a random way, so it may remove samples that
are on the classification boundary, which may result in information loss. The samples
generated by GAN are random in nature and cannot be generated on demand, so most of
the samples generated have difficulty fitting the features of the minority class of samples.

In this work, we introduced a novel resampling method, SPE-ACGAN, based on
the combination of Auxiliary Classifier GAN (ACGAN) [19] and Self-Paced Ensemble
(SPE) [20] to deal with the problem of imbalanced network traffic. The imbalanced datasets
are divided into a minority class subset and a majority class subset, and then the minority
class subset is fed into ACGAN to generate the specified number of samples, and the
majority class subset is fed into SPE to remove the majority class samples until the number
of samples reaches the specified value.

The main contributions of this work are described as follows:

• For NIDS, a resampling method SPE-ACGAN based on the combination of SPE and
ACGAN is proposed to alleviate the data imbalance problem, which is able to reduce
the majority class samples and increase the minority class samples to make the training
set more balanced.

• We merge the CICIDS-2017 dataset and the CICIDS-2018 dataset into a new dataset,
named CICIDS-17-18. The CICIDS-17-18 dataset is a more imbalanced dataset with a
larger amount of data to show the effectiveness of SPE-ACGAN.

• Our proposed method is experimented on the above three datasets and compared
with some existing resampling methods. The performance metrics of some typical
NIDS models are improved after applying our proposed method.

The next section, Section 2, discusses the existing methodology. Section 3 presents
the proposed method. Section 4 compares and analyses the performance of the proposed
method and existing methods. Finally, Section 5 concludes the whole paper.

2. Related Work

Nowadays, for NIDS, the deep learning-based method is the essential classification
model to identify different types of attacks. An imbalance of training samples can lead to
overfitting of the classification model and affect its generalization ability. We introduce the
related work from the deep learning-based method and sample resampling.
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Deep learning-based network intrusion detection is mainly based on training models
to learn potential features of data samples for classification and prediction purposes, which
can be divided into supervised and unsupervised learning. Supervised learning includes
Long and Short-Term Memory networks (LSTM) [9], Convolutional Neural Networks
(CNNs) [8], etc. Yang et al. [21] proposed a Gradient-Boosting Decision Tree (GBDT)–
parallel quadratic ensemble learning method for intrusion detection systems with a Gated
Recurrent Unit (GRU) model and special modification to network traffic to handle temporal
data. Experimental results based on the CICIDS2017 dataset show that the advanced
temporal intrusion detection system based on integrated learning achieves better accuracy,
recall, precision and F1 scores compared to existing methods. Unsupervised learning
mainly consists of Auto Encoder (AE) [22,23] and Self-supervised Learning (SSL), which
can learn from a large number of unlabeled samples and also effectively learn the features
of different classes of traffic data [24]. Vaiyapuri et al. [25] proposed an unsupervised
IDS model that uses deep autoencoder (DAE) to learn traffic features and then uses one
class support vector machine (OCSVM) to segment the decision hyperplane, using the
NSL-KDD dataset and UNSW-NB15 dataset. The proposed model was verified as having
good performance.

Considering the impact of data imbalance, the minority class of samples will tend
to be overfitted during training, and the model prediction will be more biased towards
the majority of samples, which is less accurate in identifying malicious attacks. Therefore,
many scholars have started to study how to solve the problem of extremely unbalanced
data distribution of network traffic. Yan et al. [26] proposed an improved locally adap-
tive composite minority sampling algorithm (LA-SMOTE) to deal with network traffic
imbalance and then detected network traffic anomalies based on a deep learning GRU
neural network. Abdulhammed et al. [27] used data oversampling and undersampling
methods to deal with the imbalanced dataset CIDDS-001 and used a deep neural network,
random Forests and variational autoencoder classifiers to evaluate the dataset. Ga et al. [28]
used ACGAN for minority class sample synthesis on the CICIDS-2017 dataset and then
used CNN for classification to achieve the final OA and F1-score of 99.48% and 98.71%.
Park et al. [29] used GAN for data synthesis on the minority class attack data in the training
phase and then used Auto Encoder (AE) to optimize the generated data, and experimental
results on NSL-KDD, UNSW-NB15 and IoT datasets show that reasonably increasing data
can improve the performance of existing deep learning-based NIDS by solving the data
imbalance problem. Table 1 provides a comparison of typical resampling methods.

Table 1. The typical resampling methods.

Method Oversampling Undersampling

SMOTE
√

RUS
√

GAN
√

SPE-ACGAN (our method)
√ √

In this paper, for NIDS models, we propose SPE-ACGAN, a resampling method
based on a combination of supervised learning ACGAN and SPE, to resample unbalanced
network traffic in order to solve the problem of unbalanced network work traffic. The
ACGAN network adds to the GAN network the ability to generate a specified class, which
can generate the minority class samples of a specified category, and its discriminator
continuously improves the quality of the data it generates. SPE efficiently reduces the
number of majority class samples and is able to retain most of the samples that are on the
classification boundary.
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3. Methods and Materials

In this section, the general structure of SPE-ACGAN proposed in this paper and the
working principle of each module are first introduced. Then, the datasets used in the
proposed algorithm and the implementation details of the algorithm, are presented.

3.1. SPE-ACGAN

Considering the unbalance of training samples of the network traffic in NIDS, we
resample the training samples from two dimensions. Using SPE to decrease the number of
samples in the majority class and using ACGAN to increase the number of samples in the
minority class.

3.1.1. SPE

SPE is a framework for unbalanced classification [20], the core idea of which is to
propose a concept of classification hardness and to coordinate data hardness by undersam-
pling self-paced to generate a new undersampled dataset. The process of SPE is shown in
Figure 1.

 

Figure 1. The process of SPE.

SPE first divides the input, the imbalanced dataset, into a majority set N and a minority
set P. Then, each sample in N is randomly placed into k bins according to the categorical
hardness of each sample, and each bin has a total categorical hardness. The above steps are
repeated until the number of majority class samples equals the number of minority class
samples or the specified number to complete the resampling. To obtain a balanced dataset,
SPE keeps the total categorical hardness of each bin as the same. The hardness value is
derived from a hardness function, H, which is a “categorical hardness function”, such as
Absolute Error, MSE and Cross Entropy. For a given model F(x), the categorical hardness
of the sample (x, y) is given by Equation (1):

Hx = H(x, y, F) (1)
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The hardness grade is given by Equation (2), where B� is the hardness grade of the
�-th box:

B� =

{
(x, y)

∣∣∣∣ �− 1
k

≤ Hx = H(x, y, F) ≤ �

k

}
H(·) ∈ [0, 1] (2)

3.1.2. ACGAN

ACGAN is mainly composed of Generation (G) and Discrimination (D), and its
structure is shown in Figure 2. ACGAN works as follows: ACGAN works by the network
generating a random set of noise values z. According to the input of the specified category,
the generator G modifies the noise values z into X f ake of the corresponding category, and the
discriminator D trained by Xreal to identify whether the generated X f ake it real data, and if
it is virtual data, what is the probability of belonging to each category, respectively, and the
error is found by the loss function. The generator G is instructed to update the parameters.

 

Figure 2. The architecture of ACGAN.

3.1.3. Overall Model Architecture

The SPE-ACGAN resampling method works in two steps, which are performed by
ACGAN and SPE, respectively. The first step is the oversampling of the minority class
samples, which is fed into ACGAN to increase the number of minority class samples; the
second step is the undersampling of the majority class samples, which is fed into SPE to
reduce the number of majority class samples. The workflow of the SPE-ACGAN resampling
method is shown in Figure 3.
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Figure 3. The architecture of the proposed resampling model.

3.2. Details of the SPE-ACGAN
3.2.1. Dataset

CICIDS-2017 and CICIDS-2018 [30] are network intrusion detection datasets published
by the Canadian Institute for Cybersecurity (CIC) on Amazon Web Services (AWS) in 2017
and 2018. The two datasets mentioned above have as many as 14 types of attacks, such as
DDOS, XSS, Heartbleed and Brute force, each over 100 GB in size, which make them the
richest datasets of all publicly available datasets in terms of category.

In addition, there is an imbalance in the samples for each category in both of these
datasets. In the CICIDS-2017 dataset, the lowest number of Heartbleed, Infiltration and Web
Attack-Sql Injection is only 11, 36 and 21, while the highest number of Benign is 2,273,097.
In the CICIDS-2018 dataset, the number of Heartbleed and Port Scan is 0, while Benign
has 6,376,223. To exacerbate this imbalance and test our proposed resampling method, we
merge the CICIDS-2017 dataset and the CICIDS-2018 dataset to form the CICIDS-17-18
dataset. The distribution of data before and after the merging of the CICIDS-17-18 dataset is
shown in Table 2. After the CICID-17-18 dataset is merged, the proportions of FTP-Patator,
SSH-Patator, Bot, etc., are increased, and the gap between them and Heartbleed, Infiltration,
Web Attack-Sql Injection becomes wider and wider. This aggravates the imbalance and
makes it more difficult for NIDS to learn the features of Heartbleed, Infiltration and Web
Attack-Sql Injection.

3.2.2. Dataset Resampling

We randomly divided the above data set into a training set and a test set by 8:2. SPE-
ACGAN resampled the training sets for the CICIDS-17-18 dataset, the CICIDS-2017 dataset,
and the CICIDS-2018 dataset with the aim of moderating the extreme imbalances in these
datasets. ACGAN performed data synthesis for several categories of samples, and SPE
censored most of the categories so that benign traffic and all malicious traffic are close to
each other, and the number of malicious flows is close to each other in proportion.

The number of resamples is an important factor in the quality of resampling. After
some experiments, like the threshold of the minority category with 5000, 10,000 and 20,000,
in the resampling process, we define categories with less than 10,000 to be the minority
category, which need to be oversampled to increase their number by 10,000, while categories
with more than 20,000 and less than 50,000 are reduced in number by 50% and rounded
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down. For categories with more than 50,000, we reduce the number by 70% and round
down. Finally, based on the total number of all malicious traffic, the number of benign
traffic is adjusted to be approximately equal to the number of malicious traffic.

Table 2. Quantity distribution of CICDS-17-18 dataset before and after consolidation.

Class
Samples of

CICIDS-2017
Composition

(%)
Samples of

CICIDS-2018
Composition

(%)
Samples of

CICIDS-17-18
Composition

(%)

Benign 2,273,097 80.301 6,376,223 76.041 8,649,320 76.023
FTP-Patator 7938 0.281 193,353 2.306 201,291 1.771
SSH-Patator 5897 0.209 187,588 2.237 193,485 1.702

Bot 1966 0.070 285,289 3.402 287,255 2.523
DDos 128,027 4.523 687,840 8.203 815,867 7.176

Dos GoldenEye 10,293 0.364 461,911 5.509 472,204 4.155
Dos Hulk 231,073 8.163 41,507 0.495 272,580 2.401

Dos Slowhttptest 5499 0.195 139,889 1.668 145,388 1.282
Dos Slowloris 5796 0.205 10,989 0.131 16,785 0.148

Heartbleed 11 0.001 0 0 11 0.001
Infiltration 36 0.001 161,095 1.921 161,131 1.416
Port Scan 158,930 5.615 0 0 158,930 1.397

Web Attack-Brute
Force 1507 0.054 610 0.001 2117 0.001

Web Attack-Sql
Injection 21 0.001 86 0.001 107 0.001

Web Attack-XSS 652 0.024 229 0.001 881 0.001

When ACGAN generates an analogous sample, it can generate 10 samples of a spec-
ified type per round, and we can achieve the required number of samples by having it
generate multiple batches of samples of a specified type. When SPE undersamples, we
use the hardness level of classification as the hardness index and calculate the hardness
index of each sample. The samples are reordered after each training session, and when
the number of iterations is satisfied, the samples are selected from the front to the back
according to the number of undersamples. Tables 3–5 show the data distribution of the
above three datasets before and after resampling by SPE-ACGAN, respectively.

Table 3. CICIDS-2017 distribution of the number of training sets before and after resampling.

Class
Before

Resampling
Composition

(%)
After

Resampling
Composition

(%)

Benign 1,818,477 80.301 300,000 52.685
FTP-Patator 7938 0.281 17,938 3.153
SSH-Patator 6350 0.209 16,350 2.874

Bot 1572 0.07 11,572 2.034
DDos 102,421 4.523 30,726 5.401

Dos GoldenEye 8234 0.364 18,234 3.205
Dos Hulk 184,858 8.163 55,457 9.748

Dos Slowhttptest 4399 0.195 15,499 2.724
Dos Slowloris 4636 0.205 14,636 2.573

Heartbleed 8 0.001 10,008 1.759
Infiltration 28 0.001 10,028 1.763
Port Scan 127,144 5.615 38,143 6.705

Web Attack-Brute Force 1295 0.054 11,295 1.810
Web Attack-Sql

Injection 16 0.001 10,016 1.761

Web Attack-XSS 521 0.023 10,521 1.847
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Table 4. CICIDS-2018 distribution of the number of training sets before and after resampling.

Class
Before

Resampling
Composition

(%)
After

Resampling
Composition

(%)

Benign 509,778 76.041 509,778 49.708
FTP-Patator 154,682 2.306 46,404 4.569
SSH-Patator 150,070 2.237 45,021 6.742

Bot 228,231 3.402 68,469 8.427
DDos 550,272 8.203 165,081 16.255

Dos GoldenEye 369,528 5.509 11,858 1.671
Dos Hulk 33,205 0.495 16,602 11.257

Dos Slowhttptest 111,911 1.668 33,573 1.635
Dos Slowloris 8791 0.131 18,791 1.850

Heartbleed 0 0 0 0
Infiltration 128,876 1.921 38,662 3.807
Port Scan 0 0 0 0

Web Attack-Brute Force 488 0.001 10,488 1.033
Web Attack-Sql

Injection 68 0.001 10,068 0.991

Web Attack-XSS 183 0.001 10,183 0.992

Table 5. CICIDS-17-18 distribution of the number of training sets before and after resampling.

Class
Before

Resampling
Composition

(%)
After

Resampling
Composition

(%)

Benign 6,919,456 76.023 700,000 49.793
FTP-Patator 161,032 1.771 48,309 3.463
SSH-Patator 154,788 1.702 46,436 3.328

Bot 229,804 2.523 68,941 4.942
DDos 652,693 7.176 195,807 14.035

Dos GoldenEye 377,763 4.155 113,328 8.123
Dos Hulk 218,064 2.401 65,419 4.689

Dos Slowhttptest 116,311 1.282 34,893 2.501
Dos Slowloris 13,428 0.148 13,428 0.963

Heartbleed 8 0.001 10,008 0.713
Infiltration 128,904 1.416 38,671 0.646
Port Scan 127,144 1.397 38,143 2.771

Web Attack-Brute Force 1693 0.001 11,634 0.834
Web Attack-Sql

Injection 86 0.001 10,086 0.723

Web Attack-XSS 704 0.001 10,704 0.761

4. Experimentation and Result Analysis

In this section, we detail the experimental setup and evaluation metrics and present
the experimental results to demonstrate the validity of the proposed method.

4.1. Experimental Setup

In this work, the settings on all experimental environments are as follows: the deep
learning framework is the Tensorflow 2.4 open source framework, the operating system is
the Windows 10 Professional operating system, the processor is an Intel(R) Core (TM) i5
10400F CPU @ 2.90 GHz, the memory size is 32 GB, the graphics card uses a single NVIDIA
GeForce GTX 1080Ti, the development environment is PyCharm and Anaconda3, and the
development language is Python.

A machine learning NIDS, Random Forest [31], and three deep learning network
intrusion detection models, CNN + WDLSTM (weight-dropped LSTM) [9], CNN [32]
and GoogLeNet [10], are used as the validation models to verify the effectiveness of the
SPE-ACGAN resampling method proposed in this paper.
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The CICIDS-2017 dataset, CICIDS-2018 dataset and CICIDS-17-18 dataset are used as
datasets for validating the SPE-ACGAN resampling method, and RUS [17], SMOTE [16],
ACGAN and SPE are used as the resampling methods for comparison.

4.2. Performance Metrics

In network intrusion detection, there are many evaluation metrics that can be referred
to. In this paper, we would like to use Precision (P), Recall (R) and F1-Score (F1) as the
criteria to evaluate the performance of the model.

P: The proportion of attack samples correctly predicted by the classifier to all samples
predicted as attacks, whose formula is shown in (3):

P =
TP

TP + FP
(3)

R: The ratio of all samples correctly classified by the classifier as attacks to all samples
actually attacked, with the formula shown in (4):

R =
TP

TP + FN
(4)

F1: The summed average of precision and recall to check the stability of the system by
considering the precision and recall of the system with the formula shown in (5):

F1 =
2 × P × R

P + R
(5)

True Positive (TP) means that the classifier correctly predicts a positive sample as a
positive sample; True Negative (TN) means that the classifier correctly predicts a negative
sample as a negative sample; False Positive (FP) means that the classifier incorrectly predicts
a negative sample as a positive sample; and False Negative (FN) is a false negative, meaning
that the classifier incorrectly predicts a positive sample as a negative sample.

Table 6 summarizes the performance changes of each NIDS after the resampling
of the CICIDS-2017 and CICIDS-2018 datasets by SPE-ACGAN. After the resampling of
the CICIDS-2017 dataset by SPE-ACGAN, Random Forest achieved 93.03%, 94.93% and
93.97% in the Precision, Recall and F1-score metrics, 0.86%, 1.14% and 1% higher than
before resampling. CNN + WDLSTM achieved 98.68%, 98.88% and 98.78% in the Precision,
Recall and F1-score metrics, 0.61%, 0.46% and 0.54% higher than before resampling. CNN
achieved 96.85%, 98.11% and 97.48% in the Precision, Recall and F1-score metrics, 0.17%,
0.06% and 0.12% higher than before resampling.

Table 6. The outcome of the proposed method before and after resampling.

Method
CICIDS-2017 CICIDS-2018

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Random Forest 92.17 93.79 92.97 91.68 89.65 90.65
GoogLeNet 92.88 94.53 93.69 92.94 91.39 91.71

CNN 96.68 98.05 97.36 93.62 92.10 92.34
CNN + WDLSTM 98.07 98.42 98.24 94.97 94.88 94.63

Our Proposed + Random Forest 93.03 94.93 93.97 92.70 90.64 91.66
Our Proposed + GoogLeNet 93.34 94.10 93.72 93.17 92.43 92.80

Our Proposed + CNN 96.85 98.11 97.48 94.71 93.33 94.01
Our Proposed + CNN + WDLSTM 98.68 98.88 98.78 95.92 96.13 96.02

In addition, after the CICIDS-2018 dataset was resampled by SPE-ACGAN, Random
Forest achieved 92.70%, 90.64% and 91.66% in the Precision, Recall and F1-score met-
rics, 1.02%, 0.99% and 1.01% higher than before resampling. CNN + WDLSTM achieved
95.92%, 96.13% and 96.02% in the Precision, Recall and F1-score metrics, 0.95%, 1.25%
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and 1.39% higher than before resampling. CNN achieved 94.71%, 93.33% and 94.01% in
Precision, Recall and F1-score metrics, 1.09%,1.23% and 1.67% higher than before resam-
pling. GoogLeNet achieved 93.17%, 92.43% and 92.80% in the Precision, Recall and F1-score
metrics, 0.23%, 1.04% and 1.09% higher than before resampling. The above experimental
results all show that the SPE-ACGAN resampling method can moderate the network traffic
imbalance problem.

Table 7 summarizes the comparison of SPE-ACGAN with other methods in the CICIDS-
17-18 dataset experiments. After resampling by SPE-ACGAN, Random Forest achieved
75.63%, 77.14% and 76.38% in Precision, Recall and F1-score, 2.02%, 2.77% and 5.59%
higher than before resampling. CNN + WDLSTM achieved 82.23%, 82.54% and 82.38%
in Precision, Recall and F1-score, 2.77%, 3.3% and 3.56% higher than before resampling.
CNN achieved 83.94%, 82.78% and 81.66% in Precision, Recall and F1-score,5.41%,5.48%
and 3.75% higher than before resampling. GoogLeNet achieved 77.57%, 80.20% and 78.86%
in Precision, Recall and F1-score, 3.41%, 3.80% and 3.60% higher than before resampling.
The performance of each NIDS on the three metrics of Precision, Recall and F1-score before
and after ACGAN resampling is shown in Figures 4–6.

Table 7. Comparison of the proposed method and different methods.

Method
CICIDS-17-18

P (%) R (%) F1 (%)

Random Forest 73.34 74.37 70.79
GoogLeNet 74.16 76.40 75.26

CNN 78.53 77.30 77.91
CNN + WDLSTM 79.46 79.24 78.82

RUS + Random Forest 75.13 75.15 75.14
RUS + GoogLeNet 76.58 79.36 77.94

RUS + CNN 78.38 78.23 75.03
RUS + CNN + WDLSTM 77.68 79.06 78.36

SMOTE + Random Forest 74.76 79.87 76.23
SMOTE + GoogLeNet 77.82 80.14 78.96

SMOTE + CNN 78.09 81.96 75.32
SMOTE + CNN + WDLSTM 80.55 81.67 81.11

SPE + Random Forest 75.58 75.22 75.40
SPE + GoogLeNet 75.69 77.58 76.57

SPE + CNN 80.53 80.12 80.32
SPE + CNN + WDLSTM 81.02 81.82 81.42

ACGAN + Random Forest 74.44 74.55 74.49
ACGAN + GoogLeNet 75.55 77.52 76.52

ACGAN + CNN 78.98 77.21 78.08
ACGAN + CNN + WDLSTM 78.36 77.06 77.70

Our Proposed + Random Forest 75.63 77.14 76.38
Our Proposed + GoogLeNet 77.57 80.20 78.86

Our Proposed + CNN 83.94 82.78 81.66
Our Proposed + CNN + WDLSTM 82.23 82.54 82.38

Furthermore, the SPE-ACGAN method proposed in this paper takes F1-score values
of 76.38%, 82.38%, 81.66% and 78.86% in Random Forest, CNN + WDLSTM, CNN and
GoogLeNet after resampling. After resampling by the SPE-ACGAN method proposed
in this paper, the F1-score in Random Forest, CNN + WDLSTM, CNN and GoogLeNet
takes the values of 76.38%, 82.38%, 81.66% and 78.86%. After resampling by the RUS, the
F1-score takes the values of 75.14%, 77.94%, 75.03% and 78.36%. After resampling using
the SMOTE method, the F1-score takes the values of 76.23%, 78.96%, 75.32% and 81.11%
in Random Forest, CNN + WDLSTM, CNN and GoogLeNet. After resampling by SPE
method, the F1-score takes the values of 75.40%, 76.57%, 80.32%, and 81.42% in Random
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Forest, CNN + WDLSTM, CNN and GoogLeNet. After resampling using the ACGAN
method, the F1-score takes the values of 74.49%, 76.52%, 78.08%, and 77.70% in Random
Forest, CNN + WDLSTM, CNN and GoogLeNet. By comparing the results with other
resampling results, it can be concluded that the resampling method proposed in this paper
has the highest performance improvement for each NIDS.

Figure 4. The Performance of Precision before and after resampling.

Figure 5. The Performance of Recall before and after resampling.

Figure 6. The Performance of F1-score before and after resampling.
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5. Conclusions

The sample imbalance of network traffic is one of the important reasons affecting
the detection performance of the NIDS classifier. In this paper, the rationale behind our
proposed resampling approach is to balance the amount of malicious traffic with the
amount of benign traffic and, similarly, to balance the amount of malicious traffic in each
category. We propose a resampling method SPE-ACGAN based on the combination of
ACGAN and SPE, which balances the network traffic by eliminating majority class samples
and generating minority class samples. Compared to existing oversampling methods,
ACGAN is able to generate data with specified categories, whereas GAN generates data
randomly and needs to be filtered again to find data that match the features of the specified
categories. Not only that, ACGAN does not need to traverse the neighboring samples of the
minority samples compared to SMOTE, which can greatly improve efficiency. Compared to
RUS, SPE is able to retain samples that are on the classification boundary to a great extent
rather than randomly removing samples from the majority class. Experimental results
show that the resampling method proposed in this paper alleviates the sample imbalance
problem of NIDS and not only improves the performance of multi-class NIDS but also
achieves a better improvement than other resampling methods.

In NIDS, capturing attack samples is a difficult task, but generating attack samples is
more difficult because verifying the effectiveness of generating samples is not an easy task.
The processing of small and zero samples will be an important aspect of NIDS.

In addition, scenarios of class imbalance often occur in everyday life, such as the gap
between rare disease diagnoses and health cases. The use of resampling techniques enables
the model to cope with the imbalance by enabling the features of a small number of class
samples during the training process.
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Abstract: Artificial intelligence (AI) acts as a vital part of enhancing network security using intrusion
detection and anomaly detection. These AI-driven approaches have become essential components
of modern cybersecurity strategies. Conventional IDS is based on predefined signatures of known
attacks. AI improves signature-based detection by automating the signature generation and reducing
false positives through pattern recognition. It can automate threat detection and response, allowing
for faster reaction times and reducing the burden on human analysts. With this motivation, this study
introduces an Improved Sine Cosine Algorithm with a Deep Learning-Enabled Security Solution
(ISCA-DLESS) technique. The presented ISCA-DLESS technique relies on metaheuristic-based feature
selection (FS) and a hyperparameter tuning process. In the presented ISCA-DLESS technique, the
FS technique using ISCA is applied. For the detection of anomalous activities or intrusions, the
multiplicative long short-term memory (MLSTM) approach is used. For improving the anomaly
detection rate of the MLSTM approach, the fruitfly optimization (FFO) algorithm can be utilized for
the hyperparameter tuning process. The simulation value of the ISCA-DLESS approach was tested on
a benchmark NSL-KDD database. The extensive comparative outcomes demonstrate the enhanced
solution of the ISCA-DLESS system with other recent systems with a maximum accuracy of 99.69%.

Keywords: cloud computing; security; feature selection; machine learning; artificial intelligence

1. Introduction

Recently, cloud computing (CC) has developed as one of the common Internet-based
technologies in the information technology (IT) field [1]. There are three levels that com-
pose CC, e.g., the system layer, platform layer, and application layer [2]. Cloud security
is considered the main challenge to cloud adoption by most enterprises [3]. The open
and entirely dispersed nature of the cloud platform makes it extremely susceptible to
vulnerabilities and security attacks [4]. Therefore, intruders have a high potential to carry
out threats against cloud-linked devices or the cloud. Alternatively, cloud cyberattacks and
services have a negative impact on CC platform performance and QoS requirements [5].
Conventional security regulation, namely, firewalls and antivirus software, could protect
cloud infrastructure from complex cyberattacks [6]. By employing machine learning (ML),
enterprises can improve their security actions and decrease the risk of data breaches. The
possibility of ML to enhance attack detection and response is the major advantage of uti-
lizing it for cloud security. Classical security regulations, namely, antivirus software and
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firewalls, are responsive and only react to known attacks [7]. Conversely, the ML method
can detect patterns in information, which may specify an attack, even when the attack is not
yet known. According to previous information, the ML technique is created for identifying
designs that point to security vulnerabilities [8].

To overcome these problems and to improve the security of cloud services, providing
a deep learning (DL)-based approach will be an adaptable solution [9]. Currently, DL
is employed in various organizations due to its excellent prediction power and pattern
recognition [10]. As DL utilizes a multi-mode neural network (NN) idea for simulating
activities the same as the working model of the brain, it can be promoted and administered
in a cloud-based infrastructure [11]. Using DL methods to train massive databases in the
cloud platform can perform the overall processes of computing highly efficiently with
low latency. Major attacks like trust difficulties, malware identification, data privacy, and
network intrusion could be monitored utilizing DL techniques in real time [12]. Different
from other standard security enhancers, DL approaches are learned and have intelligent
abilities to offer disruptive outcomes in detecting attacks and improving cloud security in
the constantly growing competitive world [13].

This study introduces an Improved Sine Cosine Algorithm with a Deep Learning-
Enabled Security Solution (ISCA-DLESS) technique for the CC environment. In the pre-
sented ISCA-DLESS technique, the selection of features takes place by the ISCA. Addition-
ally, the chosen features are passed into a multiplicative long short-term memory (MLSTM)
model for intrusion detection. To improve the anomaly detection rate of the MLSTM
approach, the fruitfly optimization (FFO) algorithm can be utilized for the hyperparameter
tuning process. The experimental result analysis of the ISCA-DLESS system has been
tested on a benchmark database. In short, the key contribution of the paper is summarized
as follows.

• Automated anomaly detection using the ISCA-DLESS technique comprising ISCA-
based FS, MLSTM-based detection, and FFO-based hyperparameter tuning for CC is
presented. To the best of our knowledge, the ISCA-DLESS technique has never existed
in the literature.

• The ISCA-DLESS employs an ISCA-based FS technique with the integration of the
oppositional-based learning (OBL) concept with SCA, which reduces the data dimen-
sionality and enhances the detection performance.

• Applying MLSTM-based detection, which has the capability of capturing sequential
patterns, makes it appropriate to detect anomalies in time-series data.

• Employing the FFO algorithm for hyperparameter tuning of the MLSTM model
efficiently searches for optimal hyperparameter configurations.

The rest of the paper is organized as follows. Section 2 provides the related works, and
Section 3 offers the proposed model. Then, Section 4 gives the result analysis, and Section 5
concludes the paper.

2. Related Works

Maheswari et al. [14] developed an intrusion detection system (IDS) for web and
CC platforms based on hybrid teacher learning-aided DRNN and cluster-based feature
optimization. After feature extraction, the study used a Modified Manta-ray Foraging
Optimization (MMFO) to select optimum features to detect further. A hybrid Teacher-
Learning Enabled DRNN (TL-DRNN) is developed for the classification of web-cloud
intrusion. In [15], an Effective Optimum Security Solution for IDS (EOS-IDS) in a CC
platform by using a hybrid DL technique was designed. Pre-processing was performed
by the improved heap optimization (IHO) method. Next, the authors offer a chaotic red
deer optimizer (CRDO) method for optimal feature selections. Later, a deep Kronecker
NN (DKNN) is shown for cloud attack and classification and recognition of intrusion.
Toldinas et al. [16] devised an innovative technique for network IDS using multi-phrase
DL image detection. The feature network was transformed into four-channel (Red, Green,
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Blue, and Alpha) images. Then, the images could be utilized for the classification to test
and train the pretrained DL mechanism ResNet_50.

Srilatha and Thillaiarasu [17] introduced a Network Intrusion Detection and Pre-
vention Scheme (NIDPS) to prevent and detect a large number of network attacks. The
effective IDPS was tested and implemented in a network environment using different ML
approaches. In this study, an improved ID3 was developed for identifying abnormalities in
network activities and classifying them. The authors in [18] developed an IDSGT-DNN
architecture to enhance security in cloud IDSs. The study incorporated defender and
attacker systems for attack and normal data processing. In the DNN model, this technique
could be implemented with IWA for the recognition of a better solution. Prabhakaran and
Kulandasamy [19] suggested a hybrid semantic DL (HSDL) model by incorporating the
SVM, LSTM, and CNN frameworks. The semantic data existing in the network traffic were
detected utilizing a semantic layer called a Word2Vec embedding layer. The proposed
architecture categorized the intrusion existing in the text and its respective attack classes.

Ravi et al. [20] presented a Cauchy GOA with DL for the Cloud-Enabled IDS (CGOA-
DLCIDS) method. The proposed approach carried out feature subset selection by CGOA,
which improved the recognition speed and decreased the feature subsets. Following this,
the method exploited the attention-based LSTM (ALSTM) mechanism for accurate and
automatic detection and classification of intrusion. Jisna et al. [21] presented a cloud-based
DL LSTM-IDS technique and assessed it to hybrid Stacked Contractive AE (SCAE) along
with the SVM-IDS mechanism. DL techniques such as basic ML were constructed to
simultaneously perform attack detection and classification.

Alghamdi and Bellaiche [22] introduced an edge-cloud deep IDS technique in the
Lambda framework for IoT security to overcome these problems. This approach minimized
the time of the training stage by comparing it with standard ML methods and improved the
accuracy of true positive-identified attacks. Moreover, the NN-layers’ main DL technique
attained higher adaptability and performance compared with the standard ML technique.
Alzubi et al. [23] proposed an Effective Seeker Optimization algorithm along with an
ML-assisted IDS (ESOML-IDS) approach for the FC and EC platforms. The ESOML-IDS
algorithm mainly developed an innovative ESO-based FS technique for optimally selecting
feature subsets to detect the existence of intrusions in the FC and EC platforms. Ali and
Zolkipli’s study [24] comprised a brief description of the IDS and presented to the reviewer
some basic principles of the IDS task in CC, further developing a novel Fast Learning
Network method for functions dependent upon intrusion detection.

Despite the availability of several anomaly and intrusion detection models, it remains
a challenging problem. Due to the continuous deepening of the model, the number of
parameters in DL models also increases quickly, which results in model overfitting. At the
same time, different hyperparameters have a significant impact on the efficiency of the
CNN model, particularly the learning rate. It is also needed to modify the learning rate
parameter to obtain better performance. Therefore, in this study, we employed the FFO
technique for the hyperparameter tuning of the MLSTM model.

3. The Proposed Model

In this manuscript, we have presented a novel ISCA-DLESS system for the effectual
identification of anomalies and intrusions in the CC environment. The purpose of the ISCA-
DLESS technique is to exploit the metaheuristic algorithms for FS and the hyperparameter
tuning process. In the proposed ISCA-DLESS system, three main procedures are contained,
such as ISCA-based FS, MLSTM-based classification, and FFO-based hyperparameter
tuning. Figure 1 depicts the entire flow of the ISCA-DLESS method.
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Figure 1. Overall flow of ISCA-DLESS system.

3.1. Stage I: Feature Selection Using ISCA

To elect an optimal set of features, the ISCA was used. SCA is a recent metaheuristic
optimization algorithm for resolving global optimization problems [25]. Using SCA, a
group of arbitrary populations of candidate performances with standard distribution
could be produced to begin the optimizer technique. Then, the locations of candidate
performances were upgraded by the following expression:

Yt+1
i = Yt

i + R1 ∗ sin(R2) ∗
∣∣R3Zt

i − Yt
i
∣∣ (1)

Yt+1
i = Yt

i + R1 ∗ cos(R2) ∗
∣∣R3Zt

i − Yt
i
∣∣ (2)

Now, Yt+1
i and Yt

i denote the position of ith solution candidate at the t and t + 1
iterations correspondingly. R1, R2, and R3 show a uniform distribution of random numbers,
and Zt

i shows the target point’s position at the ith parameter. The operator || is utilized to
define the absolute value:{

Yt+1
i = Yt

i + R1 ∗ sin(R2) ∗
∣∣R3Zt

i − Yt
i

∣∣, R4 < 0.5
Yt+1

i = Yt
i + R1 ∗ cos(R2) ∗

∣∣R3Zts
i − Yt

i

∣∣, R4 ≥ 0.5
(3)

where R4 shows the uniformly distributed random value between 0 and 1. R1 is a randomly
generated vector that decides if the solution moves among the search space as well as
a better solution. The vector R2 defines the distance of candidate performances to or in
a better solution. The R3 third parameter describes arbitrary weighted over the better
solution to define the micro search (R3 < 1) and macro search (R3 > 1) capabilities of this
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parameter. Due to this reason, R3 is highly useful to avoid early convergence. Evolution
from cos to sin functions can be assisted by the R4 random vector. The range of the sin and
cos function should be adaptively adjusted to achieve a proper balance between exploitation
and exploration, as follows:

R1 = k − Iter
k

Max− Iter
(4)

In Equation (4), Iter and Max− Iter represent the present and maximal iteration, and k
is a constant. The notion of the OBL method relies on an opposite number. Consider that
p ∈ [x, y], whereas y ∈ R, in which R represents the real number:

p0 = x + y − p (5)

Also, this description could be stretched to high dimensions. The opposite num-
ber p0 =

(
p1

o , p2
o , . . . , pd

o

)
for a number p was defined for d-dimensional search space

as follows:
pi,o = xi + yi − pi (6)

The concept of OBL was used for improving the micro search capability of the SCA.

Yi,o(Iter) = xi + yi − Y(Iter) (7)

In the ISCA, the initial population was randomly generated by the uniform distri-
bution, and the fitness of possible solutions was evaluated. Then, the better candidate
solution Z was recognized. The OBL method attained a balance among micro as well as
macro search capabilities by using the candidate solution. The linear adaptive operator was
hybridized with the OBL model. This operator was capable of enhancing the convergence
rate by fine-tuning the proper balance among the macro as well as micro search processes.
This operator ensured the best exploration and exploitation as the number of generation’s
problems of varying complexities. OBL was hybridized with linear adaptive (LA) operators
to benchmark the function, as shown below:

yi,0(Iter) = lac × (xi + yi − Zi(Iter)) (8)

In Equation (8), yi,0 indicates the opposite solution candidate for the ith parameter
around the better solution Zi at the Iter existing iteration. The fitness can be measured after
defining the opposite location around a better solution.

The fitness function (FF) of the ISCA is assumed to be the classifier accuracy and
FS counts. It minimizes the set dimensional of FSs and maximizes the classifier accuracy.
So, the following FF can be employed for measuring separate solutions, as written in
Equation (9).

Fitness = α ∗ ErrorRate + (1 − α) ∗ #SF
#All_F

(9)

whereas ErrorRate indicates the classifier rate of errors employing the FSs. ErrorRate is
measured as the percentage of improper classifiers to the count of classifications made,
stated as a value between zero and one. #SF mentions that the FS counts, and #All_F
implies the entire attribute counts from the new database. α is employed for controlling the
impact of classifier quality and subset length.

3.2. Stage II: MLSTM-Based Classification

In this work, the MLSTM-based classification process could be employed. Classical
ANN is constrained in its capability to obtain the sequential data required to handle
sequence data in the input [26]. RNN can be used to extract sequential data in the raw
information while making predictions, for example, links among the words from the text.
An evaluation of RNN future hidden layer (HL) is given in the following: consider the time
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stamp vector = (1, . . . , T), a future HL vector n = (n1, . . . , nT), an input y = (y1, · · · , yT),
and an output x = (x1, xT). Using the following equation, the HL vector is given:

nt = N
(
Wynyt + Wnnnt−1 + bn

)
, (10)

For xt = Wnnnt−1 + bn, N shows the activation function of the HL, and W refers to
the weight matrix.

The major problem of classical RNNs is that the backpropagation (BP) stage attenuates
the loss function, which makes the number smaller, so it could not grant anything to
learning. The gradient disappearing problem takes place once these layers gather a small
gradient to enhance its weights and learning factors. The input, forget, and output gates
are the gating mechanisms of the LSTM network. The forget gate will forbid or grant
information and is estimated as follows:

Ft = σ
(

Wx f xt + Wh f ht−1 + Wc f Ct−1 + b f

)
, (11)

In Equation (11), Wx f represents the weighted vector amongst the input and forget
gate; xt shows the existing data; and Wh f indicates the weighted vectors amongst the forget
gate and HL. If the accumulation of the variable is run with the activation function, the
gate allows it to pass if the value is in the range of [0, 1]. Otherwise, it removes the data.

Existing and prior outcomes are forwarded to the sigmoidal function that allows
updating the cell state memory. At t time, the input vector was defined by the subse-
quent formula:

it = σ(Wxixt + Whiht−1 + WciCt−1 + bi), (12)

In Equation (12), Wxi denotes the weighted vector of raw information, and Whi shows
the weighted vector amongst current values and input gate. The cell layer introduces the
existing cell layer, doubles the forgotten variable with the prior cell layer, and drops the
variable if doubled by virtual 0:

Ct = FtCt−1 + it tanh
(

Wx f xt + Whcht−1 + bc

)
, (13)

The second HL is defined by the output gate. At the t timestamp, the resultant vector
can be evaluated as follows:

ot = σ(Wxoxt + Whoht−1 + WcoCt−1 + bo), (14)

Lastly, the hyperbolic activation function is represented as follows:

ht = ot.tanh(ct), (15)

MLSTM is different from the typical LSTM frameworks that establish a gating mech-
anism named multiplicative connections. It can be planned to improve the learning and
representation abilities of LSTM networks. It presents a novel gating mechanism named
“update gate”, which is utilized for modulating the cell layer upgrade. The upgrade gate in
an MLSTM is determined as the element-by-element product (Hadamard product) among
the output of the forget gate as well as the input of the input gate. It implies that the
upgrade gate controls several data in the preceding cell layer (determined by the forget
gate), and a novel input (determined by the input gate) can be employed for updating the
current cell layer. By utilizing element-by-element multiplication, the upgrade gate permits
the LSTM to concentrate on particular sizes of the input and selectively upgrade the cell
layer that is useful for sequence modelling tasks.

3.3. Stage III: Hyperparameter Tuning Using FFO Algorithm

To enhance the results of the MLSTM approach, the FFO system can be employed.
The FFO algorithm is a new nature-inspired optimization approach [27]. Due to its simple
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computation operation, FFO is easy to apply and comprehend like other metaheuristic
approaches. This technique is an SI approach stimulated by the knowledge of the foraging
behavioural patterns of FFs. The FF exceeds other species relating to olfaction and vision,
which they mainly depend on—FFs can collect miscellaneous aerial smells, notwithstanding
the food source being far away. In the scouring stage, the FF scouts and locates food sources
near the swarm and evaluates the odour intensity for the food sources. Once the better
position with the high odour intensity is identified, the swarm navigates toward it.

Undeniably, the procedure of effectual teamwork and communication between indi-
vidual FFs is vital to accomplish the strategies of resolving optimization problems. The
algorithm has four different stages:

• Initialization;
• Osphresis foraging;
• Population evaluation;
• Vision.

At first, the parameter is set—the maximal amount of iterations and size of populations.
The solution, viz. FFs are randomly initialized as follows:

Xij = rand
(
UBj − LBj

)
+ LBj, (16)

In Equation (16), Xij denotes ith solution, and jth indicates the element’s location at
the ith solution. LB indicates a lower boundary, whereas UB shows an upper boundary,
and rand denotes a uniformly distributed random integer.

Next, the location updating of the solution takes place according to the osphresis
foraging stage. The solution is randomly distributed from the existing position as follows:

X(t+1)
ij = X(t)

ij ± rand (17)

In Equation (17), X(t+1)
ij denotes the new location, X(t)

ij indicates the existing solution,
rand() ∈ [−1, 1], whereas t refers to the iteration count. The smell and distance are
calculated following the location update. Next, the calculation of odor intensity—the
function of smell (FF)—for every solution follows. When the optimal FF of the solution
is superior to the prior best, the novel location of the solution with the better FF values
replaces each solution’s position afterwards. Or else, the older solution position will remain.
This procedure signifies the vision foraging stage. The process continues until the ending
condition is met and produces better outcomes.

Fitness optimal is a key feature of the FFO system. An encoded outcome can be
deployed to assess the goodness solution of candidate outcomes. Presently, the accuracy
value is the major condition deployed to design an FF.

Fitness = max(P) (18)

P =
TP

TP + FP
(19)

In which TP and FP define the true and false positive values.

4. Results and Discussion

The proposed model was simulated using Python 3.6.5 tool (The source code will be
made available once the funding project is complete). The proposed model was experi-
mented on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. In
this section, the simulation validation of the ISCA-DLESS technique can be tested on the
NSL-KDD database (available at https://www.kaggle.com/datasets/hassan06/nslkdd (ac-
cessed on 13 July 2023)), containing 125,973 instances with five class labels, as represented
in Table 1. The ISCA-DLESS technique selected a total of 29 features from the available
42 features. The confusion matrices of the ISCA-DLESS algorithm on distinct databases are
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shown in Figure 2. The simulation value implied that the ISCA-DLESS approach accurately
recognized various classes proficiently.

Table 1. Description of database.

Class No. of Instances

Dos 45,927

R2l 995

Probe 11,656

U2r 52

Normal 67,343

Total No. of instances 125,973

Figure 2. Confusion matrices of (a,b) 80:20 of TR set/TS set and (c,d) 70:30 of TR set/TS set.

In Table 2 and Figure 3, the overall outcome of the ISCA-DLESS system with 80:20
of the TR set/TS set is portrayed. The results suggested that the ISCA-DLESS technique
reached enhanced performance in all classes.
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Table 2. Classifier outcome of ISCA-DLESS algorithm on 80:20 of TR set/TS set.

Class Accuy Precn Recal FScore MCC

TR set (80%)

Dos 99.55 99.51 99.25 99.38 99.03

R2l 99.79 81.90 93.76 87.43 87.52

Probe 99.74 97.96 99.28 98.61 98.47

U2r 99.97 69.23 61.36 65.06 65.16

Normal 99.42 99.58 99.33 99.45 98.83

Average 99.69 89.64 90.60 89.99 89.80

TS set (20%)

Dos 99.52 99.47 99.20 99.34 98.96

R2l 99.74 77.68 93.30 84.78 85.01

Probe 99.72 98.13 98.85 98.49 98.34

U2r 99.98 75.00 75.00 75.00 74.99

Normal 99.41 99.56 99.33 99.45 98.81

Average 99.67 89.97 93.14 91.41 91.22

Figure 3. Average of ISCA-DLESS algorithm on 80:20 of TR set/TS set.

With 80% of the TR set, the ISCA-DLESS technique attained average accuy, precn, recal,
Fscore, and MCC values of 99.69%, 89.64%, 90.60%, 89.99%, and 89.80%, respectively. Also,
with 20% of the TS set, the ISCA-DLESS methodology accomplished average accuy, precn,
recal, Fscore, and MCC values of 99.67%, 89.97%, 93.14%, 91.41%, and 91.22% correspondingly.

In Table 3 and Figure 4, the overall outcome of the ISCA-DLESS methodology with
70:30 of the TR set/TS set is portrayed. The results suggested that the ISCA-DLESS system
attained greater performance under all classes. With 70% of TR set, the ISCA-DLESS
approach obtains average accuy, precn, recal , Fscore, and MCC values of 99.40%, 71.13%,
75.67%, 73.01%, and 72.75% correspondingly. Then, with 30% of TS set, the ISCA-DLESS
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method gained average accuy, precn, recal , Fscore, and MCC values of 99.45%, 72.34%,
76.13%, 73.98%, and 73.69%, respectively.

Table 3. Classifier outcome of ISCA-DLESS algorithm on 70:30 of TR set/TS set.

Class Accuy Precn Recal FScore MCC

TR set (70%)

Dos 99.24 98.93 98.99 98.96 98.36

R2l 99.45 60.75 84.47 70.67 71.38

Probe 99.32 96.65 95.99 96.32 95.95

U2r 99.96 00.00 00.00 00.00 00.00

Normal 99.03 99.30 98.89 99.10 98.06

Average 99.40 71.13 75.67 73.01 72.75

TS set (30%)

Dos 99.29 98.95 99.09 99.02 98.46

R2l 99.54 66.50 86.27 75.11 75.52

Probe 99.38 96.93 96.29 96.61 96.27

U2r 99.96 00.00 00.00 00.00 00.00

Normal 99.10 99.33 98.97 99.15 98.18

Average 99.45 72.34 76.13 73.98 73.69

Figure 4. Average of ISCA-DLESS algorithm on 70:30 of TR set/TS set.

Figure 5 demonstrates the training accuracy TR_accuy and VL_accuy of the ISCA-
DLESS system on 80:20 of the TR set/TS set. The TL_accuy was defined by the assessment
of the ISCA-DLESS technique on the TR dataset, whereas the VL_accuy was calculated by
estimating the performance on a separate testing dataset. The outcomes exhibited that
TR_accuy and VL_accuy increased with an upsurge in epochs. As a result, the performance
of the ISCA-DLESS system improved on the TR and TS datasets with a rise in the number
of epochs.
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Figure 5. Accuy curve of ISCA-DLESS algorithm on 80:20 of TR set/TS set.

In Figure 6, the TR_loss and VR_loss curve of the ISCA-DLESS system on 80:20 of the
TR set/TS set is depicted. The TR_loss defines the error among the predictive outcome
and original values on the TR data. The VR_loss signifies the measure of the solution
of the ISCA-DLESS technique on individual validation data. The results stated that the
TR_loss and VR_loss tended to be lesser with rising epochs. It depicted the enhanced
performance of the ISCA-DLESS technique and its ability to create an accurate classification.
The reduced value of TR_loss and VR_loss established the greater performance of the
ISCA-DLESS method in capturing patterns and relationships.

Figure 6. Loss curve of ISCA-DLESS algorithm on 80:20 of TR set/TS set.
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A comprehensive precision–recall (PR) analysis of the ISCA-DLESS system is displayed
on 80:20 of the TR set/TS set in Figure 7. The simulation value defined the ISCA-DLESS
approach solution in greater PR values. Afterwards, it could be clear that the ISCA-DLESS
algorithm attained superior performances of PR in five classes.

In Figure 8, a ROC analysis of the ISCA-DLESS algorithm is defined on 80:20 of the
TR set/TS set. The simulation value determined that the ISCA-DLESS approach led to
maximal values of ROC. Next, the ISCA-DLESS system achieved greater outcomes in ROC
in five classes.

Figure 7. PR curve of ISCA-DLESS algorithm on 80:20 of TR set/TS set.

Figure 8. ROC of ISCA-DLESS algorithm on 80:20 of TR set/TS set.
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In Table 4, a detailed comparative result of the ISCA-DLESS methodology with recent
systems is made [28]. Figure 9 depicts the accuy and Fscore outcomes of the ISCA-DLESS
approach with other approaches. The obtained values inferred that the LKM-OFLS and
PCA-NN models reached poor performance. At the same time, the K-means-OFLS, MLP,
and FCM-OFLS models reported moderately improved results. Meanwhile, the IMFL-
IDSCS technique attained considerable performance. Finally, the ISCA-DLESS technique
showcased better performance, with a maximum accuy of 99.69% and an Fscore of 89.99%.

Table 4. Comparative outcome of ISCA-DLESS system with recent techniques [28].

Methods Accuy Precn Recal FScore

ISCA-DLESS 99.69 89.64 90.60 89.99

IMFL-IDSCS 99.44 86.15 78.36 81.92

LKM-OFLS 89.47 84.76 74.80 78.38

K-means-OFLS 91.55 85.87 75.63 78.46

MLP Algorithm 91.59 86.72 76.89 75.13

PCA-NN 90.22 84.68 76.19 77.68

FCM-OFLS 93.50 82.85 74.54 75.80

Figure 9. Accuy and Fscore outcome of ISCA-DLESS approach with recent systems [28].

Figure 10 represents the precn and recal analysis of the ISCA-DLESS system with other
methods. The simulation values implied that the LKM-OFLS and PCA-NN approaches
attained worse outcomes. Then, the K-means-OFLS, MLP, and FCM-OFLS methods re-
ported moderately enhanced performance. In the meantime, the IMFL-IDSCS system
attained considerable outcomes. At last, the ISCA-DLESS system demonstrated optimum
performance with maximal precn of 89.64% and recal of 90.60%. Therefore, the ISCA-DLESS
technique could be utilized for enhanced cloud security.
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Figure 10. Precn and recal outcome of ISCA-DLESS approach with recent systems [28].

5. Conclusions

In this study, we derived a novel ISCA-DLESS algorithm for effectual identification of
anomalies and intrusions in the CC environment. The ISCA-DLESS technique applied the
FS process with a hyperparameter-tuned classification model for anomaly detection. In
the proposed ISCA-DLESS system, the three main procedures comprised ISCA-based FS,
MLSTM-based classification, and FFO-based hyperparameter tuning. The application of
the ISCA-based FS helped in reducing the high dimensionality problem and enhanced the
classification performance. Moreover, the use of the FFO algorithm for the hyperparameter
tuning of the MLSTM model aided in accomplishing an improved detection rate. The
comprehensive analysis demonstrated an enhanced solution in the ISCA-DLESS technique
with other recent approaches, with a maximum accuracy of 99.69%. Thus, the ISCA-DLESS
technique could be applied for automated anomaly detection in the CC environment. In
future, the proposed model could be extended to address cloud-specific threats, such as
misconfigurations, data exposure, and supply chain attacks, in the context of anomaly
detection. In addition, the proposed model could operate seamlessly across multiple cloud
providers and hybrid cloud environments. This includes ensuring interoperability and
consistent threat monitoring.
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Abstract: Network-based intrusion detection systems play a pivotal role in cybersecurity, but they
generate a significant number of alerts. This leads to alert fatigue, a phenomenon where security
analysts may miss true alerts hidden among false ones. To address alert fatigue, practical detection
systems enable administrators to divide alerts into multiple groups by the alert name and the related
Internet Protocol (IP) address. Then, some groups are deliberately ignored to conserve human
resources for further analysis. However, the drawback of this approach is that the filtering basis is
so coarse-grained that some true alerts are also ignored, which may cause critical security issues. In
this paper, we present a new semi-supervised and fine-grained filtering method that uses not only
alert names and IP addresses but also semi-supervised clustering results from the alerts. We evaluate
our scheme with both a private dataset from a security operations center and a public dataset from
the Internet. The experimental results demonstrate that the new filtering scheme achieves higher
accuracy and saves more human resources compared to the current state-of-the-art method.

Keywords: intrusion detection; false positive; cyber security; alert fatigue; semi-supervised learning;
prototype clustering

1. Introduction

Network-based intrusion detection and prevention systems (IDPS) have played a
pivotal role in cybersecurity [1–3]. Located at network gateways or critical points in
enterprise networks, they inspect every packet to find suspicious activities or cyberattacks.
For decades, the IDPS has evolved to include more than thousands of detection rules,
or signatures, most of which are represented as strings or regular expressions. Whenever
an IDPS finds any signature from a packet, it triggers an alert. If the packet is really related
to cyberattacks, the alert becomes a true alert; otherwise, a false alert occurs, also called a
false positive.

Unfortunately, IDPSs have been notorious for their false alerts, resulting in a phe-
nomenon called alert fatigue, a huge number of false alerts overwhelming security analysts
to ignore or fail to respond to a small number of true alerts [4,5]. Because writing intrusion
detection rules is a challenging task, finding the right balance between an overly specific
rule and an overly general one is hard to determine [1]. Most rules are developed to
catch general attacks or vulnerabilities because IDPSs can be deployed in any environment.
This means that IDPSs would generate alerts when a packet includes a suspicious string,
and therefore a tremendous volume of false alerts is inevitable.

The sheer number of alerts has consistently overwhelmed human resources, or se-
curity analysts, leading to the pervasive issue of alert fatigue. Reducing alert fatigue is a
challenging yet essential task for the security industry, particularly in security operations
centers (SOC) where alerts are gathered from numerous monitoring sensors and a limited
number of analysts work around the clock, 365 days a year [6,7]. Despite decades of efforts
by researchers and industries to address the alert fatigue problem in IDPSs [4–6,8–10],
a comprehensive solution has not been achieved yet.
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Existing Solutions. Security analysts can usually analyze only a small portion of
alerts. Recent studies show that one analyst can investigate 76 alerts per day, but the
number of daily alerts is greater than 10,000 [4]. Therefore, some true alerts of real threats
should be selected first with a high priority whereas false alerts should be filtered out
automatically. In this sense, a number of solutions have been proposed, which can be
classified into three categories as follows:

First, additional context information very specific to a particular site can be used to
automatically filter out some alerts. For example, a security analyst may ignore any alert
about Windows Internet Information Services (IIS) if he/she knows the site information
that the victim is an Apache web server [4]. However, very detailed context information
should be timely updated, which is often impossible in practice because of scarce human
resources or poor cooperation between security and operation teams.

Second, extra data or Cyber Threat Intelligence (CTI) information from other sources
can be used. For example, additional server logs, alerts from other IDPSs, or blacklists
of IP addresses of well-known attackers, can give a hint as to whether the alert is true
or false [5,6,8]. However, extra cost and effort are required to purchase and fully utilize
CTI information.

Third, alerts can be classified into multiple groups by security analysts and some
groups are filtered out together automatically. This heuristic is widely used in the industry
because many false alerts can be suppressed at once. The current grouping method is
generally based on only the alert name and IP address, which are available from most of the
IDPS alerts [9,10]. This approach can be implemented easily because security administrators
can write filtering rules consisting of alert names and IP addresses. A group of alerts
satisfying the same rule can be automatically ignored together. We call it the state-of-
the-art (SOTA) method to mitigate the alert fatigue problem. However, a new security
hole appears with SOTA; any detection of real attacks to the same IP address and alert
name is automatically filtered out, and the possible detection would be evaded because
of the coarse-grained filtering rule. We call this new problem of SOTA as coarse-grained
alert-filtering problem.

Proposed Solution. We observe that the coarse-grained alert-filtering problem arises
because the current filtering practice lacks precision, relying solely on alert names and IP
addresses. In this paper, we present a new fine-grained filtering scheme that can more
precisely identify groups of false alerts by considering the alert name, the IP address, and the
clustering results from the packet payloads of the IDPS alerts via semi-supervised learning.
The new scheme identifies a number of large clusters, and only a few samples from each
cluster are manually analyzed to determine if the cluster consists of only false alerts, true
alerts, or a mix of both. If the cluster includes either false or true alerts only, the alerts of the
same cluster can be processed the same way without further manual analysis; otherwise,
the alerts of the cluster can be handed over to security analysts for individual analysis. We
refer to our scheme as Semi-supervised Alert Filtering (SAFI). The contribution of this paper
can be summarized as follows:

• We introduce the important and practical coarse-grained alert-filtering problem and
reveal the limitations of SOTA.

• We introduce SAFI, a new alert-filtering scheme, not only to process alerts more
precisely but also to save security analysts’ time and efforts. This improvement comes
from the new features extracted from packet payloads embedded in most IDPS alerts
and their semi-supervised clustering results.

• Both public and private datasets are used in experiments to show that SAFI outper-
forms SOTA in terms of the accuracy of data analysis as well as the analysis cost.

Encrypted traffic. Most alerts are generated by IDPSs when network packets include
suspicious strings or patterns. If the packets are encrypted and the IDPS is not entrusted
with decryption keys, some alerts cannot be triggered, whereas a separate decryption
box can be deployed to convert encrypted packets into plain ones for IDPSs in enterprise
networks [11]; this incurs extra cost and privacy issues. The fundamental limitations of
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IDPSs, specifically network-based monitoring devices, are beyond the scope of this paper.
Here, we focus on an IDPS alert with a packet payload, which amounts to a large volume
of data overwhelming security analysts.

The rest of the paper is organized as follows. We introduce the problem and motivation
in Section 3. The new scheme is presented in Section 4, and the experimental results are
discussed in Section 5. Sections 2 and 6 cover related work and conclusions, respectively.

2. Related work

Alert Fatigue and SOC. Alert fatigue is a common problem for SOCs where threat
detection systems such as IDPS and SIEM generate high rates of false alerts [4,5,12,13].
Commercial products adopt general rules to cover more threats than specific exploits. These
general rules cause a significant number of false alerts [1,13,14]. Recent threat detection
products provide a tuning method to reduce false alerts [9,10], or SOCs have their own
heuristics for determining and fixing false alerts [15]. However, over-tuning causes missing
real attacks [9,10,15]. In this paper, we present the first semi-automatic tuning method to
reduce alert fatigue by introducing new features from alerts.

Network Intrusion Detection and Prevention. A network-based intrusion detection
system (IDS) inspects packets to find cyberattacks and suspicious activities. An intrusion pre-
vention system (IPS) not only identifies threats but also blocks the threat [16]. Although these
systems have played a pivotal role in cybersecurity in recent decades [1–3,14,17], there are
two issues; first, as more network packets are encrypted, IDPSs cannot look up attack signa-
tures. To tackle this problem, a decryption box can be deployed to obtain plain packets [11],
or anomaly detection can be used [18,19]. Second, too many false alerts are generated,
resulting in alert fatigue [4,5], the main topic of this paper.

Machine Learning for Network Intrusion Detection. Given the huge numbers of
alerts from IDPSs, machine learning has become an alternative to expensive manual anal-
ysis [20–25]. Although there are many machine learning approaches for network IDPSs,
RAID is the first to use new features from packet payloads of alerts and provide clustering-
based tuning to reduce alert fatigue.

We emphasize that there have been a lot of research attempts to reduce false alerts,
but to the best of our knowledge, this paper is the first that filters out false alerts on the
content of an IDPS packet.

3. Problem and Motivation

Alert fatigue, or threat alert fatigue, is an information overload problem in which
security analysts miss true attack alerts hidden in the noise of false alarms [5]. Alerts are
generated not only by network-based IDPSs [1], but also by other security devices such
as host-based IDPSs [26], Endpoint/Network Detection and Response (EDR/NDR), Web
Application Firewalls (WAF), and Security Information and Event Management (SIEM).
This paper focuses on alerts of network-based IDPSs, but the main idea can be applied to
other types of security devices.

We assume that IDPSs are deployed at a gateway and critical points in enterprise
networks and they inspect every packet to find suspicious activities or attacks as shown in
Figure 1. A network tapping device can copy packets to IDPSs, or a mirroring port of a
network switch can provide the IDPS with any packet going through the switch. If a packet
contains any attack signatures, the IDPS generates an alert or event. In this paper, we use
alerts and events interchangeably.

If an alert is triggered by real attacks, we call it a true alert; otherwise, it is called a
false alert. In this sense, a true alert is a true positive whereas a false alert is a false positive.
An alert generally consists of several fields of time, a source IP address, a destination IP
address, a source port number, a destination port number, an alert name, and a packet
payload that has triggered the alert. Although a packet payload is optional for an IDPS
alert, we observe that most IDPSs provide it to give security analysts additional information

113



Electronics 2023, 12, 4755

about the alert. We denote an alert as alert:={time, sIP, dIP, sPort, dPort, alert name, payload}.
A maximum packet payload is around 1600 bytes in length.

Figure 1 shows that a security operations center (SOC) collects alerts from IDPSs
where security analysts review the alerts for further analysis. The number of alerts always
overwhelms the number of analysts or human resources. Therefore, an alert-filtering step
is essential for automatically processing insignificant alerts. If the filtering step is not
designed carefully, true alerts may also be filtered out or ignored mistakenly. This may
cause a serious security hole.

Figure 1. Security monitoring service of SOC on multiple IDPSs deployed in an enterprise network.
True alerts can be automatically ignored by SOTA mistakenly. The fine-grained filtering of SAFI can
mitigate this problem.

Coarse-grained alert-filtering problem. Latest IDPS and SIEM products provide a
simple and practical method for tuning false alerts by establishing a list of exception
or filtering rules; the current best practice is that frequent alerts of the same alert name
and IP address are grouped together and ignored at once [9,10]. For example, alert1,
alert2, and alert3 have the same internal destination IP address and alert name in Figure 2.
After manual investigation, a security operator or analyst concludes that these alerts are
not real threats and adds a new filtering rule that consists of the IP address and alert name,
[dIP1||alert name1]. This filtering rule would suppress or remove any alert of the same
group. However, this simple filtering rule may cause a serious problem; a real attack
is detected by an IDPS as alert4 later, but this alert would be falsely and automatically
ignored by the filtering rule. We call it a coarse-grained alert-filtering alert problem that really
happened with the Target data breach in 2013 [7]. The problem still exists because a filtering
rule still consists of an alert name and an IP address, too coarse-grained to accurately
distinguish a true alert and a false alert.

Figure 2. Current best practice for reducing alert fatigue. Exception or filtering rules are based on the
alert name and IP address only, which causes the automatic ignoring of a true alert.

Analysis cost and accuracy. We assume that a huge number of m IDPS alerts are
given to security analysts. If there were infinite human resources, all of the m alerts could
be manually analyzed. If there are no human mistakes, the analysis accuracy would be
perfect. Because this is impossible, filtering rules are essential in automatically ignoring
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as many alerts as possible; then, the remaining alerts are manually analyzed by security
analysts. For example, in SOTA, after a few sample alerts are randomly chosen from a
group of alerts with the same alert name and IP address, only the samples are manually
analyzed. If all of the samples are proven to be false (true) alerts, all alerts from the same
group would be considered or predicted as false (true) alerts, and therefore no human
resources are spent except the samples. If the samples consist of both true and false alerts,
the group is called a mixed group. Ideally, all alerts from the mixed group should be
manually analyzed to prevent any security holes. This strategy of SOTA may cause two
problems; first, the prediction based on the samples would be wrong. Second, alerts from
the mixed groups are too many to be manually analyzed. In practice, only a small portion
of these alerts are analyzed, and the others are ignored. In addition, because the critical
decision is totally dependent on the heuristics of security analysts, no consistent policy is
established in alert filtering.

In this paper, we define the analysis cost for SOTA as the ratio of the number of alerts
that security analysts manually analyze to the number of total alerts. For the mixed group,
all alerts of the group should be analyzed; otherwise, only sample alerts are analyzed. We
also define accuracy as the ratio of the number of correctly estimated alerts on whether
they are true or false to the number of total alerts. In this sense, the purpose of SOTA and
SAFI is to minimize the analysis cost and to maximize the accuracy.

Motivation. In this paper, we argue that a packet payload embedded inside an alert
makes good features for fine-grained filtering rules. The intuition is that frequent false
alerts are often caused by similar packet payloads that include the same alert name and
the same server IP address. On the contrary, we also observed that the packet payload of a
true alert is generally quite different from those of repetitive false alerts as in Figure 2. This
motivated us to study a new clustering method that divides a group of alerts of the same
name and IP address into multiple subgroups based on the content of a packet payload,
which has not been studied in previous work.

4. SAFI: Semi-Supervised Alert Filtering

We present SAFI to mitigate the coarse-grained alert-filtering problem; SAFI distin-
guishes false alerts and potential true alerts by clustering alerts of the same group into
smaller and homogeneous subgroups, or clusters, based on the new features from a packet
payload inside an alert. The key idea is to analyze a few samples per cluster rather than per
group in a fine-grained way; if all the samples from a cluster are either true alerts or false
alerts, all alerts of the cluster are automatically processed the same way to save human
resources or analysis costs.

There are two main steps for SAFI to cluster alerts into fine-grained subgroups. Each
subgroup has alerts of not only the same alert name and IP address but also similar packet
payloads. In this paper, two packets are considered to have similar payloads if their byte
sequences are similar to each other. The first step of SAFI is to simply divide alerts into
groups of the same alert name and IP address the same as in SOTA [9,10]. Then, SAFI
extracts features from packet payloads of alerts, and the features are converted into a
fixed-size vector. In this paper, we use Term Frequency-Inverse Document Frequency (TF-
IDF) for vectorization (https://scikit-learn.org, accessed on 17 November 2023), but any
other schemes can be used instead. In the second step, the fixed-size vectors are used to
cluster alerts from the same group into multiple subgroups. Then, n-samples per cluster
are selected and manually analyzed. Depending on the analysis results, each cluster is
considered as a true-alert cluster, or a false-alert cluster, or a mixed cluster. If the cluster is
a true-alert cluster or a false-alert cluster, all alerts of the cluster are considered the same
way. We explain each step in detail, and provide how to compare SAFI with SOTA in terms
of the accuracy and analysis cost.
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4.1. Vectorization and Clustering

In SAFI, each alert is represented as a fixed-size vector. The vector is constructed from
a packet payload embedded in an alert. The packet payload of an alert is a byte sequence
less than 1600 bytes; we use the TF-IDF vectorization scheme to transform the payload
into a fixed-size vector because of its simplicity and efficiency. In this sense, we treat the
payload of an alert as a text. We believe that two alerts of very similar packet payloads with
the same alert name and IP address would be either true alerts or false alerts. Therefore,
a cluster of similar packet payloads can be safely filtered out as either a true-alert cluster or
a false-alert cluster.

The soundness of SAFI comes from our observation on real IDPS alert datasets; the
same false alerts are repeatedly generated if a certain attack signature or string appears
repeatedly. For example, a furniture website may include the string of “drop table” as a
furniture type, but this may cause IDPSs to trigger an alert of a SQL injection attack [23].
The problem is that the same alerts repeat whenever that web page is reached by innocent
clients. These repeated alerts should often include the same server IP address and alert
name. The packet payloads of the alerts probably have very similar contents except a few
bytes. The difference can be caused by the packet size or meta information of the packets.

When we apply TF-IDF vectorizer to these packets, the resulting vectors look very
similar to each other, and therefore the distance between them is also small. This means
that they should form a dense cluster when a clustering algorithm is applied. In this
paper, we use a prototype clustering algorithm of [27] because the algorithm is fast and its
performance was confirmed against a security dataset. However, any clustering algorithm
can be used instead for SAFI.

We explain the prototype clustering in details [27,28]. The quality of clustering results
depends on how to properly choose the prototypes. The first prototype alert is randomly
selected. Then, for this current prototype vector, we find those vectors that are similar to
the prototype; two vectors of vi and vj are considered similar only if their cosine similarity
is larger than θ, a predefined threshold. All the similar vectors to the current prototype alert
make a new cluster. Then, the next prototype alert is selected. According to the heuristic
algorithm of [27], we select an alert with the largest distance to the current prototype as
the next prototype. Then, the new prototype and its similar vectors make the second new
cluster. A vector that already belongs to any cluster is excluded for the next step. This
process is repeated until every vector belongs to its cluster. Finally, the clustering algorithm
merges two clusters if the similarity of their prototype alerts is beyond θ. The algorithm
starts with individual prototypes as singleton clusters before successively merging the two
closest clusters. The algorithm terminates when the distance between the closest clusters is
larger than (1 − θ) [27,28]. The default value of θ is set to 0.9.

Figure 3 shows the difference between SOTA and SAFI; only an alert name and an
IP address are used to group alerts in SOTA, which in this example are 10.12.1.2 and XSS
(Cross-Site Scripting) attack. On the contrary, additional information about the packet
payload is also used in SAFI, which can distinguish true alerts and false alerts.

Figure 3. SOTA vs. SAFI in terms of new payload features. Black circles are false alerts and red boxes
are true alerts.
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4.2. Sampling and Filtering

After clustering on alert vectors is finished, a number of clusters are generated. We
define the number of samples per cluster, denoted as n, to randomly select alert samples
for each cluster. In SAFI, we conservatively conclude that a cluster is a mixed cluster if at
least one sample out of n is different from the others in terms of a true or false alert. If a
cluster includes less than n alerts, all alerts of the cluster become samples.

If a cluster is a mixed cluster, we assume that all alerts should be manually analyzed
to prevent any security holes. When n becomes larger, we decide the type of cluster more
carefully. For example, suppose that n is set to 10. Then, only when 10 sample alerts are
all true (false) alerts, the cluster is determined as a true (false) cluster and the automatic
filtering can be applied to the other alerts from the cluster. On the contrary, the cluster type
is determined only with one sample when n is set to one. It is interesting that the accuracy
of SAFI still remains high even with n = 1 because there are many dense clusters of similar
packet payloads.

4.3. Comparison of SAFI and SOTA

We compare SAFI and SOTA in terms of the analysis cost and accuracy. A combination
of an alert name and an IP address makes different alert groups in SOTA [9,10]. In SAFI,
each group of SOTA is further divided into subgroups, or clusters, via clustering on the
packet payload of an alert. Therefore, the number of clusters of SAFI is bigger than the
number of groups of SOTA. We assume that n alert samples are randomly selected from a
SAFI cluster and a SOTA group, and these samples are manually analyzed. In this sense,
the analysis cost of SAFI might be higher than that of SOTA. This is actually true when
n = 1. However, the accuracy of SOTA is expected low because many groups from SOTA
must be mixed up with true alerts and false alerts.

When n is greater than 1, multiple samples are randomly selected from a SOTA group.
Therefore, these multiple samples may reveal that the group is mixed, and in this paper, we
leave the alerts of the group to security analysts. This increases the analysis cost of SOTA,
and the analysis cost of SAFI becomes lower than that of SOTA.

In this paper, we define the analysis cost as the ratio of the number of alerts that
requires manual analysis to the number of total alerts. The analysis cost ranges from 0 to
1; when all alerts are manually analyzed, the cost becomes 1. We assume that a manual
analysis correctly determines if the given alert is true or false.

For accuracy, SAFI outperforms SOTA because there are many dense clusters in SAFI.
A dense cluster often includes false alerts of similar packet payloads. Therefore, the sample
alerts represent the original cluster quite well. The definition of accuracy, precision, recall,
and F1 score is as follows: accuracy is the ratio of the number of correctly predicted labels
to the total number of alerts. The precision is the ratio of the number of correctly predicted
true alerts to the number of alerts that are predicted as true alerts. The recall is the ratio of
the number of correctly predicted true alerts to the number of true alerts. It is well known
that IDPS alert datasets may include a small number of true alerts but a large number
of false alerts. In this case, if SAFI or SOTA predicts all alerts as false, the accuracy and
precision would become high but the recall would be low. On the contrary, if SAFI or SOTA
predicts all alerts as true, the recall would become high but the precision would be low.
Actually, the precision and recall are a trade-off. Therefore, the F1 score is a good choice to
measure the quality of label prediction, which is defined as 2 × precision×recall

precision+recall . In this paper,
we use the F1 score when comparing SAFI and SOTA.

5. Experiments

We experimentally compare SAFI and SOTA using two datasets, a private dataset
from a SOC and a public one from the Internet. We implement both SAFI and SOTA for
alert filtering, and measure their analysis cost and F1 score. The experimental results show
that SAFI outperforms SOTA by a large degree in both metrics.
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5.1. Experimental Setup and Dataset

We use two datasets for experiments; the first dataset is a private dataset of IDPS alerts
provided by a SOC in South Korea for academic purposes only. The alerts are related to
web attacks, collected over several weeks. All alerts were already manually analyzed and
each alert is labeled as either a true or false alert. The IP addresses and alert names are
replaced with their hashed values to prevent any information leakage. We use the private
dataset to compare SAFI and SOTA.

The second is an open dataset available from the Internet (https://www.isi.csic.es/
dataset/, accessed on 17 November 2023), called CSIC2010. The dataset is about normal
and anomalous web requests rather than IDPS alerts. The dataset consists of a training
part and a test part, and we use only the test part in this paper; we use the normal web
requests as false alerts and the anomalous web requests as true alerts because each request
is one web-application packet payload. However, the CSIC2010 dataset does not include
IP addresses and alert names. Therefore, we use it to confirm the usefulness of SAFI
clustering. The value of the second dataset is to guarantee the experiment’s reproducibility.
The statistics of the two datasets are summarized in Table 1.

Table 1. Statistics for datasets.

Dataset Alerts True Alerts False Alerts

Private 135,852 27,202 108,650
Public 60,668 24,668 36,000

5.2. Experimental Results

We perform two types of experiments with the private and public datasets, respectively.
In the first type of experiments, the private IDPS dataset is used to compare SAFI and
SOTA in terms of the analysis cost and F1 score. Figure 4a,b show the experimental results.
The number of groups with different alert name and IP address is 836 in SOTA. Therefore,
when n = 1, only 836 samples are manually analyzed, which makes the analysis cost of
836/135,852. As n increases, the analysis cost of SOTA also increases. This is because more
groups are identified as mixed from the samples. The serious problem of SOTA is that
the F1 score does not improve as n increases. Groups in SOTA are mixed up with true
alerts and false alerts because of the coarse-grained basis for grouping, which is shown in
Figure 4a. Considering SOTA is a practice in industries, potential security holes may exist
in SOCs.

Figure 4. Comparison of SOTA and SAFI on the private dataset in the left and middle plots. SAFI
outperforms SOTA in both F1 score and analysis cost. The right plot shows that high F1 score and
low analysis cost are obtained by SAFI clustering for the public dataset.

On the contrary, SAFI can reduce the analysis cost whereas the F1 score can be main-
tained much higher than SOTA as shown in Figure 4b. It is encouraging that the F1 score
is above 0.94 even with n = 1. As n increases, both the F1 score and analysis cost also
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increase. At n = 2, the F1 score becomes 0.97 and the analysis cost is 0.33. Therefore, if one
third of alerts are manually analyzed, we can determine if any alert is true or false with the
F1 score of 0.97.

In the second type of experiment, we use the public dataset to confirm that SAFI is still
useful in automatically filtering out alerts, whereas the F1 score is kept high. This dataset
can be downloaded from the Internet for reproducible experiments. Because the second
dataset does not include IP addresses and alert names, we cannot test SOTA. When n = 1,
the F1 score of SAFI is around 0.8. When n is not less than 3, the F1 score jumps to higher
than 0.97, as in Figure 4c.

Finally, we show alert examples from the second dataset as in Table 2. After SAFI is
applied to the dataset, the first and second alerts are taken from a false cluster. The third
and fourth alerts are from a true-alert cluster. The similarity between alerts from the same
cluster is greater than 0.92 whereas the similarity between alerts from different clusters
is less than 0.16. These examples show that alerts from a SAFI cluster are closely related,
which leads to a high F1 score and low analysis cost.

Table 2. Alert examples from the public dataset.

No. Packet Payload Label

1 GET http://localhost:8080/tienda1/imagenes/1.gif HTTP/1.1 false

2 GET http://localhost:8080/tienda1/imagenes/2.gif HTTP/1.1 false

3

GET http://localhost:8080/tienda1/publico/anadir.jsp?
id=2&nombre=Jam%F3n+Ib%E9rico&precio=85&cantidad=%27%3B
+DROP+TABLE+usuarios%3B+SELECT+*+FROM+datos+WHERE+nombre+LIKE+%27%25&B1
=A% F1adir+al+carrito HTTP/1.1

true

4

POST http://localhost:8080/tienda1/publico/anadir.jsp
HTTP/1.1\nid=2&nombre=Jam%F3n+Ib%E9rico&precio=85&cantidad=%27%3B
+DROP+TABLE+usuarios%3B+SELECT+*+FROM+datos+WHERE+nombre+LIKE+%27%25&B1
=A% F1adir+al+carrito

true

6. Conclusions

In this paper, we introduced the alert fatigue problem in network security monitoring
and analyzed the limitations of the state-of-the-art method. We presented a new alert-
filtering scheme on semi-supervised learning that can process alerts more precisely as
well as save security analysts’ time and effort much more than the current best method
by a large degree. This work was motivated by the observation that current practices
may suppress the sheer volume of false alerts, but some true alerts are automatically and
incorrectly ignored together because of the coarse-grained alert grouping. We hope that
our scheme will be practically deployed at SOCs to mitigate the alert fatigue problem.
In this paper, we focused on network IDPS alerts only. Future work would extend to
endpoint alerts such as a host, PC, or server, which may include unknown information
about potential cyberattacks.
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Abstract: Format-Preserving Encryption (FPE) algorithms are symmetric cryptographic algorithms
that encrypt an arbitrary-length plaintext into a ciphertext of the same size. Standardisation bodies
recognised the first FPE algorithms (FEA-1, FEA-2, FF1 and FF3-1) in the last decade, and they have
not been used for network layer privacy protection so far. However, their ability to encrypt arbitrary-
length plaintext makes them suitable for encrypting selected packet header fields and replacing their
original value with ciphertext of the same size without storing excessive information on the network
element. If the encrypted fields carry personally identifiable information, it is possible to protect the
privacy of the endpoints in the communication. This paper presents our research on using FPE for
network layer privacy protection and describes LISPP, a lightweight, stateless network layer privacy
protection system. The system was developed for programmable smart network interface cards (NIC)
and thoroughly tested in a real network environment. We have created several implementations
ranging from pure P4 to a mix of P4 and C implementations, exploring their performance and the
suitability of target-independent P4 language for such processor-intensive applications. Finally, LISPP
achieved line rate TCP throughput, up to 4.5 million packets per second, with the penalty of only
30 to 60 microseconds of additional one-way delay, proving that it is adequate for use in production
networks. The most efficient implementation was with the FF3-1 algorithm developed in C and
carefully adapted to the specific hardware configuration of the NIC.

Keywords: network privacy; format-preserving encryption; programmable networks

1. Introduction

The impact of communication services and applications on our lives and the reliance
on the Internet is increasing daily. This is also followed by the evidence that this usage is
being extensively monitored and analysed and that a lot of personal data is gathered for
either security or commercial purposes. Therefore, privacy protection and internet usage
anonymisation have been important research topics for several decades. Personal data can
be gathered from various sources, most directly from operating systems and applications
and through analysing network traffic patterns and protocols. This paper focuses on the
latter—protecting from network layer profiling and personal data leakage. Assume an
Internet user communicates using a permanent public IP address or can be unambiguously
linked to some public IP address in a specific period. In that case, adversaries can track the
user’s behaviour and habits by monitoring the set of visited IP addresses [1]. Even more
accurate information can be obtained by tracking users’ DNS requests [2,3]. Although IPv6
has some privacy protection mechanisms like prefix rotation and IPv6 privacy extensions, a
recent study showed that the privacy of a substantial fraction of end-users is still at risk [4].
Therefore, the European Union’s General Data Protection Regulation (GDPR) regulation
considers IP addresses as Personally Identifiable Information (PII) [5], and special care
must be taken to protect them.

Since web-based applications are the most popular internet services used nowadays,
various proxy/VPN services have emerged that enable hiding the original source IP address
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when visiting a website. However, such systems have a single point of failure and rely on
trust in the proxy/VPN provider, which can reside in a foreign legislation environment.
The low-latency onion routing system Tor is probably the best-known and widely used
network layer anonymisation system [6]. It allows anonymous web page browsing through
the onion router circuits, which consist of three servers (called onion routers) and three
layers of packet data encryption. It also enables access to hidden web content. By using
Tor, a web server or an observer on any single point on the Internet cannot tell which
are both endpoints of the web session, preserving user anonymity on a network layer.
However, such protection comes with a performance cost. Each packet is split into Tor
cells with additional headers, decreasing the useful part of the packet. Each cell processing
includes three encryptions and decryptions between the endpoints. The path between the
endpoints is (intentionally) not optimal. This additional cost is seen as often slow and
annoying web browsing. Also, despite the heavy use of encryption, it is well known that
Tor circuits are susceptible to end-to-end timing and rogue Tor router attacks owned by an
adversary. Former is an attack in which an adversary monitoring traffic on multiple points
in the network can discover the endpoints by correlating traffic patterns. This non-ideal
situation inspired new proposals for providing network layer anonymity, which will be
more thoroughly described in the next section.

More than 20 years have passed since the first Tor release, and some internet usage
patterns have changed since then. Nowadays, almost all web traffic is encrypted [7], raising
questions about whether additional data field encryption layers are needed and justified,
primarily because they do not provide additional security against timing and rogue onion
router attacks. In this paper, we propose a lightweight, stateless system for network layer
anonymity which encrypts and obfuscates only the necessary parts of the packet headers
to protect the user’s privacy. Such an approach using well-known symmetric algorithms
(e.g., Advanced Encryption Standard—AES) is not quite feasible because packet header
fields are usually shorter and do not align with the block size for block ciphers nor a byte
boundary for stream ciphers. For example, if a 12-bit plaintext is encrypted using AES-128,
it will have to be padded to the size of the block—128 bits (usually with zeros or a random
tweak), and the encryption will produce a 128-bit ciphertext. In order to decrypt back the
initial 12-bit plaintext, one has to store the whole 128-bit ciphertext somewhere to perform
decryption and later remove the padding (Figure 1a). Suppose a 12-bit plaintext is a packet
header field or part of it (e.g., host part of the IP address with mask /20), which is to be
encrypted. In that case, storing the encrypted version of that field takes additional space,
which implies additional headers, protocols, or storage space. Therefore, we explored using
Format-Preserving Encryption (FPE) for network layer privacy protection. FPE enables the
encryption of arbitrary-length fields in a manner which allows the replacement of a protocol
field with its encrypted version of the same size. This difference between the FPE and block
ciphers is shown in Figure 1. Recently, the first such protocols, FEA-1 and FEA-2 [8] in
South Korea and FF1 and FF3-1 [9] in the United States, passed the evaluation and adoption
by the relevant standardisation bodies. To the best of our knowledge, this is the first use
of FPE to protect network packet header fields. We believe its successful and performant
implementation demonstrated in this paper through the design and deployment of a
LIghtweight Stateless Privacy Protection system (LISPP) will pave the way for further use
in networking applications for the privacy protection of all applications, not just the web.

Programmable network devices (e.g., switches, smart network interface cards (NICs)
or switches filled with the bump-in-the-wire SmartNICs) became very popular in the last
decade among network professionals, with the P4 language as one of the most popular
recent innovations. Their programmability and flexibility enabled innovation and boosted
research in the field. SmartNICs can be programmed using various programming languages
and styles (e.g., P4, C, assembler or a combination of those), and in this way, offload a part
of traffic processing from the central server processors and cores. Programmable NICs
enable computing tasks execution and traffic processing closer to the data path, shortening
processing times and enabling high-speed traffic processing and new applications or packet
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modifications without sacrificing network traffic performance. We developed the LISPP
system and evaluated its performance on Netronome Agilio CX programmable network
interface card. LISPP was developed in several implementations ranging from pure P4 to
a combination of P4 and Micro-C to explore the performance of portable P4 code and its
dependence on the specific hardware configuration of the card.

 
(a) (b) 

Figure 1. (a) Block cipher encryption vs (b) Format-preserving encryption of plaintext of length l.

Our research differs from the previous network layer privacy protection proposals in
several important points. This is the first study on the use of the FPE for network layer
privacy protection. Unlike previous proposals described in Section 2, the implemented
LISPP system is fully stateless, which implies low memory requirements, simple multi-
homing, fully transparent, and fast line-rate operation on contemporary programmable
hardware, as described in the paper. The performance of the proposed system is proven
through the experimental evaluation of actual devices within a real network environment.
The LISPP achieved line rate TCP throughput, up to 4.5 million packets per second, with
the penalty of only 30 to 60 microseconds of additional one-way delay under the condi-
tions described in the remainder of the paper. Such throughput on low-cost SmartNICs
proves that FPE is adequate for network layer privacy protection. The LISPP is network
layer protocol-independent, ready to protect the privacy of both IPv4 and IPv6 header
data, which was not a feature of the previously proposed systems. Finally, we have made
three implementations of LISPP using different combinations of P4 and Micro-C code.
The analysis of these implementations presented in this paper revealed less than optimal
performance of the P4 code on the target system we used and indicated that further work
on the P4 compiler optimisation is needed.

The paper is structured as follows: Section 2 gives an overview of the recent research
in the field of network layer privacy protection, with special attention on the issues of the
proposed solutions, which are a consequence of the use of classic encryption algorithms.
Section 3 describes the architecture and principles of privacy protection using LISPP. Sec-
tion 4 introduces FPE algorithms and presents FPE implementation challenges on network
accelerator cards. Section 5 discusses LISPP performance and obtained experimental results,
while Section 6 concludes the paper.

2. Related Work

Two recent overview papers of applied research in the field of data plane program-
ming [10,11], among other work, listed the most recent efforts on network layer privacy
protection that use novel network programmability mechanisms. Systems like HOR-
NET [12], TARANET [13], PHI [14], LAP [15], or Dovetail [16] aim to provide solutions
similar to Tor with multiple cooperating routers/servers along the packet path, usually
in conjunction with some Next Generation Internet technology that enhances security. In
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some cases (e.g., LAP, HORNET), packets are additionally encrypted by the system. In the
other (e.g., Dovetail), there is no additional encryption, and the system relies on another
protection mechanism. Similarly to Tor, all these systems are vulnerable to timing corre-
lation attacks, but newer systems like HORNET also turned out to have other previously
unknown vulnerabilities [17].

A series of papers on network layer privacy from a research group from Princeton Uni-
versity primarily inspired our work. SPINE [18] is a system for IP address, TCP sequence,
and acknowledgement numbers obfuscation. It encrypts the source IP address from the
original IPv4 packet header and encodes the encrypted data into the newly created IPv6
packet while discarding the original IPv4 packet header. To avoid encrypting one IP address
always into the same encrypted value using a single key, SPINE adds a random nonce to
the address encryption process. The nonce is different for each packet and randomises the
encrypted address values. To achieve reversible decryption, SPINE encodes the encrypted
IP address and the used nonce into a newly created IPv6 packet. An IPv6 address that is
longer than the IPv4 address can store both the encrypted IPv4 address and the nonce. In
order to ensure high-speed operation, SPINE uses a simple XOR-based encryption scheme.
SPINE is a VPN-like system in which two or more collaborating autonomous systems
are the endpoints of the newly created IPv6 tunnels. Encrypting original IPv4 addresses
and storing them in the new IPv6 header hides original communication details from the
intermediate autonomous systems. The SPINE system is stateless because it does not need
to store the mapping between the original IPv4 and newly created IPv6 addresses—the
encryption/decryption process provides the mapping. However, mapping between the
destination IPv4 address and the corresponding IPv6 endpoint prefix is needed for the
operation, as well as the previous key exchange.

Wang et al. [19], in the P4-based PINOT system for address obfuscation, proposed a
scheme in which the source IP address is padded with random padding up to the size of
the block of the cryptographic algorithm and then encrypted. The encryption scheme is
more complex than in the case of SPINE but still non-standard. PINOT uses a simplified
56 or 64-bit wide two-stage substitution-permutation network to achieve high packet rates.
As in SPINE, because the length of the ciphertext is longer than the IPv4 address, and in
order to make the process reversible once the packets return from the opposite endpoint,
the encrypted data is encoded in the IPv6 packet. The system is stateless for egress source
IP addresses for which there is no need for a table lookup—they are just encrypted using a
local key. However, the lookup is needed for the destination IPv6 address, which has to
be found based on the destination IPv4 address. The PINOT authors assumed that some
sort of DNS snooping is used, in which both A and AAAA records are intercepted at the
network device and mapped so that the appropriate destination IPv6 address can be created.
However, this process does not seem trivial on a network element or without a performance
penalty. Cryptographic keys in the PINOT system do not have to be exchanged. They are
local to the network element if the egress and ingress points to the network are the same
and as long as there are no multiple entries into the network.

Unfortunately, today, privacy-preserving systems like PINOT and SPINE, which use
IPv4 to IPv6 translation, do not ensure full Internet connectivity. At the moment of writing
this paper, only about one-third of all the autonomous systems on the Internet support
IPv6 [20]. Further, once IPv6 becomes fully adopted and the predominant IP protocol on
the Internet, applying the same approach for the IPv6 address and transport layer would
be challenging, if not impossible. PINOT and SPINE used the fact that IPv6 addresses are
longer than IPv4, which enabled storing the ciphertext of the IPv4 address and random
nonce in the IPv6 address. However, when a random nonce is padded to an IPv6 address,
the resulting ciphertext will be longer than the available space in the IPv6 address. The
question is where the excess bits of the ciphertext would be stored—either in a new protocol
header or using a stateful operation is required.

Another older IP address mixing system [21] is a stateful system that encrypts the
host part of the class B IPv4 address and source port using an RC5-based scheme with
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the addition of a random number—tweak. Since the output of the RC5 is 128-bit, and the
plaintext input, which is replaced with the encrypted value, is only 32 bits long, the solution
for the excess ciphertext was to make the system stateful. The system keeps records of all
flow to 32-bit encrypted value mappings to perform decryption/replacement operations
on the backward packet path. In that case, an encrypted pair (src IP, src port) is used as a
key. Although not reported in the paper, the system suffers from the birthday problem and
experiences collisions with 64 thousand concurrent flows with a probability of 0.5.

To summarise, the previous research that proposed the encryption of the critical packet
header fields using classic block encryption algorithms showed that such an approach
successfully hides users’ IP addresses. However, block ciphers require a stateful operation
or IPv4–IPv6 translation, which poses significant implementation and usage issues, as
explained above. This paper explored FPE for packet header field obfuscation and created
the LISPP system. This fully stateless system efficiently scrambles packet flow data using
FPE, hiding the source IP address from the observers on the Internet and disabling user
profiling. The system is built for low-cost programmable SmartNICs for IPv4 and IPv6 and
achieves line rate throughput on 10 Gbit/s links, proving that the concept can be used in
real networking environments. We have tested the performance of several development
and deployment options (pure P4, mixed P4 and C and pure C implementation). LISPP
achieved line rate operation on 10 Gbit/s interfaces. Our analysis also showed performance
issues in pure P4 deployments. P4 performance, especially for processor-demanding tasks
like encryption, still heavily depends on the underlying hardware architecture. The P4
compiler we used does not optimise the executable code most efficiently.

3. LISPP System Architecture

An IP address consists of two inseparable parts: the network part, which determines
the host’s location on the Internet (the autonomous system) and the host part, which
identifies the exact sender or recipient of the packet in that network. Since the information
about the location is needed to route the packet properly, IP addresses are usually sent
unprotected or unchanged. Some of the previous protection mechanisms use either fully
stateful address swapping (e.g., in NAT) or full packet encryption (like in Tor or IPsec).
However, such approaches are not always scalable for general Internet usage patterns.

LISPP processes packets at the network boundary. It encrypts the host part of the
source IP address and source port in packets that exit the protected network and decrypts
them in the opposite direction. In the egress direction, the host part of the original source
IP address from the protected network (designated as P—plaintext in Figure 2) and source
port are replaced with their encrypted values (designated as C—ciphertext and new port
number). The network part of the IP address (Net) remains the same, ensuring proper
packet routing back to the protected network. In the ingress direction, decryption using the
same key is performed, restoring addresses and ports to their original values.

 

Figure 2. LISPP header field modification at the network boundary.
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This way, when the user from the protected network communicates with the external
devices, external devices can only know the user’s location (network part of the IP address)
but not the exact user’s original source IP address. The encrypted version of the plaintext
changes in every session because the source port takes a new value in subsequent TCP or
UDP sessions. Every time a client from the protected network accesses the same external
server, the client will appear to have a different IP address with a high probability, ensured
by the use of encryption algorithms. Such a behaviour prevents the destination, or an
observer in any location between the protected network and the destination, from tracking
the behaviour of any specific user in the protected network on a network level because his
network sessions will appear to be coming from different IP addresses. LISPP behaviour is
similar to Port Address Translation (PAT) because it changes the source IP address and port
on the network entry/exit point. However, unlike PAT, which maps a pool of private IP
addresses onto a single or a smaller number of public IP addresses, LISPP makes a bijection
of a pool of public IP addresses onto that same IP address set. Also, unlike PAT, LISPP
is fully stateless, implying that mappings between the original and encrypted pairs of
addresses and ports do not have to be stored at the network element because the mapping
is performed using encryption/decryption. From this brief description, it is clear that
LISPP does not strive to replace or present an alternative to Tor, as it assumes a single point
which obfuscates the addresses. However, there are several clear use cases, as described in
the remainder of this section, in which LISPP can protect user privacy.

3.1. Packet Processing

In both directions, after packet parsing and checksum verification, LISPP filters packets
which will be processed (Figure 3). Since LISPP uses a source port as a part of the plaintext
in the egress direction, LISPP can be used to protect any TCP or UDP packet. However, it
is possible to program the match filter to push to the encryption phase packets with any
specific destination port value (e.g., TCP 443 for TLS or UDP 53 for DNS requests/responses)
while all the other packets pass the system unchanged.

Figure 3. LISPP packet processing diagram.

3.2. Packet Header Field Encryption

Figure 4 shows how LISPP encrypts the packet header elements using FPE. The host
part of the source IP address and source port are concatenated and encrypted using a secret
key. Since FPE is used, n bits of plaintext are encrypted into exactly n bits of the ciphertext
regardless of the number of bits n. In that case, it is possible to obtain a reversible one-to-one
mapping between the (src IP, src port) and (enc(src IP), enc(src port)) pairs regardless of the
network mask size (and IP version). It is possible to achieve fully transparent and stateless
operation in both directions.
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Figure 4. LISPP address and port encryption.

An illustration of LISPP address obfuscation in operation is given in Figure 5. This
figure shows the empirical probability of the appearance of encrypted values of host parts
of the IP address (enc(src IP)) obtained from a single source IP address with mask /23 and
the full range of source ports from 0 to 65,535. Visual inspection shows that LISPP achieves
uniform distribution of the encrypted source IP addresses across all possible 512 values of a
9-bit host part of the address. More rigorous randomness testing is presented in Section 5.

Figure 5. Empirical probability of the appearance of host part values of the IP address obtained from
a single source IP address with mask /23 and the full range of source ports using LISPP.
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FPE algorithms require a secret cryptographic key and tweak (described in Section 4)
to be used to encrypt and decrypt header fields. This cryptographic material can be created
directly on a network element using a pseudorandom derivation from a seed defined by
the user or taken from some source of randomness on the network element. In the case
of a single entry point into the protected network, key and tweak do not have to leave
that network element because both encryption and decryption are performed on the same
device. However, when a network has multiple entry points and asymmetric ingress and
egress flow paths, all devices on the network boundary must use the same cryptographic
material. In that case, one boundary network element would create the key and tweak,
while the others would receive that material through some secure connection (e.g., TLS or
IPsec). In any of these cases, the tweak is not sent along the encrypted header fields, which
further strengthens the security of the proposed solution.

Since cryptographic material has a limited operational lifetime, the key and tweak have
to be changed periodically (e.g., daily) or after some number of packets are processed. In
moments when the key and/or tweak are changed, network flows active in that period will
be broken because packet header fields in the egress direction would be encrypted with the
old key, while in the ingress would be decrypted with the new, yielding wrong IP address
and port numbers for that flow. This transient behaviour, although short, disrupts network
operation and has to be planned for quiet periods of network operation. There is a trade-off
between stronger data privacy (often key/tweak changes) and reliable network operation.

3.3. Threat Model

LISPP is a network layer privacy protection mechanism that cannot protect privacy
at the application level. Like PINOT, it hides the client’s IP addresses and flow identifiers
from the server side and the intermediate networks while accessing services on the Internet.
LISPP assumes trust in the local network operator and does not hide connection/flow
details from it or the devices that perform the encryption. An intermediate network
between the protected network and the destination or the destination itself can reveal the
actual IP address of the client, either by obtaining the encrypted–plaintext mapping or an
encryption key through collusion with the client’s network provider or by breaking the
encryption algorithm, which is computationally hard at the moment of writing this paper.

3.4. LISPP Use Case

LISPP is applicable and is desirable in all cases where the user has a public IP address
given by the Internet Service Provider (ISP). ISPs might use mechanisms like stateless,
temporary IPv6 address assignment [22], which periodically leases and changes temporary
IP addresses. However, by default, this period is one day, giving the adversary a sufficiently
large time window to analyse user behaviour and cross-correlate this behaviour with other
sources of private data. There is also evidence that despite the use of such mechanisms,
there are still substantial privacy leaks [4]. Since LISPP provides per-session address
randomisation, it completely breaks any chance of network layer user tracking.

One clear use of LISPP is to mitigate the threat of private information leakage and
user profiling by public DNS resolvers (e.g., Google Public DNS: 8.8.8.8, Quad9: 9.9.9.9,
Cloudflare: 1.1.1.1 and similar). DNS resolvers receive the set of symbolic names of sites a
user visits regardless of how symbolic names are sent to the resolver (encrypted by DNS
over TLS or HTTPS or in plaintext). Therefore, for a user behind the specific IP address,
DNS resolvers can gather information about the interests and the sites visited. There
were some previous attempts to hide the symbolic names from the public resolvers by
encrypting and encapsulating them into the regular DNS queries and redirecting them
to another resolver [23]. By varying the source IP address for each user’s DNS request,
LISPP successfully disables such profiling, and the system is significantly simpler than the
previous solutions. The ISP can offer LISPP as an additional privacy protection service that
prevents third parties (external sites and services) on the Internet from tracking the users
and analysing their behaviour on the network layer. An example of LISPP performing DNS

130



Electronics 2023, 12, 4800

request source obfuscation is given in Figure 6. This figure shows eight consecutive DNS
requests from a single computer in a /23 network and the set of addresses and ports to
which LISPP converted the original data. It is evident that for the DNS server operator,
it is difficult, if not impossible, to tell which device it is talking to at any given time. The
effect of using LISPP would be the same for any other network protocol (e.g., web, SSH,
FTP, etc.).

 

Figure 6. LISPP translation of 8 consecutive DNS requests coming from a device with the address
147.91.1.136/23.

Furthermore, because of the ever-increasing number of cybersecurity threats and
difficulties in identifying the attackers when the attack comes behind the Carrier-grade
NAT devices, there are recent incentives to mandate the retention of the metadata that gives
the mapping between the user and the IP address [24]. If such regulations are adopted,
LISPP can easily comply with them and preserve privacy against third parties. Unlike large
logs of NAT mappings, in the case of LISPP, only cryptographic material used by the FPE
during the lifetime of that material needs to be kept to reconstruct the actual IP address of
the users upon request from the legal authorities.

3.5. LISPP Design Goals

LISPP was designed with the following properties in mind:

• Transparency. Users from the protected network do not have to employ any dedicated
application. They are generally unaware of any privacy protection system on the
packet path (except for added minimal latency due to the packet processing).

• Stateless operation. The network element does not have to store any state, i.e., map-
pings between the plaintext and encrypted fields’ values or any tables. The stateless
operation further brings simple multihoming because there is no need to synchronise
states among the entry/exit points.

• Seamless multihoming. Suppose the protected network has multiple entry/exit points,
and packet paths are not symmetric in the ingress and egress direction. In that case,
LISPP should be deployed on all entry/exit points with the need to exchange only
cryptographic material (keys and tweaks, as described in Section 4.1) between the
entry/exit points. Deploying LISPP on all entry/exit points is easily achievable using
any key exchange mechanism or through already-established cryptographic channels
between the endpoints (e.g., IPsec).

• Effortless reconfigurability. LISPP can be configured to protect any TCP or UDP
protocol port. Only the appropriate packet filter should be defined to select packets
for which the obfuscation will be performed.

• Protocol independence. LISPP works with both IPv4 and IPv6 without any network
layer protocol modifications.

• Legal compliance. Operators of the LISPP-protected network can easily reconstruct
true packet origins upon legitimate requests from legal authorities.

Another side effect of using LISPP is that port scanning a device in a protected network
from the outside is significantly more difficult. Suppose an adversary scans the entire port
range for a single destination address in the protected network. In that case, these packets
will pass the decryption and be scattered across the whole IP address segment, as shown in
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Figure 5, hitting various devices on ports which are not the same as those that an adversary
sent, making the analysis significantly more difficult for the external observer. Further,
with frequent changes of the cryptographic key and/or tweaks, the scanned footprint will
completely change, making the analysis or the attacks even more difficult. LISPP can, in
this case, be considered one of the tools and techniques for the Moving Target Defence
strategy [25].

4. Format-Preserving Encryption

FPE is a type of encryption that preserves the format (alphabet) and size of the plaintext
in the ciphertext. For example, with FPE, the ciphertext of a 16-digit decimal payment card
number is also a 16-digit decimal number. The symbol sets and lengths for the plaintext
and ciphertext are the same. One of the first algorithms that allowed variable bit size input
and the same size output was a Hasty Pudding Cipher (HPC) [26], one of the candidates
at the AES algorithm contest. The HPC algorithm did not pass to the later stages of the
AES algorithm contest because of its complex and unusual structure. As a result, the
cryptographic community did not widely test the HPC, so its resistance to various attacks
was not well known.

The first, and so far only, FPE algorithms that passed as a recommendation of a
standardisation body are South Korean FEA-1 and FEA-2, as well as FF1 and FF3 from
the National Institute of Standards and Technology (NIST). FF3-1 is a revision of FF3
created after finding a security flaw in FF3 [27]. All these FPE algorithms have a very
similar Feistel structure with different options for the random function, as will be described
in the next section. The cryptanalysis of standardised FPE algorithms showed that the
attacks on the FPE algorithms using differential distinguishers are more complex and
require more data for the FF3-1 algorithm compared to the FEA standards [28]. In addition,
linear cryptanalysis of the FPE algorithms [29] revealed that attacks on FF3-1 are more
time-consuming compared to other algorithms in terms of encryption operations, thereby
highlighting its enhanced security. Finally, the FF3-1 algorithm’s ability to encrypt binary
words ranging from 20 to 192 bits in length made it particularly suitable for encrypting
specific protocol fields in our system.

FPE specifications, although relatively young compared to the well-known block
cipher symmetric cryptographic algorithms, have attracted attention from cryptanalysts.
These experts have identified potential vulnerabilities in FPE schemes, particularly high-
lighting a decrease in the complexity of attacks, especially for shorter plaintext lengths
and under specific circumstances, such as when the adversary has knowledge of the tweak
parameter [29,30]. In the context of LISPP, these issues are effectively mitigated, as the
plaintext lengths utilised exceed those susceptible to such vulnerabilities, and the tweak
parameter never leaves the network element, ensuring its confidentiality. Consequently,
the attacks reported in the literature are not applicable to LISPP. Nevertheless, we believe
that finding such issues in the current algorithms will only improve their future versions
and not jeopardise the use of FPE in general.

4.1. FF1 and FF3-1 Algorithm

FF1 and FF3-1 are Feistel-structure tweakable symmetric algorithms. Feistel structure
is a well-known primitive block for symmetric algorithm design, known since the time
before the Digital Encryption Standard (DES). Tweakable means that the algorithm uses an
additional component called tweak as an input to the encryption and decryption process.
The tweak does not necessarily have to be kept secret. It is used to increase the input
variability because, with the FPE, input strings can be short with a limited set of values.
Encrypting as few plaintexts as possible under any given tweak is recommended. However,
changing the tweak during network operation can break existing sessions (one endpoint
will change), and it should be conducted in carefully defined moments.

The FF3-1 achieves greater throughput because it has eight rounds, two fewer com-
pared to the FF1, while the FF1 supports a wider range of lengths for the plaintext and
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flexibility in the tweak length [9]. Since per-packet processing time should be as low as
possible, we focused on the FF3-1. In the core of each FF3-1 round is an approved block
cipher used as a round function (Fk) to create a pseudorandom output. Figure 7 shows two
Feistel rounds of FF3-1 encryption and decryption. Plaintext input is divided into two parts
(Ai and Bi), which have the same size in case of an even number of plaintext characters or
differ in size by one character in case of an odd number of plaintext characters. In our case,
one character corresponds to one bit because packet header fields are binary words. The
second part (Bi) is copied into the first part of the next round (Ai+1), while the first part is
added to the output of the Fk round function. The inputs to the round function are one part
of the previous block, round number i, random tweak T and the plaintext size n.

  
(a) (b) 

Figure 7. Two Feistel rounds of the FF3-1 (a) encryption and (b) decryption.

According to the FF3-1 specification, an approved block cipher with secret key K
should be used as the Fk, and at this moment, only the AES block cipher fits this profile.
However, there are deployments with other lightweight algorithms [31]. Unlike FF1
and FF3-1, FEA-1 and FEA-2 use a modification of the SHARK cryptographic algorithm
as a round function. FF3-1 does not use AES-128 to encrypt the data but provides a
pseudorandom output truncated to the required number of bits and added to half of the
plaintext. Therefore, only AES encryption is used for both FF3-1 encryption and decryption,
simplifying the algorithm’s implementation. However, as described, FF3-1 consists of
8 rounds in which AES encryption of a 128-bit block is invoked, which means that standard-
based FF3-1 implementation is roughly comparable to the encryption of 1024 bits (8 blocks)
with AES, and that could present a challenge for the system performance. However, in
Section 5, we show that even with the pure software implementation of the cryptographic
algorithms, it was possible to achieve line rate performance on SmartNIC.

The FF3-1 algorithm has several parameters which define its behaviour. The base is
the number of characters in a plaintext alphabet denoted as the radix. For binary plaintext,
radix is 2. For an English plaintext consisting only of letters, the radix is 26. The number of
plaintext characters and their base define the domain size of the plaintext as radixlength. For
example, for a 16-digit debit card number, the theoretical domain size is 1016. Still, the actual
domain size is somewhat smaller because some fields, like the issuer identification number,
are fixed. FF3-1 specifies the minimum domain size of the plaintext to be at least 1 million.
Therefore, for binary inputs, any plaintext that is longer or equal to 20 bits complies with
the algorithm specification. For LISPP, this limit implies that the longest network prefix that
could be used as an input is /28 (4 bits for the host part of the address + 16-bit source port).
However, such a small network with only 14 devices might present a different privacy risk
to users. Since the number of users using the network is small, side-channel attacks that
analyse the user’s activity at a certain period are more likely to happen. Better results are
obtained for larger networks with shorter prefixes and more users (we consider a mask of
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at least /24 as recommended). Another FF3-1 limit is the maximum plaintext length, which
must be smaller than 2logradix296. For binary inputs, this is 192 bits—enough for almost
all uses in packet headers for both IPv4 and IPv6. In the context of LISPP header field
encryption, this implies that the source port and the whole IPv6 address can be encrypted
using the FF3-1 without reaching the theoretical limit of the algorithm. It is interesting
to notice that since the output of the AES algorithm is applied to half of the plaintext,
which is of the maximal size of 96 bits, in all cases, regardless of the plaintext size, in each
FF3-1 round, only one AES encryption is used, and the algorithm performance will be the
same. Our experimental evaluation proved that the system’s performance was the same
regardless of the IP address mask length.

4.2. FF3-1 Implementation (Target Netronome)

The implementation targets the Netronome Agilio CX 2 × 10GbE NFP-4000 series
SmartNIC [32]. The SmartNIC consists of 12 clusters, i.e., islands of different architecture.
Islands can be roughly divided into two categories depending on the purpose of the con-
tained Flow Processor Cores (FPC), i.e., Microengines (ME). The first category includes
islands containing only multi-threaded MEs for packet processing. There are eight coopera-
tive threads within the ME, with only one thread running at any time; each has its own
set of 32 32-bit wide general-purpose registers. Each ME has its Code Store and Local
Memory following the Harvard architecture. In addition to its own Local Memory, which
stores the data needed for processing every packet, the ME has access to four other kinds of
memory. The size and data access time expressed in clock cycles for each kind of memory
are given in Table 1 [33]. Cluster Local Scratch is meant to store the data needed to process
the majority of packets and smaller tables. Cluster Target Memory stores packet headers
and coordinates ME and other subsystems. Internal Memory stores the packet payload and
medium-sized tables. External Memory stores large tables.

Table 1. Types of Netronome Agilio CX memories and their access times.

Memory Kind Size Access Time (Cycles)

Code Store (CS) 8 K instructions 1
Local Memory (LM) 4 KB 1–3

Cluster Local Scratch (CLS) 64 KB 20–50
Cluster Target Memory (CTM) 256 KB 50–100

Internal Memory (IMEM) 4 MB 150–250
External Memory (EMEM) 3 MB + 2 GB RAM 150–500

The second category includes islands that contain accelerators (ILA, PCIe, Crypto,
ARM) and multi-threaded MEs managing those accelerators. The SmartNIC used in the
experimental evaluation contained no islands with a cryptographic accelerator. That is
why we implemented the FF3-1 algorithm entirely in the software. Netronome Agilio CX
cards without crypto accelerators use Linear Feedback Shift Register (LFSR) to generate
a pseudorandom number, which can be used by Microengine software as an FF3-1 key
and a tweak. It can be initialised using a timestamp and some user-defined value as a
pseudorandom seed.

As described above, the FF3-1 algorithm can be used with an arbitrary alphabet or
character set. In the case of a binary alphabet whose radix is 2, the following primitive
operations of the FF3-1 algorithm were simplified:

• NUMradix(X), the number that the numeral string X represents in base radix when the
numerals are valued in decreasing order of significance, has precisely the value X,

• STRm
radix(X), which is the representation of X as a string of m numerals in base radix,

in decreasing order of significance, given a nonnegative integer X less than radixm, is
X at bit-width m,

• NUM(X) equals the integer that a bit string X represents. When the bits are valued in
decreasing order of significance, it is essentially X itself,
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• Modulo operation X mod radixm is implemented by a bit masking as X & ((1 << m)—1).

P4 is a hardware-independent network programming language where users can write
the forwarding behaviour of the network devices using the standard forwarding model
defined in the P4 architecture [34]. The user does not need to know Network flow processor
(NFP) specific data structures. The P4 compiler automatically maps the different parts of
the P4 program into the NFP internal resources. The P4 front-end compiler first compiles a
P4 program to an intermediate representation (IR). The Netronome’s P4 back-end compiler
transpiles the IR into the Micro-C program, which can be compiled and linked to generate
the NFP firmware using the network flow C compiler (NFCC) [35]. The firmware generated
from the P4 code is loaded on multiple MEs, each of which can independently process
packets according to the packet processing code written as a P4 program. Motivated
by the portability of the implementation to a larger number of devices, i.e., P4 targets,
the aim was to explore portable implementation purely in the P4 language. Netronome
supports executing P4 programs written for the v1model architecture [36], a variation of a
theoretical model defined by Portable Switch Architecture (PSA) [37,38]. Theoretically, the
implementation would be portable to any P4 target with a v1model architecture, such as
the Behavioral Model (BMv2). We used tools from Netronome SDK version 6.1-preview,
the first version that supports the P4-16 language. The code of all LISPP implementations
described in the following sections is publicly accessible [39].

4.2.1. Pure P4 Implementation

The biggest challenges in the P4-based FF3-1 implementation were the limitations
directly imposed by the P4 language [40]. P4 language does not have the loop construct,
which presents a serious challenge in implementing symmetric cryptographic algorithms
consisting of many rounds to achieve data confusion and diffusion. Unrolling loops of the
entire algorithm is not an option due to the size limit of the Code Store where the program
code resides. The size limit of the Code Store comes to the fore due to the design limit
specified in the Netronome SDK documentation that a maximum of 256 actions may be
defined, meanwhile expecting an increased Code Store usage. For each action invocation,
the Netronome P4 back-end compiler defines a new Micro-C function that provides the
given action with the context (arguments) and invokes the action. Defining a new Micro-C
function for each action invocation leads to a non-negligible increase in the program code
size. Saving Code Store space becomes even more critical, considering that the Netronome
P4 front-end compiler does not support P4 functions. That is why we had to overcome
the non-existent loop construct limitation by resubmitting the packet for each round of
the FF3-1 algorithm. Instead of replicating code for an entire FF3-1 round multiple times,
invocation of the resubmit extern function from the v1model architecture returns the packet
to the start of the ingress pipeline, representing a single FF3-1 round. The internal state of
the FF3-1 algorithm is stored in the packet’s metadata to save it across resubmission.

To implement AES encryption, we used a solution based on scrambled lookup ta-
bles [41]. The upside of this solution is that it performs all AES encryption in just one
packet pass through the ingress pipeline and uses a pre-expanded AES key. The downside
of this solution is the need for 160 match-action tables, a necessity arising from the P4
language’s absence of array support. Each byte of the AES algorithm state requires an
individual table because the same table cannot be applied more than once during a single
packet pass through the ingress pipeline. All sixteen tables must be replicated for every
round of the AES algorithm, resulting in the 160 tables mentioned above. Such a large
number of tables harms latency [42], especially given that the P4 back-end compiler places
all tables in External Memory, which has the longest access time.

The required number of tables exceeds Netronome SmartNIC’s limit on the number
of match-action tables used in the ingress pipeline of a P4 program [43]. That is why we
had to reduce the number of tables to only five: four distinct for standard AES rounds
and one for the last AES round. Table number reduction implies introducing additional
packet resubmissions to implement AES encryption successfully. The most straightforward
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implementation would pass the packet through the ingress pipeline once for each of the
16 bytes in the AES state for every round of the AES algorithm. Such a naive implemen-
tation requires even 8 × (1 + 9×16 + 1×16 + 1) = 1296 resubmissions for each incoming
packet. With a slightly more complex implementation, applying all four distinct tables for
standard AES rounds in a single ingress pipeline pass, it is possible to reduce the packet
resubmissions down to 8 × (1 + 9×4 + 1×16 + 1) = 432.

4.2.2. Packet Control and FF3-1 in P4 and AES in Micro-C Implementation

A large number of packet resubmissions causes a throughput well below the link
capacity, as shown in Section 5. We tried to improve the throughput by replacing the parts
of the P4 code with Micro-C. The Micro-C programming language is the most efficient way
of programming the Agilio SmartNIC as it can take advantage of NFP architecture-specific
data structures [44]. The Micro-C programming on the NFP slightly differs from the host-
based generic C programming, as the NFP data structures and memories are specific to the
NFP architecture.

We decided to port the complete AES encryption to the Micro-C language because
AES encryption represents the most complex part of the FF3-1 algorithm and, in some
SmartNICs, can be implemented using hardware acceleration. In order to achieve the
highest possible throughput, the implementation is still based on scrambled lookup tables.
The algorithm is considerably sped up by pre-computing part of the internal operations
performed by the AES algorithm and storing the results in lookup tables [45]. Since the
content of lookup tables is immutable, they do not have to be thread-local. Sharing these
tables between threads leads to better memory space utilisation. Therefore, tables are
explicitly marked as shared and placed in memories with the smallest latency. Only one
of four tables for standard AES rounds is allocated to the fastest Local Memory because
there is no more free space in the Local Memory due to its usage for register spilling. The
remaining tables for standard AES rounds and the table for the last AES round are allocated
to the slightly slower Cluster Local Scratch. All functions are inlined directly at the place of
their invocation to gain an execution speedup.

Great attention has been paid to the types of data used due to the specifics of Smart-
NIC’s hardware. The compiler supports 8-bit and 16-bit data types and their appropriate
pointers, although at some potential performance cost. Still, users should not use 8-bit and
16-bit data types because access to quantities less than 32 bits (64 bits in MEM) generally
involves additional operations to extract the appropriate bytes from the longword or quad-
word. Access through pointers to 8-bit and 16-bit types may also require runtime alignment
of data, which is even more inefficient. Therefore, we have neither used 8-bit and 16-bit
data types nor pointers. The AES state is defined as a 128-bit structure with four fields of
32-bit data type, and the given structure is transmitted exclusively by value. Implementing
AES in Micro-C resulted in approximately 45 times increased throughput compared to the
pure P4 implementation, as described in Section 5.

4.2.3. P4 Packet Control and Entire FF3-1 in Micro-C implementation

Finally, we ported the entire FF3-1 algorithm implementation from the P4-16 to the
Micro-C language, leaving only packet parsing and filtering to the P4 code. The same coding
principles imposed by SmartNIC’s architecture were used for the FF3 implementation in
Micro-C. In addition, an FF3-1 specific bit reversal operation was realised using lookup
tables instead of bit masking and shifting. This implementation resulted in line rate
LISPP operation.

5. Experimental Evaluation

LISPP performance was rigorously assessed using actual physical network devices
rather than within a simulated environment. Two bare metal servers with dual Intel® Xeon®

CPU E5-2660 processors and 40 GB of RAM each were used as the source and sink of the
test traffic. These servers were connected through a Netronome Agilio CX programmable
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network interface card with two 10 Gbit/s ports installed in another bare metal server with
dual Intel® Xeon® CPU E5-2680 processors and 64 GB of RAM, as depicted in Figure 8. The
connections between the servers were through 10 Gbit/s ports on a switch. These ports
were used solely in the testbed, so there was no interference of other cross traffic with the
test traffic. MTU on all interfaces remained at 1500 bytes in all the experiments.

Figure 8. Testbed setup.

5.1. LISPP Performance Evaluation

In our performance evaluation, we employed three state-of-the-art tools for active
network monitoring: iPerf2 [46] for the TCP throughput tests, PF_RING Zero Copy-based
packet rate tests [47] and Sockperf [48] for latency tests. Each of these tools actively moni-
tors by injecting test traffic to measure the performance characteristics of the underlying
network. iPerf2 is designed to assess the maximum achievable TCP or UDP bandwidth. It
establishes TCP sessions between the source and sink of the test traffic to gauge the highest
achievable throughput. iPerf2 can achieve throughputs higher than 10 Gbit/s with default
parameters and a single TCP stream [49]. PF_RING is a new type of network socket that
improves the packet capture speed by avoiding any kernel intervention and can achieve up
to 100 Gbit/s wire speed at any packet size. Sockperf is a network benchmarking utility
designed for testing latency at a sub-nanosecond resolution. It is able to measure the latency
of every single packet, even under a load of millions of packets per second.

Test packets were sent from the source to the sink server through the LISPP system on
the Netronome SmartNIC. Table 2 gives iPerf2 TCP throughput for three different FF3-1
implementations described in Section 4.2. All measurements were made for IPv4 and
IPv6 using /24 and /64 address masks, making the size of the encrypted and plaintext
24 and 80 bits, respectively. As a baseline measurement, we measured TCP throughput
for a code which only passes the traffic between the two card interfaces without any
modification (pass-through column).

Table 2. TCP throughput for three different FF3-1 implementations.

Implementation
Pure P4

(Described in Section 4.2.1)
P4 + AES in Micro-C

(Described in Section 4.2.2)
P4 + FF3-1 in Micro-C

(Described in Section 4.2.3)

Protocol IPv4 IPv6 IPv4 IPv6 IPv4 IPv6

Pass-through [Gbit/s] 9.38 9.26 9.38 9.26 9.38 9.26

Full FF3-1 [Gbit/s] 0.156 0.149 7.27 6.97 9.38 9.26

Measurement results reveal that the last implementation (entire FF3-1 in Micro-C)
achieves maximum TCP throughput, equal to the wire speed. In contrast, the first two
implementations—pure P4 and the one with only AES in Micro-C show significantly lower
throughputs. Such a performance difference suggests that the compiling from P4 to the
executable code in the domain of complex packet processing for the particular hardware
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configuration is not optimal. Therefore, while it is possible to achieve code portability to the
other platforms by using only P4, the performance of the code is not assured. Results also
show a difference in IPv4 and IPv6 TCP throughput. This difference can be attributed to the
difference in header sizes, which is larger for IPv6, thus yielding less useful data bandwidth
for the TCP stream, although the endpoint processing effects should not be neglected. In
addition to the TCP throughput tests, one-way throughput tests using PF_RING Zero
Copy-based packet streams showed that the system can achieve line rate throughput, i.e.,
10 Gbit/s throughput, when the entire FF3-1 implementation is in Micro-C.

The per-packet processing overhead introduced by LISPP remains constant across all
packet sizes, as it exclusively involves the encryption/decryption of specific packet header
fields. These fields maintain the same size in every packet processed by the LISPP device.
As a result, this overhead is not influenced by the size of the packet’s payload, ensuring
uniformity regardless of changes in payload dimensions. Therefore, the performance
constraints of LISPP are more aptly gauged by the maximum achievable packet rate rather
than by standard throughput measures. This aspect gains particular significance in the
context of TCP, which often employs packets sized at the MTU for large-scale data transfers,
a trend commonly observed in TCP throughput testing. It is also important to emphasise
that the LISPP system is fully operational on the Netronome network interface card, without
requiring any interaction with the hosting server apart from the initial code compilation and
subsequent configuration upload, resulting in negligible CPU usage on the host computer
to which the Netronome network interface card is connected.

We conducted tests to assess the impact of the test packet size on achievable packet
rates and packet latency using the LISPP implementation with FF3-1 in Micro-C. Figure 9a
displays the achieved throughput and packet rate using PF_RING Zero Copy-based packet
streams. With packet sizes exceeding 600 bytes, the traffic fully saturates the links between
the test servers at 10 Gbit/s, resulting in lower recorded packet rates (e.g., a 10 Gbit/s
link is completely saturated by sending either 1.25 million 1000 byte-size packets or ap-
proximately 0.9 million 1400 byte-size packet per second). Tests with packets smaller than
600 bytes reveal the highest packet rates attainable with LISPP on Netronome cards, reach-
ing 2.64 Mpps for IPv6 and 2.15 Mpps for IPv4. Figure 9b presents the one-way latency
incurred by LISPP for packet sizes ranging from 100 to 1400 bytes. As a reference, we
have measured one-way latency for packets that pass through the Netronome card without
any LISPP processing (measurement denoted as “wire” latency in Figure 9b). Notably, the
LISPP implementation with a complete FF3-1 in Micro-C consistently adds approximately
60 microseconds of latency, irrespective of packet size, thereby validating the hypothesis
outlined in the previous paragraph.

  
(a) (b) 

Figure 9. (a) Throughput and achieved packet rate for various packet sizes; (b) Per-packet one-way
latency for various packet sizes.

The data presented in Figure 9b also indicates that the latency induced by LISPP is
independent of the ciphertext size. The added latency remained consistent for IPv4, with a
24-bit ciphertext, and IPv6, featuring an 80-bit ciphertext. This finding suggests that LISPP
is scalable with the size (number of devices) of the protected network, which defines the
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size of the host part of the address to be encrypted. Ultimately, the key parameter that
defines the performance limits of the system is the number of packets per second that the
system can forward. For handling larger packet throughputs, additional testing with more
powerful network accelerators and implementation of load balancing are necessary.

5.2. Lower Number of AES Rounds

FF3-1 is an 8-round algorithm that invokes the AES algorithm in each round, which
has ten internal rounds. In our implementation, in which FF3-1 is entirely developed in
Micro-C, AES takes 54% of the processor time. Decreasing the number of rounds in any
of these algorithms would improve processing time and overall algorithm throughput.
However, such an intervention comes with a potential decrease in algorithm security.
Recent cryptanalytic papers showed that the complexity of the attack on FPE [29] depends
on the number of Feistel rounds, which means that lowering the number of Feistel rounds
will decrease attack complexity, which is not a viable option.

On the other hand, during the evaluation of the last stage candidates for the AES
algorithm, it was discovered that the output of the Rijndael algorithm (which later became
AES) appeared to be random after three rounds. Subsequent rounds produce randomness
similar to that already obtained at round 3 [50]. Since the AES algorithm in FF3-1 is used as a
random number generator rather than for data encryption, we argue that performance gains
can be obtained by lowering the number of rounds in the AES algorithm without sacrificing
the strength of the FPE algorithm. We conducted randomness tests on the series of FF3-1
encrypted host addresses. Address series were obtained by encrypting a 9-bit host address
and 16-bit port. In each run, we picked 20 random host addresses for which we iterated all
65,536 different ports and analysed the series of obtained encrypted address values. We did
the same tests for FF3-1 implementations with AES with 3 to 10 rounds. Runs and Discrete
Fourier Transform (DFT) spectral analysis tests from the common randomness batteries of
tests [51] were performed. In each case, the hypothesis that the output series is random was
confirmed. Figure 10a shows the standard deviations of empirical frequencies of appearance
of all possible IP addresses in the 9-bit address range for varying numbers of AES rounds.
As can be seen from the image, standard deviations have approximately the same value
regardless of the number of rounds, meaning that the variability of empirical frequencies
does not change with the number of rounds. Figure 10b shows a DFT magnitude of an
encrypted address series obtained using FF3-1 with 3-round AES. Visual inspection shows
that the spectrum seems flat for the whole range of frequency values without a single value
exceeding the peak threshold value, confirming that the encrypted address series behaves
like a random series. This suggests that with FF3-1, performance gains can be obtained by
lowering the number of AES rounds without sacrificing the algorithm’s security. However,
a more detailed analysis of this hypothesis in the field of cryptanalysis is needed.

  
(a) (b) 

Figure 10. (a) The standard deviation of empirical frequencies of appearance of all possible encrypted
IP addresses in the 9-bit address range for varying numbers of AES rounds; (b) DFT magnitude of an
encrypted address series obtained using FF3-1 with 3-round AES.
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In the third batch of performance tests, we analysed the potential packet rate increase
by reducing the number of FF3-1 rounds. We pushed 10,000,000 100-byte packets per
second through the LISPP system and measured the number of packets that arrived on
the sink side. Figure 11a shows the number of packets the system can process per second.
The entire FF3-1 implementation in Micro-C can process more than 2 million packets per
second, while the packet rate can be almost doubled using 3-round AES as a round function.
It is interesting to notice that the network interface card achieved higher packet rates for
IPv6 packets, which is probably a consequence of the simpler IPv6 header processing in the
card (no header checksum).

(a) (b)

Figure 11. (a) The number of packets per second the LISPP system can process for IPv4 and IPv6;
(b) Per-packet one-way latency.

Finally, we measured the additional latency introduced due to the LISPP packet
header field encryption with fewer FF3-1 rounds. Figure 11b gives the per-packet one-way
latency measured by the Sockperf tool. The latency added by LISPP packet processing is
between 30 and 60 microseconds for the FF3-1 implementations with 3-round and 10-round
AES, respectively. Such an additional latency is negligible compared to the latencies on
international links and corresponds to the signal propagation latency between the nodes,
which are only 10 to 20 km away.

6. Conclusions

In this paper, we report on the research results of using FPE algorithms for privacy
protection on the network layer. Designed and implemented system, LISPP, based on the
FF3-1 FPE algorithm, can obfuscate source IP addresses and ports fully transparently with
minimal additional one-way latency for both IPv4 and IPv6. Its performance on SmartNICs
in real network environments is adequate for use in production networks. Therefore, the
key conclusion is that the FPE algorithms are a viable option for packet header obfuscation
and privacy protection.

Other important conclusions from this research are related to the experiences from
the system implementation. Although P4 language is advertised as target-independent,
its performance for processor-intensive applications on the particular target device is still
highly dependent on the underlying hardware architecture. While code functionality
is the same on different targets, its performance is far from optimal, and there are no
automated optimisation options. This suggests that the compilation process from P4 to the
specific hardware architectures, especially for processor-intensive applications like novel
cryptographic algorithms without hardware acceleration, can be significantly improved.

Our further research activities will be in two key directions: integrating LISPP with the
onion routing control plane to achieve lower latency than traditional onion routing systems
and further optimising the FPE performance on multiprocessor targets using lightweight
cryptographic algorithms.
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and Tomasz Rak

Received: 23 October 2023

Revised: 30 November 2023

Accepted: 4 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Deployment and Implementation Aspects of Radio Frequency
Fingerprinting in Cybersecurity of Smart Grids

Maaz Ali Awan 1, Yaser Dalveren 1, Ferhat Ozgur Catak 2,* and Ali Kara 3,*

1 Department of Electrical and Electronics Engineering, Atilim University, Ankara 06830, Turkey;
awan.maaz@student.atilim.edu.tr (M.A.A.); yaser.dalveren@atilim.edu.tr (Y.D.)

2 Electrical Engineering and Computer Science, University of Stavanger, 4021 Rogaland, Norway
3 Department of Electrical and Electronics Engineering, Gazi University, Ankara 06570, Turkey
* Correspondence: f.ozgur.catak@uis.no (F.O.C.); akara@gazi.edu.tr (A.K.)

Abstract: Smart grids incorporate diverse power equipment used for energy optimization in intel-
ligent cities. This equipment may use Internet of Things (IoT) devices and services in the future.
To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of
cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as
radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited
to academic research or military interest. RFF is a physical layer security feature that leverages
hardware impairments in radios of IoT devices for classification and rogue device detection. The
article discusses the potential of RFF in wireless communication of IoT devices to augment the cyber-
security of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented.
Subsequently, a deployment framework of RFF for smart grids is presented with implementation
and regulatory aspects. The article culminates with a discussion of existing challenges and potential
research directions for maturation of RFF.

Keywords: radio frequency fingerprinting; machine learning; deep learning; software-defined radio;
Internet of Things; cybersecurity; smart city; smart grid

1. Introduction

Over the past few years, smart cities have experienced substantial growth and ex-
panded their horizon considerably. Notably, recent breakthroughs in IoT have opened
exciting avenues, serving as pivotal technological foundations for smart cities [1]. These
advancements facilitate the creation and automation of cutting-edge services and sophisti-
cated applications tailored to the diverse needs of urban communities, thus benefiting a
wide range of city stakeholders. Figure 1 illustrates key components of a modern smart city.

Complementary to these advancements, smart grids are transformative for smart
cities, optimizing energy usage in real time and pre-empting potential problems [2]. Smart
grids are an essential national asset for any country, playing a crucial role in modernizing
energy infrastructure. Traditional power grids comprise power generation, transformation,
transmission, and distribution. Smart grids incorporate diverse power equipment and may
incorporate IoT devices that sense humidity, temperature, immersion, vibration, current
leakage, and record video data. Pointed IoT equipment may enable implementation of
intelligent power systems [3–5]. These IoT devices establish wireless device-to-device (D2D)
communication at the physical layer [6]. Each network has a gateway for data concentration
which constitutes the network layer, and the control station serves the application layer
of IoT in smart grids. While smart grids offer immense benefits to smart cities, they also
present significant security challenges. A substantial review was conducted by Alsuwian
et al. [7] concerning cybersecurity threats in IoT of smart grids. These networks in smart
grids operate at the intersection of the physical layer, network layer, and application layer,
making them susceptible to cyber threats at multiple levels. Therefore, their security at all
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levels is paramount. The interconnected nature of smart grids entails that vulnerability
at one layer may cascade across the entire system, potentially leading to widespread
disruptions.

Figure 1. Concept of smart city [1].

Security requirements in a wireless network encompass several critical aspects to
safeguard the integrity and privacy of data transmission [8]. Authenticity is paramount
because unauthorized access is a major security concern, especially in life-critical IoT
applications [9]. In existing IoT devices, coprocessors are employed for symmetric key-
based encryption such as AES-128 and AES-256 [10]. However, maintenance of these keys
is an administrative overhead and must be mitigated through the use of public/private
key pairs [11]. Such pairs are mathematically correlated and allow for enhanced data
security compared to symmetric cryptography. Nevertheless, generating mathematically
complex key pairs using true random number generators is not a possibility on most low
resource IoT devices for the time being. It is envisioned that IoT of the future may benefit
from the massive potential of quantum cryptography in the post-quantum computing
era. High-efficiency quantum digital signature (QDS) protocols are being developed using
asymmetric quantum keys [12]. Another novel concept, Internet of Predictable Things
(IoPT), could be employed in mitigation of cyberattacks using energy forecasting in smart
grids with machine learning (ML) aids to detect anomalous data patterns [13]. These
directions possess substance in the improvement of cybersecurity for future IoT.

The authentication challenge extends to confidentiality and integrity compelling
drastic measures to limit access to sensitive data, allowing only intended users to view
or modify it. Lastly, availability is mandatory for allowing authorized users to reliably
access network resources whenever and wherever needed. Physical layer security measures
such as the long-range frequency hopping spread spectrum (LR-FHSS) [14] are gaining
popularity due to integration in contemporary long-range (LoRa)-based IoT devices. In the
event of jamming or interference, frequency hopping at multiple channels can ensure better
link availability. These security requirements collectively form the foundation of a robust
and reliable wireless network. Wired networks rely on physical cables for node connections,
while wireless networks are more vulnerable due to their broadcast nature making them
susceptible to eavesdropping, denial-of-service (DoS), spoofing, man-in-the-middle (MITM)
attacks, and message falsification. Cryptographic techniques are commonly used to prevent
eavesdropping, ensuring identity verification. In IoT, security gaps exist due to reverse
engineering threats and challenges in rapidly installing cryptographic protocols on insecure
devices. On the other hand, noncryptographic methods, such as device-specific signal
pattern analysis, complement traditional cryptography by identifying known devices and
detecting rogue ones, offering essential security without modifying the IoT devices.
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Radio frequency fingerprinting (RFF), being a noncryptographic method, has been in
use for a few decades now. However, its potential as a physical layer security feature in
wireless sensor networks of IoT has been gaining popularity recently [15,16]. RFF uses hard-
ware impairments in the radio section of an IoT device for classification. These impairments
are unique to each IoT device due to inherent nonlinearities in the manufacturing process
of these inexpensive devices. The components of an IoT device are shown in Figure 2. It is
imperative to point out that the aim of most studies on RFF has been device authentication
at the physical layer—threat elimination at the first line of defense.

Figure 2. Components of an IoT device.

To this end, a gap exists in studying RFF deployment in a smart grid use case. This
article primarily explores the feasibility of integrating RFF into the existing infrastructure
of wireless sensor networks in smart grids. The body of this work investigates the po-
tential of RFF as a physical layer security feature for the said application and presents a
deployment framework.

The remainder of the article is structured as follows: Section 2 provides an overview of
related research. Section 3 illustrates ingredients of a typical DL-aided RFF system. Security
challenges and associated discussions are detailed in Section 4. Smart grids as a use case
for RFF deployment is covered in Section 5. The ensuing Section 6 argues the potential
challenges and directions for future research. Finally, Section 7 concludes the article.

2. Related Work

The core concept behind RFF involves the extraction of distinct patterns or features
from devices and utilizing them as signatures for device classification. Previously, a wide
range of features including but not limited to physical (PHY) layer and medium access
control (MAC) layer have been employed in RFF. However, some straightforward identifiers
like Internet Protocol (IP) addresses, MAC addresses, and international mobile station
equipment identity (IMEI) numbers are susceptible to spoofing. Similarly, received signal
strength indication (RSSI) and channel state information (CSI) could be affected by mobility
and environmental changes. A recent research focus has been the investigation of features
that are intrinsic to a specific device, possess stability over time, and are challenging for
malicious actors to replicate. The authors’ prior work has contributed to the advancement
of RFF while it was still a topic of academic research. However, the focus of this work is the
discussion of practical deployment aspects of RFF in real-world applications. The following
subsections cover the related work from all the domains associated with this body of work.

2.1. Previous Work

The primary focus of previous work has been the development of cost-effective tech-
niques for extracting RF fingerprints. In this context, a method for modifying transient
signals was presented [17]. Emphasizing cost-effectiveness, a modular RF front end for RFF
analysis of Bluetooth signals was offered [18]. Given the passive nature of RFF, modular
solutions are particularly relevant, enabling a single RFF system to classify multiple IoT
devices without any modification. A common use case of classifying Bluetooth radios of

146



Electronics 2023, 12, 4914

cellular devices was addressed in [19]. Firstly, the signal was preprocessed through tran-
sient signal decomposition using variational mode decomposition (VMD). Subsequently, a
linear support vector machine (LSVM) was employed as a classifier. A comparative study
on classifiers, considering varying signal-to-noise ratio (SNR) levels and dataset sizes was
organized in [20]. The experimental results yielded excellent classification accuracy even
at low SNR values, implying tremendous relevance in real-world scenarios. Adhering to
open science principles, a rich dataset to aid the research community in advancing RFF
technology was submitted in [21]. The goal was to aid prospective researchers with the in-
clusion of an acquisition method for gathering Bluetooth signals. Another potential avenue
for academic exploration is the application of RFF for localization. Addressing this, [22]
presented a discussion on recent advances and challenges surrounding RFF localization in
outdoor environments.

2.2. Cybersecurity in Smart Grids

As smart grids emerge to play an integral role in the evolution of smart cities, a rising
need to overhaul their cybersecurity is imminent. The threat spectrum of cyberattacks being
faced by smart girds is tremendous [23]. Various organizations, such as the National Insti-
tute of Standards and Technology (NIST) and the Smart Grid Interoperability Panel (SGiP),
are shaping security requirements for smart grids. Authentication and authorization are
central to the overall security of smart grids. Per the guidelines for smart grid cybersecurity
published by NIST [24], the focus of security has been limited to cryptographic techniques
only. A detailed framework for key management and associated operational issues was
provided in the referred document. Key management can be improved using physically
unclonable functions (PUF). Generation of PUF hinges on the intrinsic uniqueness within
the integrated circuit of a device. A key generated by a device employing PUF can only
be regenerated by the same device. This characteristic is leveraged by the utility to au-
thenticate data generated by smart meters [25]. With developed countries increasingly
embracing smart grids, the security concerns and potential remedies have become a focal
point for researchers and industry experts [26]. Ongoing endeavors are directed towards
securing the network and application layers of IoT in smart grids. Remarkably, the non-
cryptographic security techniques in IoT for smart grids have not been extensively studied.
This represents a novel area where RFF may emerge as a promising candidate.

2.3. Historical and Contemporary Use of RFF

The classification of signals using passive radio frequency (RF) receivers enhanced
by artificial intelligence has a historical precedent dating back three decades. Initial use
of RFF involved the classification of signals from multiple radar sources leveraging their
distinct attributes [27]. More recently, RFF has gained popularity in IoT with experiments
on wireless devices using frequency, magnitude, phase offsets, and in-phase and quadrate
(I/Q) imbalance as differentiating features [28]. Utilizing RFF for device authentication
finds its most straightforward application in RFID systems [29]. The cited studies exhibit
the relevance of RFF in various legacy and contemporary applications.

2.4. Physical Layer Security in Wireless Communication

There have been substantial studies concerning physical layer security in wireless
communication of IoT devices. In the era of ML and DL, physical, network, and application
layers of IoT are susceptible to security threats [30]. As adversarial attacks grow more and
more complex, security measures on all layers of communication networks are emerging
on the horizon. In this regard, classification efforts on cellular phones using their integrated
physical components have been conducted [31]. Non-cryptographic methods for user
authentication and device identification in static and mobile wireless networks have seen
academic interest [32]. Nevertheless, there are advantages, limitations, and implementation
challenges associated with these novel methods. A literature review of relevant studies
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underscore the potential of physical layer security in wireless communication between IoT
devices for authentication.

2.5. Machine Learning in RFF

Emitter-specific hardware attributes can be leveraged without the use of machine
learning employing expert features in RFF extraction algorithms such as signal phase [33].
However, this approach is over-reliant on the quality of the received signal, which is not
practical in actual scenarios as wireless signals undergo drastic changes in amplitude and
phase due to channel effects. Conversely, DL-aided RFF has gained popularity due to its
ability to detect unique features in datasets. This approach has made the identification
and classification problem scalable to cater unseen devices. More precisely, convolutional
neural networks (CNN) have exhibited even more accurate results [34]. Automated feature
extraction in DL has proven to be a potent solution, surpassing traditional methods em-
ploying only the handcrafted features. However, hybrid models have exhibited even better
results when a handcrafted feature such as carrier frequency offset (CFO) is used in unison
with DL [35]. An examination of reference studies reveals a multitude of prevalent ML, DL,
and hybrid methods. The choice of a specific model hinges on the adopted representation
of the RF signal, whether it be I/Q, spectrogram, or fast Fourier transform (FFT).

3. Typical DL-Aided RFF System

The two major domains in an RFF system comprise RF and DL. The choice of an SDR
architecture for the RF domain is governed by its flexible nature to process raw waveforms
and a wide range of operating frequencies. For the DL part, the host processor serves as a
platform for training a neural network (NN) on a given dataset followed by classification
in the inference stage. The following subsections provide some explanation for the process
of RF signal acquisition followed by the rationale for pre-processing before the signal is
subject to the training and inference stage.

3.1. RF Signal Acquisition

The first step in RFF comprises the RF signal acquisition. To make the signal fitting for
the classification stage, there is a need to pre-process the signal. The collection of signals
followed by pre-processing collectively constitutes the signal acquisition process. The
requirement for pre-processing stems from the problem statement inherent in the RFF-
based device classification. The classical wireless communication model serves a simple
mathematical explanation. For the sake of simplicity, the high-frequency carrier component
is omitted. Baseband signal at the input of the RFF system, y(t), can then be given:

y(t) = G(h(τ, t)) ∗ FK(x(t)) + n(t), (1)

where x(t) is the theoretical modulated signal. G(·) denotes the hardware effects of the
receiver and h(τ, t) is the impulse response of time dispersive wireless channel with delay
τ. FK(·) signifies the transmitter specific effect of device under test (DUT), K, n(t) is the
additive white Gaussian noise (AWGN), and ∗ is the convolution operation. The goal of
RFF is to extract FK(·), unique to each hardware and difficult to clone or tamper. There
are, however, some common hurdles in the development of a robust RFF. Firstly, the
transmitter specific FK(·) is miniscule and overly reliant on the signal quality [33]. One
approach could be to artificially create artifacts in the transmitter, but this could hamper
communication performance. Moreover, in practical wireless channels, the received signal
y(t) undergoes amplitude and phase dispersion due to channel impulse response h(τ, t).
Therefore, the NN shown in Figure 3 has the tendency to make inaccurate predictions,
since h(τ, t) is not predictable and may vary significantly between training and inference.
As already highlighted, DL-aided RFF systems have shown performance improvement;
however, DL relies on the assumption that the data points follow an independent and
identical distribution (i.i.d). In other words, statistical parameters, such as mean and
variance, must remain consistent across the entire dataset. The varying impulse response
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of a time-dispersive channel could therefore be a cause for a DL model to generalize poorly
on unseen data. In dynamic scenarios, the variance of h(τ, t) is an even bigger challenge.
In addition to the channel variance, the relative motion between the communicating nodes
induces Doppler shift given by the following expression:

Δ f = f c
c
v

cos(θ), (2)

where Δ f is the Doppler shift in the carrier frequency fc due to relative motion between
the communicating nodes having a relative velocity v at an angle θ, and c is the speed
of light. The effect of Doppler shift causes signal degradation, which in turn affects the
classification performance. CFO is another challenge that is prevalent in inexpensive radios;
by virtue, low-cost crystal oscillators have accuracies in the excess of multiple tens of
parts per million (PPM). Amidst these challenges, there is a burgeoning requirement to
pre-process the signal before it is stacked in a dataset to train the NN. Pre-processing
comprises signal conditioning, as employed in any legacy radio receiver, for accurate
symbol detection. The most important aspect of pre-processing is to mitigate the channel
effects, since it is the most unpredictable variable in the entire process. Various mitigation
methods are prevalent in the literature, such as the channel-independent spectrogram for
narrowband communication channels that experience very little change in a short time
interval [36]. Another direction is data augmentation where a channel simulator may aid
in training the NN on simulated channel conditions. This approach can minimize the
channel effects since a NN trained on a dataset containing diverse channel conditions shall
generalize much better in the inference stage. Nonetheless, rationale for the requirement of
channel equalization is clear and justified. Detailed discussion of the implementation of
channel equalizers is beyond the scope of this work. More importantly, it must be realized
that synchronization is a mandatory step for channel equalization. Among other issues,
the effect of the receiver G(·) must not alter the classification performance. A practically
deployable RFF system must be agnostic to the effects of the receiver. A NN trained on one
RFF system must be able to perform equally well on the other if there is a need to replace it
in the event of failure. Lastly, normalization of the received signal is performed to bar the
NN from using signal strength as a feature for training.

Figure 3. Typical DL-based RFF system.

3.2. Deep Learning

Figure 3 illustrates the working of a modern RFF system as a two-stage process,
training and inference. As evident, training comprises receiving samples from N unique
devices and an RF signal is received from device K in the inference stage to differentiate
between a legitimate and rogue transmitter on a per packet basis. The mathematical model
for the classification problem ensues. Let Dtrain, a training dataset from N devices be
given by

Dtrain = {(ym, Pm)}Mtrain
m=1 , (3)
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where ym is the mth training sample and Pm is the respective output of the one-hot encoding
function O(·) for the mth DUT label, given by

Pm = O(lm), (4)

where lm is the ground truth DUT label of the mth training sample. If Mtrain is the total
number of training samples in a neural network f (y; Θ), parameters Θ can be optimized
using Dtrain by the following expression:

Θ = argmin
Θ

1
Mtrain

∑ (y,p)∈ Dtrain Lce ( f (y; Θ), p), (5)

where Lce(·) is the cross-entropy loss. In the inference stage, the receiver captures a signal
y′ and feeds it into the well-trained neural network f (y; Θ) for prediction. A probability
vector p̂ is obtained in the inference stage as

p̂ = f
(
y′; Θ

)
, (6)

where p̂ = {p̂1, . . ., p̂k, . . ., p̂N} is a probability vector over all the N DUTs, and p̂K is the
estimated probability for the Kth DUT. The predicted device label l̂ is derived by simply
selecting the index of the element with the highest probability as defined below.

l̂ = argmax
k

( p̂). (7)

The model outlined above serves as the foundation for device classification, utilizing
labels derived from a predefined dataset. To declare an unknown device as rogue, each
element from the set p̂ must exhibit a probability value below a predetermined threshold.
This criterion designates a device as absent from the roster of legitimate devices, thereby
classifying it as rogue. This ability of the NN to identify unseen devices adds scalability to
the system and makes the classification step an open-set problem.

To summarize, a typical DL-aided RFF system must have a common set of attributes.
The scope of this article is to present a practically deployable RFF system. Therefore, based
on state-of-the-art and literature reviews of relevant dissertations [37,38] and an elaborate
survey [39], essential features of a practical DL-aided RFF system are listed:

1. Synchronization.
2. CFO Compensation.
3. Doppler Compensation.
4. Normalization.
5. Channel Equalization.
6. Receiver Agnostic.
7. Scalability.

4. IoT in Smart Grids

The US Department of Energy defines smart grids as modernized electrical grids
that leverage advanced technology to enhance the efficiency, reliability, and sustainability
of electricity generation, distribution, and consumption [40]. They incorporate various
power generation sources, including customer-generated energy, solar, wind, and more.
Understanding the role of IoT in smart grids and the security challenges it presents is
crucial before delving into discussions about the necessity to bolster cybersecurity.

4.1. D2D Wireless Communication in Smart Grids

The effectiveness of smart grids is rooted in their ability to anticipate fluctuations in
energy supply, optimize grid operations, and promptly respond to changes in demand
and power failures. This capability not only strengthens grid stability but also contributes
to the reduction in energy wastage, enhancing overall sustainability [41]. Central to the
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realization of this concept is D2D wireless communication between IoT devices at the
control center, the power station, and consumers. Figure 4 shows the evolution of power
grids. The dotted lines mark the communication network, which is crucial in achieving the
functionality of smart grids.

Figure 4. Evolution from conventional to smart grids [41].

4.2. Security Challenges in Wireless Communication

In wired networks, nodes are physically linked by cables. Conversely, wireless net-
works face heightened vulnerability due to their broadcast nature. They are susceptible
to various malicious attacks, such as eavesdropping [42], denial-of-service (DoS) [43],
spoofing [44], man-in-the-middle (MITM) [45], message falsification/injection [46], etc. To
ensure confidentiality and authentication, existing systems commonly use cryptographic
techniques to prevent eavesdropping and unauthorized access to networks [47,48].

Conventional cryptography ensures identity verification using techniques like message
authentication codes, digital signatures, and challenge-response sessions [49]. However,
in widely distributed IoT, security gaps persist due to reverse engineering threats [50],
impracticality of rapid cryptographic protocol installation in insecure devices [51], and
inefficacy against hijacked devices.

In a post-quantum computing era, the above cited challenges could be overcome using
quantum cryptography. For instance, quantum light could be used to generate inherently
unforgeable quantum cryptograms [52]. These cryptograms have exhibited the potential
to be used in practical applications with near-term technology. Future IoT may benefit
tremendously at the application layer as a solution to vulnerabilities present in symmetric
cryptographic schemes. Non-cryptographic methods, such as device-specific signal pattern
analysis, supplement traditional cryptography by identifying known devices and detecting
rogue ones [53]. These approaches are crucial for enhancement of cybersecurity in IoT,
without requiring major system modifications [54].

4.3. Cybersecurity in Smart Grids

The layered architecture in IoT of smart grids is illustrated in Figure 5 [55]. At the
physical layer, data from sensors, actuators, and smart meters are collected at the gateways.
At the network layer, data from multiple gateways are concentrated and relayed to the
application layer operating on servers in the control center using legacy communication
methods. The goal of cybersecurity in IoT is to ensure protection at every layer; the same is
applicable in smart grids as well. A closer look at the threat spectrum being faced by smart
grids underscores the importance of device authentication [56,57], although physical layer
intrusion detection systems have the capacity to perform device authentication at the first
stage of defense in wireless networks [58]. But, to this end, there has not been a study on the
implementation of physical layer security measures in wireless communication between
IoT devices of smart grids for authentication. To fill this gap, RFF emerges as a potential
solution and this article builds the case for discussion on the associated deployment aspects
in smart grids.
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Figure 5. Cyber security in smart grids [55].

5. Deployment of RFF in Smart Grids

The aim of this article is to conduct a feasibility study and discuss practical deployment
consideration apropos of the use of RFF in smart grids. Existing IoT frameworks have
been considered for seamless integration of RFF with minimal changes. The core idea is to
present RFF as an addition to existing IoT infrastructure instead of reinventing the wheel.
The following sub-sections provide considerations and requirements for deployment of
RFF in smart grids.

5.1. Network Considerations

In line with the aim of this article, performance metrics of existing IoT serve as a good
starting point. Coverage and energy efficiency are important metrics for choosing a network
topology [59]. Furthermore, data rate, range, application layer security, and localization are
important factors for selecting a particular low-power wide-area network (LPWAN) [60].
From a practical standpoint, cost and scalability hold particular significance [61]. In the
UK, smart meters communicate via cellular networks, utilizing 2G or 3G waveforms [62].
However, the use of a long-range wide-area network (LoRaWAN), a star-of-star network
topology, in advanced metering infrastructure has been reported as well [63,64]. Given
the novelty of RFF and the consideration of performance metrics including cost, energy
efficiency, network topology, and communication range, LPWAN is a suitable candidate
for the deployment of RFF.

5.2. Security Considerations

Cybersecurity experts have expressed concerns, revealing that 70% of IoT devices are
vulnerable to cyberattacks [65]. The wireless sensor network of IoT exhibits vulnerabilities
across various layers, and cyberattacks can manifest at different stages [66]. Likewise,
LPWAN is not exempt from cyber threats [67]. Wireless sensor networks in smart grids
comprise IoT devices equipped with temperature, humidity, light, and wind sensors. The
threat from rogue IoT devices to generate falsified data is a significant concern. For instance,
exaggerated sensor readings from a smart meter could lead to an unwarranted stimulus
from the control station. The limitations of existing security schemes have been discussed
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in the introduction section of this article. Considering the vulnerability of higher layers to
attacks, a novel approach is to secure the physical layer of D2D wireless communication
across the network. It is proposed that this extra layer of security should always be in the
loop for all end-to-end data transactions between IoT devices in the network.

5.3. Proposed RFF Framework

A key facet of smart grid infrastructure is the real-time estimation of household
loads [40,41]. This requirement can be effectively addressed by smart energy meters
transmitting data wirelessly at regular intervals. However, this simple task becomes
challenging from a cybersecurity perspective in the presence of rogue devices. This scenario
is accurately addressed in the physical layer security framework of RFF, as depicted
in Figure 6. The proposed configuration ensures that all data transmission from the
sensors must pass through the physical security barrier of the RFF system before reaching
the control station. The star-of-stars network topology ensures that all the sensors first
concentrate their data at their respective gateways. Hosted on the IoT gateways, RFF serves
as a filter to allow readings from only legitimate sources while filtering the rogue ones on a
per packet basis. Since these gateways can send and receive wireless data, they can filter
data from rogue gateways as well.

 

Figure 6. Proposed RFF framework for smart grids.

It is worth mentioning that within a mini star network, multiple gateways could be
employed for time-based direction of arrival estimation. This can be extremely helpful
in the localization of a rogue device followed by necessary remediation. The IoT devices
equipped with sensors communicate unidirectionally with their respective IoT gateways.
However, to cater for dynamic load requirements, the control station may issue commands
to renewable energy plants, directing them to release stored energy into the system or
increase power generation. This requires bidirectional communication in line with the
fundamental characteristics of a smart grid [40,41]. This bidirectional communication offers
a significant challenge for deployment of RFF in existing low-resource IoT devices, which
is discussed in Section 6.

5.4. Performance Considerations

Before a technology is deemed suitable for practical deployment, it is important to
estimate its performance considering real-world conditions. The aim of presenting a typical
DL-aided RFF system in Section 3 was to highlight the hurdles in achieving the desired
outcome. The key performance indicator (KPI) of an RFF system is its classification accuracy.
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There has not been a study on the estimation of this KPI in a smart grid use case. However,
the authors’ previous work in [19] covered the performance comparison of various ML-
aided classifiers with different SNR values of the received signal. Table 1 summarizes the
experimental results from that study. The results show decent performance even in low
SNR conditions. Given that the IoT devices in wireless sensor networks of smart grids are
deployed in a static setting, empirical propagation measurements in urban environments
may serve as a good reference for RSSI estimation [68]. Figure 7 provides a path loss curve
in decibels (dB) against the distance between communicating nodes. Using the locations
of smart meters, sensors, and IoT gateways, the expected RSSI could be estimated at the
RFF receiver.

Table 1. Comparison of classifiers with various levels of SNR [19].

Classifier
SNR (dB)

(8–10) (12–15) (18–23)

L-SVM 79.3% 82.1% 90.5%
Complex Tree 66.8% 68.8% 85.4%

LDA 76.6% 77.8% 83.6%

Figure 7. Empirical propagation model in urban environment [69].

Subsequently, the resultant SNR could be used to estimate the classification accuracy
using Table 1. It is pointed out that the scope of this study is not limited to a specific smart
grid. It is expected that through careful decision making in the selection of appropriate
classifier and signal attributes, decent classification accuracy can be achieved, even with
low SNR. The classification accuracies of various signal representations for as many as
60 unique LoRa devices are given in Table 2. It may be noted that there is another important
aspect in gauging the performance of an RFF system: the time required for training. It is
only reasonable to assume that installation, repair, and maintenance of IoT devices in smart
grids is likely to be conducted by electric supply companies. Hence, this one-time training
activity, even in a practical deployment scenario, may be tolerable given the extraordinary
classification performance achieved as a trade-off. Therefore, for a smart grid use case,
training time may not be treated as a KPI. Referring to the star network topology outlined
in Section 5.3, each wireless sensor network incorporates an IoT gateway. These gateways
have been proposed as an optimal site for RFF, ensuring comprehensive access to all
IoT devices within the network for accurate classification. Considering the performance
metrics across a large set of devices, the findings from referred studies can be reasonably
extrapolated as a valuable reference for the smart grid.
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Table 2. Classification accuracy of different models with required training time [37].

Signal Representation DL Model
Accuracy

Number of Parameters Training Time (minutes)
w/o CFO Comp. w/o CFO Comp. Hybrid

I/Q samples
MLP 54.08% 55.73% 78.26% 19,018,009 25
CNN 64.10% 92.26% 98.11% 4,361,545 75
LSTM 61.16% 89.54% 95.14% 4,267,289 70

FFT results
MLP 55.44% 94.48% 96.17% 19,018,009 25
CNN 61.14% 82.10% 85.58% 4,361,545 75
LSTM 49.20% 58.26% 82.81% 4,267,289 69

Spectrogram
MLP 88.60% 91.82% 95.95% 8,821,017 22
CNN 83.53% 95.35% 96.40% 1,545,193 20
LSTM 68.16% 89.50% 98.04% 3,427,609 80

5.5. Implementation Aspects

The RFF for smart grids emerges as a highly feasible solution for deployment, primarily
owing to its cost-effectiveness and seamless integration capabilities within existing systems.
Positioned at the intersection of two prominent domains, RF and ML, RFF may seem
intricate from a technical perspective, but from the user’s perspective, it can be offered as a
plug-and-play solution, hence, simplifying its adoption into existing IoT. Smart grids, being
a critical infrastructure from an operation standpoint, can benefit from the passive nature
of RFF systems during training as well as inference stages. This can be helpful in ensuring
uninterrupted functionality of the smart grids during the deployment process. RFF systems
do not necessitate integration into every IoT device. Instead, they can be intelligently
deployed only into IoT gateways and leverage the available processing prowess. Moreover,
power efficiency poses no significant challenge since RFF systems operate in passive
mode, necessitating no significant power requirement. Considering RFF is deployed
as a technology, the hardware infrastructure overhead is minimal. In the features of
a typical DL-aided RFF system, the ability to be receiver agnostic was discussed as a
desirable feature. It would be a highly recommended feature in the event of a device
failure, allowing hot replacement but not necessitating training the NN again. Lastly,
an RFF system for smart grids was proposed as an open-set solution. This signifies that
once the NN is trained on all legitimate IoT devices, any number of rogue devices could
be detected [38]. This scalability further adds to the practicality of RFF. Overall, cost
effectiveness, power efficiency, low deployment overhead, and scalability make RFF an
appropriate practical choice. It is noteworthy that mobility-induced challenges such as
antenna cross-polarization loss and Doppler shift may not pose significant hurdles within
the context. This assertion is based on the observation that RFF gateways and IoT sensors
predominantly exhibit static characteristics in the said application. These elements further
simplify the implementation process.

5.6. Regulatory Requirements

The adherence to regulatory standards for RF-based systems stands as a crucial con-
cern. Every country delineates unique requirements governing the utilization of frequency
bands. Moreover, there is a limit on maximum permissible power levels for RF transmission.
However, RFF, being a passive technology, poses no challenges in this regard. Since the
addition of RFF has been proposed for existing LPWAN, the use of industrial, scientific,
and medical (ISM) bands for operation is possible. The use of LPWAN in unlicensed bands
is a viable direction for smart cities [53]. Having no additional regulatory compliance
contributes to the overall feasibility and cost-effectiveness [54] of implementing RFF tech-
nology in wireless sensor networks of smart grids. However, the SDR of an RFF system
may require EMC certification [69] subject to user needs.
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6. Challenges and Future Directions

Being a novel technology and an unprecedented use case in smart grids, RFF entails
challenges as well as significant potential for growth in the future. The aim of this section
is to underscore the existing challenges and their potential solutions that can significantly
advance the deployment of RFF in real-world applications. Additionally, prospective
research directions aimed at the maturation of RFF as a technology are deliberated.

6.1. Challenges

RFF for wireless sensor networks of smart grids faces a multifaceted set of challenges.
To start, long-term deviation in hardware impairments remains a largely uncharted ter-
ritory. There has not been a study on long-term operational performance of RFF in IoT.
Additionally, bidirectional communication security remains a notable challenge, particu-
larly in scenarios where IoT devices are deployed as receivers. Due to limited resources
available on these devices, identification of rogue gateways using RFF is not possible
at the present. Addressing these multifarious challenges constitutes a burgeoning area
of academic research. The longevity and robustness of RFF technology in the evolving
landscape of wireless sensor networks of smart grids needs to be closely monitored in the
years to come. Moreover, the emergence of deep generative attackers employing generative
adversarial networks is a growing apprehension. These attackers pose a significant threat
to device identification even at the physical layer. By leveraging these models, malicious
entities can effectively train highly realistic signal or data packet generators capable of
mimicking the signal characteristics of legitimate devices. This threat can overcome the
ability of RFF systems to identify rogue devices as the success rate of spoofing attacks
may increase from less than 10% to approximately 80% [70]. Another significant challenge
lies in the availability of abundant datasets for conducting research and experimentation.
Addressing these challenges can further add to the potential of RFF as a practical solution
for the enhancement of cybersecurity in smart grids.

6.2. Future Research

Research efforts in the realm of RFF are required for channel estimation and equal-
ization. This area holds immense potential for enhancing the reliability and performance
of RFF systems in practical scenarios. Specifically, researchers can focus on developing
advanced channel estimation techniques that effectively counteract signal distortion caused
by time-dispersive channels. However, long training sequences (LTS) can be used to achieve
high classification accuracy in 802.11 devices even if the training samples are collected from
diverse locations [71]. This research direction has massive potential to benefit LPWAN as
well. Simultaneously, the design of a receiver chain that minimizes the combined impact of
the channel and receiver components is of paramount importance. Such research efforts
can aid in the collection of I/Q datasets that closely resemble the originally transmitted
signals, thereby bolstering the overall resilience and classification accuracy of RFF in real-
world deployment scenarios. There is another issue in scenarios where IoT devices may be
spoofed from a rogue RFF gateway, mimicking its hardware attributes. Such threats may
be mitigated using multiple input multiple output (MIMO) receivers. Such localization
methods can aid in estimating the difference between the expected and actual position of
an IoT device. This additional check can be very useful, especially in smart grids, since the
devices in the network are static. But these research directions remain unexplored to this
end. Moreover, as already cited in the previous section, there is a pressing need for the
collection and publication of open-source datasets. The creation of such datasets will not
only facilitate a deeper understanding of RFF as a technology but also empower researchers
to develop and validate new algorithms and models effectively. A few datasets have been
published in [21,72], but this trend is limited. By fostering an environment of open data
sharing and collaboration, the research community can collaborate in improving RFF as a
technology for practical deployment in real-word scenarios.
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7. Conclusions

The article argues for the potential of RFF as a physical layer security feature for
wireless communication between IoT devices of smart grids. It underscores the importance
of smart grids and identifies associated cybersecurity threats. It offers RFF as a complemen-
tary addition to contemporary cryptographic methods in existing IoT. Characteristics of
a typical DL-aided RFF system were presented and the rationale behind design choices
was highlighted. Previous work and the reference literature were reviewed as a substantial
starting point. Cybersecurity aspects, network architecture, regulatory considerations, and
implementation aspects of RFF for smart grids were deliberated. The article culminates
with a discussion on the existing limitations and future research directions to improve RFF
as a technology and its utilization as a long-term solution for smart grids.
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Abstract: This paper addresses the escalating threat of malicious jamming in next-generation com-
munication systems, propelled by their continuous advancement in speed, latency, and connectivity.
Recognizing the imperative for communication security, we propose an efficient jamming detection
method with distinct innovations and contributions. Motivated by the growing sophistication of
jamming techniques, we advocate the adoption of the error vector magnitude (EVM) metric, mea-
sured in IQ symbols, deviating from traditional received signal strength and bit error rate-based
measurements. Our method achieves enhanced jamming detection sensitivity, surpassing existing ap-
proaches. Furthermore, it introduces low complexity, ensuring resource-effective detection. Crucially,
our approach provides vital jammer frequency information, enhancing counteraction capabilities
against jamming attacks. It demonstrates stable results against varying system parameters, such as
modulation type and code rate, thereby contributing to adaptability. Emphasizing practicality, the
method seamlessly integrates into 5G and LTE systems without imposing additional overhead. Versa-
tility is demonstrated through successful operations in diverse scenarios that are run by extended
simulation conditions. Theoretical analysis substantiates these advantages, reinforcing the validity of
our methodology. The study’s success is further validated through laboratory experiments, providing
empirical evidence of its effectiveness. The proposed method represents a significant step toward
fortifying next-generation communication systems against evolving jamming threats.

Keywords: jamming detection; EVM; 5G; resource block

1. Introduction

5G and beyond communication systems are revolutionizing communication in today’s
rapidly evolving technological landscape. These systems provide a significant increase in
access to Internet-based services with high speeds, low latency, and wide bandwidth. They
offer users a seamless experience across multiple devices, facilitating integration between
mobile devices, desktops, and other platforms. They also support innovative features
and applications, enabling technologies such as augmented reality, remote interventions,
and the Internet of things. Owing to their flexibility and future-proof adaptability, these
systems play a key role in digital transformation, bringing a more efficient, secure, and rich
experience to the world of communications. However, all of these features also open up the
possibility for malicious jammers to attack more targets and corrupt more data. Therefore,
fast, accurate, and effective detection of jamming attacks is vital for increasing the defense
capabilities of systems.

Several jamming detection methods are proposed for wireless networks [1,2]. A signif-
icant number of these utilize received signal strength (RSS) measurements. The authors
of [3–7] obtain the RSS by estimating the spectrum of the received signal and observe
the effect of jamming signals on the RSS. In other studies, the optimal RSS thresholds for
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jamming detection are determined with likelihood tests performed by considering the
jamming presence and absence hypotheses. This method is widely proposed for massive
SIMO [8], massive MIMO [9], LTE [10], direct-sequence spread-spectrum (DSSS) [11], wire-
less sensor networks [12], ad hoc networks [13], cognitive radio networks [14] and satellite
communication [15] systems.

In addition, many studies propose the use of RSS-based metrics in combination with bit
error rate (BER)-based metrics such as throughput, packet error rate, packet delivery ratio,
packet sent ratio, packet loss rate, and bad packet ratio. Accordingly, the effects of jamming
are observed jointly on the RSS- and BER-based metrics, and jamming detection threshold
levels are set on these metrics. The jamming detection performance of such methods
is demonstrated with simulations in [16–20], and with experimental studies as well as
simulations in [21–23]. On the other hand, in [24–27], these metrics are used to train machine
learning algorithms such as support vector machines, neural networks, and random forests
for jamming detection. In addition to the aforementioned metrics, the chip error rate [28]
and inter-arrival time [29] are other metrics examined for jamming detection.

Machine learning algorithms are also trained using spectrogram images [30], IQ
samples [31], time-domain signal samples [32], and FFT samples [33,34] for jamming
detection. Although machine learning algorithms are becoming increasingly popular,
the issues of training these algorithms, collecting sufficient data for training, adapting to
varying jamming strategies, and integrating them into the system architecture with minimal
overhead must be considered.

Subspace analysis methods are the other methods used in jamming detection. Such
methods use eigenvalue [35] or singular-value [36] analyses to identify the subspaces
formed by the signal and jamming. However, the jamming detection success of such
methods requires the jamming level to be sufficiently higher than the legitimate signal level.

In our previous study [37], the EVM vs. RB metric was proposed to detect jamming
attacks in 5G networks. The error vector magnitude (EVM) is measured for each resource
block (RB) in the received signal and jamming signals are then detected at RBs where
the EVM upper threshold is not met. The success of EVM vs. RB in terms of sensitivity
compared to classical BER-based methods was verified with simulations containing only
a limited number of scenarios. The EVM metric is also used in studies [38,39] to study
jamming effects in OFDM systems. However, these studies have aimed to identify the
jamming strategies that cause the greatest damage to the system.

In this paper, we extend the work for the EVM vs. RB measurement and list below all
the innovations and contributions achieved:

1. EVM metric utilization: The paper advocates for the utilization of the EVM metric
measured in IQ symbols, a departure from the commonly used classical RSS and BER
based metrics in the literature.

2. Enhanced sensitivity: The proposed method demonstrates a significant improvement
in jamming detection sensitivity compared to existing approaches. Although low-
power hidden jamming signals that cannot be detected using conventional metrics
do not cause denial of service, they can limit the data transmission rate. Due to the
EVM’s ability to detect small variations in jamming level, jamming signals hidden in
an extreme form 20 dB below the legal signal are also successfully detected.

3. Low complexity: For next-generation networks with low latency requirements, it is ad-
vantageous that the proposed method has a low complexity of O(N). This advantage
also contributes to the fast response of the system for anti-jamming measures.

4. Jammer frequency information: The proposed method calculates the EVM metric for
each RB in the received signal. Since RBs represent the frequency domain, the fre-
quency bands in which jamming attacks occur are also revealed. This important
information, which is not provided by most methods, offers an important background
for countermeasure steps such as jammer localization [40] and antijamming frequency
planning. In addition, the concepts of ambient backscattering and RF energy harvest-
ing [41,42] are recently proposed as solutions to the battery problems of IoT devices.
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By using the jamming frequency information provided by our method, these devices
can be tuned to the correct jamming frequencies and, as a result, jamming energy,
which is usually emitted at high RF powers, can be utilized.

5. Reliability: The EVM vs. RB measurement provides a stable jamming detection
performance against varying system parameters such as modulation degree and code
rate. However, BER-based methods are affected by the variations of these parameters
and provide unreliable results.

6. Usability and compatibility: In LTE and 5G systems, it is known that reference IQ
symbols are also sent in the transmitted data packet to enable the UE to estimate the
channel. The EVM metric used by the proposed method is calculated using these
reference symbols that are already in the system architecture. Thus, the proposed
method can be easily integrated into the system without the need for changes in system
operation or hardware. Moreover, since jamming detection can be performed using a
single threshold level for the EVM metric, there is no need for any pre-operational
training and validation phases. As a result, the proposed method is suitable for LTE,
5G, and beyond communication systems, which include IQ modulation and resource
block (RB) architectures.

7. Theoretical analysis support: All presented advantages are substantiated with thor-
ough theoretical analysis, reinforcing the validity and efficacy of the proposed jam-
ming detection methodology.

8. Versatility in system scenarios: The proposed method’s successful operation in differ-
ent system scenarios is underscored by extending the simulation conditions to cover
the sub-6 GHz frequency region usage, different numerology (OFDM subcarrier spac-
ing) usage, line-of-sight (LOS) and non-line-of-sight (NLOS) channel cases, MIMO
structures, and millimeter-wave (mmWave) band usage scenarios.

9. Laboratory experiment validation: The study’s success is conclusively demonstrated
through experiments conducted in a laboratory environment, providing empirical
evidence of the method’s effectiveness.

2. System Model

The effectiveness of the proposed method is demonstrated on a 5G downlink data-
transmission infrastructure. For this purpose, the process steps shown in Figure 1 are
implemented in MATLAB [43] by considering the 3GPP standards [44–48].

Figure 1. 5G Downlink Data Transmission.
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First, the data bits are generated at the gNB (base station); they are then subjected
to “cyclic redundancy check” insertion and “low-density parity-check” coding [44] at the
downlink shared channel (DLSCH) step [45]. This permits the UE to detect and correct
bit errors. The obtained code words are then transferred to the physical downlink shared
channel (PDSCH) stage.

In the PDSCH stage [46], the code words are first scrambled so that the broadcast
cannot be decoded by unautorized devices. IQ modulation is then performed, providing
one of the QPSK, 16-QAM, 64-QAM or 256-QAM options [47].

The obtained IQ symbols are mapped to the MIMO transmitter antennas in the layer-
mapping phase. In addition, demodulation reference signals (DM-RS) [47], which are
reference IQ symbols required for channel estimation in the UE side, are also included in
the data symbols.

The IQ symbols are modulated into the RF band using OFDM. The smallest frequency
grid required for downlink transmission is called a resource element, which corresponds to
one OFDM subcarrier frequency. A group of 12 consecutive subcarriers (resource elements)
in the frequency domain form a resource block (RB). The total bandwidth allocated to a UE
is expressed in the number of RBs, and the concept of RB is used throughout the rest of
the paper.

Finally, the obtained RF signal is transmitted via MIMO antennas. The mentioned
MIMO-OFDM system is detailed in Figure 2. There are NT transmitter and NR receiver
antennas in the system.

Ser al-to-
Parallel Equal zer

Jamm ng, No se

Input
Symbols

Mult path
Fad ng

Channel
Parallel-to-

Ser al

Figure 2. MIMO-OFDM Transmit–Receive Model.

The CDL (Clustered Delay Line) channel model, specified by 3GPP [48] for 5G and
beyond communication systems, represents a realistic channel structure with clustered
multipath components, each exhibiting Rayleigh fading characteristics. This model aligns
with industry standards and is well-suited for the simulation of wireless communication
systems, allowing us realistic capture of the effects of multipath propagation and fading
in our study. Hence, the overall multipath channel can be expressed by an H matrix with
each element following a Rayleigh distribution.

H =

⎡
⎢⎣

h1,1 . . . h1,NT
...

. . .
...

hNR ,1 . . . hNR ,NT

⎤
⎥⎦, (1)

where hi,j =
[
hi,j[L − 1] . . . hi,j[0]

]
is the channel between the ith receiver and jth transmit-

ter antennas, and L is the maximum channel length of all NR×NT links. The statistical
properties of hi,j[l](l = 0, . . . , L − 1) and hi,j can be summarized as follows:

E{hi,j[l]} = 0, (2)
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E{|hi,j[l]|2} = 1, (3)

E{hi,j[l]h∗m,n[l]} = 0 if i �= m or j �= n, and so (4)

E{hi,jh
H
i,j} = L. (5)

The received signal samples at time instant k are expressed as follows:

y[k] =

√
PT
NT

⎡
⎢⎣

h1,1 . . . h1,NT
...

...
...

hNR ,1 . . . hNR ,NT

⎤
⎥⎦
⎡
⎢⎣

x1[k]
...

xNT [k]

⎤
⎥⎦+ v[k], (6)

where PT represents the average transmitted symbol power, v[k] = j[k] + n[k] represents
the sum of the received jamming and noise vectors, and

xj[k] =

⎡
⎢⎣

xj[k − L + 1]
...

xj[k]

⎤
⎥⎦ (7)

is the vector of the transmitted symbols, each with an average power of one unit, that is,
σ2

x = 1.
T received vector samples can be combined into a single matrix as

Y = [y[k] . . . y[k + T − 1]] =

√
PT
NT

⎡
⎢⎣

h1,1 . . . h1,NT
...

...
...

hNR ,1 . . . hNR ,NT

⎤
⎥⎦
⎡
⎢⎣

X1
...

XNT

⎤
⎥⎦+ V

=

√
PT
NT

HX + V,

(8)

where Xj and V are written as

Xj =

⎡
⎢⎢⎢⎣

xj[k − L + 1] xj[k − L + 2] . . . xj[k − L + T]
...

... . . .
...

xj[k − 1] xj[k] . . . xj[k + T − 2]
xj[k] xj[k + 1] . . . xj[k + T − 1]

⎤
⎥⎥⎥⎦ and (9)

V =

⎡
⎢⎢⎢⎣

v1[k] v1[k + 1] . . . v1[k + T − 1]
v2[k] v2[k + 1] . . . v2[k + T − 1]

...
... . . .

...
vNR [k] vNR [k + 1] . . . vNR [k + T − 1]

⎤
⎥⎥⎥⎦. (10)

After receiving Y, the Minimum Mean Squared Error (MMSE) equalizer is used to
mitigate the negative effects caused by the channel, such as fading. The MMSE equalization
matrix, WMMSE [49], is calculated as

WMMSE =

√
NT
PT

(
HHH +

PV NT
PT

INT

)−1
HH

=

√
NT
PT

BHH ,

(11)
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where PV = PJ + PN is the sum of jamming (PJ) and noise (PN) powers and

B =

(
HHH +

PV NT
PT

INT

)−1
. (12)

To estimate the transmitted IQ symbols, the equalizer is applied as follows:

X̂ = WMMSEY =

√
NT
PT

BHHY

= BHHHX +

√
NT
PT

BHHV

= BCX +

√
NT
PT

BHHV,

(13)

where C = HHH.
At this point, the proposed error vector magnitude (EVM) metric for jamming detection

is calculated using the reference and estimated IQ symbols as follows:

EVMn =

√
e2

n
1
N ∑N

n=1(i2n + q2
n)

, (14)

where

• n denotes the index of the IQ symbol,
• N is the total number of symbols used for calculation,
• e2

n = (in − în)2 + (qn − q̂n)2 is the power of the error caused by the jamming and noise,
• in and qn are the reference in-phase and quadrature values of the nth symbol (xn = in + jqn),
• în and q̂n are the estimated in-phase and quadrature values of the nth symbol (x̂n = în + jq̂n),
• 1

N ∑N
n=1(i

2
n + q2

n) represents the average power of the reference symbols.

As shown in Equation (14), each of the N symbols is used once for vectoral difference
calculation. Therefore, the computational complexity of the EVM is in terms of the first
power of N, that is, O(N). Consequently, the computational complexity of our jamming
detection method using the EVM metric has a low value of O(N).

For EVM calculation, both reference and estimated symbols are required. The nat-
ural flow of next-generation communication systems, such as LTE and 5G, includes the
transmission of reference symbols. In this manner, without any pre-training and without
changing the system architecture, we calculate the EVM metric and detect the presence of a
jamming signal by checking whether the EVM exceeds a single threshold level. This makes
the proposed method very advantageous in terms of integrability into real-world scenarios.

In addition, Equation (14) indicates that EVM is proportional to the square root of
the jamming plus noise-to-signal ratio (JNSRx̂). Therefore, to perform EVM analysis, it is
necessary to extract the signal, jamming, and noise power components from X̂. For this
purpose, it is convenient to calculate the covariance matrix of X̂. Using the statistical
independence property [49] and Equation (5), the covariance matrix is calculated as follows:

ΣX̂X̂ = ΣBBΣCCΣXX +
NT
PT

ΣBBΣHHΣVV

=

(
σ2

b L2σ2
x +

NT
PT

σ2
b Lσ2

v

)
INT

,
(15)
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where σ2
x = 1 as expressed in Equation (7), and σ2

v is PV = PJ + PN . The diagonals of ΣX̂X̂
indicate the total power of each x̂n. Thus, JNSRx̂ can be obtained as follows:

JNSRx̂ =
NT
PT

σ2
b Lσ2

v

σ2
b L2σ2

x
=

PV NT
PT L

. (16)

Consequently, it is revealed that the EVM is related to the parameters given in Equation (17).

EVMn ∝
√

JNSRx̂ =

√
PV NT
PT L

=

√
PJ + PN

(PT/NT)L
. (17)

As shown in Equation (17), EVM depends directly on the jamming power represented
by PJ . Thus, the EVM metric can sense even small changes in the jamming level. However,
for BER-based metrics, such as throughput and packet delivery ratio, to detect jamming
signals, the jamming power must be strong enough to divert the received IQ symbols to the
wrong regions in the constellation diagram, that is, to create a bit error. Because jamming
signals below this jamming power do not create any bit errors, jamming is not sensed by
BER-based metrics. Although such weak jamming signals do not cause denial of service,
they may limit the data rate performance. Owing to the aforementioned ability of the EVM,
these jamming signals can also be successfully detected.

EVM also depends on the transmitted symbol power, which is denoted as PT . Af-
ter equalization, PT is normalized by NT . Parameter L, on the other hand, is the expected
improvement brought by the equalizer. This improvement is also mentioned in simulation
results in Section 3.1.

Another conclusion is that the EVM metric is not affected by varying system param-
eters, such as modulation type and code rate, and as a result, jamming signals are stably
detected. However, as shown in the results in Sections 3.2 and 3.3, BER-based metrics are
affected by these system parameters and exhibit unreliable results.

The final EVM is expressed in both the RMS (18) and MAX (19). Because the maximum
EVM can sense instantaneous distortions in the received signal, it can also detect more
sophisticated jamming attacks that target a short-timed fragment of the legitimate signal.
Such jammers are also called reactive or responsive jammers [50] and may adopt such short-
time operating styles to minimize both their detectability and battery usage. Therefore,
the maximum EVM is used in this study.

EVMRMS =

√
∑N

n=1 EVM2
n

N
, (18)

EVMMAX = max
n∈[1,...,N]

EVMn. (19)

The maximum EVM is measured for each RB in the received signal. Thus, the EVM vs.
RB data are obtained. Because the RBs represent the frequency domain, the EVM vs. RB
data reveal the frequency bands attacked by the jammer. After this stage, the operations
in the receiver side are completed with IQ demodulation and decoding, and the data
bits are obtained. The BER and throughput are measured using the data bits, and these
measurements are also observed for jamming detection, whereas the EVM vs. RB detects
the jamming attack at an earlier stage. This capability brings extra speed along with low
computational complexity.

3. Simulation Results

3.1. Base Scenario

The processing steps required for 5G downlink data transmission are explained in
Section 2. The system parameters used in the processing steps are listed in Table 1.
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Jammers may concentrate their RF energy into certain frequency bands using tone-type
signals, or occupy a broader spectrum using chirp-type signals. Therefore, it is considered
sufficient to examine the tone and chirp jammers in this study.

Table 1. Selected Data Transmission Parameters for the Base Scenario.

Parameter Name Value Explanation

Carrier Frequency 2.65 GHz Frequency Range-1 for 5G

MIMO Structure 8 × 2

MIMO Transmission Layers 2

Fading Channel Model CDL-C Urban Macrocell Model,
NLOS

OFDM Subcarrier Spacing
(SCS) 30 kHz μ = 1 (numerology)

Assigned RBs 51
Transmission bandwidth close

to 20 MHz with the
30 kHz SCS

IQ Modulation 16QAM

Code Rate 490/1024

First, in the no-jammer case, the RF power spectrum and EVM vs. RB are measured
for the received signal, and the measurement results are shown in Figure 3. The observed
fluctuations in the spectrum is caused by multipath fading. As explained in Section 2,
an equalizer is used to minimize the fading effect on the received IQ symbols. To observe
the effect of equalizer on the EVM data, EVM vs. RB is measured for both the unequalized
and equalized IQ symbols, as shown in Figure 3b. The EVM vs. RB measurement obtained
using unequalized IQ symbols directly reflects the fluctuation characteristics of the RF
spectrum (red line in Figure 3b). On the other hand, the improvement brought about by
the equalizer shows a decrease in the EVM data (blue line in Figure 3b). As shown in
Equation (17), this improvement is expected.

(a) (b)

Figure 3. No-Jammer Case, Obtained Throughput = %100 (BER = 0). (a) The Rx signal spectrum and
(b) EVM vs. RB.

The same measurements are performed for different jamming cases, that is, tone and
chirp jammers. Reviews related to tone jamming are given below, whereas repeated reviews
for chirp jamming are provided in the Appendix A. The SJR parameter is selected as −5 dB
for both jamming conditions. The observed changes in the RF power spectrum and EVM
after the application of these jamming signals are shown in Figures 4 and A1, respectively.
In the EVM vs. RB data obtained using unequalized symbols, jamming effects are observed in
addition to fluctuations owing to the fading (red lines in Figures 4b and A1b). On the other
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hand, in the EVM vs. RB measurement taken with equalized symbols, the fluctuation is
minimized owing to the equalizer, but jamming effects are still clearly observed (blue lines
in Figures 4b and A1b)). Thus, in the EVM vs. RB data obtained with equalized symbols,
jamming signals can be easily detected using a single threshold level, without considering
any fluctuation effect in the data. Therefore, to avoid dealing with the fluctuation effect
due to fading, EVM vs. RB measurement using equalized IQ symbols is proposed for
jamming detection.

(a) (b)

Figure 4. Tone Jammer Case, SJR = −5 dB, Obtained Throughput = %0 (BER = 0.343). (a) shows the
Rx signal spectrum and (b) shows the EVM vs. RB.

In the next simulation, where the SJR is increased to 10 dB, the received signal is
contaminated with jammers of the same tone and chirp type. The RF spectrum and EVM vs.
RB measurements are shown in Figures 5 and A2, respectively. In this SJR case, the jamming
signals cannot be detected using the RF power spectrum, which provides RSS information,
as shown in Figures 5a and A2a. In addition, the throughput measurement for both the
jamming cases is 100%, which means that the jamming effect cannot be sensed using this
BER-based metric. However, the EVM vs. RB measurements successfully detect these small
jamming signals, as shown in Figures 5b and A2b. This reveals the success of the proposed
method in terms of sensitivity compared with RSS- and BER-based methods.

(a) (b)

Figure 5. Tone Jammer Case, SJR = 10 dB, Obtained Throughput = 100% (BER = 0), (a) the Rx signal
spectrum and (b) EVM vs. RB.

EVM vs. RB, throughput, and BER are measured for various SJR values to examine
the dependencies of the jamming detection metrics on SJR. According to the results shown
in Figure 6d, jamming cannot be sensed using the throughput and BER observations
when SJR exceeds 10 dB. However, using the EVM vs. RB measurement, jamming signals
are successfully detected, even under extreme SJR conditions, such as 20 dB (Figure 6b).
To demonstrate the performance of EVM vs. RB under other SJR conditions, the peak
value of EVM vs. RB for each SJR is calculated and the results are shown in Figure 6c. It is
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concluded that jamming signals with an SJR of 25 dB can also be detected using EVM vs.
RB. However, beyond 25 dB, EVM vs. RB also becomes unsuccessful in jamming detection.

(a) (b)

(c) (d)

Figure 6. EVM vs. RB, BER and Throughput Measurements for Multitone Jammer. (a) EVM vs. RB
for SJR = 0 dB, (b) EVM vs. RB for SJR = 20 dB, (c) Peak-EVM vs. SJR, and (d) throughput and BER
vs. SJR.

The sensitivity performance of the proposed method for tone jamming is also valid for
chirp jamming, as shown in Figure A3. In the following sections, the BER results are not
presented alongside the throughput results, because, as shown in the figures, the BER is
inversely proportional to the throughput and does not provide any additional information.

3.2. Reliability of the Proposed Method against Modulation Type Change

5G systems choose the appropriate M-PSK or M-QAM modulation types according
to the data rates required by the UEs and channel availability. 16-QAM modulation is
considered in the base scenario (Section 3.1). In this section, along with 16-QAM, QPSK
and 64-QAM modulations are considered. Thus, jamming detection performances of EVM
vs. RB and throughput metrics are examined against changes in the modulation type.

For the QPSK, 16-QAM, and 64-QAM modulation-type use cases, the peaks of EVM
vs. RB are calculated for each SJR, and the results are presented in Figure 7a. Because the
EVM measurement shows consistent results across modulation types, the proposed method
can be safely used for jamming detection in system scenarios in which the modulation
type changes.

On the other hand, Figure 7b shows the throghput results versus SJR for the use cases
of the aforementioned modulation types. When SJR is 0 dB, the throughput for the QPSK
case is 100%; therefore, no jamming signal is detected. If the system decides that there is
no jamming threat by looking at this throughput result and then increases the modulation
degree to 16-QAM or 64-QAM, it experiences a dramatic decrease in throughput. In other
words, the jamming effect is sensed differently by using the throughput metric under differ-
ent modulation-type usage conditions. However, the proposed measurement consistently
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detects jamming threats independently of the chosen modulation type, thereby possessing
the capability to provide reliable guidance to the system.

(a) (b)

Figure 7. Effect of the Modulation Type Change, Tone Jammer. (a) Peak-EVM vs. SJR, and (b) through-
put vs. SJR.

The results in Figure A4 show that this reliability of the proposed method against
changes in the modulation type is also achieved for the chirp jamming case.

3.3. Reliability of the Proposed Method against Code Rate Change

In 5G systems, the code rate parameter can also be changed depending on the require-
ments. A code rate of 490/1024 is considered for the base scenario. In this section, code
rates of 245/1024 and 980/1024 are also considered.

For the aforementioned code rate use cases, the peaks of EVM vs. RB are calculated
for each SJR, and the results are shown in Figure 8a. The proposed method provides stable
results without being affected by the code rate parameter; therefore, it can be safely used
for jamming detection in system scenarios in which the code rate changes.

(a) (b)

Figure 8. Effect of the Code Rate Change, Tone Jammer. (a) Peak-EVM vs. SJR, and (b) Throughput
vs. SJR.

However, Figure 8b shows that different throughput results are obtained for different
code rate conditions for a fixed SJR case. For example, when the SJR is 0 dB and a code
rate of 245/1024 is used, the throughput approaches 100%. Therefore, the jamming effect
cannot be clearly observed. If the system relies on this and decides to increase the code rate
to 490/1024 or 980/1024, the throughput decreases significantly. Meanwhile, the proposed
measurement can prevent such incorrect decisions, because it detects jamming threats
without being affected by code rate changes.
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This achievement of the proposed method for the tone-jamming scenario is also valid
under chirp-jamming, as shown in Figure A5.

3.4. Change in the OFDM Subcarrier Space (SCS)

In the previous sections, simulations are performed for 30 kHz OFDM SCS use; how-
ever, 5G networks can also use OFDM SCSs of 15, 60, 120, and 240 kHz to serve other
applications with different bandwidth requirements. This flexible use of different OFDM
SCS corresponds to the numerology term. However, only the 15 kHz SCS option is available
for LTE networks. In this section, we demonstrate that the EVM vs. RB measurement suc-
cessfully detects jamming attacks for different SCS use cases. For this purpose, simulations
are performed for 15 and 60 kHz SCS selections.

The jamming signal types and jamming frequencies are the same as those described
in the previous sections. When the SCS is reduced from 30 to 15 kHz, the transmis-
sion bandwidth is halved, resulting in half of the jamming frequencies occupying the
spectrum (Figures 9a and A6a). Conversely, when the SCS is increased to 60 kHz, all
jamming frequencies are observed in the transmission bandwidth (Figures 10a and A7a).
Figures 9b, 10b, A6b and A7b show that the EVM vs. RB measurement successfully de-
tects all jamming attacks included in the transmission bandwidth regardless of the OFDM
SCS applied.

(a) (b)

Figure 9. Chirp Jammer Case, SJR = −10 dB, SCS = 15 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.

(a) (b)

Figure 10. Chirp Jammer Case, SJR = −10 dB, SCS = 60 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.

3.5. Jamming Detection for mmWave Conditions

Millimeter waves encompass frequencies of 24 GHz and above. Millimeter-wave
(mmWave) bands offer increased bandwidth and data transfer rates, although they have a
limited coverage range. Consequently, mmWave signals rely significantly on line-of-sight
(LOS) propagation to ensure effective coverage.
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In the previous sections, experiments are conducted on the utilization of 5G in the
sub-6 GHz frequency range. In this section, on the other hand, the channel conditions are
changed, taking into consideration the deployment of 5G in the mmWave frequency band,
along with the corresponding channel conditions. In this context, the carrier frequency
is adjusted to 28 GHz, the transmission channel type is set to CDL-D (LOS), and OFDM
SCS is configured at 60 kHz. Figures 11 and 12 show that the EVM vs. RB metric can be
successfully used to detect jamming attacks under mmWave data transmission conditions.

(a) (b)

Figure 11. Tone Jammer Case, MmWave Conditions, SJR = −10 dB. (a) the Rx signal spectrum and
(b) EVM vs. RB.

(a) (b)

Figure 12. Chirp Jammer Case, MmWave Conditions, SJR = −10 dB. (a) the Rx signal spectrum and
(b) EVM vs. RB.

4. In-Lab Validation

In this section, the jamming detection performance of the EVM vs. RB measurement is
demonstrated through experiments performed in a laboratory environment in addition to
theoretical analysis and simulations. Because broadcasting interfering (jamming) signals
alongside legitimate communication is illegal, experiments are performed in a closed-loop
manner by adopting the following procedure to overcome this legal limitation:

First, the vector signal generator shown in Figure 13 generates a 5G signal by mod-
ulating the IQ symbols in the baseband to the RF band with OFDM. The IQ modulation,
OFDM subcarrier spacing and number of OFDM subcarriers are set to 16-QAM, 30 kHz
and 612, respectively, to make the generated signal similar to that in the base scenario
(Section 3.1). The jamming signal, on the other hand, is generated in the RF band using the
analog signal generator. The 5G signal is then contaminated with the jamming signal using
the RF combiner module, and the resulting signal is transferred to the spectrum analyzer,
which represents the receiver.

The spectrum analyzer calculates the RF power spectrum that provides the RSS
information and performs RF demodulation to obtain IQ symbols. To calculate the EVM
vs. RB data, the correct (reference) IQ symbols transmitted by the vector signal generator
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and jammed IQ symbols obtained by the spectrum analyzer are transferred to the test
PC. EVM vs. RB data are then obtained by calculating the EVM metric using Equation (14)
for each RB.

(a) (b)

Figure 13. (a) The hardware setup and (b) the block diagram of the setup.

The first experiment is conducted for a no-jammer scenario. Figure 14a shows the
power spectrum of the received RF signal and Figure 14b shows EVM vs. RB results. It is
observed that there is no jamming signal in the spectrum other than the 5G signal, and on
the other hand, the EVM values are low as expected.

Figures 15 and 16 show the results for the tone and chirp jamming cases, respectively,
where SJR is −10 dB. The effects of the jamming signals on the spectrum are clearly visible
in Figures 15a and 16a. In parallel, the EVM vs. RB measurement successfully reveals
jamming attacks for RBs corresponding to the frequency bands exposed to the jamming
signals (Figures 15b and 16b).

(a) (b)

Figure 14. No-Jammer Case, (a) the Rx signal spectrum and time-domain IQ waveform obtained
after RF demodulation and (b) EVM vs. RB.
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(a) (b)

Figure 15. Tone Jammer Case, SJR = −10 dB, (a) the Rx signal spectrum and time-domain IQ
waveform obtained after RF demodulation and (b) EVM vs. RB.

(a) (b)

Figure 16. Chirp Jammer Case, SJR = −10 dB, (a) the Rx signal spectrum and time-domain IQ
waveform obtained after RF demodulation and (b) EVM vs. RB.

In the next experiment, to test the jamming detection sensitivity of both the RF power
spectrum and the EVM-vs-RB metric, the SJR parameter is set to 0 dB by reducing the power
of the jamming signals by 10 dB. The results obtained for the tone and chirp jamming cases
are shown in Figures 17 and 18, respectively. As shown in Figures 17a and 18a, the jamming
signals become no longer detectable in the RF power spectrum. However, the EVM-vs-RB
metric (Figures 17b and 18b) can still clearly detect jamming threats hidden in the spectrum.

(a) (b)

Figure 17. Tone Jammer Case, SJR = 0 dB, (a) the Rx signal spectrum and time-domain IQ waveform
obtained after RF demodulation and (b) EVM vs. RB.
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(a) (b)

Figure 18. Chirp Jammer Case, SJR = 0 dB, (a) the Rx signal spectrum and time-domain IQ waveform
obtained after RF demodulation and (b) EVM vs. RB.

5. Discussion

The presented paper introduces a novel and efficient jamming detection method, EVM
vs. RB, designed to enhance the security of next-generation communication systems against
jamming attacks. The method is characterized by its ability to measure the EVM in the
system, offering a direct perception of changes in jamming levels. The sensitivity success of
the proposed method is a significant contribution to the field, as it enables robust detection
even in the presence of small jamming signals that may remain unnoticed by other metrics.

A crucial aspect of the proposed method is its low complexity, operating at O(N),
and its independence from variable system parameters such as modulation degree and
code rate. This independence ensures the method’s adaptability to diverse communication
scenarios, adding to its practicality and versatility in real-world applications.

The theoretical analysis of the proposed method begins with the construction of a 5G
data transmission infrastructure based on international 3GPP standards. By incorporating
a jamming attack into the system model, analytical expressions for received IQ symbols
are calculated, leading to the derivation of the EVM expression. This analytical foundation
establishes the groundwork for understanding the method’s inner workings, particularly
its capability to perceive changes in jamming levels directly.

Simulation results using MATLAB software [43] showcase the effectiveness of EVM vs.
RB in providing the jammer’s spectrum information. Comparative metrics, including power
spectrum for Received Signal Strength (RSS), Bit Error Rate (BER), and BER-dependent
throughput, are evaluated. The results demonstrate that EVM vs. RB outperforms these
metrics in detecting jamming signals, even at an extreme Signal Jamming Ratio (SJR)
of 25 dB. This robust performance underscores the method’s resilience against varying
jamming levels, reinforcing its potential as a reliable jamming detection solution.

Furthermore, the simulations reveal the stability of EVM vs. RB against changes in
system parameters such as modulation degree and code rate. In contrast, metrics like
throughput exhibit unreliability under such variations. This highlights the method’s ability
to maintain consistent performance across different communication scenarios, a critical
factor for its widespread applicability.

The study extends its scope to various applications, including 5G’s mmWave technology,
demonstrating the versatility of EVM vs. RB across different communication technologies.
The method’s success is further validated through experimental studies conducted in a labora-
tory environment, providing empirical evidence of its effectiveness in real-world settings.

In conclusion, the proposed EVM vs. RB jamming detection method presents a
compelling solution to enhance the security of next-generation communication systems.
Its direct perception of jamming level changes, low complexity, and independence from
variable system parameters contribute to its robustness and adaptability. The extensive
theoretical analysis, simulations, and experimental studies collectively establish the method
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as a promising and practical tool in the ongoing efforts to safeguard communication systems
against jamming attacks.

6. Conclusions

This paper introduces a capable jamming detection method to secure LTE, 5G, and next-
generation communication systems. Through the utilization of the EVM metric measured
in IQ symbols, the proposed approach diverges from traditional methods based on RSS-
and BER-based measurements, thereby contributing to the advancement of jamming detec-
tion methodologies.

The achieved contributions of this research are multi-faceted. First, the utilization
of the EVM metric demonstrates its effectiveness in enhancing jamming detection sensi-
tivity, surpassing existing approaches and providing a more reliable solution. Moreover,
the method introduces low computational complexity. On the other hand, the provision of
jammer frequency information by measuring the EVM for each RB in the received signal,
a critical aspect often lacking in other methods, further fortifies the system’s capabilities in
understanding and counteracting jamming attacks.

A notable strength of the proposed methodology is that it provides stable results
against changes in system parameters such as modulation type and code rate. This stability
contributes to the reliability of the results.

The verification methods employed in this study serve to reinforce the credibility of
the proposed approach. The method’s successful operation in diverse system scenarios,
as highlighted through extended simulation conditions, underscores its versatility and
applicability in real-world situations. Theoretical analyses provide a solid foundation for
the presented advantages, establishing the validity and efficacy of the jamming detection
methodology. Furthermore, the conclusive demonstration of the method’s success in labora-
tory experiments offers empirical evidence, validating its effectiveness in practical settings.

Looking ahead, the future direction of this research aims to leverage the jammer
frequency information provided by the proposed method. The intention is to develop
an intelligent frequency assignment strategy for anti-jamming purposes. This forward-
looking approach underscores the continuous evolution of the proposed methodology,
with potential applications in optimizing communication systems against sophisticated
jamming attacks.

In summary, this study not only introduces a novel jamming detection method, but
also substantiates its effectiveness through theoretical analysis and empirical validation.
The method’s low computational complexity, adaptability to varying system parameters,
and seamless integration into existing communication systems position it as a promising
solution for securing LTE, 5G, and future communication networks against jamming attacks.
The envisioned future direction further emphasizes the potential of this methodology to
contribute to intelligent anti-jamming strategies.
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Abbreviations

The following abbreviations are used in this manuscript:

3GPP 3rd Generation Partnership Project
5G 5th Generation of Cellular Networks
BER Bit Error Rate
CDL Clustered Delay Line
DLSCH Downlink Shared Channel
DM-RS Demodulation Reference Signals
DSSS Direct-Sequence Spread-Spectrum
EVM Error Vector Magnitude
FFT Fast Fourrier Transform
IQ In-phase and Quadrature
JNSR Jamming plus Noise-to-Signal Ratio
LOS Line of Sight
LTE Long-Term Evolution
MIMO Multiple Input, Multiple Output
MMSE Minimum Mean Squared Error
NLOS Non-Line of Sight
OFDM Orthogonal Frequency Division Multiplexing
PDSCH Physical Downlink Shared Channel
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RB Resource Block
RF Radio Frequency
RSS Received Signal Strength
Rx Receive
SCS Subcarrier Spacing
SIMO Single Input, Multiple Output
SJR Signal-to-Jamming Ratio
Tx Transmit
UE User Equipment

Appendix A

(a) (b)

Figure A1. Chirp Jammer Case, SJR = −5 dB, Obtained Throughput = %1 (BER = 0.344). (a) the Rx
signal spectrum and (b) EVM vs. RB.
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(a) (b)

Figure A2. Chirp Jammer Case, SJR = 10 dB, Obtained Throughput = %100 (BER = 0), (a) the Rx
signal spectrum and (b) EVM vs. RB.

(a) (b)

(c) (d)

Figure A3. EVM vs. RB , BER and Throughput Measurements for Chirp Jammer, (a) EVM vs. RB
for SJR = 0 dB, (b) EVM vs. RB for SJR = 20 dB, (c) Peak-EVM vs. SJR, and (d) Throughput and BER
vs. SJR.
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(a) (b)

Figure A4. Effect of the Modulation Type Change, Chirp Jammer. (a) Peak-EVM vs. SJR,
and (b) Throughput vs. SJR.

(a) (b)

Figure A5. Effect of the Code Rate Change, Chirp Jammer. (a) Peak-EVM vs. SJR, and (b) Throughput
vs. SJR.

(a) (b)

Figure A6. Tone Jammer Case, SJR = −10 dB, SCS = 15 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.
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(a) (b)

Figure A7. Tone Jammer Case, SJR = −10 dB, SCS = 60 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.
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Abstract: Modern supply chains comprise an increasing number of actors which deploy different
information technology systems that capture information of a diverse nature and diverse sources
(from sensors to order information). While the benefits of the automatic exchange of information
between these systems have been recognized and have led to their interconnection, protecting the
whole supply chain from potential attacks is a challenging issue given the attack proliferation reported
in the literature. In this paper, we present the FISHY platform, which anticipates protecting the whole
supply chain from potential attacks by (a) adopting novel technologies and approaches including
machine learning-based tools to detect security threats and recommend mitigation policies and
(b) employing blockchain-based tools to provide evidence of the captured events and suggested
policies. This platform is also easily expandable to protect against additional attacks in the future. We
experiment with this platform in the farm-to-fork supply chain to prove its operation and capabilities.
The results show that the FISHY platform can effectively be used to protect the supply chain and
offers high flexibility to its users.

Keywords: cybersecurity; supply chain systems; blockchain; validation; security monitoring;
attack mitigation

1. Introduction

Supply chains today have become more and more complex, involving many different
businesses and consumers that deploy and use diverse IT systems and applications. These
IT systems usually involve IoT-based islands, robots or other smart devices next to sensors,
servers and end-devices serving their users, as also happens in other sectors like health [1].
Examining cybersecurity in such a complex environment involving solutions of different
types from different software companies is a very challenging problem. Today, platforms
that target enhanced network security (like TERAFLOW, described in [2]) or Digital Single
Market’s E-Commerce Ecosystem (like ENSURESEC, described in [3]) or cloud level security
are being developed. However, they target protection against a subset of the security
threats applicable in the supply chains. Additionally, quantum computing has provided
very promising results with respect (and not limited) to digital signatures (see [4–6]) this
technology is not yet mature for being applied to the supply chain complex environment.

Should examining be challenging, ensuring protection is far more so, especially con-
sidering that the attacks targeting supply chains proliferate every day, as reported in [7].
Cybersecurity in supply chains has been recognized not only as a challenging task but as
a very important task because it does not only affect a single entity (business or individ-
ual/consumer), but a series of actors in the chain. The intricacy of the supply chain attack
is that it affects multiple actors at the same time, as clearly pointed out in [7]. For example,
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succeeding in inserting fake information in the information system of an actor in a supply
chain may affect all its downstream counterparts. Such a security breach may put at risk
food safety when the supply chain under consideration is the farm-to-fork supply chain.

The “farm-to-fork” (F2F) supply chain includes all the actors that contribute to the
cultivation (farmer), to the transportation (transporter), to the storage (warehouse oper-
ator), to the wholesaler and to the retailer of the vegetables that the end consumer will
purchase and consume with their forks. The security challenges and requirements of such a
supply chain (as reported in [8]) primarily include (a) the need for end-to-end solutions for
vulnerabilities and risks management, (b) the lack of evidence-based metrics for security
assurance and trust guarantees, and (c) the cumbersome coordination in multi-actor and
multi-vendor supply chains of ICT systems. These have been identified for the F2F supply
chain, but they are common to other supply chains as well as in, e.g., smart factories.
The problem (research question) in this environment is “how to ensure the security of the
whole supply chain and not only of isolated IT systems when these systems can signifi-
cantly differ in the types of security vulnerabilities they suffer from”. Another research
question is this: “could a platform that answers the above question be expandable to
emerging threats?”. The challenge is to design and deliver a platform/solution that can
address multiple types of vulnerability while most security-oriented solutions today target
specific vulnerabilities like IoT/edge or blockchain or network security aspects.

In this paper, we present a platform that aims at protecting the IT systems of supply
chains from multiple types of attacks including blockchain-oriented, network-oriented
and web application-oriented attacks by detecting them and then recommending and
possibly enforcing mitigation policies in an automated way. We validate this approach in
the farm-to-fork supply chain that uses state-of-the-art IT systems. The presented platform
anticipates being (a) capable of detecting a variety of attacks, (b) flexible and configurable
so as to protect diverse IT systems taking into consideration their internal organization,
(c) able to recommend and capable of enforcing mitigation policies and (d) flexibly deploy-
able on premise or on cloud.

For the evaluation of such a platform, it is imperative to perform the following:

(a) Carefully consider user interface aspects: for this reason, in the piloting round, we
recruited people outside the FISHY teams for carrying out the evaluation of the UI
and used the prepared user manual to do so.

(b) Examine and ensure that the functionality and value of all the FISHY components
is validated.

(c) Check the extensibility of the FISHY platform to address additional attacks that may
be considered in the future as important for the FISHY supply chains. To examine this
possibility, we have used the MITRE ATT&CK framework [9]. This has also allowed
us to ensure that FISHY employs techniques that are aligned with the state of the art
(reflected in MITRE ATT&CK) and that the techniques we use in FISHY enable the
detection of a wide set of additional attacks in the future.

2. A Cross-Solution Security Platform—The FISHY Platform

The FISHY platform is a coordinated framework for cyber-resilient supply chain
systems. Its goal is to protect diverse IT systems towards enhancing the trust among the
actors of the supply chain.

FISHY platform consists of multiple functional components which can either be
deployed in the same premises as the IT systems under protection or can be deployed in
a different cloud infrastructure. In the latter case, a minimal set of components needs to
be deployed on the same premises as the IT system under protection to enable the flow of
status information (e.g., logs) from the system under protection to the FISHY platform and
vice versa.

The FISHY architecture (an initial version of which can be found in [10]) is shown in
Figure 1. It consists of the following set of building modules: (1) Intent-based Resilience
Orchestrator and Dashboard (IRO), (2) Security Assurance and Certification Manager
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(SACM), (3) Trust and Incident Manager (TIM), (4) Enforcement and Dynamic Config-
uration (EDC), (5) Security and Privacy Data Space Infrastructure (SPI) and (6) Secure
Infrastructure Abstraction (SIA).

 

Figure 1. The architecture of the FISHY platform.

Next, we give an overview of each one of the major FISHY modules:

1. The IRO is in charge of interfacing with the security personnel/administrators of
the IT systems to be protected (through the dashboard) to receive their security
requirements and translate them within the FISHY platform into intents and, in turn,
corresponding security workflows and policies. To be more specific, an intent is
the set of data which describes the action a user can perform, for example, banning
a malicious IP address [11]. It is through the IRO dashboard that the inspection
of the detected security events and security control (e.g., enforcement of security
policies as a response to a detected security attack) is made possible as well as the
performance monitoring.

2. The SACM coordinates the monitoring process, the automated evidence-based secu-
rity reporting and the certification towards ensuring that the required security policies
are correctly implemented [12].

3. The TIM includes tools, such as incident detection, vulnerability and risk estimation,
along with incident detection and management, with a goal of developing mecha-
nisms, which ensure security assessment of the stakeholder’s supply chains. These
tools may also include machine learning-based mechanisms like those presented in
with a comparison being presented in [13].

4. The EDC is in charge of security policies enforcement and configuring the specific
infrastructure and network security functions (NSF) to ensure resilience. Automated
remediation is thus made possible, as discussed in [12,14].

5. The SPI is in charge of identity management, access policy and data management pro-
cedures including several activities, such as access control, definition and enforcement
of policies, and anonymization of the data and the tools for assessing the security of
the stakeholder’s devices [15].

6. The SIA module enables secure connectivity among different infrastructures (IoT, edge,
cloud) and the FISHY platform, controlling connectivity and providing telemetry of
the network, in order to adapt the received data to formats that the FISHY other
modules can use [15].
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Apart from the previously described modules, a central repository which also includes
an event-driven messaging system is included, which is used to store and access information
written by the FISHY components.

It is worth stressing that in this revised version of the architecture designed in the final
year of the project, FISHY consortium realized that it would be beneficial of its exploitation
and sustainability plans to adopt an architecture that would allow for easy integration of
additional components (which we name “tools”) detecting additional attacks or performing
additional functionalities in the future [10]. The evolution of the architecture and further
details of the workflow of the platform are provided in [10].

3. The F2F Systems under Consideration

Food security attracts continuously growing attention, as we all want to know the
practices and conditions under which the food we consume has been cultivated in the
farms, has been transported, has been stored and finally exposed to the shelves of the
retailers. In the farm-to-fork (F2F) pilot, we distinguish the following five actors:

• The actor in the farm (user/administrator of the IoT island that is deployed in the farm);
• The actor of the transportation company which associates the products with the

conditions under which the products are transported (captured by the IoT island
deployed in the vehicle);

• The actor in the warehouse where the products are stored and associates the conditions
under which the products are kept up to the point they are purchased by a consumer;

• The consumer who purchases the product and, based on the RFID tag attached to the
product, can inspect the full history of the product;

• The administrator of the platform that gathers the information from all IoT islands
and delivers it to the consumer.

In real life, there are additional actors of the same type (e.g., transportation and
supermarket actors) who perform the same activities as the transporter and the warehouse
manager. Each of the above represents a node in this supply chain and can be supplier
and customer at the same time. For example, the actor from the transportation company
represents a consumer for the farmer and a supplier for the actor of the warehouse.

We now briefly describe the F2F platform from a technical point of view. Such a system
consists of multiple Internet of Things (IoT) islands registering data in different reposi-
tories and deploying different business logics. In the following figure, such an example
system is presented on the left-hand side of the figure. For our study, we have selected a
system that has already employed traditional authentication and authorization techniques
along with state-of-the-art blockchain technology to offer a secure solution [16]. The IoT
islands (shown at the bottom of Figure 2) inject traffic through the so-called federation
adapters (FA) which are then responsible for storing the information in the consortium
ledger. Once the product arrives at the supermarket shelves, the hashes of all relevant
information are used to create a unique entry in the public distributed ledger technology
(DLT) which is, in our implementation, the public Ethereum network with its hash stored
in a third blockchain named KSI, which is a commercial blockchain solution. To provide an
interface for the users to interact with the underlying platform, a supervisor web server has
been implemented.

To protect any F2F platform, the security officers of/people responsible for the F2F
platform must define the specific points they are interested in monitoring and protecting
and facilitate the creation of “security probes”. In our example, we have implemented the
components that deliver to the FISHY platform information from four distinct points of the
deployed F2F platform, as shown in the figure. The aforementioned F2F platform has been
studied and from the specified distinct points we have identified four types of attacks of
major interest. For each type of attack, we also specify the data that should be monitored in
order to detect such an attack. The attack types and the relevant “metadata” follow:

• Type 1: Unauthorised device—wallet ID level. Metadata: {Attacker wallet ID, Expected
Legitimate Wallet ID, Device name}.
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• Type 2: Unauthorised device—Decentralised Identifier (DID) level (with DID charac-
terizing the device). Metadata: {Attacker DID, Device name, Jwt}.

• Type 3: Unauthorised user. Metadata: {username, IP}.
• Type 4: Attack to Blockchain node. Metadata: {IP, port, incident type}.

The “security probes” in our example are points where logs are collected and passed
to the FISHY platform so that it can analyse them to detect attacks and propose countermea-
sures and remediations. For example, entry points 1 and 2 are relevant to the registration
of information in the farm, transportation and warehouse steps of the supply chain dur-
ing which the information is stored in the ledger maintained per step. Entry point 3 is
relevant to the consumer or administrator of platform and entry points 4a and 4b are
relevant to the consortium level operations. The logs from these “security probes” are sent
to the FISHY platform through the SIA module in the form of a JSON object which will
include the following fields: Unique Universal ID (UUID), Timestamp (UTC timestamp),
Type, Metadata.

Figure 2. The F2F platform and its interconnection with the FISHY platform.

We have also discussed with other partners and decided to protect the F2F platform
against additional attacks to extend the protection against additional attacks, if this is
feasible and what extra actions are needed.

4. Evaluation and Discussion

Our aim is to evaluate FISHY platform from multiple perspectives ranging from
technical to more commercial exploitation-oriented ones. For each of them, a different
validation methodology has been adopted as will be explained in the next subsection. The
aspects our evaluation has focus on include:

(a) Technical validation: We have validated that FISHY platform protects the considered
platform in the defined attack scenarios (implementing or emulating the attack which
is the typical methodology in attack detection, e.g., used in [17]). In this technical
validation, the validation scenarios were selected based on the following criteria:
(a) Attacks of interest to our customers. DDos attacks affect availability, and wallet
or DID level attacks affect data integrity and privacy. These are the most important
concerns in the farm-to-fork use cases. (b) Attacks of significant variety including
“traditional” attacks (like DDoS attack and brute force attacks) and technology specific
(blockchain specific) attacks.

(b) Additional attack detection capability with the existing tools (relevant to commercial
exploitation): we studied whether the FISHY platform can protect against additional
attacks outside those reported above using the currently deployed tools, which is
closely related to the expandability of the platform;

(c) Commercial exploitation in diverse supply chain instances: we explored the value of
offering multiple deployment options;
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(d) Expandability with respect to the number and type of threat detection: we adopted
the MITRE ATT@ACK framework to check how far such a platform could go in
the number of attack types it can handle based on the “security probes” types we
have adopted.

4.1. Evaluation of FISHY for Wallet ID Level-Oriented Attack

To carry out the technical validation for all attacks, i.e., to check whether FISHY
platform efficiently detects the attacks under consideration in the farm-to-fork use case,
the methodology we adopted was the following: we deployed the farm-to-fork platform
in a dedicated infrastructure and developed code performing the considered attacks. The
“reaction” of FISHY in the attempted attacks was monitored as well as the result in the
farm-to-fork platform.

The aim is to confirm that the FISHY platform detects the attacks of type 1 titled
“unauthorized device—wallet ID level”. This is an attack that could occur in any of the
IoT islands as, for example, the one deployed in the farm. For example, a malicious actor
uses an unauthorized device and attempts to enter “fake” information in the F2F platform.
In this platform, the IoT devices (through the so-called federation adapter—FA) register
information about the fresh products, and in this registration, they use a wallet ID.

Assuming a malicious user intends to push to the platform fake information, they
would use a device which has not been registered in the F2F platform. The information
about data registration and the corresponding wallet IDs are passed to the FISHY TIM
module through the security probes and the SIA deployed in the F2F platform premises.
The F2F platform operator has appropriately configured the FISHY and more specifically
the SACM module so that it recognizes which wallet IDs are legible or not. Thus, when
the malicious user uses an unregistered wallet ID, SACM will detect this and will report a
security event. In the following figure, the dashboard of the FISHY platform is shown in
Figure 3. The instance presented here shows the events (one per row) detected by FISHY
and their details as well as whether this event has been registered in the FISHY blockchain
network (indicated by the green (check mark) symbol on the right-hand side of the event).
This will trigger the IRO so that the relevant intent is identified, and a policy is suggested
to the F2F platform operator. Once (s)he confirms (s)he agrees for the enforcement of the
policy, the EDC undertakes its translation into a low-level policy, and it is passed to the
F2F platform.

 

Figure 3. The FISHY dashboard presenting the detected event.
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Now, the F2F platform will no longer communicate with the malicious federation
adapter. Instead, the F2F platform displays a message to the attacker that the information
(s)he tries to register is not accepted (as shown in the red box in the Figure 4).

 

Figure 4. Screenshot from the F2F platform where the inability of the malicious user to enter
information is shown.

4.2. Evaluation of FISHY for Attack to Blockchain Node

The aim in this section is to demonstrate that the FISHY platform detects the attacks
of type 4, titled “Attack to blockchain node”. This is an attack more likely to occur from
a knowledgeable person to insert fake information in the blockchain used by the F2F
platform. Let us assume the attacker tries to compromise the blockchain node, trying to
connect to the blockchain node from a device with an IP address that is not whitelisted for
the F2F premises.

The malicious actor could try to construct a request to the F2F blockchain, to try to
insert fake information, for example, an unauthorized “Farm” platform, as depicted in
Figure 5. The adversary, in order to prepare for the attack, can attempt to gain information
on the nodes of the F2F blockchain network by exploiting the Tessera transaction manager
of the nodes. Figure 6 shows the results of the exploitation of the Tessera endpoints. The
user gains knowledge of the public keys of the nodes, which (s)he can use to sign their
transaction and send to the blockchain.

 

Figure 5. The adversary attempts to register fake information to the blockchain.

Should an external connection from an unknown IP occur, then the FISHY platform
and more specifically SACM tool is notified as shown in Figure 7. In this validation, SIA,
SPI, TIM and IRO were involved.
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Figure 6. The adversary exploits the endpoints of the Tessera transaction manager of the nodes to
find their public keys.

 

Figure 7. SACM monitors the IPs being connected to the blockchain node and checks whether these
are whitelisted IP addresses.

Next, FISHY platform proposes a policy to be enforced. This policy is a ban-IP policy
and is generated in IRO and turned to a low-level policy by EDC which then enforces
it in the F2F use case, as shown in Figure 8. The end result is that the connection of the
adversary node is terminated.
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Figure 8. The malicious user can no longer connect to the blockchain node.

4.3. Evaluation of FISHY for DDoS Attack

The aim in this section is to demonstrate that the FISHY platform detects distributed
denial of service (DDoS) attacks. For the F2F platform, the availability of the services is
extremely important, due to the economic loss to the actors that rely on the F2F platform
(e.g., retailers that use the platform to guarantee the safety of the supply chain) that can
be caused by downtimes. Therefore, it is important for FISHY to be able to protect the
platform against this type of attack.

To do this, the real-time network traffic is captured from the platform and then it
is sent continuously to the PMEM tool [3] in the FISHY control services (Figure 9). As
observed in the figure below, the captured flows contain normal traffic which is sent to the
PMEM, and different traffic statistics are shown.

 

Figure 9. The PMEM dashboard showing the traffic of the system under examination.

PMEM gives information about the different flows in the network as well as different
useful statistics about traffic share and severity of the attacks. To test the capability of
PMEM to detect a DDoS attack, we intentionally simulate the scenario on the F2F platform.
This malicious traffic along with the normal traffic is captured and sent to the PMEM
tool. The traffic analysis shows that something abnormal is happening in the network
(Figure 10).

 

Figure 10. PMEM dashboard showing the statistics which show the results of the machine learning
model (which classifies the traffic in benign and suspicious).

The prediction result of the PMEM for the network flows are presented in Figure 11:
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Figure 11. Details of the PMEM prediction results as shown in the PMEM dashboard.

The PMEM has detected the IP addresses which are trying to perform a DDOS attack,
also including the frequency of the specific combination of source IP and destination IP. The
severity of the attack is related to its computed frequency. The system shows, for instance,
that the 3rd row in the table is considered a DDoS attack with low severity because the
frequency is only 1, whereas the two first rows are considered real DDoS attacks because
the frequencies are higher than a specific threshold.

4.4. Evaluation of FISHY for Detection of Brute Force Attacks

The aim in this section is to demonstrate that FISHY platform detects brute force
attacks or in other words prevent an “unauthorized user” that possibly uses a machine
to check all potential passwords to access the farm-to-fork platform. We assume that
the attacker uses the wrong password or issues a brute force attack to gain access and
potentially alter information relevant to specific products either to create a mesh or to
diminish the value of specific brands. The attacker tries different combinations of username
and password to enter the F2F platform. The F2F platform operator sets a rule in FISHY
to check unsuccessful logic attempts from the same IP address and when these exceed
a predefined threshold that he/she sets, FISHY notifies the F2F platform operator and
suggests the banning of this IP.

In more detail, the FISHY platform detects this event (attack) as shown in Figure 12
through the Wazuh tool.

 

Figure 12. Screenshot from the dashboard of Wazuh that detects the brute force attack.

Next, to the detection, the FISHY platform proposes a ban-IP policy to be enforced.
This policy is generated in IRO and turned to low-level policy by EDC which then enforces
it in the F2F use case. Finally, the F2F platform displays a message to the attacker that the
information he/she tries to register is not accepted.

4.5. Benchmarking FISHY to MITRE ATT&CK Framework

To assess the expandability of the FISHY platform, we use the MITRE ATT&CK frame-
work and we proceed to logical implications to reach useful conclusions. To elaborate,
during our research in the area of security attacks, we realized that the MITRE ATT&CK
framework [9] plays a vital role. First, we must clarify that ATT&CK stands for adversar-
ial tactics, techniques and common knowledge, and these are what the framework and
accompanying ATT&CK knowledge base consist of. This framework aims at addressing
the gap left by traditional models which are very focused on the study of attacks rather
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than their role in risk analysis, where the concern is not how the attack is executed but
more on the effects and exploitation opportunities that can impact the system. This is
of particular interest in the supply chain environments where the attacks to one of the
interconnected IoT islands directly affect other actors in the chain. An additional reason to
study this framework is that MITRE table is enriched by the open community that supports
it. Thus, regularly inspecting this table can help us (a) continuously upgrade FISHY so that
it protects against an ever-increasing set of attack types it handles and (b) verify that the
techniques addressed are those reported in this open “literature”.

In the farm-to-fork use case, the attacks we identified have been proposed to be
detected using logs. To verify our decision, we select as the “control element” the log in
the MITRE navigator, and we see the set of attacks that can be detected using logs, shown
in green colour in Figure 13. All the attacks shown in green in this figure can be detected
based on logs. This implies that should a platform owner be interested in detecting all
these attacks, he/she should take care of providing the FISHY platform with the relevant
logs in real time (i.e., ensure the provisioning of the relevant information).

 

Figure 13. The attacks that can be detected based on logs shown/highlighted in green.

From the green boxes highlighted in the figure, we then select one-by-one the threat
most relevant to our system. For example, the “default credentials” attack and the “denial
of service” attack. Then, selecting the attack, the MITRE ATT&CK navigator displays all the
procedures that an adversary may follow to issue such an attack that have been registered
in the framework, the mitigation measures identified so far and the detection alternatives.
Then, we check for the cells of interest whether FISHY platform implements a detection
technique and whether the mitigation identified (and recommended and/or enforced) in
FISHY is aligned with the one suggested by MITRE table. This way we have confirmed
that FISHY platform adopts mitigation strategies well recognized in the market.

Another way to use the MITRE ATT&CK framework is the following: to check what
can be detected based on specific controls. The rationale behind this choice is the following:
in the farm-to-fork system, FISHY is capable of detecting threats based on logs and based
on traffic analysis. So, in the MITRE ATT@CK navigator, we first selected “log” and then
“traffic analysis”, and the result is shown in Figure 14. The attacks that can be detected
based on traffic analysis are marked in orange colour while those that can be detected
using logs and not on traffic analysis are marked in green colour. (A subset of the orange-
coloured threats are also detected using logs as was shown in the previous figure.) Again,
as mentioned for the attacks detected based on logs, similarly, for the attacks detected based
on traffic analysis information, the security officers of any platform interested in protecting
their platform using FISHY, they should only ensure that the appropriate traffic analysis

194



Electronics 2024, 13, 215

data are passed to the FISHY platform. Then, FISHY integrates all the necessary tools for
detecting, recommending and potentially enforcing the mitigation policies.

 

Figure 14. The threats that can be detected based on logs and traffic analysis information are coloured.

This has an important logical implication for FISHY: FISHY components can detect
the majority of the identified threats which shows that FISHY is a flexible platform that
can be exploited to detect the proliferating attacks that supply chain systems suffer today.
With regard to mitigation, the flexible FISHY user interface allows for easy registration of
multiple mitigation rules which could be drawn from a MITRE ATT&CK table.

4.6. FISHY-Enabled Security Enhancement in F2F Supply Chain

As has been shown in the previous sections, with the integration of the F2F IT system
with FISHY, a set of interesting (to the actors) and important attacks are detected and
mitigated. Additionally, we have realised that the different components of the FISHY
platform can detect more attacks than those presented above: generating additional security
probes, FISHY platform can detect attacks to additional points in the supply chain IT
platform based on SACM and also, analysing traffic at different network levels or network
islands, based on PMEM additional parts of the supply chain system can be protected.
Analysing log information and performing machine learning-based traffic analysis enables
the detection of a variety of attacks.

To assess the FISHY platform as objectively as possible, we presented the platform
and asked colleagues outside the project teams to experiment with the features of the
platform during a workshop that we held with seven people. The alpha version of the
FISHY platform was released to the select group of testers from the consortium partners
for evaluation and feedback. This process focused on identifying fundamental issues
such as bugs, glitches and major functionality gaps, ensuring that the core features of
the software were operational, and collecting feedback on performance and stability. The
feedback collected during the workshop served as a valuable resource for refining the
software before progressing to more extensive testing, where a larger and more diverse
user base will be involved. Although this is not a large and statistically representative
sample, due to the high expertise of the participants we consider their opinion valuable,
carrying their extensive experience in the farm-to-fork sector and more specifically from the
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IT system vendors. During this workshop, the user group answered/commented on the
following topics:

• Easiness to use and user friendliness: the Average rating was 4.1 (using a five-
point Likert scale), which was considered very good for a platform resulting from a
research project.

• Security improvement: The question we asked was this: “what would you say if you
were to quantify how much more secure is now the platform?”. From the discussion
that was raised, the answers converged towards the following key points:

• The platform seems to efficiently detect the main attacks of interest.
• The flexibility provided by the dashboard makes the operators feel they control

what happens in the platform they operate.
• The flexibility in detection offered by the different tools make the operators feel

they can defend a wide range of attacks.
• The FISHY dashboard with its clear presentation of events leaves time to the

operator to focus on configuring the platform to detect additional attacks.
• The immutability of the events guaranteed by the introduction of the blockchain

technology and the registration of events in the blockchain network open the
door to IoT vendors to persuade IT platform vendors to consider integrating IoT
devices by less popular vendors, thus fostering competition.

• To assess whether the multiple deployment options are of interest to the buyers,
we asked the group: “deployment options: are they important?”. They all found
that they are very important as the deployment in each supply chain is different
and tailored to the actors of the chain. One of the main business lines of Entersoft
S.A. is software customisation company providing services to big supply chain
actors. So, having the option to deploy on premise or on hybrid approach the
platform and decide the split of components offers huge and valuable flexibility.

Other comments we received include the following: “At the beginning, it was not easy
for us to understand how the platform is connected to the IT platform of the supply chain.
The user manual helped but needs to be accompanied by a video”. And it is “not easy
to understand the flexibility of the platform. Somebody needs to delve into the details to
find out”.

4.7. FISHY Scalability and Potential Enhancements

The FISHY platform has been shown to efficiently detect a set of attacks. Additionally,
it has been proven (based on the MITRE ATT&CK navigation tool) that it can potentially
expand to detect other attacks. This would require the implementation of security probes
on the side of the supply chain platform and on the configuration of appropriate rules
in the FISHY platform. Furthermore, the architecture of the FISHY platform can flexibly
integrate additional (open source or not) tools which can use the information captured by
FISHY platform, they can also use the central repository and finally exploit the user-friendly
FISHY user interface. With respect to the number of IT platforms that FISHY can protect,
there is no limitation on this as it has been designed with scalability in mind. To sum up,
the FISHY platform is both scalable and expandable with respect to the number of attack
it is capable of detecting, with respect to the IT platform it can protect and with respect
to the threat detection tools it can integrate. Its designers have pointed out that potential
enhancement would follow two directions: the design of a very easy-to-use front end (so
that it can be used not only by security officers) and the integration of tools that may be
optimized for other IoT threats.

5. Conclusions

To sum up, we have shown that it is possible to have a platform that can detect and
recommend the mitigation of multiple attack of different types (from network configuration
to blockchain specific threats) and, at the same time, be expandable to be able to detect
attacks that may be defined in the future. The FISHY platform efficiently protects the
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considered supply chain IT systems against multiple type of attacks, while with almost
straightforward configurations, it can protect against a really large set (almost 85%) of the
supply chain attacks reported in the MITRE ATT@CK framework. Apart from configuration
of the components, in certain cases, some development of the appropriate mechanism to
provide FISHY with the required supply chain platform details and data may be needed, but
this is considered minor once the components and their user interface to the administrators
are ready. Additionally, the flexible deployment of the FISHY platform is well appreciated
from external end users. The authors anticipate that security platforms like FISHY have a
strong potential not only in the supply chain but also in interconnected IT systems as, for
example, the connected health care systems and applications [17], which are of very high
importance to the quality and reliability of the health services provided.
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Abstract: Accurate electricity forecasting is essential for smart cities to maintain grid stability by
allocating resources in advance, ensuring better integration with renewable energies, and lowering
operation costs. However, most forecasting models that use machine learning cannot handle the
missing values and possess a single point of failure. With rapid technological advancement, smart
cities are becoming lucrative targets for cyberattacks to induce packet loss or take down servers
offline via distributed denial-of-service attacks, disrupting the forecasting system and inducing
missing values in the electricity load data. This paper proposes a collective intelligence predictor,
which uses modular three-level forecasting networks to decentralize and strengthen against missing
values. Compared to the existing forecasting models, it achieves a coefficient of determination score
of 0.98831 with no missing values using the base model in the Level 0 network. As the missing values
in the forecasted zone rise to 90% and a single-model forecasting method is no longer effective, it
achieves a score of 0.89345 with a meta-model in the Level 1 network to aggregate the results from
the base models in Level 0. Finally, as missing values reach 100%, it achieves a score of 0.81445 by
reconstructing the forecast from other zones using the meta-model in the Level 2 network.

Keywords: electricity load forecasting; internet of things; machine learning; security

1. Introduction

With digital technologies becoming more incorporated into smart city management
systems, machine learning (ML) is widely proposed as a forecasting model to predict the
electricity load with high accuracy in smart cities [1]. Having the capability to accurately
forecast the electricity load is necessary to allow the smart grids to distribute the electric
power in advance to avoid overloading the electricity delivery network [2], better renewable
energy integration with traditional energy to generate electricity [3], and minimize the
operation loss during the peak hours [4]. As the scale of electricity infrastructure and
reliability directly correlates to economic growth, it is crucial to maintain reliable service to
avoid financial losses and interruption of other essential services [5].

However, digitalizing essential infrastructures in smart cities opens up new problems,
such as cyberattacks against the infrastructures in smart cities. IBM Security observes this
trend where 10.7% of cyberattacks in 2022 happened in the energy sector alone [6]. Looking
deeper into distributed denial-of-service (DDoS) attacks that could cause packet loss and
bring the server offline [7], the Azure Network Security Team reported that 89% of DDoS
attacks span up to one hour [8], which may add missing values (MV) in the electricity
load data and disrupt a centralized forecasting system. Due to the importance of energy
services, the attack on electricity infrastructure in Ukraine during the Russo–Ukrainian War
in 2016 shows the potential weakness of the current system that enemies could exploit [9].
Hence, it is necessary to create a decentralized and resilient forecasting method to solve
these issues.
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Still, recent studies in forecasting the electricity load showed most ML implementations
overlooked the issue posed by MV [10,11], which could occur due to the packet loss and
potentially impacting forecasting accuracy in real-world applications. Several methods
exist to tackle this problem. Jung et al. [12] proposed a novel imputation technique to fill
the MV accurately. In addition, there are also lightweight alternatives that sacrifice accuracy
to train and evaluate MLs that use artificial neural networks (ANN), such as padding,
which replaces MV with a placeholder value, and masking, which excludes MV from the
computation, as noted by Rodenburg et al. [13]. As well as inadequate MV handling, recent
studies also disregarded the single point of failure (SPoF) vulnerability, which could bring
the entire forecasting system down when the server hosting the centralized ML architecture
is offline [14]. Although existing distributed ML architectures could solve this [15], they are
inefficient, and the data heterogeneity could negatively impact the accuracy [16].

In this study, we tackle the issues with MV in the electricity load data due to packet
loss and SPoF due to the server hosting the forecasting system being taken offline from
the DDoS attacks by proposing the Collective Intelligence Predictor (CIP) implementation,
forming modular three-level forecasting networks of distributed MLs shown in Figure 1 to
forecast the next one hour of electricity load data, matching the DDoS duration. Although
weather and calendar data are proven to improve the electricity load forecasting accuracy in
existing studies [17,18], this paper focuses solely on the electricity load data to investigate
how well the design in CIP could perform against existing methods without relying on
external data to negate the accuracy penalty when forecasting with MV.

Level 2
Network

Level 1
Network

Level 0
Network

Predict
Improvise
Copycat

Forecasted electricity load
in zone 

Collective Intelligence Predictor

1h

Machine Learning

Figure 1. Generalized overview of a Collective Intelligence Predictor forming modular three-level
forecasting networks to forecast the electricity load.

Each level in CIP represents three forecasting methods that it can use to forecast the
electricity load. The modularity comes from CIP behaviors in activating the networks
based on the MV percentages in the electricity load data used as independent variables,
reducing unnecessary computation to forecast the electricity load. In addition, it increases
the effective range the CIP can handle the MV to forecast the electricity load.

During regular operations where the independent variables have no MV, CIP relies
exclusively on the base model trained with 0% MV in Level 0 to “predict” the electricity
load in the zone CIP was assigned. As there is no MV, the forecasting accuracy from a
single base model trained with 0% MV is sufficient to forecast the electricity load accurately.
When the MV percentages in the independent variables range from 1% to 90%, CIP uses
the meta-model in Level 1 to “improvise” the forecast by combining and refining the
predictions from the base models in Level 0. Each base model is trained with different
percentages of MV to contribute diversity in handling different MV percentages, allowing
a broader effective range of CIP to forecast the electricity load as the MV percentages rise.
Finally, when the MV percentages in the independent variables range from 91% to 100%,
and it is no longer potent to use Level 1 to forecast, CIP uses the meta-model in Level 2 to
create a “copycat” by reconstructing the forecasts taken from other CIPs meta-models in
Level 1. Figure 2 summarized the CIP behaviors in activating the networks.
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Forecasted zone ’s electricity load data.

Level 2 meta-model 
combines multiple Level 1 

meta-model forecasts 
from other CIPs to 

reconstruct the forecast.

Level 1 meta-model 
combines multiple Level 0 

base-models’ forecasts 
trained with di erent MV.

Forecast with only Level 0 
base-model trained with 
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Zone ’s electricity load data.
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Figure 2. Collective Intelligence Predictor behaviors in activating the networks to handle different
missing values percentages.

The primary contribution of this paper lies in developing a decentralized multi-level
network of MLs that has modularity in its structure, the capability to handle a broader
range of MV percentages, and a failsafe mechanism in Level 2 to reconstruct the forecast
when handling MV the MV percentages is too high, which is unattainable with existing
electricity load forecasting methods. In addition, with the implementation of multiple
levels of networks, CIP could reduce unnecessary computation to forecast the electricity
load by activating only the necessary MLs to forecast and increase the effective range of MV
percentages CIP can handle when needed. Furthermore, CIP uses two feature selections
to choose the best electric load data to improve forecasting accuracy and reconstruction.
The contributions are significant in pioneering research predicting the electricity load to
address security and reliability issues.

After the introduction in Section 1, Section 2 provides the preliminary for the dataset,
feature selection algorithms, hyperparameter optimization, network construction, and
comparison with the previous studies in this field. Section 3 provides the concept, applica-
tion, and model training to implement CIP. Section 4 presented the evaluation of CIP with
different MV percentages and compared forecasting accuracy with the existing centralized
model architectures. Finally, the work is summarized, and we conclude the future planning
for this research in Section 5.

2. Related Works

2.1. Overview

This section presents the preliminaries for the dataset, two feature selections to choose
the other electricity load zones that may improve the CIP forecasting accuracy or reconstruct
the forecast, the hyperparameter optimization algorithm to tune the base model in the
Level 0 network of CIP, the multi-layer stacking ensemble learning that the CIP takes the
inspiration to construct the networks, and the comparison against the previous studies to
forecast the electricity load. Figure 3 shows the high-level summary for the related works
implemented to create CIP and compares it against existing methods.

Previous
Studies

Network
Construction

Hyperparameter 
Optimization

Feature
Selections

Kendall Rank Correlation Coe cient
Granger Causality

Dataset

Electricity Load Data 
in New York State

Bayesian Optimization

Multi-Layer Stacking 
Ensemble Learning

Transformer
Boosting Ensemble Learning

Temporal Convolutional Network
Stacked Long Short-Term Memory

Figure 3. High-level summary of the related works implemented in this study to build CIP and
compare it against existing forecasting methods.
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2.2. Dataset

The dataset used to evaluate CIP in this study is publicly available electricity load data
sourced from the New York Independent System Operator (NYISO) repository data [19]. It
consists of an actual load sampled in real time at 5-minute intervals from 11 zones shown
in Figure 4.

WEST
GENESE
CENTRL
MHKVL
NORTH
CAPITL
HUDVL
MILLWD
DUNWOD
NYC
LONGIL

Figure 4. The electricity load zones and their corresponding zone codes managed by the New York
Independent System Operator in New York state.

The electricity load data taken from the repository to train and evaluate the CIP against
existing methods span from 1 January 2018 until 31 December 2020, which is exactly three
years, as shown in Figure 5. Once the MV imputed with a polynomial interpolation by
order of 2, the training and evaluation datasets split to the ratio 2:1, with the training
dataset covering the period from 1 January 2018 to 31 December 2019 and the evaluation
dataset from 1 January 2020 to 31 December 2020.
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Figure 5. The electricity load data sampled in real time at 5-minute intervals in 11 zones from 1
January 2018 to 31 December 2020.

The training dataset normalized from −1 to 1 using the min-max normalization
method. Then, using the same minimum and maximum values found in each electricity
load zone from the training dataset, the same scale was applied to the evaluation dataset
to be normalized for simulating the real-world application, where the latest data are not
always used to update the models. After that, sequencing was applied to the datasets to
forecast the next hour using the current one hour of electricity load data, which translates
to 12 steps in independent and dependent variables. Although the training dataset used a
sliding window moving 1 step per sequence to capture intricate patterns, the evaluation
data used a sliding window moving 12 steps instead to ease the evaluation. Finally, MV
simulated in the independent variables where MV = {0%, 10%, 20%, . . . , 90%} to create
additional ten independent variables sequences for each zone.

202



Electronics 2024, 13, 718

2.3. Feature Selections
2.3.1. Kendall Rank Correlation Coefficient

CIP utilizes the Kendall rank correlation coefficient in Level 0 and Level 1 networks
to find additional electricity load zones that may improve the forecasting accuracy for the
electricity load zone CIP will be assigned to forecast.

Kendall rank correlation coefficient measures the strength and direction of the associa-
tion between two sets of ranked data [20]. Since it is non-parametric, the data distribution
does not affect the result [21]. To calculate, find the number of concordant pairs C and
discordant pairs D in the ranked data of the training dataset before using Equation (1),
where n represents the number of observations.

τ =
C − D

1
2 n(n − 1)

, − 1 ≤ τ ≤ 1 (1)

For interpretation, as τ approaches 1, it indicates a strong positive correlation between
two sets of ranked data. Similarly, as τ approaches −1, it indicates a strong negative
correlation. However, if τ ≈ 0, it indicates weak or no correlation. Using pandas library [22],
we compute the correlation for each zone, convert the values into absolute values, and sort
it in descending order to choose the zones with high correlation.

2.3.2. Granger Causality

CIP utilizes Granger causality in the Level 2 network to find other electricity load zones
that may improve the reconstruction of the forecast in the zone where the MV percentage
is 91% and above. The motives for using a different feature selection in Level 2 are to
avoid selecting the matching zones in the Kendall rank correlation coefficient to ensure
redundancy and, as Granger causality is better in reconstructing the forecast.

Granger causality is a statistical hypothesis test to evaluate if a time series yt possesses
causality for another time series xt [23]. With “var” represents the variance of a random
variable, H<t as the history of all relevant information up to t − 1 and P(xt|H<t) as the
optimal prediction for xt given H<t, y is causal to x if it met the condition shown in
Equation (2). As we want to analyze the causality with the time lag from 1 to 6, Equation (2)
was rewritten as Equation (3) to reflect this change.

var[xt −P(xt|H<t)] < var[xt −P(xt|H<t \ y<t)] (2)

var[xt −P(xt|H<t)] < var[xt −P(xt|H<t \ {yt−1, yt−2, yt−3, . . . yt−6})] (3)

After calculating the differences between consecutive observations in the dataset two
times, we perform the Granger causality tests using statsmodels library [24] to obtain the
p-values, which we sort in ascending order to find zones with high causality.

2.4. Hyperparameter Optimization

One of the challenges in designing the CIP is to tune the hyperparameters for the
base model in Level 0, as there is no single best set of hyperparameters due to the complex
relationships between them, requiring trial and error to find the best combination [25].
CIP utilizes Bayesian optimization as it utilizes new parameter combinations and exploits
known promising regions to navigate the optimization space efficiently [26], which could
shorten the computation time and guarantee an optimized outcome. With A as the search
space of z, Equation (4) describes the optimization goal to find the maximum value at the
sampling point of an unknown function f .

z+ = arg maxz∈A f (z) (4)

We use Keras Tuner library [27] to implement the Bayesian optimization to optimize
the hyperparameters in the base model, as it has good integration and ease of application
with the TensorFlow library [28] used to build the ML models in CIP.
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2.5. Network Construction

CIP takes inspiration to construct the networks from the multi-layer stacking ensemble
learning. Stacking ensemble learning is a methodology to combine heterogenous base
models to create a superior model compared to its components [29]. Compared to other
ensemble techniques that use a deterministic way to combine the base models, stacking
ensemble learning relies on a non-deterministic algorithm to combine the base models
with a meta-model. Figure 6 shows the implementation example of a multi-layer stacking
ensemble learning to forecast the electricity load in zone α. A set of i base models that use
different algorithms are implemented in Level 0 to add diversity in capturing different
patterns in zone α. In Level 1, a set of j meta-models combines the forecasting outcomes
from the base models in Level 0 to improve the accuracy. In Level 2, a final meta-model
refines the forecasts further by combining the output from the meta-models in Level 1.
Most multi-layer stacking ensemble learning is limited to three layers, as the accuracy
improvement greatly diminishes when adding a new layer.

Meta-Model

Meta-Model1

Meta-Model2

Meta-Model3

Meta-Modelj

12 t<24
^

Level 0 Level 1 Level 2

Base-Model1

Base-Model2

Base-Model3

Base-Modeli

0 t<12

Multi-Layer Stacking Ensemble Learning

Figure 6. Implementation example using ensemble learning with multi-layer stacking to forecast the
electricity load in zone α.

However, CIP does not fully adhere to the conventional method of deploying multi-
layer stacking ensemble learning. Instead of using heterogeneous base models that use
different algorithms in each base model, the base models in CIP are homogeneous, where
the diversity in handling different percentages of MV is from training each base model
with various percentages of MV. In addition, the independent variables are exposed to the
meta-models in Level 1 and Level 2 networks to help the meta-models grasp the amount of
MV they need to consider when combining the forecasts. Finally, the meta-model in the Level
2 network uses the forecasting outcomes taken from other CIPs Level 1 networks to reconstruct
the prediction. Section 3.2 will discuss more in detail on CIP network implementation.

2.6. Previous Studies

The most commonly used models to forecast the electricity load rely on the Recurrent
Neural Networks (RNN)-based implementation and its derivatives, such as long short-term
memory (LSTM) and Gated Recurrent Unit (GRU), due to their capability to capture long-
term dependencies in sequential data with high accuracy [30]. In addition, the advancement
of technologies and techniques in ANN brings new model architectures that show promis-
ing results in forecasting the electricity load. For example, forecasting models that rely on
temporal convolutional network architecture (TCN) can capture the local dependencies
in the data via convolutional layers, which contributes to shorter interfacing time when
compared to the RNN-based derivatives [31,32]. As well as TCN, forecasting models that
rely on Transformer architecture show parallelization capabilities when compared to the
RNN-based derivatives with the implementation of attention mechanism to capture the re-
lationships between the elements in the sequential data [33,34]. However, they share issues
mentioned in Section 1, where the forecasting models that rely on RNN-based derivatives,
TCN, and Transformer cannot directly handle the MV due to packet loss from the DDoS
attack without relying on some form of imputation, masking, and padding.
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As well as relying on masking, padding, or imputation to make existing models
capable of handling MV, several forecasting model designs could directly handle the
MV. Stratigakos et al. [35] proposed handling the MV with Linear Programming (LP) to
formulate a robust regression model that minimizes the worst-case loss when a subset of
the independent variables has MV. The authors noted that their method can handle up to
50% of MV. In addition, Mienye et al. [36] found that an ensemble learning that utilizes
boosting is effective when handing MV. Grotmol et al. [37] expand further using stacking
ensemble learning that implemented boosting and other ML models as the base models to
harden against MV. The authors noted that using heterogeneous base models in stacking
could improve the Mean Absolute Error (MAE) score by 10.7%. Although these methods
could effectively reduce the accuracy penalty when forecasting with MV, the centralized
ML architectures make them suffer from SPoF vulnerability due to the server hosting the
forecasting system being taken offline from the DDoS attacks.

Although several distributed computing methods could solve the SPoF vulnerability
when the server hosting the forecasting system is taken offline by the DDoS attacks, recent
studies show that federated learning is the favorable method due to the capability to train
the model in independent sessions without sharing the datasets that may contain sensitive
information [38–40]. However, in addition to the inefficiency and data heterogeneity
negatively impacting the accuracy mentioned in Section 1, the studies in federated learning
did not consider the countermeasures against MV.

We previously developed multivariate models to create a distributed forecasting
network. Using the electricity load data from the zones with high Kendall rank correlation
coefficient values negates the accuracy penalty when using padding to replace MV. In
addition, it can substitute the forecast from an offline model by averaging the predictions
from other models. However, as the models trained with only 25% of MV in the dataset to
avoid overfitting where the models exhibit behaviors where the accuracy will only improve
as the MV percentages rise, the effective range it could perform well before the coefficient
of determination (r2) score dropped below 0.95 is limited to 40% of MV. Furthermore, the
network does not fully solve the SPoF vulnerability, as it does not have the countermeasure
when one of the nodes supplying the electricity loads is offline. Table 1 summarized the
previous studies and their capabilities in handling MV and SPoF.

Table 1. Comparison between previous studies to forecast the electricity load and their capabilities to
handle missing values and the single point of failure.

Methodology Missing Values Single Point of Failure

Robust Model [35] � ×
Transformer [33,34] � ×

Forecasting Network � �
Federated Learning [38–40] × �

Boosting Ensemble Learning [36,37] � ×
Temporal Convolutional Network [31,32] � ×

Recurrent Neural Network Derivatives [30] � ×
� = good, � = moderate, × = bad.

In this study, we compare CIP against four existing electricity load forecasting models
shown in the list below:

• TCN + padding
• Transformer + padding
• Stacked LSTM + padding
• Boosting ensemble learning

We use padding to help some existing models forecast with MV, as masking may
change the sequence length during computation, negatively affecting the forecasting model
to capture the dependencies in sequential data. In addition, without imputation to augment
the sequence, we can analyze the strength of each model in handling MV.
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3. Implementation

3.1. Overview

This section presents the CIP concept to implement modular three-level forecasting
networks, its application on feature selections, hyperparameter optimization, and network
construction to forecast the electricity load in zone WEST of New York State, and the
training methods used to train the ML models in Level 0, Level 1, and Level 2 networks
in CIP. Figure 7 shows the high-level summary for the CIP concept, implementation, and
training to implement CIP.

TrainingApplicationConcept

Collective Intelligence 
Predictor

Feature Selections
Hyperparameter Optimization

Network Construction

Level 0
Level 1
Level 2

Figure 7. High-level summary of Collective Intelligence Predictor concept, application to forecast the
electricity load in zone WEST of New York State, and the methods used to train the models.

3.2. Concept

Referring to the generalized overview of CIP in Figure 1, CIP utilizes multi-level
networks to distribute the ML models as a countermeasure against SPoF vulnerability.
The models are connected to form forecasting networks similar to the multi-layer stacking
ensemble learning, shown in Figure 6 to reduce the accuracy penalty when forecasting with
MV. Figure 8 represented the CIP networks architecture to forecast the electricity load in
zone α, where we define the CIPα’s forecast using the “predict” method as ˆαPredict12≤t<24 ,
“improvise” method as ˆαImprovise12≤t<24 , and “copycat” method as ˆαCopycat12≤t<24 .

Referring to the summarized CIP behavior in Figure 2, CIP has a hierarchical network
structure of Level 0, Level 1, and Level 2 to handle different MV percentages accordingly.
With Predict(), Improvise(), and Copycat() functions representing “predict,” “improvise,”
and “copycat” forecasting methods in CIPα, Algorithm 1 shows the pseudocode to choose
either “predict”, “improvise”, or “copycat” forecasting method based on the total MV
percentage in the independent variables (α0≤t<12, β0≤t<12, γ0≤t<12).

Algorithm 1 Networks activation in CIPα.

Input: α0≤t<12, β0≤t<12, γ0≤t<12

Output: ˆα12≤t<24 ∈
{

ˆαPredict12≤t<24 , ˆαImprovise12≤t<24 , ˆαCopycat12≤t<24

}
1: concatenate ← α0≤t<12 + β0≤t<12 + γ0≤t<12
2: mv_count ← |{ci ∈ concatenate : ci = null}|
3: mv_percentage ← mv_count/|concatenate| × 100%
4: if mv_percentage = 0 then
5: ˆαPredict12≤t<24 ← Predict()
6: return ˆαPredict12≤t<24
7: else if 1 ≤ mv_percentage ≤ 90 then
8: ˆαImprovise12≤t<24 ← Improvise()
9: return ˆαImprovise12≤t<24

10: else if 91 ≤ mv_percentage ≤ 100 then
11: ˆαCopycat12≤t<24 ← Copycat()
12: return ˆαCopycat12≤t<24
13: end if
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Figure 8. Collective Intelligence Predictor implementation CIPα to forecast the electricity load in
zone α using “predict”, “improvise”, and “copycat” methods.

3.2.1. Level 0

When the sum of MV percentages in the independent variables is 0%, CIP relies on
the “predict” forecasting method in Level 0, where CIP uses only the Base0%α

base model
in Level 0 to obtain ˆαPredict12≤t<24 , reducing unnecessary computation and operation cost
in regular operation to forecast the electricity load during normal operation. The only
time CIP will activate all the base models in Level 0 is when the MV percentages in the
independent variables are more than 1%, as the meta-model in Level 1 needs to combine
the forecasts from the base models to obtain ˆαImprovise12≤t<24 .

CIP uses ten base models BaseMVα in CIPα trained using the dataset simulated with
MV in Section 2.2 to introduce diversity in handling a wide range of MV percentages during
deployment. The base-model architecture shown in Figure 9 is a multivariable stacked
LSTM that utilizes hyperbolic tangent (TanH) as the activation function in each layer, where
k and l represent the number of LSTM units in the first and second layers of the base-model.

Assuming the electricity load zones from β and γ could improve the electricity load
forecast in zone α, we choose multivariable stacked LSTM as the architecture in the base
model due to its capability to grasp the dependencies from the independent variable
CIP wants to forecast (α0≤t<12) and independent variables that have strong correlation to
improve the forecasting accuracy (β0≤t<12, γ0≤t<12) in zone α, allowing each of the base
model in Level 0 to have a broader range of MV percentages it can handle before the
forecasting accuracy degrade.

With Base0%α
() representing the base model trained with dataset that has 0% of MV,

Algorithm 2 shows the pseudocode for Predict() function to obtain ˆαPredict12≤t<24 .
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Base_0%12 t<24
= Predict12 t<24

Figure 9. Multivariable stacked Long Short-Term Memory architecture implementation for the base
model in Level 0 network.

Algorithm 2 Predict() function in CIPα.

Input: α0≤t<12, β0≤t<12, γ0≤t<12
Output: ˆαPredict12≤t<24

1: ˆαPredict12≤t<24 ← Base0%α
(α0≤t<12, β0≤t<12, γ0≤t<12)

2: return ˆαPredict12≤t<24

3.2.2. Level 1

When the MV percentages in the independent variables ranged from 1% to 90%, CIP
relies on the “improvise” forecasting method in Level 1, where all BaseMVα in CIPα’s Level
0 are activated for the Metaα1 meta-model in Level 1 to combine their forecasts. As each
BaseMVα has its effective MV percentage range to forecast the electricity load, combining the
result with Metaα1 ensures minimal forecasting accuracy degradation as the MV percentage
rises, which is impossible with the bagging ensemble learning that averages the forecasts
from the base models.

Following the same assumption in Level 0, CIP combine the forecasts from all BaseMVα

in Level 0 ( ˆαBase_0%12≤t<24 , ˆαBase_10%12≤t<24 , ˆαBase_20%12≤t<24 , . . . , ˆαBase_90%12≤t<24 ) and the same
electricity load data (α0≤t<12, β0≤t<12, γ0≤t<12) used by BaseMVα using Metaα1 . The meta-
model architecture shown in Figure 10 uses a multivariable deep neural network (DNN)
model that utilizes TanH as the activation function in each dense layer. The numbers 156,
75, and 75 represent the dense unit numbers in the first, second, and third layers of Metaα1 .
We choose multivariable DNN as the architecture in the meta-model due to its capability to
fine-tune the combined forecasts from the BaseMVα by the amount of MV that exists in the
electricity load data used to forecast in zone α, which is impossible with other algorithms
that do not consider the amount of MV in the independent variables.

Base_10%12 t<24
^

0 t<12

0 t<12

0 t<12
Dense156 Dense78 Dense78Base_0%12 t<24

^

Base_2%012 t<24
^

Base_90%12 t<24
^

Improvise12 t<24
^

Meta1

Figure 10. Multivariable Deep Neural Network architecture implementation for the meta-model in
Level 1 network.

With Metaα1() function representing the multivariable DNN meta-model in Level 1
network, Algorithm 3 shows the pseudocode to concatenate the forecasts from all BaseMVα

and the electricity load data used by BaseMVα to obtain ˆαImprovise12≤t<24 .
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Algorithm 3 Improvise() function in CIPα.

Input: α0≤t<12, β0≤t<12, γ0≤t<12
and ˆαBase_0%12≤t<24 , ˆαBase_10%12≤t<24 , ˆαBase_20%12≤t<24 , . . . , ˆαBase_90%12≤t<24

Output: ˆαImprovise12≤t<24
1: concat_a ← α0≤t<12 + β0≤t<12 + γ0≤t<12
2: concat_b ← ˆαBase_0%12≤t<24 + ˆαBase_10%12≤t<24 + ˆαBase_20%12≤t<24 + . . . + ˆαBase_90%12≤t<24
3: concat_c ← concat_a + concat_b
4: ˆαImprovise12≤t<24 ← Metaα1(concat_c)
5: return ˆαImprovise12≤t<24

3.2.3. Level 2

When the MV percentages in the independent variables exceed 90%, CIP relies on the
“copycat” forecasting method in Level 2, where Metaα2 in Level 2 reconstruct the forecasts
in zone α by combining the forecast from the Meta1 meta-models in Level 1 taken from
CIPβ, CIPγ, and CIPδ. Although it is inferior in accuracy, it performs well in high MV
environments where “predict” and “improvise” failed.

Similar to the Metaα1 in Level 1, the meta-model Metaα2 shown in Figure 11 uses
a multivariable DNN model that utilizes TanH as the activation function in each dense
layer. The only differences are the number of dense units in the first, second, third, and
fourth layers, which are 144, 144, 72, and 36. With the assumption that electricity load
zones β, γ, and δ could reconstruct the electricity load forecast in zone α, Meta2α combines
the forecasts with strong causality taken from the Meta1 in Level 1 of CIPβ, CIPγ, and
CIPδ ( ˆβ Improvise12≤t<24 , ˆγImprovise12≤t<24 , ˆδImprovise12≤t<24 ) together with the electricity load data
corresponding to the zones other CIPs are assigned (β0≤t<12, γ0≤t<12, δ0≤t<12) to reconstruct
the electricity load forecast in zone α as ˆαCopycat12≤t<24 . As redundancy is necessary for
reconstruction, Meta2α uses Granger causality to avoid selecting the same data chosen by
the Kendall rank correlation coefficient used in Level 0 and Level 1 networks.

Meta_112 t<24
^

0 t<12

0 t<12

0 t<12
Dense144 Dense72 Dense36Meta_112 t<24

^

Meta_112 t<24
^

Copycat12 t<24
^

Meta2

Dense144

Figure 11. Multivariable Deep Neural Network architecture implementation for the meta-model in
Level 2 network.

With Meta2α() function representing the multivariable DNN meta-model in Level 2
network, Algorithm 4 shows the pseudocode to concatenate the electricity load data and
the forecasts from the Meta1 in Level 1 in CIPβ, CIPγ, and CIPδ to obtain ˆαCopycat12≤t<24 .

Algorithm 4 Copycat() function in CIPα.

Input: β0≤t<12, γ0≤t<12, δ0≤t<12
and ˆβMeta_112≤t<24 , ˆγMeta_112≤t<24 , ˆδMeta_112≤t<24

Output: ˆαImprovise12≤t<24
1: concat_a ← β0≤t<12 + γ0≤t<12 + δ0≤t<12
2: concat_b ← ˆβMeta_112≤t<24 + ˆγMeta_112≤t<24 +

ˆδMeta_112≤t<24
3: concat_c ← concat_a + concat_b
4: ˆαCopycat12≤t<24 ← Meta2α(concat_c)
5: return ˆαCopycat12≤t<24
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3.3. Application
3.3.1. Feature Selections

In this study, CIPWEST was implemented to forecast the electricity load in zone WEST
of the New York State. To construct the Level 0, Level 1, and Level 2 networks in CIPWEST ,
Kendall rank correlation coefficient and Granger causality introduced in Section 2.3 used
on the training dataset prepared in Section 2.2 with 0% of MV. Figures A1 and A2 shown
in Appendix A are the generated feature selection heatmap on the training dataset. Us-
ing the Kendall rank correlation coefficient, zones GENESE and CENTRL are used to
construct the Level 0 and Level 1 networks in CIPWEST . Using Granger causality, zones
GENESE, NORTH, and MHKVL are suggested to construct Level 2 network in CIPWEST .
However, as the Kendall rank correlation coefficient has selected GENESE, we replace it
with NORTH as the next zone with high causality to ensure redundancy.

Figure 12 shows the CIPWEST network implementation based on the zones selected
by Kendall rank correlation coefficient and Granger causality to construct the Level 0,
Level 1, and Level 2 networks. As the Meta2WEST in CIPWEST requires the Meta1 forecasts
taken from CIPNORTH , CIPMHKVL, and CIPCAPITL, we implemented the CIPs up to Level
1 network, where the selected zones for each CIP network shown in Table 2.

CIPWEST

1
2 <4Me2 t a<-

oMd<e2 t a<-d

Metal

BaseLv

Basel Lv

Base Lv

Base0Lv

1MaaNwr
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Meta 

MHKVLL tkl  
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CAPITLL tkl  

MHKVLMeta_1l  tk P
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NORTHMeta_1l  tk P
^

CAPITLMeta_1l  tk P
^
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9 <4i t ng
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B<s<-  %
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Figure 12. CIPWEST networks implementation based on the recommendation zones that may improve
the forecasting accuracy and reconstruction in zone WEST.

Table 2. The zones selected by Kendall rank correlation coefficient to create the Level 0 and Level 1
networks in CIPNORTH , CIPMHKVL, and CIPCAPITL.

Forecaster
Required

Independent Variable
Selected

Independent Variables

CIPNORTH NORTH MHKVL, CENTRL
CIPMHKVL MHKVL CENTRL, CAPITL
CIPCAPITL CAPITL HUDVL, GENESE
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3.3.2. Hyperparameter Optimization

Using the Keras Tuner introduced in Section 2.4, we optimized the hyperparameters
for the base models implemented in CIPWEST , CIPNORTH , CIPMHKVL, and CIPCAPITL with
Bayesian optimization. Using fixed randomization, we tuned the base models using the
training dataset with 0% of MV prepared in Section 2.2, optimization objective set to
minimize the root-mean-square error (RMSE) score, five initial random points to start, and
a maximum number of trials set to 5. Furthermore, we set the search range for the first and
second LSTM layers units from 32 to 256 with 32 steps and the learning rate for Adam to
choose from 0.001, 0.0001, and 0.00001.

Table 3 shows the hyperparameter optimization outcome. Most base models share the
same hyperparameters, except the base model in CIPNORTH . Most likely, it is due to most
zones having a weak correlation zone North, leading to a different optimization outcome.

Table 3. The hyperparameters obtained for the base models in CIPWEST , CIPNORTH , CIPMHKVL, and
CIPCAPITL with Bayesian optimization.

Base Model
First LSTM
Layer Units

Second LSTM
Layer Units

Adam’s
Learning Rate

CIPWEST 192 96 0.001
CIPNORTH 128 128 0.001
CIPMHKVL 192 96 0.001
CIPCAPITL 192 96 0.001

3.4. Training
3.4.1. Level 0

To train the BaseMVWEST in the Level 0 network of CIPWEST , ten untrained base models
are prepared based on the hyperparameters defined in Table 3, where the first and second
LSTM layers use TanH with 192 units in the first layer, and 96 units in the second layer,
and 0.001 as the learning rate for Adam optimizer. Using the random seed to replicate the
weight initialization, each base model trained with a dataset with different MV percentages
prepared in Section 2.2, where MV = {0%, 10%, 20%, . . . , 90%}, 1000 batch size, 100 train-
ing epoch, and the early stop set to 3 with 0.0001 as the minimum observable improvement
on mean squared error (MSE).

The same method are used to train the BaseMV in the Level 0 network of CIPNORTH ,
CIPMHKBL, and CIPCAPITL for the Meta2WEST to use in reconstructing the forecast in
zone WEST.

3.4.2. Level 1

To train the Meta1WEST in the Level 1 network of CIPWEST , the forecasts from the
base models BaseMVWEST =

{
Base0%WEST , Base10%WEST , Base20%WEST , . . . , Base90%WEST

}
done

with different MV percentages in the training dataset are aggregated. Using the same
hyperparameters described in Section 3.2 for Meta1α , Meta1WEST is prepared and trained
with the training dataset, and the aggregated forecasts from the BaseMVWEST , where the
batch size is 1000, 100 training epoch, 0.0001 learning rate for Adam, and the early stop set
to 3 with 0.0001 as the minimum observable improvement on MSE.

The same method are used to train the Meta1 in the Level 1 network of CIPNORTH ,
CIPMHKBL, and CIPCAPITL for the Meta2WEST to use in reconstructing the forecast in
zone WEST.

3.4.3. Level 2

To train the Meta2WEST in the Level 2 network of CIPWEST , the forecasts from the
Meta1NORTH , Meta1MHKVL , and Meta1CAPITL taken from the Level 1 networks of CIPNORTH ,
CIPMHKBL, and CIPCAPITL done with different MV percentages in the training dataset
are aggregated. Using the same hyperparameters described in Section 3.2 for Meta2α ,
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Meta2WEST is prepared and trained with the training dataset and the aggregated Meta1
forecasts from the CIPNORTH , CIPMHKBL, and CIPCAPITL, where the batch size is 1000, 100
training epoch, 0.0001 learning rate for Adam, and the early stop set to 3 with 0.0001 as the
minimum observable improvement on MSE.

4. Evaluation

4.1. Overview

This section presents the Transformer, boosting ensemble learning, TCN, and stacked
LSTM as the previous methods to compare against CIP in forecasting the electricity load
in zone WEST, forecasting outcome on different percentages of simulated MV, and the
forecasting outcome when part of the CIP networks was offline due to the DDoS attack.
Figure 13 shows the high-level summary for the previous methods, various MV percentages
simulation and compromised network simulation.

Compromised 
Network Simulation

100% Missing 
Values Simulation

0-90% Missing 
Values Simulation

Transformer
Boosting Ensemble Learning

Temporal Convolutional Network
Stacked Long Short-Term Memory

Previous
Methods

“Copycat”
Forecasting methods

Utilizing individual 
base-models

“Predict” and “Improvise”
Forecasting methods

Figure 13. High-level summary of the previous forecasting methods, forecasting outcome on various
simulated missing values percentages, and forecasting outcome with compromised network.

4.2. Previous Methods
4.2.1. Transformer

Figure 14 shows the Transformer model implementation to forecast the electricity
load in zone WEST, where the head_size represents the size of the attention heads, the
num_head represents the number of attention heads in the multi-head attention layer,
the ff_dim represents the size of the feed-forward layer inside the Transformer block,
and the num_transformer_blocks as the number of Transformer blocks stacked in the
model. In addition, the mlp_units represents the number of units in each fully connected
layer of the multi-layer perceptron (MLP) following the Transformer blocks, mlp_dropout
represents the dropout rate in the output of each fully connected layer in the MLP, and
ovl_dropout represents the dropout rate in the output of the multi-head attention layer in
each Transformer block.

Transformer25%WEST

WEST0 t<12

Transformer Parameters:
• head_size = 256
• num_heads = 4
• _dim = 4
• num_transformer_blocks = 4
• mlp_units = 128
• mlp_dropout = 0.1
• ovl_dropout = 0.05

WEST12 t<24
^

P

Padding

Figure 14. Transformer-based electricity load forecasting model to forecast the electricity load in
zone WEST.

As the Transformer model tends to overfit when trained with ten training datasets that
have the same electricity load data with varying MV percentages prepared in Section 2.2,
we took the training dataset with 0% of MV and simulated 25% of MV in it instead,
which is the technique we used in our previous study to prevent overfitting. Models that
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exhibit overfitting will show unexpected behavior, where the forecasting accuracy will only
increase as the MV percentages increase, making it unpractical for normal operations.

We trained the Transformer model with a batch size of 1000, 100 training epoch, 0.0001
learning rate for Adam, and the early stop set to 3 with 0.0001 as the minimum observable
improvement on MSE.

4.2.2. Boosting Ensemble Learning

Figure 15 shows the boosting ensemble learning model implementation to forecast the
electricity load in zone WEST. We implemented the boosting ensemble learning based on
eXtreme Gradient Boosting (XGBoost) [41], where the max_depth represents the maximum
depth of each tree in the boosting process, the learning_rate represents the step size at
each iteration while moving toward a minimum of the loss function, and the objective as
reg:squarederror represents the specified learning task and objective function, which show
the model trained for regression problem to minimize the MSE.

XGBoost25%WEST

WEST0 t<12

XGBoost Parameters:
• max_depth = 6
• learning_rate = 0.1
• objective = reg:squarederror

WEST12 t<24
^

Figure 15. Boosting ensemble learning-based electricity load forecasting model to forecast the
electricity load in zone WEST.

Similar to the Transformer model, even with the early stop function set to stop the
training when the MSE score no longer improves after three times, the XGBoost model
exhibits overfitting tendencies when trained with ten training datasets with varying MV
percentages prepared in Section 2.2. We solved this issue using the training dataset with
25% of MV used on the Transformer model to train the XGBoost model in 500 epochs.

4.2.3. Temporal Convolutional Network

Figure 16 shows the TCN-based model implementation to forecast the electricity load
in zone WEST, where the first and second convolutional layers use 64 filters, kernel size
set to 3, and padding set to causal to ensure the current output depends only on the current
and past input, while the third dense layer has 50 units. The convolutional and the dense
layers use rectified linear units (ReLU) as the activation function.

As the TCN model does not exhibit the overfitting behavior shown in the Transformer
and XGBoost model, we used ten training datasets that have the same electricity load data
with varying MV percentages prepared in Section 2.2, concatenated into one long sequence
to train the TCN model with a batch size of 1000, 100 training epoch, 0.0001 learning rate
for Adam, and the early stop set to 3 with 0.0001 as the minimum observable improvement
on MSE.

TCN[0%, 10%, 20%, …, 90%]WEST

Convolutional
• lter = 64
• kernel_size = 3
• padding = causal

WEST12 t<24
^

Convolutional
• lter = 64
• kernel_size = 3
• padding = causal

Dense50

Padding

WEST0 t<12 P

Figure 16. Temporal Convolutional Network-based electricity load forecasting model to forecast the
electricity load in zone WEST.
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4.2.4. Stacked Long Short-Term Memory

Figure 17 shows the stacked LSTM-based model implementation to forecast the elec-
tricity load in zone WEST, where the first and second LSTM layers use 32 units and TanH
as the activation function.

S_LSTM[0%, 10%, 20%, …, 90%]WEST

LSTM32 LSTM32 WEST12 t<24
^WEST0 t<12

Padding

P

Figure 17. Stacked Long Short-Term Memory-based electricity load forecasting model to forecast the
electricity load in zone WEST.

Similar to the TCN model, we use ten training datasets that have the same electricity
load data with varying MV percentages prepared in Section 2.2, concatenated into one long
sequence to train the LSTM model with a batch size of 1000, 100 training epoch, 0.0001
learning rate for Adam, and the early stop set to 3 with 0.0001 as the minimum observable
improvement on MSE.

4.3. 0–90% Missing Values Simulation

In this test, we used evaluation datasets with different MV percentages prepared in
Section 2.2 to evaluate the forecasting accuracy of CIP, TCN, boosting ensemble learning,
Transformer, and stacked LSTM models on the electricity load in zone WEST. Table 4
and Figure 18 show the r2 forecasting scores on zone WEST. We used r2 to calculate the
forecasting accuracy, as the ease of interpretability gives us a generalized idea of how
similar the forecast would match with the plotted real values [42].

With 0% of MV in zones WEST, GENESE, and CENTRL, CIP utilizes the “predict”
forecasting method in the Level 0 network to forecast the electricity load, which achieves
the highest r2 score of 0.98831 when compared to the previous forecasting methods. As
the MV percentages in WEST, GENESE, and CENTRL rise from 1% to 90%, CIP utilizes
the “improvise” forecasting method to combine the forecast from base models in Level 0
network and fine-tune them into one forecast using the meta-model in Level 1 network,
which yields r2 score of 0.96225 with 80% of MV in the independent variables. In contrast,
none of the previous forecasting methods achieve r2 score of 0.9 and above with 80% of
MV. Even with 90% of MV, the r2 score on CIP only falls to 0.89345, showing the resilience
of our proposed method against MV, as the r2 scores for the previous methods already fall
below 0.7.

Table 4. Coefficient of determination (r2) scores comparison between multiple forecasting methods
on different missing values percentages in zone WEST.

MV [%] CIP TCN Boosting Transformer Stacked LSTM

0 0.98831 0.98567 0.98523 0.93445 0.98626
10 0.98501 0.98465 0.98478 0.91115 0.98579
20 0.98498 0.98381 0.98392 0.89104 0.98518
30 0.98492 0.98273 0.98241 0.87363 0.98421
40 0.98478 0.98159 0.97655 0.85770 0.98311
50 0.98410 0.97856 0.95719 0.36864 0.98029
60 0.98214 0.97292 0.91396 −1.53278 0.97468
70 0.97727 0.95687 0.75946 −11.5464 0.95892
80 0.96225 0.88543 0.33560 −74.1568 0.88781
90 0.89345 0.65085 −0.66817 −296.831 0.65736

Average 0.97272 0.93631 0.72109 −37.92314 0.93836
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Figure 18. Plotted coefficient of determination (r2) scores comparison between multiple forecasting
methods on different missing values percentages in zone WEST.

Examining the forecasting accuracies for the previous forecasting methods, TCN and
stacked LSTM models are the only previous methods that equally perform well and could
maintain a r2 score of 0.95 with 70% of MV in the independent variable. These results show
the TCN and stacked LSTM capability in capturing the dependencies in the independent
variables with either convolutional layers or gating mechanisms without MV negatively
affecting the forecast.

Table 5 and Figure 19 show the RMSE forecasting scores on zone WEST, which support
the results shown in Table 4 and Figure 18 where CIP surpass previous forecasting methods
in resiliency against MV.
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Figure 19. Plotted root-mean-square error scores comparison between multiple forecasting methods
on different missing values percentages in zone WEST.

Table 5. Root-mean-square error scores comparison between multiple forecasting methods on
different missing values percentages.

MV [%] CIP TCN Boosting Transformer Stacked LSTM

0 0.03137 0.03433 0.03480 0.07452 0.03355
10 0.03555 0.03557 0.03535 0.08756 0.03413
20 0.03565 0.03656 0.03637 0.09733 0.03488
30 0.03573 0.03779 0.03814 0.10501 0.03605
40 0.03588 0.03903 0.04443 0.11154 0.03733
50 0.03670 0.04223 0.06089 0.23587 0.04044
60 0.03899 0.04779 0.08686 0.47234 0.04616
70 0.04409 0.06083 0.14554 1.05115 0.05935
80 0.05712 0.10024 0.24196 2.57265 0.09918
90 0.09663 0.17537 0.38340 5.12129 0.17371

Average 0.04477 0.06097 0.11077 0.99293 0.05948
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4.4. 100% Missing Values Simulation

In this test, we set the MV percentages to 100% for zones WEST, GENESE, and
CENTRL. As it is impossible to forecast with 100% of MV, CIP relies on the “copycat”
forecasting method to reconstruct the forecast for zone WEST, where the MV percentages
in each zone rise from 0% to 90% with a 10% increment. Table 6 and Figure 20 show the
results where CIP obtained an r2 score of 0.81445 with 0% of MV. In addition, the score only
drops to 0.74013 with 90% of MV, which is a 9.56142% degradation.

Table 6. Coefficient of determination (r2) and root-mean-square error scores obtained from the
reconstructed electricity load forecast for zone WEST.

MV [%] r2 RMSE

0 0.81445 0.12785
10 0.76918 0.14261
20 0.76517 0.14385
30 0.76375 0.14428
40 0.75983 0.14548
50 0.75710 0.14630
60 0.75839 0.14591
70 0.76295 0.14453
80 0.76616 0.14354
90 0.74013 0.15129
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0.85

r2

0.10

0.12

0.14

0 10 20 30 40 50 60 70 80 90

RM
SE

MV [%]
Figure 20. Plotted coefficient of determination (r2) and root-mean-square error scores obtained from
the reconstructed electricity load forecast for zone WEST.

Although the forecast accuracy using the “copycat” method is inferior, it constructed
the forecast in zone WEST even with 100% of MV in WEST, GENESE, and CENTRL,
which is unattainable with previous methods.

4.5. Compromised Network Simulation

In the final test, we simulated a scenario where Level 1 and Level 2 networks in
CIPWEST are offline. Using the base model trained with an MV percentage close to the
MV percentage in the input data, we could obtain an accurate prediction similar to the
meta-model in Level 1. Table 7 and Figure 21 show the forecasting outcome using the
individual base models.
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Table 7. Coefficient of determination (r2) and root-mean-square error scores obtained from the
individual base-model load forecast for zone WEST.

MV [%] r2 RMSE

0 0.98826 0.03141
10 0.98739 0.03245
20 0.98704 0.03294
30 0.98440 0.03614
40 0.98409 0.03644
50 0.98235 0.03846
60 0.97132 0.04917
70 0.97086 0.04997
80 0.95744 0.06045
90 0.88504 0.10029
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Figure 21. Plotted coefficient of determination (r2) and root-mean-square error scores obtained from
the individual base-model load forecast for zone WEST.

5. Conclusions

The digitalization of essential infrastructures in smart cities introduces new challenges.
With the increasing threat of cyberattacks targeting the electricity infrastructure, we must
design countermeasures to ensure the service will not be interrupted, which could nega-
tively impact the economy and other essential services. We proposed CIP, a distributed
forecasting network that could handle a high percentage of MV and solve the SPoF vul-
nerability to prevent interruption. CIP works by utilizing multi-level networks to forecast
the electricity load based on the MV percentage in the input sequence. When there is no
MV, we rely solely on the base model in Level 0 to “predict” the electricity load to reduce
unnecessary computation, with an r2 score of 0.98831. As the MV rises from 1% to 90%,
CIP utilizes the meta-model in the Level 1 network to “improvise” the “prediction” from
the base models from Level 0, which allows our proposed method to handle up to 80% of
MV while maintaining r2 score of 0.96225. Even when one of the data sources providing
the electricity load data is offline, we reconstruct the forecast using a meta-model in Level 2
to create a “copycat” forecast, which CIP reconstructs from electricity load data from other
zones with r2 score of 0.81445. Finally, as our proposed forecast method is modular, the
predictions from the individual base models trained with the MV percentage close to the
input data are accessible with comparable accuracy with the meta-model in Level 1.

For future works, we aim to expand the capability of our CIP to handle concept drift
by integrating our previous research using radian scaling [43], detecting data falsification,
and improving the forecasting accuracy in Level 2 using different types of data, as our
current research is limited only to the electricity load data from other zones.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning
DDoS Distributed Denial-of-Service
MV Missing Values
ANN Artificial Neural Networks
SPoF Single Point of Failure
CIP Collective Intelligence Predictor
NYISO New York Independent System Operator
RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
TCN Temporal Convolutional Network
LP Linear Programming
MAE Mean Absolute Error
TanH Hyperbolic Tangent
DNN Deep Neural Networks
RMSE Root-Mean-Square Error
MSE Mean squared Error
MLP Multi-Layer Perceptron
XGBoost eXtreme Gradient Boosting
ReLU Rectified Linear Units
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Figure A1. Kendall rank correlation coefficient heatmap on the New York Independent System
Operator’s dataset.
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Figure A2. Granger causality heatmap on the New York Independent System Operator’s dataset.
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Abstract: The controller area network (CAN) remains the de facto standard for intra-vehicular
communication. CAN enables reliable communication between various microcontrollers and ve-
hicle devices without a central computer, which is essential for sustainable transportation systems.
However, it poses some serious security threats due to the nature of communication. According to
caranddriver.com, there were at least 150 automotive cybersecurity incidents in 2019, a 94% year-
over-year increase since 2016, according to a report from Upstream Security. To safeguard vehicles
from such attacks, securing CAN communication, which is the most relied-on in-vehicle network
(IVN), should be configured with modifications. In this paper, we developed a configurable CAN
communication protocol to secure CAN with a hardware prototype for rapidly prototyping attacks,
intrusion detection systems, and response systems. We used a field programmable gate array (FPGA)
to prototype CAN to improve reconfigurability. This project focuses on attack detection and response
in the case of bus-off attacks. This paper introduces two main modules: the multiple generic errors
module with the introduction of the error state machine (MGEESM) module and the bus-off attack
detection (BOAD) module for a frame size of 111 bits (BOAD111), based on the CAN protocol
presenting the introduction of form error, CRC error, and bit error. Our results show that, in the
scenario with the transmit error counter (TEC) value 127 for switching between the error-passive
state and bus-off state, the detection times for form error, CRC error, and bit error introduced in the
MGEESM module are 3.610 ms, 3.550 ms, and 3.280 ms, respectively, with the introduction of error in
consecutive frames. The detection time for BOAD111 module in the same scenario is 3.247 ms.

Keywords: controller area network (CAN); bus-off attack; CAN attack detection; CAN attack response

1. Introduction

Intelligent connected vehicles (ICVs) are currently in a phase of rapid advancement,
with intelligence and connectivity being the prevailing trends. A recent study indicates that
over 86% of vehicles by the year 2023 will be outfitted with network control systems [1–4],
offering a broader selection of advanced features [5], including vehicle management and
adaptive cruise control, as depicted in Figure 1. This figure represents the CAN layout in
cars with the CAN bus for linear and star topology connecting various electronic control
units (ECUs) through CAN nodes to the CAN bus. The transmission control, adaptive
cruise control, and comfort control CAN modules are connected to the CAN bus with linear
topology, and rear control and safety control CAN modules are connected to the CAN bus
with star topology, where various ECUs are connected to CAN modules as control units.

CAN enables reliable communication between microcontrollers and vehicle devices
without a central computer. This efficiency is crucial for electric vehicles (EVs) and hybrid
vehicles, where precise control over battery management systems, motor controllers, and
other subsystems is essential for optimal performance and energy efficiency and is key to
sustainable transportation systems. By allowing multiple microcontrollers to communicate
over a single or dual-wire network, CAN reduces the need for complex wiring harnesses.
This not only reduces the weight of the vehicle, leading to improved fuel efficiency and
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reduced emissions, but also lowers production costs and the environmental impact of man-
ufacturing. Moreover, in electric and hybrid vehicles, CAN networks integrate renewable
energy sources, such as solar panels, with the vehicle’s energy system. This integration is a
crucial aspect of making transportation more sustainable.

Moreover, automobiles establish links with diverse external networks, such as vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication networks, as depicted
in Figure 2. This figure exemplifies the communication network consisting of vehicles,
cellular base stations, an internet unit, and a roadside unit. This shift turns present-
day vehicles into interconnected systems rather than operating in isolation. The more
sophisticated the system is and the more connected the vehicle is, the more exposed
it is to attacks as mentioned in the Detroit Free Press [6]. To meet the requirements
for interfacing with the external networks, the number of ECUs within cars is steadily
increasing. Consequently, the complexity of IVNs is also on the rise [5,7,8].

Considering factors such as data volume, response time, reliability, application needs,
and other system criteria, there are five frequently employed IVNs: the local interconnect
network (LIN), CAN, FlexRay, media-oriented system transport (MOST), and Ethernet.
Among these, the CAN protocol is the most widely used, primarily due to its cost-efficiency,
reliable performance, and fault tolerance [9].

Transmission
Control

Adaptive
Cruise Control Comfort Control

Rear
Control

CAN Bus for linear
topology

CAN Bus for star
topology

Engine Unit

Air Bag

Mirror

Rear Light

Transmission Unit

Local connection

CAN node

Safety Control

Seat Belt Control

Anti Lock Braking System

AC

Figure 1. The layout of the CAN network used for ECU communication in cars connects various units
within the vehicle. The linear and star topologies for the CAN network are widely used, connecting
regular and safety-critical nodes together.
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V2I
V2I

V2I

V2V
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Figure 2. The communication between vehicles and external infrastructure denoted by V2V and V2I
links connecting cars to each other and roadside units for sharing information.

The CAN communication mentioned above utilizes a bus topology known as the
CAN bus to facilitate communication among ECUs, which was originally developed by
Bosch for vehicle communication networks. This system allows ECUs to connect without
relying on a central host computer. The CAN system enables real-time control by enabling
direct message exchange between any pair of nodes and is known for its robust error
tolerance [10,11].
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Nevertheless, the advantages resulting from improved connectivity and added func-
tionalities do expose evident security weaknesses, including potential threats such as
suspension attacks, flooding attacks, spoofing attacks, replay attacks, fuzzing attacks, and
masquerade attacks, as outlined in references [5,11–14].

One of the strategies discussed to counter CAN attacks is the employment of an
intrusion detection system (IDS) [13,15]. IVN IDSs are introduced with multiple goals in
mind concerning the security of automotive systems. These include the ability to swiftly
identify abnormal intrusions (from the adversary or malicious user), furnish accurate
reference data for intrusion prevention systems (IPSs), and the capability to prevent further
damage resulting from IVN attacks. Early alerts provided by IVN IDS can help mitigate
risks posed by malicious adversaries, making it especially suitable for IVN environments
with constrained computing and bandwidth resources, as referenced in [16–18].

This paper employs a hierarchical approach to building, emulating, and implementing
modules for prototyping IDS for CAN structure. For this purpose, the Xilinx Vivado tool is
used along with the Nexys A7 board while using Verilog hardware description language
(HDL). Here, we calculated the time it takes for the compromised module to enter a ‘bus-off’
state and recover from it, and we presented it in a graphical format.

Under conditions where errors are introduced in every consecutive frame and every
alternate frame, these cases are generated considering the transmit error counter (TEC)
value for error state transition between the error-passive state and bus-off state switching
between 255 and 127.

The main contributions of this paper are as follows :

• Create a real scenario environment for an embedded system showcasing a bus-off
assault on the CAN accompanied by a method for detecting such an attack.

• Devise a safeguarding mechanism for CAN communication with a response system
designed to counteract potential intrusions.

• Explore different configurations of CAN communication protocol error states on
reconfigurable platforms forming part of intrusion detection and intrusion response
systems.

• Introduce a reconfigurable CAN protocol based on a field programmable gate array
(FPGA).

The rest of the paper is organized as follows: Section 2 provides background informa-
tion, Section 3 presents the proposed methodology, and Section 4 provides the experimental
setup and results. Finally, Section 5 summarizes the contributions of this work.

2. Background

In this chapter, we first provide an overview of the concept of CAN. Then, we discuss
the characteristics and vulnerabilities of IVNs. Additionally, we review the associated
attacks. Then, we discuss the constraints of IVN IDSs. Next, we present countermea-
sures such as IDSs to detect the vulnerabilities. Finally, we discuss the advantages of
implementing CAN using the FPGA.

2.1. CAN Preliminaries

The CAN operates as a broadcast-message communication protocol, utilizing bitwise
arbitration for contention resolution on the CAN bus. In cases of simultaneous frame
transmission by different nodes, the node with the highest priority continues, while the
other nodes retry later [19].

The CAN frame includes data, remote, error, and overload frames. A data frame
provides data transmission (can be a standard data CAN frame or extended data CAN
frame), a remote frame requests data, an error frame signals an error, and an overload
frame delays the following message until the current one is processed [20].

A standard data CAN frame composition consists of the following components: start-
of-frame (SOF-1 bit), identifier (11 bits), remote transmission request (RTR-1 bit), control
field (6 bits), data field (ranging from 0 to 8 bytes), cyclic redundancy check (CRC) field
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along with CRC delimiter (16 bits), acknowledge (ACK) field along with ACK delimiter
(2 bits), end-of-frame (EOF-7 bits), and inter-frame space (3 bits) [21], as shown in Figure 3a.
The extended data CAN frame employs 29 bits for identifier arbitration, which includes an
identifier field (11 bits) and an extended identifier field (18 bits). Furthermore, the extended
data CAN frame also has substitute remote request (SRR-1 bit) and identifier extension
(IDE-1 bit), which differentiates standard data CAN frames from extended data CAN
frames, and RTR (1 bit) after the extended identifier field [22], as shown in Figure 3b. The
remote frame closely resembles the extended data CAN frame but lacks the data field, as
shown in Figure 3c. Figure 3 illustrates these three frame types, in addition to the error and
overload frames. The error frame consists of the following fields: error flag (6 bits), error
echo flag (6 bits), and error delimiter (8 bits), as shown in Figure 3d. Five types of errors
can be generated within the CAN frame. These include acknowledge (ACK) error, bit error,
CRC error, form error, and stuff error. This paper focuses on the generation and detection
of bit error, CRC error, and form error to formulate an attack on the CAN frames. Moreover,
bit stuffing is also taken into account in certain cases. The overload frame encompasses
the following fields: overload flag (6 bits) and overload delimiter (8 bits), as shown in
Figure 3e.
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Figure 3. Different frames integral to the CAN protocol, facilitating communication among multiple
CAN nodes. (a) The standard data frame with size varying (i.e., 0 to 8 bytes) from 47 bits to 111 bits,
(b) the extended data frame with size varying from 67 bits to 131 bits, (c) the remote frame with frame
size of 67 bits, (d) the error frame with frame size 20 bits, and (e) the overload frame with frame size
of 14 bits.

The CAN frame handles up to 8 bytes of data [23], featuring collision detection,
error detection, signaling, and fault confinement. The CAN protocol employs static, fixed
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priority non-preemptive scheduling and accommodates periodic, sporadic, or aperiodic
messages [24].

2.2. Characteristics and Vulnerabilities of CAN IVNs
2.2.1. IVN Characteristics

The automotive electronic system functions as a diverse distributed real-time system,
with multiple ECUs connected through an IVN that communicates via a central gateway.
The IVN is characterized by a heterogeneous distributed real-time system environment,
numerous external interfaces, a multi-function safety-critical level system, and a lack of
cybersecurity design [16].

2.2.2. Vulnerabilities in CAN-Based IVNs

The CAN bus lacks fundamental security mechanisms in its protocol, leaving vehicles
susceptible to malicious adversaries. Six vulnerabilities exist according to the confiden-
tiality, integrity, availability (CIA) security model. These vulnerabilities involve the lack
of encryption, authentication, and integrity-checking in CAN bus traffic. Additionally,
protocol characteristics such as broadcast transmission, priority-based arbitration, and
limited bandwidth introduce vulnerabilities [25]. These vulnerabilities expose IVNs to
various attacks, as elaborated in the following section.

2.3. Types of CAN Attacks

The six categories of CAN attack scenarios can be described as follows:
Suspension Attack: To mount a suspension attack, the adversary needs only one

weakly compromised ECU. As one type of denial-of-service (DoS) attack, the objective
of this attack is to suspend the weakly compromised ECU’s message transmissions, thus
preventing the delivery of information it acquired to other ECUs [12].

Flooding Attack: In this attack scenario, an adversary seeks to initiate a DoS attack by
inundating the network with a high volume of CAN packets, often with high priority (e.g.,
CAN ID of 0 × 000) [26].

Spoofing Attack: To disrupt specific vehicle functions (such as gear control or RPM),
an adversary injects control packets based on prior knowledge of the target vehicle [27].

Replay Attack: An adversary records regular CAN bus traffic and subsequently
replays it onto the CAN bus [28].

Fuzzing Attack: In a fuzzing attack, the adversary generates CAN packets randomly.
This attack can lead to unexpected and erratic behavior in the targeted vehicle [5].

Masquerade Attack: In this scenario, a normal ECU’s transmission is halted, allowing
a compromised ECU to assume the role of the original ECU by mimicking its CAN IDs and
transmission patterns [29].

Out of the six categories of CAN attack scenarios described above, this paper focuses
on the detection of a suspension attack to emulate a bus-off condition.

2.4. Constraints of CAN IVN IDS

Constraints in the context of IDSs for IVNs encompass limitations related to hardware,
cost, detection accuracy, response time, and standardized construction [13].

2.5. Categories of IVN IDSs

The IVN IDS for CAN can be categorized into three techniques: statistical-based,
machine learning-based, and neural network-based.

2.5.1. Statistical-Based IDS for IVN

The IDS, which relies on statistical analysis, assesses message sequences statistically.
This approach involves comparing two sets of messages using statistical metrics like cosine
similarity, Pearson correlation, and the chi-squared test [30,31]. Suppose there is a notable
alteration in message frequencies or sequences indicated by metric values surpassing
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specified thresholds. In that case, the system predicts the occurrence of intrusions in the
subsequent message interval [32]. Another aspect of the statistical analysis for intrusion
detection involves assessing message entropy [33,34].

2.5.2. Machine Learning-Based IDS for IVN

In machine learning, three main models are generally employed for prediction: the re-
gression model, the classification model, and the clustering model. The classification-based
or clustering-based models find application in real-time intrusion detection scenario predic-
tion [14,35]. Specifically, the classification-based model is suitable for supervised problems,
while the clustering-based model is more relevant for unsupervised problems [36].

Supervised machine learning models can be further divided into single classifiers
and ensemble learning models. Decision trees (DT) and the k-nearest neighbor (KNN)
algorithm serve as examples of single classifiers, while random forest (RF) and extreme
gradient boosting (XGBoost) are chosen for ensemble learning models. In the context of
semi-supervised learning methods, robust covariance (RC), local outlier factor (LOF), and
isolation forest (IF) are selected as baselines [37].

Another study outlined in [38] employed unsupervised learning, a method that oper-
ates without the need for labeled data. This unsupervised approach adopted a two-stage
process involving deep learning and a probabilistic model.

2.5.3. Neural Network-Based IDS for IVN

Deep and machine learning algorithms have made significant progress and been
proven highly effective in anomaly detection [39], demonstrating excellent performance [40].
The neural networks employed for this purpose encompass a range of architectures, in-
cluding convolutional neural networks (CNNs), long short-term memory (LSTM) neural
networks, and advanced models such as the residual neural network (ResNet) and leCun
network (LeNet) based on deep transfer learning, as proposed by Mehedi et al. [40]. These
models are considered baseline models in the context of anomaly detection [41].

Deep transfer learning (DTL) addresses issues such as limited data availability and
the prevalence of application-specific intrusion detection system (IDS) models. The concept
revolves around integrating knowledge from a pre-trained source model into a target
model. Through this process, DTL facilitates more efficient information amalgamation,
potentially yielding superior outcomes compared to training models anew [42]. However,
due to a lack of computational power in FGPA, these efforts are limited to GPU-based
implementations.

2.6. Advantages of Implementing CAN Protocol on Reconfigurable Computing Platform

FPGAs are highly prized for their ample resources and adaptability as specialized
integrated circuits. They play a crucial role in digital electronic design and offer three main
benefits [43]. Firstly, FPGA vendors provide robust and user-friendly electronic design
tools (EDA), extensive documentation, and personalized support to assist with design
and verification. Secondly, unlike application-specific integrated circuits (ASICs) [44], the
manufacturing costs for demonstration examples are low [45]. Thirdly, modifications can
be implemented at any stage of the design process, thanks to advanced systems that enable
dynamic hardware reconfiguration [46,47].

In aerospace and military/aviation critical systems, where programming errors are
intolerable, FPGAs’ early-stage design verification feature becomes indispensable. FPGA
verification encompasses various processes, such as coding rule checks, manual walk-
throughs, functional and timing simulations, static timing analysis, cross-clock domain
checks, and logical equivalence checks. Functional simulation, in particular, holds signifi-
cant importance in ensuring design reliability, a critical consideration given the exponential
growth of verification cases with increasing design scale [48]. Implementation of CAN pro-
tocol on FPGA allows researchers to prototype different IDS quickly and allows adaptability
with varying CAN speeds.
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3. Proposed Methodology

3.1. CAN Architecture

Figure 4 shows the basic architecture of the CAN module interacting with the ECU
on one end and the CAN transceiver connected to the CAN bus on the other end. The
CAN module comprises a transmission buffer unit (TX buffer unit) and a reception buffer
unit (RX buffer unit). The data are fed into the transmission buffer unit from the ECU
with a frame size of 111 bits (for standard frame size) and are received from the reception
buffer unit with a frame size of 111 bits (for standard frame size) into the ECU. In addition,
there is a transmitting unit (TX Unit), a reception unit (RX Unit), and an error detection
unit. The clock unit maintains synchronization by connecting to transmission, reception,
and error detection units along with the TX buffer unit and RX buffer unit. The data are
transmitted between various units within the CAN module one bit at a time with respect to
the clock signal. The flow of data is from the RX unit to the RX buffer unit. For data flow
on the transmission side, there is a contention between data from the TX buffer unit and
error frame based on the error generation signal from the error detection unit. The data are
passed onto the TX unit. The data flows between the TX unit and the CAN transceiver and
also between the CAN transceiver and RX Unit. On the other side of the CAN transceiver
is the CAN bus.

Figure 4. The essential components of the CAN architecture show the interaction of the CAN module
with the ECU on one end and with the CAN bus through the CAN transceiver on the other end.

3.2. Communication among CAN Nodes over CAN Bus

The communication network of the CAN modules over the CAN bus is shown in
Figure 5. Here, we present N nodes with one compromised node (the adversary has access
to CAN bus through this node) and N − 1 normal nodes. The identifier values highlighted
in different colors indicate which identifiers among different nodes will be considered
at a respective time stamp for arbitration, as can be seen in Figure 5. Node 1, which the
adversary compromises, has the lowest arbitration ID values at all the time stamps. So,
communication is dominated by the data from this node.
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Figure 5. The CAN communication network comprises N CAN modules interacting over the CAN
bus. Here, node one is compromised by the malicious adversary for communication with other
nodes. The arbitration IDs to be considered at each time stamp are color-coded. The IDs used by
the compromised node have a lower value at all time stamps, indicating that this node will win the
arbitration every time and put its content on the CAN bus, which can lead to a bus-off attack through
this compromised node.

3.3. Proposed Intrusion Detection and Intrusion Response Systems

We utilized the concept of a bus-off state, which is associated with a scenario when
a node fails to transmit data frames and the associated error counter reaches a specified
value. In order to detect a bus-off attack, the CAN module needs to enter the bus-off state.
Furthermore, the CAN module also comes out of the bus-off state after the transmission of
a specific number of recessive bits. The detection time is the time for the CAN module to
enter the bus-off state. The response time is the time for the CAN module to come out of
the bus-off state.

The transition of the CAN node from the error-passive state into the bus-off state and
back into the error-active state is represented in two error state diagrams based on the
values of the transmit error counter (TEC) and the receive error counter (REC) [21]. Figure 6
illustrates respective error state diagrams. In Figure 6a, a TEC value of 127 facilitates the
transition from the error-active state to the error-passive state. A TEC value of 255 is
required to shift from the error-passive state to the bus-off state. The transition from bus-off
to error-active states involves the transmission of 128 × 11 recessive bits. Similarly, in
Figure 6b, the TEC value for moving from error-active to error-passive states is 63, while
transitioning from error-passive to bus-off states requires a TEC value of 127. The shift
from bus-off to error-active states involves the transmission of 64× 11 recessive bits. Hence,
using two error state diagrams for the threat models signifies the reconfigurability of the
CAN prototype on the FPGA.
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Figure 6. The error state diagrams for a CAN depict the various states that the network can enter
due to communication errors. These state diagrams illustrate how the CAN protocol responds to
errors by entering specific error states and implementing error recovery mechanisms. (a) Error state
diagram with error state transitions based on TEC values of 127 and 255. (b) Error state diagram with
error state transitions based on TEC values of 63 and 127.

Setting the TEC value at 255 as the threshold for transitioning from error-passive to
bus-off in the CAN protocol aims to establish a distinct separation between these error
states. This choice signifies a severe and persistent communication issue triggered after
detecting a significant number of errors. The 8-bit TEC counter ranges from 0 to 255, and
the transition to bus-off occurs when TEC reaches the maximum value, providing a clear
signal of persistent communication problems.

While a TEC value of 127 allows configurability, values lower than 127 are avoided to
prevent frequent entries into the bus-off state. This precaution guards against heightened
sensitivity to transient errors, maintaining a balance between error sensitivity and system
robustness. Lowering the threshold too much could prompt quicker error responses but
might also increase the likelihood of nodes being excluded due to false positives or transient
issues.

In summary, the entry of the CAN module into the bus-off state is represented as
intrusion detection, for which detection time is computed. Furthermore, exiting the CAN
module from the bus-off state is represented as an intrusion response for which response
time is calculated.

3.4. Threat Model for Individual CAN Nodes Interacting over CAN Bus

The threat model is shown in Figure 7. This threat model in the research is consistent
with the existing literature, as mentioned in [49]. The assumption here is that the adversary
can eavesdrop on the TX signal coming out of the CAN module and going into the CAN
transceiver from that CAN module. Due to the adversary’s access to the TX signal, the
adversary manipulates the logic value placed on the line going into the CAN transceivers.
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Figure 7. Threat model showing adversary taking charge of the CAN bus in communication of
individual CAN nodes over CAN bus.

The threat model is built on the basic architecture shown in Figure 4. In this threat
model, data transmission and reception happens one bit at a time with respect to the clock
signal. However, transmission from and reception to the ECU from the CAN module is
considered for a 111 bit frame size (standard frame size). The TX signal outputted with
the adversary access point is sent to the CAN transceiver from the TX Unit. This signal
and the RX signal from the CAN transceiver are input to a multiplexer within the CAN
module with Arbitration_Win as the select signal. The output of this multiplexer, RXOut,
is put as input to the second multiplexer, which has its second input coming from the TX
line of the CAN module, and RXIn is its output with Mode as a select signal sent to the RX
Unit. The error is generated based on comparing TX and RXIn signals within the error
detection unit. There is contention between data from the TX buffer unit and error frame
with respect to the error signal generated from the error detection unit. The contented data
are put onto the TX unit, from where the data are sent as input to the CAN transceiver and
multiplexer with Arbitration_Win as the select signal.

The types of errors introduced include form, CRC, and bit errors. When the bus-
off attack comes into the picture through multiple occurrences of any of the errors, the
communication on the CAN bus is stopped. However, an inner transition from TX to
RXIn still occurs (based on the value of the Mode signal). The communication happens bit
by bit in each clock cycle. The transfer of 11 × 128 recessive bits in one case and 11 × 64
recessive bits in the second case puts the node back into the network for communication
(transmission from bus-off state to error-active state) on the CAN bus for transmission and
reception.

3.5. Threat Model for Interaction of Multiple CAN Nodes

Figure 8 shows communication among N nodes over the CAN bus presented in
Figure 5. In this threat model, data transmission and reception occurs one bit at a time
with respect to the clock signal in all the respective CAN modules, with the transmission
from and reception to ECU from the CAN modules happening for a frame size of 111
bits (standard frame size considered). When multiple CAN nodes interact with the CAN
bus, each CAN module outputs the signal from the TX Unit to the CAN transceiver. The
adversary has access to the TX line of CAN module 1, on which it injects an inverted
signal with respect to the CAN signal from the respective CAN module at a specific time
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stamp. The compromised output is sent to the arbitration process unit, which also has
signals from all other CAN modules (N − 1 modules). Based on the arbitration process,
after the contention between the signals from all the CAN modules, one signal wins the
arbitration, and that signal is broadcast to all CAN transceivers. The RX signals from all
the CAN transceivers are sent to CAN modules. The error frame is generated based on the
comparison between received and transmitted signals within the CAN modules. Upon
generation of enough error frames, the NV(NodeVictimized) signal is set, and it puts that
particular node in the bus-off state in which the recessive bit is passed through from the
reception line into the RX Unit of the respective CAN module.

Figure 8. Threat model showing adversary gaining access to a CAN node interacting with multiple
nodes in communication over the CAN bus.

Algorithm 1 explains Figure 8. The input in Line 1 of the algorithm consists of N
standard CAN messages. The output of the algorithm is the data being fed into the RX
units. In Line 3, the TEC values and node victimized (NV) values are set to zero for all N
CAN modules. Iterating over N CAN modules in lines 4–9, the TX signal is fed in the signal
from the respective standard CAN messages in Line 5. Next, in Line 6, the TXCompromised
signal is fed with the TX value for all modules except the compromised one. For the
compromised module, there is a bit flip with respect to the TX signal at a specific position in
the standard CAN message that is being provided to the TXCompromised signal. Finally, the
TXCompromised signals are placed onto the respective TXCANTransceivers for all N modules
in Line 7. In Line 8, the RX

′
i signal is given the result of the arbitrationpriority() function,

where the signals from all CAN transceivers contest for the bus and only one signal with the
highest arbitration priority is selected as output. In Lines 10 to 15, the “For loop” iterates
over all N modules and checks for if the condition does not match the RX

′
i signal to the

TXCompromisedi signal in Line 11. Based on this if statement, the NVi signal is assigned
a value of zero in Line 12. The RXUniti is fed with either a recessive bit stream (RBS) or
an RX

′
i based on the NVi signal using the f etchdata() function, as shown in Line 14. The

RBS consists of a stream of logic one values. The next “For loop”, in Lines 16 to 33, again
iterates over all N modules, conditionally updating TEC values using the errorgeneration()
function. The condition on TEC

′
i being greater than 255 sets the NV

′
i value to one. Based

on the NV
′
i , the RXUniti is fed with either a RBS or a RX

′
i using the f etchdata() function in

Line 30.
Algorithm 1 shows the transfer of a node to a bus-off state for the TEC value exceeding

a value of 255. The value for TEC chosen for transition between states is large enough to
separate the attack from a malfunction in terms of false positives.
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Algorithm 1 The bus-off attack detection and response algorithm.

1: Input : Standard CAN messages
2: Output : Data into RXUnits
3: Initialize : TECi 0 and NVi 0 for i from 1 to N � Transmit error counteri (TECi),

node victimizedi (NVi)
4: for i 1 to N do
5: TXi transmitframe(Standard CAN messagei) � Transmitting Standard CAN

message
6: TXCompromisedi adversarysccess(TXi) � Transmitting TX signal

with compromised value at a specific position within the message frame for a specific
module and without a compromised value for rest of the modules.

7: TXCANTransceiveri TXCompromisedi � Value assigned to CAN transceiver
from TX signal

8: RX
′
i arbitrationpriority(TXCANTransceiveri ) � Result of arbitration process

moved into RX signal
9: end for

10: for i 1 to N do
11: if RX

′
i ! = TXCompromisedi then

12: NVi 0
13: end if
14: RXUniti fetchdata(NVi, RBS, RX

′
i ) � Putting data into CAN RXUniti based on

NVi from either recessive bit stream (RBS) or RX
′
i

15: end for
16: for i 1 to N do
17: if RX

′
i == TXCompromisedi then

18: while TEC
′
i <= 255 do

19: Error
′
i errorgeneration(TXi, RX

′
i )

20: if Error
′
i == 1 then

21: TEC
′
i TEC

′
i + 8

22: else
23: TEC

′
i TEC

′
i − 1

24: end if
25: if TEC

′
i > 255 then

26: NV
′
i 1

27: else
28: NV

′
i 0

29: end if
30: RXUniti fetchdata(NV

′
i , RBS, RX

′
i ) � Putting data into CAN RXUniti

based on NV
′
i from either RBS or RX

′
i

31: end while
32: end if
33: end for

4. Experimental Results

4.1. Experimental Setup

The Xilinx Vivado tool is used for coding in Verilog and seeing the simulation results
for the modules created to emulate the behavior of CAN. The implementation of CAN
functionality is observed on the NEXYS A7 Digilent board, which is coded using the
Xilinx Vivado tool and passes through synthesis, implementation, and bitstream generation
phases before programming the board through the hardware manager. The hardware
setup used in this project is shown in Figure 9. The figure shows the interaction between
Arduino and the CAN shield and FPGA, in which CAN logic is prototyped. The clock
period used for the simulation of modules is 1 microsecond (to match the 1 Mbps speed of
CAN protocol).
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NEXYS A7 Digilent
FPGA Board

Arduino With
CAN Shield

Arduino With
CAN Shield

Figure 9. Our hardware setup for emulating CAN controller logic on FPGA and its interaction with
other CAN modules over the CAN bus.

Figure 10 illustrates an example of simulation results for the MGEESM module with
the transmission of form error in every alternate standard frame with a length of 111 bits by
showing the transition between the error-passive state and the bus-off state as the transmit
error counter exceeds value 255. Similarly, Figure 11 illustrates an example of simulation
results for the MGEESM module with the transmission of form error in every alternate
standard frame with a length of 111 bits by showing the transition between the bus-off state
and the error-active state after transmission of 128 occurrences of 11 consecutive recessive
bits. The form error occurs at a position of 20 bits after the end of the data field within the
standard frame.

Transition from
error-passive state

to bus-off state

Form error
introduction

Frame
Transmission
without error

Frame
Transmission

with error

Form error starting point

Figure 10. The simulation waveform for the MGEESM module shows the transition of the CAN node
from the error-passive state (denoted by value 1) to the bus-off state (denoted by value 2) with the
introduction of form error in alternate transmission frames. The form error occurs 20 bits after the
end of the data field within the standard frame.
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Transition from
bus-off state to

error-active state

Form error
introduction

Frame Transmission
with error

Frame
Transmission
without error

Form error starting point

Figure 11. The simulation waveform for the MGEESM module shows the transition of the CAN node
from the bus-off state (denoted by value 2) to the error-active state (denoted by value 0) with the
introduction of form error in alternate transmission frames. The form error occurs 20 bits after the
end of the data field within the standard frame.

We designed several modules to implement a configurable CAN protocol and attack
detection and response system, which are listed in Table 1. The TX module is the primary
transmission module with options to output a standard frame, extended frame, or remote
frame, with the length of the message varying from zero to eight bytes. The RX module
is the basic reception module for receiving frames of standard, extended, or remote types
as input and storing them in receiver buffers based on specific criteria. The GE module
stands for the generic error module, which introduces the form error, CRC error, and bit
error within the single frame outputted from the CAN node. The GE module is built on top
of the TX and RX modules.

Next, we have the MGE module. The MGE module stands for the multiple generic
errors module presenting form errors, CRC errors, and bit errors in various frames within
a single CAN node. This module is built hierarchically on top of the GE module. The
MGEESM module represents multiple generic errors, including multiple form errors,
multiple CRC errors, and multiple bit errors, respectively, with the introduction of the error
state machine. This module is put in place based on the MGE module.

The next set of modules indicates the communication between multiple nodes over
the CAN bus, as shown in Figure 8. For error-free processing of the CAN protocol in inter-
actions among a network of multiple CAN nodes, MCIWOERROR111 refers to multiple
CAN nodes’ interaction without error for a frame size of 111 bits.

Conversely, the multiple CAN nodes interaction with error introduction for a frame
size of 111 bits (MCIWITHERROR111 module) is employed to introduce errors in com-
munication among multiple nodes over the CAN bus. Lastly, the bus-off attack detection
module for a frame size of 111 bits (BOAD111 module) incorporates an error state machine
to represent error generation within a CAN node communicating among multiple CAN
nodes over the CAN bus.
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Table 1. The required building blocks and their descriptions for implementing configurable CAN
protocol, attack/error detection, and response systems.

Modules Description

TX Basic CAN transmission module.

RX Basic CAN reception module.

GE

A module that introduces form error,
CRC error, and bit error in a single

frame within a single CAN node built on
the combination of transmission

and reception modules.

MGE

A module that presents form error,
CRC error, and bit error in

multiple frames within a single CAN
node built on top of the GE module.

MGEESM

A module that introduces form error,
CRC error, and bit error in multiple

frames and introduces an error
state machine within a single CAN

node built based on the MGE module.

MCIWOERROR111
A module that interacts with
multiple nodes without error

introduction for a frame size of 111 bits.

MCIWITHERROR111
A module that interacts with

multiple nodes and considers error
introduction for a frame size of 111 bits.

BOAD111

A module that interacts with
multiple nodes and considers the

introduction of errors and error state
machine for a frame size of 111 bits.

4.2. Results

We define the attack/error detection time as the time for the victim node to enter
the bus-off state. The response time is the time for the victim node to come out of the
bus-off state. Both detection and response times are measured for the victim node in two
scenarios. In both scenarios, four sub-cases were examined with TEC value for switching
between error-passive state and bus-off state. In the initial sub-case, an error introduction
was simulated in every frame with a TEC value of 255. For the second sub-case, an error
introduction with a TEC value of 255 was applied in every alternate frame. In the third
sub-case, the error was introduced in every frame as modeled with a TEC value of 127.
Finally, the fourth sub-case involves error introduction in every alternate frame, utilizing a
TEC value of 127.

In the first scenario, only one node (victim node) interacts over the CAN bus. In this
case, specific errors are introduced (within the MGEESM module), which are form error,
CRC error, and bit error. The purpose of these errors is to induce a bus-off attack within the
CAN modules. Here, the data length of the frame considered is eight bytes for the standard
frame with the inclusion of bit stuffing violation. The results for this scenario are shown in
Figure 12. For form error, an error is introduced 20 positions after the end of the data field
within the frame. For CRC error, an error is introduced 42 positions before the end of the
data field within the frame. For bit error, an error is introduced two positions before the
end of the data field within the frame.
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Figure 12. The detection and response times for form error, CRC error, and bit error in the MGEESM
module were compared in four cases. (a) TEC value 255 with error introduced in every frame indicates
a 1.69% lower value for CRC error and 9.31% lower value for bit error in terms of detection time with
respect to form error introduction. (b) TEC value 255 with error introduced in every alternate frame
indicating 1.15% lower value for CRC error and 6.35% lower value for bit error in terms of detection
time concerning form error introduction. (c) TEC value 127 with error introduced in every frame
indicating 1.66% lower value for CRC error and 9.14% lower value for bit error in terms of detection
time concerning form error introduction. (d) TEC value 127 with error introduced in every alternate
frame indicating 1.14% lower value for CRC error and 6.28% lower value for bit error in terms of
detection time concerning form error introduction.

In the initial sub-case of the first scenario, the detection times for form error, CRC error,
and bit error are 7.322 ms, 7.198 ms, and 6.640 ms, respectively, as shown in Figure 12a.
In the second sub-case of the first scenario (TEC = 255), the detection times for form error,
CRC error, and bit error are 12.478 ms, 12.334 ms, and 11.686 ms, respectively, as shown
in Figure 12b. In the third sub-case of the first scenario, the detection times are 3.610 ms,
3.550 ms, and 3.280 ms for form error, CRC error, and bit error, respectively, as shown in
Figure 12c. Moving onto the fourth sub-case in the first scenario, the detection times for
form, CRC, and bit errors are 6.304 ms, 6.232 ms, and 5.908 ms, as shown in Figure 12d.
Figure 12 shows that form error requires the highest detection time for all four sub-cases in
the first scenario, and bit error requires the lowest detection time. However, the response
time remains constant across all sub-cases with a value of 1.408 ms for a TEC value of 255
and 0.704 ms for a TEC value of 127. Though the response time is constant with respect
to TEC value across all four sub-cases, it is included to give a comprehensive view of the
result generated for the four sub-cases for the first scenario.

In the second scenario, the victim node interacts with other nodes over the CAN
bus. The focus is on emulating the entire network. Here, a frame size of 111 bits (for the
BOAD111 module) is considered. The arbitration IDs considered are 11 bits. The results
for this scenario are shown in Figure 13. In this case, the error is introduced at position 60
within the frame with an error field size of 20 bits. The purpose of the error introduced
here is to induce a bus-off attack in the CAN module communicating with multiple CAN
modules. No bit stuffing violation is considered for this scenario.

In the first sub-case of the second scenario, the detection time for the BOAD111 module
is 6.303 ms, as shown in Figure 13a. The detection time is 11.174 ms for the BOAD111
module for the second sub-case, as shown in Figure 13b. In the third sub-case of the second
scenario, detection times of 3.247 ms are observed for the BOAD111 module, as shown in
Figure 13c. In the fourth sub-case of the second scenario, detection times of 5.738 ms are
noted for the BOAD111 module, as shown in Figure 13d.

The response time remains constant in all sub-cases: 1.408 ms for the sub-case with a
TEC value of 255 and 0.704 ms for the sub-case with a TEC value of 127. Again, though the
response time is constant regarding TEC value across all four sub-cases, it is included to
give a comprehensive view of the result generated for the four sub-cases for the second
scenario.

For the two modules (MGEESM and BOAD111), this analysis presents utilization
parameters (Slice LUTs, Slice Registers, Slice, LUT as Logic, Bonded IOB, BUFGCTRL, F7
Muxes, and F8 Muxes). Moreover, this analysis presents latency values, power metrics, and
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energy values across four sub-cases for two modules (with the introduction of form error,
CRC error, and bit error in the MGEESM module).

Figure 13. The detection time and response time are presented for the BOAD111 module across all
four sub-cases: (a) TEC value 255 with error introduced in every frame with response time 77.66%
lower than detection time. (b) TEC value 255 with error introduced in every alternate frame with
response time 87.40% lower than detection time. (c) TEC value 127 with error introduced in every
frame with response time 78.32% lower than detection time. (d) TEC value 127 with error introduced
in every alternate frame with response time 87.73% lower than detection time.

Table 2 presents detailed information concerning the utilization parameters linked
to the MGEESM and BOAD111 modules. The BUFGCTRL utilization parameter has the
same value for both modules. Moreover, the results for LUT as a logic utilization parameter
are the same as those for Slice LUTs utilization parameters for both modules. The Slice
LUTs utilization parameter has a value of 2299 for the MGEESM module. This parameter
has a value of 2663 for the BOAD111 module. The Slice Registers utilization parameter
has a value of 595 for the MGEESM module, while this parameter has a value of 662 for
the BOAD111 module. Moreover, the Slice utilization parameter has values of 794 and
897 for the MGEESM and BOAD111 modules, respectively. The Bonded IOB utilization
parameter has a value of 26 for the MGEESM module and 21 for the BOAD111 module. In
addition, module MGEESM has values of 92 and 1 for F7 Muxes and F8 Muxes utilization
parameters, respectively.

Table 2. The proposed configurable CAN system design metrics: utilization values for MGEESM and
BOAD111 modules are presented.

Modules Slice LUTs Slice Registers Slice LUT as Logic Bonded IOB BUFGCTRL F7 Muxes F8 Muxes

MGEESM 2299 595 794 2299 26 1 92 7

BOAD111 2663 662 897 2663 21 1 - -

Table 3 provides latency, power, and energy data for four sub-cases pertaining to the
two modules mentioned before. The table includes details related to form error, CRC error,
and bit error introduction in the MGEESM module, along with the results for the BOAD111
module.

In the first set of comparisons, CRC error exhibits a latency of 1.42% lower than form
error, while bit error demonstrates a 7.81% decrease in latency compared to form error.
Conversely, BOAD111 shows a latency of 7.711 ms. Power consumption for CRC error and
bit error is the same as that of form error. The power consumption for BOAD111 is 0.115 W.
However, CRC error consumes 1.42% less energy than form error, and bit error consumes
7.81% less energy. The energy consumption value for BOAD111 is 0.887 mJ.

In the second sub-case, CRC error demonstrates a 1.04% decrease in latency compared
to form error, with bit error showing a 5.70% reduction. BOAD111 exhibits a latency of
12.582 ms. Power consumption for CRC error and bit error is the same as that of form error.
Power consumption for BOAD111 is 0.115 W. However, CRC error consumes 1.04% less
energy, and bit error consumes 5.70% less energy than form error. BOAD111 has an energy
consumption of 1.447 mJ.
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Table 3. The proposed configurable CAN system design metrics: latency, power, and energy values
for four sub-cases for MGEESM (form error, CRC error, and bit error), and BOAD111 modules are
presented. Across all sub-cases for MGEESM with the introduction of form error, CRC error, and bit
error, the latency is highest for form error and lowest for bit error. For BOAD111, across all sub-cases,
the latency is lower with respect to errors introduced in MGEESM. The same is valid for energy
metrics for both modules across all 4 sub-cases with comparable values for power numbers.

Modules Sub-Cases Latency Power Energy

Form Error in MGEESM

TEC value 255. Error
introduced every frame. 8.730 ms 0.113 W 0.986 mJ

TEC value 255. Error
introduced every alternate frame. 13.886 ms 0.113 W 1.569 mJ

TEC value 127. Error
introduced every frame. 4.314 ms 0.113 W 0.487 mJ

TEC value 127. Error
introduced every alternate frame. 7.008 ms 0.113 W 0.792 mJ

CRC Error in MGEESM

TEC value 255. Error
introduced every frame. 8.606 ms 0.113 W 0.972 mJ

TEC value 255. Error
introduced every alternate frame. 13.742 ms 0.113 W 1.553 mJ

TEC value 127. Error
introduced every frame. 4.254 ms 0.113 W 0.481 mJ

TEC value 127. Error
introduced every alternate frame. 6.936 ms 0.113 W 0.784 mJ

Bit Error in MGEESM

TEC value 255. Error
introduced every frame. 8.048 ms 0.113 W 0.909 mJ

TEC value 255. Error
introduced every alternate frame 13.094 ms 0.113 W 1.480 mJ

TEC value 127. Error
introduced every frame. 3.984 ms 0.113 W 0.450 mJ

TEC value 127. Error
introduced every alternate frame. 6.612 ms 0.113 W 0.747 mJ

BOAD111

TEC value 255. Error
introduced every frame. 7.711 ms 0.115 W 0.887 mJ

TEC value 255. Error
introduced every alternate frame. 12.582 ms 0.115 W 1.447 mJ

TEC value 127. Error
introduced every frame. 3.951 ms 0.115 W 0.454 mJ

TEC value 127. Error
introduced every alternate frame. 6.442 ms 0.115 W 0.741 mJ

In the third sub-case, CRC error and bit error demonstrate latency reductions of
1.39% and 7.65%, respectively, compared to form error. BOAD111 shows a latency of 3.951
ms. Power consumption for CRC error and bit error remains the same as for form error,
with CRC error consuming 1.39% less energy and bit error consuming 7.65% less energy.
BOAD111’s power consumption is 0.115 W, with an energy consumption of 0.454 mJ.

In the fourth set of comparisons, CRC error and bit error demonstrate latency re-
ductions of 1.03% and 5.65%, respectively, compared to form error. BOAD111 shows a
latency of 6.442 ms. CRC error and bit error consume the same power as form error. CRC
error energy consumption is 1.03% lower, and bit error is 5.65% lower than form error.
BOAD111’s power consumption is 0.115 W, but its energy consumption is 0.741 mJ.

5. Conclusions

This research project aimed to assess the susceptibility of the CAN to bus-off attacks by
emulating them on an FPGA. The configurability and security of the CAN communication
protocol were investigated in this project. The MGEESM module with the introduction of
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form error, CRC error, and bit error was covered in the first threat model. Furthermore, the
BOAD111 module was covered in the second threat model.

This paper also experimentally examined the detection and response times for both
the modules covered in both threat models.

These times were compared for respective modules within the threat models. More-
over, the latency, utilization parameters, power, and energy were compared for respective
modules considering two threat models. The advantage of this implementation of the CAN
protocol and attack scenarios using FPGAs is that changes in clock speed can be easily
accommodated within the design without changes in the overall structure of the modules.
This is useful for further investigation of the CAN protocol based on varying CAN speeds
and other threat models and considering different attacks. Furthermore, in electric and
hybrid vehicles, CAN networks integrate renewable energy sources, making transportation
more sustainable.

Author Contributions: Conceptualization, R.I.; methodology, R.I. and R.S.; software, R.I. and R.S.;
validation and analysis, R.I. and R.S.; investigation, R.I. and R.S.; writing—original draft preparation,
R.I. and R.S.; writing—review and editing, R.I.; supervision, R.I.; project administration, R.I.; funding
acquisition, R.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by a UMBC start up grant and the National Science
Foundation (NSF) award, number: 2138253.

Data Availability Statement: The original contributions presented in the study are included in the
article material, further inquiries can be directed to the author with correspondence email.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wei, H.; Ai, Q.; Zhai, Y.; Zhang, Y. Automotive Security: Threat Forewarning and ECU Source Mapping Derived From Physical
Features of Network Signals. IEEE Trans. Intell. Transp. Syst. 2023, 25, 2479–2491. [CrossRef]

2. Tan, Z.; Dai, N.; Su, Y.; Zhang, R.; Li, Y.; Wu, D.; Li, S. Human—Machine interaction in intelligent and connected vehicles: A
review of status quo, issues, and opportunities. IEEE Trans. Intell. Transp. Syst. 2021, 23, 13954–13975. [CrossRef]

3. Siegel, J.E.; Erb, D.C.; Sarma, S.E. A survey of the connected vehicle landscape—Architectures, enabling technologies, applications,
and development areas. IEEE Trans. Intell. Transp. Syst. 2017, 19, 2391–2406. [CrossRef]

4. Su, Z.; Dai, M.; Xu, Q.; Li, R.; Zhang, H. UAV enabled content distribution for internet of connected vehicles in 5G heterogeneous
networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5091–5102. [CrossRef]

5. Sunny, J.; Sankaran, S.; Saraswat, V. A Hybrid Approach for Fast Anomaly Detection in Controller Area Networks. In Proceedings
of the 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India,
14–17 December 2020; pp. 1–6. [CrossRef]

6. Blanco, S. Car Hacking Danger Is Likely Closer than You Thinkt. Available online: https://www.caranddriver.com/news/a374
53835/car-hacking-danger-is-likely-closer-than-you-think/ (accessed on 1 April 2024).

7. Shin, C. A framework for fragmenting/reconstituting data frame in Controller Area Network (CAN). In Proceedings of the
16th International Conference on Advanced Communication Technology, Pyeongchang, Republic of Korea, 16–19 February 2014;
pp. 1261–1264. [CrossRef]

8. Ullah, K. On the Use of Opportunistic Vehicular Communication for Roadside Services Advertisement and Discovery.
Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2016.

9. Zhang, X.; Cui, X.; Cheng, K.; Zhang, L. A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks.
In Proceedings of the 2020 16th International Conference on Computational Intelligence and Security (CIS), Guangxi, China,
27–30 November 2020; pp. 366–369. [CrossRef]

10. Choi, E.; Han, S.; Choi, J.W. Channel capacity analysis for high speed controller area network (CAN). In Proceedings of the 2015
International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 28–30
October 2015; pp. 188–190. [CrossRef]

11. Jeong, Y.; Kim, H.; Lee, S.; Choi, W.; Lee, D.H.; Jo, H.J. In-Vehicle Network Intrusion Detection System Using CAN Frame-Aware
Features. IEEE Trans. Intell. Transp. Syst. 2023, 25, 3843–3853. [CrossRef]

12. Cho, K.T.; Shin, K.G. Fingerprinting electronic control units for vehicle intrusion detection. In Proceedings of the 25th USENIX
Security Symposium (USENIX Security 16), Austin, TX, USA , 10–12 August 2016; pp. 911–927.

13. Jo, H.J.; Choi, W. A Survey of Attacks on Controller Area Networks and Corresponding Countermeasures. IEEE Trans. Intell.
Transp. Syst. 2022, 23, 6123–6141. [CrossRef]

239



Electronics 2024, 13, 2672

14. Islam, R.; Devnath, M.K.; Samad, M.D.; Al Kadry, S.M.J. GGNB: Graph-based Gaussian naive Bayes intrusion detection system
for CAN bus. Veh. Commun. 2022, 33, 100442. [CrossRef]

15. Ansari, M.R.; Yu, S.; Yu, Q. IntelliCAN: Attack-resilient Controller Area Network (CAN) for secure automobiles. In Proceedings
of the 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), Amherst,
MA, USA, 12–14 October 2015; pp. 233–236. [CrossRef]

16. Wu, W.; Li, R.; Xie, G.; An, J.; Bai, Y.; Zhou, J.; Li, K. A Survey of Intrusion Detection for In-Vehicle Networks. IEEE Trans. Intell.
Transp. Syst. 2020, 21, 919–933. [CrossRef]

17. Khandelwal, S.; Shreejith, S. A Lightweight FPGA-based IDS-ECU Architecture for Automotive CAN. In Proceedings of the 2022
International Conference on Field-Programmable Technology (ICFPT), Hong Kong, China, 5–9 December 2022; pp. 1–9.

18. Islam, R.; Refat, R.U.D. Improving CAN bus security by assigning dynamic arbitration IDs. J. Transp. Secur. 2020, 13, 19–31.
[CrossRef]

19. Pollicino, F.; Stabili, D.; Marchetti, M. Performance comparison of timing-based anomaly detectors for Controller Area Network:
a reproducible study. Acm Trans. -Cyber-Phys. Syst. 2023, 8, 1–24. [CrossRef]

20. Tariq, S.; Lee, S.; Woo, S.S. CANTransfer: Transfer learning based intrusion detection on a controller area network using
convolutional LSTM network. In Proceedings of the 35th annual ACM symposium on applied computing, Brno, Czech Republic,
30 March–3 April 2020; pp. 1048–1055.

21. Microchip, C. Controller MCP2515 Datasheet. Available online: https://ww1.microchip.com/downloads/aemDocuments/
documents/APID/ProductDocuments/DataSheets/MCP2515-Family-Data-Sheet-DS20001801K.pdf (accessed on 1 April 2023).

22. Zhang, L. Intrusion Detection Systems to Secure In-Vehicle Networks. Ph.D. Thesis, University of Michigan-Dearborn, Dearborn,
MI, USA, 2023

23. Han, K.; Mun, H.; Balakrishnan, M.; Yeun, C.Y. Enhancing security and robustness of Cyphal on Controller Area Network in
unmanned aerial vehicle environments. Comput. Secur. 2023, 135, 103481. [CrossRef]

24. Olufowobi, H.; Young, C.; Zambreno, J.; Bloom, G. Saiducant: Specification-based automotive intrusion detection using controller
area network (can) timing. IEEE Trans. Veh. Technol. 2019, 69, 1484–1494. [CrossRef]

25. Zhang, H.; Meng, X.; Zhang, X.; Liu, Z. CANsec: A practical in-vehicle controller area network security evaluation tool. Sensors
2020, 20, 4900. [CrossRef] [PubMed]

26. Park, S.B.; Jo, H.J.; Lee, D.H. Flooding attack mitigator for in-vehicle CAN using fault confinement in CAN protocol. Comput.
Secur. 2023, 126, 103091. [CrossRef]

27. Humayed, A.; Li, F.; Lin, J.; Luo, B. Cansentry: Securing can-based cyber-physical systems against denial and spoofing attacks. In
Proceedings of the Computer Security—ESORICS 2020: 25th European Symposium on Research in Computer Security, ESORICS
2020, Guildford, UK, 14–18 September 2020; Proceedings, Part I 25; Springer: Berlin/Heidelberg, Germany, 2020; pp. 153–173.

28. Han, M.L.; Kwak, B.I.; Kim, H.K. Event-triggered interval-based anomaly detection and attack identification methods for an
in-vehicle network. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2941–2956. [CrossRef]

29. Ansari, M.R. Low-Cost Approaches to Detect Masquerade and Replay Attacks on Automotive Controller Area Network. Ph.D.
Thesis, University of New Hampshire, Durham, New Hampshire, 2016.

30. Jedh, M.; Othmane, L.B.; Ahmed, N.; Bhargava, B. Detection of message injection attacks onto the can bus using similarities of
successive messages-sequence graphs. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4133–4146. [CrossRef]

31. Islam, R.; Refat, R.U.D.; Yerram, S.M.; Malik, H. Graph-based intrusion detection system for controller area networks. IEEE Trans.
Intell. Transp. Syst. 2020, 23, 1727–1736. [CrossRef]

32. Zhang, H.; Zeng, K.; Lin, S. Federated graph neural network for fast anomaly detection in controller area networks. IEEE Trans.
Inf. Forensics Secur. 2023, 18, 1566–1579. [CrossRef]

33. Müter, M.; Asaj, N. Entropy-based anomaly detection for in-vehicle networks. In Proceedings of the 2011 IEEE Intelligent
Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 1110–1115.

34. Marchetti, M.; Stabili, D.; Guido, A.; Colajanni, M. Evaluation of anomaly detection for in-vehicle networks through information-
theoretic algorithms. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and
Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–6.

35. Mithu, M.R.A.; Kholodilo, V.; Manicavasagam, R.; Ulybyshev, D.; Rogers, M. Secure industrial control system with intrusion
detection. In Proceedings of the Thirty-Third International Flairs Conference, North Miami Beach, FL, USA, 17–20 May 2020.

36. Moulahi, T.; Zidi, S.; Alabdulatif, A.; Atiquzzaman, M. Comparative performance evaluation of intrusion detection based on
machine learning in in-vehicle controller area network bus. IEEE Access 2021, 9, 99595–99605. [CrossRef]

37. Dong, Y.; Chen, K.; Peng, Y.; Ma, Z. Comparative study on supervised versus semi-supervised machine learning for anomaly
detection of in-vehicle CAN network. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation
Systems (ITSC), Macau, China, 8–12 October 2022; pp. 2914–2919.

38. Narasimhan, H.; Vinayakumar, R.; Mohammad, N. Unsupervised deep learning approach for in-vehicle intrusion detection
system. IEEE Consum. Electron. Mag. 2021, 12, 103–108. [CrossRef]

39. Islam, R. Early Stage DRC Prediction Using Ensemble Machine Learning Algorithms. IEEE Can. J. Electr. Comput. Eng. 2022,
45, 354–364. [CrossRef]

40. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based intrusion detection system for in-vehicle network. In Proceedings of the 2018
16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018; pp. 1–6.

240



Electronics 2024, 13, 2672

41. Desta, A.K.; Ohira, S.; Arai, I.; Fujikawa, K. U-CAN: A Convolutional Neural Network Based Intrusion Detection for Controller
Area Networks. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC),
Los Alamitos, CA, USA, 27 June–1 July 2022; pp. 1481–1488.

42. Kheddar, H.; Himeur, Y.; Awad, A.I. Deep transfer learning for intrusion detection in industrial control networks: A comprehen-
sive review. J. Netw. Comput. Appl. 2023, 220, 103760. [CrossRef]

43. Kulisz, J.; Jokiel, F. A Hardware Implementation of the PID Algorithm Using Floating-Point Arithmetic. Electronics 2024, 13, 1598.
[CrossRef]

44. Islam, R.; Saha, B.; Bezzam, I. Resonant Energy Recycling SRAM Architecture. IEEE Trans. Circuits Syst. II Express Briefs 2021,
68, 1383–1387. [CrossRef]

45. Islam, R. Feasibility Prediction for Rapid IC Design Space Exploration. Electronics 2022, 11, 1161. [CrossRef]
46. Joost, R.; Salomon, R. Advantages of FPGA-based multiprocessor systems in industrial applications. In Proceedings of the 31st

Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005, Raleigh, NC, USA, 6–10 November 2005.
47. Croteau, B.; Kiriakidis, K.; Severson, T.A.; Robucci, R.; Rahman, S.; Islam, R. State Estimation Adaptable to Cyberattack Using a

Hardware Programmable Bank of Kalman Filters. IEEE Trans. Control Syst. Technol. 2024, 1–13. [CrossRef]
48. Tang, L.; Li, Y.; Wang, H.; Sun, Y. Verification of CAN bus controller based on VIP. In Proceedings of the 2023 IEEE International

Conference on Sensors, Electronics and Computer Engineering (ICSECE), Jinzhou, China, 18–20 August 2023; pp. 1383–1387.
49. Lee, H.; Jeong, S.; Kim, H. CAN Dataset for Intrusion Detection; Hacking and Countermeasure Research Lab: Seoul, Republic of

Korea. 2018. Available online: https://goo.gl/WiVeFj (accessed on 1 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

241





MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34
www.mdpi.com

Electronics Editorial Office
E-mail: electronics@mdpi.com

www.mdpi.com/journal/electronics

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI

and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any

ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-1862-4


