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Classification of First-Episode Psychosis with EEG Signals: ciSSA and Machine Learning
Approach
Reprinted from: Biomedicines 2023, 11, 3223, doi:10.3390/biomedicines11123223 . . . . . . . . . . 40

Ching-Fang Chien, Jia-Li Sung, Chung-Pang Wang, Chen-Wen Yen and Yuan-Han Yang

Analyzing Facial Asymmetry in Alzheimer’s Dementia Using Image-Based Technology
Reprinted from: Biomedicines 2023, 11, 2802, doi:10.3390/biomedicines11102802 . . . . . . . . . . 54

Ummara Ayman, Muhammad Sultan Zia, Ofonime Dominic Okon, Najam-ur Rehman, Talha

Meraj, Adham E. Ragab and Hafiz Tayyab Rauf

Epileptic Patient Activity Recognition System Using Extreme Learning Machine Method
Reprinted from: Biomedicines 2023, 11, 816, doi:10.3390/biomedicines11030816 . . . . . . . . . . 69

Ashir Javeed, Ana Luiza Dallora, Johan Sanmartin Berglund, Alper Idrisoglu, Liaqat Ali,

Hafiz Tayyab Rauf and Peter Anderberg

Early Prediction of Dementia Using Feature Extraction Battery (FEB) andOptimized Support
Vector Machine (SVM) for Classification
Reprinted from: Biomedicines 2023, 11, 439, doi:10.3390/biomedicines11020439 . . . . . . . . . . 95

Rimsha Asad, Saif ur Rehman, Azhar Imran, Jianqiang Li, Abdullah Almuhaimeed and

Abdulkareem Alzahrani

Computer-Aided Early Melanoma Brain-Tumor Detection Using Deep-Learning Approach
Reprinted from: Biomedicines 2023, 11, 184, doi:10.3390/biomedicines11010184 . . . . . . . . . . 108

Vladimir Semenyutin, Valery Antonov, Galina Malykhina and Vyacheslav Salnikov

Investigation of Cerebral Autoregulation Using Time-Frequency Transformations
Reprinted from: Biomedicines 2022, 10, 3057, doi:10.3390/biomedicines10123057 . . . . . . . . . . 130

v



Pan Zhang, Lizhi Zhou, Li Chen, Zhen Zhang, Rui Han, Gangwen Guo and Haocheng Zhou

Electroencephalography Signatures for Hepatic Encephalopathy in Cirrhosis Patients Treated
with Proton Pump Inhibitors: An Exploratory Pilot Study
Reprinted from: Biomedicines 2022, 10, 3040, doi:10.3390/biomedicines10123040 . . . . . . . . . . 146

vi



About the Editors

Wu Qiu

Wu Qiu is a professor at the School of Life Sciences and Technology and the Department of

Biomedical Engineering at Huazhong University of Science and Technology. He received a national

high-level young talent award in 2022. He has worked as a research scientist in the Department

of Radiology and the Department of Clinical Neuroscience at the University of Calgary in Canada

and at Robarts Research Institute, Western University, Canada. He is mainly engaged in medical

imaging using machine learning and artificial intelligence, including computer-aided diagnosis, 3D

ultrasound imaging, multimodality-imaging-guided intervention, etc. He has published more than

100 peer reviewed papers in top journals and conferences, such as IEEE Trans. Medical Imaging,

Medical Image Analysis, Radiology, Nature Communication, Stroke, CVPR, MICCAI, etc.

Hulin Kuang

Dr. Hulin Kuang received his Ph.D. degree from the City University of Hong Kong in 2016 and

was a Postdoctoral Fellow with the Department of Clinical Neurosciences, University of Calgary,

Canada, from 2017 to 2020. Now, he is a distinguished associate professor with the School of

Computer Science and Engineering, Central South University, China. His research interests include

medical image analysis, intelligent disease diagnosis and prognosis, deep learning, and intelligent

transportation systems.

vii





Citation: Qiu, W.; Kuang, H. A

Glimpse into the AI-Driven

Advances in Neurobiology and

Neurologic Diseases. Biomedicines

2024, 12, 1221. https://doi.org/

10.3390/biomedicines12061221

Received: 9 May 2024

Accepted: 24 May 2024

Published: 31 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Editorial

A Glimpse into the AI-Driven Advances in Neurobiology and
Neurologic Diseases

Wu Qiu 1 and Hulin Kuang 2,*

1 School of Life Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China; wuqiu@hust.edu.cn

2 Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering,
Central South University, Changsha 410083, China

* Correspondence: hulinkuang@csu.edu.cn

Recent developments in AI, especially in machine learning and deep learning, have
opened new avenues for research and clinical practice in neurology. These technologies
have demonstrated remarkable proficiency in analyzing complex datasets, identifying
patterns that elude human observers, and offering insights into the intricate mechanisms
of neurologic diseases. From enhancing diagnostic accuracy to personalizing treatment
protocols, AI’s impact is both profound and far-reaching.

This Special Issue has sought to highlight the significant strides made in the application
of AI across various aspects of neurobiology and neurological diseases. It has brought
novel methodologies to light, explored the therapeutic potential of AI-driven interventions,
and showcased innovative research that leverages AI to tackle longstanding challenges in
the field.

The ten papers included in this Special Issue collectively contribute to the rapidly
evolving field of AI in neurobiology and neurological diseases, highlighting diverse appli-
cations of AI technologies ranging from diagnosis to treatment and prevention strategies.
Key themes and findings from the papers include the following:

Advanced Diagnostic Techniques: Several studies present AI-driven methods for
enhancing diagnostic accuracy in neurology. For example, novel CNN models are used
for the identification of ischemic regions in stroke patients [1] and the prediction of the
histologic grades of meningiomas from MRI scans [2]. These approaches significantly
improve upon traditional methods by leveraging the subtle patterns in medical imaging
data that are often undetectable to human observers.

Enhanced Predictive Models: Some papers introduce machine learning techniques
to forecast disease progression, such as the development of dementia and epilepsy [3].
By analyzing large datasets and utilizing sophisticated algorithms like SVMs and deep
learning, these studies offer predictive models that potentially enable earlier and more
accurate interventions.

Therapeutic Applications and Treatment Planning: AI is shown to support therapeutic
planning and intervention strategies. One study, for instance, explores how AI can guide
the administration of treatments in real time by accurately scoring collateral circulation in
stroke patients using hybrid CNN and transformer networks [4].

Automated Systems for Clinical Efficiency: Several papers discuss the role of AI in
automating clinical processes such as activity recognition in epileptic patients and the
detection of neurological abnormalities. These automated systems are designed to enhance
clinical efficiency and patient monitoring [5,6].

Neurological Mechanisms and Disease Biomarkers: AI’s role extends beyond clini-
cal applications into fundamental research, where it helps elucidate underlying disease
mechanisms and identify novel biomarkers. This is evident in studies that use AI to an-
alyze EEG patterns and neuroimaging data to gain deeper insights into brain function
and disorders [7,8].
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This Special Issue marks a significant step forward in our journey toward harnessing
the full potential of AI in neurobiology and neurological diseases. There is a need to further
refine AI models to increase their accuracy, reliability, and applicability across different
populations and disease states. This includes improving the interpretability of AI models
to better understand the biological underpinnings of their predictions, integrating multi-
modal data sources (e.g., imaging, genetic, and clinical data) for comprehensive disease
profiling, and exploring the potential of AI in predicting disease onset and progression, as
well as response to treatment.

The exploration of AI’s capabilities in neurology is just beginning. Future research
should focus on refining AI algorithms for broader clinical application, developing interop-
erable systems that can seamlessly integrate with existing healthcare infrastructure, and
exploring the ethical implications of AI in patient care. With these efforts, AI holds the
promise of significantly transforming neurobiology and the management of neurological
diseases. As we continue to explore this frontier, our collective efforts should be guided by a
commitment to improving patient care, advancing scientific understanding, and addressing
the ethical considerations that accompany the integration of AI into healthcare. The path
ahead is both challenging and promising, beckoning us to continue our exploration with
diligence, creativity, and an unwavering focus on the future.

Author Contributions: All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.
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Segmenting Ischemic Penumbra and Infarct Core
Simultaneously on Non-Contrast CT of Patients with Acute
Ischemic Stroke Using Novel Convolutional Neural Network

Hulin Kuang 1, Xianzhen Tan 1, Jie Wang 1, Zhe Qu 1, Yuxin Cai 2, Qiong Chen 3, Beom Joon Kim 4,5

and Wu Qiu 2,*
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* Correspondence: wuqiu@hust.edu.cn

Abstract: Differentiating between a salvageable Ischemic Penumbra (IP) and an irreversibly damaged
Infarct Core (IC) is important for therapy decision making for acute ischemic stroke (AIS) patients.
Existing methods rely on Computed Tomography Perfusion (CTP) or Diffusion-Weighted Imaging–
Fluid Attenuated Inversion Recovery (DWI-FLAIR). We designed a novel Convolutional Neural
Network named I2PC-Net, which relies solely on Non-Contrast Computed Tomography (NCCT) for
the automatic and simultaneous segmentation of the IP and IC. In the encoder, Multi-Scale Convolu-
tion (MSC) blocks were proposed to capture effective features of ischemic lesions, and in the deep
levels of the encoder, Symmetry Enhancement (SE) blocks were also designed to enhance anatomical
symmetries. In the attention-based decoder, hierarchical deep supervision was introduced to address
the challenge of differentiating between the IP and IC. We collected 197 NCCT scans from AIS
patients to evaluate the proposed method. On the test set, I2PC-Net achieved Dice Similarity Scores of
42.76 ± 21.84%, 33.54 ± 24.13% and 65.67 ± 12.30% and lesion volume correlation coefficients of 0.95
(p < 0.001), 0.61 (p < 0.001) and 0.93 (p < 0.001) for the IP, IC and IP + IC, respectively. The results
indicated that NCCT could potentially be used as a surrogate technique of CTP for the quantitative
evaluation of the IP and IC.

Keywords: acute ischemic stroke; ischemic penumbra and ischemic core segmentation; non-contrast
CT; multi-scale convolution; symmetry enhancement; hierarchical deep supervision

1. Introduction

Acute ischemic stroke (AIS) is caused by the occlusion or blockage of small or large
blood vessels due to a thrombus or embolism event, resulting in reduced blood flow to
a portion of the brain tissue. It accounts for 87% of all strokes and has high morbidity
and mortality [1,2]. Once an AIS occurs, a portion of the brain tissue may have already
suffered irreversible damage (the Infarct Core, IC), and the surrounding brain tissue is also
at risk due to reduced blood flow (the Ischemic Penumbra, IP) and may be salvageable [3,4].
Therefore, the goal of AIS treatment is to reperfuse the blood-deprived area before the sal-
vageable IP transforms into the IC. The treatment methods for AIS patients mainly include
intravenous thrombolysis and endovascular therapy [5]. Neuroradiologists usually select
the appropriate treatment method for patients based on clinical guidelines, e.g., mechanical
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thrombectomy being more suitable when the IC volume is less than 70 mL, the IP volume
is greater than 15 mL and the IP to IC ratio exceeds 1.8 [5–8]. Due to the extremely short
4.5 h treatment window, the rapid and accurate assessment of the volume and location of
the IP and IC is important for reperfusion therapy decision making for AIS patients.

In clinical practice, neuroradiologists typically evaluate the IP and IC through manual
delineation on multi-modal images, such as by using diffusion imaging to identify the IC
and diffusion–perfusion mismatch to identify the IP. However, these manual segmentations
are subject to interobserver and intraobserver variability and fatigue-related errors, and they
are time consuming. Moreover, invasive imaging modalities are sometimes unavailable.
Therefore, a rapid, objective, accurate and widely applicable method for automated IP and
IC segmentation is desired in the computer-aided diagnosis of AIS.

Machine learning and deep learning methods have been extensively used in recent
years for fully automatic medical image segmentation. Numerous general 3D medical
image segmentation methods are available for the segmentation of the IP and IC, such
as [9–14], etc. Additionally, some researchers have developed specialized machine learning
and deep learning methods for infarct lesion segmentation. Gupta et al. [15] designed
a U-shaped encoder–decoder network named MSNet. They utilized a combination of
eight modalities of diffusion and perfusion maps to segment the IP and IC, where the
diffusion–perfusion mismatch facilitates the differentiation between the IP and IC. Bhur-
wani et al. [16] utilized U-Net [17] to segment the IC and IP + IC from CTP scans, but they
did not differentiate between the IP and IC. Lee et al. [18] and Vupputuri et al. [19] both
adopted Diffusion-Weighted Imaging–Perfusion-Weighted Imaging (DWI-PWI) to quantify
and differentiate the IP and IC. Werdiger et al. [20] explored XGBoost, followed by 3D
neighborhood analysis, for the concurrent segmentation of the IP and IC on CTP scans.
Tomasetti et al. [21] implemented a 4D Convolutional Neural Network (CNN) approach
to leverage the spatiotemporal data contained within CTP scans, thereby delineating the
IP and IC. Sathish et al. [22] deployed an adversarially trained CNN to segment the IP
and IC simultaneously from multi-sequence Magnetic Resonance Imaging (MRI) scans.
In summary, the specialized methods mentioned here either do not strictly differentiate
between the IP and IC or they rely on multiple advanced imaging modalities such as CTP,
PWI and DWI to differentiate the IP and IC. However, these advanced imaging techniques
are time consuming and sometimes even unavailable, and fast and cheap Non-Contrast CT
(NCCT) has seldom been considered in previous studies.

In this study, we propose a neural network named I2PC-Net, which relies solely on
widely available, cheap and fast baseline NCCT scans to simultaneously segment the IP
and IC. I2PC-Net has a seven-level U-shaped encoder–decoder architecture, relying on pure
convolution. In the encoder, to model the varying shapes, sizes and locations of the infarct
lesions, we designed the Multi-Scale Convolution (MSC) block. To model the anatomical
symmetry and capture the difference between the left and right sides of the brain, we
propose the Symmetry Enhancement (SE) block. In the attention-based decoder, we utilized
hierarchical deep supervision mechanisms for the entire ischemic region (IP + IC) in the
three deep levels and for differentiating the IP and IC at the three low levels. Through
the effective strategies proposed above, we hypothesized that the I2PC-Net can segment
the IP and IC from NCCT well. Our contributions are summarized as follows: (1) We
propose the MSC block to model the high variability of AIS lesions. (2) We introduce the
SE block to capture the differences between the bilateral hemispheres of the brain. (3) An
attention-based decoder was employed to better integrate high-level and low-level features.
(4) Hierarchical deep supervision was designed to more effectively differentiate between
the IP and IC on NCCT.

2. Materials and Methods

2.1. Data Acquisition

We collected multi-modal data including DWI, Fluid-Attenuated Inversion Recovery
(FLAIR) and NCCT from 197 AIS patients in a prospective stroke registry at a single aca-
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demic center. The institutional review board of the Seoul National University Bundang Hos-
pital approved the data analysis, image evaluation and modeling process (B-2102/667-106).
The included patients or their next of kin provided written consent for the prospective
clinical stroke registry to record and collect their data (B-1401/236-007, B-1706/403-303).

All the modalities were coregistered to NCCT. There were two inclusion criteria for
the patient samples: (1) each modality’s data encompass the entire brain without significant
artifacts, and (2) expert annotations of the ischemic tissue region are available. In the dataset,
the number of slices in the sagittal view is 512 and the ranges of the number of slices in
the coronal and axial views are 512–638 and 28–37, respectively. The range of spacing is
0.326–0.429 mm for both the sagittal and coronal views and 4.999–5.015 mm for the axial
view. Groundtruth labels for the IC and IP on NCCT were defined by high signal regions
on DWI and DWI-FLAIR mismatch areas, respectively. These labels were first annotated
by a neuroradiologist (Qiong Chen) with over 5 years of experience using the software
ITK-SNAP version 4.2.0. [23] and were then double checked by another neuroradiologist
(Beom Joon Kim) with over 10 years of experience to achieve accurate annotations. Finally,
we utilized these 197 annotated NCCT scans and divided them in a ratio of 7:2:1 for training,
validation and testing, respectively.

2.2. Image Preprocessing

To eliminate the influence of the skull region, we first removed the skull following the
method proposed by Najm et al. [24]. Figure 1 sequentially displays the NCCT after the
skull removal, DWI with highlighted infarct signals, FLAIR showing a mismatch with DWI
and the category labels for the IP (red) and IC (green).

Considering the robust and powerful performance of nnUNet [9] for medical image
segmentation, we followed its preprocessing approach, which depends on the statistical
information of a specific dataset (called the dataset fingerprint). Initially, the images
were cropped based on the 3D bounding box of the brain tissue to avoid unnecessary
computations. Subsequently, all the images were resampled to the dataset’s median voxel
spacing: 0.3789 mm × 0.3789 mm × 5.0 mm. This enhances the performance of CNN
networks with inductive bias, enabling them to better learn the typical sizes of brain
anatomical structures. Finally, Z-Score normalization was performed based on the mean
and variance of the segmentation target (take pixel values within the range of 0.5% to
99.5%). This is equivalent to considering the window width and window level of the target
lesion or anatomical structure, which helps the network learn more effective features and
accelerates convergence.

NCCT FLAIRDWI NCCT with IP and IC label

Figure 1. An example of multi-modal image of a patient; DWI and FLAIR are registered to NCCT.
The red and green regions represent the manually annotated IP and IC, respectively.

2.3. The Proposed I2PC-Net

As illustrated in Figure 2a, I2PC-Net also adopted a U-shaped structure with a 7-level
encoder and a 6-level decoder. The feature channel (i.e., the number of convolution filters)
of each encoder level and decoder level are also given in Figure 2a. The three low encoder
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levels were composed of MSC blocks, and the four deep encoder levels added an SE
block after the MSC block. Convolution-based downsampling was interleaved between
two adjacent encoder levels. In the six-level decoder, we adopted the attention-based
decoder of Oktay et al. [25] to better fuse high-level semantic information with low-level
fine-grained image details. Transposed convolution-based upsampling was interleaved
between two adjacent decoder levels. Note that for the spatial dimension D, downsampling
or upsampling by a convolution of stride 2 was performed twice, i.e., only in the two levels
above the bottleneck. Whereas for the H and W dimensions, upsampling or downsampling
by a convolution of stride 2 occurred at every level. The input stem and segmentation
head were, respectively, responsible for initial feature embedding and output generation.
Considering the difficulty in differentiating the IP and IC on NCCT, a hierarchical deep
supervision decoding mechanism was used for the decoder levels.

(a) (b)

MSC Block

MSC Block

MSC Block

MSC+SE
 Block

MSC+SE
Block

MSC+SE
Block

MSC+SE
Block

Attn Decoder
Block

Attn Decoder
Block

Attn Decoder
Block

Attn Decoder
Block

Attn Decoder
Block

Attn Decoder
Block

C=32

C=64

C=128

C=256

C=320

C=320

C=320

C=320

C=320

C=256

C=128

C=64

C=32

DWConv
3×3×3

DWConv
1×7×7

DWConv
1×5×5

DWConv
1×11×11

DWConv
5×1×1

DWConv
7×1×1

DWConv
11×1×1

Conv
1×1×1

Conv
3×3×3

 Multi-Scale Convolution MSC  block

Down-sampling 

Up-sampling 

Skip Connection

Input Stem

Segmentation head

Legend

Element-wise summation

Element-wise subtraction

C Concatenation

DWConv
z×y×x

Conv
z×y×x

Depth-wise convolution
with kernel size (z,y,x)

Convolution with
kernel size (z, y, x)
+Instance Normalization
+

Attn Decoder
Block Att UNet‘s decoder

(c)

Symmetry Enhancement (SE) Block

feature
map

Horizontal
flipped C Conv

1×1×1

Figure 2. Architecture of the proposed I2PC-Net. (a) Overview of the whole architecture.
(b) Multi-Scale Convolution block. (c) Symmetry Enhancement block.

2.3.1. Multi-Scale Convolution Block

Existing general 3D medical image segmentation methods such as those targeting
abdominal multi-organ segmentation and the similar shape size and location of the organs
determine the feasibility of single-scale modeling. However, high variability in the location,
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size and shape of the infarct lesions needs multi-scale modeling. Inspired by Guo et al. [26],
we propose the MSC block, as shown in Figure 2b. For the sake of simplicity in the diagram,
we omitted the activation functions and normalization operations. Taking the MSC block
in the first level of the encoder for example, the feature map was firstly passed to a vanilla
convolution block (convolution with a kernel size of 3 × 3 × 3 + Instance Normalization +
LeakyReLU). The output of this convolution operation was also added to the final output
as a residual connection. Then, we designed a parallel depth-wise convolution branch with
kernel sizes of 5, 7 and 11 to obtain the multi-scale features (note that here, all depth-wise
convolutions were followed neither by normalization nor by activation functions, and to
further enlarge the receptive field, a 3 × 3 × 3 depth-wise convolution was positioned
before the other three scales). The four outputs of multiple depth-wise convolutional
branches were added element-wise and then passed through a fusion convolution block
(convolution with a kernel size of 1 × 1 × 1 + Instance Normalization + LeakyReLU).
Additionally, to reduce the complexity of the model, depth-wise convolutions with a kernel
size of 1 × k × k followed by a kernel size of k × 1 × 1 were employed in place of a kernel
size of k × k × k, where k ∈ {5, 7, 11}. Given an input feature map X ∈ RB×C×D×H×W ,
the MSC block’s output feature map Y ∈ RB×C×D×H×W can be formalized as follows:

X′ = σ(Norm(Conv3×3×3(X))) (1)

Y = Conv1×1×1

(
3

∑
i=0

Scalei
(
DWConv

(
X′)))+ X′ (2)

where Convk×k×k denotes the convolution with a kernel size of k × k × k, Norm represents
Instance Normalization, σ is the LeakyReLU activation function and DWConvk×k×k indi-
cates a depthwise convolution with a kernel of k × k × k. Scalei(DWConv(·)) represents
the i-th depthwise convolutional branch, where i = 0 indicates the identity connection.

2.3.2. Symmetry Enhancement Block

The left and right hemispheres of the brain exhibit axial symmetry along the mid-
sagittal line. Typically, the opposite side of a cerebral infarction is normal brain tissue.
Previous studies had utilized this prior clinical knowledge to enhance the model’s ability to
locate suspicious ischemic lesions. However, due to variations in patient positioning during
imaging, the mid-sagittal line in the image may not be vertical. Previous strategies include
the use of alignment neural networks and direct registration [27–33]. We believe that the
influence of slight tilts in brain scans can be mitigated at higher semantic levels, where each
pixel represents a larger area of the original image. Therefore, we directly appended an SE
block after the MSC block in the 4 high levels of the encoder. The structure of the SE block
is shown in Figure 2c. The feature map from the MSC block was first horizontally flipped
and then it was element-wise subtracted from the flipped feature maps. The obtained
feature map after subtraction was concatenated with the input feature map along the
channel dimension. Subsequently, it passed through a convolution block (convolution
with a kernel size of 1 × 1 × 1 + Instance Normalization + LeakyReLU) to obtain the fused
feature. Finally, the fused feature map was element-wise added to the input feature map to
produce the final output. Given the input feature map H ∈ RB×C×D×H×W from the MSC
block, the SE block’s output HSE ∈ RB×C×D×H×W can be formulated as

HSE = Conv1×1×1

(
Concat

(
H, H − Hflipped

))
+ H (3)

where Hflipped represents the feature map after horizontal flipping and Concat denotes
concatenation along the channel dimension.
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2.3.3. Attention-Based Decoder

The rational fusion of coarse-grained and fine-grained features is important for the final
segmentation output. AttnUNet [25] introduced gated attention units in skip connections.
It used coarse-grained feature maps as queries to weight fine-grained feature maps from
the same level encoder, thereby learning which spatial regions to focus on. Because this
structure was designed to address anatomical structures with highly variable shapes, we
believed that this design was equally applicable to stroke segmentation. In Figure 2, it was
denoted as “Attn Decoder Block”. Specifically, for each level of the “Attn Decoder Block”,
the features from its subsequent level and the features from the corresponding level of the
encoder were passed through a 1 × 1 × 1 convolution layer (the number of channels was
halved) and then added element-wise. This was followed by a ReLU activation function
and then another 1 × 1 × 1 convolution layer (where the number of channels was reduced
to 1). The output then went through a Sigmoid activation function to obtain the weight
(spatial attention score) at each pixel position. Finally, these weights were used to element-
wise multiply with the features from the skip connections, thereby suppressing irrelevant
feature responses in the fine-grained feature maps from the encoder. Lastly, the features
from the subsequent level and the gated attention-modified features from the encoder
at the same level were concatenated along the channel dimension and fused through a
convolution layer. For detailed information, please refer to their publication [25]. We
believe that, building upon the precise and more powerful encoding blocks like MSC and
SA, those multi-scale, symmetry-enhanced features could better suppress irrelevant feature
responses transmitted from skip connections, making the final features more effective.

2.3.4. Hierarchical Deep Supervision

Owing to the exceedingly subtle differences between the IP and IC on NCCT, dif-
ferentiating them directly in the deep layers of the network poses a significant challenge.
In clinical practice, neuroradiologists initially approximate the location of the ischemic
area and subsequently fine-tune the entire ischemic regions into the IP and IC. Drawing
inspiration from this, we incorporated a hierarchical deep supervision strategy. Firstly, we
continuously downsampled the ground truth label to match the spatial resolution of each
decoder level. For each decoder level, we used a 1 × 1 × 1 convolutional layer to change
the number of channels to the number of classification categories to achieve segmentation.
That was, for the higher three levels, the number of categories was 2 (the background and
IP + IC), and in the lower three levels, the number of categories was three (the background,
IP and IC). We then calculated the loss by using the outputs of different levels and the
corresponding downsampled ground truth. We used a linear combination of the Dice
Similarity Coefficient (DSC) loss and Cross-Entropy (CE) loss as the objective function for
each decoder level: L = αLDSC + βLCE, where α and β are set to 1 in our practice. The total
objective function of hierarchical deep supervision can be formalized as

LTotal =
2

∑
i=0

Resi ×LIP+IC +
5

∑
i=3

Resi × (LIP + LIC) (4)

where LIP+IC represents the loss for the total ischemic area, treating the IP and IC as a
single category, while LIP and LIC, respectively, denote the losses for the IP and IC regions
and Resi represents the weights of different decoder level’s supervision loss. When i ranges
from 0 to 5 (six decoder levels from bottom to top), Resi takes the respective values of 0.02,
0.08, 0.2, 0.1, 0.2 and 0.4.

2.4. Implementation Details

We randomly sampled 3D patches of size 20 × 320 × 256 from the resampled and
normalized data. For each patch, data augmentation includes spatial transformation (ran-
dom rotation, random scaling and random elastic deformation), mirror transformation,
adding white Gaussian noise, Gaussian blurring, low-resolution simulation, Gamma trans-
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formation and contrast and brightness adjustments. An initial learning rate of 1 × 10−2

with a polynomial decay schedule and a batch size of 2 were used. The Stochastic Gra-
dient Descent (SGD) optimizer with a Nesterov Momentum of 0.99 and weight decay
of 2 × 10−5 was used. The gradient clipping was set during training. We trained for
300 epochs, whereby each epoch consisted of 250 iterations. The code is available at
https://github.com/GitHub-TXZ/I2PC-Net/, which is accessible to anyone for free, al-
lowing for the validation and utilization of our method.

We adopted the sliding window strategy and Test Time Augmentation (TTA) strat-
egy [9]. The window size is the same with the training patch size and its stride is 0.5×
the patch size. The overlapping regions are weighted by a prepared Gaussian impor-
tance map. TTA is implemented via flipping along all axes. We did not perform any
post-processing operations.

We compared several existing generic 2D or 3D segmentation methods, including
pure CNN models such as nnUNet [9] and AttnUNet [25], pure Transformer models like
nnFormer [12] and D-Former [11] as well as hybrid CNN and Transformer models like
CoTr [13] and Swin-UNETR [14]. All the comparison methods were subjected to the same
data processing and experimental settings to ensure fairness in the comparison. All the
experiments were conducted on a ubuntu server (version 18.04) equipped with 5 NVIDIA
A6000 48GB GPUs. The primary software dependencies include Pytorch version 2.0,
nnU-Net version 2.2 (https://github.com/MIC-DKFZ/nnUNet (accessed on 20 December
2023)), MONAI version 1.3 (https://github.com/Project-MONAI/MONAI (accessed on
20 December 2023)) and Python version 3.10.11 (https://www.python.org/ (accessed on
20 January 2023)).

2.5. Statistical Analysis

In evaluating the segmentation performance for the IP, IC and IC + IP, we computed the
metrics DSC, 95th percentile Hausdorff Distance (HD95) and Average Symmetric Surface
Distance (ASSD) along with their respective means and standard deviations [31,34]. To as-
sess the volume concordance between the manual segmentation made by neuroradiologists
and the I2PC-Net, we calculated Pearson’s correlation coefficients with a 95% confidence
interval (CI) and generated regression and Bland–Altman plots. Given a 70 mL cut-off as
the volume threshold for binary classification, the volume classification performance was
evaluated by using accuracy, Area Under the Curve (AUC), Kappa and their respective 95%
CIs. The statistical analyses were conducted by using MedCalc software (version 20.218,
MedCalc Software Ltd., Mariakerke, Belgium) and the Python programming language
(version 3.10.11, https://www.python.org/, (accessed on 20 January 2023)). t-test and
proportion tests were used and a two-sided alpha level of less than 0.05 was considered to
denote statistical significance.

3. Results

3.1. Study Participants

In the dataset comprising 197 collected cases, the median age of the research partici-
pants was 72 [IQR, 63–80], with 72 male subjects (57.36%). The median Onset-to-CT time
was 73 [IQR, 41–180] min, and the median baseline NIHSS was 11 [IQR: 6–17]. The details
of patient characteristics for all 197 AIS patients collected were listed in Table 1.

Table 1. Patient characteristics for all 197 AIS patients collected.

Characteristics All 197 Patients

Median age, years (IQR) 72 (63–80)
Gender, male, no. (%) 113 (57.36)
Median Onset-to-CT time (IQR), min 73 (41–180)
Median baseline NIHSS (IQR) 11 (6–17)

IQR: Interquartile Range; NIHSS: National Institutes of Health Stroke Scale.
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3.2. Results for IP Segmentation and IC Segmentation

We conducted comparisons with several existing 2D and 3D methods. Table 2 demon-
strates the segmentation results for the IP segmentation and IC segmentation. From Table 2,
our proposed I2PC-Net achieved DSCs of 42.76% ± 21.84% and 33.54% ± 24.13%, HD95s of
13.81 ± 10.39 mm and 21.02 ± 14.81 mm and ASSDs of 3.59 ± 2.25 mm and 5.85 ± 4.28 mm
for the IP and IC segmentation, respectively, outperforming all the compared 2D and 3D
methods. These results show that our I2PC-Net, benefiting from the effectiveness of the
MSC and SA blocks, and the hierarchical deep supervision, achieved the optimal perfor-
mance across various metrics. Overall, we could find that (1) the 3D methods were not
necessarily superior to the 2D methods, which may be attributed to the large slice thickness,
resulting in less strong connections between adjacent slices; (2) pure CNN approaches, such
as AttnUNet [25] and nnUNet [9], continued to exhibit a robust performance in this task;
(3) methods based solely on Transformers showed a weaker performance, possibly due to
the challenges that Transformers face in smaller datasets rather than inherent limitations
in the model itself; and (4) hybrid CNN–Transformer methods performed intermediately
between pure Transformers and pure CNN methods. In other words, CNNs were more
suitable for this task.

Table 2. Comparison of IP and IC segmentation performance with some 2D and 3D methods. The best
metric is shown in bold, and the second best is underscored. ↑ denotes that higher values are better
and ↓ denotes that lower values are better. All metrics are reported as mean ± std.

Methods
IP IC

DSC (%) ↑ HD95 (mm) ↓ ASSD (mm) ↓ DSC (%) ↑ HD95 (mm) ↓ ASSD (mm) ↓
TransUNet [35] 30.00 ± 19.11 42.22 ± 27.05 10.62 ± 8.19 23.16 ± 16.75 37.27 ± 18.00 9.88 ± 4.06
Swin-UNet [36] 20.99 ± 15.50 39.97 ± 23.35 12.45 ± 8.84 13.97 ± 12.60 53.95 ± 20.15 15.31 ± 7.30
2D nnUNet [9] 31.32 ± 23.73 29.05 ± 24.65 10.34 ± 13.91 25.35 ± 21.11 24.37 ± 15.67 8.64 ± 9.92
UTNet [37] 22.87 ± 15.15 27.13 ± 18.73 7.82 ± 6.65 24.07 ± 21.21 32.36 ± 22.95 9.98 ± 8.71

UNet [38] 28.60 ± 19.98 33.64 ± 25.93 10.16 ± 13.94 13.69 ± 14.79 30.92 ± 19.61 10.14 ± 7.05
V-Net [39] 20.05 ± 18.83 32.93 ± 19.48 10.51 ± 9.11 14.57 ± 15.95 30.19 ± 15.11 10.34 ± 7.26
AttnUNet [25] 34.11 ± 19.93 21.30 ± 14.12 5.91 ± 6.24 27.93 ± 22.26 25.82 ± 19.94 6.92 ± 4.95
UNet++ [40] 33.76 ± 21.32 24.09 ± 19.43 6.13 ± 5.70 27.99 ± 24.49 24.30 ± 18.57 7.11 ± 5.47
3D nnUNet [9] 40.50 ± 21.70 16.50 ± 14.96 4.16 ± 4.08 30.74 ± 23.58 21.17 ± 16.12 6.26 ± 5.65
D-Former [11] 31.46 ± 23.01 23.16 ± 17.24 8.51 ± 9.52 17.89 ± 16.83 25.91 ± 19.09 9.44 ± 13.12
CoTr [13] 36.92 ± 23.93 25.82 ± 21.39 7.23 ± 8.08 17.39 ± 15.51 22.54 ± 11.57 6.77 ± 3.99
TransBTS [41] 26.82 ± 16.47 45.18 ± 22.77 12.06 ± 8.04 19.71 ± 18.33 40.78 ± 21.78 12.61 ± 7.92
UNETR [42] 15.74 ± 10.10 53.37 ± 19.43 15.36 ± 6.23 15.77 ± 19.05 36.66 ± 22.91 13.87 ± 9.07
nnFormer [12] 20.04 ± 15.23 40.71 ± 19.99 12.48 ± 9.86 19.03 ± 22.35 36.00 ± 24.27 13.69 ± 11.03
Swin-UNETR [14] 22.09 ± 14.51 47.61 ± 22.91 13.19 ± 7.72 15.07 ± 15.78 48.29 ± 20.28 16.71 ± 8.62
3D UX-Net [10] 17.78 ± 13.48 41.33 ± 20.91 13.50 ± 10.44 14.82 ± 14.27 32.88 ± 20.19 12.10 ± 7.04
I2PC-Net 42.76 ± 21.84 13.81 ± 10.39 3.59 ± 2.25 33.54 ± 24.13 21.02 ± 14.81 5.85 ± 4.28

Figure 3 illustrates the visual segmentation results for our method and three represen-
tative methods: nnUNet [9], AttnUNet [25] and CoTr [13] for the IP and IC segmentation.
In the figure, we could see that our I2PC-Net could accurately locate the affected regions in
the GTs of the IP and IC well, and also match the GT labels (DSC = 47.44% and 74.57% for
the IP and IC, respectively) better than the three compared methods, showing its potential
to provide affected-region information in clinical applications.

3.3. Results for the Entire Infarct (IP + IC) Segmentation

In clinical practice, the evaluation of the entire ischemic infarct (the IP + IC) is
also of paramount importance for diagnosis and prognosis [31,43]. Therefore, we also
evaluated the segmentation performance of the entire ischemic infarct. Without any ad-
ditional training, all the methods’ segmentation results and the Groundtruth segmen-
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tation results treated the IP and IC labels as one category, without distinguishing be-
tween the IP and IC. Subsequently, the segmentation metrics were calculated to obtain
Table 3. For the entire ischemic infarcts, our method achieved a DSC of 65.67% ± 12.30%,
an HD95 of 12.54 ± 7.96 mm and an ASSD of 2.88 ± 1.27 mm, surpassing all compar-
ative methods. In terms of the DSC, our method outperformed the best 2D method
2D nnUNet [9] (65.67% ± 12.30% vs. 49.44% ± 23.63%), the best pure 3D CNN method
3D nnUNet [9] (65.67% ± 12.30% vs. 62.22% ± 11.74%), the best pure 3D Transformer
method D-former [11] (65.67% ± 12.30% vs. 45.18% ± 23.25%) and the best hybrid CNN–
Transformer method CoTr [13] (65.67% ± 12.30% vs. 50.09% ± 22.14%).

As shown in the sixth subfigure (denoted by I2PC-Net) in Figure 3, our method
could accurately locate the entire ischemic regions and match the GT IP + IC well. Our
method shows a similar DSC performance to nnUNet (89.17% vs. 89.77%) for the IP + IC
segmentation. However, our method achieved a higher DSC for the IP segmentation and
IP segmentation, showing its effectiveness at distinguishing the IP and IC.

Table 3. Comparison of the entire infarct (IP + IC) segmentation performance with some 2D and 3D
methods. The best metric is shown in bold, and the second best is underscored. ↑ denotes that higher
values are better and ↓ denotes that lower values are better. All metrics are reported as mean ± std.

Methods
IP + IC

DSC (%) ↑ HD95 (mm) ↓ ASSD (mm) ↓
TransUNet [35] 44.54 ± 16.24 43.19 ± 25.19 9.63 ± 6.08
Swin-UNet [36] 31.86 ± 18.55 45.22 ± 21.84 12.08 ± 6.77
2D nnUNet [9] 49.44 ± 23.63 24.70 ± 20.33 6.56 ± 6.60
UTNet [37] 40.12 ± 17.44 26.20 ± 18.80 6.41 ± 3.51

UNet [38] 39.94 ± 22.98 33.47 ± 25.34 10.10 ± 13.71
V-Net [39] 31.90 ± 24.15 32.43 ± 19.38 10.23 ± 9.22
AttnUNet [25] 51.48 ± 22.74 20.74 ± 13.39 5.88 ± 6.27
UNet++[40] 51.56 ± 23.48 24.20 ± 19.08 6.22 ± 5.87
3D nnUNet [9] 62.22 ± 11.74 15.26 ± 12.73 3.67 ± 3.64
D-Former [11] 45.18 ± 23.25 22.53 ± 16.57 7.36 ± 8.04
CoTr [13] 50.09 ± 22.14 25.10 ± 20.22 5.89 ± 4.41
TransBTS [41] 39.77 ± 17.94 45.35 ± 21.83 12.09 ± 7.25
UNETR [42] 25.02 ± 13.68 53.73 ± 18.42 15.38 ± 6.01
nnFormer [12] 32.15 ± 19.93 39.93 ± 19.40 11.92 ± 7.90
Swin-UNETR [14] 32.71 ± 17.92 47.63 ± 21.62 13.46 ± 7.61
3D UX-Net [10] 28.45 ± 18.53 39.00 ± 20.29 12.16 ± 7.84
I2 PC-Net 65.67 ± 12.30 12.54 ± 7.96 2.88 ± 1.27

NCCT Ground Truth nnUNet AttnUNet CoTr

Figure 3. Visual segmentation results of the I2PC-Net and three state-of-the-art methods: nnUNet,
AttnUNet and CoTr. The red and green regions in each subfigure represent manual Groundtruth of
IP and IC or IP and IC segmented by each compared algorithm, respectively. The numbers above the
figure denote the DSC for IP, IC and IP + IC in this slice, respectively.
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3.4. Volumetric Analysis of Segmented Infarcts

In clinical practice, the volume correlation as well as the infarct volume (e.g., 70 mL as
the cut-off) are crucial for selecting AIS patients who will obtain good outcomes after differ-
ent treatments [31,44,45]. Therefore, we also conducted a volume analysis on the ischemic
infarcts obtained by our method to illustrate the clinical relevance of the proposed method.

Figure 4a–c illustrate the correlation analysis between the I2PC-Net segmented vol-
umes and manual segmented volumes for the IP, IC and IP + IC, respectively. The proposed
I2PC-Net achieved Pearson linear correlation coefficients (r) of 0.95 (95% CI: 0.9019–0.9720,
p < 0.001), 0.61 (95% CI: 0.3637–0.7721, p < 0.001) and 0.93 (95% CI: 0.8749–0.9639, p < 0.001)
for the IP, IC and IP + IC, respectively. These indicate a strong positive volume correlation
for the IP and IP + IC, and the more challenging IC also exhibits a moderate volume
correlation. Segmenting AIS infarcts in NCCT scans presents significant difficulties. First,
compared to other imaging techniques like MRI, NCCT proves harder to analyze because
of the lower signal-to-noise and contrast-to-noise ratios in cerebral tissues. Second, distin-
guishing infarct areas is complicated by normal physiological alterations, with the affected
brain regions often exhibiting only slight differences in density and texture [32,33]. In the
early stages of stroke, the IC does not appear significantly on NCCT, making it very diffi-
cult to distinguish between the IP and IC. Therefore, the correlation of the IC volume is
relatively weak.
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Figure 4. Volume correlation and consistency analysis of the segmented volume by I2PC-Net com-
pared with manual segmentation volumes. (a–c) represent the linear regression of IP, IC and IP + IC,
respectively. The blue straight line represents the regression line, and the pink dotted line and the blue
area it contains represent the 95% confidence interval. The dashed orange line and the orange area
it contains represent the 95% prediction interval. “r” represents the Pearson correlation coefficient,
and “P” denotes the p-value.

We also dichotomized the entire ischemic region (IP + IC) volume by using 70 mL as a
cut-off and then evaluated the binary volume classification performance. Our developed
I2PC-Net demonstrated the capability to discriminate between patients with lesion volumes
of ≤70 mL and >70 mL with a Kappa of 0.7536 [95% CI: 0.5579–0.9494], an AUC of 0.886
[95% CI: 0.746–0.965] and an accuracy of 87.50% [95% CI: 73.19%–95.81%], suggesting
reasonable dichotomization volume information for therapy decision making.
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4. Discussion

In this study, we explored a fully automatic segmentation approach named I2PC-
Net to simultaneously segment the IP and IC from NCCT scans. By employing MSC
blocks, SA blocks and hierarchical deep supervision mechanisms, the proposed I2PC-Net
demonstrated a superior performance compared to some existing methods.

A comparative analysis with other methods revealed that the pure Transformer-based
methods exhibited the poorest performance. The hybrid methods showed performance
improvements over the pure Transformers, and they did so at the expense of convergence
speed and computational cost. Pure convolutional approaches were more suited for this
task in terms of convergence speed and final performance. Our method outperformed the
powerful nnUNet, attributable to its enhanced capability of muti-scale modeling, suspected
ischemic area locating and IP and IC differentiating. The experiment results confirm our hy-
pothesis: employing modules like MSC blocks and SA blocks allow for the better handling
of the substantial variability in infarct shape, size and location, while a hierarchical deep
supervision decoding mechanism more effectively addresses the challenges in distinguish-
ing between the IP and IC. This study demonstrates the feasibility of using only NCCT for
simultaneous quantitative assessments of the IP and IC. I2PC-Net can provide valuable
insights for neuroradiologists in making therapeutic decisions, laying the groundwork for
future researchers to develop more effective and broadly applicable methods.

From the quantitative segmentation metrics, visual segmentation results and volume
analysis results, our approach demonstrated the effective localization of the ischemic
region. Moreover, the classification performance using a cut-off volume of 70 mL was also
favorable. This implies that in clinical applications, our method, relying solely on NCCT,
can furnish valuable information for decision making in AIS treatments. The average time
for automatic segmentation using the trained model was 3.49 s per NCCT scan, significantly
enhancing the diagnostic efficiency of neuroradiologists for AIS patients.

Furthermore, to explore whether there were relevant clinical factors influencing the
volume classification performance using 70 mL as cut-off, we conducted subgroup analyses
based on factors such as gender, age, NIHSS score and Onset-to-CT time. As depicted in
Table 4, the classification performance for patients aged over 70 was significantly superior
to those under 70, and for patients with an Onset-to-CT-time exceeding 180 min, the classi-
fication performance was significantly better than for those below 180 min. No significant
differences were found in the gender and NIHSS subgroups. A subgroup analysis indicates
that age and Onset-to-CT time are two clinical factors closely associated with segmentation
and classification performance. The reason why segmentation and lesion volume clas-
sification are more effective when the onset-to-CT time ≥ 180 min is that the longer the
Onset-to-CT time, the more stable the lesion changes become, and lesions become more
contrasted against the healthy tissues, making them easier to be segmented. However,
given that the golden treatment window for AIS is 4.5 h, it is generally recommended in
clinical practice to perform an NCCT scan and decide the appropriate treatment as soon as
possible to improve the success rate of the intervention. Therefore, the above results do not
imply that we should wait until after 180 min to collect NCCT data for treatment. Future
research can incorporate age and Onset-to-CT time into the modeling process to further
improve accuracy.

This study also has several limitations. First, the sample size in this paper is limited,
and there is no external validation cohort. In the future, we aim to collect more data to train
models that are more effective and broadly applicable. Second, from the qualitative results,
we can find that even though the model accurately locates the entire ischemic region,
the segmentation performance of the IP and IC individually might not be optimal. How
to better distinguish the IP and IC while maintaining the accuracy of the entire ischemic
IP + IC region remains a topic for future work.
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Table 4. Classification performance when IP + IC volume is dichotomized using 70 mL as cut-
off (95%CI is shown in square brackets). * denotes that there is significant difference between
two subgroups (p < 0.05).

Variable Subgroup Kappa AUC Accuracy (%)

Gender female 0.7826 [0.4440–1.0000] 0.9286 [0.8214–1.0000] 0.9000 [0.6990–0.9721]
male 0.6667 [0.3389–1.0000] 0.8125 [0.6429–1.0000] 0.8500 [0.6396–0.9476]

Age (years) <70 0.5000 [0.1250–0.8623] 0.7500 [0.5625–0.9286] 0.7500 [0.5050–0.8982]
≥70 0.9155 ∗ [0.7143–1.0000] 0.9643 ∗ [0.8846–1.0000] 0.9583 ∗ [0.7976–0.9926]

Baseline NIHSS <9 0.7547 [0.4217–1.0000 0.8333 [0.5000–1.0000] 0.9231 [0.6669–0.9863]
≥9 0.6897 [0.3969–0.9222] 0.8947 [0.7895–0.9750] 0.8519 [0.6752–0.9408]

Onset-to-CT time (min) <180 0.6316 [0.3331–0.9041] 0.8462 [0.7083–0.9643] 0.8095 [0.6000–0.9233]
≥180 0.8939 ∗ [0.6587–1.0000] 0.9444 ∗ [0.8125–1.0000] 0.9474 ∗ [0.7536–0.9906]

5. Conclusions

This study proposed a pure CNN-based method, termed I2PC-Net, which relies solely
on NCCT to simultaneously and automatically segment the IP and IC. It mitigates the
challenges of significant variations in the size, location and shape of infarct lesions through
multi-scale modeling and Symmetry Enhancement blocks. We also employed a hierarchical
deep supervision decoding mechanism to address the difficulty in distinguishing between
the IP and IC in the deep layer. The results indicate that I2PC-Net can automatically
and quantitatively assess the IP and IC with good localization of the affected regions,
strong volume correlation and high dichotomized volume classification performance,
potentially providing valuable infarct information for diagnosis and patient selection in
clinical applications.
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Abbreviations

The following abbreviations are used in this manuscript:

AIS Acute Ischemic Stroke
IP Ischemic Penumbra
IC Ischemic Core
NCCT Non-Contrast Computed Tomography
MSC Multi-Scale Convolution
SA Symmetry Enhancement
DSC Dice Similarity Coefficient
HD95 95th Hausdorff Distance
ASSD Average Symmetric Surface Distance
CNN Convolutional Neural network
I2PC-Net IP and IC neural Network
CI Confidence interval
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Abstract: Meningiomas are common primary brain tumors, and their accurate preoperative grading
is crucial for treatment planning. This study aimed to evaluate the value of radiomics and clinical
imaging features in predicting the histologic grade of meningiomas from preoperative MRI. We
retrospectively reviewed patients with intracranial meningiomas from two hospitals. Preoperative
MRIs were analyzed for tumor and edema volumes, enhancement patterns, margins, and tumor–
brain interfaces. Radiomics features were extracted, and machine learning models were employed to
predict meningioma grades. A total of 212 patients were included. In the training group (Hospital 1),
significant differences were observed between low-grade and high-grade meningiomas in terms of
tumor volume (p = 0.012), edema volume (p = 0.004), enhancement (p = 0.001), margin (p < 0.001),
and tumor–brain interface (p < 0.001). Five radiomics features were selected for model development.
The prediction model for radiomics features demonstrated an average validation accuracy of 0.74,
while the model for clinical imaging features showed an average validation accuracy of 0.69. When
applied to external test data (Hospital 2), the radiomics model achieved an area under the receiver
operating characteristics curve (AUC) of 0.72 and accuracy of 0.69, while the clinical imaging model
achieved an AUC of 0.82 and accuracy of 0.81. An improved performance was obtained from the
model constructed by combining radiomics and clinical imaging features. In the combined model,
the AUC and accuracy for meningioma grading were 0.86 and 0.73, respectively. In conclusion,
this study demonstrates the potential value of radiomics and clinical imaging features in predicting
the histologic grade of meningiomas. The combination of both radiomics and clinical imaging
features achieved the highest AUC among the models. Therefore, the combined model of radiomics
and clinical imaging features may offer a more effective tool for predicting clinical outcomes in
meningioma patients.

Keywords: meningioma; radiomic features; machine learning; grading; magnetic resonance imaging

1. Introduction

Meningiomas are the most common primary brain tumors, constituting 13–26% of all
intracranial tumors [1]. The World Health Organization (WHO) categorizes meningiomas
into three histopathologic grades. Approximately 90% are histologically benign (Grade I),
5–7% are atypical (Grade II), and 1–3% are anaplastic (Grade III). High-grade meningiomas
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(Grades II and III) are known to have malignant potential and are more likely to recur after
complete resection, sometimes requiring adjuvant radiation therapy [2,3]. Also, the survival
rate is higher in low-grade meningioma than in high-grade meningioma. Thus, determining
preoperative risk factors for higher tumor grades can provide valuable information for
both clinicians and patients.

Magnetic resonance imaging (MRI) is the most important imaging technique for the
detection and preoperative evaluation of intracranial meningiomas. Previous studies have
reported that preoperative MRI is useful for grading meningiomas and evaluating their
histopathological characteristics by analyzing imaging findings such as heterogeneous
enhancement, marked peritumoral edema, irregular tumor margins, and bone destruc-
tion [4–6]. Despite these findings, the image patterns of different grades of meningiomas
can often mimic each other, and the usefulness of tumor grading using conventional MRI
alone remains controversial [7].

Recently, there has been a rising interest in developing quantitative ways to analyze
radiological imaging data. Radiomics is one such way that extracts high-throughput data
from medical images using pattern-recognizing mathematical and statistical algorithms to
determine pixel intensities. In contrast to the conventional clinical imaging features that
are assessed visually by radiologists, which are highly subjective and exhibit inter-observer
variability, radiomics analysis can provide a quantitative way to interpret many imaging
features. These radiomic features have been shown to reflect underlying pathophysiological
characteristics. Furthermore, novel radiomic biomarkers can be developed with prognostic
or diagnostic value [8]. As both radiomics and clinical imaging features can serve as
prognostic biological factors, machine learning models that combine both radiomics and
preoperative clinical imaging features may provide an additional benefit for predicting
histologic grade.

The aim of this study is to evaluate the feasibility of using radiomics and clinical
imaging features in predicting the histologic grade of meningiomas from preoperative MRI.

2. Materials and Methods

2.1. Patients

We retrospectively reviewed patients who underwent resection for intracranial menin-
giomas at Chonnam National University Hwasun Hospital (Hospital 1) from April 2016 to
September 2021. The inclusion criteria were: (1) histologically confirmed meningioma with
a definite grade (according to the 2016 World Health Organization Classification of Tumors
of the Central Nervous System) and (2) availability of standard MR scans before any clinical
intervention, including biopsy, consisting of T1- and T2-weighted images (T1WI, T2WI),
T1-contrast-enhanced (T1-CE) and fluid-attenuated inversion recovery (FLAIR). The exclu-
sion criteria were: (1) ambiguous pathological grade; (2) incomplete MRI sequences and
significant motion artifacts on MR scans; (3) irrelevant intracranial disease history; (4) prior
history of surgery or treatment before MRI; and (5) an MRI scan that was not performed at
our institution. For the external test set, we included patients who underwent preoperative
MRI for intracranial meningiomas at Chonnam National University Hospital (Hospital 2)
who met the same inclusion criteria in our validation models. Finally, 164 patients from
hospital 1 and 48 patients from hospital 2 were included in the study, respectively. The
variables were collected from electronic medical records, pathology reports, and radiology
reports.

This retrospective study was approved by the Institutional Review Board of Chonnam
National University Hospital and was in accordance with the ethical guidelines of the 2008
Declaration of Helsinki. The requirement for written informed consent was waived due to
the retrospective nature of the study.

2.2. MRI Protocols

Preoperative MRI studies were performed at two hospitals. At Hospital 1, MR ex-
aminations were performed on 3T scanners (Magnetom TimTrio, Skyra, or Vida: Siemens
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Healthineers, Erlangen, Germany). The imaging protocols were included T1WI (TR/TE
= 2400 − 2540 ms/9.4 ms; matrix = 384 × 269), T2WI (TR/TE = 3500 − 3700 ms/100 −
105 ms; matrix = 448 × 311), FLAIR (TR/TE 7000 ms/80 − 96 ms; matrix = 384 × 230),
and T1-CE (TR/TE 149 − 164 ms/3 − 4.4 ms; matrix = 480 × 381). A field of view (FOV)
of 230 mm × 230 mm, slice thickness of 4 mm, and no gap were applied to all images.
Contrast-enhanced MR scans were acquired after administering a bolus injection of 0.2
mL/kg of contrast agent.

At Hospital 2, MRI examinations were performed using 3T MR scanners (MAG-
NETOM TimTrio or Vida: Siemens Healthineers, Erlangen, German; Discovery 750; GE
Healthcare Chicago, United States; Ingenia CX: Philips, Amsterdam, The Netherlands). The
detailed protocols included the following sequences: T1WI (TR/TE = 2000 − 2400 ms/10
− 13 ms; matrix = 320 − 256 × 230 − 287), T2WI (TR/TE = 3000 − 6000 ms/80 − 100 ms;
matrix = 400 − 512 × 259 − 400), FLAIR (TR/TE 4800 − 9400 ms/88 − 340 ms; matrix =
256 − 384 × 204 − 264), and T1-CE (TR/TE 287 − 350 ms/2.5 − 4.6 ms; matrix = 320 −
400 × 224 − 321). An FOV of 230 − 240 mm × 230 − 240 mm, a slice thickness of 5 mm,
and a gap of 0.5 mm were applied to all images. T1-CE images were acquired after a bolus
injection of 0.2 mL/kg of contrast agent.

2.3. Radiologic Evaluation

Two radiologists, with 2 and 20 years of experience, who were blind to the pathological
results, reviewed the MR images. Tumor volume, edema volume, and edema-to-tumor
volume ratio were measured for all patients included in the study. A semi-automated
evaluation of the tumor and peritumoral edema volumes was performed using 3D Slicer
software (version 4.11, http://www.slicer.org (accessed on 11 November 2022)). T1-CE
images were used to measure the tumor volume, and FLAIR images were used to access the
edema volume in all patients. Also, enhancement pattern (homogeneous/heterogeneous),
tumor margin (regular/irregular), tumor–brain interface (clear/unclear), and necrosis and
dural tail sign (presence or absence) were assessed on MRI. An irregular tumor margin
was defined as a tumor that appeared multilobulated or mushroom-shaped. A clear
tumor–brain interface was defined as meningiomas with a distinct cerebrospinal fluid (CSF)
cleft between the tumor and brain parenchyma. Figure 1a depicts the typical imaging
characteristics of a low-grade meningioma, while Figure 1b illustrates those of a high-grade
meningioma.

 

Figure 1. Contrast-enhanced axial MR images of two meningiomas. (a) This image exhibits the typical
features of a low-grade meningioma, including homogeneous enhancement, smooth margins, absence
of peritumoral edema, and no significant mass effect on the surrounding brain parenchyma (black
arrow). (b) In contrast, this image displays the hallmarks of a high-grade meningioma, characterized
by necrotic areas (white asterisk), pronounced mass effect, peritumoral edema (black asterisk),
irregular margins (white arrows), and suspicious invasion into the adjacent brain parenchyma (black
arrow), indicating a more aggressive tumor behavior.
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2.4. Image Preprocessing

A schematic showing the process of image processing and machine learning analysis
is shown in Figure 2. Image preprocessing was meticulously designed to standardize
radiomic feature extraction from various MRI sequences. The initial step in this process
was the application of N4 bias correction, a crucial technique employed to correct for
low-frequency-intensity non-uniformities, which are common artifacts in MR imaging.
This correction was uniformly applied across T1-CE, T1WI, T2WI, and FLAIR images
using the 3D Slicer software. The N4 bias correction, adept at addressing magnetic field
inhomogeneities, ensured a homogenous intensity distribution across all images. Subse-
quently, we engaged in the co-registration of images for each patient, utilizing the General
Registration (BRAINS) mode within the 3D Slicer’s suite of registration functions. This
mode was specifically chosen for its robustness in aligning all MRI sequences to the axial
T1-CE sequence, providing a consistent anatomical framework across various imaging
modalities. Following co-registration, the next critical step was skull stripping, performed
using the SwissSkullStripper extension in 3D Slicer. This tool is particularly effective for
accurately removing non-brain tissues from MRI images, thereby significantly enhancing
the precision of our analysis by focusing solely on brain tissues and eliminating extraneous
confounds. The final phase in our preprocessing workflow was the application of min–max
normalization, especially crucial due to the usage of MRI images from three different
machines in our study. This normalization process, applied to the region of interest (ROI)
in each image, served to standardize pixel intensity values, ensuring a consistent scale
for radiomic feature extraction across different scanners. This process, achieved through
custom Python scripts, normalized pixel intensity values, ensuring a consistent baseline for
feature extraction [9].

 

Figure 2. Overview of the image processing and radiomics analysis framework used to develop a
machine-learning model.

2.5. Tumor Segmentation and Radiomics Feature Extraction

3D Slicer was used for semi-automated manual segmentation to delineate the region
of interest (ROI) associated with meningioma. Tumor boundaries and peritumoral edema
were identified from T1WI and FLAIR images, respectively, by employing thresholding
and region-growing segmentation algorithms. Radiomics features were extracted utilizing
the open-source Python package PyRadiomics, version 3.0.1 [10]. In total, 851 quantitative
features were procured, encompassing two categories: original and wavelet-based features.
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Prior to their incorporation in the classification model, the values of each feature underwent
normalization through the application of the min–max scaler.

2.6. Feature Selection and Classifier Model Training and Testing

We imported all 851 radiomic features into the PyCaret tool, version 2.3.10 [11]. Py-
Caret is an open-source, low-code machine learning library in Python that streamlines
certain workflows, including feature selection. In this study, we relied on PyCaret for
feature selection. The feature selection process was iterated 100 times with the random
selection of the training data. Eight features were found to be selected by PyCaret in each
of the 100 tests. We then removed each of the 8 features one-by-one and checked if the
performance increased, which rendered a final 5 features.

Regarding the clinical imaging features, a univariate analysis was conducted to select
significantly correlated features for the machine learning model. Features with p-values less
than 0.05 were deemed statistically significant in the multivariate analysis and subsequently
chosen for inclusion in the model. LightGBM [12] was employed to train the classifier using
the top radiomics features, and the categorical Naïve Bayes (CategoricalNB) model [13]
was applied for the classification of clinical imaging features. Both models were trained
and evaluated on the Hospital 1 data. The data was initially divided into 5 folds with the 4
parts used for training and 1 part for validation. The validation performance was reported
as an average of the 5 folds. The radiomics and clinical imaging models that produced the
highest performance among the 5 folds were used for the external test set derived from
Hospital 2.

To assess the effect of combining the radiomics and clinical imaging models, a fusion
model was developed. In the fusion model, the average of the two probabilities from
the radiomics and clinical imaging models was taken as the final probability to predict
meningioma grade. The performance of the fusion model was evaluated using the Hospital
2 data.

2.7. Statistical Analysis

The clinical imaging features were compared between low-grade and high-grade
meningioma groups. Categorical variables were described using percentages, while con-
tinuous variables were presented as means. Univariate analysis was performed to select
significant radiological characteristics within the low-grade and high-grade groups in the
training cohort. Student’s t-test and the chi-square test were employed for univariate
analysis, with a p-value less than 0.05 deemed statistically significant. Statistical analysis
was conducted using IBM SPSS software, version 28.0 (SPSS Inc., Chicago, IL, USA). In
order to assess the performance of predictive models for meningioma grading, several
metrics, including area under the receiver operating characteristics curve (AUC), accuracy,
sensitivity, and specificity, were calculated for both the test and validation sets. The perfor-
mance of the fusion mode was compared with the clinical imaging and radiomics models
using DeLong’s test. These evaluations were performed by the in-house-built code using
the Python programming language (version 3.7.11).

3. Results

3.1. Patients’ Characteristics

The study included a total of 212 patients, divided into two groups for training and
testing, with 164 patients in the training group (Hospital 1) and 48 patients in the testing
group (Hospital 2). The training group comprised 66 males and 98 females, with a mean
age of 60.4 years (age range 25–85 years), while the testing group consisted of 11 males
and 37 females, with a mean age of 54.9 years (age range 22–78 years). In Hospital 1, there
were 89 patients with low-grade meningioma and 76 with high-grade meningioma, while
in Hospital 2, there were 33 with low-grade meningioma and 15 patients with high-grade
meningioma. There were no significant differences observed in WHO grade (p = 0.074)
between the training and testing datasets (Table 1).
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Table 1. Characteristics of patients in the training and testing group.

Variables

Training Set (Hospital 1) Testing Set (Hospital 2)

Low Grade High Grade p-Value Low Grade High Grade p-Value

(n = 89) (n = 75) (n = 33) (n = 15)

Age 59.9 60.88 0.631 55.14 54.66 0.908

Female sex 56 42 0.368 28 9 0.058

Tumor volume
(mm3) (mean) 32.5 49.0 0.012 30.35 38.0 0.461

Edema volume
(mm3) (mean) 24.0 45.1 0.004 41.08 47.25 0.754

Edema/Tumor
volume ratio 1.1 1.5 0.433 1.46 1.35 0.859

Enhancement <0.001 <0.001

Homogeneous 61 (68.5%) 32 (42.7%) 29 (87.9%) 6 (40%)

Heterogeneous 28 (31.4%) 43 (57.3%) 4 (12.1%) 9 (60%)

Necrosis 0.046 0.502

Yes 28 (31.4%) 35 (46.7%) 6 (18.2%) 4 (26.7%)

No 61 (68.5%) 40 (53.3%) 27 (81.8%) 11 (73.3%)

Dural tail 0.055 0.367

Yes 67 (75.3%) 46 (61.3%) 20 (60.6%) 7 (46.7%)

No 22 (24.7%) 29 (38.7%) 13 (39.4%) 8 (53.3%)

Margin <0.001 0.030

Regular 54 (60.7%) 23 (30.7%) 24 (72.7%) 6 (40%)

Irregular 35 (39.3%) 52 (69.3%) 9 (27.3%) 9 (60%)

Tumor-brain
interface <0.001 <0.001

Clear 79 (88.8%) 41 (54.7%) 29 (87.9%) 5 (33.3%)

Unclear 10 (11.2%) 34 (45.3) 4 (12.1%) 10 (66.7%)

3.2. Clinical Imaging Features

In the training group (Hospital 1), significant differences were found between low-
grade and high-grade meningioma groups for tumor volume (p = 0.012), edema vol-
ume (p = 0.004), enhancement (p = 0.001), margin (p < 0.001), and tumor–brain interface
(p < 0.001) (Table 2).

Table 2. Performance of machine learning of models for prediction of tumor grading.

Models
Validation Set (Hospital 1) Testing Set (Hospital 2)

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

Clinical
imaging 0.77 0.69 0.67 0.89 0.82 0.81 0.73 0.85

Radiomics 0.83 0.74 0.80 0.72 0.72 0.69 0.67 0.70

Combined 0.86 0.73 0.73 0.73

AUC, area under the receiver operating characteristic curve.
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3.3. Radiomics Features

The selectin of radiomics features was executed 100 times, resulting in 100 unique sets
of selected features. Eight features were consistently selected across all iterations and, there-
fore, considered for a further selection. A systematic removal and the evaluation of these
eight features yielded a final selection of five radiomics features: original GLSZM small
area emphasis, original shape flatness, wavelet-HHL GLSZM gray level non-uniformity,
wavelet-HLL first-order mean, and wavelet-LLL first-order interquartile range.

3.4. Diagnostic Performance of the Prediction Model

The LightGBM radiomics model showed an average validation accuracy of 0.74 (range:
0.72–0.75) using 5-fold cross validation (CV). Using the external test data from Hospital
2, this model yielded accuracy, AUC, sensitivity, and specificity of 0.69, 0.72, 0.67, and 0.7,
respectively.

The average validation accuracy of clinical imaging features using 5-fold CV was 0.69
(range: 0.63–0.79). Using the external test data from Hospital 2, the clinical imaging model
yielded accuracy, AUC, sensitivity, and specificity of 0.81, 0.82, 0.73, and 0.85, respectively.
The fusion model that combined the radiomics and clinical imaging models resulted in
slightly improved performances, with accuracy, AUC, sensitivity, and specificity of 0.73,
0.86, 0.73, and 0.73, respectively, for the external test data. The results of the radiomics,
clinical imaging, and fusion models are shown in Table 2 and Figure 3.

Figure 3. Comparison of receiver operating characteristic curves for the prediction of tumor grading
using the external test set from Hospital 2.

The analysis of DeLong’s test revealed that the AUC of the combined model was
significantly higher than that of the radiomics model (p = 0.0012) but was similar to that of
the clinical imaging model (p = 0.31).

4. Discussion

The present study aimed to evaluate the value of radiomics and clinical imaging
features in predicting the histologic grade of meningiomas using preoperative MRI. Our
results highlight the potential of combining radiomics and clinical imaging features to
provide a quantitative way for the preoperative prediction of meningioma grade, which
can be crucial for guiding clinical decision-making and patient management.

Generally, meningioma can be easily diagnosed with reasonable confidence using
MRI and CT, as they typically appear as well-defined masses with a broad-based dural
attachment and show homogeneous enhancement on post-contrast imaging. Beyond this
simple diagnosis, researchers have been using non-invasive imaging biomarkers to predict
tumor grading, which affects patient treatment decisions and prognosis. In previous studies,
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several conventional and advanced MRI findings have been identified as suggestive of
high-grade meningiomas [4,6,14–20]. The imaging findings associated with high-grade
meningiomas include higher degree of peritumoral edema, intratumoral necrosis, lower
ADC values, heterogeneous enhancement, dural tail sign, irregular or poorly defined
tumor margins, and blurred or irregular tumor–brain interface. In our study, we identified
significant differences between low-grade and high-grade meningiomas in terms of tumor
volume, edema volume, enhancement, margin, and tumor–brain interface. These findings
are consistent with previous literature. However, there are still limitations in the overall
predictive accuracy of these findings. To overcome these limitations and improve diagnostic
accuracy, machine learning-based predictive models using MRI radiomic features are being
developed.

For the selection of radiomic features, we used the PyCaret tool. PyCaret is a high-level,
open-source Python library for machine learning that streamlines the process of creating,
comparing, and deploying models. It provides a unified interface for several machine
learning libraries, enabling the user to implement a wide range of algorithms. In addition,
PyCaret includes a variety of preprocessing techniques, feature engineering, and feature
selection methods [11]. The feature selection algorithm in PyCaret is based on three main
algorithms: random forest, LightGBM, and correlation. One of the most widely used feature
selection methods in machine learning is least absolute shrinkage and selection operator
(LASSO). LASSO is a linear regression technique that applies regularization to prevent
overfitting and perform feature selection [21,22]. While LASSO is a powerful technique for
feature selection in linear regression tasks, PyCaret’s broader range of tools and features
may have provided a more versatile and efficient approach to selecting the optimal features
and models compared to using LASSO alone.

Five radiomics features were selected by the PyCaret tool: original GLSZM small
area emphasis, original shape flatness, wavelet-HHL GLSZM gray level non-uniformity,
wavelet-HLL first-order mean, and wavelet-LLL first-order interquartile range. Original
GLSZM small area emphasis is a measure of the distribution of small size zones in the
gray level size zone matrix. In the context of meningioma grading, this feature may be
relevant as it can help capture differences in tumor cellularity, which can be indicative of
the tumor’s aggressiveness. Original shape flatness is a shape descriptor that quantifies
the elongation of an object in three-dimensional space. It is calculated as the ratio of the
smallest to the largest principal axis of the best-fitting ellipsoid. In meningioma grading,
this feature may help distinguish between different tumor shapes that could be related
to the tumor’s invasiveness or growth pattern. Wavelet-HHL GLSZM gray level non-
uniformity measures the non-uniformity of gray levels in the texture of an image. High
values indicate more heterogeneity in the image, which may be associated with varying
cell densities or structural variations within the tumor. Wavelet-HLL first-order mean is
the average of the pixel intensity values in an image after applying the wavelet transform.
The mean value represents the overall intensity of the image, and changes in this feature
may reflect differences in tumor contrast, vascularity, or cell density. These variations
could be associated with different meningioma grades and help distinguish between them.
Wavelet-LLL first-order interquartile range measures the interquartile range of the pixel
intensity values in an image after applying the wavelet transform. The interquartile range
can provide information about the distribution and variability of the intensity values in the
image. In meningioma grading, this feature may capture variations in tumor heterogeneity
or tissue properties. In summary, these five radiomics features presumably reflect different
aspects of meningioma characteristics, such as shape, texture, and intensity distribution.
They are associated with aggressiveness or growth patterns, which may be predictive of
meningioma grading and prognosis.

The LightGBM classifier model demonstrated superior performance among radiomics-
based predictive models, with an average validation accuracy of the 5-fold CV of 0.74.
When applied to external test data from Hospital 2, the radiomics model achieved an
accuracy of 0.69, an AUC of 0.72, a sensitivity of 0.67, and a specificity of 0.7. These findings
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are consistent with several recently published studies that have investigated the use of
radiomics data in the grading of meningiomas [2,7,22–27]. A systematic review and meta-
analysis conducted by Ugga reported that the overall pooled AUC for machine learning
models in meningioma grading was 0.88 (95% CI = 0.84–0.93) [28].

Although methodological differences among studies, such as variations in patient
populations, imaging modalities, feature selection algorithms, classifier models, sample
sizes, and external validation, pose significant challenges in making direct comparisons, our
study revealed a relatively lower overall predictive value compared to that of the previous
research. Several factors might have contributed to these results. First, our training dataset
was obtained from multiple MRI machines, whereas most previous studies used data from
a single MRI machine. MRIs at Hospital 1, used to obtain radiomics data in this study, were
from three different machines. In general, using data from a single MRI machine can yield
higher diagnostic accuracy and AUC for machine learning models because the data from a
single MRI scanner has less variation than that from multiple MRI scanners. However, the
model trained with data from a single MRI scanner may lack generalizability to data from
other MRI machines. On the other hand, models trained with radiomics data from multiple
MRI machines can lead to a more robust and generalizable machine learning model, as
they are trained on a diverse set of imaging data that accounts for variations in imaging
parameters, scanner-specific artifacts, and inter-scanner variability. This may result in
lower diagnostic accuracy or AUC compared to a model trained on a single MRI machine.
The second factor to consider is differences in patient populations. The current study
has a higher proportion of high-grade meningioma patients compared to the previously
published studies. This is advantageous as it allows us to evaluate the performance of our
model in predicting high-grade tumors, which are generally more challenging to diagnose
and require more aggressive treatment. In addition, the inclusion of a larger number of high-
grade patients provides more robust data for the development of predictive models. The
third factor pertains to the disparity in machine learning models. Previous research often
employed support vector machine (SVM) or random forest models [22,28]. In contrast, this
study utilized LightGBM. This model exhibits exceptional accuracy and speed, making it
suitable for handling extensive datasets. Notably, it possesses the ability to handle missing
values and outliers, which are frequently encountered in medical datasets. Moreover, its
proficiency in managing imbalanced datasets proves advantageous in medical imaging,
where certain diseases may have higher prevalence rates. Despite these benefits, LightGBM
has several limitations. Overfitting may occur if the model is trained on a small dataset or
if too many features are included in the analysis. Additionally, the model’s accuracy can be
influenced by hyperparameters such as the learning rate and the number of trees [12,29].

One of the significant findings of our study is the novel integration of radiomics and
clinical imaging features to develop a robust and effective model for predicting meningioma
grades. Most studies in the literature have attempted to predict meningioma grade using
either radiomics or clinical imaging features independently. The combination of radiomics
and clinical imaging data resulted in a notable improvement in AUC (0.86) compared to
either the radiomics (0.72, AUC) or clinical imaging (0.82, AUC) models. Although the AUC
of the combined model was statistically higher than that of the radiomics model but similar
to that of the clinical imaging model, this finding underscores the importance of integrating
multiple features for enhanced performance in meningioma grading. Our findings are
consistent with several recently published studies that have investigated the combination of
radiomics and non-imaging clinical data in other areas of meningioma studies. For instance,
a study by Joo reported that an imaging-based model that combined interface radiomics and
peritumoral edema could predict brain invasion by meningioma and improve diagnostic
performance [30]. Similarly, a study by Park demonstrated that integrating radiomics with
clinicopathological features significantly contributed to predicting recurrence in patients
with grade 2 meningiomas [31]. These studies, along with our findings, suggest that
combining radiomics and clinical features has the potential to be a powerful tool, providing
additional information beyond what is visible on conventional imaging.
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Our study has several limitations. First, we only used retrospective data. Second, the
sample size of the testing group was relatively small, which may limit the generalizability
of our findings. In addition, our study did not include other MR imaging sequences,
such as perfusion-weighted imaging or diffusion-weighted imaging, which might offer
complementary information for predicting meningioma grade.

5. Conclusions

In conclusion, our study demonstrates the potential of a combined model that incor-
porates both radiomics and clinical imaging features for predicting the histologic grade of
meningiomas using preoperative MRI. By overcoming the limitations of conventional MRI-
based grading and reducing subjectivity, our approach can provide valuable information for
clinicians and patients in terms of prognosis and management. Future studies could further
validate and refine this model using larger, multi-center cohorts and explore the potential
of incorporating additional imaging modalities to enhance predictive performance.
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Abstract: Collateral scoring plays an important role in diagnosis and treatment decisions of acute
ischemic stroke (AIS). Most existing automated methods rely on vessel prominence and amount after
vessel segmentation. The purpose of this study was to design a vessel-segmentation free method
for automating collateral scoring on CT angiography (CTA). We first processed the original CTA
via maximum intensity projection (MIP) and middle cerebral artery (MCA) region segmentation.
The obtained MIP images were fed into our proposed hybrid CNN and Transformer model (MPViT)
to automatically determine the collateral scores. We collected 154 CTA scans of patients with AIS
for evaluation using five-folder cross validation. Results show that the proposed MPViT achieved
an intraclass correlation coefficient of 0.767 (95% CI: 0.68–0.83) and a Kappa of 0.6184 (95% CI:
0.4954–0.7414) for three-point collateral score classification. For dichotomized classification (good vs.
non-good and poor vs. non-poor), it also achieved great performance.

Keywords: acute ischemic stroke; collateral scoring; CT angiography; hybrid CNN and Transformer

1. Introduction

Stroke is one of the leading causes of death and disability in adults worldwide, and is-
chemic stroke accounts for the majority, mainly due to atherosclerosis. Currently, the most
effective treatments for acute ischemic stroke (AIS) are intravenous thrombolysis and en-
dovascular therapy (EVT) within a suitable time window [1]. To assess the infract core for
AIS patients, there are two classical neuroradiological methods: infarct volume size and lo-
cation estimation (i.e., infarct segmentation) and the Alberta Stroke Program Early CT Score
(ASPECTS). For manual infract segmentation, neuroradiologists often visually quantify and
locate the infract core via screening all slices of computed tomography (CT) scans or diffu-
sion weighted imaging (DWI) scans to determine which voxels can be infarcts [2]. ASPECTS
is a scale to better quantitatively evaluate the affected status of 10 regions in the middle
cerebral artery and is implemented via screening scans to determine whether a region
contains infarcts [3]. These two types of methods evaluate the ischemic infarct core from
different scales, and they are both used in the diagnosis of AIS and help to select patients
who are suitable for endovascular treatment [4–7]. However, the above methods only reflect
the infarction core situation and ignore the role of collateral circulation in the treatment of
AIS patients. Previous studies have shown that the quality of collateral circulation reflects
to a certain extent the amount of brain tissue that can be salvaged [8] and AIS patients with
good collateral circulation can receive better clinical outcomes after EVT [9,10]. Therefore,
evaluating the collateral circulation status score (i.e., collateral scoring) is necessary and
helpful to select patients who may have a good prognosis after EVT.

In the clinical practice, collateral scoring is generally based on visual scoring via
screening medical image scans such as CT angiography (CTA) and CT perfusion, which
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depends on the experience level of the radiologist, resulting in great observer variabil-
ity [11,12]. Additionally, it is tedious and time-consuming for clinicians to score visual
collateral circulation status, which may result in inefficient diagnosis and patient selection.
Therefore, an objective and accurate automated collateral scoring method is desired in AIS
clinical practice.

In recent years, radiomics and deep neural networks have been widely used in image
analysis tasks [13–18]. Several methods that are based on radiomics and deep learning have
also been used for automated collateral scoring [19–22]. For example, Su et al. [20] used a
convolutional neural network (CNN) to segment blood vessels in the left and right middle
cerebral artery (MCA) regions of the brain, and then several quantified features were
extracted on the segmented vessels and input into several machine learning approaches
to achieve collateral scoring. Some commercial software such as StrokeViewer has also
been evaluated for automated collateral scoring in some studies [23,24]. Although these
methods can achieve automated scoring of collateral status, most of them are based on the
results of vessel segmentation. The performance of vessel segmentation greatly influences
the final collateral scoring performance. In this study, we explore vessel-segmentation free
methods to potentially improve the collateral scoring performance.

Currently, Transformer [25] has been used in many image analysis tasks due to its
excellent ability to capture long-range dependencies. Additionally, how to combine Trans-
former and CNN to make full use of their advantages has also attracted more and more
attention in the field of medical image analysis. For example, Cheng et al. [26] developed a
multi-task hybrid CNN–Transformer encoder for isocitrate dehydrogenase prediction and
glioma segmentation. Inspired by the fact that CNN is good at learning local representa-
tions and Transformer can capture global representations well, we hypothesized that using
a hybrid network of Transformer and CNN can score collateral status more accurately and
efficiently. We aimed to design a hybrid CNN and Transformer-based vessel-segmentation
free method for automating collateral scoring on CTA scans of AIS patients.

2. Materials and Methods

2.1. Data Acquisition

We collected single-phase CTA scans of 154 AIS patients from Xiangya hospital,
Changsha, Hunan. The patient inclusion criteria included: (1) The CTA scans of patients
covered the whole brain without severe motion artifacts; (2) expert readings of collateral
scores were available.

The sizes of the acquired CTA scans were 512 × 512 × S, where S ranged from 124
to 414. The collateral score is a relatively simple three-point scoring system, i.e., good
(score = 0), intermediate (score = 1) and poor (score = 2). Good collateral indicated that
the degree of collateral filling was 100%, intermediate collateral indicated that the degree
of collateral filling was >50% and <100%, and poor collateral indicated that the degree of
collateral filling was ≥0% and less than 50%. All CTA images were separately assessed
by two radiologists with more than 10 years of experience, and images that disagreed
between the two radiologists were assessed by a third physician with more than 15 years
of experience, and they then came to a consensus score. Of all 154 patients, 69, 52 and
33 patients had collateral scores of 0, 1 and 2, respectively.

2.2. Image Preprocessing

Figure 1 shows the image preprocessing steps used in this study. Skull stripping
was first applied, as the high-brightness pixels of the skull had a severe interference in
vessel recognition. We used the method in [27] to achieve skull stripping on the acquired
CTA images. This method extracts brain within images on a slice-by-slice basis through
thresholding combined with convex optimization iterations.
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Figure 1. Image preprocessing.

The second preprocessing step was atlas-based registration for MCA region mask
generation. We registered the standard brain region atlas onto each CTA scan to obtain
the brain region masks of each CTA scan. We generated the MCA region mask from the
obtained brain region mask by binarization where voxels that belonged to MCA were set
to 1 and the rest were set to 0.

Because the vessel voxels in 3D CTA scans generally had high intensities, maximum
intensity projection (MIP) that projected 3D CTA scans to two-dimensional images could
well display the degree of stenosis, dilation and filling defect of vessels [21]. Figure 2 shows
visualized MIP results of CTA scans with different collateral scores. As shown in Figure 2,
after MIP on the whole 3D scans there were significant differences in the degree of collateral
filling in patients with different scores, but there existed some interference outside the MCA
regions. Additionally, since the vasculature capable of assessing the status of collateral
extended from the skull vertex to the circle of Willis, too much irrelevant vasculature would
easily interfere with the scoring [28]. Thus, in order to clearly show the vessels in the MCA
arterial tree in the left and right hemispheres and reduce the interference from varying
numbers of slices, we only took the 30 most-cranial axial slices from the circle of Willis and
multiplied the acquired 3D CTA images with the generated MCA masks before performing
MIP in the final preprocessing step.
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Figure 2. Examples of maximum intensity projection (MIP) images from 3D CTA image with different
collateral scores. The left one is good collateral. The middle one is intermediate collateral. The right
one is poor collateral.

2.3. Collateral Scoring Based on MIP Images

Due to the class imbalance of the samples, we performed data augmentation to
alleviate the imbalance. First, we randomly upsampled the poor and intermediate classes
with a smaller sample size to the same size as the good class via copying. However,
simply copying a large number of images might lead to an overfitting problem. In order
to avoid this problem, we implemented operations such as rotations with small angles
and shifts without changing the characteristics of CTA scans to ensure the validity of the
augmented samples.

From Figure 2, we found that the vessel regions became more salient in MIP images,
making it possible to design a vessel-segmentation free method using MIP images. Af-
ter performing data augmentation on the obtained MIP images, we used a hybrid deep
learning model: the MPViT proposed in [29], which combines Transformer and CNN to
capture global and local information at the same time. MPViT first processed the input im-
ages through a convolution-based stem module to change the image size to 128 × 128. Then,
it utilized four stages to learn effective representations for collateral scoring. Each stage
consisted of a multi-scale patch embedding based on convolution with different strides,
several Transformer-based blocks (the number of blocks is adjustable) to capture global
information, a CNN-based block, and a concatenation layer followed by a 1 × 1 convolution
layer to effectively combine features from Transformer and CNN blocks. The classification
results were achieved by a global average pooling and a linear layer. For more technical
details of MPViT, please refer to [29]. Figure 3 shows the framework of our designed hybrid
CNN and Transformer network for collateral scoring.

Additionally, in order to verify the advantages of the MPViT method over other
automated scoring methods, we also applied three methods on the same MIP images.
The first one was a radiomics-based method where we extracted radiomics features of
MCA regions that were fed into support vector machine (SVM) for automated collateral
scoring. The extraction of radiomics features was done through the software package
Pyradiomics (https://pyradiomics.readthedocs.io/en/latest/, accessed on 1 December
2022). Since the extracted features were not all effective, we used the LASSO method for
feature selection to avoid feature redundancy, and selected the optimal feature group as
the input of SVM. The second one was a well-known CNN-based method (ResNet [30])
where we directly used the obtained MIP images to train a ResNet model. The third one
was a pure Transformer-based method (MViTv2 [31]) whose input was also consistent with
MPViT. For fair comparison, all four methods applied the same preprocessing steps and
data augmentation.
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Figure 3. The framework of our designed hybrid CNN and Transformer network for collateral scoring.

To better evaluate the performance for collateral scoring, we used five-fold cross-
validation for all four methods. In each cross-validation experiment, all 154 patients were
randomly divided into five folds, and then we used four folds for training and parameter
tuning, and used the remaining one fold for testing the trained model. After repeating the
above operation five times, we obtained the collateral scores of all 154 patients.

2.4. Statistical Analysis

For evaluating the performance of collateral scoring, the agreement between auto-
mated collateral scores and expert-reading collateral scores was analyzed by intraclass
correlation coefficients (ICC), as well as Kappa and the Pearson correlation coefficient.
To further assess the clinical significance of the model, accuracy, sensitivity, area under the
receiver operating characteristic curve (AUC) and specificity were used to evaluate the
binary-classification performance. We calculated the 95% confidence interval (CI) for each
evaluation metric. In the poor vs. non-poor classification, we considered patients with poor
collateral and non-poor (good or intermediate) collateral as positive and negative samples,
respectively. In the good vs. non-good classification, we considered patients with good
collateral and non-good (poor or intermediate) collateral as positive and negative samples,
respectively. In addition, subgroup analyses were performed to find the relationship be-
tween the collateral scoring performance and some clinical factors including gender, age,
Alberta Stroke Program Early CT score (ASPECTS), National Institute of Health Stroke
scale (NIHSS) and time from onset to CT imaging.

Accuracy, precision, sensitivity, AUC, specificity and kappa were calculated using
SciKit learn toolkit. Pearson coefficient was calculated using the Scipy toolkit, and ICC
was calculated using the Pingouin toolkit. The Z-test based on Fisher Z-transformation
was used to test whether there were significant differences between the ICC, Kappa and
Pearson values of two methods. The N-1 Chi-squared test was used to test whether
there were significant differences between the accuracy, sensitivity and specificity of two
methods. Statistics tests were performed with software (MedCalc, version 20.0.3, MedCalc
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Software, Mariakerke, Belgium). A p-value smaller than 0.05 was considered to represent a
significant difference.

3. Results

3.1. Study Participants

Table 1 lists the patient characteristics of the 154 patients involved in this study. The me-
dian age was 72 years (interquartile range [IQR], 64–80 years). Out of the 154 patients,
91 patients were male. Median onset-to-CT time was 135 min (IQR, 90–240 min). Median
follow-up infarct volume was 4.6 mL (IQR, 0.6–26.0 mL). Median baseline NIHSS, modified
Rankin scale (mRS) and ASPECTS were 11.5 (IQR, 4–21), 0 (IQR, 0–1) and 10 (IQR, 9–10),
respectively. Median 90 day mRS was 2 (IQR, 1–4).

Table 1. Patient Characteristics for all 154 AIS patients collected.

Characteristics All 154 Patients

Median age, years (IQR) 72 (64–80)
Gender, male, No. (%) 91 (59)
Median onset-to-CT time (IQR), min 135 (90–240)
Median follow-up infarct volume (IQR), mL 4.6 (0.6–26.0)
Median baseline NIHSS (IQR) 11.5 (4–21)
Median baseline mRS (IQR) 0 (0–1)
Median baseline ASPECTS(IQR) 10 (9–10)
Median 90 days mRS (IQR) 2 (1–4)

3.2. Results for Collateral Scoring
3.2.1. Three-Point Collateral Score Classification

To show the superiority of MPViT (a hybrid CNN and Transformer network), we
compared it with three different automated collateral scoring methods: SVM, ResNet and
MViTv2. Table 2 details the comparisons of the four automated scoring methods. Figure 4
shows the confusion matrix between the collateral scores obtained by the four methods
and the expert consensus scores.

Table 2. Performance for three-point collateral score classification.

Method ICC Kappa Pearson

SVM 0.6774 [0.56, 0.77] 0.5118 [0.3842, 0.6393] 0.5123 [0.3854, 0.6194]

ResNet 0.7358 [0.64, 0.81] 0.5818 [0.4555, 0.7080] 0.5822 [0.4671, 0.6773]

MViTv2 0.6246 [0.48, 0.73] 0.4541 [0.2985, 0.6097] 0.4548 [0.3196, 0.5707]

MPViT 0.767 [0.68, 0.83] 0.6184 [0.4954, 0.7414] 0.6621 [0.5112, 0.7068]

MPViT achieved an ICC of 0.767 (95% CI: 0.68–0.83), a Kappa of 0.6184 (95% CI:
0.4954–0.7414) and a Pearson of 0.6621 (95% CI: 0.5112–0.7068), which were all better than
those of the three other types of methods: SVM, ResNet and MViTv2. From Figure 4,
we found that MPViT achieved a good tradeoff for the three classes of collateral scores.
These results indicate that MPViT had better agreement between the scores obtained by
automated methods and the expert scores than traditional machine learning methods,
pure convolutional models and pure Transformer models. The reason might be that
MPViT combines the advantages of both CNN and Transformer to capture local and global
representations for collateral scoring.
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Figure 4. Confusion matrix between automated scores versus consensus scores. (a) SVM; (b) ResNet;
(c) MViTv2; (d) MPViT.

3.2.2. Results for Poor vs. Non-Poor and Good vs. Non-Good Classification

In addition to three-point score classification, a dichotomized collateral score might be
more useful in decision making.

Tables 3 and 4 show the performance of the four compared methods for poor vs.
non-poor and good vs. non-good classification. For poor vs. non-poor classification, MPViT
achieved an accuracy of 85.71% (95% CI: 80.18–91.24%), an AUC of 0.766 (95% CI: 0.691–0.83)
and a specificity of 92.56% (95% CI: 86.3–96.5%), outperforming the other three methods
regarding most metrics. For good vs. non-good classification, MPViT achieved an accuracy
of 78.57% (95% CI: 72.09–85.05%), an AUC of 0.79 (95% CI: 0.717–0.851) and a specificity of
82.60% (95% CI: 71.6–90.7%), which is higher than those of the other three methods.

Table 3. Performance for poor vs. non-poor classification.

Method Accuracy (%) Sensitivity (%) AUC Specificity (%)

SVM 79.87 [73.53, 86.2] 57.57 [39.2, 74.5] 0.718 [0.64, 0.787] 85.95 [78.5, 91.6]

ResNet 83.76 [77.94, 89.59] 63.63 [45.1, 79.6] 0.764 [0.689, 0.829] 89.25 [82.3, 94.2]

MViTv2 82.46 [76.46, 88.47] 51.51 [33.5, 69.2] 0.712 [0.634, 0.782] 90.9 [84.3, 95.4]

MPViT 85.71 [80.18, 91.24] 60.6 [42.1, 77.1] 0.766 [0.691, 0.83] 92.56 [86.3, 96.5]

Table 4. Performance for good vs. non-good classification.

Method Accuracy (%) Specificity (%) AUC Sensitivity (%)

SVM 71.42 [64.29, 78.56]] 75.29 [64.7, 84.0] 0.71 [0.631, 0.78] 66.66 [54.3, 77.6]

ResNet 75.97 [69.22, 82.72] 75.29 [64.7, 84.0] 0.761 [0.685, 0.826] 76.81 [65.1, 86.1]

MViTv2 74.25 [67.1, 80.95] 78.82 [68.6, 86.9] 0.735 [0.658, 0.803] 68.11 [55.8, 78.8]

MPViT 78.57 [72.09, 85.05] 75.29 [64.7, 84.0] 0.79 [0.717, 0.851] 82.6 [71.6, 90.7]

3.2.3. Subgroup Analysis Based on Patient Characteristics

In this section, we further explore whether there were clinical factors that were related
to the performance of collateral scoring via subgroup analysis (Table 5).
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We first used gender and age to stratify all 154 patients into subgroups: male patients
and female patients, and patients ≥ 70 years old and patients < 70 years old. The results in
Table 5 sho that MPViT achieved an ICC of 0.8716 (95% CI: 0.7878–0.9223), a Kappa of 0.7718
(95% CI: 0.6191–0.9245) and a Pearson of 0.7728 (95% CI: 0.6494–0.8552) on female patients,
which were significantly better than the performance on male patients (ICC: 0.6549 [95%
CI: 0.4771–0.7723], p = 0.0009; Kappa: 0.475 [95% CI: 0.2973–0.6527], p = 0.0024; Pearson:
0.489 [95% CI: 0.3045–0.6160], p = 0.0033), which indicated that the female patients’ scoring
results had better reliability. The performance of MPViT on patients ≥ 70 years old was
non-significantly better than the performance on patients < 70 years old (P values of all
metrics >0.05), which shows that the older patients were scored better.

Second, we also stratified patients by clinical scores including baseline ASPECTS
(≥7 vs. <7) and NIHSS (≥9 vs. <9) for subgroup analysis according to [32,33]. For the
ASPECTS subgroups, the automated scores had non-significantly better agreement with
the expert manual scores on patients with ASPECTS ≥ 7. Studies have shown that pa-
tients with ASPECTS scores greater than 7 could benefit significantly from mechanical
thrombectomy [32]; thus, MPViT has potential to select suitable AIS patients for mechanical
thrombectomy. For the NIHSS subgroups, ICC on patients with NIHSS < 9 (0.7308 [95% CI:
0.4165–0.7009]) was significantly better than ICC (0.526 [95% CI: 0.2289–0.7087]) on patients
with NIHSS ≥ 9 (p = 0.0371) and other metrics on patients with NIHSS < 9 were better but
not significantly so (all p > 0.05).

According to the onset-to-CT time, we divided all patients into two subgroups of
less than 180 min and ≥ 180 min for subgroup analysis. The ICC, Kappa and Pearson on
patients with onset-to-CT time < 180 min were all non-significantly higher than those on
the other subgroup. This implies that the earlier the CT scans were scanned, the better the
collateral scoring performance was.

Table 5. Three-point collateral scoring performance of MPViT of subgroups stratified by gender, age,
ASPECTS, NIHSS and onset-to-CT time. * Denotes significant difference (p < 0.05).

Variable Subgroup ICC Kappa Pearson

Gender male 0.6549 [0.4771, 0.7723] 0.475 [0.2973, 0.6527] 0.489 [0.3045, 0.6160]
female 0.8716 * [0.7878, 0.9223] 0.7718 * [0.6191, 0.9245] 0.7728 * [0.6494, 0.8552]

Age (years) ≥70 0.7729 [0.6542, 0.8509] 0.6294 [0.4714, 0.7873] 0.6303 [0.4859, 0.7399]
<70 0.6732 [0.4643, 0.8007] 0.4921 [0.2648, 0.7195] 0.519 [0.2966, 0.6482]

Baseline ASPECTS ≥7 0.7497 [0.6493, 0.8215] 0.5986 [0.4624, 0.7347] 0.5997 [0.4798, 0.6960]
<7 0.7636 [0.3473, 0.9144] 0.5233 [0.2264, 0.8202] 0.7 [0.2129, 0.7379]

Baseline NIHSS ≥9 0.7308 * [0.4165, 0.7009] 0.5392 [0.3792, 0.6993] 0.5801 [0.3840, 0.6649]
<9 0.526 [0.2289, 0.7087] 0.3383 [0.0933, 0.5833] 0.3897 [0.1420, 0.5091]

Onset-to-CT time (min) ≥180 0.7245 [0.5408, 0.8347] 0.5592 [0.3349, 0.7835] 0.5699 [0.3638, 0.7075]
<180 0.7888 [0.6807, 0.8604] 0.6498 [0.5146, 0.7535] 0.6515 [0.5146, 0.7535]

4. Discussion

In this study, we explored several automated collateral scoring methods without vessel
segmentation on CTA images that combined the advantages of CNNs and Transformers.
Our results show the superiority of hybrid CNN and Transformer models for both three-
point collateral scoring and dichotomized scoring, i.e., poor vs. non-poor and good vs.
non-good collateral scores.

Comparisons showed that the hybrid CNN and Transformer model—the MPViT
based vessel-segmentation free method—achieved better performance than radiomics
and traditional machine learning-based, pure CNN-based and pure Transformer-based
models for three-point collateral scoring. MPViT also achieved better performance for
poor vs. non-poor and good vs. non-good classification. These results also confirm
our previous hypothesis that the hybrid CNN and Transformer model could achieve
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better collateral scoring, showing that combining CNN and Transformer is promising,
and showing that the designed MPViT could provide support information for clinical
decision-making. Additionally, these results also validate that vessel-segmentation free
methods for collateral scoring are feasible. This study could provide future directions for
designing good collateral scoring methods.

The average time including preprocessing and classification using the trained model
for collateral scoring of a patient was 8.26 s per patient, which is obviously less than
the time (more than 5 min) needed for radiologist to score the collateral of a patient.
Therefore, the proposed method could reduce the time of collateral scoring and decrease the
burden of doctors for diagnosis and prognosis of AIS, and then has potential to reduce the
economic cost of AIS patients. Additionally, it can be seen from the results that the proposed
automated collateral scoring model had a high enough consistency with total scores read
by experts and especially achieved better performance for the binary classification tasks
such as good and non-good classification, which makes the proposed method helpful for
selecting patients who could achieve good prognosis. In summary, due to the efficiency and
the effectiveness of the proposed method for collateral scoring, it is feasible to be applied in
the AIS clinical context to diagnose AIS and make treatment decisions.

When stratifying the patients based on clinical characteristics, we found that the
clinical factors of gender, age, baseline ASPECTS, baseline NIHSS and onset-to-CT time
were all related to collateral scoring, and gender was the most significant related factor to
collateral scoring. These findings imply that incorporating these clinical factors into the
automated collateral scoring models might potentially further improve the performance.

This study has several limitations. The sample size in this paper was limited, and there
was no external validation cohort. More patients will be collected to obtain more effective
models and test the generalizability of the designed models. Second, the timing of CTA
acquisition is not accounted for in our model. However, around 10–20% of CTA scans were
not acquired at the peak artery phase, which might bias the evaluation results. Multi-phase
CTA scans can provide temporal information, and have potential to achieve more reliable
collateral scoring across different observers. Extending our current models on multi-phase
CTA scans should be explored in the future.

5. Conclusions

This study explored a vessel segmentation free collateral scoring method, i.e., hybrid
CNN and Transformer model—MPViT—on single-phase CTA scans of AIS patients. The
results show that the hybrid CNN and Transformer model, MPViT, could achieve accurately
automated three-point collateral scoring and dichotomized collateral scoring. Subgroup
analysis revealed that clinical factors, such as gender, age, baseline ASPECTS, baseline
NIHSS and onset-to-CT time, were associated with collateral scoring. This study provides
evidence that artificial intelligence is helpful to objectively assess collateral status based on
imaging, therefore assisting decision making.
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Abbreviations

The following abbreviations are used in this manuscript:

AIS Acute ischemic stroke
ASPECTS Alberta Stroke Program Early CT score
CTA Computed tomography angiography
CNN Convolutional neural network
ICC Intraclass correlation coefficient
MIP Maximum intensity projection
AUC Area under the receiver operating characteristic curve
NIHSS National Institute of Health Stroke scale
IQR interquartile range
mRS modified Rankin scale
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Abstract: First-episode psychosis (FEP) typically marks the onset of severe psychiatric disorders
and represents a critical period in the field of mental health. The early diagnosis of this condition
is essential for timely intervention and improved clinical outcomes. In this study, the classification
of FEP was investigated using the analysis of electroencephalography (EEG) signals and circulant
spectrum analysis (ciSSA) sub-band signals. FEP poses a significant diagnostic challenge in the realm
of mental health, and it is aimed at introducing a novel and effective approach for early diagnosis.
To achieve this, the LASSO method was utilized to select the most significant features derived from
entropy, frequency, and statistical-based characteristics obtained from ciSSA sub-band signals, as
well as their hybrid combinations. Subsequently, a high-performance classification model has been
developed using machine learning techniques, including ensemble, support vector machine (SVM),
and artificial neural network (ANN) methods. The results of this study demonstrated that the
hybrid features extracted from EEG signals’ ciSSA sub-bands, in combination with the SVM method,
achieved a high level of performance, with an area under curve (AUC) of 0.9893, an accuracy of
96.23%, a sensitivity of 0.966, a specificity of 0.956, a precision of 0.9667, and an F1 score of 0.9666.
This has revealed the effectiveness of the ciSSA-based method for classifying FEP from EEG signals.

Keywords: first-episode psychosis; electroencephalography; circulant spectrum analysis; machine learning

1. Introduction

Psychotic disorders include a set of fundamental characteristics, including delusions,
hallucinations, disordered thinking and speech, and negative symptoms, as outlined in
the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [1].
The prognosis for individuals who undergo their initial episode of psychosis (FEP) shows
considerable diversity. Whereas some patients may encounter only one psychotic episode,
others may contend with recurring episodes or endure chronic symptoms associated with
schizophrenia spectrum disorders. The use of early intervention strategies has the potential
to significantly impact long-term results [2]. Diagnosing FEP involves a comprehensive
psychiatric evaluation to assess symptoms, history, and any potential underlying medical
or substance-related causes. Given the variability and complexity of psychotic disorders,
an accurate diagnosis is essential for providing appropriate treatment and support to
individuals experiencing FEP. Early intervention and treatment are crucial for improving
outcomes and preventing potential relapses or chronicity of symptoms. In recent times,
there has been a growing trend in utilizing computational methods to analyze neuroimaging
data acquired from techniques like electroencephalography (EEG) and various magnetic
resonance imaging modalities. These methods have become increasingly popular, as they
offer valuable insights into the neurobiological underpinnings of psychiatric disorders due
to the analysis of the whole brain.

There is an increasing interest in utilizing the features obtained from MR images for
classification in distinguishing neuropsychiatric disorders [3–7]. In the study proposed by
Squarcina et al., classification based on the measurement results of cortical thicknesses from
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different brain regions was performed, including 127 healthy controls and 127 individuals
with FEP. When individuals were evaluated to classify, up to more than 80% for frontal
and temporal areas was achieved in covariate multiple kernel learning, indicating that
fronto-temporal cortical thickness could be used as a potential biomarker for classifying
psychotic patients [8]. Faria et al. utilized different analysis methods to brain images from
various MRI modalities belonging to 87 individuals of FEP and 62 healthy participants.
These multiple approach methods have been more successful in distinguishing between
healthy control and FEP subgroups using two-sample t-tests. Furthermore, the study
highlights that the thalamus is significantly different in FEP [9]. In the study conducted by
Nadal et al. involving 27 healthy individuals and 31 individuals with FEP, comparisons
of brain volumes and nucleus accumbens volumes were performed based on structural
MR images. In this study, where linear regression was applied, FEP exhibited an increased
nucleus accumbens volume compared to controls [10].

When reviewing the studies in the literature, it is clear that there is a significant con-
centration of analyses focusing on artificial intelligence techniques involving EEG signals in
healthy individuals, especially through multi-task-based approaches, for the development
of brain–computer interface systems. On the other hand, there is a growing effort to develop
patterns using multi-channel EEG data gathered from individuals, aiming to distinguish
individuals with psychiatric disorders from healthy ones. There are only a few resting-state
EEG studies aimed at finding patterns of EEG signals belonging to FEP. For instance, the
study by Missonnier et al. was performed with eighteen healthy individuals and 15 individ-
uals with FEP using 20-channel EEG signals. For these two groups, event-related gamma
(35–45 Hz) and delta (0.5–4 Hz) oscillatory responses were evaluated in a visual n-back
working memory task. Oscillation periodicity analyses were calculated to investigate
the relationship between the psychiatric condition reflected by each frequency range and
the working memory load. Statistical differences were obtained in sub-band oscillations
between these two groups [11]. Focused on the delta frequency band of resting-state EEG
signals, a study proposed by Renaldi et al. was conducted with 24 individuals with FEP and
24 healthy controls. Individuals with FEP had a significant increase in delta absolute power
in both the frontal and posterior areas when compared to healthy controls. Furthermore,
it was shown that the fluctuating influence of the delta frequency band had a crucial role
in predicting the improvement of symptoms and functionality in those who underwent
conventional therapy over the span of one year [12]. Lee et al. aimed to investigate the
spatiotemporal neural correlations of cognitive function impairment in schizophrenia by
focusing on resting-state EEG signals involving the default mode network regions. In this
context, they conducted a study with 59 individuals with FEP and 50 healthy controls.
In their study, they found that FEP patients exhibited a greater theta phase-gamma ampli-
tude connectivity in the left posterior cingulate cortex compared to healthy controls [13].
In addition to the summarized FEP studies, researchers have focused on studies examining
EEG frequency sub-bands in other psychiatric disorders [14,15].

Due to its nonlinear and non-stationary nature, EEG requires the application of certain
signal processing techniques to reveal its intrinsic features. Specifically, examining the
characteristics of EEG sub-bands obtained using techniques like empirical mode decom-
positions (EMD), variational mode decomposition (VMD), wavelet transform (WT), and
singular spectrum analysis (SSA), or investigating the characteristic frequency sub-bands of
EEG, are important approaches. Particularly, these approaches enhance success in resting-
state or task-based EEG studies on psychiatric disorders or healthy controls. For instance,
Aslan and Akin have proposed a deep learning study using two different datasets to
differentiate between individuals with psychotic disorders and healthy controls. They
employed the EMD approach to obtain four intrinsic functions, and the Hilbert spectrum
images of the first intrinsic function were used as inputs for classification with the VGG16
model. They achieved accuracies of 98.2% and 96.02% for the first and second datasets,
respectively, in the classification of these images, distinguishing between the two groups,
thus demonstrating a remarkable ability to discern between the two cohorts [16]. In the
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study proposed by Khare and Bajaj, a robust VMD method was applied to multi-channel
EEG signals in a cohort involving 49 individuals with schizophrenia and 32 healthy controls.
In the classification using features extracted from intrinsic mode functions, an accuracy of
92.93% was achieved [17].

A novel approach has been proposed in the conducted study to achieve a high-
performance classification of healthy individuals and those with first-episode psychosis
(FEP) using EEG signals.

In pursuit of this objective, a new method called ciSSA was employed to uncover hid-
den patterns within the EEG signals and to reveal their dynamic behavior by decomposing
them into sub-bands. Entropy, frequency, and statistical features were extracted from these
sub-band signals, and machine learning techniques were applied to the obtained models to
analyze their classification performance.

The contributions of this study to the literature are summarized as follows:

• EEG signals from the datasets used for FEP classification were analyzed for the first
time in this study.

• The ciSSA method was applied for the first time within the scope of this study, specifi-
cally for the stated purpose, and its performance was analyzed.

• The classification performance of features obtained from both non-decomposed EEG
signals and ciSSA-decomposed sub-band EEG signals was demonstrated.

• The novel entropy, statistical, and frequency features, combined with the ciSSA sub-
bands of EEG signals for FEP classification, were analyzed for their performance.

• The classification performance of machine learning algorithms such as SVM, ANN, and
ensemble methods in FEP classification using the new ciSSA-based model was examined.

2. Materials and Methods

In this study, new approaches have been proposed in terms of the methods and
utilized dataset in the literature for the classification of FEP, resulting in the development
of a high-performance classification model.

In this section, the dataset from which EEG signals were obtained, the preprocessing
steps applied to the dataset, the sub-band decomposition procedures, the feature extraction
and selection processes, and the classification algorithms are discussed. The framework of
this study is presented in Figure 1.

Figure 1. The entire framework of the proposed approach for the automated classification via EEG
raw and ciSSA sub-band signals.
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2.1. Datasets

Two publicly available datasets [18,19] were used to classify FEP in this study. The study
was conducted with two groups, a total of 78 individuals with FEP (23 females, 55 males)
and 60 healthy controls (26 females, 34 males) across both datasets. The FEP group consisted
of participants aged between approximately 12 and 36 (mean 22.83), whereas the control
group ranged from 12 to 38 (mean 22.89). Forty-seven individuals with FEP and thirty
healthy control individuals from the first dataset were included. From the second dataset,
31 individuals with FEP and 30 healthy controls were included. Demographic information
about the individuals included in this study is presented in Supplementary Material S1.
The EEG physiological signals of each individual were recorded during a resting state
for a duration of 5 min with a 64-channel system using an Elekta Neuromag Vectorview
system. The first 60 channels, containing only EEG signals, were used. Furthermore, the
phenotype directory containing clinical assessment results and the data divided by type for
all participants is detailed extensively in the relevant section of the datasets [18,19].

2.2. Preprocessing

This study uses the down-sampled data at 250 Hz, where the original sampling rate is
500 Hz. All included raw EEG records were preprocessed using the open-source software
package EEGLAB [20] in MATLAB 2022a. These psychological signals were filtered with a
0.5–45 Hz bandpass filter. Furthermore, to remove noises from the records such as muscle,
eye, heart, and line noise, among others, independent component analysis was performed.
The first 3 min of the data consisting of EEG signals lasting for 5 min have been utilized in
this study. The EEG signals before and after preprocessing are seen in Figures 2 and 3.
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Figure 2. Multi-channel EEG signals before preprocessing.
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Figure 3. Multi-channel EEG signals after preprocessing.

2.3. Circulant Singular Spectrum Analysis

SSA, EMD, and RLMD, as nonparametric procedures, perform time series decompo-
sition using distinct approaches and they come with advantages and disadvantages that
can be chosen based on the characteristics of the data. The selection of which method
to use depends on the nature of the data, the purpose, and the requirements. On the
other hand, whereas SSA is commonly employed for general time series analysis, ciSSA is
often preferred for the analysis of irregular time series such as biomedical data. The ciSSA
method’s key benefit is that users may combine the extracted components according to their
requirements, since the components are specified accurately by frequency. The circulant
SSA approach comprises the embedding, decomposition, grouping, and reconstruction
processes [21].

Embedding step: In the first step, the time series of each EEG channel is transformed
into a multidimensional trajectory matrix by sliding it over a specific window length. This
matrix organizes time series data in a space that represents different dimensions.

The trajectory matrix is defined according to Equation (1):

X =

⎡⎢⎢⎢⎣
x1 x2 · · · xN
x2 x3 · · · xN+1
...

...
...

...
xL xL+1 · · · xT

⎤⎥⎥⎥⎦ (1)

In this context, T represents the length of the time series xt, whereas L denotes the
window length.

Decomposition step: The trajectory matrix is decomposed into components at different
frequencies. In this step, matrix cross-correlations are used, leveraging second-order
moments to obtain circulant matrix Sc. This allows the separation of components at
different frequencies. Components of Sc are characterized by the following equations:

sm =
1

T − m

T−m

∑
t=1

xtxt−m, m = 0, 1, . . . , L − 1 (2)
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The first-row components and eigenvectors of SC are obtained by Equations (3) and (4),
respectively:

αm =
L − m

L
sm +

m
L

sL−m, m = 0, 1, . . . L − 1 (3)

diag(λ1, λ2, . . . λL) = U ∗ SCU (4)

in which U represents the Fourier matrix. In order to get a more in-depth explanation,
Refs. [22,23] should be consulted. The k-th eigenvalue (Equation (6)) and accompanying
eigenvector are associated with the following frequencies, as given in Equation (5):

fk =
k − 1

L
fs (5)

in which fs is the EEG signal sampling frequency.

λK ∼= f
(

k − 1
L

)
= ∑∞

m=−∞ smexp
(

i2πm
k − 1

L

)
(6)

This allows us to define Equation (7), which states that the X trajectory matrix may be
divided into Xk elementary matrices:

X = ∑L
k=1 xk = ∑L

k=1 UkU∗
k X (7)

Diagonal Averaging: The decomposed components are further processed by per-
forming diagonal averaging among those with similar frequencies. This process leads to
obtaining higher-level components.

Grouping: Finally, the higher-level components are grouped, with each group repre-
senting a signal at a specific frequency.

The main goal of ciSSA is to separate complex and high-dimensional time series data
into lower-dimensional components, revealing meaningful structures. This method can be
particularly useful for analyzing time series data like brain activity, where the separation
and analysis of signals at different frequencies are important.

In this study, EEG signals were decomposed into sub-bands ranging from 4 to 15.
Since the classification performance was optimal at 9, EEG signals were decomposed into
9 sub-bands using the ciSSA method. As an example, Figure 4 presents 9 ciSSA sub-bands
of the eighth-channel EEG signal of an individual.

Figure 4. ciSSA sub-band signals belonging to channel 8 of an individual.
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2.4. Feature Extraction

This work involves the extraction of three distinct kinds of feature datasets from EEG
signals, including entropy, statistical, and frequency. These features are briefly mentioned
below. Additionally, equations belonging to the features have been given in Supplementary
Material S2.

2.4.1. Entropy Features

Entropy is a method for quantifying the unpredictability of non-linear time series data.
There are several derived variants of information entropy that are used in the processing of
electroencephalography (EEG) data. Tsallis entropy [24,25], Tsallis entropy with different
options, Shannon entropy [25], logenergy entropy [26], Renyi entropy [27], and Renyi
entropy with different options were used to extract significant information from the EEG
data. In total, 6 statistical features were included in the classification problem.

2.4.2. Statistical Features

To perform tasks like feature extraction, classification, and pattern recognition, many
different EEG applications rely on the data provided by statistical features. Thus, in this
study, both basic and advanced statistical features have been used together in the clas-
sification problem. The arithmetic mean, median value, standard deviation, skewness,
kurtosis, maximum, minimum, first difference, normalized first difference, second differ-
ence, normalized second difference, mean energy, mean teager energy, and log root sum
of sequential variation were calculated for each channel signal. In addition to the other
features, Hjorth parameters, including activity, mobility, and complexity, based on the
variance of the derivatives of the EEG signal, have also been calculated. Thus, a total of
17 statistical features have been utilized.

2.4.3. Frequency Features

Autoregressive (AR) models offer a wide range of applications in EEG signal process-
ing, from estimating spectral properties and temporal dynamics to discriminating stationary
signals. The AR model is very effective at representing and modeling the features and
information contained in a signal. This model helps uncover patterns and relationships
within brain activity [28]. In this study, an AR model was utilized to extract power spectral
features from cortical EEG recordings. Furthermore, the order of the AR model was identi-
fied as 10, indicating that the AR-derived feature vector had 10 dimensions in any signal.
In addition to the AR features, the power of the alpha, beta, delta, and theta bands and the
ratio of band power alpha to theta were used as frequency features. In total, 15 features
were included in this fiction.

2.5. Feature Selection

The high-dimensional nature of the EEG feature space makes feature selection in-
evitable. The advantage of feature selection in EEG signals lies in its ability to enhance
the efficiency and effectiveness of analyzing and processing, e.g., increasing classification
performance. In this study, the least absolute shrinkage and selection operator (LASSO)
was performed for the purpose of feature selection. The LASSO, a statistical method in-
troduced by Tibshirani [29], is used in regression analysis to perform parameter estimates
and variable selection. LASSO may provide both an analytical solution and a low-variance
estimate that is highly interpretable in the context of linear regression.

In this study, during the feature selection process using the LASSO method from
the feature set obtained from the EEG signals, different lambda (λ) parameters were
tested. Considering the computational load dependent on the number of features and the
classification performance, the lambda value that provides the optimal solution has been
determined as 0.005. The numbers of the features used in this study are given in the table
below (Table 1).
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Table 1. Numbers of features used in the study.

EEG Signals Not Decomposed into Subbands

Entropy Statictical Frequency Hybrid

Number of feature set 60 × 6 = 360 60 × 17 = 1020 60 × 15 = 900 60 × 38 = 2280

Number of selected features 70 104 106 128

EEG Signals Secomposed into ciSSA Subbands

Entropy Statistical Frequency Hybrid

Number of feature set 60 × 6 × 9 = 3240 60 × 17 × 9 = 9180 60 × 15 × 9 = 8100 60 × 38 × 9 = 20,520

Number of selected features 164 153 141 181

2.6. Classification

In this study, after extracting the features and selecting the important ones, the binary
classification of the EEG signals was performed using three supervised machine learning
classifiers, such as SVM, ANN, and ensemble methods, via automated hyperparameter
tuning. These classifiers are often used in several applications that include biological
signals, such as EEG, as given in the [30,31] survey papers.

In the conducted study, the size of the dataset, the evaluation of desired outcomes, and
factors such as the performance of algorithms in similar studies were taken into account
when selecting these algorithms for the classification of the obtained features. Additionally,
the ability of the chosen machine learning solution to effectively process the current data
volume while maintaining accuracy and generalization capabilities has been assessed.

Cross-validation and testing on representative subsets of the used data were integral
to my decision-making process. In summary, supporting the inclusion of ensemble models,
SVM, and ANN while classifying them separately involves recognizing the individual
strengths of each model, tailoring the evaluation process, and aiming for a comprehensive
understanding of the research problem. This approach allows for a nuanced analysis,
considering the diverse aspects captured by each model.

The next subsections provide concise explanations of the classifiers.

2.6.1. Support Vector Machines

Support vector machines (SVMs) are a class of supervised machine learning algorithms
used for classification and regression tasks. They are particularly effective for problems
where the data are not linearly separable. SVMs work by finding a hyperplane that best
separates different classes of data points in a high-dimensional space [32]. SVMs have
been used to assist in diagnosing psychiatric disorders by analyzing EEG data for patterns
indicative of conditions like attention deficit hyperactivity disorders [33], schizophrenia [34],
and more.

2.6.2. Artificial Neural Network

An artificial neural network (ANN) is a computational model that establishes a non-
linear relationship between input vectors and output vectors by the use of a network of
linked neurons. Each node in the current layer is linked to every node in the subsequent
and preceding layers. The output of a neuron is multiplied by the connecting weight and
then sent forward to serve as an input, which is then processed by a nonlinear activation
function for the neurons in the subsequent layer of the network. The use of nonlinear
sigmoid activation functions is seen in both the hidden-layer neurons and the output-layer
neurons inside a multilayer ANN [35]. ANN has been widely applied in various EEG-based
studies [31,36,37].
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2.6.3. Ensemble Methods

Ensemble approaches involve the combination of multiple models aiming to address a
common problem. The fundamental principle of this approach is that by bringing together
these models, a more robust and accurate overall model can be created, thereby offering
more reliable predictions and options compared to any individual model. The importance
of aggregating the outcomes of many classifiers to reduce generalization errors has been
emphasized [38,39]. Ensemble techniques have been shown to be particularly effective
due to the existence of different inductive biases among various classifier types. These
ensemble techniques have the potential to effectively harness the diversity present in a
dataset to decrease variance error while minimizing bias error [40].

In this study, the classifier parameters for all classifiers were determined using the
Bayesian optimization algorithm. The input feature vector was normalized to have a mean
of 0 and a standard deviation of 1, and then applied to the classifier.

3. Results

This study was conducted using the signals of 60-channel EEG recordings taken from
60 healthy individuals and 78 individuals with first-episode psychosis. The preprocessed
data were decomposed into nine sub-bands using the methods of ciSSA. In the feature
extraction stage, features based on entropy, statistics, and the frequency of the original
signal and its corresponding nine sub-bands obtained from each decomposition method
were acquired for each channel.

In addition, among these obtained features, the most important ones have been
identified for classification using the LASSO method in two approaches, i.e., both raw and
ciSSA data.

The success of ciSSA sub-bands and the original signal in distinguishing FEP and
healthy individuals has been examined using different approaches, including SVM, en-
semble, and multilayer perception classifiers. The classification performance measures
such as area under the curve (AUC), accuracy (Acc), sensitivity, specificity, and F1 score
obtained from the binary classification have been evaluated. tables 2 and 3 show the
mean classification performance as binary for all subjects through different feature types
of datasets and hybrid datasets as raw signals and ciSSA sub-band signals, respectively.
Upon examining these tables, the classification performance using features derived from
the original data and ciSSA sub-band signals can be observed. During the classification
study, the 10-fold cross-validation method was used to determine the training and testing
data. Each classification process was repeated 10 times, and the given tables provide the
mean performance achieved in the classification results.

Table 2. Classification results with various features obtained from the original EEG signals.

Features
Classification

Methods
AUC Accuracy Sensitivity Specificity Precision F-Score

Entropy
Ensemble 0.5477 0.5731 0.7333 0.365 0.606 0.6552

SVM 0.6470 0.6050 0.6410 0.5583 0.6617 0.6429
ANN 0.5893 0.5862 0.6346 0.5233 0.6407 0.6302

Statistical
Ensemble 0.6123 0.5920 0.7038 0.4466 0.6230 0.6604

SVM 0.9074 0.8492 0.8448 0.855 0.883 0.8636
ANN 0.9250 0.85 0.8410 0.8616 0.8878 0.8634

Frequency
Ensemble 0.5166 0.5471 0.8076 0.2083 0.5724 0.6605

SVM 0.7501 0.7050 0.7128 0.695 0.7540 0.7324
ANN 0.7549 0.6985 0.7217 0.6683 0.7385 0.7298

Hybrid
Ensemble 0.5747 0.5623 0.6589 0.4366 0.6034 0.6278

SVM 0.9555 0.9036 0.9076 0.8983 0.9207 0.9140
ANN 0.9549 0.9057 0.9038 0.9083 0.9280 0.9156
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Table 3. Classification results with various features obtained from the ciSSA sub-bands of EEG signals.

Features
Classification

Methods
AUC Accuracy Sensitivity Specificity Precision F-Score

Entropy
Ensemble 0.5945 0.5862 0.6846 0.4583 0.6222 0.6513

SVM 0.8941 0.8644 0.9025 0.815 0.8641 0.8827
ANN 0.9043 0.8666 0.9115 0.8083 0.8609 0.8852

Statistical
Ensemble 0.6336 0.5971 0.7128 0.4466 0.6268 0.5439

SVM 0.9454 0.9050 0.9307 0.8716 0.9039 0.9170
ANN 0.9675 0.9253 0.9320 0.9166 0.9359 0.9337

Frequency
Ensemble 0.5391 0.5485 0.6615 0.4016 0.5925 0.6161

SVM 0.9492 0.9159 0.9256 0.9033 0.9257 0.9255
ANN 0.9592 0.9202 0.9179 0.9233 0.9389 0.9279

Hybrid
Ensemble 0.6327 0.6079 0.7269 0.4533 0.6340 0.6763

SVM 0.9893 0.9623 0.9666 0.9566 0.9667 0.9666
ANN 0.9880 0.9601 0.9564 0.965 0.9725 0.9643

In this study, the classification performance results of 10 different trials using 10-fold
cross validation are presented with box plots. This visual analysis demonstrates the stability
of the proposed classification models and the consistency of the results, as seen in Figure 5.
Box plots clearly illustrate the central tendencies, distributions, and potential outliers of the
outcomes from various trials.

Figure 5. Box plots of classification accuracy obtained from various feature domains.

4. Discussion and Conclusions

The detection of first-episode psychosis is a crucial healthcare issue for both indi-
viduals and society, and accurate and early detection provides an opportunity for early
intervention and treatment. Early treatment is important in reducing the severity of symp-
toms, slowing the progression of the illness, and improving the individual’s quality of life.

In the literature, many studies have been conducted to detect FEP using EEG signals.
These studies have utilized various features extracted from EEG signals obtained from
different datasets, including spectral power, phase-based and amplitude-based functional
connectivity, macroscale network characteristics, density, power spectral density/spectral
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features, etc. [11–15]. Also, machine learning and statistical methods, either individually or
together, have been utilized for classification purposes in the literature. Taking this into
consideration, it would be appropriate to mention here that in this proposed study, only
the machine learning approach has been applied. However, due to the limited number
of studies incorporating a machine learning approach and the prevalence of literature
reviews that predominantly focus on statistical evaluations, studies emphasizing statistical
assessments have also been added to the comparative table.

An overview of the literature on studies using EEG signals for FEP detection can be
seen in Table 4. These studies have shown classification performance ranging from 50.2%
to 88.06%.

In this proposed study, a new approach was employed by decomposing EEG signals
into ciSSA sub-band signals to obtain their different domain-specific features. This approach
allowed for the extraction of important features from EEG signals for FEP detection from
multiple perspectives. Using ensemble methods, as well as ANN and SVM machine
learning techniques, this study presented a new method in the literature based on the
feature and classifier combination that achieved the best classification performance.

As shown in Table 3, the classification results based on entropy features calculated
from ciSSA sub-bands using ANN averaged 86.66% over 10 trials, whereas the statistical
features and ANN yielded 92.53%, the frequency-based features and ANN achieved 92.02%,
and all features with SVM resulted in a 96.23% classification success rate. As indicated
in Table 2, in the approach that employed EEG signals without decomposing them into
sub-bands and utilized entropy, statistical, frequency-based, and hybrid features with
machine learning methods, a lower classification performance was obtained compared to
the ciSSA feature machine learning approach.

Based on these results, a high-performance classification model for FEP detection from
EEG signals was proposed, utilizing ciSSA sub-band signals and hybrid features consisting
of entropy, statistical, and frequency features, along with an SVM model.

Upon analyzing literature reviews and the obtained results, it has been observed
that significant advantages are achieved in this study compared to other studies utilizing
statistical approaches, particularly in utilizing signal processing and machine learning
models to achieve high accuracy and precision. Furthermore, the proposed combined
model has demonstrated a substantial improvement in performance compared to other
models employing machine learning approaches. In these regards, the suggested model
provides a significant advantage by generating high-performance classification results.
One of the most notable advantages of this study is the capability to classify the disease
with high performance at its earliest stage. This contributes significantly to the accurate
guidance of disease progression and treatment through early diagnosis. Additionally, in
this study, 3-min EEG data were used. Revealing this system with recordings of such a short
duration holds high potential for speed and performance in developing expert systems
for this purpose. However, in the implementation stage of the model, the decomposition
of data into sub-bands and the feature extraction from these sub-bands may introduce
processing overhead. In this regard, the proposed model may have higher processing
complexity compared to models directly analyzing the data.

In future studies, this method can be applied to the diagnosis of various neurological
disorders, aiming to establish a ciSSA feature extraction machine learning model for the
high-performance classification of neurological disorders.
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26. Aydin, S.; Saraoğlu, H.M.; Kara, S. Log energy entropy-based EEG classification with multilayer neural networks in seizure. Ann.

Biomed. Eng. 2009, 37, 2626–2630. [CrossRef] [PubMed]
27. Baraniuk, R.G.; Flandrin, P.; Janssen, A.J.E.M.; Michel, O.J.J. Measuring time-frequency information content using the Renyi

entropies. IEEE Trans. Inf. Theory 2001, 47, 1391–1409. [CrossRef]
28. Atyabi, A.; Shic, F.; Naples, A. Mixture of autoregressive modeling orders and its implication on single trial EEG classification.

Expert Syst. Appl. 2016, 65, 164–180. [CrossRef] [PubMed]
29. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. Available online:

http://www.jstor.org/stable/2346178 (accessed on 19 November 2023). [CrossRef]
30. Lanillos, P.; Oliva, D.; Philippsen, A.; Yamashita, Y.; Nagai, Y.; Cheng, G. A review on neural network models of schizophrenia

and autism spectrum disorder. Neural Netw. 2020, 122, 338–363. [CrossRef] [PubMed]
31. Hosseini, M.-P.; Hosseini, A.; Ahi, K. A Review on Machine Learning for EEG Signal Processing in Bioengineering. IEEE Rev.

Biomed. Eng. 2021, 14, 204–218. [CrossRef]
32. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
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Abstract: Several studies have demonstrated accelerated brain aging in Alzheimer’s dementia (AD).
Previous studies have also reported that facial asymmetry increases with age. Because obtaining facial
images is much easier than obtaining brain images, the aim of this work was to investigate whether
AD exhibits accelerated aging patterns in facial asymmetry. We developed new facial asymmetry
measures to compare Alzheimer’s patients with healthy controls. A three-dimensional camera
was used to capture facial images, and 68 facial landmarks were identified using an open-source
machine-learning algorithm called OpenFace. A standard image registration method was used to
align the three-dimensional original and mirrored facial images. This study used the registration error,
representing landmark superimposition asymmetry distances, to examine 29 pairs of landmarks to
characterize facial asymmetry. After comparing the facial images of 150 patients with AD with those
of 150 age- and sex-matched non-demented controls, we found that the asymmetry of 20 landmarks
was significantly different in AD than in the controls (p < 0.05). The AD-linked asymmetry was
concentrated in the face edge, eyebrows, eyes, nostrils, and mouth. Facial asymmetry evaluation may
thus serve as a tool for the detection of AD.

Keywords: Alzheimer’s dementia; facial asymmetry; facial landmarks; accelerated aging; Procrustes
method

1. Introduction

Alzheimer’s dementia (AD) is characterized by a gradual decline in cognitive func-
tions, particularly memory, impacting spatial awareness, judgment, and causing neuropsy-
chiatric symptoms, and thus significantly affecting daily life. The prevailing understanding
of AD pathology involves the accumulation of β-amyloid plaques outside nerve cells and
tau protein tangles inside nerve cells, leading to neuronal damage and death [1]. However,
these pathological changes are considered late-stage manifestations, and there are few
hypotheses regarding the events preceding AD onset. In AD, synaptic degeneration can
be detected in the early stages of pathological progression before neuronal degeneration.
Synapses are where β-amyloid peptides are generated and serve as targets for toxic β-
amyloid oligomers [2]. Neuroinflammation, which has been confirmed to play a pivotal
role in AD, involves various inflammatory processes within the central nervous system [3].
Activated immune cells release inflammatory molecules in the brain, potentially causing
neuronal damage. This inflammation may be a consequence of neuronal damage and
abnormal protein metabolism, contributing to the progression of the disease. Among innate
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immune cells, microglial cells are central participants in neuroinflammation. Activated mi-
croglial cells exhibit diverse cellular profiles and interact with β-amyloid and tau proteins,
as well as neuronal circuits in various ways. In later AD stages, excessive neuroinflamma-
tion leads to neuronal and glial cell death. Aβ clearance is impaired, and microglial cells
release high levels of pro-inflammatory molecules, causing neurodegeneration. This creates
a vicious cycle, and the release of ROS and NOS by microglial cells accelerates neuronal
loss [3,4]. Vascular dysregulation may also be associated with AD. In post-mortem studies,
60–90% of clinical diagnosed AD patients exhibit brain vascular abnormalities, with 30%
showing signs of cerebral infarctions [5]. About one-third of clinical diagnosed vascular
dementia patients present AD-related pathological features, including amyloid plaques and
neurofibrillary tangles [6]. Genetic factors play a role, particularly in early-onset AD with
mutations in genes like APP, PSEN1, and PSEN2. However, most AD cases are late-onset
and involve complex interactions between multiple genetic and environmental factors.
From a macroscopic perspective, AD primarily affects brain regions such as the cerebral
cortex and the hippocampus, resulting in atrophy and volume loss. Owing to the limited
treatability of AD currently, earlier detection of AD and earlier use of medications such as
acetylcholinesterase inhibitors is important as this may postpone disease progression and
preserve patients’ activities of daily living.

The developmental processes of the brain and facial morphology are highly intercon-
nected [7,8]. During early embryonic development, the neuroepithelial cells located within
the neural folds gives rise to facial precursor cells known as Cranial Neural Crest Cells
(CNCC) [9]. These CNCCs undergo a transformation from an epithelial to a mesenchymal
state and migrate ventrally, playing a significant role in the development of a majority of
craniofacial bones and connective tissues. Early brain growth impacts facial prominence
positioning and growth. In proximity to the CNCCs is the forebrain, which encompasses
the cerebral cortex. The CNCC-secreted paracrine factors also regulate brain development.
These interactions are well-documented in animal embryo studies and align with the
co-occurrence of neurodevelopmental and craniofacial abnormalities in humans [8].

Many studies have demonstrated a pattern of accelerated brain aging in patients with
AD. Based on MRI imaging, the BrainAGE algorithm linked AD to accelerated brain aging
compared with a cognitively normal group and a group with mild cognitive impairment
(MCI) [10–13]. Huang et al. utilized MRI and a machine learning model to predict brain age
based on gray matter volume, revealing an accelerated brain aging trajectory in patients
with MCI compared with healthy individuals [14]. Linden et al. found that facial asymme-
try increases with age [15], and normal face development is highly contingent on normal
brain development [8,16,17]. Facial malformation was also observed to be related to un-
derlying brain disease [18]. Face–brain asymmetry has been identified in autism spectrum
disorders [19] and in patients with focal epilepsy [20]. The etiology of facial asymmetry
is multifactorial, including functional, neuromuscular, stomatognathic, environmental,
congenital, traumatic, and neoplastic factors, as well as the effects of chronic skin diseases
and aging. The face reveals clues to sex, age, and genetics. One study reported that AD
patients have an “older-appearing face” based on the estimation of an independent panel
of eight human raters [21]. Penke et al. also found that facial asymmetry was an important
predictor of cognitive decline in older persons [22].

Most diagnostic procedures for AD are invasive or time consuming. For example, psy-
chological assessment is time consuming, cerebrospinal fluid examination is invasive, and
amyloid positron emission tomography is costly [23]. Beyond the conventional chemical
and imaging biomarkers, other markers for AD detection are being developed [24,25]. As
far as we know, there are no facial presentations that are typical of AD.

Review articles have appeared that cover many single-face image-based methods for
estimating age [26–28]. However, these articles do not focus on the relationship between
face aging and neurodegenerative diseases such as AD. In an initial investigation of the
impact of AD on the human face, the above-cited literature points to facial symmetry as an
interesting feature to focus on.
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Considering that obtaining facial images is much easier than obtaining brain images,
the aim of this study was to investigate whether facial asymmetry is potentially a marker
for differentiating patients with AD from age- and sex-matched, healthy control subjects.

2. Materials and Methods

2.1. Participants

A total of 300 Taiwanese participants, including 150 AD patients and 150 controls
without dementia, were recruited at Kaohsiung Municipal Ta-Tung Hospital in southern
Taiwan. Participants had no previous facial trauma or disease. The diagnosis of AD was
based on the NINCDS-ADRDA criteria [29] with reference to a series of comprehensive neu-
ropsychological tests, including the Mini-Mental State Examination (MMSE) [30] derived
from the Cognitive Abilities Screening Instrument (CASI) [31], Neuropsychiatric Inventory
(NPI) [32], and Clinical Dementia Rating (CDR) scale [33]. The neuroimaging and blood
check to exclude other conditions possibly contributing to the diagnosis of dementia were
conducted simultaneously. The control group without dementia was recruited by a senior
neurologist to exclude dementia and other systemic diseases.

This study was approved by the institutional review board of the Kaohsiung Medical
University Chung-Ho Memorial Hospital (KMUHIRB-SV(I)-20210067). All patients gave
written consent for the use of their images for research purposes before the image was taken.

2.2. Data Collection
2.2.1. Image Retraction

The images of patients were recorded with a stereo camera (Intel RealSense D435) to
capture three-dimensional (3D) facial images. With a 30 Hz frame rate, every participant
took thirty images. The resolution of the infrared camera is 1280 × 720. The resolution
of the RGB camera is 1920 × 1080. Under standardized lighting conditions and against a
constant background, test subjects were guided by a clinician to a natural head position at a
distance of about 40 to 60 cm from the 3D camera. While keeping the Frankfort horizontal
(FH) plane parallel to the floor subjects were asked to maintain a neutral facial expression
with both eyes looking forward. The experiments were carried out in a quiet room of
Kaohsiung Municipal Ta-Tung Hospital and subjects were required to stay seated during
the test. Subjects were instructed to show a natural and relaxed facial expression while
the images were taken. After removing images with closed-eyes or other inappropriate
expressions, we included those with adequate quality for further analysis.

2.2.2. Face Landmark Detection and Pre-Processing

For each of the 3D face images analyzed in this study, we used OpenFace [34], a facial
behavior analysis toolkit, to detect 68 facial landmarks. OpenFace’s open-source availability,
robust facial landmark detection, and strong performance make it a preferred choice for
research and development in the field of facial analysis. As shown in Figures 1 and 2, as
a machine learning algorithm, OpenFace detects 29 hemiface landmarks for each side of
the face and 10 midface landmarks. Each landmark is represented by its 3-dimension x
(horizontal), y (vertical), and z (depth) coordinates. Since OpenFace also provides the yaw
angle for the human face, we took the face with the smallest yaw angle as the frame for
subsequent calculation (Figure 3).

In measuring the position of the facial landmarks, inaccurate results were frequently
encountered in estimating the depth of facial contour landmarks since these landmarks are
located in the boundary between face and background regions. To remedy this problem,
by processing the depth measurements provided by the camera system, we used K-means
clustering algorithm [35] to automatically classify image pixels into a foreground (face)
cluster and a background cluster. For each of the facial landmarks that were incorrectly
assigned into the background cluster, we used the following rules to replace its depth
measurement. First, with such a landmark as the center, we set up a 7 × 7 pixel window.
Next, we examined how many pixels within this window were clustered into the facial
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cluster and used the average depth of these pixels as the depth of the landmark. When
pixels of this 7 × 7 window were all assigned into the background cluster, the landmark
depth was chosen as the median value of the depth of all 68 landmarks.

Figure 1. The image registration process example of OpenFace.

Figure 2. Facial feature points distribution map by OpenFace.

Figure 3. Yaw angle.

The size of a face image varies with the actual face size and the distance between the
subject and the camera. To develop asymmetry measures that are invariant to these varia-
tions, we first calculated the centroid of all facial landmarks and denoted its coordinates
as (x, y). Next, we used Equation (1a) to determine the horizontal normalized coefficient
dx which is the average of all the horizontal distances between the landmark centroid and
landmarks. Similarly, this work used Equation (1b) to determine the vertical normalized
coefficient dy. Note that in the xy plane, distances are measured in pixels whereas distances
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in the z direction are measured in mm. This unit inconsistency problem will be addressed
in the following section.

∑68
i=1

|xi − x|
68

= dx (1a)

∑68
i=1

|yi − y|
68

= dy (1b)

Note that the above normalization procedure was not employed in the depth direction.
There are two reasons for such an arrangement. The first is that, in the depth direction, the
differences between the landmarks are invariant to the distance between the subject and the
camera. The second reason is that, as shown in the next section, the proposed asymmetry
measure does not account for depth direction differences.

2.3. Normalization and Procrustes Analysis of the Facial Coordinates

This work characterizes facial asymmetry by comparing the location of each of the
29 right hemiface landmarks to the location of the corresponding left hemiface landmarks.
To achieve this goal, the basic idea of the proposed approach is first to create a mirror face im-
age by horizontally flipping the original image and then uses the Procrustes method [36,37]
to align the mirror and original images. The Procrustes method, used in shape analysis
and image alignment, aligns objects like facial images by translation, rotation, scaling,
and reflection to minimize differences. It places facial landmarks in a shared coordinate
system and orientation. This is employed to create a mirrored right-face image for LSAD
calculations with the left face. Note that since the right hemiface of the mirror image is
essentially the left hemiface of the original image, the Procrustes method only needs to
align the right hemiface of the original and mirror images. This alignment procedure is
critical for accurate asymmetry assessment since it is very difficult to perfectly orient the
test subjects toward the camera.

To implement the proposed approach, we first denoted the coordinates of the ith right
hemiface landmarks of the original image and mirror image as (xi, yi, zi) and (αi, βi, γi),
respectively. The coordinates of the centroids of the right hemiface landmarks of the
original and mirror images are denoted as (x, y, z) and (α, β, γ), respectively. Based
on the normalization concept introduced in the previous section, we used Equation (2a)
to calculate the normalized horizontal coordinate of the ith right hemiface landmarks
of the original image. In an identical manner, we used Equation (2b) to determine the
normalized vertical coordinate of the ith right hemiface landmarks of the original image.
Similarly, for the mirror image, Equation (3a,b) were used to determine the normalized
horizontal and vertical coordinates of ith right hemiface landmarks of the mirror image.
For the depth direction, this work used Equations (2c) and (3c) to determine the normalized
depth coordinates of the right hemiface landmarks of the original image and mirror image,
respectively. Note that the depth coefficient c of Equations (2c) and (3c) was introduced
to adjust the relative weighting between the alignment errors of the xy plane and the
depth direction in applying the Procrustes method and at the same time resolving the unit
inconsistency problem of the xy plane and the z direction.

Xi = (xi − x)/dx (2a)

Yi = (yi − y)/dy (2b)

Zi = c ∗ (zi − z) (2c)

Ai = (αi − α)/dx (3a)

Bi =
(

βi − β
)
/dy (3b)

Ci = c ∗ (γi − γ) (3c)

Once the depth coefficient c was determined, with the alignment error of the ith right
hemiface quantified as (Xi − Ai)2 + (Yi − Bi)2 + (Zi − Ci)2, we used the Procrustes method

58



Biomedicines 2023, 11, 2802

to translate and rotate the original image so that the sum of squares of the alignment
error of all right hemiface landmarks could be minimized. With X′

i and Y′
i denoting the

horizontal and vertical normalized coordinate of the ith landmark of the aligned original
image, we used Equation (4) to quantify the asymmetry associated with the ith landmark.
Hereafter, these asymmetry measures will be referred to as landmark superimposition
asymmetry distances (LSADs). The sum of LSAD is also proposed as an asymmetry
measure (Equation (5)).

LSADi =

√(
Ai − X′

i
)2

+
(

Bi − Y′
i
)2 (4)

LSADs = ∑29
i=1 LSADi (5)

With the asymmetry measures specified, the depth coefficient c can be determined by
the following steps. First, we extensively tested different values of the depth coefficient c.
For each of these tested c values, we calculated all the asymmetry measures of Equations (4)
and (5) for all the test subjects. With these 30 asymmetry measures logged for all test
individuals, we performed an independent sample one-tailed t-test between AD and
controls and counted the number of asymmetry measures with significant differences.
Because the number of asymmetry measures with significant differences is the most when
the depth coefficient was 0.016, the value of the depth coefficient c was chosen as 0.016 for
subsequent analysis.

2.4. Statistic Analysis

Continuous variables are expressed as the mean with the standard deviation, whereas
categorical variables are presented as percentages. The association between the AD and
controls and demographic and clinical characteristics (age, sex, CDR, CDR-SB, MMSE, and
CASI) was explored using t-tests and the chi-square test. p-values for comparisons across
groups of clinical and demographic characteristics were derived from the aforementioned
analyses. The independent t-test is used to determine if the mean of the LSAD of the AD
patients and controls is significantly different. All reported p-values are two-sided, with a
p-value < 0.05 considered to be statistically significant. Analyses were performed using
SPSS Version 26.

3. Results

3.1. Demographic Characteristics of Recruited Participants

Patients’ age ranged from 56 to 79 years (mean: 72.2 years; standard deviation:
4.9 years). Fifty-seven patients were male and ninety-three were female. The CDR sum of
boxes score was 4.8 ± 2.9 (mean ± SD), the MMSE total score was 21.0 ± 4.4 (mean ± SD),
and the CASI total score was 65.7 ± 14.2 (mean ± SD).

Healthy subjects were chosen as the control group (age: 52–93 years, mean: 71.8 years,
standard deviation: 7.4 years) and included forty-six males and one hundred and four
females. The CDR sum of boxes score was 1.5 ± 1.4 (mean ± SD), the MMSE total score was
24.5 ± 3.7 (mean ± SD), and the CASI total score was 83.7 ± 10.5 (mean ± SD). A summary
of subjects’ characteristics is reported in Table 1.
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Table 1. Demographic characteristics of recruited participants.

AD Controls p-Value

Age, years (mean ± SD) 72.2 ± 4.9 71.8 ± 7.4 0.15
Gender (patient No., (%)) 0.19

Male 57 (38%) 46 (31%)
Female 93 (62%) 104 (69%)

CDR (%)
0 2 (1.4%)

0.5 49 (34.8%)
1.0 76 (53.9%)
2.0 14 (9.9%)
3.0 0

CDR-SB (mean ± SD) 4.8 ± 2.9 1.5 ± 1.4
MMSE (mean ± SD) 21.0 ± 4.4 24.5 ± 3.7
CASI (mean ± SD) 65.7 ± 14.2 83.7 ± 10.5

CDR: Clinical Dementia Rating. MMSE: Mini-Mental State Examination. SD: standard deviation.

3.2. The Comparison of Landmark Superimposition Asymmetry Distances (LSADs) of AD and Controls

Figure 4 shows the 68 landmarks, including 29 hemiface landmarks for each side of
the faces and 10 midface landmarks. The landmark superimposition asymmetry distances
(LSADs) of AD and controls are shown in Table 2, expressed as the mean with the standard
deviation. Among the 29 LSADs of the AD patients, 20 of these LSADs are significantly
larger than those of the controls. In face edge pair 1, the mean distance was 0.71 ± 0.51 for
AD patients and 0.63 ± 0.53 for controls (p = 0.003). In face edge pair 2, the mean distance
was 0.43 ± 0.30 for AD patients and 0.40 ± 0.37 for controls (p = 0.006). In face edge pair 3,
the mean distance was 0.47 ± 0.34 for AD patients and 0.39 ± 0.33 for controls (p = 0.009).
In face edge pair 4, the mean distance was 0.56 ± 0.37 for AD patients and 0.46 ± 0.37
for controls (p = 0.012). In face edge pair 5, the mean distance was 0.57 ± 0.39 for AD
patients and 0.48 ± 0.37 for controls (p = 0.010). In face edge pair 6, the mean distance was
0.51 ± 0.33 for AD patients and 0.44 ± 0.32 for controls (p = 0.003). In face edge pair 7,
the mean distance was 0.41 ± 0.31 for AD patients and 0.37 ± 0.31 for controls (p = 0.041).
In face edge pair 8, the mean distance was 0.34 ± 0.35 for AD patients and 0.25 ± 0.24
for controls (p = 0.007). In eyebrows pair 9, the mean distance was 0.25 ± 0.19 for AD
patients and 0.22 ± 0.15 for controls (p = 0.005). In eyebrows pair 10, the mean distance was
0.17 ± 0.12 for AD patients and 0.16 ± 0.12 for controls (p = 0.004). In eyebrows pair 13,
the mean distance was 0.29 ± 0.20 for AD patients and 0.25 ± 0.18 for controls (p = 0.001).
In nostrils pair 14, the mean distance was 0.37 ± 0.23 for AD patients and 0.31 ± 0.22 for
controls (p = 0.013). In nostrils pair 15, the mean distance was 0.44 ± 0.25 for AD patients
and 0.39 ± 0.26 for controls (p = 0.016). In eyes pair 16, the mean distance was 0.12 ± 0.10
for AD patients and 0.09 ± 0.06 for controls (p = 0.024). In eyes pair 17, the mean distance
was 0.15 ± 0.12 for AD patients and 0.11 ± 0.09 for controls (p = 0.001). In eyes pair 18, the
mean distance was 0.13 ± 0.10 for AD patients and 0.11 ± 0.09 for controls (p = 0.0004). In
eyes pair 19, the mean distance was 0.12 ± 0.07 for AD patients and 0.10 ± 0.07 for controls
(p = 0.0009). In mouth pair 22, the mean distance was 0.13 ± 0.09 for AD patients and
0.11 ± 0.08 for controls (p = 0.023). In mouth pair 24, the mean distance was 0.43 ± 0.23 for
AD patients and 0.37 ± 0.23 for controls (p = 0.035). In mouth pair 26, the mean distance
was 0.25 ± 0.16 for AD patients and 0.21 ± 0.15 for controls (p = 0.042). The sum of LSAD
was 10.33 ± 4.39 for AD patients and 9.14 ± 4.45 for controls (p = 0.003). Other LSADs
of the AD patients were also larger than those of the controls but did not show statistical
significance.
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Figure 4. Facial feature point pairs of LSADs with a significant difference between AD patients and
controls are marked as red.

Table 2. The facial feature point pairs of LSADs, calculated with t-test between AD and controls.

Face Part Pair AD Controls p-Value

Face edge 1 0.71 ± 0.51 0.63 ± 0.53 0.003 *
2 0.43 ± 0.30 0.40 ± 0.37 0.006 *
3 0.47 ± 0.34 0.39 ± 0.33 0.009 *
4 0.56 ± 0.37 0.46 ± 0.37 0.012 *
5 0.57 ± 0.39 0.48 ± 0.37 0.010 *
6 0.51 ± 0.33 0.44 ± 0.32 0.003 *
7 0.41 ± 0.31 0.37 ± 0.31 0.041 *
8 0.34 ± 0.35 0.25 ± 0.24 0.007 *

Eyebrows 9 0.25 ± 0.19 0.22 ± 0.15 0.005 *
10 0.17 ± 0.12 0.16 ± 0.12 0.004 *
11 0.24 ± 0.18 0.22 ± 0.18 0.059
12 0.30 ± 0.22 0.27 ± 0.20 0.053
13 0.29 ± 0.20 0.25 ± 0.18 0.001 *

Nostrils 14 0.37 ± 0.23 0.31 ± 0.22 0.013 *
15 0.44 ± 0.25 0.39 ± 0.26 0.016 *

Eyes 16 0.12 ± 0.10 0.09 ± 0.06 0.024 *
17 0.15 ± 0.12 0.11 ± 0.09 0.001 *
18 0.13 ± 0.10 0.11 ± 0.09 0.0004 *
19 0.12 ± 0.07 0.10 ± 0.07 0.0009 *
20 0.32 ± 0.11 0.32 ± 0.09 0.209
21 0.29 ± 0.11 0.28 ± 0.08 0.747

Mouth 22 0.13 ± 0.09 0.11 ± 0.08 0.023 *
23 0.31 ± 0.17 0.27 ± 0.17 0.054
24 0.43 ± 0.23 0.37 ± 0.23 0.035 *
25 0.33 ± 0.19 0.27 ± 0.17 0.083
26 0.25 ± 0.16 0.21 ± 0.15 0.042 *
27 0.82 ± 0.27 0.79 ± 0.25 0.936
28 0.52 ± 0.15 0.55 ± 0.13 0.645
29 0.36 ± 0.20 0.31 ± 0.19 0.069

Sum
of LSAD 10.33 ± 4.39 9.14 ± 4.45 0.003 *

* p < 0.05.
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4. Discussion

4.1. Key Findings

In this work, we aimed to develop a facial asymmetry assessment system to differ-
entiate Alzheimer’s patients from non-dementia people. Our study showed, among the
29 tested landmark pairs, 20 pairs of LSADs of the AD patients are significantly larger
than those of the controls, including all face edge landmarks, 3 eyebrow landmarks, all
landmarks of the nostrils, 4 landmarks of the eyes, and 3 mouth landmarks.

4.2. Facial Differences in Ethnic Skin

Taiwan is located in East Asia and its population is primarily composed of Han Chi-
nese and indigenous peoples. Also, there are subtle differences in the facial features of
northeast Asian and southeast Asian ethnic groups, often reflecting mixed phenotypic char-
acteristics influenced by their proximity to neighboring populations. Farkas et al. found
that the most significant differences among different racial groups were observed in the
eye socket area, nose height, and nose width. Middle Eastern and Asian populations had
narrower intercanthal distances with less eye corner width, whereas Caucasians exhibited
a narrower nasal base with a more pronounced nasal tip [38,39]. Facial aging processes are
similar across races, but differences in skeletal support and soft tissue tendencies result
in slower facial aging in Asians compared to Caucasians. Asians often have dense fat
and fiber connections in the mid-face, reducing sagging and resulting in fewer superficial
wrinkles [40]. Although our assessment method is not influenced by skin color, wrinkles,
or nasal bridge height, it is important to acknowledge that racial differences have a sig-
nificant impact on morphological variations related to facial asymmetry [41]. This could
limit the comparability of facial asymmetry measurements across different ethnic groups,
representing a limitation in our study.

4.3. Possible Biological and Neural Mechanisms of Facial Asymmetry in AD

Facial development begins in the early fourth week of embryonic development
when the frontonasal process emerges. By the fifth week, the nasal processes and maxil-
lary/mandibular processes appear. They grow and fuse, forming the foundation of facial
development. This process is typically completed by the eighth week, defining three
primary facial regions: the frontal, maxillary, and mandibular parts [42,43].

In human facial development, genetic factors and growth factors play crucial roles.
Key pathways include Fibroblast Growth Factor (FGF), Hedgehog (HH), and Bone Mor-
phogenetic Protein (BMP). FGFs are involved in precise regulation, with mutations linked
to syndromes like Crouzon and Apert. The HH pathway influences neural crest cells and
jaw development, and mutations in the Sonic Hedgehog (SHH) gene can cause midline
defects and eye issues. BMP signaling is essential for craniofacial bone development and
disruptions can lead to various anomalies, including a cleft palate and facial defects [7,8,16].
However, there is currently no direct evidence showing that these signaling molecules are
physiologically relevant to the pathogenesis of AD.

AD causes cortical atrophy and brain function decline. Abbate et al. proposed a
pathophysiological hypothesis for AD, suggesting shared spatial information in cortical
arealization during development and AD [44,45]. Some AD subtypes affect specific brain
regions, potentially leading to lateralization. However, limited literature explores this.
Compared to other vertebrates, AD processes, like amyloid deposition due to metabolism
and tau pathogenesis from adult neurogenesis/migration, are emphasized in the complex
human cortex. The human longevity revolution likely contributes to these extremes.

The two most substantiated risk factors for AD are genetics and aging. Mutations
in genes like PSEN1, PSEN2, and APP lead to early-onset familial AD, while late-onset
sporadic AD results from a combination of factors, including aging, lifestyle, environment,
and genetics [46]. APOE4 is the most significant genetic risk factor for late-onset AD,
associated with earlier accumulation of amyloid plaques and neurofibrillary tangles. APOE
gene variants directly impact brain development [47]. In a study with 1187 healthy children,
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APOE4 carriers had a thinner temporal cortex, smaller hippocampus, and weaker executive
function correlations [48].

In normal aging, neuron loss is minimal, but there are changes in dendrite characteris-
tics. These alterations vary across brain regions, with the most significant volume reduction
occurring in specific areas like the frontal and temporal cortex [49]. Facial aging involves
changes in bone structure, soft tissues, and skin, with interrelated effects. Bone resorption
occurs with aging, affecting support, leading to soft tissue contraction and shifting. Exter-
nal factors like sun exposure and smoking impact skin aging, while collagen degradation
accelerates and synthesis decreases with age, resulting in dermal atrophy [50–52].

Similar to our study, the BrainAGE algorithm via MRI has shown accelerated brain
aging patterns in AD patients [10]. Dysfunctional DNA repair is also implicated in AD risk.
While DNA methylation patterns generally decrease with age, specific gene regions may
experience excessive methylation, resulting in increased variability. Epigenetic clocks, based
on DNA methylation at specific sites, serve as reliable aging markers [53,54]. The difference
between actual age and biological age is referred to as accelerated or decelerated epigenetic
aging. Studies on dementia and mild cognitive impairment have yielded inconclusive
results, with some suggesting a link between epigenetic age and dementia risk while others
find no significant association [53,54].

Unlike our study, Naqvi et al. provided genetic and MRI evidence supporting the link
between human facial and brain shape. They explored changes in various facial quadrants
using GWAS but found no significant associations in AD [55]. This lack of association may
be due to the complex etiology of AD, which involves a combination of genes and factors
related to late-life plaque accumulation and neurodegeneration.

4.4. Method Comparisons

Recent studies used deep learning for age estimation from facial images [17–19] and
showed promise. However, the connection between facial images and AD detection remains
intriguing due to natural facial asymmetry variation. Quantifying facial asymmetry lacks a
universally accepted standard [38]. This study introduces a landmark-based measure to
address this issue.

Previous research has employed various methods to assess facial asymmetry, such
as using the asymmetry distance calculated by root-mean-squared-error (RMSE) [56,57].
For instance, Ferrario et al. [58] utilized a camera-automatic three-dimensional landmark
detection system, employing 16 landmarks, including 6 median points and 10 points
representing the eyes, nose, mouth, and face edges. They applied Euclidean distance matrix
analysis to compare the left and right hemifaces. Xiong et al. [59] analyzed 21 automatic
facial landmarks, encompassing 7 medial points and 7 pairs of landmarks for the eyes,
nose, and mouth. Ekrami et al. [60] examined 19 manual facial landmarks, consisting of
7 medial points and 6 pairs of landmarks for the eyes, nose, and mouth. In addition to
biological landmarks, some studies incorporated nevi and wrinkles to enhance sensitivity.
Many studies attempted to establish a reference frame for quantifying asymmetry, but
determining the accurate midline frames posed another challenge [36,37,56]. To reduce
errors, some studies employed multiple validation methods.

Regarding the assessment of facial asymmetry for facial palsy, there are various
methods available. Gaber et al. employed Kinect V2 for automated recognition of facial
features and created their own database. To address the issue of small sample sizes,
they utilized undersampling and data augmentation for compensation [61]. Abayomi-
Alli et al. introduced a deep learning-based method for facial paralysis detection and
classification. They employed a novel image enhancement technique that extended random
erasure enhancement using Voronoi subdivision structures. Subsequently, they used the
SqueezeNet deep neural network for extracting deep features and employed a multi-
class classifier for classification [62]. Wei et al. proposed a set of new facial features and
augmented reality tools to assist users in interactively assessing facial symmetry. The
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development process involved four different datasets and focused on extracting features
suitable for application on a smartphone program with lower computational costs [63].

After reviewing the previous literature, this study utilized a camera-automatic three-
dimensional landmark detection system with OpenFace and analyzed facial asymmetry
using the Procrustes method, which appeared to be the most effective and intuitive ap-
proach. The LSADs in our study indicated increased facial asymmetry in AD patients,
particularly in regions such as the face edge, eyebrows, eyes, nostrils, and mouth. This
method has been applied in other studies, albeit with different landmarks. Concerning age,
Linden et al. demonstrated increased facial asymmetry in the lower two-thirds compared
to the upper one-third in older age groups, while in younger age groups, more asymmetries
were found in the upper third of the face [15]. Recently, Umeda et al. employed deep
learning models to distinguish between the faces of dementia patients and non-dementia
patients, with the lower face epochs providing better sensitivity and specificity. However,
their results may have been influenced by the significantly older age of their AD group [23].
Greater normal variability in the global population was observed in the location of facial
landmarks, including tragion, gonion, and zygion [64]. Zygion is close to our face edge
landmark pair 2, and gonion is near our face edge landmark pair 5. Vertical eye movement
differences have been found in AD patients compared to normal individuals [65], and
abnormal oculomotor movement has been noted in several neurodegenerative diseases [66].
However, direct associations between eye shape or location and AD have not been iden-
tified in previous studies, nor have such associations been found for the rest of the facial
landmarks.

4.5. Strengths

Facial asymmetry assessment is our initial step in evaluating facial features. While
some conditions like stroke exhibit obvious facial asymmetry, its impact in chronic degen-
erative diseases is less discernible and is compounded by age-related effects. Thus, we
employed a state-of-the-art machine learning algorithm to automatically and effectively
identify facial landmarks, reducing human labor and enhancing the reproducibility of facial
asymmetry measurements.

Compared to previous research, our study possesses several strengths. Firstly, by
utilizing a 3D camera for facial capture, our study introduced a systematic approach to
calibrate the relative orientation between the human head and the camera, leading to
more accurate facial asymmetry computation. Secondly, to our knowledge, this is the first
study to distinguish AD patients from non-dementia individuals through the objective
evaluation of facial asymmetry. Thirdly, our study incorporated more reference points than
other studies, allowing for the assessment of more subtle and precise features. Lastly, the
included AD patients were primarily in the mild severity range (CDR: 0.5–1.0), indicating
that our results may be applicable for early disease detection.

4.6. Limitations

The limitations include the automatic machine learning system used to differentiate
AD patients from healthy subjects, which is still developing, and the fact that our partici-
pants consisted of only Taiwanese people; therefore, an extensive application still needs to
be further evaluated. Our study includes a small participant number and is a cross-sectional
study, thus a larger, longitudinal study may provide more information on the issue of AD
patients’ facial characteristics.

OpenFace uses Conditional Local Neural Fields (CLNFs) for facial landmark detection
and tracking. A CLNF’s performance depends on dataset diversity. Diverse datasets
enhance adaptability, while small or biased datasets may hinder performance. Fine-tuning,
data augmentation, and context-specific evaluation are often needed. In our study, we
controlled image quality, facial pose, and expression. However, our dataset was limited in
diversity and scale.
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Additionally, overstating the connection between facial appearance and diseases can
lead to biases. The current diagnostic criteria continue to be the basis for AD diagnosis.
The early and accurate detection of AD remains an unmet need, and we propose that
facial asymmetry could potentially serve as a supplementary tool in the future, alongside
emerging early diagnostic methods for AD.

5. Conclusions

AD patients exhibited increased facial asymmetry compared to age- and gender-
matched individuals without dementia. Our analysis encompassed a total of 29 facial
landmarks, revealing that 20 pairs of LSADs in AD patients were significantly larger than
those in the control group. Asymmetry in facial features, including face edges, eyebrows,
eyes, nostrils, and mouth, contributed to distinguishing AD from non-dementia controls.
Specifically, differences in face edge pairs 1 through 8, as well as eyebrows pairs 9, 10,
and 13, nostrils pairs 14 and 15, eye pairs 16 through 19, and mouth pairs 22, 24, and 26,
were statistically significant, with p-values ranging from 0.001 to 0.041. Furthermore, the
total LSAD was notably higher in AD patients compared to controls, with a p-value of
0.003. Facial asymmetry may potentially serve as a tool for early AD detection in the future.
However, it is essential to validate these findings in larger and more diverse cohorts.
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Abstract: The Human Activity Recognition (HAR) system is the hottest research area in clinical
research. The HAR plays a vital role in learning about a patient’s abnormal activities; based upon this
information, the patient’s psychological state can be estimated. An epileptic seizure is a neurological
disorder of the human brain and affects millions of people worldwide. If epilepsy is diagnosed
correctly and in an early stage, then up to 70% of people can be seizure-free. There is a need for
intelligent automatic HAR systems that help clinicians diagnose neurological disorders accurately. In
this research, we proposed a Deep Learning (DL) model that enables the detection of epileptic seizures
in an automated way, addressing a need in clinical research. To recognize epileptic seizures from
brain activities, EEG is a raw but good source of information. In previous studies, many techniques
used raw data from EEG to help recognize epileptic patient activities; however, the applied method
of extracting features required much intensive expertise from clinical aspects such as radiology and
clinical methods. The image data are also used to diagnose epileptic seizures, but applying Machine
Learning (ML) methods could address the overfitting problem. In this research, we mainly focused on
classifying epilepsy through physical epileptic activities instead of feature engineering and performed
the detection of epileptic seizures in three steps. In the first step, we used the open-source numerical
dataset of epilepsy of Bonn university from the UCI Machine Learning repository. In the second step,
data were fed to the proposed ELM model for training in different training and testing ratios with a
little bit of rescaling because the dataset was already pre-processed, normalized, and restructured.
In the third step, epileptic and non-epileptic activity was recognized, and in this step, EEG signal
feature extraction was automatically performed by a DL model named ELM; features were selected
by a Feature Selection (FS) algorithm based on ELM and the final classification was performed using
the ELM classifier. In our presented research, seven different ML algorithms were applied for the
binary classification of epileptic activities, including K-Nearest Neighbor (KNN), Naïve Bayes (NB),
Logistic Regression (LR), Stochastic Gradient Boosting Classifier (SGDC), Gradient Boosting Classifier
(GB), Decision Trees (DT), and three deep learning models named Extreme Learning Machine (ELM),
Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN). After deep analysis, it is
observed that the best results were obtained by our proposed DL model, Extreme Learning Machine
(ELM), with an accuracy of 100% accuracy and a 0.99 AUC. Such high performance has not attained
in previous research. The proposed model’s performance was checked with other models in terms of
performance parameters, namely confusion matrix, accuracy, precision, recall, F1-score, specificity,
sensitivity, and the ROC curve.
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1. Introduction

Human Activity Recognition (HAR) is a widely studied and targeted research area
focusing on human beings’ average daily activity recognition. Even though activity recog-
nition has attracted many researchers and has been studied for a long time, researchers
did not just stop at HAR; they further targeted the subtype of activity recognition which
is aimed at the recognition of abnormal activity in patients. Furthermore, researchers are
moving toward abnormal activity detection of patients or physically impaired people [1].
Abnormal activities are activities that are rarely performed and vary in their characteristics
from other regular activities. These abnormal activities can be hand flapping, vomiting,
fainting, headaches, epileptic activities, chest pain, abnormal heartbeat, falling backward,
falling forward, etc. [2]. According to medical professionals, the best way to detect these
activities is to look toward the emerging change in daily life activities before becoming
more critical. In recent research, different methods have been used to detect abnormal
activities, including wearable, sensor-based, and ambient device methods. The triggered
alarm checks the status of activity detection. The detection accuracy of these activities
depends upon analyzing and learning the patterns of exact features [3].

Although they solved this challenging problem by detecting abnormal activities of
different diseases, they did not target the detection of epileptic disorders through epileptic
activities. Many abnormal activities are mentioned above, but this study focuses on those
observed during epileptic seizures. Very little work has been done on epileptic activity
using a deep learning approach, and what has been published has not been in-depth. This
study focuses on epilepsy detection through an epileptic activity using a deep learning
approach. However, most of the work is conducted using medical imaging techniques
that use images and not numerical data. Therefore, before digging deeper into previous
detection methods, machine learning, or deep learning, we should have an idea about
epilepsy.

Epilepsy is derived from the well-known Greek word “Epilepsia”. In ancient times
when there was no well-known knowledge available about epilepsy, it was considered to
be a curse from the gods. Furthermore, with time awareness about epilepsy grew and a
method called Electroencephalography (EEG) was discovered. It is now understood that
epilepsy is a strenuous, non-communicable, chronic, and uncontrolled activity in the brain
of a patient and is associated with abrupt attacks that affect millions of people’s lives, be
they adults, the elderly, or newborn babies. Epilepsy can occur at any age in both sexes,
either male or female, but usually it is observed in people of a young or advanced age.

In the automated detection of epilepsy in previous research, the main focus is to differ-
entiate between EEG and non-seizure EEG. Epileptic seizures are usually periods where
the brain’s regular activity becomes abnormally increased and synchronized. Seizures are
expeditious, and premature abnormalities in the brain due to anomalous electrical activity
affect the person’s whole body. However, not all people who have seizures also have
epilepsy because sometimes seizures can be caused by some psychological tissue stress in
the brain; these are called non-epileptic seizures. As these non-epileptic seizures resemble
actual seizures, this can make the diagnosis of the disease more complex [4].

Current epilepsy detection procedures assess the tissues of the brain that are gener-
ating epileptic seizure activity. There are many manual approaches as well as automated
diagnostic methods that can be employed for detecting epilepsy. The most widely used
traditional and manual method for epilepsy detection is through EEG. EEG represents a
chaotic detection method because it produces blurred images as well as fails to represent
the state and sites of the tissues of the brain [5]. The medical diagnosis of epilepsy is usually
performed manually using EEG signals, which is very complex and requires highly skilled
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professional neurologists [6]. EEG signals are categorized into two types: (i) scalp EEG and
(ii) iEEG. In scalp EEG, electrodes are placed on the scalp of the patient to capture seizure
periods, but in the case of iEEG, the electrodes are directly placed on the surface of the brain
to directly detect brain seizure activity from the cerebral part of the brain. As in the case of
scalp EEG, it is very complex and time-consuming to capture brain activity from the scalp
of a patient, Therefore, it is called a traditional or manual method of detecting epileptic
seizure activity. Although EEG is a very common method, it still has some limitations in
detecting epilepsy signals due to epilepsy’s chaotic behavior, and although highly skilled
professional neurologists have extensive experience in visually detecting seizure activity
from EEG data, such analysis still requires a lot of time.

EEG signals in nature are neither linear nor stationary; therefore, they cause difficulties
in the manual monitoring and detection of normal and abnormal activities. Although it is
not an efficient method [7], EEG is an effective tool for the evaluation as well as treatment
of epileptic seizures. However, the drawback of EEG is that it requires highly skilled and
professional neurologists to detect epilepsy correctly due to its complexity, and even for
an experienced professional it is very time-consuming. Therefore, there is a need for a
computer-based system, or Computer-Aided Diagnosis (CAD) tools, for the automatic
detection and interpretation of epilepsy to overcome the drawbacks associated with the
traditional EEG method [8].

Computer-Aided Diagnosis (CAD) tools are automated methods to detect epilepsy.
These are a combination of image processing, artificial intelligence, and computer vision.
These are the best systems and are designed to be cost-effective, fast, as well as effective at
detecting abnormalities [9]. CAD tools are proposed to be the best way to detect epileptic
seizure activity and to perform feature extraction and classification from images to monitor
the abnormal brain activity in a short period. In the field of medical imaging, CADe and
CADx are helpful for medical professionals to make quick decisions. CAD tools use Mag-
netic Source Imaging (MSI), Magnetic Resonance Imaging (MRI), Magnetoencephalography
(MEG), CT scans, etc. For the evaluation of epilepsy, the required data for these methods
are scanned images. These are neuroimaging techniques for the evaluation of epilepsy
that map brain electrical activities with detailed images produced using magnetic fields,
radio waves, and electrical currents by interacting and recording seizures that are naturally
present in the brain. These combined graphical, electrical, and structural data play an
important role in the final selection of tools chosen for the evaluation of epilepsy, which
further influences the final decision on treatment [10].

Furthermore, there are many signal- and image-processing-based procedures used for
the evaluation of epilepsy with some spatial as well as temporal features. These tools can
be used if there is a need for high-quality images for the evaluation of epileptic seizure
activity, but these imaging techniques are very high energy and can thus harm the human
body. Hence, these images are taken with less energy, due to which they are of bad quality,
and later, the image quality is cost-effectively improved through CAD tools. This process
helps to efficiently interpret the image with better accuracy and highlight conspicuous
parts of the brain to detect epileptic seizure activity [11]. EEG is a necessary step for
detecting epileptic seizures and it assists medical professionals in speeding up the detection
process. For this purpose, along with CAD tools, many signal processing and classification
techniques have been used in manual procedures but they still have some complexity,
performance, classification, and speed issues [12]. Therefore, to overcome these problems,
there is a need to use efficient machine learning algorithms for the proper classification of
multi-class seizure activities. ML algorithms help to pre-process the images as well as to
extract features. ML algorithms help to account for the state of the brain as well as predict
epileptic seizures [7].

Recent research has shown that many ML algorithms assist neurologists in detecting
epileptic seizures and classifying epileptic seizure activities. These include Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Neural Networks
(NN), Naïve Bayes (NB), Logistic Regression (LR), Decision Trees (DT), Probabilistic Neural
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Networks (PNN), and Multilayer Perceptron (MLP) [13,14]. Although many of these
machine learning algorithms are very successful in detecting epileptic seizure activities,
they are still not as successful as Deep Learning algorithms. EEG signal analysis is very
complex and requires a lot of human skill and expertise. Human work can be prone to
errors in epilepsy detection. To overcome this issue, ML algorithms are used.

Although ML algorithms are helpful in overcoming human error, this problem is
more tricky and complex than it looks; hence, somewhat more robust algorithms such
as Deep Learning methods are required for epileptic seizure activity detection [15]. To
automatically detect epilepsy, Deep Neural Networks are used that are based on the
processing techniques of signals (EEG) as well as pattern recognition. They use the data
of EEG for the detection of locations as well as durations of spikes and seizures. Recent
advances in DL algorithms have paved the way for epileptic seizure detection. These
include Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNN), Long
Short-Term Memory (LSTM), Hopified Networks (HN), Restricted Boltzmann Machine
(RBN), and the Wavelet-Based approach. In our presented research, we applied an Extreme
Learning Machine (ELM) for this purpose and also applied some ML techniques including
KNN, NB, LR, DT, RF, GB, and SGDC, as well as the DL LSTM technique. A further review
of recent studies is continued below.

There have been many types of research carried out in the field of HAR that combine
different techniques which could be used for recognizing human activities. Recent research
has shown that the recognition of activities is usually addressed by machine learning
techniques including decision trees, Support Vector Machines, Bayesian Methods, Neural
networks, fuzzy logic, Markov Models, Hidden Markov Models, and Regression models.
Different authors have proposed different machine learning techniques for the recognition
of normal and abnormal human activities. Normal activities include walking, standing up,
sitting down, jumping, and eating. One author applied state-of-the-art techniques by using
2D AbHAR and 3D AbHAR datasets along with Hidden Markov Models (HMM) and KNN
to recognize abnormal human activities such as chest pain, headaches, and fainting [1].
This author also applied Decision Trees, Support Vector Machine, and Hidden Markov
Models to recognize abnormal activities such as walking to a chair, crouching, falling to
the right or left, and falling forward and backward. This process was completed in two
stages, namely data input through sensors and data processing, and recognized activities
with 98% accuracy [16].

Although there are many kinds of research on normal human activity recognition, in
recent years, there a lot of research is also being carried out on the recognition of activities
of people who are physically impaired or injured ambulatory patients at home or who have
psychological or neurological disorders. For security reasons, the recognition of abnormal
activities has become an important and challenging task. The activities of such patients
deviate from normal behavior and are usually referred to as abnormalities. Abnormal
patient activities are those that require medical help immediately. The current research aims
to effectively create new techniques as well as solutions for further research. To recognize
abnormal patient activities and to monitor patient care either in the hospital or at home,
different authors have proposed different machine learning techniques.

1.1. Machine Learning Techniques

One author used different machine learning techniques, namely K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Decision Tree (DT), Artificial Neural Network
(ANN), and Principal Component Analysis (PCA), to perform classification on an epileptic
seizure dataset using 9200 normal activities named Partial epilepsy without seizures and
2300 abnormal epileptic activities named General epilepsy with seizures. The accuracy
of the classifiers in the prediction of epilepsy using PCA and without using PCA was
observed. Findings showed that RF without using PCA with low computational time and
with 97% accuracy produced the best result. Without using PCA, KNN and RF achieved
99% accuracy as compared to other ML classifiers [17].
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Another author used different ML algorithms, namely KNN, SVM, PCA, and ANN,
for the recognition of the epileptic seizure dataset. This research had two principal methods.
In the first method, features were extracted and then classified into binary classes labeled
as Epileptic and Non-Epileptic seizures. In the second method, the performance of the
feature extraction method was improved by using the Principal Component Analysis (PCA)
method, and a 96% accuracy was achieved [18].

Another author used the SVM and its twin variant and then embedded these with
univeram data to classify the EEG Signals. The author used Principal Component Analysis
(PCA), Independent Component Analysis (ICA), and wavelet analysis. The author used
30 EEG datasets, one of which was the Bonn university EEG dataset which showed that
accuracy was 100% [19].

Another author used different classifiers of machine learning to perform the classifi-
cation of normal activities, named Tumor, Hstumor, Eyec, Eyeo, and abnormal activities,
named Es, using the epileptic seizure dataset. The ML classifiers used for the classification
were KNN, Logistic Regression, Naïve Bayes, Decision Tree, Stochastic Gradient Descent,
J48, Random Tree, and Random Forest. Compared to the other ML classifiers, Random For-
est greatly outperformed all of these classifiers and achieved a 97.08% maximum accuracy
with an ROC = 0.996. In this research, to analyze the performance of different classifiers, a
sensitivity analysis was performed by changing different parameters and using different
attributes chosen as feature selection in prediction [20].

Another author proposed a model which used wavelet transform as well as common
spatial pattern filtering for the pre-processing. For the purpose of feature extraction, the
technique Principal Component Analysis (PCA) was used and for the Pre_ictal stage
classifier, Support Vector Machine (SVM) was used, achieving an average sensitivity of
93.1% observed across 84 seizures in 23 subjects. The normal activities used in this paper
were Pre_ictal, Inter_ictal, Eyes open, and Eyes Close, and the abnormal activity was
Ictal [21].

Another author performed classification on the Epileptic Seizure dataset. The classifier
which was used for classification was SVM, and the Bayesian optimization algorithm was
used by the SVM classifier for the optimization of the hyperparameter. In this research
paper, to perform the comparison, Linear Discriminant Analysis (LDA) and Quadratic
Linear Discriminant Analysis (QLDA) were used, and the accuracy achieved by the SVM
classifier was 97.05% [22].

Another author applied the Discrete Wavelet Transform (DWT) technique for feature
extraction and then used the Radiant Basis Kernal function (RBF) to train the SVM classifier.
For better EEG classification, an optimizer named the Grey Wolf Optimizer (GWO) was
used for the selection of the important subset of features and parameters of the SVM with
99% accuracy [23].

Another author used the DWT technique to retrieve statistical features from the
decomposition of EEG data into bands and the classifier was trained to learn these statistical
features. To predict whether signals were epileptic or not, two classifiers named Naïve
Bayes and KNN were used for the classification of the epileptic seizure dataset with normal
epileptic activities named Eyes open, Eyes close, Inter_ictal, and Pre_ictal and abnormal
activity named Epileptic seizure. In this research paper, 14 successful results of a different
combination of two classes of epilepsy detection were obtained. A Naive Bayes classifier
with less computing time and 100% accuracy was used for the classification of an epileptic
dataset [24].

Another author used a classifier named dual-tree wavelet complex transform (DTCWT)
for signal decomposition as well as for the calculation of statistical measurement. Then, for
the training of the statistical environment, a classifier named General Regression Neural
Network was used and achieved 95.24% maximum accuracy in less than 0.028 s [25].

Another author in his paper proposed a new method for epileptic and non-epileptic
seizure detection. The transformation of the multiresolution decomposition was performed
on the base of the wavelet and was then used in combination with an Artificial Neural
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Network (ANN) for the classification of the EEG signal regarding whether a seizure is
present or not. The achieved accuracy was 97.77% using normal epileptic activities named
Normal, Non-seizure, Non-seizure with eyes closed, and Non-seizure with eyes open and
the abnormal activity named Seizure [26].

Another author used the technique of permutation entropy to extract the features
from the signals of the EEG. For the classification purpose, the Support Vector Machine
(SVM) classifier achieved the maximum accuracy of 93.55% for the selected case of A-E and
the accuracy achieved for other datasets was 86.1% using normal activity named Tumor,
Non-epileptic, Eyes close, Eyes Open, and abnormal activity named Seizure Activity [27].

Another author used DWT for the extraction of energy features, standard deviation,
and entropy from the signals of the EEG. The maximum accuracy, i.e., 95.44%, was achieved
by using the classifier Probabilistic Neural Network (PNN) and Support Vector Machine
(SVM) and using normal activities named Tumor, Non-epileptic, Eyes close, and Eyes Open
and abnormal activity named Seizure Activity [28].

Another author applied a patient-specific methodology and for classification applied
an SVM classifier to distinguish between epileptic or non-epileptic activities of a patient.
A maximum accuracy of 96% was achieved using normal epileptic activities named Eyes
open, Eyes close, Inter_ictal, and Pre_ictal and abnormal activity named ictal [29].

Another author used Linear Discriminate Analysis (LDA) to classifying seizures using
the data of 65 seizures across five patients and achieved 91.8% accuracy by using binary
case classes in which the normal activity class was named Non-Epileptic Seizure and the
abnormal activity class was named Epileptic-seizure [30].

Another author performed the detection and analysis of EEG data using entropies
as well as seven different classifiers. The classifier which performed the best was the
Fuzzy Sugeno classifier with an overall accuracy of 98.1%, a 100% specificity, and a 99.4%
sensitivity. The classifier which performed the worst was Naïve Bayes, which achieved an
accuracy of 88.1% using the normal activity classes named Normal and Pre-ictal and the
abnormal activity class named Epileptic [31].

1.2. Deep Learning Techniques

Machine learning is very successful in the recognition of abnormal activities of patients.
Therefore, there is a need for the automatic recognition of abnormal activities. For this
purpose, different authors have proposed different deep learning algorithms that greatly
help with automated detection. All the above-mentioned machine learning techniques did
not use the automated method to extract features; instead, they used hand-crafted methods.
Therefore, to avoid the extra effort of extracting features through the handcrafted method,
deep learning techniques need to be used and DL models need a lot of data to train the
DL models. In this section, we list a few researchers who used deep learning techniques to
classify whether the activity is epileptic or non-epileptic. For example, one author proposed
a deep learning model named the pyramidal One-Dimensional Convolutional Neural
Network. This CNN model uses refined and less trainable parameters as compared to the
traditional convolutional neural network. Compared to the state-of-the-art techniques, this
model achieved an accuracy of 99.1% with normal activities named Eyes Close, Eyes Open,
and Pre-ictal and abnormal activities named Inter-ictal and ictal [32].

In this research, the author performed epileptic seizure recognition through binary
classification using classes labeled as Epileptic Seizure and Non-Epileptic Seizure. For the
classification of monitored data, a two-layer Recurrent Neural Network (RNN) was used,
and for the first layer and the dropout layer, Long Short-Term Memory (LSTM) and the
Horse Optimization Algorithm (HOA) were used, respectively [33].

Another author used a one-dimensional, sequential Convolutional Neural Network
(CNN). The architecture used for the classification of time series data of EEG comprised a
one-dimensional module and a one-dimensional ResNet module to check whether there
was epilepsy or not, achieving an AUC of 0.98 [34].
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Another author proposed a deep learning model named Long Short-Term Memory
(LSTM) for the training, detection, as well as prediction of epileptic seizures with state
change as well as EEG seizures of a chaotic nature. The purpose of this research was to
launch a small and low-cost gadget that can be wearable. Normal activities named Tumor,
Hstumor, Eyec, and Eyeo and abnormal activities named Es on the Epileptic seizure dataset
were used in this paper, achieving an accuracy of 99% [35].

Similarly, another author proposed a novel deep-learning-based model named Deep
Canonical Sparse Autoencoder Epileptic Seizure Detection for the classification of EEG
signals, which involved two steps, namely, feature selection and classification. This research
involved a coyote algorithm for the selection of features and a novel derived classifier
named DCSAE, based on an epileptic seizure detection model, for the classification of
epileptic and non-epileptic seizures. The DSCAE was tuned by an algorithm named the
krill herd algorithm (KHA). The maximum accuracy achieved in this research for binary
classification was 98.67% and was 98.73% for multi-classification. Binary classification
involved labelling abnormal activity (that is, EEG signals showing seizure activity) as 0
based on 2300 instances to train the model and labelling normal activity (that is, EEG
signals having no seizure activity as 1 based on 9200 instances to train the model. Multi-
classification involved labelling normal classes from EEG signals showing seizure activity,
tumor regions, a healthy brain, eyes closed, and eyes open as 0, 1, 2, 3, and 4, respectively,
with each class having 200 instances to train the model [36].

Another author proposed a DL-based model named EESC, abbreviated for Epileptic
EEG signal classification. For the extraction of features, a DCNN, abbreviation for Deep
Convolutional Neural Network, and the Transfer Learning method were used. In the
end, four classes of normal activities were categorized as seizure and classes of abnormal
activities were categorized as Inter-ictal and pre-ictal duration. An accuracy of 90% [37].

Many diseases such as Parkinson’s, Alzheimer’s, and epilepsy are the causes of stress
or mental disorders. Hence, to monitor the activity of such types of diseases, different
authors have proposed different deep learning techniques. For example, for monitoring
patient activities, on author proposed a DL model for the detection of epileptic seizures on
the basis of inter-ictal recordings, and on that data, filtration as well as segmentation was
performed. In this research, Long Short-Term Memory (LSTM) as well as a Convolutional
Neural Network (CNN) were used for the classification of the epileptic and non-epileptic
data, and an accuracy of 94.74% was achieved [38].

Another author proposed an Artificial Neural Network (ANN) based on a deep
learning model to solve the complex problem of detecting epileptic seizures. The deep
learning CNN provided excellent accuracy on the EEG dataset. While many other ML
techniques have been applied in combination to reduce and pre-process the data, CNN
does not require pre-processing and achieved an accuracy of 95.24% using the normal
activities named Pre_ictal, Inter_ictal, Eyes open, and Eyes Close and Ictal used as the
abnormal activity [39].

Although this literature review has briefly described many types of research along
with their benefits, there is still some room to improve the efficiency of classifying epileptic
activity. Due to the incessant deepening of DL models, there has been a rapid increase in
the number of parameters, which may in consequence lead to the problems of overfitting
and generalization; therefore, there is a need to tune these parameters. Hence, to tune the
parameters, there are also some hyperparameters available that affect the operation and
efficiency of the Convolutional Neural Network (CNN). Usually, the hyperparameters that
are effective and beneficial are batch size, learning rate, and the number of epochs. The trial-
and-error method is the state-of-the-art method for checking every model’s performance,
but it is an erroneous as well as very tedious process. Hence, to avoid this hectic and
time-consuming process, metaheuristic algorithms can be used. Therefore, in our research,
we used the DL technique named Extreme Learning Machine (ELM). Previous authors
compared the results with the traditional method of EEG. However, in this paper, we detect
epileptic seizures through patient activities observed during epileptic seizures.
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1.3. Contribution

The main contribution of this research is that it does not use imaging data to train
the classifier, and this is help to use less memory because of using numerical datasets and
proposed model does not require backpropagation and calls for less user intervention.

We also tried to overcome the pressing problems of generalization and overfitting
previous researchers faced by using the ELM classifier.

An efficient system with less training and testing time as compared to previous models
is developed. It show improvements in terms of faster convergence and higher accuracy.

2. Proposed Methodology

The proposed methodology consists of three steps: (i) Data Acquisition (ii) Data
Preparation, and (iii) Activity Recognition. These three steps are described below, and the
methodology is shown in Figure 1.

Figure 1. Proposed Methodology.

2.1. Data Acquisition

Data acquisition is a process to gather and store digital or numerical data to input
into our model either in raw or pre-processed form, depending on the availability of data.
Therefore, before data acquisition, it is very necessary to have an understanding of the
dataset used.

• Dataset Understanding
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We used a numerical database named Epileptic Seizures Recognition Dataset, which is
a pre-processed and well-organized dataset commonly used for the recognition of epileptic
seizures provided by the UCI Machine Learning Repository. For epilepsy analysis and
diagnosis, there are a lot of EEG datasets available on the Internet; some of these datasets
are private due to a lack of ethical clearance, but some of these are made openly available
by medical analysts for research purposes. The concerned dataset is openly and freely
available from the UCI Machine Learning Repository provided by Bonn University [40]. As
the current authors did not perform experiments on humans, animals, or plants to collect
the data and instead made use of a freely and openly available dataset, this research does
not require any ethical clearance. Based on this dataset’s description, this is the original
dataset and it consists of 5 different folders. Each folder consists of 100 files, and each
file represents an individual person’s information. In each of these files, brain activity
was recorded for 23.6 s. The recorded brain activity is further sampled into 4097 different
data points. Each recorded EEG value represents a data point at different points in time.
Therefore, we have data from 500 individuals in total and each individual has 4097 data
points over 23.5 s. All 4097 data points are further subdivided and shuffled into 23 different
chunks. Each chunk further consists of 178 data points lasting 1 s. Each of these data points
is the recorded value of the EEG at different points in time. Therefore, in total, we have
500 × 23 = 11,500 rows (instance) as a piece of recorded information. The random sample
view of the Epileptic Seizure Recognition Dataset is shown in Figure 2.

 

Figure 2. Randomly Sample View of Epileptic Recognition Dataset.

In this dataset, 178 columns are used as a numerical input parameter and the last one,
column 179, is used to label the data as output 1, 2, 3, 4, or 5. These five classes in the
epileptic dataset are the five mentioned health conditions of epileptic patients in which
one is the epileptic patient condition and the other four mentioned are normal conditions
in which the concerned data point does not show epileptic activity. The details of all five
classes and their samples are listed in the following Table 1.

The raw EEG signal data of all five of the above-mentioned health conditions are shown
as waveforms in Figure 3. This is the initial raw form of the data, but these data are not
directly fed into the model. Although this dataset is a normalized, structured, and reshaped
version of the data, the dataset needed to be rescaled into unit variance and the five classes
needed to transform into binary form. Hence, data in their initial forms will not show the
same result, which is not as promising as it requires pre-processing. These results will
definitely change once the initial signal samples undergo pre-processing and preliminary
transformation or if signal samples other than initial data are used. Hence, in this first stage
of data acquisition, numerical recorded data are stored in an Excel spreadsheet used as a
database from where data are read from columns X1 to X178 as input parameters to train
the model, and the last column, named as Y, is used as an output column of labeled data.
After reading the data from the database, the data are passed on to the next phase of data
preparation according to the proposed model.
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Table 1. Details of the Epileptic Dataset Classes.

Classes
Name

No of Samples
Output Classes

Labels (Medically)
Description of Classes

1 2300 ictal Signals recorded during seizures

2 2300 Pre_ictal Signals recorded before the
occurrence of one-site seizure

3 2300 Inter_ictal Signals recorded during the
occurrence of consecutive seizures

4 2300 healthy (close eye) A healthy subject having closed eyes

5 2300 healthy (open eye) A healthy subject having open eyes

Figure 3. EEG Waveform of four normal conditions vs. one epileptic condition.

2.2. Data Preparation

Data preparation is a very complex phase of data mining in a project. The performance
and results of the selected algorithm and model are highly impacted by the dirty and noisy
dataset selected. A noisy dataset consists of data in which some significant values are
missing as well as some outliers are present which may adversely result in low-quality
and inconsistent data. Inconsistent data lead to unimpressive and invaluable results in the
results evaluation phase. Therefore, data preparation plays an important role in the case
of creating quality data; it is the phase in which data are manipulated and cleaned for the
rest of the project phases. The principal tasks of data cleaning include data cleaning, data
integration, data normalization, dimensionality reduction, and data splitting. However,
since the UCI epileptic dataset is a normalized, pre-processed, structured, and reshaped
version of the data. This dataset does not have any missing values or repetitive values.

2.3. Activity Recognition

Activity recognition is a process of recognizing the performed activities read from the
database after data preparation. These activities are represented in the form of different
classes. There are 5 classes, and each class represents different activities: Seizure activity,
Tumor activity, EEG activity, Eyes closed, and Eyes open. Although there are a lot of
techniques of deep learning that can be applied to this complex recognition task, here
we will use the Extreme Learning Machine (ELM) to train our model on these 5 epileptic
activities by using the ratio of 80% training data and 20% testing data since ELM has a
simple and straight-forward architecture and does not need any gradient-based propagation
to work. The architecture of ELM is displayed in Figure 4.
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Figure 4. Extreme Learning Machine.

Here, the ELM classifier is presented. ELM is a feedforward neural network and has
one input layer i, a single hidden layer j, bias b, input weights w, and a single output layer
k which is used at the end for the classification and activity recognition process.

The classifier used in this step is ELM and before digging deeper into the detail of the
activity recognition process we will discuss the working of the ELM algorithm described
below:

2.3.1. Extreme Learning Machine (ELM):

According to the architecture of ELM shown in Figure 4, ELM is a feedforward neural
network with a single hidden layer that selects the inputs and weights randomly and
analytically determines the output weights of single hidden-layer feedforward networks
(SLFNs) [41,42]. The most important key principle of ELM is that one can randomly
choose or fix the hidden parameters of the node. After randomly selecting the hidden
node parameters, the weights of outputs can be determined analytically by using hidden
layer matrices for output by using generalized inverse operation when SLFN becomes the
linear system [43]. In the hidden observation layer, the activation function Q is a sigmoid
function and the N is the number of nodes of the data set; the extreme learning model can
be expressed as:

f (x) = ∑N
i=1 αiQ(wi, bi, xi) = α · h(x), (1)

In the above equation, αi is the weight of the output neuron of the ith hidden layer
node, whereas wi is the input weight of the input neurons of the ith hidden layer node; bi is
the offset, usually called the bias, of the ith hidden layer node; and h(x) = [Q(w1, b1, x1), . . .
Q (wN, bN, xN)] represents the hidden layer output matrix. Before training the algorithm,
wi and bi are selected randomly and remain frozen during all training procedures. By
solving the least-square solutions of the following linear equation, the output of weight αi
can be obtained:

min ∑N
i=1||αi·h(xi)− yi|| (2)

The least-square solution of the above equation is:

α = H+ Y, (3)

In the above equation, H+ is called the Moore–Penrose generalized inverse of the
hidden layer output matrix H.

After analyzing the workings of the ELM, we will recognize the epileptic and non-
epileptic activities through ELM. The principal steps to perform signal classification for the
activity recognition process are discussed in the following sections.
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2.3.2. Feature Extraction

Before performing deep classification, first we need to extract the features to train
the model. Keenly observing the previous research before the rise of DL shows us that
manual feature extraction was performed by the conventional ML algorithms, and this use
of ML algorithm was the reason the performance of the model’s ability was limited using
handcrafted features. After the advent of DL, the process of feature extraction performed
by the model became automated. In our proposed model, we just list all the features
from X1 to X178 as the input feature data and Y as the target label data and then ELM
will automatically reveal the correlations between the samples of successive data and will
extract high-level representations of non-epileptic and epileptic signal features, resulting in
a feature matrix. The learning of the extracted features by the model is performed through
training by fitting the model using processed, extracted training input data at a ratio of 80%
training data to 20% testing data.

2.3.3. Feature Selection

The extracted features are then selected by the Feature Selection (FS) algorithm based
on ELM. The working of the FS algorithm is described below:

• ELM-based Feature Selection Algorithm:

The neuron of the input layer’s contribution to the neuron of the output layer is
reflected to some extent by the magnitude of the input weight. After the training of the
ELM model is completed, the input weight’s and output weight’s information reflect the
input feature’s importance. The ELM-based selection algorithm’s steps are described below:

Step No 1: In this step, we will calculate the significant coefficient correlation:

ci j = ∑q
i=1 αjk

(
1 − e−wij)/1 + e−wij) (4)

Step No 2: In this step, we will calculate the index correlation:

ci j =
∣∣∣(1 − e−cij)/1 + e−cij)

∣∣ (5)

where wij is the input weight used to connect the ith input layer nodes to jth hidden layer
nodes and αjk is the output weight used to connect the jth hidden layer node to the kth
output layer node.

Step No 3: In this step, we will calculate the coefficient of absolute influence:

Si j = cij/ ∑m
i=1 Cij (6)

Step No 4: In this step, we will calculate the feature weight:

Wi j = ∑m
i=1 Cij/m (7)

By using this algorithm, the features selected are the features that have high weights;
features which have low weights are not important and should be removed.

2.3.4. Classification

Here, the classification of activities is based on the ELM classifier and works as shown
in Figure 4. The model parameters’ input size is 178 neurons, and the hidden layer size of
the neuron depends upon the input layer and is selected randomly. Therefore, firstly, the
bias and weight matrix for the input layer of the model are created randomly. In the next
step, the output matrix for the hidden layer is calculated by multiplying the training data
(X) with the transposed weight matrix from the input layer. Here, the activation function
used is Sigmoid because it yields better nonlinear transformations and feature mapping. In
addition, it is easy to implement and its outcome has the best accuracy compared to other
activation functions. In the next step, the Moore–Penrose pseudo-inverse is calculated.
After that output weight matrix is calculated. After that, the result matrix is calculated,
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which is the epileptic activity as an output. We will use a trial-and-error strategy here to
identify the best tuning parameters and optimize the model. We perform the classification
and recognition of activities of epileptic disorders. By using binary classification, testing
data will be further used for evaluating whether the 5 activities that are further binary
labeled are accurately recognized or not. Here, prediction is performed by Predict(X),
which is further used to give the target output (Y) when an unlabeled observation (X) is
given as an input to the model.

3. Results and Discussion

3.1. Running Environment

The pipeline of our proposed methodology model is carried out with advanced and
modern computer software tools and libraries. All working experiments are conducted
on a system with an Intel Corei7 with 8 GB Ram and the Windows 10 operating system
installed on it. The platform tool used for the experimentation and analysis of the results
is Anaconda with python language version 3.8.6 installed. The Interactive Development
Environment (IDE) used by Anaconda for the whole process of execution is Spyder.

3.2. Dataset Specification

The proposed model is applied to the UCI machine learning dataset consisting of five
classes, which are later labeled as y = {0, 1}.

0—Not Recorded Seizure;
1—Recorded Seizure.
The specifications for this dataset is briefly described in Table 2.

Table 2. Details of the Epileptic Seizure Dataset.

Output
Classes

Total No of
Records

Normal
Records

Abnormal
Records

Attributes Description

5 11,500 9200 2300 X1 to
X178

These columns consist of the EEG data of epileptic patients
ranging from −1415 to 2047; these variables are called

explanatory variables

X179
In this column, variable y comprises the response variable,
and if its value is 0 values, then no seizure is occurring; if

the value is 1, then an epileptic seizure is occurring.

The epileptic seizure dataset is divided into the following training and testing ratios
to train the model for the best accuracy:

80% training, 20% testing;
70% training, 30% testing;
60% training, 40% testing.

3.3. Parameter Tuning

Parameter tuning is the procedure in which different parameters are set to tune the
model to increase its performance. There are different parameters shown in Table 3, and
their values increase the ELM model’s performance. The results of the model vary as the
values of these parameters change.
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Table 3. Tuning Parameters of the ELM model.

Parameters Values

Bias [0, 1]
Hidden Layers 1

Input Weight Range [−1, 1]
Output Weight Range [0, 1]

Input Nodes Size Arbitrarily Chosen
Activation Function Sigmoid

To adequately evaluate the performance of the proposed model, the proposed deep
learning model was trained using the three different dataset ratios and its performance
measured in terms of F1-score, accuracy, specificity, sensitivity, precision, the area under the
curve, and the ROC with some sufficient feature details. The experiments and the results of
our proposed model are discussed in the remainder of this section.

3.4. Experiment 1

The Extreme Learning Machine (ELM) model was trained the best on 80% of data cho-
sen randomly and the remaining 20% of data set aside for later use, i.e., for the evaluation
of model accuracy, called testing, and for validation. The training accuracy of our model
for this dataset ratio is 99.9% and the accuracy of testing is 100%, which is higher than the
other dataset division ratios. Details of the ELM experiment are shown in Table 4.

Table 4. ELM Performance Parameters of Experiment # 1.

ELM
Model

Accuracy
%

Dataset
Division%

Samples Prevalence Precision Recall F1-Score Specificity Sensitivity AUC

Training 99.9 80 9200 0.500 0.996 0.998 0.996 0.99 0.998 0.999

Testing 100 20 1150 0.19 0.95 0.99 0.969 1.0 0.999 0.999

As can be seen from Table 4, the Extreme Learning Machine yields promising results
at this dataset ratio with 920 random hidden neurons, as further shown in Figure 5.

 

Figure 5. ELM Model Accuracy of Experiment #1.
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Meanwhile, the random selection of neurons here promises universal approximation,
less intervention, global optimal solution, and much faster convergence with less training
and testing time. As Figure 5 illustrates, the accuracy of the ELM model increases as the
hidden neurons increase in the start, but it gives 100% accuracy at 920 hidden neurons. It
is not the case that it always gives the best accuracy just by increasing hidden neurons.
The best accuracy is obtained by arbitrarily incremental and random predictions of the
given hidden neurons to train itself according to the size of the dataset, following which
unimportant hidden neurons are pruned by the model to make it optimal; otherwise, just
by increasing the number of hidden neurons in the model, the accuracy will go down due
to overfitting.

Another performance evaluation parameter is the ROC curve, which is shown in
combined ROC curves in Figure 8, where the best training and testing accuracy of the
model is shown for the false positive rate of 1.0 and the true positive rate of 1.0.

As in Figure 9, the confusion matrix chart is shown for and 80% and 20% data partition,
where the diagonal matrix shows the correct prediction of positive classes while wrong
predictions are shown outside of the diagonal matrix. Here the classifier shows promising
results for the ideal prediction of correct classes with no wrong predictions.

3.5. Experiment 2

In Experiment 2, epileptic and non-epileptic seizure data are divided into 70% chosen
randomly for training and 30% set aside for testing. This ratio achieved 96% accuracy at
805 hidden neuron nodes; other performance parameters are shown in Table 5.

Table 5. ELM Performance Parameters for Experiment # 2.

ELM
Model

Accuracy
%

Dataset
Division%

Samples Prevalence Precision Recall F1-Score Specificity Sensitivity AUC

Training 99 70 8050 0.500 0.995 0.999 0.996 0.995 0.999 0.999

Testing 96 30 1725 0.206 0.860 0.972 0.912 0.959 0.972 0.970

From Table 5, it can be seen that the Extreme Learning Machine in experiment 2 with
805 random hidden neurons does not yield as promising results as experiment 1, as shown
in Figure 6.

 

Figure 6. ELM Model Accuracy of Experiment #2.
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From Figure 6, it can be seen that in the start, accuracy is uniform, but as the number
of hidden neurons increases, the accuracy is gradually increased, reaching 96% accuracy at
best using 805 hidden neuron nodes arbitrarily chosen by the model. Although experiment
2 showed good results, it is not competitive as compared to experiment 1 because the model
may become underfit due to the smaller size of the trained dataset and the deep learning
model demands huge training datasets for good features training understanding.

As can be seen from Table 5, the ELM at this dataset ratio does not give results as
promising as experiment 1. Other performance parameters such as the confusion matrix
and ROC curve are shown in Figures 8 and 9, respectively, illustrating that these results are
less competitive as compared to experiment 1’s results.

3.6. Experiment 3

In experiment 3, the epileptic seizure recognition dataset was randomly divided into
60% for training and 40% for testing purposes, and the maximum accuracy achieved in this
partition is 95%. Detailed performance parameters are listed in Table 6.

Table 6. ELM Performance Parameters for Experiment # 3.

ELM
Model

Accuracy
%

Dataset
Division%

Samples Prevalence Precision Recall F1-Score Specificity Sensitivity AUC

Training 99 60 6900 0.500 0.997 0.999 0.997 0.957 0.999 0.998

Testing 95 40 2300 0.213 0.859 0.965 0.908 1.0 0.965 0.957

As seen in Table 6 and Figure 7, the Extreme Learning Machine in experiment 3
with 690 random hidden neurons does not yield as promising results as experiment 1.
Experiment 3 also shows much lower values in accuracy and other performance parameters
compared to experiment 2. The reason for this is that the same model may become underfit
due to lower dataset training ratios.

Figure 7. ELM Model Accuracy of Experiment #3.
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It can be seen from Figure 7 that accuracy initially uniformly increases as the number
of hidden neurons increases, giving the best accuracy of 95% at 690 hidden neuron nodes
arbitrarily chosen by the model. Other performance parameters are the confusion matrix
chart and ROC curve shown in Figures 8 and 9. Respectively illustrating that these results
are less competitive as compared to experiment #1.

 

Figure 8. ROC Curves of (a) Experiment #1; (b) Experiment #2; (c) Experiment #3.
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Figure 9. Confusion Matrices of (a) Experiment #1; (b) Experiment #2; (c) Experiment #3.

4. Performance Parameters Comparison of ML and DL Models

In this section, we will report the outcomes of the classifier, named Extreme Learning
Machine (ELM), used for the classification of an epilepsy dataset at a ratio of 80% training
data with 9200 samples and a 0.500 prevalence of positive classes and 20% testing data with
2300 samples a 0.206 prevalence of positive classes. From this dataset, 10% of the data is set
aside for validation and the remaining 10% is used for testing consisting of 1150 samples
with a 0.197 prevalence of positive classes for each.

Now it is time to select the classifiers to be compared with the proposed classifier.
From previous research results, it is clear that feedforward classifiers are very slow in
terms of speed of processing big data, and this issue was the major bottleneck observed in
previous research. The reason for this slow speed is the algorithm and classifiers used are
low-gradient based, and by using these algorithms, all the required parameters are tuned
by the algorithm iteratively. So, keeping in view these reasons, we need a feedforward
classifier that can solve these problems. So, the purpose of choosing ELM as a classifier
is that it randomly chooses the hidden nodes of its SLFN, and its output weights are
determined analytically. The ELM results are enriched in sparsity, stability, and accuracy in
general conditions. ELM converges and learns at a very fast speed with good generalization
performance when processing big data and does not require user intervention as compared
to conventional feedforward algorithms [41].

After keenly observing the previous research we chose the most widely used and
competitive machine learning and deep learning models, namely KNN, NB, LR, RF, DT,
SGDC, ANN, and LSTM, for comparing with our proposed ELM model using different
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performance evaluation parameters, namely confusion matrix, accuracy, precision, recall,
sensitivity, specificity, F1-score, and AUC.

In this study, after conducting experiments, we will compare the results of our pro-
posed ELM model and other state-of-the-art machine learning and deep learning tech-
niques. First, we will discuss the first performance parameter, the confusion matrix. In
Figures 10 and 11, the confusion matrix charts of ML and DL classifiers are represented for
epileptic seizure activity recognition, and the column represents the actual label instances
of the classes while the rows represent the predicted instances of the actual classes. The
correct class count predicted by the model matrix is shown in a diagonal position while
the wrong prediction counts of the model are shown outside of the diagonal matrix. Our
proposed model, the Extreme Learning Machine (ELM), predicts the wrong predictions
and correct predictions with 100% accuracy, as shown in Figure 11.

Figure 10. Confusion Matrix of (a) KNN, (b) NB, (c) LR, (d) RF, (e) DT, (f) SGDC, and (g) GB.
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Figure 11. Confusion Matrices of (a) ELM #1; (b) ANN; (c) LSTM.

Figure 12 shows the comparison of yielded accuracies of different ML and DL models
with our proposed model. Blue bars represent the training accuracies and orange bars
represent the testing accuracies of different ML and DL models.

 

Figure 12. Training and Testing Accuracies of ML and DL Models.

After experiments, we dig deeper into detail to analyze and investigate the result
of binary classification by ML and DL classifiers. As can be seen, except for two linear
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classifiers, logistic regression (LR) and Random Forest (RF), all eight remaining configured
classifiers’ results give an accuracy of over 80%, and most of these classifiers show a
competitive accuracy of over 90%. In Table 7 our proposed ELM, highlighted in bold, yields
the most competitive results as to other models with a low computational time for training
and testing.

Table 7. The performance comparison of different models.

Training/Testing
Results

Accuracy
%

Precision Recall F1-Score Specificity Sensitivity AUC Time (s)

ML Techniques

KNN
Training 95.5 0.992 0.756 0.858 0.994 0.756 0.997 0.015

Testing 91 0.9927 0.5596 0.7157 0.9988 0.5596 0.7573 0.29

NB
Training 93.7 0.974 0.898 0.933 0.976 0.898 0.982 2.23

Testing 95 0.9004 0.8559 0.8776 0.9746 0.8559 0.9195 0.42

LR
Training 83.7 0.761 0.532 0.624 0.832 0.532 0.610 0.97

Testing 79 0.9004 0.8559 0.8776 1.0 0.01 0.5123 0.07

RF
Training 83.7 0.981 0.907 0.941 0.982 0.907 0.9926 0.92

Testing 79 0.8661 0.895 0.8423 1.0 0.0 0.5122 0.06

DT
Training 98.1 0.988 0.907 0.892 0.988 0.907 0.97 0.057

Testing 91 0.7415 0.8389 0.7872 0.9245 0.8389 0.8664 0.0008

SGDC
Training 90 0.90 0.907 0.903 0.996 0.907 0.56 0.97

Testing 81 0.246 0.506 0.225 0.593 0.506 0.5121 0.77

GB
Training 100 1.0 1.0 1.0 1.0 1.0 0.999 0.014

Testing 80 0.6666 0.0095 0.0188 0.9987 0.0095 0.5111 0.73

DL Techniques

ELM
Training 99.9 0.996 0.998 0.996 0.99 0.998 0.1 0.96

Testing 100 0.95 0.99 0.969 1.0 0.999 0.998 0.0009

ANN
Training 99 0.996 0vb.998 0.996 0.99 0.998 0.992 6.71

Testing 98 0.9411 0.9515 0.9463 0.9853 0.9515 0.9965 0.005

LSTM
Training 99 0.996 0.998 0.996 0.99 0.998 0.999 7.52

Testing 99 0.9799 0.9691 0.9745 0.9951 0.9691 0.9941 0.003

It is shown that among the ML algorithms, only the Naïve Bayes classifier performed
well with a 95% achieved accuracy. A sensitivity analysis was also performed to test the
performance of KNN, RF, and SGDC with different parameters, e.g., the training/testing
ratio is changed. When the value of K for KNN is changed to above 5, SGDC classifier is
used as the regularization parameter, and the loss function is changed then the performance
of the classifiers changes accordingly.

After a thorough analysis, it can be seen from Table 7 that among all the classifiers,
ELM proved to be high-performing model based on the binary classification technique
with a 100% accuracy, 0.99 AUC, 0.95 precision, 0.99 sensitivity and recall, 1.0 specificity,
and 0.96 F1-score. The ELM model outperformed other state-of-the-art ML and DL models
in the prediction of epileptic and non-epileptic seizures.

This ideal performance of the ELM indicates that it is the best fit for the recognition
of epileptic activities; on the other hand, linear models such as LR and RF are not the
most suitable classifiers for epileptic seizure activity recognition because the large data
requirement (e.g., 11,500 feature) deep learning need for learning and understanding
training features effectively will result in overfitting, and these classifiers usually become
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underfit when using lower training dataset ratios. That is also why our proposed model
yields less promising results in experiments 2 and 3 than in our first experiment dataset ratio,
i.e., the model is not trained well on low dataset ratios. The ANN and LSTM DL models
achieve the nearest accuracies to our model: 98% and 99%, respectively, at the dataset
division ratio of 80% and 20%. These models have a low computational testing time but are
more time-consuming classifiers for training because they use backpropagation to tune the
weights, requiring repetitive iterations and thus more time to train the model. These models
also become overfit compared to our proposed model, which has no backpropagation and
no iterations to tune the weights. The lack of backpropagation is why a feedforward
models converge faster and take less time to train. Due to the absence of backpropagation,
our model solves the problem of overfitting experience by other deep learning models.
It is worth mentioning here that the power of the best computer workstation is related
to the computational time, and it is indirectly indicated that the best workstation has a
low computational time. So, it is admitted by our observation that although our model’s
results are biased due to the more time-consuming training computational time, the current
observed results show that only deep models are fit for epileptic activity recognition tasks
as compared to traditional machine learning classifiers.

Figure 13 represents the combined training ROC curve of our proposed model in
comparison with other state-of-the-art classifiers for epileptic seizure activity recognition.
In the training curve, the blue line represents the baseline for the curve. If a model curved
at the top left corner of the blue dotted baseline and off to the 45 degree triangle to the top
left corner, then it is the best performing model. The curve shows that only two models,
namely Logistic Regression (LR) and Stochastic Gradient Descent (SGDC), do not show
better performance for the training model, approaching AUC values of 0.61 and 0.57,
respectively, because the training line’s accuracy increase at the start and then suddenly
starts decreasing and diverges from the baseline and on to the 45 degree triangle. Except
for these two models, all other models yield an AUC over 0.90, and the maximum AUC
approaches 0.99, yielded by DL models. In the training curve, it can be easily observed
that, for training, the model’s true positive rates are higher as compared to the true positive
rates for testing. If the figure is closely observed, then it can be concluded that the AUC
values of the DL models are higher than those of the ML models for training.

 

Figure 13. ROC Curve for Training Comparison of Epileptic Activities.

Similarly, Figure 14 presents the testing ROC curve of our proposed ELM model
with other state-of-the-art ML and DL models. After keenly analyzing the results, it is
concluded that only four Machine Learning (ML) models, namely Logistic Regression (LR),
Random Forest (RF), Gradient Boosting (GB), and Stochastic Gradient Descent (SGDC), are
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approaching an AUC of 0.5, and the testing accuracy line following the blue dotted baseline
and on to the 45 degree which is not a representation of best-performing models because
best performing models are curved at the top of the left corner and off to the 45 degree
triangle. All six remaining models are approaching an AUC over 0.70, and the maximum
testing AUC of 0.99 is approached by DL models. From the figure, it can be easily observed
that the True Positive Rate for the ELM is higher than the other state-of-the-art ML and DL
classification techniques. If the testing ROC is closely observed in comparison with the
ROC curve of training, then it can be seen that the rate of the training dataset is slightly
higher than the testing rates.

Figure 14. ROC Curve for Testing Comparison of Epileptic Activities Recognition.

5. Conclusions

In this research, a deep learning-based technique is applied named Extreme Learning
Machine. Some deficiencies in the previous research are overcome in the presented research.
Although many machine learning and deep learning techniques have been applied in
previous research, there is still more room to improve these models’ accuracy in detecting
epilepsy through epileptic activities, and the overfitting problem also needed to be resolved.
We improved these imperfections in the presented research. In this research, different
Machine Learning algorithms, namely K-Nearest Neighbors (KNN), Logistic Regression
(LR), Random Forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM), Stochastic
Gradient Descent (SGDC), and Gradient Boosting Classifier (GB), Decision Tree (DT), and
Deep Learning (DL) algorithms, namely Long Short-Term Memory (LSTM) and Artificial
Neural Network (ANN), are applied. We obtained robust results with the 80% to 20%
training to testing ratios. We found that among the ML algorithms, only the Naïve Bayes
classifier performed well with a 95% accuracy. Although this ML classifier performed
well, the Deep Learning (DL) models are preferred over ML classifiers because of their
automated feature extraction and the higher accuracy achieved. The ELM, LSTM, and
ANN DL models were used and achieved accuracies of 100%, 99%, and 98%, respectively.
Although LSTM and ANN performed well, the accuracy of the ELM is the highest achieved
accuracy out of all the models proposed in the current and previous research. This research
did not use imaging data to train the classifier, which reduced memory usage compared
to using numerical datasets. The model used also does not require backpropagation and
thus needs less user intervention. We also tried to overcome the problem of generalization
and overfitting faced by the different models by using the ELM classifier. Therefore,
it is concluded that the results of this research can be effectively implemented by the
community working on the research of epilepsy. We did not check this proposed model
for other problems diagnosed using EEG signals from this dataset, but if they lie within
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the parameters constraints of the model, with a little bit of modification according to the
problem’s domain, it should be able to its promising performance for the detection of the
problem. The occurrence of epilepsy can be predicted through the detection of epileptic
and non-epileptic physical activities instead of through EEG signals collected from the
scalp directly or via brain MRI. This research will help neurologists in epilepsy detection
and other problems using EEG data by reducing examination time and promising high
efficiency and effectiveness.
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Abstract: Dementia is a cognitive disorder that mainly targets older adults. At present, dementia has
no cure or prevention available. Scientists found that dementia symptoms might emerge as early as
ten years before the onset of real disease. As a result, machine learning (ML) scientists developed
various techniques for the early prediction of dementia using dementia symptoms. However, these
methods have fundamental limitations, such as low accuracy and bias in machine learning (ML)
models. To resolve the issue of bias in the proposed ML model, we deployed the adaptive synthetic
sampling (ADASYN) technique, and to improve accuracy, we have proposed novel feature extraction
techniques, namely, feature extraction battery (FEB) and optimized support vector machine (SVM)
using radical basis function (rbf) for the classification of the disease. The hyperparameters of SVM are
calibrated by employing the grid search approach. It is evident from the experimental results that the
newly pr oposed model (FEB-SVM) improves the dementia prediction accuracy of the conventional
SVM by 6%. The proposed model (FEB-SVM) obtained 98.28% accuracy on training data and a testing
accuracy of 93.92%. Along with accuracy, the proposed model obtained a precision of 91.80%, recall of
86.59, F1-score of 89.12%, and Matthew’s correlation coefficient (MCC) of 0.4987. Moreover, the newly
proposed model (FEB-SVM) outperforms the 12 state-of-the-art ML models that the researchers have
recently presented for dementia prediction.

Keywords: dementia; feature fusion; machine learning; imbalance classes

1. Introduction

Dementia is a mental disorder marked by a progressive decline in cognitive functions
that interferes with daily living skills such as visual perception, problem-solving, memory,
and the ability to focus on a single topic. Dementia is more common in older adults,
yet many consider it an inevitable outcome of aging. This impression of aging might
be incorrect. A wide range of illnesses and injuries to the brain are the primary causes
of dementia development [1]. The number of people with dementia is swiftly growing
globally, and statistical forecasts indicate that 135 million individuals might have dementia
by 2050 [2]. According to the World Health Organization, dementia is the sixth leading
cause of death globally, and it is the leading cause of disability and dependency among the
aged worldwide [3].

Current early-stage dementia diagnosis relies on pathology features or cognitive di-
agnostic procedures. Pathology features can be detected via neuroimaging. Magnetic
resonance imaging (MRI) is employed to investigate the changes in neuron structure [4].
Electroencephalography (EEG) is utilized to assess event-related possibilities to determine
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the early stages of dementia [5]. However, such techniques are ineffective in identifying
dementia. These prediction tests are relatively inexpensive and time-consuming. In addi-
tion, a recent study proposes employing computed tomography (CT) or electromagnetic
resonance imaging (MRI) to rule out structural causes of the clinical phenotype [6]. It
is estimated that primary-care physicians overlook between 29% and 76% of dementia
patients or suspected dementia patients [7]. The use of cognitive tests to assess the early
stages of dementia also has some disadvantages. It is difficult for paramedics to engage
patients and urge them to participate in testing procedures because older individuals often
fear visiting clinics. On the other hand, dementia tests performed at home are usually
conducted by inexperienced relatives unfamiliar with the scales; as a result, many test
findings are incorrect. ML algorithms provide a novel approach to this challenge. Because
of developments in information technology, paramedics now have better access to patients’
lives and can detect decreased cognitive function at an earlier stage. ML algorithms may
also provide expert medical knowledge. ML-based tools can provide excellent accuracy
and a user-friendly approach to the early prediction of dementia. Scientists have built mul-
tiple automated diagnostic systems for various ailments using ML methods, such as heart
failure [8–10], Parkinson’s [11], hepatitis [12], and clinical decision support systems [13].

Different automated diagnostic methods based on ML methodologies have been
presented in the past for early diagnosis of dementia. F. A. Salem et al. developed an
ML algorithm for dementia prediction using a regression model. They also studied ML
techniques for unbalanced classes in the dataset. They utilized oversampling and under-
sampling to eliminate the bias in the ML model. The balanced random forest (RF) model
was the most resilient probabilistic model using only 20 variables from the dataset. Their
proposed model reported an F1-score of 0.82%, G-Mean of 0.88%, and AUC of 0.88% [14].
Dallora et al. [15] employed decision trees (DT) to evaluate predictive factors for the ten-
year prediction of dementia. In their proposed technique, they employed a recursive feature
elimination (RFE) feature selection method to determine the most important variables from
a dataset for dementia classification. Their proposed approach, based on RFE and DT, had
an AUC of 74.50%. Through feature engineering and genetic algorithms, F.G. Gutierrez et
al. devised an ML approach for diagnosing AD and FTD. Their suggested method had an
accuracy of 84% [16]. G. Mirzaei and H. Adeli investigated cutting-edge ML approaches
for identifying and categorizing AD [17]. H. Hsiu et al. investigated ML techniques for the
early detection of cognitive deterioration using a threefold cross-validation approach, and
their suggested model achieved an accuracy of 70.32% [18]. A. Shahzad et al. proposed an
ML model for pre-screening MCI using an inertial sensor-derived gait biomarker with a
71.67% accuracy rate [19].

Aim of Study

The previously proposed ML models suffer from lower accuracy and bias in ML
models. Motivated by these factors, we proposed a novel feature extraction method to
extract useful features from the dataset. Moreover, we optimized an SVM using a grid
search algorithm. The proposed hybrid model uses two components: the feature extraction
battery (FEB) and support vector machine (SVM), leading to the newly proposed model,
namely, (FEB-SVM). To address the issue of bias in the ML model, we deployed the adaptive
synthetic sampling (ADASYN) scheme to balance the classes in the dataset. To validate the
effectiveness of the proposed model (FEB-SVM), we used different evaluation metrics, e.g.,
accuracy, precision, recall, PR curve, area under the curve (AUC), F1 score, and Matthew’s
correlation coefficient (MCC). Moreover, we conducted three different experiments to
evaluate the performance of the newly proposed model.

It is essential to understand that dementia is classified into various subtypes, the
most frequent being AD and Vascular dementia, among others. Mixed comorbidities
are uncommon, and AD commonly comports with Vascular or Lewy Bodies dementia.
Furthermore, unusual forms of AD are sometimes misdiagnosed, according to [20]. The
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study mentioned here makes no difference between subtypes of dementia, and the word
dementia refers to all kinds of dementia.

2. Materials and Methods

This research collected data from the Swedish National Study on Aging and Care
(SNAC) for the experimental purpose of the proposed model (FEB-SVM). The SNAC is a
longitudinal consortium that has been collecting multimodal data from the Swedish senior
population to “create trustworthy, comparable, durable datasets” to be used for aging
research and aged care [21]. The SNAC was developed as a multifunctional program to
explore healthcare quality for the aging population. It comprises a database containing
details regarding physical assessment, metacognition, social variables, lifestyle factors,
medical records, and so on. Blekinge, Skåne, Nordanstig, and Kungsholmen are the
sites from which the SNAC database is collected. They consider a couple of Swedish
counties—municipal and borough. This research adopted the SNAC-Blekinge baseline
examination, with data gathered from 2000 to 2003. In the literature, there is substantial
evidence that environmental factors may impact dementia development [22,23]. This
research is based on standard criteria and uses data from urban areas (Blekinge). The
inclusion methodology used to eliminate individuals from this investigation is given
as follows:

1. Individuals who presented a dementia diagnosis at the beginning of the study or
before the ten-year mark.

2. Individuals with missing data in the outcome column.
3. Individuals with more than 10% incomplete data.
4. Individuals who expired (died) well before the ten-year study period.

From the 1402 participants in the SNAC-Blekinge baseline, after the application of the
selection criteria, 726 participants (313 males and 413 females) were included, 91 (12.5%)
of whom had dementia in the 10 years, and 635 (87.5%) who were free of dementia. The
demographics of the sample population in the collected dataset are shown in Table 1. The
factors chosen from the SNAC-Blekinge database were based on published research [24,25].
The collected dataset (SNAC-Blekinge) consists of 13 physical measurement parameters
such as body mass index (BMI), pain in the last four weeks, heart rate sitting, heart rate
lying, blood pressure on the right arm, hand strength in the right arm, hand strength in
the left arm, feeling of safety when rising from a chair, assessment of rising from a chair,
single-leg standing with right leg, single-leg standing with left leg, dental prosthesis, and
several teeth.

Table 1. Demographic overview of the data samples.

Age_Group Male Female Healthy_Subject Dementia_Cases

60 82 82 164 02
66 75 95 170 06
72 50 74 124 10
78 41 50 91 17
81 35 46 81 19
84 26 42 68 22
87 04 19 23 14

90+ 00 05 05 01

Total 313 413 726 91

It is important to remember that all of the features used in the SNAC were picked
based on the evidence relevant to the aging process [21]. At the commencement of the
study (2000–2003), 75 variables were identified from the seven categories: demographics,
lifestyle, social, psychological, medical history, physical examination, blood tests, and the
assessment of various health instruments connected to dementia examination. Medical
practitioners provide the target variable employed by the proposed model to predict
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dementia 10 years after the SNAC baseline. The dementia diagnosis was made using
the International Statistical Classification of Diseases and Related Health Problems-10th
Revision (ICD-10) and the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV).
Table 2 provides a feature category and name from the selected dataset (SNAC-Blekinge).

Table 2. Overview of features in the dataset.

Feature_Class Feature_Names Total

Demographic Age, Gender 02

Lifestyle

Light Exercise, Alcohol Consumption, Alcohol Quantity, Work
Status, Physical Workload, Present Smoker, Past Smoker,
Number of Cigarettes a Day, Social Activities, Physically

Demanding Activities, Leisure Activities

11

Social Education, Religious Belief, Religious Activities, Voluntary
Association, Social Network, Support Network, Loneliness 07

Physical Examination

Body Mass Index (BMI), Pain in the last 4 weeks, Heart Rate
Sitting, Heart Rate Lying, Blood Pressure on the Right Arm,

Hand Strength in Right Arm in a 10 s Interval, Hand Strength in
Left Arm in a 10 s Interval, Feeling of Safety from Rising from a
Chair, Assessment of Rising from a Chair, Single-Leg Standing

with Right Leg, Single-Leg Standing with Left Leg, Dental
Prosthesis, Number of Teeth

13

Psychological Memory Loss, Memory Decline, Memory Decline 2, Abstract
Thinking, Personality Change, Sense of Identity 06

Health Instruments

Sense of Coherence, Digit Span Test, Backwards Digit Span Test,
Livingston Index, EQ5D Test, Activities of Daily Living,

Instrumental Activities of Daily Living, Mini-Mental State
Examination, Clock Drawing Test, Mental Composite Score of

the SF-12 Health Survey, Physical Composite Score of the SF-12
Health Survey, Comprehensive Psychopathological Rating Scale

12

Medical History

Number of Medications, Family History of Importance,
Myocardial Infarction, Arrhythmia, Heart Failure, Stroke,

TIA/RIND, Diabetes Type 1, Diabetes Type 2, Thyroid Disease,
Cancer, Epilepsy, Atrial Fibrillation, Cardiovascular Ischemia,
Parkinson’s Disease, Depression, Other Psychiatric Diseases,

Snoring, Sleep Apnea, Hip Fracture, Head Trauma,
Developmental Disabilities, High Blood Pressure

22

Biochemical Test Hemoglobin Analysis, C-Reactive Protein Analysis 02

Proposed Work

In this work, we designed an automated diagnostic technique for the early prediction
of dementia using machine learning and data mining approaches. The suggested diagnostic
system is divided into two modules: the first module extracts valuable features from
datasets to avoid the problem of model overfitting and the second module works as a
classifier to predict dementia. We developed a novel feature extraction method based
on linear discriminate analysis (LDA), independent component analysis (ICA), principal
component analysis (PCA), locally linear embedding (LLE), and t-distributed Stochastic
Neighbor Embedding (t-SNE). The aforementioned feature extraction methods have been
cascaded into a single component, which we named a “feature extraction battery” (FEB).
Feature extraction begins with an initial set of measured data. It creates derived values
(features) that are meant to be useful and non-redundant, allowing future learning and
generalization phases and, in some situations, leading to improved human interpretations.
Feature extraction helps reduce the dimensionality of the dataset, which eventually reduces
the computational complexity of the machine-learning models. The extracted features from
FEB are fed into the predictive module of the proposed diagnostic system for the prediction

98



Biomedicines 2023, 11, 439

of dementia. We employed a support vector machine (SVM) as a predictive module, and
the working of the proposed diagnostic system (Figure 1).

Figure 1. Schematic overview of the proposed model SVM-FEB.

The first stage of the proposed diagnostic system is data preprocessing because data
play a vital role in predictive ML models. The dataset is refined, standardized, and
normalized. We deal with the missing values in the data preprocessing stage by employing
K-nearest neighbors (KNN) imputation [26]. This technique finds the K-items comparable
(near) to the missing data. The KNN replaces the mean or most common value of K in the
missing data with the most comparable neighbors. The selected dataset for the experiments
portrays highly imbalanced classes. Hence, KNN imputation is employed independently
on missing data from the majority and minority classes. Through this technique, the chance
of infecting the minority class with data from the dominant class was reduced. Following
the resolution of missing values, we performed the StandardScaler function on the selected
dataset. The StandardScaler function helps to standardize a dataset by eliminating the
mean and scaling to unit variance. A sample’s average score λ is computed as follows:

Z =
(λ − υ)

γ
(1)

where υ denotes the mean of training samples and γ is the standard deviation of the training
samples. By calculating the relevant statistics on the training set samples, standardizing and
scaling are performed independently on each feature. The mean and standard deviation
are then saved for further use to transform on additional data.

When ML models are trained using all the feature space of a dataset, they tend to
overfit, which means that ML models display improved performance on training data
but poor performance on testing data [27,28]. This might be because the classifier learned
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superfluous or noisy features in the training data, or it could be due to a weak classifier
with too many parameters. As a result, we should extract a subset of features from the
dataset and a properly constructed classifier. In feature extraction methods, new features
are constructed from the given dataset. Feature extraction decreases the resources necessary
to explain a vast dataset. One of the primary issues with analyzing complex data is
the number of variables involved. Analysis with many variables often necessitates a
substantial memory and computing capacity. It may also lead a classification method to
overfit training examples and generalize poorly to new samples. Feature extraction is a
broad term encompassing ways of building variable combinations to avoid these issues
while accurately summarizing the data. Many machine learning practitioners feel that well-
optimized feature extraction is the key to good model design [29]. Therefore, we proposed
a novel feature extraction method (FEB) to avoid the problem of model overfitting while
simultaneously reducing data dimensionality. Reduced data dimensionality increases the
performance of the proposed SVM-FEB in terms of time complexity. In FEB, we cascaded
different feature extraction methods (LDA, PCA, ICA, LLE, TSNE) into a single module.
The four feature extraction methods (PCA, ICA, LLE, TSN) construct a couple of new
features, while LDA constructs only one new feature. The newly extracted FEB features
are combined to generate an optimum dataset with low dimensionality. The proposed FEB
constructs nine new features from the original dataset, which consists of 75 features.

After the feature extraction stage, we divided the dataset into two parts; one for
training and the other for the testing purposes of the proposed SVM-FEB model. The classes
in the dataset for the experiments are highly imbalanced, which means that the model
would be biased toward the majority class. To address this issue, we used the ADASYN
approach to tackle the imbalanced class issue [30]. The ADASYN approach uses a density
distribution δi as a criterion to automatically compute the number of synthetic samples
necessary for minority data samples. δi is a physical evaluation of the weight distribution
of unique minority class instances depending on their level of learning difficulty. Following
ADASYN, the final dataset will not only provide a balanced structure of classes in the
data distribution (as defined by the coefficient) but also compels the learning algorithm to
concentrate on complicated cases. As a consequence, the proposed system (FEB-SVM) is
trained on balanced data, mitigating the risk of bias in the ML model. It is worth noting
that the ADASYN approach is applied to training data following the data split. Suppose
the ADASYN technique is used for the entire dataset (i.e., before data partitioning). In that
case, the performance of the ML model will be skewed because samples from the testing
dataset will also be included in the training dataset. Using ADASYN to balance the training
dataset, we employed SVM for the classification task.

SVM is a powerful tool for classification and regression problems [31]. SVM attempts
to construct a hyperplane with the greatest possible margin. In the case of a classification
problem, the hyperplane h(x) = (σT ∗ x) + γ, where γ denotes the bias and σ represents
a weight vector that is built using training data and serves as a decision boundary for
determining the class of a data point (a multidimensional feature vector). In the case of
binary classification, SVM employs two support vectors and identifies the nearest vectors
(data points) of two classes to create a margin. These vectors are referred to as support
vectors. Margin is computed by taking the perpendicular distance between the lines
going through the support vectors and multiplying by 2

||σ||22
. The primary objective is to

develop an optimized SVM predictive model to provide an ideal hyperplane with the
highest margin. SVM employs a set of slack variables known as νi, i = 1, 2, . . . , �, as well
as a penalty parameter known as β, and attempts to maximize ||σ||22 while minimizing
misclassification errors. This fact is mathematically expressed as follows:

min
σ,γ,ν

1
2
‖σ‖2

2︸ ︷︷ ︸
Regularized

+γ
�

∑
i=1

νi︸ ︷︷ ︸
Error

(2)
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S.t
{

yi(σxi + γ) ≥ 1 − νi
νi ≥ 0, i = 1, 2, . . . ,�

(3)

where ν is the slack variable that is used to calibrate the degree of misdiagnosis and
penalized factor is the Euclidean norm, also known as the L2-norm.

The major difficulty is that a linear hyperplane cannot correctly partition the binary
classes’ data points (i.e., with the lowest classification error). For this reason, the SVM
employs a kernel technique in which the SVM model converts local data points into
hyperdimensional points to convert non-separable data points into separable data points.
Different kernels are used, including the radial basis function (RBF) kernel, linear kernel,
sigmoid kernel, and polynomial kernel. These kernels are SVM model hyperparameters
that must be adjusted for each task. To design the SVM model that works best on a dementia
prediction challenge, we must carefully update or optimize its hyperparameters. Grid
search is the main way to reach this purpose. As a result, we employed the grid search
approach to tweak the SVM hyperparameters. Consequently, in this paper, we suggest an
FEB decrease in the data dimensionality. The suggested SVM-FEB approach dynamically
optimizes the SVM model’s hyperparameters using the grid search method.

3. Validation and Evaluation

The holdout validation technique has been extensively used in the literature as a
benchmark for assessing the effectiveness of ML-based diagnostic systems [10,12,13]. In a
holdout validation procedure, a dataset is partitioned into a couple of segments where one
half is utilized for training while the remaining half is utilized for testing purposes of the
proposed ML model. The dataset is split with a ratio of 70% for training the ML model and
30% used for testing. Thus, in our tests, we employed the data mentioned above partition
criteria for the training and testing of the proposed SVM-FEB model. Following the data
partition, we select evaluation measures to compare the performance of the proposed
model with existing state-of-the-art ML models for dementia prediction. The assessment
criteria used for evaluating the SVM-FEB model are accuracy, precision, recall, F1-score,
Matthew’s correlation coefficient (MCC), and area under the curve (AUC) using PR plot.
The evaluation metrics are presented mathematically as

Accuracy =
T+ + T−

T+ + T− + F+ + F− (4)

where T+ stands for the No. of true positive, F+ represents the No. of false positives, T−
denotes the number of true negatives, and F− represents the No. of false negatives.

Precision =
T+

T+ + F+
(5)

Recall =
T+

T+ + F− (6)

F1_score =
2T+

2T+ + F+ + F− (7)

MCC =
T+ × T− − F+ × F−√

(T+ + F+)(T+ + F−)(T− + F+)(T− + F−)
(8)

A binary classification problem is statistically examined. The F1-score is defined as
the F-measure. The F1-score gives a score between 0 and 1, with 1 representing excellent
predictions and 0 representing the worst. MCC is used to determine whether or not a test
is correct. The value range for MCC is between 1 and −1, with 1 being the best prognosis
and −1 representing the worst prediction.
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4. Experimental Results

Three kinds of experiments were conducted on the dementia dataset to examine the
efficacy of the newly developed model (FEB-SVM). The first experiment used the grid
search algorithm to construct and optimize traditional ML models using all the dataset’s
features (75). The proposed SVM-FEB approach is built in the second experiment. At the
same time, additional state-of-the-art ML models are constructed in the third experiment
while utilizing the same dementia data and a novel, suggested feature extraction module
(FEB). All computation tasks were carried out on an Intel (R) Core (TM) i5-8250U CPU
running at 1.60 GHz using Windows 10 64bit. The Python software package is employed to
carry out all of the experiments.

4.1. Experiment No.1: Performance of ML Models Using All Features

In this experiment, we set up multiple ML models, i.e., naive Bayes (NB), logistic
regression (LR), decision tree (DT), random forest (RF), k-nearest neighbors (KNN), and
support vector machine (SVM) with various kernels (rbf, linear, polynomial, sigmoid),
which are implemented in Python. The efficiency of the constructed ML models was
assessed using all the dataset’s features (75). It is noteworthy that the classes in the dataset
are balanced through the ADASYN technique. Table 3 shows the accuracy, precision, recall,
and MCC of dementia prediction. The SVM with a polynomial kernel obtained the best
dementia diagnosis accuracy of 88.59 percent. However, the SVM training accuracy is lower
than the test accuracy, indicating that the ML model overfits. Therefore, we constructed a
feature extraction battery (FEB) to prevent the problem of model overfitting.

Table 3. Performance of ML models on balance data using all features.

Model Acc._train Acc._test Precision Recall F1_score MCC 95% CI 1

NB 66.78 40.36 56.00 63.00 40.00 0.1695 0.77, 0.87
LR 90.65 77.25 55.00 57.00 77.00 0.1124 0.82, 0.91
DT 100 77.98 49.00 49.00 78.00 0.1157 0.78, 0.88
RF 100 88.07 55.00 51.00 88.00 0.4058 0.85, 0.93

KNN 89.17 86.69 51.00 50.00 87.00 0.3851 0.82, 0.92
Adaboost 95.15 80.27 66.00 51.00 80.00 0.1834 0.83, 0.91
SVM_rbf 99.30 85.78 88.00 56.00 86.00 0.2131 0.84, 0.93

SVM_sigmoid 78.54 74.28 56.00 63.00 74.00 0.1986 0.83, 0.92
SVM_linear 93.54 80.75 58.00 61.00 81.00 0.2042 0.82, 0.91
SVM_poly 73.24 88.59 45.00 50.00 89.00 0.2331 0.83, 0.92

1 CI = Confidence Intervals.

4.2. Experiment No.2: Performance of Proposed Model SVM-FEB

In the proposed model (FEB-SVM), features are extracted from the dataset using a
novel feature extraction battery (FEB). From FEB, we obtained the nine features that were
extracted from the whole dataset. The classes were found to be highly unbalanced; so, we
deployed the adaptive synthetic (ADASYN) oversampling method. After balancing the
classes in the dataset, we optimized the hyperparameters of the SVM with the rbf kernel.
We employed a grid research algorithm for the optimization of SVM hyperparameters.
The optimal values of the hyperparameters of SVM are set by exploiting an exhaustive
grid search algorithm. Table 4 shows that the proposed model SVM-FEB achieved the best
dementia prediction accuracy, 93.92%, where C = 10 and G = 0.1 (C = Cost, G = Gamma) are
the values of hyperparameters that are searched through using the grid research technique.
The comparison of Tables 3 and 4 shows that the proposed model SVM-FEB improves the
performance of traditional SVM by 8%. Furthermore, traditional SVM with rbf used all the
features of the dataset (see Table 3), while in the proposed model SVM-FEB, only 9 features
are used for the prediction of dementia (see Table 4).
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Table 4. Performance of ML models on balance data while utilizing FEB.

Model Hyper. Acc._train Acc._test Precision Recall F1_score MCC

SVM_rbf C:100, G:0.1 99.77 90.88 92.39 87.62 89.50 0.4178
SVM_rbf C:10, G:0.1 97.48 91.16 92.81 86.59 90.00 0.4216
SVM_rbf C:100, G:0.1 99.88 91.79 92.22 85.56 91.00 0.4487
SVM_rbf C:10, G:1 98.28 91.83 91.80 86.59 89.12 0.4387
SVM_rbf C:10, G:1 98.50 92.46 89.67 85.05 90.00 0.4725
SVM_rbf C:300, G:0.01 95.46 92.02 93.88 87.11 92.00 0.4747
SVM_rbf C:10, G:1 100 92.70 89.37 95.36 92.00 0.4852
SVM_rbf C:10, G:0.01 98.74 92.95 93.82 86.08 92.50 0.4810
SVM_rbf C:100, G:0.1 98.41 93.31 92.34 87.11 93.00 0.4853
SVM_rbf C:10, G:0.1 98.28 93.92 91.80 86.59 89.12 0.4987

SVM_linear C: 0.1, G: 01 84.54 82.99 96.15 77.31 85.71 0.3630
SVM_sigmoid C: 10, G: 0.001 83.23 82.97 96.52 71.64 82.00 0.3359

SVM_poly C:01, G:01 88.23 84.57 95.75 90.28 84.00 0.3732

To validate the efficiency of the proposed model (FEB-SVM), we also used a precision–
recall (PR) curve. In total, two types of experiments were conducted. In the first experiment,
a simple SVM with an rbf kernel is tested against the PR-curve; in contrast, in the second
experiment, the proposed SVM-FEB is tested. The important parameter in the PR plot is
the area under the curve (AUC), in which a model having more area under the curve is
considered better. Figure 2b shows the PR curve plot of the traditional SVM model with an
AUC of 88% while Figure 2a presents the PR plot of the proposed SVM-FEB model with
an AUC of 93%. Hence, the proposed model has better dementia prediction accuracy in
comparison to the simple SVM model.

(a) (b)
Figure 2. Performance comparison based on AUC. (a) PR curve of proposed model; (b) PR curve of
the conventional SVM.

Furthermore, we analyzed the training and testing accuracy of the proposed model
(SVM-FEB) with other ML models. From Figure 3, it can be observed that the proposed
(SVM-FEB) model achieved the highest testing accuracy compared with the rest of the
ML models.

Figure 3. Performance comparison of proposed model with other ML models.
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4.3. Experiment No.3: Performance of ML Models Based on FEB

In this experiment, we compared the newly developed model (SVM-FEB) performance
with other ML models using a novel feature extraction model (FEB). We selected the
following ML models, i.e., Naive Bayes (NB), K-Nearest Neighbors (KNN), Random Forest
(RF), Decision Tree (DT), Logistic Regression (LR), and Support Vector Machine (SVM) with
different kernels (linear, sigmoid, ref, linear). The selected ML models’ hyperparameters
were optimized using a grid search algorithm. For a fair comparison, we used balanced
classes in the dataset, which were obtained through the ADASYN technique. Table 5
presents the results of each ML model along with the values of tuned hyperparameters, i.e.,
D—depth, E—edge, Ne—number of estimators, G—gamma, and K—number of neighbors.
The performance of each model is assessed across different evaluation metrics such as
accuracy on training data (ACC._train), accuracy on test data (ACC._test), precision, recall,
f1_score, and Matthew’s correlation coefficient (MCC). The proposed model (SVM-FEB)
has achieved the highest accuracy of 93.92% in comparison with other ML models using
the same feature extraction module (FEB), as shown in Table 5. Furthermore, we can also
compare the results of Table 5 with Table 3 where the same ML models are used using all
dataset features. From the comparative analysis of both tables, it can be seen that the novel
proposed feature extraction method (FEB) has significantly improved the performance of
ML models. Thus, the proposed feature extraction model reduced the complexity of the ML
models because ML models used only 9 features compared with all the available feature
space of 75 features. The proposed feature extraction module (FEB) and optimized SVM
with an rbf kernel obtained improved accuracy results compared with conventional SVM.

Table 5. Performance of ML models on balance data using FEB.

Model Hyper. Acc._train Acc._test Precision Recall F1_score MCC

NB Var:0.006 79.40 75.22 62.00 77.00 75.00 0.3642
LR C:100, S: newton, p:l2 84.46 78.36 64.00 79.00 78.00 0.3954
DT D: 03, E:04 87.80 86.00 96.02 74.74 85.00 0.3374
RF D:10, Ne:100. E:01 97.95 90.15 94.79 84.53 89.00 0.4286

KNN Lf:01, K:01, P:02 100 90.54 92.98 81.95 87.00 0.4324
Adaboost Lr:01, Ne: 10 86.77 85.63 79.38 86.76 86.00 0.3567

SVM_Linear C: 0.1, G: 01 84.54 84.99 96.15 77.31 85.71 0.3630
SVM_Sigmoid C: 10, G: 0.001 83.23 82.97 96.52 71.64 82.00 0.3359
SVM_Poly C:01, G:01 88.23 84.57 95.75 90.28 84.00 0.3732
SVM_rbf C:10, G:0.1 98.28 93.92 91.80 86.59 89.12 0.4987

4.4. Comparison of Dementia Prediction Methods

We evaluated the performance of numerous ML-based automated diagnostic sys-
tems that were proposed by researchers in the literature for dementia prediction. Table 6
summarizes the performance of previously proposed ML-based approaches for dementia
prediction along with our proposed model. Compared with the recently proposed models
such as F. A. Salem et al. [14], F. G. Gutierrez et al. [16], G. Mirzaei and H. Adeli [18], and A.
Shahzad et al. [19] and A. Javeed et al. (2022) [32], our newly developed model (FEB-SVM)
performed considerably better.
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Table 6. Comparison of classification accuracies with previously proposed methods for dementia
prediction.

Study (Year) Method Accuracy (%) Balancing

P. C. Cho and W. H. Chen (2012) [33] PNNs 83.00 No
P. Gurevich et al. (2017) [34] SVM 89.00 Yes
D. Stamate et al. (2018) [35] Gradient Boosting 88.00 Yes

Visser et al. (2019) [36] XGBoost+ RF 88.00 No
Dallora et al. (2020) [15] DT 74.50 Yes

M. Karaglani et al. (2020) [37] RF 84.60 No
E. Ryzhikova et al. (2021) [38] ANN + SVM 84.00 No
F. A. Salem et al. (2021) [14] RF 88.00 Yes

F. G. Gutierrez et al. (2022) [16] GA 84.00 No
G. Mirzaei and H. Adeli (2022) [18] MLP 70.32 No

A. Shahzad et al. (2022) [19] SVM 71.67 No
A. Javeed et al. (2022) [32] Autoencoder + Adaboost 90.23 Yes

Proposed Model (2023) FEB + SVM 93.92 Yes

5. Conclusions

In this study, we addressed the problems of low accuracy and bias in ML models
for dementia prediction, which researchers in the recent past have raised. Unfortunately,
dementia is a rare, occurring disease, so classes in the dementia datasets are significantly
imbalanced, causing bias in ML models. Therefore, we deployed the adaptive synthetic
sampling (ADASYN) technique to resolve this issue. For improved accuracy, we proposed
a novel feature extraction (FEB) method that extracts the valuable features from the dataset
so that the proposed model would not learn the noisy features from the dataset and
avoid model overfitting problems. The feature extraction (FEB) module extracts 9 features
from the dataset, comprising 75 features. The FEB helps to improve the accuracy and
reduce the computational complexity of the proposed model. For classification purposes,
SVM is deployed with different kernel functions, and hyperparameters of the SVM are
fine-tuned using a grid research algorithm. From the experimental results, it is evident
that the proposed model (FEB-SVM) improved the performance of conventional SVM
by 6% for dementia prediction. Moreover, the proposed model outperformed the 12
recently proposed models based on ML for dementia prediction, which the researchers
presented. However, the proposed method (SVM-FEB) has significant shortcomings that
the researchers must overcome. The newly proposed FEB’s constructed features cannot
help identify the features causing dementia in older persons because the newly generated
FEB is based on feature extraction techniques. Therefore, new methods should be proposed
in the future for identifying the features that cause dementia problems based on feature
selection algorithms [39]. Furthermore, a machine learning model based on meta-heuristics
and deep learning should be built to improve dementia prediction accuracy.
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Abstract: Brain tumors affect the normal functioning of the brain and if not treated in time these
cancerous cells may affect the other tissues, blood vessels, and nerves surrounding these cells. Today,
a large population worldwide is affected by the precarious disease of the brain tumor. Healthy tissues
of the brain are suspected to be damaged because of tumors that become the most significant reason
for a large number of deaths nowadays. Therefore, their early detection is necessary to prevent
patients from unfortunate mishaps resulting in loss of lives. The manual detection of brain tumors
is a challenging task due to discrepancies in appearance in terms of shape, size, nucleus, etc. As a
result, an automatic system is required for the early detection of brain tumors. In this paper, the
detection of tumors in brain cells is carried out using a deep convolutional neural network with
stochastic gradient descent (SGD) optimization algorithm. The multi-classification of brain tumors is
performed using the ResNet-50 model and evaluated on the public Kaggle brain-tumor dataset. The
method achieved 99.82% and 99.5% training and testing accuracy, respectively. The experimental
result indicates that the proposed model outperformed baseline methods, and provides a compelling
reason to be applied to other diseases.

Keywords: medical imagery; brain tumor; convolutional neural network; deep learning; feature extraction

1. Introduction

In any living organism, cells are the main ingredient that makes up life. Cells are
comprised of a cell membrane, a nucleus, and the third component, cytoplasm [1], which is
the most complex organism in human beings. It is fabricated of a significant number of
cells, and each of them differs in morphology. In the human body, cells continuously grow
and divide in tissues. On reaching the stage of maturity, cells stop growing further and start
performing their functions properly. They kill themselves when cells become damaged or
their life span is completed. Due to metabolic disorders, cellular anxiety, and pathogenic
incursion, cells may die during the span of development. Tissues contain natural killer
cells [2], which perform such activities. These events are performed through a well-defined
process known as programmed cell death (PCD) [3]. Mainly, three routes are considered
under PCD for carrying out the tasks of the disposal of cells that are at risk. These paths
include: pyroptosis, apoptosis, and necroptosis. The very first programmed cell death is
apoptosis [4]. All of these processes are capable of sensing irritation and responding to
inflammatory responses against the immune system by discharging immunostimulatory
particles. Each of them is deployed with different consequences because all of them include
discrete molecular processes. Those brain cells that are not proficient enough to perform
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phases of their life cycle in a normal fashion, form a brain tumor. Figure 1 depicts the
structure of a cell. A core part of the cell is the nucleus surrounded by fluid. The exterior
boundary of cells is covered by a protective sheet known as a membrane. An inside
cell contains different micro-organelles including mitochondria, ribosomes, cytoplasm,
DNA, etc.

Figure 1. The cell.

The most complex organ of the human body is the brain. It controls the whole body,
including our sentiments, opinions, moods, temperature, motor action, starvation, etc. It
helps all the organs of the body to coordinate [5] appropriately in order to execute their
functions. At the central end of the human body, the brain is composed of a significant
number of of nerve tissues. The weight of the human brain is around 3 pounds. Approx-
imately 60% of the brain is fat and the remaining 40% is a blend of protein, salts, water,
and glucose. The brain is the main part of the central nervous system. The structure of
the brain includes the brainstem, cerebellum, and forehead [6]. The brain is comprised
of grey and white matter, as shown in Figure 2. The cerebrum, cerebellum, and medulla
oblongata are parts of the brain. The largest fragment is the cerebrum, the cerebellum is the
next largest fragment, and then the medulla.

The exterior portion, which is dark in colour and is comprised of neurons, is denoted
as grey matter. White matter refers to the innermost light portion, which mainly contains
axons. Sometimes, this grey matter is also denoted as the cerebral cortex. The purposeful
hiearcrhy of the brain extends straight from the “uni-modal sensory cortex” into the “trans-
modal association cortex” [7]. Different parts of the brain are involved in the process
of memorization. Three phases are included in memorization. First is encoding, where
memory is built up for any event. The second is storing a particular event in the short-term
memory. Third is recalling, during which a certain event is moved from short to long-term
memory. There are trillions of cells in the brain. Brain cells are known as neurons. Neurons
are the chief module of the nervous system. Neurons are comprised of: sensory neurons,
motor, and interneurons. They accept and transmute information from and to the brain
from all parts of the body in the form of signals, as shown in Figure 3. Information from
sensory receptor cells is carried from the body to the brain by sensory neurons. Then, brain
information is carried to the muscles by motor neurons. Meanwhile, information between
the remaining neurons of the body is transmuted through interneurons. Only one axon
of a neuron, with an extensive tail-like structure, carries the nerve impulse in the form of
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electric signals from the body. Dendrites can be of more than one type, and accepts signals
from axons.

Figure 2. Structure of brain.

Figure 3. Structure of neuron.

The frame of abnormal tissues, when grouped, forms into tumor. Skin, muscles,
secretory organs and different body parts have the chance to be affected by a tumor. These
tumors are classified into two main types, as depicted in Figure 4. One is malignant,
which is cancerous. Another is benign, noncancerous [8]. Each of these tumors varies in
its treatment. Therefore, before preliminary action, first of all, it is necessry to recognize
the type.

Benign tumors remain at one location. They grow at these sites without changing their
positions. They do not harm cells that reside near them. They are not dangerous. Once
this type of tumor is disposed of, they have no chance of returning. On the other hand,
malignant tumors do not reside in one location. They tend to continuously change their
position along with their growth. These cells are dangerous, as they are cancerous. They
harm other cells near them by invading. Therefore, they need to be treated to control them.
They are treated through immunotherapy or chemotherapy [9].

110



Biomedicines 2023, 11, 184

Figure 4. Types of tumor.

When cells abnormally grow in the brain, they form a brain tumor. Symptoms of
these tumors vary according to their size and location. Sites for the occurrence of tumors in
brains include cranial nerves, meninges (membranes), pineal secretory organs, and pituitary
secretors. Risk factors for brain tumors may vary. When tumors from skin cells spread
to the brain, this is known as a melanoma brain tumor. Studies have revealed that some
environmental reasons may pave the way for triggering tumors in the brain. Out of these,
air pollution is one reason [10]. People who are exposed to radiation at their jobs have
higher chances of suffering from a brain tumor. Genetic variation is another reason for its
occurrence. About 5–10 percent of people with this disease are those who have a family
history of brain tumors. The most important categories of tumor include: the skin, lungs,
and breast, which may spread to the brain, triggering a tumor there. In 2021, around
84,000 individuals were detected to have a primary brain tumor. About 120 variants of this
primary brain tumor exist. Out of them, one-third of tumors are cancerous (malignant).
Tumors can be detected at any age group. In the US, more than 28,000 children are detected
as having this hazardous disease. Due to primary brain tumors, approximately 18,000
persons died [11]. Figure 5 illustrate the shape and size of a tumor and how they start
growing on a mass of tissues.

The field of artificial intelligence which enables machines to see is known as computer
vision (CV). CV enables machines to distinguish visual stimuli clearly [12]. These machines
then process and interpret digital multimedia images and videos. After interpreting images,
information is extracted to make certain decisions. Components of CV are: machines
for the interpretation of scenes, a camera for capturing images, and lighting effects for
illumination to better recognize objects. This CV trains machines to perform object detection
through image processing. Training such a machine requires a lot of data because computer
machines work consistently and make objective decisions only. CV has flourished in every
field, from medical to digital marketing. The list of the various applications of CV includes
road-traffic administration and self-propelled driver aid, industrial robotics and scrutiny
in semiconductor unit engineering, simultaneous visualization for medical applications,
and eye and head tracking for purchaser investigation [13]. Much work on CV in the field
of medical science has been carried out using deep-learning techniques [11]. Some tasks
that come under CV are the classification of images, detection of objects, tracking objects,
and retrieving content-based images. CV uses certain algorithms to train machines on a
large set of data. After training, digital images are passed on. Machines train themselves
to learn by extracting information from images. Later the objects are classified on the
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basis of feature extraction. Figure 6 demonstrates the tasks of the classification, detection,
and segmentation of images. It shows how the trained model has worked by passing
images of cats and dogs to it. Digital images are processed successfully by classifying and
detecting these objects by extracting their features.

Figure 5. Shape of tumor.

Figure 6. Tasks of computer vision.

Deep learning (DL) is a sub-field of artificial intelligence. It enables computational
models to acquire knowledge and expand their ability to work like humans. It has multiple
layers for providing abstraction and retrieving information [8]. DL is a central component
of data science, including analytical modelling with facts and figures. It helps data scientists
who need to carry out the tasks of collecting useful insights from huge datasets. Utilizing a
huge number of datasets, deep learning achieves the best performance and accuracy [5]. It
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also makes the procedure of examining data effective and easier. A predominantly convo-
lutional neural network (CNN) is implemented for the acknowledgement of patterns [14].
CNN assists in the understanding of digital images. CNN breaks down images into picture
elements and allocates tabs and markers to them. Then, it classifies objects by training
models based on these markers. Figure 7 shows the working of machine learning (ML) vs
deep learning (DL). Utilizing ML techniques for recognizing tumors in the brain accurately
is a complicated job [15,16]. For identifying features, ML techniques are deployed [17].

Figure 7. Working on deep-learning model.

The physical sorting of brain-tumor MR images with similar structures or presences
is a problematic and challenging task [18]. Using different imagery procedures, irregular
changes in tissues of brain cells are identified at an early stage from “computed tomography
(CT)” scans and “magnetic resonance imaging (MRI)” [9]. Along with the CT scan, the
X-ray technique also helps in the examination [19]. MRI images are classified into grey and
white matter after detection [7].

The main contribution of this study includes the detection and classification of brain
tumors using a deep-learning-based convolutional neural network with an SGD opti-
mization algorithm. Most of the previous studies have implemented CNN on a smaller
dataset; while the proposed method is evaluated on a larger public dataset comprising
three datasets (figshare, SARTAJ, and Br35H). The transfer-learning-based ResNet-50 is
employed to extract features from MRI scan images. The detection and classification of
these images are performed efficiently with better accuracy and performance using the
SGD classifier with CNN. This combination of classifiers has made it possible to achieve
99.82% training accuracy and 99.5% testing accuracy using a deep convolutional neural
network with stochastic gradient descent (SGD) optimization algorithm.

The rest of this paper is organized as follows. Section 2 contains the literature review
on brain-tumor detection and a comprehensive analysis of other related work. Section 3
includes the proposed methodology, process for the detection and classification of tumors,
as well as the proposed framework. Section 4 presents experiments and results which will
contain the experimental analysis and discussion, followed by a conclusion and future
work in Section 5.

2. Literature Review

This section highlights that detecting tumors of the brain with the help of machine-
learning and deep-learning algorithms is an ongoing research area. A lot of work has
already been carried out and researchers are continuously completing studies to improve
this progress. The segmentation of the brain constitutes [10] a crucial part in medical
training and exploration setting. A 3D deep neural algorithm based on networks was
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proposed for finding infected cells in the brain. Segmentation within the cells of tumors
was achieved together with edema, mortification, non-magnified, and magnified tumors
using MRI images. A collection of cascaded U-Nets was designed for the recognition of
tumors. Along with this, Deep-CNN was made for patch-based segmentation within tumor
cells. This model was used to learn the position of tumors in the brain before segmentation.
The proposed model used the “BraTS-2017” challenge database as a dataset, which con-
sisted of 285 trained subjects, 146 subjects for testing, and 46 subjects for validation. Four
sequences of MRI images were made which were used by each of these subjects. These
sequences include T1, T2, T1C, and FLAIR. The resolution of all the MRI data images used
was set to comprehensible. Before detection, a ground-truth table was pre-processed. Using
segmentation, four classes of intra-tumours were identified through the ground-truth table.
depicts how the two different scales of cascaded U-Nets were used to perform the proposed
work. Datasets consisted of three up-sampled and two down-sampled blocks. Using the
proposed algorithm on the data set of BraTS 2017, a Dice-similarity coefficient of 0.81,
0.69 and 0.55 was achieved. The limitation of the proposed algorithm is that the machine-
learning algorithm used encountered generation difficulties when they were encountered
by a new dataset. Problems with deep models cause decreased performance on validation
and test datasets. The class imbalance used in the dataset was another problem faced by
deep models.

Sharif et al.’s recent work [20] was carried out using many procedures for classify-
ing brain tumors using different computer-aided methods. However, the low accuracy
produced by these applied methods was a significant concern. For the classification of a
multi-brain tumor, a new computerized deep-learning model was proposed. That model
deals with major issues encountered during classification, which include: the resemblance
between different types of tumor, a highly dimensional dataset, and using a smaller number
of attributes for feature extraction. The deep-learning model was applied without any pre-
processing of data. The already-trained deep-learning model “Densenet201” was used and
later trained for the proposed work using “deep-transfer learning”. An imbalanced dataset
was used for directing training. An approach known as “Entropy–Kurtosis-based High
Feature Values” was used for extracting features and the KNN was applied to hand pick
the best feature out of them. Using standard deviation, the “Modified Genetic Algorithm
(MGA)” was also used for picking the best features. That was carried out by finding the
Euclidean distance of each attribute in the dataset. Mutation and cross-over were applied,
in case the best-fit criteria was not met. Redundancy was detached from the dataset later
on. After feature extraction, at the final stage, support vector machine (SVM) was utilized
to research the classification of multi-class brain tumors. To reduce the computational cost
of the entire work and take out information from the images in the dataset, a convolutional
neural network (CNN) was utilized. From the CNN, two layers were removed and a new
fully connected layer was introduced which consisted of four major kinds of brain tumor.
BRATS 2018 and BRATS 2019 were two datasets used for directing this research because
they are most useful for this field and are, additionally, projective. Both of them were
reduced to the ratio of 50/50 for training and testing, respectively. The accuracy of BRATS
2018 was observed to be 99.7% and 98.8%, and for BRATS 2019 98.8% and 98.2% were noted.
The accuracy of both of the datasets was improved as compared to their past performance.
Still, some features can be considered to improve accuracy further.

Another work focused on the recognition of brain tumors in a transferable electromag-
netic (EM) mental imagery system through a newly made “YOLOv3” model of the deep
neural network [3]. Most often, the YOLOv3 model is utilized in recognizing objects with
the best accuracy and with better quality speediness in computation. Using deep learning,
the position of tumors in the head was perceived. For creating high-quality pixel imageries,
a 3D portable, unidirectional, and compact imagery system with high bandwidth was
cast-off. A deep neural network-based algorithm of YOLOv3 with a darknet-53 was uti-
lized for programmed recognition of tumors in the brain with their position and bounding
boxes in produced EM imageries. The Python program writing language with TensorFlow
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API was used for employing the algorithm of YOLOv3. An improved algorithm of the
“delay-multiply-and-sum” image processing system was used to create EM images of the
head. Every single image in the dataset created had a pixel power of 416 × 416. Almost
50 sampled images from diverse situations were composed. Additionally, for creating the
final dataset, an image-augmentation technique was utilized. This created a set of data that
was used for the purpose of testing, training, and validation later on. The total number of
sample images in the dataset was 1000, out of which 800 were utilized for training, 100 for
validation, and the remaining one hundred for the purpose of testing. After considering
diverse datasets, the performance of tumor detection was inspected. The observed F1-Score
and accuracy that were achieved by the trained dataset were 94% and 95%, respectively.
For experimenting with “Non-Maximum Suppression (NMS),” a well-known technique
was applied to identify the bounding boxes of target objects in an image. The YOLOv3
model was passed out with training data for about 200 epochs with a learning rate of 0.001.
Improved accuracy with reduced validation loss was detected with the alteration in learn-
ing rate during the experiment. Thus, the applied model proved effective in recognizing
diverse brain tumors which were dissimilar in their form and dimensions.

In another research work, the technique of deep learning was used to find a well-
known kind of tumor known as a “Glioma” [21]. When comparing “low-grade glioma
(LGG)” and “high-grade glioma (HGG)” the most serious and dangerous is HGG. MRIs
proved beneficial for recognizing such forms of tumor in the brain region. Recent work
performed was patch-based. Its limitation was that it takes more computational cost
and also there is the chance of loss of information from the images. In this work, the
segmentation and recognition of tumors in the head section were carried out using the
feature-based extraction technique of deep learning. For enhancing the image quality
taken for identifying tumor sections “Pixel Increase along with Limit (PIaL)” was used.
The extraction of features from the images for segmentation was performed via a novel
“Standard Balanced Digital Link (SBDL)”. After feature extraction, the best and finest
attributes were found by applying the “Particle Swarm Optimization (PSO)” algorithm.
After finding the optimal set of features, classification was performed. For the experiment
inception, the V3 pre-trained model of deep learning was modified. Improvement in
imageries in the dataset was achieved using the contrast-stretching technique. It was
carried out to enhance the visibility of the target area in images, so that tumors could be
recognized. The dataset used for the experiment was divided into two phases. In the first
phase, segmentation was performed using the SBDL approach on the dataset of BRATS 2017
and BRATS 2018. Meanwhile, in the second phase, the classification technique was applied
to BRATS 2013–2014 and BRATS 2017–2018. Both phases resulted in diverse accuracies and
performances on the dataset used for validation. An experiment was conducted on the
toolbox Matconvnet environment of deep learning using MATLAB 2018. The error rate for
both datasets was different for selected optimal features. The accuracy achieved was more
than 92% for classification. The inclusive consequences demonstrate that the presented
approach is state of the art for both the arrangement and subdivision of brain tumors.

Recently, a lot of work has been carried out on the discovery of brain tumors. These
works range from single-based analyses up to the techniques for image processing for
finding the solution to eradicating the propagation of this disease. A vigorous technique
known as image processing [22] was applied for the recognition and segmentation of tumors
in the brain. The applied methodology used was to first segment past images of brain
tumors and then to detect them. MRI images are used to obtain the final outcome. In phase
one, these MRI imageries are first pre-processed. Then, those images are passed through a
further algorithm to complete the task. The technique applied for classifying the picture
element of an image is image segmentation. After obtaining pixel information, feature
extraction was performed to obtain the optimal attributes of the images. For that purpose,
“Discrete Wavelet Transform (DWT)” was applied. Later, to identify the performance of the
algorithm, “Support Vector Machine (SVM)” was utilized. Pre-processing was performed
so that each image in the dataset had the same dimension. During this, the processed
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image was first converted to grayscale. It becomes easier to fetch the characteristics from
such images, as in RGB images, pixel color can act as noise. Resized grayscale images are
converted into a binary representation. Later on, the technique of image segmentation was
performed so that each image had its own unique attributes. An unsupervised technique
known as K-means clustering was applied to segment the target objects in images into
regions. Next, feature extraction was performed on the used dataset of MRI images. Seven
key attributes that were fetched include energy, kurtosis, skewness, contrast, smoothness
and RMS. Based on these features, SVM was applied to classify the tumors into benign
and non-cancerous tumors. The study successfully showed that SVM is robust in the
classification of tumors in the brain. Through it, the calculated performance comes out with
an accuracy of 94.6%.

Özyurt et al. focused on finding brain tumors through super-resolution (SR) [23],
which has been a challenging problem recently for too many years. Image pixel quality is
enhanced through super-resolution. Using it for MRI images made it helpful for extracting
useful information from images by making them more observable and vibrant. Therefore,
through their borders, tumors in images will become more visible so that a tumor can be
easily recognized by further passing through an algorithmic process. They proposed the
use of super-resolution with the fuzzy C-means clustering technique and using machine-
learning algorithms for the identification of brain tumors. The proposed work was carried
out using the “DICOT format MRI images”. These images were transformed from having a
lower pixel value into high-quality images through super-resolution. These images were
then passed through image-processing techniques. Firstly, images were pre-processed.
Later, for the extraction of features, the “SqueezeNet architecture” related to CNN was
deployed. Segmented images coming out with the finest features after extraction were actu-
ally greyscaled images, which were converted from the RGB format during pre-processing.
The dataset used included 50 malignant and 50 benign tumor images. These segmented
images were then passed through an “extreme learning machine (ELM)” for classification.
The “Cancer Genome Atlas Glioblastoma Multiform (TCGA-GBM) database” was used,
which includes around 500 sampled images of diverse kinds of cancers collected worldwide.
The performance and accuracy rate of the ELM model used for classification was based
on the number of neurons that were present in its hidden layer. Along with the learning
rate and activation function: “tribes”, “sin”, “sig”, “radbas”, “hardline”, and “lin” was also
considered. The most suitable activation function out of them in brain tumor identification
was “sigmoid” and the total number of neurons was around 1500. The proposed model
proved helpful in the identification and removal of a segmented tumor in the brain through
the FCM-SR algorithm. The study also showed that the performance of the model with
FCM-SR was 10% more than the previous work involving the detection of the same tumor
with (FCM) only. The performance of the model was higher, with an achieved accuracy
of 98.33%.

Some other work was carried out to detect asymmetrical tumors [24] in the brain,
which is a difficult task. The proposed model was based on four phases, which include:
fetching features, selecting the finest attribute for classification, positioning, and subdivi-
sion. MRI images, if used without pre-processing, can be noisy in different forms such as
instability in compelling pitch loops and image procurement. For reducing such noisiness
from images and improving pixel quality, a “homomorphic wavelet filter” was applied. Af-
ter the phase of pre-processing, suitable attributes were fetched through a “non-dominated
sorted genetic algorithm (NSGA)” using a pre-trained model, “Inception V3”. These
selected best attributes were, later on, passed on for classification. After that, slices of
classified tumors weer passed to the YOLVO-V2 model to identify the position of the tumor
area in the head section. After localization, images were passed on for segmentation of real
tumor sections through the “McCulloch’s Kapur” selective information approach. The ap-
plied technique was conducted using three dataset databases. The proposed technique was
evaluated on datasets from BRATS 2018 to BRATS 2020. Each dataset included a diverse
number of confined images. Utilizing these images, four experiments were performed.
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Each came out with a different outcome. The second experiment achieved the result that
the SVM classifier was the best in performance of all the used algorithms. After conducting
the whole proposed research, it was found that ACC is the overall best classifier. Therefore,
it was proved that, through this work, tumors were classified correctly. Prediction scores
for all four phases were greater than 0.90. Tumor classification and segmentation were
perfomred effectively. In the future, research conducted for the identification of tumors can
be carried out through quantum-computation algorithms.

On the critical disease of brain tumors, Sharif et al. proposed a framework [25] for
the identification of tumors at an early stage. According to him, if brain tumors are not
treated early, the tumor may progress to a cancerous stage. Therefore, in this proposed
research, at the initial phase, the “brain surface extraction (BSE)” approach was utilized
to eliminate the skull. The imagery of that eliminated skull is then processed for the
segmentation of tumors through the “particle swarm optimization (PSO)” technique. Pre-
processed grayscale binary images are fed into the genetic algorithm (GA) for extracting
optimal features for selection. Later, for classification, algorithms such as ANN, and SVM
are used. Easily available databases of BRATS 2018 and RIDER were utilized for experi-
menting. The outcome was 99% performance with the proposed model. Another work
that contributed to brain-tumor recognition used computer-vision techniques [26] along
with machine-learning algorithms. The author proposed the computational framework
because manually performing this task may be subject to human error during identifica-
tion. The convolutional neural network deep-learning technique was used for this case,
to obtain the best results. Two labels were used for the classification of the final result.
One was “Tumor Detected” and another was “Tumor Not Detected”. The dataset of MRI
images was downloaded and unzipped to pass through the CNN model with three lay-
ered architectures. Keras and the library of TensorFlow were used to train the model for
up to 35 epochs. Before finishing with the dataset, computer-vision techniques such as
pre-processing, and extracting features were performed. After experimenting, the model
worked accurately with a performance of 96.08%. Further, while identifying tumors in the
brain, along with CNN, a neutrosophic set of rules can be used.

Visual interface systems [27] can easily classify images into the category of tumor or
not tumor by visualizing brain waves efficiently. However, practically, it is a difficult task
to deploy. Therefoer, the author proposed a novel framework to perform this task more
precisely with higher performance. Motor images are used for this study utilizing “elec-
troencephalography (EEG)” motion to make it work more practically and more accurately.
A well-known predictor, “OPTICAL”, was used with the long short-term memory (LSTM)
algorithm of machine learning to obtain improved and enhanced images. To achieve a
better performance, a regression-based approach is used along with an SVM classifier.
The dataset used for performing the research was taken from two well-known databases.
“BCI Competition IV” and “GigaDB” were the datasets. Through these, the OPTICAL pre-
dictor classified the motor images efficiently with better accuracy. The error rate observed
during the experiment for both datasets was: 2.07 percent for the GigaDB database and
3.09% for the BCI Competition IV database.

In another work, it was mentioned that recent work focused on using surgical tech-
niques for the treatment of tumors found in the brain. Therefore, they proposed a computa-
tional framework model of deep learning [15]. A newly proposed model of CNN known as
“BrainMRNet” was utilized. The framework was built based on attention segments and
a hypercolumn approach. BrainMRNet was utilized for pre-processing at an initial stage.
Later on, the method of image augmentation was performed by an attention segment for
each pre-processed image. Through this, important features from the image were fetched
and then pass on to layers of the convolutional network. A hypercolumn approach of the
BrainMRNet model fetched the important attributes from each layer of the network and
maintained an array to store information. From the array, the finest and most optimal
features were later selected. The dataset used for carrying out research was made up
of easily available MRI imageries. These images were regarded as two labels. One is a
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normal image and the other included a tumor. Images were transformed into JPEG images.
The conducted research depicts the comparison between the proposed model and old CNN
models, which includes: VGG-16, GoogleNet, and AlexNet.

BrainMRNet model proved more effective in identifying tumors and came out with a
performed accuracy of 96.05%.

Windisch et al. [28] focused on the advancement of previous methods used for brain-
tumor recognition in a well-organized manner. They proposed a new approach known
as the “correlation learning mechanism (CLM)”. CLM, along with a convolution deep-
learning network, trained the model for identification. CT-scanned images wee rused as
the dataset. CNN was trained through a thresholding approach and an algorithm known
as an artificial neural network (ANN). Around 64 squared fragments of CT brain images
were used as input data. This dataset was taken from the Kaggle repository specially
designed for carrying out experiments on brain-tumor identification. It includes images of
CT scans for both healthy and normal patients. After the pre-processing of images, they
were passed to the model. The tumor was detected successfully with the CLM model.
Observed accuracy was 96 and with 95% recall and precision. For the detection of tumors
in GLIOMAS, a newly created deep-learning framework is known as “DeepSeg” [29].
The BRATS 2019 dataset was used for segmentation and effectively proved the relative
performance of applying a variety of deep-learning models.

A “hybrid manta ray foraging optimization” approach was proposed for selecting
optimal features. CNN was deployed for the identification of tumors. The dataset con-
sisted of (a) normal Images, (b) benign tumors, and (c) malignant tumors. A study was
conducted to compare between existed models of machine learning and proved helpful in
the recognition of tumors in the brain with better efficiency and accuracy. Another work
used CNN, DNN, and KNN [30] for identifying tumors in the brain with high accuracy
and with less computational cost. The same was carried out for predicting the accuracy of
SVM in [31] and the model of a neural network in [32].

Table 1 summarizes the different research work suggested recently in the area of
recognizing tumors in the brain. Each study depicts different results using different tech-
niques, approaches, and their own created proposed model for carrying out their research.
Diverse databases with MRI images as a dataset were utilized to conduct experiments.
The most used database was found to be “BRATS”. In addition, most of the classifiers
observed for performing research were: SVM, ANN, CNN and PSO. Each algorithm came
with different performances and accuracies. The final observation is to use a CNN deep-
machine-learning classifier for identifying tumors, as it performs well in most of the studies
giving fruitful results.

Table 1. Prediction algorithm as applied in EDM.

Ref. Algorithm Dataset Results

[32] 3D deep neural network BraTS 2017
Detected and segmented brain tumor into the core,
whole, and magnified tumor with a coefficient of
0.69,0.81 & 0.55, respectively.

[33] Modified genetic algorithm, support
vector machine BRATS 2018 & BRATS 2019 Classified the tumor with accuracy of 99.7% and 98.8%

for BRATS 2018 and 99.8% and 99.3% for 2019.

[34] Darknet-53 YOLOv3 algorithm (deep
neural network-based)

MSCOCO (Microsoft Common
Objects in Context) data set and
final image data set

The position of the tumor in the head was detected
effectively with amplified accuracy and diminished
validation loss.

[20] Standard balanced digital link (SBDL)
and particle swarm optimization (PSO) MRI imagres dataset At classifying brain tumors, achieved more than 92%

accuracy.

[35] Discrete wavelet transform (DWT),
support vector machine (SVM) Brain MRI images SVM proves to be a robust algorithm for the recognition

of brain tumors, with 94.6% accuracy.

[36] Fuzzy C-means clustering with
super-resolution (FCM-SR) & CNN

Cancer Genome Atlas
Glioblastoma Multiform
(TCGA-GBM) database

FCM-SR recognized brain tumor with a magnificent
accuracy of 98.33%
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Table 1. Cont.

Ref. Algorithm Dataset Results

[4] Non-dominated sorted genetic
algorithm (NSGA) BRATS 2018–2020 Brain tumors were classified and segmented accurately

with final score accuracy of more than 0.90.

[24] PSO algorithm, ANN RIDER and BRATS 2018 99% accuracy was achieved with the proposed model for
tumor identification in the brain.

[14] Convolutional neural network (CNN) MRI brain imageries 96.08% accuracy for three-layer CNN-trained model.

[22] Support vector machine (SVM),
Long-Short Term Memory (LSTM) GigaDB and BCI Competition IV OPTICAL predictor along with SVM classified motor

images accurately.

[15] Convolutional neural network (CNN) Free Accessible MRI images
BrainMRNet model effectively identified tumor with an
accuracy of 96.05 and proved better than the previously
existing models.

[21] Artificial neural network (ANN),
Convolutional Neural Network (CNN) Brain MRI Images CLM came out with 96% accuracy while identifying the

tumors.

3. Proposed Methodology

This section introduces the proposed framework for predicting brain tumors from the
imagery data of patients with a tumor and those without. It utilizes the dataset of brain
tumors taken from Kaggle. Firstly, the data is gathered. Data pre-processing is performed
next, to clean the data through noise reduction, and the image pixels are converted to
floating point/decimal type. Later, the pixel values of images are reduced. After that,
feature extraction is performed. The working of the proposed model is shown in Figure 8.

Figure 8. Proposed model for classification.

To conduct this proposed research work, a model is trained through a supervised
machine-learning algorithm known as a “Convolutional Neural Network (CNN)”. The
model is trained on provided training data of brain tumors. Model, after training, clas-
sifies the provided tested brain-tumor images into cancerous and non-cancerous labels.
The algorithm of the proposed framework is given below:

Recently, very little work has been carried out using MRI brain-tumor dataset of
Kaggle and optimization algorithms used were ADAS, PSO, ADAM, etc. Along with
the Kaggle dataset, this work will use SGD optimization algorithm. Firstly, CNN will be
applied, and then an optimization algorithm (see, Algorithm 1) to gain effective results.
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Algorithm 1: Proposed methodology algorithm

Algorithm brain-tumor detection
INPUT: MRI scanned brain tumor Image
OUTPUT: Detection (Cancerous/Non-Cancerous)
1. Begin:
2. Collection of brain-tumor imagery data.
3. Combine data.
4. Apply pre-processing techniques

a. Noise removal
b. Segmentation

5. Apply image-processing techniques
a. Feature extraction
b. Feature selection

6. Train the model using CNN algorithm
a. Apply model
b. Apply optimizer and loss function

7. Analyze result after classification
8. End

4. Materials and Methods

4.1. Supervised Learning

A subordinate category of artificial intelligence is known as supervised machine
learning. Supervised learning makes use of a labelled set of data for training machines [30].
It uses the training data to train a model to achieve the expected outcome. Training data is
comprised of input and accurate outputs, which the model uses to learn with the passage
of time. The accuracy of the algorithm is calculated through the loss function and is
continuously adjusted until the error is minimalized, as given in Equation (1) [32].

Y = f (x) (1)

An algorithm is used to map the function from input to output values, where ‘Y’ is
the output variable, ‘X’ is the input variable and ‘f ’ is the mapping function. The mapping
function is adjusted in such a way that when new input values (X) are entered for the
data, it gives out the desired predicted outcome (Y). Supervised learning is classified
into algorithms of “classification” and “regression”. With the help of past experience, it
optimizes the performance of the model.

4.2. CNN Architecture

The very common deep neural network [11] and a type of feed-forward artificial
neural network are CNN. It has four layers which include: “Convolution”, “ReLU Layer”,
“Pooling” and “Fully Connected”, as shown in Figure 9.

Figure 9. CNN architecture.
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When applying CNN, within an image, a filter is moved to every possible position
in the convolutional layer which consists of several kernels (see, Algorithm 2). Then,
“Rectified Linear Unit (ReLU)” performs its work by removing the negative values from the
filtered images. Each negative value is replaced with zero. Then, pooling helps to diminish
complexity by shrinking down an image. The number of filters is not affected by pooling.
Actual classification takes place at the fully connected layer. The input images are passed
through a trained model of CNN which are classified into some predicted outcomes. CNN
shows the best accuracy in resolving classification problems with its excellent performance.
It is considered a powerful tool for executing tasks related to the classification of images,
image processing, and segmentation through the use of computer-vision techniques.

Algorithm 2: Proposed CNN architecture

Input: An input signal is given to CNN in form of an image or pattern.
Output: Classified resultant output.
1. For (i=0; i<L; i++) {
2. For (m=0; m<M; m++) {
3. For (n=0; n<N; n++) {
4. Sum =bias[i];
5. For (k=0; k<K; k++) {
6. For (s1=0; s1<S1; s2++) {
7. Sum+-weight[k][i] [s1] [s2] *input[k][m+s1] [n+s2];
8. }}}
9. Output [i][m][n] =activation_func(sum);
10. }}}

5. Experiment and Results

This section describes the process of experiments alongside the results of the proposed
methodology. Once the data is cleaned, it is ready to use for classification purposes.
The deep convolutional neural network is used to generate a classification model.

5.1. Dataset

The dataset of brain tumors used for this research was taken from Kaggle. About
“3762” MRI imageries were used for the classification of brain tumors. This dataset is
divided into training and testing data. The dataset used for learning is termed training
data and the dataset used for testing is known as testing data. Training and testing
data are divided into 80 and 20 ratios, respectively. The dataset holds 2079 non-tumor
images and 1683 tumor images. Here is given (Figure 10) a small glimpse of data used for
experimentation purposes.

Figure 10. Sample images of Kaggle brain tumor dataset.

5.2. Prepossessing of Dataset

After the assemblage of data, it is refined through the procedure known as “prepro-
cessing”. It is a complex and difficult task and, occasionally, this segment can take more
than half of the time that is required to resolve the whole problem. It is mandatory to clean
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the data before employing it for training the model because most of the data gathered are
not in the usable format at the time. Therefore, it needs to refine the data by preprocessing
it and filtering out the data intended to be useful for classification purposes.

Data sometimes is not in a comprehensive form; to manage this issue, data is made
complete through the attributes of interest that are necessary to carry out certain tasks for
resolving the problem. Old traditional techniques previously used to filter data had some
problems [24], including feature engineering. Before passing the dataset to any algorithm,
it is cleaned by eradicating the attributes and terms that are not related to the process of
classification [1]. Through this stage, data that is missing is occupied and made free of
redundancy and data also comes in a suitable format.

5.3. Tools and Techniques

For conducting experiments, the model was created on a platform known as “Google
Collaboratory”. Through it, a model was built using CNN known as “ResNet-50”. It is
one of the best-known models of deep learning utilized for classifying images effectively.
The residual neural network of CNN is 50 layers deep and is utilized to construct an
effective model by calling the sequence model. Different libraries from Python used in
model construction were TensorFlow, Keras, etc. The loss function used for the supporting
model was “Binary Cross Entropy”. The optimizer algorithm used for optimizing the
model’s performance was “Stochastic Gradient Descent (SGD)”.

5.4. Performance Matrix

Table 2, below, shows the performance metrics used to evaluate the performance
of the proposed methodology. It is the confusion matrix of 2 × 2 used for plotting the
diversity between the proposed values of datasets and the predicted values estimated by
the models for making different assessments. The schematic of the confusion matrix is
shown in Table 3.

Table 2. Hyperparameter configuration after performing the optimization for brain-tumor detection.

Hyperparameter Configuration

Optimizer SGD

Number of Epochs 50

Learning Rate 0.001

Momentum 0.9

No. of Layers 7

Filter Size 5×5

Batch Size 32

Activation Function Relu

Table 3. Confusion matrix.

Predicted

Positive Negative

A
ct

ua
l Positive TP FN

Negative FP TN

• Accuracy: It is the number of correct predictions in the dataset to the total number of
given inputs and is collected by Equation (2).

Accuracy =
TP + TN

TP + FP + TN + FN
(2)
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• Precision: It can be defined as the number of correct predictions to the total number of
inputs. The precision can be calculated using the following Equation (3).

Precision =
TP

TP + FP
(3)

• Recall: It can be defined as the correct prediction of class to the total number of inputs
of that class. Recall can be calculated with the help of Equation (4).

Recall =
TP

TP + FN
(4)

• F1-Score It is difficult to decide whether high precision or low recall is better when com-
paring different models. F1-Score combines both the precision and recall to calculate
results. Equation (5). shows the F1-Score:

F1-Score =
Precision ∗ Recall
Precision + Recall

(5)

According to the proposed methodology mentioned in Section 5 and the experiment
conducted on the data, the performance of the system is evaluated in terms of accuracy,
precision, recall, and F1-Score.

5.5. Optimal Algorithms

Optimization classifiers are the main core for constructing a model through a neural
network. The model learns from the input data, initializes weights, and makes an optimal
prediction. The most commonly used optimization algorithms include: SGD-Stochastic Gra-
dient Descent, GD-Gradient Descent, ADAM-Adaptive Moment Estimation, Momentum,
RMSProp, AdaGrad-Adaptive Subgradient, and ADAS-Adaptive Scheduling of Stochastic
Gradients. The schematic of an optimizer algorithm is shown in Figure 11.

Figure 11. Optimization classifier.

Figure 11 shows all the optimization algorithms. SGD was picked for conducting
this research because it is better than all the other classifiers in terms of having: “high
generalization ability”, “quick convergence” and “high accuracy”.

5.6. Experimentation

All the images were resized to 244 × 244 pixels from an original size of 1440 × 1440 to
be used further for training and testing purposes. The model was trained with the help of
an SGD optimizer along with a learning rate of 0.01 and binary cross entropy loss function.
The learning rate helps sort out convergence problems. The model was trained for up to
50 epochs with a batch size of 10 and imagenet weights. The model was successfully trained
on the given dataset with a training accuracy of 99.82%. A total of “753” images was used for
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the testing model and the accuracy achieved during the testing phase was 99.5%. The model
summary of the proposed model is given in Figure 12. The graphical representation of
accuracy and loss during model training is shown in Figure 13 and Figure 14, respectively.

Figure 12. Model summary of the proposed model.

Figure 13. Training accuracy per epoch.
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Figure 14. Training loss per epoch.

We presented a basic CNN architecture comprised of seven layers with various hy-
perparameter tunings for brain-tumor detection and retained the batch size of 32 which
showed optimal performance. The convolution layer has a 5 × 5 filter size followed by
a pooling layer with a 2 × 2 filter size and stride of 2. The penultimate layer is fully con-
nected and we applied a dropout of 0.3 to only this layer. In the final layer, we opted for
a softmax output layer with ‘n’ classes. After the entire optimization process, we present
the hyperparameter configurations in Table 2, which show the best possible results for
brain-tumor detection.

There are various machine-learning and deep-learning models and their variations
were tested in order to achieve better performance for brain-tumor detection, as depicted in
Table 4. It can be evident from the results that the proposed method with the SGD optimizer
outperformed the baseline method in terms of various performance metrics, i.e., F1-Score,
precision, recall, and accuracy

Table 4. Performance measure for various techniques for brain-tumor detection.

Method F1-Score Precision Recall Accuracy

SVM 90.80% 90.12% 89.67% 91.63%

CNN 92.75% 92.90% 91.13% 93.53%

AlexNet 92.60% 93.30% 91.05% 94.50%

ResNet-18 93.33% 94.55% 90.65% 95.06%

ResNet-34 94.22% 94.64% 93.22% 96%

ResNet-50 95.05% 94.65% 91.25% 96.75%

VGG-16 95.35% 95.10% 92.95% 97.80%

Proposed Method 96.10% 96.50% 95.62% 99%

Figure 15 shows the pictorial view of the whole dataset, in which 2079 images had
no tumor and 1683 images included tumors. These numbers represent how correctly the
model predicted the tumor and normal images.
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Figure 15. Data classification.

Figure 16 shows the confusion matrix for the result predicted by the model. A total
of 111 images weer misclassified out of 753 images used for the testing phase. For the
No-tumor label, the achieved F1-Score, precision and recall were 96.1%, 96.5% and 95.62%,
respectively. For the tumor label, F1-Score was 96.68%, precision 96.50% and recall 95.73%.

Figure 16. Proposed-model confusion matrix.
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The model was trained efficiently through the use of ResNet-50 and a 2-D convolu-
tional layered network. The brain tumor dataset used was divided between training and
testing data. Achieved accuracy for training and testing was 99.82% and 99.5%, respectively.
Data preprocessing, pixel reduction, loss function, and optimizer are some of the techniques
used for facilitating the experimentation phase. The performance achieved using the SGD
optimizer is highly generalized and accurate. The uniqueness of this model is that it has
been trained upon a large number of datasets which was previously not performed. In
addition, the accuracy achieved with a combination of CNN and SGD made it a more
preferable approach to adopt for the prediction of brain tumors.The limitation of using
CNN with SGD is that the model is trained using a very small learning rate. To further
enhance the efficiency of the model and make it more generalized, the proposed model
should be trained with stochastic gradient classifiers other than SGD.

The results of the proposed method were also compared with some state-of-the-
art methods in terms of accuracy and F1-Score. It is evident that the proposed method
outperformed the baseline methods. The significance of the diagnosis provided by the
doctor increased the accuracy of their assistance in identifying the tumour and treating the
patient. The comparative results are presented in Table 5.

Table 5. Comparative result analysis.

Method Dataset (No. of Images) Accuracy F1-Score

VGG-19 with ADAS Optimizer Brain MRI Dataset (1307 Images ) 94.56% 94.90%

Discrete Wavelet Transform (DWT) and support vector machine (SVM) DICOM dataset (750 samples) 94.6% 93.56%

AlexNet with Shallow CNN and ADAM optimizer Brain MRI Images (253 Images) 96.05% 94.12%

Fuzzy C-means with super-resolution and CNN with ADAM The Cancer Imaging Archive (500 samples) 98.33% -

Modified genetic algorithm and support vector machine BRATS-2018 98.67% 93.67%

Proposed Method Kaggle Br35H Dataset (804 Images) 99% 96.1%

6. Conclusions

This paper focused on developing a general model that works best for the detection
of tumors in brain cells. The major objective behind conducting this research was to help
doctors identify one of most precarious diseases found in humans. The dataset used for this
research was taken from the Kaggle repository. In total, there are 3762 images in the dataset.
This study used the CNN deep-learning algorithm to classify tumors. ResNet-50 and a
2D layered network of CNN were utilized to train the model. SGD optimizer algorithm
was deployed to enhance the performance of the model. The accuracy observed during
the training phase came out to be 99.82% and the accuracy achieved during the model
testing phase was 99.5%. Techniques of computer vision (CV) such as image processing
and image segmentation were used to facilitate the research work. The performance of
the model achieved using the SGD optimizer is highly generalized and precise. In the
future, the accuracy and some other performance-measure values can be improved using
a large number of datasets with some other deep-learning approaches utilizing an SGD
optimizer or using CNN with gradient-boosting algorithms other than SGD. Besides using
more datasets for achieving more improved accuracy from the system, the research can
also progress by developing approaches to specifically classify tumors on the basis of their
characteristics or by their disease type, i.e., malignant or benign.
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16. Bober, P.; Alexovič, M.; Tomková, Z.; Kilík, R.; Sabo, J. RHOA and mDia1 promotes apoptosis of breast cancer cells via a high
dose of doxorubicin treatment. Open Life Sci. 2019, 14, 619–627. [CrossRef]

17. Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer
learning and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. [CrossRef]

18. Siar, M.; Teshnehlab, M. Brain tumor detection using deep neural network and machine learning algorithm. In Proceedings of
the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 24–25 October 2019;
IEEE: Mashhad, Iran, 2019; pp. 363–368.

19. Saba, T.; Mohamed, A.S.; El-Affendi, M.; Amin, J.; Sharif, M. Brain tumor detection using fusion of hand crafted and deep
learning features. Cogn. Syst. Res. 2020, 59, 221–230. [CrossRef]

20. Han-Trong, T.; Nguyen Van, H.; Nguyen Thi Thanh, H.; Tran Anh, V.; Nguyen Tuan, D.; Vu Dang, L. An Efficient Method for
Diagnosing Brain Tumors Based on MRI Images Using Deep Convolutional Neural Networks. Appl. Comput. Intell. Soft Comput.
2022, 2022, 2092985. [CrossRef]

21. Hossain, A.; Islam, M.T.; Islam, M.S.; Chowdhury, M.E.; Almutairi, A.F.; Razouqi, Q.A.; Misran, N. A YOLOv3 deep neural
network model to detect brain tumor in portable electromagnetic imaging system. IEEE Access 2021, 9, 82647–82660. [CrossRef]

22. Sharif, M.I.; Khan, M.A.; Alhussein, M.; Aurangzeb, K.; Raza, M. A decision support system for multimodal brain tumor
classification using deep learning. Complex Intell. Syst. 2022, 8, 3007–3020. [CrossRef]

23. Sharif, M.I.; Li, J.P.; Khan, M.A.; Saleem, M.A. Active deep neural network features selection for segmentation and recognition of
brain tumors using MRI images. Pattern Recognit. Lett. 2020, 129, 181–189. [CrossRef]

128



Biomedicines 2023, 11, 184

24. Hu, Y.; Xia, Y. 3D deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In
Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada, 14 September 2017; Springer: Quebec
City, QC, Canada, 2017; pp. 423–434.

25. Deb, D.; Roy, S. Brain tumor detection based on hybrid deep neural network in MRI by adaptive squirrel search optimization.
Multimed. Tools Appl. 2021, 80, 2621–2645. [CrossRef]

26. Razzaq, S.; Mubeen, N.; Kiran, U.; Asghar, M.A.; Fawad, F. Brain Tumor Detection From MRI Images Using Bag Of Features And
Deep Neural Network. In Proceedings of the 2020 International Symposium on Recent Advances in Electrical Engineering &
Computer Sciences (RAEE & CS), Islamabad, Pakistan, 20–22 October 2020; IEEE: Piscatawaty, NJ, USA, 2020; Volume 5, pp. 1–6.

27. Liu, T.; Yuan, Z.; Wu, L.; Badami, B. An optimal brain tumor detection by convolutional neural network and enhanced sparrow
search algorithm. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 459–469. [CrossRef] [PubMed]

28. Kumar, S.; Sharma, A.; Tsunoda, T. Brain wave classification using long short-term memory network based OPTICAL predictor.
Sci. Rep. 2019, 9, 9153. [CrossRef]

29. Manjunath, S.; Sanjay Pande, M.; Raveesh, B.; Madhusudhan, G. Brain tumor detection and classification using convolution
neural network. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 2277–3878.

30. Sharif, M.; Amin, J.; Raza, M.; Yasmin, M.; Satapathy, S.C. An integrated design of particle swarm optimization (PSO) with fusion
of features for detection of brain tumor. Pattern Recognit. Lett. 2020, 129, 150–157. [CrossRef]

31. Sharif, M.I.; Li, J.P.; Amin, J.; Sharif, A. An improved framework for brain tumor analysis using MRI based on YOLOv2 and
convolutional neural network. Complex Intell. Syst. 2021, 7, 2023–2036. [CrossRef]

32. Chaudhary, A.; Bhattacharjee, V. An efficient method for brain tumor detection and categorization using MRI images by K-means
clustering & DWT. Int. J. Inf. Technol. 2020, 12, 141–148.

33. Sukumaran, A.; Glan, D.G.; Kumar, S. An improved tumor segmentation algorithm from T2 and FLAIR multimodality MRI brain
images by support vector machine and genetic algorithm. Cogent Eng. 2018, 5, 1470915. [CrossRef]

34. Deepak, S.; Ameer, P. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 2019,
111, 103345. [CrossRef]

35. Wasson, V.; Kaur, B. Meta-analysis of distortions effects on quality of digital images using standard IQA datasets. J. Discret. Math.
Sci. Cryptogr. 2021, 24, 1545–1558. [CrossRef]

36. Özyurt, F.; Sert, E.; Avcı, D. An expert system for brain tumor detection: Fuzzy C-means with super resolution and convolutional
neural network with extreme learning machine. Med. Hypotheses 2020, 134, 109433. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

129



Citation: Semenyutin, V.; Antonov,

V.; Malykhina, G.; Salnikov, V.

Investigation of Cerebral

Autoregulation Using

Time-Frequency Transformations.

Biomedicines 2022, 10, 3057.

https://doi.org/10.3390/

biomedicines10123057

Academic Editors: Wu Qiu

and Tommaso Bocci

Received: 4 September 2022

Accepted: 20 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Investigation of Cerebral Autoregulation Using
Time-Frequency Transformations

Vladimir Semenyutin 1, Valery Antonov 2, Galina Malykhina 3,* and Vyacheslav Salnikov 3

1 Almazov National Medical Research Center, Ministry of Health of Russia,
Polenov Neurosurgical Research Institute, 12 Mayakovsky Street, Saint-Petersburg 191014, Russia

2 Department of Higher Mathematics, Peter the Great St. Petersburg Polytechnic University,
Saint-Petersburg 195251, Russia

3 Higher School of Cyber-Physical Systems and Control, Institute of Computer Science and Control,
Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg 195251, Russia

* Correspondence: g_f_malykhina@mail.ru; Tel.: +8-921-43-15-114

Abstract: The authors carried out the study of the state of systemic and cerebral hemodynamics
in normal conditions and in various neurosurgical pathologies using modern signal processing
methods. The results characterize the condition for the mechanisms of cerebral circulation Institute of
Computer Science and Control, Higher School of Cyber-Physical Systems and Control regulation,
which allows for finding a solution to fundamental and specific clinical problems for the effective
treatment of patients with various pathologies. The proposed method is based on the continuous
wavelet transform of systemic arterial pressure and blood flow velocity signals in the middle cere-
bral artery recorded by non-invasive methods of photoplethysmography and transcranial doppler
ultrasonography. The study of these signals in real-time in the frequency range of Mayer waves
makes it possible to determine the cerebral autoregulation state in certain diseases before and after
surgical interventions. The proposed method uses a cross-wavelet spectrum, which helps obtain
wavelet coherence and a phase shift between the wavelet coefficients of systemic arterial pressure
signals and blood flow velocity in the Mayer wave range. The obtained results enable comparing
the proposed method with that based on the short-time Fourier transform. The comparison showed
that the proposed method has higher sensitivity to changes in cerebral autoregulation and better
localization of changes in time and frequency.

Keywords: cerebral autoregulation; transcranial doppler; Mayer waves; wavelet transform; wavelet
coherence; phase shift

1. Introduction

The future development of personalized medicine is determined by the synergy of
knowledge and efforts of scientists from several fields of medicine, physiology, mathematics,
and computer science. Approaches based on signal processing, computer modeling, and
machine learning complement the main instrumental methods for studying biological
processes and allow a deeper understanding of the mechanisms of human disease and
personalized treatment strategies. Despite the increased popularity of artificial intelligence,
machine learning, and signal processing approaches, a lot of effort still needs to be put
into preparing them for clinical implementation. The use of modern methods of signal
processing and neural networks allows for increasing the possibilities of non-invasive
methods to measure and control regulation processes. Features of integrating general and
personalized heterogeneous data is a complex task, the solution of which should comply
with accepted ethical and legal standards.

Cerebral autoregulation (CA) maintains relatively constant cerebral blood flow despite
perfusion pressure change. The study of the CA phenomenon was difficult when using
invasive methods for assessing changes in cerebral blood flow and perfusion pressure,
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which are not applicable in clinical practice [1]. The introduction of transcranial Doppler
ultrasound into practice and the development of non-invasive methods for assessing
systemic blood pressure (BP) and dynamic CA made it possible to conduct studies directly
at the patient’s bedside [2–5].

CA functions through myogenic, metabolic, and neurogenic mechanisms. Usually,
there is a distinction between static and dynamic CA. Static CA characterizes changes
in cerebral blood flow with long-term changes in perfusion pressure, whereas dynamic
CA is associated with relatively rapid fluctuations in BP. The CA system dampens these
fluctuations, which manifests itself in the presence of consistency and phase shift between
fluctuations in BP and blood flow velocity (BFV) in the arteries at the base of the brain.
Early diagnosis of CA violations and their res allows for the prevention of a number of
ischemic and hemorrhagic complications.

The rapid development of digitalization in medicine, the use of computers, and
modern software packages make it possible to develop and apply methods of mathematical
statistics, digital signal processing, and machine learning in medical research to study the
processes of CA [6–10].

The spectral analysis of BFV and BP showed the presence of four relatively stable
fluctuations: heart rate (0.65–1.4 Hz), respiratory excursions (0.15–0.65 Hz), Mayer systemic
waves (0.08–0.12 Hz), and intracranial B-waves (less than 0.05 Hz) [11,12]. The slow arterial
pressure oscillations originally described by S. Mayer [13] had in anesthetized rabbits a
frequency of 6 to 9 cycles/min, i.e., 0.1 to 0.15 Hz, which is slower than the frequency of
spontaneous sympathetically mediated arterial pressure oscillations in conscious rabbits
(~0.3 Hz). The term Mayer waves are widely used now.

For continuous assessment of the CA state in real-time, some authors use several
methods of digital signal processing [14–16]. They select the M-waves of the BFV and BP
signals using an ideal filter and calculate the coherence value, the phase shift (PS) in the
coherence intervals for the received signals. The violation of CA leads to an increase in
the bandwidth of the autoregulatory filter in the range of M-waves and, as a result, to
an increase in coherence and a decrease in the PS between the BFV and BP oscillations.
This protective mechanism plays a significant role in the functioning of the brain. The
disadvantage of the real-time implementation of this method is the insufficiently good
localization of the coherence intervals.

Other authors apply the method of assessing the CA by calculating the cross-correlation
coefficient between the BFV and BP signals in the M-wave range. In-phase slow fluctuations
of these signals with low efficiency of the CA lead to an increase in the transmission of
M-waves, whereas the cross-correlation between BFV and BP is close to unity. While in the
normal state of the CA, the cross-correlation decreases. The disadvantage of this method is
the dependence of the CA estimation results on the shape of the cross-correlation function
and on the phase shift angle between BFV and BP, which can vary from 0.8 to 1.4 radians,
affecting the cross-correlation coefficient [17–19].

A number of publications show the possibility of using the wavelet transform of the
BFV and BP signals to estimate the coherence and phase shift in the wavelet decomposition
spaces that correspond to the M-wave range [20,21].

Further development of this approach seems promising. Therefore, the goal of our
study is to develop an algorithm for diagnosing disorders of the regulation of cerebral
circulation, using the functions of wavelet coherence and phase shift of the BFV and BP
signals in the wavelet decomposition spaces corresponding to the range of M-waves, and
to implement this algorithm in the measuring information system in real-time.

The paper aims to develop a method for determining the current state of the patient’s
cerebrovascular autoregulation system in real-time, including “at the patient’s bedside”.
Real-time CA monitoring, along with conventional monitoring, seems to be a promising
method for improving individualized patient care. Early diagnosis of impaired cerebral
autoregulation and its restoration allows the prevention of a number of ischemic and
hemorrhagic complications.
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Evidently, this method reflects our knowledge of the autoregulation process, having
higher sensitivity and lower delay. The method based on the cross-correlation function,
which is being developed by scientists [22,23], indirectly determines the state of autoreg-
ulation, but it is not sensitive enough. The result of this method depends on the form
of the cross-correlation function. Transcranial Doppler sonography (TCD) is the main
non-invasive method for the continuous recording of cerebral blood flow, which makes it
possible to assess the rate of CA in real-time with a simultaneous non-invasive recording of
BP [24]. TCD is implemented as a portable, bedside, non-invasive diagnostic tool used to
assess cerebral hemodynamics in real-time [25].

Assessment of CA using NIRS-only methodology seems feasible in critically ill se-
dated/coma patients after incorporating methodological improvements. As the authors of
the article [26] state, the NIRS-only methodology has the advantage that it is non-invasive
and does not require monitoring of arterial blood pressure. However, the method has
not yet entered into practice and requires further validation. R. Panerai et al. [27] use
an approach to measuring CA based on transfer function analysis. They showed that
although the TCD is only capable of measuring blood flow index and not true blood flow,
the measurement results are representative and widely used to assess dynamic CA [28,29].

A new assessment of dynamic CA using magnetic resonance imaging technology
makes it possible to evaluate both global and spatially differentiated values of the autoregu-
lation index [27]. Big data in intensive care units expand the opportunities for neurocritical
care and helps prevent secondary brain damage [30].

2. Materials and Methods

2.1. Patients and Healthy Volunteers

We examined 6 patients aged 41 to 63 with arteriovenous malformations of the brain,
6 patients aged 52–72 with stenosis of the brachiocephalic arteries, and 9 healthy volunteers,
including four women and five men, aged 19 to 35 from students and staff of the Almazov
National Medical Research Center (ANMC), Saint Petersburg, Russia, who did not have
any cardiovascular, pulmonary, and cerebrovascular pathology in accordance with the
Protocol of 5 April 2010, approved by the Ethics Committee of the ANMC and Carnet-
consensus. At the same time, we performed non-invasive monitoring of BP using digital
photoplethysmography (CNAP, Graz, Austria) and BFV in both middle cerebral arteries
using transcranial doppler ultrasonography (MultiDop X, DWL, Singen, Germany,) in the
supine position under the control of end-tidal CO2.

We performed hypercapnic (breathing with a 5% mixture of CO2 with air for two
minutes) and hypocapnic (hyperventilation, providing a significant decrease in BFV, which
characterizes an increase in the tone of the distal arteries and arterioles) tests. The tests
were used to evaluate changes in the state of the CA.

All studies were approved by the Ethics Committee of ANMC.

2.2. Time-Frequency Analysis of Signals Characterizing CA

The numerical method for assessing the CA state is determined by the presence of
consistency between the fluctuations of BP and BFV in the range of M-waves. In our
survey, we used the range of M-waves, in which fluctuations are primary, and the phase
shift between BP and BFV characterizes the state of CA. The analysis of other frequency
ranges is not the subject of this article. The state of the target audience should be diagnosed
both offline and online. When working in real-time, the signal analysis is performed
within a frame sliding along the signals. In both cases, it is required to isolate the coherent
components of the signal in the given frequency range to determine the coherence coefficient
of the signals and the phase shift between them. The offline method allows us to analyze
the signal after the end of the measurements.
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2.2.1. Short-Time Fourier Transform

The traditional mathematical method that allows exploring the signal in the frequency
domain, which is based on the classical Fourier transform, implicitly assumes that the
signals are stationary in time. For non-stationary signals, the windowed Fourier transform
is usually used, which in the case of the Gaussian window is called the Gabor transform [31].

The short-time Fourier transform (STFT) is performed within the frame sliding along
the BP and BFV signals, which we denote as x(n), y(n), n = 1, . . . , Nf rame, where Nf rame
is the frame length. Signals x(n) and y(n) are mixed with other physiological signals
and noise. Therefore, when calculating the signal coherence characteristics and the phase
angle, the signals are smoothed within the frame. For smoothing, the frame is divided
into L windows x(n), y(n), n = 1, . . . , Nwin, of length Nwin, and the signal characteristics
averaged over all windows within each frame are calculated. The Hann window is used
for processing. The window is shifted within the frame by the amount equal to half the
length of the window Nshi f t =

1
2 Nwin.

For the centered signals in the windows, the Nwin–point Fourier transform X(k), Y(k),
is calculated, where k are discrete frequencies. The mutual spectral density Sx,y(k) =
X∗(k)Y(k)/Nwin, its modulus

∣∣Sx,y(k)
∣∣, and the phase Θx,y are related by: Sx,y(k) =∣∣Sx,y(k)

∣∣exp
(−jΘx,y

)
.

The spectral densities of signals x(n) and y(n) are the following:

Sx,x(k) =
X(k)X∗(k)

Nwin
; (1)

Sy,y(k) =
Y(k)Y∗(k)

Nwin
. (2)

The calculations are repeated for each shifted position of the window; as a result, we
obtain k values of the mutual and intrinsic spectral densities. The frame is characterized by
the smoothed averaged spectral densities obtained for each window within the frame:

Ŝx,x(k) =
1
L

L

∑
l=1

Sx,x(k), Ŝy,y(k) =
1
L

L

∑
l=1

Sy,y(k), Ŝx,y(k) =
1
L

L

∑
l=1

Sx,y(k), (3)

The coherence function is calculated from the smoothed spectral densities for each
frame using the formula:

γx,y(k) =

√√√√ ∣∣Ŝx,y(k)
∣∣2

Ŝx,x(k)Ŝy,y(k)
(4)

The average phase shift Θ̂x,y between the signals is obtained from the relation Ŝx,y(k) =∣∣Ŝx,y(k)
∣∣exp

(−jΘ̂x,y
)
.

The signals are represented as a mixture with other physiological signals and with
noise. Therefore, when calculating their spectra, averaging is proposed to suppress the
noise. For this purpose, the data frame is divided into windows, and the Fourier spectrum is
calculated for each window. The resulting spectra are averaged within the frame boundaries.
The offset of a window within the frame depends on the type of window. The frame offset
is set equal to the window offset. This allows us to speed up the calculations.

After calculating the coherence function and the phase shift of the signals for all L
windows of the current frame, the frame is shifted by the number of samples Nshi f t =

Nwin
2 ,

then the number of windows in every frame equals to L =
Nf rame
Nshi f t

.
The coherence function and the phase shift for each next frame are obtained from

the corresponding values of the previous frame by removing the characteristics of the
first window and adding the characteristics of the last window within the new frame.
Then for each m-th frame, the coherence function γx,y(k, m) and the phase shift function
Θ̂x,y(k, m) are obtained, where k is the frequency sample number and m is the sample
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number by time. The discreteness of time is counted by Nshi f t =
Nwin

2 . Therefore, the result
of the preprocessing algorithm is a two-dimensional time-frequency function of the signal
coherence γx,y(k, m) and a two-dimensional time-frequency function of the phase shift
Θ̂x,y(k, m).

When analyzing the state of cerebral autoregulation in real-time, time resolution, which
is determined by the Nshi f t frame shift in time, becomes important. Frequency resolution
matters when fine-tuning Mayer’s frequency to determine the signal coherence. The STFT-
based method has a constant resolution in time and frequency over the entire frequency
range of the BP and BFV signals, which does not always ensure the best analysis results.
The wavelet transform of the signal makes it possible to detect localized discontinuous
periodicity associated with certain disorders of the CA [32].

2.2.2. Continuous Wavelet Transform

The disadvantage of the windowed Fourier transform is the fact that the window size is
chosen once and remains constant; it does not adjust to the spectral properties of the signal.
To eliminate this shortcoming, we have replaced the traditional STFT-based approach with
the wavelet transform-based approach. A continuous wavelet can be interpreted as a set of
harmonic functions with a window that changes its size depending on the frequency band
of the signal under study.

Continuous Wavelet Transform (CWT), using a harmonic wavelet basis, is better
applied for detecting the harmonic components of the BP and BFV signals [33]. Wavelets
of this type include the complex Morlet wavelet, the complex Pole wavelet, and the real
wavelet representing the difference between Gaussians.

The idea behind the CWT is to use the wavelet as a band-pass filter. The CWT of the
signal x(t) is defined as the convolution with the scaled and normalized wavelet.

X̂(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt; (5)

where ψ∗(.) denotes the complex conjugation, 1√
a ψ
(

t−b
a

)
is the normalized wavelet func-

tion whose parameter b corresponds to the time shift, and the parameter a > 0 specifies
the scaling.

After replacing the integral with the sum for discrete calculations n = t
δt , the relation

for the CWT coefficients becomes:

X̂(s, n) =
N−1

∑
n′=0

x(n)ψ∗
(
(n − n′)δt

s

)
(6)

By the convolution theorem, the wavelet coefficients can be calculated more efficiently
as the inverse discrete Fourier transform (DFT) of the product of the Fourier transforms of
the signal and the wavelet coefficients in accordance with the formula:

X̂(s, n) = x(n) ∗ ψ(n) = F−1[F(x(n))·F(ψ(n, s))] (7)

where F−1 is the operator of the inverse discrete Fourier transform and s is the scale number.
To analyze the BP and BFV signals, we choose the Morlet wavelet, which is used in

medicine for cardiogram and encephalogram analyses more often than other wavelet bases
since it ensures the rapid determination of changes in non-stationary signals.

Continuous non-orthogonal wavelets are effective for the analysis of time series and
aperiodic shifts: the Morlet complex wavelet, the Pole complex wavelet, and the real
Gaussian difference wavelet. The Morlet wavelet is determined by the formula:

ψ(t) = π− 1
4 e−iω0te−

t2
2 (8)
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with parameter ω0 = 6. The Morlet wavelet in the frequency domain has the form

ψ̂(sω) = π− 1
4 e−

(sω−ω0)
2

2 .

2.3. Wavelet Transform of Signals Characterizing CA

The state of the CA is characterized by a phase shift between the BP and BFV separately
for the right and left hemispheres of the brain in the presence of signal coherence in the
decomposition space corresponding to the M-wave range, where the coherence is maximum.
When describing the algorithm, we use the designation ξn for the sequence of readings of
the BP signal and ζn for the BFV.

The algorithm for calculating the coherence and phase shift of signals by CWT, which
is applied to two discrete centered signals xn = ξn − 1

N ∑N−1
n=0 ξn and yn = ζn − 1

N ∑N−1
n=0 ζn ,

is measured with the use of optical sensors. The calculation is applied to data frames
of length: = N = 2 f loor(log2 (N′))+1, where N′ is the initial length of the signal frame to
be analyzed.

For each signal frame xn and yn, we calculated the DFT:

x̂k = ∑N−1
n=0 xne−i2πkn, ŷk = ∑N−1

n=0 yne−i2πkn (9)

where k = 0, 1, 2 . . . N−1 denotes the frequency index.
The wavelet decomposition parameters, such as the minimum scale s0, the maximum

decomposition level J, specific decomposition levels j = 0.1 . . . J and the scale vector sj are
determined by the formulas: s0 = 2δt, J = δj−1 log2(

Nxδt
s0

), sj = s02jδj.
The localization of wavelets in time and frequency makes it possible to associate the

pseudo-frequencies f j with the scale sj: f j =
ω0

2πsj
with allowance for the Fourier factor

η0 = ω0
2π .

The circular frequency at each expansion scale is determined by the formula:

ωk =

{ 2πk
Nδt , k ≤ N

2
− 2πk

Nδt , k > N
2

(10)

The parameter ω0 affects the resolution in time and frequency. The temporal resolution
decreases as the frequency resolution increases. To analyze the signals, the Morlet wavelet
parameter ω0 = 6 is chosen, which approximately corresponds to the respiratory rate.

DFT of the analytical Morlet wavelet defined by the formula:

ψ̂(sωk) = π− 1
4 e−

(sω−ω0)
2

2 H(ω), (11)

contains the Heaviside function H(ωk) =

{
1, ωk > 0
0, ωk ≤ 0

. On each expansion scale, the

wavelet coefficients are normalized according to the formula:

ψ̂(sωk) =

√
2πs
δt

ψ̂0(sωk). (12)

Element-by-element multiplication of the Fourier image of the analyzed signal and
the Fourier images of wavelets at each decomposition level and the subsequent inverse
DFT transformation allows us to obtain the coefficients of the wavelet decomposition of the
signals xn and yn in the following form:

cx(n, s) =
N−1

∑
n=0

x̂kψ̂∗(sωk)eiωknδt, (13)

cy(n, s) =
N−1

∑
n=0

ŷkψ̂∗(sωk)eiωknδt. (14)
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The calculation of the wavelet coefficients of the Fourier domain enables reducing the
complexity of the calculations.

2.3.1. Smoothing

The signals x(n) and y(n) are mixed with other physiological signals and noise; it is
necessary to perform smoothing when calculating the wavelet transform of the signals.

Time smoothing is conveniently performed in the frequency domain using the Gaus-
sian window. To do this, on each scale, s = 1 : Ns, we multiply the Fourier trans-
form of the wavelet coefficients F(cx(n, s)), s = 1 : Ns by the filter impulse response

h(n, s) = e− 1
4 s2ω(s)2

and perform the inverse Fourier transform of the results:

c̃x(n, s) = F−1[h(n, s)·F(cx(n, s))], (15)

where F−1 is the inverse DFT operator, c̃w(n, s) are the smoothed wavelet coefficients.
Scale smoothing was performed by averaging for a rectangular window:

˜̃cx(n, s) =
Ls−1

∑
l=0

c̃x(n, s + l)
1
Ls

, (16)

˜̃cy(n, s) =
Ls−1

∑
l=0

c̃y(n, s + l)
1
Ls

. (17)

where Ls is the length of the window.
Consequently, we obtained the wavelet coefficients of two signals x(n) and y(n) smoothed

in time and scales ˜̃cx(n, s) и ˜̃cy(n, s).
The distribution of the wavelet coefficients in the area of Mayer waves is more peaked

than the Gaussian distribution. This fact should be taken into account, when smoothing
the coefficients in order to obtain more accurate results of the coherence analysis.

2.3.2. Cross-Wavelet Transform

The wavelet cross-spectrum characterizes the total energy of two signals, which is
non-zero if the two signals correlate with each other and disappear if the two signals are
independent: ˜̃cx,y(n, s) = ˜̃c∗x(n, s)˜̃cy(n, s). (18)

In the general case, the wavelet cross-spectrum is a complex function, which is repre-
sented as an amplitude and a phase:

˜̃cx,y(n, s) = �˜̃cx,y(n, s)
exp

⎛⎝arctg
Im
(˜̃cx,y(n, s)

)
Re
(˜̃cx,y(n, s)

)
⎞⎠. (19)

The coherence or consistency of two signals can be defined as the modulus of the
normalized cross-spectrum. Coherence defines a linear relationship between two signals.
The value of coherence varies from zero to one. The square of the normalized coherence
value is determined by the formula:

H2
x,y(n, s) =

⌊˜̃c∗x(n, s)˜̃cy(n, s)
⌋2

⌊˜̃c∗x(n, s)
⌋2⌊˜̃cy(n, s)

⌋2 . (20)
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In the presence of the signal coherence specified by the condition H2
x,y(n, s) ≥ 0.6, the

local phase shift of the signals can be obtained by the following formula:

θx,y(n, s) = arctg
Im
(˜̃c∗x,y(n, s)

)
Re
(˜̃cx,y(n, s)

) . (21)

The coefficient, 0.6, corresponds to the scale decorrelation length for the Morlet
wavelet [33,34]. A. Kulaichev [35] empirically showed in the analysis of encephalograms
that the value of the coherence coefficient should be greater than 0.6.

The value of the phase shift allows us to define the delay between two coherent signals.
Statistical data processing and calculations were carried out using the Matlab computer
program. The significance of differences in values was assessed using the Student’s t-test.

The sensitivity of phase shift changes during the tests was determined by the formula:

η =
|θext−θ|

θ
, where θext− is the extreme value of PS when it affects on autoregulation, θ is

the average value of PS when there is no effect on autoregulation.

3. Results

3.1. Results of the Wavelet Analysis of the BP and BFV Signals

BP and BFV measurements were obtained synchronously with a time interval of 0.01 s
after analog-to-digital conversion. The received BP and BFV formed into frames were
processed using the continuous wavelet transform. For each frame, CWT was performed
using the Morlet wavelets. As a result, the coherence values (20) were obtained for the
sequence of frames. The phase shifts (21) were calculated for those samples for which the
coherence values met the condition H2

x,y(n, s) ≥ 0.6.
The results obtained for one frame are shown in Figure 1 The arrows show the phase

angles between the BP and BFV signals in the left middle cerebral artery against the
background of the magnitude-squared coherence between these signals. The magnitude-
squared coherence value is shown in color according to the color bar. High coherence is
observed in the area of pseudo-frequencies that correspond to the heart rate, respiratory
rate, and M-waves. It is typical for a healthy volunteer (Figure 1a) to obtain a stable value
of the coherence and shear angle. For a patient with an arteriovenous malformation in the
basin of the left middle cerebral artery (Figure 1b), the shift angle was significantly smaller
(0.5 rad). These plots were obtained using the Matlab coherence function wcoherence().

(a) (b)

Figure 1. The example of the dependences of the phase shift between the BP and BFV signals in the
left and right middle cerebral arteries against the background of the magnitude-squared coherence
between the signals on time and pseudo-frequency: (a) For a healthy volunteer on one side; (b) For a
patient with an arteriovenous malformation in the left middle cerebral artery on the AVM side.
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Figure 2 shows the values of the average phase angle between the BP and BFV obtained
during the observation time (6 min) for both study groups. For each subject, the average
values of the phase shift angle on both sides and the confidence limits at the level of two
standard deviations (θx,y ± 3σ) are shown. Healthy volunteers are characterized by more
stable and symmetrical values of the angles. In patients with arteriovenous malformation
(AVM) in the region of the left middle cerebral artery, the values of the shear angles are
almost half of that on the right, and their values are more variable, with increased standard
deviation and wider confidence intervals.

Figure 2. Average phase shift (PS) between the BP and BFV signals in the Mayer waveband: (a) For
nine healthy volunteers; (b) For six patients with an AVM in the area of the left middle cerebral artery.

3.2. System of Neuro Care Monitoring

The system of Neuro Care Monitoring (NCM), designed to assess the state of the CA in
real-time, implements the algorithm presented here for the frame-by-frame determination
of the phase angle between the BP and BFV in the Mayer wave range in areas of coherence.

Figure 3 shows a block diagram of the NCM system applying transducers of the
multichannel system (1) Multi Dop X (DWL, Singen, Germany) for continuous non-invasive
assessment of BFV in the arteries of the brain base with the use of transcranial Doppler
ultrasonography and the Instrument (2) CNAP (Austria, Graz), for measuring systemic
blood pressure by photo-plethysmography. The measurement results after the analog-
to-digital conversion and the formation of frames in Data Input Device (3) are fed to the
input of the Computing Unit (4), which implements the developed algorithm in real-time,
sequentially processing data frames using the wavelet transform. Parameter Input Interface
(5) allows us to set a number of algorithm parameters: frame size and offset, coherence
threshold value, frequency from the Mayer range, etc. To document the results of the
study, you can enter the date and time of the study, patient or volunteer data, preliminary
diagnosis, etc. The results of patients’ examinations can be displayed (6), printed as a
document (7), saved in a data file, and sent to the database (8). The software interface is
designed to set calculation parameters and view results in real time.
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Figure 3. Block diagram of the NCM system for monitoring the state of the target audience in
real time.

The standalone application (software) was written in the C programming language to
acquire a reasonable calculation result in real-time. To get a better user-friendly interface,
we used the National Instruments Labwindows/CVI software developing environment
[https://ni.com/cvi]. (accessed on 20 August 2022). Its run-time library has a wide
range of control and representation features we utilized in our application. Moreover, it
has a set of data analysis functions that we also use in our software. The screenshots in
Figures 5 and 6 were taken by our application.

The sensors were always placed standardly bilaterally for registration of BFV in the
initial segments of the middle cerebral arteries. The frame size for STFT was 214 = 16,384
samples with an interval of 0.01 s, and the frame duration was 163.84 s. Inside the frame,
the sliding Hamming window was used, the size of which was 1024 samples, and the offset
was 512. Accordingly, the number of windows inside the frame was 32.

The frame size for the CWT transform was 214 = 16,384 samples with an interval
of 0.01 s, and the frame duration was 163.84 s. The duration of the study was 35 min.
The frequency range of M-waves approximately corresponds to the frequency range of
0.08–0.12 Hz. The study of signals in the range of M-waves shows that a more accurate
frequency setting within the M-range allows for increased sensitivity of the algorithm. The
higher frequency resolution of the wavelet transform makes it possible to determine the
phase shift in a specific space with maximum signal coherence.

Figure 4 shows the displayed results of examining a healthy volunteer during standard-
ized exercise. The hypercapnic test was based on breathing for 2 min with a carbogen—5%
mixture of CO2 with air, and the hypocapnic test was based on rapid, deep breathing for
1 min, leading to a significant decrease in CO2 in exhaled air.

The graphs results of measuring the BP and BFV in the left middle cerebral artery
(MCA) and the right MCA are shown in red, blue, and dark green, respectively. The scale of
these parameters is shown on the left. Graphs of the phase shift between the BP and the left
BFV and between the BP and the right BFV, calculated on the basis of wavelets, are shown
by the yellow and red lines, respectively. These plots can be compared with similar plots
derived from the FFT, as shown by the blue and green lines. Curves on the graphs show
that the CWT-based algorithm is more sensitive to PS changes during hypercapnic (1) and
hypocapnic (2) trials, and it has better time localization. The arrow pointing up indicates
the beginning of the hypercapnic test (1), while the arrow pointing down indicates its end.
Similarly directed arrows indicate the beginning and end of the hypocapnic test (2).
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Figure 4. Simultaneous monitoring of parameters of the cerebral, systemic hemodynamics, and the
cerebral autoregulation state in a 19-year-old healthy volunteer. The arrow pointing up indicates the
beginning of the hypercapnic test (1), while the arrow pointing down indicates its end. Similarly
directed arrows indicate the beginning and end of the hypocapnic test (2).

Sensitivity analysis of phase shift changes showed that the CWT-based method is
more sensitive. The sensitivity to the hypercapnic test using STFT for the left and right
hemispheres averaged 0.065 and 0.060, and for the CWT method—0.11 and 0.10, respec-
tively. The sensitivity to the hypocapnic test of the STFT method averaged 0.33 and 0.31,
and the sensitivity of the CWT method was 0.46 and 0.47, respectively.

For smaller samples of examined persons, we determined the reliability of the differ-
ence between the methods based on CWT and STFT using the t-test.

As a result of testing, we obtained the following:

- The hypercapnic test led to a greater relative decrease in PS on both sides for the CWT
method than for the STFT method; the magnitude of the decrease was 14.6 ± 6.6% for
CWT and 8.2 ± 4.5% on the left (p = 0.022), and for STFT—14.4 ± 5.8% and 8.2 ± 4.2%
on the right (p = 0.014).

- The hypocapnic test led to a greater relative increase in PS on both sides for the
CWT method than for the STFT method; the magnitude of the increase was 44.4 ±
22.7% for CWT and 28.8 ± 17.3% for STFT on the left (p = 0.035), 45.9 ± 24.8% and
28.2 ± 17.9% on the right (p = 0.041).

Figure 5 shows the results of the survey of a patient with a unilateral CA disorder in
the region of the stenotic artery, detected in real-time during the hypercapnic test (1) at time
intervals indicated by the number (2). The arrow pointing up indicates the beginning of the
hypercapnic test (1), while the arrow pointing down indicates its end. Similarly directed
arrows indicate the beginning and end of the hypocapnic test (2). Figures 4 and 5 adopted
the same designation as the dependency graphs.
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Figure 5. Simultaneous monitoring of the cerebral, systemic hemodynamics, and the state of the CA
in a 73-year-old patient with critical stenosis of the internal carotid artery. The arrow pointing up
indicates the beginning of the hypercapnic test (1), while the arrow pointing down indicates its end.
Similarly directed arrows indicate the beginning and end of the hypocapnic test (2).

Hypercapnic and hypocapnic tests are not always attractive for patients with pathology.
Therefore, such tests were carried out for one patient. The sensitivity of the CWT-based
method was also slightly better than that of the STFT method.

To validate the CWT-based method, we obtained BP and BFV measurements from
volunteers and patients within 8–10 min. These data were used to evaluate wavelet
coherence and PS for 11 healthy volunteers, six patients with malformation, four patients
with stenosis, and 10 patients with thrombosis (six patients before surgery). Reliable
determination of the left or right affected part of the artery was a criterion for the quality of
the algorithm. The PS between the BP and BFV signals in the wavelet domain of the Mayer
waveband for AVM patients is shown in Figure 2b.

Figure 6 presents the average values of PS for patients with carotid stenosis.

Figure 6. Average phase shift (PS) between the BP and BFV signals in the Mayer waveband in 6
patients with carotid stenosis.

141



Biomedicines 2022, 10, 3057

The analysis of the results of the PS assessment for patients with stenosis, shown in
Figure 6, allows us to conclude that Patient 1 has normal CA, Patients 2 and 6 have a very
low PS value, indicating a violation of CA, Patients 2 and 3 have stenosis of the left, and
in Patients 4 and 5—stenosis of the right internal carotid artery. The asymmetry of CA for
Patients 2–5 is determined with a reliability greater than 0.999.

Tests on healthy volunteers and patients were performed with a data frame length of
16,384 samples, obtained in 2.7 min. The number of scales of the wavelet transform is 16
with a 12 voices number. Taking into account the Fourier factor 0.9549, it turned out that in
the Mayer wavelength range, we had nine frequencies f = [0.124, 0.117, 0.110, 0.104, 0.098,
0.093, 0.088, 0.083, 0.078] Hz. This number of frequency gradations allowed us to fine-tune
the algorithm. The frequency resolution varied along the M-wave range. At the beginning
of the range at the frequency of 0.12 Hz, it was 0.007 Hz, and at the end of the range at the
frequency of 0.08 Hz, it was 0.005 Hz. The time resolution was 0.01.

The algorithm based on the short-time Fourier cross-spectrum had the worst frequency
resolution, which was the same over the entire range, equal to 0.04 Hz for our example.

4. Discussion

When monitoring CA in humans under various pathological conditions or in normal
conditions, it is advisable to use non-invasive assessment methods based on retrospective
cross-spectral and cross-correlation analysis of slow fluctuations in systemic and cerebral
hemodynamics. When conducting functional tests and diagnosing emergency conditions
in intensive care, it is necessary to apply a method that would provide prompt information
about the state of the CA in real time, with the best resolutions in time and frequency. In our
previous study [36,37], we proposed an algorithm based on the short-time cross-Fourier
spectrum and the coherence spectrum, which makes it possible to obtain the estimated
characteristics with constant scale resolution in time and frequency. The results received
under standardized loads on the cerebral circulatory systems showed the possibility of
assessing the state of cerebral autoregulation in real-time, and it first established the
advantages of the wavelet analysis to collect reliable data on the phase shift between
M-waves of BFV and BP.

The present study is different, as it allows monitoring with both higher sensitivity
and better resolution in the time-frequency domain due to the use of continuous wavelet
transform of the signals. In order to prove this, the authors carried out special tests that
affect CA.

At certain time slots, the condition H2
x,y(n, s) < 0.6 may not be satisfied, there is no co-

herence, and the phase shift cannot be calculated. In such cases, the graphs (Figures 5 and 6)
may have gaps, the number of which should be reduced. To do this, we propose the use of
a more accurate Mayer frequency fit. In our case, the wavelet transform using 12 voices
allows us to search at 14 pseudo-frequencies in the Mayer waveband. The subrange se-
lection criterion may be the largest proportion of values suitable for calculating the phase
shift. When scanning subranges of Mayer waves, it turned out that the relative proportion
of coherence intervals varies from 0.35 to 0.82 for the BP and BFV in the left hemisphere
and from 0.50 to 0.88 for the BP and BFV in the right hemisphere. Thus, increasing the
resolution in frequency improved the result of the study.

The proposed method was implemented as an algorithm for the operation of the
analytical NCM. Studies of healthy volunteers and patients with CA disorders carried out
with the NCM indicated the reliability of the results of a non-invasive assessment of the
CA rate in real time. By simultaneously monitoring indicators of systemic and cerebral
hemodynamics and CA rate, the developed analytical measuring system allowed in real-
time enhancing non-invasiveness, the efficiency of an objective assessment of a person’s
state in the norm, and the identification of a group of patients with CA disorders and a
high risk of complications. All this can determine tactics and continuous monitoring of
treatment results.
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Accumulation and centralization of the digitized research data of many patients
and the combination and formation of the knowledge base in the field of medicine and
physiology can serve as a prerequisite for further research. The observations related to one
patient contribute to a deeper understanding of the disease mechanisms and personalization
of treatment. The integration of general and personalized data can make it possible to
generate big data for the analysis of hidden patterns, where it is possible to use machine
learning methods.

One of the trends for the development of methods for studying CA characteristics
is to supplement the traditional methods of spectral, correlation, and wavelet analysis of
signals with fractal analysis algorithms since the width of the multifractal spectrum and the
correlation dimension of the BP and BFV signals are informative since they can correctly
show the relationship between these signals having different scaling behavior.

5. Conclusions

Ultimately, the application of time-frequency transformations makes it possible to
optimize the timing of obtaining the necessary information about the state of CA in order
to study the mechanisms of the regulation of cerebral blood flow and make therapeutic
and tactical decisions in real time, including in intensive care.

The results of our studies reflect the reliability of the data obtained from the non-
invasive assessment of the CA rate in real-time and allow us to identify a group of patients
with impaired CA and a high risk of complications and to determine the tactics and
continuous monitoring of treatment results.

The comparative analyses of the Fourier and wavelet transform show certain advan-
tages of the latter when carrying out standardized loads and allow us to recommend using
the wavelet transform to build algorithms for processing indicators from systemic and
cerebral hemodynamics.
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Abstract: (1) Background: Hepatic encephalopathy (HE) is a common complication in cirrhosis
patients, and recently, clinical evidence indicates that a higher risk of HE is associated with the usage
of proton pump inhibitors. However, the cortical mechanism underlying this neurological disorder
of HE remains unknown. (2) Methods: We review the medical recordings of 260 patients diagnosed
with liver cirrhosis between January 2021 and March 2022 in one tertiary hospital. Logistic regression
analyses were performed to identify the risk factor of HE development. To examine the relationship
between cortical dynamics and the administration of proton pump inhibitors, resting-state electroen-
cephalograms (EEGs) were conducted in cirrhosis patients who were treated with proton pump
inhibitors. (3) Results: About 28.5% (74 out of 260) of participants developed secondary HE in this
study. The logistics regression model indicated that multiple risk factors were associated with the
incidence of secondary HE, including proton pump inhibitors usage, white blood cell and neutrophil
counts, hemoglobin, prothrombin time activity, and blood urea nitrogen. A total of twelve cirrhosis
patients who were scheduled to use proton pump inhibitors consented to performing electroen-
cephalogram recordings upon admission, and eight of twelve participants were diagnosed with HE.
Spectral analysis revealed that the decrease in alpha oscillation activities was potentially associated
with the development of HE. (4) Conclusions: Our data support the susceptibility of secondary HE in
cirrhosis patients treated by proton pump inhibitors. One potential cortical mechanism underlying
the neurological disease is the suppression of alpha oscillations in the brain.

Keywords: hepatic encephalopathy; cirrhosis; proton pump inhibitor; risk factor; EEG; cortical;
neural oscillation

1. Introduction

It has been estimated that the aged-standardized prevalence of cirrhosis was about
0.7% in China, with the leading cause being the hepatitis B virus [1]. Multiple complications
of cirrhosis significantly reduced the quality of life and accounted for the increasing mor-
tality, including ascites, varices, hepatocellular carcinoma, hepatic encephalopathy (HE),
hepatopulmonary syndrome, and coagulation disorders [2]. The featured neurological dys-
function was the most devastating complication of cirrhosis; namely, the HE is frequently
reported to be associated with the medical usage of benzodiazepines, opiates, and proton
pump inhibitors (PPIs) [3]. PPIs remains one of the most commonly used medication
in cirrhosis populations despite its abuse in clinical practice [4,5]. Emerging evidence
suggested the potential link between PPI applications and HE development [4,6–8]. Thus,
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it is essential to identify the susceptibility of HE in patients with advanced liver disease
during PPI treatments.

Functional magnetic resonance imaging may provide morphological evidence as one
potential bio-marker for exploring the neural correlates of cognitive deficits [9]. How-
ever, the great cost and complicated data processing may hinder clinical applications.
Alternatively, the electroencephalogram is relatively easy to perform for the diagnosis of
the neurological disease, including epilepsy, autism spectrum disorder, and Alzheimer’s
disease [10,11]. Furthermore, emerging evidence has supported the diagnostic value of
quantitative EEGs in terms of survival and the risk of developing overt HE [12,13]. How-
ever, the relationship between the cortical dynamics and HE development during PPIs
management remains uncertain. In this study, we initially reviewed the medical data of
260 cirrhosis patients to confirm the role of PPIs in the development of secondary HE in
hospitalized patients. Next, we aimed to investigate the potential cortical signature of HE
candidates who received PPI treatment.

2. Materials and Methods

2.1. Patients and Study Design

This study was conducted in accordance with the guidance of the Helsinki Declaration
and approved by the Ethics Committee of The Third Xiangya Hospital, Central South
University, China (NO. 222128). The study was registered at chictr.org.cn accessed on 29
June 2022 (ChiCTR2200061590).

In the first experiment, we retrospectively reviewed the medical recordings of 260 pa-
tients who were diagnosed with liver cirrhosis using ICD-9-CM codes at The Department of
Infectious Diseases, Third Xiangya Hospital. The participants were then grouped into HE and
non-HE sub-groups according to the development of secondary HE during hospitalization.
HE is characterized by personality changes, intellectual impairment, and a depressed level
of consciousness, which was classified into five degrees based on the severity of disease [14].
The initial search of HE incidences was performed by scanning the home page of electrical
medical recording systems with the ICD-9-CM code (K72.903), which was followed by the
manual verification of the medical records provided by one independent researcher (L.Z.).
The classification of HE is provided in Table 1. We did not obtain information on disease
severities for the first experiment due to the retrospective design of the study. However, we
assessed the severity of HE in the prospective EEG study. The flow chart for patient selection
and inclusion and exclusion criteria are shown in Figure 1A.

Table 1. Classification of hepatic encephalopathy (HE) in patient with cirrhosis.

Revised HE Grading Criteria Neuropsychiatric Symptoms Nervous System Signs

Non-HE Normal Normal nervous system signs, normal
neuropsychological test results

Minimal HE Potential HE, no noticeable personality or
behavioral changes

Normal nervous system signs, but abnormal
neuropsychological test results

HE Grade One
Trivial and mild clinical signs, such as mild cognitive

impairment, decreased attention, sleep disorders
(insomnia and sleep inversion), euphoria, or depression

Asterixis can be elicited and neuropsychological
tests are abnormal

HE Grade Two

Marked personality or behavioral changes, lethargy or
apathy, slight orientation abnormality (time and

orientation), decreased mathematical ability, dyskinesia,
or unclear speech

Asterixis is easily elicited, and neurophysiological
testing is unnecessary

HE Grade Three Marked dysfunction (time and spatial orientation),
abnormal behavior, semi-coma to coma, but responsive

Asterixis usually cannot be elicited. There is ankle
clonus, increased muscle tone, and hyperreflexia.

Neurophysiological testing is unnecessary

HE Grade Four Coma (no response to speech and external stimuli)
Increased muscle tone or positive signs of the
central nervous system. Neurophysiological

testing is unnecessary
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Figure 1. Study protocol for the Experiment One and Two. (A) Flow chart of patient selection for the
first part of the study. (B) Schematic of EEG recording protocol for the second experiment.

In the second experiment, eighteen cirrhosis patients who were scheduled to take
PPI therapy during hospitalization were enrolled and consented to performing the EEG
recording. The first session of EEG recordings was conducted upon admission, and the
second session was accomplished one week after PPIs treatment. Six participants were
excluded for poor quality EEG signals. The schematic of experiment two is shown in
Figure 1B.

2.2. Resting-State EEG Recording

To evaluate the cortical features of patient with cirrhosis, resting-state EEG recordings
were conducted as previously described [15]. The EEG signal was recorded in one quiet,
temperature-controlled, and electrically shielded office. Participants were required to
remain salient and awake during the EEG recording with eyes closed. One 16-channel
bio-sensor (Cyton & Daisy, OpenBCI, Brooklyn, NY, USA) was used for the acquisition of
data, which was connected to one electrode cap. The sampling rate of the EEG collection
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process was 128 Hz, and the impedance of each recording channel was kept below 10 KΩ
to guarantee the quality of the EEG signal. The location of recording site and its region of
interest is shown in Table 2. The Cz channel was selected as the reference electrode, and
the Fpz channel was selected for the ground electrode.

Table 2. Definition of recording site of the EEG.

ROI Channel

Frontal site FP1, FP2, F3, F4, F7, F8
Central site C3, C4
Parietal site P3, P4, P7, P8

Occipital site O1, O2
Temporal site T7, T8

ROI: Region of interest.

2.3. EEG Signal Processing

The raw EEG data were restored by the OpenBCI Graphical User Interface and then
extracted for further processing with the MATLAB 2021 software (R2018b, MathWorks,
Natick, MA, USA). Offline EEG data preprocessing was accomplished by using the open-
source EEGLAB toolbox [16]. One independent researcher (L.Z.) manually examined
EEG raw traces to reject the artifacts and malfunctioning channels. Consequently, the
continuous EEG data were filtered with one band-pass filter between 1 and 45 Hz and
segmented into consecutive 2 s epochs. We also rejected the epochs with amplitudes over
±80 uV. Independent component analyses were then used to identify and rule out eye
movement artifacts. This was followed by the collection of fifty artifact-free segments for
the generation of datasets for quantitative analyses. To capture the cortical signature of
potential HE patients, fast Fourier transforms were applied to calculate the spectrogram
with the “spectopo.m” function script in EEGLAB. Five physiological sub-bands were then
determined, including δ (delta, 0.5–4.0 Hz), θ (theta, 4.0–8.0 Hz), α (alpha, 8.0–13.0 Hz), β
(beta, 13.0–30.0 Hz), and γ (gamma, 30.0–45.0 Hz).

2.4. Statistics

Data were presented with mean ± standard deviation, and the estimated risk was
provided as odds ratios (ORs) with 95% confidence intervals (CIs). To assess the normality
of data, Shapiro–Wilk tests were used. The chi-squared test or Fisher’s exact test were
applied when comparing the categorical data, and Student’s t-test or Mann–Whitney U
test were considered for continuous variables. To identify the independent risk factors of
secondary HE, logistic regression analyses were performed using the variables, with a p
value of less than 0.05 between the HE and non-HE groups. The spectral power density of
each channel was calculated by averaging the data across epochs for each patient. Statistical
analyses were conducted by the SPSS software (Version 26.0, Chicago, IL, USA). A p value
of less than 0.05 was considered statistically significant.

3. Results

3.1. Comparison of Clinical Data between HE and Non-HE Cohort

About 28.5% (74 out of 260) of cirrhosis patients developed the secondary HE during
hospitalization in this study. In the HE subgroup, almost eighty percent of participants
were males, and 69.9% for the non-HE cohort. The white cell and neutrophil counts were
significantly higher in the HE sub-group. The HE population presented generalized and
worsened hepatic functions, as demonstrated by the lower platelet count and albumin and
increased total bilirubin. In addition, significantly lower prothrombin activities and greater
international normalized ratios may reveal the worsened dysfunction of coagulation in
the HE cohort. The severity of liver diseases significantly increased in the HE cohort, as
assessed by the Child–Pugh and MELD scores. Less PPIs (76.3%) were administrated in
the non-HE sub-group, and 95.9% were administrated for the HE group. However, we did
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not observe significant differences in etiologies between two cohorts. The clinical data are
provided in Table 3.

Table 3. Clinical manifestations and laboratory results at admission.

HE (n = 74) Non-HE (n = 186) p Value

Sex, male, n (%) 59 (79.7) 130 (69.9) 0.071
Age (years) 56.65 ± 10.94 55.13 ± 12.58 0.583
WBC (×109) 7.15 ± 4.82 5.04 ± 3.12 0.000 *

Hemoglobin (g/L) 103.93 ± 25.39 113.99 ± 22.64 0.002 *
Platelet (×109) 91.76 ± 69.55 86.07 ± 57.25 0.678

Neutrophils (×109) 5.31 ± 4.19 3.57 ± 2.83 0.000 *
ALT (U/L) 211.01 ± 532.61 210.55 ± 787.61 0.884
AST (U/L) 218.23 ± 456.52 242.06 ± 1138.16 0.439

TB (umol/L) 147.49 ± 145.90 100.74 ± 117.73 0.011 *
AKP (IU/L) 194.79 ± 170.60 181.28 ± 159.67 0.452
γ-GT (U/L) 111.73 ± 133.36 166.29 ± 280.14 0.557

Albumin (g/L) 26.31 ± 5.44 29.42 ± 6.18 0.000 *
BUN (mmol/L) 8.72 ± 5.44 6.26 ± 4.00 0.000 *

Creatinine(umol/L) 102.03 ± 62.74 91.22 ± 109.09 0.010 *
CRP (mg/L) 30.67 ± 43.54 20.84 ± 25.74 0.085
K+ (mmol/L) 3.97 ± 0.65 3.80 ± 0.54 0.029 *

Na+ (mmol/L) 136.21 ± 6.24 138.00 ± 3.83 0.080
PTA (%) 45.60 ± 17.14 57.85 ± 16.97 0.000 *

INR 1.80 ± 0.96 1.42 ± 0.32 0.000 *
Child, n (A/B/C) 0/16/58 21/113/52 0.000 *

MELD Scores 21.81 ± 7.91 16.47 ± 6.12 0.000 *
PPIs (%) 71 (95.95%) 142 (76.34%) 0.000 *

Pathogeny 0.507
Hepatitis B, n (%) 41 (55.41%) 111 (59.14%)
Hepatitis C, n (%) 3 (4.05%) 10 (5.38%)

Alcoholic liver, n (%) 15 (20.27%) 22 (11.83%)
Hepatocellular carcinoma, n (%) 5 (6.76%) 18 (9.68%)

others, n (%) 10 (13.51%) 25 (13.44%)
WBC, white blood cell; ALT, glutamic pyruvic transaminase; AST, glutamic oxaloacetic transaminase; AKP,
alkaline phosphatase; γ-GT, γ-glutamyl transpeptidase; BUN, blood urea nitrogen; CRP, C-reactive protein; TB,
total bilirubin; PTA, prothrombin time activity; INR, international standard ratio; MELD, model for end stage
liver disease; PPIs, proton pump inhibitors. * (p < 0.05) indicates that there is a statistical difference.

3.2. Risk Factor Associated with the Development of Secondary HE

In the univariate analysis, multiple variables were associated with the incidence of
secondary HE in hospitalized patients, including white blood cell, hemoglobin, neutrophils,
total bilirubin, albumin, blood urea nitrogen, potassium, prothrombin time activity, interna-
tional standard ratio, MELD scoring, and PPIs application. This was followed by the multi-
ple stepwise logistic regression analysis, which identified that white blood cell (OR = 1.972,
95%CIs 1.299–2.993), hemoglobin (OR = 0.978, 95%CIs 0.963–0.992), neutrophils (OR = 0.505,
95%CIs 0.317–0.805), prothrombin time activity (OR = 0.955, 95%CIs 0.936–0.975), blood
urea nitrogen, (OR = 1.104, 95%CIs 1.018–1.198), and PPIs usage (OR = 7.867, 95%CIs
2.166–28.575) independently associated with the development of secondary HE (Table 4).
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Table 4. Association between the development of HE and risk factors.

Covariates Not Adjusted OR (95% CIs) p Value Adjusted OR (95% CIs) p Value

WBC 1.155 (1.068–1.248) <0.001 1.972 (1.299–2.993) 0.001
Neutrophils 1.161 (1.064–1.266) 0.001 0.505 (0.317–0.805) 0.004
Hemoglobin 0.982 (0.970–0.994) 0.003 0.978 (0.963–0.992) 0.003

PPIs 7.333 (2.201–24.438) 0.001 7.867 (2.166–28.575) 0.002
PTA 0.958 (0.941–0.975) <0.001 0.955 (0.936–0.975) <0.001
BUN 1.116 (1.052–1.185) <0.001 1.104 (1.018–1.198) 0.017

WBC, white blood cell; PPIs, proton pump inhibitors; PTA, prothrombin time activity; BUN, blood urea nitrogen.

3.3. Comparison of EEG Patterns between HE and Non-HE Patients Treated with PPIs

A total of 18 cirrhosis patients who were scheduled to receive the standard PPI therapy
(more than 1 week) consented to take the resting EEG recording. Six of them were excluded
for further analyses for bad EEG signals. About 66.7% (8 out of 12) of these patients were
diagnosed with HE after PPI treatments, and the baseline EEG data were recorded upon
admission (Figure 2A,C). Infection may result in the development of HE, pneumonia was
found in four HE cases and four with peritonitis, respectively. All the HE participants were
classified into minimal HE according to the disease severity criteria (Table 1). In contrast,
four patients who underwent baseline EEG recordings and PPI therapy (Figure 2B,D) did
not present HE symptoms during hospitalization.

Figure 2. Comparison of EEG signal between non-HE and HE patients who received PPIs treatment.
(A) Representative resting-state EEG traces in non-HE cohort, and (B) one with HE, respectively.
(C,D) Comparison of spectrogram at distinct neurological condition (non-HE versus. HE).

3.4. Alpha Oscillatory Activity Decreased in HE Candidates before PPI Therapy

Spectral analyses were then performed to capture the cortical signature of patients
who received PPI treatments. The grand average spectral power significantly decreased in
the HE sub-group at the sub-band of the alpha rhythm (Figure 3A,B). To detect the potential
source of distinct cortical oscillations, we compared the spectral power of alpha activities at
different brain regions, as shown in Table.2. Likely, only alpha oscillations were significantly
enhanced across the frontal, central, parietal, and occipital sites (Figure 3C–F). No statistical
significance with respect to spectral power densities was found in the temporal region
(Figure 3G).
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Figure 3. Reduction of alpha oscillations in the HE patients treated with PPIs. (A) Grand average
spectral power was compared between non-HE and HE patients, (B) significant reduced alpha
neural oscillation was associated with the HE development in cirrhosis patients under PPIs therapy.
(C–F) Suppression of cortical alpha activity was detected in the parietal, frontal, central, and occipital,
but NOT in the temporal region (G). A repeated-measures two-way ANOVA with post hoc Bonferroni
tests. * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

Cirrhosis is one late-stage hepatic disease caused by multiple etiologies, including
viral infection, fatty liver, autoimmune, chronic biliary, and cardiovascular disease [17].
Given its increasing prevalence in recent years [18], initiatives to prevent its progress
and the severe comorbidity are needed, among which the HE remains one common yet
debilitating complication in the cirrhosis population. Thus, the early recognition of HE is
key to improving the clinical outcomes for patients with advanced liver disease, especially
for those treated with multiple medications, resulting in potential liver or neurological
damage. In this study, we focused on the risk factor of secondary HE in the hospitalized
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population and prospectively examined the cortical signatures of susceptible HE patients
with the non-invasive EEG recording method.

The estimated incidence of decompensated cirrhosis was about 34% in the newly
diagnosed cirrhosis population, and more than half may suffer HE [19,20]. About 28.5%
patients were diagnosed with secondary HE during hospitalization. The exclusion criteria
of severe co-morbidity and trans-jugular intrahepatic portosystemic shunt cases may
contribute to the relatively low rate of HE in this study [21]. In addition, the major etiology
of cirrhosis was associated with hepatitis in more than half of the patients, and about 20%
for alcohol-related cirrhosis in HE sub-group, which serves as a strong predictor of HE in
cirrhosis patients [3].

Despite the etiologies, multiple risk factors were also considered to be related with the
development of HE, including age, bilirubin, INR, creatinine, sodium, HE grading, presence
of portal hypertension, minimal HE, and medications (PPIs, opiates, GABAergics, and
benzodiazepines) [3,22,23]. This is consistent with our finding in this study that higher risks
were associated with the usage of PPIs during hospitalization. However, the mechanism
underlying the neurological dysfunction induced by PPIs remains very uncertain.

It is well known that the elevation of blood ammonia participates in the development
of HE [24], of which the metabolism can be regulated by the intestinal microbiota directly
or indirectly [25]. The application of PPIs can change the pH of digestive system, resulting
in an unbalanced microenvironment for the intestinal microbiota [26,27]. Furthermore, the
small intestinal bacterial overgrowth can also be induced directly by targeting the proton
pump of the bacteria and fungi [26], which is associated with the bacterial translocation
and HE development.

The early recognition of HE candidates in liver cirrhosis is essential for preventing HE
and for improving clinical outcomes. However, identifying these patients at the early stages
of neurological impairments remains challenging, such as minimal HE or covert HE, mainly
due to the lack of clinically appreciable symptoms [28,29]. Several tools can be applied
to assess the mild changes in metal conditions [30,31], which may be costly and hard to
apply in clinical practices [29]. Alternatively, the non-invasive EEG recoding method has
been routinely used in the diagnosis of neurological disorders, including epilepsy, autism
spectrum disorders, and Alzheimer’s disease [10,11]. More recently, the application of
its usage in the diagnosis of overt HE may provide us with an alternative and feasible
approach for distinguishing the mild cases before potentially adverse interventions, such
as PPI treatments in this study.

In the EEG experiment, eight cases (66%) were diagnosed with HE after one-week of
PPI therapy, and they were all classified into minimal HE. The baseline EEG was performed
at admission and we found significant decreasing spectral power densities of the alpha
oscillations in the HE sub-group. Our preliminary evidence may reveal one possible link
between cortical oscillatory activities and the HE’s development during PPI applications.
Further studies with large sample sizes are needed to confirm the clinical efficiency of EEGs
in the prediction of HE or minimal HE under PPI treatments. Despite PPI interventions,
our data were consistent with previous findings that the disturbance of alpha oscillations is
captured at the initial stage of HE [12,32].

It is well known that alpha waves play important roles in cognitive functions and
dominate cortical activities during quiet wakefulness [33]. In addition, the reduction
in alpha oscillations is associated with certain forms of neurological disorders, such as
dementia [34]. In addition to the characteristic features of EEG patterns, the alpha oscillation
may also serve as a target of neuromodulation for treating major depressive disorders and
attention-deficit hyperactivity disorders [35–37]. Thus, we think that applying this index
in future studies will be promising for examining its role in the identification of HE or
minimal HE, or it can be a potential therapeutic target for mental dysfunctions in cirrhosis
patients who take PPI treatments.

Currently, the potential mechanism underlying the abnormal rhythm of cortical oscilla-
tions caused by distinct drug usage remains unknown. For example, characteristic increas-
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ing beta frequencies were observed after the administration of benzodiazepines [38,39],
which may induce EEG synchronizations and slow wave sleep to exert hypnogenic action
at the level of the lower brain stem [40]. In contrast, alpha oscillatory activity has been
modulated by multiple pharmacological agents via GABAergic, glutamatergic, cholinergic,
and serotonergic receptors in the cortex and thalamus [41]. Recent evidence demonstrated
that PPIs used against the core-cholinergic enzyme are responsible for biosynthesis of
acetylcholine and contribute to the development of cognitive impairments [42]. Given the
permeation kinetics via the blood–brain barrier [43], we assume that PPIs may regulate
the concentration of acetylcholine and/or other neurotransmitters in the central nervous
system, resulting in an altered phenotype with respect to alpha brain activities.

There were several limitations in this study. First, the main limitation of this study
originates from the small sample size used in the EEG experiment, as well as the potential
bias during patient selection. Thus, we may not conclude that the cortical patterns of alpha
activities are generally caused by PPI treatments, but there may be one potential link between
the brain function and medical therapy. Secondly, the application of PPIs may not be the
only at-risk medication in cirrhosis; others such as benzodiazepines, opiates, and gamma
aminobutyric acid may also contribute to the development of secondary HE. It is necessary to
investigate the electrophysiological effects related with other commonly used drugs.

5. Conclusions

In this study, we evaluated the potential risk of HE development in cirrhosis patients.
Multiple risk factors were independently associated with secondary HE in hospitalized
patient with liver cirrhosis, including PPI usage, white blood cell and neutrophil counts,
hemoglobin, prothrombin time activity, and blood urea nitrogen. Thus, our findings
supported the susceptibility of secondary HE during PPI management. Furthermore, in the
EEG experiment, we found one potential cortical mechanism underlying this neurological
disease, is the suppression of alpha oscillations of the brain.
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