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1. Introduction

Fractional calculus, a branch of mathematical analysis, extends traditional calculus
that encompasses integrals and derivatives of non-integer orders. This concept provides
a robust framework for modelling complex systems, particularly in physics, engineering,
and biology, where traditional calculus may fall short of capturing certain behaviours.
Unlike integer-order operations in traditional calculus, fractional calculus enables dif-
ferentiation and integration of arbitrary orders, offering flexibility in describing diverse
physical phenomena [1]. The origins of fractional calculus can be traced back to the late
17th century, following the development of classical calculus by Leibniz and Newton. The
concept was introduced in a letter from L’H ôpital to Leibniz in 1695, inquiring about the
meaning of a half-order derivative. Leibniz’s response hinted at the possibility of such an
operation, setting the stage for further exploration [2,3]. Despite early interest, fractional
calculus remained primarily a theoretical curiosity for over a century, exemplifying the
depth and complexity of this mathematical concept. Significant advancements in the 19th
century, led by mathematicians such as Liouville and Riemann, solidified the foundations
of fractional calculus. Liouville formalized the concept by defining fractional integration
and differentiation in terms of definite integrals, while Riemann expanded on these ideas
through the Riemann-Liouville integral [4,5]. These pivotal works established a rigorous
mathematical basis for fractional calculus, leading to its widespread applications across sci-
entific disciplines today [6,7]. As a result, fractional calculus is now considered an essential
mathematical tool, driving research and innovation in various fields [8–12].

The field of robotics has seen a revolutionary shift with the adoption of the fractional
calculus framework, which has empowered researchers to develop more resilient and
efficient control systems [13]. Conventional control methods often need help to address
the intricacies and uncertainties present in robotic systems. Fractional calculus offers a
refined approach to control and optimization thanks to its capacity to model systems with
memory and hereditary properties [14]. This has led to substantial enhancements in robotics,
particularly in motion planning, stability, and adaptive control. A significant advantage of
fractional calculus in robotics is its ability to provide more precise descriptions of dynamic
systems [15]. Robots frequently operate in environments with unforeseeable disturbances
and fluctuating load conditions, where traditional integer-order models may fall short.
However, fractional-order controllers deliver enhanced performance and reliability, such as
fractional-order proportional integral derivative (FOPID) controllers [16,17]. They excel at
managing system non-linearities and parameter variations, leading to smoother operations.
Moreover, fractional calculus has ushered in progress in robotic path planning and trajectory
optimization, enabling robots to manoeuvre more accurately through intricate and dynamic
environments [18–20]. By integrating fractional-order models, researchers have developed
algorithms that optimize paths more effectively, ensuring seamless transitions and reduced
energy consumption. In conclusion, applying fractional calculus in robotics marks a
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significant leap forward, providing innovative solutions to persistent challenges and laying
the groundwork for more advanced and autonomous robotic systems.

On this note, this Special Issue has captured the diversity of studies focusing on
fractional calculus applications in various robotic systems. It contains nine articles and one
review, which we will briefly describe in the next section. Please note that the purpose of
this editorial is not to elaborate on each of the articles but rather to encourage the reader to
explore them.

2. An Overview of Published Articles

Weidong Liu et al.’s article (contribution 1) introduces a fractional active disturbance
rejection control scheme for remotely operated vehicles (ROVs). This scheme, which
includes a double closed-loop fractional-order PID controller and model-assisted finite-
time sliding-mode extended state observer, is more than just a theoretical concept. It
has practical significance for ROV applications, as it demonstrates effective resistance to
disturbances and independence from accurate model data, enabling high-precision tasks to
be achieved despite disturbances and model uncertainties.

Likun Li et al.’s article (contribution 2) presents a novel approach to path planning
for car-like mobile robots with suspension. Their fractional-order enhanced path planning
method, which uses an improved ant colony optimization (ACO), is a unique solution. It
aims to generate smooth and efficient paths in narrow and large-size scenes. It includes an
accurate fractional-order-based kinematic modelling method and an improved ACO-based
path planning method with dynamic angle constraints, adaptive pheromone adjustment,
and fractional-order state-transfer models.

Bhukya Ramadevi et al. (contribution 3) propose a hybrid neural network model
that has the potential to revolutionize wind power forecasting. Their model, which uses
a long short-term memory model to forecast missing wind speed and direction data and
a fractional-order neural network with a fractional arctan activation function to enhance
wind power prediction, aims to improve wind power forecasting accuracy by addressing
data gaps. The model has shown promising results in the field of wind power prediction.

Mohamed Naji Muftah et al.’s article (contribution 4) focused on enhancing the per-
formance of a pneumatic positioning system by developing a control system based on
fuzzy fractional-order proportional integral derivative controllers. The controllers were
optimized using a particle swarm optimization algorithm, and real-time experimental re-
sults showed improved rapidity, stability, and precision compared to a fuzzy PID controller.
The proposed control system effectively controlled a pneumatically actuated ball and
beam system.

Banu Ataşlar-Ayyıldız (contribution 5) proposed a fractional-order proportional-tilt
integral-derivative controller for a serial robotic manipulator. The controller was designed
to achieve high-accuracy trajectory tracking and reduce the impact of disturbances and
uncertainties. The controller parameters were optimized using a hybrid Gray Wolf and
particle swarm optimization algorithm, demonstrating superior trajectory tracking and
increased robustness compared to other controllers. Additionally, it showed reduced energy
consumption, confirming its robustness and stability against continuous disturbances.

Xuan Liu et al.’s article (contribution 6) introduces a framework for implementing
digital twins in industrial robots to facilitate real-time monitoring and performance op-
timization. This framework incorporates multi-domain modelling, behavioural match-
ing, control optimization, and parameter updating. A fractional-order controller based
on an enhanced particle swarm optimization algorithm improves the system’s control
performance. Experimental validation demonstrates substantial enhancements in time-
domain performance, including reduced overshoot, decreased peak time, and improved
settling time.

Dora Morar et al.’s article (contribution 7) introduces two controller design procedures
for a mechatronic system. The first method formulates an optimization problem using
linear matrix inequalities to determine closed-loop poles and address model uncertainties
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using linear differential inclusions. The second method involves a cascade controller with
an inner P controller and an outer fractional-order FO-ID controller. Both methods offer
four degrees of freedom for each axis. The article includes a numerical example and a
comparison of performance metrics for the positioning system.

The article by Timi Karner et al. (contribution 8) discusses the use of dielectric elas-
tomer actuators in soft robotics, noting their viscoelastic behaviour. They derived a fully
fractional generalized Maxwell model using the Laplace transform to capture this behaviour.
Based on the experimental results, they utilized the Pattern Search global optimization
procedure to determine the model’s optimal parameters and number of branches. This
model can be implemented to control dielectric elastomer actuators and applied to various
viscoelastic materials in simulations.

Yixiao Ding et al.’s article (contribution 9) introduces a fractional-order impedance con-
troller for robot manipulators. Unlike traditional models, this method employs fractional
calculus to describe damping forces more accurately. A systematic tuning procedure is de-
veloped based on frequency design, and comparisons with integer-order controllers show
the fractional-order controller’s superior step response and anti-disturbance performance.

The tenth article by Kishore Bingi et al. (contribution 10) reviews state-of-the-art
fractional-order modelling and control strategies for robotic manipulators. Robotic manip-
ulators are crucial in various fields, especially where human access is limited or hazardous.
These highly complex systems require effective modelling and robust controllers to handle
uncertainties. The review paper presents comprehensive research on modelling and control,
aiming to provide the control engineering community with a better understanding and
up-to-date knowledge in this area. The paper includes a summary of around 95 related
works, focusing on modelling, control strategies, and future research directions.

3. Conclusions

In conclusion, this special issue, “Applications of Fractional-Order Calculus in Robotics”,
has successfully highlighted fractional calculus’s expansive and varied applications in en-
hancing robotic systems, demonstrating its critical role in modern robotics research and
development. By incorporating fractional calculus into their methodologies, researchers have
addressed complex problems with greater precision and efficiency, showcasing the versatility
and robustness of this mathematical approach. The articles within this issue cover diverse
topics, from improving control accuracy and optimizing path planning to enhancing system
robustness against disturbances and uncertainties.

The nine articles and one comprehensive review article in this special issue encapsu-
late various innovative approaches and novel methodologies. These contributions push
the boundaries of robotics, emphasizing theoretical advancements and practical imple-
mentations. Each article presents unique solutions to longstanding challenges in robotics,
highlighting the potential of fractional calculus to revolutionize various aspects of robotic
technology. In summary, this special issue collectively underscores the significant impact
of fractional calculus in advancing robotic technology and encourages further exploration
and development in this promising study area.
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Conflicts of Interest: The author declares no conflict of interest.

List of Contributions

1. Liu, W.; Guo, L.; Li, L.; Xu, J.; Yang, G. Fractional Active Disturbance Rejection Positioning and
Docking Control of Remotely Operated Vehicles: Analysis and Experimental Validation. Fractal
Fract. 2024, 8, 354. https://doi.org/10.3390/fractalfract8060354.

2. Li, L.; Jiang, L.; Tu, W.; Jiang, L.; He, R. Smooth and Efficient Path Planning for Car-like Mobile
Robot Using Improved Ant Colony Optimization in Narrow and Large-Size Scenes. Fractal
Fract. 2024, 8, 157. https://doi.org/10.3390/fractalfract8030157.

3



Fractal Fract. 2024, 8, 403

3. Ramadevi, B.; Kasi, V.R.; Bingi, K. Hybrid LSTM-Based Fractional-Order Neural Network for
Jeju Island’s Wind Farm Power Forecasting. Fractal Fract. 2024, 8, 149. https://doi.org/10.3390/
fractalfract8030149.

4. Muftah, M.N.; Faudzi, A.A.M.; Sahlan, S.; Mohamaddan, S. Fuzzy Fractional Order PID Tuned
via PSO for a Pneumatic Actuator with Ball Beam (PABB) System. Fractal Fract. 2023, 7, 416.
https://doi.org/10.3390/fractalfract7060416.
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Abstract: Robot manipulators are widely used in many fields and play a vital role in the assembly,
maintenance, and servicing of future complex in-orbit infrastructures. They are also helpful in areas
where it is undesirable for humans to go, for instance, during undersea exploration, in radioactive
surroundings, and other hazardous places. Robotic manipulators are highly coupled and non-linear
multivariable mechanical systems designed to perform one of these specific tasks. Further, the time-
varying constraints and uncertainties of robotic manipulators will adversely affect the characteristics
and response of these systems. Therefore, these systems require effective modelling and robust
controllers to handle such complexities, which is challenging for control engineers. To solve this
problem, many researchers have used the fractional-order concept in the modelling and control of
robotic manipulators; yet it remains a challenge. This review paper presents comprehensive and
significant research on state-of-the-art fractional-order modelling and control strategies for robotic
manipulators. It also aims to provide a control engineering community for better understanding
and up-to-date knowledge of fractional-order modelling, control trends, and future directions. The
main table summarises around 95 works closely related to the mentioned issue. Key areas focused on
include modelling, fractional-order modelling type, model order, fractional-order control, controller
parameters, comparison controllers, tuning techniques, objective function, fractional-order definitions
and approximation techniques, simulation tools and validation type. Trends for existing research
have been broadly studied and depicted graphically. Further, future perspective and research gaps
have also been discussed comprehensively.

Keywords: approximation approaches; fractional calculus; fractional-order control; fractional-order
model; industrial manipulators; optimization techniques; robotic manipulators

1. Introduction

Robotic manipulators are electronically controlled mechanisms consisting of multiple
segments that perform tasks by interacting with their environment. They can perform
repetitive tasks at speeds and accuracies far exceeding human operators [1]. They can
move or handle objects automatically depending upon the given number of DOF. The
DOF of industrial robotic manipulators can range from two to ten, or more. As they
are capable of automating, many automated applications have recently been seen. The
most common include spot welding, assembly, handling, painting, and palletizing [2].
Technological advancements have greatly improved robotic manipulators’ accuracy and
precision, thus allowing them to automate new applications such as automated 3D printing.
Robotic manipulator automation makes manufacturing processes more efficient, reliable,
and productive. As a result, considerable attention has been given to modelling the robotic

Fractal Fract. 2023, 7, 77. https://doi.org/10.3390/fractalfract7010077 https://www.mdpi.com/journal/fractalfract6
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manipulators and designing practical controllers that are easy to implement and provide
optimal controlled performance [3–5].

Recently, the fractional-order concept has attracted increasing attention in control re-
search. Fractional-order modelling and control, using fractional-order derivatives/integrals,
has been recognized as an alternative strategy to solve many robust control problems ef-
fectively [6,7]. This is also true in the case of robotic manipulators. In the last few years,
extensive research has been performed on robotic manipulators using fractional-order
concepts. Thus, this study thoroughly reviews the application of fractional calculus in mod-
elling and controlling robotic manipulators. Therefore, a comprehensive literature review
on fractional-order modelling and control techniques for various robotic manipulators is
presented. This study is structured as follows:

• Different conventional and fractional-order modelling strategies for lower and higher
DOF robotic manipulators are included in the review.

• A review of developed fractional-order controllers for various robotic manipulators
evolved from PID, sliding mode, fuzzy, backstepping, active disturbance rejection
control, and impedance control is presented.

• Fractional-order derivative definitions and approximation techniques are also presented.
• Trends for existing research and future developments in this area have been broadly

presented and depicted in a graphical layout.

The paper’s remaining sections are organized as follows: the preliminaries of frac-
tional calculus, including the derivative definitions, are presented in Section 2. Section 3
summarizes the collected literature review and the graphical trend analysis. Section 4
offers the detailed dynamic modelling of robotic manipulators. The broad overview of
fractional-order control strategies developed for various robotic manipulators is presented
in Section 5. Finally, the paper concludes in Section 6.

2. Preliminaries of Fractional Calculus

The fractional-order differintegral operator Dα
t for an order α of a given function f (t)

is defined as,

Dα
t f (t) =

⎧⎪⎨⎪⎩
dα

dtα f (t), α > 0,
f (t), α = 0,∫ t
0 f (τ)dτ, α < 0.

(1)

The three most frequently used definitions of fractional-order derivative Dα
t for α > 0

are Grünwald–Letnikov, Riemann–Liouville, and Caputo, as given in orange, blue, and
grey coloured boxes of Figure 1, respectively. In the definitions, Γ(·) is Euler’s Gamma
function. On the other hand, among the various approximation techniques available in the
literature, Oustaloup’s technique is the most widely used frequency domain approximation
method. The formula for computing the Oustaloup and refined Oustaloup approximations
in red and green coloured boxes is in Figure 1. These approximation techniques are valid for
estimating the Nth order approximation of order within the lower and higher frequencies
of ωl and ωh, respectively.
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Fractional-order Derivative

Figure 1. Definitions and approximation techniques of fractional-order derivative.

3. Survey With Trend Analysis

From the collected literature review in Table 1, a graphical trend analysis is made in
this section. From the table, the summary of the manipulators’ trend is given in Figure 2. As
shown in the figure, research has been conducted on various manipulators of DOF ranging
from 1 to 7. However, most of the research on developing either fractional-order models
or controllers has been conducted on 1, 2, and 3 DOF manipulators, with 2 DOF being
the highest, around 60% (see Figure 2a). Moreover, as shown in Figure 2b, about 66% of
research has been conducted on robotic manipulators without any payload, and only 34%
work with a load. Further, it can be observed from Figure 2c that the research on developing
either fractional-order models or controllers has been performed primarily on two-link,
rigid planar, and single-link manipulators. It is also worth highlighting that research has
been conducted on some industrial manipulators, including PUMA 560, SCARA, Polaris -I,
Stewart platform, Staubli RX-60, Robotino-XT, Mitsubishi RV-4FL, KUKA youBot, Fanuc,
ETS-MARSE, EFFORT-ERC20C-C10, Delta robot, differential-drive mobile robot [8] and
University of Maryland manipulators.

8



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

Su
m

m
ar

y
of

w
or

ks
fo

cu
ss

ed
on

fr
ac

ti
on

al
-o

rd
er

m
od

el
lin

g
an

d
co

nt
ro

lli
ng

of
ro

bo
ti

c
m

an
ip

ul
at

or
s.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[9
]

2R
ro

bo
ti

c
m

an
ip

ul
at

or
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fr
ac

ti
on

al
-o

rd
er

D
co

nt
ro

lle
r

2
Tr

ia
la

nd
er

ro
r

PI
an

d
PD

co
nt

ro
lle

rs
Tr

an
si

en
t

re
sp

on
se

ch
ar

ac
te

ri
st

ic
s

Pa
dé

ap
pr

ox
im

at
io

n
—

S

[1
0]

R
ed

un
da

nt
m

an
ip

ul
at

or
—

�
�

C
lo

se
d-

Lo
op

Ps
eu

do
in

ve
rs

e
2

�
Ps

eu
do

in
ve

rs
e

A
lg

or
it

hm
5

—
—

Tr
ac

ki
ng

er
ro

r
G

rü
nw

al
d–

Le
tn

ik
ov

’s
m

et
ho

d
—

S

[1
1]

Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

1
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PD

co
nt

ro
lle

r
3

Tr
ia

la
nd

er
ro

r
PD

co
nt

ro
lle

r
St

ab
ili

ty
D

ig
it

al
II

R
fil

te
r

ap
pr

ox
im

at
io

n
M

P

[1
2]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

fu
zz

y
ad

ap
ti

ve
sl

id
in

g
m

od
e

co
nt

ro
lle

r
5

Tr
ia

la
nd

er
ro

r
—

Tr
ac

ki
ng

er
ro

r
C

R
O

N
E

ap
pr

ox
im

at
io

ns
M

S

[1
3]

R
ot

at
io

na
lj

oi
nt

s
ro

bo
ti

c
m

an
ip

ul
at

or
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fr
ac

ti
on

al
-o

rd
er

PD
-P

I
co

nt
ro

lle
r

5
Tr

ia
la

nd
er

ro
r

PD
-P

Ic
on

tr
ol

le
r

Tr
an

si
en

t
re

sp
on

se
ch

ar
ac

te
ri

st
ic

s
—

—
S

[1
4]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
La

gr
an

gi
an

fo
rm

ul
at

io
n

2
�

A
da

pt
iv

e
fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
G

en
et

ic
A

lg
or

it
hm

PI
D

co
nt

ro
lle

r
IS

E
C

R
O

N
E

ap
pr

ox
im

at
io

ns
—

S

[1
5]

Po
la

r
ro

bo
ti

c
m

an
ip

ul
at

or
2

�
�

St
at

e
sp

ac
e

m
od

el
4

�
Fu

zz
y

Fr
ac

ti
on

al
-o

rd
er

PD
su

rf
ac

e
sl

id
in

g
m

od
e

co
nt

ro
lle

r
8

G
en

et
ic

A
lg

or
it

hm
C

la
ss

ic
al

PD
su

rf
ac

e
sl

id
in

g
m

od
e

co
nt

ro
lle

r
R

M
SE

C
ap

ut
o

de
ri

va
ti

ve
—

S

[1
6]

Tw
o-

lin
k

fle
xi

bl
e

jo
in

tm
an

ip
ul

at
or

2
�

�
La

gr
an

gi
an

fo
rm

ul
at

io
n

8
�

Fr
ac

ti
on

al
or

de
r

fu
zz

y
sl

id
in

g
m

od
e

co
nt

ro
lle

r
6

G
en

et
ic

A
lg

or
it

hm

Sl
id

in
g

m
od

e
co

nt
ro

lle
r,

PD
su

rf
ac

e
sl

id
in

g
m

od
e

co
nt

ro
lle

r,
Sl

id
in

g
su

rf
ac

es
th

ro
ug

h
fr

ac
ti

on
al

PD
co

nt
ro

lle
r

IA
E,

IT
A

E,
IS

V
C

ap
ut

o
de

ri
va

ti
ve

—
S

[1
7]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
Fu

zz
y

an
d

PI
D

co
nt

ro
lle

rs
R

M
SE

,M
A

E,
M

M
FA

E
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

—
S

[1
8]

M
ec

ha
ni

ca
l

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
3

�
Fr

ac
ti

on
al

va
ri

ab
le

st
ru

ct
ur

e
co

nt
ro

la
nd

sl
id

in
g

m
od

e
co

nt
ro

l
6

Tr
ia

la
nd

er
ro

r
In

te
ge

r
va

ri
ab

le
st

ru
ct

ur
e

co
nt

ro
la

nd
sl

id
in

g
m

od
e

co
nt

ro
l

Sw
it

ch
in

g
ac

ti
vi

ty
Ta

yl
or

se
ri

es
ex

pa
ns

io
n

—
P

[1
9]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
G

en
et

ic
A

lg
or

it
hm

,
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
—

R
M

SE
,M

A
E,

M
M

FA
E

—
M

S

[2
0]

M
an

ip
ul

at
or

ro
bo

t
(F

an
uc

)
6

�
�

R
ob

us
t

di
st

ur
ba

nc
e

ob
se

rv
er

1
�

Fr
ac

ti
on

al
-o

rd
er

PI
co

nt
ro

lle
r

3
D

ec
en

tr
al

iz
ed

tu
ni

ng
PI

co
nt

ro
lle

r
G

ai
n

M
ar

gi
ns

R
efi

ne
d

O
us

ta
lo

up
Fi

lt
er

M
P

9



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[2
1]

U
ni

ve
rs

it
y

of
M

ar
yl

an
d

(U
M

D
)

m
an

ip
ul

at
or

3
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
Pa

tt
er

n
se

ar
ch

op
ti

m
iz

at
io

n
PI

D
co

nt
ro

lle
r

M
SE

—
—

S

[2
2]

Fl
ex

ib
le

lin
k

m
an

ip
ul

at
or

2
�

�
Eu

le
r-

Be
rn

ou
lli

m
et

ho
d

2
�

Fr
ac

tio
na

l-
or

de
r

sl
id

in
g

m
od

e
co

nt
ro

lle
r

6
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
Sl

id
in

g
m

od
e

co
nt

ro
lle

r
IS

E
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

—
S

[2
3]

A
ng

ul
ar

m
an

ip
ul

at
or

3
�

�
La

gr
an

ge
m

od
el

2
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
5

Tr
ia

la
nd

er
ro

r
—

—
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

M
,L

P

[2
4]

R
ob

ot
ic

m
an

ip
ul

at
or

6
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
6

�
Fr

ac
ti

on
al

-o
rd

er
PD

co
nt

ro
lle

r
3

Bo
de

tu
ni

ng
PD

co
nt

ro
lle

r
Li

ne
ar

an
d

an
gu

la
r

ve
lo

ci
ti

es

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[2
5]

Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

1
�

�

N
on

-
co

m
m

en
su

ra
te

fr
ac

ti
on

al
-o

rd
er

m
od

el

0.
71

,0
.9

2
�

Fr
ac

tio
na

lo
rd

er
sl

id
in

g
m

od
e

co
nt

ro
lle

r
4

Q
R

de
co

m
po

si
ti

on
m

et
ho

d
Sl

id
in

g
m

od
e

co
nt

ro
lle

r
Tr

ac
ki

ng
er

ro
r

C
ap

ut
o

de
ri

va
ti

ve
M

P

[4
]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

co
nt

ro
lle

r
6

C
uc

ko
o

Se
ar

ch
A

lg
or

it
hm

Fu
zz

y
PI

D
,f

ra
ct

io
na

l-
or

de
r

PI
D

an
d

PI
D

co
nt

ro
lle

rs
IA

E,
IA

C
C

O
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
S

[2
6]

H
yd

ra
ul

ic
m

an
ip

ul
at

or
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fr
ac

ti
on

al
-o

rd
er

no
ns

in
gu

la
r

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

16
Tr

ia
la

nd
er

ro
r

In
te

ge
r-

or
de

r
no

ns
in

gu
la

r
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r
R

M
SE

R
efi

ne
d

O
us

ta
lo

up
fil

te
r

M
P

[2
7]

Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

1
�

�

N
on

-
co

m
m

en
su

ra
te

fr
ac

ti
on

al
-o

rd
er

m
od

el

0.
71

,0
.9

2
�

O
bs

er
ve

r-
ba

se
d

fr
ac

ti
on

al
-o

rd
er

sl
id

in
g

m
od

e
co

nt
ro

lle
r

8
St

ab
ili

ty
cr

it
er

io
n

Sl
id

in
g

m
od

e
co

nt
ro

lle
r

Tr
ac

ki
ng

er
ro

r
C

ap
ut

o
de

ri
va

ti
ve

—
P

[5
]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Tw

o-
de

gr
ee

of
fr

ee
do

m
fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

8
C

uc
ko

o
Se

ar
ch

A
lg

or
it

hm
Tw

o-
de

gr
ee

of
fr

ee
do

m
PI

D
co

nt
ro

lle
r

W
ei

gh
te

d
su

m
of

IT
A

E
an

d
IA

C
C

O

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

n
M

S

[2
8]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

A
da

pt
iv

e
fr

ac
ti

on
al

-o
rd

er
no

ns
in

gu
la

r
fa

st
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

13
Tr

ia
la

nd
er

ro
r

N
on

si
ng

ul
ar

te
rm

in
al

,
Se

co
nd

-o
rd

er
sl

id
in

g
m

od
e

co
nt

ro
lle

rs

Er
ro

r,
R

ea
ch

in
g

ti
m

e,
C

ha
tt

er
in

g
ef

fe
ct

R
ie

m
an

n–
Li

ou
vi

lle
m

et
ho

d
—

S

[2
9]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5

Pa
rt

ic
le

sw
ar

m
op

ti
m

iz
at

io
n,

G
en

et
ic

al
go

ri
th

m
an

d
Es

ti
m

at
io

n
of

di
st

ri
bu

ti
on

al
go

ri
th

m

—
R

M
SE

R
ie

m
an

n–
Li

ou
vi

lle
m

et
ho

d
M

S

10



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[3
0]

R
ob

ot
ic

m
an

ip
ul

at
or

(P
U

M
A

56
0)

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

co
nt

ro
lle

r
5

G
en

et
ic

A
lg

or
it

hm
PI

D
,f

ra
ct

io
na

l-
or

de
r

PI
D

an
d

fu
zz

y
PI

D
co

nt
ro

lle
rs

IS
E

—
M

S

[3
1]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

(S
C

A
R

A
)

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Tw

o-
la

ye
re

d
fr

ac
ti

on
al

-o
rd

er
fu

zz
y

lo
gi

c
co

nt
ro

lle
r

10
C

uc
ko

o
Se

ar
ch

A
lg

or
it

hm
Tw

o-
la

ye
re

d,
si

ng
le

-l
ay

re
d

fu
zz

y
lo

gi
c,

PI
D

co
nt

ro
lle

rs
IA

E
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
S

[3
2]

R
ot

ar
y

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
ad

ap
ti

ve
ba

ck
st

ep
pi

ng
co

nt
ro

lle
r

7
Tr

ia
la

nd
er

ro
r

A
da

pt
iv

e
ba

ck
st

ep
pi

ng
co

nt
ro

lle
rs

Tr
ac

ki
ng

pe
rf

or
m

an
ce

C
ap

ut
o

de
ri

va
ti

ve
M

P

[3
3]

R
ob

ot
ic

m
an

ip
ul

at
or

4
�

�
Ps

eu
do

in
ve

rs
e

al
go

ri
th

m

0.
5,

0.
6,

0.
8,

0.
9,

0.
99

�
—

—
—

—
Tr

ac
ki

ng
ac

cu
ra

cy

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[3
4]

In
ch

w
or

m
/

C
at

er
pi

lla
r

ro
bo

ti
c

m
an

ip
ul

at
or

1
�

�
Eu

le
r–

La
gr

an
ge

m
et

ho
d

2
�

N
eu

ra
ln

et
w

or
k-

ba
se

d
fr

ac
ti

on
in

te
gr

al
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

5
Tr

ia
la

nd
er

ro
r

Sl
id

in
g

m
od

e
co

nt
ro

lle
r,

In
te

gr
al

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r,

Fr
ac

ti
on

in
te

gr
al

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

Tr
ac

ki
ng

er
ro

r
—

M
S

[3
5]

Si
ng

le
-l

in
k

di
re

ct
jo

in
td

ri
ve

n
ro

bo
ti

c
m

an
ip

ul
at

or

1
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

Sl
id

in
g

m
od

e
ba

se
d

fr
ac

tio
na

l-
or

de
r

PD
ty

pe
it

er
at

iv
e

le
ar

ni
ng

co
nt

ro
l

5
Tr

ia
la

nd
er

ro
r

Sl
id

in
g

m
od

e
ba

se
d

fr
ac

ti
on

al
-o

rd
er

D
ty

pe
it

er
at

iv
e

le
ar

ni
ng

co
nt

ro
l,

H
ig

he
r-

or
de

r
it

er
at

iv
e

le
ar

ni
ng

co
nt

ro
l

Tr
ac

ki
ng

er
ro

r
C

R
O

N
E

ap
pr

ox
im

at
io

ns
M

S

[3
6]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

Ti
m

e
de

la
y

es
ti

m
at

io
n-

ba
se

d
fr

ac
ti

on
al

-o
rd

er
no

ns
in

gu
la

r
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

9
Tr

ia
la

nd
er

ro
r

Ti
m

e
de

la
y

es
ti

m
at

io
n-

ba
se

d,
co

nt
in

uo
us

no
ns

in
gu

la
r

te
rm

in
al

,T
im

e
de

la
y

es
ti

m
at

io
n-

ba
se

d
in

te
ge

r-
or

de
r

no
ns

in
gu

la
r

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
rs

Tr
ac

ki
ng

er
ro

r
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

M
P

[3
7]

In
ch

w
or

m
/

C
at

er
pi

lla
r

ro
bo

ti
c

m
an

ip
ul

at
or

1
�

�
Eu

le
r–

La
gr

an
ge

fo
rm

al
is

m
2

�
A

da
pt

iv
e

fr
ac

ti
on

al
-o

rd
er

PI
D

sl
id

in
g

m
od

e
co

nt
ro

lle
r

5
Ba

to
pt

im
iz

at
io

n
al

go
ri

th
m

PI
D

,f
ra

ct
io

na
l-

or
de

r
PI

D
,

sl
id

in
g

m
od

e
co

nt
ro

lle
r

W
ei

gh
te

d
su

m
of

IA
E

an
d

IS
V

O
us

ta
lo

up
’s

re
cu

rs
iv

e
ap

pr
ox

im
at

io
n

M
S

11



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[3
8]

Fi
ve

-b
ar

-l
in

ka
ge

ro
bo

ti
c

m
an

ip
ul

at
or

-
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
M

od
ifi

ed
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
tu

ne
d

us
in

g
st

an
da

rd
,c

on
st

ri
ct

io
n

fa
ct

or
ap

pr
oa

ch
,r

an
do

m
in

er
ti

a
w

ei
gh

t-
ba

se
d

pa
rt

ic
le

sw
ar

m
op

ti
m

iz
at

io
n

al
go

ri
th

m
s

IA
E,

IS
E,

IT
SE

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

n
M

P

[3
9]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
In

te
rv

al
ty

pe
-2

fr
ac

ti
on

al
-o

rd
er

fu
zz

y
PI

D
co

nt
ro

lle
r

6
A

rt
ifi

ci
al

Be
e

C
ol

on
y-

G
en

et
ic

A
lg

or
it

hm

In
te

rv
al

ty
pe

-2
fu

zz
y

PI
D

,
Ty

pe
-1

fr
ac

ti
on

al
-o

rd
er

fu
zz

y
PI

D
,T

yp
e-

1
fu

zz
y

PI
D

,P
ID

IT
A

E
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
S

[4
0]

Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

1
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
ph

as
e-

le
ad

co
m

pe
ns

at
or

4
N

yq
ui

st
cr

it
er

io
n

PI
D

co
nt

ro
lle

r
G

ai
n

M
ar

gi
n

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
—

P

[4
1]

Th
re

e
an

d
fiv

e
lin

ks
re

du
nd

an
t

m
an

ip
ul

at
or

s
3,

5
�

�
M

oo
re

-P
en

ro
se

ps
eu

do
in

ve
rs

e
—

�
—

—
—

—
—

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[4
2]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
St

at
e

sp
ac

e
m

od
el

4
�

Fr
ac

ti
on

al
-o

rd
er

gl
ob

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r
10

Tr
ia

la
nd

er
ro

r
Sl

id
in

g
m

od
e

co
nt

ro
lle

r
Tr

ac
ki

ng
er

ro
r

R
ie

m
an

n–
Li

ou
vi

lle
m

et
ho

d
—

S

[4
3]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

Fr
ac

ti
on

al
-o

rd
er

fu
zz

y
pr

e-
co

m
pe

ns
at

ed
fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

9
H

yb
ri

d
ar

ti
fic

ia
lb

ee
co

lo
ny

-g
en

et
ic

al
go

ri
th

m

Fu
zz

y
pr

e-
co

m
pe

ns
at

ed
PI

D
,f

uz
zy

PI
D

an
d

PI
D

co
nt

ro
lle

rs
IT

A
E

O
us

ta
lo

up
’s

re
cu

rs
iv

e
ap

pr
ox

im
at

io
n

M
S

[4
4]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
N

on
-l

in
ea

r
ad

ap
ti

ve
fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

co
nt

ro
lle

r
7

Ba
ck

tr
ac

ki
ng

se
ar

ch
al

go
ri

th
m

N
on

-l
in

ea
r

ad
ap

ti
ve

fu
zz

y
PI

D
co

nt
ro

lle
r

IT
A

E,
IT

A
C

O
G

rü
nw

al
d–

Le
tn

ik
ov

m
et

ho
d

L
S

[4
5]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
Fr

ac
ti

on
al

ad
ap

ti
ve

ne
ur

al
ne

tw
or

k
—

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
Tr

ia
la

nd
er

ro
r

—
Tr

ac
ki

ng
er

ro
r

C
ap

ut
o

de
ri

va
ti

ve
—

S

[4
6]

Tw
o-

lin
k

ri
gi

d
pl

an
ar

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
G

en
et

ic
A

lg
or

it
hm

PI
D

co
nt

ro
lle

r
W

ei
gh

te
d

su
m

of
IA

E
an

d
IS

C
C

O

Sh
or

tm
em

or
y

pr
in

ci
pl

e
L

P

[4
7]

R
ot

ar
y

fle
xi

bl
e

jo
in

tm
an

ip
ul

at
or

1
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
tio

na
l-

or
de

r
in

te
gr

al
co

nt
ro

lle
r

2
G

ai
n

m
ar

gi
ns

In
te

gr
al

co
nt

ro
lle

r
Tr

ac
ki

ng
ac

cu
ra

cy
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
P

[4
8]

El
ec

tr
ic

al
ly

dr
iv

en
th

re
e-

lin
k

ri
gi

d
ro

bo
ti

c
m

an
ip

ul
at

or

3
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
3

�
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PD
+I

co
nt

ro
lle

r
4

C
uc

ko
o

Se
ar

ch
A

lg
or

it
hm

PI
D

,F
ra

ct
io

na
l-

or
de

r
PI

D
,

In
te

ge
r-

or
de

r
fu

zz
y

PD
+I

IA
E

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

12



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[4
9]

R
ob

ot
ic

m
an

ip
ul

at
or

(S
C

A
R

A
)

2
�

�
Li

ne
ar

m
od

el
2

�
Fr

ac
ti

on
al

-o
rd

er
m

od
el

re
fe

re
nc

e
ad

ap
ti

ve
co

nt
ro

lle
r

3
Tr

ia
la

nd
er

ro
r

M
od

el
re

fe
re

nc
e

ad
ap

ti
ve

co
nt

ro
lle

r
D

el
ay

ti
m

e
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

—
S

[5
0]

R
ob

ot
ic

m
an

ip
ul

at
or

(P
U

M
A

56
0)

3
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

Fr
ac

ti
on

al
-o

rd
er

no
ns

in
gu

la
r

fa
st

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lb
as

ed
fa

ul
t

to
le

ra
nt

co
nt

ro
l

7
Tr

ia
la

nd
er

ro
r

A
da

pt
iv

e
fr

ac
ti

on
al

-o
rd

er
no

ns
in

gu
la

r
fa

st
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r,
N

on
si

ng
ul

ar
fa

st
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lb

as
ed

ac
ti

ve
fa

ul
tt

ol
er

an
tc

on
tr

ol

C
on

ve
rg

en
ce

sp
ee

d
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

—
S

[5
1]

Tw
o-

lin
k

pl
an

ar
el

ec
tr

ic
al

ly
-d

ri
ve

n
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
se

lf
or

ga
ni

zi
ng

fu
zz

y
co

nt
ro

lle
r

6
C

uc
ko

o
Se

ar
ch

A
lg

or
it

hm
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

IA
E

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[5
2]

Se
ri

al
lin

k
m

an
ip

ul
at

or
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

an
d

au
xi

lia
ry

co
nt

ro
lle

rs
5

Tr
ia

la
nd

er
ro

r
To

rq
ue

ap
pr

oa
ch

co
nt

ro
lle

r
Tr

ac
ki

ng
er

ro
r

C
R

O
N

E
ap

pr
ox

im
at

io
ns

M
S

[5
3]

R
ed

un
da

nt
m

an
ip

ul
at

or
(S

C
A

R
A

)
5

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fu
zz

y
fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

6
A

rt
ifi

ci
al

Be
e

C
ol

on
y

A
lg

or
it

hm
PI

D
an

d
fu

zz
y

PI
D

co
nt

ro
lle

rs
IT

A
E

—
M

S

[5
4]

Th
re

e-
lin

k
ro

bo
ti

c
m

an
ip

ul
at

or
(S

ta
ub

li
R

X
-6

0)
6

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

3
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
5

C
uc

ko
o

Se
ar

ch
A

lg
or

it
hm

PI
D

co
nt

ro
lle

r
IA

E,
IT

A
E,

IS
E

an
d

IA
C

C
O

—
M

S

[5
5]

R
ob

ot
ic

m
an

ip
ul

at
or

6
�

�
K

in
em

at
ic

m
od

el
lin

g
2

�

Fr
ac

ti
on

al
or

de
r

no
ns

in
gu

la
r

fa
st

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

l

13
Tr

ia
la

nd
er

ro
r

—
Tr

ac
ki

ng
er

ro
r

R
ie

m
an

n–
Li

ou
vi

lle
m

et
ho

d
—

S

[5
6]

Th
re

e-
lin

k
pl

an
ar

ri
gi

d
ro

bo
ti

c
m

an
ip

ul
at

or
3

�
�

Eu
le

r–
La

gr
an

ge
fo

rm
al

is
m

3
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
5

Ev
ap

or
at

io
n

R
at

e-
Ba

se
d

W
at

er
C

yc
le

A
lg

or
it

hm
PI

D
co

nt
ro

lle
r

W
ei

gh
te

d
su

m
of

IA
E

an
d

IA
C

C
O

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[5
7]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
Eu

le
r–

La
gr

an
ge

fo
rm

al
is

m
2

�
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

sl
id

in
g

m
od

e
PD

/P
ID

co
nt

ro
lle

r
8

C
uc

ko
o

Se
ar

ch
A

lg
or

it
hm

In
te

ge
r-

or
de

r
fu

zz
y

sl
id

in
g

m
od

e
PD

/P
ID

co
nt

ro
lle

r

W
ei

gh
te

d
su

m
of

IA
E

an
d

ch
at

te
r

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[5
8]

Tw
o-

lin
k

pl
an

ar
ri

gi
d

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
La

gr
an

gi
an

-
Eu

le
r

fo
rm

ul
at

io
n

2
�

Fr
ac

ti
on

al
-o

rd
er

fu
zz

y
sl

id
in

g
m

od
e

co
nt

ro
lle

r
w

it
h

pr
op

or
ti

on
al

de
ri

va
ti

ve
su

rf
ac

e

6
G

en
et

ic
A

lg
or

it
hm

In
te

ge
r-

or
de

r
fu

zz
y

SM
C

w
ith

pr
op

or
tio

na
ld

er
iv

at
iv

e
su

rf
ac

e

W
ei

gh
te

d
su

m
of

IA
E

an
d

ch
at

te
r

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[5
9]

Pa
ra

lle
lr

ob
ot

ic
m

an
ip

ul
at

or
s

(D
el

ta
R

ob
ot

)
3

�
�

In
ve

rs
e

ki
ne

m
at

ic
m

od
el

3
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
5

FM
IN

C
O

N
(G

ra
di

en
t

de
sc

en
ta

lg
or

it
hm

)
PI

D
co

nt
ro

lle
r

R
M

SE
—

M
P

13



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[6
0]

R
ob

ot
ic

m
an

ip
ul

at
or

(S
C

A
R

A
)

2
�

�
Eu

le
r–

La
gr

an
ge

an
d

H
am

ilt
on

fo
rm

al
is

m
s

1.
14

�
Fr

ac
ti

on
al

-o
rd

er
PI

/P
D

co
nt

ro
lle

r
3

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

PI
/P

D
co

nt
ro

lle
r

IT
A

E
G

rü
nw

al
d–

Le
tn

ik
ov

m
et

ho
d

M
S

[6
1]

Se
ri

al
ro

bo
ti

c
m

an
ip

ul
at

or
6

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fr
ac

ti
on

al
-o

rd
er

ad
ap

ti
ve

no
ns

in
gu

la
r

te
rm

in
al

si
di

ng
m

od
e

co
nt

ro
lle

r

8
Tr

ia
la

nd
er

ro
r

—
Tr

ac
ki

ng
er

ro
r

R
ie

m
an

n–
Li

ou
vi

lle
m

et
ho

d
M

S

[3
]

C
ab

le
-d

ri
ve

n
m

an
ip

ul
at

or
(P

ol
ar

is
-I

)
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Ti
m

e
de

la
y

co
nt

ro
l

sc
he

m
e-

ba
se

d
ad

ap
ti

ve
fr

ac
ti

on
al

-o
rd

er
no

ns
in

gu
la

r
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

15
Tr

ia
la

nd
er

ro
r

Ti
m

e
de

la
y

es
tim

at
io

n-
ba

se
d

ad
ap

ti
ve

,c
on

ti
nu

ou
s

fr
ac

tio
na

l-
or

de
r

no
ns

in
gu

la
r

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

R
M

SE
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

M
P

[6
2]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
Eu

le
r–

La
gr

an
ge

fo
rm

al
is

m
2

�
Fu

zz
y

fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
3

H
eu

ri
st

ic
Tu

ni
ng

Sl
id

in
g

m
od

e
co

nt
ro

l,
Su

pe
r

tw
is

ti
ng

sl
id

in
g

m
od

e
co

nt
ro

l,
Fu

zz
y

PI
D

IT
A

E,
IS

E
G

rü
nw

al
d–

Le
tn

ik
ov

m
et

ho
d

C
++

P

[6
3]

R
ig

id
pl

an
ar

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

C
ol

la
bo

ra
ti

ve
fr

ac
ti

on
al

or
de

r
PI

D
an

d
fr

ac
tio

na
l

or
de

r
fu

zz
y

lo
gi

c
co

nt
ro

lle
r

9
C

uc
ko

o
Se

ar
ch

A
lg

or
it

hm
PI

D
,F

ra
ct

io
na

l-
or

de
r

PI
D

,
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

IT
A

E
O

us
ta

lo
up

’s
re

cu
rs

iv
e

ap
pr

ox
im

at
io

n
M

S

[6
4]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Tw

o-
de

gr
ee

-o
f-

fr
ee

do
m

fr
ac

ti
on

al
-o

rd
er

fu
zz

y
PI

-D
16

M
ul

ti
-o

bj
ec

ti
ve

no
n-

do
m

in
at

ed
so

rt
in

g
ge

ne
ti

c
al

go
ri

th
m

-I
I

Tw
o-

de
gr

ee
-o

f-
fr

ee
do

m
fr

ac
ti

on
al

-o
rd

er
PI

-D
IA

E
G

rü
nw

al
d–

Le
tn

ik
ov

m
et

ho
d

M
S

[6
5]

Th
re

e-
lin

k
pl

an
ar

ri
gi

d
ro

bo
ti

c
m

an
ip

ul
at

or
3

�
�

Eu
le

r–
La

gr
an

ge
fo

rm
al

is
m

3
�

Se
lf

-r
eg

ul
at

ed
fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

co
nt

ro
lle

r
6

Ba
ck

tr
ac

ki
ng

Se
ar

ch
A

lg
or

it
hm

Se
lf

-r
eg

ul
at

ed
in

te
ge

r-
or

de
r

fu
zz

y
PI

D
co

nt
ro

lle
r

IA
E,

IA
C

C
O

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
L

S

[6
6]

Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

1
�

�
La

gr
an

gi
an

fo
rm

ul
at

io
n

2
�

Sl
id

in
g

fr
ac

ti
on

al
or

de
r

co
nt

ro
lle

r
6

Tr
ia

la
nd

er
ro

r
PD

co
nt

ro
lle

r
Tr

ac
ki

ng
er

ro
r

—
—

S

[6
7]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

co
nt

ro
lle

r
6

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
IA

E,
IA

C
C

O
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
S

[6
8]

Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

1
�

�
St

at
e

sp
ac

e
m

od
el

4
�

Fr
ac

ti
on

al
-o

rd
er

sl
id

in
g

m
od

e
co

nt
ro

lle
r

10
Tr

ia
la

nd
er

ro
r

PI
D

,S
lid

in
g

m
od

e
co

nt
ro

lle
r

R
M

SE
,M

A
E

C
R

O
N

E
ap

pr
ox

im
at

io
ns

M
S

[6
9]

C
ab

le
-d

ri
ve

n
m

an
ip

ul
at

or
(P

ol
ar

is
-I

)
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fr
ac

ti
on

al
-o

rd
er

no
ns

in
gu

la
r

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

12
C

lo
se

d-
lo

op
co

nt
ro

l
tu

ni
ng

Ti
m

e
de

la
y

es
tim

at
io

n-
ba

se
d

an
d

co
nt

in
uo

us
fr

ac
tio

na
l-

or
de

r
no

ns
in

gu
la

r
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

R
M

SE
R

efi
ne

d
O

us
ta

lo
up

fil
te

r
M

P

14



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[7
0]

Se
ri

al
Fl

ex
ib

le
Li

nk
R

ob
ot

ic
M

an
ip

ul
at

or
,

Se
ri

al
Fl

ex
ib

le
Jo

in
tR

ob
ot

ic
M

an
ip

ul
at

or

2
�

�
Fr

ac
ti

on
al

tr
an

sf
er

fu
nc

ti
on

m
od

el
0.

3,
0.

9
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
5

Tr
ia

la
nd

er
ro

r
PI

D
co

nt
ro

lle
r

Tr
an

si
en

t
re

sp
on

se
ch

ar
ac

te
ri

st
ic

s

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

n
M

P

[7
1]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
K

in
em

at
ic

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
PI

D
co

nt
ro

lle
r

Er
ro

r
—

—
S

[7
2]

Tw
o-

lin
k

fle
xi

bl
e

ro
bo

ti
c

m
an

ip
ul

at
or

3
�

�
Eu

le
r–

La
gr

an
ge

fo
rm

ul
at

io
n

0.
98

�
Fr

ac
ti

on
al

-o
rd

er
ad

ap
ti

ve
sl

id
in

g
m

od
e

co
nt

ro
lle

r
13

Tr
ia

la
nd

er
ro

r
A

da
pt

iv
e

sl
id

in
g

m
od

e
co

nt
ro

lle
r

Tr
ac

ki
ng

er
ro

r
—

M
S

[7
3]

Ex
os

ke
le

to
n

R
ob

ot
(E

TS
-M

A
R

SE
)

7
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

A
da

pt
iv

e
ne

ur
al

ne
tw

or
k

fa
st

fr
ac

ti
on

al
in

te
gr

al
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
l

6
Tr

ia
la

nd
er

ro
r

Fa
st

fr
ac

ti
on

al
in

te
gr

al
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r
Tr

ac
ki

ng
er

ro
r

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

P

[7
4]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
A

da
pt

iv
e

fr
ac

ti
on

al
hi

gh
-o

rd
er

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

10
Tr

ia
la

nd
er

ro
r

H
∞

-A
da

pt
iv

e
co

nt
ro

l,
in

te
lli

ge
nt

PD
,i

nt
el

lig
en

t
PI

D
,A

da
pt

iv
e

th
ir

d-
or

de
r

sl
id

in
g

m
od

e
co

nt
ro

lle
r

C
on

ve
rg

en
ce

sp
ee

d
an

d
pr

ec
is

io
n

O
us

ta
lo

up
m

et
ho

d
M

S

[7
5]

R
ob

ot
ic

m
an

ip
ul

at
or

(P
U

M
A

56
0)

6
�

�
Eu

le
r–

La
gr

an
ge

fo
rm

al
is

m
12

�
Fr

ac
ti

on
al

-o
rd

er
PI

,P
D

co
nt

ro
lle

rs
9

C
uc

ko
o

Se
ar

ch
A

lg
or

it
hm

PI
,P

D
co

nt
ro

lle
rs

R
M

SE

C
ap

ut
o–

Fa
br

iz
io

de
ri

va
ti

ve
,

A
ta

ng
an

a–
Ba

le
an

u
in

te
gr

al

—
P

[7
6]

3-
R

R
R

pl
an

ar
pa

ra
lle

lr
ob

ot
s

3
�

�

In
ve

rs
e

ki
ne

m
at

ic
s

us
in

g
C

ay
le

y–
M

en
ge

r
de

te
rm

in
an

ts
an

d
bi

la
te

ra
ti

on

2
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
5

Ba
to

pt
im

iz
at

io
n

al
go

ri
th

m
PI

D
co

nt
ro

lle
r

W
ei

gh
te

d
fu

nc
ti

on
—

M
P

[7
7]

M
us

cl
e-

ac
tu

at
ed

m
an

ip
ul

at
or

2
�

�
Fr

ac
ti

on
al

or
de

r
de

sc
ri

bi
ng

fu
nc

ti
on

s
2

�
—

—
—

—
—

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
—

P

[7
8]

R
ig

id
ro

bo
ti

c
m

an
ip

ul
at

or
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

D
ee

p
co

nv
ol

ut
io

na
l

ne
ur

al
ne

tw
or

k
ba

se
d

Fr
ac

ti
on

al
-o

rd
er

te
rm

in
al

sl
id

in
g-

m
od

e
co

nt
ro

lle
r

15
FM

IN
C

O
N

(G
ra

di
en

t
de

sc
en

ta
lg

or
it

hm
)

N
on

si
ng

ul
ar

an
d

co
nv

en
ti

on
al

fr
ac

ti
on

al
-o

rd
er

te
rm

in
al

sl
id

in
g-

m
od

e
co

nt
ro

lle
rs

Fr
ac

ti
on

al
-o

rd
er

lo
ss

fu
nc

ti
on

C
ap

ut
o

de
ri

va
ti

ve
—

S

15



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[7
9]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PD
an

d
Ic

on
tr

ol
le

r
8

M
ul

ti
-o

bj
ec

ti
ve

no
n-

do
m

in
at

ed
so

rt
in

g
ge

ne
ti

c
al

go
ri

th
m

-I
I,

dr
ag

on
fly

al
go

ri
th

m
,

m
ul

ti
-v

er
se

op
ti

m
iz

at
io

n,
an

tl
io

n
op

ti
m

iz
er

al
go

ri
th

m
s

PI
D

,f
uz

zy
PI

D
co

nt
ro

lle
rs

IA
E

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

P

[8
0]

R
ob

ot
ic

m
an

ip
ul

at
or

(S
C

A
R

A
)

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
an

d
Fr

ac
ti

on
al

-o
rd

er
pr

e-
fil

te
r

5,
4

G
en

et
ic

A
lg

or
ith

m
,T

ri
al

an
d

er
ro

r
—

G
ai

n
M

ar
gi

ns
C

R
O

N
E

ap
pr

ox
im

at
io

ns
M

S

[8
1]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

Ti
m

e
de

la
y

es
ti

m
at

io
n-

ba
se

d
ad

ap
ti

ve
fr

ac
ti

on
al

-o
rd

er
no

ns
in

gu
la

r
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

12
Tr

ia
la

nd
er

ro
r

N
on

si
ng

ul
ar

fa
st

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r,

Se
co

nd
or

de
r

no
ns

in
gu

la
r

fa
st

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

Tr
ac

ki
ng

er
ro

r
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

M
S

[8
2]

Pa
ra

lle
lr

ob
ot

ic
m

an
ip

ul
at

or
6

�
�

K
in

em
at

ic
m

od
el

lin
g

3
�

Fr
ac

ti
on

al
-o

rd
er

ac
ti

ve
di

st
ur

ba
nc

e
re

je
ct

io
n

co
nt

ro
lle

r
16

Tr
ia

la
nd

er
ro

r
A

ct
iv

e
di

st
ur

ba
nc

e
re

je
ct

io
n

co
nt

ro
lle

r
Tr

ac
ki

ng
ac

cu
ra

cy
—

M
P

[8
3]

Si
ng

le
-l

in
k

ro
bo

ti
c

m
an

ip
ul

at
or

1
�

�
Eu

le
r–

La
gr

an
ge

fo
rm

ul
at

io
n

0.
5

�
Fe

ed
ba

ck
co

nt
ro

lle
r

8
Po

le
pl

ac
em

en
tm

et
ho

d
PI

D
,L

Q
R

co
nt

ro
lle

rs
Tr

ac
ki

ng
ac

cu
ra

cy
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
P

[8
3]

Se
ri

al
-l

in
k

fle
xi

bl
e

ro
bo

ti
c

m
an

ip
ul

at
or

,
Se

ri
al

fle
xi

bl
e

jo
in

t
ro

bo
ti

c
m

an
ip

ul
at

or

2
�

�
Fr

ac
ti

on
al

va
lu

e
se

le
ct

io
n

al
go

ri
th

m
0.

3,
0.

9
�

Fr
ac

ti
on

al
-o

rd
er

PI
D

co
nt

ro
lle

r
5

Tr
ia

la
nd

er
ro

r
PI

D
co

nt
ro

lle
r

Tr
ac

ki
ng

ac
cu

ra
cy

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

n
M

P

[8
4]

R
ot

ar
y

fle
xi

bl
e

jo
in

tm
an

ip
ul

at
or

1
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
St

at
e-

fe
ed

ba
ck

-b
as

ed
fr

ac
ti

on
al

-o
rd

er
in

te
gr

al
co

nt
ro

lle
r

2
Tr

ia
la

nd
er

ro
r

Pu
re

st
at

e-
fe

ed
ba

ck
co

nt
ro

l
sc

he
m

e
an

d
th

e
m

od
ifi

ed
st

at
e-

fe
ed

ba
ck

-b
as

ed
fr

ac
ti

on
al

-o
rd

er
in

te
gr

al
co

nt
ro

lle
rs

Tr
ac

ki
ng

er
ro

r
C

R
O

N
E,

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

ns
M

S

[8
5]

R
ob

ot
ic

m
an

ip
ul

at
or

(P
U

M
A

56
0)

3
�

�
St

at
e

sp
ac

e
m

od
el

2
�

Fr
ac

ti
on

al
-o

rd
er

ad
ap

ti
ve

ba
ck

st
ep

pi
ng

co
nt

ro
lle

r
6

Tr
ia

la
nd

er
ro

r
PI

D
an

d
C

om
pu

te
d

to
rq

ue
co

nt
ro

lle
rs

Tr
ac

ki
ng

er
ro

r
an

d
co

nv
er

ge
nc

e
sp

ee
d

C
ap

ut
o

m
et

ho
d

M
S

16



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[8
6]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

Ti
m

e
de

la
y

es
ti

m
at

io
n-

ba
se

d
ad

ap
ti

ve
fr

ac
ti

on
al

-o
rd

er
no

ns
in

gu
la

r
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

10
Tr

ia
la

nd
er

ro
r

—
Tr

ac
ki

ng
pe

rf
or

m
an

ce
an

d
sp

ee
d

O
us

ta
lo

up
’s

re
cu

rs
iv

e
ap

pr
ox

im
at

io
n

—
S

[8
3]

Si
ng

le
R

ig
id

Li
nk

R
ob

ot
ic

M
an

ip
ul

at
or

,
Se

ri
al

Li
nk

R
ob

ot
ic

M
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�
A

da
pt

iv
e

fr
ac

ti
on

al
-o

rd
er

co
nt

ro
lle

r
5

Tr
ia

la
nd

er
ro

r
In

te
ge

r-
or

de
r

an
d

ad
ap

ti
ve

co
nt

ro
lle

rs

Tr
an

si
en

t
re

sp
on

se
ch

ar
ac

te
ri

st
ic

s

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

n
M

P

[2
]

C
oo

pe
ra

ti
ve

m
an

ip
ul

at
or

(M
it

su
bi

sh
i

RV
-4

FL
)

6
�

�
K

in
em

at
ic

m
od

el
lin

g
3

�
C

ou
pl

ed
fr

ac
ti

on
al

-o
rd

er
sl

id
in

g
m

od
e

co
nt

ro
l

5
Fu

zz
y

tu
ni

ng
PI

,S
lid

in
g

m
od

e
co

nt
ro

lle
rs

,
fr

ac
ti

on
al

-o
rd

er
sl

id
in

g
m

od
e

co
nt

ro
lle

r
IA

E,
IS

E,
ST

D
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
P

[8
7]

Si
ng

le
fle

xi
bl

e
lin

k
ro

bo
ti

c
m

an
ip

ul
at

or
,

Se
ri

al
fle

xi
bl

e
jo

in
t

ro
bo

ti
c

m
an

ip
ul

at
or

1,
2

�
�

Eu
le

r–
La

gr
an

ge
fo

rm
ul

at
io

n
0.

5
N

o
Fe

ed
ba

ck
co

nt
ro

lle
r

8
Po

le
pl

ac
em

en
tm

et
ho

d
PI

D
,L

Q
R

co
nt

ro
lle

rs
Tr

ac
ki

ng
ac

cu
ra

cy
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
P

[8
8]

Si
ng

le
fle

xi
bl

e
lin

k
ro

bo
ti

c
m

an
ip

ul
at

or
,

Se
ri

al
fle

xi
bl

e
jo

in
t

ro
bo

ti
c

m
an

ip
ul

at
or

1,
2

�
�

Eu
le

r–
La

gr
an

ge
fo

rm
ul

at
io

n
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
Tr

ia
la

nd
er

ro
r

PI
D

co
nt

ro
lle

r
Tr

an
si

en
t

re
sp

on
se

ch
ar

ac
te

ri
st

ic
s

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

n
M

S

[8
9]

St
ew

ar
tP

la
tf

or
m

6
�

�
La

gr
an

ge
-E

ul
er

ap
pr

oa
ch

3
�

Fr
ac

ti
on

al
or

de
r

fu
zz

y
PI

D
co

nt
ro

lle
r

8
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
PI

D
,f

ra
ct

io
na

l-
or

de
r

PI
D

an
d

fu
zz

y
PI

D
co

nt
ro

lle
rs

M
A

E,
R

M
SE

O
us

ta
lo

up
’s

ap
pr

ox
im

at
io

n
M

P

[9
0]

R
ob

ot
ic

m
an

ip
ul

at
or

(P
U

M
A

56
0)

3
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

�

Fr
ac

ti
on

al
-o

rd
er

ba
ck

st
ep

pi
ng

fa
st

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

15
Tr

ia
la

nd
er

ro
r

PI
D

,C
om

pu
te

d
to

rq
ue

co
nt

ro
lle

r,
N

on
si

ng
ul

ar
fa

st
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

Po
si

ti
on

tr
ac

ki
ng

er
ro

r
O

us
ta

lo
up

’s
ap

pr
ox

im
at

io
n

M
S

[9
1]

R
ob

ot
ic

m
an

ip
ul

at
or

(E
FF

O
R

T-
ER

C
20

C
-C

10
)

6
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
2

Ye
s

Fr
ac

ti
on

al
-o

rd
er

im
pe

da
nc

e
co

nt
ro

l
3

Fr
eq

ue
nc

y
de

si
gn

m
et

ho
d

Im
pe

da
nc

e
co

nt
ro

l
IT

SE
Im

pu
ls

e
re

sp
on

se
m

et
ho

d
—

P

17



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[1
]

Th
re

e-
lin

k
om

ni
di

re
ct

io
na

l
m

ob
ile

ro
bo

t
m

an
ip

ul
at

or
(K

U
K

A
yo

uB
ot

)

5
�

�
La

gr
an

gi
an

dy
na

m
ic

s
eq

ua
ti

on
3

�

A
da

pt
iv

e
fr

ac
ti

on
al

-o
rd

er
no

ns
in

gu
la

r
te

rm
in

al
sl

id
in

g
m

od
e

co
nt

ro
lle

r

9
Tr

ia
la

nd
er

ro
r

Fr
ac

ti
on

al
-o

rd
er

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r,

N
on

si
ng

ul
ar

te
rm

in
al

sl
id

in
g

m
od

e
co

nt
ro

lle
r

Tr
ac

ki
ng

sp
ee

d
an

d
ac

cu
ra

cy
R

ie
m

an
n–

Li
ou

vi
lle

m
et

ho
d

M
P

[9
2]

Tw
o-

lin
k

R
ig

id
R

ob
ot

ic
M

an
ip

ul
at

or
2

�
�

M
at

he
m

at
ic

al
m

od
el

lin
g

2
�

Fr
ac

ti
on

al
-o

rd
er

fu
zz

y
PI

D
co

nt
ro

lle
r

6
M

os
tv

al
ua

bl
e

pl
ay

er
al

go
ri

th
m

In
te

ge
r-

or
de

r
fu

zz
y

PI
D

,
O

ne
bl

oc
k

fr
ac

tio
na

l/
In

te
ge

r
or

de
r

fu
zz

y
PI

D
,T

w
o

bl
oc

k
Fr

ac
ti

on
al

/I
nt

eg
er

or
de

r
fu

zz
y

PI
D

co
nt

ro
lle

rs

IT
SE

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[9
3]

R
ob

ot
ic

m
an

ip
ul

at
or

2
�

�
Eu

le
r–

La
gr

an
ge

m
et

ho
d

2
Ye

s
Fr

ac
ti

on
al

-o
rd

er
PI

D
co

nt
ro

lle
r

5
G

ra
di

en
t-

ba
se

d
op

ti
m

iz
at

io
n

PI
D

co
nt

ro
lle

r
IS

E
—

M
S

[9
4]

Si
ng

le
-s

eg
m

en
t

so
ft

co
nt

in
uu

m
m

an
ip

ul
at

or
(R

ob
ot

in
o-

X
T)

—
�

�

Fr
ac

ti
on

al
-

or
de

r
Bo

uc
–W

en
hy

st
er

es
is

m
od

el

16
—

—
—

—
—

A
bs

ol
ut

e
po

se
er

ro
r

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
—

P

[9
5]

Tw
o-

lin
k

ro
bo

ti
c

m
an

ip
ul

at
or

2
�

�
M

at
he

m
at

ic
al

m
od

el
lin

g
—

�
Fr

ac
ti

on
al

-o
rd

er
fu

zz
y

PI
D

co
nt

ro
lle

r
8

H
yb

ri
d

gr
ey

w
ol

f
op

ti
m

iz
er

an
d

ar
ti

fic
ia

l
be

e
co

lo
ny

al
go

ri
th

m
PI

D
Tr

ac
ki

ng
er

ro
r

—
M

P

[9
6]

R
ob

ot
ic

m
an

ip
ul

at
or

—
�

�

Fr
ac

ti
on

al
-

or
de

r
Eu

le
r–

La
gr

an
ge

fo
rm

ul
at

io
n

—
—

—
—

—
—

—
—

—
P

[9
7]

St
ew

ar
tP

la
tf

or
m

6
�

�
K

in
em

at
ic

m
od

el
lin

g
2

�
Fr

ac
ti

on
al

-o
rd

er
K

D
H

D
im

pe
da

nc
e

co
nt

ro
l

2
Tr

an
si

en
t

re
sp

on
se

-b
as

ed
tu

ni
ng

K
D

co
nt

ro
lle

r
Er

ro
r

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[9
8]

3-
PU

U
pa

ra
lle

l
ro

bo
ti

c
m

an
ip

ul
at

or
3

�
�

K
in

em
at

ic
m

od
el

lin
g

2
�

PD
D

1/
2

co
nt

ro
lle

r
2

Tr
an

si
en

t
re

sp
on

se
-b

as
ed

tu
ni

ng
PD

co
nt

ro
lle

r
Er

ro
r

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

S

[9
9]

Fl
ex

ib
le

lin
k

m
an

ip
ul

at
or

2
�

�
Eu

le
r–

La
gr

an
ge

fo
rm

ul
at

io
n

2
�

Fr
ac

ti
on

al
-o

rd
er

ph
as

e-
la

g
co

m
pe

ns
at

or
3

O
pt

im
iz

at
io

n
pr

oc
es

s
2D

O
F

PI
D

co
nt

ro
lle

r
Tr

ac
ki

ng
er

ro
r

G
rü

nw
al

d–
Le

tn
ik

ov
m

et
ho

d
M

P

18



Fractal Fract. 2023, 7, 77

T
a

b
le

1
.

C
on

t.

R
e
f.

M
a
n

ip
u

la
to

r
D

e
ta

il
s

M
o

d
e
ll

in
g

D
e
ta

il
s

C
o

n
tr

o
ll

e
r

D
e
ta

il
s

T
o

o
l

S
/P

T
y

p
e

D
O

F
P

a
y

lo
a
d

F
O

M
M

e
th

o
d

O
rd

e
r

F
O

C
C

o
n

tr
o

ll
e
r

C
P

T
u

n
in

g
T

e
ch

n
iq

u
e

C
o

m
p

a
ri

so
n

C
o

n
tr

o
ll

e
rs

O
F

A
p

p
ro

x
im

a
ti

o
n

[1
00

]Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

2
�

�
Eu

le
r–

Be
rn

ou
ll

fo
rm

ul
at

io
n

2
�

Fr
ac

ti
on

al
-o

rd
er

PD
2

Bo
de

Sp
ec

ifi
ca

ti
on

s
PD

co
nt

ro
lle

r
Bo

de
M

ar
gi

ns
G

rü
nw

al
d–

Le
tn

ik
ov

m
et

ho
d

M
P

[1
01

]
K

U
K

A
LW

R
IV

7
�

�
In

ve
rs

e
K

in
em

at
ic

s
M

od
el

3.
04

�
Im

pe
da

nc
e

co
nt

ro
l

4
G

en
et

ic
A

lg
or

it
hm

—
M

SE
,M

A
D

—
—

P

[1
02

]Si
ng

le
-l

in
k

fle
xi

bl
e

m
an

ip
ul

at
or

2
�

�
Ps

eu
do

-
cl

am
pe

d
ap

pr
oa

ch
2

�
Fr

ac
ti

on
al

-o
rd

er
PI

D
2

Bo
de

Sp
ec

ifi
ca

ti
on

s
PI

D
co

nt
ro

lle
r

Tr
ac

ki
ng

er
ro

r
Fr

eq
ue

nc
y

re
sp

on
se

-b
as

ed
te

ch
ni

qu
e

M
P

Th
e

no
ta

ti
on

s
us

ed
in

th
e

ta
bl

e
he

ad
er

ar
e

as
fo

llo
w

s:
D

O
F—

de
gr

ee
of

fr
ee

do
m

;F
O

M
—

fr
ac

ti
on

al
-o

rd
er

m
od

el
;F

O
C

—
fr

ac
ti

on
al

-o
rd

er
co

nt
ro

l;
C

P—
co

nt
ro

lle
r

pa
ra

m
et

er
s;

O
F—

ob
je

ct
iv

e
fu

nc
ti

on
;M

—
M

A
TL

A
B;

L—
La

bV
IE

W
;S

/P
—

si
m

ul
at

io
n/

pr
ac

ti
ca

l.

19



Fractal Fract. 2023, 7, 77

1 DOF

2 DOF

3 DOF

4 DOF

5 DOF

6 DOF

7 DOF

13.42%

59.77%

12.39%

1.03%
1.69%

10.33%
1.37% No Payload

Payload

66.31%

33.69%

(a) (b)

0 2 4 6 8 10 12 14 16 18 20 22 24

Two-link manipulators
Rigid planar robotic manipulator

Single link manipulators
PUMA 560

Three-link manipulators
Serial link manipulator

SCARA
Rotary flexible joint manipulator

Stewart platform
Polaris-I

Mechanical manipulator
Inchworm/Caterpillar robotic manipulator

KUKA youBot
University of Maryland manipulator

Staubli RX-60
Robotino-XT

Muscle-actuated manipulator
Mitsubishi RV-4FL

Hydraulic manipulator
Five-link manipulators

Five-bar-linkage robotic manipulator
Fanuc

ETS-MARSE
EFFORT-ERC20C-C10

Delta robot
2R robotic manipulator

23
15
15

4
4
4
4
4

2
2
2
2
2

1
1
1
1
1
1
1
1
1
1
1
1
1

(c)

Figure 2. Summary of manipulator details from Table 1. (a) Manipulators’ DOF trend; (b) Payload
trend; (c) Manipulator’s type.

Figure 3 gives a summary of the modelling approach and techniques used for robotic
manipulators. As shown in Figure 3a, approximately 85% of modelling approaches used
in the literature are conventional/integer-order type only. The remaining 15% of works
have developed a fractional-order model of orders 0.3, 0.5, 0.6, 0.71, 0.8, 0.9, 0.92, 0.99,
1.14 and 3.04. Figure 3b shows that Euler–Lagrange relations have often been used to
develop the manipulator’s dynamic model in the conventional model category. In the
fractional-order model category, various approaches, including adaptive neural network,
describing functions, value selection algorithm, the Bouc–Wen hysteresis model, and
the Euler–Lagrange formulation, have been used to develop commensurate and non-
commensurate fractional-order models of manipulators. The following section will give a
more detailed review of these modelling stargates.

Similarly, Figure 4 shows the summary of controllers, optimization, and approxima-
tion techniques used during the manipulators’ control design. As shown in Figure 4a,
the most widely developed fractional-order controllers use PID, sliding mode, and fuzzy.
This is because PID is often used in the industry due to the advantages of simplicity and
easy tuning and implementation. At the same time, the sliding mode offers the bene-
fits of computational simplicity, less sensitivity to parameter uncertainties, being highly
robust to disturbances, and fast dynamic response. On the other hand, fuzzy achieves
better servo and regulatory response. However, sliding mode and fuzzy requires more
controller parameters to be tuned. Researchers have used various optimization algorithms
for tuning, as shown in Figure 4b. The figures show that about 70% have used genetic
algorithms, cuckoo search, and particle swarm optimization. This is because these are the
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most popular and widely considered benchmark algorithms. Figure 4c gives the trend of
approximation techniques used in manipulator modelling and controller design. The fig-
ures show Grünwald–Letnikov, Riemann–Liouville, Caputo, Oustaloup/refined Oustaloup
approximations are the most frequently used techniques in the literature. More details
regarding these approximation techniques can be found in [7]. A more detailed review of
these control and optimization techniques stargates will be given in the following section.

Figure 5 shows the summary of validation type and type of toolbox, collected from
Table 1. Figure 5a shows that about 65% of works, either modelling or validating controller,
have been performed in the simulation environment. At the same time, the remaining
35% of results have validated the proposed approaches, practically. For these validations,
approximately 90% of the researchers have used MATLAB, while others used LabVIEW,
C++, and Solidworks. It is also worth highlighting that several researchers have used
externally developed MATLAB-based toolboxes such as CRONE, Ninteger, and FOMCON
to realize fractional-order systems and controllers [7].
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Figure 3. Summary of modelling details from Table 1. (a) Type of modelling approach. (b) Various
types of modelling techniques.
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Figure 4. Cont.
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Approximation

Oustaloup’s: 34.31%

Taylor series: 1.37%

Grünwald-Letnikov’s: 30.19%
Atangana-Baleanu integral: 1.37%

Reimann-Liouville’s: 6.72%

Short memory principle: 1.37%

Caputo derivative: 10.97%

Pade: 1.37%

CRONE: 9.61%

Digital IIR: 2.73%

(c)

Figure 4. Summary of controller, optimization and approximation technique details from Table 1.
(a) Fractional-order controllers. (b) Optimization techniques. (c) Approximation techniques.
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(a) (b)

Figure 5. Summary of implementation type from Table 1. (a) Validation type. (b) Software toolboxes.

4. Modelling of Robotic Manipulators

As mentioned in Section 3, the Newton–Euler equations and Lagrange-assumed
modes methods are most widely used for obtaining the mathematical model of robotic
manipulators [103–105]. The Newton–Euler equations are based on Newton’s second
law of motion, while the Lagrange method derives the motion equations by eliminating
interaction forces between adjacent links. In other words, Newton–Euler is a force balance
approach, whereas the Lagrange method is an energy-based approach to manipulators’
dynamics. Moreover, the Euler–Lagrange relations will produce the same equations as
Newton’s, which help analyze complicated systems. Additionally, these relations have
the advantage of taking the same form in any system of generalized coordinates and are
better suited for generalizations. Therefore, for developing the dynamic models of single-,
two- and three-link robotic manipulators, Euler–Lagrangian relations are used as explained
underneath. Further, the generalized model for the N number of rigid and n number of
elastic degrees of freedom using the same technique is also given underneath.

4.1. Single-Link Rigid and Flexible Robotic Manipulators

An ideal single-link planar rigid robotic manipulator is shown in Figure 6. The mathe-
matical relationship between torque τ and position θ using Euler–Lagrangian formulation
is given as [66,103,105],

ml2θ̈ + gml sin(θ) + vθ̇ = τ, (2)

where v is the friction coefficient.
Let us assume x1 = θ and x2 = θ̇, then (2) can be rewritten as,

ẋ1 = x2,

ẋ2 = − g
l

sin(x1)− v
ml2 x2 +

1
ml2 τ.

(3)
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The nominal values of robotic manipulator parameters considered in most of the
research works are m = 2 kg, v = 6 kgms, l = 1 m and g = 9.81 m/s2. Thus, substituting
these nominal values, (3) can be rewritten as,

ẋ1 = x2,

ẋ2 = −9.81 sin(x1)− 3x2 + 0.5τ.
(4)

Notations
- Mass at the end of link 1
- Length of link 1
- Torques for link 1
- Positions of link 1
- Gravity

Figure 6. Single-link planar rigid robotic manipulator.

Similarly, the state space representation of an ideal single-link flexible robotic manipu-
lator using Euler–Lagrangian formulation is given as [25,27,70],

θ̈ = −k1θ̇ + k2α + k3Vm,

α̈ = k1θ̇ − k4α − k3Vm,
(5)

where α is the tip deflection, θ is the motor shaft position, Vm is the motor input voltage
and ki, i ∈ (1, 4) are constants.

Let us assume x1 = θ, x2 = α, x3 = θ̇, x4 = α̇ and Vm = u, then (5) can be rewritten as,

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = p2x2 − p1x3 + p3u,

ẋ4 = p4x2 + p1x3 − p3u.

(6)

From (6), the fractional-order model of a single-link flexible robotic manipulator in
non-commensurate order is given as,

ẋβ
1 = x3,

ẋβ
2 = x4,

ẋα
3 = p2x2 − p1x3 + p3u,

ẋα
4 = p4x2 + p1x3 − p3u,

(7)

where α and β are the fractional-orders.

4.2. Two-Link Planar Rigid Robotic Manipulator

An ideal two-link planar rigid robotic manipulator or a SCARA-type manipulator
with a payload of mass mp at the tip is shown in Figure 7. The mathematical relationship
between torques (τ1, τ2) and positions (θ1, θ2) of both the links (1, 2) using Euler–Lagrangian
formulation is given as [4,5,28,31,39,44,51,64,103,106,107],
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[
M11 M12
M21 M22

][
θ̈1
θ̈2

]
+

[−(m2l1lc2 sin(θ2)
)
θ̇2 −(m2l1lc2 sin(θ2)

)
(θ̇1 + θ̇2)(

m2l1lc2 sin(θ2)
)
θ̇1 0

][
θ̇1
θ̇2

]
+

[
m1lc1g cos(θ1) + m2g(lc2 cos(θ1 + θ2) + l1 cos(θ1))

m2lc2g cos(θ1 + θ2)

]
+

[
v1θ̇1
v2θ̇2

]
+

[
p1sgn(θ̇1)
p2sgn(θ̇2)

]
=

[
τ1
τ2

]
,

(8)

where

M11 = m1 + l2
c1 + m2(l2

1 + l2
c2 + 2l1lc2 cos(θ2)) + mp(l2

1 + l2
2 + 2l1l2 cos(θ2)) + I1 + I2,

M12 = m2(l2
c2 + l1lc2 cos(θ2)) + mp(l2

2 + l1l2 cos(θ2)) + I2,
M21 = m2(l2

c2 + l1lc2 cos(θ2)) + mp(l2
2 + l1l2 cos(θ2)) + I2,

M22 = m2l2
c2 + mpl2

2 + I2.

In (8), v1, v2 are the coefficients of viscous friction and p1, p2 are the coefficients of
dynamic friction of links 1 and 2, respectively. The nominal values of robotic manipulator
parameters considered in most of the research works are m1 = m2 = 1.0 kg, l1 = l2 = 1.0 m,
lc1 = lc2 = 0.5 m, I1 = I2 = 0.2 kgm2, v1 = v2 = 0.1, p1 = p2 = 0.1, mp = 0.5 kg and
g = 9.81 m/s2.

,

,

Notations, - Masses of link 1 and link 2
- Mass of a payload, - Lengths of link 1 and link 2, - Torques for link 1 and link 2, - Centroid inertia of link 1 and link 2, - Distances from the joint of link 1 and link 2, - Positions of link 1 and link 2
- Gravity

Figure 7. Two-link planar rigid robotic manipulator with a payload.

4.3. Three-Link Planar Rigid Robotic Manipulator

An ideal three-link planar rigid robotic manipulator with no friction, as shown in
Figure 8, is where all the masses m1, m2 and m3 exist as a point mass at the end point of
each link. The mathematical relationship between torques (τ1, τ2, τ3) and positions (θ1, θ2,
θ3) of all the links (1, 2, 3) using Euler–Lagrangian formulation is given as [56,65],

⎡⎣M11 M12 M13
M21 M22 M23
M31 M32 M33

⎤⎦⎡⎣θ̈1
θ̈2
θ̈3

⎤⎦+
⎡⎣−l1(m3l3 sin(θ2 + θ3) + m2l2 sin(θ2) + m3l2 sin(θ2))θ̇

2
2 − m3l3(l1 sin(θ2 + θ3) + l2 sin(θ3))θ̇

2
3

l1(m3l3 sin(θ2 + θ3) + m2l2 sin(θ2) + m3l2 sin(θ2))θ̇
2
1 − m3l2l3 sin(θ3)θ̇

2
3

m3l3(l1 sin(θ2 + θ3) + l2 sin(θ3))θ̇
2
1 + m3l2l3 sin(θ3)θ̇

2
2

⎤⎦+

⎡⎣R1
R2
R3

⎤⎦+
⎡⎣(m1 + m2 + m3)gl1 cos(θ1) + (m2 + m3)gl2 cos(θ1 + θ2) + m3gl3 cos(θ1 + θ2 + θ3)

(m2 + m3)gl2 cos(θ1 + θ2) + m3gl3 cos(θ1 + θ2 + θ3)
m3gl3 cos(θ1 + θ2 + θ3)

⎤⎦ =

⎡⎣τ1
τ2
τ3

⎤⎦
, (9)

where
M11 = (m1 + m2 + m3)l2

1 + (m2 + m3)l2
2 + m3l2

3 + 2m3l1l3 cos(θ2 + θ3) + 2(m2 + m3)l1l2 cos(θ2) + 2m3l2l3 cos(θ3),
M12 = (m2 + m3)l2

2 + m3l2
3 + m3l1l3 cos(θ2 + θ3) + (m2 + m3)l1l2 cos(θ2) + 2m3l2l3 cos(θ3),
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M13 = m3l2
3 + m3l1l3 cos(θ2 + θ3) + m3l2l3 cos(θ3),

M21 = m2l2
2 + m3l2

2 + m3l2
3 + m3l1l3 cos(θ2 + θ3) + m2l1l2 cos(θ2) + m3l1l2 cos(θ2) + 2m3l2l3 cos(θ3),

M22 = m2l2
2 + m3l2

2 + m3l2
3 + 2m3l2l3 cos(θ3),

M23 = m3l2
3 + m3l2l3 cos(θ3),

M31 = m3l2
3 + m3l1l3 cos(θ2 + θ3) + m3l2l3 cos(θ3),

M32 = m3l2
3 + m3l2l3 cos(θ3),

M33 = m3l2
3,

R1 = −2l1(m3l3 sin(θ2 + θ3) + (m2 + m3)l2 sin(θ2))θ̇1 θ̇2 − 2m3l3(l1 sin(θ2 + θ3) + l2 sin(θ3))θ̇2 θ̇3 − 2m3l3(l1 sin(θ2 + θ3) + l2 sin(θ3))θ̇1 θ̇3,
R2 = −2m3l2l3 sin(θ3)θ̇1 θ̇3 − 2m3l2l3 sin(θ3)θ̇3 θ̇2,
R3 = 2m3l2l3 sin(θ3)θ̇1 θ̇2.

In (9), it can be observed that the first, second (i.e., centrifugal), third (i.e., Coriolis)
and fourth (i.e., potential energy) terms consist of θ̈i, θ̇2

i , θ̇i θ̇j and θi, respectively, where
i = 1, 2, 3 and i �= j. The nominal values of robotic manipulator parameters considered in
most research works are m1 = 0.2 kg, m2 = 0.3 kg, m3 = 0.4 kg, l1 = 0.4 m, l2 = 0.6 m,
l3 = 0.8 m and g = 9.81 m/s2. The payload mass is added to the mass m3.

Notations, , - Masses of link 1, link 2 and link 3, , - Lengths of link 1, link 2 and link 3, , - Torques for link 1, link 2 and link 3, , - Positions of link 1, link 2 and link 3
- Center of gravity

Figure 8. Three-link planar rigid robotic manipulator with a payload.

4.4. Generalized Model of Serial Link Planar Rigid Robotic Manipulator

The mathematical relationship between torques and positions of a robotic manipulator
with N number of rigid and n number of elastic degrees of freedom using Euler–Lagrangian
formulation is given as [104],

[
(Mrr)N×N (Mr f )N×n
(Mf r)n×N (Mf f )n×n

]
(N+n)×(N+n)

[
(q̈r)N×1
(q̈ f )n×1

]
(N+n)×1

+[
(Hr)N×1
(Hf )n×1

]
(N+n)×1

+

[
(Gr)N×1
(Gf )n×1

]
(N+n)×1

=

[
τN×1
0(n)×1

]
(N+n)×1

,
(10)

where the matrices are defined as,

• Mrr and Mf f are the mass matrices related to rigid and flexible degrees of
freedom, respectively,

• Mr f row matrix that defines the coupling between manipulators’ rigid and flexible motions,
• Mf r row matrix that defines the coupling between manipulators’ flexible and rigid motions,
• qr and q f are the manipulators’ rigid and flexible degrees of freedom representing the

motions of joints and elastic motions of flexible links, respectively,
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• Hr and Hf are the centrifugal and Coriolis matrix related to rigid and flexible mo-
tion, respectively,

• Gr and Gf are the gravity matrix related to rigid and flexible motion, respectively,
• τ is the torque vector.

4.5. Other Robotic Manipulators

The modelling strategies of other robotic manipulators of various degrees of freedom
are shown in Figure 9. The figure depicts that the most widely used Euler–Lagrangian
formulation has been used to model lower and higher DOF manipulators such as inch-
worm/caterpillar [34,37], serial/joint manipulators, KUKA youBot [1], and Stewart plat-
forms [89]. Similarly, the kinematic and inverse kinematic modelling approach has also
been used for Delta robots [59], parallel manipulators, the Stewart platform [97], KUKA
LWR IV [101], and Mitsubishi RV-4FL [2]. The next most widely used is a mathematical
model developed for PUMA 560 [50], Quanser manipulators [83,88], Staubli RX-60 [54],
Polaris-I [2], and UMD manipulators [21]. On the other hand, the fractional-order models
have been developed for only Quanser [83], PUMA 560 [75], and Robotino-XT [94]. Thus,
there is broad scope for exploring the concept of fractional-order modelling for various
lower DOF manipulators such as inchworm/caterpillar and higher DOF manipulators such
as Delta robot, KUKA youBot, Staubli RX-60, Robotino-XT, etc.
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1 DOF
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Euler–
Lagrange
Method

(Rahmani
et al.
2016)

2 DOF

PUMA 560
Mathe-
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hammed
et al.
2016)
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Figure 9. Modelling strategies used for various lower and higher DOF robotic
manipulators [1–3,20,21,30,34,37,50,54,59,69,70,73,75,76,76,83,83,85,88,89,94,97,101].
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5. Fractional-Order Control of Robotic Manipulators

This section presents a broad overview of fractional-order control strategies developed
for various rigid, flexible, and joint robotic manipulators. These control strategies aim to
achieve robust and stable performance despite uncertainties, external disturbances, and
actual faults. As mentioned in Section 3, the developed fractional-order control strategies
for various robotic manipulators are evolved versions of PID, sliding mode, backstepping,
fuzzy, active disturbance rejection [82], and impedance control [91,97,98]. A more detailed
review of these control strategies will be explained underneath.

5.1. Fractional-Order PID Controllers

The fractional-order PID controller with five parameters is an extension of the PID
where the conventional integrator and differentiator are replaced with fractional ones.
The serial rigid, flexible, and joint manipulators with DOF varying from 1 to 2 have
been effectively controlled in simulation, and practice, using fractional-order PD/PID
compared to PI/PD/PID and achieved better tracking accuracy and stability, practi-
cally [11,52,70,88,99,100,102,108]. However, the trial and error method has often been used
to achieve the controller parameters. However, in the case of a two-link planar rigid
robotic manipulator, the optimally tuned fractional-order PID and two-degree of freedom
fractional-order PID controllers using the cuckoo search algorithm [4], particle swarm
optimization [17,19], genetic algorithm [14,46] have performed better than the conventional
and two-degree of freedom PID controllers [29,45]. A similar case has also been seen in
a three-link planar rigid robotic manipulator, where fractional-order PID tuned using an
evaporation rate-based water cycle algorithm has achieved better performance than the
PID [56]. The best fractional-order PI/PD/PID performance is also true for higher DOF
robotic manipulators, including Staubli RX-60 [54], UMD manipulator [21], PUMA 560 [75],
Fanuc [20,24], Delta robot [59], KUKA LWR IV [101], and 3-RRR planar parallel robots [76].
Moreover, for these higher DOF robotic manipulators, the controller parameters are tuned
using rule-based methods including Bode tuning [24] and decentralized tuning [20]. More
details regarding the control actions of the fractional-order PID controller family, including
two-degree of freedom configuration, can be found in [6,7,109,110].

5.2. Fractional-Order Fuzzy PID Controllers

It is widely known that PID is most often used in industry due to the advantages of
simplicity and easy tuning and implementation [111]. As mentioned earlier, the perfor-
mance of this controller is enhanced using fractional calculus. Moreover, the performance of
this fractional-order PID is further enhanced using intelligent fuzzy techniques to achieve
better servo and regulatory responses. Therefore, various combinations of fractional-
order PID and fuzzy logic are proposed in the literature to form fractional-order fuzzy
PID controller for two-link [4,39,43,44,51,62,63,67,79,92,95], three-link manipulators [48,65],
SCARA [31,53], PUMA 560 [30], and Stewart platforms [89]. In addition, the authors of [64]
have proposed a hybrid two-degree-of-freedom fractional-order fuzzy PID controller by
combining two-degree-of-freedom PID, fractional-order concept, and fuzzy logic. These
combinations have achieved better performance than the conventional and integer-order
ones. Further, to incorporate the self-tuning of controller parameters rather than designing
using precise mathematics, researchers have used several optimization techniques where
the non-linear controller gains are updated in real-time using error and fractional rate of er-
ror. The optimization techniques used in the literature are artificial bee colony [39,43,53,95],
genetic algorithm [30,39,43,64,79], cuckoo search [4,31,48,51,63], backtracking search [44,65],
dragonfly [79], ant lion optimizer [79], particle swarm optimization [67,89] and grey wolf
optimizer [95]. The robustness testing of these self-tuned fractional-order fuzzy PID con-
trollers has shown superior tracking results in comparison to the conventional counterparts.
However, in most of the works, the analytical stability analysis of these controllers has yet
to be attempted. Thus, the research gap in the analytical proof of stability is noteworthy.
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5.3. Fractional-Order Sliding Mode Controllers

Among the non-linear control methods such as an adaptive, fuzzy, neural network,
sliding mode, H∞, and model predictive controllers, the sliding mode control has been
widely utilized due to its advantages of being computational simplicity, less sensitive to
parameter uncertainties, highly robust to disturbances, and fast dynamic response [2,42].
However, the sliding mode controller has three significant problems: singularity, uncertain-
ties, and chattering effect [78]. The singularity problem in the sliding mode control signal
exists because of differentiating the exponential term in the controller equation. Thus,
nonsingular sliding mode controllers have been developed to deal with this issue [69].
Moreover, various intelligent and optimization algorithms are hybridized with sliding
mode controllers to compensate for the uncertainties issue, which also helps reduce the
switching gains [58]. However, the problem of the chattering effect is still a drawback for
the sliding mode controller. Therefore, researchers have recently developed fractional-order
sliding mode controllers, which help reduce the chattering impact due to their memory
and hereditary properties [81]. The two types of sliding mode controllers are given as
linear sliding mode and terminal sliding mode controllers. The application of the fractional-
order form of these two sliding mode controllers for various robotic manipulators will be
explained underneath.

The linear fractional-order sliding mode controller has been developed for a single-link
flexible manipulator for DOF varying from 1 to 2, achieving better performance than the
conventional sliding mode controller and PID [22,25,42,66,68]. Even though the controller
has no chattering effect, the singularity and uncertainties issues still exist. Thus, fuzzy and
adaptive sliding mode controllers have been proposed for single-link, two-link, Mitsubishi
RV-4FL, polar, and Inchworm/Caterpillar robotic manipulators. In [15,16,37,57,58], the
authors have developed fuzzy and adaptive sliding mode controllers using bat optimiza-
tion, genetic, and cuckoo search algorithms. The adaptive part of the controller will help
reduce the uncertainties issue, and the fractional part of the controller will help reduce
the chattering effect. On the other hand, the authors of [18] have proposed a fractional
variable structure that helps minimize switching actions. However, the singularity problem
still exists in these control techniques. Thus, the interest has been shifted towards using
nonsingular sliding mode controller configurations.

Various configurations of terminal fractional-order sliding mode controllers have
recently been developed for robotic manipulators to deal with singularity, uncertainties,
and chattering effects. The authors of [26,55,69] have developed a fractional-order nonsin-
gular terminal sliding mode controller for hydraulic and cable-driven manipulators, where
the controller parameters are obtained using the trial and error method. This controller
configuration has performed better than the integer-order nonsingular terminal sliding
mode controller in both practical and simulation analysis. Even though the chattering
and singularity issues have been solved, the controller still has uncertainty issues. Thus,
in [1,28,34,61,73,74,78], an adaptive fractional-order nonsingular terminal sliding mode con-
troller has been proposed for serial robotic manipulators, exoskeleton robot, KUKA youBot,
and inchworm/caterpillar robotic manipulators. The controller has performed better than
all its counterparts, including sliding mode controller, integer-order terminal sliding mode
controller, fractional-order terminal sliding mode controller, and fractional-order nonsin-
gular terminal sliding mode controller in solving the singularity issues, uncertainties,
and chattering effect. However, this controller configuration is complex and needs more
controller parameters to be tuned. Moreover, this controller configuration is further im-
proved using time delay estimation, which forms the time delay estimation-based adaptive
fractional-order nonsingular terminal sliding mode controller. In [3,36,81,86], the time delay
estimation-based adaptive fractional-order nonsingular terminal sliding mode controller
has been proposed for rigid hydraulic manipulators which have performed better than all
of its counterparts and solved singularity, uncertainties, and chattering issues. At the same
time, the controller configuration is very complex, and around 15 controller parameters
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need to be tuned. Thus, developing simple evolved versions of fractional-order sliding
mode controllers to deal with singularity, uncertainties, and chattering effects are inevitable.

5.4. Fractional-Order Adaptive Backstepping Controller

The adaptive backstepping controller provides an improved tracking performance
in the presence of uncertainties and faults, thanks to the controllers’ adaptation law. In
addition, the controller guarantees closed-loop system stability, which the conventional
one failed to achieve. As finite-time convergence is crucial in robotic manipulators, thus, an
adaptive backstepping controller is the perfect choice to achieve stable operation even in
the presence of uncertainties and external disturbances. Further, to provide better steady-
state and transient performances, the authors of [32,85] have proposed a fractional-order
adaptive backstepping controller in the presence of actuators’ faults and disturbances.
The controller achieved adequate performance for PUMA 560 and a rotary manipulator
under uncertainties, external load disturbances, and actuator faults. The controller also
attained finite-time convergence and asymptotic stability. However, in both works, the
controller parameters are chosen using the trial and error method. Thus, there is scope
to develop a tuning approach for controller parameters of the fractional-order adaptive
backstepping controller.

6. Conclusions

6.1. Findings

A comprehensive review of the application of the fractional-order concept in modelling
and control techniques for various robotic manipulators has been discussed, as proposed
by previous researchers. This comprehensive review summarizes the research outcomes
published from 1998 until 2022 of around 100 works. Firstly, the study includes the
conventional and fractional-order modelling strategies for robotic manipulators. Then, a
review of developed fractional-order controllers for various robotic manipulators, which
evolved from PID, sliding mode, fuzzy, backstepping, active disturbance rejection control,
and impedance control, are presented. The graphical trend for existing research has been
broadly presented in both cases. Thus, this review is expected to draw the attention of the
investigators, experts, and researchers, allowing them to understand the most recent trends
and work to advance in this field.

6.2. Future Perspectives

• There is broad scope for exploring the fractional-order modelling concept for various
industrial robots, including Delta robot, KUKA youBot, Staubli RX-60, Robotino-XT, etc.

• The performance of fractional-order PID controllers can be further improved using
the fractional-order form of predictive PI controllers for achieving robust servo and
regulatory responses. Additionally, the performance of fractional-order PID controllers
needs to be improved in the presence of uncertainties and faults.

• Even though fractional-order fuzzy PID controllers have achieved better servo and
regulatory responses for proper industrial applications, the proof for analytical stability
is a considerable research gap.

• The fractional-order nonsingular terminal sliding mode controller has achieved better
response and surpassed the issues of singularity, uncertainties, and chattering effects.
However, the controller configuration is very complex, and more parameters must
be tuned. Thus, research on developing simple, evolved versions of controllers
is inevitable.

• The adaptive backstepping controller provided an improved tracking performance
in the presence of uncertainties and faults, thanks to the controllers’ adaptation law.
However, the controller parameters are chosen using the trial and error method. Thus,
there is scope to develop a tuning approach for controller parameters.
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Abbreviations

The following abbreviations are used in this manuscript:

DOF Degrees of freedom
FOMCON Fractional-order modeling and control
IACCO Integral of absolute change in controller output
IAE Integral absolute error
ISCCO Integral square of change in controller output
ISE Integral square error
ISV Integral of the square value
ITACO Integral of time absolute change in controller output
ITAE Integral time absolute error
ITSE Integral time square error
LQR Linear-quadratic regulator
MAD Mean absolute deviation
MAE Mean absolute error
MSE Mean square error
MMFAE Mean minimum fuel and absolute error
RMSE Root mean squared error
STD Standard deviation
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Abstract: Impedance control is an important method in robot–environment interaction. In traditional
impedance control, the damping force is regarded as a linear viscoelastic model, which limits
the description of the dynamic model of the impedance system to a certain extent. For the robot
manipulator, the optimal impedance parameters of the impedance controller are the key to improve
the performance. In this paper, the damping force is described more accurately by fractional calculus
than the traditional viscoelastic model, and a fractional-order impedance controller for the robot
manipulator is proposed. A practical and systematic tuning procedure based on the frequency
design method is developed for the proposed fractional-order impedance controller. The fairness
of comparison between the fractional-order impedance controller and the integer-order impedance
controller is addressed under the same specifications. Fair comparisons of the two controllers via
the simulation and experiment tests show that, in the step response, the fractional-order impedance
controller has a better integral time square error (ITSE) result, smaller overshoot and less settling
time than the integer-order impedance controller. In terms of anti-disturbance, the fractional-order
impedance controller can achieve stability with less recovering time and better ITSE index than
integer order impedance controller.

Keywords: impedance control; fractional-order control; robot manipulator

1. Introduction

Robot manipulators have been playing an important role in industry, medical treat-
ment and service industries. The manipulator is closely related to the environment in
most working circumstances, which puts forward higher and higher requirements for the
dynamic interaction between the robot manipulator and the environment [1–3]. The single
trajectory control method may cause too much interaction force and result in damage, or the
force may be too small to complete the task [4,5]. In order to expand the application range
of robot manipulator and improve the system performance, controlling the contact force
between the robot manipulator and the environment has become one of its hot research
areas [6,7]. Active compliance control is one of the main ways to realize the force control,
which adjusts the interaction force depending on the force feedback information from the
joint or the force sensor installed at the end of the robot manipulator. The impedance con-
trol algorithm is a general strategy for the robot manipulator to realize active compliance
control [8] which adopts the structure of inner loop position control and outer loop force
control (also called admittance control) [9]. A user-defined dynamic relationship between
the reference trajectory of the end effector and the interaction contact force can be built by
the impedance control model.

Robot–environment interaction in an uncertain environment brings challenges to
impedance control, such as cell injection, rehabilitation applications and complex work-
piece curved surface processing. It is difficult to obtain the performance of accurate force
tracking and the system robustness due to various unknown features. In an impedance
control framework, choosing proper impedance parameters is the key to realize the desired
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impedance dynamics and guarantee the stability [10–12]. Otherwise, the compliance of
robot–environment interaction would be severely affected. Accordingly, conventional
impedance may not be suitable for these applications, and large errors of position and force
might be produced [13].

Intelligent and advanced algorithms have been proposed to improve the performance
of impedance controller in a complex uncertain environment. The impedance parameters
matching the interaction environment properly are generated to cope with the uncertain
environment. Zhang et al. [14] presented a variable impedance method to acquire the
impedance parameters in real time, using the offline-trained fuzzy neural network system.
In [15], the natural gradient actor-critic reinforcement learning algorithm was proposed
to optimize the impedance parameters online. However, none of these works addresses
the issue of sampling efficiency. A huge amount of training data is required in the learning
methods, which is infeasible for the physical interacting system. Dong et al. [16] proposed
a speed-based variable impedance adaptive interaction control method, and the damping
parameter of the impedance controller was adaptively adjusted according to the interactive
force-tracking error. In [12], an adaptive variable impedance control method was applied
to track the desired dynamic force and compensate for uncertainties in the environment.
However, the overshoot of the contact force, and the trade-off between force-tracking
accuracy and system robustness were not addressed.

The traditional impedance control model is equivalent to a mass-spring-damper sys-
tem, and the damping force is usually described by a linear viscoelastic model. However,
the description accuracy of damping force is limited by the traditional linear model [17,18],
which could affect the performance of the controller to a certain extent. Fractional cal-
culus theory, as the extension of integer calculus, can describe physical objects more
accurately [19,20]. Fractional-order control has been proven to achieve outstanding track-
ing performance and robustness [21,22]. Reference [23] used a fractional-order derivative to
describe the damping force in the visco-elastic-dampers, which was more accurate and even
required fewer parameters in comparison with other models. Fractional calculus provided
flexibility in designing appropriate visco-elastic-dampers with a large variety of practicable
values for parameters [23]. Wang et al. [24] extended the classical skyhook damping control
strategy to the fractional-order one. A fractional-order skyhook damping control design
method for full-car suspension was given, which obtained a more ideal control effect over
the classical control method. The impedance model for the uncertain environment with
nonlinear factors is a typical fractional-order object [9]. In this paper, fractional calculus
theory is applied to optimize the performance of impedance control. The damping force
in the impedance model is described more accurately using the fractional-order deriva-
tive than the traditional integer-order one. Based on the fractional-order damping force
model, the traditional integer-order impedance (IO-impedance) control is extended to the
fractional-order impedance (FO-impedance) control, which is applied to the compliance
control of the robot manipulator. A fair comparison between IO-impedance control and
FO-impedance control is addressed under the same design specifications. The simulation
and experimental test show that the proposed FO-impedance controller outperforms the
IO-impedance controller.

The main contributions of this paper include the following: (1) A FO-impedance
controller for robot manipulator is proposed based on a proposed fractional order damping
force model. (2) A systematic tuning method for the FO-impedance controller design is
proposed with detailed procedure. The designed control system can meet the user given
frequency domain specifications. (3) The simulation and experimental demonstration on
the robot manipulator system are presented to verify the feasibility and advantages of the
proposed FO-impedance controller compared with the optimal IO-impedance controller.

The remaining of this paper is organized as follows: Section 2 describes the impedance
model and the FO-impedance controller optimal design method; the simulation illustration
and experimental verification are shown in Sections 3 and 4, respectively. The step response
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and anti-disturbance robustness performance of FO-impedance controller is studied and
compared with the IO-impedance controller. The conclusion is given in Section 5.

2. FO-Impedance Controller Design

2.1. Impedance Control Methodology

The dynamic model of the robot manipulator impedance control mechanical system
can be described as a mass-spring-damper system. The structure is shown in Figure 1, and
the system dynamic equation is as follows:

Mdẍ(t) + Bdẋ(t) + Kdx(t) = Fext, (1)

where x is the position, Md is the mass, Bd is the damping, Kd is the stiffness, and Fext is the
contact force between the robot manipulator and the external environment.

Figure 1. Dynamic model of impedance-control mechanical system.

According to Equation (1), one can get,

X(s)
F(s)

=
1

Mds2 + Bds + Kd
. (2)

For impedance control, the control system adopts position control as the inner loop
and force control as the outer loop. For the robot manipulator, a force sensor is usually
installed at the end of the robot manipulator to sense its contact force with the environment.
Through the impedance control algorithm, the position information which needs to be
corrected is generated according to the force error and input into the inner loop of position
control, and then the contact force with the environment is adjusted.

The robot manipulator impedance-control-system block diagram is shown in Figure 2.
The reference contact force between the end of the robot manipulator and the environment
is set as Fre f . The real contact force Freal between the robot manipulator and the external
environment is collected by the force sensor. ΔF is the difference between the real contact
force and the reference contact force. The position variation ΔX of the robot manipulator
end effector is calculated according to the impedance-control algorithm. Then the position
control command Xcmd is obtained as the target of the position control loop with position
reference Xre f and position variation ΔX. Xreal is the actual position of the robot manipula-
tor end effector. Ks is the external environmental stiffness in contact with the end of the
robot manipulator.

Figure 2. Robot manipulator impedance-control system diagram.
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The reference contact force Fre f as the system input and the actual contact force Freal as
the system output are presented in Figure 3. The closed loop of the robot position control
is replaced as 1 due to the high control bandwidth and high tracking performance of the
robot manipulator position servo control system.

Figure 3. Simplified robot manipulator impedance-control system diagram.

The open-loop transfer function of the feedback control system in Figure 3 can be
expressed as,

G0(s) =
Ks

Mds2 + Bds + Kd
. (3)

The closed-loop transfer function is,

G1(s) =
Ks

Mds2 + Bds + Kd + Ks
. (4)

2.2. Controllers Design

In this section, the methodologies of the IO-impedance controller and FO-impedance
controller design are presented, respectively. In the position-based impedance control,
virtual stiffness can lead to steady-state force-tracking errors [9,25]. Many control strategies
have been proposed to attenuate the force tracking error [25–27]. Canceling the stiffness
parameter in the impedance model is a simple and effective way to solve this problem [25].

According to Equation (4), the system output can stabilize at
Ks Fre f
Kd+Ks

. The FO-impedance
controller design for robot contact force control is mainly studied in this paper. In order
to stabilize the system output at the given reference force, the method in reference [25] is
applied, and the stiffness parameter Kd is set as 0.

The open-loop transfer function Equation (3) becomes

G0(s) =
Ks

Mds2 + Bds
. (5)

Substituting jw for s in Equation (5) yields

G0(jw) =
Ks

Md(jw)2 + Bd(jw)
. (6)

2.2.1. Design Specifications

The frequency-domain design method is applied in this paper, which constrains the
gain crossover frequency and phase margin [28]. In order to ensure a fair comparison,
both the gain crossover frequency and phase margin specifications are introduced for the
IO-impedance controller and FO-impedance controller design in this paper, which are
given as follows:

(1) Gain crossover frequency specification
At the gain crossover frequency, the amplitude of the open-loop transfer function

should be 1,
|G0(jwc)|db = 1, (7)

where wc is the gain crossover frequency.
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(2) Phase margin specification

Arg[G0(jwc)] = −π + ϕm, (8)

where ϕm is the phase margin required.

2.2.2. IO-Impedance Controller Design

The phase and gain of G0(s) in frequency domain can be given as follows:

|G0(jw)|db =
Ks√

M2
dw4 + B2

dw2
, (9)

ϕ(w) = atan
Bd

Mdw
. (10)

Given the gain crossover frequency wc and the desired phase margin ϕm, from
Equations (7) and (8), one can obtain

Ks√
M2

dw4
c + B2

dw2
c

= 1, (11)

ϕm = π + atan
Bd

Mdwc
. (12)

According to Equations (11) and (12), Md and Bd can be obtained in the following form:

Md =
Ks√

w4
c + w4

c tan2(ϕm − π)
, (13)

Bd = tan(ϕm − π)Mdwc. (14)

Clearly, according to the given crossover frequency and phase margin, we can solve
Equations (13) and (14) to obtain Md and Bd.

2.2.3. FO-Impedance Controller Design

Fractional order can describe the damping characteristics more accurately [23,24].
In order to improve the control performance of the system, a FO-impedance controller
is proposed with a fractional order damping model as the controller structure shown in
Figure 4.

Figure 4. FO-impedance controller.

The fractional-order dynamic differential equation corresponding to the traditional
integer-order dynamics in Equation (1) is as follows:

Mdẍ(t) + Bdxμ(t) + Kdx(t) = Fext, (15)

where μ is the fractional order.
The stiffness parameter Kd is set as 0 to attenuate the force-tracking error [25]. The

open-loop transfer function Equation (5) can be written as
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G0 f (s) =
Ks

Mds2 + Bdsμ . (16)

Substituting jw for s in Equation (16) yields

G0 f (jw) =
Ks

Md(jw)2 + Bd p1 + Bd p2 j
, (17)

where
p1 = wucos(

π

2
μ), (18)

p2 = wusin(
π

2
μ). (19)

The gain of G0 f (s) in frequency domain can be given as∣∣∣G0 f (jw)
∣∣∣
db

=
Ks√

[Md(jw)2 + (Bd p1)]2 + (Bd p2)2
. (20)

The phase of G0 f (s) can be written as

ϕ(w) = −atan
Bd p2

Md(jw)2 + Bd p1
. (21)

Given the fixed gain crossover frequency wc and the desired phase margin ϕm, from
Equations (7) and (8), we can obtain

a√
[(jwc)2 + bp1]2 + (bp2)2

= 1, (22)

ϕm = π − atan
bp2

(jwc)2 + bp1
, (23)

where
a =

Ks

Md
, (24)

b =
Md
Bd

. (25)

According to Equations (24) and (25), we can establish the following equations:

b =
tan(π − ϕm)(jwc)2

p2 − p1tan(π − ϕm)
, (26)

a =
√
[(jwc)2 + bp1]2 + (bp2)2. (27)

In the fractional-order impedance controller, given the crossover frequency and phase
margin, there are three unknown parameters, Md, Bd and fractional order μ. A time-
domain specification, integral time square error (ITSE), is applied to design a FO-impedance
controller systematically. Sweeping all of the value range of μ ∈ (0, 2), all of the FO-
impedance controllers satisfying the pre-specified gain crossover frequency and phase
margin can be obtained by Equations (24)–(27). Then, the step response simulation for
all the FO-impedance controllers above can be implemented, and the corresponding ITSE
value JITSE can be calculated using Equation (28). Select the parameters corresponding to
the smallest JITSE as the final designed FO-impedance controller:

JITSE =
∫ t f

0
t[e(t)]2dt, (28)
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where t is the time, e(t) is the error between the actual value and the reference value, and
t f is the control time.

2.2.4. Design Procedure Illustration with an Example

The parameter setting rules of the FO-impedance controller are summarized with an
example as follows with a flow chart shown in Figure 5:

(1) Given the gain crossover frequency wc = 10 rad/s, the desired phase margin
ϕm = 40◦ and step response signal Fre f = 20 N.

(2) Sweeping all the μ ∈ (0, 2), all of the FO-impedance controllers satisfying the pre-
specified gain crossover frequency wc and phase margin ϕm can be obtained by Equations (24)–(27)
as shown in Figure 6.

(3) Implement the step response simulations and calculate the JITSE for all the FO-
impedance controllers above. The correspondence diagram between μ and JITSE is shown
in Figure 7. The smallest JITSE for which μ = 0.88 is marked as a red star in Figure 7.

(4) Select the parameters corresponding to the smallest JITSE as the final designed
FO-impedance controller, with Md = 11.4978 kg, and Bd = 111.6108 N·s/m.

Figure 5. FO-impedance design procedure flow chart.

Figure 6. All the parameters satisfying the pre-specified gain crossover frequency and phase margin.
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Figure 7. JITSE corresponding to the μ.

3. Simulation

The designed impedance controllers are applied to control the contact force between
the end of robot manipulator and the environment in Z-axis direction. Given the frequency
domain specifications, gain crossover frequency wc = 10 rad/s and phase margin ϕm = 40◦.
Set the reference contact force Fre f as 20 N, the system control sampling period as 0.0005 s,
and the stiffness coefficient Ks as 1293.83 N/m (the stiffness coefficient of the real spring
in the experiment). According to the detailed process in Section 2, the IO-impedance and
FO-impedance controllers can be designed and calculated. According to the given crossover
frequency and phase margin, the parameters of the IO-impedance controller are obtained
as follows: Md = 9.9113 kg, Bd = 83.1658 N·s/m. For the FO-impedance controller,
sweeping fractional order μ ∈ (0, 2), all the FO-impedance controllers which satisfy two
specifications wc and phase margin ϕm can be obtained. Then, JITSE corresponding to the
above FO-impedance controllers can be calculated through step response simulation with
the step signal 20 N and simulation time 3.5 s. The smallest JITSE is 3.1480, and we select
the parameters corresponding to the smallest JITSE as the final designed FO-impedance
controller. The final selected FO-impedance controller parameters are as follows: μ = 0.88,
Md = 11.4978 kg, Bd = 111.6108 N·s/m.

3.1. Fractional-Order Operator Implementation

The fractional-order operators sμ are implemented by the impulse response invariant
discretization method [29]. The order of the approximate transfer function is 7, and the
sampling frequency is 2 KHz. The discretized transfer function of the fractional order
operator is shown as Equation (29). The comparison of the approximated bode diagram
and true bode diagram are shown in Figure 8. Moreover, the discretized open-loop Bode
plot of the FO-impedance controller is shown in Figure 9, and it is can be seen that the
control system satisfies the given crossover frequency and phase margin specifications.

sμ = s0.88 =
Nums
Dens

, (29)

where

Nums = z7 − 4.2055z6 + 7.1551z5 − 6.2782z4 + 2.9892z3 − 0.7385z2 + 0.0802z − 0.0023,
Dens = 0.3953z7 − 1.6113z6 + 2.6413z5 − 2.2135z4 + 0.9929z3 − 0.2255z2 + 0.0213z − 0.0004.
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Figure 8. Comparison of approximated bode diagram and true bode diagram.

Figure 9. Bode diagram of fractional-order impedance controller.

3.2. Step Response and Anti-Disturbance Simulation

To verify the force-tracking step response performance and anti-disturbance perfor-
mance, the force control simulation is performed. The simulation results are shown in
Figure 10, and the control signals are shown in Figure 11. Set the reference contact force
Fre f between the end of the robot manipulator and the environment in the Z-axis direction
as 20 N.

Figure 10. Simulation comparison of FO/IO-impedance controller.
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Figure 11. Control signal comparison of FO/IO-impedance controller in simulation.

The contact force step response simulations are performed, using the FO-impedance
controller and IO-impedance controller. According to Figure 10, the overshoot of the IO-
impedance controller is 29.4820%, the settling time is 0.9480 s, and the ITSE is 3.3350. The
FO-impedance controller shows the desired force tracking performance; the overshoot is
25.3930%, the settling time is 0.9425 s and the ITSE is 3.1480. Moreover, in terms of the anti-
disturbance test, Fdis is added to the IO/FO-impedance control systems, which is −3 N. The
stabilization time using the IO-impedance controller is 0.4070 s, and using the FO-impedance
controller, it is 0.3875 s. The ITSE using the IO-impedance controller is 1.7426, and that
using the FO-impedance controller is 1.7411. The comparison results are shown in Table 1.
Therefore, the designed FO-impedance controller achieves much better contact force-tracking
and anti-disturbance performance compared to the IO-impedance controller.

Table 1. Comparison of simulation performance between FO/IO-impedance controller.

Step Response Test Anti-Disturbance Test

Overshoot
(%)

Settling Time
(s)

ITSE
Stabilization Time

(s)
ITSE

IO-impedance 29.4820 0.9480 3.3350 0.4070 1.7426

FO-impedance 25.3930 0.9425 3.1480 0.3875 1.7411

Performance
improvement

4.0890% 0.5802% 5.6072% 4.7912% 0.0861%

The robustness of the proposed FO-impedance controller is studied as follows. The
designed FO-impedance controller with Ks = 1293.83 N/m above is tested under the
different spring coefficients, with Ks = 1500 N/m, Ks = 1000 N/m and Ks = 800 N/m, as
shown in Figure 12. The force step response results show that the designed FO-impedance
controller is robust to the uncertain environment model.

In order to show the benefit of the proposed FO-impedance controller, more numerical ex-
amples are given as follows. The results are shown in Table 2 with different frequency domain
specifications for the FO-impedance controller compared with the IO-impedance controller.

Table 2. Performance of FO-impedance controller compared with that of IO-impedance controller
under different gain crossover wc and phase margin ϕm.

wc = 10 rad/s
ϕm = 40◦

wc = 10 rad/s
ϕm = 45◦

wc = 15 rad/s
ϕm = 40◦

wc = 15 rad/s
ϕm = 45◦

delta 14.6897% 10.4499% 7.4661% 6.3878%
ts 2.6912% 1.3616% 0.1577% 0.8511%

ITSE 3.8581% 0.9018% 1.9599% 1.0003 %
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Figure 12. Robustness test for FO-impedance controller.

4. Experimental Verification

4.1. Experimental Setup

The experimental platform is mainly composed of an industrial computer, a robot
manipulator, a force sensor, a spring, etc, as shown in Figure 13. The specifications of the
experimental platform are given in Table 3. The robot controller software is developed in
the industrial computer, which includes a real-time operating system, an Igh EtherCAT
master station, and a user interface. The specific D-H parameters of the robot manipulator
mechanical body are shown in Table 4. The servo drive communicates with the robot
controller software as an EtherCAT slave station. The force sensor is installed at the end of
the robot manipulator. The stiffness of the spring which is in contact with the end of the
robot manipulator is 1293.83 N/m.

Figure 13. The experimental platform.

4.2. Step Response and Anti-Disturbance Test

The contact force experimental demonstration is performed to verify the force-tracking
step response and anti-disturbance performance on the robot manipulator experimental
platform. The initial pose of the robot manipulator is set as the force sensor pre-contacting
with the spring. Set the reference contact force Fre f between the end of the robot manipulator
and the environment in the Z-axis direction as 20 N.
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Table 3. Model and description of the experimental platform.

Items Brand and Model Description

Robot manipulator
mechanical body

EFFORT-ERC20C-C10 Degree-of-freedom: 6
Maximum load: 20 kg

Industrial computer ADVANTECH Main board: advantech AIMB-785
Processor: Intel CoreTM i7-7700/3.6 GHz

Servo drive TSINO DYNATRON
CoolDrive R6

Maximum EtherCAT communication
frequency: 4 KHz

Force sensor HPS-FT060E
Range in Z-axis: ±1000 N
Measurement accuracy: 0.4 N
Maximum EtherCAT communication
frequency: 2 KHz

Spring Stiffness: 1293.83 N/m

Table 4. The D-H parameters of ER20C-C10.

Link i Link Length
(ai−1) (mm)

Link Twist
(αi−1) (degree)

Joint Offset
(di) (mm)

Joint Angle
(θi) (degree)

1 168.46 90 504 θ1

2 781.55 0 0 θ2+90

3 140.34 90 −0.3 θ3

4 0 −90 760.39 θ4

5 0 90 0 θ5

6 0 0 125 θ6

The contact force step response experiment is performed. The force responses are
shown in Figure 14, and the control signals are shown in Figure 15 using the designed
FO-impedance controller and IO-impedance controller presented in Section 2. As shown in
Figure 14, the overshoot of the IO-impedance controller is 33.1100%, the settling time is
1.8550 s, and ITSE is 3.9286. The overshoot with the designed FO-impedance controller is
29.3050%, the settling time is 1.7030 s, and ITSE is 3.8681. Moreover, in terms of the anti-
disturbance test, Fdis is added to the IO/FO-impedance control systems, which is −3 N. The
stabilization time of the IO-impedance controller is 1.0080 s and that of the FO-impedance
controller is 0.9640 s. ITSE using the IO-impedance controller is 1.8998, and the using the
FO-impedance controller is 1.8601. The comparison results are shown in Table 5. Thus, it is
verified that the designed FO-impedance controller achieves better contact force tracking
and anti-disturbance performance compared to the IO-impedance controller.

Table 5. Comparison of experimental performance between FO/IO-impedance controller.

Step Response Test Anti-Disturbance Test

Overshoot
(%)

Settling Time
(s)

ITSE
Stabilization

Time (s)
ITSE

IO-impedance 33.1100 1.8550 3.9286 1.0080 1.8998

FO-impedance 29.3050 1.7030 3.8681 0.9640 1.8601

Performance improvement 11.4920% 8.1941% 1.5400% 4.3651% 2.0897%
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Figure 14. Experimental comparison of FO/IO-impedance controller.

Figure 15. Control signal comparison of FO/IO-impedance controller in experiment.

5. Conclusions

A fractional-order (FO) impedance controller is proposed in this paper. A systematic
parameter-tuning method based on frequency-domain specifications is presented with
a summarized procedure in details. The fair comparison between the FO-impedance
controller and IO-impedance controller is addressed under the same design specifications
via the simulation and robot manipulator experimental demonstration. The FO-impedance
controller, with the optimized impedance modeling accuracy and more flexibility for
control, outperforms the IO-impedance controller in step response performance and anti-
disturbance robustness. The future research may be carried out from the direction of
rejecting the dynamics disturbances of the robot manipulator and further improving the
control performance of the FO-impedance controller.
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Abstract: Actuators made of dielectric elastomers are used in soft robotics for a variety of applications.
However, due to their mechanical properties, they exhibit viscoelastic behaviour, especially in the
initial phase of their performance, which can be observed in the first cycles of dynamic excitation. A
fully fractional generalised Maxwell model was derived and used for the first time to capture the
viscoelastic effect of dielectric elastomer actuators. The Laplace transform was used to derive the
fully fractional generalised Maxwell model. The Laplace transform has proven to be very useful
and practical in deriving fractional viscoelastic constitutive models. Using the global optimisation
procedure called Pattern Search, the optimal parameters, as well as the number of branches of the
fully fractional generalised Maxwell model, were derived from the experimental results. For the fully
fractional generalised Maxwell model, the optimal number of branches was determined considering
the derivation order of each element of the branch. The derived model can readily be implemented
in the simulation of a dielectric elastomer actuator control, and can also easily be used for different
viscoelastic materials.

Keywords: dielectric elastomer actuator; fully fractional generalised Maxwell model; fractional
derivation; viscoelasticity; creep; optimisation

1. Introduction

Dielectric elastomer actuators, also called DEAs, can have different structures. The first
DEAs had parallel or cylindrical structures [1,2]. From then on, many different structures
were developed: spring roll actuators, helical actuators, and stacked actuators where the
actuators are stacked on top of each other [3–5]. All these actuators have the same basic
structure and activation principle. Thus, regardless of whether the DEAs are parallel or
cylindrical, their activation principle is the same. Their structure is like that of a capacitor.
It has an upper and a lower electrode and an elastic dielectric. Some special rules apply to
both the electrodes and the dielectric. The dielectric must be elastic. The electrodes must
be conductive, and their mechanical structure must be the same or similar to that of the
dielectric [6]. If their mechanical properties are different, the DEA may lose its mobility
and efficiency. Usually, conductive pastes of carbon are chosen for the electrodes.

The material properties of the selected elastomer VHB 4910 are viscoelastic, which
means that the material has both viscous and elastic properties. When the DEA is subjected
to a sinusoidal load, it exhibits sinusoidal creep behaviour. When a high voltage is applied,
coupling occurs between the electrical and mechanical forces. Suo et al. were the first
researchers to describe the electromechanical coupling in detail in a DEA [7]. In the work
of Gu et al. [8], the viscoelastic behaviour was captured using continuum mechanics and
nonequilibrium thermodynamics, where the Helmholtz free energy along with the Gent
model was used to derive the constitutive equations. The work shows a good match
between the experimental and simulation results. However, extensive knowledge in
the above areas is required, and the model cannot be integrated easily into the control
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simulations. The Prandtl–Ishlinskii model and the modified Prandtl–Ishlinskii model are
used in the work of Zuo et al. [9,10]. The work is based on the fourth order polynomial
to describe the asymmetric behaviour, and fixed weights with thresholds of the play
operators are used to describe the rate dependence, while the second order derivative of the
input voltage is introduced into the fourth order polynomial to describe the peak-to-peak
shifts that depend on the frequencies. This is a complex process that results in a good
match between the experimental data and the calculated responses. The Prandtl–Ishlinskii
model can be used as a feedforward compensator. Wissler et al. [11] used the Prony series
theory to model the time dependent viscoelastic behaviour of the elastomer used in soft
actuators. The drawback of this method is the inability to use it in the control simulations.
A standard linear solid rheological model which satisfies the thermodynamic consistency
was also used to capture rate-dependant behaviour of the soft materials in the work of
Zhao et al. [12]. This model could capture the rate dependent mechanical behaviour of soft
materials. However, the introduction of the internal variables in the modelling process
significantly increases the complexity of the proposed constitutive model and the number
of governing equations.

Fractional calculus has proved to be a powerful mathematical tool in the approach
used to modelling the time dependent mechanical behaviour of viscoelastic materials. Its
advantages lie in the remarkable reduction in model parameters where fractional orders
of derivatives are used. This can be especially seen in the field of fractional viscoelasticity,
including soils [13], polymers [14,15] and construction materials [16]. Xu et al. [17] used frac-
tional constitutive models of a fractional Kelvin–Voigt model, a fractional Maxwell model
and a fractional Poynting–Thomson model, which is a springpot connected in series with
two parallel springpots. In the work of Barretta et al. [18], hereditariness and nonlocality of
bending problems were presented with the help of fractional operators. Time-dependent
hereditary behaviour, which is typical of viscoelastic materials, has been modelled with the
help of a springpot, a fractional Kelvin–Voigt and a fractional Maxwell model.

To capture the sinusoidal creep behaviour, the fully fractional generalised Maxwell
model is derived in Section 2. The generalised fractional Maxwell model has already
been used in the work of Luo et al. [19] to determine the storage and loss modulus,
but not with the Laplace transform, nor to derive the governing equation of the DEA.
Our model is the first to describe the material behaviour of the DEA using the Laplace
transform. The fully fractional generalised Maxwell model was used because it does
not require complex knowledge of continuum mechanics and thermodynamics. It can
readily be derived using the Laplace transform to obtain the transfer function of the system.
Using the lsim function in the Matlab software, the excitation voltage with three different
frequencies can be implemented in the transfer function of the system, and the response of
the DEA can be calculated easily. An optimisation procedure using the Pattern Search global
optimisation solver was used to derive the material parameters based on the experimental
results. Section 3 shows the results of the optimisation procedures. Section 4 summarises
the conclusions.

2. Materials and Methods

2.1. Principles of the DEA

The structure of the DEA is similar to that of a capacitor. It has an upper and lower
conductive electrode and an elastic dielectric. The structure of the DEA can be seen in
Figure 1. Usually, elastic materials are chosen for dielectrics, such as VHB tapes. VHB 4910
tape was used in this study [20]. A high voltage DC is required to activate the DEAs. When
the voltage is applied, the electrical force also known as the Maxwell force is generated
between the upper and lower conductive electrodes, causing the DEA to contract vertically
and expand longitudinally, as elastomer is known to be incompressible.
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Figure 1. Structure of the parallel DEA: (a) initial state and (b) activated state.

The Maxwell force can be calculated as

FMax = Fel = ε0εrE2l1l2 = ε0εr

(
V
l3

)2
l1l2[N] (1)

ε0 − absolute permittivity
εr = 4.7 − relative permittivity
E − electric field
V − voltage
l1, l2, l3 − dimensions of the DEA

The relative permittivity was chosen as 4.7 according to [8]. A conductive paste was
chosen from BareConductive® [21].

2.2. Derivation of the Fully Fractional Generalised Maxwell Model

To derive the fully fractional generalised Maxwell model, one needs to use fractional
derivatives. Fractional derivatives are derivatives that are not restricted to positive integers,
but can be any real number. There are three definitions of fractional derivatives, namely,
Riemann–Liouville, Caputo, and Gruenwald–Letnikov [22]. The Gruenwald–Letnikov
definition is used, namely

aDp
t f (t) = lim

h→0
h−p

m

∑
r=0

(−1)r
(

p
r

)
f (t − rh) (2)

a, t − time limits
m − integer order of derivation/integration

p− =

{
p > 0, derivation
p < 0, integration

}
Because it can handle the fractional derivation and integration easily. It is also suitable

for the numerical calculation of fractional derivatives.
The generalised Maxwell model is used to describe constitutive models with viscoelas-

tic effects. It consists of a spring connected in parallel to the branches of the Maxwell ele-
ments. The Maxwell element consists of a spring connected in series with a dashpot [15,16].
To convert this into a fully fractional generalised Maxwell model, all elements are replaced
by the so-called springpot element [23,24]. The springpot element has two parameters, one
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of which represents the material properties and the other the derivative order. The deriva-
tive order is bounded between 0 and 1, since there is no known physical interpretation
above 1 [24]. Figure 2 shows both models.

 
Figure 2. Two types of models used: (a) Fully fractional model and (b) Generalised model.

ci,1, ci,2 − material properties of springpot
αi,1, αi,2 − order of derivation
ki − spring constants
m − mass of weight
n − number of branches with the Maxwell element
Fel − electrical force applied
Fg − weight of the mass

The Laplace transform with Laplace operator is used to derive the governing equation
of motion for the DEA using the fully fractional generalised Maxwell model. The Laplace
transform turns the derivative into a multiplication and the integration into a division.
The fully fractional generalised Maxwell model describes the material behaviour. The
electric force is calculated using Equation (1). Since the weight is used to hold the DEA in
the stretched position, its inertia must be included in the governing equation of motion.
All branches of the fully fractional generalised Maxwell model are subject to the same
displacement, as shown in Figure 3.

 

Figure 3. Displacement of the elements.
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Each branch has two displacements because it has two springpots. The electric force
and the force generated by the weight are distributed jointly between the branches of
the fully fractional generalised Maxwell model. The governing equation of motion is
calculated as

F = F1 +
n+1

∑
i=2

Fi + m
..
x. (3)

Displacement of each branch with the fractional Maxwell element is calculated as

x = x2,1 + x2,2
x = x3,1 + x3,2
.
.
.
x = xi,1 + xi,2

n · x =
n+1
∑

i=2
xi,1 +

n+1
∑

i=2
xi,2

(4)

The force in the first branch is calculated as

F1 = c1,1
dα1,1 x
dtα1,1

. (5)

The force in each branch containing two springpots is the same in each springpot, which is
calculated as

F2 = c2,1
dα2,1 x2,1

dtα2,1 = c2,2
dα2,2 x2,2

dtα2,2

F3 = c3,1
dα3,1 x3,1

dtα3,1 = c3,2
dα3,2 x3,2

dtα3,2

.

.

.
n+1
∑

i=2
Fi =

n+1
∑

i=2
ci,1

dαi,1 xi,1
dtαi,1 =

n+1
∑

i=2
ci,2

dαi,2 xi,2
dtαi,2

(6)

Expressing xi,1 and xi,2 from Equation (6) with the fractional integration, one gets

n+1
∑

i=2
Fi =

n+1
∑

i=2
ci,1

dαi,1 xi,1
dtαi,1 / d−αi,1

dt−αi,1

n+1
∑

i=2

d−αi,1 Fi
dt−αi,1

=
n+1
∑

i=2
ci,1xi,1

xi,1 =
n+1
∑

i=2

1
ci,1

d−αi,1 Fi
dt−αi,1

;xi,2 =
n+1
∑

i=2

1
ci,2

d−αi,2 Fi
dt−αi,2

;

(7)

Inserting the results from Equation (7) into Equation (4), one gets

n · x =
n+1

∑
i=2

1
ci,1

d−αi,1 Fi

dt−αi,1
+

n+1

∑
i=2

1
ci,2

d−αi,2 Fi

dt−αi,2
. (8)

Force Fi should be expressed from Equation (8). Laplace transformation is used, since
force Fi is part of the fractional integration with different orders of integration. Performing
Laplace transformation on Equation (8) and expressing Fi, one gets

n+1

∑
i=2

Fi(s) =
n · x(s)

n+1
∑

i=2

(
1

ci,1sαi,1 + 1
ci,2sαi,2

) . (9)
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Performing the Laplace transform on Equation (3) and inserting Equation (9), one gets

F(s) = c1sα1 x(s) +
n · x(s)

n+1
∑

i=2

(
1

ci,1sαi,1 + 1
ci,2sαi,2

) + ms2x(s). (10)

Rearranging Equation (10) to get the transfer function, one gets

x(s)
F(s)

=
1

ms2 + c1,1sα1,1 + n
n+1
∑

i=2

(
1

ci,1s
αi,1 +

1
ci,2s

αi,2

) . (11)

Equation (11) represents the transfer function of the governing equations of motion
for the fully fractional generalised Maxwell model with n branches, where the influence of
the electric force and the force of the weight of the mass 316 g are combined in the equation.
The add-on FOMCON is required to implement Equation (11) in Matlab [25]. Equation (11)
is written in the relation force–displacement. To convert Equation (11) into the relation
stress–strain, one needs to use

E =
σ

ε
=

F · L
A · Δl

=
k · L

A
→ k =

E · A
L

(12)

and
σ = η · dαε

dtα
→ η =

σ
dαε
dtα

=
F

A
dα( Δl

L )
dtα

=
F

A 1
L

dα(Δl)
dtα

=
c · L

A
→ c =

η · A
L

. (13)

2.3. Experiments

The elastomer VHB 4910 was used to set up the experiment. The elastomer was cut to
the initial dimensions of 49 mm × 50 mm × 1 mm, with only a 10 mm wide area used to
expand the elastomer to the initial dimension, while the rest was used for clamping. The
initial dimensions for the sinusoidal force excitation were 49 mm × 60 mm × 0.16 mm. The
active area to which the conductive paste was applied was 40 mm × 60 mm.

Three different frequencies with an amplitude of 6 kV DC were used for the sinusoidal
voltage excitation. The three frequencies were F1 = 1

13 Hz, F2 = 1
7 Hz, and F3 = 1

5 Hz. These
frequencies were chosen so that they were not multiples of each other. In this way, the
frequencies are not associated with a common factor. The experiment lasted 155 s to capture
the sinusoidal creep behaviour of the DEA. The displacement of the DEA was measured
using a Wenglor laser sensor [26]. The experimental setup is shown in Figure 4.

Mass 

Gripping jaws 
DEA  

Laser  

Reflecting metal 

Laser beam 

Active area 

Figure 4. Experimental set up of the DEA.
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2.4. Optimisation

To obtain the material parameters of the fully fractional generalised Maxwell model,
the experimental results were optimised with the model. For the optimisation procedure,
the global optimisation solver Pattern Search was chosen, which is also known as a direct
search method in Matlab software. The flow of the optimisation procedure is shown
in Figure 5. First, the user must specify the number of branches for the fully fractional
generalised Maxwell model and the initial parameters for the model.

Figure 5. Optimisation procedure.

The electric and mechanical forces are calculated as the sum of the Maxwell force
given by Equation (1) and the weight of the dead mass. In Equation (1), V is replaced
with the calculation of the appropriate voltage regarding the frequency in use. Using the
Matlab function lsim, the response of the transfer function of the fully fractional generalised
Maxwell model to the electric and mechanical forces can be calculated easily. The responses
for all frequencies were calculated and compared with the experimental results using the
least squares method. The efficiency of the fully fractional generalised Maxwell model
with a different number of branches was calculated using the method of the coefficient of
determination, also known as the R2 method, calculated as

R2 = 1 − SSres

SStot
. (14)

SStot = ∑
i
(yi − y)2 Total sum of squares.

SSres = ∑
i
(yi − fi)

2 Residual sum of squares.

yi Measured data.
y Average data.
fi Calculated data.

After the optimisation procedure was completed, the best results were recorded and
the final value of R2 was calculated for each frequency. At the end, the average value of
R2 was calculated as R2

mean for the whole frequency range. The number of branches was
chosen to be between 1 and 5. Finally, each frequency was optimised individually for the
model, to compare the results when only one frequency was optimised to the results where
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the whole frequency range was optimised. It was examined which the essential parameters
of the model were for each frequency. Table 1 shows all symbols used in the research.

Table 1. Nomenclature table with SI units.

Symbol Unit Meaning

A m2 Area.

αi,1, αi,2 / Order or fractional derivation of the
springpots.

a, t s Time limits of the fractional derivation.
ci,1, ci,2 N(sαi,1 /m), N(sαi,2 /m) Material properties of the springpots.

E kg/(ms2) Modul of elasticity.
εo F/m Absolute permittivity.
εr / Relative permittivity.
ε 1 Strain.

FMax N Maxwell force.
Fel N Electrical force.
Fi N Force in individual branch.
fi mm Calculated data.
i / Current number of fractional Maxwell element.
k N/m Spring constant.

l1, l2, l3 m Dimensions of the DEA.
L m Initial length.
l m Displacement.
m / Integer order of derivation by the definition.
m kg Mass of weight.
n / Number of fractional Maxwell elements.
η Ns/m2 Viscosity.
p / Fractional order of derivation by the definition.

R2 / Coefficient of determination.
R2

mean / Mean value of coefficient of determination.
s / Laplace operator.

SStot / Total sum of squares.
SSres / Residual sum of squares.

σ N/m2 Stress.
V V Voltage.
xi m Displacement of individual branch.
yi mm Measured data.
y mm Averaged measured data.

3. Results

After the optimisation procedure was set up using Matlab software and the Pattern
Search global optimisation algorithm, the R2

mean values shown in Table 2 were obtained.
As can be seen, the number of branches increased the accuracy of the model, but not
significantly. It can also be seen that adding more than three branches did not affect the
efficiency of the model. The initial parameters used in the optimisation, as well as the
optimal parameters obtained from the optimisation, are shown in Table 3.

Table 2. R2
mean value of the fully fractional generalised Maxwell model for one to five branches.

Fully Fractional Generalised Maxwell Model
Number of Branches

R2
mean

n= 1 0.5456
n = 2 0.5489
n = 3 0.5456
n = 4 0.5456
n = 5 0.5456
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Table 3. Initial and optimised parameters of the fully fractional generalised Maxwell model for one
to five branches.

Param. n = 1 α1,1 α2,1 α2,2

Initial 0.2 1 1
Optimised 0.2 0.002 1

Parameters c1,1 c2,1 c2,2
Initial 500 500 500

Optimised 62.952 0.036 0.142

Param. n = 2 α1,1 α2,1 α2,2 α3,1 α3,2
Initial 0.2 1 1 1 1

Optimised 0.2 1 1 0.523 0.046

Param. c1,1 c2,1 c2,2 c3,1 c3,2
Initial 500 500 500 500 500

Optimised 62.740 47.958 173.21 430.381 0.215

Param. n = 3 α1,1 α2,1 α2,2 α3,1 α3,2 α4,1 α4,2
Initial 0.2 1 1 1 1 1 1

Optimised 0.2 1 1 1 0.002 1 1

Param. c1,1 c2,1 c2,2 c3,1 c3,2 c4,1 c4,2
Initial 500 500 500 500 500 500 500

Optimised 62.950 0.267 0.464 0.140 0.088 0.036 0.237

Param. n = 4 α1,1 α2,1 α2,2 α3,1 α3,2 α4,1 α4,2 α5,1 α5,2
Initial 0.2 1 1 1 1 1 1 1 1

Optimised 0.2 0.002 1 0.002 1 1 0.002 1 0.002

Param. c1,1 c2,1 c2,2 c3,1 c3,2 c4,1 c4,2 c5,1 c5,2
Initial 500 500 500 500 500 500 500 500 500

Optimised 62.950 0.103 0.036 0.321 0.036 0.094 0.157 0.036 0.225

Param. n = 5 α1,1 α2,1 α2,2 α3,1 α3,2 α4,1 α4,2 α5,1 α5,2 α6,1 α6,2
Initial 0.2 1 1 1 1 1 1 1 1 1 1

Optimised 0.2 0.002 1 1 1 1 0.002 1 0.002 1 1

Param. c1,1 c2,1 c2,2 c3,1 c3,2 c4,1 c4,2 c5,1 c5,2 c6,1 c6,2
Initial 500 500 500 500 500 500 500 500 500 500 500

Optimised 62.950 0.097 0.315 0.036 0.356 0.036 0.097 0.036 0.095 0.036 0.285

From Table 3, in some branches the order of derivation does not change from the initial
values. The derivation orders of 1 represent dashpot elements, and if both elements of the
branch have the order of 1, they can be combined into one dashpot element. The same
applies for spring elements if the order of derivation equals 0.

Figure 6 shows the experimental and calculated results from the optimised parameters
of the fully fractional generalised Maxwell model for one to five branches. Adding more
than two branches did not improve the efficiency of the model. The best matching between
the data is seen for the middle frequency of 1/7 Hz, where the matching was 88%. For the
frequency of 1/5 Hz, the worst matching was achieved of only 12.9%.

The optimisation of the model for an individual frequency was performed after the
optimisation for the whole frequency range was carried out. From Table 2, it is seen that
two additional branches of the fully fractional Maxwell elements are the most optimised.
In Table 4, the initial and optimised parameters of only two additional branches are shown
for each individual frequency for the fully fractional generalised Maxwell model. Each
frequency demands its own material parameters, as well as different topology of the fully
fractional generalised Maxwell model. Figure 7 shows matching between the experimental
and calculated results if each frequency was optimised individually for the model.
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(a) n = 1 (b) n = 2 

 
(c) n = 3 (d) n = 4 

 
(e) n = 5 

Figure 6. Experimental vs. calculated responses of the DEA for different numbers of branches (n) in
the fully fractional generalised Maxwell model.
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Table 4. Initial and optimised parameters of the fully fractional generalised Maxwell model for each
individual frequency.

Parameters
F = 1/13 Hz

n = 3
α1,1 α2,1 α2,2 α3,1 α3,2

Initial 0.2 1 1 1 1
Optimised 0.1795 1 1 1 1

Parameters c1,1 c2,1 c2,2 c3,1 c3,2 R2

Initial 500 500 500 500 500 0.658
Optimised 51.773 0.002 0.002 0.002 0.002

Parameters
F = 1/7 Hz

n = 3
α1,1 α2,1 α2,2 α3,1 α3,2

Initial 0.2 1 1 1 1
Optimised 0.188 0.255 0.046 0.225 0.880

Parameters c1,1 c2,1 c2,2 c3,1 c3,2 R2

Initial 500 500 500 500 500 0.907
Optimised 57.696 569.346 0.003 406.744 0.479

Parameters
F = 1/5 Hz

n = 3
α1,1 α2,1 α2,2 α3,1 α3,2

Initial 0.2 1 1 1 1
Optimised 0.2 1 1 1 0.002

Parameters c1,1 c2,1 c2,2 c3,1 c3,2 R2

Initial 500 500 500 500 500 0.665
Optimised 73.133 19.199 188.074 305.285 191.367

R2
mean 0.743

Figure 7. Responses of individually optimised frequencies with the generalised fractional Maxwell
model.

4. Discussion

The fully fractional generalised Maxwell model was used for the first time to describe
the material behaviour of a DEA. Table 2 shows that the number of branches contributes to
the effectiveness of the model. However, the contribution of each additional branch was
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small. Increasing the number of branches up to two increased the effectiveness. Surprisingly,
adding more branches did not improve the effectiveness of the model. It can be seen from
Table 3 that when adding more than two branches, the optimised parameters were chosen
such that the model could be reduced to the fully fractional generalised Maxwell model
with only two branches. This was possible because the two α parameters within a branch
were 1, which represents dashpots. Dashpots in series can be reduced to one dashpot. The
reduced and rearranged model can be seen in Figure 8.

 
Figure 8. Reduced and rearranged optimised fully fractional generalised Maxwell model with two
additional branches.

Concluding points can be itemized as follow:

• The number of fully fractional Maxwell elements slightly affected the effectiveness of
the model.

• Adding more than two branches did not increase the effectiveness of the model.
• The fully fractional Maxwell model was reduced to the model seen in Figure 8.
• The middle frequency of 1/7 Hz had the best agreement of 0.88 between data.
• Optimising each frequency individually drastically improved the overall agreement

between data to 0.745.
• Optimising each frequency individually has a drawback since each frequency requires

its own material parameters.
• Topology optimisation cannot be included into the Pattern Search algorithm.

The reduced and rearranged model has two springpots. The first springpot has the
order of derivative equal to 0.2 which means it has 80% characteristics of a spring and only
20% characteristics of a damper. The other springpot has the order of derivative equal to
0.52 which means that nearly half of its characteristics are those of a spring, and half those
of a damper.

The fully fractional generalised Maxwell model best describes the frequency of 1/7 Hz,
where the match between the experimental and modelled response was 0.88, which was
a good match. However, at the highest frequency of 1/5 Hz, the match between the data
was the lowest and was only 0.12. The average match between the data over all three
frequency ranges was 0.533, which is less than the methods used in the work of Gu et al. [8]
and Zuo et al. [9] where agreement between data was more than 0.9. If only data from
frequency of 1/7 Hz were compared to the data from the work of Gu and Zuo, then our
method proves very efficient since it is much easier to implement it and use it in the control.

The initial and optimised parameters for the optimisation of the individual frequency
with the fully fractional generalised Maxwell model are listed in Table 3. The match
between the experimental and calculated responses was improved. The average match
increased to 0.745, which is a good match and can be easily compared with the work of Gu
and Zuo. However, the material parameters of the fully fractional generalised Maxwell
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model were different for each frequency, which was a drawback, since one would like to
have universal material parameters for the entire frequency range.

Finding the optimal number of branches for the model cannot be included in the
optimisation, because changing the number of branches changed the number of lower and
upper bounds on the model. This is something that cannot be included in the optimisation
solver for the Pattern Search. This can only be done by observing the material parameters
of the individual branches within the model manually.

5. Conclusions

The match between experimental and calculated results was lower for the whole
frequency range than in the work of others. Observing only the middle frequency, the
method would be easily compared with the work of others. However, the fully fractional
generalised Maxwell model can be derived and implemented easily, and the responses of
the model can be determined quickly. Implementation of the model in simulation control
is straightforward. The proposed method can easily be used on other materials with
viscoelastic behaviour. In future work, topology optimisation could be included into the
optimisation procedure.
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Abstract: The current paper proposes an extension for two controller design procedures for a two-axis
positioning mechatronic system, followed by a comparison between them. As such, the first method
consists in formulating an optimization problem in terms of linear matrix inequalities (LMIs) in
order to impose the location of the closed-loop poles, considering an uncertain model of such a
system. The uncertain model is treated using various forms of linear differential inclusions (LDIs),
namely, polytopic LDI (PLDI) and diagonal norm-bound LDI (DNLDI). Additionally, the problem
regarding the command signal constraints is characterized in terms of LMIs. The imposed structure
of the controller is a cascade one, with a PI controller for the position loop and a P controller for the
velocity loop, having an additional feedforward term. On the other hand, the second method consists
in designing a cascade controller with an inner P controller, as in the previous method, the outer
controller being a fractional-order IλI DλD (FO–ID) controller. In terms of degrees of freedom, both
methods present four degrees of freedom for each axis. The presented controller design procedures
will be applied for a numerical example of such a positioning system, and a comparison of the
obtained performance metrics will be performed.

Keywords: LMIs; D-region; fractional-order controller; postion control; mechatronic system

1. Introduction

1.1. Literature Review

Recent years have been marked by an increase in the popularity of position-based
mechatronic systems, especially due to the technological level they have reached, in terms
of speed, performance and versatility [1]. In order to have the resulting performance at
the highest possible level, it is necessary for the control system to ensure a good reference
tracking in a short time, without overshoot. Moreover, one of the main problems which a
control system must deal with for such an equipment consists in parametric uncertainties.
To take all these into consideration, rather than classical control techniques, other methods
are proposed in recent studies, based on robust, fractional or adaptive control approaches.

Starting from the classical control methods based on the idea of pole placement,
the authors of [2] present the principle according to which, to ensure a certain transient
response, it is not necessary to place the poles in an exact location, but in a certain region in
the complex plane. These regions are called D-regions, being convex and symmetrical to
the real axis. Thus, by solving a set of linear matrix inequalities (LMIs), the state feedback
matrix which ensures D-stability (i.e., all poles of the resulting closed-loop system are
placed into a certain D-region) is obtained. The possibility to include and overimpose many
design requirements, like transient response performances, command signal saturation
constraints and model uncertainties, illustrates the great advantage of LMIs [3].

Due to its powerful advantage, the LMI-based control approach was proposed for
various processes and applications. In [4], the authors proposed an LMI approach to design
a H∞ fuzzy controller with pole location constraints. Moreover, Ref. [5] presents an LMI-
based control design that deals with the stabilization of a bilinear system with a guaranteed
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stability region. Parametric uncertainties are included in the control design problem using
LMIs for a wind turbine, in [6], proving that using this approach better performances are
obtained compared with those obtained using a classical designed controller. The journal
paper [7] proposes an LMI-based H∞ output-feedback controller, taking into consideration
the input and output delays from sensors and actuators for a vehicle roll stability problem.
In the conference paper [8] regarding LMI-based controllers, the authors present an energy-
based control strategy with nonlinear state feedback controller for a quadrotor used for
transporting payload.

In the case of PWM-driven voltage converters, an LMI-based approach used for
robust linear-quadratic-regulator (LQR) design is presented in the paper [9], alongside
the work of [10] in which a similar approach is considered for robust structured controller
design. An LMI use case is also compared to a linear-quadratic-Gaussian (LQR) control in
the paper [11], which proved that the proposed approach presented clear improvements
for a MIMO helicopter process modelled at variable operating points. In the case of a
pressure control process on wet clutches, as studied in the work [12], favorable results have
been obtained regarding both robustness to sensor noise and modeling errors, alongside
performance indices in the transient response of the closed-loop system.

Fractional-order PID controllers generalize classical PID controllers by adding extra
degrees of freedom which proved to be more robust for many benchmark problems. In [13],
the authors proposed a fractional-order PID (FO-PID) controller designed in order to meet
both robustness and performance specifications for a DC motor used in a mechatronic
system. Better performance indices have also been found in DC motor control with uncer-
tainties and nonlinear dynamics using FO-PI regulators in [14]. Improved performances
by also obtaining a reduced-order regulator through intelligent H∞ techniques have been
reported in [15], while a general-purpose quasi-experimental method which generalizes the
well-established Kessler’s symmetrical optimum principle was proposed and implemented
in [16]. Moreover, a simple tuning method based in the limit cycle oscillations is proposed
in [17], with application on a DC servo motor. Such a FO-PID regulator for a two-axis CNC
machine is proposed in [18], designed using μ-synthesis and the minimization problem is
solved using a metaheuristic Artificial Bee Colony (ABC) algorithm. In a similar manner, a
different application for a highly-nonlinear twin rotor aerodynamic system with its inherent
difficulties, has been studied in [19]. The integration of the fractional-order design into the
robust control framework gathers the advantages of both control domains, as presented
in [20]. Extensions of FO regulators directly designed for fractional-order plants have
been proposed in [21,22], where the first paper presents a comprehensive theorem and
corresponding algorithm for the robust stabilization problem, while the latter proposes and
discusses a novel graphical tuning method for such control systems.

Position-based mechatronic systems are widely used in industry and mainly in pro-
duction lines and manufacturing. Because of this, it is necessary for the control system
to ensure high precision and response speed. In the last years, many studies have been
made in order to find the best option when it comes to the design procedures and controller
types for these classes of positioning systems. Although classical controllers are mainly
used [23], such as P, PI or PID controllers, in cascade configuration or not, more advanced
design techniques are proposed. In [24], an optimal ABC-based LQR is proposed, and in
another paper [25], we propose a cascade control configuration obtained based on the state
feedback gains designed by solving LMIs.

1.2. Contributions

The current paper proposes two control structures for an uncertain two-axis mecha-
tronic positional system: one using the state-feedback approach, by extending our previous
paper’s results [25], and one based on the behavior of bringing the system to a limit cycle,
which extends the ideas presented in [17]. Based on the literature review performed in the
previous subsection and their limitations, the main contributions of the current paper are:
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(i) To include the parametric uncertainties of a two-axis mechatronic positional system
into the LMI-based control problem in order to impose a D-region where the poles
are real and under a prescribed value, by converting the linear differential inclusion
(LDI) into a polytopic LDI (PLDI), against the initial method proposed in [25],
where the problem has been formulated for the nominal model of a single axis
positional system;

(ii) To reduce the size of the resulting LMI-based control problem by converting the
PLDI into a diagonal norm-bound LDI (DNLDI), and to include the constraints
given by the saturation phenomenon which appears on the command signal, which
has not been considered in the previous paper even for the case of nominal system;

(iii) To impose a specific structure on the LMI variables such that the resulting state-
feedback can be converted into a cascade control structure for both axes, using a
similar idea as in [25] for a single axis;

(iv) To present an autotuning-type design procedure for a fractional-order integral-
derivative controller by considering a relay-type nonlinearity to force a limit cycle
to obtain the value of the gain-crossover frequency, and then to impose the desired
phase margin, by extending the idea from [17];

(v) To perform a set of numerical simulations to compare the performance obtained
with the proposed methods in terms of quantifiable metrics, such as settling time,
rise time and overshoot, robustness and implementability.

1.3. Paper Structure

The rest of the paper is organized as follows. Described in Section 2 is the LMI-based
problem formulation to impose the D-stability through a full state-feedback. Section 3
presents the two-axis positional mechatronic system, along with the possibility to convert
the full state-feedback controller into a cascade control structure. The second controller
design procedure is described in Section 4, while Section 5 presents the obtained results. A
thorough discussion and a set of further research directions are given in Section 6, and the
paper closes with some conclusions in Section 7.

2. State Feedback Controller

The purpose of the current section is to briefly describe the LMI approach to design
a state feedback controller for a system described using a polytopic linear differential
inclusion (PLDI). To impose a performance set, the D regions will be used. Consider a
continuous-time PLDI described by:

(Σδ) : ẋ(t) = A(δ)x(t) + B(δ)u(t), (1)

where x ∈ Rnx , u ∈ Rnu , δ ∈ Uδ ⊂ Rnδ is the uncertainty from the state and input matrices,
and Uδ closed and bounded. The PLDI should be characterized by the following L-vertex
convex hull:

{(A(δ), B(δ))|δ ∈ Uδ} ⊂ Ω ≡ Conv
{
(Ai, Bi), i = 1, L

}
. (2)

Assumption 1. Each pair (A(δ), B(δ)) with δ ∈ Uδ is detectable.

Considering a full state feedback matrix K ∈ Rnu×nx which gives the control law
u = Kx, the following PLDI closed-loop system results:

ẋ(t) = (A(δ) + B(δ)K)︸ ︷︷ ︸
Ao(δ)

x(t). (3)

To ensure the asymptotic stability of the closed-loop autonomous system from (3), a
quadratic Lyapunov function V : Rnx → R+ having the structure V(x) = x�Px should be
constructed. To construct such a quadratic function, the following linear matrix inequalities
should have a common solution P ∈ S+nx :
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Ao(δ)P + PA�
o (δ) < 0, ∀δ ∈ Uδ,

which is an uncountable set of LMIs. However, using the convex hull Ω from (2), the
feasibility problem which guarantees the asymptotic stability of the closed-loop system is:

P ∈ S
+
nx and (Ai + BiK)P + P(Ai + BiK)� < 0, i = 1, L. (4)

However, the problem is to design a state feedback, so the set of LMIs from (4) are
bilinear matrix inequalities (BMIs), which are not convex by nature. However, using the
substitution Z = KP ∈ Rnu×nx , the resulting problem can be described using LMIs:

Find P ∈ S
+
nx and Z ∈ R

nu×nx such that AiP + PA�
i + BiZ + Z�B�

i < 0, i = 1, L. (5)

A feasible point from the convex cone of the solution of the problem (5) leads to a
stabilizable feedback K = ZP−1 for the PLDI. If an additional set of requirements should be
imposed, the closed-loop eigenvalues must be placed into a specific region of the complex
plane. Each convex region symmetrical to the real axis can be expressed using a combination
of transformations given by two matrices L, M ∈ Rm×m, L = L�:

D(L, M) =
{

λ ∈ C : L + λM + λ∗M� < 0
}

. (6)

Definition 1 ([26]). A matrix A ∈ Rnx×nx is D-stable if all its eigenvalues lie in a convex region
D(L, M) defined in (6). This D-stability is characterized using the LMI approach as follows:

MD(A, P) = L ⊗ P + M ⊗ (AP) + M� ⊗ (PA�) < 0, (7)

where ⊗ is the symbol for the Kronecker product.

For the purpose of this paper we consider only two regions: the vertical strip and the
conic sector. The vertical strip is used to impose the condition of having real part less than
a prescribed value α < 0, which imposes one important closed-loop performance regarding
the settling time: ts ≈ 4

|α| . On the other hand, the conic sector is used to impose:

λ + λ

|λ − λ| ≤
π

tan θ
, (8)

which leads to having a damping factor ζ ≥ cos(θ), thus, implying a limitation for the
overshoot of the closed-loop system. For the vertical strip the D-region is characterized
using L = −2α and M = 1, while for the conic region L = 0 and M = Rθ are used, where
Rθ is the 2× 2 matrix corresponding to the rotation with angle θ. We further call this region
as a D(α, θ)-region. A set of necessary and sufficient conditions to ensure D(α, θ)-regional
stability for a PLDI system (Σδ) is presented in the following theorem.

Theorem 1 (D-stability controller [3]). All eigenvalues of the closed-loop system Acl(δ) ≡
A(δ) + B(δ)K could be set in a specific D(α, θ)-region if and only if all pairs (A(δ), B(δ)), δ ∈ Uδ,
are controllable and there are two matrices P ∈ S+nx and Z ∈ Rnu×nx such that:

AiP + BiZ + (AiP + BiZ)� − 2αP < 0, i = 1, L, (9a)(
AiP + BiZ + (AiP + BiZ)� 1

tan θ (AiP + BiZ − (AiP + BiZ)�)
1

tan θ (AiP + BiZ − (AiP + BiZ)�)� AiP + BiZ + (AiP + BiZ)�

)
< 0, i = 1, L. (9b)

Then the full state feedback gain is given by K = ZP−1.
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3. Position-Based Mechatronic System

3.1. Plant Model

The described plant is a general purpose two-axis positional system, each axis being
operated individually by a servo motor. In this paper, a translational two-axis Computer
Numerical Control machine (CNC), also used in our previous works [25,27], will be consid-
ered. The mathematical model of the system can be written as follows:

Gδ(s) :

⎛⎜⎜⎜⎜⎜⎜⎝

ω̇x(t)
θ̇x(t)
ω̇y(t)
θ̇y(t)
θx(t)
θy(t)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
TMx

0 0 0 KMx
TMx

Kxy

1 0 0 0 0 0

0 0 − 1
TMy

0 Kyx
KMy
TMy

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

ωx(t)
θx(t)
ωy(t)
θy(t)
ux(t)
uy(t)

⎞⎟⎟⎟⎟⎟⎟⎠, (10)

where ωx, ωy, θx and θy are the angular speeds and the positions of the X axis and Y axis,
respectively, while ux, uy ∈ [−1, 1] are the duty cycles, scaled to relative values, of the PWM
command signals for each axis. The mathematical model has been obtained based on a
priori knowledge of the physical process and then fine-tuned using system identification
techniques. The electrical part presents a time constant which can be neglected against
the time constant of the mechanical part, resulting in a first order model for the system
from input command to angular speed. Moreover, the mechanical part presents a set
of nonlinearities mainly as a result of Coulombian friction, leading to slightly different
values of the model’s parameters. As such, these parameters present uncertainties which
encompass differences appearing in various equilibrium points. Such differences lead to
the system Gδ, possible to be described using a PLDI.

The first method proposed in this paper implies an extension of finding a cascade
structure from [25], comprised of a PI controller for the outer position loop and a P-type
controller for the inner velocity loop. In our previous work, the controller gains have been
computed using an optimal full state feedback gain matrix which is a solution for the
nominal case of the LMI problem described in Section 2. The main improvement of this
particular method considered in this paper consists in finding the optimal state-feedback
which satisfies the constraints imposed through regional LMIs for both the nominal and
uncertain plants, as in Theorem 1. As such, the initial plant model must be augmented
with two additional states zx and zy having the state equations żx = θx and ży = θy. This
augmentation leads to an extended uncertain state-space model:

Gδ(s) :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω̇x(t)
θ̇x(t)
żx(t)
ω̇y(t)
θ̇y(t)
ży(t)
θx(t)
θy(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
TMx

0 0 0 0 0 KMx
TMx

Kxy

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 − 1
TMy

0 0 Kyx
KMy
TMy

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωx(t)
θx(t)
zx(t)
ωy(t)
θy(t)
zy(t)
ux(t)
uy(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

To model an uncertain parameter c ∈ [c, c], the following transformation can be used:

c = c(n) + rcδc, with rc = c − c, (12)

where c(n) is the nominal value of the parameter and |δc| ≤ 1 is a normalized uncertainty
element. Using this transformation, the extended PLDI system can be converted into a di-
agonal norm-bound LDI (DNLDI) system, having the following state-space representation:
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⎛⎝ẋ(t)
y(t)
v(t)

⎞⎠ =

⎛⎝ A Bu Bd
Cy Dyu Dyd
Cv Dvu Dvd

⎞⎠⎛⎝x(t)
u(t)
d(t)

⎞⎠ (13)

where x =
(
ωx θx zx ωy θy zy

)� ∈ Rnx is the state vector, u =
(
ux uy

)� ∈
R2 is the command input vector, d =

(
dTMx

dTMy
dKMx

dKMy
dKxy dKyx

)� ∈ R6

is the disturbance input vector, y =
(
θx θy

)� ∈ R2 is the output vector, and v =(
vTMx

vTMy
vKMx

vKMy
vKxy vKyx

)� ∈ R6 is the disturbance output vector. The
matrices involved in the state-space realization are:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
T(n)

Mx

0 0 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 − 1

T(n)
My

0 0

0 0 0 1 0 0
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Bu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K(n)
Mx

T(n)
Mx

K(n)
xy

0 0
0 0

K(n)
yx

K(n)
My

T(n)
My

0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Bd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
T(n)

Mx

0 1
T(n)

Mx

0 − 1
T(n)

Mx

0

0 0 0 0 0 0
0 0 0 0 0 0
0 1

T(n)
My

0 1
T(n)

My

0 − 1
T(n)

My

0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14a)

Cv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− rTMx

T(n)
Mx

0 0 0 0 0

0 0 0 −
rTMy

T(n)
My

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dvu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rKMx
0

0 rKMy

rKxy 0
0 rKyx

rTMx

K(n)
Mx

T(n)
Mx

rTMx
K(n)

xy

rTMy
K(n)

yx rTMy

K(n)
My

T(n)
My

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dvd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

rTMx

T(n)
Mx

0
rTMx

T(n)
Mx

0 − rTMx

T(n)
Mx

0

0
rTMy

T(n)
My

0
rTMy

T(n)
My

0 −
rTMy

T(n)
My

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14b)

Cy =

(
0 1 0 0 0 0
0 0 0 0 1 0

)
Dyu =

(
0 0
0 0

)
Dyd =

(
0 0 0 0 0 0
0 0 0 0 0 0

)
. (14c)

The conversion of a PLDI into DNLDI offers the possibility to avoid using L LMIs
to impose the vertical strip region, leading to the following LMI problem: find P ∈ S+nx ,
T ∈ S+nd

, and Z ∈ Rnu×nx such that:(
AP + PA� + BuZ + Z�B�

u − 2αP �
TB�

d + CvP + DyuZ TDvd + D�
vdT − 2T

)
< 0. (15)

Additionally, to impose the allowed maximum command input in a symmetrical
manner u ∈ [u = −u, u] for an initial value of the state vector lying in the ellipsoid:

EQ = {x ∈ R
nx |x�Qx ≤ 1},

with Q ∈ S+nx , the following LMI can be used:(
diag(u)2 Z

Z� Q

)
≥ 0, (16)

where diag(u) is the diagonal matrix formed using the vector u.

3.2. From State Feedback to Cascade Control

To convert the state-feedback control structure to a cascade control structure in the
case of a two-axis mechatronic system, the following forms of the matrices P and Z will
be considered:
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P =

(
P1 O
O P2

)
∈ S

+
6 and Z =

(
Z1 O
O Z2

)
∈ R

2×6, (17)

with P1, P2 ∈ S
+
3 and Z1, Z2 ∈ R1×3. The resulting form of the static state-feedback gain

matrix K is:

K =

(
k1 k2 k3 0 0 0
0 0 0 k4 k5 k6

)
. (18)

For brevity, we consider the behavior on a single axis K1 =
(
k1 k2 k3 0 0 0

)
,

and we analyze the equivalence between the the control law given by the state-feedback and
the control law given by the cascade structure. As such, on X-axis we have the following
command signal given by the state-feedback approach:

ux,K(t) = θ�x(t) + K1x(t) = θ�x(t) + k1ωx(t) + k2θx(t) + k3

∫
θx(t)dt, (19)

with θ� being the outer position loop reference signal. On the other hand, for a cascade
control scheme having a P controller on the inner loop, along with a PI controller on the
outer loop, the control law resulted in this case can be rearranged as:

ux,PI−P(t) = P(x)
v

(
−ωx(t)− P(x)

p θx(t)− I(x)
p

∫
θx(t)dt + Ppθ�x(t) + I(x)

p

∫
θ�x(t)dt

)
, (20)

with inner loop proportional gain Pv, and the pair Pp and Ip as the outer loop proportional
and integral regulator gains, respectively. In the exact same manner, the signals uy,K and
uy,PI−P can be expressed. Therefore, using the relations exposed in Equations (19) and (20),
the following equivalence between the aforementioned gains from the cascade control
structure and those obtained using the state feedback controller can be performed:

P(x)
v = −k1, P(x)

p =
k2

k1
, I(x)

p =
k3

k1
, (21)

P(y)
v = −k4, P(y)

p =
k5

k4
, I(y)p =

k6

k4
. (22)

3.3. Feedforward Component

As noticed in Equations (19) and (20), an extra integral term in θ�x appears in the
cascade control structure case. As such, an extra analysis should be performed to emphasize
this difference. For state-feedback control, the obtained transfer function from θ�x to θx is:

Ho,K(s) = Cy,1(sIn − (A + Bu,1K1))
−1Bu,1 =

KMx
TMx

s

∏(s − λi)
, (23)

where λi are the closed-loop state matrix A + Bu,1K1 eigenvalues, while the index 1 is used
to mark the first row or column of the matrices which describes the augmented plant.
Similarly, in the case of using the PI–P cascade control strategy, the resulting closed-loop
transfer function from θ�x to θx becomes:

Ho,PI−P(s) =
P(x)

v KMx (P(x)
p s + I(x)

p )

∏(s − λi)
. (24)

Therefore, in both cases, transmission zeros appear in closed-loop, causing changes in
terms of the performance indices initially imposed through the position of the closed-loop
system’s poles. For the state-feedback strategy for the augmented model, a transmission
zero in the origin s̊ = 0 is obtained. On the other hand, the cascade controller brings a

transmission zero in the value s̊ = − Ip(x)

Pp(x) .
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To cancel the effect of the resulting transmission zero, the feedforward gain will be
used as an additional degree of freedom. To cancel the closed-loop zero for the cascade
control structure, the feedforward gains must be:

K(x)
f f = −P(x)

p and K(y)
f f = −P(y)

p . (25)

Moreover, using this feedforward term, the integral action present on the reference
manages to cancel the transmission zero s̊ = 0 which shows in the state-feedback case.
Therefore, the additional feedforward gains K(x)

f f and K(y)
f f lead to obtaining two closed-loop

systems without transmission zeros, so the performances imposed through D-region are
kept unchanged.

4. 4DOF Fractional-Order Controller

The previous section described a 4DOF controller for each axis organized in a cascade-
type structure, having an outer loop PI controller and an inner loop P controller, along
with a feedforward gain. It must be pointed out that this structure is imposed by the
physical stand, as mentioned in [25]. In the current section we propose an alternative
control structure having four degrees-of-freedom as well. As such, for each axis:

• For the inner loop, a simple P controller is used;
• For the outer loop, a particular structure of fractional-order PID controller is proposed:

KFO−ID(s) = Ki · Tis + 1
sλ

. (26)

The differential equations which describe the dynamics of the velocities ωx and ωy in
terms of command inputs ux and uy are:

ω̇x = − 1
TMx

ωx +
KMx

TMx

ux + Kxyuy; (27a)

ω̇y = − 1
TMy

ωx + Kyxux +
KMy

TMy

uy. (27b)

The inner P controllers Kωx and Kωy should be designed to impose the desired speed
profile. The dynamics of the resulting inner closed-loop systems are given by:

Hin,X(s) =
Kωx

s + 1
TMx

(1 + Kωx KMx )
and Hin,Y(s) =

Kωy

s + 1
TMy

(
1 + Kωy KMy

) . (28)

For designing the FO–ID controller we impose a limit cycle oscillation. Let us consider
a symmetrical bipositional relay having a hysteresis width of ε and an amplitude h, denoted
by R(ε, h), having the inverse describing function:

Ni(R(ε, h)) = −πε

4h

⎛⎝√(
A
ε

)2
− 1 + j

⎞⎠, A > ε,

where A is the amplitude of the input sinusoidal signal. If such a nonlinearity is inserted
into a negative feedback system next to a linear system, a stable limit cycle appears. The
parameters of the resulting limit cycle can be determined using the intersection between
the negative inverse description locus and the Nyquist diagram of the linear system. The
limit cycle is characterized by a frequency ωosc and an amplitude Aosc. Moreover, using
the Fourier decomposition of Ni(R(ε, h)), the equivalent gain of the relay nonlinearity is:

Keq =
4h

πAosc
. (29)
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The outer open-loop systems have the following dynamics:

Hol,out,i(s) =
Kωi

s
(

s + 1
TMi

(
1 + Kωi KMi

)) , i ∈ {X, Y}. (30)

The time constant of the FO–ID controller is set to be in both cases:

T(x)
1 =

TMx

1 + Kωx KMx

and T(y)
1 =

TMy

1 + Kωy KMy

, (31)

and we want to impose in each case the frequency ωosc of the resulting limit cycle as the
gain-crossover frequency ωgc, while the fractional order of the integral effect is designed
such that a prescribed value of the phase margin γ�

k is met. The resulting equation is:

γ�
k = arg(Ni(R(ε, h))) + arctan

(
T(i)

1 ωosc

)
− λ(i) π

2
, (32)

which implies:

λ(i) =
2
π

(
arg(Ni(R(ε, h))) + arctan

(
T(i)

1 ωosc

)
− γ�

k

)
. (33)

Additionally, to ensure ωgc = ωosc, the gain of the FO–ID controller should be:

Ki =
4h

πAosc

ωλ
osc√

1 + (T1ωosc)
2
= Keq · ωλ

osc√
1 + (T1ωosc)

2
. (34)

5. Numerical Results

The purpose of this section is to illustrate the numerical results obtained by imple-
menting the proposed controllers for the plant described in Section 3.1. The mathematical
model for the MIMO system was obtained based on the measured data in various op-
erating points for the described two axes of the mechatronic system. The mechanical
system inherent to each CNC axis is presented in Figure 1a), showing its components and
interconnections, alongside the brushless DC (BLDC) motor characteristics involved in
the system dynamics in Figure 1b). The actuation, measurements and control laws are
managed through a Siemens CNC Sinumerik and MC206X Motion Coordinator devices.
As such, considering various persistent inputs around a value u0, i.e., by considering an
additional pseudo-random binary signal over the constant component, a set of numerical
values have been identified using an auto-regressive with exogenous inputs method in
MATLAB. The resulting parameters for the state-space model (10) are described in Table 1,
with their nominal values and the uncertainty ranges based on the previously mentioned
identification steps.

Figure 1. Single-axis mechanical model for the case study in (a), with the brushless DC motor
characteristics in (b), used for system identification and control.
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Table 1. Nominal values of the system’s parameters, along with their uncertainty ranges.

Parameter
Nominal

Value
Percentage Parameter

Nominal
Value

Percentage

TMx 0.0245 ±10% KMx 25.8017 ±10%
TMy 0.0114 ±10% KMy 24.9174 ±10%
Kxy 26.65 ±10% Kyx 24.46 ±10%

Cascade Control from State-Feedback Structure

As mentioned in the theoretical part, in order to formulate the control problem of
finding the PI-P cascade structure for each axis subsystem, it is necessary to augment the
plant model with two extra states. The extended state-space model used is:

Gδ(s) :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω̇x(t)
θ̇x(t)
żx(t)
ω̇y(t)
θ̇y(t)
ży(t)
θx(t)
θy(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−40.85 0 0 0 0 0 1054 26.65
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 −87.81 0 0 24.46 2188
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωx(t)
θx(t)
zx(t)
ωy(t)
θy(t)
zy(t)
ux(t)
uy(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (35)

Moreover, for the matrices corresponding to the DNLDI system in (14), A, Bu, Bd,
Cv, Dvu, Dvd, Cy, Dyu and Dyd, the nominal values from Table 1 are used, along with the
following terms for the uncertainties:⎧⎪⎪⎨⎪⎪⎩

rTMx
= 0.0024;

rTMy
= 0.0011;

rKMx
= 2.5802;

⎧⎪⎪⎨⎪⎪⎩
rKMy

= 2.4917;

rKxy = 2.6650;
rKyx = 2.4460.

The performances for the closed loop system imposed through the D(α, θ)-region are:

• A settling time ts ≈ 0.2[sec], imposed using the corresponding vertical strip parameter
α = 20.

• A very small overshoot, tending to zero, imposed by the conic region corresponding
parameter θ = 0.01.

• The command signal allowed values ux, uy ∈ [−1, 1], imposed by the corresponding
LMI, having the initial conditions in the ellipsoid described using Q = I6.

As such, one LMI using the DNLDI form of the system is necessary for the settling
time constraints, while for imposing the maximum overshoot, 32 LMIs are necessary.
Considering the input saturation, the final problem involves finding a common solution to
the 35 LMIs. Using the LMI Solver from MATLAB’s Robust Control Toolbox [28], a feasible
solution has been successfully found:

P = 103 ×

⎛⎜⎜⎜⎜⎜⎜⎝

2.4209 −0.0835 0.0031 0 0 0
−0.0835 0.0031 −0.0001 0 0 0
0.0031 −0.0001 0.00004 0 0 0

0 0 0 1.1275 −0.0249 0.0007
0 0 0 −0.0249 0.0007 0.00002
0 0 0 0.0007 0.00002 0.00007

⎞⎟⎟⎟⎟⎟⎟⎠,

Z =

(−0.0453 −0.9385 0.0395 0 0 0
0 0 0 −0.1431 −0.4835 0.0149

)
, (36)
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which leads to the following state-feedback matrix:

K =

(−0.8719 −47.9103 −616.4164 0 0 0
0 0 0 −0.4557 −33.7512 −497.9665

)
. (37)

Using the equivalence between the gains obtained for the state-feedback controller
and the gains needed for the PI-P cascade control structure, we have:

P(x)
v = 0.8719, P(x)

p = 54.9470 I(x)
p = 706.9512,

P(y)
v = 0.4557, P(y)

p = 74.0668, I(y)p = 1092.8.

Figure 2 shows the step responses obtained for the nominal models of each axis, along
with 50 uncertain samples obtained with Monte Carlo simulations. As noticed, the imposed
settling time for both axes is fulfilled, along with a zero steady-state error. The overshoot
appears due to the transmission zero, as proved in Section 3.2. As such, a feedforward
component is necessary to mitigate the transmission zero causing the overshoot and so
that the performances imposed through the D(α, θ)-region are fully met. The values of the
feedforward gains are:

K(x)
f f = −54.947 and K(y)

f f = −74.0668.

Figure 2. The step responses of the nominal (red) closed-loop system, along with 50 Monte Carlo
simulations (blue) for X axis (left) and Y axis (right), without considering the feedforward component.

The final configuration of the cascade control and feedforward component, together
with the mutual effect between the axes and integrating the uncertainties, is depicted
in Figure 3. The two resulting closed-loop systems have no transmission zeros and the
eigenvalues obtained for the nominal state-space representation become:

Λ
(

H(x)
0

)
= {−904.85, −33.72, −21.29};

Λ
(

H(y)
0

)
= {−1013, −50.6, −21.3}.

The step responses for both nominal and uncertain systems of each axis obtained using
the final control structure from Figure 3 are presented in Figure 4. As noticed, the settling
time is robustly kept at ts ≈ 0.2 [s], with no detectable overshoot or steady-state error.

Next, we consider several numerical simulations obtained with the second proposed
control structure, described in Figure 5. The inner P controller used for the speed loop
should be designed considering the desired speed profile. For the purpose of this paper, we
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considered the same values K(x)
v = 0.8719 and K(y)

v = 0.4557 as in the previous structure in
order to have a fair comparison.

Figure 3. Cascade and feedforward configuration for the MIMO system.

Figure 4. The step responses of the nominal closed-loop system, along with 50 Monte Carlo simula-
tions for X axis (left) and Y axis (right), obtained by adding the feedforward component.

Figure 5. Closed-loop control structure for the two-axis positional mechatronic system having a P
controller on the inner speed loop, and a FO–ID controller on the outer position loop, the switching
element being used to commute between the controller (working mode) and the relay (design mode).
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For both axes we considered a bipositional relay with a hysteresis h = ±0.5 and with
the switching points at ±0.05. The resulting limit cycle for the X axis has the frequency
ωosc = 71.23 [rad/s] and the amplitude Aosc = 0.01, while the resulting Y axis limit
cycle has the frequency ωosc = 69.38 [rad/s] and the amplitude Aosc = 0.01. Because
the amplitudes of both limit cycles are the same, the equivalent gains will be equal for
both axes:

K(x)
eq = K(y)

eq = 63.662. (38)

The resulting time constants of the outer fractional-order integral-derivative controllers
presented in (31) are T(x)

1 = 0.01 [s] and T(y)
1 = 9.21 × 10−4 [s]. By imposing the phase

margin γ� = 13π
30 , the resulting fractional orders of both controllers are λ

(x)
I = λ

(y)
I = 0.133.

Moreover, to ensure ωgc = ωosc, the controllers’ gains are K(x)
I = 112.1283 and K(y)

I =
111.8148. As such, the outer controllers are:

H(x)
FO−ID(s) = 112.1283

0.01s + 1
s0.133 and H(y)

FO−ID(s) = 111.8148
9.21 · 10−4s + 1

s0.133 . (39)

For the numerical results, the FO–ID controllers has been simulated using MATLAB’s
FOMCON toolbox [29]. The approximation order of the fractional-order elements has been
set to 5, while the frequency range is [0.1, 104] [rad/s]. The performance of the closed-loop
systems is illustrated in Figure 6. As noticed, the value of the settling time is ts ≈ 0.2 [s],
comparable to the value obtained using the previous structure, and there is no steady-
state error. However, due to the lack of coupling consideration between the axes, a small
overshoot σ ≈ 5% appears, being the main limitation of the proposed method.

Figure 6. The step responses of the nominal closed-loop system, along with 50 Monte Carlo simula-
tions for X axis (left) and Y axis (right).

Moreover, the fractional-order ID controller requires an approximation for the numeri-
cal implementation, which cannot be considered on the equipment described in [27] and
whose model has been considered in the current paper.

6. Discussions

The comparison between the two proposed methods should be on even grounds, as
both ensure zero steady-state error and comprise of four degrees of freedom. Regarding
the time-domain performances, the settling time values are similar, with an average value
of 0.22 [s] for both axes with the first method, having the values between 0.215 [s] and
0.225 [s], while with the second method, the settling time has an average value of 0.185 [s],
varying between 0.17 [s] and 0.2 [s]. Moreover, the second method presents a smaller
rise time of ≈0.07 [s] against to the first method where the rise time is ≈0.12 [s]. The
overshoot has been imposed to be 0 in the first method, while using the second method the
resulting overshoot is ≈9.5 [%] for the X axis and ≈7.5 [%] for the Y axis, varying between
8.5 [%] and 10 [%] for the X axis and between 7 [%] and 8 [%] for the Y axis. Regarding
the implementability, the first structure manages to deal with the limitations imposed by
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the control structure given by the MC206X Motion Coordinator, which provides five servo
gains for control that allow the design of a PID controller for the outer position loop, a P
controller for the inner angular speed loop and a feedforward angular speed gain [27]. As
such, regarding the implementability of the proposed control laws, the FO–ID regulator
cannot be implemented on a generic industrial controller where the structure could be
fixed, as in our case.

Comparing the proposed methods with the available results in the literature, the
first method presents a set of improvements against the similar method proposed in [25],
where the uncertainties and the command signal limitations have not been considered,
while the coupling between axes has been studied as a disturbance and only the capacity
of globally rejecting such disturbances has been analyzed. Moreover, against the second
paper which has been extended here, the problem of designing a FO–ID controller for each
axis considering the positional systems has been treated in the current paper, compared
to [17], where only a single axis angular velocity control system has been treated. The
overshoot presented using the second controller can be justified by the lack of consideration
of the interconnections between the axes, but the approximation of the fractional-order
element could also represent a problem. As noticed in other available research papers, the
problem of a small overshoot appears even in the case of a single axis position system,
as in [14–16]. However, the great advantage of the second method consists in being an
autotuning method which manages to fulfill the vast majority of constraints imposed by
such a problem: fast response with zero steady-state error.

As future work, we propose to investigate the possibility to mitigate the small over-
shoot presented in the case of using the FO–ID controller by adding an extra degree of
freedom such that the coupling between axes can also be removed. Moreover, a possible
extension will be to add both control structures in the μ-synthesis control framework by
considering the possibility to integrate the fractional-order element into the Robust Control
Framework, starting from the ideas underlined in [19,20]. Additionally, another research
direction will be the possibility to develop a graphical tuning method for such a system
having a fractional-order model instead of an integer-order one, as in [21,22].

7. Conclusions

The current paper presents two design techniques for a two-axis positional-based
mechatronic system. The first technique converts the well-known full state-feedback control
structure into a cascade structure having a P controller on the inner loop and a PI controller
on the outer loop. The state-feedback matrix has been computed based on the solution of
an LMI-based problem in which a set of performances have been imposed by describing
a D-region where the closed-loop poles will be placed, along with an extra condition to
overcome the saturation effect which appears on both command signals. The results show
that the settling time requirements are fulfilled, having an average value of 0.22 [s] for
X axis and 0.175 [s] for Y axis, with no steady state-error, but with a small overshoot
caused by a transmission zero. This transmission zero effect has also been canceled using a
feedforward gain for each axis, leading to an average value of the settling time of ≈0.2 [s]
for each axis, as imposed. Moreover, a great advantage of this method compared to the
classical LQR scheme, as part of an extended range of optimal-control based control laws,
is the ability to impose the regional location of the closed-loop system poles in order to
obtain specific time-domain performances and counteract uncertainties.

The second technique presents a methodology to design a similar control structure,
with two modifications: the feedforward gain has been removed, and the outer PI controller
has been replaced with a FO–ID controller designed by bringing the system to the limit
cycle using a relay-type nonlinearity. However, the numerical results reveal one issue with
this approach: the overshoot appears due to the design procedure of the outer controller
which does not consider the coupling between the axes. The settling time has similar values
in both control structures, with no steady-state error, but the first control structure presents
no overshoot, while the second structure induces a small overshoot. As such, based on our
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findings, the LMI-based controller is suitable for this particular problem. Regarding the
robustness, as illustrated in the previous section, the uncertainties do not significantly affect
the imposed performances in both cases. Moreover, the method presents the advantage of
being an autotuning one.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
CNC Computer Numerical Control
DNLDI Diagonal Norm-Bound Linear Differential Inclusion
FO-ID Fractional-Order Integral-Derivative
FO-PID Fractional-Order Proportional-Integral-Derivative
LDI Linear Differential Inclusion
LMI Linear Matrix Inequality
LQG Linear-Quadratic-Gaussian
LQR Linear-Quadratic-Regulator
MIMO Multiple-Inputs and Multiple-Outputs
PID Proportional Integral Derivative
PLDI Polytopic Linear Differential Inclusion
PWM Pulse Width Modulation
List of Symbols

S+n The set of symmetric and positive definite matrices of order n
ωx,ωy Angular speed for X and Y axes, respectively
θx,θy Angular position for X and Y axes, respectively
ux,uy Command signal for X and Y axes, respectively
θ�x ,θ�y Angular position’s reference for X and Y axes, respectively
ux,uy Command signal for X and Y axes, respectively
zx,zy Additional states resulting after augmentation
TMx , TMy Time constant of the subsystem u → ω for X and Y axes, respectively
KMx , KMy Gain factor of the subsystem u → ω for X and Y axes, respectively
Kxy, Kyx Gain factor representing the interconnection between X and Y axes
c(n) The nominal value of an uncertain parameter c
dc The disturbance input corresponding to an uncertain parameter c
vc The disturbance output corresponding to an uncertain parameter c
c, c Lower and upper bound of an uncertain parameter c

P(x)
v , P(y)

v The resulting inner loop controllers’ parameters for both X and Y axes, respectively

P(x)
p , I(x)

p , P(y)
p , I(y)p The resulting outer loop controllers’ parameters for both X and Y axes, respectively

K(x)
f f , K(y)

f f The feedforward gains for both X and Y axes, respectively

T(x)
1 , T(y)

1 Time constant of the outer FO–ID controller for both X and Y axes, respectively

λ
(x)
I , λ

(y)
I Fractional order of the outer FO–ID controller for both X and Y axes, respectively

K(x)
I , K(y)

I The gain of the outer FO–ID controller for both X and Y axes, respectively
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Abstract: Digital twins are applied in smart manufacturing towards a smarter cyber-physical manu-
facturing system for effective analysis, fault diagnosis, and system optimization of a physical system.
In this paper, a framework applying a digital twin to industrial robots is proposed and realizes the
real-time monitoring and performance optimization of industrial robots. This framework includes
multi-domain modeling, behavioral matching, control optimization, and parameter updating. The
properties of the industrial robot are first modeled in a digital environment to realize the strong
interactive and all-around 3D visual monitoring. Then, behavioral matching is performed to map
the virtual system to the physical system in real time. Furthermore, the control performance of the
system is improved by using a fractional order controller based on the improved particle swarm opti-
mization algorithm. This framework is applied to the experimental verification of real-time control
optimization on an industrial robot. The time-domain performance is improved in the simulation
and experimental results, where the overshoot is promoted at least 42%, the peak time is promoted at
least 32%, and the settling time is promoted at least 33%. The simulation and experimental results
demonstrate the effectiveness of the proposed framework for a digital twin combined with fractional
order control (FOC).

Keywords: digital twin; industrial robots; smart manufacturing; FOC

1. Introduction

With the development and application of new information technologies, countries
have proposed different manufacturing strategies [1], and smart manufacturing is a com-
mon way to improve the level of the manufacturing industry [2]. Smart manufacturing
requires not only high quality standards but also enhanced robustness and autonomy to
achieve production targets [3]. Most of the work is related to the physical system, and the
content of the digital system only plays an auxiliary role most of the time in traditional
manufacturing [4].

Compared with smart manufacturing, the innovation cycle of the traditional industrial
field is much longer. Therefore, one of the key challenges is to achieve Cyber-Physical
Systems (CPS) [5]. CPS realizes real-time interactions and close combinations of the network
and the physical systems through computing, communication, and control [6]. To achieve
this transformation, an emerging technology is urgently needed—namely, digital twins [7].

The digital twin concept was officially proposed in NASA’s technical report in Mid-
2010 [8]. The key of a digital twin is to create a virtual model of the physical system in
a digital way and then simulate, verify, control, and predict the whole life cycle process
of the physical system with the help of the digital twin data, the virtual system, and the
connection between physical and virtual systems [9]. With the development of smart
manufacturing, the application of digital twins in the manufacturing industry has been
widely studied [10].
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Tao et al. constructed a general digital twin framework for complex equipment, which
is used for prognostics and health management to improve accuracy and efficiency [11].
Rodolfo et al. presented a digital twin-based optimization procedure for an ultra-precision
motion system [12]. Aivaliotis et al. presented a methodology to calculate the remaining
useful life (RUL) of machinery equipment using physics-based simulation models based
on the digital twin concept, and the RUL of industrial robots was predicted effectively [13].

Zhang et al. proposed an optimal state control framework based on digital twins,
which helps the synchronized production operational system maintain an optimal state
when uncertainties effect the system [14]. Viola et al. applied a digital twin to the framework
of intelligent control engineering. The framework reproduced the system behavior through
a multi-domain simulation and completed the real-time interface between physical and
virtual systems by adjusting the behavioral matching technology to the digital twin [3].

Gallala et al. proposed a digital twin approach for human–robot interactions (HRIs) in
hybrid teams; however, this approach lacked a description of performance optimization [15].
Lei et al. presented a web-based digital twin thermal power plant and discussed the
architecture, modeling, control algorithm, rule model, and physical–digital twin control,
which is beneficial to study the applications of digital twinning in other fields [16].

However, implementing digital twins to industrial motion systems still lacks a thor-
ough understanding of the concept, framework, and development methods, which hinders
the progress of real digital twin application in smart manufacturing [17]. There are two
major research questions that need to be solved: (1) how to match the virtual model with
the actual motion state in real time to ensure the accuracy of the model in the optimization
process; and (2) how to further optimize the control performance of the physical system in
the proposed digital twin framework.

The greatest challenge for the first question is how to construct real-time behavioral
matching based on an optimal algorithm to ensure the accuracy of the virtual model. The
real-time interaction is realized through the database. The digital twin data collected from
the virtual and physical system, including static and dynamic model information of the
physical system, information collected by sensors during physical system operation, and
information collected by virtual sensors during virtual system operation, are all stored in
the database.

Digital twin data can be read at any time as a database client. Then, the real-time
interaction between the physical and the virtual systems can be realized, which lays a
solid foundation for the accuracy and effectiveness of the virtual model optimization. In
order to achieve intelligent optimal control, the methods of introducing artificial intelli-
gence algorithms to optimize the performance of the control system can be divided into
two categories.

One is to use artificial intelligence algorithms directly for control [18], thereby, re-
placing the traditional controllers. The other is to combine the approach with classical
control theory and use artificial intelligence algorithms for parameter tuning [19]. As for
the second question, the proposed methodology in this paper is fractional order control
(FOC) optimization using artificial intelligence algorithms in a digital twin framework to
achieve optimal control performance.

Fractional calculus is the quantitative analysis of functions using non-integer-order
integration and differentiation [20], and this has attracted a great deal of interest in system
modeling and control fields [21]. Fractional order controllers have been found to obtain
more control options and flexibility compared with integer order controllers [22]. Among
them, the fractional order PIλDμ was proposed by I. Podlubny [23]. Due to the fact that the
fractional order PIλDμ controller achieves better tracking performance with less overshoot
and faster response [24], the fractional order PIλDμ controller has been widely used in the
control fields [22,25].

Therefore, the fractional order PIλDμ controller design and optimization method is
proposed in the industrial robot motion system digital twin framework in this paper. There
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exist some tuning methods of fractional order controllers, which can be divided into two cat-
egories: the frequency-domain-design method and time-domain optimization algorithms.

The frequency-domain-design method generally refers to the numerical solution of
the parameters of the controller by specifying the frequency specifications, combined
with the robustness criterion [26]. According to the frequency-domain-design method,
the parameters of the controller can be obtained through analytical calculation, which
can realize effective control of the system [27]. Monje et al. proposed a design scheme
of fractional order controller with given frequency-domain indexes, which is robust to
equipment uncertainty, load disturbance and high-frequency noise [28].

Chen et al. used the frequency-domain-design scheme to design the parameters of
FOPID-BICO, which ensures the robustness and anti-interference of the control system [29].
However, there exist some problems, including the parameter limitation for optimization,
the complexity of the algorithm, and a large amount of calculation for the real-time opti-
mization process. Time-domain-optimization algorithms have also been developed [30],
which overcome the uncertainty and cumbersomeness of manually adjusting parameters
by introducing intelligent optimization algorithms.

The major contributions of this paper are as follows: (1) we introduce a framework
of a digital twin for industrial motion system, which realizes real-time monitoring and
optimization of the running state with experimental verification of control optimization;
(2) digital twin behavioral matching based on real-time data analysis and dynamic mapping
between virtual system and physical systems; and (3) FOC optimization using the intelligent
algorithm in the digital twin framework to achieve optimal motion system performance.

This paper is structured as follows. Section 2 presents the framework of a digital twin
for industrial robots and introduces the four phases of implementation in detail. Section 3
shows the implementation of the proposed framework using related software. Section 4
describes the specific application example, which is how to implement the digital twin
framework on an industrial robot control system. Section 5 presents the simulation and
experimental results to demonstrate the effectiveness and advantages of the proposed
digital twin framework combined with FOC optimization. Finally, our conclusions and
future work are presented in Section 6.

2. Digital Twin Approach

The idea of a digital twin first appeared in the product lifecycle management course
taught by Grieves around 2003. In 2014, he further elaborated on digital twins in a white
paper and proposed a general standard system on digital twin, which is a three-dimensional
structure [31]. This three-dimensional architecture consists of three main objects—namely,
physical products in real space, virtual products in virtual space, and the connections of
data and information that tie the virtual and physical products together.

In order to improve the accuracy and efficiency of prognostics and health management
for complex systems, Tao proposed an extended five-dimension digital twin architecture,
which adds digital twin data and services based on the Grieves’ architecture [11]. In
addition, other digital twin architectures have been proposed by other researchers [32].
Referring to Tao’s five-dimensional model of digital twins, this paper presents a five-
dimensional architecture of digital twins applied to industrial robots as shown in Figure 1.

This framework also consists of five aspects—namely, the physical system, virtual
system, digital twin data, service applications, and the connection between the above
four aspects. The virtual system is built based on the physical system and digital twin
data first, adjusted to realize real-time synchronization to the physical system, and then
optimized according to the service applications proposed by physical systems, such as fault
detection, control optimization, and three-dimensional monitoring. Finally, the monitoring
and optimization of the physical system can be realized based on the digital twin data
stored after the virtual system optimization.

In classical control theory, it is necessary to manually adjust the parameters based on the
error signal through the control algorithm offline, which is a slow, tedious, and inefficient
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process. The framework in this paper focuses on the utilization of the digital twin concept to
automatically adjust the controller parameters when the operating state of the robot changes.
More specifically, a real-time optimization strategy for FOC is proposed in the framework,
which can achieve optimal tracking control and robustness performance.

Figure 1. A five-dimensional framework of digital twins: applications to industrial robots.

Based on the service application of three-dimensional monitoring and control opti-
mization, the framework is composed of four steps: multi-domain modeling, behavioral
matching, control optimization, and parameter updating.

2.1. Multi-Domain Modeling

The purpose of the first step is to establish a virtual system representing the behavior
of the physical system. As a copy of the physical system, the virtual system needs to
truly reflect the state of the physical system at every moment to realize monitoring of the
physical system.

The modeling process includes two parts as depicted in Figure 2: the first part is
to model the position, geometric size, material, and dependency of the physical system;
and the second part is to model the kinematic and dynamic characteristics of the physical
system, which is also the most important part of the modeling.

Figure 2. A multi-domain model as a virtual system based on a physical system.
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The first part of modeling is to represent the model of robot and its environment in 3D.
The target is to realize the strong interactive and all-around 3D visual monitoring effect of
the physical entities. The second part of modeling is to achieve motor motion state tracking.
The complete model of each motor consists of a number of elements, which represent the
dynamic behavior of each motor’s component based on the modeling of the mechanical,
electrical, and other functions.

2.2. Behavioral Matching

The purpose of this step is to find the parameters of the virtual model so that the virtual
model can adapt to its complete system dynamics and be consistent with the real state of
the physical system. The parameters of the virtual model can be divided into two parts.
The first part is all available data related to the physical system. It is worth mentioning that
most of the modeled elements can use the parameters directly from collection.

The second part of the parameters will change continuously due to the operation of
the machine and other external factors and cannot be defined directly using the collected
data. These parameters need to be optimized online in real time by using the digital twin
data to achieve the target of the behavior of the virtual system matching the behavior of
the physical system. This process is called behavioral matching [3] as depicted in Figure 3.

This process is set as an optimization cycle. Intelligent optimization algorithms are
used to optimize the parameters. The cost function will be computed continuously until
the input and output data streams of the system are consistent with a certain tolerance rate
or after a fixed number of iterations.

Figure 3. Behavioral matching.

2.3. Control Optimization

The purpose of this step is to optimize the control performance of the virtual model.
After behavioral matching, the mapping and interactions between the physical system and
virtual system are deployed. Therefore, the control performance optimization of the virtual
model is of great significance to the optimization of physical system. In order to achieve
better control performance, the fractional order controller is used to control and optimize
based on the accurate virtual model.

There exist some tuning methods of fractional order controllers, which can be divided
into two categories: frequency-domain-design method and time-domain-optimization
algorithms. To overcome the uncertainty and cumbersomeness of manually adjusting
parameters, the intelligent optimization algorithm is used in this paper. Using optimal
control rules, we first calculating the error between the reference and feedback of the
closed-loop system, and then using the optimization algorithms and tools to minimize the
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cost function value representing the dynamic performance index of the system, and search
for the optimal parameters. The time-domain-optimization algorithm is applied in the
proposed digital-twin-system framework with data collection from the physical system to
the virtual system as shown in Figure 4.

Figure 4. Digital-twin-system framework control optimization.

2.4. Parameter Updating

The purpose of this step is to update the optimal parameters obtained by the virtual
system to the physical system to achieve the predetermined control targets. The iteratively
optimized parameters are stored in the virtual system and are updated in the physical
system through the data communication channel between the virtual and physical systems.
By optimizing the controller parameters in real time, the high performance index can be
maintained when the running state of the physical system changes.

3. Digital Twin Deployment

The previous section describes a framework of digital twins for the industrial motion
system. The implementation of multi-domain modeling with related software and behav-
ioral matching of the framework are presented in this section. Multi-domain modeling is
divided into two parts. The first part is to model the position, geometric size, material, and
dependency of the physical system, which is performed in Unity3D [33]. The 3D platform
used to build the model needs to follow three rules: 3D visualization requirement, key
function requirement, and cross-platform operation requirement.

Furthermore, as a popular virtual system development engine, Unity3D is used to
build 2D and 3D scenes, and add scripts, shaders, and physical features to scenes. Thus,
Unity3D can be used to model the virtual 3D environment. There are two modeling
methods of Unity3D. One is to build the components by users in Unity3D and build the
components hierarchically according to the principle of behavioral consistency; the other is
to import the model directly, which is actually the most general method [34].

Then, the correct subordinate relationship should be established in virtual model
based on the hierarchical structure of the physical system according to the design principles
of hierarchical consistency and behavioral consistency. Through the strong interaction and
scene roaming function of Unity3D, the omni-directional real-time visual monitoring of the
physical system can be realized.

The second part of multi-domain modeling is to model the kinematic and dynamic
characteristics of the physical system in MATLAB Simulink, which is a well-known multi-
domain simulation and model-based design tool and can provide the environment for
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modeling, simulation, and comprehensive analysis of dynamic systems as well as an
interactive graphical environment and a customizable module library for design, simulation,
execution, and testing.

Thus, the behavioral matching and control optimization process can be directly per-
formed in MATLAB. After behavioral matching, the four parameters in the electromechan-
ical model can be obtained to make the behavior of the virtual model closer to that of
the physical system. After control optimization, the parameters of the controller will be
obtained to optimize the control performance of the virtual system. These parameters are
all stored as digital twin data.

As multi-domain modeling, behavioral matching, and control optimization are all
supported by digital twin data, including sensor data, control state data in the physical
system and simulation data in the virtual system. Therefore, a database structure needs to
be built to store all digital twin data generated in real time. In this paper, Mysql as a C/S
architecture [35] is applied to build the database. A server is used to store and manage the
database, and the client is the program that issues the operation request.

Furthermore, Mysql can store data for each period of time during the running process.
After completing the behavioral matching of the virtual system, optimizing the controller
parameters based on the accurate model, and sending the optimized controller parameters
back to the physical system for control, it is achievable by monitoring the digital twin data
to verify whether the performance of the physical system has been improved.

4. A Case Study

A case study on the industrial robot has taken place to demonstrate the functionality
of the proposed framework. In order to describe the above proposed framework in more
detail, each stage is described in the case study.

4.1. Multi-Domain Modeling

The robot studied in this case study is the EFORT ER20C-C10 as a six-axes robot,
which has six rotating joints, and each axis is driven by a permanent magnet synchronous
motor (PMSM). One of the six axes on this industrial robot is focused on in this paper to
build a digital twin model.

The first part is to model the position, geometric size, material, and dependency of the
physical system. The second method is adopted in this paper to construct Unity3D model,
which is to directly import the model. Furthermore, the correct subordinate relationship is
established in the virtual model based on the hierarchical structure of the physical system.
Then, the interactive functions and scene roaming functions are added to the virtual system
scene. Furthermore, through the digital twin data collected by the data interface, the
function of running state reproduction can be realized. The model established in Unity3D
is shown in Figure 5.

The second part is to model the kinematic and dynamic characteristics of the physical
system. The PMSM model of the robot axis consists of an electromagnetic link model
and mechanical link model; the former conforms to the voltage equation, and the latter
conforms to the mechanical characteristic equation as follows:

uq − Cen = Riq + L
diq
dt

(1)

Te − TL = Bω + J
dω

dt
(2)

where, in (1), uq is the armature voltage, Ce is the back EMF coefficient, n is the motor
speed (the unit is rpm), R is the armature resistance, iq is the armature current, and L is the
armature inductance; in (2), Te is the electromagnetic torque, TL is the equivalent torque of
load, ω is the motor angular speed (the unit is rad/s), B is the damping coefficient, and J is
the moment of inertia.
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Figure 5. Model of six-axes robot in Unity3D.

Figure 6 shows the speed servo system of PMSM, where the electromagnetic part is
in the red dashed block, and the mechanical part is in the green dashed block. nr and
n are the reference motor speed and actual motor speed, respectively; iqr and iq are the
reference q-axis current and actual q-axis current feedback, respectively; uq is the q-axis
voltage; and E is the back EMF. Cv(s) is the speed controller to be designed, and Ci(s) is
the current controller to be designed. In order to optimize the control performance in
the physical system, a fractional order controller is designed in this control system. In
the simulation and experiment, the cascaded fractional order PIλ-PIλ controller and the
cascaded integer order PI–PI controller are designed with controller optimization for a fair
control performance comparison.

Figure 6. The permanent magnet synchronous motor (PMSM) speed closed−loop control system.

4.2. Behavioral Matching

In order to meet the requirements of real-time mapping of the physical system to the
virtual system, behavioral matching is performed based on the established model with
real-time adjustment of parameters. In this case, the parameters of the electromechanical
model are the most relevant for building the accurate virtual model. Therefore, the four
parameters in the electromechanical model, including the moment of inertia, damping
coefficient, resistance, and inductance—namely, J, B, R, and L are the parameters for
behavioral matching. Then, we evaluate whether the identified four parameters can match
the virtual system behavior with the physical system behavior.
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Based on the parameter identification method in [36], the transfer function model of
each part in Figure 6 can be obtained as

Fcn1(s) =
250

s + 150
(3)

Fcn2(s) =
2563.72
s + 2.06

. (4)

The data used for behavioral matching is derived from the digital twin system, in-
cluding data collected by sensors in the physical system and also simulated statutes in
the virtual system. The input data collected from the physical system sensor is taken as
the input of the virtual system model. Then, the output data collected from the physical
system sensor and the output data of the virtual model are compared as the cost function
for parameter optimization,

J =
∫ t

0
(yreal − yvirtual)

2 (5)

where yreal is the output of the physical system, yvirtual is the output of the virtual system,
and t is the time.

The optimization algorithm used in this case is an improved particle swarm opti-
mization algorithm. The concept of the standard PSO algorithm is simple, and it has a
short-term memory function, which makes particles slide in the local optimal or global op-
timal position. However, the population is prone to premature convergence, and improper
setting of inertial weight will lead to a local optimal solution [37]. In order to overcome
the tendency of falling into useless solutions and improve its convergence, some improved
particle swarm optimization algorithms were proposed [38].

The inertia weight directly affects the search speed and accuracy of the algorithm [39].
When the inertia weight is large, the global search ability of the particle is enhanced. When
the inertia weight is small, the local search ability of the particle is improved, which is
conducive to improving the search accuracy of the particle. Therefore, it is expected that
the inertia weight of the algorithm is large in the early stage but becomes smaller in the late
stage. In this paper, the method of dynamically changing the inertia weight is proposed to
improve the performance of the particle swarm optimization algorithm.

This optimization algorithm is used to perform iterative optimization of the parameters
by minimizing the cost function. The optimization cycle ends when the cost function reaches
the allowable error range or the number of iterations is reached. In this case, the number of
iterations is set as 50. The convergence process of the cost function in behavioral matching
is shown in Figure 7. After behavioral matching, the parameters can be updated in the
virtual model as shown in (6) and (7) and stored in the database as digital twin data.
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Figure 7. The convergence process of behavioral matching applying the improved particle swarm
optimization algorithm.

89



Fractal Fract. 2023, 7, 167

Fcn1BM(s) =
100

s + 97.16
(6)

Fcn2BM(s) =
2436.87

s + 1
. (7)

4.3. Control Optimization

After the behavioral matching phase is done, the virtual system is called the twin of
the physical system. This step is based on the accurate virtual model to optimize the control
performance. The parameters of the controllers are also optimized by the improved particle
swarm optimization algorithm. The optimization procedures are as follows:

4.3.1. Define the Parameter Search Scope

The four parameters of the cascaded integer order PI–PI controller and the six pa-
rameters of the cascaded fractional order PIλ-PIλ controller are considered as the solution
set. Then, we initialize the parameters of the particle swarm optimization algorithm by
randomly initializing the position and initial velocity of the particle. The size of the particle
swarm is set as 100, and the maximum number of iterations is set as 50. A linearly decreas-
ing inertia weight is used, which starts with ωstart set as 0.9 and ends with ωend set as 0.4.
The learning factors c1 and c2 are set as 0.9.

4.3.2. Choose a Fitness Function

The commonly used comprehensive performance evaluation standards are mainly
based on the relationship between the deviation of the system w.r.t the time t. Generally,
the performance index functions of the control system can be the error absolute value
integral (IAE), the error square integral (ISE), the integral of timed square error (ITSE) or
the absolute value of the error multiplied by the time integral (ITAE). IAE and ISE are not
restricted by time, which is easy to cause the contradiction of reducing the overshoot and
reducing time.

Furthermore, ITSE focuses on the error that occurs in the later stage of the transient
response but seldom considers the large initial error in the response. For fast, stable, and
small overshoot systems, ITAE is one of the commonly used performance indicators. The
fitness function chosen in this paper is ITAE. The initialization process of the algorithm is
as follows: the fitness of each particle is calculated according to the fitness function, and
then the optimal individual is found in the initialized particle swarm, which is initialized
to the optimal population, and the optimal fitness of the particle itself to a single particle
is initialized.

4.3.3. The Iterative Optimization

At the time t + 1, as shown in Figure 8, the inertia weight decreases linearly during
the iteration, and the particle position is updated as follows:

ωt = ωstart − (ωstart − ωend)
t
K

(8)

vt+1
id = ωtvt

id + c1r1(pt
id − xt

id) + c2r2(pt
gd − xt

id) (9)

xt+1
id = xt

id + vt+1
id (10)

where ωt is the weight of the inertia at time t, which balances the global search and local
search; K is the maximum number of iterations; r1 and r2 are random numbers in the
interval (0,1); vt

id and vt+1
id are the velocity of the particle at time t and t + 1, respectively; xt

id
and xt+1

id are the positions of the particle at time t and t + 1, respectively; pt
id is the personal

best position at time t; and pt
gd is the global best position at time t.
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Then, the updated particle fitness is calculated and compared. Furthermore, the
particle’s own optimal fitness and the global optimal fitness are updated.

Figure 8. Iterative graph of the particle swarm optimization.

4.3.4. End Condition Judgment

Judge whether the maximum number of iterations is reached or the fitness function
reaches the error tolerance range, if not, jump to (3), else, jump out of the loop. The
convergence process of ITAE value in control optimization is shown in Figure 9.
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Figure 9. The convergence process of controller parameter optimization applying the improved
particle swarm optimization algorithm.

4.3.5. Output Optimized Parameters

The output global optimal particles are the four parameters of the cascaded integer order
PI–PI controller or the six parameters of the cascaded fractional order PIλ-PIλ controller.

4.4. Parameter Updating

The data transmission flow chart of the process is shown in Figure 10. First, the
operating data of the industrial robot is collected by sensors and stored in MySQL as digital
twin data. Then, the virtual system is modeled and optimized based on the digital twin
data. The controller parameters obtained by iterative optimization in the virtual system
need to be updated in the physical system to realize the control optimization of the physical
system. Thus, the optimized parameters are stored in the database as the Mysql client, and
Unity3D reads the digital twin data stored in the Mysql server and transmits the parameters
to the controller through Socket communication.

The controller uses EtherCAT to transmit data to the driver with a transmission
frequency of 500 Hz and then updates the controller parameters. After the controller
parameters are updated, the running state data of the physical system operation process is
collected again to verify whether the parameters obtained through virtual model simulation
optimization have an optimal effect on the behavior of the physical system.
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Figure 10. The data transmission flow chart of parameter updating.

4.5. Summary

According to the above case study, the whole six-axes industrial robot is modeled in
unity3D, and then the PMSM of the single axis is modeled in Simulink to realize the virtual
mapping of the fourth axis running state. It means that the running action of the robot can
be clearly observed through unity3D, while the running state of the single axis can be well
observed through Simulink. The real-time data obtained from the sensor of the physical
system and the simulation of the virtual model are collected to identify the behavior of
components and adjust their virtual model accordingly.

The four parameters with the greatest influence on the PMSM model (namely, J, B,
R, and L) are evaluated. Based on the iterative algorithms and real-time digital twin data,
the four parameters are adjusted in real time. The virtual model after behavioral matching
can better match the real running state of the physical system compared with the initially
identified model and can truly realize the real-time mapping between the physical system
and the virtual system.

Then, the controller parameters can be optimized based on this accurate virtual model.
The optimized parameters are transmitted back to the controllers of the physical system
reliably in real time to achieve better performance. Finally, simulations and experiments
are conducted in the next section to show the feasibility and effectiveness of the pro-
posed framework.

5. Simulation and Experiment

The motor step-response operation reference value is 400 rpm. Figure 11 shows the
results of behavioral matching, in which the blue line is the speed–output data curve
collected during motor operation, the green line is the speed–output data curve obtained
by simulation based on the identified model, and the red line is the speed–output data
curve obtained by simulation based on the model after behavioral matching. In Figure 11a,
both the physical system and the virtual system adopt the controller parameters originally
set in the physical system.

In Figure 11b, both the physical system and virtual system adopt the integer order
controller parameters optimized based on the accurate model after behavioral matching.
In Figure 11c, both the physical system and the virtual system adopt fractional order
controller parameters optimized based on the accurate model after behavioral matching.
The differences in Figure 11a–c are in the different controller parameters. The simulation
results show that when the controller parameters and even the controller form change,
behavioral matching still plays an important role, making the virtual model much closer to
the behavior of the physical system.
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Figure 11. Verify the effectiveness of behavioral matching before and after the controller parameter
optimization. (a) Step response comparison with the initial integer order controller parameters of
physical system. (b) Step response comparison with the optimized integer order controller parameters
in the virtual system. (c) Step response comparison with the optimized fractional order controller
parameters in the virtual system.

Figure 12 shows the simulation results of the control parameter optimization based on
the accurate model after behavioral matching, in which the blue line is the simulation curve
using the cascaded integer order controller parameters in the initial physical system, the
green line is the simulation curve using the cascaded integer order controller parameters
after optimization, and the red line is the simulation curve using the cascaded fractional
order controller parameters after optimization. From the comparison of simulation results,
it can be seen that the controller optimization based on the accurate model after behavioral
matching improved the performance of the system, including the rise time and overshoot.
The fractional order controller performed better than the integer order controller.
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Figure 12. Simulation result comparison between the optimized fractional order controller and
optimized integer order controller based on the accurate model after behavioral matching.

Figure 13 shows the experimental results of control parameter optimization, in which
the blue line is the experimental curve using the cascaded integer order controller parame-
ters in the initial physical system, the green line is the experimental curve using the cascaded
integer order controller parameters after optimization, and the red line is the experimental
curve using the cascaded fractional order controller parameters after optimization.
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From the comparison of experimental results in Table 1, we also see the effectiveness
of real-time optimization based on the proposed digital twin framework for improving
physical system performance, including the rise time and overshoot. This also demonstrates
that the fractional order controller outperformed the integer order controller.
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Figure 13. Experimental result comparison between the optimized fractional order controller and
optimized integer order controller based on the accurate model after behavioral matching.

Table 1. Step response performances of simulation and experimental results.

Simulation Results Experimental Results

Overshoot Peak Time Settling Time Overshoot Peak Time Settling Time

init-IOPI 13.8% 0.157 s 0.337 s 15% 0.151 s 0.296 s
opt-IOPI 12.3% 0.131 s 0.301 s 12.7% 0.132 s 0.262 s
opt-FOPI 8.0% 0.108 s 0.229 s 8.2% 0.098 s 0.198 s

6. Conclusions and Future Work

In this paper, we proposed a framework of a digital twin applied to industrial robots
and applied it to a specific case. This framework employs four phases: establishing the
virtual model of the physical system to reflect the characteristics of the physical system,
mapping the physical system behavior in real time by using behavioral matching, optimiz-
ing the behavior of the virtual model by using the time-domain-optimization algorithm
and fractional order controller, and finishing with the optimized parameters being updated
in the physical system.

Using this framework, the mapping and interaction between the virtual system and the
physical system can be realized, and the real-time optimization of the physical system based
on a digital twin can be achieved. Moreover, by introducing the concept of fractional order
into the proposed framework to design the fractional order controller, the optimization
effect of the physical system can be improved. The simulation and experimental results
show the feasibility and effectiveness of the proposed digital twin framework applied to
industrial robots.

As a future activity, further investigation will be conducted for overall virtual modeling
and real-time control of the six-axes industrial robot based on a digital twin in order to
integrate the proposed framework into more general aspects. Furthermore, the algorithm
used in the behavioral matching process and the control optimization process will be
optimized to achieve better results.
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Abstract: The design of advanced robust control is crucial for serial robotic manipulators under
various uncertainties and disturbances in case of the forceful performance needs of industrial robotic
applications. Therefore, this work has proposed the design and implementation of a fractional
order proportional tilt integral derivative (FOPTID) controller in joint space for a 3-DOF serial
robotic manipulator. The proposed controller has been designed based on the fractional calculus
concept to fulfill trajectory tracking with high accuracy and also reduce effects from disturbances and
uncertainties. The parameters of the controller have been optimized with a GWO–PSO algorithm,
which is a hybrid tuning method, by considering the time integral performance criterion. The superior
and contribution of the GWO–PSO-based FOPTID controller has been demonstrated by comparing
the results with those offered by PID, FOPID and PTID control strategies tuned by the GWO–PSO.
The examination of the results showed that the proposed controller, which is based on the GWO–PSO
algorithm, demonstrates better trajectory tracking performance and increased robustness against
various trajectories, external disturbances, and joint frictions as compared to other controllers under
the same operating conditions. In terms of the trajectory tracking performance for robustness, the
superiority of the proposed controllers tuned by GWO–PSO has been confirmed by 20.2% to 44.5%
reductions in the joint tracking errors. Moreover, for assessing the energy consumption of the tuned
controllers, the total energy consumption of the proposed controller for all joints has been remarkably
reduced by 2.45% as compared to others. Consequently, the results illustrated that the proposed
controller is robust and stable and sustains against the continuous disturbance.

Keywords: robotic manipulator; fractional order controllers; FOPTID; PTID; FOPID; PID; GWO–PSO

1. Introduction

Robotic manipulators are dynamically coupled and highly non-linear systems. Fur-
thermore, in the case of various uncertainties and external or internal disturbances during
their operations, effective control is needed to provide highly precise trajectory tracking
and execute accurate positioning in various fields such as process industries, space ap-
plications and medical areas [1]. Due to the highly non-linear and uncertain dynamics
of the robotic manipulators, accurate and robust trajectory tracking becomes even more
challenging. For this reason, traditional proportional-integral-derivative (PID) controllers
are generally not suitable for providing the high-performance trajectory tracking control in
such operations that require high precision. In order to design a robust control strategy
which is able to improve stability and performance tracking, fractional order (FO) controller
design is considered using the incorporation of fractional calculus and traditional PID
control approaches.

In the design of the FO controller, the orders of integral and derivative operators are
indicated by non-integer values as compared to integers. Thus, in controller design, extra
flexibility is provided by adding integral and derivative fractional powers to the full-order
controller. The first use of FO operators in control was suggested by Oustaloup [2], who
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proposed a robust FO control approach called CRONE (Commande Robuste d’Ordre Non-
Entier) [3,4]. The most well-known FO controller among control engineers is the fractional
order PID (FOPID) controller presented by Podlubny [5]. For the controller design of the
robotic manipulators in trajectory tracking control, methods based on the fractional order
calculus have been widely used and cited by several authors. Bingul and Karahan [6] de-
signed a FOPID controller optimized with Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) for the trajectory tracking problem of a 2-DOF planar robotic manipulator.
By employing the Matlab FMINCON function, which searches the optimal parameters of
the controller, Angel and Viola [7] evaluated the FOPID controller with computer torque
control strategy under external disturbances for the trajectory tracking control of a robotic
manipulator type delta. The FOPID controller tuned by the Bat optimization algorithm was
proposed by Al-Mayyahi et al. [8] for circular path tracking of a 3-RRR planar parallel robot
platform without and with disturbance. Zhang et al. [9] studied fast spatial positioning
and trajectory tracking of a 5-DOF drilling anchor manipulator by using FOPID control
based on the four intelligent optimization algorithms such as Whale Algorithm (WOA),
GA, PSO, and Search Algorithm (GPS) in that paper. Sharma et al. [10] presented two
degree of freedom fractional order PID (2-DOF FOPID) controller tuned by Cuckoo Search
(CS) algorithm for trajectory tracking task of a 2-DOF robotic manipulator with payload
under model uncertainties, external disturbances, random noise and payload variations
with time. Considering a 3-DOF parallel manipulator known as the Maryland manipulator,
Dumlu and Erenturk [11] designed the FOPID control approach using a pattern search
algorithm for improving the tracking performance of the manipulator in the case of high
speed, high accuracy and high acceleration needed.

Different control strategies based on FO controllers have been designed and used in
different applications in order to make an efficient control. One of them is the tilt-integral-
derivative (TID) controller, which has been firstly presented by Lurie [12]. In the TID
controller, which is closely related to the FOPID controller, the proportional parameter of
the PID is replaced with a tilted one having a transfer function s−1/n. By means of the
resulting transfer function of the entire controller, the TID controller can achieve better
disturbance rejection and reduce the effects of the system parameter changes for the closed-
loop system as compared to the PID controller. Various applications of TID controller have
been made in the literature, depending on a suitable choice of optimization algorithms for
fine-tuning the controller parameters, for validating its superiority over PID controller in
terms of improving the stability of the system and enhancing the speed of the controller
response [13–19]. On the other hand, in order to improve the control performance and en-
hance the transient response of the TID controller, a concept of a fractional order-based TID
controller has been recently indicated in the literature review. Sharma et al. [20] proposed a
fractional order-based TID controller tuned by Salp Swarm Algorithm (SSA) for frequency
regulation in a hybrid power system. Moreover, the results from the designed controllers
based on SSA and Gray Wolf Optimization (GWO) algorithms were compared with existing
controllers in terms of transient response characteristics and error indices. As a result, in
that paper, the simulations prove the advisability of the fractional order TID controller
in the presence of system parameter uncertainties, random load changes and different
types of the system. In another study by the same authors [21], a dual-stage controller
composed of fractional order-based TID and integer order proportional derivative (PD)
controllers was presented for exhibiting fast and robust disturbance rejection performance
of the proposed control scheme in load frequency control applications. On the other hand,
a systematic tuning approach of the fractional-based robust TID controller was proposed
by Lu et al. [22] for first-order plus time delay and high-order processes. In that paper,
the design process of the robust TID controller and the corresponding steps were given in
detail. Finally, the simulation results clearly indicated that the proposed controller achieved
superior robustness and improved transient performance compared to the PID, FOPI and
FOPID controllers.
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For the purpose of enhancing the TID controller with more degree of freedom as
compared to its integer derivative and integral terms, the fractional order integral and
derivative terms are added. Thus, a hybrid controller is obtained for utilizing the features
of FOPID and TID controllers. Mohamed et al. [23] designed a hybrid controller composed
of TID and FOPID controllers for the load frequency control. Furthermore, the six different
tunable parameters in the designed controller were optimized with a Manta Ray Foraging
(MRF) algorithm by using the integral squared error criterion. In that paper, the robustness
of the designed controller was examined under the variation of the system parameters and
the load disturbances. By using the same control strategy, Ahmet et al. [24] proposed a
modified hybrid fractional order controller, including FOPID and TID controllers for load
frequency and the control of electric vehicles. Moreover, for determining the optimal param-
eters of the hybrid controller, the Artificial Ecosystem Optimization (AEO) algorithm was
employed in that paper. It was noteworthy from the simulation results that the proposed
hybrid controller demonstrates substantially superior, robust and stable performance over
a wide range of fast responses during transients and parameters uncertainty. Based on this
hybrid control scheme, Choudhary et al. [25] suggested a hybrid controller comprising a
fractional order PI (FOPI) controller and fractional order proportional tilted integral deriva-
tive (FOPTID) controller for stabilizing the frequency and tie-line power variations in a
power system. The parameters of the FOPI-FOPTID controller were adjusted by employing
Global Neighborhood Algorithm (GNA) and Ant Colony Optimization (ACO) algorithms.
The results revealed that the proposed FOPI-FOPTID controller provides better dynamic
response and error criteria than PID, FOPID and FOPI-FOPID controllers optimized with
the same optimization algorithms. Another hybrid controller based on FOPTID was pro-
posed by Yanmaz et al. [26] for the effective control of a static compensation system. In that
study, a FOPID-based model predictive controller (FOPID-MPC), TID-based MPC controller
and the proposed FOPTID-based MPC (FOPTID-MPC) controller were optimized with
Pathfinder Optimization Algorithm (POA) and also their transient responses and error in-
dices were compared for showing their control performance. Consequently, the simulation
results have demonstrated the effectiveness of the proposed FOPTID-MPC controller.

It is clear from the available literature that various control designs based on the
TID controller using different optimization algorithms have been addressed for various
applications. Furthermore, the compatibility of FOPID and TID controllers and the effect of
the combination of them have not been evaluated and tackled in the literature for trajectory
tracking control of the robotic manipulator. In this context, an efficient FOPTID controller
tuned via GWO–PSO is demonstrated in realizing the trajectory tracking of a serial robotic
manipulator in this work. The main contributions of this research article can be summarized
as follows:

• To the best knowledge of the author, a FOPTID controller based on the combination of
TID and FOPID controllers is firstly designed with a GWO–PSO algorithm to provide
the trajectory tracking of a 3-DOF serial robotic manipulator under friction, external
disturbance and different trajectories. This hybrid controller has major advantages in
improving trajectory tracking control performance and enhancing robustness.

• In order to demonstrate the effectiveness of the proposed controller, PID, FOPID and
PTID controllers are designed with the same optimization algorithm for carrying out
trajectory-tracking tasks under the same conditions.

• By eliminating the effects of internal and external disturbances as total disturbance,
the proposed FOPTID controller is more capable of dealing with the total disturbance
during the reference trajectory tracking than existing controllers. Accordingly, better
tracking accuracy is provided by the FOPTID controller.

The organization of the paper is as follows: In Section 2, the mathematical model
of the first three links of the Staubli RX-60 manipulator is presented. The structures
of the fractional order controllers are described in Section 3. The hybrid optimization
algorithm GWO–PSO is given in Section 4. Furthermore, the objective function chosen
for optimization studies and the proposed overall control system are also described in
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the same section. Simulation results are presented and discussed in Section 5, and finally,
concluding remarks are presented in Section 6.

2. Dynamic Model of the Manipulator

In this study, a robust control for trajectory tracking is designed by considering the
first three links of the Staubli RX-60 manipulator having the frame configuration presented
in Figure 1. A brief overview of the mathematical model of the system is presented in
this section.

Figure 1. The model of the first three links of Staubli RX-60 robot arm [27].

The dynamics of the rigid body for robotic manipulators can be given as the following
formulation:

τ = D(θ)
..
θ + C

(
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.
θ
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+ G(θ) + τf (1)
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.
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..
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,
and G(θ) are the inertia matrix, the coriolis/centripetal matrix and the gravity vector,
respectively. τf is the robotic uncertainties and disturbances comprising viscous and static
friction torque, and finally, τ is the control input torque.

The dynamics of the first three links of the robot can be modelled as:
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⎡⎣g1(θ)
g2(θ)
g3(θ)

⎤⎦+

⎡⎣τf1

τf2

τf3

⎤⎦ (2)

The Denavit-Hartenberg (D-H) parameters of the robot and the other details about the
elements of matrices D(θ), C

(
θ,

.
θ
)

, and G(θ) are available in [27]. The friction torque for
each joint i is defined as:

τfi
= Fci sign

( .
θi

)
+ Fvi

.
θi (3)

where Fci and Fvi are the Coulomb friction and viscous friction constants, respectively. By
substituting the system parameters into Equation (2), the control input torque equation for
each joint is obtained as follows [27]:
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τ1 =
[
c2θ2

(
a2

2m3+ m2a2
2c
+ Byy2

)
+ Axx2 s2θ2 + Byy3 c2(θ2 + θ3)− cθ2(−2m3a2s(θ2 + θ3)d4c + 2F2sθ2)

−2F3c(θ2 + θ3)s(θ2 + θ3)+s2(θ2 + θ3)
(

m3d2
4c
+ Axx3

)
+ m3d2

3 + Czz1

] ..
θ1 + [cθ2D2 +sθ2(E2 + a2d3m3)

+c(θ2 + θ3)(D3 − d3m3d4c )+E3s(θ2 + θ3)]
..
θ2 + [c(θ2 + θ3)(D3 − d3m3d4c ) + E3s(θ2 + θ3)]

..
θ3

+
[
−s(2θ2)

(
a2

2m3 + m2a2
2c
+ Byy2

)
+ s(2θ2)Axx2 − s(2(θ2 + θ3))Byy3 + 2m3a2d4c c(θ2 + (θ2 + θ3))

−2F2c(2θ2)−2F3c(2(θ2 + θ3)) + s(2(θ2 + θ3))
(

m3d2
4c
+Axx3

)] .
θ2

.
θ1

+[−sθ2D2 + cθ2(E2 + a2d3m3)− s(θ2 + θ3)(D3 − d3m3d4c ) +E3c(θ2 + θ3)]
.
θ

2
2

+2[−s(θ2 + θ3)(D3 − d3m3d4c ) +E3c(θ2 + θ3)]
.
θ2

.
θ3 +

[−s(2(θ2 + θ3))Byy3 − cθ2c(θ2 + θ3)(−2m3a2d4c )

−2F3c(2(θ2 + θ3))+s(2(θ2 + θ3))
(

m3d2
4c
+Axx3

)] .
θ3

.
θ1 + [−s(θ2 + θ3)(D3 − d3m3d4c )+E3c(θ2 + θ3)]

.
θ

2
3

+Fc1 sign
( .

θ1

)
+ Fv1

.
θ1

(4)

τ2 = [cθ2D2 + sθ2(E2+a2d3m3) + c(θ2 + θ3)(D3 − d3m3d4c )+E3s(θ2 + θ3)]
..
θ1 +

[
Czz2 + Czz3 + m2a2

2c
+ m3

(
a2

2 + d2
4c

)
+ 2sθ3a2d4c m3]

..
θ2 +

[
m3d2

4c − a2m3sθ3d4c + Czz3

] ..
θ3 − 1

2

[
s(2θ2)

(
Axx2 −

(
a2

2m3 + m2a2
2c
+ Byy2

))
+s(2(θ2 + θ3))

((
m3d2

4c
+Axx3

)
− Byy3

)
+2m3a2d4c c(θ2 + (θ2 + θ3))− 2F2c(2θ2)− 2F3c(2(θ2 + θ3))]

.
θ

2
1

+
[
2cθ3a2m3d4c

] .
θ3

.
θ2 +

[−cθ3a2m3d4c

] .
θ

2
3 + g0m3d4c s(θ2 + θ3) + g0m2a2c cθ2 + g0a2m3cθ2

+Fc2 sign
( .

θ2

)
+ Fv2

.
θ2

(5)

τ3 = [c(θ2 + θ3)(D3−d3m3d4c ) + E3s(θ2 + θ3)
..
θ1 +

[
m3d2

4c
− sθ3a2m3d4c + Czz3

] ..
θ2 +

[
m3d2

4c
+ Czz3

] ..
θ3

− 1
2

[−s(2(θ2 + θ3))Byy3 − cθ2c(θ2 + θ3)(−2m3a2d4c )
]− 2F3c(2(θ2 + θ3))

+s(2(θ2 + θ3))
(

m3d2
4c
+ Axx3

)
]

.
θ

2
1 − 1

2 [2cθ3a2m3d4c ]
.
θ

2
2 + g0m3d4c s(θ2 + θ3) + Fc3 sign

( .
θ3

)
+ Fv3

.
θ3

(6)

3. Design of Controllers

In this work, the design of a fractional order proportional tilt integral derivative
(FOPTID) controller for the presented 3-DOF serial robotic manipulator has been proposed
and investigated. Furthermore, several controllers are applied to the same system under
the same conditions in order to examine the performance of the proposed controller. The
purposed FOPID, PTID and FOPTID controllers contain non-integer order integral and
derivative. Therefore, fractional calculus is needed for implementation of them.

3.1. Fractional Calculus

Fractional calculus includes operations where the degree of derivative and integral is
not an integer but with real or even complex values [28]. The fractional order operator aDα

t
is defined as follows:

aDα
t =

⎧⎨⎩
dα/dtα, R(z) > 0

1, R(z) = 0∫ t
a dτα R(z) < 0

(7)

where a and t are the limits of the operation, and α is the non-integer degree of the derivative
and integral. Several approaches have been developed for designing the fractional order
derivative and integral operators. One of the approaches is Riemann–Liouville (R–L) [17].
The definition of Riemann and Loiuville is as follows:

aDα
t f (t) =

1
Γ(n − α)

dn

dtn

∫ t

a

f (τ)

(t − τ)α−n+1 dτ (8)

where Γ(·) is the Euler’s Gamma Function:

Γ(z) =
∫ ∞

0
e−ttz−1dt, for R(z) > 0 (9)

In general, the Laplace transform is used to describe derivative and integral for
simplicity. The Laplace transform can be defined as:

L{aDα
t f (t)} = sαF(s)−

n−1

∑
k=0

sk
aDα−k−1

t f (t)
∣∣∣
t=0

(10)
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where L{ f (t)} is the Laplace Transform of the function f (t). Under zero initial conditions,
with the non-integer value of α, the Laplace transform of aDα

t f (t) is:

L{aDα
t f (t)} = sαF(s) (11)

The Oustaloup Recursive Approximation Method is one of the several approximation
methods proposed in the literature for the implementation of the fractional order function
sα. The Oustaloup Recursive Approximation Method uses an Nth order analog filter to
approximate the fractional order function in a certain frequency range {ωb, ωh}. ωb and ωh
are the lower and upper-frequency bounds, respectively. The approximate transfer function
for sα is expressed by integer order equivalent transfer function:

sα = K
N

∏
k=−N

s + ωzk

s + ωpk

(12)

where K is gain, ωzk are zeros and ωpk are poles of the filter [29]. This approximate transfer
function has 2N + 1 poles and zeros. The poles, zeros and gain are calculated below,
respectively [29]:

ωpk = ωb

(
ωh
ωb

) k+N+ 1
2 +

a
2

2N+1
(13)

ωzk = ωb

(
ωh
ωb

) k+N+ 1
2 − a

2
2N+1

(14)

K =

(
ωh
ωb

)−α
2 N

∏
k=−N

ωpk

ωzk

(15)

As mentioned above, in this study, the FOPTID, FOPID, and PTID controllers are
applied to the robotic manipulator. These fractional order controllers are implemented by
using Oustaloup Recursive Approximation [30]. In this study, the value of N is chosen as 5,
and the frequency range is chosen as: {ωb, ωh} =

{
10−2, 10+2} rad/s.

3.2. Fractional Order Controllers

Due to the simple design and construction of integer order PID controllers, they are
still widely used in many industrial applications. The PID controller comprises three
coefficients: proportional coefficient (Kp), integral coefficient (Ki) and derivative coefficient
(Kd) to produce the control action. The transfer function of PID can be stated as:

CPID(s) = Kp + Ki
1
s
+ Kds (16)

On the other hand, due to the highly non-linear and uncertain dynamics of the
robotic manipulator, the trajectory tracking control problem is quite difficult. Therefore,
in general, conventional integer order PID controllers are not suitable for providing high-
performance trajectory tracking control in precision operations. In order to design a robust
control strategy which can improve stability and tracking performance, fractional order-
based controller is considered by applying fractional calculus to the conventional PID
control approaches.

A FOPID controller is depicted by five parameters. In comparison to the conventional
PID controllers, FOPID controllers have two more parameters in which the orders of the
integral part λ and derivative part μ are non-integer. These additional parameters bring
more flexibility to the design of the controller and also may lead to obtaining an enhanced
dynamic performance. The structure of the FOPID is shown in Figure 2 which E(s) and
U(s) represent the error and the control signals, respectively.

102



Fractal Fract. 2023, 7, 250

Figure 2. FOPID controller structure.

The transfer function of the FOPID controller is given below:

CFOPID(s) = Kp + Ki
1
sλ

+ Kdsμ (17)

One of the different control strategies based on Fractional Order Calculus is the PTID
control method. The design of the PTID controller has been proposed quite recently
in [25], and, in fact, it is a modified version of the TID controller. On the other hand, the
only difference between the TID controller from conventional PID is that its proportional
parameter is replaced with a tilted one having a transfer function s−1/n [12]. Thanks to
these modifications, the PTID controller can achieve better disturbance rejection and reduce
the effects of the system parameter changes for the closed-loop system as compared to the
PID controller.

The structure of the PTID controller is presented in Figure 3. As shown in the figure,
the proportional term, Kp, is added to the TID controller. Therefore, the transfer function of
the PTID controller is:

CPTID(s) = Kp + Kt
1

s1/n + Ki
1
s
+ Kds (18)

Figure 3. PTID controller structure.

As examined in the works [25,26,31,32] in the literature, FO controllers are more stable
and useful in various control applications. Also, the TID controllers are able to reject
disturbances, respond quickly and be consistent with uncertainties in linear and nonlinear
control implementations. Moreover, they have several tuning parameters. Thus, superior
performance for both of them can be obtained in control implementations. Considering their
great qualities, a FOPTID controller is proposed as a hybrid controller of FOPID and PTID
in [25]. The structure of the FOPTID controller is shown in Figure 4. FOPTID controller
has the non-integer order of integral and derivative coefficients of the PTID controller. By
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defining λ and μ as the integral and derivative non-integer orders, respectively, the transfer
function of the FOPTID controller is:

CFOPTID(s) = Kp + Kt
1

s1/n + Ki
1
sλ

+ Kdsμ (19)

Figure 4. FOPTID controller structure.

In this study, the effect of the FOPTID controller on the trajectory-tracking control of
the robotic manipulator will be evaluated. In this regard, an efficient FOPTID controller
can be obtained by tuning with the hybrid optimization algorithm GWO–PSO, which will
be presented in the next section.

4. Optimization Tasks

The parameters of the proposed controller have been optimized with a hybrid GWO–
PSO algorithm by considering a specific objective criterion. The superior and contribution
of the GWO–PSO-based FOPTID controller has been demonstrated by comparing the results
with those offered by PID, FOPID and PTID control strategies tuned by the same algorithm.

4.1. Optimization Algorithm
4.1.1. Particle Swarm Optimization (PSO) Algorithm

Particle swarm optimization is a population-based stochastic optimization method
that was first proposed in 1995 to obtain the best results on nonlinear numerical problems
by modeling the movements of living swarms [33]. The PSO algorithm finds out an optimal
solution among the randomly distributed particles in a swarm. Essentially, each particle
within the swarm indicates a potential solution with its particular velocity and position.
In this context, for each iteration of the PSO algorithm, the velocity and position of the
particles are updated according to the following expressions, respectively:

vk+1
i = ξvk

i + ϕ1rand1

(
pbesti − pk

i

)
+ ϕ2rand2

(
gbest − pk

i

)
(20)

pk+1
i = pk

i + vk+1
i (21)

In these equations, vk
i is the velocity of the ith particle for the k iteration, pk

i is the
position of the ith particle for the k iteration, ξ represents the inertial weight function, ϕ1,2
represents the learning factors, and rand1,2 represents the random number values assigned
in the range of [0, 1]. In addition, pbesti is the coordinates that provide the best solution
that particle i has achieved so far. gbest is also the coordinates that provide the best solution
obtained over all particles. Figure 5 shows the two-dimensional motion of one of the
particles depending on the terms defined above.
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Figure 5. The updating process of velocity and position for each particle.

4.1.2. Gray Wolf Optimization (GWO) Algorithm

As a swarm-based optimization method, inspiration for Gray Wolf Optimization
comes from the behavior and the hunting strategy of the grey wolves in nature. Based on
the social hierarchy as depicted in Figure 6, gray wolves are classified into four groups as
alpha (α), beta (β), delta (δ) and omega (ω). As seen from the figure, the social hierarchy
goes down from top to bottom, and the leading group consists of alpha wolves. Beta wolves
help alpha wolves in making decisions. As the third level, the delta wolves’ mission is to
submit to alpha and beta wolves but control the omega wolves. The least priority wolves
are the omegas, which must follow the leading grey wolves [34].

Figure 6. Hierarchy of grey wolves.

In the GWO algorithm, the encircling behaviour of the grey wolves is modeled with
the below equations:

→
D =

∣∣∣∣→C ×→
Xp(k)−

→
X(k)

∣∣∣∣ (22)

→
X(k + 1) =

→
Xp(k)−

→
A ×→

D (23)
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In these equations, k is the number of iterations and the
→
X and

→
Xp are the position

vectors of the grey wolves and the prey, respectively.
→
A and

→
C are the coefficient vectors

and calculated as given below:

→
A =

→
a × (2 ×→

r 1 − 1) (24)

→
C = 2 ×→

r 2 (25)

where
→
a is linearly decreased from 2 to 0 through iteration steps and

→
r 1 and

→
r 2 are random

vectors within [0, 1].
In the GWO algorithm, hunting and encircling prey are modelled by the following

equations:
→
Dα =

∣∣∣∣→C1 ×
→
Xα −

→
X(k)

∣∣∣∣
→
Dβ =

∣∣∣∣→C2 ×
→
Xβ −

→
X(k)

∣∣∣∣
→
Dδ =

∣∣∣∣→C1 ×
→
Xδ −

→
X(k)

∣∣∣∣
(26)

→
X1 =

∣∣∣∣→Xα −
→
A1

→
Dα

∣∣∣∣
→
X2 =

∣∣∣∣→Xβ −
→
A2

→
Dβ

∣∣∣∣
→
X3 =

∣∣∣∣→Xδ −
→
A3

→
Dδ

∣∣∣∣
(27)

→
X(k + 1) =

→
X1 +

→
X2 +

→
X3

3
(28)

where
→
Dα,

→
Dβ, and

→
Dδ vectors represent the distances between the ω wolves and α, β and

δ wolves, respectively.
→
X1,

→
X2, and

→
X3 vectors represent the relative positions based on α,

β and δ wolves, respectively. The updating process of positions for each group of wolves is
also depicted in Figure 7.

Figure 7. The position update process for grey wolves.

106



Fractal Fract. 2023, 7, 250

4.1.3. GWO–PSO Algorithm

In this work, GWO is hybridized with a PSO method to improve the progress of the
GWO. The hybrid GWO–PSO has been seen as an effective optimization technique when
searching for the best solution globally to an optimization problem [35]. The pseudo-code
of the GWO–PSO algorithm is presented in Figure 8.

_____________________________________________________ 
Initialize the positions of particles in the swarm  

and the positions of wolves in the population. 

while the maximum iteration number is not reached 

Run GWO: Update of each wolf position. 

Obtain three best ones among all search agents. 

Run PSO by using the best values found by GWO. 

Return the positions modified by PSO back to the GWO. 

end 

_____________________________________________________ 

Figure 8. Pseudo code of GWO–PSO.

The best positions of the grey wolves obtained at the end of the GWO–PSO algorithm
represent the parameters of the controllers for each joint of the robot as follows:

PID :
{

Kp, Ki, Kd
}

FOPID :
{

Kp, Ki, Kd, λ, μ
}

PTID :
{

Kp, Ki, Kd, Kt, n
}

FOPTID :
{

Kp, Ki, Kd, Kt, λ, μ, n
}

4.2. Objective Function

In this study, the objective function used in optimization of the controller parameters
is chosen as ITAE (Integral of Time Absolute Error) for each joint of the 3-DOF robotic
manipulator. Thus, the objective function is given as the following:

JITAE =
3

∑
i=1

∫ t

0
t|ei(t)|dt (29)

Here, t is the time and ei(t) is the trajectory error for joint i.

4.3. Proposed Control System Framework

The schematic diagram of the proposed control system is presented in Figure 9. The
optimal parameters of PID, FOPID, PTID and FOPTID controllers are found by using the
GWO–PSO algorithm. The number of maximum iteration is set to 100 in the algorithm.
Moreover, the optimal controller parameters are obtained after 10 runs of the algorithm.

Based on the detailed literature review, during the optimization, the lower and upper
boundaries of the parameters are set to

{
Kp, Ki, Kd, Kt

} ∈ [0, 350], {μ, λ} ∈ [0, 2] and
{n} ∈ [0, 300].

In addition, the simulation time is adjusted differently in each simulation process
according to the type of reference trajectory signal, with a fixed interval time of 0.001 s.
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Figure 9. The schematic diagram of the proposed control system.

5. Simulation Results and Discussions

In this section, the robustness and effectiveness of the proposed control strategy have
been comparatively verified on the first three-link of a 6-DOF serial robotic manipulator.
The order of tasks for simulations is as follows: Firstly, tuning the parameters of the
presented controllers by GWO–PSO and demonstrating the results from trajectory tracking;
Secondly, testing the proposed control scheme by comparing with the PID, FOPID and
PTID controllers and showing the results obtained from the different trajectory, internal
and external disturbances. Design of the overall system model and the optimization
with the GWO–PSO are simulated using MATLAB/SIMULINK environment, and also all
simulations have been executed on a personal computer having an Intel CoreTM i5-7200U
CPU @ 2.50 GHz processor and 8.0 GB RAM. Furthermore, a Ninteger toolbox [36] is used
in the MATLAB environment as the approximator for simulating the fractional order terms
of FOPID, PTID and FOPTID controllers.

5.1. Trajectory Tracking Analysis

In order to achieve the trajectory tracking in joint space, firstly, four control strategies
(PID, FOPID, PTID and FOPTID) are optimized by GWO–PSO for each joint using the
trajectory tracking evaluation (JITAE) with respect to the given path for the end-effector of
the robot. During this tunning tasks, it is assumed that there is no friction. That means
the values of Fci and Fvi are taken as zero in Equation (3) of the mathematical model.
The presence of friction will be taken into account in one of the robustness tests. After
optimization, for comparing the tracking performance of the tuned controllers, the mean of
absolute error (MAE) for each joint over the trajectory is computed as follows:

MAEi =
1
N

N

∑
j=1

|ei(j)| (30)
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where ei(j) is the trajectory error of jth sample of ith joint and N is the number of samples.
At the end of conducting a total of 10 individual trials depending on the generated random
numbers, eventually, the obtained optimal controller parameters and MAE values for
the presented control strategies are given in Table 1. For analysis of the total tracking
performance of the proposed approach, the comparison of the JITAE values based on
four potential control approaches, namely PID, FOPID, PTID and FOPTID controllers, are
illustrated in Figure 10. In addition, the reference path of the end-effector, the corresponding
reference and system output trajectories in each joint are depicted in Figure 11 for a better
view of tracking the reference trajectories of each joint based on the tuned controllers.

Table 1. Comparison of the optimized parameters of the controllers and MAE values for each joint.

Joint Controller Kt Kp Ki Kd μ λ n MAE

1

PID - 203.8760 0.0127 132.5981 - - - 2.0832
FOPID - 271.4936 0.0124 132.2961 1.0381 0.0756 - 1.9153
PTID 236.3371 349.7559 0.0122 298.3974 - - 299.9889 1.8705

FOPTID 80.0347 349.7559 21.2705 273.0510 0.9257 0.3053 268.3995 1.9048

2

PID - 325.0161 0.0130 79.4103 - - - 3.0791
FOPID - 333.5564 298.1256 148.4613 1.0962 0.0308 - 3.0235
PTID 298.1256 20.5604 0.0131 93.6091 - - 233.8233 3.0426

FOPTID 90.5690 348.9735 221.4909 179.8575 1.0533 0.0104 220.1078 2.9837

3

PID - 251.7546 295.1566 25.5284 - - - 1.9342
FOPID - 296.9951 80.5790 311.0399 0.5549 0.6426 - 1.1130
PTID 340.8880 290.3104 0.0121 50.3965 - - 132.3825 1.2832

FOPTID 318.2374 29.3824 7.6325 145.1791 0.6516 1.0140 280.9249 1.1771

 
Figure 10. Comparison of JITAE values for PID, FOPID, PTID and FOPTID control strategies.

From Figure 10, it is revealed that the proposed FOPTID approach tuned by GWO–PSO
has the smallest JITAE value. The improvement in JITAE is resulting from the introduction of
fractional operators in the FOPTID controller, which adds extra design variables. Therefore,
the proposed control approach is able to maintain relatively higher trajectory tracking
accuracy when compared to the PID, FOPID and PTID approaches.

As shown in Figure 11, all of the actual joint positions can track the desired joint
trajectories by using the tuned controllers. It is inferred that a remarkable tracking perfor-
mance for all joints is achieved by the PTID and FOPTID controllers. Furthermore, from
Figures 10 and 11 and Table 1, it can be seen that the proposed FOPTID method has better
control performance in comparison with the existing controllers under a more complex
joint trajectory tracking task.
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Figure 11. Trajectory tracking performance of PID, FOPID, PTID and FOPTID controllers for
each joint.

5.2. Robustness Testing: Different Trajectory

In actual situations, the effectiveness of the tuned controllers is investigated under
different joint trajectories or paths traced by the end-effector of the robot in task space.
The desired path and actual path in task space and the corresponding joint trajectories
are shown in Figure 12 for observing the improvements in tracking errors based on the
tuned controllers. Moreover, in order to demonstrate a quantitative comparison among the
results, the MAE values of the joint errors (ej) and the root mean square (RMS) values of
the control signals (τj) for each joint are calculated as shown in Figure 13.

As shown in Figure 12, the end-effector trajectory tracking based on the FOPTID
controller exhibits almost the same results as the end-effector tracking based on the PTID
controller. On the other hand, when using the proposed FOPTID controller tuned by
GWO–PSO, the trajectory tracking precision is relatively higher as compared to the other
tuned controllers. From joint space, it can be observed that all trajectory tracking con-
trollers can make the robot track the joint reference trajectory. However, the TID-based
trajectory tracking control approaches can accurately track the change in the joint angle
and maintain stability.

As can be observed from Figure 13, the designed controllers yield almost the same
RMS control action values for joint 1, while the TID-based controllers produce smaller MAE
error values as compared to others. In addition, compared to the controllers (PID and PTID
or FOPID and FOPTID), the TID-based controllers need lesser applied torque for tracking
the desired joint trajectories than the PID-based controllers.
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Figure 12. Trajectory tracking performance in task and joint space for PID, FOPID, PTID and FOPTID
controller schemes.

  

Figure 13. Joint position MAE values and control signal RMS values.
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5.3. Robustness Testing: Disturbance Rejection

To verify the disturbance rejection ability of the TID-based controllers, a sinusoidal
torque signal is added to the control signal. This external disturbance, applied to each joint,
is given as follows:

τd(t) =

⎧⎪⎪⎨⎪⎪⎩
0 [Nm], t < 2⎧⎨⎩

250sin(t) + 250 [Nm]
350sin(t) + 350 [Nm],
450sin(t) + 450 [Nm]

t ≥ 2 f or joint 1, 2 and 3, top-down.
(31)

The desired path and actual path in joint space are shown in Figure 14 for each joint.
Furthermore, the associated MAE values are illustrated in the same figure.

  

 
 

Figure 14. Comparison of disturbance rejection abilities and MAE values of joint angle tracking based
on the designed controllers.

As can be seen from Figure 14, under sinusoid disturbance, better trajectory tracking
is achieved with the TID-based controllers (PTID and FOPTID) as compared to the PID and
FOPID controllers, which are quite obvious in trajectories and the amplitude of the heading
angles. On the other hand, the difference between the trajectory tracking accomplished
by means of the PTID and FOPTID controllers is almost small in each joint. Regarding
MAE values demonstrated in Figure 14, the TID-based controllers produce a smaller
tracking error in each joint than the other controllers. These simulation results reveal that
although the applied perturbation directly affects the trajectory tracking error, the proposed
robust FOPTID controller can exhibit better performance with a higher trajectory tracking
accuracy against sinusoid disturbance than the other controllers and also maintain the error
trajectories of each joint inside a compact set.

112



Fractal Fract. 2023, 7, 250

5.4. Robustness Testing: Friction Compensation

In order to demonstrate the robustness of the TID-based controllers and also compare
them with other designed controllers in the presence of joint friction, the friction model,
including Coulomb plus viscous friction, is adopted for each joint in the practical friction
compensation of the 3-DOF robot manipulator. The friction parameters related to the
Coulomb plus viscous friction model are given in Table 2 for each joint. The time profiles of
joint positions and corresponding tracking errors based on PID, FOPID, PTID and FOPTID
controllers are illustrated in Figure 15 for each joint under friction.

  

  

Figure 15. Joint tracking profiles and corresponding error profiles with respect to the presented
controllers under friction.
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Table 2. Coulomb plus viscous friction model parameters.

Friction Parameters Joint-1 Joint-2 Joint-3 Unit

Fc 0.5 1.5 2.5 Nm

Fv 5.5 1.5 3.5 Nm/(rad/s)

In accordance with Figure 15, the convergence of the tracking error when using the
PTID control scheme under friction for joints 1 and 3 is faster than the other three control
schemes. Moreover, the TID-based controllers, which ensure the stability of the whole
system, are robust against the defined frictions. The disturbance and joint tracking error
performance of the FOPTID controller outperforms that of the FOPID controller for joint 2.

Numerical results related to the JITAE and MAE values with respect to the tracking
errors of three joints are depicted in Figure 16 for the presented controllers under friction.
From the figure, it can be observed that a remarkable performance is achieved by the
TID-based controllers for a set point tracking task, in spite of added friction. Especially
according to Figure 16, the PTID control strategy has good evaluation indicators with
a smaller value of the JITAE. Moreover, compared with the PID, FOPID and FOPTID
controller, the MAE values are reduced by 20.2% and 44.5% for joints 1 and 3, respectively.
As for joint 2, the FOPID controller can decrease the MAE values by 12.1%. However, the
MAE value of the FOPID controller is almost close to the value of the FOPTID controller.
Therefore, the TID-based controllers can make the 3-DOF robotic arm achieve a good
tracking effect in the presence of friction.

 
 

Figure 16. Comparison diagram of tracking error evaluation indicators based on JITAE and MAE
values for the presented controllers.

For assessing the control effort of the tuned controllers in all robustness tests, the
control efforts of each joint for the presented controllers are shown in Figure 17. In addition,
RMS values of the control signals generated by the controllers are illustrated in Table 3.

Table 3. RMS values of the control signals for robustness tests.

Robustness Test Joint PID FOPID PTID FOPTID

Different trajectory
Joint-1 272.2704 272.4219 269.7661 272.2918
Joint-2 194.0535 183.4217 191.3410 183.0013
Joint-3 61.4419 61.7051 57.8277 59.5320

Disturbance rejection
Joint-1 173.1580 154.1611 158.5644 157.0675
Joint-2 328.8085 267.0632 245.4667 241.7147
Joint-3 48.0855 39.8093 36.7112 35.8962

Friction compensation
Joint-1 110.4676 122.6951 124.7802 134.4499
Joint-2 184.6817 141.4255 143.2402 141.6841
Joint-3 68.1430 99.2728 74.6087 93.4725
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(a) 

 
(b) 

(c) 

Figure 17. Simulation results of the tuned controllers for the torques of each joint based on the
different trajectory (a), disturbance rejection (b) and friction compensation (c) tests.

As can be observed from Figure 17 and Table 3, the minimum RMS values are achieved
by the FOPTID controller for all the two kinds of perturbations in the tests. On the other
hand, for the friction compensation test, the FOPTID and PTID controllers attain much
better tracking performance as compared to the others at the cost of a larger amplitude
control signal. As a result, the TID-based proposed control approaches have exhibited
considerably stable, robust, and superior tracking performance against different trajectories,
disturbance and friction.
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6. Conclusions

In this study, the 3-DOF robotic manipulator has been taken as the research object.
The dynamic model of the robot manipulator has been presented and also the friction
model has been added to the dynamics for robustness analysis. In order to enhance the
trajectory tracking accuracy of the robot joint, TID-based control strategies such as PTID and
FOPTID control techniques have been presented and also compared with PID based control
strategies such as FOPID control in the case of different robustness tasks. Moreover, the TID
and PID-based tracking controllers have been designed in joint space with the GWO–PSO
algorithm to obtain the best controller parameters. Finally, different simulations have been
performed to determine which controllers ensure directly that the actual joint trajectory
can converge to the reference joint angles regardless of any disturbances and frictions.

The main outcomes of this study are stated as follows:

• TID-based controllers, as well as PID-based controllers, have been tuned by GWO–PSO
with minimization of the objective function JITAE for the trajectory tracking control
of the robot joints. Compared to the results from the tuned controllers, the proposed
FOPTID control strategy achieved better performance than the other tuned controllers
at the robot joints.

• For the purpose of observing the stability of the designed controllers, a different
trajectory was applied to the robot joints. The simulation results showed that PTID
and FOPTID control schemes can track the change in the joint angle more accurately
and maintain stability as compared to PID and FOPID control schemes. As well,
TID-based controllers required lesser applied torque for tracking the desired joint
trajectories than the PID based controllers.

• As examined controller robustness in the presence of external disturbance applied
to each joint, the proposed FOPTID controller was more capable of dealing with the
disturbance in all joints during the reference trajectory tracking as compared to the
PID, FOPID and PTID controllers. Accordingly, the effectiveness of the proposed
controller was verified for disturbance rejection.

• As compared to the designed controllers in terms of reducing the effect of joint friction,
a remarkable performance was achieved by both PTID and FOPTID for a set point
tracking task. From the simulation results, it could be inferred that the TID-based
control schemes have significantly reduced the means of absolute joint errors.

TID-based control strategies, which have received a considerable amount of interest
and attracted the attention of many researchers because of their potential advantages and
applications in many fields, will be considered as future research on the control of a real
robotic manipulator.
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Abstract: This study aims to improve the performance of a pneumatic positioning system by design-
ing a control system based on Fuzzy Fractional Order Proportional Integral Derivative (Fuzzy FOPID)
controllers. The pneumatic system’s mathematical model was obtained using a system identification
approach, and the Fuzzy FOPID controller was optimized using a PSO algorithm to achieve a balance
between performance and robustness. The control system’s performance was compared to that of a
Fuzzy PID controller through real-time experimental results, which showed that the former provided
better rapidity, stability, and precision. The proposed control system was applied to a pneumatically
actuated ball and beam (PABB) system, where a Fuzzy FOPID controller was used for the inner loop
and another Fuzzy FOPID controller was used for the outer loop. The results demonstrated that the
intelligent pneumatic actuator, when coupled with a Fuzzy FOPID controller, can accurately and
robustly control the positioning of the ball and beam system.

Keywords: IPA system; system identification technique; Fuzzy FOPID controller; PSO algorithm;
PABB system

1. Introduction

The pneumatic system is a commonly used actuator in industrial automation, offering
benefits such as affordability, natural cooling, environmental safety, and simplicity [1,2].
These systems have a broad range of applications, from simple processes to complex ones,
such as those found in production lines, aeronautics, and the automotive industry [3,4].
Their popularity is due to their durability, ease of maintenance, and safety [5]. However,
pneumatic systems have a significant downside, namely, their non-linear behavior due
to the compressibility of air, friction between the piston and cylinder, and discontinuous
flow through control valves [6,7]. Additionally, modeling these systems dynamically
is challenging because their air dynamics are often based on empirical assumptions [8].
Achieving precise positioning of pneumatic actuators is also challenging. To expand their
range of uses, pneumatic systems must possess the ability to achieve rapid response times
and precise positioning control.

System identification (SI) differs from the theoretical approach by relying on observa-
tional analysis, rather than fundamental laws of nature, to determine its concepts. SI is a
method that can be used to model systems and estimate unknown parameters, as well as to
linearize systems to mitigate the limitations of mathematical models [8]. Moreover, this
approach proves particularly suitable for complex systems or processes, especially within
real-world, practical settings. The goal of SI is to develop a mathematical model that can
describe the behavior of a system based on measured input–output data. The process of
SI typically involves collecting input–output data from the system and then using these
data to estimate the model parameters. The estimated model can then be used to analyze
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the system’s behavior, predict its response to new inputs, or design a controller to achieve
desired performance. The models used in SI can range from simple linear models to more
complex non-linear models, and the accuracy of the model depends on the quality and
quantity of the input–output data and the complexity of the model. SI is widely used
in various fields, including engineering, economics, and biology, to model and control
complex systems. It is important to consider the constraints and limitations of the system
when designing a controller for practical applications to avoid damaging the system or its
components, as well as reducing the control system’s performance.

Numerous researchers have been conducting extensive studies in this field, focus-
ing on developing different control strategies for achieving precise pneumatic motion
control. These strategies include proportional-integral-derivative (PID) control [1,9,10],
sliding mode control (SMC) [11,12], adaptive control [13], fuzzy control [14], and predictive
control [15,16].

For this research, the system identification (SI) approach was utilized to obtain the
model of the pneumatic system. Additionally, a new control method called fuzzy fractional
order proportional integral derivative (Fuzzy FOPID) controller was proposed. The study
demonstrated that fractional proportional-integral-derivative (FOPID) controllers offer
greater accuracy and flexibility in feedback system adjustment, which can be used to
meet more rigorous specifications related to stability phase, gain margins, maximum
sensitivity, and performance set point tracking and load disturbance rejection than what is
achievable with the conventional PID controller [17–19]. Many researchers have adopted
FOPID controllers in recent years because they provide additional features that enhance the
durability and success of the system in various applications. Moreover, the investigation
results revealed that FOPID is used as a controller in many systems such as motor control
systems [20], robotics systems [21], and time-delay systems [22].

Various optimization algorithms have been proposed for tuning controller parameters,
including Genetic Algorithm (GA) [23], Cuckoo Search Algorithm (CS) [24], Grey Wolf
Optimization (GWO) [25], Gradient-Based Optimization (GBO) [26], and Particle Swarm
Optimization (PSO) [27]. GA is a population-based search algorithm inspired by biological
evolution. CS is a population-based search algorithm inspired by the behavior of cuckoo
birds. GWO is a population-based search algorithm inspired by the social hierarchy of gray
wolves. SCA is a population-based search algorithm that simulates the sine and cosine
functions. GBO uses the gradient of the cost function to iteratively update the parameter
values. PSO is a population-based search algorithm that simulates the movement and
interaction of particles. These optimization algorithms have been applied to various control
systems and their effectiveness in improving control performance has been demonstrated.
However, the choice of algorithm depends on the specific characteristics of the system
and the control objectives, and a combination of different algorithms may be necessary to
achieve the desired performance. Among these algorithms, PSO was selected for controlling
the converter in this study. PSO is inspired by the dynamics of animals moving in groups
and builds a solution to the problem by simulating swarm communications [28]. When
continuous variables are present, the PSO algorithm presents an effective solution for
optimization problems [29].

This research introduces a unique approach to designing a smart pneumatic actu-
ator system through the use of a fuzzy logic control structure. The primary goals and
contributions of this study include:

• Developing a two-input-one-output fuzzy controller for the intelligent pneumatic
actuator system and assessing its performance in the positioning system. This design
incorporates FOPID, which is connected to the output terminal of the fuzzy controller
to produce the proposed Fuzzy FOPID controller.

• Utilizing the Particle Swarm Optimization (PSO) technique to identify the optimal
values for the suggested controller parameters. Seven parameters are adjusted to
achieve the best dynamic behavior for the Fuzzy FOPID controller.
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• Validating the superiority of the proposed design by comparing the results obtained
from simulations and real-world environments with those of the Fuzzy FOPID.

• Developing a Pneumatic Actuated Ball and Beam System and implementing the Fuzzy
FOPID controller on the system.

• Validating the performance of the position controller through both simulation and
real-time experiments.

The article is organized into six principal sections. In the second section, the authors
describe the process of modeling the IPA system and PABB system. The third section
provides a detailed overview of the inner loop controller designs, including Fuzzy PID and
Fuzzy FOPID, as well as outer loop designs such as FOPI-FOPD and Fuzzy FOPID. The
fourth section of the article focuses on the PSO algorithm. In Section 5, the authors present
and analyze the results obtained from the simulation and real-time experiments. Lastly,
Section 6 offers a summary of the conclusions drawn from the study.

2. System Modelling

This research aims to create two plant designs: the Intelligent Pneumatic Actuator
(IPA) and the ball and beam (BB) system. The IPA model was built using the system
identification approach, while the BB model was constructed using mathematical models.
These two designs will be utilized in the development of an Intelligent Pneumatic Actuated
Ball and Beam System, referred to as IPABBS.

2.1. Intelligent Pneumatic Actuator (IPA) System
2.1.1. IPA Experimental Setup

The setup for the pneumatic cylinder used in this research is shown in Figure 1. The
cylinder consists of a guiding rod, an optical encoder, a pressure sensor, and two on/off
solenoid valves labeled V1 and V2. The cylinder has a precision of 0.09 mm and can
extend up to 200 mm in length. Its operating pressure is 0.6 MPa, with only one chamber
controlling the cylinder while the second chamber maintains a constant pressure of 0.6 MPa.
Table 1 provides a summary of the different movements that the cylinder can perform.

The movements of the cylinder stroke are based on the conditions of two solenoid
valves (V1 and V2). When both valves are off, the cylinder stops. When V1 is off and V2
is on, the cylinder retracts. Conversely, when V1 is on and V2 is off, the cylinder extends.
Finally, when both valves are on, the cylinder does not move.

The DAQ system and SHC68-68-EPM cable are used to establish communication
between the personal computer and the pneumatic actuator system, as depicted in Figure 2.

  

 

 

 

 

 

 

Figure 1. Pneumatic cylinder parts.
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Table 1. The PABBS parameters.

Quantity Value

Beam Length (l) 0.5 m
Pneumatic Actuator Stroke Length (h) 0–200 mm

Angle (α) Depends on h
The Ball Mass (m) 0.04012 kg

The Ball Radius (R) 0.0107 m
Ball’s Moment of Inertia (J) 1.8373 e−6

Gravitational Acceleration (g) 9.8 ms−2

 

Figure 2. The experimental setup for the IPA system.

2.1.2. System Identification of IPA

To develop an accurate mathematical model of the pneumatic system, a system identifi-
cation technique was employed in this study. Data were collected through experimentation,
resulting in 1600 measurements of input and output data with a sample time (ts) of 10 ms.
The collected data was divided into two sets of 800 samples each, with the first set being
used for training and the second set for validation. Figure 3 illustrates the plot of input and
output data obtained from the real-time experiment.

 
Figure 3. The measured input and output data of the system.
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To represent the real system in this study, the ARX331, a third-order linear Autoregres-
sive with Exogenous Input (ARX) model with the order na = 3, nb = 3, and nk = 1, was
used. Equation (1) presents the discrete state space equation of the linear third-order ARX.

A =

⎡⎣1.555 −0.3957 −0.1593
1 0 0
0 1 0

⎤⎦ B =

⎡⎣1
0
0

⎤⎦ (1)

C =
[
0.008 0.002 −0.0012

]
D = 0

Figure 4 displays a comparison between the measured values of the system (repre-
sented by a black line) and the output of the simulation model (represented by a blue line).
The simulation model was generated using the System Identification Toolbox and has a
best fit of 90.75%. The remaining loss of 9.25% could be attributed to factors such as dead
zone, air leakage, and friction present in the pneumatic system. The model plant is deemed
acceptable since all its poles and zeros are located within the unit circle, as illustrated in
Figure 5. Thus, the model is stable and capable of delivering good performance.

Figure 4. The measured and simulated model output.

Figure 5. The zeros–poles plot for the model.
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2.2. Pneumatic Actuated Ball and Beam (PABB) System
2.2.1. Mathematical Model of Pneumatic Actuated Ball and Beam (PABB) System

The objective of the research is to achieve precise ball placement by regulating the
stroke length of the Intelligent Pneumatic Actuator (IPA). In instances where the ball is
in an unstable state, adjusting the angle of the beam by moving the pneumatic actuator
helps to stabilize the ball. The ball’s position is determined by the voltage reading of the
resistance sensor, while the beam’s angle, which depends on the pneumatic actuator stroke,
is determined by the encoder’s position. However, controlling the velocity and acceleration
of the ball is challenging due to the friction coefficient between the ball and the beam, and
directly controlling the stroke of the PA is difficult due to its nonlinearity.

To develop an appropriate controller for the system, it is necessary to derive the
system’s dynamics equation. Figure 6 illustrates that torque is applied through the right
pneumatic actuator at the pivot on the left end, causing the beam to rotate vertically along
the y-axis. The ball moves horizontally along the x-axis as the beam moves up and down.

Figure 6. The PABB System.

To streamline and make the model more manageable, all frictional forces have been
disregarded. Furthermore, it has been presumed that the ball and the beam remain in
constant contact and that there is no slipping during the ball’s rolling on the beam. The
recommended system parameters can be found in Table 1.

The Lagrangian method has been widely used in model-based research on ball and
beam systems with motors [30,31], and it is also used in this study to derive the equation of
motion for the ball and beam system. By neglecting friction forces and assuming continuous
contact between the ball and beam with no slippage, the resulting Lagrangian equation of
motion for the ball can be expressed as follows:(

Jb
r2 + m

)
..
x + mg sin α − mx

( .
α
)2

= 0 (2)

Linearization of this equation about the beam angle, α ≈ 0, gives the following linear
approximation of the system: (

Jb
r2 + m

)
..
x = −mgα (3)

The beam angle can be expressed as in Equation (4).

α = sin−1 h
l

(4)

124



Fractal Fract. 2023, 7, 416

Equation (4) is linearized using a simple approach where the values of h and l are
already known. Figure 7 shows the graph of all possible values obtained by substituting
the given values into Equation (4).

Figure 7. Beam angle vs. Pneumatic stroke displacement graph.

By applying the equation of a straight line to the data presented in Figure 7, one
obtains the following equation.

α = 0.115 h (5)

Then, by substituting Equation (5) into Equation (3), we obtain(
Jb
r2 + m

)
..
x = −0.115 mgh (6)

Taking the Laplace transform of Equation (6), we find(
Jb
r2 + m

)
X(s)s2 = −0.115 mg H(s) (7)

Rearrange Equation (7), and the transfer function from the pneumatic actuator (H) to
the ball position (X) will be obtained.

X(s)
H(s)

=
−0.115 mg(

Jb
r2 + m

)
s2

(8)

2.2.2. PABB Experimental Setup

Figure 8 shows the experimental setup designed for the IPA application. The setup con-
sists of several components, including the PABBS structure, compressor, servo-pneumatic
actuator, pressure regulator, stainless-steel ball, position sensor (to measure the location of
the ball), DAQ card for communication, and PC with MATLAB software.
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Computer DAQ device 

Air Compressor PABBS 

Figure 8. The experimental setup for the PABBS system.

3. Controller Design

This section addresses the controllers’ design for both the IPA plant and the ball and
beam plant. The control system design for the proposed system comprises two feedback
loops: one for the IPA (inner loop) and another for ball position control (outer loop). The
inner loop is responsible for controlling the pneumatic stroke length, h, which in turn
adjusts the beam angle, α. The inner loop controller is designed with the objective of
precisely controlling the IPA’s position. On the other hand, the outer loop utilizes the inner
feedback loop to regulate the ball’s position.

3.1. Intelligent Pneumatic Actuator Controller Design—Inner Loop

This study utilized Fuzzy FOPID and Fuzzy PID controllers to control the intelligent
pneumatic actuator, which relies on fuzzy logic control implemented using the fuzzy logic
toolbox within the MATLAB/Simulink platform. The fundamental components of fuzzy
logic, as presented in Figure 9, include the fuzzifier, rule base, inference engine mapping,
and de-fuzzifier [32].

Figure 9. The basic structure of the fuzzy controller.

Figure 10 displays the use of five triangular membership functions, namely Large
Negative (LN), Small Negative (SN), Zero (Z), Small Positive (SP), and Large Positive (LP),
for input 1 and input 2. The range of MF for input 1 is between −10 and 10, and for input
2 is between −5 and 5, respectively. The output for the fuzzy design is singular, with a
linear value, and each variable’s value is V2 = −255, V2k = −100, off = 0, V1k = 200, and
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V1 = 255. Table 2 shows that 25 rule bases are required to generate the controller’s fuzzy
output. These rules are derived from a detailed analysis of the dynamic behavior of the
pneumatic actuator under investigation because the controller’s performance is dependent
on them. Furthermore, this design uses the Sugeno-type inference system for fuzzification
and the Centroid tool for defuzzification. Figure 11 displays the surface viewer of the
Fuzzy controller.

(a) 

(b) 

Figure 10. Membership function of (a) input1, (b) input2.

Table 2. Linguistic rules of the fuzzy controller design.

Error rate,
Δe(t)

Error, e(t)

NB NS Z PS PB

NB NB NB NB PB PB

NB NB NS NS PS PB

NB NB NS Z PS PB

NB NB NS PS PS PB

NB NB NB PB PB PB
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Figure 11. The Fuzzy control surfaces.

3.1.1. The Fuzzy PID (Fuzzy PID) Controller

The PID controller has remained a popular choice in recent times because of its ease
of development and installation, as well as its ability to perform well in the presence of
system uncertainties [33]. The transfer function for the PID controller can be expressed as
shown in Equation (9):

C(s) =
U(s)
E(s)

= Kp +
Ki
S

+ Kd S (9)

The system takes three input signals: the error signal, the error derivative signal,
and the controller control signal. The error signal is generated by comparing the desired
and actual positions of the pneumatic stroke. The error derivative signal is produced by
differentiating the error signal, and both signals are inputted into the fuzzy logic controller
block and PID controller. The control signal generated by the Fuzzy PID controller is then
fed into the pneumatic actuator block to adjust the position of the pneumatic stroke.

The Fuzzy PID controller includes five parameters: Kp, Ki, Kd, K1, and K2. The PID
parameters (Kp, Ki, and Kd) determine the proportional, integral, and derivative gains of the
controller. K1 and K2 are the error gain and error rate gain, respectively, which are used to
scale the input signals to the fuzzy logic controller block. These parameters can be adjusted
to customize the performance of the controller according to the specific requirements of the
system. Figure 12 illustrates the structure of a Fuzzy PID controller.

Figure 12. The structure of a Fuzzy PID controller.

3.1.2. The Fuzzy Fractional Order PID (Fuzzy FOPID) Controller

The Fuzzy Fractional Order PID (Fuzzy FOPID) controller is a type of controller used
for regulating the position tracking of systems. It combines fuzzy logic with fractional
order PID (FOPID) control to improve the system’s performance. FOPID control is a type
of PID control that uses fractional order calculus to define the proportional, integral, and
derivative terms [17]. The fractional order calculus provides more flexibility in designing
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the controller to meet specific system requirements. The transfer function for the FOPID
controller can be expressed as shown in Equation (10) [18]:

C(s) =
U(s)
E(s)

= Kp +
Ki

Sλ
+ Kd Sμ (10)

The Fuzzy FOPID controller is characterized by seven unknown parameters, namely
Kp, Ki, Kd, λ, μ, K1, and K2. Kp represents the proportional gain, Ki represents the integral
gain, Kd represents the derivative gain, λ represents the fractional-order integral, and μ
represents the fractional-order derivative. K1 and K2 are the error gain and error rate
gain, respectively, which scale the input signals to the fuzzy logic controller block. The
architecture of a Fuzzy FOPID controller is depicted in Figure 13.

Figure 13. The structure of the Fuzzy FOPID controller.

The effectiveness of the Fuzzy FOPID controller is verified through simulations and
real-time experiments. These tests demonstrate that the controller can effectively regulate
the position tracking of the system and improve its performance compared to traditional
PID controllers. The Fuzzy FOPID controller can be customized to meet the specific
requirements of the system by adjusting the scales of fuzzy logic and FOPID.

3.2. PABBS Controller Design—Outer Loop

In this study, two types of controllers were used to regulate the PABB system: Fractional-
Order PI–Fractional-Order PD (FOPI-FOPD) controller and Cascade Fuzzy FOPID (CF-
FOPID) controller.

3.2.1. Fractional-Order PI–Fractional-Order PD (FOPI-FOPD) Controller Design

The structure proposed in this paper for the FOPI-FOPD controller is depicted in
Figure 14. The controller consists of two fractional-order controllers, namely FOPI and
FOPD, which are cascaded in series. The control signal for the system is given by Equation (11):

C(s) =
U(s)
E(s)

=

(
Kp +

Ki

Sλ

)
.
(
Kp1 + Kd Sμ

)
(11)

In order to improve the controller’s performance by reducing errors and enhancing
transient responsiveness, six parameters need to be adjusted: Kp, Ki, λ, Kp1, Kd, and μ. Kp,
Ki, and λ represent the proportional gain, integral gain, and fractional-order integral for
the FOPI controller, while Kp1, Kd, and μ are the proportional gain, derivative gain, and
fractional-order derivative, respectively, for the FOPD controller. Figure 14 illustrates the
structure of a FOPI-FOPD controller. Adjusting these parameters allows for the optimiza-
tion of the controller’s response to changes in the system’s behaviour.
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Figure 14. The structure of the FOPI-FOPD controller.

3.2.2. Cascade Fuzzy Fractional-Order PID (CFFOPID) Controller Design

Cascade Fuzzy Fractional-Order PID controller design is a control strategy that com-
bines fuzzy logic with fractional-order calculus to achieve more accurate and flexible control
of complex systems. The controller is designed using a cascade structure that allows for
the division of the control problem into simpler sub-problems. The basic structure of a
CFFOPID controller consists of two stages: the fuzzy logic controller (FLC) stage and
the fractional-order PID (FOPID) controller stage. Figure 15 illustrates the structure of a
CFFOPID controller.

Figure 15. The structure of the CFFOPID controller.

The CFFOPID controller design involves adjusting several parameters, including the
gains for the FLC stage, the gains for the FOPID stage, and the fractional-order parameters
for the integral and derivative terms.

4. Particle Swarm Optimization Algorithm

In 1995, James and Russell proposed the Particle Swarm Optimization (PSO) algo-
rithm, which is inspired by the collective behavior of birds and has a random probability
distribution [34]. PSO is a powerful optimization technique that is particularly effective
for solving nonlinear optimization problems. In 1998, an improved version of PSO was
introduced by adding an inertia weight coefficient to enhance its performance [35]. PSO
is a rule-based algorithm that incorporates both the individual and collective behavior of
birds [29,36].

In this approach, every particle in the swarm searches for the best position by contin-
uously updating its location based on its knowledge of the best position it has found so
far, as well as the global best position within the swarm. This method is formulated using
Equations (12) and (13) for the optimization process [37].

vi(k + 1) = W vi(k) + C1R1(gbest − xi(k)) + C2R2(pbest − xi(k)) (12)

xi(k + 1) = xi(k) + vi(k + 1) (13)

i = 1, 2, . . . , n
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where vi is the ith particle velocity, xi is the ith particle position, k is the iteration
number, C1 and C2 are the cognitive and social coefficients, w is the inertia weight factor, R1
and R2 are random variables of from 0 to 1, pbest, i is the individual best position of particle
i, gbest is the best global position of all the particles in the swarm, and n is the number of
birds (particles).

If the condition in (14) is met, then the position is updated through (15):

f (xik) < f (pbest) (14)

xik = pbest (15)

where f performs the minimization objective fitness function. The flowchart of the PSO
algorithm is illustrated in Figure 16.

 
Figure 16. Flow chart of the PSO algorithm.

Typically, optimization methods involve evaluating system performance based on
various fitness criteria such as Integral Absolute Errors (IAE), Integral Square Errors (ISE),
and Integral Time Square Errors (ITSE). These fitness criteria take into account parameters
such as overshoot, rising time, settled time, steady-state error, and the overall tightness of
the control system [38]. In this study, the ITSE fitness function as shown in Equation (16) is
used to evaluate the performance of the system’s output response:

ITSE =
∫ ∞

0
t e2(t).dt (16)

Table 3 summarizes the parameters of the PSO algorithm used in this study.
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Table 3. The parameters of the PSO algorithm.

Parameter No. Iteration No. Particles
Social

Coefficient
Cognitive
Coefficient

Inertia
Weight

Value 30 10 1.42 1.42 0.9

The optimization process for the Fuzzy FOPID-PSO system is illustrated in Figure 17,
which includes a block diagram of the process. To find the optimal values of the seven
controller parameters, a MATLAB program is used. The program applies a minimization
algorithm to search the domain of the particles’ position and velocity, and the optimal
values of the FOPID controller are obtained in 30 iterations.

Figure 17. The block diagram of the optimized Fuzzy FOPID controller.

5. Results and Discussion

This part presents the simulation and real-time experimental results for the position
control of IPA and PABB systems. The simulation was carried out using a mathematical
model of the system, while the real-time experiments were conducted using physical
prototypes of the systems. The results of the simulation and experimental tests were
compared to evaluate the performance of the position control system. The discussion
section provides an analysis of the results and discusses the potential applications of the
position control system for IPA and PABB systems.

5.1. Position Control for IPA System

MATLAB-Simulink was utilized as the platform for this research, and Figure 18
displays the Simulink block diagram used for simulation. The controller block in this
diagram consists of either a Fuzzy FOPID controller or a Fuzzy PID controller, and the IPA
model is represented by Equation (1). Figure 19, on the other hand, illustrates the Simulink
block diagram utilized for the real-time experiment setup. The block diagram design
consists of five parts, namely the input (position-setpoint), controller, DAQ configuration
(I/O), performance index, and output. The input signal used in this experiment is the same
as in the simulation, where identical parameters of Fuzzy FOPID and Fuzzy PID controllers
were implemented in the real-time experiment for validation purposes.
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Figure 18. Simulink diagram for IPA simulation.

Figure 19. Simulink diagram for IPA real-time experiment.

The ITAE values obtained through successive generations of PSO using the Fuzzy
FOPID controller and Fuzzy PID controller are illustrated in Figures 20 and 21, respectively.
Table 4 provides a summary of the optimal parameter values found via PSO for both
controllers (Fuzzy FOPID and Fuzzy PID).

Figure 20. The value of ITAE in successive generations of the PSO Fuzzy PID.
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Figure 21. The value of ITAE in successive generations of the PSO Fuzzy FOPID.

Table 4. The optimal values of the controllers.

Criteria K1 K2 Kp Ki λ Kd μ

Fuzzy FOPID 0.0001 0.0495 25 1 0.1 10 0.1
Fuzzy PID 0.0002 0.05 25 0.1 - 1 -

5.1.1. Simulation Performances of the IPA Positioning System

In this study, the step and multistep trajectories were utilized as reference input
signals to evaluate the IPA system’s positioning control. Simulation tests were conducted
for position step responses with a duration of 15 s and multistep responses with a duration
of 25 s, and all the control parameters mentioned in Table 4 were utilized to develop the
control system. Two different positioning distances were examined using the step input
test, namely mid-stroke (100 mm) and near fully extended (150 mm), where only one valve
(Valve 1) of the IPA system was utilized to extend the cylinder stroke. In contrast to the
step input test, the multistep input test involved both extension and retraction of the IPA
cylinder stroke. Therefore, both Valve 1 and Valve 2, were employed to control the extension
and retraction of the IPA cylinder stroke. In Figure 22, the simulation responses of the Fuzzy
FOPID controller for step inputs at 100 mm (mid-stroke) and 150 mm (nearly fully extended)
are illustrated. On the other hand, Figure 23 displays the multistep response for the Fuzzy
FOPID controller. Similarly, Figure 24 showcases the simulation responses of the Fuzzy PID
controller for step inputs at 100 mm (mid-stroke) and 150 mm (nearly fully extended), while
Figure 25 demonstrates the multistep response for the Fuzzy PID controller. A summary of
all the data presented in these figures has been compiled in Table 5.

The data presented in Figures 22–25 along with the information provided in Table 5,
indicate that as the distance increased, the rise time (Tr) and settling time (Ts) of the IPA
positioning system also increased steadily. However, the employment of Fuzzy PID resulted
in a slightly longer response time compared to Fuzzy FOPID, causing a slower system. To
meet the requirements of wider applications, the IPA system should be capable of achieving
both fast speed response and accurate positioning control. The inclusion of fractional
order parameters in the control signal to the IPA valves using Fuzzy FOPID resulted
in a faster and more aggressive speed response compared to Fuzzy PID. Additionally,
Fuzzy PID control resulted in a slight overshoot of 0.00022% and 0.00031% for distances of
100 mm and 150 mm, respectively. Furthermore, this study evaluated three performance
indices (IAE, ISE, and ITAE) and found that all the controllers produced similar outcomes
in terms of the step response. The values of the performance indices for both Fuzzy
FOPID and Fuzzy PID controllers were relatively comparable to each other. Specifically,
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for IAE, the total error ranged from approximately 39 to 41.1; for ISE, it was around
(26–26.6) × 102; for ITAE, the Fuzzy FOPID controller had a value of 10.54, while the Fuzzy
PID controller had a value of 25.42. On the other hand, Fuzzy FOPID control did not
exhibit any overshoot for all distances. All control strategies demonstrated zero steady-
state error (ess) for all distances, indicating that the control system can accurately track the
IPA positioning system. This further confirms the effectiveness of the control strategies in
achieving accurate positioning control.

(a) 

(b) 

Figure 22. Step response for Fuzzy FOPID simulation at (a) 100 mm, (b) 150 mm.
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Figure 23. Multistep response for Fuzzy FOPID simulation.

(a) 

(b) 

Figure 24. Step response for Fuzzy PID simulation at (a) 100 mm, (b) 150 mm.
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Figure 25. Multistep response for Fuzzy PID simulation.

Table 5. Summary of the step response performances using Fuzzy FOPID and Fuzzy PID.

Distance
(mm)

Transient
Performance

Fuzzy
FOPID

Fuzzy
PID

100

Tr (s) 0.5616 0.6953

Ts (s) 0.7188 1.0349

OS (%) 0 0.00022

ess 0 0

150

Tr (s) 0.8400 0.9510

Ts (s) 1.0602 1.2002

OS (%) 0 0.00031

ess 0 0

5.1.2. Experimental Validation Performances of the IPA Positioning System

The research assessed the efficacy of the suggested control approach by conducting
several experiments, such as positioning control at different distances and examining the
system’s robustness to load changes. The performance of the proposed control method was
evaluated in each experiment and juxtaposed with established techniques used for compa-
rable pneumatic plant systems to identify enhancements, especially in the IPA positioning
system’s transient response. A sampling time of 10 ms was used for experimentation, and
MATLAB/Simulink was used to develop the proposed control strategy. The simulation
test used the same controller parameters to validate the results.

Two position distances (100 mm and 150 mm) and two directions of the cylinder
position (horizontal and vertical) were utilized for comparison, and the step signal was
applied as the input signal. Each test was carried out for 20 s, and the controller parameters
used in the simulation test were the same. The performance of the Fuzzy FOPID system’s
transient response, including the rise time (Tr), settling time (Ts), overshoot (OS), and
steady-state error (ess), in controlling the IPA positioning system at all distances were then
compared with that of the Fuzzy PID. Figure 26 offers a comparative analysis of the step
tests conducted with the cylinder positioned horizontally, and the distance of the position
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was adjusted between fully retracted (0 mm) and nearly fully retracted (100 mm). Similarly,
Figure 27 provides a comparative view of the step tests, with the cylinder position being
horizontal and the position distance adjusted between fully retracted (0 mm) and nearly
fully extended (150 mm). The findings from both figures are summarized in Table 6.

Figure 26. Experimental step response at 100 mm for the horizontal position.

Figure 27. Experimental step response at 150 mm for the horizontal position.
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Table 6. Summary of the experimental response using different control strategies for the horizon-
tal position.

Distance
(mm)

Transient
Performance

Fuzzy
FOPID

Fuzzy
PID

100

Tr (s) 0.6577 0.7418

Ts (s) 0.9544 1.0337

OS (%) 0 0.00022

ess 0 0

150

Tr (s) 1.0468 1.0301

Ts (s) 1.3497 1.3741

OS (%) 0 0.00031

ess 0 0

Figure 28 compares the step tests for the vertical cylinder position, with the position
distance ranging from fully retracted (0 mm) to almost fully retracted (100 mm), whereas
Figure 29 compares the step tests for the vertical cylinder position, with the position
distance ranging from fully retracted (0 mm) to almost fully extended (150 mm). The
outcomes from Figures 9 and 10 are consolidated in Table 7 for reference.

The experimental results presented in Figures 26–29, as well as Tables 6 and 7, illustrate
a noticeable increase in both rise time (Tr) and settling time (Ts) of all control strategies as
the distance to be covered by the cylinder stroke increases. In other words, the farther the
distance, the longer it takes for the control strategies to achieve their steady-state value. The
comparison of the control strategies reveals that Fuzzy FOPID outperforms the others in
achieving precise control of the IPA cylinder stroke at both 100 mm and 150 mm positioning
distances. Furthermore, the Fuzzy FOPID controller outperformed conventional controllers
by demonstrating no overshoot and steady-state inaccuracy. In addition, the IAE, ISE,
and ITAE of the Fuzzy FOPID are less than those of the Fuzzy PID. The Fuzzy FOPID
controller improved the system’s transient response by 12.78%, 24.25%, and 100% in rise
time, settling time, and overshoot, respectively, compared to the results obtained from the
Fuzzy PID controller. As a result, the outcomes obtained from utilizing the Fuzzy FOPID
controller are deemed satisfactory. The controller exhibited a significant enhancement in
the transient response performance by offering a faster response without overshooting for
all position distances.

Figure 28. Experimental step response at 100 mm for the vertical position.
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Figure 29. Experimental step response at 150 mm for the vertical position.

Table 7. Summary of the experimental response using different control strategies for the
vertical position.

Distance
(mm)

Transient
Performance

Fuzzy
FOPID

Fuzzy
PID

100

Tr (s) 0.6372 0.7306

Ts (s) 0.8381 1.1076

OS (%) 0 0.00022

ess 0 0

150

Tr (s) 0.9874 1.0196

Ts (s) 1.2726 1.5662

OS (%) 0 0.00031

ess 0 0

Moreover, the IPA system’s positioning performance for horizontal and vertical posi-
tions using Fuzzy PID and Fuzzy FOPID strategies with a multistep trajectory as the input
signal is depicted in Figures 30 and 31, respectively.

When developing a controller, robustness is a crucial factor that must be considered.
A controller is considered robust if it can compensate for any changes in the system due to
external loads. This study examined the effect of varying loads on controller robustness.
The IPA positioning system was subjected to a step response with mid-stroke positions
(100 mm and 150 mm), and different external loads (1 kg, 3 kg, 6 kg, and 8 kg) were attached
to the end of the cylinder stroke for each test, which lasted 20 s. The controller parameters
used in this test were the same as those used in the unloading condition. The experimental
performance of the vertical IPA positioning system’s response to varying loads, controlled
by the Fuzzy FOPID, is illustrated in Figures 32 and 33. Moreover, the performance details
are presented in Table 8.
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Figure 30. Experimental multistep response for the horizontal position.

Figure 31. Experimental multistep response for the vertical position.
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Figure 32. Experimental step response based on load variation at 100 mm.

Figure 33. Experimental step response based on load variation at 150 mm.

Table 8. Summary of the experimental response using different loads.

Loads
(kg)

Fixed Position at 100 mm Fixed Position at 150 mm

Rise Time
Tr (s)

Settling Time
Ts (s)

Rise Time
Tr (s)

Settling Time
Ts (s)

1 0.7199 0.9763 1.1513 1.4590

3 0.8290 1.0781 1.2435 1.6047

6 1.1002 1.4944 1.6076 2.2613

8 1.6912 3.0097 2.0625 4.7827
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Furthermore, Figure 34 demonstrates the positioning performances of the IPA system
using the Fuzzy FOPID strategy, considering the multistep trajectory as an input signal to
the IPA system, with load variations.

Figure 34. Experimental multistep response based on load variation.

Table 8 and Figure 34 present the results of the experimental evaluation of the perfor-
mance of the pneumatic actuator controlled via Fuzzy FOPID under different loads and
fixed positions. The data presented in the table show the rise time and settling time for
the IPA system when the load is varied from 1 kg to 8 kg at fixed positions of 100 mm and
150 mm. The data show that the performance of the system decreases as the load increases,
particularly for the fixed position at 150 mm. At 6 kg, the rise time and settling time for both
fixed positions are still within acceptable limits. However, at 8 kg, the rise time and settling
time for the fixed position at 150 mm are significantly higher, indicating a deterioration
in performance. This suggests that the maximum load capacity and performance of the
pneumatic actuator should be considered when designing and implementing a control
system for the actuator.

5.2. PABB System Application Results

This research employed MATLAB-Simulink as the platform, and the Simulink block
diagrams used for the PABB system simulation and the real-time experiment setup are
shown in Figures 35 and 36, respectively. The controller block in Figure 35 comprises a
Fuzzy FOPID or a FOPI-FOPD controller, while the PABB system model is represented by
Equation (1). Figure 36 shows the block diagram design, which includes five parts: input
(position-setpoint), controller, DAQ configuration (I/O), performance index, and output.
The input signal used in the experiment is the same as in the simulation, and identical
parameters of Fuzzy FOPID and FOPI-FOPD controllers were used for validation purposes.
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Figure 35. Simulink diagram for PABB system simulation.

  

 

 

 

 

 

 

 

Figure 36. Simulink diagram for PABB system real-time experiment.

5.2.1. Simulation Performances of the PABB System

The PABB system’s positioning control was evaluated using step and multistep tra-
jectories as reference input signals in this study. Simulation tests were conducted for both
position step responses (15 s) and multistep responses (25 s), with all the control parameters
mentioned in Table 9 utilized to develop the control system.

Table 9. The optimal values of Fuzzy FOPID and FOPI-FOPD controllers.

Criteria K1 K2 Kp Kpi Kpd Ki λ Kd μ

Fuzzy FOPID 0.0495 0.0001 0.1 - - 0.15 1 1 0.1
FOPI-FOPD - - - 1 1 0.01 0.1 1 1

Figure 37 shows the simulation results, which indicate that both the FOPI-FOPD
and Fuzzy FOPID controllers are capable of tracking the target input. The Fuzzy FOPID
controller achieves the setpoint faster than the FOPI-FOPD controller. Both controllers
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exhibit consistent and rapid responses while regulating the movement of the ball, with no
overshoot and only minor steady-state error. In addition, the FOPI-FOPD controller had
an ISE value of 8.233 × 104, an IAE value of 403.4, and an IATE value of 423. The Fuzzy
FOPID controller had a slightly lower ISE value of 6.036 × 104, an IAE value of 252.6, and
an IATE value of 875, indicating better performance compared to the FOPI-FOPD controller.
The Fuzzy FOPID controller outperforms the FOPI-FOPD controller, as evidenced by the
better results displayed in Table 10.

Figure 37. Simulated step responses for Fuzzy FOPID and FOPI-FOPD.

Table 10. Summary of the simulated response of the PABB system.

Controllers

Performance Index

Rise Time
Tr (s)

Settling Time
Ts (s)

Overshoot
OS (%)

Steady-State Error
ess (%)

FOPI-FOPD 2.091 3.910 0.0055 0

Cascade Fuzzy
FOPID 0.6682 1.1359 0.2768 0

Following that, a multistep input was employed to assess the stability and performance
of the controllers. Both the FOPI-FOPD and Fuzzy FOPID controllers performed almost
identically, smoothly controlling the ball. The results of the multistep response are shown
in Figure 38.
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Figure 38. Simulated multistep responses for Fuzzy FOPID and FOPI-FOPD.

5.2.2. Experimental Validation Performances of the PABB System

To prevent the ball from moving too quickly, which could complicate regulation, the
pneumatic actuator stroke, h, is restricted to a range of +50 mm (upward) and −50 mm
(downward). At the outset of the experiment, h is set to 100 mm. This configuration ensures
that the pneumatic system can execute the necessary up-and-down movements.

The controllers are designed using a simulation environment and a mathematical
model of the PABB system. The experimental verification of the FOPI-FOPD controller and
the Cascade Fuzzy FOPID controller is demonstrated in Figure 39. Table 11 provides a
summary of the outcomes from the step response analysis, revealing that the ball’s position
control experiences increased oscillations as a result of the pneumatic movement’s impact.
However, due to several factors such as changes in nonlinear characteristics caused by
air compressibility, valve dead zone issues, high friction forces, and noise generated by
position sensors, the experimental results exhibit slight variations from the simulation
outcomes. Despite these challenges, the PABB system yields a favorable outcome in which
the primary objective of the system is accomplished. The proposed system can effectively
regulate the position and balance of the ball.

Table 11. Summary of the experimental response of the PABB system.

Controllers

Performance Index

Rise Time
Tr (s)

Settling Time
Ts (s)

Overshoot
OS (%)

Steady-State Error
ess (%)

FOPI-FOPD
Fuzzy FOPID 0.3710 10.7986 35.5380 1.3520

Cascade
Fuzzy FOPID 0.8235 4.9381 9.8500 0
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(a) 

(b) 

Figure 39. Experimental step responses for (a) Fuzzy FOPID and (b) FOPI-FOPD.

6. Conclusions

The primary objective of this study was to develop and evaluate a Fuzzy FOPID
controller for an intelligent pneumatic actuator (IPA) system to achieve accurate positional
control. The study utilized the ARX model to simulate the pneumatic system and the PSO
technique to determine the optimal values for the seven controller parameters required to
achieve the best dynamic behavior for the Fuzzy FOPID controller. The results indicated
that the Fuzzy FOPID controller outperformed the Fuzzy PID controller in terms of stability,
robustness, fast response, and zero steady-state error. The study then applied the model
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and controller of the pneumatic actuator to the pneumatically actuated ball and beam
(PABB) system using two control loops for inner and outer positioning. The Cascade Fuzzy
FOPID controller was found to provide a quick and smooth response in controlling the
ball’s motion. The study validated the performance of the position controller through
both simulation and real-time experiments, which demonstrated the effectiveness of the
proposed Fuzzy FOPID controller in achieving precise and stable positional control in
pneumatic systems.
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Abstract: Efficient integration of wind energy requires accurate wind power forecasting. This pre-
diction is critical in optimising grid operation, energy trading, and effectively harnessing renewable
resources. However, the wind’s complex and variable nature poses considerable challenges to achiev-
ing accurate forecasts. In this context, the accuracy of wind parameter forecasts, including wind
speed and direction, is essential to enhancing the precision of wind power predictions. The presence
of missing data in these parameters further complicates the forecasting process. These missing values
could result from sensor malfunctions, communication issues, or other technical constraints. Ad-
dressing this issue is essential to ensuring the reliability of wind power predictions and the stability
of the power grid. This paper proposes a long short-term memory (LSTM) model to forecast missing
wind speed and direction data to tackle these issues. A fractional-order neural network (FONN) with
a fractional arctan activation function is also developed to enhance generated wind power prediction.
The predictive efficacy of the FONN model is demonstrated through two comprehensive case studies.
In the first case, wind direction and forecast wind speed data are used, while in the second case, wind
speed and forecast wind direction data are used for predicting power. The proposed hybrid neural
network model improves wind power forecasting accuracy and addresses data gaps. The model’s
performance is measured using mean errors and R2 values.

Keywords: wind power; speed; direction; fractional arctan function; LSTM; fractional-order neural
network

1. Introduction

Optimising the integration of wind energy into the power grid and ensuring grid
stability relies heavily on accurate wind power prediction. Over the years, researchers
have explored various techniques, including neural networks, machine learning, and deep
learning methods, to enhance the precision and reliability of wind power predictions.
Machine learning creates a generalised model from previous input data and output results,
then predicts outcomes in the future using multiple learning methods. In machine learning
approaches, artificial neural networks (ANNs) [1] and support vector machines (SVMs) [2]
are commonly used. ANNs can predict non-linear data and analyse the correlation between
impact data and wind power. Training ANNs requires a lot of data and time, while high-
dimensional data limits computational speed, leading to local optimum solutions. SVM
avoids these issues and generalises them effectively. In [3], the integration of least squares
and SVM (LS-SVM) was used to estimate the wind power load, enhancing computation
efficiency and predicting accuracy. Incorporating LS-SVM principles, Zhang et al. intro-
duced modifications to the model that effectively minimised prediction errors [4]. In [5],
the researchers developed a fuzzy neural network for wind power forecasting coupled
with online risk assessment and, in addition, investigated the effectiveness and potential
improvements in enhancing wind energy forecasting models. Jie Shi et al. combined
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the Hilbert–Huang transform with artificial intelligence (AI) for power forecasting and
further explored the effectiveness of this integrated model in improving prediction accu-
racy and enhancing renewable energy integration [6]. In [7], the authors developed the
application of radial basis function neural networks in wind power forecasting, incorpo-
rating probabilistic methods to enhance forecasting accuracy and uncertainty assessment.
The researchers employed the empirical mode decomposition (EMD) model with a neural
network to forecast wind power and speed [8]. Further, they investigated the effectiveness
of EMD-based models in improving short-term wind forecasting accuracy. The authors
in [9] created an emotional neural network technique for predicting weather patterns and
wind power generation. Additionally, they emphasised that this method can be applied to
real-world scenarios. The authors proposed Gaussian processes integrated with numerical
weather prediction (NWP) and complex-valued ANN for day-ahead wind power forecast-
ing and examined their effectiveness in optimising wind energy generation and improving
prediction accuracy [10,11].

Jyotirmayee et al. presented a variational mode decomposition technique in combina-
tion with a multi-kernel regularised pseudo-inverse ANN for wind power forecasting [12].
The authors developed 3D convolutional neural networks (CNNs) for extracting numerical
weather prediction data in wind power forecasting, investigated similar methods to en-
hance prediction accuracy, and considered the potential benefits of utilising 3D CNNs in this
context [13]. In [14], the structured neural network model for predicting short-term wind
power emphasises the developed model’s effectiveness and potential in achieving accurate
short-term predictions. The researchers in [15,16] implemented an ANN for predicting
wind power’s discrete wavelet-transform-based wind speed and highlighted the network’s
effectiveness and potential in improving renewable energy integration. Additionally, the
researchers emphasised the need for further investigation into model enhancements to
address uncertainties and improve forecasting precision. In addition, the authors of [17] ex-
plored the current machine learning techniques for power forecasting, identifying emerging
trends, and highlighted the key challenges faced in this domain. AI has shown promise in
enhancing wind power generation forecasting through hybrid approaches, but significant
challenges still need to be addressed for practical implementation and improved accu-
racy [18]. Despite these obstacles, the prospects for AI-based forecasting in the renewable
energy sector remain encouraging. The authors of [19] employed an ANN model to forecast
the wind power generation of the Pawan Danawi wind farm in Sri Lanka and highlighted
that the model could also be applied to the environmental and climatic conditions to iden-
tify the wind power potential of the area. Machine learning methods are more effective
than statistical approaches in predicting non-linear wind power data due to their adaptabil-
ity and self-learning capabilities. However, these models have limitations in expressing
complex data. This is because of the advancement of big data technology. Deep learning
algorithms can overcome these challenges by extracting higher-level abstract features from
the original samples. This enables the discovery of complex rules in high-dimensional data.

Deep learning models have advanced significantly in recent years, and deep neural
network (DNN) algorithms have been introduced [20–22]. Recurrent neural networks
(RNNs) and LSTM networks are robust architectures for sequence data, demonstrating ad-
vantages in non-linear feature learning [23]. Thus, RNN and LSTM are the most often used
deep learning models in wind power prediction research. The authors of [24] conducted
wind power generation prediction using multivariate LSTM time series. The researchers
of [21] implemented deep feature extraction and LSTM techniques for data-driven wind
speed forecasting and explored the effectiveness of these techniques in improving wind
speed predictions. In [25], the authors used data cleaning and feature extraction techniques
for power prediction. In [26], the authors used machine learning algorithms such as light
gradient boosting machines (GBMs) and LSTM networks for short-term wind forecasting
of weather stations in India and also aimed to enhance wind energy prediction accuracy,
contributing to efficient renewable energy integration and management. The authors of [27]
implemented an ensemble approach combining algorithms, namely, deep learning and
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gradient descent, for wind power forecasting and explored the model’s effectiveness in im-
proving forecasting accuracy and reliability. The deep-learning-based methods in [28] were
developed to generate accurate and reliable prediction intervals for wind power forecasting,
addressing the multi-objective nature of the problem. The researchers in [29] employed a
Seq2Seq wind power output prediction method developed using deep learning and a clus-
tering algorithm to forecast wind power with NWP data and real-time historical wind data.
Adam Kisvari et al. [30] applied a deep learning approach using a data-driven and a gated
recurrent unit (GRU) to forecast wind power. Further, the researchers in [31] implemented
a temporal convolution network (TCN)-based approach for day-ahead wind power fore-
casting and compared the implemented method with the LSTM and GRU models. In [32],
the authors developed LSTM-based RNNs for wind power forecasting, focusing on variable
selection techniques. The authors in [33] implemented the GRU neural network method for
wind power prediction, utilising evolutionary network architecture search for optimisation.
The researchers in [34,35] constructed multi-modal spatio-temporal neural networks and
optimised deep autoregressive RNNs for multi-horizontal wind power forecasting.

The use of attention-based models has become more popular for predicting long-term
series. In [36,37], the authors demonstrated self-attention’s effectiveness in capturing com-
plex patterns and dynamics, particularly in capturing long-distance dependencies within
time-series data. Juan Ren et al. [38] developed the CNN-LSTM-LightGBM framework with
an attention mechanism for short-term wind power forecasting, which aimed to enhance
forecasting accuracy by efficiently capturing temporal dependencies and extracting relevant
features from wind power data. In [39], the authors proposed wind power forecasting
methods using variational mode decomposition, and LSTM attention networks showed the
encoder–decoder structure’s superiority over a dual attention–LSTM neural network in
enhancing prediction performance. Lei Wang et al. constructed an advanced transformer
model for ultra-short-term wind power prediction [40]. Nevertheless, challenges such as
space–time complexity and input and output sequence limitations remain. Furthermore,
Ref. [41] developed a novel method for ultra-short-term wind power prediction, addressing
previous limitations through feature extractions. The approach shows promising results,
improving prediction accuracy and addressing space–time complexity issues.

A fractional-order activation function is a specific activation function used in artificial
neural networks. It allows the use of non-integer exponents to calculate the output of a
neuron, which can improve the performance of specific neural networks. These activation
functions possess unique properties that make them suitable for specific modelling tasks
and data. They are beneficial for capturing long-range dependencies and non-linear
relationships in data, which cannot be effectively handled by conventional activation
functions such as arctan. The fractal nature of these activation functions is attributed to
their self-similarity property, which enables them to capture complex patterns in data at
multiple scales. Hence, they benefit time-series forecasting applications where the data
may exhibit fractal-like behaviour [42]. Using fractional-order activation functions can
enhance the performance of FONN model-based forecasting by allowing for more accurate
and efficient modelling of complex non-linear relationships in the data. Additionally, these
functions can help to reduce overfitting, a common problem in traditional neural networks.
The use of fractional-order activation functions may increase the computational load during
training. However, this can be offset by the improved performance and accuracy of the
model, leading to faster and more efficient forecasting [43]. Therefore, it is justified to
use fractional-order activation functions because of their ability to capture complex non-
linear relationships in data, which can improve the efficiency and accuracy of FONN
model-based forecasting.

Motivated by the above literature, this paper presents a new hybrid model that
uses LSTM to forecast missing input data and FONN to predict generated wind power.
The performance of the proposed approach is evaluated based on the wind data collected
from Jeju Island’s wind farm in three different island sites. The key contributions of this
research are outlined below:
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• The LSTM model is designed to predict missing input parameters, including wind
speed and direction. Its performance is evaluated through root mean squared error
(RMSE) assessment.

• The FONN model predicts wind power using the LSTM’s forecast data and evaluates
performance with a coefficient of determination (R2) and mean squared error (MSE).

• The models developed were evaluated in two case studies involving missing data
scenarios for specific parameters.

The subsequent sections of the manuscript are organised to explore the research
comprehensively. Section 2 describes the dataset from Jeju Island in three different sites
and presents the data visualisation and correlation analysis in various scenarios. Section 3
describes the proposed hybrid LSTM-based fractional-order neural network model for
wind power forecasting. Section 4 shows the results and discussion of the proposed models’
performance evaluation to handle the missing parameter data. Section 5 concludes the
proposed work.

2. Dataset Description

In South Korea, Jeju Island has a prosperous wind energy landscape with advanced
wind farms strategically placed throughout scenic terrain. These wind farms take advantage
of the island’s plentiful wind resources, significantly contributing to its renewable energy
portfolio. Sites A, B, and C are among the top wind farms on Jeju Island, each with unique
specifications and characteristics. Table 1 provides an overview of the data collection
period, collection time interval, and detailed wind turbine specifications for Sites A, B,
and C [44].

Table 1. Jeju Island’s wind farm data and specifications.

Data Aspect Site A Site B Site C

Data Collection Period 11 January 2014–25 January
2014

11 January 2014–20 January
2014

11 January 2014–25 January
2014

Collection Time Interval 10 min 10 min 10 min

Wind Turbine Specifications

Model U88 U50 U50
Output 2000 kW 750 kW 750 kW

Wind Speed Up to 12 m/s Up to 12.5 m/s Up to 12.5 m/s
Rotor Speed Range 6–17.5 rpm 9–28 rpm 9–28 rpm

Voltage and Frequency 690 V/60 Hz 690 V/60 Hz 690 V/60 Hz
Rotor Diameter 88 m 50 m 50 m

Hub Height 80 m 50 m 50 m
Power Control Pitch Regulation Pitch Regulation Pitch Regulation

The wind turbine specifications presented in the table highlight each site’s customised
design and engineering considerations. These specifications, which include the model,
output, wind speed capacity, rotor dynamics, voltage, and power control, showcase Jeju
Island’s commitment to harnessing wind energy efficiently and sustainably. The island’s
wind farms are characterised by their meticulous data collection and cutting-edge turbine
specifications, which testify to their dedication to renewable energy and their aspiration to
create a cleaner and greener future.

As shown in Figure 1, the data from sites A, B, and C include wind power, direction,
and speed, indicating the chaotic behaviour. There were 1080, 432, and 720 samples from
sites A, B, and C, respectively. These samples’ pair plots are shown in Figures 2 and 3.
Figure 1 shows the pairwise relationships in a dataset, while Figure 3 shows correlation
coefficients between wind direction, speed, and power at the three sites. As shown in the
figure, the diagonal elements are one, indicating a perfect correlation with each variable.
The off-diagonal elements in the figure show the correlation between the two parameters.
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(a) Site A (b) Site B

(c) Site C

Figure 1. The data from three wind farm sites on Jeju Island.

(a) Site A (b) Site B

(c) Site C

Figure 2. Pairwise relationships in the data from three wind farm sites on Jeju Island.
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(a) Site A (b) Site B

(c) Site C

Figure 3. Correlation analysis on the data from three wind farm sites on Jeju Island.

Utilising the Pearson correlation coefficient, a numerical measure ranging from −1 to 1,
the correlation analysis shown in Figure 3 can quantify the strength and direction of
relationships. This method is invaluable in providing essential insights into how changes
in one parameter might correspond to changes in another. Upon examination of the wind
farms at each site, it was discovered that a positive linear relationship exists between wind
direction, speed, and power. The correlation coefficient between wind direction and speed
at Site A is 0.25, at Site B it is 0.22, and at Site C it is 0.36, indicating a weak correlation.
Similarly, the correlation coefficient between wind direction and power at Site A is 0.34, at
Site B it is 0.17, and at Site C it is 0.38, indicating a weak correlation. Lastly, the correlation
coefficient between wind speed and wind power at Site A is 0.82, at Site B it is 0.95, and at
Site C it is 0.98, indicating a robust correlation. It is important to note that all correlation
coefficients fall within the range of −1 to 1, demonstrating that the relationships are positive
and linear. Additionally, it should be noted that the correlations observed at Site C are
stronger than those at Site A, and the correlations at Site A are the most robust of the
three sites.

2.1. Correlation Analysis of Wind Speed Parameter with Missing Data

The first case examines the correlation between wind direction, speed, and power
across Sites A, B, and C, where the wind speed parameter has missing data. The correlation
matrix for Site A, shown in Figure 4, presents a comprehensive view of these relationships.
Notable correlations emerge, with wind power and direction exhibiting a moderate positive
correlation of 0.31, indicating a tendency for increased wind direction to coincide with
heightened wind power. Additionally, wind power and speed show a stronger positive
correlation of 0.63, suggesting that higher wind power values correspond to elevated
wind speed values. Conversely, wind direction and speed demonstrate a more modest
positive correlation of 0.22. The correlation matrix for Site B mirrors these trends, showing
modest positive correlations of 0.13, 0.21, and 0.23 between wind power and direction,
wind power and speed, and wind direction and speed, respectively. At Site C, wind
power and wind direction exhibit a moderately positive correlation of 0.31. In contrast,
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the correlation between wind power and speed is characterised by a relatively moderate
positive correlation of 0.43. Similarly, wind direction and speed display a moderately
positive correlation of 0.34. Together, these correlation matrices provide a comprehensive
understanding of the relationships between wind power, direction, and speed, shedding
light on the nature and strength of these associations and emphasising the need for thorough
analysis, particularly in instances of missing data.

(a) Site A (b) Site B

(c) Site C

Figure 4. Correlation analysis of wind speed parameter with missing data.

2.2. Correlation Analysis of Wind Direction Parameter With Missing Data

The second case examines the correlation between wind direction, speed, and power
across Sites A, B, and C, where the wind direction parameter has missing data. As shown
in Figure 5, the correlation matrices for these sites reveal insightful connections. At Site
A, wind power displays a moderate positive correlation with wind direction of 0.22 and a
strong positive correlation with wind speed of 0.82. Additionally, a moderately positive
correlation of 0.3 between wind direction and wind speed becomes evident. Site B’s matrix
unveils distinctive relationships. Wind power and wind direction exhibit a moderate
negative correlation of −1.19, while wind power and wind speed share a robust positive
correlation of 0.92. In contrast, wind direction and speed show a weak negative correlation
of −1.084. Similarly, Site C’s matrix reveals meaningful correlations. Wind power positively
correlates with wind direction, with a correlation value of 0.19, and strongly correlates with
wind speed, with a correlation value of 0.93. Further, wind direction and speed demonstrate
a weak positive correlation of 0.081. In both scenarios, the correlation coefficients provide
essential insights into the strength and nature of these relationships. Such understanding
holds substantial implications for informed decision making and predictive analyses,
particularly within renewable energy and meteorology.
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(a) Site A (b) Site B

(c) Site C

Figure 5. Correlation analysis of wind direction parameter with missing data.

3. Proposed Methodology

The proposed methodology outlines a step-by-step framework for predicting missing
wind parameters and power generation within the Jeju Island wind farm context across
different sites, as shown in Figure 6. This approach incorporates well-defined techniques to
offer unique insights into predictive modelling and performance assessment. The initial
step involves data collection and pre-processing. Specifically, the wind power, speed,
and direction datasets from the Jeju Island wind farm at Sites A, B, and C are collected. This
dataset provides the implementation for subsequent analysis and predictive modelling.
Next, the correlation analysis is conducted with missing input data. This step considers two
scenarios: missing wind speed data and missing wind direction data. The correlation anal-
ysis examines the complex relationships between wind speed, direction, and power under
both scenarios. This analysis provides insights into how these parameters influence wind
power generation. The detailed outcomes of this analysis are depicted in Figures 4 and 5.

In the third step of the process, an LSTM model is used to forecast the missing
wind speed and direction data. The process begins with data normalisation within the
range of −1 to +1, followed by the compilation of time-series data. The dataset is then
partitioned into distinct subsets for training and testing. This step involves building and
training the LSTM model, progressively improving its predictive capabilities by learning
from the data. Continuous evaluation ensures that the model reaches the desired level of
accuracy within the allocated number of training iterations. If this level is not achieved,
adjustments are made through loss calculations and model updates. Once the desired level
of proficiency is attained, the model is used to forecast missing wind speed and direction
data. These predicted data are then compared against actual data for comprehensive
analysis. The model’s accuracy is evaluated through performance metrics such as the
RMSE and visualisation of original and forecast waveforms.
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Figure 6. Flowchart of the proposed methodology.

The final stages of the methodology focus on predicting wind power using the FONN
model. The process begins with developing a fractional-order arctan activation function
using fractional derivatives. This newly developed function enhances the predictive capa-
bilities of the FONN model. Subsequently, the FONN model is designed by integrating
the developed fractional-order arctan function, rendering it adept at accurate wind power
prediction. A precise parametrization of the model follows, encompassing the determi-
nation of the number of hidden layers and neurons. The FONN model is then iteratively
trained to enhance its predictive performance. If necessary, model parameters are adjusted
and retrained, ensuring continuous optimisation. A main evaluation criterion is whether
the model achieves improved accuracy. Finally, the trained model is tested using a test
dataset, and its performance is evaluated in terms of the coefficient of determination (R2)
and MSE, with comparisons made against a conventional neural network model. This
comprehensive methodology offers a structured approach to predicting wind power and
leveraging predictive modelling techniques for renewable energy applications. As shown
in Figure 6 and as explained earlier, the first part of the methodology is the LSTM model’s
development for forecasting missing input data of wind speed and direction. The next part
presents the FONN model that is used to make predictions of the generated wind power.

3.1. LSTM Model

The LSTM model’s architecture for forecasting 20% of missing input data of wind
speed and direction is demonstrated in Figure 7. The input to the LSTM consists of three
time-steps xt−1, xt, and xt+1. The architecture includes memory blocks comprising each
memory cell, input, forget, and output dates, which will be explained below.
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Figure 7. Architecture of LSTM model for forecasting missing input time-series data.

In the forget gate, ft is computed using the sigmoid function; σ(·) determines the past
information to forget:

ft = σ(w f · [ht−1, xt] + b f ), (1)

In the above equation, ht−1, w f , and b f represent the previous cell’s output, and the
gate’s weight and bias, respectively. The sigmoid function σ(·) output varies between 0
and 1, representing complete forgetting at 0 and full retention at 1.

As for the input gate it, it is also calculated based on the information to be stored in
the cell state:

it = σ(wi.[ht−1, xt] + bi). (2)

This gate’s “tanh” layer adds weight to the cell state. The update equation for the
memory cell, represented as C̃t, is

C̃t = tanh(wC.[ht−1, xt] + bC), (3)

Here , wC and bC denote the memory cell’s weight and bias.
Using the output gate Ot to determine the output information from the current cell, it

can be calculated as
Ot = σ(wO.[ht−1, xt] + bO). (4)

The current cell’s output (ht) will be calculated as

ht = Ot × tanh(Ct). (5)

where Ct is the cell state and Ot is the output gate.
Two critical factors that influence the performance of an LSTM model are input delays

and the number of hidden units. An LSTM network with 10 hidden units was trained
to achieve adequate performance using a trial-and-error approach. Incomplete learning,
limited generalisation, and underfitting can occur if the LSTM model is not sufficiently
trained. Incomplete learning can cause suboptimal performance because the model fails
to capture all underlying patterns. Limited generalisation means that the model needs to
extend its predictions beyond the training data, leading to poor performance on missing
data. On the other hand, underfitting causes poor performance on both training and test
datasets. However, overtraining is unlikely due to the need for more learning from the
data. Therefore, adequate training is crucial for accurate predictions. To achieve this,
the Adam solver was introduced with variable learning and dropout rates of 0.005 and 0.2,
respectively, over 1000 epochs.

3.2. FONN Model

The FONN model’s architecture, designed to predict generated wind power using
forecast missing wind direction and speed data with an LSTM model, is illustrated in
Figure 8 [42]. In this configuration, there are 2 input nodes, 30 hidden nodes, and 1 output
node, and their ratios are 2:30:1. The number of nodes in a hidden layer plays a significant
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role in determining the predictive capabilities of a neural network. Too few nodes may
result in underfitting, while too many can lead to overfitting. In this case, a trial-and-
error approach was used to determine that a hidden layer with 30 nodes would achieve
satisfactory results. Within the architecture, bias values at the hidden and output layers
were represented as “b”, with values [30, 1]. For the output layer, the activation function
selected was “Purelin”. In contrast, the hidden layers’ activation function “F” employed can
vary between developed and standard tangential functions. This variation was assessed to
determine the model’s performance. For the training algorithm, the Levenberg–Marquardt
algorithm was selected. This neural network training algorithm helps to fine-tune the
model’s parameters effectively. The model’s performance evaluation was conducted using
the performance measures outlined in the subsequent section, ensuring a comprehensive
assessment of its predictive capabilities.
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Figure 8. FONN model’s architecture for generated wind power prediction.

3.3. Fractional-Order Tangential Activation Functions

The tansig activation function, also known as the hyperbolic tangent sigmoid, is com-
monly used in hidden layers for classification tasks [45]. This function maps input values
from the range of (−∞,+∞) to (−1, 1). Its mathematical expression is given below [42]:

f (x) =
2

1 + e−2x − 1. (6)

The tansig function is known to have a higher derivative compared to the sigmoid
function. Additionally, its output mean is 0 when the average input values approach 0.
These properties make the tansig function a valuable tool for training neural networks, as it
can significantly improve convergence rates and expedite the training process. However,
similar to the sigmoid function, tansig is also prone to the vanishing gradient problem [46].
Incorporating fractional-order derivatives into the tansig function to introduce a non-linear
component can address the gradient problem. The fractional ordering of tansig can be
derived by expressing Equation (6) using the MacLaurin series expansion as follows:

f (x) =
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n−1. (7)
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The fractional ordering of the tansig activation function can be computed for an order
α ∈ (0, 0.9) as follows [42]:

Dα f (x) = g(x) = Dα
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n−1,

g(x) =
∞

∑
n=0

4n(4n − 1)B2n(2n − 1)!
(2n)!Γ(2n − α)

x2n−1−α.
(8)

Figure 9a shows the response of the fractional-order derivative of the tansig activation
function for various values of α, as compared to the behaviour of the regular tansig function.
The conventional tansig function has an S-shaped curve, similar to the sigmoid function and
its variations. On the other hand, the fractional-order derivative of tansig has an S-shaped
curve for lower values of α. However, for higher values of α, the function becomes non-
linear due to the fractional ordering, which can help solve the vanishing gradient problem.
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Figure 9. Response of FONN activation functions at hidden layer.

The hard tansig function is a commonly used version of the tansig activation function
in deep learning applications. Unlike the tansig function, the hard tansig function is
more efficient and computationally cheaper. It has a range of [−1, 1] and is defined as
follows [45,47]:
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f (x) =

⎧⎪⎨⎪⎩
−1 if x < −1,
x if − 1 ≤ x ≤ 1,
1 if x > 1.

(9)

The fractional-order derivative of the hard tansig function can be computed for an
order α ∈ (0, 0.9) as follows [42]:

Dα f (x) = g(x) = Dα

⎧⎪⎨⎪⎩
−1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1

,

g(x) =

⎧⎪⎪⎨⎪⎪⎩
−1

Γ(1−α)
x−α if x < −1

1
Γ(2−α)

x1−α if − 1 ≤ x ≤ 1
1

Γ(1−α)
x−α if x > 1

.

(10)

The comparison shown in Figure 9b highlights the response of the fractional-order
derivative of the hard tansig activation function for different values of α orders compared to
the conventional derivative. The analysis reveals that the functions take the α value derivative
in specific intervals while exhibiting zero gradients in others. This aspect indicates that the
vanishing gradient problem is less likely to occur in the fractional-order derivative of the hard
tansig function as long as most of these units operate within the periods when the gradient is
1. Moreover, the analysis suggests that the fractional ordering has introduced non-linearity
into the function, which will help resolve the vanishing gradient problem.

The LiSHT (linearly scaled hyperbolic tangent) is a popular activation function used
in deep learning to address the “dead ReLU” issue. When the ReLU function is given
negative input, it can become inactive, resulting in a zero gradient that prevents weight
updates during backpropagation. As a result, to solve this problem, the LiSHT function
multiplies the input with the element-wise hyperbolic tangent output. Additionally, since
the hyperbolic tangent function has a range of [−1, 1], negative gradients are not eliminated
like with ReLU functions, which helps maintain the optimal learning for training deep
neural networks. The LiSHT function can be computed by multiplying the tansig function
with its input, as shown in [47].

f (x) = x · δ(x), (11)

The following expression defines the tansig function δ(x), which can be found in
Equation (6):

δ(x) =
2

1 + e−2x − 1. (12)

The LiSHT function in Equation (11) can be expressed using a MacLaurin series
expansion as follows:

f (x) =
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n. (13)

The equation above enables computation of the fractional ordering of the LiSHT activation
function for an order α ∈ (0, 0.9) as follows [42]:

Dα f (x) = g(x) = Dα
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n,

g(x) =
∞

∑
n=0

4n(4n − 1)B2nΓ(2n + 1)
(2n)!Γ(2n − α + 1)

x2n−α.
(14)

The response of the fractional-order derivative of the LiSHT activation function for
various α orders, compared with the conventional one, is shown in Figure 9c. The response
indicates that the conventional LiSHT produces a positive output response. For lower α
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values, the fractional ordering of LiSHT achieves similar behaviour. However, the response
shows fractional ordering introduces more significant non-linearity than other activation
functions for higher α values.

Additionally, the conventional arctan activation function is employed at the hidden
layer in neural networks. However, its non-monotonic nature can pose optimisation
challenges. Mathematically, the arctan function is expressed as [48]

f (x) = tan−1(x). (15)

This equation can be expanded using the MacLaurin series as follows:

f (x) =
∞

∑
n=0

(−1)n

2n + 1
x2n+1. (16)

The arctan function is enhanced by introducing fractional-order derivatives to tackle
these challenges, improving its smoothness and optimisation potential within the FONN
model. The fractional-order derivative of the arctan activation function for an order
α ∈ (0, 0.9) can be computed as [49]

Dα f (x) = g(x) = Dα
∞

∑
n=0

(−1)n

2n + 1
x2n+1,

g(x) =
∞

∑
n=0

(−1)nΓ(2n + 3)
(2n + 1)Γ(2n + 2 − α)

x2n+1−α.
(17)

This enhancement results in smoother derivatives for the fractional-order arctan function,
facilitating more effective gradient-based optimisation, which makes it better at capturing
complex dynamics and long-range dependencies in wind power data, and its response at
different α values is shown in Figure 9d. Compared to conventional functions, fractal activation
functions like fractional-order arctan provide more flexibility in modelling non-linear systems.
They are better at adapting to intricate patterns in renewable energy data.

Furthermore, the Purelin activation function is employed at the networks’ output
layer. It is a linear function that directly relates output to input, giving a response of kx for
an input of x. The response of Purelin is shown in Figure 10. For k = 1, it functions as an
identity. This function, with a hyperparameter k, is described as [50]

f (x) = kx. (18)
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Figure 10. Response of Purelin activation function at output layer.
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3.4. Performance Metrics

The MSE and RMSE are widely recognised performance metrics that assess the dif-
ference between predicted and actual values. Extensive studies have demonstrated their
effectiveness as error measures in numerical prediction tasks [51,52]. The MSE is computed
between actual (Yi) and predicted (Ŷi) as follows:

MSE =
1
N

N

∑
i=1

(Yi − Ŷi)
2. (19)

The RMSE provides an interpretable measure of the average forecasting error, which
is computed as follows:

RMSE =
√

MSE. (20)

Additionally, the coefficient of determination, denoted as R2, is frequently used to show
the predictive capability of forecasting methods in fitting actual data (Yi), calculated as [52]

R2 = 1 − ∑N
i=1(Yi − Ŷi)

2

∑N
i=1(Yi − Yi)2

. (21)

where Y signifies the average of the predicted values. R2 yields values ranging from 0
(indicating a poor match) to 1 (representing a perfect fit).

In all the above equations, ’N’ represents the sample size and Ŷi denotes predicted
values. These metrics provide valuable insights into numerical forecasting approaches’
accuracy and predictive performance.

4. Results and Discussion

This section evaluates the LSTM model’s accuracy in forecasting missing wind speed
and direction data and the FONN model’s performance in predicting wind power using
the forecast data of missing wind speed and direction data in the Jeju Island wind farm for
all sites under different cases.

4.1. Performance of LSTM Model

In Jeju Island’s wind farm, 20% of wind speed and direction data are missing at
three sites (A, B, and C). This missing data can negatively impact the accuracy of power
predictions, operational planning, efficiency, safety, and overall system reliability. An LSTM
model has been developed to forecast missing wind speed and direction data to address the
issue, as mentioned in Section 3 and compared with non-linear autoregressive (NAR) [53],
and autoregressive integrated moving average (ARIMA) [54] models. The LSTM model has
one input, 200 hidden units, and one output. The model uses learning and dropout rates of
0.005 and 0.2, respectively, for 1000 iterations. Table 2 displays RMSE values for various
models used in forecasting missing wind speed and direction data at three sites. The table
compares the performance of three different forecasting models: LSTM, NAR, and ARIMA.
Based on Table 2, the performance analysis of various forecasting models is as follows:

• The LSTM model exhibits the lowest RMSE values compared to the NAR and ARIMA
models for forecasting missing wind speed data across all sites.

• At Site A, the LSTM model achieved the lowest RMSE value of 0.16, followed by NAR
with an RMSE of 0.353 and ARIMA with an RMSE of 0.583.

• Similarly, the LSTM model at Site B outperformed the other models with an RMSE of
0.185, while the NAR and ARIMA models showed higher RMSE values of 0.297 and
0.458, respectively.

• Finally, at Site C, the LSTM model exhibited the lowest RMSE of 0.112, followed by
ARIMA with an RMSE of 0.387 and NAR with the highest RMSE of 0.457.

• The following analysis is related to missing wind direction data forecasting, where the
performance of the models varies across different sites.
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• At Site A, the LSTM model had the lowest RMSE of 0.18, followed by ARIMA with an
RMSE of 0.386 and NAR with the highest RMSE of 0.442.

• Similarly, at Site B, the LSTM model performed best with an RMSE of 0.425, followed
by NAR with an RMSE of 0.185, and ARIMA with the highest RMSE of 0.572.

• Finally, at Site C, the NAR model had the lowest RMSE of 0.395, followed by LSTM
with an RMSE of 0.126, and ARIMA with the highest RMSE of 0.454.

Table 2. Performance comparison of various forecasting models for missing data of wind speed and
direction at different sites.

Model Site
Wind Speed (m/s) Wind Direction (deg)

RMSE RMSE

LSTM

Site A 0.18 0.16

Site B 0.425 0.185

Site C 0.112 0.126

NAR

Site A 0.353 0.442

Site B 0.297 0.185

Site C 0.457 0.395

ARIMA

Site A 0.583 0.386

Site B 0.458 0.572

Site C 0.387 0.454

The results show that the LSTM model performs better than the NAR and ARIMA
models in forecasting wind speed and wind direction missing data across different sites.
However, the performance may vary depending on the specific site and the nature of the
wind data. Figures 11 and 12 depict the actual wind speed and direction and those forecast
by the LSTM model. Further, the numerical values in Table 2 indicate the model’s best
performance, with RMSEs of around 0.11 and 0.12, respectively.
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Figure 11. Actual and forecast wind speed data at different sites.
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Figure 12. Actual and forecast wind direction data at different sites.

4.2. Performance of FONN Model

This section presents the FONN model’s performance in predicting wind power using
the forecast missing wind speed and direction data with the LSTM model at different sites.
As per the previous section, the LSTM model showed the best performance among the
forecasting models. There are two case studies considered for predicting wind power.
The first case study involves predicting generated wind power using wind direction data
and forecast missing wind speed data. The second case study presents generated wind
power using wind speed data and forecast missing wind direction data.

4.2.1. Case Study 1

As mentioned, a FONN model with a single hidden layer was used in the first case
study, as depicted in Figure 8. This neural network predicts wind power using wind
direction data and forecasts missing wind speed data. The architecture comprises 2 nodes
in the input layer, 30 in the hidden layer, and 1 in the output layer. The activation function
“Purelin” was chosen for the network’s output layer. In contrast, the hidden layer’s acti-
vation function “F” varied between conventional and developed tangential functions to
evaluate the performance of the FONN model in terms of R2 and MSE. The analysis of the
performance of the activation function is given in Table 3, based on the results obtained,
as follows.

The following analysis was conducted to determine the accuracy of different activation
functions on Site A during the training and testing phases. The results indicate that the
fractional arctan function had the highest accuracy, with R2 values of 0.9749 and 0.9831
during the training and testing phases, respectively, with MSE values of 0.0205 and 0.0142.
Similarly, the fractional hard tansig function performed the best, with R2 values of 0.9263
and 0.9369 and MSE values of 0.0424 and 0.0397 during the training and testing phases,
respectively. The hard tansig function also performed well, with R2 values of 0.8954 and
0.9075 in the training and testing phases, respectively, and an MSE value of 0.0521 in both
phases. On the other hand, the conventional tansig function had the lowest accuracy, with
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R2 values of 0.8578 and 0.8642 during the training and testing phases, respectively, and
MSE values of 0.0753 and 0.0764, respectively.

At Site B, the fractional tansig function performed the best, with R2 values of 0.9428
and 0.9497 during training and testing phases, respectively, and MSE values of 0.0534
and 0.0529. The hard tansig function also performed well, with R2 values of 0.9489 and
0.9517 during the training and testing phases, respectively, and MSE values of 0.0583 and
0.0578, respectively. On the other hand, the worst-performing function for Site B was
the conventional tansig function, with R2 values of 0.9328 and 0.9436 in the training and
testing phases, respectively, and MSE values of 0.0662 and 0.0652, respectively. Moreover,
the fractional hard tansig function performed better during the training and testing phases,
with R2 values of 0.9543 and 0.9609 and MSE values of 0.0464 and 0.0432, respectively.
The conventional LiSHT function had R2 values of 0.9532 and 0.9584 and MSE values
of 0.0428 and 0.0414 during the training and testing phases, respectively. The fractional
LiSHT function performed better, with R2 values of 0.9572 and 0.9621 and MSE values
of 0.0399 and 0.0386 during the training and testing phases, respectively. For the highest
accuracy, the fractional arctan function proved to be the best option, with R2 values of
0.9929 and 0.9952 in the training and testing phases, respectively, and MSE values of 0.0046
and 0.0032, respectively. Similarly, the conventional arctan function also performed well,
with R2 values of 0.9901 and 0.9948 during the training and testing phases, respectively,
and MSE values of 0.0063 and 0.0035, respectively.

For Site C, the fractional tansig function performed better than the conventional
tansig function, with R2 values of 0.8931 and 0.9026 and MSE values of 0.0742 and 0.0629
during the training and testing phases, respectively. Similarly, the fractional hard tansig
function performed better than the conventional hard tansig function, with R2 values of
0.9035 and 0.9163 and MSE values of 0.0598 and 0.0586 during the training and testing
phases, respectively. For the LiSHT function, the fractional LiSHT function performed
slightly better than the conventional LiSHT function, with R2 values of 0.8864 and 0.8973,
and MSE values of 0.0752 and 0.0745 during the training and testing phases, respectively.
The highest accuracy was achieved using the fractional arctan function, with R2 values
of 0.9573 and 0.9635 and MSE values of 0.0123 and 0.0115 during the training and testing
phases, respectively. The conventional arctan function also performed well, with R2 values
of 0.9469 and 0.9529 and MSE values of 0.0158 and 0.0134 during the training and testing
phases, respectively.

Therefore, from the results across all the sites shown in Table 3, the FONN model’s
best performance with the conventional arctan function is depicted in Figure 13 and the
fractional arctan function is shown in Figure 14 at the hidden layer. The neural network’s
performance varied across sites and activation functions. The developed arctan arctan
function provided improved results compared to other functions, reflected in higher R2

values and lower MSE values for training and testing across different sites.

4.2.2. Case Study 2

The following analysis presents the second case study, which uses the same network
as the previous case, with an identical node count and activation functions. However, this
network uses wind speed data and forecast wind direction data as inputs to predict the
generated wind power. The obtained results are shown in Table 4, and the analysis of the
performance of the activation functions at the three sites is as follows.

Table 4 shows that conventional and fractional functions performed well across all the
sites during the training and testing phases. Among the conventional functions, hard tansig
and arctan outperformed the others in terms of R2 and MSE values during both training and
testing phases. On the other hand, the fractional function performed better overall, with higher
R2 values and lower MSE values than the corresponding conventional functions. For instance,
for Site A, arctan had the highest R2 value of 0.9898 and the lowest MSE value of 0.0081 for
training, while for testing, it had the highest R2 value of 0.9931 and the lowest MSE value
of 0.0059. Similarly, the fractional arctan function had the highest R2 value of 0.9899 and the
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lowest MSE value of 0.0081 for training, while for testing, it had the highest R2 value of 0.9946
and the lowest MSE value of 0.0048. These values indicate that arctan and its corresponding
fractional function were the best-performing functions for Site A. The second-best performing
function for Site A was hard tansig and its corresponding fractional function. For training,
hard tansig had the highest R2 value of 0.9264 and the lowest MSE value of 0.0372, while for
testing, it had the highest R2 value of 0.9378 and the lowest MSE value of 0.0346. Similarly,
the fractional hard tansig function had the highest R2 value of 0.9726 and the lowest MSE
value of 0.0218 for training, while for testing, it had the highest R2 value of 0.9832 and the
lowest MSE value of 0.0169. On the other hand, the tansig function had the lowest R2 value of
0.8973 and the highest MSE value of 0.0621 during training. Similarly, during testing, it had
the lowest R2 value of 0.9043 and the highest MSE value of 0.0594. Similarly, the fractional
tansig function had the lowest R2 value of 0.9264 and the highest MSE value of 0.0519 during
training, while it had the lowest R2 value of 0.9329 and the highest MSE value of 0.0497 when
tested. These values indicate that tansig and its corresponding fractional function were the
worst-performing functions at Site A.
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Figure 13. Performance of conventional neural network model during training and testing with
forecast missing wind speed.

At Site B, the activation function arctan performed the best in both training and testing
phases, with R² values of 0.9826 and 0.9875, respectively, and MSE values of 0.0129 and
0.0094, respectively. The arctan arctan function also performed well, with R² values of
0.9835 and 0.9867 and MSE values of 0.0124 and 0.0094, respectively. The best-performing
activation function was arctan hard tansig, with R² values of 0.8864 and 0.8949 in the
training and testing phases, respectively, and MSE values of 0.0682 and 0.0617, respectively.
The tansig and LiSHT activation functions performed well but not as well as the arctan and
arctan hard tansig functions. In conclusion, the arctan and arctan hard tansig activation
functions performed the best for Site B, with arctan being slightly better regarding the
R² value. Similarly, for Site C, the activation function arctan performed the best in both
training and testing phases, with R² values of 0.9793 and 0.9866, respectively, and MSE

168



Fractal Fract. 2024, 8, 149

values of 0.0085 and 0.0054, respectively. The arctan arctan function also performed well,
with R² values of 0.9816 and 0.9865 and MSE values of 0.0076 and 0.0052, respectively.
The second-best-performing activation function was arctan hard tansig, with R² values of
0.9273 and 0.9526 in the training and testing phases, respectively, and MSE values of 0.0341
and 0.0252, respectively. The tansig and LiSHT activation functions also performed well
but not as well as the arctan and arctan hard tansig functions. Thus, the arctan and arctan
hard tansig activation functions performed the best for Site C, with arctan being slightly
better regarding the R² value. The worst-performing activation function was tansig for both
conventional and fractional functions.
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Figure 14. Performance of FONN model with forecast missing wind speed.

Table 3. Performance comparison of different functions in training and testing phases for various sites
under case study 1.

Site Conventional
Function

Training Testing Fractional
Function

Training Testing

R2 MSE R2 MSE R2 MSE R2 MSE

Site A

Tansig 0.8578 0.0753 0.8642 0.0764 Tansig 0.8739 0.0628 0.8864 0.0612

Hard tansig 0.8954 0.0521 0.9075 0.0516 Hard tansig 0.9263 0.0424 0.9369 0.0397

LiSHT 0.8749 0.0683 0.8873 0.0621 LiSHT 0.9025 0.0612 0.9173 0.0598

Arctan 0.9727 0.0227 0.9733 0.0207 Arctan 0.9749 0.0205 0.9831 0.0142

Site B

Tansig 0.9328 0.0662 0.9436 0.0652 Tansig 0.9428 0.0534 0.9497 0.0529

Hard tansig 0.9489 0.0583 0.9517 0.0578 Hard tansig 0.9543 0.0464 0.9609 0.0432

LiSHT 0.9532 0.0428 0.9584 0.0414 LiSHT 0.9572 0.0399 0.9621 0.0386

Arctan 0.9901 0.0063 0.9948 0.0035 Arctan 0.9929 0.0046 0.9952 0.0032

Site C

Tansig 0.8216 0.0853 0.8362 0.0817 Tansig 0.8931 0.0742 0.9026 0.0629

Hard tansig 0.8453 0.0732 0.8564 0.0695 Hard tansig 0.9035 0.0598 0.9163 0.0586

LiSHT 0.8762 0.0789 0.8758 0.0778 LiSHT 0.8864 0.0752 0.8973 0.0745

Arctan 0.9469 0.0158 0.9529 0.0134 Arctan 0.9573 0.0123 0.9635 0.0115
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Table 4. Performance comparison of different functions in training and testing phases for various sites
under case study 2.

Site Conventional
Function

Training Testing Fractional
Function

Training Testing

R2 MSE R2 MSE R2 MSE R2 MSE

Site A

Tansig 0.8973 0.0621 0.9043 0.0594 Tansig 0.9264 0.0519 0.9329 0.0497

Hard tansig 0.9264 0.0372 0.9378 0.0346 Hard tansig 0.9726 0.0218 0.9832 0.0169

LiSHT 0.9163 0.0583 0.9289 0.0542 LiSHT 0.9517 0.0487 0.9619 0.0453

Arctan 0.9898 0.0081 0.9931 0.0059 Arctan 0.9899 0.0081 0.9946 0.0048

Site B

Tansig 0.8245 0.0982 0.8463 0.0968 Tansig 0.8562 0.0841 0.8678 0.0832

Hard tansig 0.8674 0.0721 0.8689 0.0708 Hard tansig 0.8864 0.0682 0.8949 0.0617

LiSHT 0.8462 0.0819 0.8573 0.0798 LiSHT 0.8693 0.0739 0.8715 0.0716

Arctan 0.9826 0.0129 0.9875 0.0094 Arctan 0.9835 0.0124 0.9867 0.0094

Site C

Tansig 0.9041 0.0528 0.9146 0.0512 Tansig 0.9317 0.0425 0.9462 0.0419

Hard tansig 0.9089 0.0481 0.9163 0.0479 Hard tansig 0.9273 0.0341 0.9526 0.0252

LiSHT 0.8932 0.0514 0.9023 0.0506 LiSHT 0.9172 0.0459 0.9251 0.0445

Arctan 0.9793 0.0085 0.9866 0.0054 Arctan 0.9816 0.0076 0.9865 0.0052

Therefore, the results presented in Table 4, the best performance of the FONN model
with the conventional arctan function, is shown in Figure 15, and the developed arctan arctan
activation function is depicted in Figure 16 at the hidden layer during training and testing
at all three sites. The conventional arctan and the developed arctan arctan functions exhibit
strong predictive abilities compared to other functions at all three sites. Minor variations
in the R2 and MSE values demonstrate the consistent and dependable performance of both
functions for predicting generated wind power using the provided input data.
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Figure 15. Performance of conventional neural network model during training and testing with
forecast missing wind direction.
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Figure 16. Performance of FONN model with forecast missing wind direction.

The results in both case studies compared the performance of the arctan tangential
functions and the conventional tangential functions in predicting wind power across
various sites. The arctan arctan function consistently achieved higher R2 values and
lower MSE values than the other functions, indicating better predictive capabilities of the
FONN model. These findings have important implications for fields that rely on predictive
modelling, such as finance, economics, and engineering.

5. Conclusions

A hybrid approach combining LSTMs and FONNs has been presented in this paper to
forecast data missing from wind parameters and predict generated wind power across all
the sites in the Jeju Island wind farm. An LSTM model was employed to forecast missing
wind speed and direction data, obtaining RMSE values of approximately 0.11 and 0.12,
respectively. In addition, the FONN model was used to predict wind power with forecast
missing wind parameters data through two case studies. In the first case, using wind
direction and forecast wind speed data, the developed arctan arctan activation function
outperformed the conventional arctan function in the neural network, with high R2 and
low MSE values, around 0.97 and 0.003, respectively, during training and testing. Similarly,
both activation functions exhibited strong predictive capabilities in predicting wind power
using wind speed. During training and testing, the forecast wind direction in the second
case achieved high R2 and low MSE values, around 0.98 and 0.004, respectively. The results
highlight the potential of the developed arctan arctan function, which consistently proved
its effectiveness in enhancing predictive capabilities compared to the conventional arctan
function and among all the tangential functions in both case studies. The study provides
valuable insights into predicting generated wind power and fills gaps in missing data,
demonstrating the potential of advanced neural networks in renewable energy applications.
The developed arctan tangential activation functions have improved predictive capabilities
compared to the conventional tangential functions, but their increased complexity may
limit their practical implementation. In future work, there is a possibility of expanding the
analysis carried out on fractional activation functions at α = 0.1 to determine the optimal α
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value. This extension of α could potentially increase the predictive accuracy of power in
wind farms.
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Abstract: Car-like mobile robots (CLMRs) are extensively utilized in various intricate scenarios
owing to their exceptional maneuverability, stability, and adaptability, in which path planning is an
important technical basis for their autonomous navigation. However, path planning methods are
prone to inefficiently generate unsmooth paths in narrow and large-size scenes, especially considering
the chassis model complexity of CLMRs with suspension. To this end, instead of traditional path
planning based on an integer order model, this paper proposes fractional-order enhanced path
planning using an improved Ant Colony Optimization (ACO) for CLMRs with suspension, which
can obtain smooth and efficient paths in narrow and large-size scenes. On one hand, to improve
the accuracy of the kinematic model construction of CLMRs with suspension, an accurate fractional-
order-based kinematic modelling method is proposed, which considers the dynamic adjustment of
the angle constraints. On the other hand, an improved ACO-based path planning method using
fractional-order models is introduced by adopting a global multifactorial heuristic function with
dynamic angle constraints, adaptive pheromone adjustment, and fractional-order state-transfer
models, which avoids easily falling into a local optimum and unsmooth problem in a narrow space
while increasing the search speed and success rate in large-scale scenes. Finally, the proposed
method’s effectiveness is validated in both large-scale and narrow scenes, confirming its capability to
handle various challenging scenarios.

Keywords: car-like mobile robot; path planning; ant colony optimization; fractional-order; narrow
and large-size scene

1. Introduction

Path planning is a critical technology in the field of mobile robotics, enabling a mobile
robot to efficiently navigate from its starting point to a designated target while circum-
venting obstacles within a given environment. It serves as a fundamental component of
autonomous navigation and intelligent decision-making in mobile robot systems [1–3].
Meanwhile, Car-Like Mobile Robots (CLMRs) play an important role in the fields of ware-
housing and logistics, inspection, and distribution, etc. [4–6], and their chassis is equipped
with a steering mechanism and suspension system [7], which makes CLMRs have good
load capacity, passability, and flexibility. CLMRs are commonly utilized in environments
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characterized by a combination of large-scale areas and narrow spaces. Examples include
neighborhoods with narrow alleys, dynamic manufacturing plants, or wild landscapes with
dense vegetation [8,9]. These types of scenes impose greater demands on the path planning
capabilities of CLMRs, requiring them to efficiently and accurately plan smooth paths.

Recently, path planning methods have emerged as a highly prominent area of research,
captivating the attention of scholars worldwide, and researchers have extensively explored
and developed innovative techniques across a diverse range of scenarios and for various
types of robots [10–12]. In general, research on path planning usually focuses on two major
aspects: the construction of the robot chassis model and the optimization of path planning
methods. Fortunately, the fractional-order method is commonly used for modelling and
optimization, which is a mathematical tool dealing with non-integer order calculus [13–16].
It extends the traditional integer order calculus by allowing derivatives or integrals of
non-integer orders to exist in the model. Fractional-order methods have gained significant
attention in capturing the behavior of complex nonlinear systems. These methods offer
a more accurate representation of system dynamics by incorporating fractional-order
differential equations, which enable the modelling of properties like nonlocal dependence
and nonsmooth behavior, allowing fractional-order models to better fit the behavior of real
systems and provide more accurate predictions and analyses [17–20]. Therefore, this paper
aims to utilize the fractional-order approach to extend the conventional path planning
method based on an integer-order model, to devise a path planning scheme that is not only
smoother but also more efficient.

In terms of robot chassis model construction, it can usually be categorized into kinetic
model and kinematic model construction [21]. In path planning, kinematic model construc-
tion is widely used in mobile robot path planning because it is efficient and practical [22],
unless robots involving special loads or structures need to consider kinetic models [23].
Traditional kinematic model construction assumes that the steering and drive mechanisms
of the vehicle are rigid bodies and uses an integer order approach for model construc-
tion [24]. This approach simplifies the modelling and computational process but also poses
the problem that once the structure and parameters of the robot chassis have been deter-
mined, the angle constraints are fixed. However, for the kinematic modelling of a CLMR,
the traditional approach is not applicable because CLMRs are usually equipped with
shock-absorbing suspensions on the drive and steering mechanisms to enhance passability
and stability [7]. This leads to changes in the chassis structure when steering or crossing
obstacles, which makes the angle constraints in the kinematic model time-varying. Only
by more accurately describing the time-varying angle constraints can the CLMR’s ability
to move in a narrow space be improved. The accurate description of time-varying sys-
tems using fractional-order methods offers a valuable opportunity to enhance the CLMR’s
maneuverability in narrow spaces. In this regard, this paper aims to make a significant
contribution by incorporating dynamic factors, such as chassis suspension, into the precise
construction of the fractional-order kinematic model.

There are many different path planning methods available [25], mainly including
graph-search-based methods (e.g., A* algorithm [26]), stochastic path planning methods
(e.g., Rapidly-Exploring Random Tree, RRT [27]), and optimization algorithms (e.g., Ant
Colony Optimization, ACO [28], and Genetic Algorithm, GA [29]). The above path planning
methods are usually used for global planning, but for dynamic obstacles, they are combined
with local planning in practical applications, such as dynamic window approaches [30].
Graph-search-based methods utilize a heuristic function to assess the priority of nodes
within a graph, enabling the identification of an optimal path by traversing the nodes. This
approach is known for its high search efficiency and accuracy, making it particularly suitable
for small-scale path planning problems. Besides, stochastic path planning methods employ
random sampling and tree expansion techniques to swiftly explore feasible paths and
gradually approach the desired goal position. These methods excel in high-dimensional
environments and complex terrains but are susceptible to planning failures in narrow
scenarios. Alternatively, optimization algorithms iteratively search for either the global
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optimal solution or a near-optimal solution through an optimization process [31]. These
algorithms aim to find the most optimized path by iteratively refining the solution. With the
advantages of a global search ability, complex scene adaptability and learning ability, ACO
has a strong solving ability in path planning problems and is widely used in real-world
scenarios [10].

A lot of good research has been done to use ACOs in a better way, and usually, their
efficiency and smoothing are the focus [32]. The pheromone concentration settings and
heuristic mechanisms of ACO are the classical means around the efficiency improvement
aspect. Liu et al. propose an enhanced heuristic mechanism for Ant Colony Optimiza-
tion (ACO) that incorporates adaptive pheromone concentration settings and a heuristic
mechanism with directional judgments, which increases the purposefulness of planned
paths and reduces turn times [33]. However, ACO usually realizes real-time planning
in a small search space, and its experimental scene is generally less than a 50 × 50 grid
map for algorithm verification [34], which still falls short of the demand for fine path
planning in actual large-scale application scenarios. Path smoothing techniques commonly
involve incorporating angle or path curvature constraints into the planning method and
utilizing spline interpolation to refine the path. For instance, Ali et al. introduce a Markov
decision process trajectory evaluation model that considers arc-length parameterization.
This model effectively filters and reduces the sharpness of global paths, thereby enhancing
path smoothness [35]. Tight constraints on steering angle or path curvature for the sake
of smoothing can limit the robot’s ability to move, especially in narrow spaces. Feng et al.
put forward a path planning algorithm based on immune ACO and B-spline interpolation,
which introduces a B-spline curve smoothing strategy based on the optimal solution to
make the obtained path shorter and smoother [36]. Nonetheless, in narrow environments,
the paths derived using spline interpolation are not necessarily usable, and they may collide
with obstacles. In light of large-scale and narrow environments, further investigation of
existing ACO algorithms is warranted. To address this, the integration of fractional-order
models in path planning holds promise due to their advantages, including flexible and
accurate parameter optimization as well as faster convergence. This paper aims to lever-
age fractional-order models to enhance path planning efficiency and smoothness, which
represents a key highlight of the research.

Overall, the path planning performance of CLMRs in large-scale and narrow envi-
ronments is still limited by inaccurate kinematic models as well as inefficient, insecure,
and unsmooth planning methods. To tackle the aforementioned challenges, this paper
presents fractional-order enhanced path planning for CLMRs in narrow and large-scale
environments, which combines the benefits of fractional-order modelling and optimization
techniques to enhance both the kinematic modelling of CLMRs and the ACO algorithm,
thereby improving the efficiency of path planning and achieving smoother paths compared
to traditional integer-order-based methods. The key contributions of this paper can be
summarized as follows:

(1) To enhance the accuracy of kinematic model construction for CLMRs equipped
with suspension systems, an innovative fractional-order-based kinematic modelling
method is proposed. This method takes into account the dynamic adjustment of angle
constraints to address the issue caused by the time-varying position of the steering
wheel’s virtual center due to suspension changes. By considering these constraints,
the proposed method improves the kinematic capabilities of CLMRs, especially in
limit steering states, which lays a solid foundation for subsequent efficient and smooth
path planning.

(2) To address the issue of unsmooth and inefficient planning paths in narrow and large-
scale scenes, an improved Ant Colony Optimization (ACO) based path planning
method that incorporates fractional-order models is presented, which overcomes the
limitations of traditional approaches by establishing a global multifactorial heuristic
function, utilizing dynamic angle constraints in fractional-order-based kinematic mod-
elling, incorporating adaptive pheromone adjustment rules, and adopting fractional-
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order descriptive state-transfer models. These enhancements enable the algorithm
to quickly acquire smooth paths and mitigate the problem of the algorithm getting
trapped in local optima in narrow spaces, ultimately enhancing the searching speed
and success rate of the algorithm in large-scale scenes.

(3) Several experiments are conducted in narrow and large-size sceneries, and the ef-
fectiveness of the proposed path planning method is proved by comparison with
advanced path planning methods.

The rest of this paper is organized as follows. In Section 2, system modelling and
problem formulation are described. Section 3 gives the accurate fractional-order-based
kinematic modeling of a CLMR. Then, improved ACO-based path planning using fractional-
order models is introduced in Section 4. Experimental results are provided in Section 5,
followed by the conclusions and future outlook in Section 6.

2. System Modelling and Problem Formulation

2.1. System Modelling

Constructing accurate kinematic models is essential as a prerequisite for effective path
planning. However, to improve the passability of CLMRs, it is insufficient to treat the
CLMR as a simple rigid structure. This is because the kinematic constraints imposed on
CLMRs during their movement can vary significantly depending on the specific structure
of its wheel system. As shown in Figure 1a,b, for CLMRs, limiting the minimum radius of
curvature has now become a mainstream method of constructing kinematic constraints,
and traditional kinematic models that do not consider suspension can be expressed in the
following form:

v2
x + v2

y − ρmaxω2 ≥ 0 (1)

vx sin θ − vy cos θ = 0 (2)

1
ρmax

=
1
l

tan(ϕmax) (3)

where vx and vy are the velocity components in the direction of the x- and y-axis in the
global coordinate system, respectively, ω is the angle velocity of the steering of the mobile
robot, ρmax refers to the maximum curvature of the running path of the mobile robot, l is the
axis distance of the robot, θ denotes the angle of the mobile robot in the global coordinate
system, and ϕmax is the maximum steering angle of the virtual wheel system.

However, the condition for the Equations (1)–(3) to hold is that the center of rotation
of the kinematic is on the extension of the rear wheels. As depicted in Figure 1c,d, the four
wheels of CLMRs are usually designed in independent suspension mode to ensure the
abilities of obstacle crossing and shock absorption. As a result, the center of the circle of the
turn is usually not on the extension line of the rear wheels, in which case the maximum
steering angle and the maximum curvature are variable quantities, and the constraints
of the robot need to be recalculated. Considering the one-to-one mapping relationship
between the robot’s direction angle and the path taken, the feasible path needs to take
into account the robot’s kinematic constraints. Therefore, in this paper, we will use the
fractional-order technique to construct a more accurate kinematic model for a CLMR with
suspension, which will be introduced in detail in Section 3.
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(a) (b) 

 
(c) (d) 

Figure 1. The kinematic model of CLMRs. (a) CLMR that does not consider suspension; (b) Traditional
kinematic model that does not consider suspension; (c) CLMR that considers suspension; (d) Actual
kinematic model that consider suspension.

2.2. Fractional-Order Modelling

Fractional-order calculus, with its rich mathematical properties and characteristics, is
an important tool for studying and analyzing complex systems. Considering that fractional
order has obvious advantages in processing and modelling real data in nonlinear systems,
it can be used in constructing complex kinematic models in path planning, and local char-
acteristic constraints more accurately, and thus close to the real situation. The commonly
used fractional-order definitions are the Grunwald–Letnikov definition, Riemann–Liouville
definition, and Caputo definition [17–20]. Among them, the Grunwald–Letnikov definition
provides an expression for the α − th derivative, which allows for the consideration of the
so-called short-memory principle. The Grunwald–Letnikov fractional derivative is based
on discrete data points, which transform the continuity of a function into a discrete differ-
ential form. Therefore, Grunwald–Letnikov fractional derivatives apply to discrete data.
This applies to the description of discrete path points in this article. Specifically, in defining
the fractional-order factor α > 0 and continuous functions f (t), we have the following:

Dα[ f (t)] = lim
h→0

1
hα

∞

∑
n=0

(−1)n
(

α
n

)
f (t − nh) (4)

where (
α
n

)
=

Γ(α + 1)
Γ(n + 1)Γ(α − n + 1)

=
α(α − 1)(α − 2) . . . (α − n + 1)

n!
(5)

where Dα(·) denotes the GL fractional derivative of order α, Γ(·) is the Gamma function, h
is the time step, and (α, n)T represents binomial coefficient.

3. Accurate Fractional-Order-Based Kinematic Modeling of CLMR

As illustrated in Figure 1c,d, the CLMRs can dampen the vibration and improve the
ability to cross the ditch by installing the suspension, which also leads to the unpredictability
of the steering angle during the cornering process. Based on the parameters of the damping
and hydraulic cylinders, the current steering angle constraints of the robot can be obtained,
which provides the kinematic constraints for path acquisition. The path acquired in this
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way can satisfy the obstacle avoidance while improving the tracking accuracy. To simplify
the calculation process, the steering wheel can be defined as a freewheel, i.e., the wheel can
rotate freely around the axle. In the calculation process, a uniform local coordinate system
is defined xpopyp, with the robot center point as the origin of the local coordinate system
and the direction perpendicular to the front of the vehicle as the x-axis. Then, the velocity
of the virtual wheel in the global coordinate system is defined as:[

vxp
vyp

]
=

[
(−xm sin θ − ym cos θ)ω + voxg
(xm cos θ − ym sin θ)ω + voyg

]
(6)

where, vxp and vyp are the velocities of the virtual wheel in the global coordinate system in
the x and y directions, respectively, xm and ym denote the coordinates of the virtual wheel
in the local coordinate system in the x and y directions, respectively, and voxg and voyg are
the velocity of the origin of the local coordinate system in the global coordinate system.
Further, the acceleration expression can be obtained as:

[ .
vxp.
vyp

]
=

⎡⎢⎢⎣
(−xm cos θ + ym sin θ)ω2+
(−xm sin θ − ym cos θ)

.
ω +

.
voxg

(−xm sin θ − ym cos θ)ω2+
(xm cos θ − ym sin θ)

.
ω +

.
voyg

⎤⎥⎥⎦ (7)

According to [37], it can be known that changes in the steering angle of the wheel
system can cause dynamic torque distribution. In non-rigid suspension structures, torque
fluctuation can cause wheel system displacement. From the torque distribution law, the
deformation of the suspension near the inner side of the arc is greater than that on the outer
side of the arc, resulting in a change of angle constraint. Fortunately, onboard sensors can
accurately capture the current state information during the CLMR’s movement, allowing
real-time constraint information to be calculated. Therefore, the variation of the virtual
wheel direction angle φc for the CLMR’s movement is calculated as:

φc = φm − θ
φm = arctan( xcm

ycm
)

(8)

Assuming that the posterior axis is fixed and parallel to the y-axis of the defined local
coordinate system, there is no change in the point of the posterior axis. Consider that the
velocity relation can be represented as:

v2 = v2
xp + v2

yp (9)

therefore, it can be concluded that:

xvω = vxp sin θ − vyp cos θ (10)

This leads to a general equation for the relationship between the CLMR’s attitude angle,
velocity, and position, and a general constraint equation for the first-order derivatives. The
relationship between the effects of velocity, attitude, and steering angle on path planning
should be further clarified considering that the robot moves along a curve at different
velocities. The running path (the planned path is obtained in the following section) is
defined as:

y = f (x) (11)

Next, the slopes at the virtual wheels are calculated and the offset of the wheel system
is taken into account. Conventional equations of kinematics do not correctly express
the correctness of the system’s kinematic process, and fractional-order models offer the
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possibility of accurate system modelling. Therefore, we derive the trajectory equations and
bring them into the above equation to obtain the following:

Dρθ =
1
xv

(sin θ − f ′(x))Dα(x) (12)

where α and ρ are predefined fractional-order operators.
The steering angle of the CLMR imposes a constraint on the maximum curvature of the

planned path, considering the dynamic characteristics of the CLMR’s kinematics. However,
directly calculating the curvature constraints proves challenging. From Equation (8), φm can
be obtained from onboard sensors. Therefore, calculating the real-time rate of θ becomes
the key to the solution. By combining Equations (11) and (12) we have the following:

Dρθ

Dα(x)
=

(sin θ − D1−α(x) f ′(x) cos θ)

x
(13)

and bringing Equation (7) into Equation (8), the corner constraint can be obtained as:

ϕmax = arctan

⎛⎝ (xm cos θ − ym sin θ) (sin θ−D1−α(x) f ′(x) cos θ)
x + f ′(x)

(−xm sin θ − ym cos θ) (sin θ−D1−α(x) f ′(x) cos θ)
x + 1

⎞⎠− θ (14)

Considering the fluctuation of suspension in different environments, fractional-order-
based kinematic modelling provides precise and dynamic angle constraints. This improves
the success rate of path planning for a CLMR in narrow and difficult-to-pass scenarios.

From Figure 1, the adjustment of the angular constraints mainly relies on the suspen-
sion adjustment of the wheel system in two degrees of freedom. However, through the
change of the wheel system structure, the maximum constraint angle is also changed. At
this point, the circular extension of the steering is not on the rear wheel system, which is
of greater relevance to the planning of the path considering the mapping of the direction
angle to the path. From Equation (8), it can be seen that the wheel system angle constraint
varies with the change of the wheel system angle of rotation and the initial calibration
position. For computational convenience, this paper focuses on the summation constraints
of the virtual wheel system to improve computational and planning efficiency. With the cal-
culation of the maximum constraint angle and the acquisition of the current steering angle
from the sensing module, we can calculate the change in the maximum constraint angle.

4. Improved ACO Based Path Planning Using Fractional-Order Model

The traditional ACO usually uses the path length as the heuristic function term when
solving the path planning problem; however, the environment faced during robot operation
is more complex. Path planning, as a key module of mobile robot operation, plays a vital
role in the safety and smoothness of robot operation. The pseudocode of the proposed ACO
method is shown in Algorithm 1. In the algorithm, lines 1 to 3 are the initialization phase
of the algorithm, which completes the initialization of the weight factors and pheromones.
Lines 4 to 20 are the iterative part of the algorithm. Specifically, line 6 gives the initial
position of the ant colony. Lines 8 to 16 are the ant colony search under the current iteration
cycle, and the next moment position of the ant is obtained by transferring the probability
model, recording the status of the ant colony, and determining the relationship with the
target point. After the completion of the current iteration loop, the pheromone values
τij(t + 1) and path optimums Lk for the scenario are updated. In Line 21, the optimal values
for each loop are compared and the optimal path Ln is selected.
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Algorithm 1 The pseudocode of the improved ACO.

1 /*Initialization*/
2 Initialize the parameters, including λ1 λ2 ϕ1 Ltr ε η β1 β2 β3
3 Calculate initialize pheromone matrix τij(0)
4 /*main Loop*/
5 While iteration number n does not arrive at the target Nmax do:
6 Place all ants at the start point;
7 /*inner loop*/
8 For k = 1 to K do

9 Calculate the pk
ij(t) using Formula (25) and confirm the next node

10 If Ant k reach the target point do
11 Goto step 15
12 Else

13 Goto step 9
14 End if

15 Select the optimal ant path for this round according to Equation (15)
16 End for

17 Update the τij(t + 1) by Formulas (23)–(25)
18 n = n + 1, k = 0
19 Select the optimal path Ln
20 End while

21 Return final optimal path Lk

To obtain a safe and feasible path, the safety, smoothness, and path distance of the path
need to be considered comprehensively, so the improved multi-factor heuristic function is
as follows:

J = ϕ1
{

λ1ω + λ2(D +
1
d
)

}
(15)

where J is the path planning heuristic function, ϕ1 refers to the heuristic function that
ensures the safe operation of the CLMR, λ1 and λ2 denote the weighting factors, respectively,
ωij(k) refers to the curvature smoothing factor, D(k) is the modified path heuristic function,
and d(k) implies the standard path heuristic function, which is required by the planning
method to obtain the minimum value of the cost function.

4.1. Factorization of the Cost Function with Fractional-Order Model
4.1.1. Safety Functions with Local Region Preprocessing

The operational safety of the mobile robot is the first factor to be considered for path
planning. As shown in Figure 2, considering the existence of tracking errors, the planning
module needs to leave enough redundant space. To facilitate the process, a common
approach is to uniformly inflate the static map with the CLMR’s radius; however, in large-
scale or highly dynamic scenarios, the optimal or relatively optimal paths are difficult to
obtain and the length of the planned paths increases dramatically. Treating robots as a fixed
matrix reduces the passability of a CLMR and leads to lower search efficiency. For this
reason, this paper proposes a safety factor function based on ACO storage information,
defined as follows:

ϕ1
ij(k) =

⎧⎨⎩
1, Ltr × S(i, j) ∩ imdilate(MA×B(i, j), Ltr × S(i, j))
∩Lpix × mod(Dir(i, j), 2) == 0 �= In f ;
In f , Others

(16)

where
S(i, j) = RC×D × f (θ) (17)

where Ltr is the safety threshold constant, S(i, j) denotes the intermediate function, imdilate(·)
refers to the map expansion function, MA×B(i, j) implies the map information stored by the
ACO in the map information, A × B is expressed as the information dimension matrix, Lpix
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denotes the length of the map pixel point, mod(·) refers to the residual function, Dir(i, j)
is the searching direction raster labelling, RC×D stands for the CLMR’s matrix under the
CLMR’s coordinate system, C × D denotes the robot’s matrix dimensions, f (θ) is the coor-
dinate system transfer matrix, and θ refers to the robot direction angle in global coordinates.

Figure 2. Planning Safety Thresholds of the CLMR.

4.1.2. Smoothing Function Based on Dynamic Angle Constraints

The ACO iterates towards the final heuristic function during the planning process,
while the smoothness and feasibility of the paths are not given much attention. However,
the angle constraints of the robot impose new requirements on the planning of paths, while
excessive corners reduce the feasibility of paths. Improving the smoothness of the path
and eliminating excessive corners will help reduce the travelling time and improve the
smoothness of the path. To address these issues, considering the dynamic characteristics of
the dynamic angle constraints in fractional-order-based kinematic modelling, a dynamic
smoothing factor is introduced to reduce the integrated angle probability and improve the
comprehensive performance of the algorithm, and the corner smoothing function is:

ωij(k) =

{
εG(i, j)

ϕij(Nmax−Nk)
ϕc Nk

ϕij ≤ ϕc

In f ϕij > ϕc
(18)

where ϕc denotes the computed wheel system corner constraint, ϕij is the planning corner
at point i to point j, ε denotes the path angle adjustment factor, G(i, j) represents the robot
straight travelling function, Nmax stands for the maximum number of iterations, and Nk
refers to the current number of iterations. Further, as shown in Figure 3, the robot straight
line function is expressed as:

G(i, j) =

{
ϕm−1(lm−2+lm−1)+ϕm(lm−1+lm)+ϕm+1(lm+lm+1)

2(lm−2+lm−1+lm+lm+1)
m ≥ 4

1 m < 4
(19)

where lm−2, lm−1, lm and lm+1 are the four consecutive trajectories planned by the colony at
the current point, and ϕm−1 ϕm and ϕm+1 represent the three consecutive corners consisting
of these four trajectories.

Figure 3. Planning Straight-line Constraints of the CLMR.

The feasibility of the path is improved by the smoothing function with angle con-
straints. In the function, the smoothing factor of the angle is added to ensure the smoothness
of the planned path, which is more favorable to the operation of the CLMR.
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4.1.3. Path Functions by Adding Adjusting Factor

In actual operation, the length of the path is still an important factor to be considered,
which is closely related to the CLMR’s work efficiency and energy utilization. For the
traditional ACO, at the beginning of the iteration, the very small distance difference easily
causes search confusion. At the late stage of convergence, there is a certain probability of
falling into a local minimum. For this reason, we need to amplify the very small factor of
fluctuation in the early stage in the distance factor to accelerate the convergence speed. In
the later stages of iteration, we need to reduce the influence brought by the path, so that
the path obtained is comprehensively optimal. The modified path factor function is:

Dij(k) =

{
η(L(max(Pij, PGoal))− d(Pij, PGoal))

Lpix + L(max(Pij, PGoal))− L(min(Pij, PGoal))

(Nmax − Nk)

Nk
(20)

where η is the path coefficient, L(max(Pij, PGoal)) denotes the longest path from the current
point Pij to the target point PGoal planned by the ACO, L(min(Pij, PGoal)) denotes the
shortest path from the current point Pij to the target point PGoal , and d(Pij, PGoal) refers to
the Euclidean distance from the current point Pij to the target point PGoal .

4.2. Adaptive Pheromone Update Rules

Traditional ACO algorithms are usually set to a constant C in the initial stage, which
leads to a blind search mainly relying on the heuristic function at the initial stage, and it
is very easily falls into a local minimum in large scene maps. To solve this problem and
improve the search efficiency, the initial pheromone is redistributed in the initial stage of
the map with the help of the convergence method of the initial A* algorithm to speed up
the subsequent path replanning in large scenes. The initial pheromone is recorded as:

τij(0) =
{

nc, j ∈ lp
c, j ∈ otherwise

(21)

In the actual operation of the CLMR, path planning is influenced by multiple factors,
and the goal is to find an optimal path that considers all of these conditions collectively.
Currently, efforts are focused on improving the amount of pheromone changes at different
points along the path. The specific follow-up rules are as follows:

τij(t + 1) = (1 − ζ(t))τij(t) +�τij(t) (22)

�τij(t) =

{
κ1Ph

W + κ2Ph
LA

, (i, j) ∈ allowed
0, others

(23)

where ζ(t) is the dynamic volatilization factor of pheromone, τij(t+ 1) denotes the pheromone
matrix at the current moment, Ph represents the pheromone concentration, κ1 and κ2 refer
to the conditioning factors, W implies the mean squared deviation value of the walking
angle, and LA denotes the cumulative path length from the starting point to the target point.

The iterative values of �τij(t) are also dynamically adjusted through the changes
of angle W and distance values LA. By setting the magnitude of the values of weight
coefficients κ1 and κ2, the acquisition of effective paths that are more compatible with the
scene is facilitated.

The dynamic pheromone volatilization factor is designed as:

ζ(t) =

{
a

Nmax
Nk ζ(t − 1), t �= 0, (0 < a < 1)

ζinit, t �= 0
(24)

where a and ζinit are self-defined constants, and ζ(t) can be adjusted adaptively with
the search.
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From Equation (24), it can be seen that the pheromone volatilization function ζ(t)
reaches the maximum value in the pre-search period of the ACO which is in the period
of the fastest change of the pheromone volatilization value. This increases the uncertainty
factor in the early stage of the algorithm during the optimization process, which is more
conducive to obtaining the globally optimal feasible solution. As the number of iterations
increases, the pheromone volatility function ζ(t) tends to stabilize, and the local search
process is more frequent, which helps to improve the quality of the path. Therefore, the
iterative process accomplishes the adaptive regulation of pheromone concentration, which
facilitates the realization of rapid path planning and optimization.

4.3. Fractional-Order Transfer Probability Rules

To obtain the feasible path faster and ensure the quality of the path, this paper improves
the transfer probability of the algorithm. It makes the target probability increase the angle
factor and distance factor. It is expected to obtain the shortest path under the premise of
ensuring a smooth path. The improved state transfer probability is:

pk
ij(t) =

⎧⎪⎨⎪⎩
[τij(t)]

β1 [Dα1 Rij(t)]
β2 [Dα2 Qij(t)]

β3

∑
S∈allowed

[τis(t)]
β1 [Dα1 Ris(t)]

β2 [Dα2 Qis(t)]
β3

,

0
(25)

where β1, β2, and β3 denote the heuristic term factor, respectively, and Rij(t) and Qij(t) are
defined as follows:

Dα1 Rij(t) = Dα1 ωij(t) (26)

Dα2 Qij(t) = Dα1(Dij(t) + dij(t)) (27)

The fractional reciprocal of the angle factor and the distance factor is calculated to
improve the sensitivity of the transition probability to its change, to ensure the timeliness
of the path change and to improve the passability of the path.

A fractional-order state-transfer model can more accurately adjust the exploration
probability of ant colonies in unexplored areas, which is beneficial for ant colony algorithms
to jump out of the current local optimal solution and search for the global optimal solution
with a greater probability, thereby improving the success rate of the search in large-scale
scenarios. At the same time, due to the high dependence of the pheromone concentration
on the optimal path, the modification of the transfer model increases the search breadth
and the search probability of the optimal path, avoiding the acquisition of the optimal
path, accelerating the search process around the optimal path, and thus improving the
convergence speed.

5. Experimental Validations

5.1. Experimental Implementation

The narrow and large-size experimental scenes and self-developed CLMRs are shown
in Figure 4. The CLMR consists of an industrial computer (Intel(R) Core (TM) i7-6500U
CPU @2.50 GHz, 8 GB of RAM, 64-bit operating system), LiDARs, motor encoders, and
some related sensors, such as an ultrasonic transducer and IMU. More specifically, with
an impressive range of 150 m and a scanning rate of 10 Hz, the Velodyne VLP-16 LiDAR
provides the CLMR with a broad field of view, which guarantees that the CLMR has
enough field of view to ensure safety and real-time mapping and path planning. As
illustrated in Figure 4a, to improve the stability and passability of the CLMRs in complex
environments, the drive and steering mechanisms are fitted with suspensions. As we can
see from Figure 4b–d, the entire neighborhood is quite expansive, covering an area of
sixteen thousand square meters. However, the alleyways within the neighborhood are
remarkably narrow. These tight spaces are often filled with temporarily parked cars and
bustling pedestrians, which severely limits the available space for CLMRs to navigate
through. In particular, shown in Figure 4b, to obtain more detailed and practical paths, we
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chose a grid map with a resolution of 0.2 m, making the map size 800 × 500, which is a
great challenge for the path planning algorithm.

  
(a) (b) 

  
(c) (d) 

Figure 4. Experimental scene and platform. (a) Self-developed CLMR; (b) Real-world scene;
(c) Google map of the narrow and large-size scene; (d) Grid map of the narrow and large-size scene.

5.2. Experimental Results and Discussions

In the experiment, it is necessary to obtain real-time vehicle positioning data and
wheel steering angle data. Real-time recording and storage of experimental data was
performed on the PC. The planning, calculation, allocation, and execution process are
as follows: The current data are processed by the data processing unit and returned to
MATLAB. Then, MATLAB is used to complete the calculation of the planning algorithm.
Finally, the path instructions generated by the planning are sent to the control unit, com-
pleting the current path planning process. The initial state of the considered robot is the
same, all parameters are optimally adjusted, and experiments are conducted under the
same operating conditions. In the process of parameter tuning, parameter stabilization is
achieved through the use of a nature-inspired optimization algorithm called Artificial Bee
Colony [38], which reduces the sensitivity of the parameters to the environment and also
ensures the fairness of the algorithm comparison process. The values of the parameters
obtained are as follows: λ1 = 0.6, λ2 = 0.2, ε = 0.1, Nmax = 50, η = 1.1, κ1 = 0.8, κ2 = 0.2,
and a = 0.4. The superiority of the proposed fractional-order ACO (FACO) is verified by
comparing it with the traditional A*, improved A* (IA) [26], ACO [28], improved ACO
combined with path fitting (ACOF) [39], Genetic Algorithm (GA) [29], and the GA method
combined with A* (AGA). We used different algorithms to run each of them ten times
in large-scale narrow scenes. To better validate the effectiveness and advantages of the
proposed method, we drew on the comparative methods in literature [40] and selected
common path lengths, times, and success rates of trajectory planning (including planning
failures and collisions with obstacles) to accurately describe the process of path planning.
The comparison results are shown in Table 1, and the experimental results of the planned
path are shown in Figures 5–11.

186



Fractal Fract. 2024, 8, 157

Table 1. Performance comparison of different path planning methods.

Methods Path Length (m) Times (s) Success Rate (%)

A* 91.60 857.26 100
IA 93.57 591.73 100
GA 101.24 100.61 100

AGA 93.36 123.67 100
ACO 89.20 350.66 100

ACOF 94.97 153.71 0
FACO 92.98 63.74 100

 
Figure 5. Path planning result of A*.

 

Figure 6. Path planning result of IA.

 
Figure 7. Path planning result of GA.
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Figure 8. Path planning result of AGA.

 

Figure 9. Path planning result of ACO.

 

Figure 10. Path planning result of ACOF.

 
Figure 11. Path planning result of FACO.

From Table 1, it can be seen that the A* algorithm takes the longest time, which is
because the A* algorithm completes the traversal of the surrounding space before finding
the target point, and due to the high-precision attribute of the map, more and more compu-
tational resources are consumed and the computational speed decreases dramatically in the
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planning process. In the improved A* method, the search direction is guided to improve the
planning efficiency, but to ensure the success rate of path planning, the efficiency improve-
ment for a large-space search is not obvious. GA has excellent performance in the field of
optimization, and in the planning process GA achieves random sampling in the space by
repeated cross-compilation, which greatly reduces the planning time, and by combining it
with the A* algorithm, there is an increase in the planning time, but there is an increase
in the stability of the path. The ACO-based planning algorithm demonstrates reduced de-
pendency on parameters in path planning. However, employing pure ACO preprocessing
alone increases the time required. By combining the ACO algorithm with A*, the overall
time decreases further. In the proposed method, the additional search burden caused by the
large space is mitigated through local space weighting in the ACO search. This reduction
in computational burden leads to improved planning efficiency. Experimental results show
a significant enhancement in efficiency with the proposed method, achieving improve-
ments of 92.56%, 57.84%, and 81.82% compared to traditional A*, GA, and ACO methods,
respectively. These improvements have great significance for real-world scenarios.

In terms of path length, the A* method shows a greater advantage due to the objective
of the method to obtain shorter paths, and with the increase in constraints, the paths of the
improved methods based on A*, GA, and ACO all increase to varying degrees. Further
analysis shows that GA shows significant non-randomness of paths due to the random
sampling in space and the path length appears to increase to a greater extent, whereas the
ACO algorithm shows better stability of paths due to having an advanced spatial search
and shorter path lengths. The proposed method needs to meet the actual operational
requirements and the dynamic constraints make the planned paths increase, but the length
of the planned paths decreases by 0.63%, 0.40%, and 2.10% compared to the improved
methods of A*, GA, and ACO, respectively. When comparing the various path planning,
all of them show better results in terms of path length. However, the proposed method is
more advantageous under the constraints.

In Table 2, the smoothness indicator is given, which reflects the proportion of different
steering angles between path points in path planning. It has been proven that a smoother
trajectory is achieved when there is a lower proportion of large steering angles. However,
optimization-based planning algorithms, such as GA, AGA, ACO, and ACOF, often pri-
oritize a single performance improvement, resulting in a path consisting of a relatively
simple finite set of points. For example, the GA algorithm represents the path using only
five coordinate points, and the proportion of large steering angles reaches 66.67%. Conse-
quently, these optimization algorithms introduce numerous angle mutation points, making
it challenging to ensure a smooth path. Moreover, traditional path planning methods like
A* and IA struggle to incorporate dynamic angle constraints at corners, leading to scattered
abrupt changes in the path. Although smoothing the obtained path can prevent the occur-
rence of mutation points, it may also result in high spatial requirements after the smoothing
process. To address these challenges, we propose a novel path planning algorithm that
fully leverages the constraint characteristics of angles. This algorithm performs real-time
smoothing during the planning phase, avoiding abrupt changes in the path’s angle, the
proportion of small steering angles exceeds 99%, which means that the proposed method is
essentially free of steering mutations. As a result, it offers significant benefits for planning
in narrow spaces while still considering angle constraints.
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Table 2. The proportion of different steering angles between path points.

Methods 0–5◦ 5–10◦ >10◦

A* 98.39% 1.15% 0.46%
IA 96.77% 2.30% 0.93%
GA 0 33.33% 66.67%

AGA 0 0 100%
ACO 33.33% 0 66.67%

ACOF 100% 0 0
FACO 99.4% 0.6% 0

According to the results of path planning from Figures 5–11, it is evident that both the
A* algorithm and its improved version can produce relatively smooth paths. However, it is
noticeable that the paths tend to excessively prioritize shorter routes at corner nodes and
articulation points. This pursuit of shorter paths increases operational risks and reduces
feasibility. In the GA method, random sampling points introduce a certain possibility of
encountering large corners, resulting in longer paths, and placing higher demands on the
CLMR’s maneuverability. To address this issue, the combination of A* and GA methods
improves the path’s smoothness and provides guidance. Nonetheless, the presence of more
corners and narrow areas in the path poses greater challenges for the robot’s capabilities
and model. In the planning of ACO, it follows the pursuit of the shortest path when the
path shows better smoothness, but the passage is not considered in the method. Given
this, after combining with A*, the smoothing of the path is proposed, and here the B-spline
is used for processing because the smoothing of the path is usually accompanied by a
change in the path points, and it can be seen from the figure that, due to the space being
relatively small, the path status quo is changed, and a larger set of points appeared to
be in contact with the obstacles, which poses a greater threat to the operational safety,
making it difficult for the traditional path smoothing to be sufficient. In the proposed
method, a transfer model of fractional-order is established by building a fractional-order
model with constraints in the method, which improves the path smoothing, avoids the
path changes brought about by the additional path smoothing, and improves the path
safety, while the obtained smoothed paths ensures the path feasibility. At the same time,
we can see that the paths of ACOF are corrected to increase smoothness, but in a narrow
space, and this late correction makes it easy for the planned paths to run into obstacles,
resulting in a drastic decrease in their success rate. The proposed method, on the other
hand, maintains smoothness and at the same time has a high success rate, which proves
the excellent performance of the planning method based on the fractional-order model.

Figure 12 provides the mean and current lowest values of the objective function for var-
ious optimization algorithms: GA—both Mean GA (MGA) and Current Lowest GA (CLGA),
AGA—both Mean AGA (MAGA) and Current Lowest AGA (CLAGA), ACO—both Mean
ACO (MACO) and Current Lowest ACO (CLACO), ACOF—both Mean ACOF (MACOF)
and Current Lowest ACOF (CLACOF), and FACO—both Mean FACO (MFACO) and
Current Lowest FACO (CLFACO). GA is characterized by fast convergence in the initial
stage; however, with the depth of the iteration, the GA is more likely to fall into premature
maturity. In contrast to the ACO calculation, the method is more dependent on the initial
value, and the convergence is slower in the early stage; however, with the help of the
method’s adaptation to nonlinear and complex problems it has an advantage in dealing
with the local optimal solution. To improve the search efficiency, the traversal based on the
A* method is used in this paper: AGA, ACOF, and FACO. This shows great advantages in
the fast convergence of the mean value and the optimization of the minimum value. In the
iterative search for the minimum value, AGA achieves faster convergence, while ACOF
and FACO can still jump out of the current local optimality conditions and further search
for the global optimal solution. Therefore, the proposed method has a great advantage in
realizing the optimal value of the cost function in this paper.
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Figure 12. Comparison of the objective function value.

6. Conclusions and Outlook

This paper presents a novel ACO approach for the path planning of CLMRs with
suspension in narrow and large-scale environments, which combines fractional-order en-
hanced path planning with an improved ACO algorithm to achieve smooth and efficient
paths. To improve the accuracy of the kinematic model construction for CLMRs with sus-
pension, a precise fractional-order-based kinematic modeling method is introduced. This
method takes into account the dynamic adjustment of angle constraints, resulting in a more
accurate representation of the CLMR’s motion. Furthermore, the path planning algorithm
is further enhanced by incorporating fractional-order transfer-probability modelling into
the ACO framework. This extension effectively addresses the challenges associated with
local optima and lack of smoothness in narrow spaces. Additionally, it improves the search
speed in large-scale scenes, ensuring more efficient and optimized path planning.

It is worth noting that the proposed method adopts a fixed fractional order although it
is more accurate and flexible than the integer order, but the exact value of the fractional
order is still a challenge. In future work, we will introduce sensor observation, further
implement variable fractional order to improve the accuracy of model construction and
explore the potential application of fractional-order models in other path planning methods.
In addition, we will subsequently refine the path planning methods and further investigate
local planning algorithms based on the existing global path planning to cope with highly
dynamic scenarios.
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Abstract: In this paper, a fractional active disturbance rejection control (FADRC) scheme is proposed
for remotely operated vehicles (ROVs) to enhance high-precision positioning and docking control
in the presence of ocean current disturbances and model uncertainties. The scheme comprises a
double closed-loop fractional-order PIλDμ controller (DFOPID) and a model-assisted finite-time
sliding-mode extended state observer (MFSESO). Among them, DFOPID effectively compensates
for non-matching disturbances, while its fractional-order term enhances the dynamic performance
and steady-state accuracy of the system. MFSESO contributes to enhancing the estimation accuracy
through the integration of sliding-mode technology and model information, ensuring the finite-time
convergence of observation errors. Numerical simulations and pool experiments have shown that the
proposed control scheme can effectively resist disturbances and successfully complete high-precision
tasks in the absence of an accurate model. This underscores the independence of this control scheme
on accurate model data of an operational ROV. Meanwhile, it also has the advantages of a simple
structure and easy parameter tuning. The FADRC scheme presented in this paper holds practical
significance and can serve as a valuable reference for applications involving ROVs.

Keywords: fractional active disturbance rejection control (FADRC); double closed-loop fractional-
order PIλDμ controller (DFOPID); model-assisted finite-time sliding-mode extended state observer
(MFSESO); remotely operated vehicle (ROV); remotely operated vehicle (ROV)

1. Introduction

ROVs play a significant role in the realm of underwater robotics due to their cost-
effectiveness, safety features, and robust operational capacities. These devices have found
extensive application in diverse fields, including marine environmental surveillance, seabed
topography assessments, underwater search-and-rescue operations, marine resource collec-
tion, etc. [1]. The above tasks require ROVs to have excellent control performance. This
enables them to carry out high-precision docking operations with underwater devices
to facilitate ROV submarine operations, underwater recovery, underwater device data
backhaul, fault inspection, and power supply replacement, among other functions. How-
ever, challenges arise in achieving high-precision control of ROVs due to difficulties in
accurately acquiring the ROV model and external disturbances like ocean currents in the
marine environment.

In recent years, many researchers have dedicated themselves to studying the position-
ing and docking control of underwater vehicles. Hiroshi proposed the linear parameter-
varying model predictive control (MPC) method for the docking operation, and simulation
results show that this control method can effectively handle the influence of various ocean
current disturbances [2]. Ohrem designed a nonlinear robust adaptive backstepping con-
troller to ensure the dynamic positioning of ROVs in environments with model uncertainty
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and unknown disturbances. Extensive field trials in aquaculture applications have been
successfully conducted using this controller [3]. Xie proposed a 3D mobile docking control
method based on backstepping sliding mode control (SMC), which efficiently completed
the underactuated autonomous underwater vehicle (AUV) mobile docking task in the
presence of unknown ocean current disturbances [4]. Wu proposed a hybrid proportional
integral derivative (PID) controller for a work-class ROV to achieve high-performance
maneuvering [5]. Song developed an improved model-based PI robust controller using a
nominal model for the precise positioning control of a hexagonal multi-vector propulsion
ROV with communication time-delay constraints [6]. Li utilized a linear ADRC scheme
that combines a reduced-order extended state observer and approximate time-optimal con-
trol; simulation results confirmed its effective control performance [7]. Zhang developed
a model-free docking controller using deep reinforcement learning to complete three-
dimensional docking tasks under disturbances [8]. Wang proposed a two-step adaptive
control method to solve the planar-type docking problem, seamlessly combining horizontal
dynamic positioning and visual servo docking [9].

From the above discussion, it can be seen that the control methods for the positioning
and docking of underwater vehicles can be roughly divided into model-based control
paradigms, such as SMC, MPC, and backstepping, and data-based control paradigms, such
as PID. Model-based control paradigms are mathematically rigorous and demonstrate
excellent theoretical control performance, but their application is limited. The key point
is that the mathematical model of the system object may not be entirely accurate in most
scenarios. Operational ROVs are often subject to unknown disturbances from umbilical
cables and ocean currents. Additionally, depending on the operation’s content, ROVs often
require the replacement of manipulators and other work tools, making it more difficult to
obtain an accurate dynamic model. A data-based control paradigm has a simple structure,
allows easy parameter tuning, and is economical and practical. Employing data-based
control paradigms is still the most widely used strategy in control. Traditional PID control
is based on feedback error correction, which inherently exhibits a hysteresis effect and a
limited anti-disturbance capability [10]. This characteristic makes it less ideal for control
scenarios demanding high accuracy. Therefore, the proposal of a control paradigm that can
combine the advantages of both is urgently needed.

As a new nonlinear robust control technique, ADRC can unify the above two control
paradigms by incorporating the nominal model of the system in the observer design.
Nonlinear ADRC mainly consists of a tracking differentiator, an extended state observer,
and a nonlinear-state error feedback control law. The core idea is to consider the nominal
model or integral series type of the system as the standard type. Simultaneously, the
components of the system dynamics that differ from the standard type, such as system
uncertainty and external disturbances, are considered as total disturbances. An observer
is used to estimate the total disturbance in real time and eliminate it. Finally, the error is
eradicated through the application of a nonlinear-state error feedback control law [11]. This
technique exhibits good robustness, gives a fast response, has a strong anti-disturbance
ability, and does not rely on the accurate mathematical model of the controlled object. It
can be used when the model is completely unknown or when some information about
the model is known. In light of the limitations of nonlinear ADRC due to its complex
structure, numerous control parameters, and challenging tuning process, the linear ADRC
method simplifies the structure by converting all controllers and extended state observers
into a linear form. This approach allows for individual adjustments to be made to the
controller bandwidth and observer bandwidth, thereby enhancing the effectiveness of
ADRC in engineering applications [12]. Therefore, ADRC has attracted the attention of
many researchers in the field of underwater vehicle motion control. Liu introduced the
ADRC technique to achieve depth control for autonomous underwater vehicle (AUV). He
utilized an improved speed saturation tracking differentiator to enhance the controller’s
adaptability to control instructions [13]. Wang utilized ADRC-based dynamic controllers in
AUV formations to ensure that followers and leaders consistently maintained the desired
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distance [14]. Gao proposed an ADRC method based on dynamic inversion to achieve
motion control of underwater vehicle-manipulator systems (UVMSs) [15]. Zhou designed
a robust dynamic heading-tracking control method based on an improved ADRC method
and an enhanced anti-convolution compensator. Zhou’s study confirmed that the proposed
control method can achieve high accuracy in heading tracking [16]. Li utilized ADRC
technology to develop a tandem-level ADRC controller for a water–air multi-rotor vehicle.
Additionally, Li introduced the particle swarm optimization (PSO) algorithm to efficiently
adjust the controller parameters, ensuring that the controller meets the performance criteria
in challenging underwater environments [17]. Liu proposed a depth-tracking method
for underactuated AUVs, using an ADRC framework to compensate for the complex
unknown pitch dynamics by approximating them into an integral series; the effectiveness
and strong disturbance rejection capabilities of the proposed method were verified with
field comparison experiments [18]. Nevertheless, many of the research studies referenced
here fail to consider the effects of non-matching disturbances, while the conventional
ADRC’s PID controller encounters challenges in achieving precise control performance at a
high level.

Fractional calculus is an extension of traditional calculus that describes the fractal
dimension of a space. Podlubny first applied the concept of fractional order to controller
design and proposed the fractional-order PIλDμ controller [19]. Compared with the integer
PID controller, a fractional-order PIλDμ controller has two additional adjustable parameters,
namely integral order λ and differential order μ, which can obtain more flexible amplitude–
phase characteristics, so as to achieve high-precision and fast-response control performance.
At the same time, the fractional-order PIλDμ controller exhibits greater adaptability to
parameter changes in the controlled object of the system. When the parameter of the con-
trolled object changes within a certain allowable range, the system characteristics remain
basically unchanged, indicating that the fractional-order PIλDμ controller exhibits strong
robustness. Fractional-order PIλDμ controllers have been extensively researched in the field
of underwater vehicle control. For AUV heading control, Liu designed a robust fractional-
order PIλDμ controller that effectively resists parametric uncertainty and demonstrates
good robustness and dynamic performance [20]. Zhu proposed a fractional-order control
method based on fuzzy logic and achieved good dynamic and steady-state characteristics
through an AUV depth control simulation [21]. Li proposed an adaptive fractional-order
non-singular terminal sliding-mode trajectory-tracking controller for an underwater robot,
which can achieve fast switching gain, avoid over-tuning, and effectively improve the accu-
racy and robustness [22]. Zhang proposed a nonlinear fractional-order PDμ controller based
on saturation, which exhibits good dynamic performance and robustness. Additionally, it
offers the advantages of a simple structure and easy implementation [23]. Cui designed a
single-input fractional fuzzy logic controller for an unmanned underwater vehicle (UUV)
motion control system. Simulation results demonstrate that Cui’s control algorithm ex-
hibits good stability and transient performance [24]. Liu proposed a fractional-order PIλ

controller for UUVs that guarantees both frequency-domain and time-domain behavior, of-
fering greater flexibility in enhancing the system robustness and transient performance [25].
Hansan designed an adaptive neural network with a nonlinear fractional-order PIλDμ

controller for the path-tracking problem of underwater vehicles [26]. ROV positioning and
docking operations have high requirements for the robustness and dynamic performance
of the control system. The application of fractional-order PIλDμ control in this task has not
been reported. Simultaneously, the faster dynamic response of fractional-order PIλDμ can
more effectively reduce the observation error of the observer in ADRC. Therefore, FADRC
can combine the advantages of ADRC and fractional-order PIλDμ control, resulting in
superior control performance. At the same time, it also ensures the simple structure of the
controller and is easy to implement in practice.

Aiming to address the challenges of high-precision positioning and docking control of
ROVs under ocean current disturbances and model uncertainties, this paper proposes an
FADRC scheme. The proposed scheme consists of a double closed-loop fractional-order
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PIλDμ controller and a model-assisted finite-time sliding-mode extended state observer.
Regarding the existing research on ADRC for ROVs, compared to previous studies focusing
on improving the observer and the tracking differentiator algorithms themselves, this paper
innovatively introduces a fractional-order PIλDμ controller and adds the observation of the
velocity term in the kinematic channel, enhancing the robustness of high-precision ROV
operations and effectively reducing the impact of matching and non-matching disturbances.
Its main contributions are as follows:

1. In order to better compensate for the non-matching disturbance caused by ocean
currents on the kinematics of ROVs and to generate a smooth and ideal transition
process, a double closed-loop control structure composed of a position control loop
and a velocity control loop is adopted. In order to effectively enhance the robustness
and dynamic performance of high-precision positioning and docking control of ROVs,
a fractional-order PIλDμ controller is introduced in the velocity control loop. Its
integral and differential orders can be arbitrarily selected, providing more flexibility
than an integer-order controller. At the same time, the fractional-order controller
exhibits strong robustness to changes in the parameters of the controlled object;

2. The ROV nominal model is integrated into the extended state observer, and a model-
assisted finite-time sliding-mode extended state observer is designed to eliminate the
dependence on the accurate model. A Lyapunov function is formulated to demon-
strate the finite-time convergence of the observation error. The introduction of this
nominal model can effectively reduce the gain of the observer and improve the es-
timation accuracy. The sliding-mode technology can enhance the robustness of the
observer, accelerate error convergence [27], and further improve the performance of
the ROV positioning and docking control;

3. Numerical simulations and pool experiments are conducted on the ROV to perform
positioning and docking tasks in the presence of ocean current disturbances and
model uncertainties. Compared to the currently most widely used PID and ADRC
method, the control scheme proposed in this paper has advantages in high-precision
operations.

The remainder of this paper is arranged as follows: Section 2 introduces the kinematic
and dynamic models of an operational ROV in the presence of ocean currents and describes
the control objectives. Section 3 introduces the FADRC scheme, discusses the double closed-
loop fractional-order PIλDμ controller, and elaborates on the model-assisted finite-time
sliding-mode extended state observer. Section 4 elaborates on numerical simulations and
pool experiments, which verify the advantages of the proposed scheme. The conclusions
are provided in Section 5.

2. ROV Modeling and Problem Formulation

This section provides a detailed analysis of the kinematics and dynamics of an oper-
ational ROV in an ocean current environment. It also outlines the control objectives for
positioning and docking.

2.1. ROV Kinematics

As shown in Figure 1, the inertial coordinate system {I} and the body coordinate
system {B} are established to describe the ROV’s spatial motion. Among them, η =

[x, y, z, φ, θ, ψ]T ∈ R6 represents the position and direction angle of the ROV in the inertial
coordinate system {I} and the body coordinate system {B}, and v = [u, v, w, p, q, r]T ∈ R6

represents the linear velocity and angular velocity of the ROV under the body coordinate
system {B}, while τ = [X, Y, Z, K, M, N]T ∈ R6 represents the external force and moment
acting on the ROV under the body coordinate system {B}. The kinematic model of the ROV
considering the current field is

.
η = J(η)vr + v f (1)
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In Equation (1), J(η) ∈ R6×6 represents the velocity transformation matrix of the ROV
between the inertial coordinate system and the body coordinate system, and vr ∈ R6

represents the velocity vector of the ROV relative to the ocean current under the body
coordinate system {B}, while v f ∈ R6 represents the velocity vector of the ocean current
under the inertial coordinate system {I}. The relationship between vr, v f , and v is described
as follows: ⎧⎨⎩

.
η = J(η)vr + v f
v = vr + vc
v f = J(η)vc

(2)

vc ∈ R6 represents the velocity vector of the ocean current in the body coordinate system {B}.

τ

η η

η

η η

η

 

Figure 1. The inertial coordinate system {I} and the body coordinate system {B}.

ROVs can obtain vr using their own inertial guidance equipment, but it is usually
difficult to obtain v f . When an ROV performs high-precision tasks, v f needs to be estimated
and compensated. Since v f and

.
v f satisfy the law of conservation of fluid energy [28], the

following reasonable assumption can be made:

Assumption 1. The ocean current velocity v f and its derivative
.
v f satisfy the bounded condition

‖v f ‖2 ≤ k f , ‖ .
v f ‖2 ≤ kd f , where ‖·‖2 represents the Euclidean norm. k f and kd f are definite

constants.

2.2. ROV Dynamics

The dynamic model of the ROV is depicted in Equation (3):

M
.
vr + C(vr)vr + D(vr)vr + g(η) = τT + τD (3)

M ∈ R6×6, C ∈ R6×6, D ∈ R6×6, g ∈ R6, τT ∈ R6, and τD ∈ R6 represent the inertial
matrix; the Coriolis and centripetal force matrix; the damping matrix; the restoring force
matrix; the control force and moment vector; and the lumped disturbance vector under
the nominal model, respectively. Among them, τD = τF + τE. τF ∈ R6 represents the
disturbance vector caused by ocean currents. Since it is difficult to obtain an accurate model
of the ROV, τE ∈ R6 represents the system model uncertainty caused by umbilical cables,
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etc., which is the error between the accurate model and the nominal model. τF is given by
calculating Equation (4):

τF = −MRB
.
vc − CRB(vr + vc)vc − CRB(vc)vr (4)

where MRB ∈ R6×6 represents the rigid-body inertia matrix and CRB ∈ R6×6 represents the
rigid-body Coriolis force and centripetal force matrix.

Assumption 2. The lumped disturbance τD and its derivative
.
τD satisfy the bounded condition

‖τD‖2 ≤ kD,
∥∥ .

τD
∥∥

2 ≤ kdD, where kD and kdD are definite constants.

2.3. Distribution of Thrust Forces

The operational ROV studied in this paper is equipped with four horizontal thrusters
and four vertical thrusters. The distribution relationship between the control force and
moment τT and the thrust of each thruster is

τT = BU, (5)

where U ∈ R8 represents the thrust vector generated by the thruster and B ∈ R6×8

represents the ROV thrust distribution matrix. The thrusters can provide a thrust range of
±4000 N.

2.4. Control Objectives

The control objectives of this paper are to design a high-precision motion control
scheme for an operational ROV that is affected by ocean current disturbance and cannot
obtain an accurate model. The aim is to enable the ROV to achieve precise positioning
and docking with the underwater tool platform. Due to the structural requirements of the
underwater tool platform, the positioning error of the ROV should be less than 0.05 m, and
the error of each attitude angle should be less than 1◦.

3. Model-Assisted Finite-Time Sliding-Mode Extended State Observer

This section provides a detailed description and proof of the model-assisted finite-
time sliding-mode extended state observer. First, the operational ROV nominal model is
integrated into the extended state observer. The known model information can reduce the
computational burden of the extended state observer and improve the estimation accuracy
of disturbance and uncertainty. At the same time, sliding-mode technology is introduced
to further enhance the robustness and convergence velocity of the observer.

3.1. Design of MFSESO

From the above discussion on modeling the kinematics and dynamics of the opera-
tional ROV, it can be seen that the ocean current velocity v f and the lumped disturbance
τD are unknown disturbance quantities that need to be estimated. Therefore, these two
variables are set as the extended state variables of the system, and the ROV extended state
equation is established as follows:⎧⎨⎩

.
x1 = x2 + f1(x1) + hu(t)
.
x2 =

.
x2

y = x1

(6)

In Equation (6), x =
[
xT

1 , xT
2
]T ∈ R24. x1 =

[
ηT , vT

r
]T ∈ R12 represents the state vector of

the system, which can be measured with sensors; x2 =
[
vT

f , τT
MD

]T ∈ R12 represents the
extended state vector of the system, which needs to be estimated using the observer. The
lump-like disturbance vector τMD = M−1τD ∈ R6. f1(x1) =

[
J(η)vr,−M−1f(vr, η)

]T ∈
R12 is the known function vector of the system, where f(vr, η) = C(vr)vr + D(vr)vr +
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g(η) ∈ R6. h =
[
06×6, M−1]T ∈ R12×6 is the known function matrix of the system.

u(t) = τT ∈ R6 indicates the system control input and y ∈ R12 indicates the system output.
According to the actual operational conditions of the ROV, it can be assumed that each
element in the state vectors x1 and x2 of the system is bounded.

In order to estimate the ocean current velocity v f and lumped disturbance τD, the equa-
tion for the model-assisted finite-time sliding-mode extended state observer is as follows:{ .

x̂1 = x̂2 + f1(x1) + hu(t) + ωι1(x1 − x̂1) + κ1|x1 − x̂1|
p
q sgn(x1 − x̂1)

.
x̂2 = ω2ι2(x1 − x̂1) + ωκ2|x1 − x̂1|

p
q sgn(x1 − x̂1)

(7)

In Equation (7), x̂ =
[
x̂T

1 , x̂T
2
]T ∈ R24 represents the state variable of MFSESO, which

estimates the state variable x, where x̂1 =
[
η̂T , v̂T

r
]T ∈ R12, x̂2 =

[
v̂T

f , τ̂T
MD

]T ∈ R12, and

τ̂D = Mτ̂MD ∈ R6. ω is the observer scale parameter; ι1 and ι2 are the observer gain
parameters; and κ1 and κ2 are the observer sliding-mode gain parameters, both of which
are definite positive real numbers. sgn represents the sign function, and p and q are the
observer quasi-sliding-mode parameters, both of which are positive odd numbers, and
p < q. In the aforementioned parameters, the correlation between x̂1 and x̂2 can be modified
through the adjustment of ω. By selecting appropriate values for ι1 and ι2, the poles of
the MFSESO characteristic equation can be determined, thereby affecting the convergence
performance of the observer. κ1 and κ2 enhance the robustness of the observer. At the same

time, |x1 − x̂1|
p
q sgn(x1 − x̂1) replaces the traditional sign function, effectively reducing the

chattering phenomenon of sliding mode control.

3.2. Convergence Analysis of MFSESO

Theorem 1. For the ROV extended state equation established above in Equation (6), the observation
error of MFSESO designed in Equation (7) can converge to zero in finite time.

The observation error state equation can be obtained by differentiating the system’s
extended state equation in Equation (6) and the MFSESO equation in Equation (7), as shown
in Equation (8):

[ .
e1.
e2

]
=

[−ωι1I12×12 ωI12×12
−ωι2I12×12 012×12

][
e1
e2

]
+

[
012×1.
x2/ω

]
−
[

κ1|e1|
p
q sgn(e1)

κ2|e1|
p
q sgn(e1)

]
(8)

where e =
[
eT

1 , eT
2
]T ∈ R24; e1 = x1 − x̂1 and e2 = x2

ω − x̂2
ω ; A = ω

[−ι1I12×12 I12×12
−ι2I12×12 012×12

]
∈

R24×24; D =

[
012×1.
x2/ω

]
∈ R24; and B =

[
κ1|e1|

p
q sgn(e1)

κ2|e1|
p
q sgn(e1)

]
∈ R24. When the observer gain

parameters ι1 and ι2 satisfy ι1
2 − 4ι2 > 0, all eigenvalues of A have a negative real part.

That is, A is the Hurwitz matrix.

Lemma 1 (Lyapunov Matrix Equation). If the matrix A is a Hurwitz matrix, then for any given
symmetric positive definite matrix Q ∈ R24×24, there exists a symmetric positive definite matrix
P ∈ R24×24, such that ATP + PA = −Q is satisfied.

To facilitate calculation, Q = I is selected, matrix A is brought into Lemma 1, and P
satisfying the condition is calculated:

P =

[
P11 P12
P21 P22

]
=

[
1

2ω
ι2+1

ι1
I12×12 − 1

2ω I12×12

− 1
2ω I12×12

1
2ω

ι1
2+ι2+1

ι1ι2
I12×12

]
(9)
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From the above, ‖P‖F =
√

3
ω

[(
ι2+1

ι1

)2
+
(

ι1
2+ι2+1

ι1ι2

)2
+ 2

] 1
2
; ‖·‖F is the Fibonacci norm.

To prove the convergence of the MFSESO system, the Lyapunov function of the system
is chosen:

V = eTPe. (10)

Taking the derivative of the Lyapunov function V,

.
V = eTP

.
e +

.
eTPe. (11)

Substituting Equation (8) into Equation (11) yields the following:

.
V = eT

(
PA + ATP

)
e + 2eTPD − 2eTPB

= −‖e‖2
2 + 2eTPD − 2eTPB

(12)

According to Assumption 1 and Assumption 2, it can be seen that
∥∥∥ .

v f

∥∥∥
2
≤ kd f and∥∥ .

τMD
∥∥

2 ≤ ∥∥M−1
∥∥

F

∥∥ .
τD

∥∥
2 ≤ kdD

∥∥M−1
∥∥

F. Therefore, when
∥∥D

∥∥
2 ≤

∥∥∥∥ kd f
kdD

∥∥M−1
∥∥

F

∥∥∥∥
2
/ω =

MD, we obtain the following:

2eTPD ≤ 2MD‖P‖F‖e‖2. (13)

Meanwhile, since P is a symmetric positive definite matrix, there is an orthogonal matrix
O ∈ R24×24, so that OTPO = Λ ∈ R24×24 is a diagonal matrix; thus, we can obtain
Equation (14):

2eTPB = 2eTOTΛOB
= 2(Oe)TΛ

(
OB

)
≥ 2λminmin{κ1, κ2}

⎛⎝ 24
∑

i=1

⎛⎝ei|ei|
p
q sgn(ei)

⎞⎠⎞⎠
≥ 2λminmin{κ1, κ2}

⎛⎜⎝ 24
∑

i=1
|ei|

q + p
q

⎞⎟⎠
= 2λminmin{κ1, κ2}‖e‖(q+p)/q

(q+p)/q

≥ 2αλminmin{κ1, κ2}‖e‖(q+p)/q
2

, (14)

where ‖·‖(q+p)/q is the p-norm with exponent (q + p)/q, and

λmin =
l2
1+(l2+1)2−

√
[l2

1+(l2+1)2][l2
1+(l2−1)2]

4ωl1l2
is the minimum eigenvalue of P. Due to the

equivalence of vector norms, there exists ‖e‖(q+p)/q
(q+p)/q ≥ α‖e‖(q+p)/q

2 , α > 0. If we let

MB= 2αλminmin{κ1, κ2}, then −2eTPB ≤ −MB‖e‖(q+p)/q
2 . To sum up, Equation (15) can

be obtained: .
V ≤ −‖e‖2

2 − MB‖e‖(q+p)/q
2 + 2MD‖P‖F‖e‖2 (15)

Lemma 2 ([29]). Consider the following nonlinear systems:

.
x = f (x), (16)

where f (0) = 0, x ∈ Rn, f : U0 → Rn is a continuous function in an open neighborhood U0
containing the origin. Suppose there is a continuous positive definite function V(x) : U0 → Rn ,
and that there are real numbers a, b, c > 0 and d ∈ (0.5, 1), and an open neighborhood Û ⊆ U0
containing the origin, such that the following equation holds:
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.
V ≤ −aVd − bV + cV

1
2 . (17)

Then, the origin of the system in Equation (16) is in fast finite time, uniformly bounded, sta-
ble. This implies that x converges to a stable region Q =

{
x : χVd− 1

2 + δV
1
2 < c

}
, χ ∈

(0, a), δ ∈ (0, b). And the stable time T depends on the initial value x(0), satisfying T ≤
1

(b−δ)(1−d) ln
(

1 +
(b−δ)Vx(0)

1−d

a−χ

)
.

The following can be seen from Equation (10):

λmin‖e‖2
2 ≤ V ≤ ‖P‖F‖e‖2

2. (18)

According to Equations (15) and (18), we obtain

.
V ≤ −MB‖P‖−

q+p
2q

F V
q+p
2q − ‖P‖−1

F V + 2MDλ
− 1

2
min‖P‖FV

1
2

= −a0Vd0 − b0V + c0V
1
2

, (19)

where a0 = MB‖P‖−
q+p
2q

F , b0 = ‖P‖−1
F , c0 = 2MDλ

− 1
2

min‖P‖F, and d0 = q+p
2q . According to

Lemma (2), it can be seen that the observation error e can converge to the stable region
Q0 =

{
e : χ0Vd0− 1

2 + δ0V
1
2 < c0

}
, χ0 ∈ (0, a0), δ0 ∈ (0, b0) in a finite time. And the

convergence time satisfies T ≤ 1
(b0−δ0)(1−d0)

ln
(

1 +
(b0−δ0)Ve(0)

1−d0

a0−χ0

)
, where the value of e

at time t = 0 is defined as e(0).
The above proves that the observation error e of MFSESO can converge to the stable

region within t = T time, indicating that MFSESO can achieve finite-time estimation of
velocity disturbance v f and lumped disturbance τD. This completes the proof of Theorem 1.

4. Double Closed-Loop Fractional-Order PIλDμ Controller

It can be seen from the previous discussion that ocean current velocity v f is mainly
reflected in the ROV kinematic model and is not in the same channel as the system control
input τT , which belongs to non-matching disturbance. The lumped disturbance τE acts on
the dynamic model and belongs to the matching disturbance. It is difficult to directly offset
the influence of non-matching disturbance simply with the input τT in the dynamic model.
A double closed-loop controller should be designed to compensate for the disturbance of
ocean current velocity v f in the position loop and the disturbance of lumped disturbance τE

in the velocity loop. A fractional-order PIλDμ controller not only preserves the advantages
of the simplicity, practicality, and easy tuning of the traditional PID controller, but also
effectively enhances the robustness and dynamic capability of a dynamic system. So, the
fractional-order PIλDμ controller is introduced into the velocity loop control.

Design of DFOPID

The commonly used definitions of fractional calculus are the Riemann–Lioucille defi-
nition, the Grunwald Letnikov definition, and the Caputo definition [19]. The Riemann–
Lioucille definition and the Grunwald Letnikov definition require the value of the fractional
derivative of the signal at the initial moment to be known, while the Caputo definition
requires the value of the signal and its integer derivative at the initial moment to be known,
which is closer to practical applications. Therefore, the double closed-loop fractional-order
PIλDμ controller designed in this paper adopts the Caputo definition, as follows:

For α ∈ R+, with m− 1 < α ≤ m and m ∈ Z+, the α-order Caputo fractional derivative
of the function y(t) defined on [t0, t] is
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t0 Dα
t y(t) =

1
Γ(m − α)

∫ t

t0

y(m)(τ)

(t − τ)1+α−m dτ. (20)

For γ ∈ R+, the γ-order Caputo fractional integral of function y(t) defined on [t0, t] is

t0 D−γ
t y(t) =

1
Γ(γ)

∫ t

t0

y(τ)

(t − τ)1−γ
dτ. (21)

Among them, the Gamma function Γ(x) is defined as

Γ(x) =
∫ ∞

0
tx−1e−tdt. (22)

The output expression of the fractional-order PIλDμ controller in the time domain is

u(t) = kpe(t) + ki0D−λe(t) + kd0Dμe(t), (23)

where e(t) = r(t) − y(t) is the system error signal, which serves as the input signal of
the fractional-order PIλDμ controller; r(t) is the reference input signal of the system; and
y(t) is the actual input signal of the system. kp, ki, and kd represent the proportional,
integral, and differential gains, respectively. λ and μ represent fractional orders of the
integral and differential terms, respectively. The ranges of these values are 0 < λ < 2 and
0 < μ < 2, respectively. It can be seen from the above discussion that due to the presence
of fractional-order operators, the fractional-order PIλDμ controller can adjust the low- and
high-frequency characteristics of the closed-loop system more flexibly by modifying the
values of λ and μ. Simultaneously, they are less sensitive to the parameter changes in
the control system. When the control parameters and disturbance vary within a certain
interval, the system performance does not change significantly. The system has stronger
robustness. Meanwhile, fractional PIλDμ is an extension of integer PID, naturally inheriting
the advantages of the simple structure and easy tuning of integer PID.

The position loop controller is primarily responsible for eliminating the non-matching
disturbance caused by the ocean current velocity v f and guiding the operational ROV to
achieve a smooth transition process. The position loop controller designed in this paper
incorporates a saturated nonlinear link at the input of the PID algorithm to facilitate the
ROV in reaching the target position at an optimal velocity:

vd(t) = kηpeη(t) + kηi

∫ t

t0

eη(t)dt + kηd
deη(t)

dt
. (24)

In Equation (24), eη(i) = sat
(
eη(i)

)
, eη(i) = ηd(i)− η(i), and i = 1, . . . , 6, where ηd is the

desired position, sat
(
eη(i)

)
=

⎧⎨⎩
Δ(i), eη(i) > Δ(i)
eη(i),

∣∣eη(i)
∣∣ ≤ Δ(i)

−Δ(i), eη(i) < −Δ(i)
, Δ ∈ R6 is the boundary-layer

vector, and kη j ∈ R6×6, j = p, i, d is the control gain diagonal matrix.
Due to the increased demands of ROV dynamics for control robustness and dy-

namic performance, a fractional-order PIλDμ controller is designed to serve as the velocity
loop controller:

τc(t) = kvpev(t) + kvi0D−λv ev(t) + kvd0Dμv ev(t). (25)

In Equation (25), ev = vd − vr − v̂c ∈ R6, v̂c = J−1(η)v̂ f , where vd is desired velocity,
kvj ∈ R6×6, j = p, i, d is the control gain diagonal matrix, and 0Div ej(t) ∈ R6×6, i = −λ, μ
is the fractional calculus diagonal matrix.

The FADRC scheme developed for the ROV to perform high-precision positioning and
docking control tasks is illustrated in Figure 2. The FADRC scheme, outlined with a red
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chain line in the figure, consists of DFOPID and MFSESO. DFOPID comprises a position
loop controller and a velocity loop controller. The position loop controller utilizes the
position error η to generate the desired velocity vd. The velocity error ev is obtained by
subtracting the ROV velocity vr and the ocean current velocity observation v̂c from the
desired velocity vd. The velocity loop controller determines the DFOPID controller output
τC based on the velocity error ev. MFSESO, based on inputs such as the ROV position
η, the ROV velocity vr, and the FADRC scheme output τT , calculates the ocean current
velocity observation v̂ f and the lumped disturbance observation τ̂D. The FADRC scheme
output τT is derived from the disparity between the DFOPID controller output τC and the
lumped disturbance observation τ̂D. In summary, the FADRC scheme incorporates the
ocean current velocity observation value v̂ f and the lumped disturbance observation value
τ̂D estimated by MFSESO into the double closed-loop controller, so that the non-matching
disturbance is transformed into matching disturbance, making it easier to mitigate their
impact. During the transition process, DFOPID ensures accurate and rapid tracking of the
ROV’s position and velocity in relation to the target value. This enhances the robustness
and dynamic characteristics of the entire system.

τ
τ

τ
τ

τ τ

τ

 

τ τ
τ

τ τ

τ

Figure 2. FADRC structural framework. FADRC consists of DFOPID and MFSESO, which is the part
outlined with the red chain line. Desired position ηd (defined in line 373); ROV position η (defined in
line 195); position error eη (defined in line 373); velocity error ev (defined in line 379); desired velocity
vd (defined in line 379); ROV velocity vr (defined in line 202) under the body coordinate system
{B}; ocean current velocity vc (defined in line 207) and velocity observation v̂c (defined in line 379)
under the body coordinate system {B}; ocean current velocity v f (defined in line 204) and velocity
observation v̂ f (defined in line 271) under the inertial coordinate system {I}; lumped disturbance
τD (defined in line 220) and lumped disturbance observation τ̂D (defined in line 272); lump-like
disturbance τMD (defined in line 262) and lump-like disturbance observation τ̂MD (defined in line
272); DFOPID controller output τC (defined in line 378); FADRC scheme output τT (defined in line
222); inertial matrix M (defined in line 220); velocity transformation matrix J(η) (defined in line 201).

5. Numerical Simulations and Pool Experiments

In order to verify the effectiveness and advanced nature of the control scheme proposed
in this paper, high-precision ROV positioning and docking control experiments were
conducted in both simulation and pool environments. Meanwhile, a comparison was
carried out using the most widely used traditional method. The high-precision positioning
and docking process of the ROV was as follows: In the ocean current environment with
a flow velocity of 1 knot, the ROV was guided to the docking position using the visual
positioning system and maintained its dynamic position. When the positioning error
continued to remain within the required error range for docking, the docking locking
mechanism extended downward into the docking hole of the underwater tool platform to
complete the docking process.
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5.1. ROV Prototype

As shown in Figure 3a, the ROV in this paper has an overall size of 3100 mm ×
2000 mm × 1800 mm and a net weight of 4187.5 kg. It is equipped with four horizon-
tal thrusters and four vertical thrusters, and has an omnidirectional driving capability.
The bottom protruding part is equipped with two docking rods, which can perform
docking operations with docking holes on the underwater tool platform. The param-
eters of the ROV nominal dynamic model are as follows: the center of gravity coor-
dinate rG = [0, 0, 0]T , the center of buoyancy coordinate rB = [0, 0,−0.493]T , the mo-
ment of inertia matrix I = diag(2038, 3587, 3587), the additional mass matrix MAM =
−diag(3261.35, 4664.31, 7471.75, 1664, 4118.17, 3708.41), the linear damping matrix DL =
−diag(3610.00, 2462.99, 4566.59, 9810.00, 5220.90, 5841.54), the nonlinear damping matrix
DN = −diag(952|u|, 2442.78|v|, 530.46|w|, 890|p|, 1876|q|, 2085.52|r|). As shown in
Figure 3b, the underwater tool platform is equipped with various operational tools and a
sampling basket necessary for the ROV. Once the ROV dives, it can complete various tasks
by changing tools on the tool platform, significantly enhancing the working efficiency. The
ROV determines the relative position by identifying the QR code affixed to the tool platform.
The tool platform is designed with two central docking holes that work in conjunction
with two docking rods to complete the docking operation. According to the design of the
docking rods and docking holes, the ROV position error must be less than 0.05 m, and the
attitude angle error must be less than 1◦.

(a) 

 
(b) 

Figure 3. ROV and underwater tool platform structure diagrams. (a) ROV structure diagram: front
view (left), left view (middle), and rear view (right). (b) Underwater tool platform structure diagram.
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5.2. Numerical Simulations

In the numerical simulations, the position of the underwater tool platform was set to
ηd = [5, 1, 1, 0, 0, 0]T . The initial position of the ROV was set to η(0) = [0, 0, 0, 0, 0, 0]T and
the initial velocity was set to vr(0) = [0, 0, 0, 0, 0, 0]T . The ocean current velocity was set
to v f = [0.3635 sin(0.05t + π/3), 0.3635 sin(0.05t + π/3), 0, 0, 0, 0]T , simulating the actual
operating conditions of 1 throttling. The disturbance caused by factors other than ocean
current such as umbilical cable and the uncertainty of the system model were set to τE =⎡⎢⎢⎢⎢⎢⎢⎣

10 cos(0.05t + π/3) sin(0.05t)
10 cos(0.05t + π/4) cos(0.05t)
10 cos(0.05t + π/6) sin(0.05t + π/4)
2 cos(0.05t + π/3) cos(0.05t + π/10)
2 sin(0.05t) sin(0.05t + 2π/3)
2 sin(0.05t + 4π/3) cos(0.05t)

⎤⎥⎥⎥⎥⎥⎥⎦. The MFSESO observation parameters were set

to ι1 = 10, ι2 = 10, κ1 = 2, and κ2 = 20, ω = 1, p = 3, q = 5. The DFOPID control parame-
ters were set to kηp = diag(1, 1, 1, 1, 1, 1), kηi = diag(0, 0, 0, 0, 0, 0), kηd = diag(0, 0, 0, 0, 0, 0),
Δ = [0.5, 0.5, 0.5, π/180, π/180, π/180]T , kvp = 100000diag(1, 1, 1, 10, 10, 30),
kvi = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), kvd = diag(10000, 50000, 50000, 0, 0, 0),
λv = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1]T and μη = [0.5, 0.5, 0.5, 0, 0, 0]T . An Oustaloup filter [30]
was used to implement fractional calculus.

In order to further demonstrate the performance superiority of the FADRC scheme
composed of MFSESO and DFOPID, the following simulation scenarios were conducted.
The first scenario involved a comparison test between the control scheme based on MFSESO-
DFOPID and the control scheme based on MFSESO-DPID. The second test scenario in-
volved comparing the control scheme based on MFSESO-DFOPID with the control scheme
based on LESO-DFOPID. The initial conditions of the test remained unchanged.

For simulation scenario 1, the high-precision positioning and docking control simu-
lation results of the control scheme based on MFSESO-DFOPID and the control scheme
based on MFSESO-DPID are shown in Figures 4 and 5.

Performance indicators such as the root-mean-square error, adjustment time, and
steady-state error are presented in Table 1 to facilitate a more detailed and accurate quan-
titative comparison between the DFOPID algorithm and the DPID algorithm. Among
them, a smaller root-mean-square error indicates that the scheme demonstrates a better
control performance, while a shorter adjustment time signifies faster convergence, and the
steady-state error reflects the accuracy of the control scheme.

Figure 4 illustrates the position error in the position loop and the velocity error in
the velocity loop based on MFSESO-DFOPID and MFSESO-DPID. It can be seen from
the figures that the position error and velocity error based on MFSESO-DFOPID show
a better dynamic process, with a faster convergence velocity and smaller overshoot. At
the same time, when the motion system is stabilized, MFSESO-DFOPID exhibits smaller
position steady-state error and velocity steady-state error values. Meanwhile, against ocean
current velocity disturbance and lumped disturbance, MFSEPO-DFOPID exhibits smaller
error fluctuations and demonstrates greater robustness. Figure 5 shows the thrust curve
of the thruster calculated using the schemes mentioned above, which remains generally
smooth. This indicates that the control scheme proposed in this paper has good practical
application value. The control performance indicators in Table 1 quantitatively support the
results presented in Figure 4. MFSESO-DFOPID obviously meets the docking requirements,
wherein the ROV position error must be less than 0.05 m and the attitude angle error must
be less than 1◦. MFSESO-DFOPID has a significant advantage in most indicators. The
above results fully reflect that the DFOPID control algorithm proposed in this paper shows
a better control performance than the traditional DPID algorithm. It exhibits a significantly
improved dynamic response, reduced steady-state error, and enhanced robustness.
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(a) 

 
(b) 

Figure 4. Position error eη and velocity error ev under MFSESO-DFOPID (red line) and MFSESO-DPID
(blue line). (a) Position error eη (defined in line 373). (b) Velocity error ev (defined in line 379).
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Figure 5. Thruster thrust U (defined in line 236) under MFSESO-DFOPID (red line) and MFSESO-
DPID (blue line).

Table 1. Quantitative comparison between MFSESO-DFOPID and MFSESO-DPID control schemes.
Better performance indicators are highlighted in red.

Performance Indicator Control Scheme x y z φ θ ψ

Position root-mean-square
error (m)

MFSESO-DFOPID 0.7606 0.0762 0.0833 0.0017 0.0010 3.36 × 10−5

MFSESO-DPID 0.7716 0.0789 0.1280 0.0028 0.0016 2.57 × 10−4

Position adjustment time (s) MFSESO-DFOPID 9.874 3.472 3.628 2.996 2.596 0.162
MFSESO-DPID 10.030 2.836 5.610 3.118 3.310 0.668

Position steady-state
error (m)

MFSESO-DFOPID −0.0100 0.0019 1.34 × 10−5 −2.86 × 10−7 2.18 × 10−7 −0.0003
MFSESO-DPID −0.0347 0.0090 6.78 × 10−7 −2.41 × 10−6 2.07 × 10−6 −0.0032

Velocity root-mean-square
error (m/s)

MFSESO-DFOPID 0.0167 0.0167 0.0179 0.0050 0.0033 2.86 × 10−4

MFSESO-DPID 0.0371 0.0308 0.0538 0.0067 0.0042 4.78 × 10−4

Velocity adjustment time (s) MFSESO-DFOPID 0.224 0.698 1.486 0.250 0.258 0.252
MFSESO-DPID 12.542 2.916 9.256 0.330 0.422 0.318

Velocity steady-state
error (m/s)

MFSESO-DFOPID −0.0100 0.0022 1.32 × 10−5 −2.86 × 10−7 1.98 × 10−7 −0.0005
MFSESO-DPID −0.0335 0.0105 1.66 × 10−7 −2.39 × 10−6 1.89 × 10−6 −0.0045

For simulation scenario 2, the high-precision positioning and docking control simu-
lation results of the control scheme based on MFSESO-DFOPID and the control scheme
based on LESO-DFOPID are shown in Figure 6.
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(a) 

(b) 

τ

τ

Figure 6. Observation error of ocean current velocity v̂ f and lumped disturbance τ̂D under MFSESO-
DFOPID (red line) and LESO-DFOPID (blue line). (a) Observation error of ocean current velocity v̂ f
(defined in line 271). (b) Observation error of lumped disturbance τ̂D (defined in line 272). Moreover,
note that the six degrees of freedom for surge, sway, heave, roll, pitch, and yaw are represented by
the letters X, Y, Z, K, M, and N, respectively.
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In order to quantitatively compare the observation performance of the MFSESO and
LESO algorithms for ocean current disturbance and lumped disturbance, performance
indicators such as the root-mean-square error, adjustment time, and steady-state error
are introduced in Table 2. The root-mean-square error of observation generally reflects
the observation performance, the adjustment time of observation reflects the convergence
velocity, and the steady-state error of observation reflects the estimation accuracy.

Table 2. Quantitative comparison between MFSESO-DFOPID and LESO-DFOPID control schemes.
Better performance indicators are highlighted in red.

Performance Indicator Control Scheme x y z φ θ ψ

Root-mean-square error of ocean
current velocity observation (m/s)

MFSESO-DFOPID 0.0080 0.0080 0 0 0 0
LESO-DFOPID 0.0091 0.0091 0 0 0 0

Adjustment time of ocean current
velocity observation (s)

MFSESO-DFOPID 0.524 0.532 0 0 0 0
LESO-DFOPID 1.078 1.082 0 0 0 0

Steady-state error of ocean current
velocity observation (m/s)

MFSESO-DFOPID −4.73 × 10−4 −5.83 × 10−5 0 0 0 0
LESO-DFOPID −5.86 × 10−4 −8.95 × 10−4 0 0 0 0

Root-mean-square error of lumped
disturbance observation (N)

MFSESO-DFOPID 2.039 1.738 2.193 1.213 1.624 0.597
LESO-DFOPID 2.953 2.119 3.320 2.517 3.720 1.031

Adjustment time of lumped
disturbance observation (s)

MFSESO-DFOPID 10.002 1.888 3.334 0.912 0.942 0.738
LESO-DFOPID 10.500 3.218 3.604 2.660 2.754 2.036

Steady-state error of lumped
disturbance observation (N)

MFSESO-DFOPID −0.043 0.0022 0.0016 0.0051 0.0034 0.0005
LESO-DFOPID 0.126 0.0105 −0.0207 0.0031 −0.0050 0.0088

Figure 6a shows the estimation results for the MFSESO and LESO algorithms on
ocean current velocity. It is not difficult to observe in the figure that, at X and Y degrees
of freedom, MFSESO can approach the ocean current velocity more quickly, while the
oscillation amplitude is smaller. With other degrees of freedom, the output of the observer
remains 0 because no velocity disturbance is applied. Figure 6b shows the observation
results for the MFSESO and LESO algorithms on lumped disturbance. It can be seen from
this figure that the convergence process of MFSESO proposed in this paper is faster and
smoother, and the steady-state error is smaller. The relevant performance indicators in
Table 2 quantitatively describe the two observation algorithms, strongly demonstrating
the significant advantages of MFSESO in terms of velocity, stability, and accuracy, and
confirming the results in Figure 6. The above statement indicates that MFSESO can yield
better observation results compared to the traditional LESO.

5.3. Pool Experiments

To verify the actual operational performance of the FADRC scheme based on MFSESO-
DFOPID proposed in this article, a high-precision positioning and docking experiment
using an ROV and a tool platform was conducted in a pool. The experimental scenario is
depicted in Figure 7, the observation effect of the observer is reflected in Figures 8 and 9,
and the position errors of each degree of freedom are illustrated in Figure 10.

As shown in Figure 7, the FADRC scheme based on MFSESO-DFOPID can enable the
ROV to quickly and accurately reach the target position and complete the docking operation.
Since the ROV is self-stabilized in pitch and roll degrees of freedom through the buoyancy
trim, only four degrees of freedom x, y, z, ψ are controlled, where the total distance error
D =

√
xe2 + ye2 + ze2. Figures 8 and 9 reflect that the observer in the control scheme

effectively compensates for the current velocity disturbance and lumped disturbance at
each degree of freedom. As can be seen from Figure 10, when t > 20.40 s, the position error
D < 0.05 m, and when t > 30.63 s, the heading angle error ψ < 1. This proves that this
control scheme can achieve high-precision positioning control and meet the requirements
of docking control operations.
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Figure 7. High-precision positioning and docking control experimental scenario. From top to bottom,
the long image on the left contains frames 1–4, the middle long image includes frames 5–8, and
the long image on the right includes frames 9–12. The entire positioning and docking process is
clearly shown.
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Figure 8. The x and y freedom observation results. Position xe (red line) and position observation x̂e

(blue line); velocity u (red line) and velocity observation û (blue line); current velocity observation
û f (red line); lumped disturbance observation τ̂D (red line); position ye (red line) and position
observation ŷe (blue line); velocity v (red line) and velocity observation v̂ (blue line); current velocity
observation v̂ f (red line); lumped disturbance observation τ̂D (red line).

Figure 9. The z and ψ freedom observation results. Position ze (red line) and position observation ẑe

(blue line); velocity w (red line) and velocity observation ŵ (blue line); current velocity observation
ŵ f (red line); lumped disturbance observation τ̂D (red line); orientation ψe (red line) and position
observation ψ̂e (blue line); velocity r (red line) and velocity observation r̂ (blue line); current velocity
observation r̂ f (red line); lumped disturbance observation τ̂D (red line).
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Figure 10. ROV position error. Position xe (red line); position ye (red line); position ze (red line); total
distance D (red line); and orientation ψe (red line).

6. Conclusions

In this study, an FADRC scheme is introduced, comprising a double closed-loop
fractional-order PIλDμ controller and a model-assisted finite-time sliding-mode extended
state observer. The purpose of this control scheme is to facilitate high-precision positioning
and docking tasks for ROVs in the presence of ocean current disturbances and model
uncertainties. Specifically, DFOPID effectively addresses non-matched disturbances, with
its fractional-order component enhancing the system’s dynamic performance and robust-
ness. The MFSESO in this paper further enhances the estimation accuracy by integrating
sliding-mode technology and ensuring the finite-time convergence of observation errors.
Through numerical simulations and pool experiments, it is demonstrated that the pro-
posed control scheme can effectively mitigate ocean current disturbances and achieve
high-precision operations even in the absence of an accurate model. This underscores
the scheme’s independence from precise model data on the operational ROV, while also
highlighting benefits such as its simple structure and easy parameter tuning. Consequently,
the FADRC scheme presented in this paper holds significant practical value and can serve
as a valuable reference for ROVs engaged in high-precision operations. Future research
will focus on exploring adaptive parameter optimization within the control scheme.
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