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Preface

In an era where digital technology is the backbone of numerous innovations, digital image

processing stands at the forefront of technological advancements. It is a field that produces

meaningful information, enabling us to interpret and manipulate visual content in a variety of ways

that were once the realm of science fiction.

“Digital Image Processing: Advanced Technologies and Applications” is a comprehensive

exploration of the state-of-the-art methodologies and practical applications that define this dynamic

discipline. This reprint is crafted to serve as both a foundational text for students entering the field

and for professionals who seek to stay updated on the latest developments. Throughout the chapters,

we dig into the advanced algorithms and techniques that power modern image processing systems.

From fundamental concepts such as object detection and recognition to advanced topics such as deep

learning-based image analysis, this book covers a broad spectrum of technologies that are driving the

future of digital imaging.

What sets this reprint apart is its focus on real-world applications. We examine how digital image

processing is revolutionizing industries such as surveillance, satellite imaging, and medicine. Each

application is discussed with detailed case studies and provides readers with insights into how these

technologies are implemented and the challenges they address. The journey through this book begins

with a solid grounding in the basic principles of digital image processing, ensuring that readers have

a firm grasp of the essential concepts.

I am deeply grateful to the numerous researchers, practitioners, and educators whose work

and insights have significantly contributed to the compilation of this reprint. Their dedication to

advancing the field of digital image processing has been a source of inspiration throughout this

writing process.

I am confident that “Digital Image Processing: Advanced Technologies and Applications” will

not only educate and inform but also inspire innovations and further research. Whether you are a

student, a beginner, or a professional, this reprint is designed to be a valuable companion in your

exploration of the interesting world of digital image processing.

Welcome to a journey of discovery, where pixels and algorithms converge to create endless

possibilities.

Zahid Mehmood Jehangiri, Mohsin Shahzad, and Uzair Khan

Editors
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Digital Image Processing: Advanced Technologies and
Applications
Zahid Mahmood

Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus,
Tobe Camp, Abbottabad 22060, Pakistan; zahid0987@cuiatd.edu.pk

1. Introduction

A few decades ago, conventional image processing methods mostly focused on ba-
sic tasks such as image enhancement, registration, or edge detection. Early attempts to
achieve these tasks mostly utilized grayscale images. Over time, simple methods to process
grayscale images resulted in performance degradation for RGB images [1]. Ultimately,
RGB image processing received more attention and subsequent advancements were made,
including color preservation and fusion-based processing [2]. Currently, deep learning is
used extensively in various fields, such as speech recognition and healthcare domains, with
encouraging outcomes in image processing, such as image classification and segmenta-
tion [3]. A recent study showed that deep learning-based approaches significantly improve
the performance of many image-related tasks, such as object detection, recognition, or
segmentation compared, compared to conventional methods.

With the evolution of convolutional neural networks (CNNs), supervised learning
techniques were used to train CNNs, which aimed to extract efficient features to meet
their gold label requirements [4]. The performance of these methods strictly relied on the
available training data. Subsequently, the limited annotated training data failed to acquire
the particulars of the image details. Since the supervised learning approaches learned
nonlinear mapping, they tended to primarily focus on the limited training data. As a result,
the trained model struggled to yield encouraging results on unseen image data [5].

The domain of digital image processing has experienced amazing advancements,
particularly through the evolution of deep learning-based algorithms, which have enhanced
capabilities in many real-life applications, such as image object detection [6], recognition [7],
segmentation [8], edge detection [9], and restoration [10]. Despite these advances, critical
gaps remain in research and knowledge, especially in the applications and exploration of
deep learning models’ robustness in several challenging situations. Deep learning models
also have great ease and efficiency in processing high-dimensional data [11].

This Special Issue entitled “Digital Image Processing: Advanced Technologies and
Applications” addresses these challenges by collecting 15 state-of-the-art research con-
tributions that reinforce current methodologies and offer inventive solutions and novel
perspectives. Looking ahead, future research will likely focus on developing more robust
and explainable AI models to enhance the feasibility of image processing systems.

Future research can also focus on exploring the potential of quantum computing to pro-
cess progressively complex image data, in addition to current deep learning models. These
directions will not only satisfy existing knowledge gaps but also open new possibilities for
advanced applications and technologies in digital image processing.

2. An Overview of Published Articles

During the past three decades, a large number of diverse methods have appeared
in computer vision and machine learning. Many of them utilize conventional machine
learning. However, the recent trend in deep learning has yielded encouraging results. This
section gives a brief overview of the works collected in this Special Issue.

Appl. Sci. 2024, 14, 6051. https://doi.org/10.3390/app14146051 https://www.mdpi.com/journal/applsci1
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In contribution one, researchers proposed an AI-enabled setup to analyze animal
behavior with the objective of providing better flexibility and scalability to make the
proposed setup more feasible. One of the interesting aspects of this work is that users can
compliantly extend different behavior recognition algorithms to recognize animal behaviors
and enjoy convenient human–computer interaction through natural language descriptions.
A case study is discussed that evaluates behavioral variations between sick and healthy
animals in a medical laboratory.

License plate recognition (LPR) is a key part of current intelligent systems that locate
and identify varying license plates. LPR is a challenging task due to the various designs
of LPs, a lack of standard LP templates, unconventional outlines, and angle dissimilari-
ties/occlusion. These factors influence the appearance of the LP and degrade the detection
and recognition abilities of algorithms. However, recent rising trends in the development
of machine learning algorithms have prompted authors to solve this problem, which is the
second contribution in this Special Issue. Particularly, this contribution presents a novel
LPR algorithm to solve the aforedescribed challenges. This method is composed of three
interconnected steps: Initially, a vehicle is detected using the Faster-RCNN algorithm. Next,
the LP is spotted by applying the morphological operations of imaging. Lastly, LPR is
accomplished using a deep learning network. Experiments conducted on several datasets
indicate a mean LPR accuracy of over 96% on three different datasets.

The third contribution in this manuscript is about Urdu numeral classification and
recognition. Urdu is one of the most complex languages, as it is a combination of several
languages. Therefore, its character recognition is a difficult task. It is a bidirectional
language that induces complexities during the recognition procedure. This contribution
uses CNN and its variants to extract features, which are used by the Softmax activation
function and SVM classifier. The obtained results are compared with GoogLeNet and the
residual network (ResNet). This contribution reports 98.41% accuracy with the Softmax
classifier and 99.0% with the SVM classifier. For GoogLeNet, the obtained accuracies are
95.61% and 96.4%, respectively, on ResNet.

Unmanned aerial vehicle (UAV) image capture is a promising means for acquiring
geospatial data. Securing even and consistent quality in UAV images is hard due to the use
of low-cost steering devices and non-surveying cameras. In addition, no specific procedures
exist to perform quantitative tests on UAV images. Hence, in the fourth contribution, the
authors conducted a modulation transfer function (MTF) investigation using a slanted-edge
target and a ground sample distance (GSD) analysis to verify the basics of MTF analysis.
This was used to verify the basics of MTF analysis in assessing UAV image values.

The accurate extraction of individual features in multi-view and multi-modal datasets
is a difficult topic. In the fifth contribution, researchers present PhotoMatch, an open-source
tool for multi-view and multi-modal feature-based image matching. The software contains
several recently developed methods to process, extract, and match features. It also offers
tools for a thorough assessment and judgement of the numerous methods and allows the
user to select the top combination of methods for every modality in the dataset. A set of
thirteen case studies, which included six multi-view and six multi-modal image datasets,
were processed by following different methodologies.

In recognition of the importance of the video classification task and to summarize
the success of deep learning models, contribution six is a concise review of the said topic.
Particularly, this work highlights several major findings that are based on existing deep
learning algorithms. This review emphasizes the type of architectures used, the evaluation
criteria, and the experimented datasets. Moreover, a fair insight into the recently reported
deep learning methods and traditional approaches is also provided. Furthermore, the
important tasks based on the targets are highlighted to calculate the technical advancement
of these systems.

In the seventh contribution, researchers addressed the task of multiple-object tracking
(MOT) in complex scenarios, such as instances of missed detections, false alarms, and
frequent target switching. This contribution has explicit potential applications in security
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applications, which include public safety and fire prevention, to track crucial targets. There-
fore, researchers proposed an approach to multi-object tracking and an identity validity
discrimination module. The authors raised the KC-YOLO detection model for tracking,
optimized detection frames, and implemented adaptive feature refinement to solve chal-
lenges, for instance, incomplete pedestrian features, which are caused by occlusion. The
method proposed in this work improves pedestrian tracking accuracy along with pedes-
trian characteristics. In experiments on the MOT16, MOT17, and MOT20 datasets, this
method resulted in substantial findings and encouraging results.

The eighth contribution in this Special Issue is related to the study of recognizing
handwritten Arabic characters. Given the fundamental complexities of the Arabic charac-
ters that encompass semi-cursive styles, apparent character models, and the insertion of
diacritical spots, this area of research has great potential. Highlights in this work are on
children’s handwritten Arabic writing. This area is recognized for its apparent challenges,
for example, variations in writing and distortions. The researchers also collected a dataset,
referred to as “Dhad”. Their investigation employs a tri-fold experimental approach, cover-
ing the investigation of pre-trained deep learning algorithms, custom-designed ConvNets
architectures, and established classifiers. These findings sort out the efficiency of fine-tuned
models, the potential of custom ConvNets designs, and the details associated with several
classification paradigms. The pre-trained model yields the best test accuracy, at 93.59%,
with the authors’ collected dataset. Moreover, researchers also proposed the idea of a
novel application specifically for children younger than 13, with the aim of improving their
handwriting skills.

The ninth contribution in this Special Issue is related to the analysis of mammography
images using multi-branch attentional ConvNets. In this work, a research team proposed
a method based on the multi-label classification of two-view mammography images. It
influences the correlation between lesion type and its different states. It then classifies
mammograms into density, anomaly type, and difficulty level. It takes two-view mammo-
grams as input, analyzes them using ConvNeXt and the channel attention mechanism, and
integrates this information. Finally, the combined information is fed into multi-branches,
which learn pattern representations to predict the appropriate state. This algorithm was
evaluated on two public domain benchmark datasets, INBreast and the Curated Breast
Imaging Subset of DDSM. The developed CAD method discusses the holistic performance
of a patient’s state. It guides radiologists in the analysis of mammograms with a facility to
prepare a complete report of a patient’s condition with high confidence.

The tenth contribution in this Special Issue is about the detection and classification
of vehicles from publicly available datasets through YOLO-v5. The authors use a transfer
learning method on the packed traffic patterns. The datasets were made thorough by
introducing various aspects, for example, high- and low-density traffic images and distinct
weather environments. Eventually, the improved YOLO-v5 algorithm becomes familiar to
any traffic examples. Through fine-tuning the pre-trained system, the authors validated
that the proposed YOLO-v5 has surpassed various traditional vehicle detection algorithms
in terms of accuracy and complexity. The experiments were conducted on three different
datasets to demonstrate its effectiveness in varying real-life conditions.

The eleventh contribution in this Special Issue discusses segmentation in X-ray com-
puted tomography (CT) data for non-destructive testing (NDT) by combining the segment
anything model (SAM) with tile-based flood-filling networks (FFN). This method evaluates
the performance of the SAM on volumetric NDT datasets and demonstrates its effective-
ness to segment instances in challenging imaging scenarios. The authors implemented
different methods to analyze the image-based SAM algorithm for use with volumetric
datasets. This investigation enables the segmentation of 3D objects using FFN’s spatial
flexibility. The piecewise method for SAM influences FFN’s abilities to segment various
sized objects. This research has huge potential for merging SAM with FFN for volumetric
instance segmentation, particularly for large objects.

3
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The twelfth contribution in this Special Issue discusses a novel methodology that
combines bidirectional feature learning and generative networks to innovatively approach
the domain adaptation problem. This study proves that merging bidirectional feature
learning and generative networks is an effective solution for domain adaptation. Through
various evaluations, authors verify that merging outperforms the existing works.

The thirteenth contribution in this study proposes a fruit freshness classification
method through deep learning. After the fruit data was gathered, the data was pre-
processed, including augmentation and labeling. Later, the AlexNet model was used.
Meanwhile, transfer learning and fine-tuning of the CNN was accomplished. Lastly, the
Softmax classifier was used for classification. Experiments were performed using three
commonly available datasets. The proposed model achieved highly favorable results in all
three datasets by yielding an over 98% classification accuracy. In addition, this method is
also computationally efficient and works in real-time to yield the final classification result.

The fourteenth contribution is about a survey of optical character recognition (OCR).
OCR is a process of extracting handwritten or printed text from a scanned or printed image
and converting it to a machine-readable form for further data processing. OCR technology
helps digitize documents for improved productivity and accessibility. Currently, the OCR
is useful for preserving historical documents. The authors briefly discuss the recent OCR
methods and identify the best-performing approach that researchers could utilize in their
developed applications. This contribution also covers research gaps and presents future
directions for Arabic language OCR in a systematic way.

In the fifteenth contribution, the authors present a method of transfer style patterns
while fusing the confined style construction with the local contented arrangement. In this
contribution, numerous levels of coarse stylized features are reconstructed at low resolution
using a coarse network. While achieving this, the color distribution is transferred, and the
content structure is integrated with the initial style structure. Then, both the reconstructed
and the content features are embraced to produce high-quality, structure-aware stylized
images that have a high resolution. This is obtained through a fine network that has
three structural selective fusion (SSF) sections. This method has proven to be robust by
generating high-quality stylization outcomes.

3. Conclusions

The contributions listed in this Special Issue can be combined into three major groups
with the following key attributes.

Group 1: Object detection: In this category, contributions 7 and 10 inspect various
object detection methods. In particular, contribution 7 addresses multi-pedestrian detection
and tracking. Whereas contribution 10 addresses license plate detection in real-life images
in an open environment.

Group 2: Object recognition: In this category, several state-of-the-art contributions
were accepted, which include contributions 1, 2, 3, 6, 8, 13, and 14. The afore-listed
contributions either use AI methods or use deep learning methods to inspect various
objects. This group is most prominent in this Special Issue and gathers significant scientific
findings in the object recognition domain.

Group 3: Image Manipulations: This group gathers contributions 4, 5, 9, 11, 12, and
15. Specifically, contribution 4 evaluates the quality of aerial images. Whereas 5, 9, 11, 12,
and 15 perform image manipulations through various methods listed therein. In these
collections, contribution 12 is particularly related to image segmentation, which is currently
a challenging task in various real-life scenarios.

After thoroughly analyzing the gathered contributions, the following important points
are highlighted:

• With the rapid advancements in AI and machine learning, the use of deep learning
in various applications has become obvious in many industries due to its ability to
process complex patterns and make reliable predictions. Therefore, deep learning
algorithms have found their place in crucial fields, including object detection and
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recognition, natural language processing, and medical imaging. For instance, CNNs
are extensively employed for tasks such as image classification, object detection,
segmentation, and medical imaging. Similarly, recurrent neural networks (RNNs)
and transformers have advanced the capabilities of many applications. For instance,
real-time translation, sentiment analysis, and conversational agents. The development
of GPUs and large-scale datasets has further driven deep learning’s adoption for
solving complex problems with exceptional accuracy and efficiency.

• With the evolution of RGB images, several state-of-the-art algorithms have also ap-
peared in the literature. Most of the images related papers collected in this Special
Issue address RGB images using an intelligent combination of machine learning-based
methods to achieve desired outcomes.

Final Remarks: Digital Image Processing: Advanced Technologies and Applications will
serve as a fundamental resource for researchers and practitioners. It will also assist stu-
dents who aim to orient their career in machine learning and deep learning. It not only
imparts basic knowledge but also stimulates advanced thinking and exploration in recent
technological advancements. As the digital imaging domain continues to grow, the insights
and methodologies collected in this Special Issue will provide resources and applications
for newcomers. The following are a few major takeaways from the collections presented in
this Special Issue:

Technological Integration: The collection presents a combination of digital image pro-
cessing with advanced technologies, such as machine learning and deep learning, and
demonstrates their potential for solving complex, real-world problems.

Algorithmic Development: This collection emphasizes the development and optimization
of recent algorithms, which process images, extract features, and report efficient processed
images results.

Innovative Applications: A variety of applications in several domains are collected,
which include traffic images, medical imaging, and aerial images. Each manuscript gath-
ered here underscores their practical relevance to modern-day technology.

Future Directions: This Special Issue also hints towards future directions in several
domains, such as colored image processing, image analysis, and the development of
more robust procedures, which are capable of handling a variety of datasets. Finally,
the conventional object detection, recognition, and segmentation methods [12] can be
integrated with recent deep learning algorithms to build a more accurate and feasible
system to be deployed for various scenarios.

Conflicts of Interest: The authors declare no conflicts of interest.
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Featured Application: In this study, we designed a highly available animal behavior analysis
platform that can help researchers significantly improve their work efficiency. In addition, the
platform has good flexibility, scalability, and human-machine interaction. Researchers can eas-
ily configure and use the platform for behavioral observation experiments with minimal learn-
ing costs.
Abstract: In recent years, with the rapid development of medicine, pathology, toxicology, and neuro-
science technology, animal behavior research has become essential in modern life science research.
However, the current mainstream commercial animal behavior recognition tools only provide a single
behavior recognition method, limiting the expansion of algorithms and how researchers interact
with experimental data. To address this issue, we propose an AI-enabled, highly usable platform
for analyzing experimental animal behavior, which aims to provide better flexibility, scalability, and
interactivity to make the platform more usable. Researchers can flexibly select or extend different
behavior recognition algorithms for automated recognition of animal behaviors or experience more
convenient human-computer interaction through natural language descriptions only. A case study at
a medical laboratory where the platform was used to evaluate behavioral differences between sick
and healthy animals demonstrated the high usability of the platform.

Keywords: analysis platform; behavior recognition; human-computer interaction

1. Introduction

Animal behavior is the body language by which an animal expresses its psychological
and physiological state and its overall function. Typical model animals, such as mice, rab-
bits, and goats, are widely used to analyze different behaviors in the open field to measure
the effectiveness of experiments in biology, toxicology, neuroscience, pharmacology, animal
husbandry, and genetics [1–3].

Due to the advancement of embedded technology and automation technology, animal
behavior recognition has progressed rapidly. For example, Arablouei et al. [4] utilize
embedded devices and corresponding behavior recognition methods for efficient behavior
recognition of livestock, such as cows. Roughan et al. [5] proposd automation technology
to predict the behavioral changes of mice undergoing surgery and observe the effects
of painkillers. With the development of deep learning techniques, the performance of
animal behavior recognition has been significantly improved. Natarajan et al. [6] achieve
high-accuracy detection of wild-animal behavior using deep learning models. In order to
ensure real-time performance, Fuentes et al. [7] proposed a behavior recognition algorithm
for cattle based on a spatial-and-temporal information framework. Despite the success of
these studies in specific scenarios, these studies generally need to rely on commercialized
tools to provide convenient human–computer interaction and data retrieval.
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Appl. Sci. 2024, 14, 4583

Although commercialized tools can simplify human–computer interaction and reduce
labor costs for behavior recognition, they still need more flexibility, scalability, and interac-
tivity. Specifically, these tools usually can only detect specific behaviors, making it difficult
to adapt to different experimental needs. In addition, designing the underlying algorithms
of commercialized tools is often scenario-specific. It cannot generate intermediate results
such as single-frame pose data, limiting its application scope. The limitations of hardware
and architecture also make it difficult for these tools to change or expand the underlying
algorithms. It affects the accuracy and speed of the experimental results. Finally, com-
mercialized tools have a limited scope of human-computer interaction for data retrieval
and analysis, and researchers need to resort to other specialized tools or programming
languages, such as structured query language (SQL) or Python, which increases the learn-
ing cost and reduces the usability of the tools. Therefore, designing and implementing a
laboratory animal behavior analysis platform that can efficiently identify animal behavioral
actions, effectively manage animal behavioral data, support changes in the underlying
algorithms, and provide convenient human-computer interaction capabilities is of great
significance in reducing the workload of related researchers.

In order to compensate for the shortcomings of existing tools and to design a highly
usable platform for animal behavior analysis, we established three goals that the platform
should achieve:

1. The platform should be flexible enough to support researchers in selecting different
behavior recognition methods and behavior detection categories.

2. The platform should be scalable to support researchers in upgrading or expanding
the underlying algorithms.

3. The platform should have flexible and convenient interactivity so that researchers
can use the platform’s preset human-computer interaction functions when using
experimental data systems or commercial tools for data querying and statistical
analysis or use more adaptive interaction methods to meet the changing functional
needs of researchers.

When designing the platform, we integrated various architecture design methods,
such as microservices and plug-in design, to support researchers in flexibly configuring the
detection methods and behavioral categories and having good flexibility and scalability. In
order to improve the interactivity of the platform and enable researchers to retrieve and
analyze data more flexibly, we have introduced natural language processing algorithms
into the platform, through which we analyze the intent of the user’s natural language
query and convert the command to generate database execution statements that can be
executed. Although the fusion architecture and natural language processing technology
can bring higher usability to the platform, the effective integration, replacement, extension,
and management of different behavior recognition algorithms, the adaptability of natural
language processing algorithms in the field of animal experiments, and the cross-language
problem of natural language processing algorithms still pose significant challenges to the
implementation of the platform.

We propose a high-availability animal behavior analysis platform that combines good
architectural design practices and natural language processing techniques, and Figure 1
shows the overall architecture of the platform. We build the platform ecosystem as a hybrid
architecture, where behavior recognition services can be flexibly configured or extended to
efficiently recognize multiple behavioral categories, including fine-grained movements, and
produce intermediate results that meet specific experimental requirements. The platform
is highly integrated with multiple business modules, which can automatically identify
the behavioral actions based on the input data and store the identified behavioral data
information directly in the database without manual recording or inputting information,
thus effectively reducing the labor cost. The platform provides natural language query
interface services. In addition to predefined platform functions, it can also use natural
language descriptions for more flexible data retrieval and analysis.
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Figure 1. Overall structure of the platform.

In summary, our main contributions are as follows:

1. We have developed an AI-enabled, highly available platform that centralizes nec-
essary functions for researchers, streamlining their workflow, reducing costs, and
enhancing efficiency.

2. We have enhanced the platform’s architecture with multiple design patterns to boost
its flexibility and scalability, allowing for easy selection and extension of various
algorithms and integration of posture estimation and behavior recognition for diverse
experimental needs.

3. We have incorporated natural language processing to improve user interaction, elim-
inating the need for additional programming or complex database operations for
data analysis.

4. We have validated the platform’s effectiveness through a case study on UBE3A gene
deletion, highlighting its practical utility in real-world scenarios.

The paper is organized as follows: Section 2 presents the related work. Section 3 describes
the overall system architecture. Section 4 outlines methods to improve the usability of
behavior recognition. Section 5 outlines methods to improve the usability of human-computer
interaction. Section 6 discusses the case study. Section 7 provides the conclusion.

2. Related Work

In recent years, the field of animal behavior analysis has made remarkable progress be-
cause of the application of commercial tools and advanced behavior recognition algorithms.
These techniques not only improve research efficiency but also provide strong support for
animal welfare and disease research.

Commercial tools. EthoWatcher is an open-source software designed to record and
analyze animal behavior [8]. It can process video files and offers rich features to label and
quantify animal movement information. EthoWatcher provides a user-friendly interface for
various experimental setups, which makes it easy for researchers to perform behavioral
analyses. The ToxTrac software utilizes a second-order Kalman filter to estimate a detected
object’s trajectory and can fuse existing trajectory segments to generate a complete trajec-
tory [9]. ToxTrac also provides various tools and features for analyzing animal behavior,
such as path length, average velocity, and dwell time. These features make ToxTrac a
powerful tool in animal behavior research. ANY-maze is an animal behavior analysis
system developed by Stoelting, Inc., Kiel, WI, USA [10]. By marking a point on the back of
a mouse, ANY-maze can calculate the distance the mouse moves in the open field, thus
determining the mouse’s locomotor ability. Although various parameters can be generated
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automatically, statistical analysis software such as GraphPad is required to analyze the
differences between disease and normal mice [11].

Animal behavior recognition algorithm. With the development of machine learning
and deep learning technology, many scholars have started to apply methods based on
machine learning and deep learning to animal behavior recognition, and they have achieved
good results. Fang et al. [12] proposed an animal behavior classification method based on
six features (keypoint location, depression, skeleton, shape feature, skeleton angle, and
elongation) and a naive Bayes model (NBM), which can effectively identify and classify
the daily behaviors of animals. In order to improve detection accuracy, Nasiri et al. [13]
fully utilized the advantage of long short-term memory (LSTM) in processing time series
data. They accurately assessed the lameness status of broilers by successively extracting
keypoints into the LSTM model and classifying the lameness degree of broilers according
to the six-point assessment method. To further improve detection accuracy Lin et al. [14]
first estimated bird keypoints using HRNet to generate global and local features [15]. After
that, the excitation region was localized by keypoint clustering. Finally, bird behavior
recognition achieved significant results by combining ResNet [16]. In order to compensate
for the lack of single morphological features, Li et al. [17] fused multi-features to realize
efficient lameness classification, including red–green–blue (RGB), optical flow, and skeleton.
They utilized VGG-19 to extract skeleton joint point features and analyze spatiotemporal
features by ST-GCN [18,19]. Chen et al. [20] ameliorated the deep learning method for pig
aggression behavior recognition, using video data as input and extracting temporal and
spatial features based on VGG-16 and LSTM models [18]. Its recognition accuracy reached
98.4% and significantly improves prediction efficiency. In order to meet the demand for
real-time monitoring in the production environment, Zhang et al. [21] designed a real-
time sow behavior detection algorithm (SBDA-DL), based on MobileNet and a single-shot
multi-box detector (SSD). They trained and predicted sow behaviors, including watering,
urinating, and crawling, and obtained satisfactory results. Moreover, several methods focus
on behavioral recognition detection in complex wild environments. For example, Schindler
et al. [22] used an infrared camera to capture the activity of deer, wild boar, fox, and hare in
the wild environment. It can recognize the feeding, moving, and gaze behaviors based on
the ResNet variant and SlowFast framework [23].

Table 1 compares our platform with other results. Our platform has flexible archi-
tecture and algorithm service management. It can quickly adapt to different behavior
recognition requirements and support the training of proprietary models. Our platform in-
corporates natural language processing for a natural language query interface. It improves
data retrieval and analysis processes and reduces reliance on traditional statistical tools.

Table 1. Comparison of our platform with commercial tools and behavior recognition algorithms.

Source Research Object Behavior Type
Behavior

Recognition
Method

Data Retrieval and
Analysis Scalability Interactivity

EthoWatcher Animals
Extracts only

activity-related
parameters

Digital image
processing
techniques

Contains certain
functions, further
analysis requires

reliance on other tools

Not supporting
algorithm

replacement

Graphical
interface

ToxTrac Animals
Extracts only

activity-related
parameters

Digital image
processing

techniques and
second-order
Kalman filter

Contains certain
functions, further
analysis requires

reliance on other tools

Not supporting
algorithm

replacement

Graphical
interface

ANY-maze Animals

Hairdressing,
stiffness,

movement,
stillness, activity

related
parameter

Experimental
animal trajectory

prediction
algorithm

Contains certain
functions, further
analysis requires

reliance on other tools

Not supporting
algorithm

replacement

Graphical
interface
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Table 1. Cont.

Source Research Object Behavior Type
Behavior

Recognition
Method

Data Retrieval and
Analysis Scalability Interactivity

Fang Broiler chicken

Standing,
walking,

running, feeding,
resting carding

Naive Bayes
Data retrieval and

analysis rely on other
tools

- Command line

Nasiri Broiler chicken Limp LSTM
Data retrieval and

analysis rely on other
tools

- Command line

Lin Bird

Swimming,
flapping wings,
standing, shoot

winging,
feeding,

squatting

ResNet18
Data retrieval and

analysis rely on other
tools

- Command line

Li Dairy cattle Limp ST-GCN
Data retrieval and

analysis rely on other
tools

- Command line

Ours Animals Customizable Replaceable

Contains certain
functions and natural

language query
interface

Supporting
algorithm

replacement

Graphical
interface and

natural language
query interface

3. Overall System Architecture

The software system we designed is an animal behavior analysis platform that can be
deployed in medical laboratories. It automatically acquires the behavioral information of
animals in open-field videos and generates corresponding data reports to be stored in a
database. The platform allows researchers to flexibly select existing behavioral recognition
algorithms or extend new ones into the platform for use according to different experimental
needs. In addition, the platform utilizes an integrated natural language query interface
service to provide high usability, as researchers are no longer limited by preset functions
when conducting data retrieval or analysis. We selected relational databases for the platform
because the relational database can effectively manage and maintain relationships between
data, ensure data integrity and consistency, and support complex query operations in
SQL language. We used a model–template–view (MTV) pattern similar to the model–
view–controller (MVC) pattern, which can effectively separate data, business logic, and
user interface. The pattern can improve the maintainability and scalability of the system
and make the platform easier to develop and maintain. The model layer handles the
application’s data logic and database interaction. The template layer is responsible for
building the structure and style of the page, typically using hypertext markup language
(HTML) and template languages. As a traditional controller, the view layer receives and
processes user requests and passes the model data to the template for display. In addition,
we selected JavaScript object notation (JSON) as the structural form for data exchange to
achieve lightweight data transmission and parsing, which can improve system performance
and efficiency. We developed the algorithm library using Python. We used Flask, Pytorch
frameworks, and open-source libraries (such as OpenCV-python, Numpy, Scikit-video, and
others) in the development project. We deployed the platform, pose estimation service,
behavior recognition service, and natural language query interface service on four identical
devices. Each device adopted the Ubuntu 18.04 system with a CPU model of 2vCPU
Intel (R) Xeon (R) Platinum 8352V, Intel Corporation and NVIDIA Corporation, Santa
Clara, California, USA and had 90 GB of memory. The device that was deployed for
the pose estimation, behavior recognition, or natural language query interface service
had anRTX4090 (24 GB) GPU, Santa Clara, California, USA. Figure 2 shows the overall
architecture of the platform, where the gray part indicates the main service modules, and
Table 2 describes the relevant information of each module.

11



Appl. Sci. 2024, 14, 4583

Request

Response

Data receiving
and

preprocessing
module

Pose estimation
module

Server

Behavioral
recognition

module

Data storage and
analysis module

Natural language
query interface

module

Data acquisition
and transmission

module

Front end

Client 
Controller

Algorithm library
management

module

Figure 2. The main architecture of the platform, in which the pose estimation module, the behavior
recognition module and the natural language processing model are the main modules.

Table 2. Relevant information of each module.

Module Name Functionality

Data acquisition and transmission module Capture video data and pass it on to the server.
Data receiving and preprocessing module Receive and convert data into standardized form.

Controller Receive and process the requests sent by the client.
Algorithm library management module Manage plug-ins and interface services within the algorithm library.

Pose estimation module Training or execution of different pose estimation algorithms.
Behavior recognition module Training or execution different behavior recognition algorithms.

Natural language query interface module Converting natural language queries entered by researchers into
computer instructions.

The platform has two working modes—training and inference—to adapt to different
practical use cases. In the training mode, researchers first need to input different training
information, including animal category, number of key points, number of behavioral
categories, etc., through the front-end page according to the different algorithms selected,
then import and label the training data. Specifically, the labeled key point data will be
used to train within the pose estimation model, while the labeled behavioral category
data will be used to train the behavioral recognition model. Once the training starts, the
training information and progress will be fed back to the researcher in real time through
the front-end page. In the inference mode, the video capture and sending module will
first send the captured video data to the receiving and preprocessing module on the server
side. Then, after the preprocessing module processes the video data, there will be two
different kinds of subsequent processing depending on the requirements. One is to input
the preprocessed data into the pose estimation module, and the obtained pose estimation
result will be temporarily stored as an intermediate result at the service end. Then, the
posture estimation results are input into the behavior recognition model to generate specific
behavioral category information, which is then stored in the database. The other is to
directly input the preprocessed data into the behavior recognition model for analysis and
keep the analysis results. Once reasoning is complete, researchers can describe their data
retrieval or analysis needs in natural language on the front-end page. These requirements
are sent, received, processed, and then fed into the natural speech query interface module,
which converts the requirements into commands understandable by the platform and
executes them. Finally, the query results are displayed to the researchers through the
front-end page.

4. High Availability of Animal Behavior Recognition

Automatic recognition of animal behavior is the core function of the platform. It
is of great significance for medical animal behavior experiments to be able to select be-
havior recognition methods flexibly and effectively recognize the behavior of animals in
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experimental videos. In order to improve the usability of the platform and enable it to
flexibly select and extend the behavior recognition algorithm according to the actual needs
of researchers, we integrated the design idea of plug-in management, unified interface, and
algorithm library when designing the platform architecture.

Plugin design is a software architecture design pattern that modularizes the function-
ality of software, and each module can be developed and used as a separate plugin. In
the laboratory animal behavior analysis platform, we design each behavior recognition
algorithm as a plugin and deploy it locally. Each plugin contains all the code and resources
to implement a certain behavior recognition algorithm. These behavior recognition algo-
rithm plugins can be developed and tested independently of the platform and only need
to follow certain interface specifications and data formats. At runtime, the platform can
dynamically load and unload plugins to execute the algorithms in the plugins. To realize
this design, we define a local plugin interface and require all plugins to implement this
interface. This interface includes the initialization of the plugin, setting and obtaining
parameters, executing analysis, obtaining results, and other operations. The plugin design
allows the platform to have higher flexibility and extensibility. Researchers can choose and
combine plugins according to their needs and even develop their own plugins.

Although plug-in local deployment can bring good response speed, local deployment
is sometimes limited by hardware performance. Therefore, in addition to supporting plug-
in algorithm access for local deployment, the platform also supports access to non-locally
deployed behavior recognition algorithm services in the form of a unified interface. The
platform requires all behavior recognition algorithms to have a unified remote web interface.
We define the basic operations of this interface about behavior recognition algorithms, such
as initialization, setting parameters, executing analysis, obtaining results, and so on. The
unified network interface approach allows the platform to use behavior recognition services
deployed on other computing resources. In addition, the unified interface service removes
the platform’s focus on the specific details of the service and is not affected by upgrades or
replacements of the algorithms.

An algorithm library is a software library that stores and manages algorithms. The
platform stores all available behavior recognition algorithm plug-ins and remote service
interfaces in an algorithm library. The algorithm library contains service resources for
all available behavior recognition algorithms. Researchers can use the search and filter
functions to select appropriate algorithms for behavioral analysis experiments. To realize
this design, we define the structure of an algorithm library containing storage paths of
algorithms, service interface paths, metadata formats, etc. The platform provides a mod-
ule to manage the algorithm library, which contains functions such as adding, deleting,
searching, and loading algorithms. The application of the algorithm library enables the
platform to centrally manage decentralized algorithm plug-ins and remote services, which
is convenient for researchers to find and select and improves the usability of the platform.

Unlike commercial tools, the platform uses a more flexible architecture that allows it
to change different behavior recognition methods according to user needs, such as skeleton
keypoint-based methods, optical flow information-based methods, depth image-based
methods, and appearance contour-based methods. Among them, the skeleton keypoint-
based method needs to rely on a posture estimation algorithm to obtain information
about the key points of the animal’s skeleton. The timing information of these key points
can reliably describe the subtle changes in the animal’s posture and serve as the basic
data for analyzing other motion indicators. The behavior recognition algorithm based
on skeleton key points can identify specific categories of behaviors based on the key
point sequence information. Combining posture estimation with key point-based behavior
recognition algorithms satisfies the reliability of behavior recognition in animal experiments
and increases the flexibility of adapting to different experimental needs. The key points
must be accurately mapped onto the animal limbs to recognize the animal-generated pose
data during the experiment. The accuracy of the key point information of experimental

13



Appl. Sci. 2024, 14, 4583

animals has an extremely important impact on subsequent behavior recognition and other
experimental tasks.

The platform currently provides two pose estimation algorithm plug-ins, one of which
is the DeepLabCut pose estimation algorithm, which combines target detection, target
tracking, and semantic segmentation algorithms to accurately locate key points on the
limbs of experimental animals without the need for labeling [24]. DeepLabCut reduces the
computational cost of the pose estimation algorithm by transforming the complex pose esti-
mation task into key point detection and tracking, significantly reducing the computational
cost. The network architecture of DeepLabCut is based on a convolutional neural network,
as shown in Figure 3. DeepLabCut consists of the following main components: a feature
extraction layer for extracting features from the input image, a fully connected layer for key
point regression, a loss function that measures the difference between the predicted key
point position and the actual calibrated position, and the optimizer that adjusts the network
parameters to minimize the prediction error. Overall, the network structure of DeepLabCut
is a convolutional neural network based on a backbone network such as ResNet, which
implements key point localization and tracking through a feature extraction layer and a
key point regression layer.

EfficientNet

Extract frames

Train network Analyze videosLabel frames

Novel
video

Video

Extracted
frames

Labeled
frames

Evalute netwok

Create dataset

Figure 3. DeepLabCut network architecture, where EfficientNet is the replaceable feature extrac-
tion network.

Another plug-in for various pose estimation algorithms provided by the platform is
YOLOX-Pose [25], an algorithm for multi-person pose estimation based on the popular
YOLO target detection framework [26]. The algorithm combines the advantages of top-
down and bottom-up approaches by simultaneously detecting the bounding boxes and
corresponding 2D poses of multiple people through a forward propagation process. Unlike
traditional heatmap-based two-stage approaches, YOLO-Pose is end-to-end trainable and
optimized to evaluate the metric of object key point similarity (OKS) instead of using L1
loss as a proxy for training. In addition, YOLO-Pose does not require the post-processing
step of the underlying method to group the detected key points into skeletons, as each
bounding box has an associated pose, which enables the natural grouping of key points.
YOLO-Pose achieved new optimal results on the COCO validation set and the test set
(90.2% AP50 and 90.3% AP50) and outperform all existing key points in a single forward
propagation process, outperforming all existing bottom-up methods without the need for
flip tests, multi-scale tests, or other test time enhancements. While the original YOLO pose
implements single-shot pose estimation based on the YOLOv5 target detection framework,
the platform extends it based on the better-performing YOLOX framework. It provides
network structures with different parameter scales such as YOLOX-tiny-Pose, YOLOX-s-
Pose, YOLOX-m Pose, YOLOX-s-Pose, YOLOX-m-Pose, and YOLOX-l-Pose. The network
structures with different parameter scales can meet the performance constraints of different
hardware resources.

14



Appl. Sci. 2024, 14, 4583

Behavior recognition based on skeleton keypoints is usually done in two ways: one
is based on keypoint coordinate information by manual design of matching rules for
behavioral categories, such as linear motion behaviors that can be matched by the linear
change of the coordinates of the center point of the animal’s body between consecutive
frames; the other method based on deep learning by the model autonomously learns the
keypoint change characteristics of different behavioral categories.

The platform provides a behavior recognition algorithm plug-in based on skeleton
key points, which selects the ST-GCN network as the underlying algorithm, as shown in
Figure 4. For the first time, this network combines the graph convolution operation, which
captures spatial dimensional information, and the temporal convolution operation, which
captures temporal dimensional information, to form spatiotemporal convolution modules.
These modules can extract high-level features of skeleton graph sequences through multiple
layers. The ST-GCN network mainly consists of nine layers of basic modules, with the
output channels of the first three layers being 64, the middle three layers being 128, and
the output channels of the last three layers being 256. In addition, the size of the temporal
convolution kernel of each layer is 9. To reduce the feature loss of the network during
feature extraction and to improve the feature extraction capability of the model, residual
concatenation is used in each base unit to realize the cross-region feature fusion. Meanwhile,
to avoid overfitting during the training process and improve the robustness of the model,
a dropout layer is added to each base unit. After these processes, the feature vectors
generated from the skeleton sequences will finally be fed into the SoftMax classifier for
behavioral action classification.

IN BN ATT GCN TCN ATT GCN TCN ATT GCN TCN POOL FC OUT

Input skeleton ST-GCN network Classification

Figure 4. Principle of ST-GCN algorithm, where GCN is spatial graph convolution and TCN is
temporal graph convolution.

Another behavior recognition algorithm plug-in provided by the platform is the
SlowFast algorithm based on optical flow features. The algorithm uses hand-designed
optical flow features to characterize the movement information of the target between two
frames. SlowFast is biologically inspired by a two-pathway structural model, Slow Pathway
and Fast Pathway, concerning the characteristics of P-cells, which are used to capture
spatial information, and M-cells, which are used to capture fast-moving information, in
the retinal cells of primates. Slow Pathway is used to capture spatial semantic information
reflected by sparse frames, and it uses a very low frame frequency; Fast Pathway is used to
capture rapidly changing running information, and it uses a very high frame frequency.
In addition, Slow Pathway has a larger model volume, like 80% P-cells; Fast Pathway
is lightweight, like 20% M-cells. In the middle of the two pathways is a Fast to Slow
passthrough connection, i.e., the fusion of motion information to spatial semantics. Finally,
the two-pathway information is fused for classification.

5. High Availability of Human–Computer Interaction

With the changing needs of animal behavior experiments, commercial tools or inde-
pendent experimental data management systems have gradually become unable to meet
researchers’ data retrieval and analysis needs. The main reason is that the interactivity
of commercial tools or independent experimental data management systems could be
better, and there are problems such as limited query syntax, pre-written queries, lack of
context understanding, and strict format requirements. In order to improve the usability of
human–computer interaction in data retrieval and analysis, the platform combines text-to-
SQL-related algorithm models into natural language query interface services in the form of
plug-ins and integrates them into the platform.
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Natural language query interface service can bring much convenience to the human-
computer interaction of the platform. First, the natural language query interface service
can provide researchers with more free query methods. Traditional database queries need
to write SQL statements according to specific syntax and structure, which limits users’
query methods. Researchers can use their familiar vocabulary and expressions for querying
without being restricted to a specific query syntax. Secondly, the natural language query
interface service can provide dynamic query functions. Researchers can adjust the query
conditions according to real-time needs without writing fixed SQL statements in advance.
For example, the user can say, “Show the experimental mice that have been assisted to
stand more than five times in the past three days”; the natural language query interface
service can understand the user’s intent and generate and execute the corresponding
SQL statement.

The natural language query interface service makes human–computer interaction
more flexible and natural through free querying methods, dynamic querying, and contex-
tual understanding. Users can query in a way they are familiar with and make flexible
adjustments according to real-time needs, thus improving the flexibility and adaptability of
the interaction. In addition, the natural language query interface service brings significant
advantages to human–computer interaction by improving query accuracy, lowering the
use threshold, and providing a better user experience.

Currently, the platform provides two algorithms as natural language query inter-
face services for researchers: namely, RAT-SQL and RYANSQL [27,28]. RAT-SQL en-
codes schema links and table structures based on Transformer by adding a relation-aware
self-attention mechanism; Figure 5 illustrates the model structure of RAT-SQL. RAT-SQL
transforms a database schema into a directed graph Gq, describes known relationships by
adding biases, and encodes associations between natural language questions and database
schemas using name-based and value-based strategies. Eventually, these encoding re-
sults are fed into a tree Decoder and decoded according to the syntax rules of SQL to
generate SQL statements. Due to the cross-linguistic issues, the platform also incorporates
a cross-linguistic common sense knowledge graph and a cross-domain common sense
knowledge graph (ConceptNet) [29] into the schema-concatenation phase of RAT-SQL,
which results in improved accuracy of RAT-SQL execution for medical animal experiment
information retrieval.

Column names and column
types

Table name Question

Glove embedding/BiLSTM BiLSTM

Relation-Aware Transformer Layer * N

APPLYRULE SELECTCOLUMN SELECTTABLE

Encoder

Decoder

Figure 5. The model structure of RAT-SQL. * N represents the number of Tansformer layers.
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RYANSQL model mainly uses a sketch-based slot-filling method and marks the com-
plex structure of SQL statements by SQL statement position code (SPC). RYANSQL divides
the generation of SQL statements into two phases: sketch generation and slot filling. For
nested statements, RYANSQL first splits the SQL statement into non-nested SELECT state-
ment blocks and represents the relationship between the blocks by SPC. Then, the final SQL
statement is generated by recursively predicting the SPC and the corresponding SELECT
statement blocks.

6. Application Case

The platform was deployed in a medical laboratory in Liaoning Province, China, with
a wide variety of experimental animals and sufficient experimental video resources. In
this facility, we chose “A study on the pathological mechanism of motor defects due to
UBE3A gene deletion” as a validation case for the platform. Figure 6 shows the detailed
process of this case study and the external environmental dependencies. In this study, the
researchers used AS mice to simulate clinical Angelman Syndrome patients, observed the
behavioral differences between the disease model mice and normal mice, and investigated
the specific locomotor differences by combining postural keypoint locomotor information
with calcium signaling information. Since postural and behavioral data were needed
for this case, the researchers selected a skeleton keypoint-based behavioral recognition
method. In deploying and using the platform, we instructed the researchers to train the
corresponding DeepLabCut posture estimation model and ST-GCN behavior recognition
model according to the actual needs. We retrained the RAT-SQL model in the natural
language query interface service for data retrieval and analysis needs.
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Figure 6. The detailed process and the external environmental dependencies. The Chinese meaning
in the picture is to help me search for relevant information on the auxiliary standing movement of
mouse A in Experiment A.

6.1. Dataset
6.1.1. Mouse Behavioral Dataset

To train and validate the actual effects of the pose estimation model and the behavior
recognition model, we randomly selected 3000 experimental mouse behavioral videos.
Each video was about 150 frames, mainly containing behavioral actions, such as stationary,
standing, curling up, rectilinear movement, and steering movement. We divided these
videos according to the ratio of 8:2, which constituted the training set and test set of the
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behavior recognition model. At the same time, we randomly selected 500 frames of images
from these 3000 videos, and the experimenter labeled five key points on each mouse
according to the experimental needs and the characteristics of the mouse skeleton. Then,
we divided these images according to the ratio of 9:1, constituting the training set and test
set of the pose estimation model.

6.1.2. Text-to-SQL Medical Animal Experiment Chinese Dataset

In order to train and verify the actual effect of the natural language query interface
module in converting natural language into SQL statements, we have collected about
1500 SQL statement scripts used by researchers in the past and supplemented the natural
language descriptions of these SQL statements and the corresponding table structure
information according to the relevant information. The types of query statements include
queries with keywords such as group by, order by, and having but also multi-table join
queries, Nested queries, and more comprehensive calculation queries. Compared with
CSpider [30], TableQA [31], and other datasets, the Chinese dataset of medical animal
experiments is relatively simple. However, it is more domain-specific and in line with the
actual needs of medical animal experiments’ information retrieval. We divided the dataset
into a training set and a testing set according to the ratio of 2:1.

6.2. Behavioral Recognition

DeepLabCut is fully pre-trained on the ImageNet dataset. In addition, DeepLabCut has
been tested and calibrated on behavioral data generated by different species of organisms,
such as mice and fruit flies. These diverse data make the model robust. In this case, we
trained DeepLabCut specifically using the mouse mentioned above behavioral dataset
mentioned above, due to the differences in key point locations. We evaluated the model’s
accuracy by comparing the deviation between the pixel coordinates of the key points
predicted by the model and the coordinates labeled by the expert. We used the change
in the mean value of the deviation for each key point to objectively assess the stability of
the model. The root mean square error (RMSE) measures the root mean square difference
between the predicted and true values, thus indicating the average degree of deviation
between the predicted and true values. The formula for the RMSE is shown below:

RMSE =

√
∑n

i=1
[
xt,i − xp ,i

]2

n
(1)

where n is the number of observations, xt is the true value, and xp is the predicted value.
Since DeepLabCut supports a variety of feature extraction networks, we selected six
different feature extraction network models to obtain the best performance, including
ResNet-50 and ResNet-101 for training [32,33]. We evaluated the detection performance
of these networks on mouse skeletal key points and selected the most suitable feature
extraction network for this case.

As shown in Figure 7, the RMSEs of different feature extraction networks for the three
key points of the mice varied. The EfficientNet-b6 network has the smallest error on the test
set [34], and the difference between its predicted coordinates and the true pixel coordinates
was close to 5.9 pixels at the tail. Considering the higher pixels occupied by the nose part
of the mouse in the high-resolution image in this experiment, such a coordinate deviation
is acceptable.

In addition to this, we also evaluated the processing speed of different feature extrac-
tion networks. For example, when using MobileNet-V2-0.35 [35], the model can reach a
processing speed of 16.5 frames/sed but with a relatively high error rate. The slowest
detection speed is EfficientNet-b6, about 3.8 frames/sec. In medical animal experiments,
the need for accuracy is usually higher than the processing speed. Therefore, we finally
chose EfficientNet-b6 as the feature extraction network for DeepLabCut.
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Figure 7. RMSE of five critical points in mice extracted by different feature extraction networks.

In the study of the pathological mechanism of motor deficits caused by UBE3A gene
deletion, in addition to capturing the relationship between motor function and calcium
signals in mice through changes in skeleton key point coordinates, the main focus was
on whether the frequency of occurrence of the five movements of stationary, stand, recti-
linear movement, steering movement and curl up in diseased mice and normal mice has
changed. To analyze the changes in the frequency of these actions, the experimentalists,
in constructing the behavioral dataset of the mice, selected only the videos that contained
these actions. Figure 8 demonstrates the different behavioral actions in a single pose frame.
Then, we input this dataset into DeepLabCut, which led to the corresponding skeleton key
point data. After data preprocessing, we obtained valid inputs applicable to the ST-GCN
network, and using these valid inputs, we retrained the ST-GCN network. Table 3 shows
the detection accuracy of the ST-GCN network for different classes of actions. For actions
with significant pose changes, ST-GCN has high detection accuracy. However, for steering
movement, which is similar to rectilinear movement, the model may not be able to learn
enough detailed information due to the small number of key points, resulting in average
detection accuracy. Therefore, we suggest the experimenter mark more key points in the
video to track the detailed changes in the pose more accurately. Figure 9 shows the de-
tection results of ST-GCN for different behavioral categories in detail. Overall, ST-GCN
offers high accuracy in mouse behavioral action detection, which meets the experimenter’s
accuracy requirements.

Table 3. Detection results of ST-GCN for different behavioral categories.

Behavioral Categories Amount Correct
Amount Accuracy

Stationary 528 496 94.12
Stand 545 502 92.11

Curl up 478 453 94.76
Rectilinear movement 1015 987 97.24

Steering movement 434 382 88.01
Aggregation 3000 2821 94.03
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(a)

(d)

(c)

(e)

(b)

Figure 8. Pose in mice. (a) Stationary. (b) Rectilinear movement. (c) Steering movement. (d) Stand.
(e) Curl up.
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Figure 9. Confusion Matrix for Behavioral Identification Results.

6.3. Natural Language Query Interface

To capture the alignment relationship between natural language issues raised by users
and database patterns, we needed to perform simultaneous semantic encoding on both
in the RAT-SQL algorithm of the natural language query interface service. Considering
the excellent performance of the BERT pre-trained model in natural language processing
tasks, we choose to use its multi-language version to solve the cross-language problem in
the Chinese Text-to-SQL task.

For Chinese natural language problems, we first needed to perform the divide words
operation. In this case, we chose to use a Chinese word-splitter tool with high accuracy, i.e.,
Jieba, which can process Chinese natural language problems and return the combination
of words with the highest probability. However, since natural language problems often
contain Arabic numerals, unit symbols, and punctuation marks, in addition to Chinese char-
acters, we further processed the output of the Jieba lexer tool by combining the substrings
separated by the above cases to keep their original meanings unmodified.

For the column and table names of the database, we adopted the method consisting of
English words with underlined separators according to the needs of engineering practice.
Therefore, we only needed to divide words based on the underline. After completing the
divide-words work, we spliced the obtained natural language questions, data tables, and
data columns, and we connected each data column with its corresponding type.
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Since the input contains Chinese and English, we encode it using a multilingual BERT
pre-trained model (Multilingual-Bert) [36]. In the original RAT-SQL model, the schema-
linking operation utilizes strings for matching, and therefore, the matching mechanism will
not work correctly when multiple languages are involved. To address this problem, we in-
troduced a multilingual, cross-domain common sense knowledge graph (ConceptNet [37])
and optimized the schema-linking process using its tautological edges. ConceptNet is
a directed graph structure whose vertices are natural language words and phrases, and
its edges are labeled ‘types’ and ‘weights’. Figure 10 shows its seven commonly used
relation types.
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2 Kunming mice

3 Medical experiments

4 Mice head

5 Rat

6 Plague
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8 Mice paw

1 62
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4
53
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A used for B

A has a B

A synonmy B

Figure 10. Seven Common Relationship Types in ConceptNet.

The evaluation metrics for the natural language query interface task consist of two
main aspects: first, the exact matching rate of the structure of the generated SQL statements
to the standard SQL statements, and second, the execution accuracy of the SQL query
statements in the given database. In this case, we realized that experimenters are usually
only concerned with whether the actual output meets their needs. Therefore, we focused
more on how to make the SQL statements generated by the text-to-SQL model obtain the
correct results after execution. First, we used the improved RAT-SQL model for pre-training
on Chinese datasets such as CSpider, DuSQL [38] , and TableQA [31] . Then, we performed
special training on the Chinese dataset of medical animal experiments. Table 4 shows the
accuracy performance of RAT-SQL on the test set after introducing ConceptNet.

Table 4. The accuracy performance of RAT-SQL.

Type Total Sample Size Correct Amount Execution Accuracy

Easy 272 267 0.98
Medium 146 137 0.93

Hard 93 81 0.87
Aggregation 511 485 0.95

As shown in the above table, RAT-SQL performed excellently on the medical ex-
perimental animal dataset, although its conversion ability was weak when dealing with
difficult samples. Highly difficult samples only accounted for a small portion of the actual
demand. After introducing ConceptNet, RAT-SQL was able to meet the retrieval needs
of the experimentalists sufficiently. For the problem of low accuracy of highly difficult
samples, we plan to use multi-round quizzing to improve its conversion ability in the
subsequent work.

7. Conclusions

We propose an AI-enabled and highly available animal behavior analysis platform,
which has been applied to a medical experimental institution in China to evaluate the
behavioral differences between disease model mice and normal mice in a specific case.
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In this case, the platform obtained the experimental video through the video capture
device. Then, it used the pose estimation model to extract the single-frame pose features of
experimental animals. Then, the platform used the behavior recognition model to process
the continuous single-frame pose features to capture and store experimental animals’
behavior information automatically.

In the platform’s design, we mainly focused on how to improve the flexibility and
scalability of behavior recognition and the interactivity of the platform to reduce the
learning cost for researchers to use the platform and improve its usability. Therefore, the
platform architecture integrates plug-in management, unified interface, and algorithm
library design ideas so that it can be flexibly configured and extended. Whether high-
precision behavior recognition can be achieved in animal behavior experiments is often
one of many evaluation standards. The intermediate result output in the recognition
process, such as the pose data of each frame, is also of great significance. Flexible algorithm
replacement and expansion can enable researchers to choose more suitable identification
methods according to actual needs and make the integration of algorithm upgrading and
other algorithms more convenient, making the platform more competitive in the flexibility
and scalability of algorithms.

The platform mainly relies on three core services. The pose estimation service performs
pose estimation on experimental animals in the same experimental environment to obtain
each animal’s key point coordinate information. The behavior recognition service extracts
and classifies the behavior feature vector of each animal in the video frame in different
ways according to the selected algorithm. The natural language query interface service
can convert the researchers’ natural language query requirements into executable SQL
statements and obtain the corresponding results from the database. The natural language
query interface service provides more flexible and efficient information retrieval and
improves the platform’s interaction. Based on these three core services, we have built a
highly available animal behavior analysis platform, which not only realizes the automatic
identification of animal behavior but also enables researchers to flexibly select behavior
recognition algorithms through the algorithm library, eliminating technical barriers and
reducing researchers’ dependence on experts. By utilizing natural language query interface
services, the platform can open data access to all researchers and provide higher usability
behavioral interactions.

The platform relies on computer vision technology in deep learning. However, the
recognition effect may be affected when the video quality is too low, or the limbs between
animals are blocked too much. In addition, in the natural language query interface service,
researchers’ inaccurate language description may also affect the effect of information
retrieval. In order to further improve the availability of the platform, we plan to reduce
the dependence of the platform on video quality and improve the accuracy of behavior
recognition. Therefore, we will consider making the platform compatible with multimodal
behavior recognition algorithms, reducing the dependence on a single video image by
fusing data information such as voice, electroencephalogram signal, or pressure sensor
signal, and improving the detection effect. For the inaccurate description of researchers
in information retrieval, we plan to use multiple rounds of questions and answers to
guide researchers in expressing their needs more accurately to improve the accuracy and
availability of platform data retrieval and analysis.
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Abstract: We propose a new approach for volumetric instance segmentation in X-ray Computed
Tomography (CT) data for Non-Destructive Testing (NDT) by combining the Segment Anything
Model (SAM) with tile-based Flood Filling Networks (FFN). Our work evaluates the performance
of SAM on volumetric NDT data-sets and demonstrates its effectiveness to segment instances in
challenging imaging scenarios. We implemented and evaluated techniques to extend the image-
based SAM algorithm for the use with volumetric data-sets, enabling the segmentation of three-
dimensional objects using FFN’s spatial adaptability. The tile-based approach for SAM leverages
FFN’s capabilities to segment objects of any size. We also explore the use of dense prompts to guide
SAM in combining segmented tiles for improved segmentation accuracy. Our research indicates the
potential of combining SAM with FFN for volumetric instance segmentation tasks, particularly in
NDT scenarios and segmenting large entities and objects. While acknowledging remaining limitations,
our study provides insights and establishes a foundation for advancements in instance segmentation
in NDT scenarios.

Keywords: instance segmentation; Segment Anything Model; computed tomography; non-destructive
testing; neural networks; machine learning

1. Introduction

In the field of Non-Destructive Testing (NDT) of large-scale components and assem-
blies, cars [1], shipping containers [2,3], or even airplanes [4,5] are often captured using
large-scale 3D X-ray computed tomography (CT) and are subsequently subjected to auto-
mated analysis and evaluation. In this context, an important step of the analysis process
consists of instance segmentation, where an attempt is made to assign a unique semantic
identifier or label to each entity in a data-set. For example, all voxels belonging to a specific
screw are hereby assigned the same unique identifier, while voxels belonging to another
component are assigned a different unique identifier.

The complexity of computing accurate instance segmentation varies significantly
across different problem domains and data-sets. While simple threshold- or flood-filling-
based methods from classical image processing suffice for data-sets from many fields, it
remains uncertain as to whether an adequate solution for segmentation is feasible for others.
Recent efforts, such as those in a challenge [6], tested multiple techniques to segment the
data-set of a Me 163 [7], a historic German airplane with a rocket engine during the Second
World War, with mixed success. This contribution aims to evaluate the suitability of an
approach based on the currently highly appraised Segment Anything Model (SAM) [8], a
foundational model for instance segmentation of such complex data-sets.

The task of instance segmentation shown in Figure 1 exemplifies this attempt using
the XXL-CT data-set of the historic airplane. It begins with acquisition of data from the
specimen, in this case the airplane, and proceeds with the reconstruction of a volumetric
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voxel data-set (Figure 1a). Figure 1b,c shows a sub-volume of size 512 × 512 × 512 voxels of
the reconstruction and the instance segmentation. In Figure 1c, each semantic entity within
the sub-volume is assigned a unique identifier. The classes of these entities (primarily
screws and metal plates) are not considered, as the classification of the entities is not
performed and is the focus of future work.

(a) Reconstruction (b) Input sub-volume (c) Reference sub-volume

Figure 1. Rendered example of instance segmentation (c), of a sub-volume of size 512 × 512 ×
512 voxels (b), from the XXL-CT Me 163 data-set with a data resolution of 10,000 × 10,000 ×
8000 voxels (a). The objective of instance segmentation is to generate a plausible segmentation
of individual objects or instances, as depicted in (c), from an input sub-volume such as that shown in
(b), applicable to data-sets of any size, akin to the one demonstrated in (a).

Instance segmentation is essential for automated image processing and data explora-
tion in NDT and medical [9] applications. By segmenting a large-scale volumetric image
data-set into its semantic instances, it becomes easier to extract valuable information and
to analyse complex component geometries. This is particularly important in cases where
the data-set contains various acquisition and reconstruction that can make interpretation
difficult for both experts and non-experts.

Instance segmentation is a critical task in computer vision, leading to the proposal
and development of numerous methods that leverage both classical image processing and
neural networks. These approaches, however, are not without their limitations. Some
methods necessitate manual intervention and corrections [10,11]; others are specifically
tailored to predefined component classes [12]. Challenges associated with data quality,
particularly in data-sets with a high incidence of artefacts, can significantly hinder the
effectiveness of segmentation algorithms.

1.1. Segment Anything Model

The Segment Anything Model (SAM) [8] is an instance segmentation model based on
the vision transformer architecture [13]. It is an advanced model for segmenting arbitrary
entities out of photographs. It stands out primarily for its high quality, robustness, and
minimal required user input. One of its notable features is the ability to be queried using a
variety of prompts, allowing it to segment a RGB input image with a spatial resolution up
to 1024 × 1024 pixels into multiple segments in one inference call. SAM supports prompts
in various forms such as seed points (point prompts), bounding boxes, brush masks (dense
prompts), and text prompts.

Furthermore, SAM allows the generation of multiple output masks for each input
prompt, hence enabling image segmentations at varying hierarchical levels of granularity.
Another advancement presented by the SAM is the extensive training data-set SA-1B,
which has been iteratively collected and refined through prior versions of SAM during its
own training process.

A multitude of studies and publications are currently emerging, which aim to apply
SAM as a foundation model across a diverse range of fields, testing its segmentation quality.
The application domains are varied. For instance, Li et al. [14] assess SAM for GeoAI vision
tasks particularly in permafrost mapping. Alternatively, Noe et al. [15] utilise SAM to
introduce a new approach for tracking black cattle on photographs. Another application
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within the domain of so-called “Precision Agriculture” is investigated by Carraro et al. [16],
where mapping of crop features by automated mechanisms is conducted. In the field
of NDT, the work by Weinberger et al. [17] examines how SAM can distinguish various
segments in CT volume slices through unsupervised learning techniques. However, the
direct application of SAM for instance segmentation is not the only focus of resent research.
For example, Xu et al. [18] explored how an expanded data-set computed via SAM can be
used to train an object detection network to improve license plate detection under severe
weather conditions. Similarly, Liu [19] employed SAM to optimise road sign detection by
using the model for background pixel exclusion in the data-set. In all these named studies,
SAM exhibits a performance ranging from high quality to mixed results, which are strongly
influenced by the data-set and specific problem domain under investigation.

1.2. Combination with Tile-Based FFN

This work aims to evaluate the applicability of SAM for segmenting volumetric NDT
data-sets and to examine its potential enhancement through the integration of Flood
Filling Networks (FFN), initially proposed by Januszewski et al. [20]. FFNs are instance
segmentation methods originally based on convolutional networks [21,22], which are able
to segment arbitrarily large data-sets based on tiles. Originally, FFN was developed for
the segmentation of organic objects but in the past, was extended to other applications,
including the delineation of large-scale XXL-CT data [4].

The FFN approach maintains the current state of segmentation within an accumulator
volume, which is sized to match the dimensions of the input volume. During each seg-
mentation step, a sub-volume or tile of the input volume and the corresponding partially
computed tile of the accumulator is passed to the model (in our case, a volumetric variant
of SAM). The segmentation proposal of the tile is then updated and written back to the
corresponding tile position within the accumulator.

Candidates for neighbouring tile positions with significant overlap, which could
extend the current segment, are determined using the updated accumulator state and added
to a queue of tiles pending processing. In the subsequent iteration, the next unprocessed
tile is removed from the front of the queue for processing. Starting from a seed point, the
FFN then processes all of the tiles that potentially belong to the current segment. The
processing of the current segment is completed when the queue of potentially belonging
tiles is depleted. The algorithm then proceeds with the next segment starting from another
seed point.

The seed points of the segments can be manually specified or computed automatically
by a reasonable algorithm.

1.3. Contributions

In this work, we propose a novel approach for volumetric instance segmentation in
NDT by combining SAM with FFN. Our contributions include the following:

1. Evaluation of SAM on NDT data-sets
We assess the performance of SAM on data-sets from the field of non-destructive testing
and demonstrate its effectiveness in accurately segmenting instances in challenging CT
imaging scenarios.

2. Implementation and evaluation of various methods to combine image-based
SAM for the application with volumetric data-sets
We implement and evaluate different techniques to integrate and fuse the output of the
image-based SAM approach for the application of volumetric data-sets, hence enabling the
segmentation of three-dimensional objects using FFN’s spatially adaptive capabilities.

3. Extending SAM for objects of arbitrary size through tile-based approaches
We propose a tile-based approach that leverages FFN’s capabilities to segment objects of
arbitrary size. By initially dividing the input volumes into tiles and then applying SAM on
each tile individually, we achieve accurate and efficient segmentation results for objects of
any size.
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4. Utilizing dense prompts for SAM to combine tiles in an accumulator
To further improve the accuracy of the proposed tiled-based approach of SAM, we use
dense prompts to guide SAM in combining the segmented tiles into a cohesive instance
segmentation result. By leveraging the accumulated information from neighbouring tiles,
we try to achieve more robust and accurate instance segmentation results.

2. Materials and Methods

This section presents the methodology and the experimental setup used, including the
introduction of the data-sets (Section 2.1) used for the evaluation of the proposed methods.
Furthermore, we describe a technique to improve the image segmentation performance of
SAM with respect to the Me 163 airplane XXL-CT data-set by fine-tuning it specifically for
this task (Section 2.2). Additionally, we detail our inference workflow in Section 2.3, which
adapts the top-performing SAM model for volumetric data-sets. This process includes
tile-based segmentation, accumulator-based dense prompts, and post-processing. The
workflow aims to integrate the best model into a cohesive volumetric inference approach.

2.1. Data-Sets and Data Processing

To demonstrate, exemplify, and evaluate our achievements, we make use of three
distinct data-sets. A specific sub-volume of the Me 163 data-set of a Second World War
fighter airplane [7] as well as two bulk material data-sets depicting entities of glass marbles
and corn kernels [4]. Figure 2 shows a photograph of each specimen, along with one typical
slice from the reconstructed volume and a corresponding reference segmentation.

The Me 163 data-set utilized in this study consists of a volumetric subset and a manu-
ally obtained reference segmentation XXL-CT data-set from a historic airplane [5], which
itself was extracted from an XXL-CT reconstruction. The reference segmentation sub-
volumes of the Me 163 data-set were manually annotated and underwent morphological
post-processing to clean up the edges. The acquisition process involved addressing challen-
ging aspects such as noisy data, low contrast, and limited spatial resolution. A detailed
description of the data-set creation, including the annotation and post-processing process,
can be found in [7].

The data-set consists of eight sets of sub-volume pairs, each sub-volume having the
spatial dimensions of 512 × 512 × 512 voxels. For training, six sub-volume pairs of the
data-set are used, while one sub-volume pair is used for validation and one for testing,
respectively. Each sub-volume pair consists of a reconstructed sub-volume (see Figure 2b)
and its corresponding reference segmentation sub-volume (see Figure 2c).

The reconstruction sub-volume is a small volumetric region that is extracted from the
reconstructed Me 163 XXL-CT data. To ensure compatibility with SAM, both the reconstruc-
tion or input sub-volumes and the corresponding reference segmentation sub-volumes are
extended with zero-padded 512 voxels in every direction. This results in an embedded
version of the sub-volumes with working dimensions of 1536 × 1536 × 1536 voxels. This
arrangement allows for the extraction of a slice, centred on any arbitrary voxel within the
original sub-volume, with the resolution of 1024 × 1024 × 1 voxels, matching the native
input dimensions required by SAM.

The first row of Figure 3 illustrates the described enframing process for the Me 163
data-set. The green rectangles in the first two columns indicate the unembedded region
with 512 × 512 × 512 voxels and their manually annotated references. Due to the fact
that the input sub-volumes of this data-set are located directly at the edge of the XXL-CT
volume, it was not possible to fill the border of the sub-volumes with actual reconstruction
values. Instead, we decided to use a border with a constant value of zero in all directions.
The last two columns of Figure 3 display the prepared input and reference slices used in
the subsequent processing.
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Me 163

(a) Specimen (b) Input (c) Reference

Corn

(d) Specimen (e) Input (f) Reference

Marbles

(g) Specimen (h) Input (i) Reference

Figure 2. Photographs, exemplary CT slices, and reference segmentation of the Me 163 (a–c),
corn (d–f), and marbles (g–i) data-sets, respectively.

The other two data-sets, which consist of CT scans of jars filled with marbles and
corn, also contain two sub-volumes each: one for the input CT reconstruction sub-volume
and one for its reference segmentation sub-volume. The segmentation process to yield the
reference volumes of the bulk material data-set involved semi-automatic segmentation
using threshold binarization with a threshold obtained from Otsu’s method [23], followed
by a distance transform, watershed transform, and label-wise morphological closing, as
described in more detail in [4]. As this traditional computer-vision process resulted in
some erroneous segmentations in the contact regions between the jar and the bulk material,
we only used a correctly segmented sub-volume in the centre of the jar, having a spatial
dimension of 256 × 256 × 256 voxels (denoted by the green rectangle in Figure 3). Also, the
sub-volumes of the bulk material were enframed by a border of 512 voxels thickness with a
constant value of zero.
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Figure 3. Zero-padding preparation steps were performed on the input and reference slices of the
different data-sets to create slices of size 1024 × 1024 pixels centred around each possible seed point.
The white border regions in the available input and reference slices were filled with constant values
of zero.

2.2. Fine-Tuning on the NDT Data-Set

The SA-1B training data-set published by the authors of the SAM [8] contains predom-
inantly coloured natural photographs, such as street scenes or still life compositions of
semantically well-known objects from daily life. In contrast, volumetric data-sets obtained
from the NDT field and particularly the slices extracted from the volumes are frequently of a
rather abstract nature and do not depict recognizable objects. Hence, these NDT images de-
viate from the familiar photographic data-set used by SAM and this deviation poses several
challenges in achieving sufficient segmentation quality (see Section 3.1). This, within the
CT imaging domain, means that even familiar objects can be difficult to recognize for non-
experts, as they exhibit unusual structures or non-orthogonal sections due to the specimen’s
imaging geometry; or, they may contain strong imaging and reconstruction artefacts.

Ma et al. [24] showcased a potential improvement in segmentation quality by fine-
tuning SAM on the problem domain, which inspired us to adopt a similar fine-tuning
approach.

In this study, we opted to perform fine-tuning on a certain part of the SAM, specifically
the Mask Decoder. For this purpose, we utilized, extracted, and pre-processed slices from
the Me 163 training data-set. Our approach adhered to the guidelines outlined in [24],
which have previously been employed for fine-tuning on medical volume CT data-sets.

The Me 163 data-set was chosen due to its distinct level of complexity, setting it apart
from the bulk material data-sets also being investigated. In contrast, the marble and
corn data-sets can be segmented relatively easily using conventional image processing
techniques.

For the fine-tuning process, we randomly selected voxel positions from the Me 163
training data-set. If the chosen voxel was a foreground voxel belonging to a known labeled
entity, three orthogonal slices centred around its position were extracted. These slices
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were used as training examples, with the data range of the input slice normalised to
[0.0, 255.0]. For the target slice, all voxels of the entities belonging to the centre voxel were
one-hot encoded.

The original SAM operates on images, while our attempted input is a single slice from
a volumetric data-set. To ensure that a three-dimensional connected object was represented
by a single segment in the two-dimensional slices, a connected component analysis (CCA)
was performed on the one-hot encoded target slice. This issue is depicted in Figure 4.
Specifically, in the one-hot encoded a foreground target after the CCA (Figure 4d), where
only the central component is visible, as we isolated the segment connected to the centre
of the target slice, marked by a green cross. This central segment was then selected as
the training target. The surrounding image does not provide sufficient information to
distinguish if neighbouring non-touching segments belong to the same segment. Thus, we
performed a CCA and treated the parts of segments not connected in the current slice as
separate segments.

(a) Input (b) Reference (c) One-hot encoded
foreground target

(d) Connected com-
ponent target

Figure 4. Processing of an example foreground slice used for fine-tuning SAM. Consisting of
reconstruction slice (a), reference slice (b), one-hot encoded slice (c), and connected component
training target slice (d). The green cross marks the centre of the slice.

If the voxel at the centre of a slice represented the background, we generated three
orthogonal background examples, each containing a normalised input slice and a target
slice. We evaluated three versions: ForegroundOnly, which included only foreground input
slices; ConstantValueBackground, where we provided both background and foreground
input and target slices for training but expected SAM to produce a completely empty
response for background slices; and ConnectedComponentBackground, where we identified
all background voxels connected to the centre voxel of the slice as the target segment. This
was achieved through CCA on the data-set’s background, formed by also enframing the
reference segmentation with a zero-padded boundary. Consequently, the network was
prompted to consider all voxels connected to the air space in the slice’s centre as part of
that segment. Figure 5 provides an illustrative example of the different target versions.

Due to the significantly lower count of foreground voxels (0.1–9.4%) compared to
background voxels in the Me 163 data-set, we included all foreground examples while
randomly selecting a subset of background examples of the same size. This approach
ensured a balanced representation of both classes. To prevent batches from containing
closely located examples, the selected examples were shuffled and grouped into batches,
with each batch containing 16 foreground examples and 16 background examples. Addi-
tionally, to further diversify the examples within each batch, we employed a relatively large
stride during the example extraction process. This ensured that the examples originated
from different sub-volumes within the data-set. In each iteration over the data-sets, a new
random initial position offset was chosen, employing a non-repetitive selection process to
extract different examples.

We chose a single point prompt in the exact centre of each slice as the input for SAM
during training. This choice aligns with the input for our validation application as well as
the tile-based SAM integration for volume data-sets (see Section 2.3).
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(a) Input (b) No background (c) Constant value
background

(d) Connected com-
ponent background

Figure 5. Processing of an example background slice used for fine tuning SAM. The green cross marks
the centre of the slice, which is located in the background of the reconstruction. The green border
around the reconstruction slice in (a) depicts the original volume size, which was then enframed with
a constant value border. The other sub-figures show the tested possibilities for target slices for the
fine-tuning: ForegroundOnly (b), ConstantValueBackground (c), and ConnectedComponentBackground (d).

The batch size was set to 64. We initiated the training with a learning rate of 8 × 10−4,
which was linearly increased over the first 250 iterations. For optimization, we utilized the
AdamW optimizer [25] with β1 = 0.9 and β2 = 0.999, along with a weight decay of 0.1. Our
loss function consisted of a combination of dice loss (sigmoid = true, squared-pred = true,
and mean reduction) and binary cross-entropy loss (mean reduction). We let the training
run until overfitting for 10 to 25 days. We selected the model with the lowest validation
loss, determined at moving window intervals of 128 iterations.

2.3. Inference Workflow for Volumetric Data-Sets

Since SAM works only on RGB image data-sets but we wanted to segment volumetric
data-sets, we had to incorporate an adequate workflow to translate between these two
spatial domains. Since our goal was to evaluate SAM for volumetric data-sets and not ne-
cessarily to implement a complete new volumetric version, we referred to simple operators.
Figure 6 shows an overview of the approximate workflow for a volumetric data inference
of SAM. In short, we extract a sub-volume tile from the input volume and pass it to the
volumetric SAM adaption, which transforms it into three orthogonal slice stacks.

For each slice stack, we perform slice preparations (such as normalization and zero-
padding), a forward pass through SAM, selection of the corresponding outputs, and slice
post-processing. The output slice stacks are then merged and undergo further volumetric
post-processing to generate segmentation proposals, which are returned from the volumet-
ric SAM adaption into the inference algorithm. The evaluated algorithms are listed and
compared in Table 1.

Predict 
slice

Post-
process

slice

Prepare
slice

Input volume

Volumetric SAM

Split into orthogonal 
slice stacks

Merged 
slice

predictions

FoV 
prediction

Extracted
 FoV

Post-
process
volume

Figure 6. Schematic workflow of the volumetric data inference segmentation using SAM. Algorithm
options and steps for the configurable stages (grey boxes ) are listed in Table 1.
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Table 1. Overview of algorithm choices and options for different stages of the volumetric SAM
adaption seen in Figure 6.

Stage Algorithm Description (Options)

Preprocess Slice
Algorithms

Slice Normalization Normalization of pixel values in each slice to the minimum and max-
imum range of the slice.

Outlier and Empty Slice Detec-
tion

Identification and handling of outlier and empty slices.

RGB Conversion Conversion of grey values to RGB colour in order to comply with SAM
interface requirements.

Enframing Adds a zero-padded border to each slice to centre the seed point to
comply with SAM interface requirements.

Estimated Foreground Volume Utilizes different binarization strategies and thresholds to estimate the fore-
ground volume.

Predict Slice
Algorithms

Prompt Type Type of prompt is used for invoking SAM: point prompt for tile centre
and dense prompt from accumulator.

Multimask Output Selector Select mask from multiple disambiguating instance output channels
predicted by SAM: maximum predicted IoU, fixed index of channel; max-
imum IoU with estimated foreground to avoid segmenting background;
and minimum count of voxels to reduce under segmentation.

Mask Output Selector Selected output format of SAM: binary full resolution mask and quarter
resolution logits with subsequent threshold and upscaling algorithm.

Postprocess Slice
Algorithms

Seed Point Filter Aborts or continues prediction based on the seed point’s classification as
background or foreground (count of slices).

Merge Slice Rule Rule that should be used to decide if and how to merge slices to stacks
and when to abort an computation stack: Always; BreakOnEmptySlice;
MinimumIOUToLastSlice (threshold); MinimumIOUToForeground (threshold).

Slice Median Apply median filter to each slice (enabled or disabled).
Connected Component Analysis
and analyse connected compon-
ents and keep only segment con-
nected to seed point (enabled or
disabled).

Postprocess Volume
Algorithms

Merge Slice Predictions Merge orthogonal slice stack predictions based on count of foreground
voxels.

Volume Median Apply median filter to merged volume (enabled or disabled).

2.3.1. Adapting SAM for Volumetric Data-Sets

Adapting SAM, which was originally designed for segmenting image data-sets, to
our volumetric CT data-sets required certain modifications and the implementation of
appropriate post-processing steps. In this section, we explore various possibilities for this
transition and subsequently outline the approach we finally selected.

Several 2D to 3D techniques can be utilized to facilitate this transformation [26]. For
example, in [27], a Volumetric Fusion Net (VFN) was employed to merge multiple 2D
segmentation predictions into a comprehensive 3D prediction volume. In a related work,
Ref. [28] adopted a similar methodology for pancreas segmentation, albeit utilizing a
different VFN. According to [26], other approaches involve incorporating neighbouring
2D slices as additional channel information or utilizing specialized topologies to extract
and merge features in both the 2D and 3D domains. However, the effectiveness of these
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methods for improving segmentation results heavily depends on the specific data-sets
at hand.

Due to reports on the segmentation performance of SAM on volumetric medical data-
sets, such as those in [29] and our own preliminary experiments, which suggested that the
segmentation quality of SAM was likely to be mixed, we opted for a simple majority voting
approach to merge the 2D predictions into 3D volumes.

During the slice merging process, we experimented with different rules to determine
when to terminate the slice-wise merging. We either combined all slice within the current
field of view regardless of their content or stopped at the first empty slice, i.e., a slice
without foreground voxels. We also tested various rules based on different thresholds
of overlap or Intersection over Union (IoU) between the proposed segmentation of the
current slice and the preceding slice or a foreground volume obtained through global Otsu
thresholding followed by a morphological closing step.

As an optimization strategy, slice-wise prediction was performed in an alternating
manner, starting from the centre of the current sub-volume and moving outward slice-
wise in both directions. This approach was implemented to save computational time and
prevent the segmentation of unconnected segments, ensuring that only cohesive regions
were accurately identified.

In situations where the segmentation results in an identification of unconnected seg-
ments, the algorithm may inadvertently continue segmenting entire regions composed of
non-cohesive segments. This phenomenon occurs when the segmentation quality is signi-
ficantly compromised. During the subsequent hyperparameter search, we also permitted
segmentations without applying these rules. However, it appears that these deviations
have only minimal impact on the output quality.

Subsequently, a new target volume is constructed. Voxels are included in the output
volume if they are segmented as the foreground in at least one and depending on the
configuration, up to three slice-wise predictions.

Additionally, we employed post-processing techniques such as slice-wise and volume-
based median filtering and CCA prior to and after merging the slices into volumes to
smooth scattered and miss segmented voxels.

We also conducted experiments with different variants of SAM’s outputs. Since SAM
has the ability to generate multiple outputs per prompt, such as separating a backpack
from a person wearing it, we investigated whether selecting any of these outputs could
improve the segmentation quality. Specifically, we examined whether it is better for
volumetric segmentation to use the segmentation proposal provided by SAM with the
highest probable IoU or the one with the maximum IoU of the approximated foreground
volume. Additionally, as SAM often tends to under-segment and include background or
neighbouring segments as part of the foreground, we investigated whether selecting the
output with the smallest count of voxels among the multiple outputs would improve the
segmentation quality.

In this context, experiments were conducted using both the binarized output of SAM
and the raw probability values, which are available at a lower resolution than the binary
mask. After upscaling, different threshold values can be applied to the probability outputs
for further processing and experimentation.

2.3.2. Tile-Based Segmentation for Data-Sets of Arbitrary Size

Due to SAM’s image-based nature, we encounter segmentation challenges when
dealing with topologically complex objects depicted by volumetric CT NDT data-sets.
These volumes may contain holes or inclusions; complex folds are spatially sparse or may
extend beyond the boundaries of the currently processed tile.

To clarify this, Figure 7 offers a visual exposition of several schematically depicted
objects of varying complexity. The figure serves to illustrate how, in a volumetric context,
such complex segments are easier to understand but when segmenting them slice by slice

34



Appl. Sci. 2024, 14, 3391

there is a risk of mistakenly delineating them as multiple segments. This effect also occurs
when the tile is smaller than the entity’s size.

Figure 7. Schematic views of multiple simple volumetric objects (bolt, U-profile, pipe, and spiral
spring) and cross-sectional slices along their central axes in three orthogonal directions marked by
three respective colours ( , , ). The disjunction of simple objects into multiple components if
processed slice-wise poses a challenge as there are no straightforward rules for merging them without
a step-by-step traversal of the object.

To overcome these challenges, we utilize volume-based SAM inference (see Section 2.3.1)
within the FFN framework (see Section 1.2). The inference process starts with a single seed
point and is applied to a small sub-volume tile. The resulting segmentation proposal is
then stored in a result buffer, the accumulator volume. If a segment intersects the outer
boundaries of a tile, the intersection position is added to a queue. In subsequent iterations,
corresponding slightly shifted tiles aimed at these intersection points are processed by the
volume-based SAM inference. This iterative process generates segmentation proposals,
which are incorporated into the accumulator. This process repeats until the intersection
points queue is empty and the segmentation proposal in the accumulator is no longer
constrained by the boundary of the processed tiles.

As an optimization step, the proposed additional intersection positions are filtered
based on the approximated foreground volume. They are added to the intersection points
queue only if the corresponding voxels have a high probability to be foreground voxels.

The proposed combination of SAM and FFN allows us to compute segments and
input volumes of arbitrary size by combining multiple overlapping tiles using a temporary
accumulator volume. Nevertheless, this approach also increases the runtime due to the
recomputation of the overlapping tiles.

The choice of using 48 voxels per tile side was made heuristically based on the original
FFN algorithm, which also uses this tile size. However, the algorithm can be adjusted
by changing the tile size up to 1024 voxels in each dimension; the maximum dimension
SAM can handle without resizing the input. When the tile size is below this threshold, no
resizing of tiles is required as we add a constant value border around the tile. Additionally,
the step width between tiles and the overlap of the tiles can be adjusted to mitigate artefacts
caused by the tile-based algorithm. Tile-based algorithms are capable of assembling entities
with complex topologies. These algorithms can follow or trace the segment itself over
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multiple tiles and steps, even if it forms highly complex shapes. But tile-based algorithms
may introduce additional artefacts. The segmentation result of the combined algorithms is
heavily dependent on the performance of the SAM segmentation.

2.3.3. Prompt Selection and Accumulator Integration

As mentioned above, SAM allows queries using various prompts such as point
prompts (seed points and bounding boxes) and dense prompts (masks and brushes).
Multiple studies [24,30] have shown that, depending on the input data, higher segmenta-
tion quality can be achieved by using multiple prompts, such as point prompts distributed
evenly over the segment region or negative point prompts, which are not considered part of
the segment. Additionally, the use of rectangular prompts consisting of two anchor points
often leads to adequate segmentation results.

Given that the main objective of this study is to evaluate the applicability of SAM
in the automated NDT domain, we have opted to solely assess single point prompts and
dense prompts as they can be easily automated.

We placed a single point prompt at the exact centre of the tile. The centre point of a tile
was either chosen by a seed point or deemed highly likely to belong to the current segment,
due to the iterative processing of the tiles.

For dense prompts, we utilized the SAM output stored in the accumulator, which
was shifted by the relative position of the current point prompt. This requires SAM to
complete the segmentation proposal at the edge of the current tile. Since our tile step size
was [1, 20] voxels, the overlap between the tiles and the dense prompt with the expected
segmentation proposal was high, allowing SAM to only predict a relative slim border of
new voxels. Figure 8 illustrates an idealized schematic of such an operation. In the case of
dense prompts, we also include a corresponding point prompt at the centre of the tile as
more prompts tend to increase the segmentation performance [24].

Extracted 
tile n

Input volume

 Point 
prompt n 
(centre of 

tile n)

Input volume

Accumulator 
volume n−1

Accumulator
volume n

Prediction n

SAMExtracted
tile n+1 

Point 
prompt n+1 

(centre of 
tile n+1)

Accumulator
volume n+1

Movement n+1

Step n Step n+1Step n−1

SAM

Dense 
prompt n+1

Dense 
prompt n

Figure 8. Schematic view of two subsequent inference steps, denoted as n (represented by ) and
n + 1 (represented by ), which use the modified accumulator volume from the previous step to
create a dense SAM prompt. In step n, the content of the accumulator volume of the previous step
n − 1 is used to generate a dense SAM prompt n + 1. This prompt, along with the point prompt
n and the extracted input volume tile n, is used by SAM to compute prediction n. Subsequently,
the accumulator volume is updated to the state n based on this prediction. In the subsequent step
n + 1, the accumulator volume n is used to determine the movement n + 1 to the tile n + 1. Tile n + 1
significantly overlaps with tile n. SAM is parametrized with the extracted input volume tile n + 1,
point prompt n + 1, and dense prompt n + 1 to compute prediction n + 1, which is used to update
the accumulator volume n + 1.
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3. Results
3.1. Evaluation of SAM Segmentation Quality in NDT Slice Data-Sets

In an initial test of SAM’s segmentation quality for CT NDT data, we applied SAM
to segment individual slices from NDT volumetric data-sets. We used three pre-trained
SAM models, vit_h, vit_l, and vit_b, based on Vision Transformers (ViT) arranged in
descending order of size. Additionally, we tested three fine-tuned versions of the vit_b
model, each adapted to the Me 163 data-set with unique target configurations. For each
of the three data-sets introduced in Section 2.1, randomly selected slices were selected
and segmented, which accounted for approximately 0.5% of all available validation data-
sets. Each example underwent the preparation steps outlined in Section 2.2 before being
processed by SAM. SAM then tried to segment the entity located at the exact centre of each
slice using point prompts. Examples of typical segments can be seen in Figure 9. Notably,
SAM demonstrated good segmentation performance for the marbles and corn kernels data-
sets, while the segmentation quality was significantly inferior for the individual segments of
the Me 163 data-set. To quantify the segmentation performance across data-sets and models,
Table 2 presents the mean loss values and standard deviations for slice-wise predictions
made by multiple SAM model configurations. The statistics in this table show that while
the vit_b model yields the lowest loss for the corn kernels data-set, with a mean loss of 0.10,
the application of vit_b with a ConstantValueBackground modification achieved the best
performance on the Me 163 data-set, reducing the mean loss to 0.36.

Table 2. Mean loss value (and standard deviation) over all slice-wise predictions on the validation
data-sets by multiple models for the graphs in Figure 10. Models yielding the optimum performance
for each data-set are denoted in bold. Models vit_h, vit_l, and vit_b denote pre-trained SAM
models that utilise Vision Transformers (ViT) as their foundation, ordered from largest to smallest.
The remaining models represent fine-tuned versions of vit_b applied to the Me 163 data-set, each
employing distinct target configurations.

Marbles Corn Me 163

vit_h 0.03 (0.06) 0.11 (0.10) 0.49 (0.34)
vit_l 0.03 (0.06) 0.11 (0.10) 0.46 (0.34)
vit_b 0.03 (0.07) 0.10 (0.10) 0.44 (0.32)
vit_b ForegroundOnly 0.41 (0.27) 0.66 (0.24) 0.49 (0.26)
vit_b ConstantValueBackground 0.15 (0.10) 0.44 (0.16) 0.36 (0.25)
vit_b ConnectedComponentBackground 0.51 (0.24) 0.51 (0.19) 0.57 (0.23)

Figure 10 demonstrates the segmentation dynamics of the individual models on the
different data-sets. These plots represent the loss of the segmentation proposals generated
by SAM for the entities at the centre of each layer of the corresponding validation data-set.
The loss values are determined with respect to the reference data-set. From left to right, the
loss values are sorted in ascending order, so that the nearly correctly segmented segments
are on the left side of the graph, while the difficult and often incorrectly segmented segments
are on the right side. The seed points of the segments were chosen in such a way that each
of them corresponds to a foreground voxel, so the networks are not tasked with segmenting
the background. The different colours in the plots correspond to different networks.
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(a) Input (b) Reference (c) vit_b loss=0.02 (d) vit_bCVB loss=0.04

(e) Input (f) Reference (g) vit_b loss=0.01 (h) vit_bCVB loss=0.05

(i) Input (j) Reference (k) vit_b loss=0.04 (l) vit_bCVB loss=0.29

(m) Input (n) Reference (o) vit_b loss=0.04 (p) vit_bCVB loss=0.12

(q) Input (r) Reference (s) vit_b loss=0.01 (t) vit_bCVB loss=0.44

(u) Input (v) Reference (w) vit_b loss=0.01 (x) vit_bCVB loss=0.13
Figure 9. Segmented examples of the corn and marbles data-set. The green crosses mark the position
of the currently used point prompt. The last column depicts the result of the vit_b model, which was
fine-tuned on the Me 163 data-set.
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(c) Me 163
Figure 10. Graphs depicting the slice segmentation performance of the six evaluated SAM models on
the three different testing data-sets. From left to right, the index of each segmented slice sorted by
their loss value. In an ideal case, only a horizontal line close to the loss value of 0 would be visible.

It can be observed that the unchanged SAM networks perform very well in segmenting
the marble and corn data-sets. The few entities which exhibit lower segmentation quality
in these data-sets and are located on the right edge are often due to insufficient quality in
the reference segmentation data-set, as illustrated in Figures 11 and 12. A slightly lower
segmentation quality can be observed for the corn data-set, which consists of a higher count
of entities that are also not as homogeneous in colour compared to the marble data-set.

Figure 10c demonstrates that the segmentation quality for the Me 163 data-set is
notably lower compared to the previously mentioned data-sets. Figure 13 displays some
typical error patterns in the original trained SAM images. Both under-segmentation and
over-segmentation occur and segments are sometimes partially or not recognized at all.
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(a) Input (b) Reference (c) vit_b loss=0.93 (d) vit_bCVB loss=0.50

(e) Input (f) Reference (g) vit_b loss=0.50 (h) vit_bCVB loss=0.26
Figure 11. Error cases for the marble data-set. Here, the reference segmentation, which was generated
by a connected component analysis, is erroneous. In (b), the point prompt (marked with a green
cross) lies on the boundary of two marbles and vit_b segments the upper marble instead of the lower
marble. In (f), the point prompt lies inside an artefact region.

(a) Input (b) Reference (c) vit_b loss=0.26 (d) vit_bCVB loss=0.50

(e) Input (f) Reference (g) vit_b loss=0.90 (h) vit_bCVB loss=0.88
Figure 12. Error cases of the corn data-set. In the first case in (b), two kernels were erroneously
segmented together in the reference segmentation. In contrast, in (f), the reference segmentation only
appears erroneous as the current slice only depicts one voxel. The next slice in the input volume
contains the kernel this voxel belongs to. The green crosses mark the position of the currently used
point prompt.

Among the different not fine-tuned SAM models, the smallest model vit_b showed the
most promising results. While it was sometimes outperformed by the other two original
SAM models, vit_l and vit_h, in the well-segmented slices, it still had a higher segmentation
quality in the moderately segmented slices. Therefore, we decided to use vit_b as the base
model for fine-tuning and volumetric segmentation experiments.

Among the subsequently trained networks, vit_bCVB exhibits the highest quality in
Figure 10c. It is based on vit_b and uses ConstantValueBackground (CVB) (see Section 2.2)
for background examples. In simple cases, it matches the segmentation quality of non
fine-tuned SAM variants. A considerable improvement in segmentation quality on the
challenging entities could be achieved through training, although not to a satisfactory level.
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This model was chosen as the representative of our fine-tuned model for further tests on
our data.

(a) Input (b) Reference (c) vit_b loss=0.99 (d) vit_bCVB loss=0.86

(e) Input (f) Reference (g) vit_b loss=0.99 (h) vit_bCVB loss=0.76
Figure 13. Poorly performing cases for SAM vit_b segmenting thin metal sheets in the Me 163 data-set
as well as the better but still not optimal segmentation results achieved by the model fine-tuned on
the Me 163 data-set.

3.2. Tile-Based Algorithms and Artefact Mitigation

Figures 14 and 15 showcase the segmentation results of a volumetric inference run
using the proposed SAM algorithm on a small subset of the marble and corn data-sets for
the two tile sizes 48 × 48 × 48 voxels and 1024 × 1024 × 1024 voxels. These results exhibit
segmentation errors in the form of erroneous segmented edges as well as tiling artefacts,
resulting in a textured appearance of the segment with noticeable gaps.

Notably, for a tile size of 48 × 48 × 48 voxels, the marble example in Figure 15b
demonstrates tiling artefacts. Since the volumetric inference algorithm with the small tile
size cannot segment the entire marble in a single step, it must combine multiple steps,
which can introduce and propagate errors. These artefacts can be cleaned up using a
morphological closing operation as a post-processing step.

In contrast, segmentations using a larger tile size of 1024 × 1024 × 1024 voxels exhibit
fewer of these textured artefacts. However, segmentations may extend beyond the actual
segment due to segmentation errors, as illustrated in Figure 14c, where thin segments
protrude vertically and horizontally beyond the intended boundaries. These protrusions
often occur within the initially segmented slices that include the seed point of the current
segment. In the green upper right marble of the example in Figure 15c, the adjacent slices
directly connected to the seed point were misclassified as not belonging to the marble,
resulting in an early termination of the slice-wise segmentation process.

The inference algorithm with a tile size of 1024 × 1024 × 1024 voxels can only attempt to
segment the segment once as, due to its high field of view, it performs a single volumetric step
per seed point. In contrast, the inference algorithm with a tile size of 48×48×48 voxels iterates
over the volume in multiple steps, providing the ability to compensate for weak and erro-
neous segmentations in subsequent steps. However, this approach tends to under-segment
when a neighbouring segment has already been partially segmented in a previous step.
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(a) Input (b) vit_b 48 (c) vit_b 1024

(d) Reference (e) vit_b 48 (postprocessed) (f) vit_b 1024 (postprocessed)
Figure 14. Slices from a volumetric inference run on three corn kernels of the corn data-set. The
input volume (a), reference volume (d), and the proposed segmentations generated by the pro-
posed algorithm using the two tile sizes: 48 × 48 × 48 voxels (b) and 1024 × 1024 × 1024 voxels (c).
Additionally, the postprocessed volumes are depicted in (e,f).

(a) Input (b) vit_b 48 (c) vit_b 1024

(d) Reference (e) vit_b 48 (postprocessed) (f) vit_b 1024 (postprocessed)
Figure 15. Slices from a volumetric inference run on three marbles of the marbles data-set. The
input volume (a), reference volume (d), and the proposed segmentations generated by the pro-
posed algorithm using the two tile sizes: 48 × 48 × 48 voxels (b) and 1024 × 1024 × 1024 voxels (c).
Additionally, the postprocessed volumes are depicted in (e,f).
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Due to the suboptimal quality of the segmentation, it proves problematic to compute a
definitive overall numerical assessment of the complete segmentation. This difficulty arises
from the ambiguity in assigning each segment unambiguously to a reference segment, a
result of widespread under-segmentation or over-segmentation, which gives rise to various
possible interpretations. Figure 16 shows the correlation matrices for the result of four
inference runs on the Me 163 testing data-sets. Two of the inference runs were performed
using the default SAM model vit_b, while the other two were performed using the fine-
tuned model vit_bCVB . Two of the four experiments used a tile size of 48 × 48 × 48 voxels
and the other two used a tile size of 1024 × 1024 × 1024 voxels. Each experiment was
fine-tuned on the validation data-set using [31].

The correlation matrices show the IoU of each reference segment in relation to each
detected segment. The reference segments are sorted from top to bottom based on their
voxel count, with the segment having the largest voxel count at the top. Similarly, the
columns representing the detected segments are sorted so that the segment with the highest
IoU, if compared with the largest reference segment, is on the left side. The segment with
the highest IoU if compared with the second largest reference segment is then placed in
the second column and so on. Each detected segment can only be linked to one reference
segment once. In an ideal case, we would see a bright diagonal line from the upper left
corner to the lower right corner of the matrix, indicating a perfect match between the
reference and detected segments. Segments outside this diagonal indicate segmentation
errors. Vertical lines indicate under-segmentation, where reference segments extend over
multiple detected segments. Horizontal lines indicate over-segmentation, where reference
segments are falsely split into multiple detected segments.

The individual parameters of the four inference runs can be found in Table 3. Figure 17
displays correlation matrices from Figure 16 but constrained to the detected segments with
the highest IoU.

Table 3. Parameters optimized on the Me 163 validation data-set for the default vit_b and fine-
tuned vit_bCVB SAM model for the tile sizes of 48 × 48 × 48 voxels and 1024 × 1024 × 1024 voxels.
(FG = foreground; – = not applicable; Options marked with * indicate volumetric SAM parameters
as seen in Table 1; Options marked with × indicate FFN related parameters).

vit_b 48 vit_b 1024 vit_bCVB 48 vit_bCVB 1024

best IoU 0.15 0.17 0.07 0.09
movement step * 1 – 1 –
seed FG count * 2 2 1 1
slice FG count * 3 1 1 1
FG threshold * 0.3 0.2 0.2 0.5
prompt type * centre and dense centre centre and dense centre and dense
SAM output channel * index 1 max IoU max IoU with FG max IoU with FG
slice merge rule * IoU to previous

slice > 0.5
IoU to previous

slice > 0.25
IoU to previous

slice > 0.5 always

slice median * ✓ × × ×
CCA * ✓ ✓ × ×
volume median * × ✓ × ✓
check step width × 13 – 19 –
accumulator update × FG FG always always
restrict movement × FG (128 steps) eroded FG eroded FG (128 steps) FG
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R
e
fe

re
n
ce

 s
e
g
m

e
n
ts

Detected segments
10−5

10−4

10−3

10−2

10−1

100

(d) vit_bCVB 1024

Figure 16. Correlation matrix of default and fine-tuned volumetric SAM with multiple tiles of size
48 × 48 × 48 voxels or a single tile of size 1024 × 1024 × 1024 voxels of the Me 163 testing data-set.
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(d) vit_bCVB 1024
Figure 17. Correlation matrix of default and find-tuned volumetric SAM with multiple tiles of size
48 × 48 × 48 voxels or a single tile of size 1024 × 1024 × 1024 voxels of the Me 163 testing data-set.
Detected segments have been limited to the best matches for each reference segment.
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As can be seen, the vit_bCVB models tends to generate more noise outside the main
diagonal. Figure 17d especially depicts many over- and under-segmented segments. This
can also be observed in the corresponding segmentation volume slice shown in Figure 18e,j.
The correlation matrix of the fine-tuned vit_bCVB model with tile size 48 × 48 × 48 voxels
in Figure 17c seems to perform best with respect to diagonal segments. But comparing
the corresponding segmentation volume slice in Figure 18h shows that this model, tile,
and parameter combination tends to miss most of the foreground segments. It seems that
the default vit_b model with tile size 1024 × 1024 × 1024 voxels produces the visually best
results, followed by the fine-tuned vit_bCVB model with tile size 48 × 48 × 48 shown in
Figure 18c.

(a) Input (b) vit_b 48 (c) vit_bCVB 48 (d) vit_b 1024 (e) vit_bCVB 1024

(f) Reference (g) vit_b 48
(main diagonal)

(h) vit_bCVB 48
(main diagonal)

(i) vit_b 1024
(main diagonal)

(j) vit_bCVB 1024
(main diagonal)

Figure 18. Exemplary slices of the proposed volumetric inference output performed by default and
fine-tuned SAM models on the Me 163 reference data-set (a,f). For the remaining figures, the top row
(b–e) shows all segments depicted in Figure 16 while the bottom row (g–j) only shows the segments
corresponding to the main diagonal in Figure 17.

Figure 19 presents multiple renderings of the seven largest reference segments in the
Me 163 testing data-set, alongside their corresponding segment predictions generated by
different SAM snapshots using the volumetric algorithm and fine-tuned parameters. The
true positive voxels are coloured green, the reference segments are coloured blue, and the
false positive voxels are coloured orange. It is evident that the volumetric segmentation of
the data-sets using tiles of size 1024 × 1024 × 1024 voxels yields visually more appealing
segments compared to using a tile size of 48 × 48 × 48 voxels.

The predicted segmentation using the tile size of 48 × 48 × 48 voxels often appears
empty, as only a small count of voxels has been segmented correctly. This is because the seg-
mentation quality of the algorithm is too poor to generate connected tiles and so often, only
a limited amount of steps (see Section 2.3.2) will be iterated for each segment. The segments
are interrupted and only found in pieces. However, using a tile size of 48 × 48 × 48 voxels
also often leads to under-segmentation. Figure 20 exemplifies this, showcasing two ortho-
gonal slices from the fine-tuned vit_bCVB model’s segmentation output. On the left, we
present the reference segments and on the right, the corresponding predictions. Here, three
adjacent segments were mistakenly connected by a single predicted segment.

But even the segmentation with a tile size of 1024 × 1024 × 1024 voxels is often insuf-
ficient, as both large-scale under-segmentations and over-segmentations occur, as can be
seen from the correlation matrices in Figure 17 and the cross-sectional images in Figure 18j.
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Figure 19. Renderings of the seven largest segments of the reference data-set and their corresponding
predictions (pred) created with different snapshots of SAM and the volumetric algorithm. The
colour coding is as follows: blue reference segment, green true positives (TP), and orange
false positives.
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Reference Prediction

XY

XZ

Figure 20. Slices obtained using the fine-tuned vit_bCVB model and tile size of 48 × 48 × 48 voxels.
Due to under-segmentation, the predicted segment erroneously intersects and merges multiple
reference segments.

4. Discussion

The transferability of the SAM model to instance segmentation of volumetric XXL-
CT data-sets requires careful consideration. The presented results indicate that its two-
dimensional image-based segmentation quality is insufficient for this specific problem
domain. This limitation becomes particularly evident when dealing with the concaten-
ation of numerous intertwined cross-sectional images in the volumetric case. The low
contrast and high noise in these images pose challenges in accurately delineating indi-
vidual segments. Additionally, using domain specific fine-tuning and improving slice-wise
predictions did not yield substantial improvements for volumetric predictions.

One potential source of error in the presented method might be the limited computa-
tional resources allocated for both fine-tuning and subsequent hyperparameter search. A
more thorough optimization process could potentially improve the results. Furthermore,
the availability of labelled training data-sets of sufficient quality in this problem domain
was relatively limited for training the vision transformers included in SAM. Specifically, the
absence of neighbouring voxels when adding the 512 voxel wide border around the data-set
for the Me 163 data-set may have possibly contributed to a decrease in segmentation quality.

Additionally, considering improved algorithms for merging the slice-wise predictions
could be an initial step in the further development process. Previous studies [26–28] have
demonstrated ample opportunities for the development of more sophisticated algorithms
in this area. Implementing and embedding such algorithms into the processing pipeline
has the potential to significantly enhance the segmentation quality.
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5. Conclusions

The primary objective of this study was the exploration and possible applicability
of the SAM algorithm for general image delineation to instance segmentation in XXL-CT
volumetric data-sets.

In conclusion, our study highlights the potential of SAM for instance segmentation
in XXL-CT volumetric data-sets, while acknowledging that there is still significant room
for improvement. Furthermore, our research contributes to the following areas: (1) the
evaluation of SAM on data-sets from the field of non-destructive testing based on CT image
data, (2) the exploration of various methods for integrating and fusing the output from
image-based SAM with volumetric data-sets, (3) the introduction of a tile-based approach
for segmenting objects of arbitrary size, and (4) the utilization of dense prompts for tile
combination using an accumulator. Separately and in combination, these contributions
provide novel insights to the community and hence establish a foundation for further
advancements in this field.
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Abstract: This study delves into the intricate realm of recognizing handwritten Arabic characters,
specifically targeting children’s script. Given the inherent complexities of the Arabic script, encom-
passing semi-cursive styles, distinct character forms based on position, and the inclusion of diacritical
marks, the domain demands specialized attention. While prior research has largely concentrated
on adult handwriting, the spotlight here is on children’s handwritten Arabic characters, an area
marked by its distinct challenges, such as variations in writing quality and increased distortions.
To this end, we introduce a novel dataset, “Dhad”, refined for enhanced quality and quantity. Our
investigation employs a tri-fold experimental approach, encompassing the exploration of pre-trained
deep learning models (i.e., MobileNet, ResNet50, and DenseNet121), custom-designed Convolutional
Neural Network (CNN) architecture, and traditional classifiers (i.e., Support Vector Machine (SVM),
Random Forest (RF), and Multilayer Perceptron (MLP)), leveraging deep visual features. The results
illuminate the efficacy of fine-tuned pre-existing models, the potential of custom CNN designs, and
the intricacies associated with disjointed classification paradigms. The pre-trained model MobileNet
achieved the best test accuracy of 93.59% on the Dhad dataset. Additionally, as a conceptual proposal,
we introduce the idea of a computer application designed specifically for children aged 7–12, aimed
at improving Arabic handwriting skills. Our concluding reflections emphasize the need for nuanced
dataset curation, advanced model architectures, and cohesive training strategies to navigate the
multifaceted challenges of Arabic character recognition.

Keywords: deep learning; pre-trained models; child handwriting recognition; Dhad; Hijja

1. Introduction

Arabic is a widely spoken language, with over 360 million people using it as their
primary language [1]. In the domain of language processing and technological applications,
the recognition of handwritten Arabic characters, especially in the realm of children’s
script, poses unique challenges [2,3]. Arabic, being a Semitic language, presents inherent
complexities in its script, demanding advanced algorithms for precise recognition. These
challenges emanate from factors such as the semi-cursive nature of Arabic writing, distinct
character shapes based on their position in a word, and the presence of diacritical marks
representing short vowels and other phonetic features. The significance of addressing the
issue of Arabic handwritten recognition, particularly concerning children, arises from the
increasing integration of technology in their educational and recreational activities. The
ubiquitous use of smartphones and tablet devices by children, employing touchscreens and
styluses for various purposes, including handwriting, underscores the need for automated
recognition techniques tailored to the unique characteristics of children’s handwriting [4–6].

While the existing literature has made notable strides in Arabic handwritten recogni-
tion, the focus has predominantly been on adult handwriting. Researchers have explored
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diverse datasets such as the Arabic Handwritten Characters Dataset (AHCD) [7] and the
Database of Arabic Handwritten Characters and Ligature (DBAHCL) [8], achieving com-
mendable accuracy rates using both conventional methods (e.g., Support Vector Machine
(SVM), K-Nearest Neighbour (KNN)) and advanced techniques (e.g., Convolutional Neu-
ral Network (CNN) and Artificial Neural Network (ANN)). Notably, CNNs [9,10] have
emerged as powerful tools for feature extraction, demonstrating superior performance com-
pared to traditional machine learning approaches. In the context of children’s handwriting
recognition, the existing Hijja dataset [4,11] is the only resource facilitating the training
of deep learning classification models. However, children’s handwriting introduces addi-
tional complexities, including variations in writing quality, increased variances, and more
substantial distortions. Recognizing these distinctions is imperative for developing effec-
tive applications in education, interactive learning, and other practical domains tailored
to children.

Limited research has been conducted in recognizing children’s written Arabic charac-
ters using the Hijja dataset. The existing literature uses conventional and deep learning
approaches towards the classification of children written Arabic characters. Altwaijry and
Al-Turaiki [4] introduced the unique Hijja dataset, training a CNN model with 88% accu-
racy, but lacked detailed investigations into existing powerful models. Alkhateeb et al. [12]
implemented a custom CNN model, achieving 92.5% accuracy on the Hijja dataset. Nayef
et al. [13] introduced the Optimized Leaky Rectified Linear Unit (OLReLU)-CNN model,
attaining 90% accuracy on Hijja. Alwagdani and Jaha [5] explored custom CNN models,
emphasizing the impact of diverse training datasets and achieving an impressive average
accuracy of 92.78% on recognizing children’s handwritten characters, while also proposing
supplementary features for enhanced discrimination. Alheraki et al. [14] tailored a custom
CNN for achieving 91% accuracy on Hijja. Recently, Bin Durayhim et al. [15] implemented
a custom CNN and pre-trained VGG16 models, reporting a remarkable 99% accuracy on
the Hijja dataset and introducing the Mutqin application for children’s practice. These
studies collectively highlight the evolving landscape of deep learning applications in recog-
nizing children’s Arabic handwriting. However, concerns about model generalization and
sensitivity persist, and further exploration is warranted in this context.

This paper introduces a new dataset, “Dhad”, following procedures similar to those for
Hijja to ensure consistency. The Dhad dataset features improved sample quality, enhanced
preprocessing to remove noisy elements, and a greater number of samples. This manuscript
systematically addresses the problem by investigating the potential of existing pre-trained
powerful CNN models using the transfer learning technique. Furthermore, it explores
the performance of simpler CNN models trained from scratch and classification on deep
visual features. In summary, the anticipated contributions of this manuscript include
the following:

1. Introduction of the new “Dhad” dataset to facilitate the training of deep learning
models for children’s handwritten Arabic characters.

2. Investigation of the potential of pre-trained powerful CNN models for children’s
handwritten Arabic character classification.

3. Examination of the performance of a simple CNN model trained from scratch for
children’s handwritten Arabic character classification.

4. Exploration of the classification performance on CNN-extracted features using con-
ventional machine learning models including SVM and Random Forest (RF).

5. Discussion of the practical use-case of the trained classification model, emphasizing
the potential utility of children’s handwritten Arabic characters recognition.

2. Background to Deep Learning Models
2.1. ResNet50

He et al. [16] introduced an innovative approach to training highly deep neural
networks, proposing a novel framework based on residual learning. Instead of training
networks to learn unreferenced functions, the authors suggested a reinterpretation of layers

51



Appl. Sci. 2024, 14, 2332

as residual learning functions by referencing the input of the layer. This concept of residual
learning played a crucial role in the optimization of deep networks, enabling the attainment
of enhanced accuracy with deep models. To express this mathematically, if we denote the
desired mapping function as H(x), in the context of residual learning, stacked non-linear
layers are designed to fit another mapping function F(x) := H(x)− x, where x represents
the input to the layer. This approach significantly contributed to the effectiveness of training
deep networks by explicitly capturing the residual information between the desired and
actual mappings.

2.2. MobileNet

Howard et al. [17] introduced a new type of CNN called MobileNets, tailored for
high-performance applications on advanced hardware. The key innovation involves using
depth-wise separable convolutions to efficiently build deep networks. This method intro-
duces two global hyperparameters, allowing customization for specific problems while
balancing accuracy and latency. Depth-wise separable convolution, a specialized type
of convolution, breaks down the standard convolution process into two steps. First, a
depth-wise convolution is applied, and then, a 1 × 1 point-wise convolution combines
the results from the previous layer. Importantly, each layer in the network is followed by
BatchNormalization and Rectified Linear Unit (ReLu) non-linearity. This separation into
depth-wise and point-wise convolutions helps improve computational efficiency while
maintaining the network’s performance.

2.3. DenseNet121

Huang et al. [18] introduced DenseNet, a novel class of densely connected convolu-
tional networks that builds upon the idea of residual connections present in traditional
networks. The key innovation involves establishing connections from each layer to every
other layer in the feedforward direction. This architectural choice means that each layer
receives the feature maps of all preceding layers as input, resulting in a network with
L(L + 1)/2 connections, in contrast to the L connections in traditional networks with L lay-
ers. The advantages of densely connected networks include improved feature propagation,
efficient feature reuse, a substantial reduction in the number of network parameters, and
mitigation of the vanishing-gradient problem. Unlike the approach in residual networks,
where feature maps are added before feeding into the next layer, DenseNet combines
feature maps through concatenation. Mathematically, if a network comprises L layers, each
with a non-linear transformation represented by a composite function Fl , the output xl
for the densely connected layer can be understood as the concatenation of feature maps
from the previous layers. In practical terms, this means that each layer’s output includes
information from all preceding layers, promoting rich information flow and enhancing the
network’s ability to learn complex representations.

2.4. Custom CNN

A custom CNN model was developed, motivated from the literature [4,5,13–15] to
investigate the performance of a simpler network trained from scratch for the children’s
handwritten character classification. The model is particularly tailored for grayscale images
with a size of 32 × 32 pixels (Figure 1). The architecture is constructed as a sequential stack
of layers using TensorFlow and Keras packages. The initial layer applies 64 convolutional
filters of the size 3 × 3 with ReLU activation and the “same” padding, preserving spatial
dimensions. Subsequent max pooling layers with 2 × 2 pool sizes and strides of two
reduce the spatial dimensions. This pattern repeats with increased filter counts in deeper
convolutional layers (128 and 256 filters). Dropout layers with a rate of 0.3 are strategically
inserted to mitigate overfitting. Following flattening, two densely connected layers with
512 and 1024 units, respectively, deploy ReLU activation. The output layer, activated by
softmax, consists of 29 units, aligning with the classification task’s classes. The model is
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compiled using the Adam optimizer, categorical cross-entropy as the loss function, and
accuracy as the performance metric.

Figure 1. The architecture of our custom CNN model.

3. Related Work

This section presents a summary of the literature in the context of children’s hand-
writing classification. First, a brief overview of how technology evolved for the children’s
handwriting classification is presented. In the second section, a more targeted review
of more recent deep learning-based research in the context of children’s written Arabic
character classification is provided to demonstrate the state of the art in this domain.

3.1. Children’s Handwriting Classification

The classification of children’s handwriting has been an active area of research for
decades, driven by the need for objective and automated assessment tools. Unlike adult
handwriting, which tends towards standardization, children’s writing exhibits a wide
range of variations due to age, developmental stage, and individual learning styles. Early
attempts at automated character recognition (OCR) for children’s handwriting often relied
on template matching techniques. Pioneering works employed pre-defined templates
representing ideal character shapes. An input character would be compared to these tem-
plates, with the closest match assigned as the recognized character. However, this approach
proved ineffective for children’s handwriting due to its inherent lack of conformity [19,20].
However, there are a number of limitations identified in the template matching approaches,
particularly for characters with significant variations in form.

Researchers recognized the limitations of template matching and explored alternative
approaches. Utilizing statistical and structural features for character classification has
been explored by researchers [21–23]. This involved analysing features like line endings,
crossings, and loops within handwritten characters. While offering more flexibility than
rigid templates, these methods still faced limitations. The emergence of deep learning
techniques, particularly CNNs, has revolutionized the field. Unlike previous methods,
CNNs excel at extracting intricate features from the data. This allows them to effectively
capture the natural variations in children’s handwriting, leading to more robust and
accurate character-level classification. Further advancements in deep learning architectures,
such as recurrent neural networks (RNNs), have shown promise in handling the sequential
nature of handwriting data.

3.2. Deep Learning-Based Classification of Children’s Arabic Handwriting

A summary of the latest research related to children’s handwritten Arabic character
classification is presented in this section to demonstrate the state of the art. This section is
organized in chronological order to better understand the developments over the years.

Alkhateeb et al. [12] in 2020 implemented a custom CNN model for the classification
of Arabic characters using the AHCR, AHCD, and Hijja datasets. The authors reported an
accuracy of 92.5% for the Hijja dataset. Altwaijry and Al-Turaiki [4] in 2021 introduced
the Hijja dataset, which stands out as a unique collection focusing exclusively on letters
written by children. This dataset, comprising 47,434 characters from 591 participants aged
7–12, filled a notable gap in existing resources, particularly for understanding the nuances
of children’s handwriting. A CNN model was developed and trained on the Hijja dataset,
which achieved a test accuracy of 88%. However, the work lacked a detailed investigation
on existing powerful models and ignored the practical implications of the research.
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Nayef et al. [13] in 2022 introduced an OLReLU combined with a CNN architecture
and a batch normalization layer to enhance performance in scenarios with imbalanced
positive and negative vectors. Four datasets, including the AHCD, self-collected data,
Modified National Institute of Standards and Technology (MNIST), and AlexU Isolated
Alphabet (AIA9K), were used. The proposed model was able to achieve 90% accuracy
for the Hijja dataset. Alwagdani and Jaha [5] recently in 2023 investigated the problem in
more detail using custom developed CNN models and hybrid approaches. The authors
made use of datasets from both adults (i.e., AHCD) and children (i.e., Hijja) to explore
the performance, with a particular emphasis on the impact of different training datasets.
The authors further investigated the problem of classifying by deploying a conventional
machine learning pipeline of extracting visual features and classifying using classical
machine learning models (e.g., SVM, KNN, and RF). The findings reveal that training
the model on a combination of children’s and adult datasets yields the best performance,
achieving an impressive average accuracy of 92.78% in recognizing children’s handwritten
characters. Moreover, authors extended their investigation to the classification of writers
into two groups (i.e., children and adults) using the proposed CNN model. The initial
results showed an average accuracy of 89.28%, indicating the presence of confusable
similarities in writing styles between adults and children. To enhance discrimination
performance, the study suggested supplementary features based on Histogram of Oriented
Gradients (HOGs) and statistical measures, which, when combined with CNN features,
result in a significantly improved accuracy of 92.29%.

Alheraki et al. [14] in 2023 implemented a custom CNN architecture tailored for rec-
ognizing children’s Arabic handwritten characters. The authors made use of the AHCD
and Hijja datasets to train the model and achieved accuracies of 97% and 91% for AHCD
and Hijja, respectively. Additionally, the authors introduced an innovative approach using
character strokes as a filter to further enhance recognition accuracy. This method, combined
with CNNs, demonstrated effectiveness in improving performance. The research compared
the proposed model with the pre-trained EfficientNetV0 and reported better performance
for the custom model. Moreover, a multi-model approach, integrating information about
the number of strokes in a character, achieved an average prediction accuracy of 96%
when Hijja was merged with AHCD. Bin Durayhim et al. [15] in 2023 implemented two
deep learning-based models (i.e., custom CNN and pre-trained VGG16) for children’s
handwriting character recognition using Hijja and AHCD. The custom CNN model was
reported to outperform the VGG16 model and other models from the literature, achieving
99% accuracy on the Hijja dataset. Additionally, the paper introduced Mutqin, a proto-
type tablet application designed for children to practice Arabic handwriting and spelling,
incorporating the best-performing CNN model. The application was evaluated through
user acceptance testing, considering effectiveness, efficiency, and satisfaction, with positive
results indicating good performance.

A notable progress has been made in the literature in regard to addressing the unique
challenges posed by children’s handwriting. Several studies have implemented various
deep learning models to recognize isolated Arabic characters, particularly targeting chil-
dren’s writing styles. The introduced models include custom CNNs, OLReLU with CNN
architectures, pre-trained models (i.e., VGG16 and EfficeintNetv0) and hybrid approaches
combining CNNs with classical machine learning models (e.g., SVM, KNN, and RF). These
studies have utilized datasets such as the AHCD and the specifically designed Hijja dataset,
which exclusively feature letters written by children. The accuracy reported in these works
range from 88% to 99%, showcasing the effectiveness of these models in handling the
intricacies of children’s handwriting.

However, certain limitations and gaps persist in the current research landscape. No-
tably, there is a lack of consistent exploration and discussion of transfer learning models,
specifically ResNet50 and MobileNet, which have demonstrated success in other domains.
Additionally, studies report inconsistent performance for almost similar CNN structures,
indicating a potential non-reliability of simple CNN models for this specific problem. There
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is no justification in the literature with regard to significantly varied performances for
almost same CNN architectures with minor hyperparamter variations. Furthermore, the
practical applications of the proposed models are not extensively discussed across the
studies, with only one work introducing a prototype tablet application named Mutqin for
children’s practice.

4. Dhad Dataset Formation

In this section, we describe our collected dataset, Dhad (the dataset is available at
https://github.com/daadturki1/Dhad/ (accessed on 1 October 2023)), and the steps taken
to preprocess and prepare the dataset for the training of deep learning models. The Dahd
dataset collection process was based on the procedures described by Altwaijry and Al-
Turaiki [4]. The dataset was collected from Arabic-speaking school children between 7
and 12 years old within the Riyadh region in 2019. In total, 55,587 samples for all 29 letter
classes in all different forms were collected. The count of each collected letter in all its forms
after discarding noisy input is reported in Table 1. In our image processing workflow, the
handwritten letters without dots were identified and cropped using the findContours()
method available in the OpenCV library [24]. Specifically, this method was utilized to
locate the outer contour of each object present in the image, after which we proceeded to
crop the image around the largest identified contour. Conversely, for handwritten letters
containing dots, the findNonZero() method was employed to identify all black pixels
in the image. Subsequently, the smallest possible rectangle that encompassed all black
pixels was cropped to isolate the desired letter. After that, the images were resized to
32 × 32 pixels. To eliminate the noise within the scanned images, we used a Gaussian filter
with a kernel of size 5 × 5 to blur specific portions of the image. Then, a high-pass filter
was used to sharpen the edges. Lastly, the binarization technique was used to convert
the RGB image to a binary level with a global thresholding algorithm. Figure 2 depicts
sample images from the classes “mı̄m” and “nūn”, showing the different preprocessing
stages. Four data augmentation techniques were used with a range of 0.2: height and width
shift, shear range, zoom range, and rescale. The dataset was then normalized, shuffled,
and split into 60%, 20%, and 20% for training, validation, and testing, respectively. Overall,
30,922, 10,300, and 10,333 samples were used for the training, validation, and testing sets,
respectively. Figure 3 presents the dataset collection workflow.

Table 1. The different letter forms and the total number of images for each class after data cleansing
in the collected dataset.

No. Class Form Count No. Class Form Count

1 ¸alif �þ ,�þ ,� ,� ,� 2869 16 t.ā¸ Xþ , þWþ , þV ,ª 1925
2 bā¸ 	þ , þbþ , þ� ,
 1899 17 z. ā¸ ^þ , þ\þ , þZ ,_ 1886
3 tā¸ þ , þtþ , þ� ,� 1920 18 sayn �þ , þ`þ , þ� ,� 1906
4 t

¯
ā¸ �þ , þ�þ , þ� ,� 1734 19 ġayn �þ , þ�þ , þ� ,� 2012

5 ğı̄m �þ , þ�þ , þ� ,� 1891 20 fā¸ �þ , þfþ , þ� ,� 2024
6 h. ā¸ �þ , þ�þ , þ� ,� 1921 21 qāf �þ , þqþ , þ� ,� 2030
7 khā¸ �þ , þ�þ , þ� ,� 1869 22 kāf �þ , þkþ , þ� ,� 2019
8 dāl dþ , 931 23 lām �þ , þlþ , þ� ,� 2011
9 d̆āl @þ ,Ð 915 24 mı̄m �þ , þmþ , þ� ,� 1955
10 rā¸ rþ ,C 898 25 nūn �þ , þnþ , þ� ,  1913
11 zāy zþ ,E 944 26 hā¸ ¢þ , þhþ , þ¡ ,£ 2180
12 sı̄n Hþ , þsþ , þF ,x 1845 27 wāw wþ ,¤ 872
13 s̆ı̄n Lþ , þKþ , þJ ,M 1876 28 yā¸ © , þyþ , þ§ ,© 1903
14 s.ād Pþ , þOþ , þ} ,Q 1709 29 hamzah ¸þ ,¹ ,¦ ,º 1846
15 d. ād {þ , þSþ , þR ,| 1852

Total 51,555
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2. Sample images from the letters mı̄m and nūn showing the consecutive data cleansing and
preprocessing steps. (a) Letter mı̄m after scanning and cropping. (b) Letter nūn after scanning and
cropping. (c) Letter mı̄m after cleansing. (d) Letter nūn after cleansing. (e) Letter mı̄m after applying
a Gaussian filter. (f) Letter nūn after applying the Gaussian filter. (g) Letter mı̄m after applying
a high-pass filter. (h) Letter nūn after applying a high-pass filter. (i) Letter mı̄m after applying
binarization. (j) Letter nūn after binarization.
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Figure 3. Dhad dataset collection and preparation workflow.

5. Experimental Design

To investigate the problem in details, in total, three experiments were performed:

• Experiment One—Pre-Trained Models: The first experiment was designed to explore
the potential of existing pre-trained powerful CNN models in classifying children’s
written Arabic characters. The literature suggests that well-established CNN models
pre-trained with large image datasets like that of ImageNet perform superior in
comparison to training from scratch. In this context, the ResNet50, MobileNet, and
DenseNet121 models are implemented for both the Hijja and Dhad datasets.

• Experiment Two—Custom CNN Model: The second experiment was designed to
investigate the performance of a simpler custom CNN model for this problem. The
development of custom CNN models has already been reported in the literature; how-
ever, varied performances are reported each time. In this experiment, we developed a
simple CNN model inspired from the literature and implemented it for both the Hijja
and Dhad datasets.

• Experiment Three—Classification on Deep Visual Features: The third experiment was
designed to study the performance of classical classification models including SVM,
RF, and MLP trained on deep visual features extracted by a deep learning CNN model
(i.e., MobileNet trained over ImageNet and MobileNet trained in Experiment One).

6. Experimental Protocols and Evaluation Measures

We employed the OpenCV–4.9.0 library and the Python Imaging Library (Pillow
10.2.0) in our study, as they provide the necessary functions for data preprocessing and
data augmentation and used the TensorFlow 2 [25] and Keras 3 [26] Python libraries to
implement the architectures. We also used Google Colaboratory Pro [27] to speed up
the training by granting access to K80, P100, T4 GPU, and 32 GB RAM. Gridsearch [28]
was used for hyperparameter tuning. A dataset split of 60:20:20 was used for training,
validation, and testing purposes using the conventional hold-out approach. All the pre-
trained models were fine-tuned for 30 epochs, while the custom CNN model was trained
from scratch for 100 epochs to ensure convergence. For all the models, the Adam optimizer
was used with categorical cross-entropy loss, and a training batch size of 4 was used.

The performance of the trained models was evaluated for both the training and
validation phases using standard evaluation measures. The training performance was
assessed based on the training loss curves, validation loss curves, training accuracy curves,
and validation accuracy curves. Further, for the best epoch model based on the validation
loss, the results for all four measures were also reported in tabular format. The testing
performance was assessed using test accuracy, test loss, F1 score, precision score, recall
score, and J-index. In addition to these quantitative measures, confusion matrices, and
Area Under Curve (AUC) curves were used to analyse the class-wise performances of
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trained models. For the pre-trained models, to better understand the performance, layer
visualizations were also plotted.

Let TP and TN denote the numbers of true positives and true negatives, respectively,
and FP and FN denote the numbers of false positives and false negatives, respectively.
Accuracy (Acc) is defined as the proportion of correctly predicted examples (1). The loss
(Loss) quantifies the degree of misclassification by determining the proportion of incorrect
predictions relative to the total predictions made by the model (2). Precision (P) is the
fraction of correctly classified positive examples among all positively classified examples (3).
Meanwhile, recall or sensitivity measures the ratio of correctly classified positive examples
to the true positive examples (4). The F1 score is calculated as the harmonic mean of the
precision and recall; thus, it combines both precision and recall in a single value (5). The
Jaccard Similarity Index (often referred to simply as J-Index) is a measure of how close the
predicted labels are to the actual labels (6).

Acc =
TP + TN

TP + TN + FP + FN
(1)

Loss =
FP + FN

TP + TN + FP + FN
(2)

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

F1 = 2 × P × R
P + R

(5)

J-Index =
TP

TP + FP + FN
(6)

7. Results

In addressing the challenges of handwritten Arabic characters among children, a
series of experiments were conducted and their outcomes are presented in this section. The
results encompass both numerical evaluations and graphical representations. To offer a
holistic understanding of the classifier’s efficacy, the performance metrics are delineated
for both training and testing phases, facilitating a nuanced assessment of its capabilities
across familiar and novel scenarios.

7.1. Experiment One—Pre-Trained CNN Models

In Experiment One, where ResNet50, MobileNet, and DenseNet121 underwent fine-
tuning on the Dhad and Hijja datasets, several intriguing training dynamics were observed
(see Figures 4 and 5). The training accuracy curves consistently exhibited a positive expo-
nential trajectory, reflecting the models’ progressive refinement and learning. Concurrently,
the training loss curves showcased a negative exponential pattern, suggesting a consis-
tent reduction in training errors—both patterns emblematic of typical training behaviour.
While a nuanced performance advantage was discerned in favor of ResNet50 from the
training curves, this superiority was marginal. However, the validation phase painted a
slightly different picture. Although the validation curves initially mirrored the training
trajectories, a noticeable degradation in performance became evident after a certain epoch.
This divergence, particularly conspicuous in the validation loss curves post-epoch 7, is a
clear manifestation of overfitting—a phenomenon exacerbated by the datasets’ inherent
simplicity. Such insights underscore the importance of leveraging validation metrics as they
provide a clearer lens into the model’s generalization prowess. Intriguingly, when evaluat-
ing based on validation performance, DenseNet121 emerged marginally superior, although
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the performance disparities among the three models remained modest, positioning them
comparably in terms of efficacy on these datasets.

A nuanced perspective on the models’ training outcomes becomes apparent in the
comparative analysis derived from Table 2. MobileNet emerged as the frontrunner for
the Dhad dataset, boasting a validation loss of 0.2278 and a commendable accuracy of
0.9396. Conversely, for the Hijja dataset, DenseNet121 showcased its prowess with metrics
of 0.4359 for validation loss and an accuracy score of 0.8920.
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Figure 4. Training accuracy and loss curves for pre-trained models on Dhad dataset.

Delving deeper into the model performances, both MobileNet and DenseNet121 ex-
hibited closely matched capabilities, with only marginal differences in their efficacy. In
stark contrast, ResNet50’s performance trajectory leaned more towards pruning, hinting at
potential redundancy or inefficiencies in its architecture. This behaviour can be attributed
to ResNet50’s heavier design, which might have rendered it more susceptible to overfitting,
especially given the datasets’ inherent simplicity. In contrast, MobileNet’s leaner archi-
tecture seemingly conferred upon it a more adaptive and resilient nature, enabling it to
outperform its counterparts.

A comparative examination between the Dhad and Hijja datasets further illuminates
this discussion. Predominantly, the pre-trained models showcased superior performance
metrics on the Dhad dataset, underscoring its superior quality and efficacy in facilitating
model training. Such observations align with the hypothesis positing Dhad’s utilization
of enhanced preprocessing methodologies, likely resulting in a cleaner, noise-attenuated
dataset conducive for effective model learning. This superior data quality inherently
empowered the models, enabling them to achieve heightened accuracies and reduced
losses on the Dhad dataset compared to its Hijja counterpart.

The testing phase (see Table 3) further substantiated the models’ capabilities, revealing
outcomes that closely mirrored their validation performance. Such consistency underscores
the models’ adeptness at capturing generalized features, enabling them to maintain con-
sistent performance across previously unseen datasets. Specifically, for the Dhad dataset,
MobileNet continued to demonstrate its efficacy, registering a test accuracy of 0.9359, a test
loss of 0.2468, and an impressive F1 score of 0.94. On the other hand, for the Hijja dataset,
DenseNet121 emerged as the optimal performer, achieving a test accuracy of 0.8883, a test
loss of 0.4919, and an F1-score of 0.89.
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Figure 5. Training accuracy and loss curves for pre-trained models on Hijja dataset.

Table 2. Training performance of pre-trained models on Dhad and Hijja datasets.

Training Loss Training Accuracy Validation Loss Validation Accuracy

Dhad Dataset

MobileNet 0.0691 0.9796 0.2278 0.9396
DenseNet121 0.0941 0.9717 0.2357 0.9342
ResNet50 0.0371 0.9908 0.2810 0.9289

Hijja Dataset

MobileNet 0.1035 0.9722 0.4466 0.8774
DenseNet121 0.1154 0.9680 0.4359 0.8920
ResNet50 0.0674 0.9838 0.5419 0.8789

Figures 6 and 7 present the confusion matrices for the trained models on the Dhad and
Hijja datasets, respectively. These matrices serve as pivotal tools for gauging the models’
class-specific performances and identifying potential areas of misclassification.

Table 3. Test performance of pre-trained models on Dhad and Hijja datasets.

Test Accuracy Test Loss F1 Score Precision Recall J-Index

Dhad Dataset

MobileNet 0.9359 0.2468 0.94 0.94 0.94 0.88
DenseNet121 0.9306 0.2510 0.93 0.93 0.93 0.87
ResNet50 0.9228 0.3043 0.92 0.92 0.92 0.86

Hijja Dataset

MobileNet 0.8781 0.4677 0.88 0.88 0.88 0.78
DenseNet121 0.8883 0.4619 0.89 0.89 0.89 0.80
ResNet50 0.8705 0.6026 0.87 0.87 0.87 0.77
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Figure 6. Cont.
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Figure 6. Confusion matrix for pre-trained models on Dhad dataset. (a) ResNet50, (b) MobileNet,
and (c) DenseNet121.

In the context of the Dhad dataset, a detailed examination reveals MobileNet’s com-
mendable class-wise equilibrium, characterized by minimal misclassifications across var-
ious categories. Notably, there’s a discernible pattern of misclassification, where 12% of
the “yaa” samples are erroneously categorized as “t’aa” and 10% of the “hamzah” samples
are mislabeled as “ayen”. Such misclassifications likely stem from the intricate visual simi-
larities inherent to these characters, underscoring the inherent challenges of handwritten
character recognition tasks.

Turning our attention to the Hijja dataset, DenseNet121 emerges as the model with
the most consistent overall performance. However, a deeper dive into the confusion ma-
trix reveals a higher incidence of misclassifications. Two salient observations include the
misclassification of 10% of “lam” samples as “ayen” and 7% of “hamzah” instances being in-
accurately labeled as “waw”. Such misclassifications further emphasize the intricacies and
challenges posed by handwritten Arabic character recognition, necessitating continuous
refinement and optimization strategies for enhanced accuracy.

Figure 8 provides an insightful glimpse into the inner workings of the trained models
through layer visualizations, shedding light on their training efficacy and decision-making
processes. The two visualization techniques employed, Grad-CAM and SmoothGrad,
serve distinct purposes in elucidating model behaviour. While Grad-CAM accentuates the
pivotal regions within images that significantly influenced predictions, SmoothGrad offers
a more granular perspective by pinpointing the specific pixels most instrumental in the
decision-making process.
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Figure 7. Cont.
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Figure 7. Confusion matrix for pre-trained models on Hijja dataset. (a) ResNet50, (b) MobileNet,
(c) DenseNet121.

 

 

 

 

Figure 8. Layer visualizations for DenseNet121 model on Dhad dataset samples.
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Upon meticulous examination of the visualizations, certain patterns and discrepancies
come to the fore. Notably, for characters such as “faa” and “jeem”, the models appear adept
at capturing and leveraging the character-relevant pixels, indicative of robust training and
feature extraction capabilities. However, a discernible shortfall becomes evident in the case
of the “yaa” character. Here, the model seemingly overlooks or inadequately emphasizes
crucial pixels during the prediction phase, suggesting potential areas for model refinement
or additional training data augmentation to enhance accuracy and consistency.

Figures 9 and 10 present the AUC curves, offering a comprehensive overview of the
discriminatory power and overall performance of the pre-trained models on the Dhad and
Hijja datasets, respectively. AUC serves as a robust metric, encapsulating the model’s ability
to distinguish between different classes. Upon detailed examination of these curves, a
pattern of closely matched performances across models emerges. Specifically, for the Dhad
dataset, MobileNet slightly outperforms its counterparts, boasting an impressive AUC
value of 0.9986. Conversely, on the Hijja dataset, DenseNet121 delivers a commendable
performance, albeit marginally trailing behind MobileNet with an AUC of 0.9954.

From the experiments, it can be clearly observed that the models exhibited overfitting
during training for both the Dhad and Hijja datasets for almost all the implemented
models. Although the superior performance of the pre-trained models was recorded, it
is important to take into consideration the overfitting problem. In general, this problem
usually occurs when either the dataset is too small in comparison to the model complexity
or the dataset is way too simple for the model. The literature suggests that dropout and
data augmentation techniques can be used to overcome the overfitting problem. To further
investigate this, in this experiment, we scoped the problem for only the MobileNet model
on the Dhad dataset as a use case. We have tried different dropout ratios to observe the
performance. Furthermore, we have also used data augmentation with the dropout. To
be specific, we trained the model using the 0.2, 0.4, and 0.6 dropout values. In terms of
data augmentation, we used rotation, width shift, height shift, shear, zoom, and nearest
fill. Figures 11 and 12 show the trends for training and validation loss curves for both
cases to understand. First, talking about the dropout variations, it can be observed from
Figure 11 that a dropout percentage of 0.4 resulted in slightly better performance and a
stable validation loss curve, whereas the dropout of 0.2 and 0.6 percentages degraded the
performance. This suggests that not all the dropout percentages result in better performance;
rather, an optimal value needs to be identified. It can be concluded that as suggested
by the literature, dropout can be introduced to improve overfitting. In regard to the
data augmentation and dropout variations, it can be observed from Figure 12 that the
introduction of data augmentation did improve the overall training performance and
resulted in emergence at lower loss values, but it did not really address the overfitting
problem. However, when data augmentation was used with optimal dropout values
i.e., 0.4, it resulted in a stable and improved validation loss curve. As a summary of this
investigation, it can be concluded that overfitting is very common for smaller and simpler
datasets. Dropout and data augmentation approaches can be used to improve overfitting
to some extent; however, on a larger scale, the dataset needs to be introduced with noise
and challenges to avoid this problem.
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Figure 11. Loss curves for different dropout variations with MobileNet on Dhad dataset.
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Figure 12. Loss curves for different dropout variations and data augmentation with MobileNet on
Dhad dataset.

7.2. Experiment Two—Custom CNN Model

In Experiment Two, a custom CNN model, drawing inspiration from the existing
literature [4,5,13–15], was meticulously crafted and subsequently trained on both the Dhad
and Hijja datasets. A detailed analysis of the model’s training dynamics, as depicted in
Figure 13, offers invaluable insights into its performance and adaptability.
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Upon scrutinizing the training accuracy plots, a discernible positive exponential trend
is evident, aligning with typical training behaviour. However, an intriguing observation is
the model’s accelerated convergence, achieving desirable accuracy at a slightly quicker pace
compared to other models. Nevertheless, the validation phase unraveled some concerns.
While the validation accuracy initially mirrored the training trajectory, a conspicuous
divergence emerged after the 20th epoch, signaling the onset of overfitting.

This overfitting propensity is further accentuated in the loss curves. After the 20th
epoch, a palpable uptick in validation loss becomes evident, corroborating the overfitting
suspicions. Such concerns are further compounded upon examining the convergence
metrics; as detailed in Table 4, the model’s loss values upon convergence are unexpectedly
elevated for both the Dhad and Hijja datasets. Specifically, for the Dhad dataset, the model
managed to attain a validation accuracy of 89% but manifested a relatively elevated valida-
tion loss of 0.3862. Conversely, the Hijja dataset witnessed a more pronounced performance
disparity, with the model registering a diminished accuracy of 75% accompanied by a
markedly higher validation loss of 0.8382.
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Figure 13. Training accuracy and loss curves for custom CNN model on Dhad and Hijja datasets.

Table 4. Training performance of custom CNN model on Dhad and Hijja datasets.

Training Loss Training Accuracy Validation Loss Validation Accuracy

Dhad Dataset 0.2554 0.9344 0.3862 0.8919
Hijja Dataset 0.5761 0.8354 0.8382 0.7515

Table 5 provides a comprehensive overview of the custom model’s test performance
metrics on both the Dhad and Hijja datasets. A cursory examination of these results reveals
a coherent alignment with the model’s validation trajectory, reaffirming the standard train–
validate–test paradigm, where the performances across validation and test phases remain
largely congruent.

For the Dhad dataset, the custom model demonstrated a commendable test accuracy
of 88%, coupled with a test loss metric of 0.3988. Additionally, the model’s F1 score
stood impressively at 0.89, underscoring its proficiency in maintaining a harmonious
balance between precision and recall. Conversely, when evaluated on the Hijja dataset, the
model’s performance exhibited a discernible decline, registering a test accuracy of 74%.
The associated test loss and F1 score metrics further elucidate this observation, standing at
0.8693 and 0.75, respectively.
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Table 5. Test performance of custom CNN model for Dhad and Hijja datasets.

Test Accuracy Test Loss F1 Score Precision Recall J-Index

Dhad Dataset 0.8854 0.3988 0.89 0.89 0.89 0.79
Hijja Dataset 0.7484 0.8693 0.75 0.75 0.75 0.6

The nuanced performance trajectories across the two datasets are further corroborated
by the AUC curves, meticulously depicted in Figure 14. The Dhad dataset witnessed a
marginally superior performance, with the model achieving an AUC of 0.99, indicative of
its robust discriminatory prowess. In stark contrast, the Hijja dataset, although exhibiting
a commendable AUC value of 0.98, revealed a more scattered performance distribution
across classes, emphasizing the inherent challenges and intricacies associated with character
recognition tasks on this dataset.

Figure 15 provides a comprehensive confusion matrix for both the Dhad and Hijja
datasets. While the model’s performance on the Dhad dataset appears balanced with
minimal misclassifications, a discernible decline is evident on the Hijja dataset, charac-
terized by widespread misclassifications across various classes. Particularly challenging
are the class pairs “t’aa–yaa” and “ayen–hamza”, likely due to their visual resemblance,
underscoring the inherent complexities in Arabic character recognition and highlighting
areas for potential model enhancement.
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Figure 14. Cont.
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Figure 14. Confusion matrix for custom CNN model on Dhad and Hijja datasets. (a) Dhad and
(b) Hijja.

7.3. Experiment Three—Classification of Deep Visual Features

In Experiment Three, a sophisticated two-stage approach was devised to optimize
the classification process, blending the strengths of deep learning feature extraction with
the precision of traditional classifiers. The foundational component of this pipeline was
the MobileNet architecture, renowned for its prowess in extracting intricate features from
complex datasets. By utilizing MobileNet’s capabilities, the experiment aimed to transform
the raw data into a more discernible and compact representation, thereby facilitating more
effective subsequent classification. In this context, we have used the MobileNet model
pre-trained over the ImageNet and MobileNet models trained in Experiment One.

Following the feature extraction phase, the extracted features were then subjected to
three distinct conventional classifiers: SVM, RF, and MLP. SVM, a discriminative classifier,
operates by finding the optimal hyperplane that best separates the data into distinct classes,
making it particularly adept at handling high-dimensional feature spaces. Conversely,
RF, an ensemble learning method, constructs multiple decision trees during training and
outputs the class that is the mode of the classes of individual trees for classification tasks,
thereby leveraging the wisdom of multiple trees to enhance accuracy and robustness. On
the other hand, MLP is known for its fully connected neural architecture to extract the
hidden patterns from the input feature vector.
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(a)

(b)
Figure 15. AUC curves of custom CNN model for Dhad and Hijja datasets. (a) Dhad and (b) Hijja.
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Delving into the results encapsulated in Table 6, a discernible pattern emerges. For the
Dhad dataset, the MobileNet + SVM ensemble manifested as the optimal configuration,
demonstrating its prowess with a validation accuracy of 89%, which was corroborated by
the test accuracy standing at a commendable 88%. Further fortifying its performance cre-
dentials, the ensemble yielded an F1 score of 0.88, underscoring its balanced precision and
recall capabilities. Similarly, when transposed to the Hijja dataset, the MobileNet+SVM con-
figuration continued its dominance, albeit with slightly diminished metrics. A validation
accuracy of 73% and a corresponding test accuracy of 72% were achieved, along with an F1
score of 0.73, signifying a robust performance despite the dataset’s inherent complexities.
In context to the use of ImageNet pre-trained and Experiment One trained model, it can be
observed that the ImageNet pre-trained model resulted in better performance.

Table 6. Test performance of two-stage classification on deep visual features pipeline on Dhad and
Hijja datasets.

Validation Accuracy Test Accuracy F1 Score Precision Recall J-Index

Dhad Dataset

MobileNet (ImageNet Pre-Trained) + SVM 0.8894 0.8848 0.88 0.88 0.88 0.79
MobileNet (ImageNet Pre-Trained) + RF 0.7775 0.7803 0.78 0.78 0.78 0.64
MobileNet (ImageNet Pre-Trained) + MLP 0.0801 0.0810 0.02 0.02 0.02 0.05
MobileNet (Experiment One) + SVM 0.7118 0.7100 0.71 0.71 0.71 0.71
MobileNet (Experiment One) + RF 0.6662 0.6656 0.66 0.65 0.66 0.50
MobileNet (Experiment One) + MLP 0.0556 0.0556 0.01 0.01 0.01 0.03

Hijja Dataset

MobileNet (ImageNet Pre-Trained) + SVM 0.7322 0.7256 0.73 0.73 0.73 0.57
MobileNet (ImageNet Pre-Trained) + RF 0.5346 0.5270 0.53 0.52 0.53 0.36
MobileNet (ImageNet Pre-Trained) + MLP 0.0770 0.0771 0.04 0.04 0.04 0.06
MobileNet (Experiment One) + SVM 0.3937 0.3839 0.37 0.38 0.37 0.24
MobileNet (Experiment One) + RF 0.3705 0.3591 0.34 0.35 0.34 0.22
MobileNet (Experiment One) + MLP 0.0578 0.0570 0.01 0.01 0.03 0.03

Figures 16–21 provide a detailed representation of the confusion matrices derived
from the SVM, RF, and MLP classifiers when employed with deep visual features from the
ImageNet pre-trained and Experiment One trained MobileNet model on both the Dhad
and Hijja datasets. Complementing these visual representations, the findings elucidated in
the table corroborate the classifiers’ performance metrics. Notably, SVM emerges as the
superior performer across all the cases.

However, when contextualized within the datasets, a nuanced observation surfaces.
The Dhad dataset consistently showcases enhanced performance metrics in comparison
to its Hijja counterpart. This disparity in performance underscores the Dhad dataset’s
superior quality, likely attributed to meticulous data curation, reduced noise levels, or
other preprocessing enhancements. Such insights are pivotal, as they not only validate the
efficacy of the classification pipeline but also emphasize the pivotal role of dataset quality
in influencing model performance and outcomes.
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cm=confusion_matrix(real, test_predictions)

classes=["alif", "baa", "taa", "thaa", "jeem", "h'aa", "khaa", "dal", "thal",␣↪"raa", "zeyn", "seen", "sheen", "sad", "dhad", "t'aa", "th'aa", "ayen",␣↪"ghayen", "faa", "ghaf", "kaf", "lam", "meem", "noon", "haa", "waw", "yaa",␣↪"hamzah"]
plot_confusion_matrix(cm, classes, normalize=True, cmap=plt.cm.Blues)

[34]: from sklearn.metrics import f1_score
f1_score(test_labels,test_predictions,average='micro')

5

(a)

cm=confusion_matrix(real, test_predictions)

classes=["alif", "baa", "taa", "thaa", "jeem", "h'aa", "khaa", "dal", "thal",␣↪"raa", "zeyn", "seen", "sheen", "sad", "dhad", "t'aa", "th'aa", "ayen",␣↪"ghayen", "faa", "ghaf", "kaf", "lam", "meem", "noon", "haa", "waw", "yaa",␣↪"hamzah"]
plot_confusion_matrix(cm, classes, normalize=True, cmap=plt.cm.Blues)

[14]: from sklearn.metrics import f1_score
f1_score(test_labels,test_predictions,average='micro')

5

(b)

Figure 16. Confusion matrix of MobileNet (ImageNet pre-trained) + SVM pipeline on Dhad and Hijja
datasets. (a) Dhad and (b) Hijja.
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Figure 17. Confusion matrix of MobileNet (ImageNet pre-trained) + RF pipeline on Dhad and Hijja
datasets. (a) Dhad and (b) Hijja.
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Figure 18. Confusion matrix of MobileNet (ImageNet pre-trained) + MLP pipeline on Dhad and Hijja
datasets. (a) Dhad and (b) Hijja.
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Figure 19. Confusion matrix of MobileNet (Experiment One) + SVM pipeline on Dhad and Hijja
datasets. (a) Dhad and (b) Hijja.
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Figure 20. Confusion matrix of MobileNet (Experiment One) + RF pipeline on Dhad and Hijja
datasets. (a) Dhad and (b) Hijja.
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Figure 21. Confusion matrix of MobileNet (Experiment One) + MLP pipeline on Dhad and Hijja
datasets. (a) Dhad and (b) Hijja.
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8. Discussion

The exploration of handwritten Arabic character recognition, particularly among chil-
dren, presents both challenges and opportunities. The results obtained from the experiments
provided valuable insights into the effectiveness of deep learning models and traditional
classifiers for this specific task. In this discussion, we delve deeper into the insights derived
from the results, critically analysing them against the existing literature, evaluating the
methodologies employed and highlighting potential avenues for future research.

• Fine-tuning of Existing Models: An important insight from the performed experi-
ments is the unparalleled efficacy of fine-tuning existing deep learning architectures.
This approach resonates with the existing literature [29–31], highlighting the poten-
tial of harnessing pre-trained models fine-tuned for application-specific tasks. The
flexibility of fine-tuning, which combines using general features with adjusting to spe-
cific dataset details, highlights its essential importance. Especially in situations with
limited computing power, its ability to achieve impressive results quickly becomes
clearly noticeable.

• Custom CNN Model: In comparison to the established deep architectures, our simpler
custom CNN achieved good results in classification. However, the performance did
not exceed the fine-tuned pre-trained models. These findings align with what is com-
monly discussed in current research [32,33], emphasizing that simpler models can be
easily affected by minor changes. This highlights the need for cautious interpretations
and emphasizes the extra computing work needed when starting from scratch with
new models.

• Two-stage Pipeline with Conventional Classifiers: Our exploration of a two-part pro-
cess, combining deep visual feature extraction with traditional classification methods,
resulted in less-than-ideal results. These results are consistent with existing research,
highlighting the importance of end-to-end deep learning models trained effectively
at once. The shortcomings arising from separate feature extraction and classification
emphasize the need for unified model training, bringing together all elements to better
achieve the main goal.

• Dataset Dynamics: At the heart of the model’s performance variations lies the quality
of the dataset. Our studies highlight the superiority of the Dhad dataset when com-
pared to the Hijja one, likely due to clearer pixels and reduced interference. These
insights highlight the crucial importance of careful dataset preparation, underscoring
its fundamental role in shaping the best possible model results.

• Navigating Class Confounders: A recurring pattern throughout our experimental
journey centres on the differentiation between certain class pairs, particularly “t’aa–
yaa” and “ayen–hamzah”. The blending of visual similarities among these classes
leads to frequent misclassifications, highlighting the need for future efforts to develop
more detailed training samples. Tackling this challenge requires a focused effort to
enhance the dataset with diverse class examples, enhancing the model’s ability to
accurately distinguish categories.

While the experiments offer valuable insights, they are not devoid of limitations. The
use of a limited number of datasets, potential biases in data curation, and the absence of
real-world noise simulations may limit the external validity of the findings. Furthermore,
the focus on specific architectures and classifiers suggests a comprehensive exploration
of the deep learning and traditional machine learning models. Potential future research
directions can be as follows:

1. Enhanced dataset curation, incorporating diverse writing styles, variations, and real-
world noise simulations.

2. Comparative evaluations encompassing a broader spectrum of architectures, optimiza-
tion techniques, and data augmentation strategies.

3. Exploration of ensemble methodologies, blending the strengths of multiple models to
foster enhanced recognition capabilities.
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9. Al-Khatta—An Early Intervention Tool for Arabic Handwriting Improvement

In envisioning a future application, a model specifically trained to classify Arabic
characters holds immense potential for a highly impactful use-case “Al-Khatta” for the en-
hancement of Arabic handwriting skills in children aged 7 to 12. This software application
can seamlessly integrate the trained model with the aim of revolutionizing handwriting
improvement through innovative features. The model’s real-time analysis capabilities will
enable the application to deliver immediate feedback on handwritten input, fostering a
dynamic and responsive learning environment. The trained model will play a pivotal role
in identifying areas of difficulty within specific characters, empowering the app to generate
personalized practice exercises tailored to each child’s unique handwriting challenges. This
forward-looking approach ensures a targeted and individualized learning experience, effec-
tively addressing the diverse needs of young learners and fostering accelerated proficiency
in Arabic handwriting.

Moreover, the application can incorporate a progress-tracking functionality, providing
insightful data on a child’s development across various exercises and over time. This feature
will empower educators and parents with a comprehensive understanding of learning
patterns, facilitating informed and targeted guidance to further support the child’s progress.
To maintain engagement in this envisioned future, the application can employ gamified
elements and rewards, contributing to a positive reinforcement learning experience. By
infusing an element of enjoyment into the learning process, the application aims to keep
children motivated and enthusiastic about refining their Arabic handwriting skills.

The UI/UX development of the application can utilize HTML, CSS, and JavaScript for
web-based applications or consider platform-specific frameworks such as Flutter for cross-
platform mobile applications. In the realm of model development, PyTorch, TensorFlow,
and Python libraries can be harnessed, with a dedicated GPU machine ensuring efficient
training. For swift real-time performance in mobile deployment, models like MobileNet
can be employed, while larger models like DenseNet121 may be considered for potential
offline analysis.

10. Conclusions

In conclusion, our comprehensive exploration into the classification of handwritten
Arabic characters among children reveals intriguing dynamics in model performance and
dataset efficacy. While fine-tuned pre-existing models showcased commendable accuracy,
particularly MobileNet on the Dhad dataset and DenseNet121 on the Hijja dataset, their
performance trajectories underscored the challenges of overfitting, especially with datasets
of inherent simplicity. The nuances observed in misclassifications, notably between visually
similar characters, highlight the intricacies inherent to Arabic character recognition. A
concept of computer application to facilitate the handwriting improvement in children is
also discussed as a practical use-case of Arabic children’s handwritten character recognition.
Moving forward, addressing these challenges will demands multi-pronged approach:
refining dataset quality, exploring advanced model architectures, and integrating robust
training strategies to enhance generalization and accuracy.
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Abstract: Breast cancer profoundly affects women’s lives; its early diagnosis and treatment increase
patient survival chances. Mammography is a common screening method for breast cancer, and
many methods have been proposed for automatic diagnosis. However, most of them focus on single-
label classification and do not provide a comprehensive analysis concerning density, abnormality,
and severity levels. We propose a method based on the multi-label classification of two-view
mammography images to comprehensively diagnose a patient’s condition. It leverages the correlation
between density type, lesion type, and states of lesions, which radiologists usually perform. It
simultaneously classifies mammograms into the corresponding density, abnormality type, and
severity level. It takes two-view mammograms (with craniocaudal and mediolateral oblique views)
as input, analyzes them using ConvNeXt and the channel attention mechanism, and integrates the
information from the two views. Finally, the fused information is passed to task-specific multi-
branches, which learn task-specific representations and predict the relevant state. The system was
trained, validated, and tested using two public domain benchmark datasets, INBreast and the Curated
Breast Imaging Subset of DDSM (CBIS-DDSM), and achieved state-of-the-art results. The proposed
computer-aided diagnosis (CAD) system provides a holistic observation of a patient’s condition. It
gives the radiologists a comprehensive analysis of the mammograms to prepare a full report of the
patient’s condition, thereby increasing the diagnostic precision.

Keywords: breast cancer; mammography; deep learning; multi-label classification; convolutional
neural network (CNN)

1. Introduction

Breast cancer is a malignant transformation and proliferation of breast cells [1]. Ac-
cording to the American Cancer Society [2], it is ranked as the second most prevalent
cancer among women in the United States. The survival of patients depends on whether
it is diagnosed at an early stage [3]. Screening programs help to identify breast cancer
at early stages to facilitate early treatment, which increases patients’ survival rates. In
contrast, delayed diagnoses allow the disease to spread, and the cancer can grow to a stage
where treatment is no longer possible. Mammography is a breast-imaging technique that is
usually used to detect abnormal tissues in the breast, thereby aiding the early diagnosis of
abnormalities found in a patient.

Mammography screening involves many breast views, the most common being the
craniocaudal (CC) and mediolateral oblique (MLO) views. Radiologists usually use these
two views to observe breast tissues from different angles and detect abnormal tissues. A
mammogram aids in identifying the breast density type according to the Breast Imaging
Reporting and Data System (BI-RADS), the kind of abnormality (e.g., masses and calcifi-
cations), and the level of severity of the abnormality (benign or malignant) [4]. Several
approaches for automated breast cancer diagnosis are available [5]. However, the existing
studies mainly focus on a single view. The research presented in [6] demonstrated that
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two views are more helpful in improving a diagnosis; however, this method requires
special treatment to avoid redundant data existing in both views. Therefore, using a fusion
technique helps to handle this case.

In addition, most studies model the diagnosis problem as a single-label classifica-
tion, such as detecting the breast density type [7–10], identifying the masses as benign
or malignant [11–14], diagnosing microcalcifications as benign or malignant [15,16], or
classifying both masses and calcifications as benign or malignant [17,18]. Single-label
classification ignores the interdependencies between different conditions; for instance, a
breast with high density is more likely to be malignant than a breast with low density. In
addition, single-label classification requires developing multiple methods, each focusing
on one aspect of the problem. These issues can be overcome by using a method based
on multi-label classification for identifying breast cancer in an initial phase. A method
that formulates the diagnosis as a multi-label classification problem can help to diagnose
a patient’s condition comprehensively. It leads to better diagnosis results by considering
additional aspects, such as the correlation between the density type, lesion type, and states
of the lesions, which radiologists usually perform. It can assist radiologists in their decision
making by providing a comprehensive report of the patient’s condition, increasing the
precision of their diagnosis.

Given the above discussion, we formulate a diagnosis as a multi-label classification us-
ing two views. Inspired by the success of advanced CNN and transformer models [19–25],
we designed the proposed method using four modules: a feature extraction module, an
attention module, a fusion module, and a multi-label classification module. First, the fea-
ture extraction module employs the state-of-the-art CNN and transformer models, such as
the Swin transformer and ConvNeXt, and extracts features from two views, CC and MLO.
The attention module concentrates on relevant features and suppresses irrelevant features.
The information extracted from the two views is fused using the fusion module. Finally,
the multi-label classification module takes the fused features as input and simultaneously
predicts the density type, abnormality type, and severity levels.

The key contributions of this research paper are as follows:

• We propose a method based on the multi-label classification of two-view mammog-
raphy images—with CC and MLO views—that diagnoses the patient’s condition
comprehensively.

• We employ channel attention for selectively emphasizing the most informative chan-
nels of the input feature maps while suppressing the less informative ones.

• We propose a multi-branch deep architecture, which takes the features from two views
as input and performs multi-label classification.

• We thoroughly evaluated the proposed method on two public-domain benchmark
datasets, INBreast and CBIS-DDSM.

This paper is organized as follows: Section 2 discusses the ‘Related Work’ on breast
cancer diagnosis. Section 3 details the ‘Proposed Method.’ The ‘Evaluation Method’ is
described in Section 4, while Section 5 covers the ‘Experiments and Results.’ Section 6 in-
cludes the ‘Discussion,’ followed by ‘Limitations and Future Work’ in Section 7. This paper
concludes in Section 8 with the ‘Conclusions,’ and the ‘Nomenclature’ used throughout the
paper is provided at the end.

2. Related Work

Significant research has contributed to developing and improving advanced CAD
systems, especially for detecting and diagnosing breast cancer using mammography. Within
this particular context, many studies have focused on solving related problems such as
mass classification as non-cancerous (benign) or cancerous (malignant), the classification of
microcalcifications as non-cancerous (benign) or cancerous (malignant), the classification of
both microcalcifications and masses as non-cancerous (benign) or cancerous (malignant);
classification as masses and microcalcifications; the classification of mammograms based
on breast density; and the multi-label classification of mammograms. This section provides
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an in-depth review of the recent state-of-the-art (SOTA) research and methods that address
these problems.

2.1. Mass Classification as Benign or Malignant

A whole mammogram image or the regions of interest (ROIs) are classified as benign
or malignant, and there are many methods for this purpose.

Some recent methods classify mammogram images containing masses as benign or
malignant. Chen et al. [11] developed a method using two mammography views, MLO
and CC, for both breasts, extracting spatial and frequency domain features. They utilized
particle swarm optimization (PSO) and support vector machine (SVM) for feature selection
and classification, achieving an AUC-ROC of 0.79 for two-view and 0.75 for four-view
images. Das et al. [13] implemented adaptive contrast enhancement in mammogram
images, followed by segmentation and artificial neural network classification, resulting in
a high accuracy of 97.2%. Sun et al. [12] introduced a multi-dilated CNN that integrates
multiple views and optimizes classification accuracy by modifying the cross-entropy cost
function, achieving accuracies of 82.02% and 63.06%, respectively. Nagarajan et al. [14]
employed bi-dimensional empirical mode decomposition and GLCM for feature extraction,
leading to AUC-ROC values of 0.9 and 0.96. Ayana et al. [26] presented a novel model
employing a transformer for feature extraction combined with transfer learning, tackling
the issue of imbalanced data and achieving near-perfect classification accuracy. Yu, Xiang
et al. [27] developed VGG19-DF with a dRVFL classifier, showing an average AUC of 0.93
and an accuracy of 81.71%.

2.2. Microcalcification Classification as Either Benign or Malignant

In order to classify microcalcifications, the research has considered full mammogram
images or segmented ROIs. Some recent methods classify mammogram images containing
macrocalcifications as benign or malignant.

George et al. [15] proposed a multi-scale connected chain graph method for classifying
microcalcifications, achieving up to 90% accuracy. Mabrouk et al. [16] enhanced mammo-
gram images using various mechanisms and integrated feature extractions followed by
ANN, KNN, and SVM classification, resulting in an accuracy of 0.96. Gerbasi et al. [28]
introduced DeepMiCa, a U-Net-based network for the segmentation and classification of
microcalcifications, achieving an AUC of 95%. Sarvestani et al. [29] enhanced extracted
ROIs using a fuzzy system and Gabor filtering, achieving a 93% accuracy rate in classifying
microcalcifications.

2.3. Mass and Microcalcification Classification as Benign or Malignant

In the task of classifying masses and microcalcifications as benign or malignant, two
approaches can be employed: either classifying the ROIs corresponding to segmented
masses and microcalcifications or performing classification on the entire mammogram
image to determine its benign or malignant nature.

Li et al. [17] enhanced the DenseNet architecture for classifying mammogram images,
achieving a 94.55% accuracy rate. Mohanty et al. [18] proposed a method using block-based
discrete-wavelet packet transform and principal component analysis, enhanced with a
kernel extreme learning machine classifier, achieving accuracy rates above 99%. Jabeen
et al. [30] developed an automated framework for breast cancer classification from mam-
mogram images, employing a novel image enhancement technique and the EfficientNet-b0
model fine-tuned via deep transfer learning. The framework, which included advanced
feature extraction and optimization using the Equilibrium-Jaya controlled Regula Falsi
algorithm, was tested on the CBIS-DDSM and INBreast datasets, achieving notable accu-
racies of 95.4% and 99.7%, respectively. Chakravarthy et al. [31] combined deep learning
with metaheuristic techniques to classify mammography images, achieving up to 97.36%
accuracy. Azour et al. [32] utilized ensemble learning techniques with a combination of
multiple deep-learning models, achieving an accuracy of approximately 82.4%.

85



Appl. Sci. 2023, 13, 12995

2.4. Multi-Label Classification of Mammograms

Few studies have addressed the multi-label classification of mammograms, with
studies only [33] investigating this issue in recent years.

Chougrad et al. [33] introduced a CAD system for the multi-label classification of
mammogram images. They employed VGG16-CNN with fine-tuning techniques and a
label powerset classifier, demonstrating promising results across various datasets.

2.5. Analysis

The above studies indicate significant research addressing breast cancer detection in
mammogram images from various perspectives and formulating different problems, such
as classifying masses as non-cancerous or cancerous, microcalcifications as non-cancerous
or cancerous, and masses and microcalcifications together as benign or malignant. These
works achieved a favorable performance for the above-mentioned problems.

Only a few studies have focused on solving the problem of the multi-label classification
of mammogram images [33], which simultaneously identifies the risk/density grade,
abnormality type (e.g., mass or microcalcification), and state of the lesion (benign or
malignant). The research presented in [19] adopted VGGNet and used transfer learning to
fine-tune the model using ROIs before using the model as a feature extractor and multi-
label classifier. Although this method provides favorable results and uses new techniques
such as deep learning and transfer learning, it entails some limitations, such as using a
simple CNN architecture and single-view ROIs as input. According to the study presented
in [6], using multiple views can enhance prediction performance compared with using a
single view. In addition, integrating residual learning into a CNN helps to overcome many
challenges, such as vanishing gradients, overfitting, and complex correlations between
labels [21].

Table 1 summarizes the existing research in the field. Jafari et al. [34] presented a
CNN-based breast cancer detection method for mammography images, extracting features
from various CNN models and selecting key features. Tested on the RSNA, MIAS, and
DDSM datasets, it achieved the highest accuracy with an NN classifier: 92% for RSNA,
94.5% for MIAS, and 96% for DDSM.

Table 1. Comprehensive summary of the existing works.

Paper Method Dataset Performance

Mass classification as benign or malignant

Chen et al. [11], 2019

Fifty-nine features like
shape, density, FFT, and

DCT for feature
extraction; PSO for

feature selection; SVM
as classifier

FFDM Sen. = 81
Spe. = 77

Das et al. [13], 2020

Power-law
transformation + shift

invariant extrema
characterization + ANN

MIAS, DDSM ACC = 97.2
Sen. = 98.4

Nagarajan et al. [14],
2019

GLCM and GLRM from
MBEMD and SVM/LDA MGM ACC = 90

AUC = 0.92

Ayana et al. [26],
(2023) Transformer DDSM AUC = 1 ± 0

Yu, Xiang, et al. [27],
(2023) CNN DDSM AUC = 0.93

ACC = 81.71

Sun et al. [12], 2019 CNN with dilated CONV
layers MIAS DDSM ACC = 63.06

ACC = 82.02
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Table 1. Cont.

Paper Method Dataset Performance

Microcalcification classification as benign or malignant

George et al. [15]
Topology, graph

connectivity, multi-scale
morphology, and KNN

DDSM ACC = 86.47
AUC = 0.899

Mabrouk et al. [16]

HS, WT, ME, HE, Otsu,
Shape, GLCM, invariant
moment features, ANN,

KNN, and SVM

MIAS ACC = 96
Sen. = 98

Gerbasi et al. [28],
2023

UNet for segmentation +
ResNet18 DDSM AUC = 0.95

Sarvestani et al. [29],
2023

Fuzzy system + Gabor
filtering for image

enhancement + ANN for
classification

DDSM ACC = 93
Sen. = 95

Mass and microcalcification classification as benign or malignant

Li et al. [17], 2019 DenseNet with the
Inception structure. FFDM 94.55

Mohanty et al. [18] BDWPT + PCA +
WC-SSA-KELM MIAS

ACC = 99.28
Sen. = 99.44
AUC = 0.994

Chakravarthy et al.
[31], 2023

Resnet18 + wKNN + PSO
+ DFOA + CSOA MIAS ACC = 84.35

F. Azour et al. [32],
2023

VGG, Resnet,
Inception-v3, DensNet,

MobileNet, and
EfficientNet

ACC = 82.4

Jabeen et al. [30], 2023

Image enhancement,
EfficientNet-b0, feature

optimization and
selection, and ML

classifiers

CBIS-DDSM and
INBreast

ACC = 95.4% and
99.7%

Jafari et al. [34], 2023

Feature extraction from
various CNNs, feature
selection using mutual

information, and
classification with NN,

kNN, RF, and SVM

RSNA, MIAS, and
DDSM

Acc = 92%, 94.5%,
and 96%

Multi-label classification of mammograms

Chougrad et al. [33],
2020 VGG16 DDSM, BCDR

INBreast, and MIAS

Exact match:
0.822, 0.802 0.827,

and 0.782

3. Proposed Method

We address the problem of simultaneously identifying the breast density type (accord-
ing to BI-RADS), abnormality type (mass or calcification), and severity level/pathology
(benign or malignant) from mammogram images. This is a multi-label classification prob-
lem. First, we formally define and formulate the problem and then present the details of
the proposed method.
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3.1. Problem Formulation

To screen a patient for breast cancer detection, two commonly used views of a patient’s
mammogram are the MLO and CC views. The problem is identifying the breast density,
severity level/pathology, and findings from the two views. Based on the BI-RADS (Breast
Imaging Reporting and Data System) guidelines, there are four density levels, BI-RADS I,
BI-RADS II, BI-RADS III, and BI-RADS IV, which are used to classify breast density, where
BI-RADS I represents the category with the lowest density, while BI-RADS IV corresponds
to the category with the highest density. Additionally, there are two main abnormality
types, masses, and calcifications, which are important to identify. Finally, the severity
level/pathology means whether the case for the abnormality type is benign or malignant.

We represent an ROI as x∈ Rm×n , where m and n represent the resolution of the
ROI. xMLO and xCC stand for the ROIs extracted from the MLO view and the CC view,
respectively. There are eight categories: BI-RADS I (1), BI-RADS II (2), BI-RADS III (3),
BI-RADS IV (4), mass (5), calcification (6), benign (7), and malignant (8). The first four
categories correspond to density types, the next two categories represent abnormality
types, and the last two categories stand for severity levels (pathology). In view of this,
the label for a pair of ROIs (xMLO, xCC) ∈ Rm×n × Rm×n corresponding to a patient is
l =

(
ld, l f , lp

)
, where ld ∈ Yd =

{
0, 1}4 , l f ∈ Yf =

{
0, 1}2 , and lp ∈ Yp =

{
0, 1}2 ; Yd, Yf ,

and Yp are the label spaces of the density type, abnormality type/findings, and severity
level/pathology, respectively, in one-hot encoding; and 0 means absent, and 1 means
present. For example, if l =

(
ld, l f , lp

)
, where ld = [0 1 0 0], l f = [1 0], and lp = [1 0],

then the density level is 2, the finding is a mass, and the case is benign. It is a multi-label
classification problem. We need to design a mapping ϕ : Rm×n ×Rm×n → Yd ×Yf ×Yp ,

such that ϕ(xMLO, xCC) =
(

ld, l f , lp

)
.

We employ deep learning techniques to design the mapping ϕ that extracts discrimi-
native features from the input ROIs and associates them with three labels in an end-to-end
manner. In the following subsections, we give the details of the deep-learning-based
method for modeling ϕ.

3.2. Dataset Description

Our model utilizes two benchmark mammography datasets: the Curated Breast
Imaging Subset of DDSM (CBIS-DDSM) [35] and INBreast [36]. Both datasets are publicly
available and extensively annotated. Both cover various breast densities, abnormalities,
and pathologies in different imaging views (MLO and CC). These datasets include a variety
of breast densities (BI-RADS I-IV), abnormalities, and pathologies across the MLO and
CC imaging views. They provide detailed annotations of ROIs and clinical findings such
as masses, calcifications, and architectural distortions and categorize lesions as benign or
malignant. For our research, we focused on cases where ROIs are present in both views,
suitable for fusion methods while excluding cases with ROIs in only one view to ensure the
relevance and comprehensiveness of our data.

3.3. Two-View-Based Deep Model

This section outlines the model architecture for simultaneously classifying mammog-
raphy images into multiple labels, density, severity level, and abnormality type, using a
channel-attention-based multi-task learning framework. It employs two branches, CC and
MLO, with the Swin and ConvNeXT models as feature extractors.

The model consists of a feature extraction module and a fusion module. The feature
extraction module, operating in the CC and MLO views, uses the Swin and ConvNeXT
backbones to extract features crucial for all classification tasks, aiding in multiple-label
prediction. A channel attention mechanism refines the focus on relevant features and
reduces the less informative ones, ensuring selective emphasis on essential channels.

Subsequently, the fusion module merges features from both views, enhancing the
multi-label classification by incorporating diverse information. Integrated features pass
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through three fully connected layers, each dedicated to a specific classification task (density,
severity level, or abnormality type). These layers function as classifiers, producing predic-
tion labels for the input mammographic views, thus enabling simultaneous multi-label
classification.

This architecture integrates channel attention, feature extraction, and fusion mecha-
nisms, facilitating the learning of both shared and task-specific features, thereby improving
efficiency in the multi-label classification of mammography images. This section provides
an overview of the model’s structure, with the subsequent sections detailing the data
preprocessing, evaluation metrics, and deep learning model architecture. Figure 1 visually
represents this model, highlighting its components and their interplay.
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Figure 1. The overall architecture of the proposed system.

3.3.1. Details of the Model Architecture

This subsection delves into the design and functionality of our multi-label classification
model for mammography images, building on the initial overview. We examine the feature
extraction and fusion modules in detail, highlighting their roles in processing CC and MLO
views for adequate classification. The model integrates channel attention and multi-task
learning, focusing on pertinent features and learning shared and task-specific characteristics,
enhancing breast cancer diagnosis via precise mammography classification.

3.3.2. Preprocessing

To prepare mammography images for model training, we first implement prepro-
cessing, including resizing the ROIs to 224 × 224 pixels, aligning them with the input
requirements of our backbone architectures like Swin and ConvNeXT. The normaliza-
tion of ROI pixel values, based on ImageNet dataset standards, ensures consistency in
feature representation.

3.3.3. Backbone Model

Our proposed architecture uses two advanced models, ConvNeXt and the Swin
transformer, for feature extraction in mammography image classification. These models
were chosen for their superior performance in various computer vision tasks, marking
them as leading solutions in CNN and transformer models.

The Swin transformer excels in capturing both local and global image features due to
its hierarchical structure, shifted windows, and feature attention mechanism, leading to
highly discriminative and informative representations. This feature makes it well-suited
for feature extraction in multi-label classification.

The ConvNeXt model is known for its modularity, efficiency, and scalability, with a
deep architecture that addresses gradient issues, providing stable and effective feature
representations. We utilize pre-trained models on a 21 K image dataset. Their extracted
features, refined through a channel attention mechanism, are combined to integrate features
from both views, enhancing task-specific feature extraction for classification.
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The depth of the Swin transformer and ConvNeXt models allows for the capture of
distinct features crucial for each classification task, significantly boosting the model’s per-
formance in the multi-label classification of mammography images. Our final model uses
ConvNeXt-L as a feature extractor, omitting its last fully connected layer and retaining the
feature map from the penultimate ConvNeXt block (dimension 7,71536). The architecture,
including omitted layers, is illustrated in Figure 2, with critical features indicated for clarity.
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Figure 2. This diagram illustrates ConvNeXt-L, our backbone model, highlighting customized
layers (red boundaries and shading) and key features in the penultimate layer (green box) for our
mammography image classification task.

3.3.4. Chanel Attention Block

Not all feature channels of a feature map are equally important for the current task.
Some channels may contain highly informative features that are directly relevant to the
task, while others may contain less informative or redundant features that can potentially
distract the network from focusing on the relevant information.

To address this, we incorporate a squeeze-and-excitation block after the last feature
map generated by the backbone model. By doing so, we enable the model to adaptively
weigh the importance of each channel, giving more attention to the informative channels
and suppressing the less relevant ones. This dynamic attention mechanism assists the
network in making better-informed decisions during the classification process. Figure 3
shows the channel attention block used.
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The channel attention block takes the input feature map x ∈ RH×W×C, where
C is the number of channels, H is the height, and W is the width. First, it applies a
squeeze operation:

g = GlobalAveragePool(x) (1)

fse = ReLU (W1.g + b1) (2)

where g ∈ RC, fse ∈ RC/c
′
, W1 and b1 are the weights and biases of the FC layer, which

squeezes g to fse to incorporate interdependencies. Then, it applies the excitation operation:

w = σ(W2 . fse + b2) (3)
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where W2 and b2 are the weights and biases of the FC layer that adaptively recalibrate
fse, and w = [∝1 , ∝2 , . .. , ∝C ]T , where ∝c signifies the channel-wise excitation factor for
channel c. Once the channel-wise excitation factors w are computed, they are used to attend
to the corresponding channels:

Z = w
⊙

x = [ z1 , z2 , .... , zC] (4)

3.3.5. Fusion Layer

Fusing features from both CC and MLO views enhances mammography classification
in multi-label tasks. CC views offer a lateral perspective of breast tissue, while MLO views
provide an oblique angle, capturing additional tissue. Merging these views gives classifiers
a more comprehensive understanding of breast tissue, thus improving model performance.

For feature fusion, methods like concatenation, average-wise, and element-wise opera-
tions were considered. Following an ablation study, we chose average-wise operations for
fusing CC and MLO view features. This involves computing the global average pooling
for channel attention feature maps from both the CC and MLO branches, each resulting in
a 1D vector. We then average these vectors to form the final fused feature representation.
This approach aggregates relevant information from both views, balancing their differences
for a robust feature representation for classification.

The dimension of the channel attention feature map from the backbone model’s last
layer is H×W×C, with H and W = 7 and C = 1536. In this context, we denote the number
of channels as D (D = 1536) to differentiate from previous sections.

After applying GAP across H×W, we obtain the vector with dimension 1x1536. The
output of the fusion model is given below:

xFused = g( gGAP(zcc), gGAP(zmlo)) (5)

where xFusedεRD, zcc, zmloεRW×H×D, gGAP(zcc) =∝= [∝1, ∝2, .., ∝d]
T , gGAP(zMLO) = β =

[β1, β2, .., βd]
Tand g(∝, β) =

[
∝1+β1

2 , ..., ∝d+βd
2

]
.

The function is gGAP, and g represents the global average pooling and point-wise
average operation.

The diagram in Figure 4 shows the details of the fusion layer.
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produced by attention block, followed by average CC and MLO feature correspondence to the
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3.3.6. Multi-Branch Classification

Our system classifies input ROIs into three distinct groups: density, severity level,
and abnormality type. To enhance feature representation and task-specific learning, we
integrated three branches of fully connected layers at the end of the fusion model.

Each branch in the multi-branch architecture focuses on learning features specific to a
particular task, allowing the model to extract more effective task-specific features. In the
post-fusion layer, we apply three parallel FC layers dedicated to density, severity level, and
abnormality type, enabling distinct learning for each task.

The architecture includes a series of FC layers leading to a classification layer, with
configurations determined via an ablation study. We use FC 256, FC 128, and dense layers
with ReLU activation, batch normalization, and then the classification layer. This setup
helps in learning task-specific features for efficient classification.

The final classification layer makes predictions for the three groups. Density classifica-
tion uses four output neurons for BI-RADS classes, while abnormality type and severity
level classifications use two output neurons each for classifying into mass or calcification
and benign or malignant, respectively.

We employ the softmax activation function in each group’s output layer for these
tasks. This function transforms the network’s output into class-specific probabilities,
aiding in accurate class determination. The choice of softmax is guided by our multi-
label classification needs and the nature of the tasks. Figure 5 illustrates the multi-branch
classification block.
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Figure 5. Multi-branch classification block. It takes a fused feature and passes it to three parallel task
blocks. It presents a multi-branch neural network architecture with a unified task block structure
replicated across three tasks: density, pathology, and severity level categories. The left side enumerates
sequential task blocks, indicative of a deep and comprehensive processing approach. On the right
is a breakdown of the task block. The output layer employs a softmax function, tailored with four
classes for the density task and two classes for both pathology and severity levels.

In this block, we employ a series of mathematical equations to map the input data to
the output, with the overarching goal of achieving multi-label classification. Specifically,
we utilize these equations to model and predict probability distributions for three distinct
branches: density (denoted as d), severity level/pathology (denoted as p), and abnormality
type/findings (denoted as n). The equations for each branch are presented as follows.

For a given branch,

b (b ∈ {d, p, n}) : Pb = So f tmax
(

f3
b o f2

b o f1
b (xFused)

)
(6)

In this equation, Pb represents the probability distribution specific to branch b, and
{ f3

b , f2
b , f1

b} denote the functions modeled with fully connected layers (FC1, FC2, and
FC3) tailored to each branch. The output is a probability vector pb, and the predicted class
label lb is determined as max max1≤i≤kb pi

b. , where kb is the number of classes associated
with branch b.

Each function fi
b follows a consistent structure, comprising a fully connected layer,

batch normalization, ReLU activation, and dropout. The number of neurons and layer-
specific parameters may vary across branches. Additionally, in each branch, we implement
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a two-stage projection on the fusion features, initially reducing their dimension from D to
D1, and then further compressing them to D2, which are variables determined according to
the specific branch’s requirements.

In each branch, we employ a two-stage projection on the fusion features, initially
reducing their dimension from 1536 to 256, and then compressing them to a 128-dimensional
space. These projections are followed by a classification layer specific to each task, which
has varying numbers of classes (ranging from 2 to 4 depending on the task). This strategy
yields the following benefits:

1. Dimensionality reduction: Reducing fusion features from 1536 to 256 and, further, to
128 dimensions decreases the data complexity, mitigating computational overhead
and overfitting risks while retaining essential information.

2. Targeted feature learning: This helps the model learn crucial task-specific features by
mapping them onto a lower-dimensional space, enhancing class discrimination.

3. Task-specific classification: Post-projection, a classification layer for each task, ac-
commodating 2 to 4 classes, transforms features into class probabilities for precise
task-specific classification.

The entire process is implemented using functions f1 , f2, and f3, encompassing
the operations described. This strategy integrates dimensionality reduction, task-driven
feature learning, and specialized classification to optimize model performance across
different tasks.

4. Evaluation Method

This section describes the evaluation methods for our proposed model, including
datasets, challenges, the evaluation protocol and metrics, and model training.

4.1. Model Training

Our model, trained simultaneously across all branches, uses weighted cross-entropy
loss for each branch, with an average calculated for the final loss. Key considerations
include handling unbalanced multi-label data and utilizing three output branches for
specific tasks.

We employed an RMSprop optimizer with dual learning rates for pre-trained (1× 10−4)

and new layers (1× 10−3). The training involved 400 epochs, a batch size of 128, learn-
ing rate reduction on a plateau, dropout (factor 0.2), and weight decay (1 × 10−6) for
regularization. The stopping strategy had a patience of 40 epochs.

Pre-trained weights from the ImageNet-21K dataset were used for transfer learning.
Data augmentation included random rotations, width and height shifts, horizontal flips,
and zoom, coupled with normalization.

4.2. Evaluation Protocol and Metrics

The datasets were split into 80:20 for training and testing, with a 10% validation set,
using 5-fold cross-validation [37]. The evaluation metrics included mean average precision,
F1-score, Hamming loss, coverage, ranking loss, and exact match [38,39].

The system was implemented using TensorFlow, Keras, and PyTorch in Anaconda
Navigator (2022) on an Intel(R) Core(TM) i9-9900K CPU with a GPU with 32 GB memory
and 64.0 GB RAM.

5. Experiments and Results

This section outlines the experiments to evaluate our multi-label classification model
using the CBIS-DDSM and INBreast datasets. We tested the model with various SOTA
backbone models, assessing its performance using metrics like F1-score, mean average
precision, and exact match. The focus was on classifying breast cancer and abnormalities in
terms of density, severity level, and abnormality type. Additionally, an ablation study ex-
amined different fusion methods and configurations for a multi-branch block, culminating
in a comprehensive assessment of our proposed fusion model.
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5.1. Ablation Study

We conducted this study to analyze which fusion technique is more suitable and which
configuration is the best for a multi-branch block.

5.1.1. Which Fusion Technique Is Suitable?

We conducted this study to analyze and evaluate the model’s performance when using
different common fusion techniques. The goal was to determine which fusion method
was more suitable for our model. We examined three fusion methods: concatenation,
element-wise addition, and averaging. Table 2 shows the results of each technique.

Table 2. Performance results for CBIS-DDSM with different fusion methods.

Fusion Method F1% mAP% EM%

Concatenation 94.29% ± 0.011 90.54% ± 0.016 86.69% ± 0.016

Multiply 93.97% ± 0.01 89.8% ± 0.013 85.6 % ± 0.023

Average 94.7% ± 0.01 91.3% ± 0.017 86.9% ± 0.019

The table compares three fusion techniques: concatenation, element-wise, and average-
wise, using metrics like F1-score, mAP, and EM. Average-wise outperformed others in all
metrics, indicating its effectiveness in integrating features from two views. Consequently,
we selected average-wise as our preferred fusion method.

5.1.2. How Many Hidden Layers in Multi-Branch Block

We conducted a study on how many deep layers we needed for our model. The table
below shows the model’s performance for a multi-branch block in a fusion model with
different numbers of hidden layers. In this study, we examined up to five layers. Table 3
shows that the highest F1-score, mAP, and EM were achieved with two fully connected
layers, with scores of 94.72% and 91.33 for F1-score, mAP, and EM, respectively.

Table 3. The performance of a multi-branch block fusion model with different configurations.

# Layers # of Neurons in
Each Layer F1% mAP% EM%

1 256 94.44 90.69 86.69

2 256 and 128 94.72 91.33 86.86

3 512, 256, and 128 94.27 90.5 86.45

4 1024, 512, 256,
and 128 94.24 90.4 86.53

5 2048, 1024, 512,
and 256 94.48 90.9 86.69

This study recommends using two hidden layers to provide a good balance and trade-
off between the model’s performance and complexity, as it achieved the best performance
among all evaluated metrics.

5.1.3. Which Backbone Model Is Better?

The question was which of the backbone models used in the experiments performs the
best among selected SOTA pre-trained CNN and transformer models? We used the CBIS-
DDSM dataset to test those two models. As shown in Table 4, ConvNeXt was selected as a
backbone model for our proposed model as it obtained the best result. This decision was
made because ConvNeXt outperformed the Swin transformer model in terms of F1-score,
RL, and Cov.
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Table 4. The performance of different backbone models on the DDSM dataset.

Model F1% HL mAP% RL Cov EM%

ConvNeXt 0.910 0.07 0.85 0.12 4.11 0.78

Swin transformer 0.90 0.07 0.85 0.13 4.12 0.78

5.1.4. The Effect of Fusion

Fusing features from both CC and MLO views enhances mammography classification,
as they capture different breast tissue aspects. CC views offer a lateral perspective, while
MLO views include additional tissue through an oblique angle. This fusion provides
a more comprehensive tissue analysis, potentially improving model performance. Our
experiments using SOTA backbone models compared the efficacy of single- and dual-view
approaches for multi-label classification. The results in Table 5 show that dual-view fusion
surpasses single-view classifiers in performance on the CBIS-DDSM dataset.

Table 5. The influence of the overall performance when comparing the single view and two views of
the CBIS-DDSM dataset.

View Model F1% mAP% EM%

Single view
Swin 90% 85% 78%

ConvNeXt 91.0% 85% 78%

Dual view

Swin 94.18% 90.15% 86.28%

ConvNeXt 94.54% 90.88% 87.27%

ConvNeXt with attention 94.72% 91.33% 86.86%

5.1.5. The Effect of the Attention Module

In deep learning models, not all channels in the input image contribute equally to
classification, as some may contain irrelevant or noisy data. To address this, we used a
channel attention mechanism in our backbone model and fusion process. This experiment
demonstrated that channel attention positively impacts performance. Table 6 shows that
integrating this mechanism into the ConvNeXt fusion model improves most evaluation
metrics. The F1-score increased from 94.54% to 94.72%, and the HL decreased from 0.0364
to 0.0355, while mAP and RL showed slight improvements.

Table 6. This table shows the impact of incorporating the attention mechanism into the fusion model.

Model Chanel
Attention F1% HL mAP% RL Cov EM%

ConvNeXt No 94.54% 0.0364 90.88% 0.071 3.636 87.27%

ConvNeXt Yes 94.72% 0.0355 91.33% 0.070 3.657 86.86%

5.1.6. The Analysis of Features

In this section, we assess the performance of the proposed model on the test data by
analyzing the distribution of the features learned by each classification branch. Figure 6
shows how the features are discriminative for each label. This indicates that the proposed
model can extract the discriminative features with less overlapping.
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6. Discussion

We employed the two-views (CC and MLO) technique to construct and evaluate a
proposed multi-label classification of breast cancer into eight labels corresponding to three
groups, simultaneously, i.e., density (I, II, III, or IV), abnormality type/findings (mass
or calcification), and severity level/pathology (benign or malignant). The CBIS-DDSM
benchmark dataset was used to decide which technique is more suitable for this task; for
example, it was used to evaluate the effect of different configurations, backbone models,
fusion methods, and so on. The SOTA backbone model was used as the core component of
the model to enable the automatic extraction of the features without human intervention.

By relying on both views, the system can detect and identify the abnormalities that
might not exist and are visible in a single view. Furthermore, certain irregularities might
only be seen in one view and not the other; accordingly, using both views raises the chance
of identifying the abnormalities and decreases the possibility of missing and neglecting
any potential concerns and important information.

We examined the SOTA CNN and transformer models, including ConvNeXt and the
Swin transformer, and concluded that ConvNeXt was the best model for our proposed
CAD system.

After evaluating the performance of each model, we found that ConvNeXt was the
most appropriate option for our specific tasks. ConvNeXt outperformed other architectures
due to its use of depth-wise separable convolutions. These convolutions required fewer
learnable parameters than traditional convolutional layers, making the network more
effective and reducing overfitting. In addition, it can be adaptive to the data by dynamically
building networks with a varying number of layers, depending on the complexity of the
data. This makes the architecture more adaptable and flexible to several tasks and allows it
to extract important features more efficiently.

Moreover, ConvNeXt utilizes multi-scale processing. This allows for extracting the
features from multiple levels of abstraction. This helps the model to extract and capture
extra related information and enhance the performance of the introduced system.

Three different fusion techniques were examined. The average-wise method was
selected based on the results as it gave the best performance among the methods.

As the proposed system classifies the input ROIs into three non-overlapped groups,
integrating three branches into the end of the backbone model assists in enhancing the
performance as it helps improve the feature representation and task-specific learning. Each
branch of the multi-branch architecture focuses on learning features specific to a particular
task, leading to more effective feature representation and task-specific learning. This helps
the model capture more task-related features, yielding a better performance on that task,
leading to improved performance.

On the other hand, incorporating a channel attention mechanism for each task in
the classification layer of a deep neural network has a slightly positive impact on the
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model’s performance. Channel attention leads the model to focus on the significant relevant
channels and suppress noninformative ones.

Incorporating channel attention into ConvNeXt enables the selective enhancement of
the most informative channels in the feature maps. It leads to a more effective representation
of features and, eventually, results in enhanced model performance.

6.1. Performance Comparison with the SOTA Methods

As shown in the related work section, few studies have addressed the multi-label
classification of mammograms, with only [33] investigating this issue in recent years.

The multi-label classification of mammogram images proposed by Chougrad et al. [33]
simultaneously classifies a mammogram into its abnormality type/findings (mass/mic-
rocalcifications), severity level/pathology (benign/malignant), and density class (I–IV).
They used ROIs as input for the deep learning module, transfer learning to initiate the
VGG16-CNN weights with a fine-tuning technique, and a label powerset classifier for
classification. The proposed algorithm considers the correlation between labels. They
evaluated their method using the CBIS-DDSM [35], BCDR [40], INBreast [36], and MIAS [41]
datasets with multiple metrics.

On the other hand, the introduced system outperformed the SOTA methods as we
used the fusion method and SOTA backbone model in addition to the multi-branch and
channel attention techniques. It achieved a higher performance in all metrics on both the
CBIS-DDSM and INBreast datasets. It is observed that fusing two view inputs improves
the overall performance across all performance metrics when compared with a single view.
This is because several irregularities and features might be visualized better in one view
than in the other, and combining the features from two views leads to a comprehensive
assessment of the breast situation. In addition, utilizing the SOTA ConvNeXt performs
better than using other backbone models.

Table 7 gives the performance metrics for the proposed and existing methods on the
INBreast and CBIS-DDSM datasets.

Table 7. The comparison of the proposed method with SOTA method on CBIS-DDSM and INBreast
datasets.

Reference Method F1 HL mAP RL Cov EM

CBIS-DDSM

Chougrad et al. [33] VGG16 93.5% ± 0.019 0.047 ± 0.022 89.5% ± 0.017 0.087 ± 0.025 3.895 ± 0.320 82.2% ± 0.041

Proposed method ConvNeXt 94.7% ± 0.01 0.036 ± 0.007 91.3% ± 0.017 0.07 ± 0.012 3.66 ± 0.095 86.9% ± 0.019

INBreast

Chougrad et al. [33] VGG16 94.2% ± 0.102 0.042 ± 0.092 88.7% ± 0.140 0.082 ± 0.125 3.723 ± 0.147 82.7% ± 0.092

Proposed method ConvNeXt 95.1% ± 0.016 0.032 ± 0.013 92.8% ± 0.025 0.065 ± 0.021 3.55 ± 0.174 88.9% ± 0.035

For the CBIS-DDSM dataset, Chougrad et al. [33], who applied the VGG16 architecture,
attained an F1-score of 0.935, a Hamming loss (HL) of 0.047, a mean average precision
(mAP) of 0.895, a ranking loss (RL) of 0.087, a coverage (Cov) of 3.895, and an exact match
(EM) of 0.822. The proposed method, which utilized the ConvNeXt architecture with a
fusion technique, outperformed the existing method, achieving a higher F1-score of 0.947,
a lower HL of 0.036, a higher mAP of 0.913, a lower RL of 0.07, a lower Cov of 3.66, and a
higher EM of 0.869.

For the INBreast dataset, Chougrad et al.’s method [33] achieved the following perfor-
mance metrics when testing their proposed method using the INBreast dataset: an F1-score
of 0.935, a hamming loss of 0.047, a mean average precision of 0.895, a ranking loss of 0.087,
a coverage of 3.895, and an exact match of 0.822. The proposed method outperformed their
method, achieving a higher F1-score of 95.13, a lower HL of 0.032, a higher mAP of 0.928, a
lower RL of 0.06565, a lower Cov of 3.557143, and a higher EM of 0.88857.
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These results indicate the superiority of the proposed method compared with the
existing methods for both the CBIS-DDSM and INBreast datasets.

On the CBIS-DDSM dataset, our proposed method achieved improvement for all
matrices. For the F1-score, the proposed method improved by 1.33% compared with
Chougrad et al.’s method [33]. For HL, the proposed method significantly improved by
23.4% compared with Chougrad et al.’s method [33]. The proposed method showed a 4.60%
improvement in mAP compared with Chougrad et al.’s [33] method. For RL, the proposed
method significantly improved by 16.09% compared with Chougrad et al.’s method [33].
Regarding Cov, the proposed method showed a slight enhancement of 0.60% compared
with Chougrad et al.’s [33] method. The proposed method improved by 5.06% in EM
compared with Chougrad et al.’s method [33].

On the other hand, regarding the INBreast dataset, the proposed system outperformed
the existing method in the INBreast dataset, with an improvement of 0.99% in the F1-score,
23.1% in Hamming loss, 4.64% in mAP, 20% in ranking loss, 4.45% in the coverage score,
and 7.42% in exact match.

Overall, the proposed method achieved notable improvements compared with the
previous methods. The results in Table 7 indicate that the proposed method using the
ConvNeXt architecture with two views performs better than the method using both the
VGG16 and Efficientnetb3 architectures among all the performance metrics. The higher
F1-score, EM, and mAP, and the lower HL, Cov, and RL show that the proposed method
achieves better accuracy and precision in predicting the presence of abnormalities in
mammograms and classifying breast density.

In addition, the ROC curves shown in Figure 7, for each category—density, abnor-
mality type (case), and severity level (pathology)—demonstrate the model’s classification
effectiveness. For ‘Density,’ the model’s ability to differentiate between multiple den-
sity classes yielded an AUC score of 0.91, demonstrating its discriminative power. The
‘Abnormality type (case)’ category exhibited near-perfect classification with an AUC of
0.99, indicative of the model’s exceptional accuracy in case determination. Similarly, the
‘severity level (pathology)’ category showed an AUC of 0.96, reflecting the model’s high
proficiency in identifying pathological features. These AUC values, significantly exceeding
the 0.5 threshold of random chance, underscore the model’s potential to provide reliable
and accurate diagnostic assistance in mammographic analysis.
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6.2. Comparative Analysis with Recent Deep Networks

Our research advances the multi-label classification of mammograms by integrat-
ing state-of-the-art techniques. It contrasts with previous studies like that of Chougrad
et al. [33], which primarily relied on the simpler CNN model with the VGG16 architecture.
Our model employs the ConvNeXt architecture, utilizing depth-wise separable convolu-
tions. This design requires fewer learnable parameters, reducing the risk of overfitting and
proving more adaptability in dynamically building networks based on data complexity, a
clear advantage over the more rigid structure of VGG16.

Unlike traditional CNN models like VGG16, our approach incorporates advanced
techniques like residual learning and transformer mechanisms. It also incorporates a
channel attention mechanism based on squeeze-and-excitation, focusing the model on the
most significant features and suppressing the less important ones in the input feature maps.
A fusion method is utilized to integrate features from both CC and MLO views, providing
a holistic analysis and a step forward from traditional single-view analyses, leading to a
more complete representation of mammograms.

The dual-view technique (with CC and MLO views) significantly enhances our model’s
ability to detect abnormalities that might be visible in one view but not the other. It is a
notable improvement over single-view analysis. Our exploration of various fusion methods
revealed the average-wise method as the most effective. Incorporating a multi-branch archi-
tecture and channel attention techniques leads to more effective feature representation and
task-specific learning. These innovative approaches contrast with traditional single-branch
architectures, enhancing our model’s accuracy and precision in predicting abnormalities.

6.3. Quantitative Analysis of Proposed Model

In this subsection, we provide the qualitative analysis of our model’s performance,
as illustrated in Figure 8. This analysis complements our quantitative findings and gives
insight into the practical application of our method.

Figure 8 is structured into two columns, each representing a progressive increase
in breast tissue density from left to right. Column 1 corresponds to the lowest density
(BI-RADS I), while column 2 represents the highest density (BI-RADS IV). Within each
column, rows 1 and 2 illustrate the differences between benign and malignant calcifications,
and rows 3 and 4 distinguish between benign and malignant masses. This arrangement
demonstrates the algorithm’s capability to analyze and accurately differentiate breast
abnormalities across tissue densities, showcasing its robustness and precision in lower- and
higher-density scenarios.

Additionally, our model’s inference efficiency is noteworthy, processing each image
in an average of 286 milliseconds on advanced hardware. This speed is crucial for rapid
and accurate breast tissue analysis in clinical settings. The combination of our model’s
diagnostic precision demonstrated in the annotated images and its quick processing time
solidifies its potential as an effective tool in medical image analysis.
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7. Limitations and Future Work

The current work concentrates only on masses and calcifications in mammograms.
It does not predict other abnormalities like asymmetries and architectural distortions.
Furthermore, it is not able to reveal the regions in mammograms that play key roles in
decision making, i.e., the interpretability of a decision.

In future studies, we aim to expand the scope of the algorithm by including abnormal-
ities like asymmetries and architectural distortions and explore various fusion techniques
for integrating CC and MLO views and different channel attention mechanisms, including
SKNet, to enhance its performance in a multi-label classification system.

Additionally, we plan to implement spatial attention mechanisms for revealing the
regions in mammogram images that play crucial roles in decision making and improving
accuracy by utilizing complete contextual information. Future work will also investi-
gate multi-label classification algorithms for more effective breast cancer diagnosis and
risk assessment, particularly those centered on problem transformation and adaptation
techniques.

The benchmark datasets, which we used to develop and evaluate the proposed system,
are annotated according to the fourth edition of BI-RADS. However, the fifth edition of
BI-RADS is available now, and there is a need to annotate the datasets according to this
edition and evaluate the system’s performance.

8. Conclusions

This research paper presented an innovative deep-learning-based model precisely
designed to utilize the power of dual mammogram views: the craniocaudal (CC) and
mediolateral oblique (MLO) views. This model’s main objective is to diagnose compre-
hensively by simultaneously classifying mammograms based on their density, severity
level/pathology, and abnormality type/findings. To achieve this, our model incorporates
the state-of-the-art ConvNeXt as its backbone model. The design of this model is based on
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techniques like residual learning and transformer mechanisms, setting a solid foundation
for advanced deep learning techniques. We utilized a channel attention mechanism based
on squeeze-and-excitation to improve the ability of the model to concentrate on the most
significant features and suppress the less important ones in the input feature maps. We
employed an average-element-wise fusion method to consolidate the features’ importance
from both the CC and MLO views. This fusion method operates as a new layer within
the model, seamlessly integrating the information extracted from the two views. This
collaborative data merging ensures that no essential details are neglected, and the model
acquires a holistic understanding of the mammogram image. Recognizing the diverse
nature of the classification tasks, we introduced a multi-task/multi-branch architecture.
This architecture tailors the feature-learning process to the unique requirements of each
task: density, abnormality type, and lesion severity level. These tasks each have their
distinct path within the architecture, facilitating more effective feature representation and
task-specific learning. This enables our model to provide more accurate diagnoses for
specific medical aspects. Employing multi-label learning helps enhance the model’s abil-
ity to learn task-specific features and improves the model’s performance. The proposed
method was evaluated using benchmark datasets, the CBIS-DDSM and INBreast datasets,
and outperformed SOTA. The proposed model is limited to masses and microcalcifications,
and its extension to include other abnormalities will be the subject of future work.
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Nomenclature
The following is a list of symbols and terms used in this manuscript along with their definitions

for reference.

x Input feature map
g GlobalAveragePool function
W1 , b1 Weights and biases of the first fully connected layer
fse Squeezed feature map after ReLU activation
W2, b2 Weights and biases of the second fully connected layer
fex Excited feature map
σ Sigmoid activation function
W Channel-wise excitation factors
Z Feature map with applied attention
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zi ith channel of Z
∝i Channel-wise excitation factor for channel i
xa Weighted feature map
zcc, zmlo Feature maps for CC and MLO views.
gGAP GlobalAveragePool operation
xFused Fused feature map
b Label for breast cancer classification (density d, pathology p, and normal n)
Pb Probability of class b after applying softmax
D Number of channels
∝, β Vectors representing global average pooled features for CC and MLO views, respectively
N Total number of instances
y , ŷ n Ground truth label and predicted label for the nth instance
F1Score Harmonic mean of precision and recall
MAP Mean average precision
r ( xn , y ) Rank of label y for nth instance
HL Hamming loss
∆ Symmetric difference operator
RL Ranking loss
yn Complement of the set yn
Coverage Average count of labels to examine for all reference labels
EM Exact match
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Abstract: Multiple-object tracking (MOT) is a fundamental task in computer vision and is widely
applied across various domains. However, its algorithms remain somewhat immature in practical
applications. To address the challenges presented by complex scenarios featuring instances of
missed detections, false alarms, and frequent target switching leading to tracking failures, we
propose an approach to multi-object tracking utilizing KC-YOLO detection and an identity validity
discrimination module. We have constructed the KC-YOLO detection model as the detector for
the tracking task, optimized the selection of detection frames, and implemented adaptive feature
refinement to effectively address issues such as incomplete pedestrian features caused by occlusion.
Furthermore, we have introduced an identity validity discrimination module in the data association
component of the tracker. This module leverages the occlusion ratio coefficient, denoted by “k”,
to assess the validity of pedestrian identities in low-scoring detection frames following cascade
matching. This approach not only enhances pedestrian tracking accuracy but also ensures the
integrity of pedestrian identities. In experiments on the MOT16, MOT17, and MOT20 datasets, MOTA
reached 75.9%, 78.5%, and 70.1%, and IDF1 reached 74.8%, 77.8%, and 72.4%. The experimental results
demonstrate the superiority of the methodology. This research outcome has potential applications in
security monitoring, including public safety and fire prevention, for tracking critical targets.

Keywords: KC-YOLO; object detection; identity validity discriminator; multi-pedestrian tracking

1. Introduction

Multi-pedestrian tracking (MPT) serves as a foundational task within the realm of
computer vision and finds applications in numerous computer vision domains [1]. MPT
involves estimating the trajectories of multiple objects of interest within video sequences,
holding pivotal significance in video analytics systems for domains like surveillance se-
curity [2], automated driving, intelligent transportation [3], behavioral recognition [4],
human–computer interaction, and intelligent agriculture [5,6]. While extensive research has
been conducted in this field, a definitive method that can consistently perform exceptionally
well in addressing the challenges posed by complex scenes with frequent occlusions in
surveillance videos remains elusive [7]. The current focus for enhancing the accuracy of
multi-pedestrian tracking primarily involves optimizing pedestrian detector performance,
refining the extraction of representative pedestrian features, and improving data association
matching algorithms [8].

For the optimization of pedestrian detector performance, Zhang [9], in his study,
introduced a small-target pedestrian inspection model incorporating residual networks
and feature pyramids, which dispenses with unnecessary, redundant computations in the
model and solves the gradient problem in a neural network by using residual blocks with
a discarded layer instead of the standard residual block, thus significantly improving the
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accuracy and anti-jamming ability of small-target pedestrian detection. Liu [10] introduced
an enhanced detection-and-tracking framework with a semantic matching strategy based
on deep learning. Integrating scene-aware affinity detection, this framework proves to
be highly effective in alleviating challenges related to occlusion and similar appearances.
Zhang [11] introduced an innovative approach, FairMOT, which combines CenterNet and
directly embeds the Re-ID module, whose training process utilizes the cross-entropy loss
function, aiding in obtaining more accurate target features. This amalgamation achieves
higher precision in capturing target features, all while considering the trade-off between
speed and accuracy in the multi-target tracking model. Zhang et al. [12] proposed a multi-
pedestrian tracking algorithm using the Tracking-by-Detection framework. It addresses the
diversity of human postures, appearance similarities, and occlusion in real-time road traffic
scenes. The algorithm effectively leverages both pedestrian depth appearance features
and motion features to establish correlations among the tracking targets, thus realizing the
multi-objective target tracking of pedestrians. Zhou et al. [13] proposed an improved MOT
approach for occlusion scenarios, combining attention mechanisms and occlusion sensing as
a solution. Jia [14] designed and developed a network for learning separate representations
for processing occlusion re-identification guided by semantic preference object queries in
a converter without strict character image alignment or any additional supervision. To
better eliminate occlusion interference, they devised a Contrast Feature Learning approach
to better separate hidden features from recognition features. Bewley et al. [15] proposed
the Simple Online Real-Time Tracking (SORT) method, which fuses positional and motion
information in a similarity matrix for target ID association and achieved good results in
short-range matching. Bewley et al. [16] proposed DeepSORT based on SORT, which adds
an offline pedestrian re-identification network and achieves better results in long-distance
matching by merging appearance and motion information. Zhang [17] proposed the BYTE
data association method, which introduces low-confidence detection frames into data
association matching and utilizes these low-confidence similarities between the detection
frames and the tracking trajectories to mine out heavily occluded targets, thus maintaining
the continuity of the tracking trajectories.

While significant progress has been made in enhancing detector performance, extract-
ing more representative features, and improving data association and matching algorithms,
most tracking tasks still face common challenges in complex scenarios, such as occlusion,
omissions, and distractions [18]. As a result, the robustness of existing methods is in need
of improvement [19].

Based on the above problems, in order to solve complex surveillance video scenes
with multiple targets tracked simultaneously, we propose a method for the simultaneous
tracking of multiple pedestrians based on KC-YOLO detection and an identity validity
discrimination module (IVDM). We have made improvements in both the detector and
the tracker. The Convolution Block Attention Module (CBAM) [20] is introduced into the
detector, utilizing attention weights to allow for a more focused and refined representation
of the target features, which improves the ability of the detector to capture the effective
feature information of the target, which has been decisive in improving the overall precision
and accuracy of the test procedure. In the tracking process, to address the issue of tracking
failure due to the short-term occlusion of the target, this method constructs an IVDM after
cascade matching. The target occlusion coefficient k is calculated to discriminate whether
the target identity in the low-scoring detection frame after target detection and cascade
matching is valid or not and to decide whether to update its appearance features so as not
to generate redundant identity data, thereby ensuring the purity of the tracked pedestrian’s
identity and improving the overall performance of the tracking task.

To summarize, this paper’s primary contributions can be outlined as follows:

• An efficient, robust, and practical multi-pedestrian tracking method based on KC-
YOLO deep detection and identity validity discrimination is proposed. This method
provides an effective solution for multi-pedestrian tracking tasks in complex surveil-
lance videos. Experimental results demonstrate its high utility, making it suitable for
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the long-term tracking of critical targets in various scenarios, such as public safety
and firefighting.

• An improved pedestrian object detector based on YOLOv5, tailored for complex envi-
ronments, has been designed. This detector employs the K-means++ clustering method
to select optimal detection frames and introduces the CBAM for adaptive feature re-
finement. The KC-YOLO network is introduced for extracting target depth features.

• A pedestrian identity validity model has been developed. To address challenges
such as targets reappearing after occlusion and rapid identity switches, this model
assesses the identity validity of newly generated targets. Different processing strategies
are applied to targets with identity validity, enhancing the tracking accuracy while
ensuring the purity of pedestrian target identities.

This paper is structured such that Section 2 introduces the summary of the work
related to the proposed method in this study. The multi-Pedestrian Tracking Method Based
on IVDM is discussed in Section 3. The experimental data and analyses the experimental
results are highlighted in Section 4, and in Section 5 we summarize this study. Lastly, we
discuss this study and provide an outlook for future research in Section 6.

2. Related Work
2.1. Target Detection Methods

Target detection serves as the foundational component in the domain of multi-target
tracking. The role of the detector is to furnish the tracker with the positional information
of objects within the image, typically yielding the detection frame of the object. Presently,
target detection algorithms achieving high accuracy are frequently implemented on the
bedrock of Deep Convolutional Neural Networks (CNNs) [21]. Unlike traditional methods,
deep-learning-based object recognition utilizes CNNs to autonomously capture recogniz-
able object features. This automatic extraction process allows the model to learn complex
patterns and representations from the input data, thereby improving the recognition ac-
curacy and efficiency. In addition, hierarchical learning using CNNs allows the model to
recognize features at different levels of abstraction, resulting in more justifiable and precise
feature extraction. It has diverged based on detection principles, segregating into two types
of methodologies [7].

Two-stage target detection involves generating candidate regions and subjecting them
to a two-fold classification process. Region proposals utilizing a CNN (R-CNN) [22] input
fixed-size images into a neural network to facilitate training and object feature extraction.
While it attains higher detection precision compared to traditional object-detection methods,
it does suffer from computational intensity and tardiness in object detection. Extending
from the R-CNN algorithm, Fast R-CNN and Faster R-CNN emerge. Although these
methods enhance detection accuracy compared to traditional approaches, the bifurcation
between candidate region generation and classification engenders sluggish algorithmic
operation, hampering real-time target detection realization. Efforts to enhance real-time
capabilities still grapple with the challenge of duplicated computation. Additionally, R-
CNN is hamstrung by its fixed input image size. To mitigate the pre-input image-scaling
computational burden, the Spatial Pyramid Pool Network (SPPNet) was conceived, albeit
only partially reducing superfluous computations. Among the R-CNN family, Faster R-
CNN currently stands out with the swiftest and closest-to-real-time detection performance.
This efficiency is pivotal for applications demanding rapid and accurate object detection,
yet it remains encumbered in meeting the demands of intricate target detection scenarios.

One-stage detection algorithms eschew the region proposal phase and promptly pro-
duce class probabilities and the positional coordinates of objects. Representative algorithms
include the YOLO family [23], the Single-Shot Multi-Frame Detector (SSD), and RetinaNet.
YOLO’s framework implements the detection process by allowing the model to directly
predict the bounding box and class probability of each cell, which distinguishes this method
from two-stage object-detection models. By doing so, YOLO achieves a more efficient and
faster differentiation and correlation process, making it particularly suitable for real-time
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applications such as video analysis and object tracking. Notwithstanding its strengths,
YOLO demonstrates suboptimal detection accuracy for smaller objects. SSD capitalizes on
feature maps of varying dimensions for object detection, rectifying YOLO’s shortcomings
in smaller-object detection. The contemporary YOLO family of algorithms collectively
refines the detection accuracy without compromising on high detection speed.

However, in intricate traffic environments, existing object-detection algorithms still
cannot simultaneously ensure real-time performance and capture as many feature points
as possible.

2.2. Attention Mechanisms

The attention mechanism is a mechanism that mimics human attentional processes,
and it is widely used in deep learning [24]. This mechanism enables the rapid extraction of
key information from the environment and allows the observer to scrutinize the details of
the object. After the attention mechanism, different regions will have their own weights
so that the system can focus on the important information. This mechanism was initially
introduced in the sphere of computer vision and is now utilized across various domains,
such as natural language processing, speech recognition, and recommendation systems.
The versatility of attention mechanisms lies in their ability to enhance model performance by
focusing on relevant information while reducing the computational burden associated with
processing unnecessary or redundant data. Therefore, they constitute a crucial component
of advanced machine-learning models in diverse domains [25]. Based on their different
scopes of action, attention mechanisms have been classified into three categories.

The spatial attention mechanism originates from the rationale that certain regions
within input images are extraneous to recognition or segmentation tasks. The mechanism
processes only regions pertinent to the task, preserving task-relevant regions while sup-
pressing extraneous ones. An exemplary embodiment, the Spatial Transformation Network
(STN) by Google DeepMind, learns preprocessing operations from input data that align
with the specific task [13].

In the detection task, the input images pass through both the spatial and channel
dimensions, one after the other. The network provides a significantly more comprehensive
understanding of the underlying information based on the inter-channel dependencies [19].
The prominent channel attention model, SENet, compresses the input feature map spatially
while preserving its channel dimension. SENet devises channel weights, adapts them
during training, and then utilizes them to amplify crucial channel information while
dampening insignificant channel data. Consequently, the network’s feature extraction
efficiency is notably enhanced [6].

Hybrid attention mechanisms amalgamate spatial and channel methods. However,
certain models inadequately address the inherent interplay between features, rendering
them unable to concurrently process both spatial and channel features. In this domain,
representative models include the CBAM and dual-attention networks.

2.3. Multi-Objective Tracking Methods

Multi-objective tracking (MOT) can be classified into a detection-based tracking frame-
work [26] and a joint detection-and-tracking-based framework, depending on the method.
The detection-based tracking framework is a common approach to tracking multiple targets;
it relies on target detection as the first step in locating and identifying targets in each frame
and crops the objects according to the enclosing frame to obtain all of the targets in the
image. Then, it is transformed into a target association problem between neighboring
frames, and a similarity matrix is constructed based on IOU, appearance, etc., and solved
by methods such as the Hungarian algorithm. As the performance of target detection has
improved by leaps and bounds, the field of MOT has revolved around detection-based
tracking frameworks for quite some time [27]. Representative methods are SORT and Deep-
SORT. SORT is an algorithm for tracking objects in a video sequence in real time, which is
similar to many modern tracking methods [23]. Consider the case where two targets are
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occluded. The trajectories of the matched targets cannot be matched for detection, and the
targets temporarily disappear. When a target that disappeared briefly reappears later, the
target will regain its ID number to stop changing. To enhance the SORT algorithm, the
researchers added cascade matching and state estimation to it. In recent years, several joint
detection tracking approaches [11] have been introduced to jointly enhance detection and a
few other components. The joint tracker provides equivalent performance with minimal
computational cost. However, any inconsistencies or inaccuracies in any of the components
can propagate errors, which can degrade the overall tracking performance, due to the fact
that there are too many components, causing this type of method to not perform very well.
Therefore, the detection-based tracking framework remains the most suitable multi-target
tracking method in terms of tracking accuracy.

2.4. Current Issues in Multi-Pedestrian Tracking

In today’s day and age, multi-pedestrian tracking still presents many challenges. For
example, the following are three of the more common challenges:

• Robustness: In complex scenarios characterized by rapidly changing lighting condi-
tions, frequent occlusions, and dynamic blurring, the robustness of multi-pedestrian
tracking algorithms tends to be compromised. To tackle this, we constructed the
KC-YOLO detection model as the detector in our research. This model optimizes the
selection of detection frames and implements adaptive feature refinement, thereby
enhancing the robustness and accuracy of the detection algorithm.

• Long-term tracking: Tracking targets in long temporal sequences presents several
challenges, as it requires addressing cross-frame target re-identification and scene
updates. To tackle this, we employ cascade matching for target re-identification, which
effectively reduces instances of target loss caused by occlusion and scene updates [28].

• Algorithm efficiency: In real-world applications, multi-pedestrian tracking algorithms
often need to process a large volume of data in real time. Overcoming these challenges
is crucial for improving multi-pedestrian tracking methods and ensuring their effec-
tiveness in diverse and complex practical environments. In our research work, we
introduced an identity validity discrimination module into the tracking algorithm.
This module is designed to assess and remove erroneous data resulting from incom-
plete or unclear features, reducing the unnecessary data-processing workload.

3. Multi-Pedestrian Tracking Method Based on IVDM

In the context of multi-pedestrian tracking, detection and tracking tasks are both
independent and closely related to each other [29]. We adopt the KC-YOLO detection model
to detect pedestrians in complex traffic environments, where the apparent information may
be incomplete and unclear. Then, we introduce the IVDM as part of the improved approach
to realizing the tracking of multiple pedestrian targets. The integrated detector–tracker
structure is shown in Figure 1.
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predictions. For tracking, we employ DeepSORT, which incorporates pedestrian identity
validity discrimination. This combination allows us to perform accurate and efficient
multi-pedestrian tracking.

3.1. Construction of KC-YOLO Detection Model

We propose a model called KC-YOLO, which is applied to complex scenes in surveil-
lance video and uses the YOLOv5 [30] detection model as the base algorithm.

The core steps of the KC-YOLO model are as follows:

• Determine the optimal anchor frame that is compatible with the input pedestrian image;
• Extract the deep features of the pedestrian image through the KC-YOLO network.

Use the attention mechanism to highlight its salient information and achieve adaptive
feature refinement.

We introduce the CBAM into the backbone and neck parts of the detection network for
the following reasons: the backbone part is the key part for extracting pedestrian features,
while the neck part fuses the features and sends them to the head for prediction, and the
introduction of the CBAM here can improve the feature extraction ability of the network
more effectively. The structure of the improved KC-YOLO network is shown in Figure 2.
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Figure 2. KC-YOLO network model structure (Concat is primarily responsible for combining addition
and residual convolution operations; CBL is a convolutional block; Up sample means that usampling
operations are performed; CSP2_1 divides the input feature map into two parts).

Concat is primarily responsible for combining addition and residual convolution
operations. Through feature fusion, it allows the detection network to simultaneously
utilize the extracted shallow and deep features. The main purpose of the upsample structure
is to perform upsampling operations; CBL is a convolutional block. Within CSP2_1, the
input feature map is divided into two parts. One part is processed through a subnetwork,
while the other part undergoes further processing directly. These two sets of feature
maps are then concatenated and used as input for the next layer. By combining the
features processed by the subnetwork with those processed directly, a series of convolution
operations are performed. This approach effectively integrates low-level detail features
with high-level abstract features, thereby improving the feature extraction efficiency.

3.1.1. Optimal Pedestrian Detection Frame Determination

In the context of pedestrian detection, YOLOv5 defaults to using k-means clustering
to generate anchor frames. However, before performing k-means clustering, it is crucial to
initialize k cluster centers, as the convergence can be significantly affected by uninitialized
cluster centers. To address this issue, we employ the k-means++ clustering method [31].
Here is how it works:
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• Initially, a random sample point is selected from the dataset as the first initial cluster center.
• Then, the shortest distance between each sample point and the currently existing

cluster centers is calculated.
• Finally, each sample point is chosen as the next cluster center with a probability

proportional to the shortest distance. The sample point with the highest probability is
selected as the next cluster center.

This approach provides a more reliable initialization method, improving the stability
and convergence of the clustering process, which, in turn, optimizes the selection of
detection frames. The formula for the calculation is as follows:

P(x) =
D(Xi)

1

n
∑

i=1
D(Xi)

1
(1)

where Ci represents the first initial cluster center; D(X) denotes the shortest distance
between each sample point and the currently existing cluster centers; and P(X) represents
the probability of each sample point being selected as the next cluster center.

3.1.2. Deep Feature Extraction

Deep features extracted by convolutional neural networks can provide an effective
description of the high-level semantic information of an image, and the CBAM is an
attention mechanism module used to enhance the performance of convolutional neural
networks with significant results. In order to improve the feature extraction capability of
the detection network [32], we introduce the CBAM [20] into the detection model.

The CBAM depicted in Figure 3 comprises both the Channel Attention Module (CAM)
and the Spatial Attention Module (SAM). The CAM is employed to enhance the weights of
important features while reducing the weights of irrelevant features. It begins by subjecting
the input feature map to max pooling and average pooling along the channel dimension.
The output results are then fused through an MLP network, and subsequently, weight
coefficients are obtained by applying the Sigmoid activation function.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) = σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(2)

where σ is the Sigmoid activation function; w0 ∈ RCr×C and w1 ∈ RC×Cr are the weights,
and r is the contraction rate; MLP stands for a neural network; Mc(F) is obtained by
performing element-wise summation and applying the Sigmoid activation operation on the
shared fully connected layer; and Fc

avg and Fc
max are the two features obtained by pooling

the extracted features.
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The SAM focuses on the intrinsic relationships within the spatial dimensions of the
input feature map. It takes the output from the CAM and performs max pooling and
average pooling along the channel direction. The results obtained are then processed
through a convolutional layer with a kernel size of 7 × 7. Finally, the SAM’s feature map is
obtained by applying the Sigmoid activation function. The calculation is performed with
the following equation:

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)
= σ

(
f 7×7

([
Fc

avg; Fc
max

]))
(3)

where f 7×7 denotes the convolution kernel size; Ms(F) is obtained by the logistic activation function.

3.2. Multi-Pedestrian Tracking Methods Based on IVDM

Pedestrian tracking not only provides trajectory information but also provides valu-
able information for behavioral analysis. However, in crowded scenes, a large number of
targets may be occluded, resulting in missing and blurred features, which seriously affects
the function of detection-based tracking methods [16]. When the video surveillance fields
of view do not overlap and the pedestrians are heavily occluded, the “1-n” pedestrian
identity phenomenon results. Existing tracking algorithms still lack a flexible approach
to dealing with heavily occluded targets and thus perform poorly in complex scenarios
where heavy occlusion occurs frequently [33]. To address the above situation, based on
the improved detection method in the previous section, we introduce pedestrian iden-
tity validity judgment into the pedestrian tracking process, which performs “occlusion
perception-occlusion ratio k calculation-pedestrian identity validity discrimination” on
unmatched targets between different frames (Figure 4).
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Figure 4. Multi-pedestrian tracking method based on IVDM.

The module performs a series of calculation and discrimination operations on un-
matched targets between different frames, such as “occlusion perception-calculation of
occlusion ratio k-pedestrian identity validity discrimination”, which determines the degree
of occlusion of pedestrians detected by the surveillance video based on the magnitude of
the coefficient k of the proportion of occlusion of pedestrians in the frame and categorizes
the occluded pedestrians into valid IDY and invalid IDN through k. In essence, the above
process is used to discern whether or not the identity of the detected pedestrian has validity.
The most successful associations in pedestrian tracking often occur in the cascade matching
section. Therefore, we have incorporated the IVDM into the cascade matching process, as
depicted in Figure 5.
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3.2.1. Occlusion-Aware Detection

For occlusion-aware detection, traditional Intersection Over Union (IOU) cross-ratio
algorithms calculate the overlap ratio and filter targets that satisfy the requirements by
setting a threshold [23].

Figure 6a,b show that the IOU algorithm is effective in discriminating pedestrians
when they have similar body size ratios. However, real applications mostly involve complex
scenes, and the size of the pedestrian detection frame produces a very large error due to
the different distances of the camera from the ground. The IOU algorithm has very little
utility in this case (Figure 6c), which is why it cannot be used as a calculation standard to
show the occlusion of pedestrians and small targets in real applications [13]. Therefore, we
propose the identity validity discriminant coefficient k, which calculates the ratio of the
extent of the occluded portion of an occluded pedestrian to its detection frame and can
more accurately discriminate the degree of the pedestrian’s occlusion.
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3.2.2. Determination of the Shading Scale Factor k

In order to express the derivation of the occlusion ratio coefficient more intuitively,
we define the coordinates of the detection frame. As shown in Figure 7, (xa1 , ya1) de-
notes the coordinates of the upper-left corner of the blocked pedestrian detection frame;
(xa2 , ya2) denotes the coordinates of the upper-right corner of the blocked pedestrian de-
tection frame;

(
xb1 , yb1

)
denotes the coordinates of the upper-left corner of the blocked

pedestrian detection frame;
(
xb2 , yb2

)
denotes the coordinates of the upper-right corner of

the blocked pedestrian detection frame; (x1, y1) is the upper-left corner of the blocking
section; and (x2, y2) is the upper-right corner of the blocking section, calculated with the
following equation:





x1 = max
(
xa1 , xb1

)
, y1 = max

(
ya1 , yb1

)

x2 = max
(
xa2 , xb2

)
, y2 = max

(
ya2 , yb2

)

S = (xa2 − xa1 + 1.0).(ya2 − ya1 + 1.0)
S0 = max(x2 − x1 + 1.0).max(y2 − y1 + 1.0)

(4)

S denotes the range of the occluded target frame; S0 denotes the range of the occluded region.
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Based on the obtained data for each attribute of the pedestrian detection frame, the
unmatched target occlusion ratio coefficient k after cascade matching is derived from the
ratio of the occluded area range. S0 and the occluded target frame range S are calculated
with the following equation:

k =
S0

S
(5)

3.2.3. Identity Validity Determination Module

When two pedestrians form an occlusion, in general, if the center of mass of one
target is detected within the detection frame coordinates of the other target, the identity of
the pedestrian is determined to be invalid due to the effect of the occlusion, and then the
identity validity = 0; otherwise, identity validity = 1. However, when occlusion is generated,
the above method will not be able to accurately determine the degree of occlusion of the
pedestrian if the center of mass of the pedestrian is not within the coordinates of the other
pedestrian detection frames, and then the specific degree of occlusion of the pedestrian
needs to be calculated. The degree of occlusion of the pedestrian is determined if the target
occlusion ratio coefficient k is greater than a threshold value, and then identity validity = 1;
otherwise, identity validity = 0.

In this study, the original model was tested on consecutive frames from the MOT16,
MOT17, and MOT20 datasets. Based on the experimental responses in Figure 8, when
k > 0.535, the proportion of tracking failures due to occlusion increases significantly.
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The identity validity is binarized by the occlusion ratio coefficient k as the identity
validity score of the corresponding pedestrian, where 1 indicates that the target identity
is invalid and 0 indicates that the pedestrian identity is valid, and the relationship of the
identity validity score calculation is calculated with the following equation:

ei =

{
1, k ≥ ω
0, else

(6)

4. Experiments and Analyses

Here, we statistically summarize the results of the experiments and analyze them in
depth, leading to well-reasoned conclusions.

4.1. Experimental Environment

In this study, we used Pytorch [34] for code writing, and we conducted the experiments
on a server configured with Intel(R) Xeon(R) CPU E5-2680 V4 @ 2.40GHz (Intel, made in
Malaysia) and NVIDIA GeForce RTX 3090 GPUs (Msi, made in China).

4.2. Experimental Dataset and Evaluation Index
4.2.1. Experimental Data

We opted for the MOT series datasets, CrowdHuman dataset, and MIX datasets,
commonly utilized in pedestrian tracking tasks, to conduct our experiments. This choice
enhances the credibility of our proposed method’s effectiveness. Below is an introduction
to the three datasets:

• MOT series datasets: These are datasets on the Open Data Lab platform and are mainly
targeted at pedestrian tracking tasks in dense scenes.

• CrowdHuman dataset [35]: It is for pedestrian detection. Unlike other mainstream
human detection datasets, the pedestrian targets in the CrowdHuman dataset are
much denser, more crowded, and even have serious overlaps. According to the data
provided in the citation, the CrowdHuman dataset has an average of 22.64 figures per
image, which is far more than other human detection datasets.

• MIX datasets: They are diverse and comprehensive, covering different types of pedes-
trian detection and tracking scenarios. This comprehensiveness allows researchers
to test the robustness and effectiveness of algorithms in a variety of real-world situa-
tions. Using these datasets, researchers can conduct multimodal data studies, explore
commonalities and differences between different datasets, and lay the foundation for
improving multi-target tracking and pedestrian detection algorithms.
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4.2.2. Evaluation Metrics

• Pedestrian Detection Evaluation Metrics: These are quantitative measures utilized to
assess the performance and accuracy of algorithms and models designed to detect
pedestrians in images or videos. They offer in-depth insights into a system’s ability
to recognize pedestrians within a given dataset. Common evaluation metrics for
pedestrian detection include precision, recall, and mAP. Precision is the ratio of true
positives to the total number of predicted positives, where true positives are the
instances where the prediction is correct. Recall calculates the ratio of instances where
the prediction is correct to the total number of actual positives. mAP is the sum of
the average precision values for all classes divided by the number of classes. In other
words, it represents the average of the average precisions for all classes in the dataset.

The mathematical expressions for the above evaluation indicators are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

mAP =
1
R

∫ 1

0
P(R)dR (9)

where TP represents the true positives, FP represents the false positives, and FN represents
the false negatives.

• Pedestrian Tracking Evaluation Metrics: In order to test our proposed multi-target
pedestrian tracking method, we use five criteria as evaluation metrics: the multi-
objective tracking accuracy (MOTA) [36], which is commonly expressed as a percent-
age, ranging from 0% to 100%, where a higher score indicates the superior performance
of the tracking algorithm; the ratio of the average of the number of correctly recog-
nized ground-truth detections to the number of computed detections (IDF1) [37]; the
Majority of Tracked (MT); Major Lost Targets (ML); and Identity Switches (IDS).

The mathematical expressions are as follows:

MOTA = 1− ∑t(FNt + FPt + IDSwt)

∑t GTt
× 100% (10)

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
× 100% (11)

where t represents the index of each frame of the video, and GT is the number of real
labeled targets in the image. IDSw denotes the total number of ID switches occurring in the
tracked target in frame t.

4.3. Analysis of Experimental Results
4.3.1. Comparison Experiments

We conducted the following comparative experiments on different multi-pedestrian
tracking algorithms using the MOT16, MOT17, and MOT20 datasets. Table 1 shows
some common algorithms for the target tracking task and the experimental results of our
introduced algorithm.

115



Appl. Sci. 2023, 13, 12228

Table 1. Experimental results on the MOT16 dataset.

Method MOTA/% IDF1/% MT/% ML/% IDs

SORT [15] 59.8 53.8 25.4 22.7 1423
JDE [38] 64.4 55.8 35.4 20.0 1544

CNNMTT [39] 65.2 62.2 32.4 21.3 946
CTrackV1 [40] 67.6 57.2 32.9 23.1 5529
FairMOT [11] 73.7 72.4 44.7 15.9 1074

DeepSORT [16] 74.8 73.6 45.2 15.4 1022
Our Method 75.9 74.8 42.5 18.3 816

Table 1 shows that our multi-pedestrian tracking method has an absolute advantage
over many methods. In terms of evaluation metrics, MOTA is improved by 1.1%, and IDF1
is improved by 1.2%, with enhanced robustness compared to the original tracking method.
It is worth noting that the IDs of our method are significantly lower than those of DeepSORT;
presumably, improved models may improve the predictive power of the tracking method
compared to the original model, making the tracking results more accurate and significantly
improving the problem of ID hopping. The smaller number of IDs makes the tracking
results of the model more practical in real applications. After a series of comparisons, it
leads to the conclusion that our tracking algorithm has significant advantages in all aspects
of performance.

In Table 2, we can see that our multi-pedestrian tracking method significantly improves
the experimental metrics on the MOT17 dataset, with improvements of 2.1% and 4.4% for
MOTA and IDF1. We believe that the proposed IDVM is better at presenting false and
erroneous identity data and thus can be applied to complex surveillance video scenarios
with frequent occlusions.

Table 2. Experimental results on the MOT17 dataset.

Method MOTA/% IDF1/% MT/% ML/% IDs

SST [41] 52.4 49.5 21.4 30.7 8431
TubeTK [42] 63.0 68.6 31.2 24.2 4137

CenterTrack [33] 67.8 64.7 34.6 24.6 2583
FairMOT [11] 73.1 72.7 41.1 19.0 2964

TransMOT [38] 75.1 74.6 40.8 22.6 2340
ByteTack [17] 77.4 76.1 39.9 20.2 2236

DeepSORT [16] 76.4 73.4 39.1 21.0 1898
Our Method 78.5 77.8 38.6 19.9 1586

In Table 3, we compare the original DeepSORT method with the multi-pedestrian
tracking method that we propose based on DeepSORT on the MOT20 dataset for compar-
ative tests. The MOTA and IDF1 indices of our proposed method are improved by 3.3%
and 4.5%, respectively. Therefore, the improved method significantly improves the power
to extract the apparent features of the pedestrian target, which leads to more accurate
feature extraction and makes the overall performance of this tracking method significantly
better. In addition to this, the other two metrics are also significantly improved, which
illustrates that the robustness of the tracker to act on the same target during the pedestrian
tracking process has been improved. Meanwhile, the pedestrian IVDM not only reduces
the appearance feature contamination problem but also improves the tracking robustness
for whether or not to update the appearance features after discrimination.

Table 3. Experimental results on the MOT20 dataset.

Method MOTA/% IDF1/% MT/% ML/% IDs

DeepSORT [16] 66.8 67.9 68.7 8.4 2269
Our Method 70.1 72.4 69.2 8.7 1689
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4.3.2. Pedestrian Detection Algorithm Ablation Experiments

In order to validate our proposed improvement strategy for YOLOv5, ablation experi-
ments were carried out on datasets such as CrowdHuman to judge the effect of each en-
hancement point. The results of effectiveness experiments for each component of YOLOv5
are as follows.

As shown in Table 4, the KC-YOLO model’s accuracy value is improved by 6%,
and AP is improved by 4%. The improved model greatly improves the ability to extract
intra-pedestrian detection deformations and appearance features, thus capturing more
accurate features.

Table 4. YOLOv5 ablation experiment.

k-Means++ CBAM Precision Recall AP

× × 0.85 0.78 0.85
× √

0.89 0.83 0.88√ × 0.88 0.84 0.85√ √
0.91 0.85 0.89

In Figure 9, YOLOv5+K-means+++CBAM is the KC-YOLO model proposed in this
study. At the beginning of training, the values of AP and accuracy reach more than 0.8,
which is mainly due to the pre-trained model when training YOLOv5. After using the
K-means++ clustering method, both AP and accuracy are inevitably improved compared
to YOLOv5, while the Loss value has a small decrease and gradually converges, which
indicates that our improvements to the model are positively oriented and the effects are
evident. After embedding the CBAM, with increasing epochs, AP and accuracy increase
significantly, and the Loss becomes smaller and converges gradually, which indicates that
the improved model is more desirable.
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4.3.3. Pedestrian Tracking Algorithm Ablation Experiments

To check whether the IVDM in our proposed multi-pedestrian tracking method is a
positive improvement, we conducted ablation experiments on the IVDM.

The results of ablation experiments with the IVDM are shown in Table 5. They clearly
show that the addition of the IVDM improves the MOTA of the multi-pedestrian tracking
method by 3.0% and the IDF1 by 2.8%, and the IDs are also significantly reduced. The
role of the IVDM is mainly to eliminate false and erroneous identity data due to occlusion
and to maintain the purity of the original tracking target while reducing the generation of
redundant data. After the introduction of the IVDM, the overall performance of the task
is improved.
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Table 5. Experimental ablation study of IVDM on the MOT20 dataset.

Method MOTA/% IDF1/% MT/% ML/% IDs

Without IVDM 67.1 69.6 67.6 9.1 2638
With IVDM 70.1 72.4 69.2 8.7 1689

To illustrate more intuitively the advantages of the improvements made to the tracking
method in this study, we present visual comparisons of the tracking experiments conducted
on the MOT16 training dataset. Figure 10 compares the demonstrations of the multi-
pedestrian tracking method with and without the IVDM.
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As shown in Figure 10, when using the multi-pedestrian tracking without adding the
IVDM, the target pedestrians with ID number 154 and ID number 183 changed their ID
numbers due to brief occlusion, which also means that the tracking failed and generated
redundant and incorrect ID numbers at the same time. However, the problem of tracking
failures due to transient occlusion is well solved after adding the IVDM.

5. Discussion

This study introduces a method for the multi-object tracking of pedestrians across
multiple cameras in complex scenes, and it exhibits a higher tracking accuracy compared to
existing methods in practical applications. However, like any research, our work has certain
limitations that need to be considered. One major limitation is the potential influence of
environmental factors on the accuracy of our model. For instance, the spacing between
cameras could impact the accuracy of our tracking algorithm. Additionally, further research
on the algorithm using different datasets can enhance its robustness and generalizability.

Furthermore, in order to enable rapid and accurate tracking of critical targets in applica-
tions such as public safety and fire protection systems, our next step will involve considering
the design of a more lightweight model to reduce storage and computational requirements.
These studies will contribute to expanding the applicability of our approach and assist in the
development of more efficient and powerful pedestrian tracking algorithms.

6. Conclusions

In this research, we have developed a multi-pedestrian tracking method based on deep
detection and identity validity assessment, specifically designed for complex surveillance
video scenarios where issues like target occlusion are frequent.

We have constructed the KC-YOLO network as the detector, which employs the k-
means++ clustering method to select the optimal target detection frames. Additionally, we
have integrated a convolutional attention mechanism into the target detection algorithm,
utilizing attention weights for adaptive feature refinement. This effectively suppresses

118



Appl. Sci. 2023, 13, 12228

secondary features to highlight crucial target characteristics, enhancing the robustness of
target detection in complex scenes, where target features may become less distinct due to
occlusion. The robustness of the detector has been verified through experiments.

In the target tracker, we have introduced the IVDM, which performs occlusion-aware
processing on pedestrian targets after feature extraction by the detector. In cases where
target identities are compromised due to occlusion-induced errors, we use the occlusion
coefficient “k” to assess the validity of the identity. Based on the output of this module, we
determine whether pedestrian targets possess valid identities, influencing the decision to
update the appearance features of the current dynamic target.

Here are the experimental results on the MOT16 dataset: MOTA is 75.9%, and IDF1
is 74.8%. Compared to SORT, there is a 20.1% increase in MOTA and a 21.0% increase in
IDF1. In comparison to CNNMTT, MOTA has improved by 10.7%, and IDF1 has seen a
12.6% improvement. When contrasted with the prototype DeepSORT method, MOTA has
increased by 1.1%, and IDF1 has increased by 1.2%. The most noteworthy aspect is the
substantial reduction in IDS, maintaining a high level of tracking continuity. For the MOT17
dataset, MOTA is 78.5%, and IDF1 is 77.8%. For the MOT20 dataset, the results show a
MOTA of 70.1% and an IDF1 of 72.4%. When contrasted with the prototype DeepSORT
method, the MOTA and IDF1 indices of our proposed method are improved by 3.3% and
4.5%. These experiments confirm that our research outperforms several advanced MOT
algorithms across nearly all metrics. This study provides a stable and efficient approach to
multi-pedestrian tracking in complex scenarios, significantly reducing the number of ID
switches to ensure the continuity of tracking trajectories. This approach is particularly well
suited for public safety and fire protection departments, enabling the continuous tracking
of critical targets in crowded scenes with severe occlusion.
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Abbreviations

MPT Multi-pedestrian tracking
SORT Simple Online Real-Time Tracking
CBAM Convolution Block Attention Module
CNNs Deep Convolutional Neural Networks
R-CNN Region proposals utilizing CNN
SPPNet Spatial Pyramid Pool Network
SSD Single-Shot Multi-Frame Detector
STN Spatial Transformation Network
MOT Multi-objective tracking
IOU Intersection Over Union
MOTA Multi-objective tracking accuracy
ML Major Lost Targets
MT Majority of Tracked
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IDS Identity Switches
IVDM Identity validity discrimination module
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Abstract: Studying domain adaptation is a recent research trend. Generally, many generative models
that researchers have studied perform well on training data from a specific domain. However, their
ability to be generalized to other domains might be limited. Therefore, a growing body of research has
utilized domain adaptation techniques to address the problem of generative models being vulnerable
to input from other domains. In this paper, we focused on generative models and representation
learning. Generative models have received a lot of attention for their ability to generate various types
of data such as images, music, and text. In particular, studies utilizing generative adversarial neural
networks (GANs) and autoencoder structures have received a lot of attention. In this paper, we solved
the domain adaptation problem by reconstructing real image data using an autoencoder structure. In
particular, reconstructed image data, considered a type of noisy image data, are used as input data.
How to reconstruct data by extracting features and selectively transforming them in order to reduce
differences in characteristics between domains entails representative learning. Considering these
research trends, this paper proposed a novel methodology combining bidirectional feature learning
and generative networks to innovatively approach the domain adaptation problem. It could improve
the adaptation ability by accurately simulating the real data distribution. The experimental results
show that the proposed model outperforms the traditional DANN and ADDA. This demonstrates
that combining bidirectional feature learning and generative networks is an effective solution in the
field of domain adaptation. These results break new ground in the field of domain adaptation. They
are expected to provide great inspiration for future research and applications. Finally, through various
experiments and evaluations, we verify that the proposed approach outperforms the existing works.
We conducted experiments for representative generative models and domain adaptation techniques
and found that the proposed approach was effective in improving data and domain robustness. We
hope to contribute to the development of domain-adaptive models that are robust to the domain.

Keywords: adversarial domain adaptation; bidirectional feature learning process; generative network;
adversarial learning

1. Introduction

The field of domain adaptation is currently witnessing rapid progress in innovative
research to address the problem of data mobility across different domains. In particular,
recent advances in machine learning and deep learning techniques have attracted atten-
tion on how to overcome distributional differences between domains and improve the
generalization performance of models [1–6].

In particular, a growing body of research has focused on the relationship between
domain adaptation and generative models. This research seeks to understand why gaps
between adversarial domains occur and how to counteract them in order to make models
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more robust. There has been a large body of research showing that approaches using
generative models are useful for improving a model’s generalization performance across
domains [7]. Generative models mimic real-world data distributions to generate data in
the target domain for adaptation, especially using generative adversarial neural networks
(GANs) or autoencoder structures [7–13].

This paper utilizes an autoencoder structure in the generation model to reconstruct
and utilize real image data. At this time, reconstructed image data can be treated as a
kind of noisy image data caused by reconstruction error. They are used as input data. In
addition, representation learning is a field that studies how to reconstruct data through
feature extraction and selective feature transformation to address differences in features
across domains. In view of these recent trends and research developments, this paper is
expected to play an important role in presenting a new methodology that utilizes cross-
domain bidirectional feature learning and generative networks to solve domain adaptation
problems and overcome the limitations of existing studies.

That is how I came across the model shown in panel (a) in Figure 1. This model
is described in an interesting paper that allowed the authors to start studying domain
adaptation. It is called DANN [1] for short, and it is a great paper to look at alongside its
successor, the ADDA model [7], shown in panel (b) of Figure 1. Both models are adversarial
models, but there is a difference. While DANN behaves adversarially when computing
loss, the ADDA model initially learns to associate a discriminator with two domains to
determine domain labels. If the domains had completely different characteristics, the loss
would be extremely high at the beginning of training. However, the more the model is
trained, the better the model will perform, i.e., it will be a better design. With this in mind,
we wanted to build a model that is adversarial and has a bit more complexity.

Figure 1. The different structures of DANN (a) and ADDA (b).

Table 1 summarizes what DANN and ADDA have in common and their differences
from the model we propose in this paper. The reason why this table is important is because
everything we will introduce in this paper is in this table. It starts with the question
of whether there is a generative network or not. Then, there is adversarial learning,
bidirectional feature learning, using a pretrained network (this is also related to training
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time, which works a little differently in this work and will be discussed later), sharing
weights, using a hyperparameter, etc.

Table 1. Comparison of recent methods (o denotes method is used in model; x denotes it is not used).

Method DANN ADAA BiFLP-AdvDA

Generative network x x o

Adversarial learning o o o

Bidirectional feature learning x x o

Pretrained network x o (CNN) o (autoencoder)

Weight sharing x x o

Hyperparameter λ λ λ, m (margin)

In the modern world, the rapid growth of data has led to the production of many
different kinds of data in many different fields. However, these data often originate from
different domains, each with unique characteristics and statistical distributions. This makes
it difficult for machine learning models to generalize to new domains, which hinders
the effective application of models in the real world. In response, domain adaptation
research has gained increasing importance. In particular, recent research trends have
explored innovative methods to address the problem of cross-domain portability. These
approaches are mainly centered on generative models and representation learning [14,15].
Generative models focus on overcoming distributional differences while generating data
in the target domain. Studies utilizing generative adversarial neural networks (GANs)
or autoencoder structures have received much attention. Representation learning also
focuses on performing adaptation in a way that reduces differences in characteristics
between domains through feature extraction and transformation. However, most of the
existing research has focused on unidirectional feature transformations. In the learning
processes of previous studies that learn by transforming features themselves, limitations
and problems arise when trying to adapt the target domain to a model trained on the
source domain. In contrast, this paper explores the domain adaptation problem from a new
angle by combining a bidirectional feature learning process and generative network and
proposes an innovative methodology to perform adaptation while mutually preserving
features between two domains. It is expected to more accurately consider the distribution
of real data, overcome the limitations of existing methods in effectively solving the domain
adaptation problem, deepen our understanding of the relationship between generative
models and domain adaptation and features, and contribute to the development of more
robust and stable models.

The starting point of this paper is the need for domain adaptation and the current
state of research. The problem of the cross-domain mobility of data collected from various
fields limits the performance of machine learning models. As a solution, existing research
has mainly focused on unidirectional feature transformations. However, starting from the
idea that the relationship between domains could be bi-directional, we tried to introduce a
bi-directional feature learning process. We found that the bi-directional feature learning
method, which is the training method of our proposed model, has been used in several
studies. However, the most important concepts in the field of domain adaptation are
learning in the direction of minimizing empirical risk [16], feature conversion using image-
to-image translation [10,17], transfer learning [18–21], reducing the gap between domains
with generalization and robustness of the model and generative networks [12], adversarial
learning with discriminators, adversarial learning without discriminators [22], pseudo-
labeling for domain adaptation in the absence of discriminative classifiers [23], and so on,
all of which seem to be similar to domain adaptation. However, they have slightly different
contributions. Thus, there is still a lot of potential for further development. To advance this
idea, it is necessary to strengthen the role of generative networks. Generative models need
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to be improved to simulate more realistic data distributions. Although such research studies
have been ongoing, they have not been able to move beyond a one-way learning process.
To this end, we propose a model combining generative networks and bidirectional feature
learning processes to perform both functions together [24]. Furthermore, bidirectional
feature learning can serve as a potential way to enforce interdependence between two
domains. In this way, we devised a novel network architecture that could achieve good
adaptation while preserving features between the two domains. From the perspective of
generative models, new ideas can be generated on how to reconfigure different data to
adapt to new domains. This will allow the model to acquire generalization capabilities
that allow it to adapt in more diverse situations or in different environments. Through
this process of idea generation, the model proposed in this paper can be further enriched
and innovated.

This paper proposes a novel approach in the field of domain adaptation by combin-
ing bidirectional feature learning and generative networks. The main idea is to enhance
cross-domain adaptation through bidirectional feature learning and to improve the adapta-
tion ability by more accurately simulating actual data distribution through
generative networks.

Based on the evaluation results, the proposed model demonstrated significantly higher
accuracy than existing models such as DANN and ADDA. Through experiments, it was
found that the proposed model exhibited outstanding performance in domain adaptation.
These results strongly indicate that combining bidirectional feature learning and gener-
ation networks is an effective method for domain adaptation. As a major contribution
and result, this paper not only presents an innovative solution in the domain adaptation
field, but also provides a model that is superior to existing models such as DANN and
ADDA. Thus, this research breaks new ground in domain adaptation and provides sig-
nificant inspiration for future research and applications. Furthermore, the experimental
results demonstrated that the proposed approach could minimize performance degra-
dation of the generative model while aiding in the generation of desired outputs. This
indicates the effectiveness of this paper in improving the stability and reliability of the
generative model simultaneously. These evaluation results are of great significance in
presenting the validity and practicality of the proposed approach in the paper. They are
expected to contribute to research aimed at enhancing the security and robustness of
generative models.

The primary contribution of this paper is the development of a novel approach for
domain adaptation in generative models and representation learning. By combining bidi-
rectional feature learning and generative networks, we significantly improve the adaptation
ability, accurately simulating the real data distribution. The experimental results showcase
the superiority of our approach over traditional methods, marking a substantial advance-
ment in the field of domain adaptation and enhancing the data and domain robustness in
generative models.

This article is structured into five sections. The first section introduces the background,
the problem statement, the derivation process, and a brief summary of the idea. The second
section presents a summary of previous research and relevant techniques. The third section
provides an overall description of the proposed model. The fourth section explains and
presents the results of experiments conducted to evaluate the model’s performance.

2. Related Work

This section describes the background of the previous research that leads to the
proposal of this paper.

2.1. Adversarial Domain Adaptation

Domain adaptation is an important topic to address the problem of reducing the
generalization ability of a model due to differences in the data distribution between different
domains. Domain adaptation is a type of transfer learning, which can be viewed as a
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transfer of knowledge from one domain to another when there is a gap between two
domains with different characteristics, and closing the gap to make them similar. However,
there is a limitation, in that a model trained on one domain usually does not perform as
well as expected when tested on data from a domain other than the one it was trained
on due to differences in the trained domain. Therefore, researchers have been thinking
about how to make a model perform well in a domain that is completely different from the
domain it was trained on. This was how domain adaptation was approached.

When there are two completely different datasets or two datasets with some similarity,
if the similarity between the two domains is not large, it is expressed as how much domain
shift has occurred when quantified. Therefore, in the field of domain adaptation, a lot of
research studies have been conducted to study and solve this domain shift as much as
possible. Also, when the domain shift is reduced as much as possible and the performance
is good even in different domains, we say that the generalization is good. In other words,
domain adaptation is the process of generalizing a model as much as possible.

Recent advances in machine learning and deep learning techniques have attracted
attention on how to overcome distributional differences between domains and improve
the generalization performance of models. In the field of domain adaptation, two main
approaches have been used to solve the problem.

First, models that transform features between domains in a way that minimizes distri-
butional differences between domains have been widely studied. This approach attempts
to achieve adaptation by transforming data from the target domain into a distribution
similar to the source domain. There are various approaches to this method. First of all,
many models such as BDA [3], JAN [19], ADDA, and so on can calculate the MMD, which
is the difference in probability distribution. They can also learn by reducing the distribu-
tion difference between domains as much as possible [24]. If the probability distribution
difference between domains is previously calculated and learned, there are also models
that can transform features themselves or directly use features to reduce the gap between
domains. There are also models that can use a generative model to generate the target data
and then let domains adapt and check performances of discriminators by calculating how
similar they are.

Second, instead of addressing distributional differences, a common approach is to
train the model to adapt to the target domain. This approach allows the model to overcome
differences between domains while still being able to recognize and utilize characteristics
of the target domain. To this end, research has focused on training models using labeled
information from the target domain, typically using classifiers or regression models.

In these domain adaptation studies, various methods were used to reduce the gap
between two domains or make them similar. Among them, the method of learning ad-
versarially using the class label of the domain and the relationship with the domain label
is mainly used [1,2,5,7,11,22]. Therefore, this method is usually referred to as adversarial
domain adaptation or domain adversarial adaptation.

2.2. Bidirectional Feature Learning

Bidirectional feature learning aims to transform features between the source and
target domains in both directions while preserving information. To achieve this, it is mainly
studied by combining a generative network and a feature transformation process, which is a
key strategy used to enhance the adaptive ability while mutually preserving characteristics
between domains.

Bidirectional feature learning provides better adaptive capabilities than traditional
unidirectional feature transformation. In other words, when the model performs a conver-
sion from one domain to another, the key point is to achieve conversion while preserving
features between the two domains [25,26]. In particular, recent attempts have been made to
develop more powerful adaptive models by combining bidirectional feature learning with
self-supervised learning, meta-learning, and so on. This can be seen as an effort to overcome
the limitations of existing methods and provide more practical domain adaptation solutions.

126



Appl. Sci. 2023, 13, 11825

Such bidirectional feature learning can act as a potential way to strengthen the interdepen-
dence between two domains. In this way, we have devised a new network architecture
that can preserve features between the two domains and still achieve good adaptation.
This methodology uses an approach that deepens our understanding of the relationship
between domains and trains the model to more effectively translate characteristics between
the two domains while minimizing the loss of information.

However, unlike other studies, bidirectional feature learning works a little differently
in this paper. Although the fields of application are different, even a comparison with one
of the existing studies, bidirectional LSTM [27], shows that the LSTM is doubly connected
to learn effectively. However, in this paper, extracted features are not intertwined, but
simply used to calculate two loss functions. Thus, it is expressed that it is based on the
bidirectional feature learning process. In this respect, the role of the bidirectional feature
learning process, which is used slightly differently in this paper, can be seen through a
comparison of evaluation indicators.

2.3. Generative Network

Generative models play an important role in this work. They are models that can
simulate or generate distributions of real-world data. In particular, with recent advances in
deep learning, generative models have attracted attention for overcoming distributional
differences between domains and generating or transforming data in new domains. In
the past, various generative networks such as Variational Auto-Encoders (VAEs) [8] and
Generative Adversarial Networks (GANs) [10,28] have been introduced in related research.
VAEs are used to learn the distribution of data in a latent space to generate different
variations, while GANs use a competitive network of generators and discriminators to
produce data mimicking the actual data distribution.

Autoencoder has been used in many fields for a while because it has a wide range of ap-
plications, such as utilizing convolutional layers for its application and having deep hidden
layers by stacking multiple layers. In this paper, we used convolutional autoencoder (CAE),
an autoencoder that utilizes convolutional layers [4]. In addition, GANs generate fake
data that is almost indistinguishable from real data through competitive learning between
generators and discriminators, which has the great advantage of reducing distribution
differences between domains, and converting while maintaining features of the data. As a
result, GANs have become a key tool in the field of domain adaptation. Recent research
trends are moving towards combining GANs with VAE or CAE to develop more robust
generative models. In addition, various variants that take into account characteristics of
the data and the relationship between domains are proposed, which are utilized to better
simulate distributional differences between domains and perform data transformations.

This paper emphasizes the role and importance of generative networks and proposes a
new methodology to apply to the domain adaptation problem. In this paper, we combined
autoencoder and GAN to develop a generative model considering the distribution of real
data. We then applied it to the domain adaptation problem to overcome the distribution
difference between the domains. In this way, realistic and stable adaptation results were
obtained. The effectiveness of the proposed method was demonstrated through comparison
with related studies. As a result, the accuracy of the generative network on the dataset
was 98.5∼99.23%, which showed a very high classification accuracy. An error of 0.77∼1.5%
was assumed to be some noise. The model was designed and tested to be robust against
noise. This shows an innovative solution in the field of domain adaptation. It is expected
to provide an important direction for strengthening the stability and generalization ability
of models not only in domains, but also in the face of noise.

3. BiFLP-AdvDA
3.1. Model Overview

This paper is a model for performing adversarial domain adaptation. The architecture
of the proposed model is shown in Figure 2. First, for preprocessing the existing dataset and
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constructing the model, we pretrained a generative model with a convolutional autoencoder
structure on the input data Xs which is from source domain. And the other input data
is Xt which is from target domain. We then loaded and used the pretrained model. The
inputs Xs and Xt are passed through the pretrained generative network to reconstruct the
input image data and generate a theoretically identical image. However, in practice, they
are not identical. For example, if you apply the generative network that is customized to
the MNIST dataset to the SVHN dataset, which is an RGB image dataset, the same image
cannot be generated. Thus, results may vary depending on the source domain. However,
results may change when adjusting parameters. In this paper, the classification accuracy
of the generative network was 98.5∼99.23%. Images were generated by the well-trained
generative model. The image data Xs, Xt of the generated source domain and target
domain were taken as input data and features of those images were extracted with the
feature extractor. This prepared us to perform the adversarial domain adaptation (AdvDA)
problem. Weights were shared for consistency in experiments [29].

Figure 2. The architecture of our proposed model BiFLP-AdvDA.

For the input layer, we used a convolutional autoencoder structure, and used three
convolutional layers for the encoder and decoder parts, and encoded by increasing the
number of channels from 1 channel to 8 channels, 16 channels, and 32 channels, and
reconstructed by returning to 32 channels, 16 channels, 8 channels, and 1 channel. The
amount of error in this process is considered as noise for the robustness of the model
and data in this paper. After that, the rest of the learning process proceeds through the
feature extractor.

It trains a label classifier with features extracted from the source domain to classify
the class label of the source data. In the process, it calculates the label loss, or label classi-
fication loss, which shows how badly it classifies the label. Label classification loss uses
cross-entropy loss as a general classification loss function. Therefore, this paper learns
to maximize the performance of the label classifier by minimizing the label classifica-
tion loss and learns a domain discriminator to determine the source domain or target
domain using features. As this paper is a domain adaptation problem, it is a problem for
the target domain to learn well without label information for the model learned for the
source domain. Therefore, it can be said that this part is adversarial, in that the domain
discriminator learns to distinguish the source domain and the target domain as well as
possible, while learning to extract domain-invariant features that fool the domain dis-
criminator into not distinguishing as well as possible with features extracted with the
feature extractor. Therefore, if the label classifier has a classification loss, the domain
discriminator uses the same general classification loss as the label classifier as a domain
classification loss. A single device is required to classify the label of the source domain
well despite a difference in distribution between the source domain and the target domain
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and to prevent the two domains (i.e., the source domain and the target domain) from
being distinguished.

The device is the gradient reversal layer (GRL) [2] proposed in the DANN paper. This
GRL acts as an intermediary between the feature extractor and the domain discriminator.
When learning, it still passes linearly when forward. However, when performing back-
propagation, it reverses the direction of the gradient by reversing the sign of the gradient.
The inverted gradient is inserted between the domain classifier and the feature extractor.
This plays a role in training the feature extractor to minimize the domain information
while minimizing the domain classification loss. This allows the feature extractor to extract
features with minimal domain information. The hyperparameter alpha, which controls how
much domain information to include, is not a trainable parameter. In this paper, it takes
the form of bidirectional feature learning, in addition to mutually conservative learning,
in the direction of minimizing similarity difference between features while preserving
characteristics between domains by including very little domain information.

In addition to learning methods limited to a single domain, the model in this paper
induces smooth learning for a series of domains with completely different characteristics
such as their distribution. In addition to reducing the gap between domains, the data itself
is subjected to a slight noise effect using a pretrained generative network. By reconstructing
the input image data, we propose a method to improve the robustness of both the domains
and data.

3.2. Loss Functions

This paper aims to reduce the gap between domains and improve the robustness of
the model using a generative model with an autoencoder structure and an adversarial
domain adaptation (BiFLP-AdvDA) approach based on bidirectional feature learning to
extract features that can finally be learned regardless of the domain. This study also aims to
perform domain adaptation to minimize the gap between domains so that characteristics
of domains become similar. For these purposes, four loss functions and a total of five loss
functions are used until total loss using all of them. Formulas and brief descriptions of the
loss functions are presented below.

Label classification loss was used to perform a classification task using data from the
source domain and to minimize the difference between the actual and predicted labels. The
following is the formula for label classification loss:

Lcls(y, ŷs) = −∑
i

yi · log(ŷs, i) (1)

where y denotes actual classified class labels of the source domain, which can be binary
or multi-class depending on the problem; ŷs denotes predicted class labels of the source
domain containing probabilities for each class; i denotes an index variable representing
classes, varying depending on the number of possible classes in a classification task; yi
denotes the value corresponding to class i in the actual label vector, the value of ŷs; and i in
the log function corresponds to class i in the predicted probability vector, representing the
likelihood of belonging to that class.

Domain classification loss was used to train the domain discriminator to misclassify
the domain as much as possible. This helps the feature extractor to extract features that the
domain discriminator will use to prevent the domain discriminator from classifying as well
as possible. As a loss function, unlike label classification loss, we used binary cross-entropy
loss (BCE loss) because the task was to classify into one of two domains. The following is
the formula for domain classification loss:

For the source domain,

Lsrc(Ds, D̂s) = −∑
i
(Di · log(D̂s, i) + (1− Di) · log(1− D̂s, i)) (2)
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For the target domain,

Ltar(Dt, D̂t) = −∑
i
(Di · log(D̂t, i) + (1− Di) · log(1− D̂t, i)) (3)

where Lsrc indicates the source domain classification loss function; Di denotes the actual
classified source domain labels obtained using the domain discriminator; D̂s denotes the
predicted source domain labels; i denotes the index variable for the elements in one batch
of source data; Ltar denotes the target domain classification loss function; Dt indicates a
binary value of 0 or 1 and indicates whether the domain is the source or target; D̂t denotes
the predicted domain labels of the target domain; and i denotes the index variable for the
elements in one batch of the target data.

Adversarial loss was used to train the domain discriminator to not discriminate
between features extracted from the feature extractor. In this way, it learns to reduce the
gap between domains. Here is the formula for adversarial loss:

For the source domain,

Ladv_src(Lcls, Lsrc) = Lcls + α ∗ Lsrc (4)

For the target domain,

Ladv_tar(Lcls, Ltar) = Lcls + α ∗ Ltar (5)

where Lcls denotes the classification loss for the source domain; Lsrc denotes the source
domain classification loss; alpha denotes a hyperparameter representing the weight or
importance given to the source loss in the combination; Lcls denotes the classification
loss for the source domain, as already mentioned; and Ltar denotes the target domain’s
classification loss.

The adversarial loss function, represented by Equations (4) and (5), was calculated by
utilizing Equations (1) and (2) or Equation (3) as appropriate. First of all, Equation (1) is a
task to classify the label of the source domain as best as possible, as mentioned earlier, and
the corresponding loss function is learned to be maximized; while Equations (2) and (3)
are the main tasks to learn to distinguish whether the input data are from the source
domain or the target domain as much as possible. Corresponding loss functions are learned
to be minimized. In this respect, it is similar to the existing minmax loss. Thus, it is
called adversarial loss. In addition, the alpha value of GRL, borrowed from the model
proposed for the domain adaptation task, which is the subject of this paper, is multiplied
by the domain classification loss to adjust how much to use characteristics of the domain.
Contrastive loss is a loss function to measure similarity between two features [30,31], which
is defined as the Euclidean distance between two features with the following formula:

Dst( f (Xsrc), f (Xtar)) =

√√√√
n

∑
i,j=1

(( f (Xi
src)− f (X j

tar))
2) (6)

Lcontrastive(y, Dst) = y ∗ D2
st + (1− y) ∗max(m− Dst, 0)2 (7)

where f indicates the feature extraction function mapping the input data to feature em-
beddings; Xsrc and Xtar denotes the original source data Xs and the original target data Xt
reconstructed by the pretrained autoencoder; Dst indicates the Euclidean distance, obtained
by measuring the distance of features between the source data Xsrc and the target data Xtar
using the feature embeddings generated by the function; f and n denote the size of one
batch of the source and target domains and the number of data points within that batch;
i and j denote the index variables of the source and target data; Xi

src denotes the ith data
point of one batch of Xsrc; X j

tar denotes the jth data point of one batch of Xtar; the means of
D are different for each loss function. One of the D’s, in Equations (2) and (3), indicates
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the domain discriminator and the other, in Equations (6) and (7), indicates the Euclidean
distance; y denotes a binary label that takes the value 0 or 1, 1 if the two features are similar
and 0 if they are different, for example, in traditional research, the loss function is computed
in such a way that if a pair of data enters as input a pair of data of the same class, the value
of y is 1, while if a pair of data enters as input a pair of data of a different class, the value of
y is 0; and m denotes the margin value. This hyperparameter m is not learnable. However,
it can be tuned to an appropriate value through experimentation.

The total loss function is calculated by summing the loss functions of all components.
After all, minimizing it is the goal of generalizing the model across domains and guiding it
to extract similar features. Here is the formula for the total loss function.

Ltotal = ·Ladv_src + ·Ladv_tar + ·Lcontrastive (8)

In the learning process of the model proposed in this paper, the loss function is finally
composed of adversarial loss and contrastive loss, which are arbitrarily configured for
the model as in Equation (8). By learning the loss function for the source domain and the
target domain adversarially, the feature extractor extracts domain-invariant features that
work well in both domains, i.e., features with similar characteristics to both domains. The
contrastive loss is calculated according to the Euclidean distance between the two extracted
features so that the similarity of the data points in the vector space increases. Eventually,
the boundary between the two domains is blurred.

4. Experimental Results

In this paper, we examine the effectiveness of a domain adaptation method based
on bidirectional feature learning with generative networks by comparing it with various
domain adaptation methods. This allows us to clearly identify its superiority and strengths.
In this section, we first describe the model implementation and experimental environment,
followed by experimental results and quantitative and qualitative evaluations, including
the datasets used in the experiments. We also provide various evaluation metrics to prove
that it performs well compared to existing studies. We use MNIST, USPS, SVHN, and
EMNIST as datasets. MNIST is a validated dataset. However, the SVHN dataset is a sparse
dataset with varying results depending on the preprocessing. In some cases, it does not
learn at all. Thus, we need to pay attention to the preprocessing for datasets other than
MNIST. More details on these experiments will be discussed in the following sections.

4.1. Experiment Configurations

To implement the model proposed in this paper, the author built the following experi-
mental environment, which is introduced in Table 2.

Table 2. Experimental configuration of experiments for adversarial domain adaptation.

Experimental Setup

Operating System Linux-5.15.109+-x86_64-with-glibc2.35 Windows 10

GPU V100 (Google Colab) RTX 3070 Ti (Personal Desktop Computer)

CPU Intel(R) Xeon(R) CPU @ 2.00 GHz Intel(R) Core(TM) i7-10700F CPU @ 2.90 GHz

RAM 52 GB 32 GB

Language Python 3.10

Framework Pytorch 2.0.1 + cu118

Library (necessary) NumPy, matplotlib, torchvision, pandas, sklearn

In this paper, two experimental environments were used. The hardware environments,
such as CPU, GPU, and operating system, were different, but the software environments
for learning were mostly the same. First of all, we used Python version 3.10 in common and
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implemented and experimented with Pytorch-based models. The version of Pytorch does
not matter much. We used 2.01+cu118, the most recent updated version at the time of the
experiment. Other libraries included NumPy for data preprocessing and image processing
and matplotlib, sklearn, and torchvision for the visualization of results.

4.2. Datasets

The Mixed National Institute of Standards and Technology (MNIST) is a dataset of
handwritten digit images widely used in machine learning and computer vision. As shown
in Figure 3, the dataset consists of images of handwritten digits from 0 to 9. Each image is a
monochrome image with a size of 28 × 28 pixels. Each image is a 28 × 28 pixel grayscale
image represented by a pixel value between 0 and 255. The entire dataset consists of a total
of 70,000 images, of which 60,000 belong to the training set and the remaining 10,000 belong
to the test set. This dataset is used as a representative benchmark for number recognition
problems. It is widely used to compare and evaluate the performance of machine learning
algorithms. Since it has already been widely used, it performs well for classification tasks.
Therefore, we thought it would perform well for domain adaptation. The number of data
was too large for training.

The United States Postal Service (USPS) dataset is a dataset of handwritten digit
images collected from the United States Postal Service. This dataset is primarily used for
recognizing handwritten zip codes. As shown in Figure 4, the data contains digit images
similar in shape and organization to the aforementioned MNIST, consisting of black and
white images with a size of 16 × 16. The entire dataset contains a total of 9298 images, of
which 7291 belong to the training set and the remaining 2007 belong to the test set. This
dataset is used in applications such as address recognition and mail sorting. It can also be
utilized for domain adaptation tasks.

The Street View House Numbers (SVHN) dataset is a dataset of house number images
taken in a street environment, as shown in Figure 5. This dataset is a collection of images
containing numerical numbers of houses. It addresses the problem of number recognition
in a realistic environment. The entire dataset consists of 604,388 images, of which 73,257
belong to the training set, 26,032 belong to the validation set, and the remaining 26,032
belong to the test set. The images were taken in a variety of street conditions, including
complex backgrounds and lighting variations. The SVHN dataset is used to evaluate
performance under realistic conditions. It is one of the most important datasets in the field
of digit recognition.

Figure 3. Samples of MNIST dataset.
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Figure 4. Samples of USPS dataset.

Figure 5. Samples of SVHN dataset.

This dataset is a good dataset for number recognition. Thus, it was also selected in
this study. However, since the dataset itself is taken from real photos, even though it is
labeled, the performance of the dataset may vary depending on the preprocessing.

The EMNIST (extended MNIST) dataset is a dataset of handwritten alphabet letters
and numeric images. This dataset has a similar organization to MNIST, with a total of
814,255 images. Of these, 814,255 images are in the training set. The EMNIST dataset is
used to recognize handwritten alphabet letters and numbers. It is commonly used to solve
the problem of handwriting recognition. It is one of the most important datasets that can
be applied to the problem of recognizing various alphabetic characters and numbers.

As can be seen in Figure 6, it is an extension of the MNIST dataset. Thus, the number
of data is very large compared to MNIST. The reason is that it consists of grayscale images
that are easy to classify, such as numeric data from 0 to 9, letters from a to z, and so on.
Therefore, it was thought that it would be best to run a domain adaptation experiment
with MNIST.
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Figure 6. Samples of EMNIST dataset.

4.3. Performance Metrics

In machine learning and pattern recognition tasks, performance evaluation metrics
play a key role in quantifying and comparing the performance of models. In this section, we
will take a closer look at the main performance metrics used to evaluate the performance of
classification models: precision, recall, and F1 score [32].

First, precision is a metric that indicates the percentage of samples that a model
predicts as true that are actually true. More specifically, precision indicates how many
results the model predicts as positive classes that are actually positive. This metric is
represented by the following formula:

Precision =
True Positives

True Positives + False Positives
(9)

where true positives refers to the number of samples that the model predicts are true and
are actually true, while false positives refers to the number of samples that the model
predicts are false but are actually true. Precision is a measure of how reliable a model’s
positive predictions are, which is important for reducing unnecessary misdiagnoses.

Recall is a metric that shows the percentage of samples that the model predicts as
true out of those that are actually true. In other words, recall shows how many of the true
positive samples in a positive class the model correctly detects. Recall is calculated with
the following formula:

Recall =
True Positives

True Positives + False Positives
(10)

Recall indicates how well the model detects true positives. It is particularly important
for ensuring that positive cases are not missed.

The F1 score is a metric calculated as the harmonic mean of the precision and recall,
which balances the accuracy and precision of the model. It is a useful metric for evalu-
ating a model’s performance from different angles. The F1 score is calculated using the
following formula:

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(11)

The F1 score represents a balance between precision and recall, as shown in
Equation (11). It evaluates a model’s performance by considering both the accuracy of its
positive class predictions and the detection rate of actual positive samples. This provides a
more comprehensive view of a model’s performance than considering accuracy alone. This
concludes our detailed discussion of performance evaluation metrics. These metrics can be
used to evaluate the performance of a model. They can help us to select and refine the right
model for a particular problem.
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4.4. Results

In this section, we will describe experiments conducted using a bidirectional-feature-
learning-based domain adaptation method with a generative network. We will also provide
the overall experimental environment and experimental results. As a quantitative evalua-
tion, we have tried to prove the validity of this paper by comparing the proposed model
with the DANN and ADDA models that already exist. To prove how well the domain
adaptation is achieved, in addition to the comparison between models, the proposed model
was trained only in the source domain and the test accuracy was measured and compared.
This shows that it is an effective way to realize better model adaptation. By using the
loss function, which was not included in the models implemented in the previous studies
mentioned above, the interaction between the generative network and the feature conver-
sion process could reduce the difference in the distribution of data, increase the similarity
of the extracted features, and strengthen the interdependence between the two domains.
This approach was successfully implemented through numerical comparison of several
evaluation indicators. As a qualitative evaluation, the comparison of data points in the
source and target domains before and after learning provided a visualization of how well
the domain adaptation was achieved. This suggests that bidirectional feature learning can
effectively reduce distributional differences between datasets, significantly reducing the
distance between unadapted and adapted data.

Figure 7 shows a visualization of data points without adaptation and with adaptation.
It could be seen from actual experiments that the two-way feature-learning-based domain
adaptation method with a generative network outperformed the traditional one-way
feature conversion method. Compared to traditional domain adaptation techniques, the
method proposed in this paper showed higher accuracy and stability in quantitative
evaluation. Each row shows the results of experiments conducted on different datasets
divided into source and target domains, with red indicating the target domain and blue
indicating the source domain. From the top, each row was organized in the following order:
MNIST −→ USPS, SVHN −→MNIST, EMNIST −→MNIST. In addition, each column could
be divided into cases without domain adaptation and with domain adaptation in each
experimental environment. From the left, column 1 represents the case without domain
adaptation and column 2 represents the case with domain adaptation. It can be seen from
Figure 7 that the model proposed in this study performed well in domain adaptation.

The domain adaptation results in this paper are shown in Table 3. We can see that the
proposed method outperformed other methods by a large margin, except for the SVHN to
MNIST experimental results. This figure shows the test accuracy of the experiments, which
is a value between 0 and 1. The maximum value of 1 indicates 100% accuracy. Therefore,
the results of this model showed a high accuracy, of more than 90%, except for the one case
mentioned above. Even the comparison of figures with existing studies and the results of
learning and testing only the source domain showed a lot of differences. This indicates that
the two-way approach of feature transformation and feature learning through generative
networks can improve the generalization ability of the model by more effectively reducing
distributional differences between domains.

Furthermore, Tables 4–6 show that the ADDA paper is part of a follow-up study
published after the DANN paper. It does not change the fact that it performs better than
DANN to some extent. However, the moment when the DANN model has a higher accuracy
value than the ADDA model is the EMNIST to MNIST experiment shown in Table 3. On the
other hand, the proposed model has a value of more than 0.98 for evaluation metrics, with
the highest value close to 0.998, which means that the performance is good. We focused on
finding the optimal value for the number of epochs through multiple experiments and set
the number of epochs to 150. As a result, the main model took 1 h and 14 min, the ADDA
model took 42 min by pretraining a CNN on the source domain to reduce the time, and the
DANN model took 55 min.
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Figure 7. Visualization of data points without domain adaptation and with domain adaptation.

Table 3. Test accuracy of adversarial domain adaptation between other models for target to source domain.

Method MNIST−→ USPS SVHN−→MNIST EMNIST−→MNIST

Source only 0.601 0.489 0.752

DANN 0.771 0.739 0.984

ADDA 0.894 0.760 0.955

BiFLP-AdvDA 0.961 0.859 0.990

Table 4. Adversarial domain adaptation for MNIST (target domain) to USPS (source domain) dataset.

MNIST−→ USPS

Method Precision Recall F1 Score

Source only 0.714 0.709 0.712

DANN 0.901 0.895 0.899

ADDA 0.920 0.905 0.911

BiFLP-AdvDA 0.989 0.989 0.989
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Table 5. Adversarial domain adaptation for SVHN (target domain) to MNIST (source domain) dataset.

SVHN−→MNIST

Method Precision Recall F1 Score

Source only 0.531 0.528 0.531

DANN 0.676 0.673 0.665

ADDA 0.726 0.711 0.703

BiFLP-AdvDA 0.988 0.988 0.988

Table 6. Adversarial domain adaptation for EMNIST (target domain) to MNIST (source domain) dataset.

EMNIST−→MNIST

Method Precision Recall F1 Score

Source only 0.756 0.621 0.630

DANN 0.821 0.832 0.831

ADDA 0.895 0.894 0.894

BiFLP-AdvDA 0.998 0.996 0.996

The qualitative results also show the superiority of bidirectional feature learning in a
visual quality evaluation. Figure 7 shows a visualization of the experimental results when
only the source domain was trained and tested, on the left, and when the entire model
was trained and tested, on the right. Comparing the two, it can be seen that the proposed
model achieved excellent results in domain adaptation. This can be attributed to the fact
that the generated network reflected the actual distribution of the data well. The effect of
the bidirectional feature transformation also strengthened the interdependence between
the two domains.

Taken together, these experimental results show that the use of generative models
and bidirectional feature learning can significantly improve the performance compared to
various existing domain adaptation studies. It is an effective way to achieve better model
adaptation capabilities. This suggests that using interaction between the generative network
and the feature transformation process is a successful approach to reduce distributional
differences in the data and enhance interdependence between the two domains.

4.5. Discussion

In this section, we present the effectiveness of domain adaptation based on the pro-
posed bidirectional feature learning method with generative networks through experimen-
tal results. We also describe our main contributions through comparison with existing
domain adaptation techniques. The quantitative evaluation showed that the bidirectional
feature learning method had higher accuracy and stability than the one-way feature con-
version method. Domain adaptation results between various datasets confirmed that the
bidirectional feature learning with generative network outperformed previous studies such
as DANN and ADDA. Although it might not be possible to conclude that the robustness
of the model was improved based on the experimental results alone, considering the flow
of minimizing domain information, increasing similarity between features, and reducing
gaps from one-way learning to two-way learning, it is clear that bidirectional feature learn-
ing with a generative network in the field of domain adaptation is effective because the
accuracy and various evaluation metrics recorded higher values than for previous domain
adaptation studies.

The visual quality evaluation visually confirmed that the bidirectional feature learning
method produced good results in domain adaptation. This was determined to be a result
of the generative network more accurately reflecting the actual distribution of the data.
The effect of the bidirectional feature transformation strengthened the interdependence
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between the two domains. Taken together, this study clearly demonstrates that the combi-
nation of the bidirectional feature learning method and generative network shows higher
performance than various other domain adaptation techniques. It is an effective method
for reducing distribution difference between datasets and improving the adaptive ability of
the model.

The limitations of this study are discussed in this section. We believe that there are
four main limitations of this paper. First, this paper proposed a method to solve the domain
adaptation problem by reconstructing real image data, but when the variability in the
domain is high, the quality and generalization ability of the reconstructed image data may
be limited. In particular, it is necessary to discuss how to overcome the limitations for
the adaptation problem between complex and diverse domains. Second, the proposed
method relies on the amount of training data. In the absence of a sufficient amount
of labeled data, the generalization ability of the model may suffer. This is a common
problem in real-world scenarios, and we need to discuss how to develop effective models
even with small amounts of data. Third, although the reconstructed image data were
considered as noisy image data, the performance of the model may fluctuate depending
on the degree and shape of the noise. This may cause the model to be sensitive to noise,
and ways to improve this instability are needed. Fourth, the proposed method can take
a long time to learn and infer, and there may be issues with scalability on large datasets.
There is a need to develop more efficient learning and inference methods to increase their
practical applicability.

5. Conclusions and Outlook

This study proposes a domain adaptation based on a bidirectional feature learning
method with a generative network. The main idea that it introduces outperforms the
traditional one-way feature transformation method in the domain adaptation problem.
Bidirectional feature learning can improve the efficiency of domain adaptation through an
approach that reduces distributional differences in the data and strengthens the interde-
pendence between the two domains through the interaction of the generative network and
the feature transformation process. This idea emphasizes the common features between
datasets. The role of the generative network is to learn the true distribution of the data
more accurately, which improves the performance of the adaptation model and increases
the robustness of the model to noise.

As a future direction of this research, we would like to develop domain adaptation
techniques with higher performance and generalization ability. To this end, we plan to
explore adaptation across more diverse datasets and domains to maximize the general-
ization ability of the model and study its applicability in various domains in the real
world. We also want to develop more robust and reliable domain adaptation techniques by
conducting research for optimizing network architecture and learning strategies with the
effective combination of generative networks and feature transformations. Finally, we plan
to explore the feasibility of using bidirectional feature learning in applications other than
domain adaptation so that it can be applied to a wider variety of problems.
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Abstract: Fruit Freshness categorization is crucial in the agriculture industry. A system, which
precisely assess the fruits’ freshness, is required to save labor costs related to tossing out rotten
fruits during the manufacturing stage. A subset of modern machine learning techniques, which
are known as Deep Convolution Neural Networks (DCNN), have been used to classify images
with success. There have recently been many changed CNN designs that gradually added more
layers to achieve better classification accuracy. This study proposes an efficient and accurate fruit
freshness classification method. The proposed method has several interconnected steps. After the
fruits data is gathered, data is preprocessed using color uniforming, image resizing, augmentation,
and image labelling. Later, the AlexNet model is loaded in which we use eight layers, including
five convolutional layers and three fully connected layers. Meanwhile, the transfer learning and
fine tuning of the CNN is performed. In the final stage, the softmax classifier is used for final
classification. Detailed simulations are performed on three publicly available datasets. Our proposed
model achieved highly favorable results on all three datasets in which 98.2%, 99.8%, and 99.3%,
accuracy is achieved on aforesaid datasets, respectively. In addition, our developed method is also
computationally efficient and consumes 8 ms on average to yield the final classification result.
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1. Introduction

With the rapid developments in computer vision and machine learning methods,
several algorithms have emerged that facilitate automatic object detection and recognition
of various objects [1]. These methods are also benefiting the fruit processing industries,
where classification and grading of fruits freshness are crucial for the manufactures to
produce high-quality products such as fruit juices or tin packs. In an open environment,
fruits are sensitive to numerous viruses and fungi that worry the agricultural industry
and thus result in economic pressure. Physical ordering of fruits to categorize its quality
either fresh or rotten is a laborious procedure. Thus, an automated assessment of fruit
quality is an active research topic, which is experiencing growing interest all over the
world. Recently, several works have appeared in literature that use Deep Neural Networks
(DNNs) and Convolutional Neural Networks (CNNs) to classify the fruit freshness. Fruit
freshness classification methodology is primarily inspired by pattern recognition and object
classification that ultimately produces features set in which fruits are categorized through
extensive training and learning. Multi-fruit categorization has extensive practical applica-
tions such as multi-fruit identification tools can be utilized in self-service fruit purchasing
in supermarkets. It can be handy to eliminate human selection mistakes in production lines
and hence increase efficiency. Nowadays, in agriculture, multi-fruit classification can assist
the breeding of various fruit species. Due to the extensive developments in deep learning
architectures, computer vision-based approaches are thought to be the most intelligent and
cost-effective solutions.
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Studies on object classification use various approaches, for example, Support Vector
Machines (SVMs), linear discriminant analysis, or k-nearest neighbors (k-NN) to improve
accuracy or speed [2]. Fruit freshness is a major factor in determining the quality of fruits
as it can affect their shelf life and overall nutritious value. Figure 1 shows an example of
conditions of fruit from fresh to rotten stage of apples and bananas, respectively. Therefore,
to determine the proper price, the customer must be able to identify the variety of the
fruits that are intended to be purchased. Fruit freshness classification is also crucial for
consumers, as it can help them make knowledgeable decisions about the worth of the fruit
item they are purchasing. It is also important for producers and retailers as it can help them
to accomplish inventory and ensure that their products are meeting quality standards.
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Recently, several machine learning-based methods for fruit freshness classification
have appeared in the literature [3]. Few of them use CNNs, Deep CNNs, and Faster-RCNN
to accomplish the fruits classification task [4]. The CNN models are also implemented
in a number of tasks, for instance, object detection, classification, and recognition [3].
Over the past few years, various CNN architectures have been developed, and they have
demonstrated excellent performance for image classification. Transfer learning is one of the
techniques that uses previously developed architectures on various problems to produce
more accurate results. Deep learning and machine learning techniques integrated with
transfer learning could also be used for image classification. This study investigates the
possibility of transfer learning with regard to CNN models for the quality assessment of
fruits instead of using CNN architectures from starch. In real-life, classification of fruits
is normally carried out by people that we believe is ineffective for fruit farmers and fruit
sellers. Therefore, the development of an accurate classification method is desired, which
will significantly reduce human efforts and costs. A robust fruit freshness classification
method will also reduce the industry’s production time in the agriculture domain by
correctly identifying fruit defects. Therefore, this study proposes a novel and automatic
fruit freshness classification method using fine tuning and transfer learning of the AlexNet.
The effectiveness of the proposed method is validated on three publicly available fruit
datasets. Our main contributions to this manuscript are listed below.

• We develop an automatic fruits classification method that accurately classifies whether
the fruits are fresh or rotten. Our developed method is based on transfer learning,
which uses classical convolutional architectures such as AlexNet. The introduction
of transfer learning with the AlexNet yields higher accuracy than few of the recently
published works with much lower computational complexity.

142



Appl. Sci. 2023, 13, 8087

• We propose an intelligent system that reliably recognizes fruits, for instance, apples,
bananas, and oranges, which are later categorized as either fresh or rotten classes. Au-
tomatic and timely identification of fresh and rotten fruits will enable agriculturalists
to produce large quantities of various fruits and thus put on great value to a country’s
economy.

• We report experiments on three well known and publicly available datasets in our
simulations. Our findings are encouraging as we obtain over 99% fruit freshness
classification accuracy. We are hopeful that our developed method will also be helpful
to customers in supermarkets to identify fresh fruit.

Rest of this manuscript is organized as follows. In Section 2, we briefly review the
recently developed fruits freshness classification methods. In Section 3, we describe our
developed method. While simulation results and comparisons are listed in Section 4
followed by Section 5 that concludes our findings and also hints towards the possible
future work.

2. Related Work

This section briefly discusses recent methods that aim to classify various fruits using
machine learning and image processing-based methods.

In [5], a deep learning-based method to classify fruits and vegetables is developed,
which is primarily based on the YOLOv4 model. This method initially recognizes the object
type in an image and then classifies the object either as fresh or rotten. This model also
improves the backbone of the YOLOv4 version using the Mish activation function, which
results in rapid detection of objects. In [6], researchers analyze and proposed a novel design of
computer vision-based method using deep learning with the Convolutional Neural Network
(CNN) model to detect several fruit freshness level. The specially designed CNN model
is later evaluated and extensively tested with public datasets of fruits fresh and rotten for
classification. This is a nice effort and nicely handles the fruits’ freshness level instantly.

In [7], published work focuses on classifying rotten and good apples. For the task of
apple classification, initially texture features of apples are extracted. For instance, discrete
wavelet feature, histogram of oriented gradients, and law’s texture energy along with
the gray level co-occurrence. Later, various classifiers are applied, for instance the SVM,
the k-NN, and Linear Discriminant. Researchers’ conclude that the SVM classifier yields
98.9% accuracy, which is better than few of the compared classifiers. In [8], eight deep
learning models namely AlexNet, Google Net, ResNet18, ResNet50, ResNet101, VGG16,
VGG19, and NasNetMobile are fine-tuned to assess the quality of fruits and vegetables.
The performance of deep learning models is based on the training and validation accuracy.
The model’s outcome shows that the VGG19 model reached the highest validation accuracy
over the original samples and the ResNet18 model achieved the highest validation accuracy
based on the augmented data samples. In [9], the authors investigate the maturity status of
Papaya fruit by using machine learning. To classify the fruits, the LBP, the HOG, Gray Level
co-occurrence Matrix (GLCM), SVM, K-Nearest neighbor (KNN), and Naive Bayes methods
are applied and compared. Seven pre-trained models are fine-tuned on the given dataset
of Papaya to evaluate the performance of the robust system. The K-Nearest neighbors
(KNN) with the HOG features results high accuracy with much less training rate. In [9],
authors apply deep learning model on the banana different dataset. In this work, bananas’
freshness was analyzed by transfer learning and established the relationship between
freshness and storage dates. Banana feature extraction were extracted by Google Net. The
reported classification accuracy of this model is 98.92%, which is at par with normal human
detection. In [10], authors use k-means clustering along with colors, textures, and shape
features to classify the apple freshness by investigating its disease. This work also uses
multiclass SVM during classification stage.

In [11], a system for classifying fruits and vegetables in supermarkets is implemented,
which combines backdrop removal with a split-and-merge strategy to find fruits and veg-
etables in pictures. This model also employs color, shape, and texture as key identifying
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characteristics. The feature space was condensed using the PCA. Several kernel functions,
such as the MWM-SVM, the MWV-SVM, and the DAG-SVM were used during the al-
gorithm development. The maximum accuracy of 88.2%, was attained by MWV-SVMs
utilizing Gaussian radial basis kernels. In [12], authors published a method for identifying
fruit flaws in retail. Cameras are positioned on the borders of a conveyor to capture orange
data samples. They applied color as a feature in the RGB images and also produced color
histograms. The Fisher-LDA is employed to decrease features size and to reduce noise.
Next, the orange problematic zones are found using the SVM. The trial results showed
that their proposed technique had a 96.7% recall rate. The automotive, commercial, and
agricultural industries, as well as other worldwide businesses, have all made substantial
use of it for object identification and picture categorization. Various image processing and
deep learning methods are extensively used to extract and alter supervised or unsupervised
features from several layers of non-linear data with the aim to classify objects to under-
stand its patterns [13]. In [14], the developed method employed background subtraction
modeling to handle diverse samples. They use a range of recent methods, which include
decision trees, the k-NN, the LDA, and the SVM. Simulations showed that SVM performed
better than a few techniques.

In [15], CNN is used to detect various fruits. This work is performed on a relatively
small dataset, and it produced an excellent performance by yielding 98.92% detection
accuracy. In [16], researchers compared performances of multi-task learning, domain
adaptation, and sample selection bias. They also carried out a detailed review of the method
that are used to detect and classify various objects. In [17], a deep learning-based technique
is used for the freshness classification of Hog Palm fruit. This work uses four CNN-based
models, which were fine-tuned on imageNet Dataset. The Dataset was augmented and used
for training and hyper parameter tuning for the purpose of grid search and k-fold cross
validation the results were compared in terms of different parameters listed therein. In [18],
the proposed method uses VGG16 and the CNN to extract various robust fruits features. In
this work, SVM, decision trees, and logistic regression models were also compared. The
authors concluded that the SVM the achieved highest 99% classification accuracy than the
compared methods. In [19], fruit classification was achieved by using CNN and Softmax,
which yielded 97.14% accurate classification.

The aforementioned is a brief review of the recent methods that handle fruit freshness
detection and classification problems. To achieve accurate results and to facilitate the
humans each of these works performed experiments on standard and publicly available
datasets. While a few researchers, such as [20], gathered their own dataset, which contains
sixteen different species of fruits. The methods briefly described above are a nice addition
to the research domain to tackle the fruits freshness problem. We believe that our work
is latest addition in this domain, which aims to achieve high fruit freshness classification
of different fruits. Our study indicates that machine learning algorithms are helpful to
determine the freshness of perishable items, such as fruits as well vegetables. In addition,
deep learning models focus to extract features. Ultimately, as we will see in the results
section that testing the data on unseen data is a good indicator of the performance of the
developed method. Below we detail our developed method.

3. Methodology

Our developed method has various interconnected modules as shown in Figure 2.
Below, we describe the various modules that are used in our developed algorithm.
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Figure 2. Flow of our developed method.

3.1. Data Collection

To develop our fruits freshness classification method, we acquire different fruits
images data from Kaggle (www.kaggle.com, accessed on 5 June 2023). The Kaggle is a
publicly available dataset and contains different classes of various fruits such as apples,
bananas, or oranges. The fruits image dataset provided by Kaggle contains three kinds of
fresh and rotten images. Moreover, the fruit dataset contains images in separate files, such
as fresh apples, fresh bananas, fresh, oranges, rotten apples, rotten bananas, and rotten
oranges. A few of such sample fruits images are shown in Figure 2. These images are now
pre-processed by the next module.

3.2. Pre-Processing

Data pre-processing is conducted earlier than data manipulation to fit the data for
Convolutional Neural Network (CNN) and various filters are employed therein. In our
method, we performed the pre-processing in following manner.

Color Uniformity: To maintain uniformity, we process all images in the RGB domain.
This essentially creates uniformity in each channel of the image.

Image Resizing: Since, the original dataset contains colored images of different fruits
in several formats and sizes. Therefore, we resize images one by one and label it and store
in separate directory. Hence, we resize images to 227 × 227 × 3.

Image Augmentation: Augmentation is conducted by flipping all images to x-axis and
randomly rotating images. In our work, augmentation is conducted in parallel where each
image was rotated at 90◦, 180◦, and 270◦. Hence, each image created three new images,
which made the size of dataset four times its original size shown in Figure 3.

Image Labeling: Finally, the converted dataset is labelled according to each class they
belong. Training and testing on the test set are conducted concurrently with validation.
Meanwhile, the string labels were also changed into numeric format, which later helps
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the employed models to accurately predict the true labels. The pre-processed data is now
further manipulated as listed below.
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3.3. Data Manipulation

During this phase, each image in the dataset was remodeled into a single size and
scale. We observe that this strategy maintained significant data uniformity. As shown in
Figure 4, we split the pre-processed datasets into three parts, which are validation, train set,
and test set. In our work, 80% of the data is used for training, 10% for validation, and 10%
is used in the test phase. We also state that in each class 100 images were taken randomly.
Out of these 85 images of the single object contains the plane background. While 15 images
of multiple objects contain complex background.
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3.4. AlexNet Architecture

This is an eight layers weighted model in which the first five are convolutional layers,
while the remaining three are fully connected layers [21]. In AlexNet architecture, first
layer processes the input image resolution of 150 × 150 × 3 and applies 96 convolutional
filters 11 × 11 resolution. The output of first layer is processed as the input of the second
layer and 256 convolutional filters of 5 × 5 resolution. Moreover, third and fourth layers
apply 384 convolutional filters with a resolution of 3 × 3. While the 5th convolutional layer
applies 256 kernels of 3 × 3 resolution. In AlexNet, all five layers apply maximum pooling
of 2 × 2 resolution through batch normalization. The selection of an appropriate activation
function encourages us to improve the accuracy of our method. Hence, while choosing the
activation function, we make sure that the gradient function converges quickly and also at
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the infinity of the activation function is not 0. In our work, the ReLU activation function
and its derivate are shown in Equations (1) and (2), respectively.

f (x) = max(0, x), (1)

f ′(x) =
{

1,
0,

i f x > 0
otherwise

. (2)

Equation (2) indicates that the derivative of the ReLU function is continually equal
to 1 during the positive half-axis of x, and is constantly 0 during the negative half-axis of
x. The ReLU function is used in the first five convolutional layers. In addition, the output
from the first five layers is passed to three fully connected layers in which the first two fully
connected layers contain 4096 units, and the last fully connected layer comprises 1000 units.
Final output layer applies the Softmax activation function and consists of 6 units. After the
AlexNet processes the data, in next step, transfer learning is performed as described below.

3.5. Transfer Learning of the CNN

The CNNs are networks that filter inputs for relevant information using constitutional
layers. Constitutional filters along with the CNN layers are used to find neurons outputs
that are linked to specific local input areas. It aids in the extraction of spatial and temporal
visual characteristics. The CNN correctly extracts features from the input image of the
given Dataset. There are three key components in the CNN, which are a convolution layer
that learns features max pooling, which reduces the dimensionality, and finally, a fully
connected layer that classifies the input image.

Transfer learning or knowledge transfer is a technique in which we use pre-trained
network as a starting point to solve specified classification problems. During the transfer
learning phase, we replaced a few upper layers of a fixed model base and added new layers.
While a final layer of the output is replaced with the required classes and for fine tuning
some of the parameters are changed such as epochs, size, and learning rate to achieve better
performance. The parameters used for the experiments were set as:

No. of epochs = 10, Batch size = 32, and Learning rate = 10−5.

3.6. SoftMax Classifier

Softmax or multinomial logistic regression has a unique advantage to deal the N-
dimensional vectors. The Softmax is widely used in diverse fields including deep learning
for various objects classification [22]. The Softmax classifier determines the probability of
extracted vectors for classification. For the same data set, it gives the sum of the probability
equal to 1 for all vectors as indicated by Equation (3).

f j(z) =
ezj

∑k ezk , (3)

where z is the input vector obtained from fine-tuned network in previous stage. These
results are mapped to the probability domain from the exponential domain. We select
Softmax loss function for fruits classification. Our study indicates that this Softmax function
has good performance and converges quickly. Mathematically, the Softmax loss function is
modelled as shown in Equation (4).

LossSo f tmax =
1
N ∑i −log

ezyi

∑j ezj , (4)

where N represents the output value of last fully connected layer of the correct class (yi).
Moreover, zj is the output value of the last fully connected layer of the jth class.
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Equations (3) and (4) indicate that the LossSo f tmax function uses the data from correct
labels and maximizes the possibility of data. Meanwhile, it also ignores the information
from the prevailing incorrect labels. Algorithm 1 shows the pseudo cod of our developed
method. Algorithm 1 indicates that the fruits images, which are obtained from the Kaggle
dataset, are pre-processed as described in the above section. In Algorithm 1, from lines (2)
to (8) the gathered data is processed, which is later fed to the deep learning models. The
data processed in initial stage is now processed by the AlexNet model as indicated in
lines (9) to (15). During the AlexNet operation, all the eight layers are used. For first five
convolution layers, the ReLU activation function is used. The other layers are utilized
as described in above section. From lines (15) to (20), transfer learning of the CNN is
performed. Meanwhile, the CNN is fine tuned in which epochs, batch sizes, and learning
rate is set as shown in lines (18) and (19) of Algorithm 1.

Algorithm 1: Pseudocode of fruits freshness classification method

1. Input: Obtain colored fruits images
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Data Collection from Kaggle
2. do:
3. Process collected data obtained in step (1).
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8. end
9. begin
10. Load AlexNet model
11. Activate 8-layers including 5 conv layers and 3 fully connected layers.
12. Use ReLU for first 5 conv layers.
13. Process and utilize 8-layers as depicted in Section 3.4.
14. end
15. begin
16. Transfer learning of the CNN
17. Apply fine tuning and set the parameters as:
18. Epochs = 10 and Batch size = 32,
19. Set the learn rate = 10−5

20. end
21. Apply softmax classifier:
22. Use Equations (1) and (2) for classification tasks.
23. Output: Final classification result:
24. Fresh fruit or Rotten fruit

In the final stages, the softmax classifier is used to predict the final status of the fruit. It
will be shown in next section that our developed method is robust and accurately classifies
the fruit condition instantly. Moreover, the steps shown in Algorithm 1 are simple and easy
for readers to follow. In section below, we detail our findings along with useful images. In
addition, we also discuss our observations during algorithm development stages.

4. Simulation Results

This section lists the experimental setup, used datasets brief description, fruits classifi-
cation results, discussion, and observations in detail.

4.1. System Specifications and Experimental Setup

Our developed algorithm was executed on an Intel® NY USA Core I-i53550 machine,
which has a CPU@3.30 GHz along with the facility of a NVIDIA GTX1080 graphics card.
The aforesaid machine has 16 GB of RAM, which is sufficient to investigate the fruits
freshness classification results that are yielded by our developed algorithm. Moreover,
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Table 1 lists the parameters and experimental setup that is used throughout the simulations
during the transfer learning of the CNN. As shown in Table 1, during our all simulations,
the SGDM optimizer is used along with a learning rate of 10−5. The L2 regularization
was used in our method. Moreover, the validation frequency was set to 50 along with
epochs and batch size were set to 10 and 32, respectively. The data was shuffled after the
completion of every epoch. To achieve the classification output in a reasonable time, the
pace of the momentum was set to 0.9. Training and test image resolution is 227 × 227 pixels.

Table 1. Experimental setup during simulations.

Parameter Simulation Environment

Training/test image resolution 227 × 227 pixels

Optimizer SGDM

Learning Rate 0.0001

Validation frequency 50

Epochs 10

Batch Size 32

L2 Regularization 0.0001

Gradient Threshold Method L2norm

Gradient Threshold Inf

Validation Patience Inf

Shuffle Every-epoch

Momentum 0.9

In sections below, we describe the details of the datasets that we used during our
algorithm execution along with detailed qualitative and quantitative analysis. For each
of these sections, a detailed discussion is also carried out along with our findings and
recommendations.

4.2. Datasets Description

To simulate and validate our developed fruits freshness classification method, we choose
three publicly available datasets. Below, we briefly present the details of each of the dataset.

Dataset 1: This data set contains 12,000 diverse images of fresh and rotten categories of
fruits and vegetables [5]. Specifically, this dataset contains ten different classes. Prominent
categories of fruits gathered in this dataset are apple, banana, orange, mango, strawberry,
potato, carrot, tomato, cucumber, and bell peper. Each of the fresh categories in this dataset
contain at least 600 images, while the rotten category contains minimum of 500 images. A
few of the sample images from this dataset are shown in Figure 4.

Dataset 2: This data set contains total of 13,346 images of fresh and rotten fruits [19].
The foremost categories of this dataset are total of 6 classes, out of which are 3 classes for
each fresh and rotten for apple, orange, and banana. Table 2 depicts the details of this dataset.
From Table 2, it is clear that for fresh fruits category of apple, orange, and banana, this dataset
contains at least 1400 images. While the rotten categories of apple and orange contain over
2200 images. Rotten banana in this case has the least gathering of 1595 bananas.

Dataset 3: This data set contains total of 3200 images in a duration of two weeks
in March 2022 [20]. This dataset has been organized into 16 major classes, which are
fresh and rotten grapes, fresh and rotten guavas, fresh and rotten jujubes, fresh and rot-
ten pomegranates, fresh and rotten strawberry, fresh and rotten apples, fresh and rotten
bananas, and fresh and rotten oranges. Few sample images of this dataset are shown in
Figure 5. Developers of this dataset also provided the augmented images of these classes,
which result in a total of 12,335 images.
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Table 2. Statistics in Dataset 2.

Classes Training Testing

Fresh Apple 1693 394

Fresh Orange 1581 381

Fresh Banana 1466 388

Rotten Apple 2342 478

Rotten Orange 2224 436

Rotten Banana 1595 368

Total 10,901 2445
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4.3. Evaluation Parameters

In our method, we use two well-known parameters, which are theaccuracy and
confusion matrix as briefly described below.

Confusion Matrix: it is a popular parameter that assesses the effectiveness of any
classification model. Normally, a confusion matrix is a square matrix, which indicates the
predicted classes against the actual classes. The rows in a confusion matrix denote true class
labels, while columns indicate predicted class labels. In our work, we use the confusion
matrix for each of the three datasets to analyze the performance of our developed fruits
freshness classification method. A confusion matrix provides us the flexibility to compute
several classification performance matrix, such as Accuracy, as described below.

Accuracy: it is a well-known parameter and is widely used in classification and
recognition related tasks. In our work, we believe that Accuracy is a good indicator to
evaluate our developed classification method as it is extensively used to measure the pixels,
which are correctly classified by any model. Mathematical accuracy is formulated as shown
by Equation (5)

Accuracy =
True Positives + True Negitives

True Positives + True Negitives + False Positives + False Negitives
, (5)

where True Positives and True Negatives belong to the true fruits positive and negative
classes, respectively. While False Positives are fruits that are incorrectly classified as
positives and False Negatives are fruits, which are incorrectly classified as negatives.

4.4. Fruits Classification Analysis

In this section, we discuss in detail the performance of our developed method through
confusion matrixes for each of the datasets described earlier. For Dataset 1, Figure 6 shows
our developed classifier’s performance through a confusion matrix. The diagonal in the con-
fusion matrix indicates true positives or actual values and shows the classification accuracy,
which is achieved by our developed method. As discussed earlier that Dataset 1 contains
20 classes in which each of the fresh and rotten classes contains 10 items, respectively. For
each of the fresh categories of apple, banana, and mango, 100% classification accuracy is
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obtained. Whereas for the fresh categories of orange and strawberry, our proposed method
yields 99% accuracy.
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For the rotten categories of banana and strawberry, our classification method yields
100% accuracy. While for the aforesaid categories of apple, mango, and orange, our
developed method yields 97%, 99%, and 98% classification accuracy, respectively. We note
that once the training of the CNN is completed almost 98.2% classification accuracy is
obtained immediately. Figure 6 also shows the accuracy of fresh and rotten vegetables,
such as bell pepper, carrot, cucumber, potato, and tomato, respectively. Since our method
is confined to fruit categories only, therefore, we believe that this provided accuracy
comparison is useful for the research community.

Figure 7 shows the classification accuracy obtained by our developed method on
Dataset 2. Since this dataset contains total of three fruits with six classes. As shown
in the diagonal of Figure 7 that for each of the fresh apple, banana, and orange our
developed method obtains 99.2%, 100%, and 99.7% accuracy, respectively. Similarly, for the
rotten categories of these fruits, our proposed algorithm obtains 99.8%, 100%, and 99.7%
classification accuracy for apple, banana, and orange, respectively. We believe that these
findings are useful and encouraging. In the future, many food industries might also benefit
from our findings.
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Figure 7. Confusion matrix for Dataset-2.

In our series of experiments, Figure 8 reports our experiments on Dataset 3, which was
briefly described earlier. This is a huge dataset and contains several classes. As can be seen
in Figure 8, for fresh categories of apple, banana, guava, jujube, orange, pomegranate, and
strawberry, our developed method yields 100% classification accuracy. Moreover, for fresh
category of grape, our developed algorithm yields 96% classification accuracy. Similarly, for
the rotten categories of the aforementioned fruits, 100% classification accuracy is obtained
for apple, banana, grape, orange, and strawberry. We are optimistic that our findings are
encouraging and useful.
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4.5. Comparison

In this section, we present the comparison of our developed method with several
other methods on same datasets. We compare our work with three recently reported
fruit freshness classification methods [5,19,20,23–25]. For fair comparison, we use the same
training strategy as reported by above-described methods. Table 3 shows the mean accuracy
comparison. From Table 3, a few important observations are listed below.

• On Dataset 1, the YOLO based method [5] reports 97% fruit freshness classification
accuracy. On this dataset, our proposed method yields 98.2% classification accuracy.

• On Dataset 2, our developed method yields 99.8% classification accuracy and beats all
the compared methods. In this dataset, the ResNet-50 based method [24] also reported
an encouraging classification accuracy of 98.89%. Moreover, dataset [20] reported
detailed classification results by implementing several architectures with the mean
outcome of 88.77% fruit freshness classification.

• In [25], Dataset 3 is introduced. To the best of our knowledge, none of the work
reports accuracy on this dataset. On this dataset, our developed method yields 99.3%
fruit freshness classification. On the whole, our developed method achieves a mean
accuracy of 99.1% on all three fruits datasets.

• We believe that our findings are encouraging and will be useful for various fruit
packing industries. At advanced level, our method can also be used to know the fruits
freshness level when they are growing with the tree.

Table 3. Mean accuracy (%) comparison.

Method
Datasets

Dataset 1 Dataset 2 Dataset 3

[5] Improved YOLO 97% – –

[19] Trained CNN – 97.14% –

[20]

MobileNetV2 _ 88.62% –

ResNet50 _ 73.26% –

VGG16 _ 96.10% –

InceptionV3 _ 97.10% –

Mean
Accuracy [20] 88.77%

[23]
Compare different feature

extraction techniques
classification through SVM

_ 97.61% _

[24] Freshness classification
using RESNET50 _ 98.89% _

[25] CNN + ResNet50 _ _
Pioneered to

introduce this
dataset.

Proposed Method 98.2% 99.8% 99.3%

4.6. Discussion

The points discussed above give good insight about the fruit freshness classification
performance of our developed method. However, the discussion below sheds more light
on the performance of our developed algorithm.

• Our study indicates that different networks achieve diverse accuracy outcomes
on different algorithms. The MobileNetV2 trained by [20] on Dataset 2 achieves
97.14% classification accuracy. Whereas VGG16 and InceptionV3 achieve 96.10%
and 97.10% classification accuracy, respectively. On Dataset 2, the ResNet50
achieved the lowest classification accuracy of 73.26%.
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• Our method in general performs well on all the three datasets and achieves at least
98% classification accuracy as reported on Dataset 2 and also shown in Table 3. We
believe that for Dataset 2, our proposed method has almost solved the fruit freshness
classification problem by achieving the 99.8% accuracy.

• In general, all the compared methods perform well to handle the fruits freshness
classification challenge and achieve at least 88% accuracy. One of the reasons for our
developed method’s superior performance is employment of data augmentation in pre-
processing stage, which significantly mitigates overfitting on small datasets. Similarly,
while using the pre-trained CNN architecture model and replacing the last layer
with required targeted class also are reasons for our model’s superior classification
performance.

• Our method achieves high accuracy and outperforms several recently published
works [5,19,20,23–25] due to intelligent selection of the AlexNet architecture. Our study
indicates that the training time of AlexNet architecture is five times faster as compared
to others deeper architecture speed. Moreover, the AlexNet is computationally efficient
and does not require high performance workstation [26]. Similarly, in presence of
other functions, for instance, tanh, logistic, arctan, or Sigmoid as activation functions,
the AlexNet uses the ReLU activation function that drastically reduces likelihood of
vanishing gradient problem.

• The layers in the AlexNet architecture contains more filters and each convolution layer
is followed by a pooling layer. Such characteristics motivated us to utilize the AlexNet
to address the fruits classification problem. Similarly, rotation and augmentation
procedure as described in Section 3 increases the fruits images that ultimately resulted
in good training of the AlexNet architecture, which later yields high accuracy.

• Recently published works, for instance, refs. [26–31] could also be investigated to de-
velop a more robust fruits freshness classification method. Similarly, few of the [32,33]
could also be investigated and optimized to develop a more robust and accurate
algorithm that can detect and classify large species of several fruits.

4.7. Limitations

Although our proposed method achieves promising results in the aforementioned
datasets. However, for the research community below, we briefly discuss the limitations
faced by our developed algorithm.

• Since our method uses the AlexNet architecture, during the preprocessing stage our
method consumes a bit more time.

• Since the AlexNet model was pre-trained on ImageNet dataset, which consists of
1000 object categories. Therefore, the model’s performance and features are biased
towards the visual patterns and objects that are present in the dataset. If the targeted
class is significantly different from ImageNet dataset, then the pretrained feature may
not generalize well, which ultimately leads to the reduced performance.

• The robustness of transfer learning depends on the similarity between the pre-training
dataset and the target dataset. The AlexNet was trained on a large-scale dataset with
millions of labeled images. If the target dataset is small or significantly different in
terms of image content, style, or domain, then the pre-trained features may not capture
the relevant patterns, which will also result in reduced classification performance.

• We observe that fruit classification remains a difficult task for a machine learning
algorithm due to several reasons. For example, fruits shape, colors, and texture
similarity among various fruits species. Moreover, high variations in a single fruit
class that is dependent on fruit maturity phase, and the actual condition when some
fruit is presented such as fruits placed inside plastic bags, sliced, or unpicked from
farm. In such scenarios, our developed method might struggle to accurately classify
the fruits freshness.
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4.8. Computational Complexity

In Figure 9, we show the computational complexity of our developed method. We
work in three different databases in fresh and rotten fruit datasets. Training took almost
67 h on all three datasets. For Dataset 1, training took 31 h on 32,667 images and tests
images are 1000. While for Dataset 2, almost 17 h were consumed on 10,901 images and
tests images are 2445. Finally, for Dataset 3, our method consumed 19 h with 12,335 images
and tests images are 1600. As shown in Figure 9 in Dataset 1, test image consumes almost
8 ms to yield the final classification output. Similarly, for Dataset 2, slightly over 13 ms are
consumed to obtain the final output. Our method requires almost 10 ms to yield the final
classification result on Dataset 3. As shown in the last tower in Figure 9, on the average,
our method requires almost 8.8 ms to yield the final classification result.
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Figure 9. Computational complexity of our proposed model.

5. Conclusions

This paper focused on the use of a deep convolutional neural networks model to
propose a fully automated fruit freshness classification method. To check the quality
standard of fruit, the consumer first manually checks the freshness of the fruit. We used
transfer learning of CNN model AlexNet to develop a robust to assess the quality of
fruits. We changed some hyper parameters while fine-tuning and obtained an enhanced
performance of our algorithm. We also varied other parameters, such as learning rate and
batch size. We achieved higher accuracy with our fine-tuned CNN model through transfer
learning produce. Our proposed model achieved an average accuracy of 99% on three
publicly available fruits datasets.

In the future, we aim to increase the variety of fruits so that the farmers will easily
judge fresh and rotten fruit. This will essentially help them to purchase better quality fruits
from the market. We also intend to develop a user-friendly mobile application that will
display the classification results of more fruits and vegetables. Moreover, we also aim to
generalize the evaluation of our developed method on more classes such as extra vegetable
species. Furthermore, we also aim to investigate the effects of different parameters, for
instance, the activation function, pooling function optimization, and a loss function. Finally,
to handle the execution of complex machine learning and deep learning-based methods,
our method can also be deployed into a cloud-based framework.
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Abstract: The accurate and reliable extraction and matching of distinctive features (keypoints) in
multi-view and multi-modal datasets is still an open research topic in the photogrammetric and
computer vision communities. However, one of the main milestones is selecting which method is
a suitable choice for specific applications. This encourages us to develop an educational tool that
encloses different hand-crafted and learning-based feature-extraction methods. This article presents
PhotoMatch, a didactical, open-source tool for multi-view and multi-modal feature-based image
matching. The software includes a wide range of state-of-the-art methodologies for preprocessing,
feature extraction and matching, including deep learning detectors and descriptors. It also provides
tools for a detailed assessment and comparison of the different approaches, allowing the user to
select the best combination of methods for each specific multi-view and multi-modal dataset. The
first version of the tool was awarded by the ISPRS (ISPRS Scientific Initiatives, 2019). A set of
thirteen case studies, including six multi-view and six multi-modal image datasets, is processed by
following different methodologies, and the results provided by the software are analysed to show the
capabilities of the tool. The PhotoMatch Installer and the source code are freely available.

Keywords: photogrammetry; computer vision; artificial intelligence; feature-based matching; feature
extraction methods; hand-crafted methods; learning-based methods

1. Introduction

Feature-based image matching is a process that provides a correspondence between
two or more images connecting basically local image features. The development of au-
tomatic and accurate image-matching processes has been a traditional problem in the
field of photogrammetry and computer vision [1]. At present, modern camera orientation
techniques such as Structure from Motion (SfM) or Visual Simultaneous Localization and
Mapping (VSLAM) also rely on the extraction of accurate and reliable homologous points
between images. Particularly, these correspondence points between images are normally
used within the image orientation and self-calibration process, exploiting globally inherent
geometric constraints in an optimization scheme known as bundle adjustment. Image
matching can be used for object recognition and tracking, including some specifically
hand-crafted features [2,3] and, more recently, deep learning approaches [4–7].

The spread of smartphones with powerful cameras, as well as the development
of automatic tools for the creation of 3D models from a set of images, has led to the
democratization and popularization of photogrammetry and computer vision. At first,
photogrammetry was applied only by experts with good knowledge and expertise and
using very specialized equipment. At present, techniques such as SfM, together with

Appl. Sci. 2023, 13, 5467. https://doi.org/10.3390/app13095467 https://www.mdpi.com/journal/applsci158



Appl. Sci. 2023, 13, 5467

multi-view stereo (MVS), allow for the creation of 3D models by end-users without specific
knowledge [8–12]. The creation of 3D models from images acquired by non-experts also
presents a challenge for image matching, since the basic rules and protocols for imagery
acquisition are often not fulfilled [13]. These amateur users will often acquire images with
low overlap, at different scales and perspectives, or even with large differences in lighting
or other radiometric conditions.

Although modern matching techniques cope with images with radiometric and ge-
ometric variations, the image matching process is especially challenging in the case of
multi-modal images. Multi-modal image matching is performed between images coming
from different sensors or different acquisition techniques and those with significant and
nonlinear radiometric distortions. The differences can be due to the use of different sensors
(e.g., multispectral, thermal, depth cameras), differences in data types (e.g., drawings
vs. photography, vector vs. raster), or different illumination conditions (e.g., day/night
images). Multi-modal matching is a critical task for a wide range of applications, such
as medicine [14], cultural heritage documentation [15], multitemporal monitoring [16] or
person re-identification [17,18], among others.

Image matching algorithms can be classified in two large groups: (i) traditional hand-
crafted methods, and (ii) learning-based methods. The latter group utilises artificial intelligence
for the development of new detectors and descriptors learned from the data [19]. While the
hand-crafted feature-extraction methods are well-established in photogrammetric processes,
they are not able to overcome important geometric, radiometric and spectral changes.

The number of artificial intelligence algorithms that can be used for image matching
is rapidly growing. As a consequence, the selection of a suitable combination of detector,
descriptor and matching function for a specific case is a complex task [20]. A detailed study
must be conducted for each type of data to select the best algorithm from the increasing
number of available options. Additionally, it is important not to overlook the manual
configuration of certain input parameters, which can be highly theoretical and difficult for
end-users to understand. Configuring each option is a time-consuming process, especially
when including deep learning methodologies and training processes. Furthermore, there is
a lack of tools that facilitate the processing, comparison, and assessment of the different
feature-based image matching methodologies.

The purpose of the present study is to try and contribute to the scientific community
in this gap. Here, we introduce PhotoMatch, an educational and open-source tool for multi-
modal and multi-view feature-based image matching. The tool allows for the use of a wide
range of algorithms for keypoint detection, description, and matching. It also provides a
method for evaluating and comparing the obtained results among different approaches in a
didactic way, including the ability to provide reference data for the evaluation of the tested
methodologies. In [21], a first version of the PhotoMatch tool was presented and awarded by
ISPRS (ISPRS Scientific Initiatives, 2019). This article presents a new version of the PhotoMatch
tool, which includes several improvements and consolidated learning-based methods.

The standard methodology for hand-crafted methods consists of feature detection,
feature description, and matching:

• Detectors identify distinctive features (keypoints), localizing meaningful and salient
regions of the image, and extracting these regions as patches. These patches are
generally normalized in order to achieve invariance to geometric and radiometric
transformations. These keypoints are represented by their point representatives, such
as the centre of gravity or other distinctive points.

• Descriptors analyse the neighbourhood of the keypoints and create a 2D vector of
information based on the different mathematical properties of the point and its neigh-
bourhood. Usually, distance is used to establish the candidate correspondences.

• Matching identifies homologous keypoints between images using the information
provided by the descriptors. The most common matching methods are brute-force
and Flann [22], and robust matching by means of spatial global or local constraints,
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such as those provided by epipolar geometry [23] and RANdom SAmple Consensus
(RANSAC) [21–24].

A wide range of detectors and descriptors has been developed in the last decades [25]
SIFT [26], and its last version RootSIFT [27], which introduces a slight variation in the
descriptor computation; SURF [28]; or MSD [29]. These are just a few examples of the
large number of detectors and descriptors available in the scientific community. SIFT
has monopolised feature-based matching in the last two decades. SIFT matching relies
on keypoints, whose associated patches are normalized to become invariant to scale and
rotation changes. Nevertheless, although SIFT is still valid and able to obtain robust results
in the SfM pipelines, it is not invariant to considerable scale and rotation changes, and even
less invariant to radiometric and/or spectral changes.

Deep learning detectors and descriptors have emerged in recent years as a promising
alternative to hand-crafted methods, especially for multi-modal matching [14]. Although
learning-based methods are often seen as a replacement of hand-crafted methods, they
still face an important number of challenges. In particular, acquiring sufficient data to
effectively train and evaluate deep learning algorithms can be challenging in many ap-
plication fields. Furthermore, the variability in the types of multi-modal combinations
complicates the development of tools that can be simultaneously utilized across a wide
range of applications [14,30].

The challenge of acquiring the data required for training is being overcome by the
development of unsupervised learning approaches. For image matching, unsupervised
learning approaches include techniques such as the use of video, where the temporal coher-
ence between frames can be used for model training [31]. Nevertheless, these approaches
require a high amount of video data, which are not always available for other applications,
such as medical imaging.

In certain complex scenarios, or when dealing with multi-modal datasets, learning-
based methods might outperform hand-crafted methods. A high number of deep learning
algorithms have been presented for keypoints’ detection and description, many of them
focused on specific applications [20,30,32,33], and many are fully available and tested. For
instance, in the last Image Matching Challenge (IMC) (Image Matching Challenge—2022
edition) [34], the best-performing algorithms were ASpanFormer [35], and combinations
of SuperGlue [36], SuperPoint [37], LoFTR [38], DKM [39] and DISK [40]. Although
the datasets of IMC included images with different positions, cameras, illumination or
even filters, they did not include multimodal datasets (i.e., a combination of different
sensors or combination of images coming from different wavelenghts). A comparison
and evaluation of the best IMC algorithms was also carried out by other authors [41],
using multi-view imagery and applied to cultural heritage. However, the obtained results
did not show a clear winner, with some algorithms performing better than others under
specific conditions. Trying to find specific multi-modal image matching contributions, other
authors used TILDE [42], SuperPoint [37], and LF-Net [33]. More recently, an outstanding
turning point was the “detect-and-describe” approach, D2-Net, network [43], and the
repeatable and reliable detector and descriptor R2D2 [44], which represents a step forward
in photogrammetry and computer vision.

Being aware of the pros and cons of the existing learning-based methods, these two
methods, D2-Net and R2D2, were included in PhotoMatch.

This paper has been structured as follows: after this introduction, the tool, PhotoMatch,
is described in Section 2. Section 3 outlines and analyzes the main results focused on multi-
view and multi-modal images. Section 4 is devoted to highlighting the main conclusions
and future perspectives.

2. PhotoMatch

PhotoMatch is an educational and open-source tool developed in C++ and Qt, which
was awarded by the ISPRS through a Scientific Initiative [45]. It is available at https:
//github.com/TIDOP-USAL/PhotoMatch/releases (accessed on 20 February 2023). The
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tool follows a pipeline of six steps: (i) project and session definition, (ii) pre-processing,
(iii) feature extraction, (iv) feature matching, (v) quality control, and (vi) export (Figure 1).
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2.1. Project and Session Definition

This first step allows for the creation of a new project and uploading of the images.
Each project can consist of one or several sessions, enabling a comparative assessment of
the results. The tool accepts common image formats and an unlimited number of images.

2.2. Image Pre-Processing

Image pre-processing is stated as a fundamental step prior to feature extraction.
The goal is to improve the radiometric content of the images, and thus to facilitate the
subsequent feature extraction and matching process. This pre-processing is especially
useful in cases with unfavourable texture images [46].

PhotoMatch offers different approaches to image pre-processing (Figure 1), including
decolorization [47], Adaptive ContrastEnhancement Based on modified Sigmoid Func-
tion (ACEBSF) [48], Dynamic Histogram Equalization (DHE) [49], Parametric-Oriented
Histogram Equalization (POHE) [50], Recursively Separated and Weighted Histogram
Equalization (RSWHE) [51], and Wallis Filtering [52]. Pre-processing is highly recom-
mended to obtain better results in the successive steps.

2.3. Feature Extraction

The feature extraction includes the detection and description of keypoints. The tool
includes several alternatives that can be classified as hand-crafted or learning-based feature-
extraction methods (Figure 1).

A total of 20 different hand-crafted methods were implemented. These include:
SURF [28], SIFT [26], AKAZE [53] or MSD [29]. Most of the hand-crafted algorithms
include a detector and a descriptor, which can be combined (e.g., SURF detector and SIFT
descriptor). Different advanced parameters can be tuned, providing educational support
for each available algorithm. An example of the MSD and SIFT options is provided in
Figure 2b.

In addition, the Affine SIFT (ASIFT) [54] algorithm is also available. This algorithm
computes a fully affine invariant matching. It is specifically designed to deal with images
that present considerable geometric variations in terms of scale and perspective. The
algorithm simulates all possible views by modifying the longitude and latitude of the
camera orientation parameters. The ASIFT algorithm can also be used, in combination with
other similarity invariant-matching methods such as SURF, BRISK [55] or AKAZE.
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Regarding the learning-based methods, two deep learning detectors/descriptors were
incorporated in PhotoMatch: D2-Net [43] and R2D2 [44]. This selection was made based on
their outstanding performance, and considering that these algorithms are freely available
and use pretrained models, so they are not designed for a specific type of data.

D2-Net uses a single convolutional neural network for simultaneous feature descrip-
tion and detection. Instead of carrying out the detection of low-level image structures,
the process is carried out after the computation of the feature maps, when more reliable
information is available. This has been assessed on multi-modal datasets, where it has
proven to perform well for the matching of features under challenging illumination or
weather conditions.

R2D2 also simultaneously acts as a keypoint detector and descriptor. This includes a
local predictor of discriminativeness during learning, to avoid areas with salient features but
where accurate matching is not possible due to repetitiveness (e.g., sea waves or canopy). It
has been proven to perform especially well for the matching of day and night images.

The included deep learning algorithms were incorporated within PhotoMatch with
pretrained models, while the selection of different pretrained models is also an option.
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2.4. Matching

The matching process consists of finding the right correspondence between previously
detected keypoints. PhotoMatch includes Brute-force and FLANN [22] as classical match-
ing methods, while Robust Matching (RM) and Grid-based Motion Statistics (GMS) [56]
are also possible matching strategies. The available descriptors distances are L1, L2, and
Hamming Norm [57]. Then, the matching process is filtered using different methods.
Homography [37], or Fundamental Matrix [58] can be combined with different computa-
tional methods, including RANSAC, all points, Least Median of Squares (LMedS), and
Spearman’s RHO Correlation Coefficient (Figure 2c).

2.5. Assessment of Results

The main limitation in the analysis of feature-based image matching results is the
unavailability of reliable reference data. To overcome this issue, PhotoMatch includes a
reference data editor (as shown in Figure 3) that allows for the end-user to manually and
accurately introduce a set of matching points. These points are later used to assess different
feature-based matching algorithms.
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Once the reference matchings are defined, PhotoMatch calculates and graphically
represents the Receiver Operating Characteristic (ROC) curve and the Detection Error Trade-
off (DET) curve, which illustrate the error in feature-based image matching. PhotoMatch
offers the option to choose between homography or a fundamental matrix to compute these
errors. Homography should be used when all points in the image are on the same plane,
while the fundamental matrix should be selected when the points are not co-planar.

Furthermore, PhotoMatch provides a user-friendly visualization of the matchings (as
shown in Figure 4), allowing for a better interpretation of the results.
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2.6. Export

Finally, PhotoMatch allows for the exportation of the extracted keypoints and match-
ings in different formats, including XML and YML for OpenCV and plain text. This allows
for end-users to import and use these observations in other tools for image triangulation
(bundle adjustment) or photogrammetric reconstruction. This also allows for a more de-
tailed assessment of the results to be carried out, or for the combination of the algorithms
presented in PhotoMatch and other approaches.

2.7. Educational Information

PhotoMatch includes educational information with a short introduction to the different
algorithms. The scientific references are also included in a more detailed explanation of the
process (Figure 4). In this way, the idea is to provide researchers, students, and even end-
users, with the information needed to select the optimal parameters and combinations for
each algorithm. This also contributes to making PhotoMatch an educational and research
resource, far from being a black-box tool. Last but not least, thanks to its exportation
capabilities, PhotoMatch offers a solution for SfM tools that cannot correctly solve the
matching and, thus, the orientation of the images.

3. Experimental Results and Discussion

Six multi-view and six multi-modal case studies with different characteristics were
selected and analysed to show the PhotoMatch capabilities. Different feature detectors, de-
scriptors and matching were used for each dataset and the obtained results were compared
and assessed.

3.1. Multi-View

The selected multi-view datasets are related to the close-range photogrammetric
applications. Due to the widespread adoption of SfM and MVS tools for 3D modeling,
feature-based image matching has become a critical process. As end-users increasingly
apply photogrammetry, this method must overcome more challenging conditions than
traditional aerial photogrammetry, such as larger geometric and radiometric differences.

To this end, we selected six multi-view datasets, each composed of four images.
Four sets of images were obtained from the ETH3D benchmark (https://www.eth3d.net/
datasets, accessed on 11 November 2022) and comprised the images of a façade (Figure 5a),
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a forest (Figure 5b), a playground (Figure 5c) and a boulder (Figure 5d). The façade dataset
is characterised by low overlap and repetitive features; the forest dataset is characterised
by low resolution and unfavourable lighting conditions; for the playground dataset, the
viewpoints between images have large differences; the boulder dataset also has a low
overlap, but distinctive features that should help to solve the feature-based image matching.
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The last two multi-view datasets were obtained from the public benchmark VGG Oxford
(Visual Geometry Group—University of Oxford, accessed on 11 November 2022). The images
cover a planar wall covered by graffiti. For one of the datasets, the images have good overlap
and low geometric differences (Figure 5e). For the last dataset (Figure 5f), two of the images
are synthetically derived from the other two and enclose considerable geometric differences,
substantially hampering the matching process, even for a human operator.

3.2. Multi-Modal

Considering the increasing popularity of sensors and cameras, the multi-modal matching
of images is a growing demand in many applications. We selected some of the most common
examples: the combination of thermal and visible imagery for a building (Figure 6a); scanning
electron microscopy (SEM) images, including a backscattered electrons and secondary electron
images of a mineral surface (Figure 6b); the combination of visible and range imagery from a
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laser scanner (Figure 6c); the combination of visible and thermal for aerial imagery (Figure 6d);
satellite imagery with different wavelengths, where two images were synthetically derived by
applying geometric and radiometric distortions to the other two images (Figure 6e); Magnetic
Resonance Imaging (MRI) with different visualization parameters, used to highlight different
tissues and synthetically derived images (Figure 6f).
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For the first case (Figure 6a), the matching was carried out for a visible and a thermal
image of a building for its energetic inspection. The second case (Figure 6b) is composed
of two SEM images: an imaging technique used to analyse the surface of a sample at very
high magnifications, used in various scientific fields such as materials science, geology,
archaeology and biology to gain insight into the structure and composition of a sample. The
third case (Figure 6c) corresponds to a visible and a range image of a heritage building for
its 3D reconstruction and texture mapping. The resulting matching can be used to improve
the registration between the camera (visible) and the laser (range), and then to map the
high-resolution texture coming from the visible imagery into the 3D point cloud coming
from the laser scanner. The fourth case (Figure 6d) combines visible and thermal aerial
images of a city area using a drone; this type of aerial image can be used for the estimation
of land surface temperature or for the study and mitigation of urban heat islands, among
other applications. The fifth case (Figure 6e) is composed of two satellite images taken with
different sensors and the other two are synthetically derived from the original ones; in this
case, the registration is important for automatic georeferencing. The sixth case (Figure 6f)
is also composed of four images: two of them are medical resonance images taken using
different parameters and the other two are synthetically derived images. Synthetic images
represent possible processing and acquisition modifications by the application of geometric
(rotation, scale, perspective) and radiometric (brightness, hue and addition of random
noise) changes.

The first (Figure 6a) and third (Figure 6c) multi-modal image pairs contain non-coplanar
points; therefore, the evaluation of the matches needs to be carried out using the fundamental
matrix. For the rest of the multimodal datasets, the points in the images could be considered
totally coplanar, with homography being the best method for their assessment.

3.3. Feature-Based Image Matching Strategies

The process carried out for each dataset consists of three steps: (i) pre-processing,
(ii) feature extraction and (iii) matching (Figure 2).

All images were pre-processed by applying decolorization (Figure 2a). Pre-processing
is reported as a fundamental step by different authors [21,59]. Decolorization is the simplest
pre-processing algorithm provided by PhotoMatch and is commonly used prior to image
matching [60].

For the feature extraction step (Figure 2b), many algorithms are provided by PhotoMatch,
while a selection of the most representative ones was tested. To this end, hand-crafted methods
were identified based on the best results obtained in previous tests [21]. The following com-
binations of detector and descriptor were assessed: SIFT + SIFT, SURF + SURF, SURF + SIFT,
MSD + SIFT and ASIFT. In addition, both deep learning algorithms included in PhotoMatch,
R2D2 and D2-Net, were also tested.

For hand-crafted algorithms, the following parameters were selected in PhotoMatch:
the maximum number of features was set to 5000; for MSD, the threshold saliency was set to
650, and the number of selected points (KNN) was set to 1. The saliency threshold is linked
to the level of dissimilarity between neighboring pixels and should be higher for images
with a higher level of detail. KNN refers to the number of salience points considered; in
this case, only the points with higher saliency were selected. The reason for selecting these
parameters was based on their good performance after different tests, especially for the
case of multi-modal images [21].

For the learning-based algorithms, the input parameters were based on choosing
among the different pretrained models. Alternatives were tested, and the best pretrained
models were chosen. For R2D2, the pretrained model ‘r2d2_WASF_N16′ was used, while
for D2-Net, the pretrained model ‘d2_tf’ was selected. The choice of these models was based
on information provided by the developers of each tool. However, since the models were
trained using different datasets, different models may have different outcomes. Therefore,
it is recommended to test various options for each specific application.
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The selected matching approach (Figure 2c) was the same for all algorithms, since its
accuracy and reliability was tested in previous studies [21]. It consisted of FLANN and Robust
Matching, supported by ratio test, cross-checking and geometric test (fundamental matrix
or homography computed by RANSAC). The RANSAC filtering was carried out using a
Lowe ratio test with a value of 2 [61], a distance threshold of 10, and 2000 maximum trials.
The homography and fundamental matrices were used to achieve self-supervised validation
while supporting the relative orientation backbone. The value of the Lowe ratio test refers
to the minimum distance between the two best matches for each keypoint; if the distance is
below the threshold, the matches are considered too similar and the keypoint is removed. The
distance threshold in RANSAC filtering is used to distinguish inliers from outliers; a higher
value would be needed if the dataset is composed of matches with a relatively high error,
while more precise algorithms would benefit from lower values. The maximum number of
trials controls the trade-off between computational complexity and accuracy.

Detailed information on the different parameters for each algorithm is presented in
the help section of the tool (Figure 4).

3.4. Assessment

PhotoMatch provides a reference data editor (Figure 3) that allows for the end-user to
select the reference keypoints with subpixel accuracy and compute the error for each point
using the homography or fundamental matrix adjustment. Using this reference data editor,
each imagery dataset was registered using a set of at least 12 manually selected keypoints
and their corresponding matchings. The maximum error for these points was below one
pixel for all image pairs.

Once the reference keypoints and matchings are defined, PhotoMatch computes the
homography or fundamental matrix transformation between each pair of images. After the
keypoints are extracted by each algorithm (detector and descriptor), their coordinates are
evaluated through comparison with the reference coordinates obtained via homography, or
by computing the distance between each point and the line determined by the collinearity
condition in the case of a fundamental matrix transformation (Tables 1 and 2).

Table 1. Number of correct matches (CM) with percentage and mean error (ME) (in px) for the
different hand-crafted and learning-based algorithms and the six multi-view datasets. The best
results are highlighted in bold.

Detector
Descriptor

SIFT +
SIFT SURF + SURF SURF + SIFT MSD +

SIFT ASIFT R2D2 D2-NET

Facade
(Figure 5a)

CM 24 (27.2%) 26 (22.7%) 47 (33.7%) 19 (34.8%) 190
(27.8%) 68 (52.5%) 27 (32.7%)

ME (px) 175.1 170.6 163.8 123.2 172.2 110.5 176.9

Forest
(Figure 5b)

CM 108 (79.4%) 89 (71.2%) 139 (80.7%) 77 (80.6%) 1155
(86.4%)

187
(94.1%) 123 (89.1%)

ME (px) 19.2 21.1 8.9 8.7 13.5 4.1 6.3

Playground
(Figure 5c)

CM 8 (36.9%) 51 (57.2%) 60 (60.7%) 30 (65.6%) 214
(74.2%) 47 (80.5%) 49 (69.2%)

ME (px) 607.8 224.6 66.5 40.6 137.5 26.3 45.9

Boulder
(Figure 5d)

CM 150 (80.1%) 261 (83.2%) 283 (86.4%) 24 (77.8%) 551
(98.8%) 322 (96.1%) 533 (91.4%)

ME (px) 50.9 49.9 30.3 163.5 12.6 29.8 20.3

Graffiti low
differences
(Figure 5e)

CM 681 (99.9%) 613 (99.4%) 602 (96.8%) 62 (93.3%) 8713
(99.9%) 241 (98.4%) 165 (94.9%)

ME (px) 1.2 2.4 3.4 14.4 1.3 2.9 8.0

Graffiti high
differences
(Figure 5f)

CM 91 (94.4%) 62 (90.9%) 50,5 (87.1%) 1 (10.3%) 2182
(99.8%) 2 (38.7%) 2 (30%)

ME (px) 17.0 18.6 31.7 241.0 1.4 151.3 171.0
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Table 2. Number of correct matches (CM) with percentage and mean error (ME) (in px) for the
different hand-crafted and learning-based algorithms in the seven multi-modal datasets. The best
results are highlighted in bold.

Detector
Descriptor SIFT + SIFT SURF + SURF SURF + SIFT MSD + SIFT ASIFT R2D2 D2-NET

Visible-Thermal
(Figure 6a)

CM 0
(0%)

1
(3,2%)

1
(4,2%)

4
(22,2%)

3
(2,9%)

1
(6,25%)

53
(81,54%)

ME (px) 273.7 143.8 172.2 63.1 202.7 184.3 13.7

SEM
(Figure 6b)

CM 0
(0%)

0
(0%)

3
(33.3%)

0
(0%)

6
(28.6%)

5
(62.5%)

16
(76.2%)

ME (px) 1470.0 983.4 22.0 860.0 1013.4 10.7 6.9

Visible-Range
(Figure 6c)

CM 1
(3,3%)

13
(25%)

154
(53,1%)

3
(23,1%)

47
(32,9%)

5
(31,3%)

77
(77,8%)

ME (px) 216.9 141.9 34.4 136.1 140.8 88.2 43.4

Visible-Thermal
Aerial

(Figure 6d)

CM 0
(0%)

3
(30%)

9
(60%)

0
(0%)

26
(86.7%)

17
(100%)

107
(97.3%)

ME (px) 383.9 159.2 15.9 259.3 30.7 3.9 4.3

Satellite
(Figure 6e)

CM 0
(0%)

0
(0%)

7
(41,17%)

9
(75%)

0
(0%)

6
(75%)

135
(95,7)

ME (px) 179.1 154.6 16.5 11.2 178.4 25.3 4.7

Magnetic
Resonance
(Figure 6f)

CM 0
(0%)

0
(0%)

10
(66.7%)

0
(0%)

0
(0%)

5
(16.4%)

44
(92.6%)

ME (px) 194.0 151.9 8.2 122.9 144.1 30.2 5.3

3.5. Results

The multi-view and multi-modal datasets were assessed separately. For each dataset,
the number of correct matches, percentage of correct matches, and mean error of the
matches for the different methodologies (hand-crafted vs. learning-based) are presented.
The threshold established for a correct matching was set to 10 px, which is relatively high for
precise photogrammetry applications, but can provide a better insight into the approcimate
matching ability of the algorithms.

3.5.1. Multi-View

The results for each case and image matching are outlined in Table 1.
For the first four multi-view datasets (Figure 5a–d), all of them corresponding to

non-planar environments, R2D2 was the best algorithm in terms of accuracy, while ASIFT
was able to obtain a higher number of matches with a lower accuracy. The exception was
the boulder multi-view dataset (Figure 5d), where ASIFT achieved the highest accuracy, as
the environment does not represent important challenges for matching. For the façade’s
multi-view dataset (Figure 5a), none of the algorithms (hand-crafted and learning-based)
were able to obtain acceptable results as a consequence of the low overlap and repetitive
features. Only R2D2 provided the best result, with 52.5% of correct matches (Table 1).

The fifth multi-view dataset (Figure 5e) represents a favourable photogrammetric
acquisition with high overlap and low geometric differences. In this case, the hand-crafted
algorithms outperform learning-based algorithms, in terms of both accuracy and the
number of correct matches (Table 1).

For the last multi-view dataset (Figure 5f), with images with considerable geometric
differences covering a wall, ASIFT was the only hand-crafted algorithm capable of comput-
ing a high number of accurate matches. Neither the other hand-crafted algorithms, nor the
learning-based algorithms, provided acceptable results (Table 1).

Although the performance of hand-crafted methods is guaranteed for multi-view
datasets with high overlap and favourable conditions, for challenging environments (i.e.,
important geometric variations) the image matching is not always successful. The exper-
imental results show that some learning-based algorithms, such as R2D2, are capable of
outperforming classical, hand-crafted methods for challenging datasets with low overlap
and low-resolution images. Due to its capacity to avoid areas with low reliability, R2D2
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outperforms the accuracy of other algorithms for the facade and forest dataset, which are
characterized by repetitive features (i.e., windows and canopy). However, ASIFT, which
is specifically designed to deal with large perspective distortions, was the only algorithm
capable of registering the images in the graffiti dataset with high geometric differences
(Figure 5f). This is probably due to the lack of training of the chosen matching learning
algorithms for this particular case. It is also worth noting that ASIFT is a technique that
simulates different affine distortions to the images, and a similar technique can work
with different detectors and descriptors, so the combination of ASFIT and learning-based
algorithms would be possible.

In order to evaluate this tool in comparison to other commercial and open-source
software, a 3D reconstruction for each multi-view dataset was carried out using Agisoft
Metashape 2.0.1 and GRAPHOS [1]. Acceptable results were obtained only for the fifth
multi-view dataset (Graffiti with low differences, Figure 5e), while both software failed to
compute a 3D reconstruction for the rest of the datasets.

3.5.2. Multi-Modal

The results of the multi-modal dataset are outlined in Table 2. The learning-based
algorithms outperform the hand-crafted based algorithms for every dataset. D2-Net is the
best-performing algorithm for every case, with the exception of the visible thermal aerial,
where R2D2 obtains the highest accuracy. For the visible-range dataset, no acceptable
results were obtained using any of the tested algorithms. For the visible-thermal dataset,
the mean error was above the threshold, even for the D2-Net algorithm.

The hand-crafted algorithms performed much worse than learning-based algorithms.
They were capable of obtaining a mean error below the threshold of ten pixels in only one
case (SURF + SIFT for the magnetic resonance dataset).

Learning-based algorithms are shown to be a suitable approach for multimodal image
matching for different datasets and applications. An algorithm such as D2-Net has been
able to achieve good results for the majority of the presented datasets. Nevertheless, the
difference in results for different types of images encourages the study and comparison
of different approaches and parameters for any specific application requiring multimodal
image matching.

The final matchings obtained for the two best-performing algorithms for each multi-
modal dataset can be analysed in Figure 7.

The combination of different hand-crafted algorithms could be useful for some types
of multi-modal data [21]. Nevertheless, some learning-based algorithms greatly outperform
hand-crafted methods in multi-modal cases, being able to obtain acceptable results when
hand-crafted algorithms fail.

In general, the experimental results presented in this paper demonstrate the great vari-
ability of results for different approaches and with different case studies. This highlights the
importance of offering an educational and open-source tool, PhotoMatch, to compare and
assess different algorithms through an experimental evaluation of learning-based and hand-
crafted algorithms to better understand their performance across a wide range of scenarios.
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4. Conclusions

A growing number of detectors, descriptors, and matching algorithms are available
to extract and match keypoints between images. The most important distinction can be
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made between hand-crafted and learning-based feature-extraction methods. Some of
these algorithms for keypoint extraction and matching are well-known and available in
different libraries, such as OpenCV, or integrated into SfM tools. Other algorithms require
expertise in dealing with source code and programming, and sometimes the use of external
libraries. All of them are too abstract to be understood by end-users, requiring the setup of
advanced parameters.

Despite the large quantity of available options provided in the scientific community, there
are no educational and open-source multi-view and multi-modal image-matching tools to date,
which allow for a comparative assessment of hand-crafted and learning-based algorithms.

In real-world problems (e.g., 3D reconstruction, image registration for the analysis
of different wavelengths, SLAM or digital correlations between 3D and 2D data for ap-
plications such as material deformation analysis), selecting the best-matching algorithm
and optimal parameters for a specific application is a time-consuming process requiring
very specialised knowledge and is not integrated into the existing tools. This situation can
easily lead to the adoption of not-optimal solutions and certainly hampers the adoption of
new methodologies.

PhotoMatch provides a solution to this bottleneck, integrating hand-crafted and
learning-based algorithms for comparing and assessing feature-based image matching, with
special attention to multi-view and multi-modal imagery. PhotoMatch allows for students,
researchers, and other end-users to compare and assess different matching methodologies
through an educational and friendly environment, and thus to find the best algorithms
for different applications. The different case studies exhibit the capabilities of PhotoMatch
and its possibility to offer an accurate and reliable input for image orientation and 3D
reconstruction. The results also highlight how different combinations of algorithms and
setup parameters can lead to significant changes in the validity of the results.

Of course, PhotoMatch was conceived to support future developments, so future
work will include the addition of new deep learning algorithms [36,40,61], as well as
new detectors and descriptors [62–64]. These additions will be added to new release
versions or presented as plugins. This will allow PhotoMatch to present a wider array of
algorithm combinations for the assessment of the different approaches, while maintaining
its educational goal and ease of use.
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Abstract: License plate recognition (LPR) is an integral part of the current intelligent systems that are
developed to locate and identify various objects. Unfortunately, the LPR is a challenging task due to
various factors, such as the numerous shapes and designs of the LPs, the non-following of standard
LP templates, irregular outlines, angle variations, and occlusion. These factors drastically influence
the LP appearance and significantly challenge the detection and recognition abilities of state-of-the-art
detection and recognition algorithms. However, recent rising trends in the development of machine
learning algorithms have yielded encouraging solutions. This paper presents a novel LPR method to
address the aforesaid issues. The proposed method is composed of three distinct but interconnected
steps. First, a vehicle that appears in an input image is detected using the Faster RCNN. Next, the LP
area is located within the detected vehicle by using morphological operations. Finally, license plate
recognition is accomplished using the deep learning network. Detailed simulations performed on the
PKU, AOLP, and CCPD databases indicate that our developed approach produces mean license plate
recognition accuracy of 99%, 96.0231%, and 98.7000% on the aforesaid databases.

Keywords: Faster RCNN; license plate recognition; object detection

1. Introduction

With the growth of big data, object detection and recognition have attracted excellent
interest in research communities. This is because it can be used for a wide range of
real-world applications, such as medical imaging, augmented reality, sports applications,
independent driving, and video surveillance [1–6]. Particularly, the license plate recognition
(LPR) is getting more attention due to its widespread applications in various fields, for
instance, traffic monitoring, toll collection, and criminal searches [7,8]. Although many of
the LPR systems, for instance [9,10], are available in the literature, most of them have been
validated and tested on a pre-defined LP specification. Few of these works are also capable
of processing multiple LPs. The LPR systems can be categorized into two major categories,
which are (i) traditional LPR and (ii) deep learning-based LPR systems. Traditional methods
process limited features and utilize hand-crafted features, for example, contours, colors,
and edges, to locate the LP. Deep learning-based techniques automatically learn robust
features from the data and have recently produced promising results. Deep learning-based
techniques consider LP detection as object detection and analyze the recognition as an
optical character recognition (OCR) process. Since the number of characters processed by
any LPR method is limited, character recognition is also considered an object detection
process, so that LP detection and recognition are handled simultaneously. To develop and
analyze a LPR algorithm that can deal with multi-style license plate recognition, there are
several challenges, as briefly described below.
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Lack of Standard LPs: Standardizing the LPs is a significant challenge throughout the
world. For instance, license plates in Macao, China, have to meet a strict standard, as shown
in Figure 1a [11], whereas the LP of Hong Kong usually has 1–8 characters and Macao
LPs are composed of five to six characters, as shown in Figure 1b,c, respectively. General
observation in Figure 1a indicates that the first column has an entirely different appearance
than the second column. Similarly, the second and third columns have huge contrast and
appearance variations. Few of the plates have yellowish and greenish backgrounds, while
few have colorless backgrounds. Moreover, the distance between the characters on the
plates shown in the first column takes up much less space than those in the third column.
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Lack of LP Outlines: Many times, the license plates have no outlines, which makes it
an extremely difficult task to classify. This task becomes more challenging when the color
of the vehicle is the same as that of the LPs. One such example is indicated in Figure 1b.
The top image shown in Figure 1b contains a black background and white ground on a
black vehicle. Moreover, the bottom vehicle shown in Figure 1b shows a LP case that has a
white background due to the white color of the car and a black front ground. These two
cases may appear trivial, but for any machine learning algorithm, the aforedescribed task
is not easy. The algorithm should be capable enough to distinguish such cases accurately.

The appearance of LPs: Another challenge in LP localization and recognition is to
accurately handle the appearance and occlusion challenges of license plates installed at
various locations on a vehicle. If a vehicle has more than one license plate, then characters
get matched with the background of other plates, which makes it difficult to distinguish LP
character regions. A few cases of this challenge are shown in Figure 1c. Figure 1c depicts
two license plates with total complement variations on the top vehicle. Moreover, along
with the low-intensity light beam, one plate has a white background with black characters
on the plate region, while the other plate has a black background with white alphabets on
top. In both cases, the vehicle color appears blackish–green. In each of these cases, it poses
a significant challenge to any recognition algorithm.

Therefore, one of the aims of this research is to design an accurate LP recognition
technique with the capability to handle diverse license plates. Fortunately, numerous
research groups have compiled numerous LP datasets. Few of the databases also contain
clear vehicle images in different environments and road conditions. We aimed to contribute
to the field with this manuscript, as highlighted below.

• Inspired by recent trends in machine learning, a robust LP recognition method is
proposed in this paper that accurately recognizes various license plates. Particularly,
our developed system uses an intelligent combination of Faster RCNN to detect
various vehicles, morphological image processing methods to locate the LP area, and
finally, the deep learning-based method to recognize the detected license plate. The
systemic application of various modules enables us to achieve a reliable and accurate
LP recognition method.
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• We consider the license plate as an object for detection and recognition tasks. The
output of our created approach for detecting vehicles is a rectangle encompassing
the vehicle and license plate region. In contrast, for the license plate recognition task,
our system displays the vehicle license plate alphabets and characters above the real
license plate once it has been located in the image.

• Our developed technique supports different types of plates from PKU, AOLP, and
CCPD datasets. Our obtained results indicate that our developed method effectively
recognizes the LPs of these databases. Moreover, our developed technique is intelligent,
as it systematically achieves the aforedescribed tasks.

This manuscript is organized as follows: In Section 2, recent license plate recognition
techniques are briefly listed. In Section 3, our proposed method is described in detail. Our
findings during simulations are listed in Section 4, followed by the conclusions, which also
hint at the future extension of this work.

2. Related Work

This section details recent related works on license plate recognition. In [11], a region-
based license plate detection method is discussed that initially shifts mean to filter and
segment a color vehicle image to get candidate regions. These candidate regions are then
analyzed to decide whether a candidate region contains a license plate. Since this method
focuses on regions, so it is more robust to interference characters. In [12], the proposed
method uses the YOLOv2 to detect vehicles. This work uses a CNN-based method that
they refer to as WPOD-NET for LP detection. Meanwhile, a modified YOLO architecture
recognizes the LP characters. However, this work also uses character segmentation, which
makes this method a bit more complex than the compared methods. In [13], an improved
YOLO architecture is deployed for character recognition. This work is tested on the SSIG
dataset, which has 2000 images. In [14], a technique is developed that customizes the
YOLO network to detect LPs from images that are captured in different conditions, such
as different weathers, varying lighting, and other factors. The authors conclude that the
YOLO can strike a balance between precision and recall. However, the YOLO is not suitable
for detecting angular or small objects. Therefore, its performance in scenarios where the
vehicle is far away from the camera needs to be further checked.

In [15], a framework to detect and recognize license plates is discussed for complex
scenes, which is based on mask region convolutional neural networks. The evaluation
of this framework is further enhanced on four publicly available datasets for different
countries. Moreover, this method is tested on diverse range of images, which are captured
from multiple scenes, such as varying orientations, poor image quality, blurred images,
and complex backgrounds. In [16], a convolutional filter of size 3 × 3 is used in deep
networks to analyze the increasing depth of the architecture by using 16 to 19 layers to
process the 24 × 24 pixel colored image. This work also introduces a pre-processing step
by subtracting the average RGB value from each individual pixel. This paper reports
significant improvements to ConvNets in the realm of image recognition as a result. In
addition, this work also uses a large number of 3× 3 convolutional filters that fit well on the
investigated datasets only. In [17], initially, candidate regions are selected through a sparse
network using winnows classification, followed by filtration through CNN. An interesting
novelty introduced in this work is the minimization of training and target domains in an
unsupervised manner. However, this work also considers artificially generated synthetic
LP images. In [18], the developed method utilizes thin–plate spline transformation and
adaptively rectifies a textual LP image. Moreover, a recognition model predicts a character
sequence immediately from the rectified image. This work only considers qualitative results
on several images. In [19], a 2D attention-based encoder–decoder architecture is developed.
This method extracts features by applying the ResNet CNN architecture. The 2D model
introduced is capable of accommodating text with different layouts, arbitrary shapes, and
different angles. Their reported results are encouraging, and their development reduces
data bias and increases model generalization capacity. This method is simple; however, its
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generalization to standard datasets has not been explored. In a previous study [20], the
authors used CycleWGAN to create LP images to improve the performance of recognition.
Their work simultaneously generates images of different conditions. Meanwhile, a modified
version of the CTC is used to recognize the LP. Their work simultaneously generates images
of different conditions. Meanwhile, a modified version of the CTC is used to recognize
the LP.

In [21], an end-to-end irregular LPR (EILPR) is proposed using plate-level annotations
during training. In the EILPR method, a coarse-to-fine approach is implemented that
extracts the LP features for sequence recognition. This work assumes the fact that a LP
may generate a perspective bias in the image; therefore, to cater to this fact, an automatic
perspective alignment network (APAN) is introduced to extract the fine license plate
features. To classify the international license plates, a location–aware 2D attention-based
recognition network is used. In [22], a novel ALPR technique, which is referred to as VSNet,
is developed. The VSNet contains two CNNs that are combined in a cascading manner.
Meanwhile, an integration block is introduced that extracts the spatial features. With vertex
supervisory information, authors develop a vertex-evaluation module in VertexNet such
that a LP can be repaired as the input images of SCR-Net. A horizontal encoding algorithm
is used in the SCR-Net to extract left-to-right features and then recognize a license plate.
This work performs well on standard LPs. However, its generalization capability on tilting
and rotating LPs has not been explored.

Additionally, ALPRNet is developed to detect and recognize mixed–style license
plates [23]. Two fully convolutional object detectors are used in the proposed ALPRNet to
classify and recognize LPs. The proposed ALPRNet processes LP and character equally.
In this work, object detectors output bound boxes of LPs along with corresponding la-
bels without the application of the RNN branches of the OCR. This is because this is a
single–stage network-based method. Therefore, its detection accuracy on challenging
datasets has not been explored. In [24], image processing and OCR-based techniques are
merged to recognize the LPs. The image processing methods utilize color conversion,
Otsu’s thresholding, and noise removal. The OCR method uses template matching to
predict the characters of LPs. The authors of this work have not examined the scalability
of this method and have only used basic tools from signal and image processing. In [25],
the proposed LPR method consists of three steps: LP detection, unified character recogni-
tion, and multinational LP layout detection. This work is primarily based on the YOLO
networks. To extract the correct sequence, a layout detection scheme is introduced, which
extracts the sequence of LP numbers from multinational LPs. This study is extensively
tested on standard Koran and Taiwan LPs. In [26], the developed LPR method uses a joint
combination of adaptive boosting and the LDA to extract features. The CNNC is then
used to separate the LP region from irrelevant samples. This work is segmentation-free.
However, its recognition capability on real-world images has not been explored. In [27], the
developed algorithm uses a distinct, fine-tuned YOLO-v3 platform to extract LP characters
from input images. During the training and testing stages, a wide range of LP images
have been analyzed. However, this system is fully annotated and consumes over 100 ms to
accomplish the task of LP recognition. In addition, an intriguing review article is released
that summarizes the many approaches currently utilized to detect various objects [28].

In [29], researchers introduced a robust vehicle detection method using a multi-scale
deep convolutional neural network. This work utilizes a standard Gaussian mixture proba-
bility hypothesis density filter along with hierarchical data associations (HDA) that isolate
detection-to-track and track-to-track associations. Particularly, the cost matrix of various
phases is solved using the Hungarian algorithm. For quick execution, detection informa-
tion, such as bounding boxes and detection scores, is used in the HDA without visual
feature information. Although this is an interesting work, the computational difficulty of
the approach is not covered. In [30], a region proposal network (RPN) is developed that
shares full-image convolutional features with the detection network. The RPN is a fully
convolutional network that forecasts object bounds and scores at various positions. The
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RPN is trained end-to-end to generate high-quality region proposals that are later used by
Fast R-CNN for detection. In this work, the RPN and Fast R-CNN are also merged into a
single network by sharing their convolutional features. For the very deep VGG-16 model,
this system has a frame rate of 5 fps on a GPU, while achieving encouraging object detection
accuracy on several datasets with only 300 proposals per image.

In [31], a wavelet transform based technique to extract license plates from cluttered
images is developed. This method comprises of three major stages, which are (i) extracting
important contrast features through wavelets. Then, finding a reference line in HL subimage
plays an important role to locate the desired license plate region roughly. According,
(ii) decrease the searching region of license plate to speed up the execution time, and
(iii) localization of license plate through manual adjustments. More importantly, the
proposed detection method can locate multiple plates with different orientations in one
image. Since the feature extracted is robust to complex backgrounds, the proposed method
works well in extracting differently illuminated and oriented license plates. The average
accuracy of detection is 92.4%. In [32], authors made use of a combination of the MSER and
the stroke width transform (SWT) to detect and isolate the LP character regions. The license
plates were finally bordered using the probabilistic Hough transform. The authors discuss
that character-based methods are reliable and can lead to a high recall. However, the
other text in the image background has a significant impact on performance. This method
requires multiple cameras before the system is placed for evaluation. In [33], an interesting
license plate recognition system is developed using a sequence of deep CNNs. These CNNs
are trained and fine-tuned so that they are robust under different conditions (for instance,
lighting, occlusion, or tilt) and work across a variety of license plate templates that include
different sizes, backgrounds, or fonts. In [34], a novel line density filter approach was
developed that connects regions with high edge density and removes sparse regions in
each row and column from a binary edge image. This study indicates that edge-based
methods are fast in computation but cannot be applied to complex images because they are
too sensitive to unwanted edges.

In [35], the developed LP method consists of three modules for plate detection, charac-
ter segmentation, and recognition. This method also formulates edge clustering to solve
plate detection for the first time. A bilayer classifier, which is improved with an additional
null class, is empirically proven to be better than previous methods for character recogni-
tion. However, this method is evaluated only on a single dataset, which was also gathered
by the authors themselves. In [36], license plate detection and recognition are tackled in
standard natural scene images via the development of a segmentation-free method. In-
spired by the success of DNNs, these are deployed to learn high-level features in a cascade
framework, which leads to improved performance on both detection and recognition. This
work also trains 37 CNNs to detect all characters in an image, which results in a high recall.
Later, to improve the IoU ratio, bounding box refinement is carried out based on the edge
information of the LPs. This method extracts license plates effectively with both high recall
and precision. Last, a recurrent neural network with long short-term memory (LSTM)
is trained to recognize the sequential features extracted from the whole license plate via
CNNs. For scene and lighting variations, this method needs to be further explored. In [37],
a unified deep neural network is proposed that localizes license plates and recognizes the
letters simultaneously in a single forward pass. This whole network is trained end-to-end
and achieves the LP recognition task in a single network, avoiding intermediate error
accumulation and resulting in faster processing speed. For performance evaluation, a few
datasets that include images captured from various scenes under different conditions are
tested. However, this method does not consider the complexity of the developed method.

In [38], researchers use computer graphic scripts and GANs to generate and augment
a large number of annotated, synthesized LPs with realistic colors, fonts, and character
composition from a small number of real, manually labeled license plate images. In this
work, generated and augmented data are mixed and used as training data for the LP
recognition network modified from the DenseNet. Simulations reveal that the model
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trained from the generated mixed training data has much better generalization ability and
achieves encouraging detection and recognition accuracy on multiple datasets, even with a
very limited number of original real license plates. In [39], a new license plate recognition
technique is developed in the wild. This method comprises a tailored CycleGAN model for
license plate image generation and an elaborately designed image-to-sequence network
for plate recognition. The CycleGAN-based plate generation engine eases the exhausting
human annotation work. In this work, huge amounts of training data are obtained with
a more balanced character distribution and various shooting conditions that boost the
recognition accuracy to a large extent. Moreover, a 2D attentional-based license plate
recognizer with an Xception-based CNN encoder is developed that is capable of recognizing
various LPs with different patterns under various scenarios accurately.

In [40], a new license plate dataset, to which the authors refer as the CCPD, is devel-
oped and tested under different circumstances, for instance, tilt, blur, rotate, or varying
weather conditions. This work is novel in the sense that it provides a single platform for
researchers to investigate the LP’s prevailing issues. In [41], a novel end-to-end method for
LP recognition without initial character segmentation is presented as LPRNet. Particularly,
this method is inspired by recent breakthroughs in the DNNs and works in real-time
with recognition accuracy up to 95% for Chinese license plates: 3 ms/plate on NVIDIAR

GeForceTM GTX 1080 and 1.3 ms/plate on the Intel R CoreTM i7-6700K CPU. The LPR-
Net consists of the lightweight CNN and can be trained end-to-end. The authors of this
work recommend that the LPRNet algorithm may be used to create embedded solutions
for LPR that feature high levels of accuracy even on challenging Chinese license plates.
In [42], a multi-object rectified attention network (MORAN) is proposed for text recogni-
tion. The MORAN consists of a multi-object rectification network and an attention-based
sequence recognition network. The multi-object rectification network is designed to rectify
images that contain irregular text. It decreases the difficulty of recognition and enables the
attention-based sequence recognition network to read irregular text. The attention-based
sequence recognition network focuses on target characters and sequentially outputs the
predictions. Further, to improve the sensitivity of the attention-based sequence recognition
network, a fractional pickup algorithm is also developed for an attention-based decoder
during the training phase. In [43], a novel decoupled attention network (DAN) is developed
that decouples the alignment operation from using historical decoding results. The DAN is
an effective, flexible, reliable, and robust end-to-end text recognizer and consists of three
components: a feature encoder, a convolutional alignment module, and a decoupled text
decoder that generates final predictions by jointly using the feature map and attention
maps. Yu et al. [44] used a wavelet transform at first to get the horizontal and vertical
details of an image. Meanwhile, empirical mode decomposition (EMD) analysis was em-
ployed to deal with the projection data and locate the desired wave crest that indicates the
position of a license plate appearing in any corner of the input image. Different versions of
YOLO [45–47], which give state-of-the-art accuracy for object detection, have been pub-
lished in the last few years.

The attempts outlined above are just a few examples of the numerous object detection
and recognition algorithms that aim to overcome various LP recognition challenges. The
following are a few of the primary reasons that prompted us to create a state-of-the-art
license plate recognition algorithm.

• Most of the above-described methods and works have been carried out on standard
databases that are gathered by researchers at different times under different conditions.
Therefore, it prompted us to develop an algorithm that can reliably handle real-life
images in real time while maintaining high recognition accuracy.

• Our study indicates that the methods, which use RNNs as the OCR, are costly in terms
of execution time. Similarly, segmentation-based methods are mostly dependent on
segmentation performance and highly susceptible to environmental conditions, such as
varying illumination conditions, wild weather, or blurring. Therefore, these methods
result in low recognition accuracy in such conditions. Even a strong recognizer, if
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applied, would produce much lower recognition rates. Therefore, inspired by the
aforementioned fact, we aimed to develop a license plate recognition method that
could perform well under the scenarios described above.

• The PKU dataset, which is also investigated in this study, contains five prominent
classes of vehicles on main highways. These categories cover different day times,
varying weather conditions, multiple vehicles and license plates per image, occlu-
sions, and crosswalks on the main highways. The scenarios mentioned are from
real life, in which the detection and recognition accuracy of any algorithm might be
significantly challenged.

• Many times, the cameras installed on the main highways of various countries in
the world capture vehicle images in which license plates appear at an angle, tilted,
or partially obscured. This motivates us to develop a system that could facilitate
the traffic control and monitoring staff’s ability to reliably recognize any suspicious
license plate.

3. Methodology

Our developed method has three major modules, which are vehicle detection, license
plate detection, and license plate recognition. Figure 2 illustrates the complete flow of our
developed method that achieves the aforementioned tasks. The details of each component
of the developed method are described below.
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3.1. Vehicle Detection

To locate objects, for instance, vehicle detection is a critical phase in developing an
intelligent traffic monitoring system. In the past few years, the computer vision domain
has introduced efficient object detection algorithms. Particularly, Faster RCNN and deep
learning-based vehicle detection methods report high detection accuracy in near real-time
in different environments [29]. Ultimately, these approaches have become a significant part
of autonomous vehicles and self-driving applications. Our research reveals that real-time
processing to locate vehicles, as well as good detection accuracy, are essential requirements
that any object or vehicle detector should meet. We use a fine-tuned version of the Faster
R-CNN [30] to find a vehicle quickly. The reason to detect the vehicle is that it considerably
reduces the area to be explored for the existence of the LP in later stages. The purpose of
using the Faster R-CNN at this stage is that, during the data training phase, it is at least
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nine times more rapid than the standard R-CNN. Moreover, it is 213× faster during the
test phase and yields higher detection accuracy than its counterpart [30].

Algorithm 1 demonstrates the pseudocode of the employed vehicle detection module.
In lines (2) to (17), Faster RCNN is used to locate vehicles’ positions. In lines 3–9, Faster
R-CNN is fine-tuned to obtain the appropriate region of interests (RoIs) to look for the
possible existence of a vehicle in an input image. Therefore, we perform the mini-batch
sampling by empirically choosing 128 region proposal networks (RPNs). To generate the
RPN, a small network is made to slide over the conv feature map, which is output by the
last shared conv layer. This small network takes as input an N × N spatial window of the
input conv feature map. This feature is fed into two siblings’ fully connected layers. We
use N = 2 during our tuning, keeping in mind the fact that the effective receptive field on
the input image is large. As a result, 64 RoIs are extracted from an input image. Moreover,
to describe the foreground of an object mask, we choose an object proposal with an IoU
overlap that contains at least 0.5 ground truth. In lines 10–16 of Algorithm 1, we process an
RGB vehicle image with thirteen conv layers. As a result, a conv feature map (Ψ) is obtained.

Algorithm 1: Pseudocode of the vehicle detection method.

1. Input: colored RGB vehicle image
2. begin Faster R-CNN
3. initialize fine-tuning
4. do
5. extract features � during training initialization

6. perform mini-batch sampling by
(

RPN=128
N=2

)
; 64 RoIs from each image

7. select IoU overlap with ground truth > 0.5
8. back-propagate errors across network layers � weights optimization for nodes
9. end
10. for I ∈ {R, G, B} do
11. process RGB data with 13 conv layers to obtain Ψ
12. generate the RPN by using 3 scales and aspect ratios on Ψ
13. feature map (Ψ) and region proposals are fed to the RoI pooling layer (′I)
14. ′I→ (r, c, h, w)
15. for all feature vectors (
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) is passed as an input into a sequence of fully connected
(FC) layers. In between, the RoI pooling layer uses max pooling to transform the features
inside a binding region into a small feature map. Moreover, only a few RPN proposals
highly overlap with each other. Therefore, to reduce redundancy, we adopt non-maximum
suppression (NMS) in the proposal regions.

We fix the IoU threshold for NMS ≥ 0.5, which leaves us about 2000 proposal regions
per image with a significant decrease in the number of proposals. After the NMS, the top-N
ranked proposal regions are estimated to detect vehicles and draw a red rectangle around
them. Once the vehicle is located in the input image, we apply our method to locate a LP
within the bounding box that contains the vehicle.
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3.2. The LP Localization

The detected vehicle, confined by a bounding box that is obtained in the last step
of Algorithm 1, is nursed to the LP localization module that aims to detect the LP. Our
developed LP localization method has a few interconnected steps. The LP localization
method processes the RGB image and transforms it into the HSV components as shown in
Equations (1)–(3).

H = cos−1




1
2 [(R− G) + (R− B)]

2
√
(R− G)2 + (R− B)(G− B)


 (1)

S = 1− 3
R + G + B

[min(R, G, B)] (2)

V =
1
3
(R + G + B) (3)

where H denotes hue, S represents saturation, and V stands for the value components
of the transformed image. Our general observation is that an LP in actuality may have
diversity and huge color variations. Considering this fact, in Algorithm 2, we introduce
colors segmentation from lines 5–13 on each of the HSV components.

During our simulations, we empirically vary the HTlow value from 0.02 to 0.40 and
HThigh from 0.409 to 0.620. Similarly, for the saturation and value channels, their relevant
low and high thresholds are STlow, SThigh, VTlow, and VThigh, respectively, as indicated in
lines 8–11 of Algorithm 2. For STlow, the values are changed from 0.370 to 0.500, whereas
for SThigh, they are changed from 0.909 to 1.10. For the V channel in the HSV image, the
VTlow is set to 0.750 and the VThigh is kept at 1.0. After these thresholds are set, the mask
images are obtained for each of the H, S, and V channels. For the H channel, the Hmask is
set to 1 when the HImage obtained is greater than or equal to the low threshold and less than
or equal to the high threshold. A similar mechanism is applied to obtain the masks of the S
and V channels.

Consequently, a blob image (A) is attained, which is indicated in line (11), which is
analyzed by using morphological operations to enhance LP blobs in a sample space ( z).
Here, dilation (⊕) is applied using Equation (4), which enlarges the features and adds pixel
layers across the regions of associated elements.

A⊕ B =
{

z
∣∣∣
(

B̂
)

z
⋂

A 6= φ (4)

where B indicates a structuring element through which the blob image is dilated. Mean-
while, the closing (•) operation is applied using Equation (5), in which the license plate blob
image is first dilated by structuring element B and then eroded by B. The closing operation
results in the smoothing of the contour and filling of the holes in the license plate blob.

A • B = (A⊕ B)	 B (5)

When the luminance is unsatisfactory, in Algorithm 2, we suggest illumination rectifi-
cation as shown in lines 17–21. We use the PCA on the detected input vehicle image to fix
the dimming of the image. By applying the PCA, we extract the Luminance and Chromi-
nance channels of the RGB-colored vehicle image. In our work, only the luminance channel
is processed further due to the fact that it contains a large amount of energy. After the mean
of the luminance vector is calculated, we empirically estimate the low and upper limits of
the threshold as shown in lines 19–21 in Algorithm 2. From lines 20–21, the luminance is
adjusted to finally obtain the output image (X′) with a much better luminance that can be
handled later by the developed license plate detection module. We empirically estimate
the low and upper limits of the threshold as shown in line (20) in Algorithm 2. We set the
value of thresholdlow to 0.25 and thresholdhigh to 0.95. From lines 21–22, the luminance is
adjusted to obtain the final neat and clean enhanced output image (X ′).
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Algorithm 2: License plate detection procedure.

1. Input: Vehicle image confined by bounding box
2. For satisfactory luminance, do;
3. begin LP Localization
4. transform the vehicle-detected image to the HSV domain using Equations (1)–(3)
5. do segmentation
6. define HSV threshold limits for every channel
7. obtain mask images
8. If HImage ≥ HTlow and HImage ≤ HThigh then Hmask = 1
9. if SImage ≥ STlow and SImage ≤ SThigh then Smask = 1
10. If VImage ≥ VTlow and VImage ≤ VThigh then Vmask = 1
11. obtain the LP blob image (A)
12. if HSVmasks = 1
13. end segmentation
14. use mathematical morphology by Equations (4) and (5)
15. analyze dimensions through aspect ratio and LP spatial area
16. else
17. use PCA and form a luminance vector
18. calculate the luminance vector mean
19. approximate thresholdhigh and thresholdlow

20. If mean > thresholdhigh → decrease the luminance,
21. else If mean < thresholdhigh → increase the luminance,
22. Obtain improved output image (X′)
23. end LP Localization
24. Output:I′ = LP localization

Once the improved luminance image is obtained, the dimensions of the extracted
regions are examined to locate the existence of a possible license plate. We analyze the
dimensions of the license plate through its spatial area and aspect ratio. Finally, the LP
module draws the green bounding box on connected regions, which outlines the existing
LP in the image.

3.3. The LP Recognition

After a license plate is detected, normally the conventional LP identification methods
segment the plate characters to recognize LP. These steps usually combine image processing
techniques or video sequences, and their calculations depend on the true recognition rate
and the error recognition rate. As discussed earlier, LP recognition is a difficult task due
to the huge variety of plate formats and severely varying outdoor illuminations during
the image acquisition phase. Many methods perform well in standard circumstances, for
instance, controlled illuminations, restricted vehicle speeds, prespecified roads, and static
backgrounds. Several algorithms have been designed to achieve LPR in images. In addition,
issues such as processing time, computational complexity, and recognition rate are also
important parts of the LPR algorithm. Algorithm 3 shows the pseudocode of the proposed
LP recognition algorithm.

As can be seen in Algorithm 3, our developed method contains interconnected steps
and performs miscellaneous operations after the LP bounding box is fed to the recogni-
tion module. Since the area contained by the LP is normally small, for better visibility,
contrast is enhanced using contrast from basic image processing methods. The improved
contrast image is binarized and segmented by applying the morphological operations using
Equations (4) and (5), respectively.
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Algorithm 3: The LP recognition pseudocode.

1. Input: LP bounding box
2. begin operations
3. Enhance contrast and deblur the image for better visibility
4. Binarize the image obtained in the above steps
5. Obtain segmented image (S) through dilation and erosion using Equations (4) and (5)
6. Get Pre-trained model
7. do
8. for S = 1:n
9. Perform prediction on S
10. Build output string
11. end
12. end
13. end operations
14. Output: Recognized LP characters

On the basic pretrained model, the LP characters are predicted to build the possible LP
strings that may appear inside the LP bounding that was processed in the initial stage of the
LP recognition module. Algorithm 3 generally depicts the core theme of the LP recognition
scenario. All the operations used herein, such as contrast, deblurring, and binarizing the
image, are essentially handy for the recognition task.

4. Simulation Results

To simulate, we use a workstation, which has one NVIDIA RTX 2070 GPU along with
an Intel CPU-Corel i7-6700. Simulations are done in Python version 3.6.0. Below, we discuss
in detail the performance of our proposed LP recognition algorithm.

4.1. Training Data Preparations and Model Training

Before our developed method is executed, we initially prepare the data and make
some assumptions to train the model. Algorithm 4 shows the arrangements for preparing
the training data. To extract the LP digits from the input image, basic data processing (DP)
operations are performed from lines 2–13 of Algorithm 4. Most of these DP operations
include desaturating the image through a Gaussian low-pass filter and binarizing the
image. Moreover, the erosion and dilation operations described above are also performed.
Meanwhile, the LP image is converted to 28 × 28 pixel image on which random spatial
transformations are applied that ultimately result in a 28 × 28 dataset with prominent
characters and their classes.

Since then, we have also performed experiments on the CCPD dataset, which has
substantial license plate variations, such as tilted or blurred plates. For the tilted plates,
spatial transformations are applied to the 28 × 28 pixels converted image. This operation
essentially corrects the appearance of the license plate and ultimately makes the algorithm
easier to process. Similarly, for poor image quality in which characters are not fully
visible, characters touch each other due to blur or similar phenomena. In such conditions,
mathematical morphological image processing techniques, such as erosion and dilation as
described in Equations (4) and (5), respectively, become handy. All the operations listed in
Algorithm 4 essentially prepare and result in well-managed, systematic data that is nicely
processed by our developed algorithm during the recognition task.
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Algorithm 4: Training data preparations.

1. Input: Single digits extracted from LPs
2. begin DP
3. Extract Single Digit
4. Use desaturate
5. Use De-Blurring
6. Binarize the image
7. Erode Image
8. Dilate Image
9. Convert to 28 × 28 image = (i)
10. for s = 1:random (n)
11. Perform Random Spatial Transform on (i)
12. Save the image (i) and the character class to a dataset
13. end
14. end DP
15. Output: Dataset of 28 × 28 resolution with character classes

After LP character data is obtained, in the next step, training of the LP recogni-
tion model is performed as shown in Algorithm 5, which takes the 28 × 28 LP charac-
ter image and yields the recognition model with weights. During the first part of the
LP training, a 13-layer CNN is used to build a DNN. This DNN is then applied to a
3 × 3 Conv2D layer along with a 2 × 2 MaxPool layer. As shown in Algorithm 5, the next
stages also apply a dense layer to perform the 50% dropout to obtain the appropriate model.
During the model training, the LP characters are checked and predicted for a small batch
of images. Meanwhile, to obtain good accuracy, weights are adjusted at regular intervals
after each execution epoch. Once the training data and LP recognition model training
are set, in the next section, we demonstrate our detailed observations and findings. Our
LP recognition analysis and discussion are based on the PKU, AOLP, and CCPD datasets,
which are well-known and widely used in research these days.

Algorithm 5: The LPR model training.

1. Input: Dataset of 28 × 28 Images with character classes
2. begin LPR Training
3. begin Model Design
4. Apply the DNN with 13 Layers of the CNN
5. for i = 1:3
6. Conv2D 3 × 3
7. MaxPool 2 × 2
8. end
9. Flatten the LP with a dropout of 50%
10. for i = 1:3
11. Use a dense Layer with a dropout of 50%
12. end
13. end Model Design
14. begin Training
15. for epoch = 1:n, get batch of images (i)
16. for i = 1:n
17. Provide image to the model and check predicted characters adjust weights
18. end
19. end
20. end LPR Training
21. Output: Model with set weights
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4.2. Analysis of the PKU Dataset

During our study, we initiated our experiments on the PKU dataset, which is a well-
known publicly available vehicle dataset. Table 1 briefly describes the various vehicle
categories in the PKU dataset. Generally, the PKU dataset is a collection of diverse vehicle
images that are captured under diverse conditions [31]. As shown in Table 1, this dataset
contains a total of 3977 diverse vehicle images. The developers of the PKU dataset divided
the vehicles into five distinct categories, which they refer to as G1, G2, G3, G4, and G5. Out
of 3977 vehicle images, the PKU dataset also contains a total of 4263 visible license plates,
whose pixel resolution varies from 20 to 62 pixels.

Table 1. The PKU dataset description.

Category Vehicle Conditions
Input Image
Resolution

(Pixels)
No. of Images No. of Plates Plate Height

(Pixels)

G1
Cars on roads; ordinary environment at
different daytimes; contains only one

license plate per image
1082 × 728 810 810 35–57

G2
Cars/trucks on main roads at different

daytimes with sunshine; only one
license plate in each image

1082 × 728 700 700 30–62

G3 Cars/trucks on highways during the
night; one license plate per image 1082 × 728 743 743 29–53

G4
Cars/trucks on main roads; daytimes
with reflective glare; one license plate

in input images
1600 × 1236 572 572 30–58

G5
Cars/trucks at roads junctions with
crosswalks with several plates per

image
1600 × 1200 1152 1438 20–60

Complete PKU dataset 3977 4263 20~62

In Figure 3, we demonstrate a few detection results for both vehicles and license plates
for each category of the PKU dataset. We show different vehicles from each category to
demonstrate a fair understanding.

Vehicle+LP detection: G1-category: The first row in Figure 3 demonstrates a few
images from this category. It is evident for this category that for different-shaped vehicles,
the detection module performs well by drawing a red rectangle around the object of
interest, which is a vehicle in this case. The detected vehicle image is then analyzed by the
LP localization module. In all four of the sample images in Figure 3 from the G1 category,
the visible LP is accurately localized by our developed method.

Vehicle+LP detection: G2-category: The second row in Figure 3 demonstrates a few
images from the G2 category. As indicated in Table 1, this category mostly contains vehicle
images that are captured during different times of the day. In all four images shown for
this category, both the vehicle and the LP localization module are in the correct position,
thereby indicating the correct position of both of these objects. The first image shown for
this category is of the truck, and the rest are the cars. However, the detectors applied to
capture these objects are intelligent enough to discriminate between these shapes.

Vehicle+LP detection: G3-category: The third row in Figure 3 demonstrates a few
images from the G3 category. Most of the images in this category are nighttime captures of
small cars and trucks. It can be observed in the third row of Figure 3 that both objects are
accurately located. To fairly discriminate the vehicle and the LP detection for nighttime
captured images, we draw the white color bounding box around both the detected vehicle
and the LP area.
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Vehicle+LP detection: G4-category: The 4th row in Figure 3 demonstrates a few
images from the G4 category. This category also contains one license plate in an image, but
those are captured in a difficult situation of reflective glare that affects the image quality
and the LP area appearance. However, in this case, our applied object detectors handle
them efficiently. For each of the different images shown in the fourth row of Figure 3, the
good performance of the applied detectors to localize both vehicles and the LP of that
vehicle is evident.

Vehicle+LP detection: G5-category: The last row in Figure 3 demonstrates a few
images from the G5 category. This category contains a few LPs in an image. As shown in
the last row of Figure 3, all the instances of object detection are completely achieved. In
particular, the first image in the fifth row shows the object from an angle, which is also
correctly spotted by the applied detectors. The rest of the images in this row contain at
least two vehicles along with two LPs that are accurately detected.
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Table 2 lists the comparison of each category of the PKU dataset for various methods
mentioned therein. A few of the important findings from Table 2 are summarized below.

• Each of the compared methods along with our developed method yields 100% vehicle
detection accuracy in the G1 and G2 categories, except the work developed in [33],
whose vehicle detection accuracy is 99%. Similarly, for the G3 category, the method
developed in [33,34] yields 98.20% and 99% vehicle detection accuracy. The remaining
approaches all produce 100% vehicle detection results.

• In the G4 category, all of the methods compared can find vehicles with an accuracy of at
least 99%. In this category, YOLO-v7-based methods [46,47] yield the highest vehicle
detection accuracy of 99.74% and 99.72%, respectively. While for the G5 category,
an improved YOLO-v7-based method ranks first, yielding 99.22% vehicle detection
accuracy. Our developed method ranks 3rd and yields a vehicle detection result at par
with [46] by delivering 99.10% detection accuracy.

• On the PKU dataset to locate vehicles, an improved YOLO-v7-based method ranks
first and yields a mean vehicle detection accuracy of 99.79%, followed by standard
YOLO-v7 [46], whose accuracy is 99.76%. Our developed method also yields approxi-
mately similar results as compared with [46]. Vehicle detection is a prototype in our
developed system. Therefore, an accuracy of slightly over 99.75% is very encouraging
in the later stages of the algorithm.

• Table 2 also lists the LP detection comparisons for several methods. As can be seen, the
improved YOLO-v7 [46] ranks first in all five categories of the PKU dataset in terms of
LP detection. The standard YOLO-v7 method [45] ranks 2nd in terms of license plate
localization on this dataset. For the G1 and G2 categories, all of the methods compared
had a LP detection accuracy of at least 97%, whereas, for the G3 category, the methods
listed in Table 2 yielded at least 98% LP detection. For the G4 category, approximately
99% LP detection is achieved. The G5, which is the most challenging category in
the PKU dataset, is also addressed nicely. In this category, the methods listed in
Table 2 yield at least 98% accurate license plate detection. In addition, our method
yields at least 99% LP detection for G1, G2, G3, and G4 categories. In the G5 category,
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our finely tuned version of the Faster RCNN achieves 97.30% accurate license plate
detection accuracy.

• Our analysis indicates that the mean LP detection accuracies of the works [32–34,45–47]
are found to be 98.47%, 98.06%, 98.47%, 99.09%, 99.05%, and 99.13%, respectively. The
aforementioned LP detection accuracies are a good indicator that all the compared methods
yield at least 98% license plate detection accuracy. YOLO-based methods [45–47] perform
well to locate an object, such as a vehicle or license plate. However, from Table 2, we
find that our method, which employs a fine-tuned version of the Faster RCNN, yields
a mean license plate detection accuracy of 99.04%. The aforedescribed analysis is a
good indicator of the application of the various methods to achieve objects, such as
vehicles and license plates, in various real-life applications. Vehicle and license plate
detection is a prototype of our developed system. Therefore, our deployed detectors
also yields at par results with the recently published works.

Table 2. Category-wise Vehicle + License Plate detection comparison (%) on PKU dataset.

PKU Dataset Categories

Object Ref G1 G2 G3 G4 G5

Vehicle

[32] 100 100 100 99 98.50
[33] 99 98 98.20 99.10 98
[34] 100 100 99 99.10 98
[45] 100 100 100 98.96 99.13
[46] 100 100 100 99.72 99.10
[47] 100 100 100 99.74 99.22

Proposed 100 100 100 99.70 99.10

License Plate

[32] 99 97.05 98.80 99 98.50
[33] 97 98.01 98.20 99.10 98
[34] 98.50 98.22 98.55 99.10 98
[45] 98.80 99.45 99.15 98.96 99.13
[46] 99.85 99.50 99.22 99.35 97.35
[47] 99.87 99.65 99.40 99.40 97.35

Proposed 99.81 99.50 99.20 99.40 97.30

With the state-of-the-art method listed in Table 2, detection accuracy is almost at par
with that of conventional methods. After the objects, which in our case are vehicles and
LPs, are located, in the next phase we process the detected LP area for recognition. It
is important to state that in the PKU dataset, all the visible license plate labels are not
annotated. Therefore, in the PKU dataset, we labeled the 2250 images. The 1355 images are
randomly selected for training, and the other 901 are used for testing. To evaluate license
plate recognition accuracy, the license plate was localized by a bounding box as shown in
Figure 3 for each category of the PKU dataset. The detected license plate is now fed to our
newly developed recognition module.

As shown in Figure 4, the proposed LP recognition technique correctly understands
different LPs that appear in each of the five categories of the PKU dataset. The important
points noted during the LP recognition task are discussed further below.

LP recognition: G1-category: As shown in the first row in Figure 4, the proposed
recognition algorithm precisely identifies the LPs shown therein. Our obtained correct
recognition result is shown on top of the original LP on the input vehicle images. The third
image in the first row of Figure 4 has a relatively complex background. However, it does
not pose any threat to the proposed method of achieving the correct identification result.

LP recognition: G2-category: As shown in the second row in Figure 4, the first three
images have different car colors with their own installed LPs. Our method correctly
identifies all such cases. However, the fourth image of the bus with visible LP has a
relatively complex background. Nevertheless, the proposed method handles this scenario
well and achieves the correct result on top of the original LP shown therein.
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LP recognition: G3-category: As shown in the third row in Figure 4, the proposed
LPR method reliably handles the high-glare images. The LPs on the vehicles in the first two
pictures in this row are clear enough to be correctly identified. Similarly, it is clear from this
row that our developed method handles low-contrast images in which both the vehicles
and the background have blackish appearances. Generally, it is observed in the third row
of Figure 4 that our developed method has barely any effect on its recognition performance
with blackish objects against a black background.

LP recognition: G4-category: As shown in the fourth row in Figure 4, the area around
the vehicles is highly dark. There also appear to be glare and high beams from vehicles.
However, in all four images shown for this category in Figure 4, our developed method
accurately identifies all the LP numbers and successfully handles the glare situations.

LP recognition: G5-category: As shown in the fifth row in Figure 4, there appear
to be multiple vehicles and LPs in the images. For all the images shown, our developed
method identifies all the LP that appear in the images. In the second and fourth images,
there appear to be three LPs. In the fourth image, our method identifies all three LPs,
whereas, in the second image, only two LPs are detected out of three. One reason is the red
text that appears in the input image around the LP area, which created a hurdle for our
developed method.
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Table 3 lists the LP recognition rate for each of the PKU categories for works developed
in [32–34]. It is important to state here that these methods were chosen for comparison on
the PKU dataset because their standard implementation is publicly available. This makes it
logical to train these models on the PKU dataset along with our developed method.

Table 3. Category-wise LP recognition accuracy comparison (%) on PKU dataset.

Ref G1 G2 G3 G4 G5

[32] 96 97.80 92.60 80.00 72.00

[33] 92.00 90.50 90.10 89.60 86.40

[34] 98.00 98.50 90.00 86.01 81.10

Proposed 100 100 100 99 99.63

From Table 3, it is evident that all the compared methods yield over 90% recognition
accuracy for the G1 category. Our developed method yields 100% LP recognition accuracy
in this category. The work developed by Zhang et al. [34] ranks second, yielding 98%
accurate recognition. For the G2 category, the work developed by Masood et al. [33] yields
the lowest LP recognition accuracy of 90.50%. In this category, our developed method
ranks first, followed by the work reported in [34]. For the G3 category, the works on [33]
and [34] yield almost similar results by producing at least 90% recognition accuracy. In
this category, the work developed by Xu et al. [32] also reports 92.60% LP recognition. For
the G4 category, we observe that works in [32–34] yield below 90% LP recognition. In this
category, our developed method comprehensively outperforms the compared methods. For
the G5, which is the most difficult category of the PKU dataset, the work in [32] produces
the least accuracy of 72%, followed by [34], whose accuracy is a bit over 80%. In this
category, our developed method yields 99.63% recognition accuracy.

In Figure 5, we report the mean license plate recognition accuracy on the PKU dataset.
Our proposed LPR method comprehensively beats the compared methods in terms of
mean recognition accuracy. As shown in Figure 5, our developed license plate recognition
method yields 99.63% accuracy on the PKU dataset. Similarly, the work proposed in [34]
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ranks second, yielding 90.72% accuracy. On the aforementioned dataset, the work proposed
in [32] yields the lowest license plate recognition accuracy of 79.28%. To the best of our
knowledge, on the PKU vehicle dataset, the proposed method has almost solved the LPR
accuracy problem.
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Figure 5. Mean LP recognition comparison on the PKU dataset.

4.3. Analysis of the AOLP Dataset

The application-oriented license plate (AOLP) [35] database consists of 2049 images of
a Taiwan license plate. This dataset is categorized into three subsets according to complexity
levels and photographing conditions, which are access control (AC), traffic law enforcement
(TLE), and road patrol (RP). For the readers’ information, below we briefly describe the
categories contained in the AOLP dataset.

Access Control (AC): The AC refers to the cases in which a vehicle passes a fixed
passage at a reduced speed or with a full stop, such as at a toll station or the entrance/exit
of a region.

Traffic Law Enforcement (TLE): The TLE refers to cases where a vehicle travels
at a regular or higher speed but violates traffic laws, such as a traffic signal or speed
limit, and is captured by a roadside camera. Here, 757 images were collected for this
application category.

Road Patrol (RP): The RP refers to the cases where the camera is installed or handheld
on a patrolling vehicle and takes images of the vehicles from arbitrary viewpoints and
distances. Since we do not have any other images with Taiwan license plates, we use any
two of these subsets for training and the remaining one for testing, similar to previous
practices. Figure 6 shows our obtained results on the AOLP dataset.
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Figure 6 shows the license plate recognition results for each of the aforedescribed
categories of the AOLP dataset. The proposed LPR method works well for scenarios where
half of the vehicle bonnet is visible along with the license plate location, which is much
lower on the horizontal axis. In each of the images in Figure 6a for the AC category, the
proposed method accurately identifies the license plates. Similarly, for the TLE category,
as shown in Figure 6b, where the license plates appear in the angular view, the proposed
method accurately handles this angle variation by correctly identifying all the license plates.
The third image in Figure 6b is especially interesting, as here a yellow vehicle appears at the
back side of the license plate, which ultimately results in the partial occlusion of the license
plate. Although it does not affect the digits of the plate area, the proposed LPR algorithm
handles this partial occlusion and accurately identifies the license plate. Figure 6c shows
the RP conditions. Clearly, this is a challenging category as there appears to be a large
angle deviation of the viewpoint of the license plate, which makes this scenario challenging
for most of the machine learning algorithms. However, as can be seen in Figure 6c, the
proposed LPR method reliably handles this issue by indicating the correct number on the
license plate.

Table 4 lists the LP recognition rate on different classes of the AOLP dataset for works
developed in [36–39]. It is important to state here that these methods were chosen for
comparison on the AOLP dataset because their evaluations on this dataset, along with
standard implementation, are publicly available. This makes a fair reason for us to train
these methods on the AOLP dataset along with our developed method. Table 4 also lists the
comparison of the proposed LPR with a few recent methods on the AOLP dataset. As can
be seen in Table 4, for the AC category, the proposed method yields the highest recognition
rate of the license plates in this category.
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Table 4. Comparison of the AOLP dataset.

Method

Accuracy % on Each Category

AC: No of
Images = 681

TLE: No of
Images = 757

RP: No of
Images = 611

Mean
Recognition
Accuracy %

[36] 94.9000 94.2000 88.4000 92.5000
[37] 95.3000 96.6000 83.7000 91.8666
[38] 96.6000 97.8000 91.0000 95.1333
[39] 97.3000 98.3000 91.9000 95.8333

Proposed 97.8970 98.2719 91.9006 96.0231

Moreover, in the AC category, the work proposed in [39] ranks second among the
compared methods. Similarly, for the TLE category, the proposed LPR method ranks
second on the AOLP dataset. In this category, the work reported in [39] yields the highest
recognition accuracy. However, the work in [36] ranks fourth among all compared methods,
yielding slightly over 94% identification accuracy. For the RP category, the method reported
in [39] and the proposed method yield almost similar identification accuracy of slightly
over 91%, despite the fact that the proposed method is a bit higher. As indicated by the last
column in Table 4, the proposed license plate recognition method yields the highest license
plate recognition accuracy of 96.0231% on the AOLP dataset. The work listed in [39] ranks
second in achieving overall identification accuracy, followed by [38]. In general, and across
the whole AOLP dataset, all of the methods compared correctly identify license plates over
91% of the time.

4.4. Analysis of the CCPD Dataset

The CCPD dataset [40] is the largest publicly available LP dataset and has a collection
of over 290,000 Chinese LP images. This dataset is separated into several categories
according to the difficulty of identification, for instance, the illuminations on the LP area,
the distance from the license plate when photographing, and the degree of horizontal and
vertical tilts. The CCPD dataset also contains images in different weather conditions, such
as rainy, snowy, or foggy. Each category includes 10,000 to 20,000 images. The CCPD-base
consists of approximately 200,000 images, of which 100,000 are used for training and the
other half are for testing. As listed in Table 5, the other sub-datasets, such as the CCPD-DB,
the CCPD-FN, the CCPD-rotate, the CCPD-weather, and the CCPD-challenge, are also used
during the test phase.

Table 5. Comparison of the CCPD dataset.

Model
CCPD-
Base

(100 k)

CCPD-DB
(20 k)

CCPD-FN
(20 k)

CCPD-
Rotate
(10 k)

CCPD-Tilt
(10 k)

CCPD-
Weather

(10 k)

CCPD-
Challenge

(10 k)

Overall
Accuracy

(%)

[40] 98.5000 96.9000 94.3000 90.8000 92.5000 87.9000 85.1000 95.5000
[41] 99.1000 96.3000 97.3000 95.1000 96.4000 97.1000 83.2000 93.0000
[42] 99.5000 98.1000 98.6000 98.1000 98.6000 97.6000 86.5000 98.3000
[43] 98.9000 96.1000 96.4000 91.9000 93.7000 95.4000 83.1000 96.6000
[44] 99.6000 98.8000 98.8000 96.4000 97.6000 98.5000 88.9000 98.5000

Proposed 99.8500 98.7800 98.8000 98.1100 98.8000 98.9000 88.8000 98.7000

Figure 7a shows a few samples of the output images on the CCPD-base images. Clearly,
the proposed method performs well on all images. Particularly, the left-most image has
huge illumination variations with very limited visible contrast in the license plate area.
The proposed method handles that scenario well and correctly identifies the license plate.
Similarly, the second, third, and fourth images in the top row of Figure 7a are the cases
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where the license plate appears in the angular view. However, our proposed method
handles this scenario and identifies all the license plates. Figure 7b shows the CCPD-blur
image output of our developed method. Most of these blurred images were captured in
outdoor conditions with strong sunlight and complex backgrounds. Since these images
appear blurry, the license plate area has a low resolution. However, it can be seen in
the second row of Figure 7b that our developed method performs significantly well and
identifies all the license plates shown therein in the second row. Particularly, the first and
third images in the second row of Figure 7b are indicative of the good performance of our
developed method where the background is complex along with various other objects.
Moreover, the third row in Figure 7c is the sample output of our proposed method for the
CCPD-FN cases. Clearly, in this case, our developed method is quite accurate and reliably
identifies all the license plates shown therein. It is to be noted that the third row in Figure 7
also contains complex backgrounds. However, the good performance of our developed
method is unaffected by these factors.
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A more detailed analysis of our developed method is shown in Figure 8. As can be
seen, the outputs in the first row of Figure 8 are from the CCPD-rotate category. Particularly,
the first image has a rotated license plate along with an overly whitish appearance due to
the presence of very strong sunlight. Clearly, the developed method handles such a scenario
and accurately identifies the license plate. The fourth image in the first row of Figure 8
has a relative combination of dark and bright contrast. Overall, the proposed method
performs well in the CCPD-rotate category and, as seen in Table 5, produces encouraging
results. The second row in Figure 8 shows the license plate identification resultant images
from the CCPD-tilt category. The first image in the third row of Figure 8 is a low–contrast
image example that has severe black contrast. It can be seen that our developed method is
unaffected by this situation and accurately identifies the license plate. Similarly, the last
image in the third row of Figure 8, which has a slightly misplaced license plate, is highly
challenging in the tilt category. However, our developed method also handles this case
intelligently and produces accurate output.

More output resultant images from the CCPD dataset are shown in the third row of
Figure 8, where a few cases are shown for the different weather conditions. The first three
images in the third row of Figure 8 correspond to the snowy weather where our developed
method reports accurate results, whereas the fourth image is for the rainy day in which our
developed method performs at par and yields accurate results. The fourth row in Figure 8
is for the outputs generated by the algorithm for the CCPD challenge category.

During simulations, we find that this is the most challenging category in the dataset,
and it is not easy for every algorithm to handle this. The first image shown in the last row
of Figure 8 indicates that both the vehicles and the outside environment are severely dark.
However, our developed method handles this scenario and yields accurate recognition
results. The same is true for the third image in the last row, where our approach accurately
identifies and identifies the license plate. Similarly, for the 2nd image in the last row of
Figure 8, there appears to be a shadow on the road and the vehicle, and there is also a bright
light in the center of the license plate. However, our developed method passes through
this hurdle and yields the correct result. Likewise, the rightmost bottom image in Figure 8
is the case where there are back lights turned on, and half of the license plate has a blue
background with white color text on it while the other half has a light grey background
with yellow text over it. Consequently, our established approach delivers accurate and
encouraging results in this case.

Table 5 lists the LP recognition rate on different classes of the CCPD dataset for works
developed in [40–44]. It is important to state here that these methods were chosen for
comparison on the AOLP dataset because their evaluations on this dataset, along with
standard implementation, are publicly available. This makes a fair reason for us to train
these methods on the AOLP dataset along with our developed method. In Table 5, we show
the comparison of our developed method with these five techniques on the CCPD dataset
for all the categories. It can be seen that, for the CCPD-Base category, our method ranks
second out of all the compared methods. In this category, the work reported by [44] has
the highest accuracy. In this category, the work conducted in [40] has the least recognition
accuracy. For the CCPD-DB category, our method follows [44] and lies in the second
position. Here, the work in [41] has the lowest accuracy. For the CCPD-FN category, our
method and [44] have the highest license plate recognition accuracy, followed by the work
done in [42].

For the CCPD-rotate category, our developed technique beats the compared works
and yields the highest identification accuracy of license plates. In this category, the work
done in [43] yields the lowest identification rates. Moreover, for the CCPD-Tilt category,
our method has the highest recognition accuracy, followed by the work in [40], which has
the lowest reported license plate identification rate. For the CCPD-weather category, our
method again beats the compared works. Here, the work in [40] has the lowest recognition
rates. Furthermore, for the CCPD challenge category, the work presented in [44] has the
highest license plate identification rate and [41] has the lowest. In this category, we again
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rank second out of the compared methods. Our developed method yields the highest
overall license plate recognition accuracy, with a 98.7000% correct recognition rate. The
work performed in [44] ranks second, and the work reported in [40] lies in the third spot.
Overall, the work reported in [41] has the lowest license plate identification rate of 93%.
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4.5. Computational Complexity

To perform the computational analysis of our developed method and the compared
methods, we manually cropped the image resolutions. In our experiments, we selected
different image resolutions, which are 700 × 1100, 500 × 800, 400 × 600, 320 × 240, and
300× 280 pixels. From the compared works in this manuscript, we choose ten methods and
executed them on the aforesaid image resolutions. Complete results are detailed in Figure 9.
It is evident that the work reported by Yu et al. [41] and Li et al. [36] is computationally
complex and consumes more than 3 ms to process the image resolution of 700 × 1100 to
yield the final recognition result. Moreover, the works of Yuan et al. [34], Luo et al [42],
and Wang et al. [43] also consume more than 2.5 ms to process the aforedescribed image
resolution to generate the final resultant image. The works reported in Masood et al. [33]
and Wu et al. [38] are computationally efficient and consume nearly 0.5 ms to process
the test image for various image resolutions. Therefore, we observe that our developed
technique takes slightly over 2 ms to deliver the final result. In terms of the execution
time ranking, our developed method ranks fourth out of all of the compared methods. We
observe that all the compared methods are near real-time for processing various image
resolutions. Once an algorithm is trained on every dataset, our developed method along
with other methods can be used in a resource-constrained environment, as we see that all
the methods explored in this study work in near real-time in actual living environments
with high accuracy.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 30 
 

and Wu et al. [38] are computationally efficient and consume nearly 0.5 ms to process the 
test image for various image resolutions. Therefore, we observe that our developed tech-
nique takes slightly over 2 ms to deliver the final result. In terms of the execution time 
ranking, our developed method ranks fourth out of all of the compared methods. We ob-
serve that all the compared methods are near real-time for processing various image res-
olutions. Once an algorithm is trained on every dataset, our developed method along with 
other methods can be used in a resource-constrained environment, as we see that all the 
methods explored in this study work in near real-time in actual living environments with 
high accuracy. 

 
Figure 9. Computational complexity [32–44]. 

4.6. Discussion 
Detailed simulations shown in this paper indicate that object detection, such as vehi-

cle or license plate detection, has been an active research field in recent years. This paper 
presented a detailed analysis of license plate recognition on three publicly available da-
tasets. For the task of vehicle detection, a Faster RCNN architecture was used. The license 
plate was located and recognized through our own developed methods. Our findings are 
indicative of superior outputs on challenging datasets. Moreover, a detailed comparison 
of our developed method was carried out with several state-of-the-art license plate recog-
nition approaches. We are optimistic that this study will be a fair guideline for beginners 
and practitioners to modify or use any detector or recognizer for their desired tasks or 
applications. The outcomes of our developed system for recognizing license plates are 
summarized below. 

PKU Dataset: 
On this dataset, our developed method yielded 100% recognition accuracy in the G1, 

G2, and G3 categories. In the G4 category, our developed method was 99% successful at 
accurately recognizing the license plate. Finally, in the G5 category, our developed 
method yielded 99.63% recognition accuracy. Overall, on the PKU dataset, our developed 
method ranks first out of the three compared methods in terms of license plate recognition 
accuracy. 

AOLP Dataset: 

Figure 9. Computational complexity [32–44].

4.6. Discussion

Detailed simulations shown in this paper indicate that object detection, such as ve-
hicle or license plate detection, has been an active research field in recent years. This
paper presented a detailed analysis of license plate recognition on three publicly avail-
able datasets. For the task of vehicle detection, a Faster RCNN architecture was used.
The license plate was located and recognized through our own developed methods. Our
findings are indicative of superior outputs on challenging datasets. Moreover, a detailed
comparison of our developed method was carried out with several state-of-the-art license
plate recognition approaches. We are optimistic that this study will be a fair guideline for
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beginners and practitioners to modify or use any detector or recognizer for their desired
tasks or applications. The outcomes of our developed system for recognizing license plates
are summarized below.

PKU Dataset:
On this dataset, our developed method yielded 100% recognition accuracy in the G1,

G2, and G3 categories. In the G4 category, our developed method was 99% successful at
accurately recognizing the license plate. Finally, in the G5 category, our developed method
yielded 99.63% recognition accuracy. Overall, on the PKU dataset, our developed method
ranks first out of the three compared methods in terms of license plate recognition accuracy.

AOLP Dataset:
This dataset contains three challenging categories, which are access control, traffic

law enforcement, and road patrol. On access control, our developed method yielded
97.8970% accurate recognition accuracy and ranked first herein. On traffic law enforcement,
our developed method yielded 98.2719% license plate recognition accuracy and ranked
second among the compared methods. On the road patrol category, our developed method
generated a mean recognition accuracy of 91.9006% and ranked first among the four
compared methods. The whole-mean accuracy on the AOLP dataset by our developed
method is 96.0231%.

CCPD Dataset:
This is the largest publicly available license plate dataset and contains challenging

scenarios, such as blur, rotation, tilt, and varying weather. On this dataset, our developed
method yielded a mean recognition accuracy of 98.7000% and ranked first among all
compared methods. In general, for all the other aforementioned categories, our developed
method yielded over 98% recognition accuracy. However, for the CCPD challenge category,
our developed method yielded slightly over 88% recognition accuracy and ranked second
among the five compared methods.

4.7. Limitations

As with any other algorithm for machine learning, we discovered several shortcom-
ings and failures in our method. Figure 10 depicts a handful of these instances with the
following observations:
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• It is clear from the rightmost image in the first row of Figure 10 that the input image is
extremely blurry with a non-clear license plate. In such a case, our developed method
struggles to distinguish the actual words and reads “A” from the license plate as “0”.

• Similar is the case for the next two images in the first row of Figure 10. We also observe
that there is no specific rule for license plate fonts. Therefore, such cases are very hard
to identify correctly. As shown in the first image in the second row of Figure 10, the
extreme blur is also a very challenging situation for any algorithm to deal with.

• We observe that occlusion, either partial or full, is also a challenging factor for the
machine learning-based license plate identification method. One such case is shown
in the third image in the second row of Figure 10, where high intensity light beams
have created occlusion in the license plate area and thereby a hurdle for the algorithm
to handle with. Therefore, before processing the license plate, such factors should be
carefully analyzed.

• We also note that light that falls on the license plate area due to reflection from the
vehicle’s surface also reduces the recognition ability of the algorithm. One such case
is seen in the middle image of the second row in Figure 10. Therefore, before a test
license plate is fed to the recognition algorithm, this issue should also be noted. In
such cases, an image enhancement or contrast rectification method might be useful to
improve the quality of the appearance of the license plate.

5. Conclusions

Accurate detection and recognition of vehicle license plates in natural scene images
is an important task to be performed by machine learning algorithms. Nowadays, it
is an integral part of modern intelligent traffic control systems. However, this task is
quite challenging due to various factors, for instance, the non-uniform patterns of the
plates, variations in view angles, such as blurriness, and the occlusions. With such factors,
it is always difficult for a single algorithm to handle the aforedescribed issues. This
paper discussed methods to detect and identify license plates that appear in an image.
The proposed method is composed of three distinct but interconnected steps: (i) vehicle
detection, (ii) license plate detection, and (iii) license plate recognition. To locate the vehicles,
a fine-tuned version of the Faster RCNN was used, while the license plate area was located
through our own developed plate localization module. Finally, the recognition task is
achieved using the deep learning network. Simulations were performed on three databases,
which are the PKU, the AOLP, and the CCPD license plate dataset. Our proposed method
achieves competitive performance and yields 99%, 96.0231%, and 98.7000% recognition
rates on the aforesaid datasets. We are optimistic that our findings are promising and
will be applicable to a variety of real-world applications, including surveillance and the
monitoring of suspicious vehicles.

In the future, the proposed method could be modified to handle extreme blurriness.
Similarly, the proposed method could also be improved to handle occlusion. Moreover,
the developed algorithm could also be made intelligent by being trained in parallel over
various time intervals.
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Abstract: Deep learning-based classification and detection algorithms have emerged as a powerful
tool for vehicle detection in intelligent transportation systems. The limitations of the number of
high-quality labeled training samples makes the single vehicle detection methods incapable of
accomplishing acceptable accuracy in road vehicle detection. This paper presents detection and
classification of vehicles on publicly available datasets by utilizing the YOLO-v5 architecture. This
paper’s findings utilize the concept of transfer learning through fine tuning the weights of the pre-
trained YOLO-v5 architecture. To employ the concept of transfer learning, extensive data sets of
images and videos of the congested traffic patterns were collected by the authors. These datasets
were made more comprehensive by pointing various attributes, for instance high- and low-density
traffic patterns, occlusions, and different weather circumstances. All of these gathered datasets
were manually annotated. Ultimately, the improved YOLO-v5 structure becomes accustomed to any
difficult traffic patterns. By fine-tuning the pre-trained network through our datasets, our proposed
YOLO-v5 has exceeded several other traditional vehicle detection methods in terms of detection
accuracy and execution time. Detailed simulations performed on the PKU, COCO, and DAWN
datasets demonstrate the effectiveness of the proposed method in various challenging situations.

Keywords: machine learning; object detection; vehicle detection

1. Introduction

The Human Vision System (HVS) reliably and accurately performs complex tasks,
such as being able to detect and recognize and identify diverse range of objects with little
conscious attention. With the recent developments in the Computer Vision (CV) and
Machine Learning (ML), and with the availability of capabilities, such as massive data sets,
faster GPUs, and better algorithms, it has now become possible for computers to detect,
recognize, and classify several items in an image or video with high accuracy [1]. The aim
of vehicle detection and classification is to locate vehicles in either images or videos [2].
Efficiency of vehicle localization is a critical step in traffic monitoring or surveillance.
Figure 1 shows several detected vehicles from Pakistani traffic images that are achieved
using the machine learning algorithms. Therefore, autonomous vehicle detection methods
must exactly detect traffic objects, such as cars, vehicles, or police vans or bikes in real-time
to gain good control and make right decisions for the public safety [3].
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With the development of the DNNs, automatic vehicle detection has made substantial
progress in recent years, for instance, in Autonomous Driving Systems (ADS) and driver
support systems in the context of concerns about traffic congestion and driving safety [4].

To develop intelligent and autonomous systems, for instance, self-directed driving,
surveillance, detecting objects, or tracking, vehicle localization is a crucial problem [5].
Automatic driving is a new high technology invention that relies on the ability to only
find vehicles [6]. In the metropolitan areas, frequent incidents happen regarding traffic
breaches, vehicle mishaps, and thefts that are recorded through the CCTV cameras. Traffic
surveillance system detector should be fast, accurate, and reliable enough to detect vehicles
in real-time. In the areas of traffic managing systems or surveillance technology, there
have been numerous advancements. Two essential conditions are normally considered to
rate vehicle detectors, which are its real-time detection ability and whether it has a high
detection accuracy of the traffic objects under adverse weather conditions.

One of the interesting efforts to locate vehicles is to detect abnormalities in traffic vio-
lations, as well as careless driving on the roads. With the introduction of new technologies
in the ITS and the growing demand for automation, the employment of technology in a
variety of disciplines has become inevitable. Because of the growing number of cars on the
road, automated vehicle traffic monitoring is one of the most important applications being
developed for speed or traffic control, offence detection, road tolls, and a variety of other
related issues. To manage such issues, large amounts of general budget is consumed. In
large and congested cities, traffic surveillance is a major challenge. ITS mobility planning
traffic engineering applications have made significant progress in reducing city incidents.
Surveillance systems nowadays use traffic flow data, which typically consider crucial
factors, such as speed, size, trajectory, and vehicle type. Moreover, vision-based systems
are also used nowadays to monitor and record various traffic patterns.

Due to the developments in the DNNs, the ML based models can be reliably used to
detect various vehicles, although the training speed of deep learning networks is much
slower in the CPU calculations. However, the training time is significantly much less thanks
to developing technologies, such as GPUs and the TPUs. When compared to standard ML-
based approaches, the DNNs have significantly enhanced performance in various scenarios,
such as smart self-governing, self-driving vehicles, intelligent observations, and smart city-
based applications. DNNs that are based on neural networks constitute an advanced
category of machine learning, which is very handy at resolving difficulties in a variety of
complex models that usually are hard to explain through typical statistical techniques.

Moreover, the CNN, which is a form of deep neural network, is extensively used for
image recognition and categorization. These are the algorithms that can identify various
objects, such as, license plates, cars, people, and a variety of other objects [5]. A primary
benefit of the CNN is that it extracts essential features without any human interaction
after the training process. Different versions of the CNN, such as R-CNN, Fast-RCNN,
and Faster-RCNN are the most popular and commonly utilized CNN approaches [5].
However, the computational load is still too high for devices with limited computing
power and space to process photos. The D-based algorithms have long been regarded as
effective tools for image recognition. The CNN-based methods have been frequently used
in recent approaches among the many vehicle detection algorithms and are divided into
region-based and regression-based methods.
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The YOLO is a new method to detect diverse vehicles in a single step. The YOLO
handles the vehicle perception problem as a regression problem by classifying the image
via CNN, which is utilized to achieve robust vehicle detection. The YOLO can retrieve
the object’s position, category, and confidence score, as well as boost detection speed and
detect the motion-blurred vehicles in real-time. A regression-based YOLO technique is one
of the most current ways to predict bounding boxes and class probabilities directly in a
single neural network. As a result, the YOLO model was created to speed up the process to
identify an object and find its location in an image. It uses the CNN to detect several items
in an image immediately. To handle vehicles of different shapes and sizes, it integrates
predictions from many feature maps with different resolutions. With advancements in the
YOLO based methods, such as YOLOv3 and YOLOv5, the YOLO continues to provide
higher performance in terms of processing time and accuracy [3].

In this work, we target the detection and classification of vehicles in images using deep
learning to explore the feasibility of YOLO based methods. The YOLO family of algorithms
is first-order object detection method, which uses an anchor box to integrate various objects
localization. Up to now, five versions of YOLO family of algorithms have been released.
The YOLOv3 is a milestone in the performance and speed of the YOLO family of algorithms.
Our motivation to choose the YOLOv5 detection model is due to its smaller architecture and
much fast detection ability than the previous generations of its model families. Recently,
researchers in various research domains have enhanced the original YOLOv5 model based
on the characteristics of their detection targets, which makes the YOLOv5 algorithm an
excellent choice in vehicle detection domain. Our main contributions in this work are
listed below.

• We propose a modified version of the YOLO algorithm to achieve vehicle detection in
real time. Earlier-developed works have been trained on massive datasets, but still
need to be fine-tuned for use in congested traffic environments. However, we augment
these datasets with our gathered datasets. We compare the efficiency of our trained
version with several recent state-of-the-art methods.

• We detect and classify vehicles in images that are captured in various traffic scenes. We
perform detailed study on the PKU, COCO, and DAWN datasets. To achieve higher
accuracy on images from our local traffic patterns, we gathered an extensive dataset
and applied transfer learning to the YOLOv5. The input to a system is a real-time
image, and the output is a bounding box corresponding to all objects in the image,
along with the class of object in each box.

• In addition, we employ a transfer learning approach to utilize the knowledge embed-
ded in our local datasets. We believe that the ITS based applications require rapid
and precise vehicle identification and classification. It is a challenging task to detect
different vehicles abruptly and precisely due to short gaps between vehicles on the
road and interference aspects of pictures or video frames containing vehicle images.
Therefore, we are optimistic that our developed method provides a good insight into
locating vehicles in congested traffic environments.

This paper is organized as follows. Section 2 discusses few recent related works.
Section 3 describes in detail the proposed method. Simulation results and discussions are
presented in Section 4. Finally, Section 5 concludes the paper and hints towards future
research directions. For readers’ smooth understanding, Table 1 lists the nomenclature that
is used extensively in this paper.
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Table 1. Nomenclature.

Acronym Meaning

CNN Convolutional Neural Networks
COCO Common Objects in Context

DLT Dark Label Tool
DNN Deep Neural Network
FPN Feature Pyramid Network
FPS Frames Per Seconds

HDT/LDT High Density Traffic/Low Density Traffic
ITS Intelligent Transportation Systems
LIT Label Image Tool

mAP mean Average Precision
MSR Multi Scale Retinex
PAN Path Aggregation Network
PKU Peking University

R-CNN Region-based Convolutional Neural Networks
RFW RoboFlow
SSD Single Stage Detector

TP/TN True Positives/True Negatives
XAI Explainable Artificial Intelligence

YOLO You Only Look Once

2. Related Work

Vehicle detection has gained considerable attention in the research community in the
past two decades. In this section, we briefly discuss the recent advances in the vehicle
detection domain. For readers’ fair understanding, we categorize the literature into two
streams as illustrated below.

2.1. Conventional Methods

This section quickly lists a few of the latest conventional vehicle detection approaches.
In [6], the developed method detects vehicles in airborne images. In this work, the vehicle
localization is attained through the Gaussian Mixture Model (GMM) and background
subtraction representations. In [7], an ensemble-based method is developed for various
image descriptors, which illustrate the distributions of gradients, color models, and textures.
This work reports good results in high resolution aerial images. In [8], a new methodology
through the application of the GMM is developed to detect dissimilar complex structures,
for example, objects in residential, agricultural, and industrial zones. This work also reflects
spectral and spatial constraints. An efficient, GMM-based image segmentation method is
utilized in [9]. This method is capable of detecting the frontal view of different vehicles. To
locate the vehicles’ driving area, lanes are spotted through the application of the Canny
edge detector along with Hough transform. To further enhance the efficiency of proposed
method, this work uses the HOG features, colors, and the Harr-features of vehicles, and
trains the SVM classifier. In [10], the SVM is trained through multi-feature fusion that
results in reduced vehicle detection time. In [11], vehicle detection is achieved through
integration of the SIFT with the SVM. To further improve classification ability, an integration
of pyramids pooling, sliding windows, and NMS is done that substantially enhances the
vehicle detection outputs, which are obtained therein.

2.2. YOLO-Based Methods

In [12] a vision-based object detection and recognition framework for autonomous
driving was proposed with particular emphasis on: (i) an optimized model based on the
structure of YOLOv4 was presented to detect 10 types of objects; (ii) a fine-tuned part
affinity fields approach was developed; (iii) eXplainable Artificial Intelligence (XAI) was
integrated to assist the approximations in the risk evaluation phase; (iv) an intricate self-
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driving dataset was developed, which included several different subsets for each relevant
task; and (v) an end-to-end system with a high-accuracy model was discussed.

The overall parameters of enhanced YOLOv4 are reduced by 74%, which meets the
real-time capacity. Moreover, when evaluated with other methods, the detection precision
of the enhanced YOLOv4 improved by 2.6%. In [13], a novel and efficient detector named
YOLO-ACN is developed, which is inspired by the high detection accuracy and speed
of YOLOv3. This technique is improved by the addition of an attention mechanism, a
CIoU (complete intersection over union) loss function, Soft-NMS, and depth wise separable
convolution. In this method, initially, the attention mechanism is built in the channel and
spatial dimensions in each residual block focus on small targets. Later, CIoU loss is adopted
to achieve accurate bounding box regression. Besides, to filter out a more accurate BBox and
avoid deleting occluded objects in dense images, the CIoU is applied in the Soft-NMS, and
the Gaussian model in the Soft-NMS is employed to suppress the surrounding BBox. Finally,
to improve the detection speed, standard convolution is replaced by depth wise separable
convolution. Meanwhile, a hard-swish activation function is utilized in deeper layers.

In [14], a multi-stage object detection architecture, which authors refer as Cascade
R-CNN, is developed to address objects appearance and detection. The proposed R-CNN
is composed of a sequence of detectors that are trained with varying IoU thresholds, to
be sequentially more discriminating against close false positives. These detectors are
trained stage-to-stage and by leveraging the scrutiny that the output of a detector is a
good distribution for training the next higher stage detector. The resampling of improved
hypotheses assures that all detectors have a positive set of examples of equivalent size,
and thus reducing the overfitting. The same systematic method is applied at inference,
enabling a closer match between the hypotheses and the detector quality of each stage.
A simple implementation of the Cascade R-CNN is shown to surpass all single-model
object detectors on the challenging COCO dataset. Simulations also reveal that the Cascade
R-CNN is widely applicable across detector architectures and achieves consistent gains of
the baseline detector strength.

A method to detect smoky vehicles with high precision and speed has been pro-
posed in [15] using an enhanced lightweight network based on Yolov5. This work uses
Mobilenetv3-small modified Yolov5s’ backbone to reduce the number of model parame-
ters and calculations. A vehicle exhaust dataset is collected and created to detect motor
vehicle exhaust with high precision. Cutout and saturation transformations were used to
enlarge the self-built dataset, which was eventually expanded to 6102 photos, due to the
interference of vehicle shadows and occlusion between vehicles. The results demonstrate
that applying data augmentation improves detection accuracy by 8.5%. The upgraded
network is installed on embedded devices and has a detection speed of 12.5 FPS, which is
two times faster than Yolov5. Only 0.48 million network parameters have been improved.
This study suggests an effective target detection model as well as a strategy for developing
low-cost and quick vehicle exhaust detection equipment. An effective nighttime vehicle
detection approach is developed in [16]. First, an optimal MSR algorithm was used to
improve the original nighttime photos. The improved photos were then used to fine-tune a
pre-trained YOLO v3 network. Finally, the network was employed to distinguish vehicles
from each other and outperforming two popular object detection approaches, the Faster
R-CNN and SSD, in terms of precision and detection efficiency. The suggested method has
an average precision of 93.66%, which is 6.14% and 3.21% higher than the Faster R-CNN
and SSD, respectively.

In [17], the proposed work contributed to the field of autonomous driving through the
DL techniques to detect objects. This work primarily uses the YOLO to locate numerous
objects on the roads and categorized into the type that they belong to with the aid of
bounding boxes. The YOLOv4 weights are used to custom train the model to detect
the objects, and the data is acquired using the OIDv4 toolkit from the open-source data
collection. In [18], an updated YOLOv3 algorithm for vehicle detection is developed.
Initially, it clusters the data set using a clustering analysis approach, then optimizes the
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network structure to raise the number of final output grids and boost the comparatively
low vehicle prediction ability. It also optimizes the data set as well as the input image.
Its robustness under various external situations is due to its resolution. Experiments
demonstrate that the modified YOLOv3 algorithm outperforms the traditional approach in
terms of detection accuracy and rate. In [19], researchers proposed the newest YOLOv3
algorithm to detect traffic participants. They trained the network for five different object
classes, which are vehicle, truck, pedestrian, traffic signs, and lights. This work also
discusses the range of driving scenarios that include bright and overcast sky, snow, fog,
and night conditions. In [20], the baseline YOLO is used to detect moving cars. Meanwhile,
a modified Kalman filter method is used to dynamically track the detected vehicles, which
results in overall competitive performance in both day and night. The testing results reveal
that the system is resistant to occluding vehicles or congested highways, with an average
vehicle counting accuracy of 92.11% at the rate of 2.55 FPS. In [21], researchers suggested an
updated Yolov3 transfer learning-based deep learning algorithm for object detection. In this
work, the network is trained on a difficult data set, and the output is fast and precise, which
is beneficial for applications that need object detection. In [22], a method is proposed that
classifies vehicular traffic on video using a neural network. The necessity to regulate traffic
on the roads has emerged as the number of vehicles on the road has increased, resulting
in traffic congestion and a high accident rate. Collecting data from video of vehicles on
the road will aid in the creation of statistics that can be used to efficiently consider traffic
regulation on the roads. The challenge of vehicle categorization on video was solved using
the YOLOv5 powerful real-time object classification method. For neural network training
750 images from outdoor surveillance camera were used as a dataset. After testing the
model, the recognition accuracy was 89%.

YOLOv2 and YOLO9000 models were discussed in [23]. Their strength in real-time de-
tection and classification of objects in videos made them useful in several applications. The
YOLOv2 is very efficient at detecting and classifying simple objects. The GPU features and
the Anchor Box approach were used to accomplish the desired speed and precision. Fur-
thermore, YOLOv2 can accurately detect object movement in video recordings. YOLO9000
is a real-time framework that can maximize detection and classification while also bridging
the gap. The YOLOv2 model and the YOLO 9000 detection system can detect and classify a
wide range of items, from multiple occurrences of a single object to multiple instances of
various objects. In [24], an improved YOLOv4-based video stream vehicle target detection
system was used to address the problem of slow detection speed. This study first presents
a theoretical overview of the YOLOv4 algorithm, then offers an algorithmic technique for
increasing detection speed, and lastly conducts real road tests. According to the experi-
mental results, the algorithm in this work can improve detection speed without sacrificing
accuracy, which can be used to make decisions for safe vehicle driving.

In [25], the YOLOv5 is used to locate weighty supplies vehicles during cold weather
and thus allowed the prediction of parking place slots in real-time. The authors employ
infrared network cameras, since snowy conditions and the polar night in the winter pose
certain obstacles for image recognition. Authors used the YOLOv5 to analyze if the front
cabin and back are adequate features to identify heavy goods vehicles because these
photos repeatedly have large overlaps. The trained algorithm reliably distinguishes the
front of heavy goods vehicles. However, detecting the back cabin appears to be more
difficult, especially when the vehicle is placed far away from the camera. Finally, they
show that detecting heavy goods vehicles utilizing their front and rear instead of the entire
vehicle improves detection during winters, which mostly experience difficult images with
significant objects overlaps and cut-offs.

Recently, some of the learning-based approaches [26] and the CNN based methods [27]
also report encouraging results in the vehicle detection domain. In [26], authors developed
a box-free instance segmentation method using semi-supervised iterative learning. The
iterative learning procedure considered labeling vehicles from the entire scene and then
trained the deep learning model for classification. Authors also considered vehicle inte-
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riors and borders to isolate instances using a semantic segmentation. In [27], researchers
performed a fully convolutional regression network. In this method the training stage uses
an input image along with its ground to describe each vehicle as a 2-D Gaussian function
distribution. Hence, the vehicle’s original format attains a simplified elliptical shape in the
ground truth and output images. The vehicle segmentation uses a fixed threshold in the
predicted density map to generate a binary mask. This method prevents grouping cars
and favors counting. Moreover, vehicles take on a different form that is expressed by the
Gaussian function.

In [28], a robust vehicle detection model is developed, which is referred to as YOLOv4_AF.
This model introduces an attention mechanism that suppresses the interference features of
images through channel length and spatial dimension. In addition, a modification of the
Feature Pyramid Network (FPN) part of the Path Aggregation Network (PAN) is also applied
to enhance the effective features. This way, the objects are steadily positioned in the 3D space
that ultimately improves the vehicle object detection and classification performance. In [29],
vehicle detection and tracking are achieved through a multi-scale deep convolution neural
network. This work also applies conventional Gaussian mixture probability hypothesis
along with hierarchical data association that divides into detection-to-track and track-to-
track associations. Moreover, the cost matrix of each stage is resolved using the Hungarian
algorithm. Only detection information is used in the previous so as to achieve rapid execu-
tion. In [30], Faster-RCNN is tuned to detect vehicles in various scenarios. Moreover, this
work also uses basic image processing methods along with morphological operations and
multiple thresholding to achieve vehicle exact location in near-real-time. In [31], vehicle
and distance detection method is developed in a virtual environment. This work mainly
uses the Yolo v5s neural network structure and develops a novel neural network system,
which the authors refer as the Yolo v5-Ghost. In the discussed approach, the authors further
fine-tuned the network layer structure of the Yolo v5s. Experiments performed therein
indicate that this method is suitable to be deployed in real-time environments. The authors
of this work also claim that their work is suitable for embedded and edge devices and
object detection in general [32]. In [33], a novel bounding box regression loss approach
is developed that learns objects bounding box through miscellaneous transformations
and variance localizations. The learned localization variance is further merged during
non-maximum suppression that increases the localization performance. In [34], a dynamic
vehicle detection method, which is based on a likelihood-field-based model and on Co-
herent Point Drift (CPD), is developed. This study also applies an adaptive thresholding
on the distance and grid angular resolutions to detect the moving vehicles. This work
also presents the pose estimation that is based on the CPD to estimate the vehicle pose.
The scaling series algorithm is also coupled with a Bayesian filter to update the vehicle
localization states during various intervals.

In [35], a new Multi-Level Feature Pyramid Network (MLFPN) is proposed that
constructs effective feature pyramids to detect objects. This method initially fuses multi-
level features and later feeds the base features into a block of alternating joint thinned
U-shape networks. Meanwhile, the decoder layers are gathered up with correspondent
sizes to build a feature pyramid for object detection. In [36], the proposed method is
primarily based on Trident Network (TridentNet), which aims to generate scale-specific
feature maps. This scheme also constructs parallel multi-branches in which each branch
shares the same transformation parameters. This algorithm also adopts a scale-aware
training scheme to specialize each branch by sampling object instances of proper scales
for training. The proposed TridentNet achieves significant improvements without any
additional parameters. In [37], a single-stage method uses Mask SSD to investigate objects.
This work uses a convolutional series to predict pixelwise objects’ separation. This work
also optimizes the whole network through multitask loss function. Ultimately, the network
directly predicts final objects presence results. This work also uses multi-scale and feedback
features that perform well on various objects of different scales and aspect ratios. In [38],
the developed method uses two classifiers to tackle the problem of failure to locate vehicles
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that have occlusions or slight interference. It accomplishes vehicle detection through a local
binary pattern along with a support vector machine. This method also uses the CNN in the
second phase to remove the interference areas between vehicles and any moving object.

In [39], a novel CornerNet is developed achieve accurate object detection. The Corner-
Net approach detects objects bounding box as a pair of keypoints. The top-left corner and
the bottom-right corners are localized through a single CNN. Through an intelligent paired
keypoints approach, this method eliminates the need to design a set of anchor boxes that
are normally used in prior single-stage detectors. This work also introduces corner pooling,
which is a new type of pooling layer and helps the network to better visualize and localize
the objects’ corners. In [40], a novel approach, which authors refer to as Mask R-CNN, is
discussed that extends Faster R-CNN by adding a new branch to predict an object mask.
The Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN.
Moreover, Mask R-CNN is easy to generalize to other tasks, for instance to estimate object
orientation in the same framework. This method is conceptually simple and flexible and
efficiently detects objects in an image. In [41], an anchor-free vehicle detection approach is
developed that is capable of detecting arbitrarily oriented vehicles in high-resolution im-
ages. This work considers vehicles as a multitask learning problem and predicts high-level
vehicle features via a fully convolutional network. In this work, initially, coarse and fine
feature maps outputted from different stages of a residual network are integrated through
a feature pyramid fusion. Later, four convolutional layers are added to predict possible
vehicle features. In [42], a scale-insensitive CNN (SINet) is proposed to locate vehicles with
a large variance of scales. Initially, a context-aware RoI pooling is done to maintain the
contextual information and original structure of objects. Later, a multi-branch decision
mechanism is introduced to minimize the intra-class distance of various features. The
proposed techniques can be further equipped with any deep network architectures and
keep them trained end-to-end.

The preceding discussion offers a good suggestion that vehicle detection is a crucial
step to develop systematic mechanisms, such as an intelligent transportation system. The
methods describe above are a few of the efficient and good works that aim to address the
vehicle detection problem in various environments. As we will see in Section 4, different
datasets are publicly available to address the vehicle detection problem under diverse
conditions. We believe that our work is an efficient addition in the vehicle detection
domain. In the next section, we discuss our developed vehicle detection method.

3. Proposed Method

In this section, we describe our proposed method in detail. As discussed below, we
divide our developed method into the following interconnected steps along with a brief
description. Figure 2 shows the flow of the proposed method. In addition, Algorithm 1
shows more details of our developed method.

To test our method, we gather our own dataset from challenging Pakistani traffic
environments. This dataset was collected over a period of two months in different cities
of Pakistan. As shown in Figure 2 that the gathered data is preprocessed and augmented.
Later it is trained by our model. Meanwhile, the YOLO-v5 model is built and trained.
Our collected data is from an unknown distribution in Pakistani traffic. Therefore, it is
now tested on the YOLO-v5 model. After the YOLO-v5 is applied, we then investigate
and analyse our detector. To aid readers’ understanding, below we describe the steps and
details of our developed method.
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Algorithm 1: Pseudo code of the proposed vehicle detection algorithm
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1. Input: A test image with one or more visible vehicles.
2. Execute the algorithm in following order to get the desired result.
3. begin
4.  Gather data 
5.   do 
6.  Categorize data into LDT and HDT scene images as indicated by Figure 3a,b. 

► use the LIT
7.  Annotate data to identify classes of objects as shown by Figure 4a,b. 

► use the DLT for video dataset
8.    end 
9.  begin data preprocessing and augmentation 
10.   do processing 
11.  Preprocess that data and split into train, validation, and test set 

► use the RFW tool
12.   do augmentation   
13.      Standardize the image and video data from step (3) to step (8) up to 416 × 416 pixels.   
14.      Crop dataset between 0% and 30% zoom.    
15.      Saturate dataset between ±25%. 
16.      Vary brightness, such as darken and brighten the images between ±25%.    
17.  end 
18.  end     
19.   begin YOLO-v5 
20.  do 
21.  Install all Yolov5 repositories to be ready for running object detection training & inference. 
22.     Download custom Yolov5 Object detection data. 
23.     Configure model and architecture. 
24.      begin Training 
25.    Train custom YOLO-v5 detector                   ► use YOLO-v5 architecture 
26.    Use training parameters as:                       ► use COCO dataset weights 
27.  image size: 416 × 416 pixels, 
28.  batch size: vary as 5, 10, and 20, 
29.  epochs: vary as 100, 300, and 500, 
30.  Configuration: use as per YOLO-v5s, YOLO-v5m, or YOLO-v5L, 
31.  Weights: use pre-trained COCO dataset,    
32.    end 
33.     Run YOLO-v5 inference on test images. 
34.  python detect.py --weights runs/train/exp/weights/best.pt,img 416,conf 0.1.
35.   end 
36. end
37. Output: An image with detected vehicles through a bounding box around.
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3.1. Data Acquisition

To begin with the proposed algorithm, we initially acquire data. First we deal with
different conditions on highways. For example, we come across the multi-class objects,
such as different types of vehicles, motor bikes, and pedestrians on the roads. Similarly,
we also faced severe and crucial challenges, such as massive traffic jams and overlapped
vehicles. Therefore, to systematically acquire the data as shown in line (6) of Algorithm 1,
we collected the dataset under two different situations, which are (i) High Density Traffic
(HDT) scenes that contains multiple objects in an image and (ii) the Low-Density Traffic
(LDT) scene that contains only one class per image, with zero overlaps. For improved
training, the images of the LDT and the HDT dataset are placed separately.

The LDT Scenes: This dataset was gathered from daily real-time traffic places, for
example open parking lots, less crowded roads, and places with fewer crowds. The objective
of assembling this dataset is to separately train the model on each class. We collected a total
of 600 images from three classes, which are cars, motor cycles, and pedestrians. Example
images of the few of the LDT images are shown in Figure 3a.
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The HDT Scenes: This dataset was collected in congested places, for example pub-
lic parking lots, big shopping malls, main highways, and places near main traffic sign
boards. We gathered a total of 1800 images of the aforementioned classes. We also col-
lected this dataset by thinking about crucial factors, for instance varying illumination,
partial/full/long term occlusions, along with collections of objects regardless of size, scale,
shape, or appearance. A few such sample images are shown in Figure 3b. The statistics of
both the low- and high-density dataset along with each class annotations are described in
Table 2.

Table 2. Summary of our collected dataset images.

Dataset HDT Dataset LDT Dataset

Source images 1800 600
Annotations 15,618 903

Classes
Car 8457 655

Motorcycle 4136 136
Person 3025 112

Total 3036 2406

Video Dataset: Along with the images, we also gathered a video dataset from the
different locations of main highways, such as crossway bridges. A few of the sample
images of our collected video dataset are shown in Figure 4a. It can be seen that our
collected dataset has different types of vehicles that appear in the image. Moreover, the
vehicles’ resolution also varies. Collecting such a diverse dataset helps us to develop a
robust, reliable, and accurate vehicle detection method, which we believe can be used in
any real-time application.

3.2. Data Annotation

It is the proper procedure to label the classes of the datasets to achieve reliable vehicle
detection in later stages. This data annotation is an important step for good training of the
CNN model so as to get promising results.

As shown in line (7) of Algorithm 1, we have used Label Image Tool (https://github.
com/heartexlabs/labelImg (accessed on 12 January 2023)) (LIT) to label and annotate the
image dataset. To use the LIT tool, we upload the image dataset to the LIT, which reads
the images. Later, we manually assign a bounding box for each object present in the image
as shown in Figure 4b. It is evident that for the HDT category, there are several bounding
boxes on a single image. However, for the LDT scenes, there are fewer bounding boxes.
These bounding boxes specify the label of the respective class, such as vehicle or motorbike.
Every object present in the image is manually labeled, which is indicated by bounding
boxes. The overall dataset is then divided into three classes, which are cars, motorcycles,
and pedestrians. Readers are referred to the LIT link, which is provided at the bottom of
this page, which offers detail about the LIT usage.

For the video dataset, the annotation is some way bit extensive. To do it quickly,
we used Dark Label Tool (https://github.com/darkpgmr/DarkLabel (accessed on 12
January 2023)) (DLT) as it consumes less time as compared to the LIT module. The DLT
automatically divides the uploaded video dataset into frames, for instance frames of 10 s
into 360 frames. These frames are now interpolated, in which the first frame draws a
bounding box around an object, and the last frame draws the bounding box around the
same object. Hence, all the objects in between the 10 s have been annotated and labelled
according to the specified classes. Readers are referred to the DLT link, which is provided
at the bottom of this page, which detail about the DLT usage, along with more facilities
provided therein.
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3.3. Data Augmentation

To increase the data features to obtain better results, data preprocessing is the building
block of deep learning-based algorithms. We know that real world datasets might be
contaminated with noise. Many times, these datasets are inconsistent, or some things may
be missing. Sometimes, uneven and unbalanced classes appear. As can be seen in lines (9)
to (18) of Algorithm-1, data preprocessing and augmentation is analyzed. As shown in
Table 3, we preprocessed our dataset in distinct steps. One is to get the same size of each
image of the HDT, the LDT, and video datasets. We make the dataset of 416 × 416 pixels
resolution of each image and video. Then the dataset is split into train, test, and validation
set. To split the dataset, we used the RoboFlow (https://public.roboflow.com/ (accessed
on 12 January 2023)) (RFW) tool as described below.
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Table 3. Dataset statistics after augmentation.

Dataset Classes Classes Training Validation Testing

HDT data 3 car, motorcycle,
and person

3685 356 177
LDT data 3 1260 120 60

COCO 2017 80
car, motorcycle,

person, dog, table,
and horse

118,287 5000 40,760

Total 123,232 5476 40,997

The RFW: this tool hosts free public computer vision datasets in many popular formats.
The RFW provides a streamlined workflow to identify edges of various objects in several
iterations. With each iteration, the detection models become smarter and more accurate.
We used the RFW tool to fragment the entire dataset into train, validation, and test sets.
In this study, we keep the split ratio as 7:2:1 that is the image dataset of both categories
and the video dataset has been divided into 70% train, 20% validation, and 10% test sets.
Training a model on small number of images could result in overfitting [26]. Moreover, it
also results in poor generalization despite the fact that the training results are good enough.
However, the testing accuracy drops down and the model classifies the samples into one
class. In short, the training accuracy is high, but the validation accuracy drops down. To
overcome this issue, data augmentation is used, which modifies the data using different
techniques and increase the samples of the dataset. Through empirical analysis, we applied
the following augmentation techniques on our collected dataset.

Cropping: In this stage, we crop the image dataset of both categories between 0%
minimum and 30% maximum zoom.

Saturation: To achieve better results, we change the color ranges of images of both
categories and the video as well. In this study, we saturate images ±25%.

Brightness variation: The brightness of the image dataset of both categories has
been carefully varied. We darkened and brightened the images ±25%. After applying
the data augmentation technique to the image dataset, it is ready to use in a model for
object detection. The statistics of the dataset after augmentation are shown in Table 3.
As can be seen, we have a total of 123,232 training images, 5476 validation images, and
40,997 test images.

3.4. The YOLO-v5

The YOLO-v5 is one of the latest models to obtain reliable object detection in the YOLO
family [26]. YOLO-v5 has four more types, which are, YOLO-v5s, YOLO-v5m, YOLO-v5l,
and YOLO-v5×. All of these types differ in size and inference time. The size ranges between
14MB to 168MB. The YOLO-v5 surpasses other conventional object detection procedures
mostly in terms of detection accuracy. Moreover, the YOLO-v5 is computationally faster in
comparison to its companion YOLO family-based algorithms. As shown in Algorithm 1,
the YOLO-v5 is used in this study from lines (19)–(35). There are three main architectural
blocks in the YOLO-v5 as discussed below [26].

Backbone: In the YOLO-v5, the Cross Stage Partial (CSP) networks are used as a
backbone to extract important features from the given input image. Figure 5 lists the details
of the backbone modules that are embedded therein.

Neck: The feature pyramid is constructed with the PAN for features accumulation.
The features are then passed to head. Figure 5 lists the details of the Neck module along
with the necessary details, which are implanted therein.
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Head: In this block, the predictions are generated with the help of anchor boxes that
ultimately achieves object detection. YOLOv-5 is made more intelligent through a transfer
learning mechanism, which is shown in Figure 6, in which an input dataset is processed by
the convolutional layers. That in return feeds to the FC layer. Later, our test datasets are
processed by pretrained network that yields the final output through the FC layers.
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Therefore, to solve challenging issues in the vehicle detection domain, this above-
described strategy introduces a prediction head in the YOLO v5 detection architecture.
The introduced transfer learning or the prediction head is generated through random
initialization of weights and the fine-tuned network. Moreover, to make the prediction
head better detect various vehicles, YOLOv5 architecture also adds a CSP, CBL, and CBS
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section, and up-samples the fused feature map to generate a larger feature map to detect
variations in vehicles appearances.

3.5. Training Strategy

After the data is acquired and processed along with annotations, training and vali-
dation datasets are passed to the YOLO-v5s algorithm. For training, we select different
parameters, such as batch size, epochs, and image resolution. Training path, testing, and
validation dataset are given to the algorithm. We notice that if we train our model from
scratch, then we have to initialize it with some random weights. Therefore, we used
pre-trained COCO weights for our model training as it saves a considerable amount of
time and makes computations easy. Using pre-trained YOLO-v5 model, we get the best
weights after transfer learning. Moreover, we used default layers and anchors, as we are
utilizing the initial weights of the COCO dataset. We also employed the COCO dataset
as a benchmark to train our custom dataset. Furthermore, we have also varied the batch
sizes as 5, 10, and 20. We have also changed the epochs to 100, 300, and 500. In this
study, the values of confidence ∈ [0.4 ∼ 0.6]. After the training phase is done, we use
the best weights to detect objects on the dataset. Lastly, we obtain the values of predicted
labels and the test images with the bounding boxes with confidence values. The collected
dataset and the trained model along with the manuscript will be made publicly available
(http://research.cuiatd.edu.pk/secure/ResearchGroups/comsatsresearchgroups.aspx (ac-
cessed on 12 January 2023)). In the next section, we present and discuss the simulation
results in detail.

3.6. Evaluation Criteria

The following criteria are used to measure the robustness of our developed vehicle
detection method:

Precision =
True Positive Cases

Total Positive Predictions
(1)

Recall =
True Positive Cases

Total Cases
(2)

Similarly, mean Average Precision (mAP), the average value of Precision, is also
computed for the value of Recall over 0 to 1. The mAP is usually applied in object detection
algorithms and is shown mathematically below.

mAP =
∫ 1

0
P(R)dR (3)

4. Simulation Results

This section presents the detailed simulation results. Extensive experiments are carried
out on Google Colaboratory (Colab) platform. The Google Colab provides Intel Xeon CPU
with a clock speed of 2.3 GHz and up to 16 GB of RAM. Moreover, the Google Colab also
provides NVIDIA K80 or T4 GPU. We use Python V3.6 as a simulation tool for different
vehicle datasets as described in subsequent sections. To investigate the performance of
vehicle detection methods on different datasets, we select 14 state-of-the-art vehicle detector
evaluations and comparisons with the proposed method in terms of accuracy and execution
time. All of the compared approaches have been trained on the same training data from
each of the PKU, COCO, and DAWN datasets.

4.1. Analysis on the PKU Dataset

The PKU dataset is a collection of diverse vehicle images that are captured un-
der diverse conditions [27]. As shown in Table 4, that this dataset contains a total of
3977 diverse vehicle images. The developers of the PKU dataset divided the vehicles into
five distinct and different categories, which they refer as G1, G2, G3, G4, and G5. Out of
3977 vehicle images, the PKU dataset also contains a total of 4263 visible license plates
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whose pixel resolution varies from 20~62 pixels, which are captured therein. Figure 7 shows
a few of the vehicle detection results of our proposed YOLO-based method on all of the
five categories of the PKU dataset. As can be seen in the first three rows of Figure 7, for
the G1~G3 categories, the proposed method locates all the vehicles in the input images.
For the G4 category as shown by the fourth row in the Figure 7, it is obvious that the
proposed method is able to locate vehicles that just expose their front bonnet. Moreover,
the PKU–G4 category also contains extreme reflective glare. It is always very challenging
for any detection algorithm to perform accurately under such circumstances. However, as
can be seen, the proposed method handles the aforesaid scenario effectively.

Table 4. The PKU dataset description.

Category Vehicle Conditions Input Image
Resolution (pixels) No. of Images No. of Plates Plate Height

(pixels)

G1

Cars on roads; ordinary
environment at different

daytimes; contains only one
vehicle/license plate per image.

1082 × 728 810 810 35–57

G2
Cars/trucks on main roads at

different daytimes with sunshine;
only one vehicle in each image.

1082 × 728 700 700 30–62

G3 Cars/trucks on highways during
night; one license plate per image. 1082 × 728 743 743 29–53

G4
Cars/trucks on main roads;

daytimes with reflective glare;
one license plate in input images.

1600 × 1236 572 572 30–58

G5
Cars/trucks at roads junctions

with crosswalks; several vehicles
per image.

1600 × 1200 1152 1438 20–60

PKU dataset 3977 4263 20~62

Moreover, the proposed method also performs well on the G5 category, which contains
multiple vehicles per image. It can be seen that for different view angles along with the
partially occluded vehicles, the proposed method performs well and in most of the instances
detects all such vehicles. Figure 7 also reveals that the PKU-G3, G4, and G5 pose a challenge
to any detection algorithm due to the fact that the illuminations change abruptly. A few of
the images shown in the 3rd, 4th, and 5th rows in Figure 7 have a background that is dark
black, or in which the head lights of the vehicles are turned on. In such cases, the proposed
method performs well and up to task by locating all the vehicles that appear therein.

Table 5 lists the comparison of the proposed method on the PKU dataset with fourteen
other methods. Since we collected most of the data from Pakistani cities, for a fair compari-
son we tested the methods reported in [28–31] and [33–42] on the whole PKU dataset along
with our developed method. Table 5 lists the detailed results with important observations.

• From Table 5, it is evident that all the compared methods except [33,35–37,41] and [42]
yield 100% detection accuracy on the PKU–G1~G3 categories.

• On the G4 category, the proposed method ranks 3rd among all the compared fourteen
methods in terms of detection accuracy. On the other hand, on the G5 category, our de-
veloped method outperforms all the compared methods. The PKU G5 is a challenging
category due to fact it contains multiple vehicles per image and also contains several
disguising crosswalks that pose a threat to any vehicle detection algorithm.

• From Table 5, we also observe that for G1, G2, and G3 categories, the methods devel-
oped in [28–30,38,40] produce 100% vehicle detection result. Our proposed method
yields 99.94% vehicle detection accuracy on the G1 category and 100% for the G2 and
G3 categories. Therefore, we observe that methods shown in Table 5 have solved the
challenge of vehicle detection on these three categories as most of them yield at least
99% accurate vehicle detection.
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• Overall, on the PKU dataset, the proposed method ranks 1st at achieving vehicle
detection in terms of the mAP as listed in Table 5. The method by [40] ranks 2nd by
yielding 99.86% accurate vehicle detection accuracy. The works developed in [30,31]
also yield slightly over 99.75% vehicle detection accuracy. In addition, the methods
shown in Table 5 report over 97% detection accuracy, which we believe is encouraging
in solving real-world traffic problems.

• To best of our knowledge, we observe that vehicle detection challenge is almost solved
on the PKU dataset. However, we observe that non-uniform illuminations or high
glare at the night could still affect vehicle detection accuracy. Similarly, the researchers
who aim to solve the other object detection problems, such as license plate detection
or recognition, may need to perform additional preprocessing or postprocessing to
achieve reliable detection results.
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Table 5. Vehicle detection comparison (%) on PKU dataset.

Ref. G1 G2 G3 G4 G5 mAP (%)

[28] 100 100 100 98.96 99.13 99.61

[29] 100 100 100 99.73 99.21 99.78

[30] 100 100 100 99.70 99.10 99.76

[31] 100 100 99.40 99.74 98.96 97.74

[33] 99.00 99.00 98.70 98.00 98.90 98.72

[34] 100 100 100 99.00 96.50 99.10

[35] 100 100 99.00 99.64 99.06 98.34

[36] 100 100 99.40 99.74 98.96 97.74

[37] 100 98.50 100 99.50 98.10 99.22

[38] 100 100 100 99.00 98.00 99.40

[39] 99.00 100 100 99.00 98.50 99.30

[40] 100 100 100 99.80 99.50 99.86

[41] 99 99 98.50 98.00 99.00 98.70

[42] 98.90 98.50 98.00 97.50 96.10 97.80

Proposed 99.94 100 100 99.73 99.96 99.92

4.2. Analysis on the COCO Dataset

The COCO dataset is designed to detect and segment various objects that occur in
their natural context [32]. As shown in Table 3, the COCO dataset contains various object
images, which have been gathered from complex everyday scenes and contains common
objects in their natural context. Moreover, objects in this dataset are labeled using per-
instance segmentations to aid in precise object localization. Overall, the COCO dataset
contains images of 91 object types with a total of two and a half million labeled instances in
328,000 images. Recently, the COCO dataset received extensive attention from researchers
investigating various categories of detection including diverse vehicle shapes. Figure 8
shows the vehicle detection results of our proposed method on the COCO dataset. Clearly,
Figure 5 depicts the performance of the proposed vehicle detection algorithm on various
challenging images of the COCO dataset.

In most of the instances and under huge illumination variations, almost all of the
different vehicles are accurately detected by the proposed methodology. We used other
objects, such as motorcycles and persons during this phase. Therefore, those are also
accurately located in various images in Figure 8. A few such instances can be seen in the 1st
image of the 2nd and 3rd rows, respectively. Similarly, the 6th image in the bottom row of
Figure 8 also depicts the object detection phenomenon. To further validate the superiority
of the proposed method, a comparison with fourteen other methods is listed in Table 6
with some important observations.

• As can be seen for various image resolutions that range from 512× 512 to 800 × 800 pixels,
the proposed method ranks 1st among all the compared methods and reports the highest
mAP value of 52.31%. The work reported in [42] ranks 2nd and yields a 50.40% mAp
value followed by [41] with a 49.80% mAP value. Our analysis reveals that the work
developed in [35,36] are also an encouraging solution for detecting various objects in the
challenging COCO dataset.

• On the COCO dataset, the work reported in [31] yields the lowest (27.89%) mAp value
followed by [33], whose method yields a mAP value of 29.10%. Moreover, in the
current study, work discussed in [40], which uses the ResNet as a backbone, yields a
mAP value of 31.80%, which in the context of current study falls on the lower side.
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• The crux of this dataset is that the proposed method effectively and reliably detects
miscellaneous objects that include vehicles of varying shapes, including motorbikes
and jeeps. Furthermore, the proposed method also effectively handles big buses. A
few such samples are also in the 1st and 3rd columns of Figure 8.
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Table 6. Vehicle detection accuracy comparison on the COCO dataset.

Ref. Backbone Data Input Size Multi Scale mAP(%)

[28] CSPDarkNet53 trainval35K 512 × 512 False 47.62

[29] CNN trainval35K 512 × 512 False 48.00

[30] R-CNN trainval35K 512 × 512 False 46.20

[31] BottlenectCSP trainval35K 512 × 512 False 27.89

[33] VGGNet-16 trainval35K 512 × 512 False 29.10

[34] ResNet-101-FPN trainval35K 512 × 512 False 38.30

[35] VGGNet-16 trainval35K 800 × 800 False 41.00

[36] ResNet-101 trainval35K 800 × 800 False 48.40

[37] ResNet-101 trainval35K 512 × 512 False 39.30

[38] CNN + SVM trainval35K 512 × 512 False 49.05

[39] BN + ReLU trainval35K 512 × 512 False 32.98

[40] ResNet-C4-FPN trainval35K 512 × 512 False 31.80

[41] ResNet-50 trainval35K 512 × 512 False 49.80

[42] SiNet trainval35K 512 × 512 False 50.40

Proposed CSP trainval35K 512 × 512 False 52.31

4.3. Analysis on the DAWN Dataset

The DAWN dataset is designed to investigate the performance of recent vehicle
detection methods on a broad range of natural images including adverse weather conditions.
The DAWN dataset contains 1000 image of significant variation in terms of vehicle size and
category along with pose variation, non-uniform illumination, position, and occlusion from
real traffic environments. Additionally, it exhibits a systematic variation for traffic scenes,
for instance, bad winter weather, heavy snow, sleet rain, sand, and dust storms. Figure 9
shows detailed results on fog, sand, rain, and snow situations with important observations.

• For the snow category as seen in top row of Figure 9, it is obvious that many times
the vehicles are partially visible due to adverse weather conditions, such as fog that
is normally experienced in severe winters in areas of various parts of the world.
However, our developed method handles all such situations except the 2nd last image
of front row in Figure 9, where it is obvious that the vehicle is not visible to the human
eye as well.

• For a considerably rainy day as seen in second row of Figure 9, the proposed method
accurately locates multiple vehicles that appear therein. In this case, the image scene
variations, such as shown in the 2nd and 4th images of the second row in Figure 9
indicates that the proposed method is unaffected by such changes in the image scene.
Similarly, the skyscrapers in the vehicle’s background as shown in the 5th image of the
2nd row in Figure 9 also do not affect the detection ability of our developed method.

• For a sand situation as indicated in the third row of Figure 9, the proposed method
detects all vehicles that appear there in such challenging conditions. In such situations,
visibility is normally very low, which poses threats to most of the machine learning
algorithms. Particularly, the first two images in the 3rd row of Figure 9 have intra-
class scene variations, i.e., both are images effected by sand storms and yet appear
differently to the human eye. Even in such cases, our developed method performs
well and detects most of the instances that appear in such condition. The 3rd image in
this row is quite challenging for human observers as well. However, as indicated there,
our developed method handles such situations by successfully locating the vehicles
that appear in such scene images.
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• The bottom row in Figure 9 is a case when the scene is dominated by snow. In this
case, surprisingly, the image appears neat and clean and thus results in a visually
pleasing image due to the massive amount of snow which is present in the image. In
this case, our developed method accurately detects and labels all the vehicles that
appear therein. Particularly, the 3rd image in this row also reveals a red light along
with the snow. Yet in this case, the proposed method performs well and successfully
locates all the vehicles. Moreover, the last image in this row shows a few vehicles that
overlap and result in partial occlusion. However, our developed method performs
well in this case as well.
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(d) snow.

In Table 7, we compare our method with the works already described in Tables 5 and 6,
respectively. A few of the observations from Table 7 are listed below.

• As can be seen in Table 7, for the fog scenario the work developed in [40] ranks
1st among 14 compared methods by yielding a 29.68% mAP value. Our developed
method ranks 2nd out of all compared methods in fog situation and yields a 29.66%
mAP value. In the fog situation, the work developed in [38] yields the lowest mAP
value (16.50%) followed by [29] whose method yields a mAP value of 24%.

• For the rain scenario on the DAWN dataset, our proposed method and the work
developed in [31] yield the highest mAP value of 41.21%. In this category, the work
in [34] ranks 2nd and yields an encouraging result of a 41.10% mAP value. For the
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aforesaid category, results yielded by [36,37] are also encouraging. For images that are
affected by rain, the work in [38] delivers the lowest mAP value of 14.08%.

• For the snow conditions on the DAWN dataset, the work developed in [37] ranks
1st among all compared methods and slightly outperforms the proposed method by
yielding a mAP value of 43.02%. For this category, our developed method yields a
mAP value of 43.01%. It is important to state here that for this situation, the works
in [31,33,36,37] yield almost similar results.

• For the sand condition, our method ranks 1st and outperforms all compared methods
by yielding a 24.13% mAP value. On this situation, the works in [28,34,35] yield similar
mAP values. For the sand situation, the work in [38] yields the lowest mAP value
(10.69%).

Table 7. The mAP (%) comparison on DAWN dataset.

Ref. Backbone Image/s Fog Rain Snow Sand

[28] CSPDarkNet53 0.085 26.40 31.55 39.95 24.10

[29] CNN 0.085 24.00 21.10 38.32 23.80

[30] R-CNN 0.085 27.20 21.30 28.30 18.00

[31] BottlenectCSP 0.085 29.31 41.21 43.00 24.02

[33] VGGNet-16 0.085 23.40 24.60 37.90 15.83

[34] ResNet-101-FPN 0.085 28.95 41.10 43.00 24.09

[35] VGGNet-16 0.085 23.10 27.65 34.00 24.10

[36] ResNet-101 0.085 29.70 40.10 43.00 23.99

[37] ResNet-101 0.085 28.10 40.40 43.02 24.10

[38] ResNet-101-FPN 0.085 16.50 14.08 15.38 10.69

[39] Hourglass-104 0.085 25.08 19.14 23.18 17.38

[40] ResNeXt-101 0.085 29.68 30.32 33.93 24.00

[41] ResNet-101-FPN 0.085 28.83 27.68 30.19 24.03

[42] VGGNet-16 0.085 26.45 20.09 27.92 11.31

Proposed CSP 0.0085 29.66 41.21 43.01 24.13

4.4. Computational Complexity

We evaluate the computational complexity in terms of the time consumed to yield
the vehicle detected output image. While evaluating the computational complexity of the
methods listed in Figure 10, we manually vary the test image size from 512 × 512 pixels up
to 1600 × 1236 pixels on all the three datasets compared in this study. In addition, all the
times shown in Figure 10 are the mean execution time on all the three datasets to process a
single image and yield the output image.

Moreover, in Figure 10, we compare the execution time of 14 state-of-the-art vehicle
detection methods with the proposed method. It can be seen that the work of Liu [34] is
computationally more expensive than all of the compared methods. Clearly, the proposed
method is computationally most economical and consumes slightly more than 0.50 s to
yield a vehicle detected output image. Furthermore, the works reported by Wu et al. [31],
Law et al. [39], and He et al. [40] consume nearly 1 s to yield the output image with
detected vehicles.
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4.5. Discussion

Although the analysis presented above familiarizes the readers with the feasibility of
our developed method to detect diverse vehicles under diverse range of environments, the
discussion below will give further insight to the readers.

• Methods compared in this study are state-of-the-art object detectors. We observed
that specific method performs well on a specific dataset but are challenged by other
datasets. For instance, the work developed in [28] investigates BIT-Vehicle and UA-
DETRAC datasets only. These datasets mostly contain high quality frontal view of
the different vehicles with image resolution of 1920 × 1080 to 1600 × 1200 pixels.
In contrast, the method proposed in current study explores three different datasets
that have variations, such as different road conditions, varying weathers, or complex
backgrounds. Moreover, the study presented in this manuscript also explores the
detection ability of this method on three standard and publicly available datasets.

• The works discussed in [29,34] mostly focus on KITTI and the DAWN datasets that
contain the variations as described earlier. However, we also explore their detection
ability on five different classes of the PKU dataset that contain huge road and traffic
variations along with our proposed method. This will essentially provide a nice
baseline to beginners and researchers to develop their specified tasks.

• The work reported in [30] investigates the generic PKU dataset in its five distinct
categories. However, this study further explores the detection capability of [30] on the
COCO and the DAWN datasets. Moreover, the detection accuracy of the method pro-
posed in this study provides a fair insight into vehicle detection in various scenarios.

• The method developed in [31] examined the CARLA dataset, which we believe is
a limited and relatively small vehicle dataset. The findings presented in this study
extend the detection capability of this method to three other datasets. In addition,
its detection comparison with the proposed method and several other techniques
provides much detailed insight about issues in the vehicle detection domain.

• In [33,37], the PASCAL VOC 2007 dataset is explored only. Moreover, work in [33]
also analyzes the subdomain of the COCO dataset to show the detection of trains
only. In contrast, this study explores the detection capability of [33] on various vehicle
classes of the COCO dataset along with the PKU and DAWN datasets. Moreover, the
detailed comparison provided in the earlier sections provides a fair baseline to the
research community. Furthermore, the work in [37] explored the PASCAL dataset
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that already contains annotated images of various objects. This study further expands
the detection capability of this method to three different vehicle datasets. Finally, the
detailed analysis and comparison provided in earlier section hints towards additional
modifications of this algorithm.

• The works in [35,36,39,40] were validated on the MS COCO dataset to detect various
objects. The experiments reported in this study extend the detection analysis of
the aforementioned approaches to PKU and DAWN datasets as well. Since our
method also explores the vehicle detection on these datasets, it will be convenient for
researchers and practitioners to choose the appropriate algorithm for their specified
applications. Moreover, the work listed in [40] reports the detection of various objects,
such as pedestrians, statues, or animals. However, this study reports the detection
ability of this algorithm on actual and real-world vehicle images along with several
other approaches.

• In [38], the PETS2009 and the changedetection.net 2012 datasets are explored. Results
analyzed in their study are mostly standard high quality frontal view images of mono-
color cars running on a main highway. In contrast, the analysis presented in this study
explores the detection ability this method on different datasets on multiple styles
of vehicle and on differently color cars. Moreover, this study also investigates the
detection ability of this method on varying illuminations and weathers along with
different road conditions.

• The study in [41] analyzed the DLR Munich vehicle and VEDAI datasets. In their study,
mostly high-quality aerial vehicle images are analyzed. Few of these are running on
roads, while several parked vehicles are shown. However, our study also reports the
use of this method on actual daily life vehicle images from three publicly available
datasets. We are optimistic that detailed analysis and comparisons provided in this
manuscript will be handy for the research community to modify any algorithm for
their specified tasks.

• Finally, in [42], the KITTI and the LSVH datasets were explored. Results reported in
this study are mostly vans, cars, and bus that run on the main highways. However, our
study reports the detection ability of this method on varying illuminations, different
weathers, and challenging road conditions from three publicly available datasets. We
believe that the analysis provided by our developed method and the detailed compari-
son listed in this manuscript will provide further insight to the research community.

• All of these are useful efforts to solve and automate the vehicle detection problem
under varying conditions. For each of the datasets mentioned above, these methods
perform well. One of the objectives of the current study was to test and analyze all of
the fourteen methods compared in this paper on standard PKU, COCO, and DAWN
datasets. The main reason to choose PKU, COCO, and DAWN datasets is that these
datasets contain real world and challenging images. For instance, the PKU dataset
has five distinct categories that range from normal images to dark night images along
with night glare. Similarly, this dataset also contains multiple images that appear
in the input along with partial occlusions and different road conditions. Similarly,
as mentioned in Section 4, the COCO dataset is also a huge dataset and contains a
diverse range of objects. Moreover, the DAWN dataset also contains various real-world
situation, such as fog, rain, snow, and the sand. An evaluation of fourteen different
methods on these three datasets will be a fair guideline for researchers and beginners
to develop, implement, or modify any algorithm for their specified applications.

• Out of the datasets that are investigated in this study, we find the DAWN dataset a
bit more challenging than the others. The main reason is the inclusion of images in
challenging conditions, such as fog, rain, contaminated with sand, or snow. Our study
indicates that the sandy images reduce the scene visibility and ultimately reduce the
detection accuracy of a detector. The 1st image in the top row in Figure 11 depicts
such conditions in which very low vehicle detection is achieved. Similarly, as shown
in the 2nd image of the top row of Figure 11, low vehicle detection is observed during
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a rainy night when the head lights of the vehicle are also turned on. In this case an
electricity pole also appears, which results in partial occlusion that ultimately results
in reduced object detection.
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• We observe that our proposed method still needs to perform well in different situations,
such as when the scene is contaminated with the snow storm or blizzard as shown in
the 2nd row of Figure 11. In such cases, background noise dominates results in low
visibility. In this scenario, a Retinex-based image enhancement scheme might be useful.
For such a scenario, we suggest that an image dehazing-based enhancement could
also be effective. We are optimistic that this proposed solution will essentially enhance
the object and image scene, which will later make life easier for any of the vehicle
detectors deployed. Ultimately, the application of image enhancement technique will
significantly increase the detection ability of object detector.

• For images where snow is dominant, image appears overly white, which also de-
creases the detection accuracy of state-of-the-art object detection methods. In this case,
image contrast correction might produce the desirable results. In many cases, the
occlusions on the road also pose a threat to the detector, which ultimately results in
false detections. In such cases, an occlusion handling method could also be used to
reliably detect any object.

229



Appl. Sci. 2023, 13, 3059

• For all of the aforementioned discussion, Figure 11 shows a few of the sample images
where our developed method struggles. In images shown in Figure 11, our method
either yields a very low vehicle detection rate or produces false detections. Therefore,
future research could also focus on few of the cases as shown in Figure 11.

4.6. Final Remarks

Detailed analysis discussed in this paper indicates that vehicle detection has been an
active research field in recent years. From providing early warning signals and monitoring
up to exercising control, there are several examples of major research in intelligent vehicle
detection. This paper presented a detailed analysis on vehicle detection on three publicly
available dataset. For the task of vehicle detection, YOLO-v5-based architecture was used.
To make the YOLO-v5-based architecture more intelligent and flexible, a transfer learning
methodology was introduced. Detailed analysis indicated that the proposed approach
performed well on challenging datasets.

In addition, a detailed comparison of the proposed method was carried with fourteen
recent state-of-the-art approaches. We are optimistic that this study will be a fair guideline
for beginners and practitioners to modify or use any detector for their desired tasks or
applications. Below we list the final summary of developed vehicle detection method on
three datasets.

PKU: On this dataset, in the G1 category, the proposed method yielded mAP of
99.94%. In the G2 and G3 categories, the proposed method yielded 100% vehicle detection
mAP. In the G4 and G5 categories, the proposed method yielded 99.73% and 99.96% mAP,
respectively. Overall, on the PKU dataset our method yielded 99.92% vehicle detection
accuracy. Out of the fourteen compared methods on the PKU dataset, the proposed method
ranked 1st among all compared approaches.

COCO: On this dataset, with image resolution of 512 × 512 pixels, the proposed
method yielded 52.31% mAP values and ranked 1st among all the compared methods.

DAWN: This dataset contains four prominent sub classes, which are fog, rain, snow,
and sand. On images that were affected by fog, our proposed method yielded a mAP value
of 29.66% and ranked 3rd out of fourteen compared methods in this category. Meanwhile,
for images that contained rain, our developed method produced a mAP value of 41.21%
and ranked 1st along with [31] among all compared works. For images that contained
snow, our method yielded a 43.01% mAP value and ranked 2nd among all compared
works. In this class, the work developed in [37] ranked 1st by yielding a 43.02% mAP value.
For images that contained sand, our developed method yielded a 24.13% mAP value and
ranked 1st among all methods. In this class, the work developed in [28] also produced a
par result by yielding a mAP value of 24.10%.

5. Conclusions

This paper discussed an accurate, fast, and robust vehicle detection method based
on the YOLO-v5 architecture. To develop a robust object detection algorithm, transfer
learning was performed. The proposed object detection method was tested on three
publicly available datasets, which are the PKU, COCO, and DAWN datasets. Simulation
results demonstrated that the proposed method is effective at handling various challenging
situations, such as night, rainy, and snow conditions. The proposed method significantly
elevated the accuracy and operational efficiency. In addition, the detection technique
proposed in this research can additionally be relevant to a large number of real time
applications. However, the only caveat is that a giant quantity of data is required for
training of the detection model. The YOLO-vs-based vehicle detection method discussed in
this paper achieved a 99.92% detection accuracy on the PKU dataset and outperformed five
methods compared therein. Similarly, on the COCO dataset, the proposed method yielded
a superior mean average precision than several methods compared therein. Furthermore,
for highly challenging conditions in the DAWN dataset, the proposed method was superior
in terms of detection accuracy for fog, rain, snow, and sandy conditions.
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In the future, the proposed method can be further investigated to detect the occluded
vehicles. Moreover, for moving objects, motion blur could also be investigated. Further-
more, a cloud computing-based domain can be introduced to handle the resources of
complex machine learning algorithms. Our algorithm could also be investigated for haze
images in which there is very limited visibility and thus vehicles are barely visible to human
eye. Moreover, the impact of changes in the network structure of each type of a YOLO
model could also be further explored on the datasets explored in this study. Finally, our
developed method could be integrated with deep learning methods to further explore the
research of vehicle detection, tracking, or recognition.
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Abstract: Urdu is a complex language as it is an amalgam of many South Asian and East Asian
languages; hence, its character recognition is a huge and difficult task. It is a bidirectional language
with its numerals written from left to right while script is written in opposite direction which induces
complexities in the recognition process. This paper presents the recognition and classification of
a novel Urdu numeral dataset using convolutional neural network (CNN) and its variants. We
propose custom CNN model to extract features which are used by Softmax activation function and
support vector machine (SVM) classifier. We compare it with GoogLeNet and the residual network
(ResNet) in terms of performance. Our proposed CNN gives an accuracy of 98.41% with the Softmax
classifier and 99.0% with the SVM classifier. For GoogLeNet, we achieve an accuracy of 95.61% and
96.4% on ResNet. Moreover, we develop datasets for handwritten Urdu numbers and numbers of
Pakistani currency to incorporate real-life problems. Our models achieve best accuracies as compared
to previous models in the literature for optical character recognition (OCR).

Keywords: urdu numeral recognition; convolutional neural network; SVM; GoogLeNet; ResNet

1. Introduction

OCR technology scans printed characters to determine their shape by recognizing
edge information, and then translates them into characters by process of character recog-
nition [1]. In recent years, one of the most fascinating and difficult research areas in the
fields of image processing and pattern recognition has been handwriting recognition. It has
many applications such as OCR, pattern classification, postal mail sorting, bank cheque
processing, form data entry, etc. Such character recognizers prove to be fruitful for humans
because of their speed and accuracy. Mostly, they are based on deep learning models and
solve the problem efficiently.

In the study of languages, Urdu is one of those cursive languages that is hugely popular
in South Asian countries such as Pakistan, India, Bangladesh, Bhutan, and Nepal. It is the
national language of Pakistan and is widely spoken in urban areas, while its adoption as a
second language in rural areas is in progress. It is an amalgamation of many languages;
hence, its script contains loanwords and is written in different variants all around the globe.
Another important characteristic is that it is bidirectional with its numerals written from
left to right while its script is written in the opposite direction [2]; therefore, this becomes a
problem for OCR. It has up to 40 letters in its script and 10 numerals [3]. Urdu, Persian,
and Eastern Arabic numerals are written on similar patterns; however, some of the digits
differ, as shown in Figure 1, which is yet again another concern. Some other challenges that
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are encountered during its OCR is blurred text, torn paper, and spacing between letters
when the data is found in written form [3].

Figure 1. Urdu, Persian, and Eastern Arabic numerals.

Our aim is to develop a classifier for our novel dataset. The motivation behind
developing an Urdu numeral classifier is that majority of the work has been done on English
numerals; however, no such work has been done on Urdu numerals which are distinct in
features as compared to English. Data unavailability is a major obstacle in the development
of Urdu handwritten character recognition [4,5]. As no dataset of Urdu numerals is available
publicly for research purposes, we, therefore, present a novel dataset gathered specifically
for this study. In this way, problems related to Urdu character recognition, OCR, and
intelligent character recognition (ICR) can be solved as efficiently as they are solved in
other languages. The previous datasets are of Latin, Arabic handwritten numerals [6],
text lines of Urdu [7], integration of MNIST with Urdu numerals [8], Persian numerals [9],
Bengali numerals [10], Urdu Nastalique Handwritten Dataset (UNHD) [11], Urdu Printed
Text Image Database (UPTI) [12], and Urdu spoken and text words [13]. We did come
across an Urdu numerals’ dataset by Husnain et al. [14], but that did not incorporate
variations of crumbled, torn, and ink spots on paper. So, we sought to create our novel
dataset of 9800 images of handwritten Urdu numerals written by over 200 individuals with
their left and right hands. The difficulty of accurately classifying handwritten characters
is increased by variances in writing style, character size and form, and resemblances to
other characters [5]. Hence these papers were then crumbled and torn, and some had
ink spots added on them for variety. The pictures of these images were preprocessed by
employing a Gaussian filter and connected component labeling. These images were then
fed to machine learning and deep learning models for classification purpose. Deep learning
models find out complex structures in massive datasets by using the backpropagation
algorithm to indicate how a machine can change its internal parameters in each layer from
representation in the previous layer [15]. We applied our proposed CNN, GoogLeNet,
ResNet, and SVM on the dataset. Our proposed solution is powerful, yet simple, and results
in a performance which is comparable or higher than the state-of-the-art when evaluated
on our novel dataset. Since the model is deployed for real-world applications, we tested
its reliability on practical applications, i.e., Pakistani currency. The chosen currency notes
were 10, 20, 50, 100, 1000, and 5000. A sample of test images is shown in Figure 2.

Figure 2. Test images of Pakistani currency notes.

The main contributions of this paper are:

• Proposition of new Urdu numerals dataset that contains variations because of crum-
bled, torn, and ink spotted paper.

• After CNN extracts the features, we use two different activation functions: SVM
and Softmax.
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• The proposed CNN is compared with GoogLeNet and ResNet. The conducted experi-
ments suggest our models’ better accuracy.

So, the major advantage of our proposed work is that our data includes noise added by
environment as compared to the previous datasets that were collected in simple situations.
Now, our models also learn these distinctions and, hence, perform relatively well on real
life examples, which was yet again missing in previous work.

The paper is divided into five sections. Section 2 elaborates the state-of-the-art tech-
niques, our dataset collection, and other datasets available for Urdu language classifiers.
The proposed model and technical details are discussed in Section 3. Section 4 provides a
review of the classification results. In Section 5, the details of the experiments and their
corresponding results are explained, while last section concludes the paper and presents a
direction for future work.

2. Literature Review

Handwriting recognition has been around in the field of computer science for almost
half a century now. In [1], the oldest techniques that have been in use for character recogni-
tion since 1959 are discussed. It originates from the work suggested by Eden in 1968 known
as analysis-by-synthesis. This is the basis for syntactic approaches in character recognition.
K. Gaurav and Bhatia P. K. [2] discuss the advancements in preprocessing techniques when
input data ranges from simple handwritten documents to deformed images, or images
having viewpoint variation and background clutter. They concluded that applying only
one preprocessing technique is never enough to obtain high accuracies, but rather a mixture
of preprocessing techniques is applied to obtain reliable results. Basically, two types of
recognition systems exist; online systems and offline systems [16,17]. Online character
recognition works when user writes on a special writing surface, computer recognizes it
and converts it into codes with respect to time, while offline recognition systems are images
or documents fed as input with text written on them and are converted into digital form.
Offline recognition works in phases where images are first segmented, cropped, and resized,
their features are extracted, and then they are classified [18]. This paper presents work on
Urdu numerals using offline recognition. Table 1 presents a summary of the accuracies
achieved for other algorithms using Urdu datasets. All these papers used different datasets
and since those datasets are not available publicly, it was difficult for us to compare them
with our techniques. Additionally, these datasets were collected on different lines and
solved various problems, but underlying concept is same that they work on variations of
Urdu language datasets; hence, their comparison is necessary.

Table 1. Accuracy reported on different techniques.

Article Reference Techniques Applied Accuracy Achieved

[19] Back propagation neural network 90%
[8] Kohonen self-organization maps 91%
[20] Shape context-based digit recognition computation 93%
[21] Fuzzy rule 97.4%
[22] Capsule-Net 98.5%

In [23], N. Gautam, R. S. Sharma, and G. Hazrati state work done on Eastern Arabic
numerals through OCR. S. Abdelazeem et al. [6] compared the problems encountered in
Latin and Arabic handwritten numerals by using the Arabic Handwritten Digits Database
(ADBase) [24]. H. Kour and N. K. Gondhi proposed a recognition system [19] based on
approaches of segmentation for feature extraction, slant analysis for slant removal, and
dictionary search for classification. It resulted in a recognition rate of 93% for isolated
characters and the same for numerals. In another study [25], J. Memon, M. Sami, and R. A.
Khan provided an in-depth review of statistical, kernel, artificial neural network (ANN),
template matching, and structural methods for classification of OCR. In a very interesting
work presented by Ahmed, S.B., Naz, S., Swati, S. et al. [7], a 6.04–7.93% error rate on
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700 unique text lines was achieved (including Urdu numerals and Urdu handwritten
samples) after applying 1-D bidirectional long short-term memory (BLSTM) networks.
In [8], L. Javed, M. Shafi, M. I. Khattak, and N. Ullah presented the utilization of Kohonen
self-organization maps on 6000 handwritten Urdu numerals and obtained an efficiency of
91%. A work similar to this paper was conducted by Saad Ahmad in [7], where Urdu text
was integrated with the modified National Institute of Standards and Technology dataset
(MNIST) to learn the similar nature of patterns. They used CNN and multidimensional
long short-term memory (MDLSTM) on UNHD samples by pretraining the network on
MNIST. Their results showed the highest recall of 0.84 and 0.93 for precision. With their
roots in statistical learning theory, SVMs have been used widely for image classification
and character recognition tasks, so we studied their uses in different languages. In [26],
Ebrahimzadeh, R. et al. employed a linear SVM as a classifier for the MNIST dataset to
obtain a 97.25% accuracy rate. Das et al. [27] extracted local features of a handwritten
Bangla digits dataset using a genetic algorithm which were then fed to an SVM. It gave
promising results of 96.7%. Abu et al., in [10], discussed a task-oriented model that make
use of densely connected neural networks termed Bengali handwriting digit classification
(BDNet). The ISI Bengali handwritten numeral dataset was used to train it. In [28], Duddela
et al. discussed the task of image classification by employing NN and CNN on Devangari
script. Fatemeh et al. [29] proposed a novel approach that stacks ensemble classifiers to
identify handwritten numbers. They employed CNN and BLSTM that takes the probability
vector of the image class as an input. The model has been tested on Arabic and Persian
numerals. In [9], Savita et al. proposed a hybrid model that combines CNN that serves as a
feature extractor and SVM that acts as a binary classifier.

Finally, the recent notable technique MetaQNN discussed in [30] which was put
forward in 2018. It relies on reinforcement learning for the design of CNN architectures
and has its roots in the neuroevolution of committees of CNN. It has an error rate of 0.44%
and 0.32% when using an ensemble of the most appropriate found neural networks. Lastly,
data collection covers a huge portion of this paper and major work was performed on
these preprocessing of images. Ahmed, R. et al., in [31], provided the insight on how to go
forward with the data collection and preprocessing. They implemented the algorithms of
binarization, dots removing, and thinning which are used for our feature extraction phase.

In deep learning, the next step for an OCR-based problem is the dataset where stan-
dardization is essential to obtain exemplary results. During exploration and definition of
the problem statement, no standard data set was found. We did come across a dataset
containing Urdu spoken and text words by EMILLE (Enabling Minority Language Engi-
neering) [13], which is a collection of 67 million word corpus of South Asian languages.
Another ligature corpus by the Centre for Language Engineering (CLE) [18] in Pakistan has
been extracted from a 19.3 million corpus gathered from different domains such as sports,
news, finance, culture, and consumer information. A similar ligature corpus presented by
Sabbour and Shaifat [12] is called Urdu Printed Text Image Database (UPTI) which was
created along similar lines as the Arabic Printed Text Image (APTI), proposed by Slimane
et al. [32]. UPTI contains 10,063 synthetically generated text lines and ligature images.
Lastly, an offline dataset by Ahmed et al. [11] for Urdu text by the name of Urdu Nastalique
Handwritten Dataset (UNHD) was found. It was created in 2013 by collecting samples of 8
Urdu text lines having few Urdu numerals to produce 312,000 words with 10,000 text lines.

3. Proposed Model

In this section, we present our CNN model which is trained to learn Urdu numerals.
The network is trained on raw image pixels having preprocessed and cropped images of
Urdu numerals. It classifies the dataset into 10 feature-mapped classes. Figure 3 elaborates
these steps in the form of a block diagram and the following subsections give an insight into
these steps. We start with preprocessing the set of images to get them into desired shape
for all models. Our custom built CNN is applied to the final set of images. The features
extracted from our CNN are fed to the Softmax activation function and SVM classifier in
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parallel to obtain an in-depth review of our results. GoogLeNet and ResNet architectures
are also applied on the set of images using transfer learning to compare results with our
base architecture.

Figure 3. Block diagram.

3.1. Image Acquisition

In order to continue with our research work, we sought to make our own unique
dataset as all the available datasets did not match our paper’s requirements. Our dataset
contains a total of 9800 images of 10 Urdu numerals written with left and right hands
to create diversity. Each person wrote 0 to 9 numerals four times. These were people
belonging to various age groups and different fields of life. This was done subconsciously
to include people with diverse writing styles so as to bring variety to our dataset.

3.2. Preprocessing

The scanned pages of handwritten data are used for preprocessing to remove any
redundant information that could be misclassified by employing connected component
labeling. In order to contain different types of noise in our dataset, we crumbled some
pages as shown in Figure 4, added additional dots on the page, and dropped ink spots
so the classifier does not have a simple version of the dataset but instead has complex
samples. These modified pages are then filtered and thresholded to maintain their maxi-
mum information. Firstly, the noise is suppressed by applying a Gaussian filter which not
only subdues the effect of noise but also maintains sharp edges. A Gaussian filter with
different sigma values is applied. The ideal sigma value is found to be 3, which is checked
in accordance with thresholding as shown in Figure 5.

Figure 4. Actual crumbled paper.

Finally, the images are thresholded to obtain binary images. With different experi-
ments, we found out that if the threshold value is kept low, i.e., 50, it removes the back-
ground noise completely. However, the problem is that it also lightens the boundaries of
the handwritten numbers which is a great failure as shown in Figure 6. On the other hand,
if a large threshold value is set, i.e., 150, it incorporates all noise in the image. The noisy
dots which are closer to handwritten numbers when joined with them got mixed. This is
illustrated in Figure 7 where it is difficult to distinguish the two 2s. This can result in a loss
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for our data because the model would be unable to classify such numbers. So, after intense
experimentation, we found that the appropriate thresholding level is 120 which retains an
accurate amount of information according to Figure 8. The images are cropped in a way so
as to remove maximum background and obtain images similar to MNIST. MNIST [33] is a
benchmark dataset for numerals, and its images are normalized and centered in a fixed-size
image. Finally, the images are resized to 32 by 32 pixels and saved in their respective folders
for ease of labeling.

Figure 5. Application of Gaussian filter.

Figure 6. Low threshold level.

Figure 7. High threshold level.

Figure 8. Ideal threshold level.
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3.3. Augmentation

Data augmentation is a technique to create new data artificially so as to bring variation
into the original dataset. Different techniques of augmentation (such as flipping, rotating,
and adding noise) are applied on separate numbers because some numerals upon these
transformations change into another number and could not preserve their respective
labels [34]. For instance, the numbers zero, one, and five are flipped and labelled as is
because they are unaffected by flipping.

However, when digit eight is rotated in a 45◦ counterclockwise direction it becomes
Urdu digit seven. Thus, it is then labelled as seven. Similarly, digit seven is rotated 45◦

in clockwise direction to resemble digit eight as shown in Figure 9a. As Urdu digit two
and six are similar in terms of shape and are counter flips of each other, the digit two is
flipped and labelled as six, while digit six is flipped to be labelled as two. Deep research
is performed regarding these transformations as a slight error could change the class of
data. For example, digit six could change into digit two upon a vertical flip as shown in
Figure 9b. For rest of the numbers, three, four, and nine, noise is added to them which is
depicted in Figure 9c. As a result of augmentation, our dataset increased to almost 13,000.

Figure 9. Sample of (a) rotated image, (b) flipped image, and (c) noisy image.

3.4. Feature Extraction
3.4.1. Convolutional Neural Network

We propose a dataset of Urdu handwritten numerals with 10 labels and 13,000 images
in all. Initially, all the images are standardized by dividing current pixel value by sum of
all pixels. This represents image pixels in range of 0 to 1. Then, each image is resized to
new dimensions while ensuring that no information is lost. The CNN model consists of
four core substructures which are used repeatedly with different nonlinearities to bring the
best results.

1. The input layer contains raw pixel values, and, in this case, each image of the size
32 × 32 × 3 pixels is fed to the CNN. Here, 32 represents the width and height of the
image while 3 is the color channels—red, green, and blue.

2. The convolution layer connects local receptive field of the input with neurons in the
next layer. This is achieved through a simple dot product of kernel and input image.
A kernel size of 3 × 3 is maintained throughout the model, whereas padding is set to 1.
It is followed by batch normalization of convolution layer. Each output of convolution
layer uses the ReLU activation function followed by pooling layer. ReLU activations
work better than sigmoid function in terms of gradient vanishing problems. ReLU
was picked out of other nonlinearities (e.g., tanh, sigmoid) after comparing their
results in our CNN model. Batch normalization is applied after each convolution
layer to improve generalization [35].

3. The pooling layer down samples input along spatial dimensions. One of the most
famous pooling layers is ‘Max Pooling’ which is used here to extract the highest
pixel value in the current space. These extracted features are then fed to the clas-
sifiers which are discussed further. Figure 10 depicts the architecture of our pro-
posed model and Table 2 provides an analysis of required computation resources and
learning parameters.
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Figure 10. Architecture of CNN for Urdu handwritten numeral recognition.

Table 2. Summary of proposed CNN model.

Layer Output Shape Number of Parameters

Conv 32 × 32 × 256 7168
Batch Norm 32 × 32 × 256 1024

MaxPool 16 × 16 × 256 0
Conv 16 × 16 × 128 295,040

Batch Norm 16 × 16 × 128 512
MaxPool 8 × 8 × 128 0

Flatten 8192 0
Dense 90 737,370
Dense 64 5824
Dense 10 650

Total parameters 1,047,588
Trainable parameters 1,046,820

Nontrainable parameters 768

3.4.2. GoogLeNet

GoogLeNet [36] is based on the idea of an inception layer that covers a large area but
maintains fine resolution on a dataset for small information. Because GoogLeNet achieved
the top 5 error rate of 6.67%, we used it to train the Urdu numeral dataset. A major task
was to tune the three main parameters learning rate, number of epochs, and batch size. A
batch size of 32 with a learning rate of 0.001 gave us the best results for 30 epochs. The
learning curve for GoogLeNet is shown in Figure 11 which does not show underfitting or
overfitting as both losses reached a point of stability. This is an exceptionally good result
for a novel dataset like ours.

3.4.3. ResNet

The intuition behind ResNet is that deep neural networks are hard to train due to their
huge number of layers, especially where the problem of vanishing gradient occurs [37].
ResNet50 is the variant that is used in this paper. It is 50 layers deep as the name indicates
and its pretrained version from the ImageNet dataset is used. Images of size 224 × 224
with 3 color channels were used. For ResNet, batch size and epochs were used as tunable
parameters. Here, a batch size of 16 with a learning rate of 0.001 and 40 epochs achieved
the best results. The learning curves show a good generalization between training and
validation data on the Urdu numeral dataset. They are plotted in Figure 12.
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Figure 11. Training and validation learning curves on GoogLeNet.

Figure 12. Training and validation learning curves on ResNet.

4. Classification

For classification purposes, SVM and Softmax activation functions are used. The
features extracted from CNN are fed to these classifiers separately to manipulate their
different results. First, we apply the Softmax activation function on the features extracted
from the CNN which classifies the output into a probability distribution of 10 classes. Its
function is given as follows:

so f tmaxj =
exp(xi)

∑j exp
(
xj
) (1)

It computes the exponential of the input parameter and the sum of the exponential
parameters of all existing values in the inputs while giving output in the ratio of the
exponential of the parameter and the sum of the exponential parameter. The learning curve
for our CNN model in Figure 13 does not show either underfitting or overfitting. The
training curve shows how well the model is learning while the validation curve shows its
rate of generalization. The loss is lower on the training set as compared to the validation
set. It can be concluded that it is a good fit as both losses decrease to a point of stability and
the gap between them is negligible.
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Figure 13. Training and validation learning curves for Softmax activation function.

Then, the SVM is applied to the same extracted features. The SVM is a supervised
classification algorithm that works on features extracted from images rather than raw
images. Its training equation is given as: set of attributes–label pairs (xi,yi), i = 1, 2, ......, l:

minimize wTw + C ∑m
i=1 ξ2

i

subject to yi

(
xT

i w + b
)

≥ 1 − ξi, (i=1, ..., m) (2)

Studies have shown that it works better for classification as compared to the traditional
Softmax function but fails for multiclass problems. This is validated in our results as shown
in Figure 14 which is a good generalization curve.

Figure 14. Training and validation learning curves on SVM.

5. Experiment and Discussion

To validate the accuracy of our proposed model and two architectures (GoogLeNet
and ResNet), we used our novel dataset of Urdu numerals. They were compared for
performance on different datasets and a different number of labels. For all our models, we
used two types of datasets.

1. One is the original one that we proposed initially, and we evaluated it by splitting it
into 85–15 ratio.
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2. The other one is made as a separate set consisting of Pakistani currency note images
which are used for testing only but are trained using the Urdu dataset. This is done to
test our models on real-life scenarios.

Batch size, number of epochs, and learning rate are used for hyperparameter tuning.
Different batch sizes of 16, 32, 64, and 128 are checked for each of the three models with
different types of regularization. For our own CNN and ResNet, batch sizes of 16 gave
the best results, while for GoogLeNet, 32 gave optimal results. A learning rate of 0.001
is used for CNN, SVM, and ResNet, while a 0.003 learning rate is used for GoogLeNet.
Stochastic gradient descent (SGD) with momentum 0.9 worked best as compared to other
types of optimizations such as Adamax, Adam. In CNN, it is observed that training deep
neural networks for more layers brought sensitivity to weights and settings of the learning
algorithm. To solve this, batch normalization is employed to standardize the layers for
each batch. This also caused the number of epochs to reduce which in turn stabilized the
learning process [36]. However, it also brought an increase in training time because of the
use of an optimizer—SGD. Both batch normalization and dropout are used in the CNN
after much hyperparameter tuning. It is concluded that combinations of the above values
of hyperparameters produced maximum accuracy with the Urdu numeral dataset [38]. We
tried to use dropout too, but it reduced the accuracy, so we relied on batch normalization
only. On the other hand, a dropout rate of 0.5 was used for SVM to obtain the best results.

The performance graphs indicate that the increased accuracy is because of more
neurons in more layers. These neurons helped in choosing the features for a dataset in a
deep manner. It is quite noteworthy that our proposed CNN gave the best results equivalent
to ResNet and GoogLeNet as shown in Figure 15. The combination of CNN with SVM gave
the best accuracy of 99.96% with a promising validation accuracy of 99%. These are ground
breaking results for a dataset that is unique. In its comparison training, the accuracy of
the CNN with the Softmax classifier is 98.89% which is equally promising. GoogLeNet
showed a training accuracy of 99.06%, ResNet showed a training accuracy of 99.88%. The
validation accuracy of CNN with softmax classifier is 98.41% and 96.4% for ResNet, while
that of GoogLeNet is comparatively lower at 95.61%. These accuracies conclude that our
custom built CNN with SVM outperformed all the available models.

Figure 15. Comparison of accuracies on 4 proposed architectures.

5.1. Comparison with Existing Methods

In order to authenticate our results, we compared the performance of our data with
the previously published model by Husnain, M. and Saad Missen et al. [39]. We tried 16,
32, 40, 60, and 80 neurons in fully connected layers with SGD and batch sizes of 32, 64,
and 128. Momentum was varied between 0.7 and 0.99. Adamax with batch sizes of 32, 64,
and 128 was checked to obtain the best results. We achieved an accuracy of 95.7% on their
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model and its variants. However, we achieved the final test accuracy of 99.0% using SVM
as a classifier on our dataset as compared to their test accuracy of 98.41% on their Urdu
numeral dataset. This proves that classification using SVM results in better accuracies for
the features extracted for Urdu numerals. A brief comparison of accuracies of previously
published papers is given in Table 3. As is evident from the results, our models beat the
previous techniques with remarkable accuracies.

Table 3. Comparison of handwritten Urdu numerals recognition on different classifiers.

Systems Dataset Classifier Accuracy Achieved

[11] UNHD(Urdu characters and
ligatures) BLSTM 93.96%

[40] Sindhi handwritten numbers Self-organizing map neural network 86.89%

[21] Handwritten Urdu numerals Rule based technique, HMM

97.4%
(Rule based
technique),
96.2% (HMM)

[41] Handwritten Urdu numerals Daubechies wavelet 92.05%

[42] Urdu handwritten characters
and numerals Convolutional neural network 98.3%

[26] Urdu handwritten characters
and numerals Convolutional neural network 98.3%

Our Approach Handwritten Urdu numerals GoogLeNet and ResNet 95.7%

Our Approach Handwritten Urdu numerals
Feature extraction using convolution layer
and Softmax Activation for classi cation 98.41%

Feature extraction using convolution layer
and SVM for classi cation 99.3%

Additionally, in comparison to the previous paper [33], in terms of test accuracy,
our approach achieved 99.0% as compared to their accuracy of 98.3%, which is optimal
considering that the Urdu numeral dataset is novel. This dataset shows promising training
and validation accuracies on GoogLeNet, ResNet, and the proposed approach as shown in
Figure 15.

Additionally, we experimented with our model on a novel Pakistani currency dataset
and achieved a test accuracy of 89.41%, which further validates the performance and
robustness of our model on real-world problems.

5.2. Expanded Testing Set

As our model is tested on real-life examples thus, it is deemed necessary to validate
our results with a separate dataset. This dataset consists of 90 images captured with the
same tools as were used for the training data. The preprocessing techniques similar to
training data were applied to it. The only difference here is that it contained 4 classes
of zero, one, two, and five instead of 10 classes. So, during training and testing of the
currency dataset, the training data for Urdu numerals was minimized to the same 4 classes.
The same CNN network was used as proposed in Figure 10. An accuracy of 97.97% was
achieved on the training set along with 89.41% on the test set. To obtain the best results, we
retuned the hyperparameters of the model. We chose different batch sizes ranging from
16 to 128 to find the one where we achieved the best results while keeping the learning
rate at 0.001. Furthermore, the number of epochs was varied accordingly which resulted in
getting momentum 0.7 with SGD.

Along with CNN, ResNet, GoogLeNet, and SVM were also applied to this expanded
test set to obtain an insight into their accuracies and losses. The parameter batch size
was kept to 32 for both ResNet and GoogLeNet. The bar graph in Figure 16 shows
that our proposed CNN model with the SVM worked best on a real-life dataset with
a validation accuracy of 91%. On the other hand, the validation accuracies of GoogLeNet
(53.47%), ResNet50 (64.24%), and Softmax (89.41%) are worth considering. As we worked
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on particular classes instead of all the 10 classes and the data within these 4 classes was
also less in quantity, so this caused a reduction in accuracies for real-life data.

Figure 16. Bar plot for comparison of accuracies on real-life example.

6. Conclusions and Future Work

In this paper, we proposed two approaches to classify novel datasets of Urdu numerals.
The first approach extracts features using convolution layers and uses Softmax activation
followed by fully connected layers for classfication. The second approach applies an SVM
classifier to the features extracted from the convolution layer. All the models give best
results in terms of accuracy where the first approach provides a validation accuracy of
98.41%, while an accuracy of 99.0% is achieved by the second approach. The accuracy of
96.4% on ResNet and 95.61% on GoogLeNet is achieved on this novel dataset. We tested
these models on Pakistani currency to see their reliability in real-world application after
being trained on our dataset. To implement this, we developed another dataset from
Pakistani currency notes and evaluated our proposed models with it. Our handwritten
Urdu numerals dataset is unique and any such dataset is not available publicly. This
hinders research in the domain of the Urdu language. Moreover, our dataset is refined and
is collected along the lines of the MNIST dataset, so it provides the best results with real-life
problems as shown in our paper.

In the future, we plan on increasing the Urdu numeral dataset and then making it
publicly available so as to motivate researchers to work in this field. Increasing this dataset
will also increase the accuracies of all models. Additionally, our dataset and CNN can help
develop a system to identify and count currency notes. Since the performance of deep
learning algorithms in real-world applications is of utmost importance, we plan on testing
it on other applications such as recognizing the Surah numbers of The Holy Quran and
numbers on Pakistani postage stamps. The sole motivation of this paper is to bring our
mother language Urdu to a competitive level with all the latest research.
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Abstract: Artistic style transfer aims to use a style image and a content image to synthesize a target
image that retains the same artistic expression as the style image while preserving the basic content
of the content image. Many recently proposed style transfer methods have a common problem;
that is, they simply transfer the texture and color of the style image to the global structure of the
content image. As a result, the content image has a local structure that is not similar to the local
structure of the style image. In this paper, we present an effective method that can be used to
transfer style patterns while fusing the local style structure to the local content structure. In our
method, different levels of coarse stylized features are first reconstructed at low resolution using a
coarse network, in which style color distribution is roughly transferred, and the content structure
is combined with the style structure. Then, the reconstructed features and the content features are
adopted to synthesize high-quality structure-aware stylized images with high resolution using a fine
network with three structural selective fusion (SSF) modules. The effectiveness of our method is
demonstrated through the generation of appealing high-quality stylization results and a comparison
with some state-of-the-art style transfer methods.

Keywords: image processing; nonphotorealistic rendering (NPR); style transfer; structure-aware;
deep learning

1. Introduction

Artistic style transfer is an attractive image-processing technique that is used to
generate a new image that preserves the structure of a content image but carries the pattern
of a style image. Recently, the seminal image-optimization method proposed by Gatys
et al. [1] was used to achieve style transfer by adopting the correlation of features extracted
from a pretrained deep neural network and the iterative optimization process. Like the
method presented by Gatys et al. [1], style transfer by relaxed optimal transport and self-
similarity (STROTSS) [2] is also an image-optimization style transfer method; this method
has achieved superior stylization results by adopting the relaxed earth mover’s distance
(rEMD) loss in a multiscale optimization process. However, the expensive computational
cost of these image-optimization methods restricts their use in practice applications in
industry. To speed up the optimization procedure, Johnson et al. [3] and Ulyanov et al. [4]
proposed model-optimization style transfer methods. They train a feed-forward neural
network that can be used to synthesize images with a single given style image in real time.
Both adaptive instance normalization (AdaIN) [5] and whitening and coloring transforms
(WCTs) [6] are model-optimization methods but are also arbitrary style transfer methods,
in which style patterns of arbitrary style images are transferred by adopting some feature
transforms. After reviewing these methods, we have found that although local style texture
and content structures can generally be combined, some key structures of the style image
are not accurately learned. For example, the color blocks and brushstrokes that constitute
the main objects in style images are not transferred very well. Meanwhile, in some cases,
these methods produce distorted objects and incongruous artistic effects in stylized images.
Therefore, our main task is to transfer the local structure of the style image to the content
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image and adopt a coarse-to-fine strategy to enhance the artistic details of the stylization
results.

We propose a novel artistic style transfer network for fusing an essential style structure
to a content structure and synthesizing a structure-aware stylized image. In our model,
a coarse network is designed to obtain reconstructed coarse stylized features in the first
stage. Because the coarse network works only at a low resolution, the coarse stylized
features can discard the trivial structure details of the content image and combine the global
content structure with the style patterns. Then, the task of a fine network is to adopt these
reconstructed coarse stylized features obtained at a low resolution and the original content
image with a high resolution to synthesize the final high-resolution stylized image in the
second stage. By adopting some SSF modules to fuse the coarse stylized features into the
fine network, the final high-resolution stylized images can selectively integrate structural
information at different scales. Our main contributions are as follows:

1. We introduce a novel style transfer model that can be used to synthesize appealing
structure-aware stylization results. This model consists of a coarse network and a fine
network. The former roughly transfers style patterns that include holistic structural
information and color distribution information, and then the latter enhances the
details of the style patterns by fusing multiscale features.

2. We propose a SSF module for fusing the reconstructed features to the content features
in a fine network. This module can help the fine network select essential structural
information for feature fusion on the basis of the channel attention mechanism. As a
result, the color distribution of the style images can be accurately transferred.

3. It is demonstrated through experiments that our method can be used to synthesize
high-quality stylizations, where the main structures of the content image are preserved
and the local structures of the style image are transferred. These stylization results
can maintain the same artistic expression as style images by discarding trivial content
details and injecting key local style structures.

The rest of the paper Is organized as follows. In Section 2, the works related to
different style transfer methods are reviewed. In Section 3, the pipeline of our framework
and the details of our two networks are described. Moreover, the different loss functions
are introduced. Different experimental results are shown and discussed in Section 4. The
conclusion is summarized in Section 5.

2. Related Work
2.1. Style Transfer

The goal of style transfer is to combine the texture of a style image with the structure
of a content image. Gatys et al. [1] proposed a seminal iterative method that was based on a
pretrained visual geometry group (VGG) network [7]. In this method, the content structure
and the style texture can be used to synthesize a new image, but it is expensive, and a
stylized image is generated only after the training process has been completed. Inspired
by Gatys et al. [1], Johnson et al. [3] proposed a feed-forward method, which can be used
to synthesize arbitrary images with a fixed style by an encoder-decoder architecture; the
time and computation costs are reduced when using this method. Numerous methods
have been developed to speed up the style transfer process [4,8] and improve the visual
quality [9–11]. Sanakoyeu et al. [12] also improved the stylization quality by proposing
a style-aware loss, but they trained a network with a set of style images instead of a
style image. This approach aimed to combine many style images created by one artist to
synthesize a stylized image with the overall style of this artist. The dual style generative
adversarial network (DualStyleGAN) [13] is proposed to characterize the content and style
of a portrait by retaining an intrinsic style path to control the style of the original domain
and an extrinsic path to model the style of the target extended domain. Peking Opera face
makeup (POFMakeup) [14] also is a portrait style transfer method that can transfer the
style of a portrait with a Peking Opera face to a target portrait. Lin et al. [15] combined
a universal style transfer method with image fusion and color enhancement methods to
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solve the problems of the color scheme, the strength of style strokes, and the adjustment of
image contrast.

To simultaneously handle multiple styles, [16] proposed a flexible conditional instance
normalization approach embedded in style transfer networks to learn multiple styles,
and [17] achieved multistyle generation in a generative network architecture with a learn-
able inspiration layer. Ye et al. [18] adopted a mechanism and instance segmentation to
achieve a regional multistyle style transfer model, which can solve the problem of unnatural
connections between regions. Alexandru et al. [19] combined various existing style transfer
frameworks to propose a novel framework that can generate intriguing artistic stylization
results by performing geometric deformation and using different styles from multiple
artists.

In AdaIN [5], adaptive instance normalization is implemented to train a network with
various styles, providing the ability to transfer arbitrary styles after the training process. In
WCT [6], the whitening and coloring transforms are adopted to synthesize arbitrary styles
with a pretrained VGG network and a series of pretrained image restructuring decoders.
Based on WCT, Wang et al. [20] achieved the diversity of style transfer by adopting a deep
feature perturbation (DFP) operation while preserving the quality of stylization results, and
Wang et al. [21] synthesized ultraresolution stylized images and reduced the convolutional
filters by using a knowledge-distillation method. A style-attentional network (SANet) [22]
is also an arbitrary style transfer method that can be used to efficiently generate stylized
images by injecting local style patterns into content features on the basis of using the style
attention mechanism.

2.2. Style Transfer Based on Multiscale Learning

Recently, some style transfer methods have been used to transfer style patterns on the
basis of multiscale learning. Multiscale holistic style transfer is achieved in Avatar-Net [23]
on the basis of the use of an hourglass with multiple skip connections and a style decorator.
STROTSS [2] is an image-optimization method that adopts multiscale learning to update
the content image and generate high-quality stylized images. Yang et al. [24] proposed
a novel video style transfer framework that can render high-quality artistic portraits on
the basis of the multiscale content features and preserve the frame details. A Laplacian
pyramid style network (LapStyle) [25] also exhibits high visual quality and is based on
a drafting network and a revision network. First, the former transfers the global style
patterns, and then, the latter enhances local style details. However, too many content
structure details are preserved in these methods. Key local style structures are not fused
into stylized images in any of these methods. In contrast, our method transfers global style
patterns at low resolution using a coarse network, which needs to be trained only once
to reconstruct coarse stylized features. Our fine network enhances local style details with
multiscale features from the coarse network and the high-resolution content image. As a
result, our method can discard trivial local content structures and synthesize high-quality
structure-aware stylized images by using a coarse-to-fine process. The differences between
our method and the methods in previous studies are shown in Table 1.

Table 1. The differences between our method and those in previous studies.

Methods Image-Optimization Model-Optimization Single Style Multiple Style Arbitrary Style

Ours
√ √

[1,2]
√ √

[3,4,8–15,24,25]
√ √

[16–19]
√ √

[5,6,20–23]
√ √

251



Appl. Sci. 2023, 13, 952

3. Proposed Method
3.1. Framework Overview

Inspired by the painting process of artists, in which the coarse structure and color
distribution are first constructed and then fine details are added, our framework employs
a coarse network and a fine network to simulate the coarse-to-fine process. As shown
in Figure 1, given a content image xc ∈ R3×hc×wc and a style image xs ∈ R3×hs×ws , our
model eventually generates a stylized image xcs ∈ R3×hcs×wcs . In the first stage, the coarse
network takes xc and xs as inputs, where xc and xs are the results of downsampling xc and

xs by 2, respectively. Then three restructured coarse stylized features f
(i)
r ∈ Rc(i)r ×h(i)r ×w(i)

r

(i = 1, 2, 3) are generated by the coarse network, where c(i)r , h(i)r , and w(i)
r are the number of

channels, height, and width of the i restructured feature, respectively. In the second stage,

the fine network takes xc and f
(i)
r as inputs and then generates the final stylized image xcs

by adopting SSF modules for feature fusion.
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Figure 1. Overview of our framework.

As shown in Figure 2, different stylized images are generated by our method. In
Figure 2b, we adopt the last restructured coarse stylized features only to directly restructure
the coarse stylized image by the coarse network in the first stage. The coarse stylized image
discards the unnecessary local structures of the content image and transfers the global
color distribution of the style image. Then, the fine network is employed to encode the
high-resolution content image to obtain the content features, and these content features
and three coarse reconstructed features from the coarse network are decoded to generate
the high-quality structure-aware stylized image in the second stage. As shown in Figure 2c,
the final appealing stylized image is synthesized by adopting our full model with a coarse
network and a fine network. Moreover, to more clearly show the local style structure of
the final stylized image, we use the color control method [26] to keep the color of the final
stylized image consistent with the color of the original content image. As illustrated in
Figure 2d, although the color distribution of the stylized image remains the same as that
of the content image, the local structure of the stylized image is similar to that of the style
image.
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Figure 2. Different stylization results from the same content image and style image: (a) the content
image is a cat, and the style image is Starry Night by Vincent van Gogh; (b) this stylized image is
generated directly by our coarse network in the first stage; (c) the final stylized image is generated by
our full model in the second stage; (d) this stylized image maintains the same color as the content
image using color control.

3.2. Coarse Network

One problem with recent style transfer methods is that too many structural details of
the content image are retained during the transfer of style patterns. In the stylized image,
there are some small structures from the content image that do not change; they simply
transfer the color and texture of the style image. These local structures that do not exist in
the style image appear in the stylized image, resulting in a stylized image that fails to show
the spirit of the artistic expression of the style image. The reason is that these methods
directly extract features from high-resolution images and cannot decide which details to
discard from the content image. Contrary to previous work, our coarse network transfers
rough style patterns at low resolution. As a result, there is a larger receptive field to learn
low-frequency information to determine the overall structure of the image. Then, some
unnecessary high-frequency information is ignored during training. As shown in Figure 3,
the coarse network can transfer more details that are unnecessary in the coarse stylized
image at high resolution. At low resolution, the coarse network can discard some trivial
details of the structure and keep the objects smooth in the stylized image.
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3.2.1. WCT Module

Inspired by WCT [6], our coarse network adopts whitening and coloring transforms
to transfer coarse style patterns at low resolution. The whitening transform can remove
inessential information related to style while preserving the global structure of the content.
Then, the coloring transform can capture the salient visual style and fuse some style
structures to content structures. WCT is a multilevel stylization process that uses different
rectified linear unit (ReLU) layers of VGG features ReLU_X_1 (X = 1, 2, . . . , 5) and transfers
style patterns in a coarse-to-fine pipeline. The higher-layer features are adopted to capture
complex local structures, while lower-layer features carry low-level color and texture
information. The difference between our coarse network and WCT is that we use only a
single-level whitening and coloring transform for stylization. Moreover, we do not directly
reconstruct the stylized features to generate an image; however, we utilize the reconstructed
features at different layers during reconstruction. As a result, our coarse network, which
has the ability to capture the multilevel information by reconstructing the coarse stylized
features at different levels, can save computing resources.

3.2.2. Architecture of Coarse Network

The architecture of coarse network, which is shown in Figure 1, includes an encoder,
a WCT module, and a decoder. (1) The encoder is a pretrained VGG-19 network, which
is fixed during training. Given xc and xs, the VGG encoder extracts the content feature f c
and the style feature f s at ReLU_4_1. (2) Then, we apply a WCT module for whitening and
coloring transformation. As shown in Figure 4a, the whitening transform is adopted to
linearly transform f c to obtain f

′
c. Next, the coloring transform is carried out to obtain f cs

by using f
′
c and f s. (3) Finally, we adopt a reconstruction decoder to reconstruct the coarse

stylized feature f cs. The decoder is designed to be symmetrical to the VGG-19 network,
where the nearest neighbor upsampling layer is used for enlarging the feature map. We
take f cs as input for reconstruction and then generate these restructured stylized features

f
(i)
r as outputs. In this reconstruction decoder, these outputs are output before the second

upsampling layer, before the third upsampling layer, and after the last convolution layer.

These f
(i)
r will become a part of the input of the fine network.
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3.3. Fine Network

The fine network aims to synthesize high-resolution stylized images by fusing the
reconstructed coarse stylized features to the reconstructed content features. The recon-
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structed content features are from the high-resolution content image and contains the global
semantic information and local detail information. Contrary to the reconstructed content
features at high resolution, the reconstructed stylized features generated from the coarse
network preserve only the main content structure while blending some local structural style
information. By fusing multiscale information, the fine network can pay more attention
to the holistic structure of the content and ignore some trivial details by using our SSF
modules. Then, some significant details can be added to the structure, and appealing
artistic effects in the stylized image can be enhanced. In addition, fusing the reconstructed
coarse stylized information can greatly reduce the time cost of the training process of the
fine network, and the desired stylization results can be achieved at an earlier point in time.

3.3.1. SSF Module

The structural selective fusion (SSF) module is designed to fuse the reconstructed
coarse stylized features from the coarse network to the reconstructed content features in
the decoder of the fine network. Inspired by the attention mechanism [27,28], we employ a
weight matrix to select the key structural information of the reconstructed content features,
which is learned by adopting the merged features. The merged features are obtained by
concatenating reconstructed coarse stylized features and the reconstructed content features.
The matrix can help the SSF module obtain the selective features that focus on meaningful
structural information, and the selective feature is one part of the output of the SSF module.
Another part of the output is the refined merged features, which include different scale
information, such as some crucial local textures or global structures.

The architecture of the SSF module is shown in Figure 4b. First, we concatenate the

reconstructed coarse stylized features f
(i)
r and the reconstructed content features fcs as

input fcsr ∈ R(ccs+cr)×wr×hr . The reconstructed content features fcs are the output of the
convolution layer in the decoder of the fine network (except that the first SSF module
uses the content features fc from the encoder of the fine network as fcs). We adopt an
average-pooling operation to aggregate the spatial information of fcsr to generate the input
of the multilayer perceptron, which is adopted to produce an attention map Mcs ∈ Rccs×1×1

as the weight matrix. In summary, the attention map is calculated as follows:

Mcs( fcsr) = σ(MLP(AvgPool( fcsr))) (1)

where σ denotes the sigmoid function. Then the selective feature f ′cs is calculated as follows:

f ′cs = Mcs( fcsr)⊗ fcs (2)

where ⊗ denotes element-wise multiplication. Meanwhile, fcsr is fed into a convolutional
layer to produce a refined merged feature f ′csr ∈ Rcr×wr×hr . Eventually, the SSF module gen-
erates the final output fss f ∈ R(ccs+cr)×wr×hr as the fused feature by directly concatenating
f ′cs and f ′csr.

3.3.2. Architecture of Fine Network

As shown in Figure 1, fine network is designed as a flexible encoder-decoder archi-
tecture, with an encoder, a series of residual blocks, and a decoder. The encoder contains
a convolutional layer with a stride of 1 and three convolutional layers with strides of 2,
followed by several residual blocks. The decoder contains three upsampling layers, three
convolutional layers with strides of 1, and three SSF modules. We use an SSF module
before each upsampling layer. Given the content image xc as the input of fine network, the
encoder and several residual blocks generate the content feature fc. Then, SSF modules

generate the fused features fss f by taking f
(i)
r and fcs as inputs, where fcs is the output of

these convolution layers in the decoder (except the first SSF module, which takes fc as fcs).
These fused features fss f are fed into an upsampling layer and a convolution layer. Finally,
the decoder generates the final stylized image xcs after the last convolution layer.
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3.4. Loss Function

Our coarse network needs to train only once, and it is fixed during the training of the
fine network. Compared with WCT [6], we train only one reconstruction decoder network
to reconstruct the coarse stylized feature. Our coarse network can reconstruct the stylized
features at three levels or directly generate a coarse stylized image by taking advantage of
the reconstruction decoder. Following WCT, we adopt pixel reconstruction and perceptual
loss [3] to train our decoder for image reconstruction:

lre =
∣∣∣
∣∣∣Io − Ii

∣∣∣
∣∣∣22 + λ

∣∣∣
∣∣∣Φ(Io)−Φ(Ii)

∣∣∣
∣∣∣22 (3)

where Ii and Io are the input image and output image, respectively, and Φ is the VGG
encoder that extracts features at ReLU_X_1 (X = 1, 2, 3, 4). In addition, λ is the weight to
balance the two losses.

The fine network is optimized with content and style loss during training. As shown
in Figure 5, we keep a single xs and a set of xc from a content dataset, then xcs is a stylized
image generated by the fine network. For xs, xc, and xcs, we can use a pretrained VGG-19
encoder to extract their features F(t)

c ∈ Rct×ht×wt , F(t)
s ∈ Rct×ht×wt , and F(t)

cs ∈ Rct×ht×wt ,
where t denotes the features extracted at ReLU_t (t = 1_1, 1_2, 2_1, 2_2, 3_1, 3_3, 4_1).
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For content loss, we adopt the commonly used perceptual loss between F(t)
c and F(t)

cs
proposed in [3]. The perceptual loss can measure high-level perceptual and semantic
differences between images, and it is defined as follows:

lp =
1

cthtwt

∣∣∣
∣∣∣F(t)

c − F(t)
cs

∣∣∣
∣∣∣
2

2
(4)

For style loss, we adopt three style losses. The first and most significant style loss is
the relaxed earth mover’s distance (rEMD) loss [2], which helps the fine network generate
visual effects with minimum distortion to the layout of the content image. This loss plays a
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key role in migrating the structural forms of the style image to the target image. The rEMD
loss between F(t)

s and F(t)
cs can be calculated as follows:

lr = max

(
1

htwt

htwt

∑
i=1

min
j

Cij,
1

htwt

htwt

∑
j=1

min
i

Cij

)
(5)

where C is the cost matrix, which can be calculated as the cosine distance between F(t)
s and

F(t)
cs :

Cij = Dcos

(
F(t)

s,i , F(t)
cs,j

)
= 1−

F(t)
s,i · F

(t)
cs,j∣∣∣

∣∣∣F(t)
s,i

∣∣∣
∣∣∣
∣∣∣
∣∣∣F(t)

cs,j

∣∣∣
∣∣∣

(6)

The second style loss is the commonly used style reconstruction loss proposed by
Gatys et al. [1], which is the difference between the Gram matrices of F(t)

s and F(t)
cs :

lg =
∣∣∣
∣∣∣G
(

F(t)
s

)
, G
(

F(t)
cs

)∣∣∣
∣∣∣22 (7)

where G denotes the calculation of the Gram matrix of the feature vectors. Finally, we use
the mean-variance loss as the third style loss, which is similar to the style reconstruction
loss. We can use this type of loss to reduce unnecessary visual effects in the stylized image
and keep the magnitude of the stylized feature the same as that of the style feature:

lm =
∣∣∣
∣∣∣µ
(

F(t)
s

)
− µ

(
F(t)

cs

)∣∣∣
∣∣∣22+

∣∣∣
∣∣∣σ
(

F(t)
s

)
− σ

(
F(t)

cs

)∣∣∣
∣∣∣22 (8)

where µ and σ denote the mean and covariance of the feature vectors, respectively.
The overall optimization objective is defined as follows:

L = αlp + λ1lr + λ2lg + λ3lm (9)

where α, λ1, λ2, and λ3 are weight terms. By adjusting α, we can control the degree of
stylization. Specifically, lp and lm both work on ReLU_1_1, ReLU_2_1, ReLU_3_1, and
ReLU_4_1; then, lr works on ReLU_2_1, ReLU_3_1, and ReLU_4_1. Following Johnson
et al. [3], lg works on ReLU_1_2, ReLU_2_2, and ReLU_3_3.

4. Experimental Results and Analysis
4.1. Experimental Dataset and Implementation Details

During training, we use the MS-COCO [29] dataset as the set of content images and
select some famous art paintings as style images. To show the experimental results of our
method, we also select some copyright-free images as content images, from Pexels.com.

In our experiment, the coarse network is trained on the MS-COCO dataset only once
for image reconstruction, and the weight λ in Equation (1) is set as 1. In the experiments,
we use the content images and the style image with a resolution of 512 × 512. Then these
images are downsampled by 2. Each image that is input into the coarse network has a
resolution of 256 × 256. During the training of the fine network, we use the Adam [30]
optimizer with a learning rate of 1 × 10−4, and the batch size is set as 1 because of the
limitation of the graphics processing unit (GPU) memory. To train a style, a training process
consists of 15,000 iterations. The loss weight terms α, λ1, λ2, and λ3 are set to 1, 20, 1000,
and 5, respectively. The experimental environment configuration is shown in Table 2.
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Table 2. Experimental environment configuration.

Designation Information

Operating system Windows 10

System configuration CPU: AMD Ryzen 9 5900X

GPU: NVIDIA GeForce RTX 3090

Software PyCharm 2021.3.1 (Community Edition)

Python 3.8.12

Python library Cuda 11.7

Pytorch 1.8

Torchvision 0.9

Numpy 1.21
Matplotlib 3.5.1

4.2. Qualitative Comparisons with Methods in Prior Works

Inspired by the recent WCT [6] and STROTSS [2] methods, our method adopts the
whiting and coloring transformation proposed in WCT and the rEMD loss proposed in
STROTSS. In Figure 6, we compare our method with WCT and STROTSS. WCT can transfer
the color distribution and simple texture of arbitrary style images; however, some context
local structure is discarded, resulting in messy and disordered stylized images (e.g., rows 1,
2, and 3). STROTSS is an image-optimization style transfer method that transfers the visual
attributes from the style image to the content image with minimum semantic distortion.
Nevertheless, too many structural details are preserved, and the overall palette of the style
image is not accurately transferred (e.g., rows 2 and 3). In contrast to these two methods,
our method can transfer the main structure and discard some trivial details of the content
image. Moreover, some notable local structures of the style image, such as brushstrokes,
can be fused into the global structure of the content image, and the overall palette of the
stylized image remains the same as that of the style image. For example, in the second
and fourth rows, the color blocks of mountains and the brushstrokes of vegetation in our
stylized images are explicitly similar to those in the style images. Our model can learn
some key style structures while ignoring some unimportant content details.
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images; (b) The style images; (c) The stylized images are generated by our method; (d) The stylized
images are generated by WCT; (e) The stylized images are generated by STROTSS.

As shown in Figure 7, we compare our method with other state-of-the-art style transfer
methods. Gatys et al. [1] proposed the original optimization-based style transfer algorithm,
which can transfer the overall style texture and the color distribution. However, some
incongruous textures appear in the stylized images, leading to the stylizations’ looking
unnatural (e.g., rows 4, 5, and 6). Similar to our method, the method proposed by Johnson
et al. [3] is also a feed-forward method. It can combine the local color and texture of style
images with the structure of the content but often maintains too many content structures
and may play a role in shifting the color histogram only in some cases (e.g., rows 1, 2,
and 3). AdaIN [5] and SANet [22] are both arbitrary style transfer models, which mainly
transfer simple style patterns. AdaIN often fails to transfer the color distribution of style
images, and SANet has the severe problem of messy texture and disordered structure (e.g.,
rows 4, 5, and 6). All of the methods mentioned above maintain some unnecessary small
local structures of the content images, and the essential local structures of style images
are not integrated into the target image. In contrast to these methods, our model can
simultaneously transfer the style color distribution accurately and combine the local style
structure with the global content structure. For example, in the fourth row, the image of the
rabbits generated by our method looks more harmonious and natural in the stylized image.
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It seems as though the style image consists of ink dots; the same artistic expression can be
exhibited by our method.
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4.3. Quantitative Comparisons with Methods in Prior Works

In the experiment of quantitative comparisons, we use the learned perceptual image
patch similarity (LPIPS) proposed in [31] and the structural similarity index measurement
(SSIM) proposed in [32] to compute the difference in style structure between the stylized
image and the style image. In each method, 1500 pairs of stylized and style images that
include 10 styles are used to compute the average distance. As shown in Table 3, lower
values indicate the higher similarity of human perceptual judgments when we use LPIPS
as the metric, and higher values indicate the higher structural similarity when we use SSIM

260



Appl. Sci. 2023, 13, 952

as the metric. For both evaluation metrics, our proposed method achieves the highest
similarity in style structure. The experimental results show that our method can synthesize
structure-aware stylized images that have a higher structural similarity to the style images.

Table 3. Quantitative comparisons of LPIPS and SSIM between our method and six state-of-the-art
methods.

Method Our WCT
[6]

STROTSS
[2]

Gatys et al.
[1]

Johnson et al.
[3]

AdaIN
[5]

SANet
[22]

LPIPS 0.6287 0.6393 0.6516 0.6477 0.6452 0.6445 0.6408

SSIM 0.2135 0.1975 0.2108 0.2022 0.2068 0.1933 0.1893

4.4. Comparisons of Time Efficiency with Methods in Prior Works

We further compare the time efficiency of our proposed method with other state-
of-art methods. In each method, we synthesize 100 stylized images with a resolution of
512 × 512. All experiments are conducted on the same environment configuration. As
shown in Table 4, Johnson et al. [3] achieve the highest time efficiency because they use
only a simple encoder-decoder architecture to generate stylized images. Like [3], AdaIN [5]
and SANet [22] also use the simple encoder-decoder network to generate stylized images.
However, they apply some feature transform modules in their networks to integrate content
features and style features. As a result, their time efficiencies are lower than [3] but are
still satisfactory. Different from these three methods that work at the same image scale,
our model includes two networks and works in two stages. Although our model can
capture richer multiscale information and synthesize higher-quality stylized images, the
time efficiency of our method is only slightly lower than that of AdaIN and SANet. We
traded a small increase in time cost for a promising improvement in the quality of stylized
images. WCT [6] has low time efficiency because it uses five encoders and decoders to
generate a stylized image. The time efficiencies of STROTSS [2] and Gatys et al. [1] are far
lower than other methods because they are image-optimization methods that generate only
one stylized image after a training process.

Table 4. Running time comparison between our method and six state-of-the-art methods (in seconds).

Method Our WCT
[6]

STROTSS
[2]

Gatys et al.
[1]

Johnson
et al. [3]

AdaIN
[5]

SANet
[22]

Time (s) 0.829 2.816 40.157 20.418 0.075 0.105 0.291

4.5. User Study

The user study is conducted on social media, and all participants are anonymous
and voluntary. We choose 10 content images and 10 style images to synthesize 10 stylized
images in each method and then ask subjects to select their favorite one. By the end of
this user study, we had collected 341 votes from these anonymous participants. As shown
in Figure 8, we show the percentage of votes for each method. The result shows that the
stylization results obtained by our method are more appealing than those of other methods.
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4.6. Ablation Study on Loss Function

We conduct ablation experiments to verify the effectiveness of each loss term used
for training our model, and the results are shown in Figure 9. (1) Without perceptual
loss lp, too many structures of the content image are discarded; for example, the basic
structure of the dog disappears in the stylized image. (2) Without Gram matrix loss lg, the
stylization result is acceptable because mean-variance loss lm has a similar effect to lg, but
the color distribution of the stylized image is slightly different from that of the style image.
Moreover, the textures of the dog in the stylized image are increasingly denser and smaller.
(3) Without rEMD loss lr, the texture distribution is chaotic, and some visual artifacts occur
in the stylized image. (4) Without mean-variance loss lm, the global color distribution of
the stylized image is not exactly the same as that of the style image; for example, the dark
color of the dog in the stylized image is more similar to that in the content image. This dark
black color is completely absent in the style image.
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4.7. Effectiveness of Coarse Network

During training, we compare our full model with the model without the coarse
network. As shown in Figure 10, our full model is trained faster than the model without the
coarse network. The preliminary stylization result can be obtained with fewer iterations.
Moreover, the stylized images of the comparison during the training phase are shown in
Figure 11. At 3000 iterations, our full model can generate a stylized image with a basic
structure, while the model without the coarse network generates a completely unstructured
image. At 10,000 iterations, the stylization result of our full model is substantially acceptable.
However, the stylized result of the model without the coarse network is less than satisfactory
because the main structure has not been generated. At 30,000 iterations, the model without
the coarse network finally synthesizes the final stylized image, but some messy textures
and unnatural structures appear in the stylized image. Compared with this compromised
stylized result, our full model can generate an enhanced promising stylized result with
more-refined details, such as the brushstrokes of the cat’s fur and eyes at 30,000 iterations,
which are more delicate and finer than those at 10,000 iterations.
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4.8. Effectiveness of Fine Network

As shown in Figure 12, we demonstrate the effectiveness of the fine network. Without
the fine network, the coarse network can transfer the color and texture of style images, but
the local details and global structure are worse than when our full model is utilized. The
stylized image generated directly by the coarse network resembles an unfinished work in
progress.
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4.9. Effectiveness of the SSF Modules

We compare two feature fusion methods through some experiments. In the first
method, the reconstructed coarse stylized features from the coarse network are fused to the
reconstructed content features in the fine network on the basis of our SSF modules. In the
second method, we directly concatenate these two features for feature fusion. As Figure 13
shows, the stylization results that are based on the second method are transferred to the
wrong color distribution in some regions. According to the first method, our model can
accurately transfer the color distribution, and more-natural textures in the stylized images
can be generated by selecting more-critical information.
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4.10. Additional Experiments

In Figure 14, we zoom in on some details in style images, content images, and stylized
images. The local structures of these style images are transferred to the content image,
and the object of the stylized images looks like a reasonable combination that is composed
of the style structures rather than a simple mixture of the content structure and the style
texture.
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As shown in Figure 15, we can control the stylization degree by adjusting the weight
term α in the training phase. These experiments demonstrate that the main content structure
can be preserved even though the stylization degree is large. Some local style structures,
such as lines or color blocks, can be fused to the global content structure.
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Figure 15. Trade-off of content-style losses.

Following Gatys et al. [26], we incorporate color control and spatial control into our
method. In Figure 16b, the color distribution and the local structure of the stylized image
are consistent with those of the style image. Then we use color control to make the stylized
image preserve the global color of the content image. In Figure 16c, although the color is
similar to the content image, the local structure and texture are the same as those of the
style image. In Figure 17, we use spatial control to transfer different regions of the content
image to different styles. The stylization result is appealing as the local style structures and
color distribution are greatly maintained. Both experiments demonstrate that our model
can synthesize high-quality structure-aware stylized images by fusing key local structures
from the style image to the main content structure while discarding some trivial details
from the content image.
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5. Conclusions

The conclusions are summarized as follows:

1. We proposed a novel feed-forward style transfer algorithm that fuses the local style
structure into the global content structure. Different from most style transfer methods
that work at the same scale, our model can integrate richer information from features
from different scales and then synthesize high-quality structure-aware stylized images.
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2. We first proposed a coarse network to generate reconstructed coarse stylized features
at low resolution, which can capture the main structure of the content image and
transfer the holistic color distribution of the style image. Then, we proposed a fine
network to enhance local style patterns and three SSF modules to selectively fuse the
reconstructed stylized features to reconstructed content features at different levels.

3. Through comparative experiments, it was demonstrated that our method was effective
in synthesizing appealing high-quality stylized images, and these stylization results
outperformed the results generated by current state-of-the-art style transfer methods.
The experimental results also demonstrated the effectiveness of the coarse network,
the fine network, and the SSF module.

Although the high-quality stylization results can be synthesized by our method, our
model generated the stylized images with a single style only after a training process. In
future studies, we will achieve a novel arbitrary style transfer framework that is based on
our full model in this paper. Appealing high-quality structure-aware stylized images with
an arbitrary style can be generated by this framework after a training process. In addition,
we will try to use more feature transform methods to replace the whitening and coloring
transforms for achieving higher running time efficiency.
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Abbreviations

SSF Structural selective fusion
NPR Nonphotorealistic rendering
STROTSS Style transfer by relaxed optimal transport and self-similarity
rEMD Relaxed earth mover’s distance
AdaIN Adaptive instance normalization
WCT Whitening and coloring transforms
VGG Visual geometry group
DualStyleGAN Dual style generative adversarial network
POFMakeup Peking Opera face makeup
SANet Style-attentional network
LapStyle Laplacian pyramid style network
ReLU Rectified linear unit
GPU Graphics processing unit
LPIPS Learned perceptual image patch similarity
SSIM Structural similarity index measurement
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Symbol

xc Content image
xs Style image
xcs Stylized image
xc The result of downsampling xc by 2
xs The result of downsampling xs by 2

f
(i)
r Restructured coarse stylized features

c(i)r Channels of f
(i)
r

h(i)r Height of f
(i)
r

w(i)
r Width of f

(i)
r

f c Content feature extracted from VGG network
f s Style feature extracted from VGG network
f
′
c The result of linearly transforming f c

f cs Stylized feature generated by WCT module
fcs Reconstructed content features
fcsr The input of SSF module
Mcs Attention map of fcsr
f ′cs The result of refining fcs
f ′csr The result of refining fcsr
fss f The output of SSF module
lre Reconstruction loss
Ii Input image
Io Output image
Φ VGG encoder that extracts features at ReLU_X_1
λ Weight term of lre

F(t)
c Content feature extracted at ReLU_t

F(t)
s Style feature extracted at ReLU_t

F(t)
cs Stylized feature extracted at ReLU_t

lp Perceptual loss
lr Relaxed earth mover’s distance (rEMD) loss
C Cost matrix
Dcos Cosine distance
lg Gram matrix loss
G Calculation of the Gram matrix
lm Mean-variance loss
µ Mean
σ Covariance
L Overall optimization objective
α Weight term of L
λ1 Weight term of L
λ2 Weight term of L
λ3 Weight term of L
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Abstract: Optical character recognition (OCR) is the process of extracting handwritten or printed
text from a scanned or printed image and converting it to a machine-readable form for further data
processing, such as searching or editing. Automatic text extraction using OCR helps to digitize
documents for improved productivity and accessibility and for preservation of historical documents.
This paper provides a survey of the current state-of-the-art applications, techniques, and challenges
in Arabic OCR. We present the existing methods for each step of the complete OCR process to identify
the best-performing approach for improved results. This paper follows the keyword-search method
for reviewing the articles related to Arabic OCR, including the backward and forward citations of the
article. In addition to state-of-art techniques, this paper identifies research gaps and presents future
directions for Arabic OCR.

Keywords: optical character recognition; Arabic OCR; preprocessing; segmentation; classifica-
tion; postprocessing

1. Introduction

Optical character recognition (OCR) enables the recognition of text characters from
digital images, scanned documents, and video streams. OCR software analyses the image
of text and converts it into machine-encoded text, which can then be edited, searched, and
indexed. OCR can be used for a wide range of applications, including document scanning,
automated indexing, and form processing. Further, OCR software can be integrated into
various systems, such as document management systems, workflow systems, and mobile
apps. There are some challenges to OCR systems, such as the writing style, text size,
and quality of the document (handwritten, printed, or scanned), which cause challenges
while implementing OCR [1], and a big challenge also comes while implementing OCR in
hardware systems, which helps in many regards, such as a ‘Quran Read Pen’ that helps
blind and illiterate people to read Quran [2].

1.1. Types of OCR

There are different types of OCR systems depending on the language and writing
mode of the images. For example, the documents can be handwritten, printed, or scanned,
and can contain one or more languages. Therefore, OCR systems can be categorized as
unilingual or multilingual based on language. A unilingual OCR system can recognize only
one language, and the Arabic OCR model is an example of a unilingual OCR system. On
the other hand, some OCR systems perform recognition and extraction tasks for multiple
languages; these are called multilingual OCR systems.

OCR systems can be categorized into offline and online OCR systems, as shown in
Figure 1. An offline OCR system is a type of OCR system where the input documents are
presented in scanned, printed, and handwritten formats [3]. These OCR systems provide
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online services that can be used for various purposes such as mail sorting, bank cheque
reading, signature verification, utility bill processing, and insurance applications. Digital
pens help blind or illiterate people by reading text in audio form. Many online recognition
systems are implemented in different fields such as number-plate recognition [4]. Similarly,
an online OCR system is capable of receiving and processing real-time input images. For
offline recognition, multiple models are used with different datasets for different algorithms
to get better recognition accuracy [5].

Pattern 
Recognition

Character 
Recognition

Offline 
Recognition

Handwritten Printed

Online 
Recognition

Writer 
Independent

Writer 
Dependent

Figure 1. Types of OCR systems in Arabic and their modes of processing.

1.2. Language vs. Script

As we work on the Arabic OCR system, getting basic information about Arabic is
essential. For this purpose, the concepts of language, script, and writing styles are crucial.
Thus, language refers to the communication system humans use, which includes the
grammar, vocabulary, and pronunciation used to convey meaning. On the other hand,
the script refers to the written representation of a language, such as an alphabet or letters
used to write words and sentences. A language can be written in multiple scripts and can
use a script to write various languages. For example, the English letters are written in
Latin script, while the Arabic language can be written in Arabic. In Arabic, the most-used
styles are Naskh and Nastaleeq. Script similarities can be used to compensate for lack of
availability of large amounts of training data for deep-learning-based OCR models [6].

In [5], the authors explain the basics of the Arabic language, i.e., Arabic is written from
right to left and from top to bottom. It has 28 letters, which include three vowels, i.e.,
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. These letters change their shapes according to their usage in different words. Upper
and lower case annotation does not exist. A total of 15 letters out of 28 have a point or dot
above or under the letter. Arabic letters are connected from the right or left sides or both
sides. However, six letters cannot be connected to their successors in a word; those letters
are
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1.3. Challenges

Some challenges are faced while designing an OCR system for the Arabic language.
Arabic script uses diacritics and ligatures to indicate short vowels and certain consonant
combinations, and OCR systems need to recognize and process these diacritics and liga-
tures correctly. The Arabic language has several types of two- and three-letter consonant
combinations, i.e., shadda, sukoon, and tashkeel. An OCR system needs to recognize
around 70 to 80 symbols in total for the Arabic language, including basic letters, diacritic
marks, and other symbols used in the Arabic script. The Arabic script has 28 basic letters
and several complex characters formed by joining multiple basic letters, and OCR systems
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need to recognize and separate these complex characters. Arabic handwriting can vary
greatly, making it more difficult for OCR systems to recognize the characters correctly.
Arabic OCR datasets are usually smaller than those of other languages, leading to difficulty
with training and fine-tuning the model. The images for OCR can be in multiple forms, i.e.,
computer-rendered images, scanned images, photographed images, and handwritten scans.
These image types have challenges regarding the recognition rate for the OCR process.

Bafjaish et al. [7] also discussed some challenges of the Arabic OCR system. Dots
come in Arabic in different places, sometimes above or below the baseline. These dots
have much importance in the Arabic language; if you miss any dot somehow or during
skew detection/correction, it will change the meaning of the letter or word, reducing the
accuracy of the OCR model. Many of the scripts have a non-cursive style, meaning the
letters present in a word have some gaps, making them easy to recognize, reducing the
challenge, and making the task easy. However, the Arabic language has a cursive style ,
and the connectivity of letters makes text recognition more complicated. As Arabic letters
are compounded to form a word, every font style shows a different level of ligature in
words.

1.4. Applications

OCR systems are used now in many fields to make the workflow fast and accurate,
so for this kind of digitization, OCR is used. In [8], the authors present a survey of the
application of OCR and perform experiments for some applications. The OCR applications
discussed are as follows:

• Invoice Imaging: Used in many businesses to track business records.
• Legal Industry: To digitize documents and enter the data directly into the databases,

OCR is used.
• Banking: OCR is also widely used in banking services. For example, to process check

payments, cheques are scanned and transferred in seconds.
• Healthcare: In healthcare, many forms, reports, and insurance applications are pro-

cessed into databases and for other purposes; OCR helps to transfer all kinds of patient
data.

• Captcha: Captcha is used to secure systems. A few letters, numbers, or both are used
in a captcha, and the image is distorted. Humans can easily read this captcha, but not
an average computer program.

• Automatic Number Recognition: It is used for surveillance systems to track vehicles’
records by getting their number plates. OCR is also used to recognize the characters
and numbers from the number plates.

• Handwriting Recognition: in this application of OCR, the text is extracted from
handwritten documents and photographs. For this purpose, the model learns and
identifies fonts and languages for better results.

• Scanned Receipts: some challenges comes while scanning receipts for extracting
information from them, i.e., variations in receipt layout, noise, and distortion [9].

1.5. Brief OCR Process

Arabic OCR systems involve several complex steps, and Figure 2 shows the brief
overflow of specific OCR steps to be followed. The image is first preprocessed to improve
its quality and make recognization easier, which includes operations such as skew correc-
tion, noise reduction, and contrast enhancement. The text area is then broken down into
individual segments of characters or words. The segmented characters are then recognized,
and the best match is selected using a database of known characters. The recognized text
then undergoes further processing to correct errors and improve accuracy. The final result is
a machine-readable text document that software applications can edit, search, and analyze.
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Preprocessing Segmentation Recognition PostprocessingImage Text

Figure 2. Brief overview of OCR process.

1.6. Goals and Outlines

This paper aims to provide an overview of the current state-of-the-art in Arabic OCR
technology. It presents the main challenges and limitations of existing Arabic OCR systems.
We highlight the main research trends and future directions for Arabic OCR development.
We conclude by identifying the main research gaps and areas that need further study.

The rest of the paper is organized as follows: In Section 2, we review the datasets
available to evaluate the Arabic OCR. In Section 3, we summarize the existing literature
for each step of Arabic OCR, highlighting the main research trends and advances in the
field. We conclude by summarizing the survey’s main findings and highlighting the main
research gaps and areas that need further study.

2. Datasets

The dataset is an important part of any OCR system to validate the results of OCR. It is
especially challenging for the Arabic language because of the cursive nature of the Arabic
language, diacritics, different writing styles in which each word’s overall shape changes,
text sizes, and other reasons. The collection of the Arabic dataset is also very limited due
to the low-resource nature of the Arabic language. Previously, refs. [10,11] shared some
commonly used datasets, as shown in Table 1. They presented the shared datasets for
Arabic, Urdu, and Persian, both publicly available and otherwise.

2.1. Handwritten Text

Urdu and Arabic have many similarities. Writing styles are identical, and both have
cursive nature as well; both start from right to left, and Urdu has about 39 to 40 letters;
Arabic is similar to Urdu but has fewer characters. Urdu borrows a large vocabulary from
Arabic (almost 30%). Most Urdu speakers can read Quran because of Urdu and Arabic
similarities. Thus, their datasets and trained models are commonly used as well.

Table 1. Available datasets with their stats, dataset type, and mode of availability.

Dataset Type of Content Availability Size of Dataset

ACTIV2 [12] Embedded words Public 10,415 text images
QTID [13] Synthetic words Private 309,720 words and 249,428 characters
IFN/ENIT [14] Handwritten words Public 115,000 words and 212,000 characters
AHDB [15] Handwritten words and digits Private 30,000 words
APTI [16] Printed words Public 113,284 words and 648,280 characters
HACDB [17] Handwritten characters Public 6600 characters and 50 writers
UPTI [18] Printed text lines Public 10,000 text lines
Digital Jawi [19] Jawi paleography images Public 168 words and 1524 characters
KHATT [20] Handwritten text lines Public 9327 lines, 165,890 words and 589,924 characters
ALIF [21] Embedded text lines Upon request 1804 words and 89,819 characters
ACTIV [22] Embedded text lines Public 4824 lines and 21,520 words
SmartATID [23] Printed and handwritten pages Public 9088 pages
Degraded historical [24] Handwritten documents Public 10 handwritten images and 10 printed images
Printed PAW [25] Printed subwords Upon request 415,280 unique words and 550,000 sub words
Checks [26] Handwritten subwords and digits Private 29,498 subwords and 15,148 digits
Numeral [27] Handwritten digits Public 21,120 digits and 44 writers
Forms [28] Handwritten characters Private 15,800 characters and 500 writers
KAFD [29] Printed pages and lines Public 28,767 pages and 644,006 lines
AHDBIFTR [30] Handwritten images Public 497 word images and 5 writers
ARABASE [31] Handwritten text Public 47,000 words and 500 free Arabic sentences
CEDAR [32] Handwritten pages Private 20,000 words, 10 writers, and 100 documents
CENPARMI [26] Handwritten subwords and digits Public 6000 digit images
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Shafi and Zia [33] surveyed automatic Urdu text recognition techniques and described
the algorithms, techniques, datasets, challenges, and future directions for Urdu OCR.
Additionally, [34] reviewed the availability of datasets and suggested more training data to
address the unique challenges of OCR systems.

Due to their similarities, both languages have some datasets available. The authors
of [35] presented a dataset of handwritten Urdu numerals. In [11], the authors proposed an
Urdu Nastaliq Handwritten Dataset (UNHD), which is written by 500 writers on A4-size
paper and is available on request (https://www.kaggle.com/datasets/drsaadbinahmed/
unhd-dataset, accessed on 28 March 2023). Khosrobeigi et al. [36] also presented a Persian
language dataset; this dataset is collected from different Persian-language new websites,
and the description of the dataset is shown in Table 2; this dataset is split into 80% for
training and 20% for testing purpose.

Table 2. Example Persian dataset collected from different news websites.

Description Stats

Total text lines of dataset 4,000,000
Total words 15,000,000
Unique words 200,000
Text lines per image 70
Total used fonts (with sizes) 11 fonts (sizes:12, 14, and 18)

There are some datasets available that are used for handwritten text recognition
of Urdu, and, as we know, Urdu and Arabic use the same vocabulary and alphabet as
well. Therefore, we can use Urdu datasets as well and achieve good results. For this
purpose, ref. [37] presents some datasets of handwritten Urdu text recognition, which
give outstanding results; the dataset descriptions and their availability are also shown in
Table 3.

Table 3. Sample handwritten Urdu datasets.

UPTI CALAM UNHD

Total writers 250 725 500
Text lines 60,000 3043 10,000
Words 240,000 46,664 187,200
Characters 970,650 101,181 312,000
Availability Private Private Public

Naz et al. [38] summarized the state-of-the-art in OCR research for Urdu-like cursive
scripts, concentrating on Nastaliq and Naskh scripts in the Urdu, Pushto, and Sindhi
languages. The study discusses the quirks of these scripts as well as the text-picture
databases that are readily accessible. Three categories have been established: printed,
handwritten, and internet character recognition. The database is discussed, which includes
60,329 isolated digits, 12,914 strings, 1705 symbols, 14,890 isolated characters, and 318
different patterns of dates.

Alghamdi and Teahan [39] discussed the most commonly used datasets for training
and evaluation of OCR systems for printed Arabic script, including the IFN/ENIT Arabic
handwritten dataset, the “Handwriting Arabic Corpus” (HAC) dataset, and the RIMES
dataset containing a large collection of printed and handwritten documents. The authors
provide an overview of the available datasets and emphasize the importance of high-quality
datasets for improving the accuracy of OCR systems.

Publicly available scanned image datasets are tested by [40], e.g., the WATAN and
APTI datasets with extensive vocabularies. The datasets are split into a training set and
a testing set, where training data contain 282,000 word images and 1,200,000 characters
images while testing 5500 words, and 100,500 characters are used. The trained model
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achieves an overall accuracy of 97.94%. As there are many challenges in Arabic optical
character recognition (AOCR), [41] surveys various approaches and methods to detect and
reduce errors.

In [42], the authors proposed a system synthesizing Arabic handwritten words and
text pages to generate comprehensive databases for training and validating OCR systems.
In the database, vocabulary of the 50,000 most-common Arabic words are used for error
correction.

2.2. Printed Arabic

In Arabic OCR, printed, handwritten, and historical documents are used. To process
printed Arabic documents, [43] presents top-down, bottom-up, and hybrid approaches and
discusses the phases of preprocessing, segmentation, feature extraction, and classification.

An efficient, font-independent word and character segmentation algorithm for printed
Arabic documents is proposed in [44]. Profile projection is used for the font-independent
technique. Interquartile Range (IQR) is used for word segmentation. For character segmen-
tation, two approaches are used, i.e., the holistic approach (segmentation-free approach)
and the analytical approach, which is a segmentation-based approach, and the process
followed for this purpose is shown in Figure 3. For this purpose, ATPI is the dataset used
to make a font-independent OCR system that achieves 97.51% accuracy.

Line or Word 
Image

Baseline 
Detection

Identify all 
potential 

segmentatio
n points

Potential 
point 

filtration

Extracting 
character

Characters

Figure 3. Character segmentation stages in order to recognize characters with maximum accuracy.

In [45], the authors propose a thinning algorithm in the preprocessing stage. A new
chain code representation technique is proposed using an agent-based model for feature
extraction from non-dotted Arabic text images. A character segmentation technique based
on the extracted features is also introduced. A compression-based method is applied to
recognize Arabic text in the classification stage. The system was tested on a public dataset
and produced an accuracy of 77.3%.

The authors of [46] demonstrate the effective use of unsupervised algorithms for writer
attribution of historical scanned documents and forensic document analysis. Some distinct
handwriting styles differ in various ways, including character size, stroke width, loops,
ductus, slant angles, and cursive ligatures. Additionally covered are prior efforts on labeled
data that provide excellent accuracy rates utilizing the Hidden Markov Model (HMM),
Support Vector Machine (SVM), and semi-supervised Recurrent Neural Networks (RNN).

Transformer-based models are a type of deep learning method to deal with sequential
data [47]. Several metrics are used to evaluate the performance of the proposed method;
those metrics are character error rate (CER) and word error rate (WER). Furthermore, results
show that the proposed method improves the recognition rate of historical documents.

The data generated by IoT devices such as the Quran Read Pen, which helps to read
Quran specifically to illiterate or blind people [48], is shared via the Quranic Text Image
Dataset (QTID). It contains 309,720 images of words and 2,494,428 characters taken from
the Quran, which uses the sequence-to-sequence model and CNN and achieves a high
recognition rate. The character recognition rate (CRR) with and without diacritics is about
97.60% and 97.05%, respectively, and the overall recognition rate of this model is 99.48%,
while the CNN model gives the CRR with and without diacritics of about 98.90% and
98.51%, respectively.

Feature extraction and classification techniques are used for character segmentation in
ancient manuscripts for their preservation and information extraction [49].
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2.3. Scanned Documents/Receipts

Information extraction from scanned documents is difficult compared to regular
documents because of the rough layout and low resolution. Preprocessing involves pro-
cessing the scanned document successfully, as information extraction from the scanned
documents/receipts is the key perspective. ICDAR [50] presents a competition wherein
1000 scanned receipts are used to extract information; this competition includes some tasks
such as text recognition, layout analysis, and information extraction.

2.4. Quranic Text

As Quran is a Holy Book, it is recited worldwide, and everyone wants to recite it
correctly without any mistakes. Bashir et al. [51] review the Quranic NLP techniques,
approaches used, tools, and datasets, and recitation via speech-recognition method. The
techniques used in the paper are text preprocessing, text matching, clustering, classifica-
tion, and speech processing. Quranic NLP work includes grammatical NLP analysis and
semantic- and ontology-based technologies using BLSTM. The model took recitation of
different reciters for training purposes, and a feature widely used for speech recognition,
named mel-frequency cepstral coefficients (MFCCs), gives a 99.89% recognition rate for 3 s
of recitation, which is far better than all of the other techniques.

3. OCR Process

The OCR process refers to identifying and converting printed or handwritten text
characters into machine-encoded text. It typically involves several steps, including prepro-
cessing, segmentation, recognition, and postprocessing. During preprocessing, the input
image is cleaned up and enhanced to improve the quality of recognition. Segmentation
involves breaking the image into individual or groups of letters or characters. Feature
extraction is the process of identifying and extracting the relevant features of each character,
such as its shape, size, and orientation. In recognition, the characters are classified by com-
paring them to a set of known characters, and the best match is selected as the recognized
character. Finally, postprocessing of recognized text is performed to remove errors from
text and improve accuracy and overall results of OCR. OCR recognition accuracy can vary
depending on several factors, such as the quality of the input image, the font type and
size, and the language being recognized. The flow of the overall OCR process is shown in
Figure 4. We have provided a high-level description of the various techniques and methods
involved in the OCR process in Table 4.

Preprocessing

Segmentation

Recognition

Postprocessing

Deskew

Binarization

Denoise

Upscale

Dictionary Grammar

Input 
Image

Output 
Text

Line

Word

Character

Feature 
Selection

Figure 4. The flow of the OCR process along with OCR phases and methods involved.
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Table 4. Comparison of techniques applicable in various OCR methods.

Technique Method Brief Description

Preprocessing

Binarization Transforms the input image into a binary format
Keystone Correction Aligns the distortion on the edges of the image
Skew correction Corrects the angle of the rotated text
Denoising Filters-out the extra-noisy pixels from the image
Dilation Restores an eroded image by cleaning it up
Erosion Removes object boundaries and unwanted parts in images
Thinning Reduces thickness of objects by removing boundary pixels
Upscaling Enhances the resolution of the image

Segmentation
Line Image is divided into lines for line-by-line processing
Word Each line is divided into words using spacing methods
Character Image of each word is divided into individual characters

Recognition

Template Matching Matches an input image with predefined characters
Feature Extraction Extracts features and classifies image using learning algorithm
Neural Networks Uses interconnected neurons to predict text from image
Deep Learning Uses neural networks with many layers to learn patterns
Decision Trees Builds tree-like structure with decisions and consequences
SVM Constructs hyperplane separating image into different classes
Naive Bayes Uses Bayes’ theorem to classify an input image
Random Forest Builds multiple decision trees, combining their outputs
CNN Uses deep learning with convolutional layers to classify image
RNN Neural network for processing sequences (characters in OCR)
kNN Classifies image based on k-nearest neighbors’ majority class
HT Detects lines, circles, and edges from image for text extraction
HOG Computes image gradients in histograms and extract features
HMM Models transition probabilities of text for accurate recognition
Profile Projection Extracts character features using projection onto 1D axis

Postprocessing

Spell-check Error correction, text enhancement, and restoration
Contextual Analysis Analyses the surrounding words based on specific context
Confidence Scoring Assigns scores to words—higher score means more accurate
Language Model Uses large corpus of text to guess best word in context

Evaluation
Character Error Rate Percentage of characters incorrectly predicted
Word Error Rate Percentage of words incorrectly predicted
Recognition Rate Percentage of characters/words correctly recognized

3.1. Preprocessing

The formatting issues in images can have a negative impact on the accuracy of OCR
models. Examples of these issues include problems related to image orientation or color
correction. To improve the accuracy of these models during the training phase, image
preprocessing techniques are commonly used. These techniques may involve resizing,
grayscale conversion, skew correction, and/or enhancing the resolution of the image.

3.1.1. Binarization and Thinning

Binarization converts a grayscale or color image into a binary image, representing
each pixel as either black or white. It is an essential preprocessing step that helps to
segment the text from the background and increase the contrast between the characters
and the background. The objective of binarization is to transform the input image into a
binary format that enhances the visibility of the characters and makes them more easily
recognized by the OCR system. Various binarization techniques are used in OCR, including
thresholding, adaptive thresholding, and Otsu’s method.

A method for preprocessing images of historical documents for OCR and search
includes image binarization, skew correction, and line segmentation. The method was
tested on a dataset of historical documents. The results show that it improves the accuracy
of OCR by reducing errors caused by skew and noise and can be effectively applied to
historical documents of various types. The binarization step of the method converts the
image into a black-and-white image to make it easier for OCR software to recognize the
text [52].
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An approach for binarization of non-uniformly illuminated document images to
accurately recognize alphanumerical characters is presented in [53]. The proposed method
combines local and global thresholding methods, i.e., Sauvola and Otsu methods to achieve
robust binarization and improved performance compared to existing binarization methods.
In the Sauvola binarization method, the local threshold is calculated using a Sauvola
algorithm, which takes into account the local mean and standard deviation of the pixel
intensities. In the Otsu binarization method, the global threshold is calculated using an
Otsu algorithm, which maximizes the variance between the two classes of pixel intensities.

Thinning, also known as skeletonization, reduces the thickness of the image by deleting
the boundary pixels while preserving the shape and structure. The goal of thinning is to
obtain the structure of the objects in the image.

Tellache et al. [54] propose and compare different thinning algorithms for improving
the performance of OCR for Arabic script. The results show that the Hybrid algorithm
performed the best and improved the OCR accuracy by reducing the errors caused by
variations in line thickness. The method can be effectively applied to different types of
Arabic text, including handwritten and printed text. Results indicate that the Hybrid
algorithm improved the OCR accuracy by reducing the errors caused by variations in line
thickness. The results also show that the Hybrid algorithm can be effectively applied to
different types of Arabic text, including handwritten and printed text.

3.1.2. Denoising

Unwanted changes in the intensity of an image that cover up the underlying image
structure are known as noise. Noise can appear in images or documents that contain text in
different ways, i.e., scanning documents, compressing files, printing documents, and noise
during text recognition in the form of errors. For scanning documents, the noise introduced
is in the form of changes to document quality, exposure, lighting, and blurring of the text.
Noise can also be introduced during file compression, as it is used to reduce the actual size
of the files, so it can add noise in the form of quality loss. Noise can also be introduced
while printing the document due to the lack of printing quality of that particular machine
or due to variations in ink or toner density or blurring.

Noise and image distortions significantly degrade OCR performance [55]. Noise
removal is necessary for every image-processing task, and filters are used to remove
unwanted variations in the image while preserving the essential details. Filters are used
according to the filter behavior [56]; for example, a Gaussian filter is used to smooth an
image by reducing high-frequency noise. A median filter works by replacing pixel values
with the median value of the neighbouring pixels to remove impulse noise.

The authors of [57] proposed a deep learning architecture based on a convolutional
neural network (CNN) for detecting and recognizing text in distorted document images of
different languages. The proposed approach combines two specialized modules for text
detection and recognition for automatically learning discriminative features for character
recognition; it achieves outstanding performance, surpassing the best competing models by
at least 13% for text detection and 7.5% for text recognition. The developed global model
demonstrates a high level of robustness and significantly outperforms all other schemes in
comprehensive benchmarks.

Denoising is also performed using morphological operations. Morphological opera-
tions process images according to their shapes; each pixel corresponds to its neighboring
pixels. Salt-and-pepper noise is a common type of noise that appears due to random
black-and-white pixels in an image, and morphological operations are used to remove
such noise. Erosion and dilation are commonly used morphological operations for denois-
ing [58]. Erosion eliminates the isolated noise pixels, and dilation fills up small, empty
holes around the image caused by noise [59]. Opening removes small noisy pixels, whereas
closing operations fill empty gaps in the image. The combination of opening and closing is
generally used to denoise the image in the preprocessing step, as shown in Figure 5.
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Figure 5. Opening and closing of an image.

3.1.3. Deskewing

Deskewing is the detection of rotated text in an image and computing its angle to
correct its rotation [60]. It involves text-block detection, computing the angle of the rotated
text, rotating the text, and correcting the image’s skewness.

An adaptive deskewing method for document pictures that recognizes the image type
and selects an appropriate correction technique based on image type is proposed by [61].
The text direction of the document picture is determined by the method and is used as a
parameter to pick a more appropriate projection direction. The research provides many
approaches for repairing various sorts of document photographs, as well as a layout-based
image categorization system. The results of the experiments suggest that the algorithm is
accurate and resilient, although its complexity may restrict its capacity to predict skew over
a specific threshold. A voting-based deskewing method is proposed by [62]; it chooses the
best deskewing algorithm based on the accuracy of skew correction for large digitization
projects.

The Probabilistic Hough Transformation (PHT) method for skew detection and cor-
rection in OCR systems for scanned documents is presented in [63]. The method works in
two steps: detecting lines of text and clustering them. Factors that affect OCR performance,
such as skew, blur, image distortion, and noise, are addressed in the preprocessing phase,
with skew being the main focus; an example is shown in Figure 6. The proposed method
was tested on different datasets and showed better results than other methods used by
researchers. The method calculates skew angles using the following equations:

nhieght = (nwidth ∗ h)/w (1)

where nheight represents normalized height, nwidth represents normalized width, and w and
h represent width and height, respectively.

m = (y2 − y1)/(x2 − x1)

A = arctan[(y2 − y1)/(x2 − x1)]
(2)

where m represents slope/gradient of a line, and A represents the angle of each line. The
proposed skew detection and correction method is used on different datasets and achieves
good results compared to other methods used by researchers.
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Figure 6. A skewed document (on the left) is deskewed (on the right) to achieve better OCR results.

Hough transformation (HT) is a technique to detect lines in an image and deskew the
text. The authors of [7] use the HT method for skew correction. HT creates a parameter
space (Hough space) in which each point in the space represents a possible line in the image.
By detecting lines in the image, the method can detect the skew of the text by finding the
angle at which the lines are inclined. The proposed method can detect skew angles with
an accuracy of about 97% and can correct them with an average error of about 0.8◦. The
method was evaluated through experiments on a dataset of Quran images. The method is
robust to noise, which means it can still detect and correct skew even when images have
noise present. It can also be applied to images of different quality, showing consistent
performance regardless of the image quality. The method was tested on a diverse set of
Quran images, including images with different text sizes and levels of quality, and the
results were consistent.

3.1.4. Keystone Correction

Keystone correction is used to correct slanted images. OCR algorithms work best
when the text in the image is aligned with the x-axis. However, the text may be slanted
due to how the original document was scanned or photographed. Keystone correction
involves applying mathematical transformations to the image to correct for the slant of the
text, which can be done using various algorithms, such as Hough transform or RANSAC.
Distortion is aligned at the top/bottom using vertical keystone correction and left/right
of the image with horizontal keystone correction. After capturing the image, there will
be many technical challenges with the image that make it difficult to read the text. The
morphological process and Bézier curve method resolve these challenges [64].

3.1.5. Upscaling

The process of upscaling, also known as Super Resolution, involves enhancing the
resolution of the image. Random forests can also be used to upscale images [65]. They
use the standard benchmarks for super-resolution and present the training and evaluation
accuracy. A deep learning method for upscaling binary document images using super-
resolution is the generative adversarial network (SRGAN) [66], which improves readability
and OCR performance compared to traditional interpolation methods, as per evaluation
metrics. The method involves training a CNN on low-resolution and high-resolution binary
document images to generate high-resolution images.
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3.2. Segmentation

Segmentation is an important step in OCR involving separation of an image into its
constituent parts, such as lines, words, and characters, for recognition. Three types of
segmentation techniques are mainly used, i.e., line, word, and character segmentation.
Word segmentation, specifically, is challenging in cursive languages such as Arabic due to
a lack of clear separation between characters. Traditional segmentation methods in Arabic
OCR rely on rules and heuristics based on character features, but deep learning techniques
such as convolutional and recurrent neural networks have shown promising results in
automatic segmentation. Accurate segmentation is crucial for recognition, and improving
Arabic OCR segmentation can have significant implications for document digitization,
text-to-speech conversion, and language translation.

The techniques used in [67] include image processing techniques such as thresholding
to convert the image into a binary image, morphological operations to perform operations
such as erosion and dilation on the binary image, and connected component analysis to
identify and label connected regions in the image. The authors use two databases for
evaluating the performance of the proposed method. The first database is the publicly
available RDI-Arabic dataset, which consists of 1000 images of Arabic text documents. The
second database is a new dataset created by the authors and consists of 1000 images of
Arabic text documents. The research results show that the proposed image-processing
techniques can accurately segment Arabic text documents into text lines, words, and
characters with a high degree of accuracy. The researchers use several evaluation metrics,
such as F-score, precision, and recall, to evaluate the performance of the proposed method.
The results show that the proposed method outperforms traditional methods regarding
segmentation accuracy.

Urdu language characters are the super-set of Arabic language characters, and certain
challenges are faced when performing segmentation of Urdu-like cursive languages [68].
Arabic is mainly written in Naskh, while Urdu is written in Nastaliq style. There are
some challenges in the segmentation of Urdu script, i.e., cursive nature, difficult fonts
such as Nastaliq, and letters changing their shape into different forms as required in
the word; and cue points are hard to find in the Naskh or Nastaliq style. That is why
segmentation is challenging, and character segmentation has been considered difficult in
previous research. Researchers mostly used the projection profile method for segmentation,
which can perform a vertical projection of the given text. However, in Arabic or Urdu, text
writing starts from right to left and top to bottom, so vertical and horizontal projection
is required. Analytical approaches are difficult and give the wrong character recognition
results, but explicit and implicit recognition systems also give better accuracy. At the
same time, holistic approaches are considered best by researchers for better accuracy with
the correct recognition. Furthermore, there are better approaches than segmentation-free
approaches for large vocabularies. For a reasonable accuracy rate, segmentation should
perform well using the approaches that are correct and appropriate for segmentation.

Thorat et al. [69] presented a survey to discuss the methods used by previous re-
searchers. It discussed OCR systems, tools, applications, phases, and methods. There are
two types of documents, i.e., unilingual and multilingual documents. Some OCR systems
are discussed, i.e., Google Docs OCR, Tesseract, ABBYY FineReader, Transym, and I2OCR,
which help to provide services and help to extract text from different types of documents
with different languages, whether they are unilingual or multilingual. Multilingual doc-
uments contain text from multiple languages, and the techniques used are binarization,
layout analysis, page segmentation, preprocessing, feature extraction, classification, and
recognition. Some approaches are used for the segmentation-free approach and HMM.
There are some applications where OCR systems are used to ease use and increase work
productivity in healthcare, education, banking, insurance, automatic exam paper checking,
bills and invoices, newspapers, and comics. Some phases are discussed to process the
document to get better accuracy, including image acquisition, preprocessing, segmentation,
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classification and recognition, and postprocessing. Moreover, methods used by previous
researchers are matrix matching, fuzzy logic, structural analysis, and neural networks.

3.2.1. Line Segmentation

In line segmentation, the skew-corrected image is divided into lines. Line segmentation
is an important step in OCR as it allows the separation of the image into individual lines so
that the OCR system can process them one-by-one and improve the recognition of the text
in the image. Connected component analysis, project profile, and machine learning-based
approaches can be used to perform line segmentation. Once the lines of text have been
segmented, the OCR system can process each line individually, which can improve the
accuracy of the character recognition process.

A method for line segmentation of printed Arabic text with diacritics using a divide-
and-conquer algorithm is presented in [70]. It breaks the image of printed text into smaller
blocks, applies image processing techniques to extract the text lines, and then applies a
set of heuristic rules to remove false positives and adjust the segments as necessary. It
uses image processing techniques such as thresholding, morphological operations, and
connected component analysis. The research results show that the proposed method can
accurately segment printed Arabic text with diacritics into text lines with a high degree
of accuracy. The research uses several evaluation metrics such as F-score, precision, recall,
and F-Measure to evaluate the performance of the proposed method.

Brodic et al. [71,72] proposed a basic standardized test framework for evaluating the
quality of text line segmentation algorithms in OCR systems for accurate handwritten text
recognition. Their proposed framework includes experiments for measuring the accuracy
of text line segmentation, skew rate, and reference text line evaluation.

3.2.2. Word segmentation

After line segmentation, each word from the line is segmented by dividing the line
of the text into individual words. Several techniques are used for word segmentation,
i.e., the Spacing method involves using the spaces between words to segment the text
into words. The dictionary-based method uses a dictionary of words to match against the
text and segments the text into words based on the matches. Character-based methods
use a combination of known character patterns, such as word breaks and punctuation,
to segment the text into words. Deep-learning approaches use supervised learning on
annotated datasets to learn the complex relationships between adjacent characters in order
to infer word boundaries [73,74].

The authors of [75] present word segmentation in Arabic handwritten images using
a convolutional recurrent neural network (CRNN) architecture. The authors employ a
sliding-window approach for word segmentation, where each window is classified as either
a word or non-word using a support vector machine (SVM) classifier. The experimental
results show that the proposed CRNN architecture achieves state-of-the-art performance
in Arabic handwriting word recognition, with an accuracy of 86.95% on the IFN/ENIT
dataset.

Patil et al. [76] propose a semantic segmentation approach for images containing mixed
text to segment the image into different regions based on their content. The segmented
regions are then processed using different OCR methods that are specifically tailored to the
type of text in each region.

3.2.3. Character Segmentation

Character-level segmentation is a technique used to segment an image of a single
word into individual letters and characters. It is an optional step depending on the context
of the OCR system that is being used. It may be unnecessary if the text has separate letters
within a word, as the letters and characters can be segmented in the previous step using a
threshold. However, character-level segmentation must be performed if the text has cursive
handwriting or a nature where letters are joined.
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A method for recognizing and transcribing text from a visual Arabic scripting news
ticker from a broadcast stream is presented in [77]. The technique used in this research
includes image processing techniques such as thresholding, morphological operations, and
connected component analysis to segment the text from the background. It uses machine
learning algorithms such as CNNs and long short-term memory (LSTM) to transcribe
text. The research results show that the proposed method can accurately recognize and
transcribe text from a visual Arabic scripting news ticker from a broadcast stream. The
research uses several evaluation metrics, such as character error rate (CER) and word error
rate (WER), to evaluate the performance of the proposed method. The results show that
the proposed method outperforms traditional methods in recognition accuracy, achieving a
lower CER and WER than traditional methods on the dataset used in the research.

Alginahi [78] discusses Arabic character segmentation approaches, including tradi-
tional methods such as vertical and horizontal projection, contour tracing and thinning,
template matching, neural networks and HMM, holistic approaches and segmentation-free
approaches, projection profile, baseline, contour tracing, graph theory, and morphology.
The paper also discusses the challenges and limitations of each approach and suggests areas
for future research. It also discusses the benefits and problems with character segmentation,
especially in Arabic; problems are due to its cursive nature and the different shapes of each
character depending on the word’s appearance. Problems also occur because of datasets.
Therefore, the Arabic Language Technology Center (ALTEC) have provided limited free
access to a reliable dataset.

A method for segmenting characters, letters, and digits from Arabic handwritten
document images using a hybrid approach is presented in [79]. The method uses image
processing techniques, such as thresholding, morphological operations, and connected
component analysis, to segment the text from the background and to separate the characters.
In addition, machine learning algorithms, including k-means clustering and a Random
Forest Classifier, are used to classify the segments into individual characters. The research
demonstrates that the proposed method can accurately segment characters from Arabic
handwritten document images with a high degree of accuracy. The method outperforms
traditional methods regarding segmentation accuracy, as evidenced by several evaluation
metrics, including F-score, precision, and recall. The proposed method achieves a higher
F-score, precision, and recall than traditional methods on the dataset used in the research.

Morphological operators are also used for segmenting Arabic handwritten words [80].
The process involves using morphological operations, such as erosion and dilation, to
extract the text from the background and segment the words. The technique used in
this research is based on morphological operators, which perform operations such as
erosion and dilation on binary images, to extract the text and separate the words. The
method also uses image processing techniques, such as thresholding, to convert the image
into a binary image and connected component analysis to identify and label connected
regions corresponding to words. The research results show that the proposed method
can accurately segment Arabic handwritten words with a high degree of accuracy. The
research used several evaluation metrics, such as F-score, precision, and recall, to evaluate
the performance of the proposed method. The results show that the proposed method
outperforms traditional methods in terms of segmentation accuracy.

Some previous works have proposed segmentation-free approaches for Arabic and
Urdu OCR, but they do not produce accurate results on clean text. The authors of [18]
apply a machine learning model on clean Urdu and Arabic datasets, producing 91% and
86% accuracy on clean UPTI datasets. The authors of [34] review current approaches
and challenges unique to Urdu OCR and suggest that future research should focus on
developing more-sophisticated algorithms, improving training data, and addressing the
unique challenges of the Urdu script. They also propose that integrating Urdu OCR with
other technologies, such as machine learning and computer vision, would provide new
opportunities for research in the field.
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Handwritten digit recognition is discussed in [81]. It has various applications and
is used in different fields such as postal mail sorting, bank check numbering, amount
processing, and number entries of various forms such as taxes, insurance, and utility bills.
There are handwritten images of 10 digits in the dataset from 0 to 9, and this dataset is taken
from MNIST, which contains 60,000 and 10,000 images for training and testing purposes,
respectively. Then, some phases and approaches are used to process the images to train
and test the model, which helps to get better accuracy and gives a maximum recognition
rate. Discussed phases and approaches are preprocessing and feature extraction, and then
classification is used. In classification, machine learning approaches, i.e., Decision Tree,
Support Vector Machine (SVM), and Artificial Neural Network (ANN), are used. The deep
learning approach implements a Visual Geometry Group model with 16 layers (VGG16
model); this model is used for deep-learning image-classification problems. By using the
proposed techniques, we get better recognition and a high accuracy rate; i.e., in decision
tree 86%, SVM 91%, ANN 97%, and CNN 98.84% accuracy is achieved.

3.3. Recognition

Recognition, also called classification in some previous works, is the process of identi-
fying and assigning a specific character or set of characters to a given input image. After
preprocessing and segmentation, the OCR system compares the extracted features of each
character or group of characters with a set of predefined templates or models. The OCR
system creates these templates during a training phase, where a large dataset of sample
images is used to teach the system how to recognize each character.

The classification/recognition process can involve several algorithms, including tem-
plate matching, neural networks, and support vector machines. Template matching in-
volves comparing the features of each character to predefined templates and selecting the
template with the closest match to the recognized character. Neural networks and support
vector machines use machine learning algorithms to learn and classify patterns in the data
and can often achieve higher accuracy than template matching.

A survey of feature extraction and classification techniques is presented in [82]. The
techniques include digitization, preprocessing, segmentation, feature extraction, and post-
processing. Statistical, structural, template matching, artificial neural network, and kernel
classification methods are also discussed.

An efficient feature-descriptor selection for improved Arabic handwritten word recog-
nition is presented in [83]. The approach uses three image features, Histogram Oriented
Gradient (HOG), Gabor Filter (GF), and Local Binary Pattern (LBP), for feature extraction,
and trains a kNN algorithm to build models. The best model achieved an accuracy of
99.88%. A publicly available IFN/ENIT Arabic dataset is also introduced. The researcher
use the global approach in the research, which is considered successful and in many cases
is used more than the analytical approach.

Various methods and techniques are used in multilingual OCR [84], including pre-
processing, binarization, segmentation, feature extraction, and recognition. Segmentation
uses three different approaches, i.e., top-down, bottom-up, and hybrid approach, including
page, line, and word/character level. The research also explores the challenges to and
limitations of current multilingual OCR systems, such as dealing with different scripts and
languages and the need for large amounts of annotated training data. The paper highlights
the importance of multilingual OCR for applications such as digital libraries, document
archiving, and machine translation. Overall, the paper provides a comprehensive overview
of the current state of multilingual OCR research and its potential applications. The paper
highlights the importance of multilingual OCR for various applications such as digital
libraries, document archiving, and machine translation.The authors of [85] discuss the
ongoing design of a tool for automatically extracting knowledge and cataloging documents
in Arabic, Persian, and Azerbaijani using OCR, text processing, and information-extraction
techniques.
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A method using a combination of CNN and RNN for recognizing Arabic text in
natural scene images is presented in [86]. The method utilizes an attention mechanism
to focus on the most relevant parts of the image and improve text recognition accuracy.
Two datasets are used in this research for training purposes, i.e., ACTIV and ALIF. ACTIV
contains 21520 images of text lines, while ALIF contains 6532 images of text lines; both
datasets are extracted from different news channels. Testing is done on the Arabic natural
scene text dataset (ANST) the authors created. The proposed method is evaluated on this
dataset, which shows that it outperformed the state-of-the-art methods for Arabic text
recognition in natural scene images with an accuracy of 92.4%. The model uses CNN to
extract features from the image and RNN to process the features and generate the text
recognition output. At the same time, the attention mechanism improves the accuracy of
recognition (https://tc11.cvc.uab.es/datasets/type/11, accessed on 18 March 2023).

Language detection, document categorization, and region of interest (RoI) identifica-
tion with KERAS and TensorFlow are used to perform manuscript analysis and recognition
in OCR systems [87]. The RoI includes tables, titles, paragraphs, figures, and lists. The
deep-learning-trained model uses bounding-box regression to identify the target and serves
as a reference point for object detection. The system integrates the fast gradient sign method
(FGSM) and uses deep learning to recognize multilingual systems. It also investigates page
segmentation methods to enhance accuracy. The system performs well against adversarial
attacks on Arabic manuscripts and achieves an accuracy of 99%. It uses Hierarchical Ag-
glomerate Clustering (HAC) to group objects in clusters based on similarity/relation. The
research aims to improve preprocessing and identify parameters to enhance the accuracy
of page segmentation methods.

A survey of various methods and techniques used for recognizing text in natural
images and videos is presented in [88]. The authors discuss various challenges and propose
approaches for recognizing text in the wild due to font, color, and background variations.
The paper covers traditional methods as well as more-recent methods based on deep
learning, such as CNN and RNN. The authors also discuss evaluation metrics and datasets
used for text recognition in the wild. Overall, the paper provides an overview of the state-
of-the-art in text recognition in the wild and highlights areas that need further research.
Additionally, the authors provide a comprehensive review of publicly available resources on
their Github repository (https://github.com/HCIILAB/Scene-Text-Recognition, accessed
on 22 March 2023).

Bouchakour et al. [89] use the CNN classifier for printed Arabic OCR using a combina-
tion of texture, shape, and statistical features. Evaluation of the proposed method achieves
an accuracy of 97.23%, which shows the effectiveness of combining image features with a
CNN classifier. Similarly, the authors of [90] conduct experiments to analyze the impact of
different hyper-parameters and network architectures on the performance of a CNN model
for OCR of handwritten digits.

The authors of [91] survey OCR methodologies for Urdu fonts, such as Nastaliq and
Naskh, and other similar languages having Urdu-like scripts, such as Arabic, Pashtu, and
Sindhi. Moreover, the main focus of this survey is to compare all of the phases involved
in OCR, i.e., Image Acquisition, Preprocessing, Segmentation, Feature Extraction, Classi-
fication, and Recognition. The Urdu Printed Text Images (UPTI) dataset is divided into
training, testing, and validation. It contains about 10,000 text images; so for implementation,
multidimensional LSTM-RNN is used, and it achieves an accuracy of 98%. Many stages
in the phases make the OCR system better, and it is important to follow all of the stages
to make a perfect system, as shown in Figure 7. In the past, researchers used multiple
datasets and found a specific output such as character recognition or ligatures recognition
and achieved good accuracy.
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Figure 7. Processes and techniques in each phase of the OCR system.

An artificial neural network (ANN) classifier to identify the characters in a text is
presented in [92]. The dataset is generated from different documents with different qualities
of the result. A preprocessing step is used to eliminate noise; then, the segmentation phase is
done using multiple steps, i.e., line, word, and character segmentation. A feature-extraction
step for the character’s image is performed to obtain features for all the pixels. The
authors trained the ANN classifier on a dataset of printed Arabic text and then evaluated
its performance on a separate test set. The results show that the system can accurately
recognize the characters in the test set with high recognition rates. A KERAS model is
used with a three-layer ANN classifier for character classification. Noise density and
multi-spatial resolution matrices are used for evaluation, showing a fast, efficient, high-
performance OCR system.

Mittal and Garg [93] review the various techniques used for text extraction from
images and documents using OCR; they also discuss the challenges and limitations of text
extraction. Reviewed papers are grouped on the basis of the types of OCR techniques that
are used. The authors found that the most-used OCR techniques are based on machine
learning, specifically deep learning. They also found that the OCR techniques that use
multiple-recognition engines and preprocessing techniques perform better than single-
recognition-engine-based techniques.

Deep learning models such as CNN, RNN, and attention-based models are discussed
in [94]. The paper discusses the performance of models on different Arabic handwritten
datasets, and these models show much-improved character recognition rate, word recogni-
tion rate, and overall recognition rate. The researchers also discussed challenges dealing
with different handwriting styles and sizes.

The authors of [95] present a method for recognizing Arabic handwritten characters
using different Holistic techniques, CNN, and deep learning models. At the same time,
all of the techniques are well reviewed in this research, i.e., preprocessing, segmentation,
feature extraction, recognition, and postprocessing. The authors found that using these
models and techniques properly improves the recognition rate of the system by a significant
margin.

In [96], automatically extracting and processing text from images is discussed. The
challenges that may arise in OCR stages are also explored, as well as the general phases
of an OCR system, including preprocessing, segmentation, normalization, feature extrac-
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tion, classification, and postprocessing. Additionally, the paper highlights OCR’s main
applications and provides a review of the state-of-the-art at the time of its publication.

The approaches to processing text from documents are reviewed in [97]. In this review,
text detection and text transcription are discussed. Text detection is a task whereby a
process detects or finds text in a document or image. It is a difficult task but can be detected
easily by box bounding and text detection as object detection. Text detection as object
detection is challenging but is solved using computer vision tasks such as single-shot
multi-box detectors and fast R-CNN models. Meanwhile, in text transcription, the text
is extracted in editable form from the document or image of interest. Document layout
analysis is the dominant part of selecting the region of interest. Then, the authors identify
some datasets used in past research: ICDAR, Total-Text, CYW1500, SynthText, and the
updated dataset FUNSD.

3.4. Postprocessing

Postprocessing is the final step in the OCR process; it involves improving the accuracy
and quality of the recognized text. Postprocessing techniques can include various meth-
ods, such as spell checking, contextual analysis, confidence scoring, and language-model
integration. Spell checking involves comparing the recognized text against a dictionary of
words to identify and correct spelling errors. Contextual analysis analyses the recognized
text within the context of the surrounding text to identify and correct errors that may be
caused by confusion with other words. Confidence scoring assigns a confidence score to
each recognized character based on the certainty of the OCR system’s recognition, and
characters with lower confidence scores are flagged for review or correction. The language
model is also used to analyze the recognized text in the language context. Postprocessing
significantly improves the accuracy and quality of the recognized text.

An overview of the different postprocessing techniques developed and applied to OCR
output, including methods for correction of errors, text enhancement, and text restoration,
is discussed in [98]. Various methods are used in postprocessing, including spell checking,
grammar checking, lexicon-based correction, machine learning, and deep-learning-based
approaches. The paper also discusses using different types of features, such as character-
level, word-level, and document-level features, as well as preprocessing techniques, such
as segmentation and normalization.

Several approaches have been used in the postprocessing of OCR output to improve
the accuracy and completeness of the recognized text:

• Spell checking: checks the spelling of the recognized text and corrects any errors by
comparing it to a dictionary [99].

• Grammar checking: checks the grammar of the recognized text and corrects any errors
by comparing it to a set of grammar rules.

• Lexicon-based correction: uses a lexicon (a list of words and their possible variations)
to correct errors in the recognized text by comparing it to the lexicon and suggesting
alternative words where there are errors.

• Machine-learning-based approaches: uses machine learning algorithms, such as de-
cision trees, random forests, and support vector machines, to correct errors in the
recognized text.

• Deep-learning-based approaches: uses deep learning algorithms, such as CNNs and
RNNs, to correct errors in the recognized text.

• Text enhancement: includes techniques to improve the recognized text’s visibility,
legibility, and readability, such as binarization, deskewing and smoothing of text.

• Text restoration: includes techniques to recover missing or degraded text, such as text
in-painting, completion, and restoration.

The authors of [98] also present the results of various experiments and evaluations
conducted to assess the performance of postprocessing techniques. These include com-
parisons of different methods and systems, evaluations of the effects of different types of
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features and preprocessing techniques, and evaluations of the performance of systems on
different types of OCR output and languages.

Doush et al. [100] present a word-context and rule-based technique for OCR postpro-
cessing. OCR is used to obtain text from scanned documents, and the output text is not
always 100% accurate. Thus, after obtaining the text, postprocessing step is required to
recognize and minimize the errors. The presented research is about printed documents,
it lies in an offline OCR system. Cursive nature also causes problems in this step because
characters in Arabic are connected, and there are other additional things such as diacritics
and different shapes of each character in different words. These things bring more complica-
tions to this step. A very small amount of work has been done on the Arabic postprocessing
technique because it shows a very high character and word error rate after recognition.
Therefore, it is a less attractive side for researchers. In the proposed research, an Arabic text
database is prepared, available in three formats, i.e., HTML, PDF, and scanned-document
images. The database has 4581 files, and there are about 8994 scanned images. Thus, from
the database, 1000 images are used for training by the rule-based method, which reduces
the word error rate.

Bassil and Alwani propose an algorithm using Google’s online spelling sugges-
tions [101], which helps to improve the accuracy and suggest what should come after
each character to make a meaningful word according to the sentence. All of the suggestions
given by Google’s spelling suggestion algorithm are based on N-gram probability. The
authors hybridize this method to make the proposed postprocessing technique. Therefore,
the proposed hybrid postprocessing system starts with the generated OCR file (token). The
language model checks each token, and if the language model does not find this token, then
the error model takes this token and suggests the correct word. This token/word again
goes into the language model in an attempt to find matches for the token. If it matches,
then the model moves to the next word; otherwise, the error model again suggests the new
token provided by Google’s spelling suggestion algorithm, as shown in Figure 8.
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Figure 8. Hybrid postprocessing technique based on Google’s spelling suggestion algorithm.

The authors of [102] present a corpus-based technique for improving the performance
of an Arabic OCR system. The method involves using a large corpus of texts in Arabic
to train the OCR system and improve its recognition accuracy. The corpus of texts is
preprocessed to ensure that it is suitable for OCR training, and then it is used to train the
OCR system. The performance of the OCR system is then evaluated using a set of test
images, and the recognition accuracy is compared to that of traditional methods. The study
also shows that using a larger corpus of texts leads to better performance of the OCR system.
This phase helps to provide better recognition or reduce the word error rate and character
error rate. The collection of a large corpus of texts in Arabic is used to train the OCR system
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and then preprocess the corpus to ensure that it is suitable for OCR training. The OCR
system is trained using the preprocessed corpus, and the OCR system’s performance is
evaluated using a set of test images. The research shows that the corpus-based technique
improves the recognition accuracy of the OCR system by a significant margin compared
to traditional methods. It also shows that using a larger corpus of texts leads to better
performance of the OCR system.

3.5. Evaluation

Evaluation measures the accuracy and quality of the recognized text output. OCR
evaluation typically involves comparing the recognized text to the original input image or
document and calculating various performance metrics to assess the quality of the OCR
output. Some common metrics used in OCR evaluation include character error rate (CER),
word error rate (WER), recall, precision, and F1 score. OCR evaluation can be performed
using various methods depending on the goal of the application, such as manual inspection,
crowdsourcing, or automated evaluation software. Evaluation is an important step in OCR
development and deployment, as it allows developers and users to assess the accuracy and
quality of the OCR output and make improvements or adjustments to the OCR system
as needed.

An Arabic OCR evaluation tool is discussed in [103]. The Arabic language is difficult
to recognize due to its characters’/alphabets’ behavior in different words. Arabic OCR’s
accuracy could be higher because of improper evaluation of performance metrics. Different
tools and software have been introduced to help find the performance and accuracy of
the applied algorithms. The introduced software is built specially to check Arabic OCR; it
checks the performance based on objectives, i.e., accuracy and evaluation metrics. These
tools briefly describe the text in characters with or without dots, baseline, and diacritics
and the class in which the text lies. These tools include Tesseract, easy OCR, Paddle-Paddle
OCR, and PyMuPdf. Recognition rate (RR), character error rate (CER), and word error rate
(WER) are the evaluation measures used by these programs to evaluate OCR output.

Kiessling et al. [104] discuss various open-source tools for Arabic OCR systems con-
taining Tesseract (https://github.com/tesseract-ocr/tesseract, accessed on 24 February
2023), OCRad (https://www.gnu.org/software/ocrad/, accessed on 24 February 2023),
and GOCR (https://jocr.sourceforge.net/, accessed on 24 February 2023). These tools are
evaluated using an Arabic dataset, and Tesseract gives better recognition results. However,
it is slower than other evaluated tools. These tools give better accuracy for high-resolution
documents, and the accuracy gets worse as the quality of documents decreases.

The authors of [105] provide an overview of existing tools and metrics used to evaluate
the OCR system in previous research. Their paper covers traditional evaluation techniques
and discusses their pros and cons. It also discusses evaluation metrics such as character
error rate, word error rate, and recognition rate. The detailed review also discusses the
many challenges involved in evaluating the performance of the OCR system.

The performances of generative and discriminative recognition models for offline
Arabic handwritten recognition are compared using generatively trained hidden Markov
modeling (HMM), discriminatively trained conditional random fields (CRF), and dis-
criminatively trained hidden-state CRF (HCRF) in [106]. The study presents recognition
outcomes for words and letters and assesses the efficiency of all three strategies using the
Arabic IFN/ENIT dataset.

Singh et al. [107] discussed offline handwritten word recognition in Devanagari. A
holistic-based approach is used in this approach, wherein a word is considered a single
entity, and the approach processes it further for extraction and recognition. A class of
50 words recognizes every word based on a feature vector set, uniform zoning, diagonal,
centroid, and feature-based. The proposed system uses gradient-boosted algorithms to
enhance the performance; furthermore, some other classifiers are used for this purpose, i.e.,
kNN and Random Forest Classifier. Thus, the overall achieved accuracy is 94.53%. The
authors generate the dataset during the implementation, which is available on request. The
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paper also provided some information on previous research in this area, where researchers
used Hidden Markov Model, Support Vector Machine, and Multi-Layer perceptron classi-
fiers. The authors also highlighted the importance of the availability of quality datasets for
the improved performance of OCR techniques.

The impact of OCR quality on the accuracy of short text classification tasks is presented
in [108]. A multi-class classification of short text is introduced. For this, the authors propose
a dataset of beauty product images that contains 27,500 entries of labeled brand data
and generate results based on targeting specific brands. The authors also show that
preprocessing techniques such as text normalization and noise reduction can improve the
performance of the classification model on low-quality OCR text.

In addition to papers improving specific processes involved in OCR, some previous
papers present a combination of various OCR techniques for overall improved process
accuracy. OCR4all [109] is an open-source OCR software that combines state-of-the-art OCR
components and continuous model training into a comprehensive workflow for processing
historical printings and provides a user-friendly GUI and extensive configuration capabili-
ties. The software outperforms commercial tools on moderate layouts. It achieves excellent
character error rates (CER) on very complex early printed books, making it a valuable tool
for non-technical users and providing an architecture allowing easy integration of newly
developed tools.

3.6. Summary of Presented Techniques

This survey aims to provide a comprehensive literature review of the various tech-
niques involved in Arabic OCR and to provide valuable insights into the current state-of-
the-art in Arabic OCR. To achieve this goal, we analyzed a range of research papers and
articles that focused on different Arabic OCR techniques and methods. Our findings are
summarized in Table 5, which presents a concise overview of the methods employed in the
reviewed papers. The table outlines the different OCR techniques, including preprocessing,
segmentation, recognition, and postprocessing, along with their performance evaluations
in terms of accuracy using various types of printed, scanned, and handwritten datasets.
This survey is useful for researchers and practitioners who are interested in Arabic OCR
systems. By comparing and contrasting the different techniques in the complete pipeline of
the Arabic OCR, they can choose the most appropriate one for their specific task. To further
aid researchers and practitioners, Table 6 presents various methods commonly employed
in OCR systems and their respective advantages and disadvantages.

Table 5. A brief tabular outline of the described papers with the proposed OCR techniques and their
performance evaluations.

OCR Tasks
OCR Techniques Preprocessing Segmentation Recognition Postprocessing Evaluation Accuracy

Ahmad et al. [63] X X X 99.3% (Scanned)
Bafjaish et al. [7] X X X 90% (Scanned)
Karthick et al. [59] X X X X 87.4% (Handwritten), 90% (Scanned)
Abdo et al. [67] X X X X 94.1% (Printed)
Qaroush et al. [70] X X X 11% (Segmentation)
Tayyab et al. [77] X X X X 98.36% (Scanned)
Alginahi [78] X X 93.65% (Handwritten), 86.14% (Scanned)
Verma and Ali [82] X X No Recognition
Hamida et al. [83] X X X 99.88% (Handwritten)
Butt et al. [86] X X X 87% (Scanned)
Nguyen et al. [98] X X No Recognition
Doush et al. [100] X X No Recognition
Neudecker et al. [105] X No Recognition
Vitman et al. [108] X X X 83.5% (High-quality), 58.4%(Low-quality)
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Table 6. Pros and cons of various recognition methods for Arabic OCR.

Method Pros Cons

Template matching Simple and easy to implement Limited accuracy, sensitive to noise and variations in text
Deep learning High accuracy, can handle variations in text Requires large amounts of training data, computationally

expensive
kNN For small datasets, takes less training time and make

predictions quickly
Sensitive to noisy or irrelevant features

RNN For processing large sequential data and can learn term
dependencies

Computationally expensive and sensitive to overfitting

Hough Transformation Robust to noise and can detect lines and circles at any
orientation

Computationally expensive when dealing with large im-
ages

Histogram Oriented Gradi-
ent

Extracts features such as edge orientation and texture,
and is computed quickly

Ineffective at detecting finer details and is sensitive to
variations in lighting and contrast

Hidden Markov Model Models complex patterns and can be trained on
large/sequential datasets

Computationally expensive to train and sensitive to
model parameters

Profile Projection Extracts features from images, such as character width
and spacing

Sensitive to variations in lighting and contrast.

Random Forest Relatively easy to train and can handle noisy or missing
data

Does not perform well on highly imbalanced or sparse
datasets

SVM Used for classification tasks and can handle high-
dimensional data

Computationally expensive non-linear kernels require
hyperparameter tuning

Hybrid approaches Combines the strengths of multiple methods More complex and difficult to implement

4. Discussion and Conclusions

We surveyed that researchers use multiple approaches and datasets to get better recog-
nition rates. The literature review suggests that a proper process needs to be followed,
which includes preprocessing, segmentation (text-area detection and line, word, and char-
acter segmentation), recognition, and postprocessing. We discussed the pros and cons of
each technique discussed in this survey. For example, segmentation-based approaches
give better results than segmentation-free approaches, and vertical/horizontal projection
produces good results for word and character segmentation. However, OCR results depend
upon a good dataset as well. Some datasets are available for the Arabic OCR, but only a
few are publicly available. Postprocessing and dataset availability require more attention
from researchers. For postprocessing, if Google spelling checker-like algorithms are imple-
mented and improved, then this stage can perform very well, enhancing the overall result
of the OCR system. We need a publicly available dataset with an extensive vocabulary of
printed and handwritten text (characters and words) for the dataset.

In conclusion, we presented a survey of the state-of-the-art Arabic OCR, which has
come a long way in recent years, with several approaches and techniques developed
to improve its accuracy and performance. However, many challenges still need to be
addressed, including dealing with the variability and complexity of the Arabic script and
the large number of dialects and variations in the language. Despite these challenges, the
potential benefits of Arabic OCR are clear, and researchers and developers are working hard
to continue to improve and refine the technology. We will likely see even more accurate
and reliable Arabic OCR systems with continued research and development.
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Abstract: The video classification task has gained significant success in the recent years. Specifically,
the topic has gained more attention after the emergence of deep learning models as a successful
tool for automatically classifying videos. In recognition of the importance of the video classification
task and to summarize the success of deep learning models for this task, this paper presents a very
comprehensive and concise review on the topic. There are several existing reviews and survey papers
related to video classification in the scientific literature. However, the existing review papers do not
include the recent state-of-art works, and they also have some limitations. To provide an updated
and concise review, this paper highlights the key findings based on the existing deep learning models.
The key findings are also discussed in a way to provide future research directions. This review mainly
focuses on the type of network architecture used, the evaluation criteria to measure the success,
and the datasets used. To make the review self-contained, the emergence of deep learning methods
towards automatic video classification and the state-of-art deep learning methods are well explained
and summarized. Moreover, a clear insight of the newly developed deep learning architectures
and the traditional approaches is provided. The critical challenges based on the benchmarks are
highlighted for evaluating the technical progress of these methods. The paper also summarizes the
benchmark datasets and the performance evaluation matrices for video classification. Based on the
compact, complete, and concise review, the paper proposes new research directions to solve the
challenging video classification problem.

Keywords: automatic video classification; deep learning; handcrafted features; video processing

1. Introduction

The task of automatically classifying videos has become very successful recently. Par-
ticularly, the subject has drawn increased interest since deep learning models became an
effective method for automatically classifying videos. The importance of the accurate
video classification task can be realized by the large amount of video data available on-
line. People around the world generate and consume a huge amount of video content.
Currently, on YouTube only, over 1 billion hours of video are being watched by different
people every single day. In recognition to the importance of the video classification task, a
combined effort is being made by researchers for proposing an accurate video classification
framework. Companies such as Google AI are investing in different competitions to solve
the challenging problem under constrained conditions. To further advance the progress
of the automatic video classification task, Google AI has released a public dataset called
YouTube-8M with millions of video features and more than 3700 labels. All these efforts
being made demonstrate the need for a powerful video classification model.

An artificial neural network (ANN) is an algorithm based on interconnected nodes to
recognize the relationships in a set of data. Algorithms based on ANNs have shown a great
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success in modeling both the lineßar and the non-linear relationships in the underlying
data. Due to the huge success rate of these algorithms, they are extensively being used for
different real-time applications [1–4]. Moreover, with an increase in the availability of huge
datasets, the deep learning models have specifically shown a significant improvement in
the classification of videos. This paper reviews studies based on deep learning approaches
for video classification.

Contribution

There are several existing reviews and survey papers related to video classification
in the scientific literature. Some of the recent works are summarized here in Table 1.
However, these review papers do not include the recent state-of-art works, and they have
some limitations. In the following text, the limitations and highlights of these works
are discussed.

Table 1. Summary of recent related works.

Reference Year Coverage Highlights Drawbacks

A. Anusya [5] 2020 2014–2019 Video classification, tagging, and clustering. Not comprehensive and
lacks concise information.

Rani et al. [6] 2020 2001–2016 Text, audio, and visual modalities for video
classification.

Missing analysis of recent
state-of-art approaches.

Y. Li et al. [7] 2020 2012–2019 Live sport video classification. More specific to live sport
video classification.

Md Islam et al. [8] 2021 2004–2020 Machine learning approaches for video classification. Focus of review is not on
deep learning approaches.

Ullah. H. et al. [9] 2021 2015–2020 Human activity recognition using deep learning. Focus only on the human
activity recognition.

This study 2022 2000–2022 Comprehensive deep learning review for
video classification. -

1. A more recent review was done by A. Anusya [5]; this review covers very few methods
for video classification, clustering, and tagging. However, the review provided is not
comprehensive and lacks concise information, coverage of topic, datasets, analysis of
state-of-art approaches, and research limitations;

2. Rani et al. [6] also conducted a recent review on video classification methods, and
their review covered some recent video classification approaches and summary-based
description of some recent works. This review also had some limitations including
the missing analysis of recent state-of-art approaches and a very limited description
of topics covered;

3. Y. Li et al. [7] recently conducted a systematic and good review on live sport video
classification. This review covers most of the recent works in live sport video classifi-
cation, including the tools, video interaction features, and feature extraction methods.
This is a comprehensive review, but the findings are not summarized in tables for
research gaps and advantages and disadvantages of existing methods for a quick
review. Moreover, this review is more specific to live sport video classification;

4. A recent review was also done by Md Islam et al. [8]; in this review, they included
all the methods for video classification, including deep learning. However, as the
focus of review is not on deep learning approaches, these methods are therefore not
completely covered in this review;

5. Ullah. H. et al. [9] also conducted a recent systematic review; however, the focus of
their review remained on human activity recognition;

6. Z. Wu. [10] presented a concise review on video classification specific to deep learning
methods. This review provides a good description on deep learning models, feature
extraction tools, benchmark dataset, and comparison of existing methods for video
classification. However, this review was conducted in the year 2016, and it does not
cover the recent state-of-art deep learning methods;
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7. Q. Ren [11] conducted a simple review on video classification methods; however, the
techniques covered in this review are not well described, and the review also lacks in
the description of research gaps, benchmark datasets, limitations of existing methods,
and performance metrics.

In contrast to the existing reviews on classification of videos, this paper provides a
more comprehensive, concise, and up-to-date review of deep learning approaches for video
classification. In this current review, most of the recent state-of-art contributions related to
the topic are analyzed and critically summarized. Deep learning is an emerging and vibrant
field for the analysis of videos; therefore, we hope this review will help in stimulating
future research along the line. The following are the key contributions to this review paper:

1. A summary of state-of-art, CNN-based deep learning models for image analysis;
2. An in-depth review of deep learning approaches for video classification highlighting

the notable findings;
3. A summary of breakthroughs in the automatic video classification task;
4. Analysis of research trends from past towards future;
5. Description of benchmark datasets, evaluations metrics, and comparison of recent

state-of-art deep learning approaches in terms of performance.

The rest of the paper is organized as follows: Section 2 reviews some existing CNNs
for images; Section 3 provides an in-depth review on deep learning models for video
classification; Section 4 provides a summary for benchmark datasets, evaluation metrics,
and comparison of existing state-of-art methods for the video classification task; and
Section 5 provides conclusion and future research directions.

2. Convolutional Neural Networks (CNN) for Image Analysis

Deep learning models, specifically convolutional neural networks (CNNs), are well
known for understanding images. A number of CNN architectures are proposed and
developed in the scientific literature for image analysis. Among these, the most popular
architectures are LeNet-5 [12], AlexNet [13], VGGNet [14], GoogleNet [15], ResNet [16], and
DenseNet [17]. The trend that follows from the formerly proposed architectures towards
the recently proposed architectures is to deepen the network. A summary of these popular
CNN architectures along with trend of deepening the network is shown in Figure 1, where
the depth of network increases from left-most (LeNet-5) to right-most (DenseNet). Deep
networks are believed to better approximate the target function and to generate better
feature representation with more powerful discriminatory powers [18]. Although deeper
networks are better in terms of having more discriminatory powers, the deeper networks
require more data for training and more parameters to tune [19]. Finding a professionally
labeled, huge dataset is still a big challenge faced by the research community, and therefore,
it limits the development of deeper neural networks.
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3. Video Classification

In this section, a very comprehensive and concise review for deep learning models
employed in the video classification task is provided. This section covers a description
on video data modalities, traditional handcrafted approaches, breakthroughs in video
classification, and recent state-of-art deep learning models for video classification.

3.1. Video Data Modalities

As compared to images, videos are more challenging to understand and classify due to
the complex nature of the temporal content. However, three different modalities, i.e., visual
information, audio information, and text information, might be available to classify videos
in contrast to image classification, where only a single visual modality can be utilized.
Based on the availability of different modalities in videos, the task of classification can be
categorized as a uni-modal video classification or a multi-modal video classification, as
summarized in Figure 2. The existing literature has utilized both of these models for the
video classification task, and it is generally believed that models utilizing multi-modal
data perform better than the models based on uni-modal data [20,21]. Moreover, the visual
description [22] of a video works better than the text [23] and the audio [24,25] description
for the classification purpose of a video.
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3.2. Traditional Handcrafted Features

During the earlier developments of the video classification task, the traditional hand-
crafted features were combined with state-of-art machine learning algorithms to classify
the videos. Some of the most popular handcrafted feature representation techniques
used in the literature are spatiotemporal interest points (STIPs) [26], improved dense
trajectories (iDT) [27], SIFT-3D [28], HOG3D [29], motion boundary histogram [30], action-
bank [31], cuboids [32], 3D SURF [33], and dynamic-poselets [34]. These hand-designed
representations use different feature encoding schemes such as the ones based on pyramids
and histograms. iDT is one of these handcrafted representations that is widely consid-
ered the state-of-the-art. Many recent competitive studies demonstrated that handcrafted
features [35–38] and high-level [39,40] and mid-level [41,42] video representations have
contributed towards the task of video classification with deep neural networks.

3.3. Deep Learning Frameworks

Along with the development of more powerful deep learning architectures in the
recent years, the trend for the video classification task has followed a shift from traditional
handcrafted approaches to the fully automated deep learning approaches. Among the
very common deep learning architectures used for video classification is a 3D-CNN model.
An example of 3D-CNN architecture used for video classification is given in Figure 3 [43].
In this architecture, 3D blocks are utilized to capture the video information necessary
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to classify the video content. One more very common architecture is a multi-stream
architecture, where the spatial and temporal information is separately processed, and the
features extracted from different streams are then fused to make a decision. To process the
temporal information, different methods are used, and the two most common methods
are based on (i) RNN (mainly LSTM) and (ii) optical flow. An example of a multi-stream
network model [44], where the temporal stream is processed using optical flow, is shown
in Figure 4. A high-level overview of the video classification process is shown in Figure 5,
where the stages of feature extraction and prediction are shown with the most common
type of strategies used in the literature. In the upcoming sections, the breakthroughs in
video classification and studies related to classification of videos, specifically using deep
learning frameworks, are summarized, describing the success rate of utilizing deep learning
architectures and the associated limitations.
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3.4. Breakthroughs

The breakthroughs in recognition of still-images originated with the introduction of a
deep learning model called AlexNet [13]. The same concept of still-image recognition using
deep learning is also extended for videos, where individual video frames are collectively
processed as images by a deep learning model to predict the contents of a video. The
features from individual video frames are extracted, and then, temporal integration of such
features into a fixed-size descriptor using pooling is performed. The task is either done
using high-dimensional feature encoding [45,46] or through the RNN architectures [47–50].
For un-supervised spatiotemporal feature learning in 3D convolutions, restricted Boltz-
mann machines [51] and stacked ISA [52] are also studied in parallel. The 3D-CNNs using
temporal convolutions to extract temporal features automatically were first proposed by
Baccouche et al. [53] and by Ji et al. [54].

3.5. Basic Deep Learning Architectures for Video Classification

The two most widely used deep learning architectures for video classification are con-
volutional neural network (CNN) and recurrent neural network (RNN). CNNs are mostly
used to learn the spatial information from videos, whereas RNNs are used to learn the
temporal information from videos, as the main difference between these two architectures
is the ability to process temporal information or data that come in sequences. Therefore,
both these network architectures are used for completely different purposes in general.
However, the nature of video data with the presence of both the spatial and the temporal
information demands the use of both these network architectures to accurately process
the two-stream information. The architecture of a CNN applies different filters in the
convolutional layers to transform the data. RNNs, on the other hand, reuse the activation
functions to generate the next output in a series from the other data points in the sequence.
However, the use of only 2D-CNNs alone limits the understanding of video to only spatial
domain. RNNs, on the other hand, can understand the temporal content of a sequence.
Both these basic architectures and their enhanced versions are applied in several studies
for the task of video classification.

3.6. Developments in Video Classification over Time

The existing approaches for video classification are categorized based on their working
principle in Table 2. The trend observed for the classification of videos from the existing
literature is that the recently developed state-of-art deep learning models are outperforming
the earlier handcrafted classical approaches. This is mainly due to the availability of
large-scale video data for learning deep architectures of neural networks. Besides an
improvement in classification performance the recently developed models are mostly self-
learned and does not require any manual feature engineering. This added advantage makes
them more feasible for use in real applications. However, the better performing recently
developed architectures are deeper as compared to the previously developed architectures
which brings a compromise on the computational complexity of the deep architectures.

Table 2. Different categories of approaches of video classification.

Categories Working Principle References

Hand-crafted approaches

These representations are handcrafted
and employ various feature encoding

techniques, such as histograms
and pyramids.

Spatiotemporal Interest Points (STIPs)
[26], iDT [27], SIFT-3D [28], HOG3D [29],

Motion Boundary Histogram [30],
Cuboids [32], Action-Bank [31], 3D SURF

[33], Dynamic-Poselets [34].
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Table 2. Cont.

Categories Working Principle References

2D- CNNs

These are image based models where
frame level feature extraction is

performed using CNN architecture and
classification is performed using

state-of-art classification models, for
example SVM.

[55]

3D-CNNs
2D image classification extension to 3D
for video (For example the Inception 3D

(I3D) architecture).
[56]

Spatiotemporal Convolutional Networks
To aggregate the temporal and the spatial

information, these methods primarily
depend on convolution and pooling.

[54,57,58]

Recurrent Spatial Networks
To represent temporal information in

videos, recurrent neural networks such as
LSTM or GRU are used.

[47,53,59,60]

Two/multi Stream Networks
In addition to the context frame visuals,

these methods use layered optical flow to
identify movements.

[50,61–63]

Mixed convolutional models

Models built with the ResNet architecture
in mind. They are particularly interested
in models that utilize 3D convolution in
the bottom or top layers but 2D in the

remainder; these are referred to as
“mixed convolutional” models. Or the

methods based on mixed temporal
convolution with different kernel sizes.

[64,65]

Hybrid Approaches These are models based on integration of
CNN and RNN architectures. [66–68]

Among the initially developed hand-crafted representations, improved Dense Tra-
jectories (iDT) [27] is widely considered the state-of-the-art. Whereas, many recent com-
petitive studies demonstrated that hand-crafted features [35–38], high-level [39,40], and
mid-level [41,42] video representations have contributed towards the task of video classifi-
cation with deep neural networks. The hand-crafted models were among the very early
developments of video classification problem. Later, 2D-CNNs were proposed for video
classification, where image-based CNN models are used to extract frame level features and
based on the frame level CNN features, some state-of-art classification models (for example
SVM) are learned to classify videos. These 2D-CNN models do not require any manual
feature extraction and these models performed better than the competing hand-crafted
approaches. After successful development of 2D-CNN models where features are extracted
from frame level, the same concept was extended to propose 3D-CNNs to extract features
from videos. The proposed 3D-CNNs are computationally more expensive as compared
to the 2D-CNN models. However, these models consider the time variations in feature
extraction therefore these 3D-CNN models are believed to perform better as compared to
2D-CNN models for video classification [54,58,69].

The development of 3D-CNN models paved the way for fully automatic video classifi-
cation models using different deep learning architectures. Among the developments using
deep learning architectures, spatiotemporal convolutional networks are approaches based
on integration of temporal and spatial information using convolutional networks to perform
video classification. To collect temporal and spatial information, these methods primarily
rely on convolution and pooling layers. Stack optical flow is used in two/multi-stream
networks methods to identify movements in addition to context frame visuals. Recurrent
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spatial networks use recurrent neural networks (RNN) to model temporal information in
videos, such as LSTM or GRU. The ResNet architecture is used to build mixed convolu-
tional models. They are particularly interested in models that utilize 3D convolution in the
bottom or top layers but 2D in the remainder; these are referred to as “mixed convolutional”
models. These also include methods based on mixed temporal convolution with different
kernel sizes. Advanced architectures based on DenseNet have also shown promising results
for the video classification task. Some of these notable architectures based on DenseNet
include region-based CNN (R-CNN) [70,71], faster R-CNN [72,73], and YOLO [74]. Besides
these architectures, there are also hybrid approaches based on the integration of CNN and
RNN architectures. A summary of these architectures is provided in Figure 6.
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Figure 6. Summary of video classification approaches.

The different deep learning architectures described above employ different fusion
strategies. These fusion strategies are either for the fusion of different features extracted
from the video or for the fusion of different models used in the architecture. The fu-
sion strategies mainly used for the extracted features are (i) concatenation, (ii) product,
(iii) summation, (iv) maximum, and (v) weighted, where the concatenation approach sim-
ply combines all the features together, and all the features are used for classification. The
product/summation approach performs the product/summation between the features
extracted using different strategies and uses the result of product/summation to perform
classification. The maximum approach takes the maximum value of the features extracted
using different strategies and uses that for classification. The weighted approach gives
different weights to different features and performs the classification using the weighted
features. Different fusion methods are summarized in Figure 7.
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3.7. Summary of Some Notable Deep Learning Frameworks Developments

A summary of some deep learnings architectures for video classification is provided
in Table 3. These studies are summarized based on the architecture, the datasets, the evalu-
ation metrics, the fusion strategy, and the notable findings. The most common architectures
for video classification are fundamentally based on the RNN and CNN architectures; classi-
fication accuracy is one of the most common evaluation metrics; UCF-101 and Sports-1M
datasets are the choice for validation in most cases, multi-class classification problem is
considered in almost all cases, SMART blocks outperform 3D convolutions in terms of spa-
tiotemporal feature learning, and average fusion, kernel average fusion, weighted fusion,
logistic regression fusion, and MKL fusion are all proven to be inferior compared to the
multi-stream multi-class fusion technique. Moreover, a more applied form of classification
in videos is to identify/recommend tags or thumbnails in videos, and this specific task is
successfully caried out in [75–79].

3.8. Few-Shot Video Classification

FEW-SHOT learning (FSL) has received a great deal of interest in recent years. FSL
tries to identify new classes with one or a few labeled samples [80–83]. However, due to
most recent work in few-shot learning being centered on image classification, FSL in the
video domain is still hardly being explored [84,85]. Some of the notable works done in this
domain are discussed below.

A multi-saliency embedding technique was developed by Zhu et al. [85] to encode
a variable-length video stream into a fixed-size matrix. Graph neural networks (GNN)
were developed by Hu et al. [86] to enhance the video classification model’s capacity for
discrimination. The local–global link in a distributed representation space was still disre-
garded nevertheless. To categorize a previously unseen video, Cao et al. [87] introduced a
temporal alignment module (TAM) that explicitly took advantage of the temporal ordering
information in video data through temporal alignment. To combine the two-stream aspects
of videos more effectively, Fu et al. [88] developed a depth-guided adaptive instance-
normalization module (DGAdaIN). A C3D encoder was created by Zhang et al. [89] to
record close-range action patterns for spatiotemporal video blocks. Few-shot video cate-
gorization was addressed by Qi et al. [90] by learning a collection of SlowFast networks
enhanced with memory units. To comprehend realistic films of the target classes, Fu
et al. [91] presented embodied agent-based one-shot learning, which made use of synthetic
videos created in a virtual environment. For the issues of few-shot and zeroshot action
recognition, Bishay et al. [92] presented the temporal attentive relation network (TARN),
which was trained to compare representations of varying temporal length. By examining
local–global linkages and preserving the specifics of properties, Y. Feng et al. [93] recently
presented a dual-routing capsule graph neural network (DR-CapsGNN) to address the
issue of severely constrained samples in few-shot learning.

Apart from this, contrastive learning has also proved successful in recognizing human
actions. Some of the interesting works done in this regard are multi-granularity anchor-
contrastive representation learning [94] and X-invariant contrastive augmentation and
representation learning [95].

3.9. Geometric Deep Learning

Shape descriptors play a significant role in the description of manifolds for 3D shapes.
In general, a global feature descriptor is created by aggregating local descriptors to de-
scribe the geometric properties of the entire shape, for example, using the bag-of-features
paradigm. A local feature descriptor assigns a vector to each point on the shape in a
multi-dimensional descriptor space, representing the local structure of the shape around
that point. Most deep learning techniques that deal with 3D shapes essentially use the CNN
paradigm. Volumetric 2D multi-view shape representations are applied directly using stan-
dard (Euclidean) CNN architectures in neural networks via methods such as [96,97]. These
techniques are unsuited for dealing with deformable shapes because the shape descriptors
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they use are dependent on extrinsic structures that are invariant under Euclidean transfor-
mations, as demonstrated in Figure 8a [98], while some other approaches [99–103] create a
new framework by adopting the CNN feature extraction pattern to investigate the inherent
CNN versions that would enable handling shape deformations by using intrinsic filter
structure, as shown in Figure 8b [98]. Geometric deep learning deals with non-Euclidean
graph and manifold data. This type of data (irregularly arranged/distributed randomly) is
usually used to describe geometric shapes. The purpose of geometric deep learning is to
find the underlying patterns in geometric data where the traditional Euclidean distance-
based deep learning approaches are not suitable. There are basically two methods available
in the literature to apply deep learning on geometric data: (i) extrinsic methods and
(ii) intrinsic methods. The filters in extrinsic methods are applied on the 3D surfaces such
that it effects the structural deformity due to the extrinsic filter structure. The key weakness
of extrinsic approaches [96,97] is that they continue to consider geometric data as Euclidean
information. When an object’s position or shape changes, the extrinsic data representation
fails. Additionally, for these methods to support the challenging-in-practice task of attain-
ing the invariance of shape deformation, complicated models and extensive training are
required. The filters in intrinsic approaches are applied on the 3D surfaces without being
affected by the structural deformity. Rather than Euclidean realization, intrinsic methods
work on the manifold and are isometry-invariant by construction. Some of the works
based on intrinsic deep learning include (i) geodesic CNN [99], (ii) anisotropic CNN [100],
(iii) mixture model network [101], (iv) structured prediction model [102], (v) localized spec-
tral CNN [103], (vi) PointNet [104], (vii) PointNet++ [105], and (viii) RGA-MLP [106]. The
application of geometric deep learning (mostly intrinsic methods) in analyzing videos can
help in better understanding from the machine perspective, but it is still an open research
problem and needs further investigation. For further details on geometric deep learning,
readers are referred to [98,107].
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4. Benchmark Datasets, Evaluation Metrics, and Comparison of Existing
State-of-the-Art for Video Classification
4.1. Benchmark Datasets for Video Classification

There are several benchmark datasets being utilized for classification of videos, AND
some of these notable datasets are summarized in Table 4. The details related to these
datasets, such as total number of videos contained in the dataset, number of classes present
in the dataset, the year of publication of dataset, and the background of videos in the
dataset, are included in the summary.

Table 4. Benchmark datasets.

Dataset # of Videos # of Classes Year Background

KTH 600 6 2004 Static
Weizmann 81 9 2005 Static

Kodak 1358 25 2007 Dynamic
Hollywood 430 8 2008 Dynamic

Hollywood2 1787 12 2009 Dynamic
MCG-WEBV 234,414 15 2009 Dynamic

Olympic Sports 800 16 2010 Dynamic
HMDB51 6766 51 2011 Dynamic

CCV 9317 20 2011 Dynamic
UCF-101 13,320 101 2012 Dynamic

THUMOS-2014 18,394 101 2014 Dynamic
MED-2014 (Dev. set) 31,000 20 2014 Dynamic

Sports-1M 1,133,158 487 2014 Dynamic
ActivityNet 27,901 203 2015 Dynamic

EventNet 95,321 500 2015 Dynamic
MPII Human Pose 20,943 410 2014 Dynamic

FCVID 91,223 239 2015 Dynamic
UCF11 1600 11 2009 Dynamic

YouTube Celebrities Face 1910 47 2008 Dynamic
Kinetics 300,000 400 2017 Dynamic

YouTube-8M 6.1 M 3862 2018 Dynamic
JHMDB 928 21 2011 Dynamic

Something-something 110,000 174 2017 Dynamic

4.2. Performance Evaluation Metrics for Video Classification

The evaluation of video classification models is performed using different performance
measures. The most common measures utilized to evaluate the models are accuracy,
precision, recall, F1 score, micro F1, and K-fold [8]. Some of the recent studies using these
measures are listed in Table 5.

Table 5. Commonly used evaluation metrics for video classification.

Evaluation Metric Year of Publication Reference

Accuracy 2020–2021 [116–120]
Precision 2020–2021 [116,118,119]

Recall 2020–2021 [116,118,119]
F1 Score 2020–2021 [116,118,119]
Micro F1 2020 [121,122]
K-Fold 2019 [123]
Top-k 2018,2021 [111,114]

4.3. Comparison of Some Existing Approaches on UCF-101 Dataset

UCF-101 is a benchmark action recognition dataset published by the researchers of
University of Central Florida in the year 2012 [124], and the videos in the dataset were
collected from YouTube. The total videos in the dataset are 13,320, with 101 action categories.
The dataset is challenging because of the uncontrolled environment in the captured videos,
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and it is widely being used by researchers working on the video classification problem.
Therefore, it is easy to compare most of the existing literature based on this dataset. The
existing works employing UCF-101 are compared in Table 6, where the methods are
arranged in ascending order based on the performance. The results reported in Table 6 are
taken from the existing studies in the literature.

Table 6. Comparison of video classification method on UCF-101.

Method Accuracy

LRCN [48] 82.9
DT + MVSV [125] 83.5

LSTM–Composite [49] 84.3
FSTCN [126] 88.1

C3D [127] 85.2
iDT + HSV [128] 87.9
Two-Stream [61] 88.0
RNN-FV [129] 88.0

LSTM [50] 88.6
MultiSource CNN [130] 89.1

Image-Based [55] 89.6
TDD [35] 90.3

Multilayer and Multimodal Fusion [110] 91.6
Transformation CNN [131] 92.4

Multi-Stream [112] 92.6
Key Volume Mining [132] 92.7

Convolutional Two-Stream [62] 93.5
Temporal Segment Networks [39] 94.2

4.4. Comparison of Different Deep Learning Architectures

In Table 7, some important deep learning architectures are compared in terms of per-
formance and computational requirement. These architectures are the basis of development
of different deep learning models for video classification, and from this comparison, an
estimation of the requirement of computational cost for each of these architectures can
be drawn.

Table 7. Performance comparison of different deep architectures [127].

Architecture Name Parameters Error Rate Depth Category Year

LeNet 0.060 M [dist]MNIST: 0.8
MNIST: 0.95 5 Spatial exploitation 1998

AlexNet 60 M ImageNet: 16.4 8 Spatial exploitation 2012

ZfNet 60 M ImageNet: 11.7 8 Spatial exploitation 2014

VGG 138 M ImageNet: 7.3 19 Spatial exploitation 2014

GoogLeNet 4 M ImageNet: 6.7 22 Spatial exploitation 2015

Inception-V3 23.6 M
ImageNet: 3.5

multi-crop: 3.58
Single-Crop: 5.6

159 Depth + width 2015

Highway networks 2.3 M CIFAR-10: 7.76 19 Depth + multi-path 2015

Inception-V4 35 M ImageNet: 4.01 70 Depth + width 2016

Inception-ResNet 55.8 M ImageNet: 3.52 572 Depth + width +
multi-path 2016
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Table 7. Cont.

Architecture Name Parameters Error Rate Depth Category Year

ResNet 25.6 M
1.7 M

ImageNet: 3.6
CIFAR-10: 6.43

152
110 Depth + multi-path 2016

DelugeNet 20.2 M CIFAR-10: 3.76
CIFAR-100: 19.02 146 Multi-path 2016

FractalNet 38.6 M

CIFAR-10: 7.27
CIFAR-10 +: 4.60

CIFAR-10 ++: 4.59
CIFAR-100: 28.20

CIFAR-100 +: 22.49
CIFAR100 ++: 21.49

20
40 Multi-path 2016

WideResNet 36.5 M CIFAR-10: 3.89
CIFAR-100: 18.85

28
– Width 2016

Xception 22.8 M ImageNet: 0.055 126 Width 2017

Residual attention
neural network 8.6 M

CIFAR-10: 3.90
CIFAR-100: 20.4
ImageNet: 4.8

452 Attention 2017

ResNeXt 68.1 M
CIFAR-10: 3.58

CIFAR-100: 17.31
ImageNet: 4.4

29
-

101
Width 2017

Squeeze and
excitation networks 27.5 M ImageNet: 2.3 152 Feature-map

exploitation 2017

DenseNet

25.6 M
25.6 M
15.3 M
15.3 M

CIFAR-10 +: 3.46
CIFAR100 +: 17.18

CIFAR-10: 5.19
CIFAR-100: 19.64

190
190
250
250

Multi-path 2017

PolyNet 92 M ImageNet: Single: 4.25
Multi: 3.45

–
– Width 2017

PyramidalNet
116.4 M
27.0 M
27.0 M

ImageNet: 4.7
CIFAR-10: 3.48

CIFAR-100: 17.01

200
164
164

Width 2017

Convolutional block
attention Module

(ResNeXt101
(32 × 4d) + CBAM)

48.96 M ImageNet: 5.59 101 Attention 2018

Concurrent spatial and
channel excitation mechanism – MALC: 0.12

Visceral: 0.09 – Attention 2018

Channel boosted CNN – – – Channel boosting 2018

Competitive squeeze and
excitation network
CMPE-SE-WRN-28

36.92 M
36.90 M

CIFAR-10: 3.58
CIFAR-100: 18.47

152
152

Feature-map
exploitation 2018

5. Key Findings

From the analysis of the existing literature, the following key findings are drawn for
video classification task: (i) The visual description works better than the text and the audio
description, and the combination of all modalities can contribute to better performance
with an increase in computational cost. (ii) The architectures employing CNN/RNN for
feature extraction have the ability to perform better than handcrafted features provided
that enough data are available for training. (iii) Tensor-Train layer-based RNN such as
LSTM and GRU perform better than the plain RNN architectures for video classification.
(iv) It is sometimes necessary to use optical flow for datasets such as UCF-101. (v) It is
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not always helpful to use optical flow, especially for the case of videos taken from the
wild, e.g., Sports-1 M. (vi) It is important to use a sophisticated sequence processing ar-
chitecture such as LSTM to take advantage of optical flow. (vii) LSTMs, when applied
on both the optical flow and the image frames, yield the highest performance measure
for the Sports-1M benchmark dataset. (viii) Augmenting optical flow and RGB input
helps in improving the performance. (ix) Optical flow modality provides complemen-
tary information. (x) The high computational requirement of optical flow limits its use in
real-time systems. (xi) Multi-stream multi-class fusion can perform better than average
fusion, weighted fusion, kernel average fusion, MKL fusion, and logistic regression fusion
on datasets such as UCF-101 and CCV. (xii) In 3D group convolutional networks, the
volume of channel interactions plays a vital role in achieving a high accuracy. (xiii) The
factorization of 3D convolutions by separating spatiotemporal interactions and channel in-
teractions can lead to an improvement in accuracy and a decrease in the computational cost.
(xiv) Further, 3D channel-separated convolutions results in a kind of regularization and
prevents overfitting. (xv) Popular frameworks of conventional semi-supervised algorithms
(which were originally developed for 2D images) are unable to obtain good results for 3D
video categorization. (xvi) For semi-supervised learning, a calibrated employment of the
object appearance cues keenly improves the accuracy of the 3D-CNN models.

6. Conclusions

This article reviews deep learning approaches for the task of video classification. Some
of the notable studies are summarized in detail, and the key findings in these studies are
highlighted. The key findings are reported as an effort to help the research community in
developing new deep learning models for video classification.

The latest developments in deep learning models have demonstrated the potential
of these approaches for the video classification task. However, most of the existing deep
learning architectures for video classification are basically adopted from the favored deep
learning architectures in image/speech domain. Therefore, most of the existing archi-
tectures remain insufficient to deal with the more complicated nature of video data that
contain rich information in the form of spatial, temporal, and acoustic clues. This calls for
attention towards the need for a tailored network capable of effectively modeling the spa-
tial, temporal, and acoustic information. Moreover, training CNN/RNN models requires
labeled datasets, and acquiring those datasets is usually time-consuming and expensive,
and hence, a promising research direction is to utilize the considerable amount of unlabeled
video data to derive better video representations.

Furthermore, the deep learning approaches are outperforming other state-of-the-art
approaches for video classification. The deep learning Google trend is still growing, and it
is still above the trend for some other very well-known machine learning algorithms, as
shown in Figure 9a. However, the recent developments in deep learning approaches are
still under-evaluated and require further investigations for the video classification task.
One such example is geometric deep learning approaches, and the worldwide research
interest in this specific topic is shown in Figure 9b, which describes that this topic is still
confined to some states of U.S., Europe, and India. Therefore, it has yet to be developed
and investigated further. The use of geometric deep learning in extracting rich spatial
information from videos can also be a new research direction as a future work for better
accuracy in the video classification task.
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Abstract: Unmanned aerial vehicle (UAV) photogrammetry is an emerging means of acquiring
high-precision rapid spatial information and data because it is cost-effective and highly efficient.
However, securing uniform quality in the results of UAV photogrammetry is difficult due to the
use of low-cost navigation devices, non-surveying cameras, and rapid changes in shooting locations
depending on the aircraft’s behavior. In addition, no specific procedures or guidelines exist for
performing quantitative quality tests or certification methods on UAV images. Additionally, test tools
for UAV image quality assessment only use the ground sample distance (GSD), often resulting in a
reduced image quality compared with that of manned aircraft images. In this study, we performed
a modulation transfer function (MTF) analysis using a slanted edge target and a GSD analysis to
confirm the necessity of MTF analysis in UAV image quality assessments. In this study, we aimed to
address this issue by conducting a modulation transfer function (MTF) analysis using a slanted edge
target and a ground sample distance (GSD) analysis. This was carried out to confirm the necessity of
MTF analysis in evaluating UAV image quality. Furthermore, we analyzed the impact of flight height
and mounted sensors on image quality at different study sites.

Keywords: unmanned aerial vehicle (UAV) photogrammetry; ground sample distance (GSD);
modulation transfer function (MTF); image quality

1. Introduction

Images obtained using unmanned aerial vehicles (UAVs) are captured at low heights,
and thus, have higher resolutions than those captured by manned aircraft and can be
acquired anytime and anywhere. Additionally, UAVs are emerging as a means of acquiring
high-precision rapid spatial information and data because of their low cost and high
efficiency. Images obtained from UAVs are widely used in public and private institutions
for surveying civil engineering and construction sites [1,2], estimating the quantity of
civil works, analyzing terrain slope, in traffic applications for traffic data collection [3–5],
are utilized in agriculture and for the environment [6–8] and coastline detection, and
find application in the marine field [9,10] and in studying forest diseases and pests [11].
Therefore, practical applicable operational procedures such as public surveying have been
established. However, it is difficult to obtain data with consistent quality and to use
UAV images in practical applications because no specific procedures or methods exist for
quantitatively testing or certifying the data’s quality. This difficulty has been attributed
to the use of cheap navigation systems, the unsteadiness of the UAV at the time of image
capture, and unfavorable weather conditions. In addition, ground sample distance (GSD)
analysis is currently used for assessing the image quality [12].

Several methods are used for testing UAV image quality, including the MTF, edge response,
and GSD analyses. Among previous studies on aerial image quality testing, Baer [13] proposed
the spatial resolution analysis method using a circular target. The method overcomes the

Appl. Sci. 2024, 14, 2154. https://doi.org/10.3390/app14052154 https://www.mdpi.com/journal/applsci323



Appl. Sci. 2024, 14, 2154

shortcomings of the traditional method that uses edge and slanted edge targets. Wang et al. [14]
proposed a method that automatically measures the modulation transfer function (MTF) with
a high success rate and acceptable accuracy using the Hough transform for detecting straight
lines from manned aircraft or satellite images. Sieberth et al. [15] developed a technique that
automatically filters UAV image blurring caused by camera movements induced by strong
wind, turbulence, or the operator’s sudden movement. The technique enables objective analysis
as it automatically detects and removes blurring from UAV images, improves image quality,
and reduces time and cost compared to the traditional method based on manual detection by
the operator. Orych [16] used the Siemens star to measure spatial resolution in UAV images.
The Siemens star facilitates analysis and ensures objectivity in all directions as it is unaffected
by flight direction. Additionally, as the Siemens star has a smaller size and smaller dimensions
than those of the bar target, which is widely used for manned aircraft images, the Siemens star
is an ideal resolution target for the UAV photogrammetry system, which flies at low heights.
Likewise, many methods are used for testing UAV image quality, including the MTF, edge
response, and GSD analyses.

However, the quality of UAV images is lower than that of manned aircraft images, in some
cases because the UAV image quality test tool assesses quality using only the GSD analysis,
which, unlike the MTF or edge response analyses, does not consider the contrast levels alongside
image resolution. In addition, securing uniform quality in the results of UAV photogrammetry
is difficult due to the use of low-cost navigation devices, non-surveying cameras, and rapid
changes in shooting locations depending on the aircraft’s behavior.

To address this issue, we aimed to investigate the effect of UAV imaging altitude and the
performance of mounting sensors on UAV imaging quality. We also aimed to evaluate the
necessity of MTF analysis in evaluating UAV imaging quality. To achieve this, we set up inclined
corners and bar targets at the shooting site, as shown in Figure 1, and captured images using
four types of UAVs and one type of manned aircraft. We conducted shooting using different
mounting sensors at the same shooting altitude, and the same mounting sensors were also
used at different shooting heights. Subsequently, we generated the final UAV orthoimages and
performed both GSD and MTF analyses on the corresponding orthoimages to draw conclusions.

Figure 1. Research flow chart illustrating the experimental setup and methodology.

324



Appl. Sci. 2024, 14, 2154

2. Theoretical Background
2.1. GSD Analysis Using the Bar Target

We analyzed the GSD using a bar target in addition to the MTF to determine the
image resolution and contrast. We compared the results to determine the necessity of
MTF analysis. The spatial resolution analysis using the bar target is described below. As
illustrated in Figure 2, the modulation function in an image can be represented by digital
numbers (DNs), which are not continuous for each pixel in the original image [17].

Figure 2. Concept of modulation value analysis.

When a graph of numbers in non-continuous points is fitted by the method of least
squares, the curve is expressed as a sine function in periodic form, such as Equation (1):

Y = a + bsin ω(x− x0), (1)

where a is a coefficient for the digital numbers (DNs) in a pixel from which a curve begins
before it moves toward the y-intercept; b represents the amplitude of the sine curve, i.e., the
difference between the maximum and minimum values; ω represents the period of the sine
function and is related to the image GSD measurement; x represents the pixel sequence; and x0
is the distance moved in parallel toward the x-axis, causing a phase change that determines the
form of the sine function. Hence, an accurate image GSD can be obtained by measuring the size
of the black and white lines in the imaged target and dividing the size by the spatial frequency
represented in the sine function with the coefficients calculated from Equation (1).

2.2. MTF Analysis

Cameras do not provide images that perfectly represent real objects. object’s level of
representation is related to the camera’s performance; the MTF value, which indicates the
object’s level of representation, is used for analyzing UAV images. The MTF analysis is
based on the camera’s lens and performance. The MTF value is expressed as the relative
ratio of the actual modulation value of the resolution target to the modulation value of the
target in an image. The MTF can be analyzed using a graph based on spatial frequency,
which shows how many line pairs (lps) can be included in one pixel when black and white
lines form each lp. In the MTF graph, the horizontal axis expresses spatial frequency, and
the vertical axis expresses the MTF value [18].

Figure 3 illustrates the DNs extracted from an image with black and white line pairs.
In this graph, the modulation value is expressed by Equation (2):

Modulation =
lmax − lmin
lmax + lmin

=
a + b− (a− b)
a + b + (a− b)

=
2b
2a

=
a
b

(2)
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Figure 3. DNs extracted from an image of a pair of black and white lines.

The MTF value is expressed by Equation (3):

MTF =
ModulationImage

ModulationObject
, (3)

where ModulationImage is the modulation value of the image, and ModulationObject is the
modulation value extracted from the actual object.

MTF = e−2π2σ2
MTFK2

, (4)

The DNs extracted from UAV images taken by the iXM-100 sensor, as illustrated in
Figure 4, were linearized, and an MTF graph was generated using Equation (4), where
K represents the spatial frequency equivalent to the vertical axis of the MTF, and σ2

MTF is
the variance of the MTF [19].

Figure 4. MTF graph for explaining MTF20 and MTF50 (iXM-100 400 m).

We calculated σMTF, the standard deviation of the MTF, and performed comparisons.
We also calculated and compared MTF50, a spatial frequency equivalent to 50% of the MTF
graph, and MTF20, a spatial frequency equivalent to 20% of the MTF graph, as illustrated
in Figure 4. MTF50 is an empirical criterion used in many studies, and it refers to a spatial
frequency from which the boundary begins to blur in the operator’s eyes. MTF20 refers to
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the minimum spatial frequency at which the boundary is distinguishable by the operator’s
eyes. It is also an empirical criterion used in many studies.

2.3. MTF Analysis Using the Slanted Edge Target

Figure 5a represents the slanted edge target and the boundary of the target is empha-
sized with a red dotted line. Figure 5b is the content of extracting DN from the target,
and the black dotted line means extracting the DN value at the corresponding location.
Figure 5c is the ESF graph generated from the extracted DN, Figure 5d is the PSF graph,
and Figure 5e is the finally generated MTF graph.

Figure 5. MTF analysis step using slanted edge target. (a) represents the slanted edge target and the
boundary of the target is emphasized with a red dotted line. (b) is the content of extracting DN from
the target, and the black dotted line means extracting the DN value at the corresponding location.
(c) is the ESF graph generated from the extracted DN, (d) is the PSF graph, and (e) is the finally
generated MTF graph.

The first step of the MTF analysis involves using the slanted edge target to find the
boundary that is useful for analysis from the slanted edge target, as illustrated in Figure 5a.
To find the boundary, a sufficient number of DNs is determined to produce the edge-spread
function (ESF) and point-spread function (PSF) graphs stably. If too many DNs are extracted
and analyzed, the image noise affects the MTF analysis. Sixteen DNs are typically used,
but fifteen to sixteen DNs were used in this study.

In the second step, the mean of the DNs extracted from each line, as illustrated in
Figure 5b, is calculated to generate the ESF illustrated in Figure 5c. Unlike the edge target,
which is arrayed perpendicularly, the slanted edge target has slanted boundaries and
different pixel array angles; hence, the mean DNs calculated from each line obtains the ESF
without aliasing.

The most important step in an MTF analysis is detecting the boundary of the slanted
edge target and extracting the DNs. If the perpendicular edge target is used, a few DNs
are generated, as illustrated in Figure 6a. Figure 6b, however, shows that, if the slanted
edge target is used to extract the DNs, multiple scan lines can be used, which makes it
possible to extract and analyze an appropriate number of DNs across the boundary. In
the case of a vertical edge target, the same set of DN values is generated at any location.
However, in the case of a slanted edge target, a set of DN values is generated at different
locations; thus, performing the MTF analysis is possible by extracting appropriate DN
values across the entire boundary. The slanted edge target has an advantage as it obtains
the ESF without aliasing from UAV images using the non-metric digital camera, and it
enables a more accurate MTF analysis [20]. In the third step, the PSF graph is generated
after the ESF graph is generated and differentiated, as illustrated in Figure 5d. Fitting the
graph with the Gaussian function while producing the PSF graph reduces the effect of noise
on the MTF value. Finally, the Fourier transform is used to generate the MTF graph from
the PSF graph, as illustrated in Figure 5e.
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Figure 6. ESF graph of edge target (a) and slanted edge target (b).

3. Materials and Methods
3.1. Specifications of Resolution Targets
3.1.1. Bar Target

The bar target in this study was developed based on the USAF 1951 test pattern, which is a
resolution target used by the US Air Force to test the quality of sensors installed on UAVs, night
goggles, and other image devices [21]. The USAF 1951 test pattern consists of 3 bars, and the
distance between consecutive bars is fixed as a scale factor. Considering the characteristics of
the unmanned aerial image, which has a higher resolution than the manned aerial image, in this
study, the size of the bar pattern was successively reduced in 11 steps, as shown in Figure 7. The
size was reduced by 1/ 6

√
2 (approximately 12%) times in each step; thus, Bar 11 was 15.75 cm

wide and 3.15 cm long. Therefore, the shape of a small bar can be visually identified in the
image because a high-resolution sensor is mounted [21].

Figure 7. Specification of simple resolution bar target for UAV photogrammetry.

3.1.2. Slanted Edge Target

The image quality verification method using a slanted edge target has been widely used
over the past 10 years. It has been adopted by several international standards, including the
International Organization for Standardization (ISO). As shown in Figure 8, the angle of the
slanted edge of the target was designed to be inclined at 5◦, as stipulated in ISO 12233 [22]. In
addition, the contrast between the black and white parts of the slanted edge target must be at
least 40:1 in ISO 12233. However, the recently revised black and white contrast ratio is as 4:1 [22].

Figure 8. Specifications of the slanted edge target for UAV photogrammetry.
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3.2. Resolution Target Installation

A resolution target was used for the UAV photogrammetry to improve the porta-
bility, ease of conducting the spatial resolution analysis of UAV photos, and outcomes,
and work efficiency. The bar target was divided into 11 sizes; the largest bar was Size 1
(50 cm × 10 cm; width × height), and the size was reduced by 1 6

√
2 (about 12%) at every step

to the smallest bar of Size 11 (15.75 cm × 3.15 cm; width × height). The slanted edge target
was 60 cm × 130 cm (width × height), and the edge at the center was placed at 5◦.

Three locations were selected for the UAV imaging: Miryang, Gyeongsangnam-do;
Gimhae, Gyeongsangnam-do; and Beomil-dong, Busan. In Miryang, Gyeongsangnam-do,
the a6000 and iXM-100 sensors were used for imaging; in Gimhae, Gyeongsangnam-do,
the FC 6250 and FC 6310 sensors were used; and in Beomil-dong, Busan, the UltraCAM
Eagle M2 manned aircraft sensor was used. Figure 9 shows the longitude, altitude, and
coordinates of the three locations and the camera sensors used for imaging.

Figure 9. Map of the location of the study area.

3.3. Image Acquisition and Processing

Table 1 lists the UAVs used to acquire the study data; these were: FireFly 6 pro (fixed-
wing), Inspire 2, Phantom pro 4, and Matrice 600 (rotary-wing). The table also lists the
specifications of the UltraCAM Eagle M2 manned aircraft sensor. The resolution of the
camera in each UAV is also listed. In terms of the focal length, pixel size, and CCD sensor
size, the iXM-100 sensor included in Matrice 600 had the best performance, followed by
the a6000 sensor included in FireFLY 6 PRO, the FC 6520 sensor included in Inspire2,
and the FC 6310 sensor included in Phantom pro 4. All unmanned aerial cameras were
automatically set to capture the set shot-routed images.

Table 1. Specifications of the UAVs, their cameras, and the manned aircraft sensor [23–27].

UAV Model FireFLY 6 PRO Inspire 2 Phantom Pro 4 Matrice 600 Manned Aircraft

Appearance

Camera model a6000 FC 6520 FC 6310 iXM-100 UltraCAM Eagle M2

Focal length 20 mm 15 mm 8.8 mm 35 mm 100 mm

Pixel size 4 × 4 µm 3.28 × 3.28 µm 2.41 × 2.41 µm 3.76 × 3.76 µm 6 × 6 µm

CCD sensor size 6000 × 4000
(24 MP)

5280 × 3956
(21 MP)

5472 × 3648
(20 MP)

11,664 × 8750
(100 MP)

17,310 × 11,310
(193 MP)
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To analyze the effects of flight height, camera performance, and imaging conditions
on the quality of the UAV photos and outcomes, we designed the flight parameters as
illustrated in Table 2. The term “overlap” refers to the degree of route overlap that occurred
while capturing the UAV images. In overlap, P is the degree of overlap in the vertical
direction of the photograph, and Q is the degree of overlap in the horizontal direction.

Table 2. Flight parameters used for analyzing UAV images.

Camera Model Flight Height Overlap Area Number of Images Wind Velocity Flight
Date

a6000 150 m
P = 60%

720 m2 451 0.9 m/s 19 April 2011
Q = 75%

FC 6520 150 m
P = 60%

422 m2 371 1.9 m/s 18 May 2022
Q = 70%

FC 6310

80 m
P = 60%

894 m2 632 1.9 m/s 18 May 2022
Q = 70%

100 m
P = 60%

894 m2 556 1.9 m/s 18 May 2022
Q = 70%

150 m
P = 60%

894 m2 422 1.9 m/s 18 May 2022
Q = 70%

iXM-100

150 m
P = 60%

462 m2 231 1.3 m/s 19 March 2028Q = 70%

200 m
P = 60%

462 m2 115 1.3 m/s 19 March 2028Q = 70%

400 m
P = 60%

462 m2 52 1.3 m/s 19 March 2028Q = 70%

Metashape (v1.8.2, Agisoft, St. Petersburg, Russia) was used to calculate the results,
and all parameters within the software were set to be the same.

4. Results

Based on the resolution target, we analyzed the quality of the images obtained by the
UAVs and the manned aircraft. The results were divided into the outcomes of the GSD and
MTF analyses as follows:

1. To analyze the effect of camera performance on the quality of the UAV’s photos and
outcomes, we set the flight height to be almost identical at 150 m, and the overlap at
P = 60% and at Q = 70–75%. To compare the camera performance, we indicated the
name of each camera model.

2. Using the FC 6310 and iXM-100 sensors, we captured the images at different heights
to analyze the effect of flight height on the quality of the UAV’s images and outcomes.

3. The GSD and MTF of the manned aircraft images from the UltraCAM Eagle M2 sensor
and of the UAV images from the four sensor types were analyzed and compared.

4.1. GSD Analysis

Table 3 presents the results of the GSD analysis using the bar target. The flight height,
camera focal length, and pixel size were used to calculate the theoretical GSD, which was
compared with the measured GSD. Theoretical GSD can be calculated by multiplying
the camera’s one-pixel size by the flight altitude and dividing by the focal length. In
this context, the measured GSD deviates from the theoretical GSD, owing to errors in the
correction values of the camera, the atmospheric conditions during image capture, the
unmanned aerial vehicle’s dynamics, GPS error values, and other factors.
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Table 3. GSD analysis results using bar target.

Camera Model Flight Height Bar Target Theoretical GSD Measured
GSD

a6000 150 m 3.0 cm 3.1 cm

FC 6520 150 m 3.3 cm 4.1 cm

FC 6310

80 m 2.2 cm 3.4 cm

100 m 2.7 cm 4.0 cm

150 m 4.1 cm 5.0 cm

iXM-100

150 m 1.6 cm 1.6 cm

200 m 2.1 cm 2.2 cm

400 m 4.3 cm 4.5 cm

UltraCAM Eagle M2 1000 m 6.6 cm 6.8 cm

Figure 11 displays a graph of the theoretical and measured GSDs using the bar target.
The GSDs of the FC 6520 and FC 6310 sensors differed by 18–35% from the theoretical GSD.
The GSDs of the iXM-100, a6000, and UltraCAM Eagle M2 sensors, however, only differed
slightly, by 0–5%, from their theoretical values. These results suggest that the FC 6520 and
FC 6310 sensors were more affected than the other sensors by the factors that reduced the
image quality during UAV image capturing. Hence, sensors that differed considerably
from the theoretical GSD should be avoided or carefully tested.

Figure 10 is a graph of the GSD results analyzed using bar targets for flight height.
For FC 6310 sensors, the GSDs were 3.4 cm (80 m in height), 4.0 cm (100 m in height), and
5.0 cm (150 m in height) as the flight height increased, resulting in poor image quality. The
GSDs for iXM-100 sensors decreased to 1.6 cm (150 m in height), 2.2 cm (200 m in height),
and 4.5 cm (400 m in height) as the flight height increased. In addition, the GSD for the
iXM-100 sensors, which showed the best performance at the same flight height of 150 m,
was the best, with a value of 1.6 cm. Subsequently, the GSD values were 3.1 cm for the
a6000 sensor, 4.1 cm for the FC 6520 sensor, and 5.0 cm for the FC 6310 sensor.
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Figure 10. Comparison of the ground sample distance (GSD) analysis results obtained using the bar target.

Figure 11. Comparison between the theoretical GSD and measured GSD using bar target.
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4.2. MTF Analysis

In Table 4, σMTF denotes the standard deviation of the MTF; the smaller the value
of σMTF, the clearer the image. MTF50 and MTF20 were also calculated and compared.
Considering the σMTF, the image quality worsened as the flight height increased in the
MTF analysis, similar to those in the GSD, ground resolved distance (GRD), and edge
response analyses.

Table 4. MTF analysis results using slanted edge target.

Camera Model Flight Height Slanted Edge Target σMTF MTF50 MTF20

a6000 150 m 0.401 0.456 0.694

FC 6520 150 m 0.511 0.381 0.582

FC 6310

80 m 0.443 0.426 0.648

100 m 0.522 0.336 0.513

150 m 0.694 0.268 0.408

iXM-100

150 m 0.331 0.545 0.831

200 m 0.395 0.474 0.722

400 m 0.635 0.286 0.437

UltraCAM
Eagle M2 1000 m 0.715 0.263 0.399

As shown in Figure 12, the iXM-100 sensor maintained a high MTF value as the spatial fre-
quency increased to a height of 150 m and showed significantly better MTF results than those for
the other camera sensors. The σMTF value for the iXM-100 sensor was the lowest at 0.331 (smaller
the σMTF value, better is the image quality). The image quality worsened from top to bottom
in the order of the MTF curves of the sensors presented in Figure 12. Specifically, the iXM-100
sensor exhibited the best results at a height of 150 m with σMTF = 0.331, MTF50 = 0.545 lp/pixel,
and MTF20 = 0.831 lp/pixel. The UltraCAM Eagle M2 manned aircraft sensor exhibited the
worst results, with σMTF = 0.715, MTF50 = 0.263 lp/pixel, and MTF20 = 0.399 lp/pixel. At the
same height of 150 m, the boundary of the black and white lp of 10 cm width began to blur from
the GSD values of 3.31 cm for the iXM-100 sensor, 4.58 cm for the a6000 sensor, 3.75 cm for the
FC 6520 sensor, and 2.65 cm for the FC 6310 sensor. The boundary of the black and white lp that
was 10 cm in width was no longer identifiable above the values of 8.31 cm, 6.98 cm, 5.72 cm,
and 4.04 cm for the iXM-100, a6000, FC 6520, and FC 6310 sensors, respectively. Moreover, the
boundary of the black and white lp that was 10 cm in width started to blur from the GSD value
of 2.63 cm for the UltraCAM Eagle M2 sensor, which exhibited the worst performance, and was
no longer identifiable above 3.99 cm.
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Figure 12. Comparison of the MTF curves obtained from cameras using slanted edge target.

5. Conclusions

In this study, we acquired images from four types of UAVs and one type of manned
aircraft to investigate the need for MTF analysis in UAV image quality assessment. We
also examined the impact of shooting altitude and sensor performance on the quality of
unmanned aerial images. An MTF analysis was conducted using a slanted edge target,
while the GSD analysis was performed using a bar target.

First, the trend in σMTF indicated that the image quality worsened as the flight height
increased in both the MTF and GSD analyses. However, the σMTF values were low for
the FC 6520 and FC 6310 sensors, resulting in a slight blurring of the white object. The
MTF analysis evaluates both image resolution and contrast; hence, slight blurring has a
considerable effect on σMTF. However, the MTF analysis of the corresponding bar was
not possible owing to contrast reduction of the bar target for which the visual resolution
analysis was possible. The smallest bar that can be recognized as the bar target, which can
be analyzed by visual resolution, determines the GSD of the corresponding image. For
example, the FC 6310 sensor, at a shooting altitude of 150m, can analyze up to Bar 5, which
is 6.3cm in size due to reduced contrast ratio. However, the GSD results analyzed using
Bars 1–5 showed a 5cm result. Similarly, the iXM-100 sensor, at a 400m shooting altitude,
can analyze up to Bar 6, which is 5.6cm in size due to reduced contrast ratio. However, the
analyzed GSD result was 4.5cm. Therefore, the MTF, which can analyze both the degree of
contrast and resolution of the image, was required to verify the quality of the unmanned
aerial image, which experienced a deterioration in its quality owing to various factors, such
as weather conditions, the use of non-surveying cameras, and low-cost navigation devices.
Thus, the MTF analysis was proven to be a more objective and reliable method of analysis
than the GSD analysis.

Secondly, we observed a decline in image quality for both the FC 6310 and iXM-100
sensors as shooting altitude increased. Furthermore, when comparing images captured by
these sensors at the same altitude of 150 m, it was evident that the GSD and MTF values
varied based on the sensor’s performance. Consequently, we confirmed that both shooting
altitude and sensor performance significantly impact the image quality of UAV images.

Third, despite the UltraCAM Eagle M2 manned aircraft sensor exhibiting the poorest image
quality, the results from the FC 6310 sensor were nearly identical at a height of 150 m compared
to those from the UltraCAM Eagle M2 sensor. These observations suggest that obtaining high-
quality UAV images during UAV photogrammetry is contingent upon the operator accurately
determining appropriate camera-sensor parameters, overlapping, and UAV performance before
capturing the images, regardless of the number of UAV sensors used.
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In this study, we confirmed the necessity of both MTF analysis and GSD analysis for
assessing image quality. This was achieved by conducting analyses at various research
sites, adjusting the flight height, and using different mounted sensors, which exert the most
significant influence on image quality. In future studies, if a test bed with a permanent
UAV photogrammetry resolution target can be constructed to analyze the quality of the
image under the same conditions, it will be possible to analyze it more quantitatively and
objectively, and to accumulate data.

As a result of the analysis, it was determined that MTF analysis, which can analyze
the resolution and contrast of images simultaneously, rather than GSD analysis, was a more
objective and reliable method. It was found that high-quality unmanned aerial images
could be obtained only when workers properly judge the performance of camera sensors,
redundancy, and the aircraft’s performance.
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