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and Umeå University) and North Cyprus (Eastern Mediterranean University). His research interests

lie within qualitative theory of ordinary and functional differential equations, impulsive systems,

mathematical modelling, and university mathematics education. Dr. Rogovchenko was a Regular

Associate of the Abdus Salam International Centre for Theoretical Physics in Trieste, Italy, during

2004–2011 and was awarded research stay at the Mathematisches Forschungsinstitut Oberwolfach

within the RiP2003: Research in Pairs program. Dr. Rogovchenko was awarded CNR research

scholarships (1993, 1995) and CNR-NATO guest fellowship (1997). He was a recipient of the

Sørlandet kompetansefonds research award in 2016. Dr. Rogovchenko has been on the editorial

board of 11 international journals (Springer, Taylor & Francis, Hindawi, etc.), has contributed as the

Lead Guest Editor to 2, and as a Guest Editor to 10 Special Issues. Dr. Rogovchenko has published

over ninety research papers, two of which were ranked as highly cited by the ISI Web of Science (in

2014 and in 2018) and one as Hot Paper in a Field (2021). Dr. Rogovchenko has coordinated two

educational projects, PLATINUM (Partnership for Learning and Teaching in University Mathematics,

Erasmus+) and DeDiMaMo (Development of students’ mathematical competencies through Digital

Mathematical Modeling, Eurasia 2019). He was a partner in the educational project BoostEdU

(Boosting Sustainable Digital Education for European Universities, Erasmus+) and in the research

project CareWell (Cooperative Human Activity Recognition and Localization for Healthcare and

Well-being) funded by the NFR, Norwegian Research Council.

Gintautas Dzemyda

Gintautas Dzemyda was born in Vilnius, Lithuania. In 1984, he received a doctoral degree in

technical sciences (PhD), and in 1997 he received a degree of Doctor Habilius from Kaunas University

of Technology. He is a full member of the Lithuanian Academy of Sciences (2011) and is Head

of Division of Technical Sciences of the Academy. His current employment is at the Institute of

Data Science and Digital Technologies of Vilnius University as a Professor and Head of Cognitive

Computing Research Group. His main area of scientific interest is the development and application

of data science methods and technologies, including artificial intelligence. His research includes the

following main directions: reduction in data dimensionality and visualization; optimization theory

vii



and applications; visual multidimensional data analysis, artificial neural networks, multicriteria

decision making, artificial intelligence, cognitive computing, image and signal analysis. He is Editor

in Chief of the international journals Informatica and the Baltic Journal of Modern Computing.

Patrick Siarry

Patrick Siarry received a PhD degree from the University Paris 6, in 1986 and a Doctorate of

Sciences (Habilitation) from the University Paris 11, in 1994. He was first involved in the development

of analog and digital models of nuclear power plants at Electricité de France (E.D.F.). Since 1995, he
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This book collects under one cover twelve original research papers and one review
paper submitted to the Special Issue “State-of-the-Art Mathematical Applications in Europe”
and published in the MDPI journal Mathematics from December 2021 to January 2023. This
Special Issue welcomed original research contributions from European researchers and their
collaborators in all fields of mathematics on popular topics. The Editors received papers
from Spain, Slovenia, Romania, Italy, Greece, Russia, Montenegro and Turkey. Most of the
contributions were related to various fields in applied mathematics, and several papers
addressed problems in pure mathematics, particularly algebra. We provide a brief overview
of the papers included in this Special Issue, allowing readers to become acquainted with
the submissions close to their research interests.

The first four articles published in this collection present different mathematical models
to solve problems arising in mathematical physics. In particular, the first two deal with the
study of heat transfer in engineering devices, the third study tackles bio-magnetic fluid
dynamics and the fourth one concerns solid particle dissolution. Contribution 1 proposes
a numerical solution to one problem related to heat transfer performance in an electronic
cabinet with a heat-generating element placed in a solid/porous finned heat sink using a
code in C++ programming language. In Contribution 2, a numerical analysis of the natural
convective energy transport in a differentially heated chamber with isothermal vertical
walls and a porous fin system has been performed. This study reveals the importance of the
porous fins for energy removal from heated surfaces. An interesting mathematical method
based on the application of two-parameter group theory is proposed in Contribution 3
for the study of blood flow with magnetic particles, combining ferrohydrodynamic and
magnetohydrodynamic principles in a two-dimensional cylinder. The authors argue that
this research could have applications in biomedical sciences, drug administration, cancer
therapy and surgery. A new mathematical model describing transformations of chemical
kinetics equations and the heterogeneous processes of solid particle dissolution is proposed
in Contribution 4. Theoretical results are presented related to the process of coke calcination
in a tabular rotary kiln.

Contribution 5 focuses on navigation algorithms for autonomous industrial vehicles.
The authors implemented an algorithm for indoor navigation of automated guided vehicles,
combining ideas from computer vision and neural networks to achieve collision-free
navigation. The advantages of the proposed algorithm and its stability are discussed.
The aim of Contribution 6 is to design an expectation maximization (EM) algorithm for
estimating the parameters of some models by using maximum likelihood. To achieve
this, two new general probability distribution families generated by the discrete Lindley
distribution have been constructed. Contribution 7 develops a decision-making model
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that refers to the discrepancy between normative models and empirical evidence in the
context of intertemporal choices. The experimental part illustrates the implementation of
the proposed theoretical model.

Three articles in the collection are in the field of algebra. In Contribution 8, the authors
describe the structure of BL-algebras, a special type of residuated lattice corresponding to
Hajek’s fuzzy logic, through the theory of commutative rings. These ideas form the basis
of a recursive algorithm that generates all isomorphism classes of finite BL-algebras. In
Contribution 9, the authors introduce the concept of weakly semi-artinian supplements
(WSA supplements), investigate their properties, and apply WSA supplements for the
characterization of weakly semi-artinian modules. Several homological properties of the
proper class of short exact sequences determined by WSA-supplemented submodules are
discussed. Contribution 10 presents new developments in hypercompositional algebra, in
particular in the field of Krasner hypermodules. The authors provide equivalent characteri-
zations of the supplemented Krasner hypermodules, connecting the supplements and the
direct summands to the normal projectivity.

The behaviour of the Lagrange interpolation polynomials of the absolute value func-
tion is the topic of Contribution 11. The authors employ Chebyshev and Chebyshev–Lobatto
nodal systems with an even number of points to demonstrate that the Gibbs–Wilbraham
phenomena are significantly different in shape and amplitude. The last original article in
this collection, Contribution 12, is in the field of nonlinear fractional differential equations.
Conditions for the existence, uniqueness and stability of the solutions for a class of frac-
tional Riemann–Liouville initial value problems are obtained. The theoretical results are
supported by concrete examples.

This Special Issue concludes with Contribution 13, providing an overview of the
topic of singular and degenerate partial differential equations. Most of the results recalled
here were presented during the conference “Advances in Singular and Degenerate PDEs”,
dedicated to the research career of Prof. Maria Agostina Vivaldi. This issue discusses recent
research problems on the topic and contains a very rich bibliography.

The papers in the Special Issue “State-of-the-Art Mathematical Applications in Europe”
were published online after their acceptance. We are pleased to say that one year after their
publication, each article in this Special Issue has been viewed more than one thousand
times, which is evidence of both researchers’ interest in Applied Mathematics and the
importance of open access research. The Guest Editors would like to express their gratitude
to all the authors for their valuable contributions to this Special Issue, as well as to the
anonymous reviewers for their useful and professional comments that helped the authors
substantially improve the final quality of the submitted manuscripts. We also acknowledge
with pleasure the great cooperation of the publisher, the help from MDPI editors in the
realization of this project, and the unfailing support from the Managing Editor of this
Special Issue, Dr. Syna Mu.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: There is presently a need for more robust navigation algorithms for autonomous industrial
vehicles. These have reasonably guaranteed the adequate reliability of the navigation. In the current
work, the stability of a modified algorithm for collision-free guiding of this type of vehicle is ensured.
A lateral control and a longitudinal control are implemented. To demonstrate their viability, a
stability analysis employing the Lyapunov method is carried out. In addition, this mathematical
analysis enables the constants of the designed algorithm to be determined. In conjunction with the
navigation algorithm, the present work satisfactorily solves the localization problem, also known as
simultaneous localization and mapping (SLAM). Simultaneously, a convolutional neural network is
managed, which is used to calculate the trajectory to be followed by the AGV, by implementing the
artificial vision. The use of neural networks for image processing is considered to constitute the most
robust and flexible method for realising a navigation algorithm. In this way, the autonomous vehicle
is provided with considerable autonomy. It can be regarded that the designed algorithm is adequate,
being able to trace any type of path.

Keywords: navigation; localization; SLAM; computer vision; neural network; semantic segmentation;
Lyapunov; AGV; path planning; path following

1. Introduction

In industrial applications, the current demand is to have an intelligent navigation
system for mobile robots. Those systems must include navigation and localization methods,
both of which are implemented in automated guided vehicles (AGVs). Nevertheless,
the study of those methods has usually been carried out in independent ways. The
consideration of the study as separate techniques in not a disadvantage, but rather a
division of problems. The unification of these systems is major research; however, while
performing, the AGVs must integrate all of them. This paper is focused on giving more
robustness to this type of autonomous vehicle. With that purpose, the following topics
specify the analyses that have been performed for the various techniques that form the
whole AGV system.

1.1. Localization

One of the indispensable systems of autonomous guided vehicles is the one that
determines their positioning, defined by the vector

→
pose. With this information, it is

possible to generate a map of the environment where the AGV is located and to determine
where the vehicle is placed on the map. This is known as simultaneous localization and
mapping (SLAM) and it is important to execute it in real-time.

A traditional approach to the actual problem is to use the wheel odometry as Kilic
et al. [1] studied, combined with an inertial navigation system, where measurements are

Mathematics 2021, 9, 3139. https://doi.org/10.3390/math9233139 https://www.mdpi.com/journal/mathematics4
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taken by an encoder. The present work rejects this method due to the slippage that the
wheels suffer during the movement, being necessary data to be predicted. It also penalizes
accuracy. According to Chen [2], it is recognized that these aspects can be clarified with a
Kalman filter.

The Kalman filter can also be suitable for use in conjunction with matching techniques.
According to the study carried out by Cho et al. [3], two matching methods can be employed
in combination with that filter. Firstly, the geometric method, and secondly, a method based
on the point-to-line matching of the iterative closest point (ICP) algorithm. In this way, the
geometric method is applied to predict, and the ICP is used for correcting the estimated
position. This requires prior information concerning the environment in which the AGV
is located. The unique use of geometric methods is also possible, as Shamsfakhr et al. [4]
demonstrate in their developed algorithm. Geometric pattern registration is performed
based on the segmentation of the real laser range data and simulated laser data. Looking for
the critical points of both and with the discrepancy between them, it is possible to achieve
a robust and computationally efficient algorithm for determining the

→
pose in real-time.

The iterative closest point (ICP) persist in being a recurrent approach to solving the
localization problem. In addition, knowing that LiDAR sensors do not require external
spatial infrastructure, they can be utilized for SLAM (see Naus et al. [5]). Employing
architecture to reduce iterations (wP-ICP) coupled with LiDAR sensors, Wang et al. [6]
achieve a reduction of computational effort. In this way, it can be better managed in
real-time. It is equally possible to generate more 3D point sets by focusing on the geometry
of the environment as Senin et al. [7] do, obtaining better results. Using different sensors
such as INS and GPS coupled with LiDAR, Gao et al. [8] achieved localization in indoor
and outdoor areas. However, it is impossible to distinguish areas with unevenness, solved
with KITTI arrays as Kim et al. [9] summarized.

Avoiding the application of a GPS antenna, one approach to localize AGVs is to use
trilateration, through a number of signals that can estimate their distance to the vehicle.
For algorithms that need more speedup and high efficiency, Sadeghi Bigham et al. [10]
prove that by focusing on orthogonal polygons the n/2 landmarks are sufficient to solve
the localization problem. So that trilateration of an orthogonal n-gon can be performed.
Further to the concept of using landmarks, it is possible to merge them with computer
vision to be detected. As Yap et al. [11] explain, the distance between the landmarks and
the AGV is estimated with an algorithm based on two landmarks according to the idea of
the intersection of two circles.

The noise that can be generated by the sensing devices used must also be taken into
account, so the choice of the sensors implemented in the AGV is crucially important. A
cost-effective option represents the use of RGB sensors, which process images to extract
features by finding similarities between frames (see Gao and Zhang [12]). Deriving the ICP
algorithm with all necessary sensing elements and constructing random point maps, devel-
ops the algorithm for SLAM independent of sensor type as Clemens et al. [13] discussed.
In this way, noise becomes a measure for determining uncertainty.

The use of an algorithm based on Bayesian filtering has also given good results in the
localization of mobile robots, without the need for prior information about the environment
as Gentner et al. [14] explained. In this way, it is possible to obtain the positioning of the
AGV in the SLAM. Continuing with the use of filters, the particle filter has remained a
recurring method when trying to solve the localization problem. With it, it is possible to
estimate the state of an environment over time. The precision is related to the number
of particles, but it should be noted that increasing the number of particles penalizes the
computational cost (see Yang and Wu [15]).

For that reason, a method of optimizing the cells produced in the SLAM is necessary.
Because of this optimization, Zhang et al. [16] demonstrated that there is a difficulty in
distinguishing between areas with the same appearance. Therefore, the reference has to
be taken as a global localization. However, at large distances, the accuracy decreases.
Carrera Villacres et al. [17] described that focusing the problem on a deep learning model
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provides a satisfactory result, with the need to include new filters to reduce failures. In
addition, combining the particle filter with a vector field histogram (VFH) provides a way
to circumvent obstacles (see Wang [18]).

Integrated into a particle filter, Tao et al. [19] include a novel ratio frequency identifi-
cation (RFID) based method. By combining the information from two RFID signals, this
strategy is able to predict the

→
pose. In addition, in AGVs where magnetic field lines are

involved, it is equally possible to use a for-field active RFID locating method, providing
higher accuracy, more stable movements and a smaller fluctuating rate. (see Lu et al. [20]).

1.2. Path Following

Another faculty that AGVs must possess is the ability to navigate in diverse environ-
ments. This is based on immediate sensor readings, providing the mobile robot with the
capacity to decide and circumvent obstacles. The dynamic properties of the vehicle must
also be taken into account. The most commonly used method for trajectory tracking is
the dynamic window approach (DWA). By hybridizing with a teaching-learning based
technique, it is possible to achieve the endpoint to be reached by the AGV, as Kashyap et al.
studied [21]. This additionally provides the ability to avoid obstacles without stopping. In
succession, it is possible to combine it with a real-time motion planning method, giving the
AGV the possibility to gain a high speed (see Brock and Khatib [22]).

By mixing Dijkstra’s algorithm and the DWA, it is possible to attain the desired
position with the information provided by a SLAM system, as Liu et al. [23] summarised.
Another fusion option is discussed by Dobrevski et al. [24] in their work, where they
manage a convolutional neural network to select the parameters of the DWA algorithm.
This provides a combination between data-driven learning and the dynamic model of
the mobile robot. It is substantial to take into account the dynamic properties due to the
constraints imposed by the AGV itself on velocity and acceleration, as pointed out by
Fox et al. [25].

As Wang et al. [26] studied, the problem can be divided into two layers. On one hand,
decision-making is performed for the path, and on the other hand, trajectory tracking is
carried out. In the second layer, it is possible to employ the virtual force field (VFF) to
detect objects. Similarly, it is possible to combine it with a potential force field (PFF) to
build a viable means of navigation (see Burgos et al. [27]). Another algorithm used to solve
the path following is the vector field histogram (VFH), as done by Borenstein et al. [28],
where they employ histogram grids as a model to generate a map of the environment. In
this way, it is possible to obtain the AGV control commands. There is a modification of
the latter method called the traversability field histogram (TFH), which is independent
of the instantaneous vehicle speed, as Ye [29] noted. In this way, distant obstacles can be
prevented from impairing optimal path following.

From another perspective, the use of a lateral control for path following resolution
represents an interesting method, performing an identification of the closest point between
the trajectory and the AGV. One of the algorithms that can conclude this is the Stanley. It
performs a discrete prediction model of the subsequent states of the mobile robot. In the
study by AbdElmoniem et al. [30] a combination with a LiDAR is used, creating a local
path planner and being able to complete collision-free navigation.

1.3. Path Planning

Path planning is one of the most complex areas of mobile robotics, where it is necessary
to calculate the trajectory to be followed by the AGV. In this case, the most conventional
technique is Particle Swarm Optimization (PSO). By improving the inertia weights with
a linear variation, the algorithm can be prevented from falling into a local minimum,
achieving a higher convergence speed as Fei et al. [31] demonstrated. In this way, it is
possible to obtain the optimal trajectory in any environment, with better path length than
with the A* algorithm on 2D maps.

6
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Authors such as Liu et al. [32] explained that the A* algorithm can be used as a
map modelling method to procure path planning. In many cases, considering only the
optimal distance to the destination point is not enough, so it is meaningful to evaluate
also the shortest time to that point. The A* algorithm, depending on these attributes,
can search for one or another trajectory as Cheng et al. [33] explained. Combining
this algorithm with the Rapidly-Exploring Radom Tree (RRT) achieves good efficiency
(see da Silva Costa et al. [34]). A modification of the RTT itself gets a new path planning
diagram, in which the trajectory is found instantly, as the study of Wang et al. [35] develop.
Another design represents the one by Wen and Rei [36], called Smoothly RRT, where the
optimization strategy focuses on the maximum curve of the trajectory, achieving a higher
exploration speed.

The Wavefront algorithm is equally implemented to calculate the path, employing
it to obtain the closest front points. In this way, it is possible to select the optimal point
based on the motion requirements. Therefore, the Wavefront algorithm can search for
additional paths, if necessary, as Tang et al. [37] summarized. The generalized Wavefront
algorithm is also discussed. Multiple sets of target points, multilevel grid costs and
geometric expansions around obstacles are combined, and with this information, the path
is optimized, recognizing a safe and smooth trajectory (see Sifan et al. [38]).

A less conventional, but also interesting technique to perform trajectory planning
represents the use of neural networks. Using the Q-learning algorithm with reinforcement
learning can support the features of the environment, as Sdwk et al. [39] do. Advancing
neural network training provides an optimal path. In addition, with an incremental training
method, where algorithms are first evaluated, a more pleasing ultimate design of the deep
learning algorithm can be obtained (see Gao et al. [40]).

Operating the Resnet-50 network, a path planning algorithm based on deep reinforce-
ment learning has been created. In this way, the parameters of the deep Q-network are
trained, solving the path planning problem, as Zheng et al. [41] demonstrated. Another
option is to implement a convolutional neural network (CNN) that segments an image to
condition the navigation zone, proposed by Teso-Fz-Betoño et al. [42]. The study manages
a residual neural network that participates in the learning of the Resnet-18 network. As
follows, it is possible to perform semantic segmentation for AGV navigation by selecting
the mask of the navigation area.

Focusing on computer vision, there are networks established specifically for path plan-
ning, such as PilotNet, which can detect lanes using cameras and apply vehicle following
algorithms to gain the direction, as discussed by Olgun et al. [43]. This is merely effective
for single-lane trajectories. LaneNet is, furthermore, a network that applies computer
vision, detecting lane markings and lane locations, and being able to create maps and paths
using semantic segmentation (see Azimi et al. [44]).

The fundamental objective of the present study is to ensure the stability of an indoor
navigation algorithm in a 2D environment for the AGV shown in Figure 1. Based on
Stanley’s algorithm, a lateral control adapted to this autonomous vehicle is proposed. The
algorithm calculates the velocity and rotation angle commands to perform the movement,
applying different mathematical operations. In this manner, lateral control and longitudinal
control should coexist.

Figure 1. The AGV for which the algorithm is proposed.

7
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The main goal of the current work is to implement the algorithm in the AGV and be
able to perform collision-free navigation. This issue is achieved by using computer vision
and a neural network that segments the environment to generate a path.

2. Materials and Methods

This article presents an algorithm for indoor navigation of AGVs and the study of
its stability. With the idea of the Stanley algorithm (see Hoffmann et al. [45]), this work
proposes a modification because of the use of the AGV shown in Figure 1. This autonomous
vehicle allows the adjustment of the angular and linear velocity criteria.

Accordingly, in this paper, the algorithm focuses on the lateral control of the AGV,
acting mainly on the rotational speed

.
θ (rad/s). It is necessary to observe that the alignment

error ϕ (rad) remains the difference between the vehicle angle θ (rad) and the path curvature
ϕpath (rad). The positioning error noted as e (m), refers to the minimum distance between
the autonomous vehicle and the closest point of the trajectory in reference to the vehicle as
represented in Figure 2.

Figure 2. Schematic representation of the lateral control proposal.

The side wheels of the AGV used, rotate on the same axis, as represented in Figure 2.
Note that ω should take into account both the positioning error noted as e and the alignment
error noted as ϕ. The alignment error remains a revealed fact, so the positioning error is
the variable, where two opposite cases are assumed. If e is remarkably large, it is of interest
to situate the AGV perpendicular to the path, in order to get closer to it, so the value of
ϕ is be π

2 . In the case that e is significantly smaller, there is no alignment error, so it is of
interest to keep both angles with the same value. The curve given by the values of ϕ is an
Arctangent function, which also appears in Stanley’s algorithm.

In this manner, it is proposed to implement Stanley’s algorithm as shown in the
following equations. Knowing that θ is derivable in time, the value that ω should have is
proposed in Equation (1).

dθ

dt
= ω = K1(ϕsetpoint(e)−

(
θ − ϕpath

)
(1)

The introduction of the parameter ϕsetpoint (rad) is necessary, to adapt the range of
values of ϕ. Its value is defined in Equation (2):

ϕsetpoint(e) = arctg(K2·e) (2)

In this way, it is proposed to have two functions depending on the constants K1 (s−1)
and K2 (1/m), which are to be determined. It can be appreciated that the constant K1 is the
one related to the alignment error ϕ and K2 controls the value of the positioning error e.

8
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Some other equations also need to be accounted for.
.
x (m/s) and

.
y (m/s) represent

the linear velocities in the directions of the axes, as indicated in Equations (3) and (4).

.
x = V cos θ (3)

.
y = V sin θ (4)

As mentioned throughout this work, the objectives of the lateral control are that the
positioning error tends to be 0 and that θ equals ϕpath.

A study is required to demonstrate the proposed design is stable for all types of paths.
For this purpose, the Lyapunov function will be used. Through the study, it is equally
possible to dictate the value of the constants K1 and K2 in Equations (1) and (2). The
Lyapunov energy equation noted as L (m2) is proposed based on the previous equations
in Equation (5). {

L = e2 > 0
dL
dt < 0

(5)

For the first approach, the linear velocity V (m/s) is assumed to be constant.
The autonomous vehicle is placed with a random

→
pose = [x, y, θ] value, and the con-

stants K1 and K2 are applied to the lateral control, analysing how the AGV behaves as a func-
tion of these coefficients. To simplify the analysis, a trajectory of the form Ax + By + C = 0
will be considered.

Distinction of the Positioning Error Sign

To implement the lateral control design, it is necessary to contemplate the sign of e
because it is not taken into account in either of Equation (1) or Equation (2). It is necessary
to differentiate on which side of the path the AGV is located because depending on this; it
must be steered with a positive or negative sign.

Hence, to consider the sign, the positioning error e is to be taken as a vector
→
e . The

vector
→
N is the one that represents in which direction the AGV will follow the path. Finally,

α is the angle formed between these two vectors, as illustrated in Figure 3.

Figure 3. Positioning error vector and trajectory direction vector.

Figure 3 also shows in which region the positioning error is considered positive and
in which negative. Due to that consideration, the direction of

→
e is conditioned by that sign,

representing the course the AGV needs to take to reduce the positioning error. Like so, if
the AGV is on the right side of the path, the value of ϕ needs to be increased. If the AGV is
on the left side, the value of the alignment error has to be reduced, supporting negative

values. To resolve it, the vector product of
→
e and

→
N must be performed.

9
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If
∣∣∣∣→N∣∣∣∣ and

∣∣∣→e ∣∣∣ take the value 1, an analysis can be performed as a function of α. In

case α is positive, the positioning error has to be positive as well. In the opposite case, that
is when α is negative, the positioning error has to bear a negative sign. Knowing the path
is defined, it is possible to acquire the values of the points P1(x, y) and P2(x, y).

P1 refers to the point on the path most adjacent to the AGV. The position of the
autonomous vehicle is noted as p(x, y). In the case of P2, it refers to the nearest next point

from the AGV after P1. Thus, the values of the vectors
→
e and

→
N can be determined as

presented in Equations (6) and (7).

→
N =

→
P2− →

P1

‖→P2− →
P1‖

(6)

→
e =

→
P1−→

p (7)

With this knowledge, in the line of code that calculates the positioning error, it is
necessary to apply the approximation of Equation (8) to consider the sign of e.

e sin ∝= T = N(1)e(2)− N(2)e(1) (8)

Considering the path form and the previous equations, the positioning error is defined
in Equation (9).

e =
|Ax + By + C|√

A2 + B2
= (sign(e))distmin.

(→
p , path

)
(9)

3. Proposal Explanation

A combination of neural networks and hardware devices, such as the AGV itself, is
employed. Regarding the hardware, the use of a Beckhoff PLC (C6925) and its automation
software allows the drivers to be managed on a real-time industrial platform. This plat-
form is highly robust and widely used therein type of industrial applications. In addition,
the employment of Matlab R2019b provides the advantage of utilizing a platform that
allows very rapid development of control engineering algorithms. From a sensor point
of view, and in the present case, the use of a vision-based navigation system that recog-
nises lanes, the advantage resides in the fact that it is a very rapid way of implementing
path-following systems.

3.1. Necessary Data Acquisition

To obtain the trajectory, the example of the study by Teso-Fz-Betoño et al. [42] is
followed. A convolutional neural network (CNN) is managed to perform semantic seg-
mentation of an image. It is classified into several masks, generating a vector of the interest
points from the mask corresponding to the navigation area. This vector with the position of
the path in pixels x and y represents the information provided to the navigation algorithm.
The scenario comprises a room with a yellow line representing the trajectory. The neural
network has to detect this line, which will be followed by the AGV. This is concluded by
employing a camera. The processing of the image is represented in Figure 4.

Figure 4a shows the image captured by the AGV, with the yellow line to be followed.
After obtaining the image, the convolutional neural network performs semantic segmen-
tation, obtaining two independent masks. The shaded mask constitutes the part that is
not of interest to the autonomous vehicle, so the shinier one attends the important one, as
illustrated in Figure 4b. In addition, the image is cropped at the lower part to remove the
portion of the AGV that is captured by the camera.

From the clearest mask, the midpoints represented by red crosses are gained, as shown
in Figure 4c. Thus, the trajectory to be followed by the AGV is obtained. Conclusively,
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the points approached with the semantic segmentation are connected to forge the path as
represented in light blue in Figure 4d. Due to the pronounced curves generated in this
path, an interpolation is performed to acquire a smoother trajectory, coloured with dark
blue. The AGV follows that final trajectory.

  

(a) (b) 

  
(c) (d) 

Figure 4. Process of obtaining trajectory: (a) Image that AGV takes of the path; (b) Semantic segmentation of the path;
(c) Medium point of the navigable mask; (d) Obtained path.

With the image taken of the path, the AGV can acquire the information of the position-
ing error and the angle of the trajectory as graphed in Figure 5. Note that the measurement
is produced considering the location of the AGV as the position of the camera. The camera
is placed at the leading centre of the autonomous vehicle.

Figure 5. Localization data for the AGV from image.

This approach provides all the data necessary for the navigation resolution.

3.2. Concurrency in the Approach

The designed algorithm has fast dynamics. This implies that regardless of the initial
position of the AGV as a function of e, it is necessary to obtain an θoptimun (rad) for the
autonomous vehicle. This value is not the same as θ, and this is where K1 comes in. θoptimun
refers to the sum between ϕpath and ϕsetpoint(e). Accordingly, because of the fast dynamic,
the AGV orients itself on the way of the trajectory rapidly, being able to consider that
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the path has no inclination. This is depicted in Figure 6. In the case of the positioning
error, it is not possible to make an approximation, and the path will be considered to be
angled. In conclusion, it can be declared that the time constants of the orientation loop are
smaller than those of the displacement. Ergo, two situations are envisaged as represented
in Figure 6a,b.

  

(a) (b) 

Figure 6. Path approach: (a) Situation where ϕpath is zero; (b) Situation where ϕpath is not zero.

With this approach, it is possible to analyse the stability of the system and to get the
K1 and K2 values.

4. Value of K1

4.1. System Stability Study

Lyapunov stability analysis is performed as mentioned above. Conventional tech-
niques, for instance “frecuency” methods, are generally carried out on cases where the
dynamical model of the system is linear. In the present study, the dynamical model is
non-linear and the use of Lyapunov provides a generalist manner of assuring the stability
of a dynamical system.

The first scenario is where can be assumed that the angle of the trajectory is zero,
as illustrated in Figure 6a. Considering that assumption, the terms A and C of the path
equation disappear, the path being By = 0. Hence, the study is simplified.

The initial consideration is when the AGV is away from the trajectory, so the position-
ing error value is obtained directly as indicated in Equation (10).

e = −y (10)

The objective is to guarantee that the system is stable, being L consistently positive.
Therefore, considering the previous equation, it can be formulated in Equation (11).

L = e2 = y2 (11)

As the value of y is squared, it is confirmed that L is always positive, so the difficulty
now lies in the second expression of Equation (5). In this manner, the derivate must be
considered taking into account the Equation (12).

dL
dt

= 2·e· .
e = 2·y· .

y (12)

Additionally, Equation (1) can be restated considering ϕpath = 0, as shown in Equation (13).

.
θ = K1

(
ϕsetpoint(e)− θ

)
(13)

As mentioned, assuming that the dynamic of Equation (13) is extremely fast, it is
possible to obtain the value of the angle θ, because of the rapid tendency of the AGV will
have, positioning with the orientation of Figure 6a. Then θ is defined in Equation (14).

θ = ϕsetpoint(e) = arctg(K2·e) (14)

12



Mathematics 2021, 9, 3139

Equation (4) can directly be raised anew, bearing in mind Equations (10) and (14).

.
y = V sin(−arctg(K2·y)) = −V sin(arctg(K2·y)) (15)

To obtain the value of
.
L, the Equation (12) can be complemented with that seen in

Equation (15).
.
L = 2y(−V sin(arctg(K2·y))) (16)

By the way, Equation (2) is designed knowing that K2 will always be positive, so the
following remarks can be made.

sign(arctg(K2·y) ) = sign(y) (17)

sign(sin(arctg(K2·y))) = sign(arctg(K2·y)) (18)

This leads to the following conclusion.

sign(y) = sign(sin(arctg(K2·y))) (19)

With this information, analysing Equation (19) and knowing the positioning error
is negative as stated in Equation (10), it can be guaranteed that the Lyapunov function
is fulfilled.

4.2. Procurement of Value of K1

For the system to be stable when the AGV is distant from the trajectory, it has been
assumed that the dynamics are so fast. Accordingly, the AGV is oriented perpendicular to
the path. In addition, it will approach rapidly, producing a minor positioning error, which
is considered to be zero. Carrying on with that consideration, therein case, only the angle
of the AGV can be taken into account, reformulating Equation (13).

.
θ = K1(0− θ) = −K1θ (20)

In this situation, it is necessary to study again the stability of the system. Recalling the
Lyapunov system of Equations (11) and (12), it will not be a problem to confirm that L is by
squaring. The problem is again in the derivative of the energy. The study examines the
case where the AGV is under the trajectory, so it is recognized that in that area θ will allow
positive values. So, if e is null, it is also comprehensible that θ tends to be equal to ϕpath.
Therefore, one can formulate the integral of Equation (20), which remains a linear system.

θ =
π

2
exp−K1·τ (21)

Equation (12) requires the value of y and
.
y, which can be obtained from Equation (4)

by substituting Equation (21).

.
y = V sin

(π

2
exp−K1τ

)
(22)

y = V
∫ t

0
sin

(π

2
exp−K1τ

)
dτ + y(0) (23)

From Equation (22) it can be deduced that the value is always negative because the
function sin is always between 0 and π. In the case of Equation (23), the initial condition
is also always negative, so it is necessary to ensure that the integral never obtains a value
greater than y(0), to confirm the stability. So it is necessary to guarantee that the positioning
error never changes sing, whereby the value of K1 can be known. In Equations (24) and (25)
the integral is noted as I.

y = VI(K1, t) + y(0) < 0 (24)
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VI(K1, t) < −y(0) (25)

Thus, the linear velocity and K1 are related. Analysing Equations (23) and (25), the
following conclusions can be drawn. If the value of K1 is very aggressive, the exponential
tends to 0 quickly obtaining a sinusoidal function with value 0 and making the expres-
sion vanish very briefly. This makes it independent of the value V that is set. On the
contrary, if K1 is small, the velocity is limited. Otherwise, an undesired oscillation system
would appear.

This system is implemented in Matlab Ver. R2019b (The Matworks Inc., Madrid, Spain),
obtaining the plots revealed in Figure 7. In Figure 7a the values of V = 100 m/s and
K1 = 1 s−1 are set for plotting. It can be visualized how the value of the integral (red
line) takes time to fade out, in the order of seconds. In this case, the value of y admits
an extremely significant positive value which does not ensure stability as it cannot be
guaranteed to be lower than y(0). In the plot of Figure 7b, V = 10 m/s and K1 = 1000 s−1

are set. The value of the integral disappears instantly, ensuring the stability of the system
and regardless of the velocity value set.

 

  
(a) (b) 

Figure 7. Results of simulation: (a) Plot when V is high and K1 low; (b) Plot when V is low and K1 high.

With this analysis, the need for longitudinal control is acknowledged to ensure that the
system is always stable. As 10 m/s is a reasonable speed value for the AGV used, the value
of K1 is set to 1000 s−1. This value refers to the gain of the alignment error control loop.

5. Value of K2

5.1. System Stability Study

As previously indicated in the stability analysis of the K1 value, once again a non-linear
system is observed, so Lyapunov is employed in order to ensure stability.

The second scenario to be investigated is when the angle of the trajectory needs to be
taken into account, as shown in Figure 6b. As already known, the system has highly fast
dynamics so Equation (1) is adapted because the AGV assumes the desired direction very
quickly. As K1 is already defined, it can be ignored.

.
θ = ϕsetpoint(e) + ϕpath(e) (26)

Therein situation, ϕpath must also attend a function that depends on the positioning
error, due to the position (x, y) of the AGV. Depending on this, the most adjacent point of the
path will vary. In this case, the positioning error is calculated as in Equations (27) and (28).

(xnear, ynear) = Argmin
(
‖(x, y)−

(
xpath, ypath

)
‖
)

(27)
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ϕpath(e) = ϕpath(xnear, ynear) (28)

Resolving this analytically can be complex. Remembering the Lyapunov system of
Equation (5), the e can be defined as in Equation (9). However, this time it is necessary to
calculate the parameters A, B and C, considering the position of the AGV because the sign
of e depends on that. {

(A, B, C) = f
(
(xnear, ynear),

→
p
)

(29)

Due to the added difficulty, the systems must be expounded in a discrete form. An
optimization algorithm is proposed in which e is calculated for every point in a bounded
area. With this information and fixing θ, K2 is varied, allowing its value to be dictated. The
following system is considered at instant t.

θ(x, y, K2) = f (e, K2) + ϕpath(e) (30)

e(x(t), y(t)) = e(t) (31)

Knowing that e and θ depend on the position of the AGV and K2, it is possible to
determine some expression at t + dt, taking into account Equations (3) and (4).

x(t + dt) = x + V cos θ (32)

y(t + dt) = y + V sin θ (33)

e(x(t + dt), y(t + dt)) = e(t + dt) (34)

Δe = e(t + dt)− e(t) (35)

Equation (35) has to be negative to ensure stability. The problem is discontinuities
can be generated. This issue occurs when the closest point of the path at t is not the same
at t + dt or does not continue in the corresponding direction. Instead of considering the
whole e (from AGV to the path), it is analysed in sections, guaranteeing that Equation (35)
is negative. Hence, the value of Δe is to be taken in absolute values to demonstrate the
system is stable. A simulation is performed on all

→
p of a bounded area to visualize this

phenomenon. It is affected by a sinusoidal trajectory as it is more in line with reality (curves
and straight lines).

Figure 8a shows that the Lyapunov energy function is consistently positive over the
whole space. L represents a (m2) value. The derivative of L in Figure 8b is negative through-
out the space considered, coinciding with the value of the variation of the positioning error.
Therefore, the stability of the system is confirmed.

  

(a) (b) 

Figure 8. Results of the simulation: (a) The values of L in all the space; (b) The values of ΔL in all the space.
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5.2. Optimization of Value of K2

Once it is comprehended that the system is stable, a code has been generated that
tests all the values of K2 in a range for the whole amount

→
p . By setting a value of K2 it

is possible to visualize the evolution of Δe, and the optimal value can be acquired. In
Equations (36) and (37), a cost function is proposed that depends on the mean square error,
denoted as J.

‖ e ‖=
√
(x− xnear)

2 + (y− ynear)
2 (36)

J =
1
t

(∫ t

0
‖ e

(
K2,

→
p , path

)
‖ dt

)
=

1
N

k=N

∑
k=0

e2(k) (37)

This provides the average of J, as a function of the initial position of the AGV.

E→
p

(
K2,

→
p , path

)
= J

(
K2,

→
p , path

)
(38)

The path persists in attending to a non-variable parameter, just like
→
p , so to vary J the

entirely dependent value is K2, formulated in Equation (39).

K2 = Argmin
(

J
)

(39)

The optimization strategy in this test is to perform an exhaustive analysis of all
possible combinations of the space in order to get the most optimal result. This approach is
simulated, resulting in the K2 values presented in Figure 9.

 

Figure 9. The optimal value of K2.

This figure also shows that there is an optimal value that minimizes J. Note that K2
attends the parameter that acts on the rate of evolution of the ϕsetpoint. Accordingly, this
value is set as K2 = 1.21 (1/m).

6. Longitudinal Control Algorithm

As already noted, the trajectory represents an acknowledged fact, so it is possible to
identify the state of a point at t + 1. It is equally recognized that there are curves in the path
so each point must provide a tangential acceleration, denoted as aT (m/s2) and a normal
acceleration, denoted as aN (m/s2). The latter can be defined as in Equation (40), from
which ρ (m) can be known.

aN =
V2

ρ
= ω2ρ = Vω (40)
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In the same way, it is decided that aN needs to be under maximum speeding up, called
aNmax (m/s2), as in Equation (41).

‖ aN ‖≤ aNmax (41)

Due to Equation (41), it is possible to achieve the linear velocity from Equation (40).

V =
aN
ω

(42)

Keep in mind that the angular velocity is given by K1 and K2, so a maximum velocity
can be fixed as well, as in Equation (43).

Vmax
′ = aNmax

ω
(43)

Therefore, by taking Equation (43) it is possible to enhance the value of the linear
velocity of the AGV, allowing it to be determined by the positioning error.

V = min
( aNmax

ω
, Vmax = f (e)

)
(44)

Equation (44) contemplates the velocity policy designed in a previous section. De-
pending on e the AGV adjusts the speed, but it will also be subject to the curvature of the
trajectory. It is substantial to know the angle that the path will occupy at the continuous
instant, being able to predict the V at t + 1. In that manner, the AGV will have knowledge
of if it is close to a curve, allowing it to reduce the velocity. Therefore, with this idea of
prediction, the vectors that compose the acceleration are proposed, perceiving the relation
of Equation (45), where a represents the acceleration (m/s2).

a2 = aN
2 + aT

2 → aT =
√

a2 − aN2 (45)

With this information, it is possible to propose the velocity at t + 1 for the AGV.

V(t + 1) = V(t) + Δt·aT (46)

In Equation (46) it is viable to substitute aT, as seen in Equation (40).

V(t + 1) = V(t) + Δt
√

a2 −V(t)2ω(t)2 (47)

Knowing all the variables of Equation (47), it is possible to obtain the value of the
maximum speed at t + 1, denoted as Vmax”. Taking into account Equation (44), Equation (48)
is defined.

V(t + 1) = min
(
Vmax

′′ , Vmax
′ = f (e)

)
(48)

To such a degree, if the AGV maintains a significantly high angular velocity, the linear
speed is reduced. The parameter Vmax

′ is provided by the AGV, representing the maximum
nominal velocity.

V(t + 1) = f (e, ω(t), V(t), a) (49)

Ultimately, e is contemplated, attaching importance to the trajectory execution speed.

7. Results

Beforehand, the algorithm is proved in simulation, analysing the compliance drop
the various objectives. As designed, the lateral control and the longitudinal control work
together to allow proper trajectory tracking. In the simulations, it is observed that regardless
of the values of the

→
pose, the autonomous vehicle redirects and reaches the path. As the

AGV approaches, it adjusts itself to be able to develop over the trajectory and not overshoot
it, obtaining correct trajectory tracking.
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At the beginning of the simulation, the algorithm can determine the closest position of
the trajectory based on the AGV. Therefore, the first objective is to attain that point. In this
situation, the value of the positioning error is considerable. Regardless of the initial θ, the
AGV is required to take an angle of π

2 (rad) to correct the value of e and reach the trajectory
quickly. When the AGV assumes θ = π

2 rad, the forward motion begins. With the decrease
in the positioning error, the value of the vehicle angle starts adapting, adjusting to fit the
trajectory angle and generating a curve. The linear velocity also starts increasing. As the
AGV approaches the path, the closest point is necessarily unmaintained.

While the positioning error decreases, the alignment error has to do so as well. Because
of that, and as the closest point is changing, the value of ϕ is adapting.

When the AGV is on a straight trajectory, both error values are approximately null,
making accurate tracking of the trajectory achievable. In this case, the speed of the move-
ment is limited by the Vnom of the AGV. In the case of a curve in the path, it can be observed
that the autonomous vehicle reduces its speed to prevent deviating from the predetermined
path. Simultaneously, it is making a constant redirection to adhere to the reduced value of
alignment error.

In this way, it is proved that the designed algorithm produces a satisfactory result due
to the good following of any type of trajectory as can be seen in Figure 10. It exhibits diverse
types of paths and

→
poses of the AGV. The red line represents the established trajectory. The

black crosses are the nearest point calculated by the algorithm. The coloured line represents
the route followed by the AGV. It can be perceived that irrespective of the positioning error,
the navigation algorithm performs well in all cases. In Figure 10a,b, the established path
is sinusoidal where it can be seen how the AGV can reach the trajectory and adapt to it
in both cases. In Figure 10c,d a purely linear trajectory is considered where the AGV also
tracks the path well. At long last, a fully curved trajectory is presented in Figure 10e,f.
Once more, the following is performed accurately.

  

(a) (b) 

  
(c) (d) 

Figure 10. Cont.
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(e) (f) 

Figure 10. Different path simulation: (a) Sinusoidal with AGV at the right side; (b) Sinusoidal with
AGV at the left side; (c) Linear with AGV at the right side; (d) Linear with AGV at the left side; (e)
Circular with AGV outside; (f) Circular with AGV inside.

Additionally, it can be marked from all the graphs in Figure 10 that the tracking of
the trajectory is correct independently of the positioning of the AGV and therefore, of the
sign of e.

It is equally necessary to test whether the algorithm as a whole is suitable for the real
AGV. To perform this, two instances are created in MATLAB. One of them processes the
image, and the other one executes the navigation algorithm. These are communicated by
ROS nodes, to give concurrency to the execution. The movement of the AGV is achieved
with a PLC. It is observed that the AGV can follow the whole route correctly.

In the interest of clarifying the execution times of the algorithm, it should be marked
that the processor employed is Intel® Core™ i9-9880H CPU @ 2.30 GHz 3.30 GHz. The
RAM memory of the computer on which the algorithm is executed is 16 GB and it has an
NVIDIA Quadro T1000 graphics card.

Under these conditions, the neural network execution time is 144ms. This time is
incorporated into the total period of the ROS publishing node, which is the one that
manages the images and takes 186 ms to send the trajectory data vector, measured as an
average of 1550 executions.

Regarding the subscriber node, that is the one that executes the control and sends the
commands to the PLC, it takes 136 ms on average in 5510 iterations.

8. Discussion

In considering the advantages of this study, comparisons with other techniques com-
monly used in the control of AGVs are mentioned.

On the one hand, one of the most frequently used sensor techniques in this type
of vehicles is LiDAR. These devices are highly effective when it comes to localizing ad
receiving data related to the environment in which the AGV is located. In studies such as
the one performed by Quan and Chen [46], these devices are employed in conjunction with
the odometry of the wheels in order to localize an autonomous guided vehicle. Despite
their extensive use, these sensors do not provide the necessary robustness for this type of
systems. In the present paper, this robustness is consistently achieved.

On the other hand, in the industrial field, it has been frequent to employ philo-guided
vehicles (see Chet et al. [47]). These vehicles use electromagnetism to perform navigation,
providing the necessary robustness and accuracy. However, it is not a flexible solution. The
AGV and navigation system presented in this work have the benefit of achieving minimum
cost when implementing a fixed trajectory. By the use of tape of a determined color, any
type of path can be established without the need for expensive and specific infrastructure.
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Furthermore, with the re-training of the neural network the path can be adapted to any
color or operating area.

To conclude, it is possible to get the positioning error committed with this navigation
algorithm in a specific trajectory, as graphited in Figure 11. The figure, therefore, shows
that in curved areas, like in the beginning and the end iterations, the positioning error
increases, because of the location of the wheels and the camera in the AGV itself. However,
in the central iterations, it can be appreciated that in straight areas the positioning error is
close to zero.

 

Figure 11. Positioning error values in a specific trajectory.

As demonstrated by Hoffmann et al. [45] in the Stanley algorithm, a typical RMS
cross-track error of less than 0.1 m is obtained. In the case of this modification of the
algorithm, the RMS of the positioning error is around 0.02 m.

9. Conclusions

The present work focuses on the search for solutions for the navigation and localization
of an AGV, because of the need to discover robust techniques, achieving greater precision
and reliability.

Fundamentally, it is demonstrated that the proposed algorithm modification is stable.
As mentioned in the previous section, the advantages over conventional techniques can
be recognized. This algorithm is remarkably simple, requiring no previous training to
perform properly. When changing path, no retraining is necessary, it merely requires the
colour of the trajectory to match.

In terms of navigation, starting from a base such as the Stanley algorithm and present-
ing it another perspective comprehends its complexity. In addition, demonstrating stability
and ensuring the given solution is adequate is uneasy. For this, other alternatives have to
be tested until a solution is obtained that proves its robustness. Therein way, the values of
the constants can be demonstrated and a sense for them, as well. This issue has been one of
the most arduous tasks of this work.

The main objective set in this work represents the stability analysis of the modification
of a navigation algorithm capable of performing lateral control and longitudinal control.
This has been achieved, obtaining satisfactory results. As mentioned, the difficulty was in
the stability analysis, but due to the results, its proper performance has been demonstrated.

Continuing with localization, instead of designing a new algorithm, some data derived
from the other algorithms are employed. In this case, the necessary parameters can be
obtained from the navigation and path planning codes, without using sensors.

Sensors remain the conventional method for calculating the trajectory. In this work, it
is completed with artificial vision and a neural network, a less common method but with
remarkably pleasing results as well. The latter algorithm was considered with Hough trans-

20



Mathematics 2021, 9, 3139

forms, for example, but concluded that the use of a neural network was more appropriate.
Nevertheless, in some areas, further study is required to achieve more accuracy. These
areas are related to light shimmers generated in the image that create indistinctness.

Furthermore, it has been possible to decouple the problem of data acquisition from the
problem of navigation. Consequently, until a new image is received, predictions are used.

Overall, the work accomplishes the objective of ensuring stability of an algorithm for
the free navigation of an industrial autonomous vehicle.

As a prolongation of this research, attempts will be made to enhance the architecture
of the convolutional neural network with the aim of achieving higher speed rates.

For future work, the execution of the algorithm in real-time but with more excessive
speed may reveal a lack in the concurrency of the ROS nodes. An analysis of resource
consumption can in addition be effected.

On the other hand, numerous tests can be done with the neural network, changing the
configuration or performing different learning, to improve the accuracy of the navigable
path. This can give an idea of the characteristics that the CNN may need for this application.

An explicability analysis using the LIME technique can clarify whether the semantic
segmentation errors are related to the similarities between the images. In all images, the
trajectory is mostly linear and close to the centre of the image. This analysis provides
insight into what the neural network relies on to classify the parts of the image. It will also
be interesting to investigate the interpretation of deep learning.

In addition, if the semantic segmentation has mask discontinuities to compute the
trajectory, it is necessary to consider alternatives in the algorithm to finalize the navigation.

As for the algorithm used, it is necessary to incorporate the case where there is no
trajectory and how to stop the AGV’s movement. In the simulation, the AGV attains the
final of the trajectory and turns π (rad), following the path in reverse. In the real AGV,
when it does not visualize any more trajectory, it starts to turn on its own to detect the
yellow line again. Therefore, there exists an understandable need for a stopping policy that
contemplates different situations.
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2 Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania; popm.ioan@yahoo.co.uk
3 Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634045 Tomsk, Russia
* Correspondence: sheremet@math.tsu.ru

Abstract: Heat transfer enhancement poses a significant challenge for engineers in various practical
fields, including energy-efficient buildings, energy systems, and aviation technologies. The present
research deals with the energy transport strengthening using the viscous fluid and solid/porous
fins. Numerical simulation of natural convective energy transport of viscous fluid in a cooling cavity
with a heat-generating element placed in a finned heat sink was performed. The heat-generating
element is characterized by constant volumetric heat generation. The Darcy–Brinkman approach was
employed for mathematical description of transport processes within the porous fins. The governing
equations formulated using the non-primitive variables were solved by the finite difference method
of the second-order accuracy. The influence of the fins material, number, and height on the flow
structure and heat transfer was also studied. It was found that the mentioned parameters can be
considered as control characteristics for heat transfer and fluid flow for the cooling system.

Keywords: natural convection; solid/porous fins; heat sink; local heat-generating element;
numerical technique

1. Introduction

Many different engineering fields demand the heat transfer enhancement that can be
achieved using the extended heat transfer surfaces. Such an approach helps to develop
energy-efficient buildings, modern energy and electronic systems, aviation technologies,
and others. Nowadays, extended heat transfer surfaces are widely used in different
engineering applications [1–5]. There are some published researches on convective heat
transport augmentation in chambers with a fins system [3–12]. Thus, Hatami [6] has studied
thermal convection in a rectangular cabinet with two isothermal fins placed on the lower
adiabatic surface under an influence of cold upper border. By using Pak and Cho relation
for nanosuspension viscosity and Maxwell–Garnett relation for heat conductivity, the
formulated partial differential equations could be worked out with the FlexPDE commercial
code. It has been found that an increase in the fins’ height results in a higher mean Nusselt
number. Siavashi et al. [7] computationally scrutinized free convection in a differentially
warmed square chamber filled with copper–water nanoliquid, and placed porous fins on
the left vertical hot border. By employing the Corcione’s correlations for nanosuspension
viscosity and thermal conductivity with the two-phase nanofluid model, the governing
partial differential equations could be worked out by the finite volume technique. It has
been revealed that, for high Darcy numbers, energy transport strength can be increased
with fins number and fins length, while for low Darcy numbers, one can find the opposite
effect. Hejri and Malekshah [8] have scrutinized computationally natural convective
energy transport and entropy production in a rectangular cabinet saturated with CuO–
water nanoliquid under an influence of isothermally heated fins and isothermally cooled
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vertical and upper cavity walls. The used a single-phase nanofluid model with the Koo–
Kleinstreuer–Li approach for nanofluid thermal conductivity, and numerically worked out
the viscosity. Authors have found that a reduction in the aspect ratio of fins characterizes
the heat transfer strength diminution. Massoudi et al. [9] examined computationally MHD
natural convection of MWCNT–H2O nanosuspension in an inclined T-shaped enclosure
with isothermal trapezoidal fins mounted on the lower border. Numerical analysis was
conducted by employing the single-phase nanosuspension approach with the Brinkman
model to work out viscosity, and the Xue approach was conducted to work out thermal
conductivity on the basis of the COMSOL Multiphysics commercial software. Authors
have ascertained an increase in the mean Nusselt number with fins height. Furthermore,
the fins location and shape, in combination with the chamber inclination, have an essential
influence on the heat transport rate. Astanina et al. [10] have computationally investigated
free convective energy transference in a porous chamber saturated with variable viscosity
liquid under an impact of heat-producing source and finned heat sink. Using the created
computational code, analysis has shown that the fins number plays an essential role in
energy removal from the heated element for the passive cooling systems.

Natural convection with the second thermodynamic law for alumina–water nanoliq-
uid in a differentially warmed chamber with isothermally heated fins of various shapes
mounted on left vertical hot wall under the influence of uniform Lorentz force has been in-
vestigated by Yan et al. [11]. By employing single-phase nanosuspension approach with the
Koo–Kleinstreuer model for nanofluid heat conductivity and viscosity, the governing equa-
tions could be worked out using the finite volume method. Authors have found that the
energy transport can be intensified by attaching the inclined fins. Gireesha et al. [12] have
numerically analyzed an influence of the hybrid nanofluid on liquid motion and energy
transfer over a porous fin moving with constant velocity. The single-phase nanofluid model
with Brinkman and Maxwell relations for viscosity and heat conductivity, in combination
with one-dimensional approximation, has been solved using the Runge–Kutta–Fehlberg
technique for ordinary differential equations. It has been found that hybrid nanofluid helps
to intensify the energy transport. Buonomo et al. [5] have generalized the previous research
to the local thermal non-equilibrium model for the porous fin in the case of natural convec-
tion and heat radiation. The defined ordinary differential relations were worked out using
the Adomian decomposition method. Authors have revealed that low Rayleigh numbers
and intensive external cooling reflect a possibility to use the local thermal equilibrium
approach. Some interesting results can also be found in [13–18].

This brief review illustrates the actuality of the considered topic, but there are no
papers that analyze the influence of porous–solid fins on heat-generating element within
the highly heat-conducting heat sink in a closed cooling chamber. Therefore, the aim
of the research is a computational simulation of heat transfer performance in a closed
cooling cabinet saturated with viscous fluid under an impact of porous/solid fins on the
heat-generating element within the heat sink.

2. Mathematical Simulation

Herein, we analyze the viscous, laminar, incompressible, and conjugate convective en-
ergy transfer and liquid circulation in a closed hermetic electronic cabinet with a thermally
producing source placed inside a finned heat sink. The cooling system is shown in Figure 1,
where the liquid (water) is circulated within the chamber. To have the impact of buoyancy,
the cabinet requires to be regarded in vertical location, since the analysis is of natural con-
vection. Let x and y be the coordinate axes in horizontal and vertical directions, respectively,
with u and v denoting the corresponding velocity components. Let the temperature of
vertical and upper horizontal walls be denoted by Tc. The density changes are modeled
using the Boussinesq approach [3,4,10]. The local heater is a heat-conducting solid element
with a constant volumetric heat generation Q. The temperature of the solid structure equals
the temperature of the liquid phase for the porous fins, and the local thermal equilibrium
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approach is employed. The transport processes in porous fins are modeled on the basis of
the Brinkman–extended Darcy approximation.

 
Figure 1. Sketch of the problem with coordinates.

The governing equations representing the liquid circulation and energy transport are
as follows [3,4,10].

– For the viscous fluid

∂u
∂x

+
∂v
∂y

= 0 (1)

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ μ

(
∂2u
∂x2 +

∂2u
∂y2

)
(2)

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ μ

(
∂2v
∂x2 +

∂2v
∂y2

)
+ ρgβ(T − Tc) (3)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
k f

(ρc) f

(
∂2T
∂x2 +

∂2T
∂y2

)
(4)

– For the solid fins and solid heat sink

(ρc)s
∂T
∂t

= ks

(
∂2T
∂x2 +

∂2T
∂y2

)
(5)

– For the heat-generating element

(ρc)hs
∂T
∂t

= khs

(
∂2T
∂x2 +

∂2T
∂y2

)
+ Q (6)

– For the porous fins
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∂u
∂x

+
∂v
∂y

= 0 (7)

ρ

(
1
ε

∂u
∂t

+
u
ε2

∂u
∂x

+
v
ε2

∂u
∂y

)
= −∂p

∂x
+

μ

ε

(
∂2u
∂x2 +

∂2u
∂y2

)
− μ

K
u (8)

ρ

(
1
ε

∂v
∂t

+
u
ε2

∂v
∂x

+
v
ε2

∂v
∂y

)
= −∂p

∂y
+

μ

ε

(
∂2v
∂x2 +

∂2v
∂y2

)
− μ

K
v + ρgβ(T − Tc) (9)

η
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
kpm

(ρc) f

(
∂2T
∂x2 +

∂2T
∂y2

)
(10)

where η = ε+ (1− ε)
(ρc)spm
(ρc) f

is the overall heat capacity ratio and kpm = εk f + (1− ε)kspm

is the thermal conductivity of porous medium.
Including the stream function

(
u = ∂ψ

∂y , v = − ∂ψ
∂x

)
, vorticity

(
ω = ∂v

∂x − ∂u
∂y

)
, and

non-dimensional parameters:

x = x/H, y = y/H, τ = t
√

gβΔT/H, θ = (T − Tc)/ΔT,

u = u/
√

gβΔTH , v = v/
√

gβΔTH , ψ = ψ/
√

gβΔTH3 , ω = ω
√

H/gβΔT
(11)

The control non-dimensional equations are as follows [3,4,10].

– For the viscous fluid

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω (12)

∂ω

∂τ
+

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
=

√
Pr
Ra

(
∂2ω

∂x2 +
∂2ω

∂y2

)
+

∂θ

∂x
(13)

∂θ

∂τ
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1√
Ra · Pr

(
∂2θ

∂x2 +
∂2θ

∂y2

)
(14)

– For the solid fins and solid heat sink

∂θ

∂τ
=

αs/α f√
Ra · Pr

(
∂2θ

∂x2 +
∂2θ

∂y2

)
(15)

– For the heat-generating element

∂θ

∂τ
=

αhs/α f√
Ra · Pr

(
∂2θ

∂x2 +
∂2θ

∂y2 + 1
)

(16)

– For the porous fins

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω (17)

ε
∂ω

∂τ
+

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
= ε

√
Pr
Ra

(
∂2ω

∂x2 +
∂2ω

∂y2 − ε
ω

Da

)
+ ε2 ∂θ

∂x
(18)

∂θ

∂τ
+ u

∂θ

∂x
+ v

∂θ

∂y
=

kpm/k f√
Ra · Pr

(
∂2θ

∂x2 +
∂2θ

∂y2

)
(19)
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The employed additional conditions are

τ = 0 : ψ(x, y, 0) = 0,ω(x, y, 0) = 0, θ(x, y, 0) = 0
τ > 0 :

∂θ
∂x = 0 at x = 0, x = L/H and 0 ≤ y ≤ h/H

∂θ
∂y = 0 at y = 0, 0 ≤ x ≤ L/H

ψ = 0, ω = − ∂2ψ
∂x2 , θ = 0 at x = 0, x = L/H and h/H ≤ y ≤ 1

ψ = 0, ω = − ∂2ψ
∂y2 , θ = 0 at y = 1 and 0 ≤ x ≤ L/H⎧⎪⎨⎪⎩
θhs = θs

khs
ks

∂θhs
∂n = ∂θs

∂n
at heater surface

ψ = 0, ω = − ∂2ψ
∂n2 ,

⎧⎪⎨⎪⎩
θ f = θs

∂θ f
∂n = λs

λ f

∂θs
∂n

at finned heat sink surface

⎧⎨⎩
θ f = θpm,

∂θ f
∂n =

kpm
k f

∂θpm
∂n ,

⎧⎪⎨⎪⎩
ψ f = ψpm,

∂ψ f
∂n =

∂ψpm
∂n ,

⎧⎪⎨⎪⎩
ω f = ωpm,

∂ω f
∂n =

∂ωpm
∂n

∣∣∣∣∣∣
at porous
fins/fluid
interface

ψ = 0, ω = − ∂2ψ
∂y2 ,

⎧⎨⎩ θs = θpm,

∂θs
∂n =

kpm
ks

∂θpm
∂n

∣∣∣∣ at porous fins/solid heat
sink interface

(20)

Here, Ra = ρ f gβΔTH3/
(

α fμ
)

is the Rayleigh number, Pr = μ/
(
ρ f α f

)
is the Prandtl

number, and Da = K/H2 is the Darcy number.

3. Solution Technique

The formulated partial differential Equations (12)–(19) with additional conditions (20)
have been worked out by the finite difference technique of the second-order accuracy using
the uniform mesh [3,4,10]. For the discretization of the convective and diffusive members,
we applied the finite differences of the second-order accuracy. The energy and vorticity
equations were worked out using the Samarskii locally one-dimensional technique. The
approximated relations were resolved by the Thomas method. Equations (12) and (17) were
approximated employing the five-point differences. Obtained relations were carried out by
the successive over relaxation technique. The described numerical procedure was included
in the in-house computational code developed using C++ programming language. The
created computational code was verified comprehensively using numerical data of other
authors and mesh sensitivity analysis. It should be noted that the developed code can solve
the conjugate natural convection problems for different fins numbers, fins materials, and
geometry in laminar regimes of fluid flow and heat transfer.

The developed numerical algorithm was then verified for different grids at Ra = 105

and Pr = 6.82. Figure 2 demonstrates an influence of the grid characteristics on the mean
Nusselt number at the heat sink surface.

Considering this impact of the mesh characteristics, the uniform mesh of 200 × 100 elements
were chosen for further analysis.

Validation of the created computational program was performed for different model
problems. The first problem [19] is the conjugate thermal convection in a closed cabinet with
a thermally conducting wall of finite thickness. Dependences of the mean Nusselt number
on the Rayleigh number, heat conductivity ratio, and solid wall thickness in comparison
with numerical data [19] are shown in Figure 3.
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Figure 2. Time dependences of mean Nusselt number with grid parameters for Pr = 6.82 ans Ra = 105.

 
Figure 3. Dependences of the mean Nusselt number on Ra, heat conductivity ratio, and solid wall
thickness in comparison with the numerical data [19].

In the case of porous medium, the validation was performed for the problem of natural
convection of viscous liquid in a differentially heated cabinet which was partially saturated
with porous material. Figure 4 demonstrates a good agreement between the obtained results
and computational data [20] for streamlines and isotherms at Da = 10−5 and Ra = 106.
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Figure 4. Streamlines ψ and isotherms θ at Da = 10−5 and Ra = 106: these obtained results have a
good agreement with data from [20] (see Figure 2c in [20]).

This performed validation demonstrates that the developed numerical code helps
to correctly solve the conjugate convective heat transfer problems for clear and porous
media. Therefore, this code was employed for calculations of convective–conductive energy
transfer in a closed electronic cabinet, as presented in Figure 1.

4. Results and Discussion

Numerical solution of the considered problem was obtained for Ra = 105, Pr = 6.82,
Da = 10−5, and ε = 0.8, as well as for a different fins number, fins material, and fins height.
It should be noted that the porosity of a porous medium is defined as the fraction of the
total volume of the medium that is occupied by void space [21]. It is well known that, for
natural media, the porosity does not normally exceed 0.6. In the present study, the porous
material is a man-made material lsuch as metallic foam, where porosity can approach the
value 1. The main focus is on the influence of the solid and porous fins on flow structure
and energy transport within the closed cabinet.

Authors should highlight that all results were obtained using the developed compu-
tational code. This code is a home-made program using non-primitive variables, such as
stream function and vorticity (see Equations (12)–(19)). An application of such variables
helps to reduce the number of equations as well as the computational time. Moreover, in
the present research, the conjugated natural convection problem was solved with boundary
conditions of a forth kind by illustrating an equality of temperatures and heat fluxes at
interfaces. From the mathematical point of view, an approximation of governing equations
and boundary conditions for space coordinates was performed using the second order
of accuracy.

Figure 5 shows the streamlines and isotherms within the closed chamber with solid
fins. Solid fins are natural obstacles to the liquid flow, which can be confirmed by the
formation of reverse flows near the surfaces of these fins. The development of thermal
plumes above the fins occurs due to the high thermal conductivity of the material of these
solid fins. Material of the solid fins and heat sink is copper. The presence of a solid fin
directly above the local heater reflects the ability to form a thermal plume and, as it might
seem, to dissipate energy more intensively. If the fins are located at the periphery relative
to the energy source, a downward flow with a cold two-dimensional plume from the upper
cooling wall is formed in the central part, which also initiates cooling of the energy source.
Furthermore, an inclusion of solid fins characterizes a complication of flow structures,
namely, a transition between one, two, and three fins reflects a transition between two,
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four, and eight vortices. The considered constant value of the volumetric heat generation
flux in a heater means that a thermal plume cannot be formed in a viscous fluid over the
heater and that the descending flow from the upper cooled wall cannot interact (Figure 5b).
In the case of three fins, the flow structure is too complex with four major eddies and
four secondary eddies of less scale, but the symmetry of the flow structure characterizes a
formation of steady mode. Moreover, one can find an interesting interaction between the
central thermal plume and two side thermal plumes in the case of two and three fins. The
presence of central descending flow illustrates an attraction between the two-side thermal
plumes (Figure 5b), while the presence of the central ascending flow illustrates a repulsion
between the two-side thermal plumes (Figure 5c).

 

Figure 5. Streamlines and isotherms in a cavity with solid fins: one fin—(a), two fins—(b), three fins—(c).

An introduction of porous fins characterizes a formation of a flow structure with less
resistance from these fins. It should be noted that material of porous fins is the copper
foam with Da = 10−5 and ε = 0.8. It should be noted that fins can be considered as thermal
bridges for the formation of thermal plumes, but these bridges are permeable and such a
structure helps to intensify the energy removal because the surface of such a porous fin
is greater than the surface of a solid fin. As previously mentioned above, for the solid
fins, an addition of fins leads to a formation of additional eddies in the closed cabinet
(see Figures 5a,b and 6a,b). However, in the case of three porous fins, the hydrodynamic
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situation is changed, namely, a permeability of porous fins results in a combination of side
vortices due to a combination of thermal plumes over these fins. As a result, a formation
of only the thermal plume over the central part can reduce the energy removal from the
heater in comparison with the two fins. Still, the flow structures for one and two fins in the
case of solid and porous material are similar.

 

Figure 6. Streamlines and isotherms in a cavity with porous fins at Da = 10−5 and ε = 0.8: one fin—(a),
two fins—(b), three fins—(c).

Figure 7 demonstrates the time dependences of the mean heater temperature on fins
number and height for solid and porous materials. As expected, the addition of fins helps
to reduce the heater temperature, but an increase in the fins number has a non-monotonic
influence on the heater temperature. At the same time, an increase in the fins height for
the solid material results in a reduced heater temperature, while for porous material, one
can reveal a temperature diminution for one and two fins. However, for three fins, the
behavior is opposite. It should be noted that more intensive cooling of the heater is for
two fins when central descending cooling flow interacts with the bottom solid plate. By
comparing solid and porous fins, it is possible to conclude that porous permeable obstacles
help to strongly decrease the heater temperature, but the influence of the fins number and
fins height is non-monotonic.
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Figure 7. Dependences of average heater temperature on time, fins number and fins height at
Ra = 105: solid fins—(a), porous fins at Da = 10−5, ε = 0.8—(b).

5. Conclusions

This research considers the natural convection circulation and energy transfer of
viscous fluid in a closed electronic cabinet with heat-producing source and finned heat sink.
Numerical analysis was conducted by employing the created computational software. The
developed in-house computational code using C++ programming language was verified
comprehensively on the basis of the mesh sensitivity analysis and numerical data of other
authors. It should be noted that usage of non-primitive variables helps to reduce essential
computational time and obtain the correct physical results. The influence of fins number,
fins height, and fins material on the circulation structure and energy transport was studied.
Taking into account the performed detailed analysis, the obtained outcomes are as follows:

– An addition of fins changes the motion structure and energy transfer. In the case
of solid material of fins, a growth of the fins number results to a complication of
flow structure, while for the porous foam flow nature can be simplified due to the
permeability of the fins;

– A growth of the fins height illustrates more essential average heater temperature
reduction for the solid fins, while in the case of porous fins, such influence can
be reversed;

– An increase in the fins number characterizes a non-monotonic influence on the mean
heater temperature. Namely, more essential cooling of the heater occurs in the case of
two fins.
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Nomenclature

c heat capacity
Da Darcy number
g acceleration due to gravity
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h height of the bottom solid plate
H electronic cabinet height
k thermal conductivity
K porous medium permeability
L electronic cabinet length
N fins number
Nu Nusselt number
p pressure
Pr Prandtl number
Q volumetric heat generation density
Ra Rayleigh number
t time
T temperature
Tc cooled wall temperature
u, v velocity components
u, v non-dimensional velocity components
x, y Cartesian coordinates
x, y non-dimensional Cartesian coordinates
Greek symbols

α thermal diffusivity
β thermal expansion parameter
δ non-dimensional fins height
ε porous medium porosity
θ non-dimensional temperature
μ dynamic viscosity
ρ density
τ non-dimensional time
ψ stream function
ψ non-dimensional stream function
ω vorticity
ω non-dimensional vorticity
Subscripts

f fluid
hs heat source
pm porous medium
s solid
spm solid matrix of porous medium
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2 Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania; popm.ioan@yahoo.co.uk
3 Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634045 Tomsk, Russia
* Correspondence: sheremet@math.tsu.ru

Abstract: The development of different industrial fields, including mechanical and power engineering
and electronics, demands the augmentation of heat transfer in engineering devices. Such enhancement
can be achieved by adding extended heat transfer surfaces to the heated walls or heat-generating
elements. This investigation is devoted to the numerical analysis of natural convective energy
transport in a differentially heated chamber with isothermal vertical walls and a fin system mounted
on the heated wall. The developed in-house computational code has been comprehensively validated.
The Forchheimer–Brinkman extended Darcy model has been employed for the numerical simulation
of transport phenomena in a porous material. The partial differential equations written, employing
non-primitive variables, have been worked out by the finite difference technique. Analysis has been
performed for solid and porous fins with various fin materials, amounts and heights. It has been
revealed that porous fins provide a very good technique for the intensification of energy removal
from heated surfaces.

Keywords: natural convection; solid and porous fins; differentially heated cavity; numerical technique

1. Introduction

Energy transport enhancement can be achieved using different passive techniques,
including modern heat transfer liquids (non-Newtonian fluids, nanofluids) or extended
heat transfer surfaces [1–3]. It should be noted that passive energy transport enhancement
techniques are more attractive for engineers and scientists due to low financial expense, low
noise and the natural conditions involved in such a system. Nowadays, there are several
published papers on the application of extended heat transfer surfaces in engineering
devices, including modes of natural, forced or mixed convection [4–15].

In the case of forced and mixed convective energy transport, solid and porous fins are
widely used in different channels and tubes [4–10]. Thus, Gong et al. [4] have calculated
convective energy transport in a channel with solid and metallic porous fins on the basis of
the boundary-value problem for the partial differential equations. Numerical analysis has
been conducted by employing the primitive variables and finite volume technique. Authors
have revealed that porous fins for the considered problem are not effective due to their
low effective thermal conductivity. Kumar and Jayavel [5] have numerically analyzed the
influence of porous fins in a rectangular microchannel on heat transference augmentation
compared to solid fins. Using primitive variables combined with Navier–Stokes equations
for the viscous fluid and the Forchheimer–Brinkman extended Darcy approach for the
porous fins, the developed equations have been solved by using commercial CFD software.
Obtained outcomes have demonstrated that the introduction of porous fins allows for
a reduction in the channel pressure drop. High fin porosity characterizes a low energy
transport rate, while an increase in the porous fin permeability diminishes the average heat
transfer coefficient. Computational analysis of an air-turbulent convective heat transport
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in a system with porous pin fin heat sinks has been performed by Ranjbar et al. [6], using
commercial CFD software. The authors revealed that the arrangement and permeability of
pin fins have a huge influence on energy transport effectiveness. Vatanparast et al. [7] have
scrutinized numerically forced convection in a partially heated horizontal channel with
staggered semi-porous fins. Using the primitive variables and finite volume technique, the
authors have analyzed the impact of the Reynolds and Darcy numbers, as well as fin sizes
and the thermal conductivity ratio on flow structures, entropy generation and the heat
transfer regime. It has been ascertained that entropy generation can be increased with the
effective fins’ thermal conductivity. Kansara et al. [8] have investigated computationally
and experimentally forced convection in a channel mounted with fins or porous metal
foam for the effectiveness of flat-plate solar collection. Computational research has been
conducted employing commercial CFD software, while experiments have been conducted
for two collectors, namely, an empty channel and finned channel. Authors have shown that
the addition of porous material allows for intensification of the energy transport compared
to empty and finned collectors. An analysis of the influence of pin fins on flow and energy
transport parameters between two- and three-layer porous laminates has been performed
experimentally and numerically using commercial software by Zhang et al. [9]. Authors
have found that the shape of the pin fins has an essential influence on system effectiveness.
Yerramalle et al. [10] have calculated the mixed convection in a horizontal channel with a
porous fin over a heated part of the bottom wall. Analysis of the transport processes in a
porous material has been performed employing the local thermal non-equilibrium model.
Using commercial software, it has been demonstrated that a rise in the porosity, effective
thermal conductivity and Reynolds number results in more essential heat removal from
the heater.

According to the above literature review, fin shape, arrangement and material have
a significant influence on heat transfer performance in various channels. It is interesting
to note that in the case of forced or mixed convection in channels, porous fins can be
effective [9,10], or not [4,5]. At the same time, researchers have mainly relied on commercial
software for numerical analysis of the solid/porous fins’ efficacy.

In the case of the natural convection phenomenon analysis of solid/porous fins’ influ-
ence on energy transport, performance is not so widespread [11–15]. Thus, Alshuraiaan
and Khanafer [11] have examined the influence of a single porous fin mounted on the left
vertical heated wall or the bottom horizontal adiabatic wall. Analysis has been conducted
numerically using Navier–Stokes equations for clear parts and the Forchheimer–Brinkman
extended Darcy model for porous fins with the local thermal equilibrium approach. Using
a finite element technique, the authors have found that the use of horizontal porous fins
mounted on the vertical heated wall is more effective, and an average Nusselt number
depends on the effective thermal conductivity. Martin et al. [12] have analyzed the nu-
merically natural convection of copper/water nanosuspension in a porous medium under
the influence of solid fins. Using primitive variables and a finite volume algorithm, the
authors have ascertained that porous material saturated with nanosuspension allows for
an improvement of the cooling effect. Keramat et al. [13] have scrutinized free convection
in a differentially heated enclosure with a solid base and porous fins using commercial
software. The Forchheimer–Brinkman extended Darcy approach has been employed for
porous fins. The authors have found that a high energy transport rate is achieved for
the porous finned cavity at high Rayleigh numbers, while solid fins degrade the energy
transport efficacy. Asl et al. [14] have numerically studied the impact of solid and porous
fins on heat transfer performance in an inclined, tall cavity. Using primitive variables and
the Brinkman-extended Darcy approach for the porous fins, governing equations have been
formulated and solved by the finite volume method. It has been concluded that porous fins
are more effective, and an increase in the Darcy number augments the energy transport.
Some interesting and useful data can also be found in [15–18].

The above review of an application of solid/porous fins in closed chambers with
heated surfaces illustrates the efficacy of porous fins. Unfortunately, there is little informa-
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tion about the influence of a porous fin located at the heated wall, or the length of this fin on
energy transference enhancement. Moreover, analysis is often performed using commercial
software and sometimes in-house computational codes with primitive variables. Therefore,
the aim of the present research is a computational analysis of energy transfer performance
in a differentially heated chamber with solid and porous horizontal fins, taking into account
the fins’ number, length, location and material. Analysis has been conducted on the basis
of a developed in-house computational technique using non-primitive variables.

2. Mathematical Modeling

The investigation of free convection of a viscous fluid in a square differentially heated
chamber with solid or porous fins mounted on the heated vertical wall has been performed
numerically. The considered vertically oriented system is presented in Figure 1, where air
(Pr = 0.71) is circulated within the chamber. Here, x and y are the dimensional Cartesian
coordinates, while the left vertical border is heated and the right one is cooled to maintain
constant temperatures Th and Tc, respectively. The density variation is described by the
Boussinesq approximation [19,20]. Moreover, the temperature of the porous solid matrix
is equal to the liquid temperature, and as a result, the local thermal equilibrium model is
applied. The transport phenomena within the porous material are simulated using the
Forchheimer–Brinkman extended Darcy model. It is assumed that viscous dissipation and
pressure work are negligible.

 
Figure 1. Coordinate system and thermal boundary conditions.

The governing equations in dimensional variables (denoted by an “overbar”) are as
follows [19,20]:

- For the viscous fluid:
∂u
∂x

+
∂v
∂y

= 0, (1)
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ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ μ

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ μ

(
∂2v
∂x2 +

∂2v
∂y2

)
+ ρgβ(T − Tc), (3)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
k f

(ρc) f

(
∂2T
∂x2 +

∂2T
∂y2

)
; (4)

- For the solid fins:

(ρc)s
∂T
∂t

= ks

(
∂2T
∂x2 +

∂2T
∂y2

)
; (5)

- For the porous fins:
∂u
∂x

+
∂v
∂y

= 0, (6)

ρ

(
1
ε

∂u
∂t

+
u
ε2

∂u
∂x

+
v
ε2

∂u
∂y

)
= − ∂p

∂x
+

μ

ε

(
∂2u
∂x2 +

∂2u
∂y2

)
− μ

K
u− cFρ

ε3/2
√

K
u
√

u2 + v2, (7)

ρ
(

1
ε

∂v
∂t +

u
ε2

∂v
∂x + v

ε2
∂v
∂y

)
= − ∂p

∂y + μ
ε

(
∂2v
∂x2 +

∂2v
∂y2

)
− μ

K v− cFρ

ε3/2
√

K
v
√

u2 + v2+

+ρgβ(T − Tc),
(8)

η
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
kpm

(ρc) f

(
∂2T
∂x2 +

∂2T
∂y2

)
, (9)

where η = ε + (1− ε)
(ρc)spm
(ρc) f

is the overall heat capacity ratio and kpm = εk f +

(1− ε)kspm is the effective thermal conductivity of porous material.

Introducing stream function
(

u = ∂ψ
∂y , v = − ∂ψ

∂x

)
, vorticity

(
ω = ∂v

∂x − ∂u
∂y

)
and non-

dimensional variables

x = x/L, y = y/L, τ = t
√

gβ(Th − Tc)/L, θ = (T − Tc)/(Th − Tc), u = u/
√

gβ(Th − Tc)L,

v = v/
√

gβ(Th − Tc)L, ψ = ψ/
√

gβ(Th − Tc)L3, ω = ω
√

L/gβ(Th − Tc),
(10)

the governing equations in dimensionless form become:

- For the air cavity:
∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω, (11)

∂ω

∂τ
+ u

∂ω

∂x
+ v

∂ω

∂y
=

√
Pr
Ra

(
∂2ω

∂x2 +
∂2ω

∂y2

)
+

∂θ

∂x
, (12)

∂θ

∂τ
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1√
Ra · Pr

(
∂2θ

∂x2 +
∂2θ

∂y2

)
; (13)

- For the solid fins:
∂θ

∂τ
=

αs/α f√
Ra · Pr

(
∂2θ

∂x2 +
∂2θ

∂y2

)
; (14)

- For the porous fins:
∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω, (15)

ε ∂ω
∂τ + u ∂ω

∂x + v ∂ω
∂y = ε

√
Pr
Ra

(
∂2ω
∂x2 + ∂2ω

∂y2 − ε
Daω

)
− cF

√
ε

Daω
√

u2 + v2−
− cF√

u2+v2

√
ε

Da

{
v2 ∂v

∂x − u2 ∂u
∂y + 2uv ∂u

∂x

}
+ ε2 ∂θ

∂x ,
(16)
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η
∂θ

∂τ
+ u

∂θ

∂x
+ v

∂θ

∂y
=

kpm/k f√
Ra · Pr

(
∂2θ

∂x2 +
∂2θ

∂y2

)
. (17)

The applied initial and boundary conditions are:

τ = 0 : ψ = 0,ω = 0, θ = 0.5;

τ > 0 :

ψ = 0, ∂ψ
∂x = 0, θ = 1 at x = 0, 0 ≤ y ≤ 1,

ψ = 0, ∂ψ
∂x = 0, θ = 0 at x = 1, 0 ≤ y ≤ 1,

ψ = 0, ∂ψ
∂y = 0, ∂θ

∂y = 0 at y = 0 and y = 1, 0 ≤ x ≤ 1,∣∣∣∣∣ ψ = 0,
∂ψ
∂n = 0,

⎧⎨⎩ θ f = θs
∂θ f
∂n = ks

k f

∂θs
∂n

at solid fins surface

⎧⎨⎩ θ f = θpm,
∂θ f
∂n =

kpm
k f

∂θpm
∂n ,

{
ψ f = ψpm,
∂ψ f
∂n =

∂ψpm
∂n ,

{
ω f = ωpm,
∂ω f
∂n =

∂ωpm
∂n

∣∣∣∣∣∣∣∣
at porous

fins/fluid

interface.

(18)

Here, Ra = ρ f gβ(Th − Tc)L3/
(
α fμ

)
is the Rayleigh number, Pr = μ/

(
ρ fα f

)
is the

Prandtl number, Da = K/L2 is the Darcy number and cF = 1.75√
150

is the Forchheimer
parameter.

3. Numerical Technique

The boundary-value problem under consideration and described by Equations (11)–(18)
was solved by the finite difference method [19–21]. Difference schemes of second-order
accuracy were used for diffusive and convective terms, while a first-order scheme was
applied for the time derivatives. The used difference scheme for the clear fluid can be
found in [20]. In the case of porous fins, the analysis of the vorticity Equation (16) was
conducted using the Samarskii locally one-dimensional difference scheme involving two
time levels as follows:

ε
ωk+1/2

i,j −ωk
i,j

Δτ + uk+1
i,j

ωk+1/2
i+1,j −ωk+1/2

i−1,j
2hx

−
∣∣∣uk+1

i,j

∣∣∣ωk+1/2
i+1,j −2ωk+1/2

i,j +ωk+1/2
i−1,j

2hx
=

= ε
√

Pr
Ra

(
1 +

∣∣∣uk+1
i,j

∣∣∣√ Ra
Pr

hx
2ε

)−1
ωk+1/2

i+1,j −2ωk+1/2
i,j +ωk+1/2

i−1,j

h2
x

−

−
(
ε2

Da

√
Pr
Ra + cF

√
ε

Da

√(
uk+1

i,j

)2
+

(
vk+1

i,j

)2
)
ωk+1/2

i,j + ε2 θ
k
i+1,j−θk

i−1,j
2hx

,

(19)

ε
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i,j−1

2hy
=

= ε
√

Pr
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(
1 +

∣∣∣vk+1
i,j
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− cF√(
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i,j
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+
(
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i,j

)2
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√
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+ 2uk+1
i,j vk+1

i,j
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i−1,j

2hx

}
.

(20)

Here, i and j are the mesh nodes along the x and y coordinates, k is the time level
number, Δτ is the time step, hx and hy are the mesh steps along the x and y coordinates and
κ is a regularization parameter [22].

In the case of energy Equation (17) within the porous fins, the used difference scheme
is similar to the previous one. Namely, the Samarskii locally one-dimensional difference
algorithm involving two time levels is employed as follows:

η
θk+1/2

i,j −θk
i,j

Δτ + uk+1
i,j

θk+1/2
i+1,j −θk+1/2

i−1,j
2hx

−
∣∣∣uk+1

i,j
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i−1,j

2hx
=
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(
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i,j
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√
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x

,
(21)
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η
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i,j
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i,j
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i,j−1
2hy

−
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i,j
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i,j+1−2θk+1

i,j +θk+1
i,j−1

2hy
=

=
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Ra·Pr

(
1 +
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i,j

∣∣∣ hy
√

Ra·Pr
2kpm/k f

)−1
θk+1

i,j+1−2θk+1
i,j +θk+1

i,j−1

h2
y

.
(22)

The difference scheme for the stream function within the porous medium is the same
as in a clear fluid. Therefore, this scheme can be found in [20].

The vorticity at the borders was defined using the Pearson formula. The written
difference schemes for vorticity and temperature (see Equations (19)–(22)) were solved
using the Thomas algorithm.

It should be noted that the considered problem (see Equations (11)–(17)) was solved as
a conjugate problem. In the case of solid fins, Equations (11) and (12) were solved within the
air cavity. Energy Equation (13) and heat conduction Equation (14) were solved within the
air cavity and solid fins, respectively. The solution was performed sequentially, taking into
account the coordinates’ directions and at the solid–fluid interface, the thermal boundary

conditions of the fourth kind
(
θ f = θs,

∂θ f
∂n = ks

k f

∂θs
∂n

)
were used. In the case of porous fins,

all equations, including Poisson equations for the stream function (Equations (11) and (15)),
vorticity equations (Equations (12) and (16)), and energy equations (Equations (13) and (17))
were solved within the air cavity and porous fins. The solution was performed sequentially,
and at the porous–fluid interface, the boundary conditions of the fourth kind were used for
all variables {

θ f = θpm,
∂θ f
∂n =

kpm
k f

∂θpm
∂n ;

{
ψ f = ψpm,
∂ψ f
∂n =

∂ψpm
∂n ;

{
ω f = ωpm,
∂ω f
∂n =

∂ωpm
∂n .

The solution of the coupled set of discretized equations at each time step begins by
first solving the Poisson equation for the stream function. Thereafter, the vorticity transport
equation and the energy equation can be solved.

The developed in-house computational code was comprehensively validated by em-
ploying the computational and experimental outcomes of other researchers. The verification
is widely presented in [19–21].

The developed computational algorithm was verified for various meshes in the case of
one porous copper fin placed in the center of the left vertical border at Ra = 105, Pr = 0.71,
Da = 10−2 and ε = 0.9. Figure 2 demonstrates the influence of the mesh characteristics
on the mean Nusselt number and fluid flow rate. Comparing values of the average
Nusselt number and fluid flow rate at steady state for different mesh parameters, we
have Nu

∣∣
50×50 = 7.16, Nu

∣∣
100×100 = 7.22, Nu

∣∣
200×200 = 7.25 and |ψ|max|50×50 = 0.051,

|ψ|max|100×100 = 0.0517, |ψ|max|200×200 = 0.0516. Taking into account small differences

between the considered meshes for Nu and |ψ|max, e.g.,
Nu|200×200−Nu|100×100

Nu|200×200
· 100% = 0.4%

and
|ψ|max|100×100− |ψ|max|200×200

|ψ|max|200×200
· 100% = 0.2%, and time consuming calculations for the

mesh of 200 × 200 elements, the uniform mesh of 100 × 100 elements was chosen for
the numerical simulation of the fins’ influence on heat transfer performance due to good
accuracy and resolution.
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Figure 2. Evolution in time of mean Nusselt number (a) and fluid flow rate (b) with mesh parameters
for Ra = 105, Pr = 0.71, Da = 10−2 and ε = 0.9.

4. Results and Discussion

Numerical analysis was performed for Ra = 105, Pr = 0.71, solid and porous fins,
Da = 10−4–10−2, ε = 0.9, h/L = 0.1, different numbers of fins (N), locations of fins (described
by δ1 = d1/L, the non-dimensional distance between the bottom wall and bottom border
of the nearest fin, and δ2 = d2/L, the non-dimensional distance between the upper border
of one fin and the bottom border of the nearest fin) and lengths of fins (described by
γ = l/L, the non-dimensional length of the fin). The material of solid fins is copper, while
the material of porous fins is copper foam. The present investigation was devoted to the
analysis of the impact of solid and porous fins and their characteristics on flow behavior
and heat transfer in the chamber.

Figure 3 demonstrates streamlines and isotherms in a chamber without fins and with
solid copper fins for Ra = 105, Pr = 0.71. In the case of a differentially heated clear cavity
without fins (Figure 3a), one can find the formation of a typical flow structure that is known
as “cat’s eyes” [23]. For this regime, an ascending flow is formed near the heated wall, and a
descending flow can be found near the cooled border, while two oppositely rotating eddies
are formed in the center of the cavity. At the same time, the temperature field illustrates the
formation of two thermal boundary layers near two vertical walls with a stratified core in
the central part, where heating occurs from the upper part to the bottom one. The addition
of one solid fin (Figure 3b) acts as a natural obstacle that deforms the flow and leads to
the formation of a single convective cell in the central part of the right half of the cavity.
Such a flow structure is defined by significant heating of the upper part, not only from the
left isothermal wall, but also from the solid fin of high thermal conductivity. Therefore,
isotherms are not presented within this solid element. The further addition of solid fins to
the cavity results in a different deformation of flow structure and more essential heating of
the left half of the chamber. As a result, the fluid volume decreases with the inclusion of
solid fins. It is worth noting that a huge temperature difference can be found on the vertical
end of the bottom fin, where a high density of isotherms is monitored.
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Figure 3. Streamlines and isotherms in a cavity with solid fins: without fins (a); one fin (b); two fins
(c); three fins (d).

Figures 4 and 5 demonstrate isolines of stream function and temperature within
the enclosure with several porous fins for Da = 10−4 in Figure 4 and for Da = 10−2 in
Figure 5. Porous fins are made of metallic copper foam with ε = 0.9. The addition of
porous, permeable fins reduces flow resistance from this obstacle and also increases the
heat transfer surface. Therefore, air can circulate not only within the chamber, but also
within the porous material, and air flow strength, in this case, is greater than for solid fins
(Figure 3). Moreover, the addition of porous fins allows for the intensification of the heat
removal from the vertical heated surface, whilst air going through these fins moves heat
away, and as a result, the upper part of the cavity is heated significantly. As it can be seen,
the same effect could be obtained by using a single porous fin placed in the bottom part of
the chamber.

An increment in the porous fin permeability (see Figure 5) results in the strengthening
of the convective flow and heat transport within the cabinet. More essential heating of the
chamber can be found for Da = 10−2 comparing Figures 4 and 5 due to more intensive air
circulation.

Figure 6 shows the time evolution of the average Nusselt number on the right vertical
wall and air flow strength within the chamber with either solid or porous fins and without
fins. It is interesting to note that the addition of solid or porous fins intensifies the heat
removal, namely, the average Nusselt number increases. In the case of solid fins, this
heat transfer enhancement is not so significant. Moreover, the addition of solid fins has
a non-monotonic influence on the average Nusselt number, which illustrates an essential
influence of the fins’ location on the heated vertical border. Whilst the use of porous fins
achieves an increase in the average Nusselt number (for about 73%), solid fins lead to an
increase of only 5%.
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Figure 4. Streamlines and isotherms in a cavity with porous copper fins at Da = 10−4: one fin (a); two
fins (b); three fins (c).

 

Figure 5. Streamlines and isotherms in a cavity with porous copper fins at Da = 10−2: one fin (a); two
fins (b); three fins (c).
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Figure 6. Time evolution of average Nusselt number (a) and fluid flow rate (b) on number of fins,
material of fins and Darcy number for porous fins.

An increase in the number of porous fins leads to an increase in the mean Nusselt
number compared to the use of a single fin. The effect of using two fins in the increase in
Nu instead of one is much more intensive than that of using N = 3 instead of N = 2. An
increase in the Darcy number results in enhancement of the energy transport rate. At the
same time, the addition of solid fins causes a weak increment of air flow rate, while in the
case of porous fins, one can find convective flow intensification that increases with the
increase in Da and N.

Taking into account a possible essential intensification of energy removal from the
heated surface using porous fins, a more detailed analysis was performed for one and
two porous fins with respect to the location and length of the fins. Figure 7 demonstrates
the influence of one porous fin position and length on the average Nusselt number and
air flow rate. In general, an increase in the porous fin length results in an intensification
of convective heat transfer; however, between γ = 0.5 and γ = 0.7, some non-monotonic
influence is observed. At the same time, for γ (= l/L) > 0.5 (see Figure 1), an increase in δ1
results in the minimization of the average Nusselt number, while in this case, maximum
Nu can be found for the lower value of δ1, i.e., δ1 = 0.1. Non-monotonic influence of δ1 is
observed for γ < 0.5. In particular, an increase in γ from 0.1 to 0.5 illustrates a decrease in
the y-coordinate of the fin’s location where the average Nusselt number has the maximum
value. Namely, for γ = 0.1 maximum Nu can be found for δ1 = 0.3, for γ = 0.3 maximum Nu
is achieved for δ1 = 0.3 and for γ = 0.5 maximum Nu is achieved for δ1 = 0.2. As a result,
more intensive heat removal from the vertical heated wall can be achieved by using a single
long porous fin placed in the bottom part of this wall. The behavior of the air flow intensity
with the mentioned parameters is shown in Figure 7b, where for γ > 0.3, the increase in δ1
results in a minimization of flow rate, whilst for γ = 0.1 and γ = 0.3 maximum |ψ|max can
be found for δ1 = 0.2. At the same time, an increase in γ from 0.1 to 0.5 leads to a rise of
|ψ|max, while an increase in γ from 0.5 to 0.9 leads to a reduction in |ψ|max.
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Figure 7. Dependence of mean Nusselt number (a) and fluid flow rate (b) for one porous fin on
distance from the bottom wall to the fin and length of the fin, for Da = 10−2.

Table 1 demonstrates the influence of the location and length of two porous fins on
the average Nusselt number. As it has been mentioned in the case of one porous fin,
the increase in the fin length leads to an increase in Nu. For two fins with equal length
(γ = 0.1), maximum Nu can be achieved for δ1 = δ2 = 0.2, while for γ = 0.3 and γ = 0.5,
maximum Nu is achieved for δ1 = δ2 = 0.1. Such behavior has also been mentioned for one
fin; namely, the increase in fin length leads to a reduction in the y-coordinate at the position
where Nu becomes maximum. At the same time, the use of two porous fins allows for the
enhancement of heat removal by about 10%.

Table 1. Average Nusselt number at vertical wall in the case of two porous fins for distance between
fins, distance from the bottom wall to the first fin and length of fins when Da = 0.01.

δ1 = 0.1 δ1 = 0.2 δ1 = 0.3 δ1 = 0.4 δ1 = 0.5 δ1 = 0.6

γ = 0.1

δ2 = 0.1 6.118 6.214 6.163 6.011 5.783 5.503
δ2 = 0.2 6.204 6.243 6.137 5.944 5.713 –
δ2 = 0.3 6.176 6.163 6.021 5.837 – –
δ2 = 0.4 6.054 6.007 5.878 – – –
δ2 = 0.5 5.861 5.829 – – – –
δ2 = 0.6 5.646 – – – – –

γ = 0.3

δ2 = 0.1 7.677 7.628 7.451 7.16 6.78 6.348
δ2 = 0.2 7.644 7.596 7.432 7.146 6.767 –
δ2 = 0.3 7.557 7.55 7.395 7.118 – –
δ2 = 0.4 7.467 7.485 7.341 – – –
δ2 = 0.5 7.353 7.388 – – – –
δ2 = 0.6 7.17 – – – – –

γ = 0.5

δ2 = 0.1 7.871 7.798 7.688 7.427 7.025 6.572
δ2 = 0.2 7.828 7.787 7.699 7.436 7.03 –
δ2 = 0.3 7.789 7.802 7.711 7.436 – –
δ2 = 0.4 7.778 7.829 7.71 – – –
δ2 = 0.5 7.796 7.837 – – – –
δ2 = 0.6 7.807 – – – – –
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5. Conclusions

Analysis of natural convection in a differentially heated chamber with solid or porous
fins has been performed numerically using an in-house computational code developed
with C++ programming language. The impact of fins with respect to their structure (solid
or porous), number, length and location on the flow field and heat transport has been
scrutinized. According to the obtained results, one can highlight that:

- Porous fins are more effective for heat removal compared to solid fins. The addition of
solid fins can raise the average Nusselt number by about 5%, while the corresponding
increase for porous fins is about 73%;

- An increase in the Darcy number and number of porous fins leads to an increase in
the heat transfer rate;

- An increase in fins’ length leads to a diminution of the y-coordinate for fins’ position
with maximum Nu;

- The addition of two porous fins enhances heat transfer by about 10%.
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Abbreviation

Nomenclature

C heat capacity
d1 distance between the bottom wall and nearest fin
d2 distance between first and second fins
Da Darcy number
g acceleration due to gravity
H thickness of the fin
k thermal conductivity
K porous medium permeability
l length of the fins
L cavity size
N number of fins
Nu Nusselt number
p pressure
Pr Prandtl number
Ra Rayleigh number
t time
T temperature
Tc cooled wall temperature
Th heated wall temperature
u, v velocity components
u, v non-dimensional velocity components
x, y Cartesian coordinates
x, y non-dimensional Cartesian coordinates
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Greek Symbols

α thermal diffusivity
β thermal expansion parameter
δ1 non-dimensional distance between the bottom wall and nearest fin
δ2 non-dimensional distance between first and second fins
ε porous medium porosity
θ non-dimensional temperature
μ dynamic viscosity
ρ density
τ non-dimensional time
ψ stream function
ψ non-dimensional stream function
ω vorticity
ω non-dimensional vorticity
Subscripts

f fluid
hs heat source
pm porous medium
s solid
spm solid matrix of the porous medium
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Citation: Nişancı Türkmen, B.;

Bordbar, H.; Cristea, I. Supplements

Related to Normal π-Projective

Hypermodules. Mathematics 2022, 10,

1945. https://doi.org/10.3390/

math10111945

Academic Editor: Takayuki Hibi

Received: 17 May 2022

Accepted: 4 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Supplements Related to Normal π-Projective Hypermodules
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Abstract: In this study, the role of supplements in Krasner hypermodules is examined and related
to normal π-projectivity. We prove that the class of supplemented Krasner hypermodules is closed
under finite sums and under quotients. Moreover, we give characterizations of finitely generated
supplemented and amply supplemented Krasner hypermodules. In the second part of the paper we
relate the normal projectivity to direct summands and supplements in Krasner hypermodules.
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1. Introduction

Hypercompositional algebra, a new branch of abstract algebra, started its development
in 1934, when F. Marty introduced the concept of hypergroup as a natural generalization of
the concept of group. The law of synthesis of two elements was extended, in the sense that
the operation (defined on a group) was substituted with a multivalued operation (called
hyperoperation), i.e., the result of the hyperoperation being a subset of the underlying
set. As a consequence, new algebraic hypercompositional structures are defined and the
properties of the classical structures are conserved, or not, for similar hyperstructures. This
is also the case of the modules, extended to hypermodules, introduced firstly by Krasner [1],
and known today as Krasner hypermodules. Their additive part is a canonical hypergroup.
The fundamental aspects of the theory of hypermodules are very well covered, for example,
by the studies of Massouros [2], Nakassis [3], Anvariyeh [4,5], Ameri and Shojaei [6], and
Bordbar and Cristea [7–9].

Recently, the concept of smallness in module theory has been transported and in-
vestigated by Moniri et al. [10] in the class of hypermodules. Similarities and differences
of this concept in both theories have been clearly highlighted and supported by several
examples. As it was defined in [11] and then recalled in [12] already in the 1960s, a left
R-submodule N of an R-module M, where R is an arbitrary unitary associative ring, is
small if N + K = M, for any R-submodule K of M, implies K = M, and it is denoted by
N � M [13]. An R-module M is called a hollow if every proper R-submodule of M is small
in M. In a similar way, we may define these two concepts in hypermodule theory, but we
must pay attention, as it is explained in [10], to their meaning in a Krasner hypermodule
(where the additive part is a canonical hypergroup) and in a general hypermodule having
the additive part an arbitrary hypergroup (that can be also non-commutative). In addition,
an R-hypermodule M, with the property that the intersection of its two R-subhypermodules
is again an R-subhypermodule, is called supplemented if for each proper R-subhypermodule
N of M there exists a proper R-subhypermodule K of M such that K + N = M = N + K
and N ∩ K � K. In a Krasner hypermodule, the intersection of two subhypermodules is
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always a subhypermodule, while in a general hypermodule this property may not hold for
arbitrary subhypermodules, only for closed subhypermodules [10].

In this paper, we aim to obtain more properties of supplements in Krasner R-hypermo-
dules and understand their role related to projective hypermodules, in particular with
normal π-projective hypermodules. After a brief introduction on hypermodules, homo-
morphisms, and supplements in hypermodules, in Section 3, we provide new properties
of supplemented Krasner R-hypermodules. We prove that any quotient hypermodule
of a supplemented hypermodule is again supplemented (see Theorem 1), and, similarly,
the sum of two supplemented hypermodules is supplemented, too (see Theorem 2). In ad-
dition, we will provide also a new characterization of the finitely generated supplemented
hypermodules (see Theorem 4) and finitely generated amply supplemented hypermodules
(Theorems 5 and 6). In Section 4 we define the normal π-projective R-hypermodule and
present several properties related to direct summands and supplements. The main results
are represented by Proposition 2 and Corollary 2. The concept of normal projectivity has
been recently introduced by Ameri and Shojaei [6], using different kinds of epimorphisms
defined in the Krasner hypermodule category. Then, Bordbar and Cristea [14] provided
their characterization by mean of chains of hypermodules. This study is a step forward in
the theory of projective Krasner hypermodules.

2. Preliminaries and Notation

In this section, we briefly recall the main concepts and results related to Krasner
hypermodules that we will use throughout this paper. For a better understanding of the
topic, we start with some fundamental definitions in hypercompositional algebra presented
in several books [15,16] and overview articles [3,17,18]. We refer the reader also to the
first chapters of the book [13], containing an up-to-date account on lifting modules that
generalize the projective supplemented modules, and to the book [19] for an introduction
to module theory.

Hypermodules. Let H be a nonempty set and P∗(H) be the set of all nonempty subsets
of H. The couple (H, ◦) is a hypergroupoid, where the hyperoperation on H is a function
◦ : H × H −→ P∗(H). For any nonempty subsets X and Y of H, one defines X ◦ Y =
∪x∈X, y∈Yx ◦ y. We simply write a ◦X and X ◦ a instead of {a} ◦X and X ◦ {a}, respectively,
for any a ∈ H and any nonempty subset X of H. A hypergroupoid (H, ◦) is called a
semihypergroup if the hyperoperation ◦ is associative, i.e., for every a, b, c ∈ H, we have a ◦
(b ◦ c) = (a ◦ b) ◦ c. A hypergroupoid (H, ◦) is called a quasihypergroup if the reproduction
law holds, i.e., for every x ∈ H, x ◦ H = H = H ◦ x. If the hypergroupoid (H, ◦) is a
semihypergroup and quasihypergroup, then it is called a hypergroup. A nonempty subset S
of a hypergroup (H, ◦) is called a subhypergroup of H if, for every a ∈ S, a ◦ S = S = S ◦ a.
A canonical hypergroup is a hypergroup (H, ◦) satisfying the following conditions: (i) it
is commutative, i.e., for every a, b ∈ H, a ◦ b = b ◦ a; (ii) there exists e ∈ H such that
{a} = (a ◦ e) ∩ (e ◦ a) for every a ∈ H (such an element e is called an identity of the
hypergroup); (iii) for every a ∈ H there exists a unique a−1 ∈ H such that e ∈ a ◦ a−1 (the
element a′ is called the inverse of a); (iv) for every a, b, c ∈ H, if c ∈ a ◦ b, then a ∈ c ◦ b−1

and b ∈ a−1 ◦ c.

An algebraic system (R,+, ·) is called a Krasner hyperring if

1. (R,+) is a canonical hypergroup;
2. (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., a · 0 = 0 = 0 · a

for any a ∈ R;
3. The multiplication distributes over the addition on both sides, i.e., for any a, b, c ∈ R,

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a;

while (R,+, ·) is called a general hyperring (or simply, a hyperring) if

1. (R,+) is a canonical hypergroup with the scalar identity 0R;
2. (R, ·) is a semihypergroup;
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3. The multiplication distributes over the addition on both sides.

A hyperring R is called commutative if it is commutative with respect to the multipli-
cation. If a ∈ a · 1R ∩ 1R · a for every a ∈ R, then the element 1R is called a unit element of
the hyperring R.

Now, let R be a hyperring with the identity element 1R. A left R-hypermodule is
defined as an algebraic system (M,+, ◦), where the hypergroup (M,+) is endowed with
an external multivalued operation ◦, i.e., ◦ : R×M −→ P∗(M) such that, for every x, y ∈ R
and a, b ∈ M, the following statements hold:

1. x ◦ (a + b) = x ◦ a + x ◦ b;
2. (x + y) ◦ a = x ◦ a + y ◦ a;
3. (x · y) ◦ a = x ◦ (y ◦ a);
4. a ∈ 1R ◦ a.

Similarly, the concept of right R-hypermodule is defined and we say that (M,+, ◦) is
an R-hypermodule if it is a left and right one. Some authors call this hypercompositional
structure a general hypermodule. A nonempty subset N of an R-hypermodule M is called
a subhypermodule of M if N is an R-hypermodule under the same hyperoperations of M,
and we denote this as N ≤ M. In other words, N is a subhypermodule of M if and only
if x ◦ a ⊆ N and a− b ∈ N for every x ∈ R and a, b ∈ N [20]. A hypermodule M having
the additive part of a canonical hypergroup is called a canonical R-hypermodule if it is a
hypermodule over a Krasner hyperring (R,+, ·).

If we consider a Krasner hyperring R, then we may endow a canonical hypergroup
(M,+) with an external operation · : R× M −→ M defined as (r, m) �−→ r · m ∈ M. If,
for every x, y ∈ R and a, b ∈ M, the following statements hold:

1. x · (a + b) = x · a + x · b;
2. (x + y) · a = x · a + y · a;
3. (x · y) · a = x · (y · a);
4. a = 1R · a;
5. x · 0M = 0R;

then M is called a Krasner left R-hypermodule. Similarly, a right Krasner R-hypermodule is
defined and it is called a Krasner R-hypermodule (or simply a Krasner hypermodule) if it
is both left and right.

Let {Ni}i∈I be a family of subhypermodules of an R-hypermodule M. The set
∑i∈I Ni = ∪{∑i∈I ai | ai ∈ Ni for every i ∈ I such that ∃n ∈ N : ai = 0, for all but finitely
many i ≥ n} is a subhypermodule of M. A nonempty subset J of a commutative hyperring
R is called a hyperideal, if x− y ⊆ J and a · x ⊆ J for every a ∈ R and x, y ∈ J. Recall that
every hyperideal J of a hyperring R is a subhypermodule of the R-hypermodule R.

Let M be a left Krasner hypermodule over a Krasner hyperring R and K be a sub-
hypermodule of M. Consider the set M

K = { a + K | a ∈ M }. Then, M
K is a left Krasner

hypermodule over R under the hyperoperation defined as + : M
K × M

K −→ P∗(M
K ) and the

external operation � : R× M
K −→ M

K defined as (a + K) + (a
′
+ K) = {b + K | b ∈ a + a

′ }
and x� (a + K) = {b + K | b ∈ x · a} for every a, a

′
, b ∈ M and x ∈ R. The Krasner hyper-

module M
K is called the quotient hypermodule of the hypermodule M. Note that a + K = K if

and only if a ∈ K.
A nonzero Krasner R-hypermodule M is called simple [20] if the only subhypermodules

of M are {0M} and M itself. We denote by S(M) the set of all simple subhypermodules of
the Krasner R-hypermodule M.

The following technical result will be often used in the next sections.

Lemma 1 ((Modularity law) [21]). Suppose that M is a Krasner R-hypermodule and A, B, and C
are subhypermodules of M such that B ≤ A. Then, A ∩ (B + C) = B + (A ∩ C).

Small subhypermodules. A subhypermodule N of a left Krasner R-hypermodule M is
called a small subhypermodule of M and denoted by N � M, if N + L �= M for every proper
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subhypermodule L of M. We refer the reader to [21] for basic properties related to small
subhypermodules. We recall here some basic properties of small subhypermodules that
will be used throughout the paper.

Lemma 2 ([21]). Let M be a hypermodule and X ≤ Y be subhypermodules of M. Then

(1) Y � M if and only if X � M and Y
X � M

X .
(2) Any finite sum of small subhypermodules of M is again small in M.
(3) If Y is a direct summand of M and X � M, then X � Y.

A left Krasner R-hypermodule M is called a hollow [10] if every proper subhypermod-
ule of M is small in M. Similarly to module theory, a left Krasner R-hypermodule is a
hollow if and only if the sum of any of its proper subhypermodules is a proper subhyper-
module. Moreover, M is called local if it has a proper subhypermodule that contains all
proper subhypermodules of M.

Let M be a left Krasner R-hypermodule. We will denote by Rad(M) the sum of all small
subhypermodules of M, that is, Rad(M) = ∑L�M L. If M has no small subhypermodules
of M, then we set Rad(M) = M. Notice that Rad(M) is always a subhypermodule of the left
Krasner R-hypermodule M and M is local if and only if M is hollow and Rad(M) �= M [10].

Homomorphisms. Let M and M
′

be two left Krasner R-hypermodules. A function
f : M −→ M

′
is called a homomorphism if for every a, b ∈ M and r ∈ R, it holds f (a + b) ⊆

f (a) + f (b) and f (r ◦ a) = r ◦ f (a), while it is called a strong homomorphism if f (a + b) =
f (a) + f (b) and f (r ◦ a) = r ◦ f (a). For any subhypermodule N of a left Krasner R-
hypermodule M, the image f (N) is a subhypermodule of M

′
and the kernel ker( f ) = { a ∈

M | f (a) = 0M′ } is a subhypermodule of M. If f : M −→ M′ is a strong epimorphism,
i.e., a strong surjective homomorphism, and ker( f ) � M, then f is called a small strong
epimorphism. A subhypermodule U of a Krasner R-hypermodule M is called fully invariant
in M if α(U) is a subhypermodule of U, for every strong endomorphism α : M −→ M.

Supplements. Two subhypermodules N and N
′

of a left Krasner R-hypermodule M are
called independent if N ∩ N

′
= {0M}, and in this case, their sum N + N

′
is denoted by

N ⊕ N
′

and called direct sum. Moreover, a subhypermodule N of M is called a direct
summand of M if M = N ⊕ K for some subhypermodule K of M [21]. A left Krasner
R-hypermodule M is called semisimple, if its subhypermodules are direct summands in
M [20]. As a generalization of semisimple hypermodules, in [10], the class of supplemented
hypermodules was introduced. Let M be a left Krasner R-hypermodule and U, V be
subhypermodules of M. V is called a supplement of U in M if it is a minimal element in
the set { L ≤ M | L + U = M }. Then M is called supplemented if every subhypermodule
of M has a supplement in M [10]. Thus, it is clear that V is a supplement of U in M if
and only if V + U = M and U ∩ V � V, i.e., the canonical map V −→ M

U is a small
strong epimorphism. Moreover, U has amply supplements in M if, whenever U + V = M, V
contains a supplement V′ of U in M. The left Krasner R-hypermodule M is called amply
supplemented if every subhypermodule has amply supplements in M. These definitions
have been initially introduced in [10] for general hypermodules, and several examples have
been illustrated there.

It is clear that semisimple modules and hollow modules are examples of amply sup-
plemented Krasner R- hypermodules. Moreover, a supplemented Krasner R-hypermodule
M with zero Rad(M) is semisimple. Thus, we can write the following implications between
the three classes of Krasner R-hypermodules:

semisimple hypermodules=⇒ amply supplemented hypermodules=⇒ supplemented
hypermodules.
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3. Some Results of (Amply) Supplemented Hypermodules

Throughout this paper, we work with left Krasner R-hypermodules, that we briefly
call hypermodules.

In this section, some basic properties of (amply) supplemented hypermodules are
presented. For a better understanding of the concept, we will start with one example of
amply supplemented hypermodule.

Example 1 ([10]). Take the set R = {0, 1, 2, 3} equipped with the hyperoperation + and operation
· defined as follows:

+ 0 1 2 3
ine 0 0 1 2 3
ine 1 1 0, 1 3 2, 3
ine 2 2 3 0 1
ine 3 3 2, 3 1 0, 1
ine

and r · s =

{
2, if r, s ∈ {2, 3}
0, otherwise.

Then R is a Krasner hyperring and M = R is a left Krasner R-hypermodule with the
proper subhypermodules {0}, K = {0, 1}, and L = {0, 2}. Since L + K = M, it follows that
{0} is the only small subhypermodule of M. In addition, all subhypermodules are direct
summands of M and thus M is amply supplemented.

Recall here a result on the smallness property in quotient hypermodules.

Proposition 1 ([10]). Let M be a hypermodule and U ⊂ L be subhypermodules of M. Then L
U is a

small subhypermodule of M
U if and only if for all subhypermodules K of M the equality L + K = M

implies U + K = M.

In the following auxiliary result, we will present some properties of the supplements
of a hypermodule and of the set Rad(M) = ∑L�M L. Notice that very often we make use
of the second isomorphism theorem [22].

Lemma 3. Let M be a hypermodule and K, L two subhypermodules such that L is a supplement of
K in M.

1. If U is a subhypermodule of L, then L
U is not small in M

U .
2. If U is a subhypermodule of L and U is a small subhypermodule in M, then U is a small

subhypermodule in L.
3. Rad(L) = L ∩ Rad(M),

4. Rad(M
K ) = Rad(M)+K

K .
5. Rad(M) = (L + Rad(M)) ∩ (K + Rad(M)) = (L ∩ Rad(M)) + (K ∩ Rad(M)).

Proof. (1) Let U be a subhypermodule of L. If L
U is small in M

U , i.e., L
U � M

U , then,
by Proposition 1, it follows that K + U = M, which contradicts with the minimality of L as
a supplement of K. Thus, L

U is not small in M
U .

(2) Suppose that U + T = L, for some subhypermodule T of L. Then (U + T) + K =
L + K = M. Therefore U + (T + K) = M, and since U � M, it follows that T + K = M,
with L a supplement of K in M. Thus, by the minimality of L, we have T = L. Hence,
U � L.

(3) It is clear that Rad(L) ⊆ L ∩ Rad(M). Conversely, let a ∈ L ∩ Rad(M). Since
Rad(M) is the sum of all small subhypermodules of M, it follows that Ra � M. Then,
by (2), we obtain Ra � L, i.e., a ∈ Rad(L). Thus, L ∩ Rad(M) ⊆ Rad(L), and therefore
Rad(L) = L ∩ Rad(M).

(4) Since L is a supplement of K in M, the canonical map L −→ M
K is a small strong

epimorphism. From L
L∩K

∼= M
K , we have that Rad( L

L∩K )
∼= Rad(M

K ). Since K ∩ L ⊆ Rad(L),
it follows that Rad( L

L∩K ) =
Rad(L)

L∩K . Therefore, every maximal subhypermodule of L contains
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K ∩ L. In addition, we have M
K = K+L

K
∼= L

K∩L which implies Rad(M
K ) = Rad(L)+K

K . By using

the canonical strong epimorphism M −→ M
K , on one side we have Rad(M)+K

K ≤ Rad(L)+K
K .

On the other side, Rad(L) + K ≤ Rad(M) + K, and therefore Rad(M
K ) = Rad(M)+K

K .
(5) Let N = Rad(M) and ψ : M −→ M

K be the strong canonical epimorphism. Since

ψ(Rad(L)) =
Rad(L) + K

K
∼= Rad(L)

K ∩ Rad(L)
=

Rad(L)
K ∩ L ∩ Rad(M)

=
Rad(L)
K ∩ L

= Rad(
L

K ∩ L
) ∼=

Rad(
M
K
) and knowing (4), it follows that

Rad(M) + K
K

=
Rad(L) + K

K
. Thus, we can write

N + K = Rad(M) + K = Rad(L) + K = (L ∩ N) + K.

Then, N + (N ∩ K) = N ∩ (N + K) = N ∩ [(L ∩ N) + K], which implies that N =
(L ∩ N) + (K ∩ N), meaning that Rad(M) = (L ∩ Rad(M)) + (K ∩ Rad(M)). It remains
to prove the first part of the formula. Again we use the modularity law and we obtain
L ∩ (N + K) = L ∩ (L ∩ N + K) = (L ∩ N) + (L ∩ K) = L ∩ N. Therefore, (N + K) ∩ (N +
L) = N + ((N + K) ∩ L) = N + (L ∩ N) = N, meaning that

Rad(M) = (L + Rad(M)) ∩ (K + Rad(M)).

Now the proof is completed.

Recall from [6] that an R-hypermodule P is normal A-projective if, for every strong
epimorphism g ∈ HomR(A, B) and every strong homomorphism f ∈ HomR(P, B), there
exists f ∈ HomR(P, A) such that g ◦ f = f . If P is normal A-projective in the category
Hmod for every hypermodule A, then P is called a normal projective hypermodule. In
addition, from [21], we know that, for any hypermodules M and N, a strong epimorphism
g : M −→ N is a small strong epimorphism if and only if for every strong homomorphism
f ; if g ◦ f is a strong epimorphism, then f is a strong epimorphism, too. Moreover, if f :
P −→ M is a small strong epimorphism and P is a projective R-hypermodule, then P is
called a projective cover of M.

Some fundamental results of supplements related to homomorphisms and projective
covers are gathered in the next result.

Lemma 4. 1. In the following commutative diagram, suppose that γ and θ are strong epimor-
phisms, while α is a small strong epimorphism related to the hypermodules U, V, W, S.

U
β ��

γ

��

V

θ

��
W

α
�� S

If X is a supplement of ker(γ) in U, then β(X) is a supplement of ker(θ) in V.
2. If X is a subhypermodule of the hypermodule M and M

X has a projective cover, then X has a
supplement in the hypermodule M.

3. If L is a supplement of K in a hypermodule M and η : M −→ M is a strong endomorphism
with Im(1− η) a subhypermodule of K, then η(L) is a supplement of K in M.

4. If L is a supplement of K in a hypermodule M and X is a subhypermodule of K, then L+X
X is a

supplement of K
X in M

X .

Proof. (1) By the hypothesis, we have X + ker(γ) = U and X ∩ ker(γ) � X. Let us
consider the following short exact sequence constructed with the hypermodules and their
strong homomorphisms: X −→ U

ker(γ) −→ W −→ S ≡ U −→ β(X) −→ V
ker(θ) −→ S. Since
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β(X) + ker(θ) = V and β(X) ∩ ker(θ) � β(X), it follows that β(X) is a supplement of
ker(θ) in V.

(2) Let P be a projective cover of M
X , i.e., the function f : P −→ M

X is a strong
epimorphism and P is a projective hypermodule. Then, for the strong epimorphism
h ∈ HomR(M, M

X ), there exists β ∈ HomR(P, M) such that g ◦ β = f , i.e., the following
diagram commutes.

P
β ��

id

��

M

g

��
P

f �� M
X

Since ker(id) = {0P}, it follows that P is a supplement of {0P} = ker(id) in P and by
item (1) it results that β(P) is a supplement of X = ker(g).

(3) Let L be a supplement of K in the R-hypermodule M. Since Im(1− η) is a subhy-
permodule of K, it follows by item (1) that the following diagram

M
η ��

��

M

��
M
K

�� M
K

is commutative and η(L) is a supplement of K in M.
(4) The statement follows by applying item (1) to the following diagram

L ⊂ M
ψ ��

��

M
X

α

��
M
K

�� M
K

where ψ(L) = L+X
X and Kerα = K

X .

The last item of Lemma 4 can be written as follows.

Theorem 1. Every quotient hypermodule of a supplemented hypermodule is supplemented, too.

In order to characterize the sum of supplemented hypermodules, we first prove the
following auxiliary result.

Lemma 5. Let M be an R-hypermodule.

1. Let N, K, L be three subhypermodules of M such that N + K + L = M. If N is a supplement
of K + L in M and K is a supplement of N + L in M, then N + K is a supplement of L in M.

2. Let N and K be two subhypermodules of M such that N is supplemented. If N + K has a
supplement in M, then K has a supplement in M, too.

Proof. (1) Since N is a supplement of K + L in M, it follows that (K + L) ∩ N � N and,
similarly, (N + L) ∩ K � K. We will prove that L ∩ (N + K)� N + K.

By the modularity law we have L ∩ (N + K) = N + (L ∩ K) and K ∩ (N + L) =
N + (K ∩ L). Therefore, L∩ (N + K) ⊆ [N ∩ (L + K)] + [K ∩ (L + N)] and since the sum of
small subhypermodules is a small subhypermodule, we have that L ∩ (N + K)� N + K.
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(2) Let X be a supplement of N + K in M. Thus, N + K + X = M and (N + K) ∩ X �
X. We know that N is supplemented, therefore N ∩ (K + X) has a supplement Y in N,
i.e., N ∩ (K + X) + Y = N and N ∩ (K + X) ∩Y = (K + X) ∩Y � Y. Then we have

M = N + K + X = N ∩ (K + X) + Y + (K + X) = K + X + Y

and

K ∩ (X + Y) ⊆ [X ∩ (K + Y)] + [Y ∩ (K + X)] ⊆ [X ∩ (K + N)] + [Y ∩ (K + X)].

Since X ∩ (K + N) � X and Y ∩ (K + X) � Y, it follows that K ∩ (X + Y) � X + Y (the
sum of small subhypermodules is a small subhypermodule). Thus, X + Y is a supplement
of K in M.

Theorem 2. The sum of two supplemented hypermodules is supplemented, too.

Proof. Let M1 and M2 be two supplemented hypermodules. We will prove that M = M1 +
M2 is supplemented, too. Let U be a subhypermodule of M. Since M2 is supplemented,
it follows that its subhypermodule (M1 + U) ∩ M2 has a supplement V in M2. Then
M = M1 + M2 = M1 + (M1 + U) ∩ M2 + V = M1 + U + V. In addition, since V is a
supplement of (M1 +U)∩M2 in M2, we have (M1 +U)∩V = ((M1 +U)∩M2)∩V � V.
This means that V is a supplement of M1 +U in M. Since M1 is supplemented, by Lemma 5
(2), it follows that U has a supplement in M. Therefore, M is supplemented.

Corollary 1. If in the exact sequence 0 −→ U −→ M −→ M
U −→ 0 of hypermodules U and M

U
are supplemented and U has a supplement in every subhypermodule X, with U < X < M, then
the hypermodule M is supplemented.

Proof. Let V be a subhypermodule of M, X
U be a supplement of V+U

U in M
U , and Y be a

supplement of U in X. We have U +Y = X, U ∩Y � Y, V+U
U + X

U = M
U and V+U

U ∩ X
U � X

U .

Hence V + U + X = M, (V + U) ∩Y ≤ (V + U) ∩ X, so (V+U)∩Y
U ≤ (V+U)∩X

U � X
U . Thus,

we suppose that there exists a subhypermodule T of Y such that (V +U)∩Y + T = Y. Then
(V+U)∩Y

U + U+T
U = X

U . By using (V+U)∩Y
U � X

U , it follows that U+T
U = X

U . Thus, U + T = X.
Since Y is a supplement of U in X, we have T = Y. Therefore, Y is a supplement of V + U
in M, i.e., Y ∩ (V + U)� Y. Then, by Lemma 5 (2), we conclude that V has a supplement
in M.

Recall that an R-hypermodule M is local if and only if M is hollow and Rad(M) �=
M [10]. It can be easily seen here that if a hypermodule M is a hollow and Rad(M) �= M,
then M is cyclic and Rad(M) is the largest subhypermodule of M.

Theorem 3. If M is a direct sum of hollow hypermodules and Rad(M) is small in M, then M is
supplemented.

Proof. Let M = ⊕γ∈Ω Mγ, with Mγ a hollow hypermodule and Rad(M) � M. Defining

Mγ =
Mγ+Rad(M)

Rad(M)
, we obtain Mγ

∼= Mγ

Mγ∩Rad(M)
=

Mγ

Rad(Mγ)
for every γ ∈ Ω. Since Mγ is a

hollow hypermodule for every γ ∈ Ω, it follows that Mγ

Rad(Mγ)
is hollow, too, accordingly

with [21], Proposition 2.4. Then Rad(M) = ⊕γ∈ΩRad(Mγ) and Rad(M)� M. Moreover,
since Mγ is a hollow hypermodule and Rad(Mγ) ≤ Mγ for every γ ∈ Ω, it follows
that Rad(Mγ) � Mγ. Thus, Rad(Mγ) �= Mγ for every γ ∈ Ω and Rad(Mγ) is the
largest subhypermodule of Mγ for every γ ∈ Ω. Therefore, Mγ

Rad(Mγ)
is simple for every

γ ∈ Ω. This implies that M = M
Rad(M)

= ⊕γ∈Ω
Mγ

Rad(Mγ)
∼= ⊕γ∈Ω Mγ. Therefore, for an

arbitrary subhypermodule U of M, there exists Φ ⊂ Ω with M = (⊕γ∈Φ
Mγ

Rad(Mγ)
)⊕U. Let
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V = ⊕γ∈Φ Mγ. Then, M = U ⊕V and U ∩V ≤ Rad(M). So U ∩V � M. Because Rad(M)
is small in M, we have U ∩V � M and since V is a direct summand of M, we conclude
that U ∩V � V. Therefore, V is a supplement of U in M. Hence M is supplemented.

Theorem 4. For a finitely generated hypermodule M, the following statements are equivalent:

(a) M is supplemented.
(b) Every maximal subhypermodule of M has a supplement in M.
(c) M is a sum of hollow subhypermodules.

Proof. (a)⇒ (b) This implication is clear.
(b) ⇒ (c) Let S = ∑{U ≤ M | U is a hollow subhypermodule of M}. Then S⊆M.

Now suppose S⊂M. Since M is finitely generated, by Zorn’s lemma we know that S is
contained in a maximal subhypermodule N of M. By hypothesis (b), N has a supplement
K in M, i.e., M = N + K and N ∩ K � K. Since M

N = N+K
N

∼= K
N∩K , it follows that N ∩ K

is a maximal subhypermodule of K and N ∩ K � K. Thus, K is local with the largest
subhypermodule N ∩ K. From K < S < N it follows that M = N + K = N, which is a
contradiction. Then S = M.

(c) ⇒ (a) We know that M is finitely generated and M = ∑γ∈Ω Mγ, with Ω a finite
set, where each Mγ is a hollow subhypermodule and Rad(M)� M. Let K be any proper

subhypermodule of M. We can write M
Rad(M)

= ∑γ∈Ω
Mγ+Rad(M)

Rad(M)
. Since Rad(Mγ) ⊆

Mγ ∩ Rad(M) and Mγ+Rad(M)
Rad(M)

∼= Mγ

Mγ∩Rad(M)
, these factors are simple or zero. We gain

the equation M
Rad(M)

= ⊕
θ∈Ω′ Mθ+Rad(M)

Rad(M)
, and since Rad(M) � M, we conclude that

M = ∑θ∈Ω′ Mθ with local subhypermodules Mθ for any θ ∈ Ω
′ ⊂ Ω. Thus, K is contained

in a maximal one, and K has a supplement in M, as we saw in Theorem 3, so M is
supplemented.

Example 2 (See [10], Example 2.4). Let (Z2 × Z4, ∗, �) be a hypermodule over the hyperring
(Z,⊕,�), where (a, b) ∗ (c, d) = {(a, b), (c, d))}, n � (a, b) = {n(a, b)}, n⊕m = {n, m} and
n�m = {nm} for all (a, b), (c, d) ∈ Z2 ×Z4 and n, m ∈ Z. Since every proper subhypermodule
of (Z2 × Z4, ∗, �) is small, it follows that (Z2 × Z4, ∗, �) is a hollow. By using Theorem 4, we
conclude that (Z2 ×Z4, ∗, �) is also supplemented.

We conclude this section with some characterizations of amply supplemented hyper-
modules.

Theorem 5. For a hypermodule M, the following statements are equivalent.

(a) M is amply supplemented.
(b) Every subhypermodule N of M is of the form N = N1 + N2 with N1 supplemented and

N2 � M.
(c) For every proper subhypermodule N of M, there exists a supplemented proper subhypermodule

N1 of N with N
N1
� M

N1
.

Proof. (a) ⇒ (b) Let M be an amply supplemented hypermodule and N be a proper
subhypermodule of M. Then N has an ample supplement K in M, i.e., M = K + N and
there exists a supplement N1 of K in M which lies in N. It follows that N ∩ (K + N1) =
N ∩ M = N, while by the modular law we have N ∩ (K + N1) = N1 + (K ∩ N). Thus,
N1 + (K ∩ N) = N. Denote N2 = K ∩ N, which is small in M. It remains to be shown
that N1 is supplemented. By the hypothesis for a subhypermodule A of N1, let L be a
supplement of A + K in M that is contained in N1. Then L is also a supplement of A in N1
because L ∩ A � L, and from the minimality of N1, it follows that L + A = N1.

(b)⇒ (c) If N = N1 + N2 with N2 � M, it follows immediately that N
N1
� M

N1
.
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(c) ⇒ (a) Let N be a subhypermodule of N. By hypothesis, there exists a supple-
mented subhypermodule N1 of N with N

N1
� M

N1
. It follows that U + N1 = M, and if N

′
is a

supplement of U ∩ N1 in N1, then using the small strong epimorphism N
′ −→ N1

U∩N1
∼= M

U ,

we conclude that N
′

is a supplement of U in M and it is contained in N1. Thus, N has an
ample supplement in M.

Theorem 6. A finitely generated hypermodule M is amply supplemented if and only if every
maximal subhypermodule has ample supplements in M.

Proof. For an arbitrary ample supplemented hypermodule M, first we prove the following
property. If A + B = M and both subhypermodules A and B have ample supplements in
M, then so has A ∩ B. Indeed, from (A ∩ B) + C = M, it follows that A + (B ∩ C) = M =
B + (A ∩ C), and since M is ample supplemented, we have a supplement B

′
< B ∩ C of A

and a supplement A
′
< A ∩ C of B in M. It follows that A

′
+ B

′
< C is a supplement of

A ∩ B in M.
Suppose now that M is finitely generated and every maximal subhypermodule has

ample supplements in M. By Theorem 4, we know that M is supplemented, hence M
Rad(M)

is semisimple. Thereby, for every subhypermodule U of M, the factor hypermodule
M

Rad(M)+U is semisimple and finitely generated. Since M
Rad(M)+U is semisimple, it follows

that Rad( M
Rad(M)+U ) = 0. In addition, Rad( M

Rad(M)+U ) = ∩i∈I
Xi

Rad(M)+U = ∩i∈I Xi
Rad(M)+U for

every maximal subhypermodule Xi
Rad(M)+U of M

Rad(M)+U . Thus, Rad(M) + U = ∩i∈I Xi for

all maximal subhypermodules Xi of M. Since M
Rad(M)+U is finitely generated, there exists a

finite subset I
′

of I such that Rad(M) + U = ∩i∈I′ Xi. Thus, by the first part of the proof,
we conclude that Rad(M) + U has ample supplements in M, so also U.

4. Normal π-Projective Hypermodules

The aim of this section is to introduce the notion of normal π-projective hypermod-
ule, to find its properties related to direct summands and supplements, and to provide a
relationship between direct summands and supplements for this particular case of hyper-
modules.

Definition 1. An R-hypermodule M is called normal π-projective if for every pair (U, V) of
subhypermodules of M satisfying U + V = M, there exists a strong homomorphism η : M −→ M
with Im(η) ≤ U and Im(1− η) ≤ V, where 1 denotes the identity strong homomorphism of M.

Subhypermodules U and V are called normal mutually-projective if U is normal V-projective
and V is normal U-projective [6].

Lemma 6. For a normal π-projective hypermodule M, the following statements hold:

1. If U + V = M and U is a direct summand in M, there exists a subhypermodule V
′

of V with
U ⊕V

′
= M.

2. If U + V = M and U and V are direct summands in M, then so is U ∩V.
3. If U ⊕V = M and α : U −→ V is a strong homomorphism with a direct summand Im(α)

in V, then ker(α) is a direct summand in U.
4. If U ⊕V = M and a subhypermodule U

′
of U exists such that U

U′ is isomorphic to a direct

summand in V, then U
′

is a direct summand in U.

Proof. (1) Let M = U + V and M = U ⊕ X for some subhypermodule X of M. Since
M is a normal π-projective hypermodule, there exists a strong homomorphism η : M =
V +U −→ M with Im(1− η) ≤ U and Im(η) ≤ V. Therefore η(X) ≤ η(M) ≤ V, meaning
that η(X) is a subhypermodule of V. Then, it follows that M = U ⊕ η(X). Thus, there
exists a subhypermodule V

′
= η(X) of V with U ⊕V

′
= M.

59



Mathematics 2022, 10, 1945

(2) Suppose that U + V = M and U and V are direct summands in M. Then, by (1),
there exist a subhypermodule U

′
of U and a subhypermodule V

′
of V such that M =

U ⊕V
′
= U

′ ⊕V. It follows that M = (U ∩V)⊕ (U
′
+ V

′
).

(3) Suppose that U ⊕ V = M and Im(α) is a direct summand in V. Then there
exists a subhypermodule V′ of V such that Im(α)⊕ V

′
= V. Let A = U + V

′
and B =

{ u + α(u) | u ∈ U }. Thus M = A + B = A ⊕ Im(α) = B ⊕ V and A ∩ B = ker(α), so
applying (2), we obtain that ker(α) is a direct summand in M and also in U.

(4) Suppose that U ⊕V = M, and U
U′ is isomorphic to a direct summand in V, where

U
′

is a subhypermodule of U. Therefore there exists a strong injective homomorphism
β : U

U′ −→ V such that Im(β) is a direct summand in V. Now consider the strong canonical

epimorphism π : U −→ U
U′ and let α = β ◦π : U −→ V. By (3), we obtain that ker(α) = U

′

is a direct summand in U.

Example 3. Let I and J be right hyperideals in a hyperring R, with I ⊂ J ⊆ I
′
, where I

′
is the

intersection of all maximal hyperideals containing I. Consider the hypermodule M := R
I × R

J and
the subhypermodules A = R · (1, 0), C = R · (1, 1) and C = R · (0, 1). Since I ⊂ J, it follows
immediately that M = A + B = A ⊕ C = B ⊕ C and A ∩ B = {0R} · J

I . Because J ⊆ I
′
, it

follows that J
I ⊆ Rad( R

I ), thus A∩ B � M and therefore A∩ B �= {0M} is not a direct summand
in M. Moreover, the subhypermodules A and B are mutual supplements in M, that is M = A + B,
A ∩ B � B and A ∩ B � A.

Lemma 7. If M = U ⊕ V is a normal π-projective hypermodule, then the subhypermodules U
and V are normal π-projective, too. In addition, they are normal mutually-projective.

Proof. To show the normal π-projectivity of U, suppose that X + Y = U, where X and
Y are subhypermodules of U. Since X + (Y + V) = M and M is a normal π-projective
hypermodule, it follows that there exists a strong endomorphism α of M such that Im(α) is
a subhypermodule of X and Im(1− α) is a subhypermodule of Y + V. This induces a map
η : U −→ U defined by η(u) = α(u), for each u ∈ U. Then we have Im(η) = α(U) ≤ X
and Im(1− η) = Im(1− α) ≤ Y, since U ∩V = {0}. Therefore, U is a normal π-projective
subhypermodule, and similarly we can prove the assertion for V.

It remains to be proved that V is U-projective. For this, for an arbitrary hypermod-
ule Q, consider an arbitrary strong epimorphism β : U −→ Q and an arbitrary strong
homomorphism Φ : V −→ Q. Therefore Y = { u− v | u ∈ U, v ∈ V and β(u) = Φ(v) } is
a subhypermodule of M such that U + Y = M. Hence, since M is a π-projective hyper-
module, a strong endomorphism α of M exists such that Im(α) ≤ U and Im(1− α) ≤ Y.
Therefore, the map γ : V −→ U induced by α, i.e., γ(v) = α(v), for any v ∈ V, the equality
βγ = Φ holds.

Lemma 8. For a normal π-projective hypermodule M, the following statements hold:

(1) If U + V = M and U has a supplement in M, then U has a supplement contained in V.
(2) If U + V = M and U and V have supplements in M, then U ∩V also has a supplement in

M.
(3) If U + V = M and V is a fully invariant subhypermodule in M, then every supplement of U

lies in V.
(4) If U and V are mutual supplements in M, then M = U ⊕V.

Proof. (1) By hypothesis, the hypermodule M = U + V is π-projective, so there exists
a strong endomorphism α of M such that Imα ≤ V and Im(1 − α) ≤ U. Since U has
a supplement W in M, by Lemma 4 (3) it follows that α(W) is a supplement of U and
α(W) ≤ V.

(2) Accordingly with point (1), the subhypermodule U has a supplement V
′

in M,
with V

′ ≤ V, and the subhypermodule V has a supplement U
′

in M, with U
′ ≤ U.
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Therefore, M = U + V
′
= V + U

′
, with U ∩V

′ � V
′

and V ∩U
′ � U

′
. By the modularity

law, we can write U = U ∩ M = U ∩ (V + U′) = (U ∩ V) + U
′

and similarly, V =

(U ∩V) + V
′
. Therefore,

M = U + V = [(U ∩V) + U
′
] + [(U ∩V) + V

′
] = U ∩V + (U

′
+ V

′
)

and

(U
′
+ V

′
) ∩ (U ∩V) = [(U

′
+ V

′
) ∩U] ∩ V

= (U
′
+ V

′ ∩U) ∩ V
= (U

′ ∩V) + (V
′ ∩U)

� U
′
+ V

′
.

It follows that U
′
+ V

′
is a supplement of U ∩V in M.

(3) Let W be a supplement of U in M. Since M is a normal π-projective hypermodule,
there exists a strong endomorphism α : M = W + U −→ M, with Im(1− α) ≤ W and
Im(α) ≤ U. Therefore, taking η = 1− α, we obtain that η(V) = W ≤ V, since V is a fully
invariant subhypermodule of M.

(4) Let U and V be mutual supplements in M. It is enough to show that U ∩V = 0,
since clearly, M = U + V. Consider the strong epimorphisms α : U × V −→ M

U × M
V ,

defined by α(u, v) = (v + U, u + V), for all (u, v) ∈ U × V, β : U × V −→ M, defined as
β(u, v) = u + v, for all (u, v) ∈ U × V and π : M −→ M

U × M
V , with the definition law

π(m) = (m + U, m + V), for all m ∈ M. Since

(πβ)(u, v) = π(u + v) = ((u + v) + U, (u + v) + V) = (v + U, u + V)
= α(u, v),

it follows that the following diagram

U ×V α ��

β

��

M
U × M

V

M = U + V

π

��

is commutative. It can be seen that ker(α) = (U ∩ V) × (U ∩ V). Since U ∩ V � U
and U ∩ V � V, we obtain that ker(α) is small in U × V. It means that α is a small
strong epimorphism. Since M is normal π-projective, there exists a strong homomorphism
η : M −→ M with Im(η) ≤ U and Im(1− η) ≤ V. Let f : M −→ U × V be defined
by f (m) = (η(m), (1− η)(m)), for all m ∈ M. Then (β f )(m) = β( f (m)) = β(η(m), (1−
η)(m)) = η(m) + (1− η)(m) = m = IM(m) and so β splits. It means that ker(β) is a direct
summand of U × V. Therefore ker(β) ≤ ker(α). It follows that ker(β) � U × V and so
ker(β) = 0. Hence U ∩V = 0.

Proposition 2. For a normal π-projective hypermodule M, the following assertions are equivalent.

1. If U + V = M and U ∩V has a supplement in M, then U and V have a supplement in M,
too.

2. If U + V = M and U ∩ V has a supplement in M, there exist U
′ ≤ U and V

′ ≤ V with
U
′ ⊕V

′
= M.

Moreover, if Rad(M)� M, then these two assertions are further equivalent to the next three,
where M = M

Rad(M)
.

3. If U < M and U is a direct summand in M, then U has a supplement in M.
4. Every direct summand of M is the image of a direct summand in M.
5. Every decomposition of M is induced by a decomposition of M.
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Proof. (1)⇒ (2) By hypothesis, U has a supplement in M. Thus, accordingly to Lemma 6
(1), there exists V

′ ≤ V such that U + V
′
= M and U ∩V

′ � V
′
, so U has a supplement V′

in M. Similarly, V
′

has a supplement U
′ ≤ U, and therefore U

′ ⊕V
′
= M by Lemma 8 (4).

(2) ⇒ (1) Let U + V = M and W be a supplement of U ∩ V in M. Therefore,
M = (U ∩V) + W. Based on the modularity law, we can write V = M ∩V = [(U ∩V) +
W] ∩V = (U ∩V) + (V ∩W) and similarly, U = (U ∩V) + (U ∩W). Therefore,

M = U + V = [(U ∩V) + (V ∩W)] + [(U ∩V) + (U ∩W)]
= U ∩V + V ∩W + U ∩ W
= U + (V ∩W).

Since W is a supplement of U ∩V in M, it follows that (U ∩V) ∩W = U ∩ (V ∩W) is
a small subhypermodule of M. By hypothesis, there exist subhypermodules U

′ ≤ U and
V
′ ≤ V ∩W such that U

′ ⊕ V
′
= M. Now it is clear that M = U + V

′
= V + U

′
. Since

U ∩V
′ ≤ U ∩ (V ∩W) is a small subhypermodule of M and V

′
is a direct summand of M,

we obtain that U ∩V
′

is a small subhypermodule of V
′
. Hence V

′
is a supplement of U in

M. In the same way, it can be shown that U
′

is a supplement of V in M.
Suppose now that Rad(M)� M.
(2)⇒ (5) If U ⊕V = M with Rad(M) ≤ U and V ≤ M, then there exist U

′ ≤ U and
V
′ ≤ V with U

′ ⊕V
′
= M by the hypothesis, and hence it follows that U′ = U and V ′ = V.

(5)⇒ (4) Clear.
(4)⇒ (3) For W ⊕U = M, there exists a direct summand V of M with V = W by the

hypothesis. It follows that V is a supplement of U in M.
(3) ⇒ (1) Let U + V = M and W be a supplement of U ∩ V in M. It follows

for V1 := V ∩ W that U + V1 = M and U ∩ V1 ⊆ Rad(M). Because M is normal π-
projective and Rad(M) is a fully invariant subhypermodule in M, it can be shown that
(U + Rad(M)) ∩ (V1 + Rad(M)) = Rad(M), that is, U ⊕V1 = M, so U has a supplement
in M by the hypothesis. Similarly, the property holds for V.

As a direct consequence of Proposition 2, we state the following necessary and suf-
ficient condition for a normal π-projective hypermodule with small radical to be supple-
mented.

Corollary 2. A normal π-projective hypermodule M with small radical is supplemented if and
only if the quotient hypermodule M = M

Rad(M)
is semisimple and every direct summand of M is the

image of a direct summand in M.

5. Conclusions

In classical algebra there is a unique concept of module over a ring, while in hypercom-
positional algebra we must distinguish between the general hypermodule and the Krasner
hypermodule, depending on their additive structure: if the additive part is a canonical
hypergroup, then we talk about a Krasner hypermodule. Thus, some properties hold only
in Krasner hypermodules and not in general ones, such as, for example, the following one.
The sum of two arbitrary Krasner subhypermodules is always a Krasner subhypermodule,
whereas, the sum of subhypermodules of a general hypermodule may not be a subhyper-
module. As a consequence, Rad(M), which is the sum of all small subhypermodules of a
hypermodule M (a general one or a Krasner hypermodule), plays a fundamental role in
the characterization of hollow hypermodules. These are hypermodules with the property
that every subhypermodule is small.

In this article, we have focused on Krasner hypermodules and in particular we have
related the notions of supplement and direct summand to normal projectivity. Especially,
we have proved that the class of supplemented Krasner hypermodules is closed under finite
sums and under quotients. In addition, we have showed that a finitely generated Krasner
hypermodule is supplemented if and only if it is a sum of hollow subhypermodules. Some
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characterizations of amply supplemented Krasner subhypermodules have been provided.
One of them says that a finitely generated hypermodule M is amply supplemented if and
only if every maximal subhypermodule has ample supplements in M. After presenting
some fundamental properties of normal π-projective hypermodules related to the behavior
of direct summands and supplements, we have concluded our study with a necessary and
sufficient condition for a normal π-projective hypermodule M with small radical Rad(M)
to be supplemented.

We believe that this study could open new lines of research, one being related with
embeddings. It would be useful to know that any Krasner R-hypermodule is embed-
ding in a normal π-projective hypermodule, because then we can easily work with the
characterizations provided in this article for normal π-projective hypermodules. Another
future research idea could be related with the category of Krasner R-hypermodules. If we
consider a normal π-projective R-hypermodule M with strong endomorphism hyperring
S = End(M), then we may ask about the relationship between the class homS

R(M, N) of
all strong R-homomorphisms from M to an arbitrary subhypermodule N and S as an
S-subhypermodule.
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Abstract: Throughout this study, we continue the analysis of a recently found out Gibbs–Wilbraham
phenomenon, being related to the behavior of the Lagrange interpolation polynomials of the continu-
ous absolute value function. Our study establishes the error of the Lagrange polynomial interpolants
of the function |x| on [−1, 1], using Chebyshev and Chebyshev–Lobatto nodal systems with an
even number of points. Moreover, with respect to the odd cases, relevant changes in the shape and
the extrema of the error are given.

Keywords: Lagrange interpolation; Chebyshev nodal systems; Chebyshev–Lobatto nodal systems;
absolute value approximation; rate of convergence; Gibbs–Wilbraham phenomena

MSC: 41A05; 65D05; 42C05

1. Introduction

The Gibbs–Wilbraham phenomenon, introduced in [1], is an important topic in function
approximation and attracts much interest amongst researchers. It appears in different types
of approximations, with its specific characteristics linked to each one. In brief, we can describe
the phenomenon as the peculiar behavior of the approximations of a function with a jump
discontinuity, using the usual Fourier series or different types of interpolation polynomials.
Near the singularity, we have a large oscillation, and far away from the singularity, we
have uniform convergence. Refs. [2–9] are devoted to researching the Gibbs–Wilbraham
phenomena; however, all of them, though in different contexts, only refer to functions with
jump discontinuities. A complete view of the recent research is reflected in [10].

In the recent article [11], we have studied the behavior of the Lagrange interpolators
of |x| based on the Chebyshev and Chebyshev–Lobatto nodal systems with an odd number
of nodal points, or if preferred, when 0 is part of the nodal system. The approximation
of |x| by polynomials is an important topic since the paper of S. Bernstein, see [12]. We
must refer to the introduction of this paper for the relevance of the problem and its possible
development. The most relevant result, studied in depth, is that the approximations
present a new Gibbs–Wilbraham phenomenon case. Indeed, we establish where and when
the phenomenon occurs and give an accuracy approximation.

At least using interpolation, when we have the Gibbs–Wilbraham phenomenon, it is
usual that minor changes in the nodal system have no effect on the shape of the phe-
nomenon nor on its amplitudes, (see [3]). Therefore, we assumed that the study of the same
interpolation problem changing the parity of the nodal systems had no interest, but we
found that this was a mistake. In the present piece of work, we study the behavior of the La-
grange interpolators of |x| based on the Chebyshev and Chebyshev–Lobatto nodal systems
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with even order and, in the end, we conclude that the Gibbs–Wilbraham phenomena are
strongly different in shape and amplitude.

This piece of work maintains a close logical connection with [11], even though we
have reformulated its structure to make it less extensive and easier to read. For instance,
we have recovered some interesting sums. We want to point out the key role of Lemma 2,
which is an important advance with respect to the methods developed in that paper.

The article is structured as follows:

1. After this introductory section, in Section 2, we present two Lagrange interpolatory
problems in the unit circle T, T = {z ∈ T : |z| = 1}, related to the function F(z) =

| z+ 1
z

2 |. We must point out that we do not justify the interest of these problems in this
section. The results obtained here will be translated in a well-known and short way
to the real problem in Section 3, which is devoted to the problem and its results
on the real line.

2. In Section 4, we present some numerical examples and the corresponding graphs.
3. Finally, in Section 5, we present the conclusions and further developments.

2. On the Unit Circle

As we have said, we consider two different nodal systems on the unit circle.
One of them, NT , is constituted by the 2n roots of −1 with n = 2p (p a natural number),
being the related nodal polynomial, that we denote by W2n,T(z), just W2n,T(z) = z2n + 1.
The other one, NU , is constituted by the 2n roots of 1 with n = 2p + 1 (p a natural
number), being the related nodal polynomial, that we denote W2n,U(z), just W2n,U(z) =
z2n − 1. An important feature that NT and NU have in common is that i does not belong
to them. Indeed, i is exactly the middle of the arc between two consecutive nodal points.
Moreover, we can denote the systems in a common way by {αk}2n−1

k=0 ; both are equidis-
tributed nodal systems on T and we can think that α0 is ie−i π

2n and that the system is
clockwise ordered (see Figure 1 below). The reasons for these choices and the notation
will be seen clearly in Section 3. We use these nodal systems to interpolate the function

F(z) =
∣∣∣∣ z+ 1

z
2

∣∣∣∣, which is the translation to T of |x| through the Joukowsky transformation

(see [13] for details).

Figure 1. A common view of NT and NU near i.

The interpolation on the unit circle is not usually performed on the algebraic poly-
nomial spaces. Instead of this, we use, due to completeness reasons, interpolation in sub-
spaces of the space of Laurent polynomials Λ[z] = P[z]⊕ P[ 1

z ] and usually balanced spaces
are used. Thus, in our case, we interpolate F(z) in the space Λ−n,n−1[z] = Pn−1[z] ⊕
Pn[

1
z ] and we denote the corresponding interpolating polynomials by L−n,n−1(F, z, T) and

L−n,n−1(F, z, U), that is, corresponding to NT and NU , respectively. This problem is well-
known, and in [3], we have given expressions for the interpolation polynomial in a quite
general situation. Next, we translate some of them to our particular conditions.

1. The Laurent polynomials L−n,n−1(F, z, T) and L−n,n−1(F, z, U) have the following
expressions

L−n,n−1(F, z, T) =
W2n,T(z)

2n zn

2n−1

∑
j=0

1
αn−1

j (z− αj)
F(αj), (1)
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and

L−n,n−1(F, z, U) =
W2n,U(z)

2n zn

2n−1

∑
j=0

1
αn−1

j (z− αj)
F(αj). (2)

2. The barycentric formulae of type II for L−n,n−1(F, z, T) and L−n,n−1(F, z, U) are

L−n,n−1(F, z, T) =

2n−1
∑

j=0

1
αn−1

j (z−αj)
F(αj)

2n−1
∑

j=0

1
αn−1

j (z−αj)

and L−n,n−1(F, z, U) =

2n−1
∑

j=0

1
αn−1

j (z−αj)
F(αj)

2n−1
∑

j=0

1
αn−1

j (z−αj)

. (3)

Barycentric formulae are easy to use and numerically stable in the sense of [14] in these
cases.

Using exactly the same ideas as in [11], we can obtain an expression for the error
between F(z) and its interpolants when z is an element of T with �(z), �(z) ≥ 0. We
obtain

E(F, z, T) = F(z)−
2n−1

∑
j=0

F(αj)
1
zn

W2n,T(z)
2nαn−1

j (z− αj)
= −2

2n−1

∑
j=n

F(αj)
W2n,T(z)

zn2n
1

αn−1
j (z− αj)

,

and

E(F, z, U) = F(z)−
2n−1

∑
j=0

F(αj)
1
zn

W2n,U(z)
2nαn−1

j (z− αj)
= −2

2n−1

∑
j=n

F(αj)
W2n,U(z)

zn2n
1

αn−1
j (z− αj)

.

We know that this error is, at most, of order 1
2n and we therefore study 2nE(F, z, T)

and 2nE(F, z, U). After changing the index of the summation, we obtain:

2nE(F, z, T) = −2
W2n,T(z)

in zn

n

∑
�=1

F(α2n−�)
in

αn−1
2n−�(z− α2n−�)

, (4)

and

2nE(F, z, U) = −2
W2n,U(z)

in zn

n

∑
�=1

F(α2n−�)
in

αn−1
2n−�(z− α2n−�)

. (5)

Notice that the only, but relevant, differences between (4) and (5) and the expressions
stated in [11] are just the superior limit of the summation and the corresponding nodal
polynomials.

We can describe z as z = ie−i πd
n . Taking into account the previous description

of the nodal system, we have α� = ie−i
π(�+ 1

2 )
n and α2n−� = iei

π(�− 1
2 )

n (see Figure 1).
These choices make the reinterpretation of the previous expressions possible. Indeed,
it is easy to obtain W2n,T(z)

inzn = 2 cos dπ when n is even and newly W2n,U(z)
inzn = 2 cos dπ when

n is odd.

On the other hand, F(α2n−�) = − α2n−�+
1

α2n−�
2 = −

iei
π(�− 1

2 )
n + 1

iei
π(�− 1

2 )
n

2 = −�(iei π�
n ) =

sin (�− 1
2 )π

n and
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in

αn−1
2n−�(z− α2n−�)

=
in

αn
2n−�

1
z

α2n−�
− 1

=
in

in
(

ei
π(�− 1

2 )
n

)n
1

ie−i πd
n

iei
π(�− 1

2 )
n

− 1
=

i
(−1)�

e−i
π(d+�− 1

2 )
n − 1

= i(−1)�

⎛⎝−1
2
+ i

cos π(d+�− 1
2 )

2n

2 sin π(d+�− 1
2 )

2n

⎞⎠. (6)

For the last equality, we have used 1
e−ix−1 = − 1

2 + i cos x
2

2 sin x
2

(see [11] for details).

Hence, we have for z = ie−i πd
n

2nE(F, z, T) = −4 cos dπ
n

∑
�=1

i(−1)�

⎛⎝−1
2
+ i

cos π(d+�− 1
2 )

2n

2 sin π(d+�− 1
2 )

2n

⎞⎠ sin
(�− 1

2 )π

n
=

4 cos dπ
n

∑
�=1

(−1)�
cos π(d+�− 1

2 )
2n

2 sin π(d+�− 1
2 )

2n

sin
(�− 1

2 )π

n
+ 2i cos dπ

n

∑
�=1

(−1)� sin
(�− 1

2 )π

n
, (7)

and the expression is also true for 2nE(F, z, U).

Lemma 1. It holds

(i)
n
∑
�=1

(−1)� sin (�− 1
2 )π

n = − 1
2 sin(n− 1)π sec π

2n = 0.

(ii)
n−1
∑
�=1

(−1)� cos (�− 1
2 )π

n = 1
2 sec π

2n (cos(n− 1)π − 1).

Proof. All the sums that we gather in this lemma can be reconsidered as a sum of different
geometric progressions by taking into account that sin θ = eiθ−e−iθ

2i and cos θ = eiθ+e−iθ

2 .
Thus, the different problems can be confidently solved by a symbolic calculator. We have
used Mathematica® 12.2 (Wolfram, Champaign, IL, USA) in all cases and made some
elementary simplifications when necessary.

Proposition 1. For z = ie−i πd
n , it holds

2nE(F, z, T) = 4 cos dπ
n

∑
�=1

(−1)�
cos π(d+�− 1

2 )
2n

2 sin π(d+�− 1
2 )

2n

sin
(�− 1

2 )π

n
and

2nE(F, z, U) = 4 cos dπ
n

∑
�=1

(−1)�
cos π(d+�− 1

2 )
2n

2 sin π(d+�− 1
2 )

2n

sin
(�− 1

2 )π

n
. (8)

Proof. We can neglect the imaginary part of 2nE(F, z, T) in (7) as a consequence of Lemma 1
(i). We obtain the same result for 2nE(F, z, U) because (7) is valid for it too. We must point
out that the same expression is correct for both errors although we have the difference
in the parity of n, which we need to take into account.

In the next Lemma, we present an auxiliary result, which represents an important
advance in the methods developed in [11].
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Lemma 2. It holds

n

∑
�=1

(−1)�
cos (d+�− 1

2 )π
2n

2 sin (d+�− 1
2 )π

2n

sin
(�− 1

2 )π

n
= Q1,n(d) + Q2,n(d) with

Q1,n(d) =

{
− 1

2 sec π
2n if n even

− 1
2 cos dπ

n if n odd
and (9)

Q2,n(d) = −1
2

sin
dπ

n

n

∑
�=1

(−1)� cot
(d + �− 1

2 )π

2n
. (10)

Proof. We use �1 = �− 1
2 to simplify the exposition. Because

sin
�1π

n
= sin

(
(d + �1)π

n
− dπ

n

)
= sin

(d + �1)π

n
cos

−dπ

n
+ cos

(d + �1)π

n
sin

−dπ

n
=

2 sin
(d + �1)π

2n
cos

(d + �1)π

2n
cos

dπ

n
−

(
cos2 (d + �1)π

2n
− sin2 (d + �1)π

2n

)
sin

dπ

n
=

2 sin
(d + �1)π

2n
cos

(d + �1)π

2n
cos

dπ

n
+ 2 sin2 (d + �1)π

2n
sin

dπ

n
− sin

dπ

n
.

we have, taking �1 = �− 1
2 ,

n

∑
�=1

(−1)�
cos (d+�1)π

2n

2 sin (d+�1)π
2n

sin
�1π

n
=

1
2

n

∑
�=1

(−1)�
cos (d+�1)π

2n

sin (d+�1)π
2n

(
2 sin

(d + �1)π

2n
cos

(d + �1)π

2n
cos

dπ

n
+ 2 sin2 (d + �1)π

2n
sin

dπ

n

)
+

(
−1

2

)
sin

dπ

n

n

∑
�=1

(−1)�
cos (d+�1)π

2n

sin (d+�1)π
2n

.

Thus, we can define Q2,n(d) = − 1
2 sin dπ

n

n
∑
�=1

(−1)� cos
(d+�− 1

2 )π
2n

sin
(d+�− 1

2 )π
2n

, that is, as in (10), and

we can also take

Q1,n(d) =

1
2

n

∑
�=1

(−1)�
cos (d+�1)π

2n

sin (d+�1)π
2n

(
2 sin

(d + �1)π

2n
cos

(d + �1)π

2n
cos

dπ

n
+ 2 sin2 (d + �1)π

2n
sin

dπ

n

)
=

1
2

n

∑
�=1

(−1)�
(

2 cos2 (d + �1)π

2n
cos

dπ

n
+ 2 sin

(d + �1)π

2n
cos

(d + �1)π

2n
sin

dπ

n

)
=

1
2

n

∑
�=1

(−1)�
((

1 + cos
(d + �1)π

n

)
cos

dπ

n
+ sin

(d + �1)π

n
sin

dπ

n

)
=

1
2

(
cos

dπ

n

n

∑
�=1

(−1)� +
n

∑
�=1

(−1)� cos
�1π

n

)
.
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After using Lemma 1 (ii), we obtain for Q1,n(d) the expression

Q1,n(d) =
1
2

(
cos

dπ

n

n

∑
�=1

(−1)� +
1
2

sec
π

2n
(cos(π(n− 1))− 1)

)
.

Notice that Q1,n(d) is affected by the parity of n, and we conclude (9) because,
when n is even, we have Q1,n(d) = − 1

2 sec π
2n , and when n is odd, we have Q1,n(d) =

− 1
2 cos dπ

n .

In the sequel, we use the special function Phi of Hurwitz–Lerch with −1 as first
argument, that is, HurwitzLerchPhi[−1, s, d]. It is defined by

HurwitzLerchPhi[−1, s, d] =
∞

∑
k=0

(−1)k

(k + d)s .

Moreover, in our case, s = 1. Thus, we use HurwitzLerchPhi[−1, 1, d], which we
denote by η(d) (see [15] for the details).

To obtain the main results of this section, we need some intermediate statements that
we gather in Lemmas 3 and 4.

In [11], we have considered the expression P2,n(d) = − 1
2 sin dπ

n

n−1
∑
�=1

(−1)� cos (d+�)π
2n

sin (d+�)π
2n

closely related to Q2,n(d). Next, we obtain some results about P2,n(d) based on that paper.

Lemma 3. It holds:

(i) If − 1
2 ≤ d ≤ √

n, then P2,n(d) = dη(d + 1) +O
(

1√
n

)
, for all n.

(ii) If
√

n− 1
2 ≤ d ≤ n

2 + 1
2 , then P2,n(d) = 1

2 cos dπ
n +O

(
1√
n

)
, when n is even.

(iii) If
√

n− 1
2 ≤ d ≤ n

2 + 1
2 , then P2,n(d) = 1

2 +O
(

1√
n

)
, when n is odd.

Proof. (i), (ii) and (iii) are, respectively, consequences of Propositions 5–7 (ii) of the last
cited paper. Although the limits for d are different (they do not contain 1

2 ), the behaviors
do not change.

Lemma 4. If 0 ≤ d ≤ n
2

, it holds

(i) sin
dπ

2n
sin

(d− 1
2 )π

2n
=

1
2

(
1− cos

dπ

n

)
+O

(
1
n

)
.

(ii)
cos

dπ

2n

cos
(d− 1

2 )π

2n

= 1 +O
(

1
n

)
.

(iii) sin
dπ

n
tan

(d− 1
2 )π

2n
= 1− cos

dπ

n
+O

(
1
n

)
.

(iv) If
√

n ≤ d ≤ n
2

, then
sin

dπ

n

sin
(d− 1

2 )π

2n

= 1 +O
(

1√
n

)
.

Proof. (i) It is obtained thanks to the Mean Value Theorem (MVT). It is verified that

sin
dπ

2n
sin

(d− 1
2 )π

2n
= sin

dπ

2n

(
sin

dπ

2n
− cos ξ

π

4n

)
= sin2 dπ

2n
+O

(
1
n

)
=

1
2

(
1− cos

dπ

n

)
+O

(
1
n

)
.
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We obtain (ii) newly applying the MVT. It is verified that

cos dπ
2n

cos
(d− 1

2 )π

2n

=
cos

(d− 1
2 )π

2n
− sin ξ

π

4n

cos
(d− 1

2 )π

2n

= 1 +O
(

1
n

)
.

Note that cos
(d− 1

2 )π

2n
≥ cos

π

4
as 0 ≤ d ≤ n

2 .
(iii) It is a consequence of (i) and (ii) because

sin
dπ

n
tan

(d− 1
2 )π

2n
= 2 sin

dπ

2n
sin

(d− 1
2 )π

2n
cos dπ

2n

cos (d− 1
2 )π

2n

=

2
(

1
2

(
1− cos

dπ

n

)
+O

(
1
n

))(
1 +O

(
1
n

))
= 1− cos

dπ

n
+O

(
1
n

)
.

(iv) It can be proved in the same way as (ii).

Theorem 1. Let z = ie−i πd
n . If

√
n ≤ d ≤ n

2 , then 2nE(F, z, T) = O( 1√
n ) and 2nE(F, z, U) =

O( 1√
n ).

Proof. First, we prove our thesis for 2nE(F, z, T), that is, when n is even. We know that
2nE(F, z, T) = 4 cos dπ(Q1,n(d) + Q2,n(d)), with Q1,n(d), Q2,n(d)) given in (9) and (10).
We can write

Q2,n(d) = −1
2

sin
dπ

n

n

∑
�=1

(−1)� cot
(d + �− 1

2 )π

2n
=

−1
2

sin
dπ

n

n−1

∑
�=1

(−1)� cot
(d + �− 1

2 )π

2n
− 1

2
sin

dπ

n
(−1)n cot

(d + n− 1
2 )π

2n
=

sin dπ
n

sin (d− 1
2 )π

n

(
−1

2
sin

(d− 1
2 )π

n

n−1

∑
�=1

(−1)� cot
(d + �− 1

2 )π

2n

)
︸ ︷︷ ︸

∗

+
1
2

sin
dπ

n
tan

(d− 1
2 )π

2n︸ ︷︷ ︸
∗∗

. (11)

This expression is more complex, but it is convenient as we can see that

∗ =
(

1 +O
(

1√
n

))(
1
2

cos
dπ

n
+O

(
1√
n

))
(see Lemma 3 (ii) and Lemma 4 (iv)) and

∗∗ = 1
2

(
1− cos

dπ

n

)
+O

(
1√
n

)

(see Lemma 4 (iii)). Thus, we have Q2,n(d) = 1
2 + O

(
1√
n

)
. Taking into account that

Q1,n(d) = − 1
2 sec π

2n , we have the result for 2nE(F, z, T).
We use the same ideas for 2nE(F, z, U), that is, when n is odd, and we obtain

∗ = (1 +O
(

1√
n

)
)

(
1
2
+O

(
1√
n

))
and

∗∗ = −1
2

(
1− cos

dπ

n

)
+O

(
1√
n

)
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and Q1,n(d) = − 1
2 cos dπ

n . These elements lead us to the same result for 2nE(F, z, U).

Lemma 5. If 0 ≤ d ≤ √
n, then sin

dπ

n
sin(d− 1

2 )π

sin
(d− 1

2 )π

n

= O(1).

Proof. Let us suppose that d ≥ 1. In this case, we write

∣∣∣∣∣∣ sin dπ
n sin(d− 1

2 )π

sin (d− 1
2 )π

n

∣∣∣∣∣∣ ≤
dπ
n

2
π

(d− 1
2 )π

n

=

O(1). When 0 ≤ d ≤ 1 and d �= 1
2 , we obtain

∣∣∣∣∣∣ sin dπ
n sin(d− 1

2 )π

sin (d− 1
2 )π

n

∣∣∣∣∣∣ ≤
dπ
n (d− 1

2 )π

2
π

(d− 1
2 )π

n

=

O(1).

Lemma 6. If 0 ≤ d ≤ √
n, it holds

cos dπ Q2,n(d) =

cos dπ

⎛⎝−1
2

sin
dπ

n

n

∑
�=1

(−1)�
cos (d+�− 1

2 )π
2n

sin (d+�− 1
2 )π

2n

⎞⎠ = cos(dπ) d η(d +
1
2
) +O

(
1√
n

)
(12)

Proof. Considering (11), we have

cos dπ Q2,n(d) =

cos dπ
sin dπ

n

sin (d− 1
2 )π

n

(
−1

2
sin

(d− 1
2 )π

n

n−1

∑
�=1

(−1)� cot
(d + �− 1

2 )π

2n

)
︸ ︷︷ ︸

∗

+

cos dπ
1
2

sin
dπ

n
tan

(d− 1
2 )π

2n︸ ︷︷ ︸
∗∗

. (13)

The term ∗∗ of (13) is, in our case, O
(

1
n

)
. For the other term, which is the relevant

one, and taking into account that cos dπ = − sin(d− 1/2)π, Lemma 3 (i) and Lemma 5,
we obtain

∗ = cos dπ
sin dπ

n

sin (d− 1
2 )π

n

(
−1

2
sin

(d− 1
2 )π

n

n−1

∑
�=1

(−1)� cot
(d + �− 1

2 )π

2n

)
=

− sin
dπ

n
sin(d− 1/2)π

sin (d−1/2)π
n

(
(d− 1

2
) η(d +

1
2
) +O

(
1√
n

))
=

− sin
dπ

n
sin(d− 1/2)π

sin (d−1/2)π
n

(d− 1
2
) η(d +

1
2
) +O(1)O

(
1√
n

)
.

Therefore, using newly cos dπ = − sin(d− 1/2)π, we obtain
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∗ = cos dπ
sin dπ

n

sin (d− 1
2 )π

n

(d− 1
2
) η(d +

1
2
) +O

(
1√
n

)
=

cos dπ
sin dπ

n
dπ
n

(d− 1
2 )π

n

sin (d−1/2)π
n

d η(d +
1
2
) +O

(
1√
n

)
=

cos(dπ) d η(d +
1
2
)

(
1 +O

(
1
n2

))(
1 +O

(
1
n2

))
+O

(
1√
n

)
. (14)

For the last equality of (14), we have used the well-known facts that x
sin x and sin x

x are
both 1 +O(x2), when x is small. Thus, we can conclude (12).

Theorem 2. Let z = ie−i πd
n and 0 ≤ d ≤ √

n.

(i) If n is even, then 2nE(F, z, T) = 4 cos dπ
(

d η(d + 1
2 )− 1

2 sec π
2n

)
+ O

(
1√
n

)
.

Moreover, for n large enough, 2nE(F, z, T) behaves like 4 cos dπ
(

d η(d + 1
2 )− 1

2

)
and

the error is O
(

1√
n

)
.

(ii) If n is odd, then 2nE(F, z, U) = 4 cos dπ
(

d η(d + 1
2 )− 1

2 cos dπ
n

)
+ O

(
1√
n

)
.

Moreover, for n large enough, 2nE(F, z, U) behaves like 4 cos dπ
(

d η(d + 1
2 )− 1

2

)
and

the error is O
(

1√
n

)
.

Proof. Both facts are straightforward consequences of Proposition 1 and Lemmas 2 and 6.
Both expressions can be approximated by 4 cos dπ

(
d η(d + 1

2 )− 1
2

)
+O

(
1√
n

)
.

We can conclude the following:

1. It appears a Gibbs–Wilbraham phenomenon. Theorem 1 states 2nE(F, z, T) and
2nE(F, z, U) converge uniformly to 0 far from i but, as a consequence of Theorem 2,
they present a strong oscillation close to i. The limits for these behaviors are clearly
stated.

2. An important consequence of Theorem 2 is that we can asymptotically approximate

2nE(F, z, T) (or 2nE(F, z, U)) near i by 4 cos dπ
(

d η(d + 1
2 )− 1

2

)
. Notice that the ex-

trema of the error must be asymptotically near the extrema of the approximation.
It is easy to obtain these last extrema. We have done this by using the sequence
of Mathematica® commands gathered in the extremaerror file of https://github.com/
eberriochoa/Absolute-value-interpolation-The-even-cases (accessed on 2 June 2022).
The results are presented in Table 1.

3. Finally, the more relevant result is that the Gibbs–Wilbraham phenomenon is com-
pletely different with the corresponding phenomenon when i belongs to the nodal
systems (see [11]). This can be appreciated in shapes and extrema.

Table 1. Extrema of 4 cos dπ
(

d η(d + 1
2 )− 1

2

)
.

In the Interval
The Extremum is Attained

at (d Value)
Being the Extremum

[0, 1
2 ] 0 −2

[ 1
2 , 3

2 ]
0.864497 0.310441

[ 3
2 , 5

2 ]
1.91506 −0.103946

[ 5
2 , 7

2 ]
2.93871 0.0504843

[ 7
2 , 9

2 ]
3.95233 −0.0294926

[ 9
2 , 11

2 ] 4.96111 −0.179272

73



Mathematics 2022, 10, 2558

3. Interpolation of |x| on Chebyshev and Chebyshev–Lobatto Nodal Systems with
Even Nodes

In the sequel, �m−1(|x|, x, Tm) denotes the Lagrange interpolation polynomial which
interpolates |x| on the Chebyshev nodal system constituted by the m roots of Tm(x),
the Chebyshev polynomial of degree m. Similarly, �m+1(|x|, x, Um) denotes the Lagrange
interpolation polynomial which interpolates |x| on the Chebyshev–Lobatto nodal sys-
tem constituted by the m roots of Um(x), the Chebyshev polynomial of degree m, plus
±1. In both cases, we consider m even. Classical references about Chebyshev polyno-
mials are [16,17]. Taking into account the symmetry of the problem, it is immediate that
�m−1(|x|,−x, Tm) = �m−1(|x|, x, Tm). Thus, �m−1(|x|, x, Tm) cannot have odd monomials,
and it is a polynomial of degree m− 2 at most. Similarly, �m+1(|x|, x, Um) is a polynomial
of degree m at most. If we consider the Joukowsky–Szegő transformation with x and z

related to x =
z+ 1

z
2 , we have that the Chebyshev nodes are related to NT (the 2m roots

of −1) and the Chebyshev–Lobatto nodes are related to NU (the 2m + 2 roots of 1). More-

over, �m−1(|x|, z+ 1
z

2 , Tm) interpolates F(z) = | z+ 1
z

2 | on NT . As �m−1(|x|, z+ 1
z

2 , Tm) belongs

to Λ−m,m−1[z], we can conclude that �m−1(|x|, z+ 1
z

2 , Tm) = L−n,n−1(F, z, T). Furthermore,
as this is a roundtrip, we know the behavior of |x| − �m−1(|x|, x, Tm), taking into account

the behavior of | z+ 1
z

2 | − L−m,m−1(F, z, T). A similar affirmation is true for �m+1(|x|, x, Um).
Thus, we can state the next theorems.

Theorem 3. For x = sin dπ
m , it holds

1. If
√

m ≤ d ≤ m
2 , then

2m(|x| − �m−1(|x|, x, Tm) = O
(

1√
m

)
and

2(m + 1)(|x| − �m+1(|x|, x, Um) = O
(

1√
m

)
.

2. If 0 ≤ d ≤ m
2 , then

2m(|x| − �m−1(|x|, x, Tm) = 4 cos dπ
(

dη(d + 1
2 )− 1

2

)
+O

(
1√
m

)
and

2(m + 1)(|x| − �m+1(|x|, x, Um) = 4 cos dπ
(

dη(d + 1
2 )− 1

2

)
+O

(
1√
m

)
.

Proof. Take into account the preceding paragraph and Theorems 1 and 2.

4. Numerical Experiments and Graphs

All the graphs which can be seen below have been obtained by using a sequence
of commands of Mathematica® 12.2. We share these codes and the graphs through the link
https://github.com/eberriochoa/Absolute-value-interpolation-The-even-cases (accessed

on 2 June 2022). The representations are always related to the function F(z) = | z+ 1
z

2 |
and the interpolation polynomial L−n,n−1(F, z, T) for n = 200. For simplicity, we use
the variable θ, with z = eiθ , in the plots.

We have tested that the graphs for other values of n do not present changes.
Figure 2 presents a general view of the interpolation on the left-hand side. On the right-

hand side, we have the representation considering both functions multiplied by 2n, and we
can appreciate that the interpolation has problems near i, or equivalently θ = π

2 .

74



Mathematics 2022, 10, 2558

Figure 2. A general view of F(z) and L−200,199(F, z, T) on the left and a detailed view of both scaled
functions near i on the right.

Figure 3 gives a good idea of the Gibbs–Wilbraham phenomenon. It presents the dif-
ference between F(z) and L−200,199(F, z, T) multiplied by 2n, that is, 2nE(F, z, T). It is clear
that far enough from ±i, this difference is close to 0. On the other hand, when we are
near the singularities, the function presents an oscillatory behavior. This behavior is more
pronounced the closer we get to the singularities.

Figure 3. A neat view of the Gibbs–Wilbraham phenomena. The representation of 2nE(F, z, T) along
T for n = 200.

Figure 4 gives a good idea of the behavior near i. The figure presents 2nE(F, z, T) and
the approximation given in Theorem 2 along 30 arcs centered in i. We must point out that
the functions are indistinguishable.

Figure 4. A detailed view of the Gibbs–Wilbraham phenomena. The representation of 2nE(F, z, T)
along 30 arcs near i for n = 200.
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Figure 5 is a detail of Figure 4. 2nE(F, z, T) and the approximation given in Theorem 2
along 30 arcs centered in i are presented. We must point out that the functions are indistin-
guishable.

Figure 5. A detailed view of the Gibbs–Wilbraham phenomena. The representation of 2nE(F, z, T)
along 12 arcs near i for n = 200.

Figure 6 shows us an important difference between the Gibbs–Wilbraham phenomenon

in the interpolation of the jump function, defined by F(z) =

{
1 z ∈ T,�(z) ≥ 0
−1 z ∈ T,�(z) < 0

, and

the Gibbs–Wilbraham phenomenon in the interpolation of the absolute value function.
The Gibbs–Wilbraham phenomenon does not depend on the parity of the nodal system
in the first case; meanwhile, it depends on the parity in the second one.

In Figure 6 (at the left), we represent the Lagrange interpolation polynomials of the jump
function based on the roots of T200(x) (in black) and on the roots of T201(x) (in blue); it is
remarkable that the Gibbs–Wilbraham phenomena are similar in shape and extrema.

On the other hand, Figure 6 (at the right) presents the Lagrange interpolation poly-
nomials of the absolute value based on the roots of T200(x) (in black) and on the roots
of T201(x) (in blue); it is remarkable that the Gibbs–Wilbraham phenomena are completely
different in shape and extrema.

Figure 6. Left: Noninfluence of the parity on the error, n odd and even and Lagrange interpolation
of jump function. Right: Influence of parity on error, n odd and even and Lagrange interpolation
of |x|.
5. Conclusions and Future Work

The objective of this work is not to suppress the Gibbs–Wilbraham phenomena, but
a better knowledge of them could help to develop the research with this goal. Refs. [18,19]
are interesting papers of this research line.

We think that there is a lot of possible future work related to the Gibbs–Wilbraham
phenomena for functions with very local singularities.
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First of all, we have evidence about the phenomenon when the singularity is 0 (or
±i thinking in T). Therefore, we must perform some work to extend our knowledge
to problems related to arbitrary points.

A second point of interest is the order of the derivative which has the singularity.
We have evidence only for 0 (Jump function) and 1 (absolute value), but it is clear that
the same problem for derivatives of greater order could be of interest. In this sense,
we want to emphasize the role that Lemma 2, a key point in this article, could play
in the development of this research.

6. Materials and Methods

To perform the numerical experiments included in this piece of work, we have used
the notation and formulae included in the paper. We created three programs which can be
obtained at the url https://github.com/eberriochoa/Absolute-value-interpolation-The-
even-cases (accessed on 2 June 2022). These files are the text of notebooks elaborated with
Mathematica ® 12.2. These programs (notebooks) should run correctly with recent previous
versions and future versions because we use only simple commands. Furthermore, we do
not use compiled routines.

7. Discussion

Recently, we have published the paper [11], which presents the behavior of the La-
grange interpolation polynomial of the continuous absolute value function, using Cheby-
shev and Chebyshev–Lobatto systems with an odd number of points.

The aim of the present piece of work is to continue the analysis of this new Gibbs–
Wilbraham phenomenon. Our study establishes the error of the Lagrange polynomial
interpolants of the function |x| on the bounded interval [−1, 1], using Chebyshev and
Chebyshev–Lobatto nodal systems with an even number of points.

It could be thought that there is no novelty in this approach. Indeed, at the beginning,
we thought that the results would have to be the same or quite similar. Nevertheless,
as we said in our introduction, this is a presumed idea. Moreover, relevant changes
with respect to the odd cases in the shape and the extrema of the error are given. This
is an important difference with the usual Gibbs–Wilbraham phenomenon related to the
Lagrange interpolation of functions with jump discontinuities.

We think that the findings presented in our paper would be useful for applied math-
ematicians and numerical analysts interested in the reconstruction of a function using
Lagrange interpolation and approximation theory.
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Abstract: Statistical equations are widely used to describe the laws of various chemical technological
processes. The values of constants and parameters included in these equations are determined by
various methods. Methods that can determine the values of equation parameters using a limited
amount of experimental data are of particular practical interest. In this manuscript, we propose
a method to obtain simplex-interval equations. The proposed approach can be effectively used
to control the values of technological process parameters. In this paper, we consider examples of
chemical kinetics equation transformations and heterogeneous processes of solid particle dissolution.
In addition, we describes mathematical model transformations, including equations for functions of
the residence time distribution (RTD) of apparatus particles, the distribution of particles by size, etc.
Finally, we apply the proposed approach to an example involving modeling of the calcination of coke
in a tubular rotary kiln.

Keywords: kinetic equations; chemical process; simplex method; interval method; metallurgical
process; residence time distribution; mathematical modeling; tubular rotary kiln
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1. Introduction

Fundamental analytical dependencies are necessary to determine performance in-
dicators of technological processes. Adequate mathematical models can be created by
considering the peculiarities of chemical reactions and mass transfer course. In engineering
practice, differential equations of various orders are used to create mathematical models.
The numerical solution of such equations is difficult in most cases. Therefore, when a direct
solution is impossible, equations and their boundary conditions are analyzed in order
to formulate approximate solutions in the form of a similarity criteria general function.
Similarity criteria are usually derived either by analyzing differential equations, describ-
ing the process under study and their boundary conditions, or using the dimensional
analysis method.

The method of dimensional analysis is supplemented by expert assessment to increase
the reliability of obtained characteristics of complex processes in engineering design prac-
tice [1–3]. The disadvantages of these methods ultimately lead to attainment of approximate
equations describing the process, limiting their applicability in engineering calculation
practice [4].

In connection with the approximate nature of the criterion equations obtained by this
method, the development of a method for transforming equations into a criterial form is
of practical and theoretical interest. Therefore, in this article, we propose a new approach
using the simplex method.

The efficiency of chemical and metallurgical apparatus depends not only on the
technological mode but also on design features, which determine the final result [5,6]. To
determine the optimal design and dimensions of an apparatus, it is necessary to take into

Mathematics 2022, 10, 2959. https://doi.org/10.3390/math10162959 https://www.mdpi.com/journal/mathematics79
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consideration the chemical reactions rates, heat and mass transfer, and the hydrodynamic
mode or flow behavior of the apparatus.

Optimization methods, such as artificial neural networks [7–9], the simplex
method [10–13], and genetic algorithms [14–16], as well as various combinations
thereof [17,18], provide effective means of determining the optimal values of process
parameters, leading to optimal conditions. Such methods differ in terms of the height of
the determined optimum, the number of experiments, and the required time.

Batch, semi-periodic, and continuous reactors are commonly used in modern industrial
chains. Continuous reactors are most effective due to superior unit productivity and
continuous automated operation and control ability. Batch units are usually used only in
industries with small reaction phase flows. The economic efficiency of the latter mostly
depends on appropriate configuration of technological reactor and process parameter
values [3,13,15,19,20].

Residence time distribution modeling is used for various chemical engineering pro-
cesses, for example, to describe the full cycle of a continuous production line or the complex
behavior of a single unit in a technological chain. Mathematical models of multiple con-
nected ideal or non-ideal reactors with a known analytical RTD are used in major cases. The
most common types are continuous stirred tank reactors (CSTRs) and plug flow reactors
(PFRs). However, these reactor types are too idealized for correct modeling of the behav-
ior of real processes. Therefore, a combination of various models takes into account the
characteristics of fluid flow, including effects such as dead zones, non-ideal back mixing,
and bypassing effects. Furthermore, the determination of combined model parameters
is complicated. Non-linear programming methods are used for such task. The proposed
approach of RTD modeling is used, for example, in the development of chemical reactions,
metallurgy, pharmaceuticals, water purification processes, etc. [21–24].

The main factors influencing any type of apparatus operation include:

(1) Thermodynamic factors: constants of chemical and phase equilibrium. This group of
factors determines the reaction direction and technological parameters and affects the
rate and selectivity of the entire process [25];

(2) Kinetic factors: rate constants and activation energies of the main and side reactions,
as well as the reaction’s true and apparent orders [4,25];

(3) Mass transfer factors: mass transfer coefficients of initial and intermediate substances
and final reaction products [6,26];

(4) Heat exchange factors: heat transfer coefficients within phases and between the
medium and heat exchange devices, as well as the external heat exchange surface
size [15];

(5) Hydrodynamic factors: interface characteristics and mixing in continuous and dis-
persed phases [3,25].

The last factor in the above list plays the main role, as the hydrodynamic environment
decisively affects the heat rate and mass transfer processes, as well as the chemical process
rate [4,26].

The operation of technological equipment is characterized by close connections be-
tween productivity, quality, and production cost. The latter depends on the optimal time
of the raw material’s actual stay in the apparatus. With an unjustified delay of raw ma-
terials in the apparatus, the equipment’s overall performance decreases, production cost
increases, and in some cases, the product quality can also decrease [26,27]. Although an
unjustified reduction in RTD increases the overall performance of the equipment, it reduces
the efficiency of the raw processing material, leading to a deterioration in product quality.

To determine the mathematical model parameters for a continuous reactor, it is first
necessary to consider the RTD of the material in the apparatus, which will ultimately
improve the economic efficiency of the process under consideration. Information about
RTD in the apparatus enables evaluation of the efficiency of the apparatus itself, which
determines the proportion of the apparatus volume occupied by particles within a given
time interval [28–30].
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Various methods have been applied to analyze complex systems of differential equa-
tions, describing the phenomenon or process under study. The methods used with respect
to similarity theory are of the most practical interest. As an example, consider the possibil-
ity of using simplex-interval methods for equations of chemical kinetics; heterogeneous
processes of dissolution of solid particles; and transformations of mathematical models,
including equations for the RTD functions of particles in an apparatus, equations for
particles size distribution, etc. [31–35]. The interval method affords simplex-interval equa-
tions. It can be effectively used to control the values of technological and chemical process
parameters [36–38].

In this paper, we consider the use of the simplex-interval method to convert statistical
equations of varying complexity into a convenient form for practical engineering calcu-
lations. To that end, it is necessary to determine the values of constants and parameters
included in these equations. In the future, such a method could enable the development of
an automatic control system using model-predictive controllers in a dynamic mode [39,40].

2. Materials and Methods

According to the simplex-interval method, statistical equations describing the kinetics
of chemical and metallurgical processes can be converted to a dimensionless form through
similarity simplices corresponding to several values of yi and xi selected on the experimen-
tal curve yi = ϕ(xi) describing the investigated process. For example, any two values of the
functions yi and yi+1 corresponding to two values of the arguments xi and xi+1 determined
from an experimental curve can be expressed as [41]:

(1) For the value of the argument xi, xi = ϕ(yi); and
(2) For the value of the argument xi+1, xi+1 = ϕ(yi+1).

For the interval considered above, Δx = xi+1 − xi, the form of the functional de-
pendence Δx, Sx, Xa, Xg and others can be determined from yi and yi+1, where Δx is
the value of the interval used to calculate the parameters of the equation; Xa and Xg
are the arithmetic mean and geometric mean of xi and xi+1, respectively; and Sx is the
similarity simplex.

The equation system solution affords a simplex-interval dependence that describes
the investigated technological process laws.

The simplex-interval equation can also be obtained using the following interval
characteristics: Δy, Sy, ya = (yi+1·yi)/2 and yg =

√
yi+1·yi , as determined for the

interval of variation of the value Δy = yi − yi+1. To determine the characteristics
Δy/Δx = f (xi ; xi+1) and Δy·Δx = f (xi ; xi+1), it is necessary to identify expressions that
afford a generalized description.

The proposed simplex-interval method makes it possible to determine the values of the
parameters of the equations using a limited number of experimental points (for example,
with two or three values of xi corresponding to two or three values of yi), provided that

For the interval Δx, the form of the functional dependence Δx = ϕ(y) and similarity
simplex Sy = ϕ(y) can be expressed as:

Δx = xi+1 − xi = φ1(y; yi+1), (1)

Sy = xi+1/xi = φ2(yi; yi+1), (2)

The joint solution of Equations (1) and (2) affords a simplex-criteria dependence
describing the laws of the process under study. The possibility of applying the simplex-
interval method to transform equations describing metallurgical and chemical process laws
is illustrated by the examples in presented in the Results section.
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3. Results

3.1. Simplex-Interval Method Examples

For a reaction of zero order, the laws of which are described by the kinetic equation
(n = 0):

c
c0

= 1− k0
τ

c0
, (3)

where c0 and c are the concentration of the target component at time τ = 0 and τ, respec-
tively; and k0 is the specific reaction rate of the zero order.

We define the interval characteristics as Δτ and Δc. The simplex-criteria equation for
the case under consideration will have the form

− Δc
Δτ

= k0, (4)

For a first order reaction (n = 1)

c
c0

= exp(−k1τ), (5)

where k1—the first-order reaction rate.
The values of the interval characteristics Δτ, Δc, Sτ , and Sc for any two points lying

on the kinetic curve can be determined by the following formulae:

Δτ = (1/k1)lnS−1
c , (6)

where is the similarity simplex for concentration matter.
And

Δc = c0

(
S

Sτ
Sτ−1
c − S

1
Sτ−1
c

)
, (7)

where Sτ is similarity simplex for time.
Combining dependences (6) and (7) result in:

− Δc
Δτ

= k1c0

(
S

Sτ
Sτ−1
c − S1/(Sτ−1)

c

)
/lnSc, (8)

For a second-order reaction (n = 2)

c
c0

=
1

1 + c0k1τ
, (9)

where k2 is the second-order reaction rate.
Similarly, the values of the interval characteristics are related by the

following dependencies:

Δτ =

(
1

k2c0

)
(1− Sc)(Sτ − 1)

ScSτ − 1
, (10)

and

Δc = c0

(
(ScSτ − 1)(Sτ − 1)

Sc(Sτ − 1)

)
, (11)

The ratio Δc/Δτ in this case is determined by:

− Δc
Δτ

= k2C2
0
(ScSτ − 1)2

Sc(Sτ − 1)2 , (12)
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In the general case, for reactions of order (n > 1)

c
c0

=

(
1

1 + (n− 1)kncn−1
0 τ

)1/(n−1)

, (13)

where n is the reaction order, and kn is the n-th-order reaction rate, which can be represented as:

Δτ =
[
1/(n− 1)kncn−1

0

] (1− Sn−1
c

)
(Sτ − 1)

SτSn−1
c − 1

, (14)

and

Δc = c0
(SτSn−1

c − 1)1/(n−1)
(Sc − 1)

(Sτ − 1)1/(n−1)Sc
, (15)

Accordingly, Δc/Δτ is determined by the following equation:

− Δc
Δτ

= (n− 1)kncn
0
(SτSn−1

c − 1)n/(n−1)
(1− Sc)

(Sτ − 1)n/(n−1)
(

1− Sn−1
c

)
Sc

, (16)

In expressions (4), (12), and (16), the values of the constants are equal to k0 = M0,
k1c0 = M1, and (n− 1)kncn

0 = Mn, respectively, where M0, M1 . . . Mn are the modules of
reactions of the n-th order.

The introduced simplex-interval dependences can be used to determine the value of
the initial concentration of the target component (c0), as well as to calculate the values of
the reaction rates (kn).

To determine the value of C0 and the order of a reaction (n), it is more convenient to
use Equation (14), which, for any two intervals (Δτi and Δτj), can be written as:

n = 1 +
1

lnSc
ln

⎡⎣ SΔτ(Sτi − 1)−
(

Sτj − 1
)

SΔτSτj(Sτi − 1)− Sτj

(
Sτj − 1

)
⎤⎦, (17)

where SΔτ is the simplicity of time similarity for two intervals (Δτi and Δτj).
According to analysis of dependences (4), (12), and (16), it can be argued that they

can be easily transformed into dependences traditionally used to describe the laws of the
kinetics of chemical reactions, provided that τi = 0, Ci = 0 и τ = τi+1, C = Ci+1.

The value of the parameter n can be determined using the following equation:

− dc
dτ

= kncn, (18)

which can be represented in simplex form using the following logarithmic transformation:

lnSc = ln(knΔτ) + (n− 1)lnc, (19)

Another method can be used to calculate the parameter n, involving the combination
of dependencies (14) and (15):

(n− 1)knΔτΔCn−1 =
(

1− Sn−1
c

)(Sc − 1
Sc

)n−1
, (20)

If Δτi �= Δτj Δci �= Δcj and Sci �= Scj :

n = 1 +
lnSΔτ

lnSΔc
, (21)
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The concentration value (c0) can be determined by the following equation:

c0 =
ΔcSc(Sτ − 1)1/(n−1)

(Sc − 1)
(

SτSn−1
c − 1

)1/(n−1)
, (22)

The specific reaction rate (kn) can be calculated using dependence (14).
The equation describing the laws of kinetics of the heterogeneous process of dissolution

of solid particles
ci
c0

= (1− Ti)
n = (1− τi/τ0)

n, (23)

where Ti = τi/τ0 is the relative time equal to the ratio of the absolute time (τi) to the time
of complete (or conditionally complete) completion of the process (τ0); and c0 and ci are the
content of the extracted component at time instants τ = 0 and τi, respectively.

The simplex-criteria equation is expressed as:

τ0

Δτ
=

Sτ − S1/n
c(

1− S1/n
c

)
(Sτ − 1)

, (24)

Δc
c0

=
(Sc − 1)(1− Sτ)

n(
S1/n

c − S
)n , (25)

The value of Δc/Δτ is determined by the following formula:

Δc
Δτ

=
c0

τ0

(Sτ − 1)(1− Sc)
n−1(

1− S1/n
c

)(
S1/n

c − Sτ

)n−1 , (26)

3.2. Mathematical Modeling Examples
3.2.1. CSTR Model

In this section, we describe the mathematical modeling of mass transfer processes. The
model is presented using simplex-criteria equations describing the patterns of fluid flow in
a tubular reactor.

We use the CSTR model to describe mass transfer in a tubular reactor. The main
parameter of the CSTR in-series model (tanks-in-series model) is the number of reactors (N).
Various approaches are used to determine the optimal value of reactor number and other
mathematical model parameters. The practical application of existing calculation methods
is usually associated with a large number of computational operations and the difficulty of
determining the distribution functions of the complete profile. Particular difficulties are
associated with the study of industrial apparatus with a high reaction volume and a low
volumetric flow rate [42,43].

For a circulating flow reactor (CSTR with back mixing), part of the flow is withdrawn
outside the reactor or part of it before being put back and mixed with the incoming stream
at the inlet of the reactor or in some of its zones. A suitable industrial example of such
behavior is tube furnaces for calcination of feedstock, particularly for coke calcination [35].
Therefore, in the general case, if there is a complex fluid and solid flows in the investigated
tubular reactor, due to mixing zones, perfect flows, dead zones, bypass, etc., Equation (19)
takes the following form to calculate the concentration of a substance in the reactor:

ln

(
j

∏
1

Sa
C

)
= C

j

∑
1

Hoj (27)
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where Sc is the concentration similarity simplex (ci−1/ci), j is the number of elementary
streams in the device, H0 = Δτ/τ = ΔτQ/V0 is the homochronicity number, C is the
constant, and a is the exponent.

For the CSTR in-series model, Equation (27) can be written as:

lnScS1−N
τ = Ho, (28)

where N is the number of reactors.
For any two considered time instants, τi and τi+1 can be written as:

lnSc = H0 + (N − 1)lnSτ , (29)

To determine the number of reactors in the case of a tubular rotary kiln for coke
calcination, we will use the data processing results obtained during the experiment. A
tubular rotary kiln consists of three zones, serving as an example of the CSTR in-series
model (Figure 1) parameter determination method described in [43].

Figure 1. CSTR in-series model for a tubular rotary kiln.

The indicator concentration at the outlet of the reactors cascade for various periods of
time is introduced in Table 1.

Table 1. Indicator concentration in the CSTR in series for various time intervals.

Parameter,
τ, s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

τ/τ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
lnS — 0.693 0.405 0.288 0.223 0.176 0.154 0.134 0.118 0.105 0.094 0.088 0.070 0.074 0.069

Ci (N = 1) 1.000 0.219 0.676 0.649 0.449 0.0368 0.301 0.247 0.202 0.165 0.135 0.111 0.091 0.074 0.061
lnSC 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.221 1.223 1.222 1.222 1.222 1.222

Ci (N = 2) 0 0.164 0.268 0.329 0.360 0.368 0.361 0.345 0.323 0.298 0.224 0.274 0.218 0.193 0.170
lnSC — −0.471 −0.205 −0.088 −0.020 +0.020 +0.048 +0.067 +0.086 +0.095 +0.104 +0.113 +0.122 +0.122 0.137

Ci (N = 3) 0 0.016 0.054 0.099 0.144 0.184 0.217 0.242 0.258 0.268 0.271 0.268 0.261 0.251 0.238
lnSC — −1.184 −0.612 −0.375 −0.246 −0.165 −0.067 −0.037 −0.037 −0.011 +0.010 +0.030 +0.040 +0.049 0.050

We use the equation to process the experimental data (29). The experimental data
are represented on the logarithmic scale, lnSc = ϕ(lnSτ). The number of reactors is
determined by the tangent of the slope of the straight lines (Figure 2) according to the
following equation: N = 1+ tgα or N = (lnSc − H0)/lnSτ + 1. As a result, we obtain N = 1
for the first straight line, N = 2 for the second straight line, and N = 3 for the third straight
line. Therefore, such a cascade model can be calculated using the proposed approach.

85



Mathematics 2022, 10, 2959

Figure 2. The dependence of lnSc = ϕ(lnSτ) for a cascade of perfect mixing reactors.

3.2.2. Dispersion Model

A dispersion (diffusion) model is used for to model non-ideal plug-flow reactors
and is written in the form of a dimensionless partial differential equation [44]. The main
parameter of the dispersion model is the value of the Bodenstein number (Bo). The
Bodenstein number, as well as the average particle residence time (τ) is usually determined
based on the calculation of the probability characteristics of the distribution curve or
other methods [45–48]. The Bodenstein number (Bo) and the Peclet number (Pe) are
sometimes used interchangeably in this context, although the numbers have a slightly
different meaning [44].

We transform equations of the diffusion model into the criterial form using depen-
dences (1) and (2). The PFR model is used in the simplest case for the tubular reactor,
affording C/Δτ = −ωlnSC/Δx; then, lnSC = 1, where ω is the flow rate. Similarly, for a
one-parameter diffusion model of a tubular reactor:

lnSC =
2ωΔx

DL
= 2BoL (30)

For a two-parameter diffusion model:

lnSC =
(2BoA − lnSA)BoL

BoL + BoA
(31)

where BoA is the Bodenstein number for the case of axial mixing, and BoL is the Bodenstein
number for longitudinal mixing.

When BoL � BoR, Equation (30) takes the form of dependence (31).
To reduce the time required for an experiment to determine the shape of the curve

of the distribution function and verify the adequacy of the investigated reactor with the
complex model, it is necessary to obtain the values of τ, the average residence time, using
the time-similarity simplex from (28).

lnScST
τ = Bo·T2 ∑2

1 H0x, (32)
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where T = τL/τ is a constant, τL is the flow time along the axis of the tubular reactor, τ
is the average residence time, H01 = ΔτQ/V0 is homochronicity number for a flow with
perfect mixing, and H02 = ΔτQV0/V2/V is the homochronicity number for a flow with a
dead zone.

For a one-parameter diffusion model of a tubular apparatus, T = 0.5.

lnSnS0,5
τ = Bo·0.52Ho− (Sr − 1)2

HoSτ
, (33)

lnScS0,5
τ =

BoΔτ

4τ

(
1− τ2

τi ·τi+1

)
, (34)

or

lnScS0,5
τ = A− B

(
1

τi ·τi+1

)
(35)

where A and B are constant value, and A = BoΔτ
4τ , B = BoΔτ

4 ·τ.
The experimental data on the RTD of coke particles in a tubular rotary kiln in the

corresponding coordinate system lie on a straight line. To find the values of τ and Bo, the
constants A and B are determined; then, the calculations are carried out according to the
following formulae: τ =

√
B/A, Bo = 4

√
A·B/Δτ.

As an example, Figure 3 shows the results of processing the experimental data given
in [49]. Experimental data on the RTD of particles in the apparatus are obtained under the
condition of a tracer impulse added at the inlet. The RTD of the process can be observed
as a tracer concentration profile at the outlet. The data obtained during the experiment
should lie on a straight line in the appropriate coordinate system. As shown in Figure 3,
the experimental points for two cases are close to a straight line. Their scatter is obviously
associated with errors that occurred when determining the indicator concentration at the
beginning and end of the experiment, when its value decreased significantly. The difference
between the calculated values of the parameters from the data given in [35,49] is less
than 2%.

Figure 3. The dependence of lnSc = ϕ(1/τi ·τi+1) for the dispersion model for two experimental
data points (a,b).
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4. Conclusions

Analyzing the simplex-interval equations above, we can conclude that the proposed
method can be used to determine the parameters of various technological processes. The
type of curves obtained depends on the nature of the kinetic process and the mathematical
equation type used to describe it. The considered equations allow for calculation on differ-
ent intervals. As a result, they can describe both differential and integral dependencies. The
simplex-interval method provides calculations of process parameters using a limited num-
ber of experimental points. Therefore, simplex-interval dependencies can be widely used
in engineering calculations to effectively monitor the progress of an investigated process.

In addition to solving the various problems considered in the present manuscript, the
simplices and similarity criteria can be used to carry out a more detailed study of various
chemical and metallurgical apparatus operational features with a complex flow structure.
Thus, in this work, a new approach is proposed for calculating the operational parameters of
various models wherein reactions of the n-th order take place. This approach can represent
calculations with the direct use of experimental data without a preliminary determination
of the parameters of the kinetic model or the distribution function. The proposed method
can be extended to cascade reactors that can be described by a complex tanks-in-series
model, particularly when the reaction order differs from the stoichiometric order.

Another topic of interest is that the extension of mathematical models obtained
on the basis of the simplex method can serve as the basis for the development of
model-predictive controllers.

Author Contributions: Conceptualization, I.B.; formal analysis, I.B.; methodology, I.B.; project
administration, I.B.; resources, I.B.; software, I.B. and K.K.; validation, I.B.; visualization, I.B. and
K.K.; writing—original draft, I.B.; writing—review and editing, I.B. All authors have read and agreed
to the published version of the manuscript.

Funding: The research was performed at the expense of the subsidy for the state assignment in the
field of scientific activity for 2021 №FSRW-2020-0014.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carlson, R.; Carlson, J.E. Design and Optimization in Organic Synthesis: Second Revised and Enlarged Edition; Elsevier Science:
Amsterdam, The Netherlands, 2005; ISBN 9780080455273.

2. Bonvin, D.; Georgakis, C.; Pantelides, C.C.; Barolo, M.; Grover, M.A.; Rodrigues, D.; Schneider, R.; Dochain, D. Linking Models
and Experiments. Ind. Eng. Chem. Res. 2016, 55, 6891–6903. [CrossRef]

3. Li, S. Reaction Engineering. In Handbook of Heterogeneous Catalysis; Wiley: Hoboken, NJ, USA, 2017; pp. 1–664. [CrossRef]
4. Carr, R.W. Modeling of Chemical Reactions. In Comprehensive Chemical Kinetics; Elsevier: Amsterdam, The Netherlands, 2007;

p. 297.
5. Bueno, M.P.; Kojovic, T.; Powell, M.S.; Shi, F. Multi-Component AG/SAG Mill Model. Miner. Eng. 2013, 43–44, 12–21. [CrossRef]
6. Cameron, I.; Gani, R. Product and Process Modelling; Elsevier: Amsterdam, The Netherlands, 2011; p. 571. [CrossRef]
7. Quaglio, M.; Roberts, L.; bin Jaapar, M.S.; Fraga, E.S.; Dua, V.; Galvanin, F. An Artificial Neural Network Approach to Recognise

Kinetic Models from Experimental Data. Comput. Chem. Eng. 2020, 135, 106759. [CrossRef]
8. Zhang, L.; Li, L.; Wang, S.; Zhu, B. Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network

and Genetic Algorithm Method. J. Mater. Eng. Perform. 2012, 21, 492–499. [CrossRef]
9. Chi, C.; Janiga, G.; Thévenin, D. On-the-Fly Artificial Neural Network for Chemical Kinetics in Direct Numerical Simulations of

Premixed Combustion. Combust. Flame 2021, 226, 467–477. [CrossRef]
10. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
11. Morgan, S.L.; Deming, S.N. Simplex Optimization of Analytical Chemical Methods. Anal. Chem. 1974, 46, 1170–1181. [CrossRef]
12. Olsson, D.M.; Nelson, L.S. The Nelder-Mead Simplex Procedure for Function Minimization. Technometrics 1975, 17, 45–51.

[CrossRef]

88



Mathematics 2022, 10, 2959

13. Spendley, W.; Hext, G.R.; Himsworth, F.R. Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation.
Technometrics 1962, 4, 441. [CrossRef]

14. Li, H.; Nalim, R.; Haldi, P.A. Thermal-Economic Optimization of a Distributed Multi-Generation Energy System—A Case Study
of Beijing. Appl. Therm. Eng. 2006, 26, 709–719. [CrossRef]

15. Hu, H.; Zhu, Y.; Peng, H.; Ding, G.; Sun, S. Effect of Tube Diameter on Pressure Drop Characteristics of Refrigerant-Oil Mixture
Flow Boiling inside Metal-Foam Filled Tubes. Appl. Therm. Eng. 2013, 61, 433–443. [CrossRef]

16. Wang, J.J.; Jing, Y.Y.; Zhang, C.F. Optimization of Capacity and Operation for CCHP System by Genetic Algorithm. Appl. Energy
2010, 87, 1325–1335. [CrossRef]

17. Fan, S.K.S.; Liang, Y.C.; Zahara, E. A Genetic Algorithm and a Particle Swarm Optimizer Hybridized with Nelder–Mead Simplex
Search. Comput. Ind. Eng. 2006, 50, 401–425. [CrossRef]

18. Lin, H.; Yamashita, K. Hybrid Simplex Genetic Algorithm for Blind Equalization Using RBF Networks. Math. Comput. Simul.
2002, 59, 293–304. [CrossRef]

19. Li, S.; Xin, F.; Li, L. Fluidized Bed Reactor. In Reaction Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 369–403.
20. Burton, K.W.C.; Nickless, G. Optimisation via Simplex. Part I. Background, Definitions and a Simple Application. Chemom. Intell.

Lab. Syst. 1987, 1, 135–149. [CrossRef]
21. Liotta, F.; Chatellier, P.; Esposito, G.; Fabbricino, M.; Van Hullebusch, E.D.; Lens, P.N.L. Hydrodynamic Mathematical Modelling

of Aerobic Plug Flow and Nonideal Flow Reactors: A Critical and Historical Review. Crit. Rev. Environ. Sci. Technol. 2014, 44,
2642–2673. [CrossRef]

22. Toson, P.; Doshi, P.; Jajcevic, D. Explicit Residence Time Distribution of a Generalised Cascade of Continuous Stirred Tank Reactors
for a Description of Short Recirculation Time (Bypassing). Processes 2019, 7, 615. [CrossRef]

23. Gorzalski, A.S.; Harrington, G.W.; Coronell, O. Modeling Water Treatment Reactor Hydraulics Using Reactor Networks. J. Am.
Water Work. Assoc. 2018, 110, 13–29. [CrossRef]

24. Sheoran, M.; Chandra, A.; Bhunia, H.; Bajpai, P.K.; Pant, H.J. Residence time distribution studies using radiotracers in chemical
industry—A review. Chem. Eng. Commun. 2018, 205, 739–758. [CrossRef]

25. Vyazovkin, S.V.; Goryachko, V.I.; Lesnikovich, A.I. An Approach to the Solution of the Inverse Kinetic Problem in the Case of
Complex Processes. Part III. Parallel Independent Reactions. Thermochim. Acta 1992, 197, 41–51. [CrossRef]

26. Braun, R.L.; Burnham, A.K. Analysis of Chemical Reaction Kinetics Using a Distribution of Activation Energies and Simpler
Models. Energy Fuels 1987, 1, 153–161. [CrossRef]

27. Levin, V.I. Optimization in terms of interval uncertainty: The determinization method. Autom. Control. Comput. Sci. 2012, 46,
157–163. [CrossRef]

28. Gorlanov, E.S.; Brichkin, V.N. Polyakov Electrolytic production of aluminium: Review. part 1. conventional areas of development.
Tsvetnye Met. 2020, 2, 36–41. [CrossRef]

29. Savchenkov, S.A.; Bazhin, V.Y.; Brichkin, V.N.; Povarov, V.G.; Ugolkov, V.L.; Kasymova, D.R. Synthesis of magnesium-zinc-yttrium
master alloy. Lett. Mater. 2019, 9, 339–343. [CrossRef]

30. Savchenkov, S.A.; Bazhin, V.Y.; Brichkin, V.N.; Kosov, Y.I.; Ugolkov, V.L. Production Features of Magnesium-Neodymium Master
Alloy Synthesis. Metallurgist 2019, 63, 394–402. [CrossRef]

31. Cleary, P.W.; Monaghan, J.J. Conduction Modelling Using Smoothed Particle Hydrodynamics. J. Comput. Phys. 1999, 148, 227–264.
[CrossRef]

32. Kondrasheva, N.K.; Rudko, V.A.; Ancheyta, J. Thermogravimetric Determination of the Kinetics of Petroleum Needle Coke
Formation by Decantoil Thermolysis. ACS Omega 2020, 5, 29570–29576. [CrossRef]

33. Beloglazov, I.N.; Beloglazov, N.K. The Simplex Method to Describe Hydrometallurgical Processes. Miner. Process. Extr. Metall.
Rev. 1995, 15, 139. [CrossRef]

34. Smol’nikov, A.D.; Sharikov, Y.V. Simulation of the Aluminum Electrolysis Process in a High-Current Electrolytic Cell in Modern
Software. Metallurgist 2020, 63, 1313–1320. [CrossRef]

35. Sharikov, F.Y.; Sharikov, Y.V.; Krylov, K.A. Selection of key parameters for green coke calcination in a tubular rotary kiln to
produce anode petcoke. ARPN J. Eng. Appl. Sci. 2020, 15, 2904–2912.

36. Cheremisina, O.V.; Cheremisina, E.A.; Ponomareva, M.A.; Fedorov, A.T. Sorption of rare earth coordination compounds. J. Min.
Inst. 2020, 244, 474–481. [CrossRef]

37. Cheremisina, E.; Cheremisina, O.; Ponomareva, M.; Bolotov, V.; Fedorov, A. Kinetic Features of the Hydrogen Sulfide Sorption on
the Ferro-Manganese Material. Metals 2021, 11, 90. [CrossRef]

38. Kondrasheva, N.K.; Rudko, V.A.; Nazarenko, M.Y.; Gabdulkhakov, R.R. Influence of parameters of delayed asphalt coking process
on yield and quality of liquid and solid-phase products. J. Min. Inst. 2020, 241, 97. [CrossRef]

39. Rehrl, J.; Kruisz, J.; Sacher, S.; Khinast, J.; Horn, M. Optimized continuous pharmaceutical manufacturing via model-predictive
control. Int. J. Pharm. 2016, 510, 100–115. [CrossRef] [PubMed]

40. Tsai, H.-H.; Fuh, C.-C.; Ho, J.-R.; Lin, C.-K. Design of Optimal Controllers for Unknown Dynamic Systems through the Nelder–
Mead Simplex Method. Mathematics 2021, 9, 2013. [CrossRef]

41. Visuthirattanamanee, R.; Sinapiromsaran, K.; Boonperm, A. Self-Regulating Artificial-Free Linear Programming Solver Using a
Jump and Simplex Method. Mathematics 2020, 8, 356. [CrossRef]

89



Mathematics 2022, 10, 2959

42. Gutierrez, C.G.C.C.; Dias, E.F.T.S.; Gut, J.A.W. Residence time distribution in holding tubes using generalized convection model
and numerical convolution for non-ideal tracer detection. J. Food Eng. 2010, 98, 248–256. [CrossRef]

43. Islamov, S.R.; Bondarenko, A.V.; Mardashov, D.V. Substantiation of a Well Killing Technology for Fractured Carbonate Reservoirs.
In Youth Technical Sessions Proceedings; CRC Press: Boca Raton, FL, USA, 2019; pp. 256–264. [CrossRef]

44. Levenspiel, O.; Smith, W.K. Notes on the diffusion-type model for the longitudinal mixing of fluids in flow. Chem. Eng. Sci. 1957,
6, 227–235. [CrossRef]

45. Dittrich, E.; Klincsik, M. Analysis of conservative tracer measurement results using the Frechet distribution at planted horizontal
subsurface flow constructed wetlands filled with coarse gravel and showing the effect of clogging processes. Environ. Sci. Pollut.
Res. 2015, 22, 17104–17122. [CrossRef]

46. Braga, B.M.; Tavares, R.P. Description of a New Tundish Model for Treating RTD Data and Discussion of the Communication
“New Insight into Combined Model and Revised Model for RTD Curves in a Multi-strand Tundish” by Lei. Met. Mater. Trans. A
2018, 49, 2128–2132. [CrossRef]

47. Dryer, F.L.; Haas, F.M.; Santner, J.; Farouk, T.I.; Chaos, M. Interpreting chemical kinetics from complex reaction–advection–
diffusion systems: Modeling of flow reactors and related experiments. Prog. Energy Combust. Sci. 2014, 44, 19–39. [CrossRef]

48. Shestakov, A.K.; Sadykov, R.M.; Petrov, P.A. Multifunctional crust breaker for automatic alumina feeding system of aluminum
reduction cell. E3S Web Conf. 2021, 266, 09002. [CrossRef]

49. Sharikov, Y.V.; Sharikov, F.Y.; Krylov, K.A. Mathematical Model of Optimum Control for Petroleum Coke Production in a Rotary
Tube Kiln. Theor. Found. Chem. Eng. 2021, 55, 711–719. [CrossRef]

90



Citation: Demirci, Y. M.; Türkmen, E.

WSA-Supplements and Proper

Classes. Mathematics 2022, 10, 2964.

https://doi.org/10.3390/math10162964

Academic Editor: Askar Tuganbaev

Received: 26 July 2022

Accepted: 15 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

WSA-Supplements and Proper Classes

Yılmaz Mehmet Demirci 1,* and Ergül Türkmen 2

1 Department of Engineering Science, Faculty of Engineering, Abdullah Gül University, Kocasinan,
Kayseri 38080, Turkey

2 Department of Mathematics, Sciences and Arts Faculty, Amasya University, Ipekköy, Amasya 05100, Turkey
* Correspondence: yilmaz.demirci@agu.edu.tr

Abstract: In this paper, we introduce the concept of wsa-supplements and investigate the objects of
the class of short exact sequences determined by wsa-supplement submodules, where a submodule U
of a module M is called a wsa-supplement in M if there is a submodule V of M with U + V = M and
U ∩V is weakly semiartinian. We prove that a module M is weakly semiartinian if and only if every
submodule of M is a wsa-supplement in M. We introduce CC-rings as a generalization of C-rings
and show that a ring is a right CC-ring if and only if every singular right module has a crumbling
submodule. The class of all short exact sequences determined by wsa-supplement submodules is
shown to be a proper class which is both injectively and co-injectively generated. We investigate the
homological objects of this proper class along with its relation to CC-rings.

Keywords: proper class of short exact sequences; wsa-supplement submodule; weakly semiartinian
module; C-ring; CC-ring
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1. Introduction

Throughout this study, all rings considered are associative with an identity element
and all modules at hand are right and unital. Given such a module M, we use the notations
E(M), Soc(M), Z(M), Rad(M) for the injective hull, socle, singular submodule, and radical
of M, respectively. The notation (N � M) N ≤ M means that N is a (proper) submodule of
M. Mod− R denotes the category of all right R-modules over a ring R. For the terminology
and notations used in this work we refer the reader to [1–3].

For any M ∈ Mod − R, we denote the injectivity domain of M by Jn−1(M). It is
clear that M is injective if and only if its injectivity domain is as large as it can be, that
is, Jn−1(M) = Mod− R. It is well known that every module is injective relative to any
semisimple module. In [4], the authors introduced modules M whose injectivity domain
Jn−1(M) is minimal possible, namely the class of all semisimple modules and called such
modules poor. This definition gives a natural homological opposite to injectivity of modules
since only injective modules have the class of all modules as their injectivity domain. It is
proved in [5] (Proposition 1) that every ring has a poor module. However, semisimple poor
modules need not exist over an arbitrary ring. Recall that a module M is said to crumble (or
be a crumbling module) if Soc(M/N) is a direct summand of M/N for every submodule
N of M. It follows from [5] (Corollary 2) that a module M crumbles if and only if it is a
locally noetherian V-module. It is shown in [5] (Theorem 1) that a ring R has a semisimple
poor module if and only if every right crumbling R-module is semisimple. Clearly, a ring
R crumbles if and only if it is a right SSI-ring, that is, every semisimple right R-module
is injective.

Following [6], we denote the sum of all submodules of a module M that crumble by
C(M). By [6] (Propositions 3.1 and 3.4), C(M) is the largest submodule of M that crumbles
and Soc(M) ≤ C(M). A module M is called semiartinian if Soc(M/N) �= 0 for every proper
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submodule N of M. As a proper generalization of artinian modules, the class of semiartinian
modules are extensively studied in the literature. In [6], the authors considered modules of
which factor modules have a nonzero crumbling submodule. A module M is called weakly
semiartinian if C(M/N) �= 0 for every proper submodule N of M. The sum of all weakly
semiartinian submodules of a module M is the largest weakly semiartinian submodule of
M which we denote by wsa(M). Clearly, semiartinian modules and crumbling modules
are examples of weakly semiartinian modules. A weakly semiartinian module need not
be semiartinian, in general. An example of a weakly semiartinian module which is not
semiartinian can be found in [6] (Remark 2). Various properties of weakly semiartinian
modules are given in the same work.

It is well known that a module is semisimple if and only if its submodules are direct
summands. As a generalization of direct summands, supplement submodules are defined
as follows. Let M be a module and U, V ≤ M. V is called a supplement of U in M if it
is minimal with respect to M = U + V, equivalently if M = U + V and U ∩ V is small
in V. Here a submodule S of a module M is called small in M, denoted by S � M, if
M �= S + L for every proper submodule L of M. A module M is called supplemented if
every one of its submodules has a supplement in M. Supplement submodules play an
important role in ring theory and relative homological algebra. In recent years, types of
supplement submodules are extensively studied by many authors. In a series of books
and articles [1–3,7,8], the authors have obtained detailed information about variations of
supplement submodules and related rings.

In [9], the author introduced proper classes to axiomatize conditions under which a
class of short exact sequences of modules can be computed as Ext groups corresponding to
a certain relative cohomology. The class S plit of all splitting short exact sequences of right
R-modules and the class Abs of all short exact sequences of right R-modules are trivial
examples of proper classes. It follows from [1] (20.7) that the class Supp of all short exact

sequences 0 �� M
ψ �� N �� K �� 0 such that Im ψ is a supplement in N is a

proper class. Examples and properties of proper classes, especially related to supplements
can be found in [10–12].

Recently defined type of supplement submodules is as follows. A submodule V
of a module M is called an sa-supplement of U in M if M = U + V and U ∩ V is semi-
artinian (see [7]). It is shown in [7] that the class SAS of all short exact sequences

0 �� M
ψ �� N �� K �� 0 such that Im ψ is an sa-supplement in N is a proper

class. Since semiartinian modules are weakly semiartinian, it is of interest to investigate
a new type of supplement submodules by replacing the property of being “semiartinian”
by being “weakly semiartinian”. The purpose of this paper is to introduce the concept of
wsa-supplement submodules and investigate the objects of the proper class determined by
wsa-supplement submodules in relative homological algebra.

The paper is organized as follows. In Section 2, we prove that a module M is weakly
semiartinian if and only if every submodule of M is a wsa-supplement in M. In particular,
a ring R is weakly semiartinian if and only if every right maximal ideal of R is a wsa-
supplement in R.

We introduce right CC-rings as a generalization of C-rings and give some characteri-
zations of such rings in Section 3. We show that a ring R is a right CC-ring if and only if
every singular right R-module has a crumbling submodule. A semilocal right CC-ring is a
right C-ring. A right noetherian and a right WV-ring is a right CC-ring.

In Section 4, we show that, over an arbitrary ring, the class of all short exact sequences

0 �� M
ψ �� N �� K �� 0 such that Im ψ is a wsa-supplement in N is a proper

class. We study the objects of this class, which we call WSS . We show that a module
M is WSS-co-injective if and only if it is a wsa-supplement E(M). Over a right CC-
ring, a projective module P is WSS-co-injective if and only if P/ wsa(P) is injective. A
ring R is weakly semiartinian if and only if every right R-module is WSS-co-injective.
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Finally, we show that over a crumbling-free ring WSS-coprojective modules are only the
projective modules.

2. Weakly Semiartinian Modules

In this section, we give a characterization of weakly semiartinian modules via wsa-
supplement submodules. Firstly, let us start by giving the closure properties.

Proposition 1 ([6] (Proposition 3.1)). If f : M −→ N is a homomorphism of modules, then
f (C(M) ⊆ C(N).

Proposition 2. The class of weakly semiartinian modules is closed under submodules, factor
modules, direct sums, sums and extensions.

Proof. By [6] (Propositions 3.1 and 3.4), we get that the class of weakly semiartinian
modules is closed under submodules, factor modules, direct sums and sums. Let B be a
module and A be a submodule of B with A and B/A weakly semiartinian. Assume that
C(B/X) = 0 for some X � B. By Proposition 1, we have C(A/A ∩ X) ∼= C((A + X)/X) ≤
C(B/X) = 0. Since A is weakly semiartinian, A/A ∩ X) = 0 so that A ≤ X. B/X ∼=
(B/A)/(X/A) is weakly semiartinian which implies that C(B/X) �= 0, a contradiction.
Hence, B is weakly semiartinian.

The sum of all weakly semiartinian submodules of a module M is denoted by wsa(M).
By Proposition 2, wsa(M) is weakly semiartinian. Therefore M is weakly semiartinian if
and only if wsa(M) = M. Using this fact and Proposition 2, we have the following result.

Corollary 1. For any module M, wsa(M/ wsa(M)) = 0.

Proof. Let N ≤ M containing wsa(M) such that N/ wsa(M) ≤ wsa(M/ wsa(M)). It
follows from Proposition 2 that N/ wsa(M) is weakly semiartinian. Since wsa(M) is
weakly semiartinian, applying Proposition 2 once again, we obtain that N is weakly
semiartinian. Therefore N ⊆ wsa(M). This means that N/ wsa(M) = 0.

Let M be a module and U ≤ M. We say that U is (has) a weakly semiartinian supplement
(wsa-supplement for short) in M if there exists V ≤ M such that U + V = M and U ∩V is a
weakly semiartinian module.

Theorem 1. An R-module M is weakly semiartinian if and only if every submodule of M is a
wsa-supplement in M.

Proof. Necessity follows from Proposition 2. For sufficiency, suppose that C(mR) = 0 for
some m ∈ M. Let U be any submodule of mR. By the assumption, there exists a submodule
V of M such that M = U + V and U ∩V is weakly semiartinian. Using modular law, we
have mR = U + V ∩mR. Note that C(U ∩V) = C(U ∩mR ∩V) ⊆ C(mR) = 0. It means
that U is a direct summand of mR and so mR is semisimple. Therefore mR = Soc(mR) =
C(mR) = 0, and hence m = 0. This completes the proof.

A module M is said to be crumbling-free if C(M) = 0. A ring R is called crumbling-
free if RR is crumbling free. Let R be a ring and A and B be R-modules. Recall that A
is B-injective if for any submodule X of B, any homomorphism f : X → A extends to a
homomorphism g : B → A.

Proposition 3. An R-module M is weakly semiartinian if and only if every crumbling-free R-
module is M-injective.

Proof. Necessity is clear since C(U) �= 0 for every submodule U of M. For sufficiency,
suppose that N is a submodule of M with C(N) = 0. Let U ≤ N. Since N is crumbling-
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free, U is crumbling-free and so, by the hypothesis, U is M-injective. So we can write
M = U ⊕V, where V is a submodule of M. By the modular law, we get N = U ⊕ N ∩V.
This means that N = Soc(N) = C(N) = 0. Hence M is weakly semiartinian.

Proposition 4. Let M be a module and U be a submodule of M with M/U weakly semiartinian.
A submodule V of M is a wsa-supplement of U in M if and only if M = U + V and V is
weakly semiartinian.

Proof. Let V be a wsa-supplement of U in M. Then V/(U ∩V) ∼= M/U is weakly semi-
artinian. Since U ∩V is also weakly semiartinian, it follows from Proposition 2 that V is
weakly semiartinian. The converse is clear by again Proposition 2.

Since for a maximal submodule U of M we have M/U is simple, therefore weakly
semiartinian, the following result is a consequence of Proposition 4.

Corollary 2. Let M be a module and U be a maximal submodule of M. A submodule V of M is a
wsa-supplement of U in M if and only if M = U + V and V is weakly semiartinian.

Recall that a module M is coatomic if every proper submodule of M is contained in a
maximal submodule of M.

Corollary 3. Let M be a coatomic module. Then M is weakly semiartinian if and only if every
maximal submodule of M is a wsa-supplement in M.

Proof. Necessity follows from Proposition 1. For sufficiency, assume that M is not weakly
semiartinian, that is, wsa(M) �= M. Let N be a maximal submodule of M that con-
tains wsa(M) and K be a wsa-supplement of N in M. Then K is weakly semiartinian by
Corollary 2 and we have K ≤ wsa(M) ≤ N which implies M = N + K ≤ N, contradicting
the maximality of N.

It is well known that a ring R is semisimple artinian if and only if every maximal right
ideal of R is a direct summand of R. Now we give an analogous characterization of this
fact for right weakly semiartinian rings.

Corollary 4. A ring R is right weakly semiartinian if and only if every maximal right ideal of R is
a wsa-supplement in R.

3. A Generalization of C-Rings

In [1] (10.10), a ring R is called a right C-ring if for every right R-module M and for
every proper essential submodule N of M, Soc(M/N) �= 0, that is M/N has a simple
submodule. The class of right C-rings is studied by many authors in homological algebra.
Semiartinian rings and Dedekind domains are examples right C-rings. Since semiartinian
rings are weakly semiartinian, motivated by this fact, it is natural to introduce right CC-
rings as follows: A ring R is called a right CC-ring if for every right R-module M and
for every proper essential submodule N of M, C(M/N) �= 0, that is M/N has a cyclic
crumbling submodule.

Proposition 5. The following statements are equivalent for a ring R.

1. R is a right CC-ring;
2. Every singular right R-module has a cyclic crumbling submodule;
3. For every proper essential right ideal I of R, C(R/I) �= 0.

Proof. (1 ⇒ 2): Let M be a singular right R-module and 0 �= m ∈ M. Now consider the
isomorphism f : R/ ann(m) −→ mR. Since M is singular, ann(m) is a non-zero proper
essential right ideal of R. Then, R/ ann(m) has a cyclic crumbling submodule, that is
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C(R/ ann(m)) �= 0. It follows from Proposition 1 that C(mR) �= 0. This completes the
proof of (1 ⇒ 2).

(2 ⇒ 3) is clear since R/I is a singular right R-module for every proper essential right
ideal I of R.

(3 ⇒ 1): Let M be an R-module and N be a proper essential submodule of M. We
shall show that C(M/N) �= 0. Let 0 �= m + N ∈ M/N. Since M/N is singular, ann(m + N)
is a proper essential right ideal of R. By assumption, R/ ann(m + N) has a cyclic crumbling
submodule. Applying Proposition 1, we obtain that C(R(m+ N)) �= 0 and so C(M/N) �= 0.
It means that R is a right CC-ring.

As a consequence of Proposition 5, we have the following result.

Corollary 5. Let R be commutative domain. Then the following statements are equivalent.

1. R is a right CC-ring;
2. Every torsion right R-module has a cyclic crumbling submodule.

A ring R is called a right weakly-V-ring (WV-ring for short) if every simple right R-
module is R/I-injective for any right ideal I of R such that R/I is proper. Clearly, every
right V-ring is a right WV-ring. Since a right WV-ring need not be right noetherian; in
general, the authors investigated when a right WV-ring is right noetherian in [13] and
showed that a right WV-ring R is right noetherian if and only if every cyclic right R-module
can be written as a direct sum of a projective module and a module which is either CS or
right noetherian.

Proposition 6. A right noetherian and a right WV-ring is a right CC-ring.

Proof. Let R be a right noetherian and a right WV-ring. Suppose that N is a proper essential
submodule of an R-module M. Let 0 �= m + N ∈ M/N. Then there exists a proper essential
right ideal I of R such that R/I ∼= R(m + N). Clearly, R(m + N) is noetherian. Since R is a
right WV-ring, R/I is a V-module. It means that R(m + N) crumbles and so M/N has a
cyclic crumbling submodule.

Proposition 7. Let R be a ring with R/ Soc(RR) weakly semiartinian. Then R is a right CC-ring.

Proof. By Proposition 5, it suffices to show that C(R/I) �= 0 for every proper essen-
tial right ideal I of R. Since Soc(RR) is the intersection of all essential right ideals of
R, Soc(RR) ⊆ I and so R/I ∼= (R/ Soc(RR))/(I/ Soc(RR)) is a weakly semiartinian R-
module by Proposition 2. This means that C(R/I) �= 0. Hence R is a right CC-ring.

A ring R is called semilocal if R/ Rad(R) is semisimple. The class of semilocal rings
properly contains the class of semiperfect rings. Note that over a semilocal ring a module
with zero radical is semisimple (see [1]).

Proposition 8. A semilocal and a right CC-ring is a right C-ring.

Proof. Let I be a proper essential right ideal of R. Since R is a right CC-ring, we can
write C(R/I) �= 0. Note also by [6] (Lemma 4) that Rad(C(R/I)) = 0. By [1] (17.2-3), we
obtain that Soc(R/I) = C(R/I) �= 0 since the ring is semilocal. This means that R is a
right C-ring.

Theorem 2. Let R be a right CC-ring. Then an R-module M is semisimple if and only if Soc(M) =
wsa(M) and every essential submodule of M is a wsa-supplement in M.

Proof. Necessity part is clear. For sufficiency, let U be a proper essential submodule of
M. Then there is a wsa-supplement V of U in M, that is U + V = M and U ∩V is weakly
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semiartinian. Since R is a right CC-ring, V/(U ∩V) ∼= M/U is weakly semiartinian. Then
V is weakly semiartinian by Proposition 2 and we have V ≤ wsa(M) = Soc(M) ≤ U. This
implies U = M, a contradiction. Therefore, M has no proper essential submodules. Hence
M is semisimple.

4. The Objects of the Proper Class WSS
In this section, we consider the class of short exact sequences determined by wsa-

supplement submodules. Before doing so, here we give the definition of a proper class
which plays a key role in relative homological algebra in terms of examining classes of short
exact sequences along with their homological objects (see [9] for an equivalent definition of
a proper class).

Definition 1. Let P be a class of short exact sequences of right R-modules and R-module homo-

morphisms. If a short exact sequence E : 0 −→ K
f−→ L

g−→ M −→ 0 belongs to P , then f is
said to be a P-monomorphism and g is said to be a P-epimorphism.

A subfunctorP of Ext is said to be a proper class ifP(M, N) is a subgroup of Ext(M, N)
for every R-modules M, N, and one of the following conditions is satisfied.

1. The composition of two P-monomorphisms is a P-monomorphism whenever this
composition is defined;

2. The composition of two P-epimorphisms is a P-epimorphism whenever this compo-
sition is defined.

Let R be a ring and P be a proper class of right R-modules. An R-module M is said
to be P-injective (resp., P-co-injective) if ExtP (K, M) = 0 (resp., ExtP (K, M) = ExtR(K, M))
for all right R-modules K. The smallest proper class for which every module from the class
of modules P is co-injective is called co-injectively generated by P .

A short exact sequence 0 �� A
f �� B �� C �� 0 is called WSS if Im f is a

wsa-supplement submodule of B. We denote the class of all WSS sequences by WSS . The
next result shows that the class WSS is a proper class over an arbitrary ring.

Proposition 9. The class WSS is the proper class co-injectively generated by the class of weakly
semiartinian modules.

Proof. It follows from Proposition 2 and [14] (Theorem 2).

Proposition 10. The class WSS is injectively generated by the class of crumbling-free modules.

Proof. Let E : 0 �� A �� B �� C �� 0 ∈ WSS , M be a crumbling-free mod-
ule and α : A −→ M a homomorphism. Then α∗E : 0 �� M �� D �� C �� 0 ∈
WSS since WSS is a proper class. Then there is a submodule K of D such that M + K = D
and M ∩ K is weakly semiartinian. By Proposition 1, we have C(M ∩ K) ≤ C(M) = 0 so
that α∗E splits. Therefore, M is WSS-injective.

Now let F : 0 �� X �� Y �� Z �� 0 be a short exact sequence such that
every crumbling-free module is F-injective. Since C(X/ wsa(X)) = 0, there is a submodule
L of Y with wsa(X) ≤ L and X/ wsa(X) ⊕ L/ wsa(X) = Y/ wsa(X). Then we have
X + L = Y and X ∩ L = wsa(X). Hence F ∈ WSS .

We call a module M WSS-co-injective, if every short exact sequence,

0 �� M �� N �� K �� 0 ,

of right R-modules starting with the module M is in the proper class WSS . It follows that
a module M is WSS-co-injective if and only if it is a wsa-supplement in every extension.
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It is clear that injective modules, semiartinian modules and wsa-supplementing modules
are examples of WSS-co-injective modules. Proposition 10 implies that a crumbling-free
module is WSS-co-injective if and only if it is injective. Recall that we denote the injective
hull of a module M by E(M).

Theorem 3. The following statements are equivalent for a module M.

1. M is WSS-co-injective;
2. M is a wsa-supplement in E(M).

Proof. (1 ⇒ 2) is clear.
(2 ⇒ 1): Let M be a wsa-supplement in E(M) and let N be a module containing M. Since

E(M) ⊆ E(N), there exists a submodule U ⊆ E(N) such that E(N) = E(M)⊕U. Since M is
a wsa-supplement in E(M), M is a wsa-supplement in E(N). Hence there exists a submodule
V of E(N) such that E(N) = M + V and M ∩V is weakly semiartinian. By modular law, we
can write N = N∩ E(N) = N∩ (M+V) = M+ N∩V and M∩ (N∩V) = (M∩N)∩V =
M ∩V is weakly semiartinian. It means that M is WSS-co-injective.

The following result is a consequence of Theorem 3.

Corollary 6. Let M be a module with M/ wsa(M) injective. Then M is WSS-co-injective.

Proof. By the assumption, there exists a submodule K of E(M) containing wsa(M) such
that M/ wsa(M) ⊕ K/ wsa(M) = E(M)/ wsa(M). Therefore M + K = E(M) and M ∩
K ⊆ wsa(M). Applying Proposition 2, M ∩ K is weakly semiartinian and so M is a
wsa-supplement in E(M). It follows from Theorem 3 that M is WSS-co-injective.

The next result shows that the class ofWSS-co-injective modules is closed under extensions.

Proposition 11. Let 0 −→ M −→ N −→ K −→ 0 be a short exact sequence of modules. If M
and K are WSS-co-injective, then so is N.

Proof. By [15] (Proposition 1.9 and 1.14).

Corollary 7. Every finite direct sum of WSS-co-injective modules is WSS-co-injective.

Proof. Let n ∈ Z+ and Mi (1 ≤ i ≤ n) be any finite collection of WSS-co-injective
modules. Let M = M1 ⊕ M2 ⊕ . . .⊕ Mn. Suppose that n = 2, that is, M = M1 ⊕ M2. Then
0 −→ M1 −→ M −→ M2 −→ 0 is a short exact sequence. Applying Proposition 11, we
have that M is WSS-co-injective. The proof is completed by induction on n.

We do not know if any direct sum of WSS-co-injective modules is WSS-co-injective.
Nevertheless, over right noetherian rings, we show that the class of WSS-co-injective
modules is closed under direct sums.

Theorem 4. Let R be a right noetherian ring and {Mi}i∈I be a collection of WSS-co-injective
R-modules. Then

⊕
i∈I Mi is WSS-co-injective.

Proof. Put M =
⊕

i∈I Mi. It is easy to see that wsa(M) =
⊕

i∈I wsa(Mi). Since R is
a right noetherian ring, E(M) is the direct sum of E(Mi) for each i ∈ I. Note that
E(M)/ wsa(M) =

⊕
i∈I E(Mi)/

⊕
i∈I wsa(Mi) ∼= ⊕

i∈I(E(Mi)/ wsa(Mi)). Using
Theorem 3, we can write E(Mi)/ wsa(Mi) = (Mi/ wsa(Mi))⊕ (Ki/ wsa(Mi)) for some
submodule Ki/ wsa(Mi) of E(Mi)/ wsa(Mi) (i ∈ I). Let K/ wsa(M) =

⊕
i∈I Ki/ wsa(Mi).

Therefore E(M)/ wsa(M) = M/ wsa(M) ⊕ K/ wsa(M). This means that M is a wsa-
supplement in E(M). Applying Theorem 3 once again, we obtain that M is WSS-co-
injective.
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In general, a submodule of a WSS-co-injective module need not be WSS-co-injective.
For example, the submodule ZZ of the WSS-co-injective module QZ is not WSS-co-
injective. We prove that every wsa-supplement submodule of a WSS-co-injective module
is WSS-co-injective.

Proposition 12. Let M be a WSS-co-injective module and V be a wsa-supplement submodule of
M. Then V is WSS-co-injective.

Proof. Let V be a wsa-supplement in M. Then E : 0 −→ V −→ M −→ M/V −→ 0 is a
short exact sequence in WSS , that is, U + V = M and U ∩V is weakly semiartinian for
some submodule U of M. Therefore by [15] (Proposition 1.8) V is WSS-co-injective.

The following fact is direct consequence of Proposition 12.

Corollary 8. Every direct summand of a WSS-co-injective module is WSS-co-injective.

We call a ring R weakly semiartinian if RR is weakly semiartinian, or equivalently, if
every R-module is weakly semiartinian.

Proposition 13. The following statements are equivalent for a ring R.

1. R is right weakly semiartinian;
2. Every WSS-co-injective R-module is weakly semiartinian;
3. Every injective R-module is weakly semiartinian.

Proof. (1 ⇒ 2) and (2 ⇒ 3) are trivial.
(3 ⇒ 1): RR is a submodule of E(RR) which is weakly semiartinian by assumption.

Proposition 2 completes the proof.

A ring R is called right hereditary if every factor module of an injective module
is injective. Now we prove that over right hereditary rings every factor module of a
WSS-co-injective module is WSS-co-injective. Firstly, we need the following result.

Proposition 14. WSS-co-injective modules are closed under quotients if and only if quotients of
injective modules are WSS-co-injective.

Proof. The necessity part follows from the fact that injective modules areWSS-co-injective.
For sufficiency, let M be a WSS-co-injective module and N be a submodule of M. We have
the commutative diagram:

0

��

0

��
N

��

N

��
0 �� M ��

��

E(M) ��

��

M/E(M) �� 0

0 �� M/N ��

��

E(M)/N ��

��

M/E(M) �� 0

0 0

,

with exact rows and columns. Since M is WSS-co-injective it has a wsa-supplement in
E(M). WSS being a proper class implies that M/N has a wsa-supplement in E(M)/N
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which is WSS-co-injective by assumption. By [15] (Proposition 1.8) M/N is WSS-co-
injective module.

Corollary 9. Let R be a right hereditary ring and M be a WSS-co-injective R-module. Then every
factor module of M is WSS-co-injective.

Proposition 15. Let M be a WSS-co-injective module. Then the following are equivalent:

1. M/ wsa(M) is WSS-co-injective;
2. M/ wsa(M) is injective;
3. M/N is WSS-co-injective for each weakly semiartinian submodule N of M;
4. M/N is WSS-co-injective for each wsa-supplement submodule N of M.

Proof. (1 ⇒ 2) follows from Corollary 1.
(2 ⇒ 3): Let N be a weakly semiartinian submodule of M. We have the short exact

sequence 0 �� wsa(M)/N �� M/N �� M/ wsa(M) �� 0 with M/ wsa(M)

injective, hence WSS-co-injective. By Proposition 2, weakly semiartinian modules are
closed under quotients and so wsa(M)/N is WSS-co-injective. By Proposition 11, M/N
is also WSS-co-injective.

(3 ⇒ 4): Let N be a wsa-supplement submodule of M. Then there exists K ≤ M such
that N + K = M and N ∩ K is weakly semiartinian. Since N ∩ K ≤ wsa(M), we have the
short exact sequence

0 �� wsa(M)/(N ∩ K) �� M/N ∩ K �� M/ wsa(M) �� 0.

By Proposition 2, wsa(M)/(N ∩ K) is WSS-co-injective. M/ wsa(M) is WSS-co-
injective by assumption. By Proposition 11, M/(N ∩ K) is also WSS-co-injective. Since
M/N is isomorphic to a direct summand of M/(N ∩K), M/N isWSS-co-injective module.

(4 ⇒ 1) follows from the fact that wsa(M) is a wsa-supplement of M in M. By
assumption M/ wsa(M) is WSS-co-injective.

Corollary 10. The following statements are equivalent:

1. I/ wsa(I) is injective for every injective module I;
2. M/ wsa(M) is injective for every WSS-co-injective module M;
3. The class of WSS-co-injective modules is closed under wsa-supplement quotients.

Proof. The equivalence of 2 and 3 is given in Proposition 15 and (2 ⇒ 1) is clear.
(1 ⇒ 2): Let M be a WSS-co-injective module. Then M has a wsa-supplement

N in injective hull E(M) of M. Since M + N = E(M) and M ∩ N is weakly semiar-
tinian, we have M ∩ N ≤ wsa(M) and hence E(M)/ wsa(M) = [M/ wsa(M)] ⊕ [(N +
wsa(M))/ wsa(M)]. By Proposition 15, E(M)/ wsa(M) is a WSS-co-injective module
and so is M/ wsa(M) as a direct summand of E(M)/ wsa(M). Corollary 8 completes
the proof.

Corollary 11. Let R be a right CC-ring. Then the class of WSS-co-injective modules is closed
under wsa-supplement quotients.

Proof. Let R be a right CC-ring and I be an injective module. Then every singular module
is weakly semiartinian which implies that every crumbling-free module is nonsingular.
Since I/ wsa(I) is crumbling-free, it is nonsingular and it follows from [16] (Lemma 2.3)
that wsa(I) is closed I. We have I ∼= wsa(I)⊕ [I/ wsa(I)] and so I/ wsa(I) is injective.
The rest of the proof follows from Corollary 10.

Proposition 16. The following statements are equivalent for a projective module P.

1. P is WSS-co-injective;
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2. P/ wsa(P) is a homomorphic image of an injective module;
3. There exists a weakly semiartinian submodule M of P such that P/M is a homomorphic image

of an injective module.

Proof. (1 ⇒ 2): Let α : P → E(P) be the inclusion and π : P → P/ wsa(P) the canonical
epimorphism. Then we have the diagram

0 �� P α ��

π

��

E(P).

f��
P/ wsa(P)

Since P is WSS-co-injective and P/ wsa(P) is crumbling-free, it follows from
Proposition 10 that there exists a homomorphism f : E(P)→ P/ wsa(P) such that f α = π.
Since π is an epimorphism, then so is f . Hence P/ wsa(P) = f (E(P)).

(2 ⇒ 3): Since wsa(P) is weakly semiartinian, taking M = wsa(P) yields the result
by assumption.

(3 ⇒ 1): Let M be a weakly semiartinian submodule of P such that there is an
epimorhism f : I → P/M with I injective. Consider the diagram

E(P) h �� I

f
��

0 �� M α �� P π ��

β

��

γ

��

g

��

P/M ��

k�� ��

0

P/ wsa(P) 0 ,

where α : M → P and β : P → E(P) are inclusions and π : P → P/M and γ : P →
P/ wsa(P) are canonical epimorphisms. Since M is weakly semiartinian, there is a homo-
morphism k : P/M → P/ wsa(P) such that kπ = γ. Since f is an epimorphism and P is pro-
jective, there is a homomorphism g : P → I such that f g = π. Since β is a monomorphism
and I is injective, there is a homomorphism h : E(P)→ I such that hβ = g. We have that the
homomorphism k f h : E(P)→ P/ wsa(P) satisfies (k f h)β = k( f (hβ)) = k( f g) = kπ = γ.

Now let F be a crumbling-free module and θ : P → F be a homomorphism. Since
wsa(P) ≤ Ker θ, by Factor Theorem there is homomorphism u : P/ wsa(P)→ F such that
uγ = θ. Then, we have the diagram,

0 �� P
β ��

θ

��

γ

��

E(P)

k f h
��

F P/ wsa(P),u
��

with the homomorphism uk f h : E(P) → F that satisfies (uk f h)β = u((k f h)β) = uγ = θ
which implies by Proposition 10 that P is WSS-co-injective.

Corollary 12. Every projective module is WSS-co-injective if and only if every crumbling-free
module is a homomorphic image of an injective module.

Proof. For necessity let M be a crumbling-free module. There is an epimorphism f : P →
M with P projective. Let E(P) be the injective hull of P and α : P → E(P) be the inclusion.
Since P is WSS-co-injective, it follows from Proposition 10 that there is a homomorphism
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g : E(P) → M such that gα = f . Clearly, f is an epimorphism. Sufficiency follows from
Proposition 16.

Corollary 13. Over a right CC-ring, a projective module P is WSS-co-injective if and only if
P/ wsa(P) is injective.

Proof. For necessity, let P be a WSS-co-injective module. Then, by Proposition 16, there is
an epimorphism f : I → P for some injective module I. Since P/ wsa(P) is a crumbling-
free module over a right CC-ring, it is nonsingular. By [16] (Lemma 2.3), Ker f is closed in
I, and so Ker f ⊕ [P/ wsa(P)] ∼= I. Hence P/ wsa(P) is injective. Sufficiency follows from
the fact that WSS-co-injective modules are closed under extensions.

Proposition 17. A ring R is right weakly semiartinian if and only if every right R-module is
WSS-co-injective.

Proof. Necessity is clear. For sufficiency, it is enough to show that C(M) �= 0 for every
nonzero R-module M. Let N be a crumbling-free module. Then any submodule K of N
is also crumbling-free. It follows from Proposition 10 that K is injective, therefore a direct
summand of N. This shows that N is semisimple. Then we have N = Soc N ≤ C(N) = 0.
Hence R is right weakly semiartinian.

A ring R is called a right SSI-ring if all semisimple right R-modules are injective. It is
known that a ring R is a right noetherian right V-ring if and only if it is a right SSI-ring.

Theorem 5. The following statements are equivalent for a ring R.

1. Every WSS-co-injective R-module is injective;
2. Every weakly semiartinian R-module is injective;
3. R is semisimple artinian.

Proof. (1 ⇒ 2) and (3 ⇒ 1) are clear.
(2 ⇒ 3): Every semisimple module is weakly semiartinian, hence injective by assump-

tion and so R is a right SSI-ring. Then every module crumbles by [6] (Theorem 3). Since
crumbling modules are weakly semiartinian, R is semisimple artinian by assumption.

An R-module K is called WSS-coprojective if every short exact sequence,

0 �� M �� N �� K �� 0 ,

of right R-modules ending with the module K is in the proper class WSS . For an arbitrary
ring R, let C(R) = C(RR).

Proposition 18. Let R be a crumbling-free ring. Then WSS-coprojective R-modules are only
projective modules.

Proof. Let M be a WSS-coprojective R-module. Since every R-module is a factor module
of a free R-module, there exist a free R-module F and an epimorphism ψ : F −→ M. Put

U = Ker(ψ). Now we consider the short exact sequence 0 −→ U ι−→ F
ψ−→ M −→ 0,

where ι is the canonical injection. By the hypothesis, there exists a submodule V of F such
that F = U + V and U ∩ V is weakly semiartinian. Since C(R) = 0, it follows from [6]
(Corollary 8) that C(F) = C(R)F = 0, and so C(U ∩V) ⊆ C(F) = 0. It means that the short

exact sequence 0 −→ U ι−→ F
ψ−→ M −→ 0 splits. Hence M is projective.

Recall that a module M is flat if every short exact sequence of the form,

0 �� M
ψ �� N �� K �� 0 ,
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is pure exact, that is, Im ψ is a pure submodule of N. Clearly, every projective module
is flat.

Theorem 6. Over a commutative C-ring WSS-projective modules are flat.

Proof. This follows from [7] (Theorem 3.9) and the fact that SAS ⊆ WSS .

Author Contributions: Conceptualization, Y.M.D. and E.T.; methodology, Y.M.D. and E.T.; investiga-
tion, Y.M.D. and E.T.; writing–original draft preparation, Y.M.D. and E.T.; writing–review and editing,
Y.M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers for valuable comments and
suggestions that improved the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Clark, J.; Lomp, C.; Vanaja, N.; Wisbauer, R. Lifting Modules. Supplements and Projectivity in Module Theory; Frontiers in Mathematics;
Birkhäuser: Basel, Switzerland, 2006. [CrossRef]

2. Dung, N.V.; Van Huynh, D.; Smith, P.F.; Wisbauer, R. Extending Modules; Chapman & Hall/CRC Research Notes in Mathematics
Series; Taylor & Francis: Abingdon, UK, 1994; Volume 313. [CrossRef]

3. Wisbauer, R. Foundations of Module and Ring Theory; Algebra, Logic and Applications; Gordon and Breach Science Publishers:
Philadelphia, PA, USA, 1991; Volume 3. [CrossRef]

4. Alahmadi, A.N.; Alkan, M.; López-Permouth, S. Poor modules: The opposite of injectivity. Glasg. Math. J. 2010, 52, 7–17.
[CrossRef]

5. Er, N.; López-Permouth, S.; Sökmez, N. Rings whose modules have maximal or minimal injectivity domains. J. Algebra 2011,
330, 404–417. [CrossRef]

6. Alizade, R.; Demirci, Y.M.; Nişancı Türkmen, B.; Türkmen, E. On rings with one middle class of injectivity domains. Math.
Commun. 2022, 27, 109–126.
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Abstract: The flow and heat characteristics of an unsteady, laminar biomagnetic fluid, namely blood
containing Fe3O4 magnetic particles, under the influence of thermal radiation and a magnetic dipole
over a cylinder with controlled boundary conditions using a group theory method are investigated
in the present study. The mathematical formulation of the problem is constructed with the aid of
biomagnetic fluid dynamics (BFD) which combines principles of ferrohydrodynamics (FHD) and
magnetohydrodynamics (MHD). It is assumed that blood exhibits polarization as well as electrical
conductivity. Additionally, the shape of the magnetic particles, namely cylindrical and spherical,
is also considered. Moreover, in this model, a group theoretical transformation, namely a two-
parameter group technique, is applied. By applying this group transformation, the governing system
of partial differential equations (PDEs) along with applicable boundary conditions are reduced
to one independent variable and, consequently, converted into a system of ordinary differential
equations (ODEs) with suitable boundary conditions. An efficient numerical technique is applied
to solve the resultant ODEs and this technique is based on three essential features, namely (i) a
common finite differences method with central differencing, (ii) tridiagonal matrix manipulation
and (iii) an iterative procedure. The flow and heat characteristics of blood-Fe3O4 are found to be
dependent on some physical parameters such as the particle volume fraction, the ferromagnetic
interaction parameter, the magnetic field parameter, and the thermal radiation parameter. An ample
parametric study is accomplished to narrate the influences of such physical parameters on velocity,
temperature distributions as well as the coefficient of skin friction and rate of heat transfer. From the
numerical results, it is deduced that the fluid velocity is enhanced for the ferromagnetic number and
the temperature profile is decreased as the ferromagnetic number is gradually increased. It is also
obtained that for the cylindrical shape of magnetic particles, the fluid temperature is more enhanced
than that of the spherical shape. Both the skin friction coefficient and the local Nusselt number are
increased for increasing values of the ferromagnetic interaction parameter, where the heat transfer
rate of blood-Fe3O4 is significantly increased by approximately 33.2% compared to that of pure blood,
whereas the coefficient of skin friction is reduced by approximately 6.82%.

Keywords: group theoretical method; biomagnetic fluid dynamics (BFD); blood; magnetic particles;
cylinder; magnetic dipole; finite differences method
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1. Introduction

From a theoretical and practical point of view, the studies of biomagnetic fluid dynam-
ics (BFD), which consists of the ideas of ferrohydrodynamics (FHD) and magnetohydrody-
namics (MHD), exhibit much interest to researchers due to their variety of applications in
biomedical and bio-engineering areas as reported early in [1–4] such as drug and gene de-
livery performed by magnetic particles, magnetic resonance imaging (MRI) for imaging, the
reduction in blood during surgeries, cancer treatment, and injury treatment. For researchers
in fluid dynamics, BFD is a comparatively new area, where the effect of the magnetic field
on the biological fluid is studied. In the recent past, this area has received tremendous at-
tention from researchers since it is directly related to non-invasive applications for treating
human body-related diseases and disorders. Moreover, blood is considered as one of the
peculiarities of BFD due to the presence of ions. Blood could be considered to behave as a
Newtonian or non-Newtonian fluid. When blood flows at high shear rates through arteries,
blood can be considered as a Newtonian fluid as mentioned by Chien et al. [5] and the
true non-Newtonian nature of blood should be considered when shear rates are very low
according to the study of Bhatti et al. [6].

The influence of a magnetic field is incorporated in the study of bio-fluids and that is
why the concepts of FHD and MHD need to be introduced. Basically, in ferrohydrodynam-
ics (FHD), fluid is considered electrically non-conducting, where fluid flows are influenced
in the presence of magnetization by the polarization effect. Specifically, when a magnetic
field is exposed to a magnetic fluid such as blood, a measurement of the magnetization can
be made in order to determine how much is affected by the applied magnetic field. Magne-
tization can be described mathematically by involving the magnetic field strength intensity
and/or temperature. On the other hand, in magnetohydrodynamics (MHD), the influence
of magnetization is negligible and fluid flows like an electrically conducting magnetic
fluid. Based on the above-mentioned concept, a mathematical study of BFD considering the
FHD principles was initiated by Haik et al. [7], where fluid is considered as a Newtonian
fluid. The authors found that in the presence of high-gradient magnetic fields, the flow
of a biomagnetic fluid is significantly affected. This mathematical model was extended
by Tzirtzilakis [8], where both principles, namely MHD and FHD, are considered simul-
taneously. The behavior of MHD blood flow under the effect of temperature-dependent
fluid viscosity and thermal conductivity was investigated by Sharma et al. [9]. The impact
of temperature-dependent magnetization on a non-Newtonian biomagnetic fluid using
viscoelastic fluid property over a stretching sheet was studied by Misra et al. [10] and the
numerical solution was obtained by using a finite differences technique. The influence of
thermal radiation and slip conditions on time-dependent blood flow and heat transfer over
an inclined permeable stretching surface was studied by Koppu et al. [11]. The dual behav-
ior of blood flow and heat transfer in the quadratic stretched surface under the influence of
a magnetic dipole was investigated by Murtaza et al. [12] and the authors reveal that, in a
particular range of the suction parameter and stretching/shrinking sheet, the physical solu-
tions, i.e., stable and unstable solutions, are present. Recently, the study of a biomagnetic
fluid under the influence of a magnetic dipole was studied by Murtaza et al. [13], where it
was shown that the combination of MHD and FHD, i.e., BFD flow, is comparatively more
significant than that of MHD, FHD, or pure hydrodynamics flow alone.

In the recent past, many researchers investigated the study of different regular fluids
(water, blood, etc.) by adding different types of nanoparticles (magnetic/non-magnetic).
This is because the heat transfer of a base fluid like blood is significantly improved when
nanoparticles are mixed with a base fluid and this improvement is more effective than con-
ventional heat transfer in fluids where the size of nanoparticles is usually 1–100 nm. When
nanoparticles are mixed with a base fluid, this is known as a nanofluid, initially introduced
by Choi [14]. As far as cylinder flows have been concerned, Alsenafi and Ferdows [15]
showed that depending on the systems’ parameters, dual solutions exist in opposing flow
beyond a critical point where both solutions are connected. The forced convection of a
Al2O3-water nanofluid over a circular cylinder inside a magnetic field was studied by

104



Mathematics 2022, 10, 3520

Nikelham et al. [16]. In that study, an experimental model as a function of the temperature,
nanoparticle diameter, and volume fraction of the nanofluid was utilized to calculate the
nanofluid’s viscosity and conductivity coefficient. It was found that the model of the
nanofluids is important, and the values of the Nusselt numbers in the experimental model
are different than the Brinkman–Maxwell analytical one. Aminian et al. [17] numerically
studied the MHD forced convection effects of Al2O3–CuO–water nanofluid inside a parti-
tioned cylinder within a porous medium. Nanofluid flow was modeled as a two-phase flow
using a two-phase mixture model, and the Darcy–Brinkman–Forchheimer equation was
employed to model fluid flow in porous media. They demonstrated that incorporation of
nanoparticles to the base fluid increased the performance evaluation criteria in all cases. The
MHD flow of water-based nanofluids across a horizontal circular cylinder was numerically
investigated by Tlili et al. [18]. It was found that skin friction and the local Nusselt numbers
are strong functions of Reynolds and Hartmann numbers, whereas the local Sherwood
number is a strong function of nanofluids parameters. The impact of heat source/sink along
with suction/injection on steady, two-dimensional MHD flow through a stretched cylinder
was developed by Elbashbeshy et al. [19]. Finally, the unsteady magnetohydrodynamic
mixed convection flow of an incompressible hybrid nanofluid (Cu-Al2O3/water) past an
isothermal cylinder with thermal radiation effect has been studied by Roy and Akter [20].
The corresponding results revealed that the hybrid nanofluid (Cu-Al2O3/water) enhances
the heat transfer by approximately 28.28% in comparison to the Al2O3-water nanofluid and
by approximately 51.15% more than in the pure fluid. Contrary to this, the heat transfer of
hybrid nanofluid is augmented by approximately 41.76% more than the Cu-water nanofluid
and by 71.41% more than the base fluid. The significance of melting in the presence of
thermal radiation on Cattaneo–Christov-aligned MHD nanofluid flows together with mi-
croorganism to leading edge is investigated by Ali et al. [21] with an approaching FEM
technique. An analysis of H2O-Al2O3 nanofluid flow over a stretching sheet subject to
prescribed heat flux in the presence of thermal radiation is studied by Kumar et al. [22].
They found that the coefficient of skin friction and thermal boundary layer decreases as
the radius of nanoparticles is enhanced. Dawar et al. [23] examined the effects of Brown-
ian motion and thermophoresis on MHD water-based nanofluid with copper and copper
oxide nanoparticles between two parallel plates. It was found that the heat transfer rate
is increased by approximately 1% between two blade-shaped nanoparticles as Cu and
CuO when the values of volume fraction φ = 0.02 and φ = 0.03. Bilal et al. [24] inspected
the C2H6O2-H2O hybrid nanofluid flow with three different nanoparticles—TiO2, SiO2,
and Al2O3—with activation energy across two infinite parallel plates. They reported that
when nanoparticles are added to a base fluid, the fluid velocity and the heat transfer rate
increase. Souayeh et al. [25] performed a numerical analysis of the flow and heat transfer
of water-silver/gold nanofluid flow through an electromagnetohydrodynamic (EMHD)
peristaltic channel in the presence of activation energy and radiation and microorganisms.
Alwawi et al. [26] applied the Keller box method solutions to recapitulate human blood
and water with CuO, Al, Au nanoparticles assuming a constant surface heat flux subject to
a circular cylinder. The authors reported that gold particles gave better numerical results
compared to Aluminum and copper. The impact of a magnetic dipole on the flow and heat
transfer of blood-MnZnFe2O4 over a cylinder is discussed by Alam et al. [27] with the help
of a group theoretical method approach.

However, from the above-mentioned studies, the authors of the present paper ob-
served that most of the research has been conducted with regular fluid by mixing non-
magnetic particles. To the best of the authors’ knowledge, although there are numerous
studies on stretching sheet and stretching cylinder flows, there are not many studies on
unsteady cylinder flow, where the base fluid (human blood) contains magnetic particles.
The reason behind choosing magnetic particles rather than non-magnetic particles is the use
of magnetic particles in medical applications, which is explained in [28–31]. The proposed
mathematical model is that of BFD, which incorporates two principles, namely MHD and
FHD, where blood is electrically conducting magnetic fluid which also exhibits magne-
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tization. These two terms are interconnected. In most of the studies, researchers on the
blood flow model only consider the magnetization effect, where the fluid is considered as
an electrically non-conducting fluid. From a practical point of view, if we want to destroy
the tumor cells from our body without harming good cells, we can apply a strong magnetic
field in that particular tumor area and determine how much fluid is affected by this applied
magnetic field, which is measured by the mathematical term known as magnetization.
To solve such fluid mechanics problems, several transformation techniques have been
proposed by various researchers. In this paper, a group theoretical method, namely a two-
parameter group method, is applied to solve the blood-based magnetic particles problem
over a cylinder under the influence of a magnetic dipole. By applying this two-parameter
group theoretical method, we can find a group of solutions in terms of various conditions.
Meanwhile, we are frequently in contact with previously derived analogous solutions and
the two-parameter group restores many of these forms and we will find some completely
new ones. Such group theoretical methodology, i.e., the one/two parameter group method,
has been analyzed in [32–36]. By using this systematic method, the number of independent
variables is reduced by one and, consequently, the governing partial differential equations
(PDEs) are transformed into a set of ordinary differential equations (ODEs) along with
suitable boundary conditions which are later numerically solved by applying an efficient
numerical technique, based on a common finite differences method with tridiagonal matrix
manipulation and an iterative procedure. The significant impact of involving parameters
such as the ferromagnetic parameter, the magnetic particle volume fraction, the magnetic
field parameter, thermal radiation, temperature profiles as well as the skin friction coeffi-
cient and the rate of heat transfer is discussed with their respective graphical outcomes.
Two cases are considered for the obtained numerical solutions: the first case concerns the
behavior of pure blood and blood-Fe3O4, whereas the second solution examines the effect
of particle shape on blood-Fe3O4 flow and heat transfer, which is also the key objective of
the present study.

Furthermore, in this study, the maximum temperature for the human body is consid-
ered to be 41 ◦C, which is reasonable for applications in cancer treatment and moreover
noticeable for enzyme function and the function of other proteins of the human body.
Therefore, the current study could be applicable to biomedical sciences especially in drug
administration, cancer therapy, reducing the flow of blood during surgeries, etc. Since, this
study relates to human body related diseases and disorders, it is hoped that it will be impor-
tant not only for understanding flow mechanisms but also for taking prevention measures.

2. Mathematical and Physical Formulation

The schematic representation of the governing co-ordinate system considered in this
study is presented in Figure 1. The fluid considered (blood) contains magnetic particles
(Fe3O4) and flows through a two-dimensional cylinder along the x-axis, where L is the
characteristic length of the cylinder. The flow is considered as unsteady, and the cylinder
has a radius R and the r-axis is the normal direction of the cylinder. The temperature of
the cylinder surface is Tw and the ambient fluid temperature is Tc situated far away from
the surface, with Tw < Tc. A magnetic dipole which is assumed to be located below the
sheet maintaining a distance c, propagates a magnetic field of strength H. Moreover, due
to the presence of FHD principles, the base fluid (blood) exhibits the polarization effect,
where the applied magnetic field is supposed to be strong enough, to attain the equilibrium
of magnetization.
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Figure 1. Schematic representation of geometry.

Due to the aforementioned assumptions and following [8,37], the governing continuity,
momentum, and energy equations in cylindrical coordinates can be written as follows:

Continuity equation:
∂u
∂x

+
v
r
+

∂v
∂r

= 0. (1)

Momentum equation:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

=
μm f

ρm f

(
∂2u
∂r2 +

1
r

∂u
∂r

)
− σm f B2u

ρm f
+

μ0

ρm f
M

∂H
∂x

. (2)

Energy equation:

(
ρCp

)
m f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂r

)
+ μ0T

∂M
∂T

(
u

∂H
∂x

+ v
∂H
∂r

)
= κm f

(
∂2T
∂r2 +

1
r

∂T
∂r

)
− ∂qr

∂r
. (3)

The boundary conditions accompanying (1)–(3) are [27,35,37]:

r = R : u = 0, v = 0, T = Tw,
r → ∞ : u = 0, T = Tc.

(4)

Here, u and v are the dimensional velocity components along the axis, respectively.
Further, the symbols κ, ρ, Cp, μ, μ0, M, σ, H, qr are known as blood thermal conductiv-
ity, density, specific heat at constant pressure, dynamic viscosity, magnetic permeability,
magnetization, electrical conductivity, magnetic field strength, and radiative heat flux,
respectively. Additionally, B

(
= μ0H

)
is the magnetic induction and the subscript symbol

( )m f means magnetic fluid. The bar above the quantities indicates that the quantities
are dimensional.

Due to the electrical conductivity of the fluid, the term − σm f B2u
ρm f

arising in Equation (2),
represents the Lorentz force per unit volume along the x axis. This term is known from
MHD studies [8,13]. From FHD studies [38–40], the component of the magnetic force
per unit volume is defined by the term μ0

ρm f
M ∂H

∂x , arising in Equation (2) and depends
on the existence of the magnetic gradients on the corresponding x axis, while the ther-
mal power per unit volume due to the magnetocaloric effect, is represented by the term
μ0T ∂M

∂T

(
u ∂H

∂x + v ∂H
∂r

)
arising in Equation (3).
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Raptis [41,42] described the radiative heat flux qr using Rosseland approximation in
such a way that:

qr = −4σ1

3χ

∂T4

∂r
, (5)

where σ1 is the Stefan–Boltzmann constant and χ is the mean absorption coefficient. The
fluid temperature differences within the flow are supposed to be sufficiently small. Then,
the temperature term T4 may be expressed as a linear function of the temperature, by
expanding T4 in a Taylor series about Tc and neglecting higher-order terms yielding
the expression

T4 ∼= 4T3
c T − 3T4

c . (6)

Thus, the local radiant absorption is given by

∂qr

∂r
= −16σ1T3

c
3χ

∂2T
∂r2 . (7)

Substituting (7) into Equation (3) yields(
ρCp

)
m f

(
∂T
∂t + u ∂T

∂x + v ∂T
∂r

)
+ μ0T ∂M

∂T

(
u ∂H

∂x + v ∂H
∂r

)
= κm f

(
∂2T
∂r2 + 1

r
∂T
∂r

)
+ 16σ1T3

c
3χ

∂2T
∂r2

(8)

According to [43,44], the components Hx and Hr of the magnetic field
→
H =

(
Hx , Hr

)
,

due to the magnetic dipole may be written as follows:

Hx (x, r) = −∂V
∂x

=
γ

2π

x2 − (r + c) 2(
x2 + (r + c)2

)
2

, (9)

Hr (x, r) = −∂V
∂r

=
γ

2π

2x(r + c)(
x2 + (r + c)2

)
2

, (10)

where the scalar potential of the magnetic dipole is defined by V (x, r) = γ
2π

x
x2+(r+c)2 and

γ is the strength of the magnetic field at the source position. The magnetic field strength
intensity H is given by

H(x, r) =
√

H2
x + H2

r =
γ

2π

1

x2 + (r + c)2 , (11)

and the gradients of the magnetic field intensity are obtained by the above relation by
expanding H in powers of x and retaining terms up to x2, taking eventually the form

∂H
∂x

= − γ

2π

2x

(r + c)4 , (12)

∂H
∂r

= − γ

2π

(
−2

(r + c)3 +
4x2

(r + c)5

)
. (13)

Moreover, Matsuki et al. [45] experimentally showed that the magnetization M can be
expressed as a function of the temperature T and the magnetic field strength intensity H is
given by

M = KH
(
Tc − T

)
, (14)

where K is the pyromagnetic coefficient and Tc is the Curie temperature.
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The thermophysical properties of the base fluid and magnetic particles are introduced
according to the studies of Makinde [46], Lin et al. [47] and Kandasamy et al. [48] and
presented in Table 1.

Table 1. Thermophysical properties of the magnetic fluid model [46–48].

Magnetic Fluid Properties Applied Model

Density ρm f = (1− φ)ρ f + φρ s

Dynamic viscosity μm f = μ f (1− φ)−2.5

Electrical conductivity σm f
σf

= 1 +
3
(

σs
σf
−1

)
φ(

σs
σf
+1

)
−
(

σs
σf
−1

)
φ

Heat capacitance (ρCp)m f = (1− φ)(ρCp) f + φ (ρCp)s

Thermal conductivity κm f
κ f

=
(κs+(m−1) κ f )−(m−1) φ (κ f−κs)

(κs+(m−1)κ f )+φ (κ f−κs)

Here, φ denotes the magnetic particle volume fraction and m is the magnetic particle
shape factor such that when m = 3 and m = 6.3698 represent that the particles have
spherical and cylindrical shape, respectively. Further, the notations ( ) f and ( )s stand
for the base fluid and the magnetic particles, respectively. When φ = 0, all corresponding
equations are transformed into a regular fluid model. In this paper, blood is considered as
the base fluid and Fe3O4 as the magnetic particles and their corresponding thermophysical
properties are tabulated in Table 2 according to previous studies [49–51].

Table 2. The values of thermophysical properties of blood and Fe3O4 [49–51].

Physical properties Cp

(
jkg−1K−1

)
ρ
(
kgm−3) σ

(
sm−1) κ

(
Wm−1K−1

)
Blood 3.9× 103 1050 0.8 0.5
Fe3O4 670 5180 0.74× 106 9.7

In order to proceed with the solution of the problem, Equations (1), (2) and (8) together
with the boundary conditions (4) are transformed into dimensionless form by using the
following transformations [27,35,37]:

x =
x
R

, r =
r
R

, u =
u R
υ f

, v =
v R
υ f

, t =
t υ f

R2 , H =
H
H0

, θ =
Tc − T

Tc − Tw
, (15)

where υ f is the kinematic viscosity of the fluid and H0 is the reference magnetic field
strength intensity. Hence, the reduced dimensionless form of the corresponding equations
with boundary conditions are:

∂u
∂x

+
v
r
+

∂v
∂r

= 0, (16)

A1

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

)
=

∂2u
∂r2 +

1
r

∂u
∂r
− A2MnH2u + A3βHθ

∂H
∂x

, (17)

A4Pr
(

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂r

)
+ A5βEcH(ε− θ)

(
u

∂H
∂x

+ v
∂H
∂r

)
= (1 + NrA5)

∂2θ

∂r2 +
1
r

∂θ

∂r
, (18)

r = 1 : u = 0, v = 0, θ = 1
r → ∞ : u = 0, θ = 0

(19)

where
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A1 = (1− φ)2.5
(

1− φ + φ
ρs
ρ f

)
, A2 = (1− φ)2.5

⎡⎣1 +
3
(

σs
σf
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)
φ(

σs
σf

+1
)
−
(

σs
σf
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)
φ

⎤⎦ ,
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κ f

κm f

(
1− φ + φ

(ρCp)s
(ρCp) f

)
, A5 =

κ f
κm f

(20)

Here, β =
μ0KH2

0 (Tc−Tw)R2
ρ f

μ2
f

is the ferromagnetic interaction parameter, Mn =
σf μ2

0 H2
0 R2

μ f

is the magnetic field parameter, Nr = 16σ1T3
c

3χκ f
, is the thermal radiation parameter,

Pr =
(μCp) f

κ f
, is the Prandtl number, ε = Tc

Tc−Tw
is the dimensionless Curie temperature and

Ec =
μ3

f

ρ2
f κ f R2

(Tc−Tw)
is the Eckert number.

If the stream function ψ formulation is adopted, i.e., define the velocity components as

u =
1
r

∂ψ

∂r
, v = −1

r
∂ψ

∂x

Equation (16) is automatically satisfied and Equations (17) and (18) take the form:
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(
∂ψ
∂r − r ∂2ψ

∂r2

)]
= r2 ∂3ψ

∂r3 − r ∂2ψ

∂r2 + ∂ψ
∂r

−A2MnH2r2 ∂ψ
∂r + A3β Hr3θ ∂H

∂x

(21)

A4Pr
(

r
∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcH(ε− θ)

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
= (1 + NrA5) r

∂2θ

∂r2 +
∂θ

∂r
, (22)

along with the boundary conditions:

r = 1 : ∂ψ
∂r = 0, ∂ψ

∂x = 0, θ = 1
r → ∞ : ∂ψ

∂r = 0, θ = 0
(23)

3. The Group of Transformations

To identify all symmetries of a given differential equation (DE), group method analysis
is the only rigorous mathematical method and for that no prior knowledge or exceptional
assumptions of the given boundary layer equations under inquisition is needed. In physical
standpoint, the boundary layer equations are very interesting due to their potency to admit
a huge number of analytic solutions, i.e., invariant solutions. Here, invariant solutions mean
the reduction of PDEs to simpler ODEs. Basically, the researchers in the fluid mechanics
field, try to obtain similarity solutions by proposing a general similarity transformation
with unknown parameters into the DE and as a result get an algebraic system. Then, the
solution of this system, if it exists, determines the values of the unknown parameters. From
this point of view, we believe that it is better to attack any problem of similarity solutions
from the outset; that is, to find out the full list of symmetries of the problem and then
study which of them are appropriate to provide group-invariant solutions more specifically
similarity solutions. The two-parameter method that we applied in this model provided a
group of solutions which is one of the major advantages of this group method. However,
few limitations of this method also hold, such as the large number of arbitrary coefficients
appearing in the obtained ODEs. It is quite difficult to determine numerical solutions to
the problem.

In this section, a group theoretical method is applied to the system of PDEs (21)–(22)
along with the boundary conditions (23). More precisely, a two-parameter transformation
group is applied, which reduces the number of independent variables by one. Consequently,
the set of PDEs (21)–(22) is converted into a system of ODEs.
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3.1. The Group Systematic Formulation

The procedure is initiated with a class G of two-parameter (a1, a2) transformation
group of the form

G : S = CS(a1, a2) S + KS(a1, a2), (24)

where CS and KS are real values and at least differentiable in each argument (a1, a2)
and the symbol S stands for x, r, t, ψ, θ, H. Relation (24) may be further expressed in the
following way:

G :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
S :

⎧⎨⎩
x = Cx(a1, a2) x + Kx(a1, a2)
r = Cr(a1, a2) r + Kr(a1, a2)
t = Ct(a1, a2) t + Kt(a1, a2)

ψ = Cψ(a1, a2) ψ + Kψ(a1, a2)
θ = Cθ(a1, a2) θ + Kθ(a1, a2)
H = CH(a1, a2) H + KH(a1, a2)

, (25)

which possesses complete sets of absolute invariants η (x, r, t) and ξi (x, r, t, ψ, θ, H),
i = 1, 2, 3 where ξi are the three absolute invariants corresponding to ψ, θ, H. If η is
the absolute invariant of the independent variables, then ξi = Fi(η), i = 1, 2, 3. For more
details one may refer to [52] or [53].

3.2. The Invariance Analysis

The transformation for the derivatives appearing in Equations (21) to (23), are directly
gained from G via chain-rule operations and are

∂S
∂i

=
CS

Ci
∂S
∂i

,
∂2S
∂i2

=
CS(
Ci

)2
∂2S
∂i2

,
∂3S
∂i3

=
CS(
Ci

)3
∂3S
∂i3

,
∂2S
∂i∂j

=
CS

CiCj
∂2S
∂i∂j

, (26)

where S = ψ, θ, H and i, j = x, r, t.
Equation (21) is said to be invariantly transformed under (25) and (26), whenever

A1

{
r2 ∂2ψ

∂t∂r
+ r

∂ψ

∂r
∂2ψ

∂x∂r
+

∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)}
− ∂ψ

∂r
+ r

∂2ψ

∂r2 − r2 ∂3ψ

∂r3 + A2MnH2r2 ∂ψ

∂r

−A3βHr3θ
∂H
∂x

= I1(a1, a2)

⎡⎢⎢⎣A1

{
r2 ∂2ψ

∂t∂r
+ r

∂ψ

∂r
∂2ψ

∂x∂r
+

∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)}
−∂ψ

∂r
+ r

∂2ψ

∂r2 − r2 ∂3ψ

∂r3 + A2MnH2r2 ∂ψ

∂r
− A3βHr3θ

∂H
∂x

⎤⎥⎥⎦ (27)

for some function I1(a1, a2) which may be constant. The terms defined in (25) together with the
corresponding derivatives from (26) are substituted into the left side of Equation (27), yielding

A1

[
CψCr

Ct r2 ∂2ψ

∂t∂r
+

(
Cψ

)2

CxCr r
∂ψ

∂r
∂2ψ

∂x∂r
+

(
Cψ

)2

CxCr
∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)]
− Cψ

Cr
∂ψ

∂r

+
Cψ

Cr r
∂2ψ

∂r2 −
Cψ

Cr r2 ∂3ψ

∂r3 + A2CψCr
(

CH
)2

MnH2r2 ∂ψ

∂r
− A3

Cθ
(
CH)2

(Cr)3

Cx

βHr3θ
∂H
∂x

+ R1(a1, a2) = I1(a1, a2)

[
A1

{
r2 ∂2ψ

∂t∂r
+ r

∂ψ

∂r
∂2ψ

∂x∂r
+

∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)}
−∂ψ

∂r
+ r

∂2ψ

∂r2 − r2 ∂3ψ

∂r3 + A2MnH2r2 ∂ψ

∂r
− A3βHr3θ

∂H
∂x

]
(28)

where
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R1(a1, a2) = A1

[{
2CrKrr + (Kr)2

} Cψ

CtCr
∂2ψ

∂t∂r
+

(
Cψ

)2

Cx(Cr)2 Kr ∂ψ

∂r
∂2ψ

∂x∂r
−

(
Cψ

)2

Cx(Cr)2 Kr ∂ψ

∂x
∂2ψ

∂r2

]
+

Cψ

(Cr)2

Kr ∂2ψ

∂r2 −
{

2CrKrr + (Kr)2
} Cψ

(Cr)3
∂3ψ

∂r3 + A2Mn

[{
2CrKrr + (Kr)2

}Cψ
(
CH)2

Cr H2 ∂ψ

∂r
+

{
2CHKH H +

(
KH

)2
}{

CψCrr2 ∂ψ

∂r
+

{
2CrKrr + (Kr)2

}Cψ

Cr
∂ψ

∂r

}]
− (Cr)3CθCH

Cx KH A3βr3θ
∂H
∂x

− (Cr)3(CH)2

Cx Kθ A3Hβr3 ∂H
∂x

− (Cr)3CHKθ

Cx KH A3βr3 ∂H
∂x

−
[
3(Crr)2Kr + 3Crr(Kr)2 + (Kr)3

]
[(

CH)2Cθ

Cx A3βHθ
∂H
∂x

+
CθCH

Cx KH A3βθ
∂H
∂x

+

(
CH)2Kθ

Cx A3βH
∂H
∂x

+
CHKθ

Cx KH A3β
∂H
∂x

]
.

(29)

From the form of Equation (28), it is obvious that (28) is invariantly transformed whenever

I1(a1, a2) =
CψCr

Ct =

(
Cψ

)2

CxCr =
Cψ

Cr = CψCr
(

CH
)2

=
Cθ

(
CH)2

(Cr)3

Cx , (30)

and R1(a1, a2) ≡ 0, which implies

Kr ≡ KH ≡ Kθ ≡ 0. (31)

Similarly, Equation (22) is invariantly transformed under (25) and (26), by assuming
that for some function I2(a1, a2), which may be constant the following holds:

A4 Pr

(
r

∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcεH

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)

−A5βEcHθ

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
−

{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}

= I2(a1, a2)

⎡⎢⎢⎢⎣
A4 Pr

(
r

∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcεH

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
−A5βEcHθ

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
−

{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}
⎤⎥⎥⎥⎦

(32)

Substitution of (24)–(26) into the left side of Equation (32) gives

A4 Pr
[

CrCθ

Ct r
∂θ

∂t
+

CψCθ

CrCx

(
∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)]
+

Cψ
(
CH)2

CrCx A5βEcεH
(

∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
−CψCθ

(
CH)2

CrCx A5βEcHθ

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
− Cθ

Cr

{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}
+ R2(a1, a2)

= I2(a1, a2)

⎡⎢⎢⎢⎣
A4 Pr

(
r

∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcεH

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
−A5βEcHθ

(
∂ψ

∂r
∂H
∂x

− ∂ψ

∂x
∂H
∂r

)
−

{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}
⎤⎥⎥⎥⎦,

(33)

where
R2(a1, a2) = A4Pr Cθ Kr

Ct
∂θ
∂t +

CψCHKH

CrCx A5βEcε
(

∂ψ
∂r

∂H
∂x − ∂ψ

∂x
∂H
∂r

)
−A5βEc

[
CψKθ(CH)

2

CrCx H + CψCθCHKθ

CxCr θ + CψCHKHKθ

CxCr

]
(

∂ψ
∂r

∂H
∂x − ∂ψ

∂x
∂H
∂r

)
− Cθ

(Cr)2 Kr(1 + NrA5)
∂2θ
∂r2 .

(34)
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From (33), it is obvious that it is invariantly transformed whenever

I2(a1, a2) =
CθCr

Ct =
CθCψ

CxCr =
Cθ

Cr =
Cψ

(
CH)2

CxCr =
CθCψ

(
CH)2

CxCr , (35)

and R2(a1, a2) ≡ 0, which implies

Kr ≡ KH ≡ Kθ ≡ 0 . (36)

Finally, the boundary conditions (23) must also be invariant under the same transfor-
mations, which yields

Cr = 1 and Cθ = 1. (37)

Combining Equations (30) and (35) and taking into account (31), (36), and (37), it was
found that:

Ct = 1 and Cx = CH = Cψ = 1 . (38)

Hence, the two-parameter group G, which invariantly transforms Equations (21) and
(22), and the boundary condition (23) takes the form

G :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
S :

⎧⎨⎩
x = x + Kx(a1, a2)
r = r
t = t + Kt(a1, a2)

ψ = ψ + Kψ(a1, a2)
θ = θ

H = H

. (39)

3.3. The Complete Set of Absolute Invariants

The basic tool of this technique is the application of a general theorem from group
theory, so that the problem under consideration is described by ODEs (similarity representa-
tion) in an independent variable (similarity variable). Herein, the complete sets of absolute
invariants include two types of absolute invariants, namely (i) the absolute invariants of
independent variables (x, r, t), which are η = η(x, r, t), and (ii) the absolute invariants of
dependent variables (ψ, θ, H). This general theorem for the case of a two-parameter group
(e.g., [54,55]), states that a function η = η(x, r, t) is an absolute invariant of a two-parameter
group of the form

S : [ x = Cx(a1, a2) x + Kx(a1, a2) ,
r = Cr(a1, a2) r + Kr(a1, a2),
t = Ct(a1, a2) t + Kt(a1, a2)

]
.

(40)

If and only if η satisfies the first order linear PDEs:

(α1x + α2)
∂η
∂x + (α3r + α4)

∂η
∂r + (α5t + α6)

∂η
∂t = 0,

(δ1x + δ2)
∂η
∂x + (δ3r + δ4)

∂η
∂r + (δ5t + δ6)

∂η
∂t = 0,

(41)

where

α1 =
∂Cx

∂a1

(
a0

1, a0
2

)
, α2 =

∂Kx

∂a1

(
a0

1, a0
2

)
, α3 =

∂Cr

∂a1

(
a0

1, a0
2

)
, α4 =

∂Kr

∂a1

(
a0

1, a0
2

)
,

α5 =
∂Ct

∂a1

(
a0

1, a0
2

)
, α6 =

∂Kt

∂a1

(
a0

1, a0
2

)
, δ1 =

∂Cx

∂a2

(
a0

1, a0
2

)
, δ2 =

∂Kx

∂a2

(
a0

1, a0
2

)
,

δ3 =
∂Cr

∂a2

(
a0

1, a0
2

)
, δ4 =

∂Kr

∂a2

(
a0

1, a0
2

)
, δ5 =

∂Ct

∂a2

(
a0

1, a0
2

)
, δ6 =

∂Kt

∂a2

(
a0

1, a0
2

)
.

and
(
a0

1, a0
2
)

denote the values of a1 and a2, which yield the identity: x = x, r = r, t = t
according to [55]. By definition, there is one functionally independent solution to (41).
Additionally, if η, is a non-constant solution to (41) for a group S, then every other solution
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to (41), for S, is given in the form J(η) where J is a differentiable function. From (41) and
the definitions of the constants αi, δi, it can be seen that distinctions between group S are
reflected by the α′s and δ′s. This means that, in general, any particular group S owns a
characteristic set of α′s and δ′s and, consequently, a characteristic absolute invariant η is
yielded by (41).

Since Kr ≡ 0, it is α4 = δ4 = 0 and Equation (41) becomes:

(α1x + α2)
∂η
∂x + α3r ∂η

∂r + (α5t + α6)
∂η
∂t = 0,

(δ1x + δ2)
∂η
∂x + δ3r ∂η

∂r + (δ5t + δ6)
∂η
∂t = 0.

(42)

4. Derivation of Distinct Complete Sets

In this section, the distinct complete sets of invariants will be derived.
Invariants for the independent variables
As already mentioned in the previous section, system (42) has one functionally inde-

pendent solution, which means that the rank of the coefficient matrix for
{

∂η
∂x , ∂η

∂r , ∂η
∂t

}
must

be two. This is true whenever at least one of the following conditions is satisfied:

λ31x + λ32 �= 0 or λ35t + λ36 �= 0 or λ15xt + λ16x + λ25t + λ26 �= 0, (43)

where
λij = αi δj − αj δi , i, j = 1, 2, 3, 4, 5, 6

and it should be mentioned that from the definitions of α′s, δ′s and λ′s, as well as from the
transformations (39), it can be found that:

λ31 = λ35 = λ15 = 0. (44)

For convenience, (42) can be rewritten in terms of (43) in the form:

(λ31x + λ32)
∂η
∂x + (λ35t + λ36)

∂η
∂t = 0,

(λ31x + λ32) r ∂η
∂r − (λ15xt + λ16x + λ25t + λ26)

∂η
∂t = 0.

(45)

According to conditions (43), three main cases arise which will be studied in the
following:

4.1. First Case: None of the Coefficients in (45) Vanish Identically

Assume that

λ31x + λ32 �= 0 and λ35t + λ36 �= 0 and λ15xt + λ16x + λ25t + λ26 �= 0,

or taking into consideration (44) that

λ32 �= 0 and λ36 �= 0 and λ16x + λ25t + λ26 �= 0. (46)

In this case, (45) becomes

λ32
∂η
∂x + λ36

∂η
∂t = 0

λ32 r ∂η
∂r − (λ16x + λ25t + λ26)

∂η
∂t = 0.

(47)

According to a standard technique for linear PDEs, the first equation of (47) has the
general solution

η = f (r, ξ(x, t)), (48)

where f is an arbitrary function and ξ is a function such that

ξ(x, t) = λ36x− λ32t = c, (49)
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where c constant. Substitution of (48) to the second equation of (47) gives

r
∂η

∂r
− λ16x + λ25t + λ26

λ32

∂ξ

∂t
∂ f
∂ξ

= 0. (50)

Since ξ is independent of r, the coefficient of ∂ f
∂ξ in (50) must also be independent of r, i.e.,

λ16x + λ25t + λ26

λ32

∂ξ

∂t
= g(ξ),

which, after taking (49) into consideration, becomes

g(ξ) = −(λ16x + λ25t + λ26) (51)

However, since g is a function of only ξ, it is

∂g
∂x

∣∣∣∣
ξ

=
∂g
∂x

∣∣∣∣
t
+

∂g
∂t

∣∣∣∣
x

∂t
∂x

∣∣∣∣
ξ

≡ 0,

which, after using (49) and (51), gives

−λ16 = −λ16 − λ25
λ36

λ36
= 0 ⇒

{
λ16 = 0
λ16 + λ25

λ36
λ36

= 0
⇒

{
λ16 = 0
λ25 = 0

,

after taking (46) into consideration. However, due to the definitions of α′s, δ′s and λ′s, as
well as from the transformations (39), it is α1 = α3 and δ1 = δ3. Thus,

λ16 = 0 ⇒ α1δ6 − α6δ1 = 0 ⇒ α3δ6 − α6δ3 = 0 ⇒ λ36 = 0,

which contradicts the second assumption of (46). Consequently, this first case is not
acceptable.

4.2. Second Case: Two of the Coefficients in (45) Vanish Identically

Sub-case 2-I: Assume that

λ31x + λ32 ≡ 0, λ35t + λ36 ≡ 0 and λ15xt + λ16x + λ25t + λ26 �= 0.

In this case, (45) reduces to the following one equation

(λ15xt + λ16x + λ25t + λ26)
∂η

∂t
= 0,

since the first equation of (45) is identically satisfied, from which it is deduced that

∂η

∂t
= 0. (52)

By substituting (52) into (42) and after some manipulations, the following equations
are obtained:

(λ16x + λ26)
∂η
∂x + λ36r ∂η

∂r = 0
(λ15xt + λ25t) ∂η

∂x + λ35rt ∂η
∂r = 0

}
,

which in turn yields the equation

(λ15xt + λ16x + λ25t + λ26)
∂η

∂x
+ (λ35t + λ36)r

∂η

∂r
= 0 ⇒ (53)

⇒ ∂η

∂x
= 0. (54)
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From (52) and (53), it is obvious that η is an arbitrary function of r alone, which for
reasons of simplicity can be assumed to have the form

η = r (55)

Sub-case 2-II: Assume that

λ31x + λ32 �= 0, λ35t + λ36 ≡ 0 and λ15xt + λ16x + λ25t + λ26 ≡ 0.

In this case, (45) becomes

(λ31x + λ32)
∂η
∂x = 0

(λ31x + λ32) r ∂η
∂r = 0

}
⇒

∂η
∂x = 0
∂η
∂r = 0

}
,

from which it is deduced that η is not a function of r, which is unacceptable from the point
of view of the boundary conditions.

Sub-case 2-III: Assume that

λ31x + λ32 ≡ 0, λ35t + λ36 �= 0 and λ15xt + λ16x + λ25t + λ26 ≡ 0 (56)

In this case, (45) reduces to the following one equation

(λ35t + λ36)
∂η

∂t
= 0,

since the first equation of (45) is identically satisfied, from which it is deduced that

∂η

∂t
= 0.

Following the same procedure as in sub-case 2-I, Equation (53) appears, which due to
(56) now gives

∂η

∂r
= 0

Thus, η is not a function of r, which is unacceptable from the point of view of the
boundary conditions.

4.3. Third Case: Only One of the Coefficients in (45) Vanishes Identically

Sub-case 3-I: Assume that

λ31x + λ32 = 0 , λ35t + λ36 �= 0 , λ15xt + λ16x + λ25t + λ26 �= 0.

In this case, (45) reduces to the following one equation

∂η

∂t
= 0,

which means that η = η(x, r) and (42) is simplified to

(α1x + α2)
∂η
∂x + α3r ∂η

∂r = 0
(δ1x + δ2)

∂η
∂x + δ3r ∂η

∂r = 0

}
,

a solution of which is found to be

η = r (Ax + B)n, (57)

where n = − α3
α1

= − δ3
δ1

, A = α1 = δ1, B = α2 = δ2.
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Sub-case 3-II: Assume that

λ31x + λ32 �= 0 , λ35t + λ36 = 0 , λ15xt + λ16x + λ25t + λ26 �= 0.

In this case, the first equation of (45) reduces to the following equation

(λ31x + λ32)
∂η

∂x
= 0 ⇒ ∂η

∂x
= 0,

which means that η = η(r, t) and (42) is simplified to

α3r ∂η
∂r + (α5t + α6)

∂η
∂t = 0,

δ3r ∂η
∂r + (δ5t + δ6)

∂η
∂t = 0,

a solution of which is found to be

η = r (Bt + A)n, (58)

where n = α3
α5

= δ3
δ5

, A = δ6 = α6, B = δ5 = α5.
Sub-case 3-III: Assume that

λ31x + λ32 �= 0 , λ35t + λ36 �= 0 , λ15xt + λ16x + λ25t + λ26 = 0.

In this case, the second equation of (45) reduces to the following equation

(λ31x + λ32) r
∂η

∂r
= 0 ⇒ ∂η

∂r
= 0,

from which it is deduced that η is not a function of r, which is unacceptable from the point
of view of the boundary conditions.

Invariants for the dependent variables
The next step is to obtain the absolute invariants of the dependent variables ψ, H and

θ. From (37), it is derived that θ is itself an absolute invariant. Thus,

X1(x, r, t ; θ) = θ(η).

A function X2(x, t ; ψ) is said to be an absolute invariant of a two-parameter group
only when it satisfies the following first order PDEs:

(α1x + α2)
∂X2
∂x + (α3t + α4)

∂X2
∂t + (α5ψ + α6)

∂X2
∂ψ = 0

(δ1x + δ2)
∂X2
∂x + (δ3t + δ4)

∂X2
∂t + (δ5ψ + δ6)

∂X2
∂ψ = 0,

a solution of which is

X2(x, t ; ψ) = ϕ1

(
ψ

Γ1(x, t)

)
= F(η). (59)

In a similar way, the following is found

X3(x, t ; H) = ϕ2

(
H

Γ2(x, t)

)
= E(η) (60)

In (59)–(60), the functions Γ1(x, t) and Γ2(x, t) are to be determined so that eventually
the PDEs (21)–(22) are reduced to ODEs. Without loss of generality, the functions φ1 and φ2
in (59)–(60), can be selected as the identity functions. Therefore, the functions ψ(x, r , t) and
H(x, t) can be rewritten in terms of F(η) and E(η) in the following way:

ψ(x, r , t) = Γ1(x, t)F(η) , H(x, t ) = Γ2(x, t)E(η). (61)
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Since Γ2(x, t) and H(x, t) are independent of r and η depends on r, E must be a
constant, say E0. Thus

ψ(x, r , t) = Γ1(x, t)F(η) , H(x, t ) = E0Γ2(x, t). (62)

5. The Reduction to Ordinary Differential Equations

Assume that η = rπ(x, t). Using (62), the PDEs (21)–(22) and the boundary conditions
(23) are reduced to the following system of ODEs:

r2F′′′ − C1rF′′ + C2F′ − C3 A2r2MnF′ + C4 A3β r3θ
−A1

[
C5r2F′ + C6r3F′′ + C7r2F′ + 2C8rF′2 − (

rFF′′ − rF′2
)
C9 + C10FF′

]
= 0

(63)

(1 + NrA5) rθ′′ + C1θ′ − A4Pr
[
C6r2θ′ − C9Fθ′

]
− C11 A5β Ec (ε− θ) F′ = 0, (64)

with corresponding boundary conditions

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(65)

where

C1 = 1
π , C2 = 1

π2 , C3 =
Γ2

2E2
0

π2 , C4 =
Γ2E2

0
Γ1π3

∂Γ2
∂x , C5 = 1

π3
∂π
∂t , C6 = 1

π2
∂π
∂t ,

C7 = 1
Γ1π2

∂Γ1
∂t , C8 = Γ1

π2
∂π
∂x , C9 = 1

π
∂Γ1
∂x , C10 = 1

π2
∂Γ1
∂x , C11 =

Γ1Γ2E2
0

π
∂Γ2
∂x .

(66)

The C′s defined in (66) are constants to be determined for every individual case
corresponding to every set of absolute invariants. For this, the following three cases
are considered:
Case (a)

Consider η = rπ(x, t) as in (55), i.e., π(x, t) = 1 and Γ1 = Γ1(x),Γ2 = Γ2(x). In this
case and by further assuming C3 to be unity, (66) gives

C1 = C2 = C3 = 1, C9 = C10, C5 = C6 = C7 = C8 = 0, C4 = C11
Γ2

1
,

Γ1 = C9x + K1 = C10x + K2, Γ2 = K3(C9x + K1)
C11/C9

= K3(C10x + K2)
C11/C10 ,

where K1, K2, K3 are constants of integration. Substitution of the aforementioned values
into (63)–(64), gives:

r2F′′′ − rF′′ + F′ − A2r2MnF′ − A1

((
rF′2 − rFF′′

)
C9 + C9FF′

)
+ C4 A3β r3θ = 0, (67)

(1 + NrA5) rθ′′ + θ′ + A4C9PrFθ′ − C11 A5β Ec (ε− θ) F′ = 0. (68)

Equations (67)–(68) are accompanied of course by the boundary conditions (65), i.e.,:

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(69)

In this case, the functions ψ and H given by (62) take the form

ψ = (C9x + K1)F(η) = (C10x + K2)F(η),

H = K3(C9x + K1)
C11/C9 E0 = K3(C10x + K2)

C11/C10 E0,
(70)

and the corresponding velocity components are:

u = 1
r

∂ψ
∂r = (C9x + K1)

π
r F′ = (C10x + K2)

π
r F′ ,

v = − 1
r

∂ψ
∂x = −C9

r F = −C10
r F.

(71)
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Case (b)

Consider η = rπ(x, t) as in (57), i.e., π(x, t) = (Ax + B)n and Γ1 = Γ1(x),Γ2 = Γ2(x).
In this case and by further assuming C3 to be unity, (66) gives

C1 = 1
(Ax+B)n , C2 = C2

1, C3 = 1, C4 = An
K (Ax + B)−2n−2, C5 = C6 = C7 = 0, C8 = AKn,

C9 = AK(n + 1), C10 = AK(n+1)
(Ax+B)n , C11 = AKn(Ax + B)2n,

where K is a constant of integration. Substitution of the aforementioned values into
(63)–(64), gives:

r2F′′′ − C1rF′′ + C2
1 F′ − A2r2MnF′ + C4 A3β r3θ

−A1
[
2C8rF′2 − (

rFF′′ − rF′2
)
C9 + C10FF′

]
= 0

(72)

(1 + NrA5) rθ′′ + C1θ′ + A4C9PrFθ′ − C11 A5β Ec (ε− θ) F′ = 0. (73)

Equations (72)–(73) are accompanied of course by the boundary conditions (65), i.e.,:

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(74)

In this case, the functions ψ and H given by (62) take the form

ψ = K(Ax + B)n+1F,
H = (Ax + B)n,

(75)

and the corresponding velocity components are:

u = 1
r

∂ψ
∂r = K

r (Ax + B)2n+1F′ ,
v = − 1

r
∂ψ
∂x = −Γ1 An(Ax + B)n−1F′ − K

r A(n + 1)(Ax + B)nF.
(76)

Case (c)

Consider η = rπ(x, t) as in (58), i.e., where π(x, t) = (Bt + A)n for n = − 1
2 and

Γ1 = Γ1(x, t),Γ2 = Γ2(x, t). In this case and by further assuming C3 to be unity, (66) gives

C1 =
√

Bt + A, C2 = Bt + A, C3 = 1, C4 = C8 = C11 = 0, C5 = − B
2 , C6 = − B

2C1
,

C7 = − B
2 , C10 = C1C9.

Substitution of the aforementioned values into (63)–(64), gives:

r2F′′′ − C1rF′′ + C2F′ − A2r2MnF′ − A1

[
− B

2 r2F′ − B
2 η r2F′′ − C7r2F′

+C9C1FF′ − C9
(
rFF′′ − rF′2

)]
= 0,

(77)

(1 + NrA5) rθ′′ + C1θ′ + A4Pr
[

B
2

η rθ′ − C9Fθ′
]
= 0. (78)

Equations (77)–(78) are accompanied of course by the boundary conditions (65), i.e.,:

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(79)

In this case, the functions ψ and H given by (62) take the form

ψ = (x+K1)√
Bt+A

C9F,

H = 1√
Bt+A

,
(80)

where K1 is a constant of integration, and the corresponding velocity components are:
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u = 1
r

∂ψ
∂r = (x+K1)

(Bt+A) r C9F′ ,

v = − 1
r

∂ψ
∂x = − C9

r
√

(Bt+A)
.

(81)

It can be observed, that cases (a) and (b) the impacts of the ferromagnetic number and
the magnetic field parameter in velocity and temperature profiles are significant compared
to case (c), since, in case (c), the FHD parameter is absent. For these reasons, only cases (a)
and (b) are numerically solved.

6. The Numerical Procedure

To numerically solve the fluid mechanics problem described by equations such as
(63)–(65), several computational techniques have been proposed by many researchers.
In this paper, an efficient numerical technique is employed based on the common finite
differences method with central differencing, a tridiagonal matrix manipulation and an
iterative procedure introduced in [56]. In this section, this technique will be described
for case (b). First of all, the arbitrary coefficient constants in (72)–(73) are for reasons of
simplicity, all assumed to be equal to one. Therefore, (72)–(73) are rewritten as:

r2F′′′ − rF′′ + F′ − A2r2MnF′ + A3β r3θ − A1

[
2rF′2 −

(
rFF′′ − rF′2

)
+ FF′

]
= 0, (82)

(1 + NrA5) rθ′′ + θ′ + A4PrFθ′ − A5β Ec (ε− θ) F′ = 0. (83)

Following [49], Equation (82) is written in the form

r2F′′′ + (A1rF− r)F′′ +
(

1− A2r2M− 2A1rF′ − A1rF′ − A1F
)

F′ = −A3β r3θ, (84)

or

r2(F′
)′′ + (A1rF− r)

(
F′
)′
+

(
1− A2r2Mn− 2A1rF′ − A1rF′ − A1F

)
F′ = −A3β r3θ, (85)

and (83) in the form

(1 + NrA5) rθ′ ′ + (1 + A4PrF)θ′ + A5β EcF′θ = A5β Ec ε F′. (86)

Both (85) and (86) are of the general form

Pg′′ (η) + Qg′(η) + Rg(η) = S (87)

with

g = F′( η ), P = r2, Q = A1rF− r, R = 1− A2r2Mn− 2A1rF′ − A1rF′ − A1F, S = −A3β r3θ,

or Equation (85) and

g = θ(η), P = (1 + NrA5) r, Q = 1 + A4PrF, R = A5β EcF′, S = A5β Ec ε F′

for Equation (86).
Equations (85)–(86) are solved by a common finite differences method based on

central differencing and tridiagonal matrix manipulation. Before starting the solution
procedure, it is necessary to assume an initial guess for F′(η) and θ(η) between η = 0 and
η = η∞ (η → ∞) which satisfies the boundary conditions (74). Thus, it is assumed that

F(η) =
η

η∞
, F′(η) =

η

η∞
, θ(η) = 1 − η

η∞
,

Therefore, the F(η) distribution is obtained by integrating F′(η). The function θ(η)
is retained while a new estimation for F′(η) , say ( F′new ), is determined by solving
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(85) using the same technique. Thus, the F(η) profile is updated by integrating the new
F′(η). These new distributions F(η) and F′(η) are then used for new inputs, etc. In
this way, Equation (85) and, consequently, (72) is iteratively solved until the required
convergence up to a small quantity ε1 is attained. The converged profile of F(η) is used
to solve (86), using the same finite differences method, but without iteration, producing a
new approximation for θ(η). In this way, the temperature profile θ(η) is obtained until the
convergence ε1 is attained.

This numerical scheme is continued until the trial convergence of the solution is
performed. The applied step size used in this paper for case (b) is h = Δη = 0.01 for
ηmin = 0 and ηmax = 7. The solution is convergent with an approximation to ε1 = 10 −3.
For case (a), the same step size is considered, i.e., h = Δη = 0.01, but for ηmin = 0,
ηmax = 12 and ε1 = 10 −3. The arbitrary constants C4, C9, C10 appearing in case (a) are
also considered equal to one.

7. Results and Discussion

Before proceeding to the application of the above-mentioned method for the derivation
of the numerical results, it is essential to check the accuracy of the applied numerical
algorithm. For that, calculations were performed for partial cases of the present problem
in order to perform comparisons with previously published results. For demonstration
purposes, a graphical comparison is given in Figures 2 and 3 concerning results comparison
obtained for the present case (b) with that obtained in [37] for the velocity and temperature
distributions, respectively. From the relative figures as well as from all other comparisons
performed, we found that the results are accurate and ensure the acceptability of the
proposed numerical algorithm.

Figure 2. Comparison with [37] of F′ for Pr = 0.7 with β = Mn = Ec = Nr = φ = 0.
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Figure 3. Comparison with [37] of θ for Pr = 0.7 with β = Mn = Ec = Nr = φ = 0.

In the following, the numerical results in conjunction with the appearing parameters
are discussed with their respective outcomes for the velocity, temperature profiles as well
as the skin friction coefficient and the rate of heat transfer for both cases (a) and (b). Before
moving on to the numerical procedure, we need to ensure the allocation of some realistic
values of the respective parameter to ensure that the obtained results of the proposed model
will be as realistic as possible. The consideration of realistic case scenarios has been made
for similar physical BFD problems and thus the following values of the parameters are
utilized for case (a) and case (b) as follows:

(i) The ferromagnetic interaction parameter β = 0 − 10 as in [12,13,39,40,49];
(ii) The magnetic field parameter Mn = 1 , 3 , 5 as in [13,40,49,57];
(iii) The Prandtl number Pr = 21 , 23 , 25 as in [13,40,49];
(iv) The radiation parameter Nr = 0.1 , 0.2 , 0.5 , 1, 1.5, 3 as in [57];
(v) The Eckert number Ec = 0.001 , 0.002, 0.003, 0.01 , 1 as in [58];
(vi) The volume fraction φ = 0 , 0.05 , 0.1 , 0.2 as in [49].

Moreover, human body temperature is considered as Tw = 37 ◦C [13,41], and body
Curie temperature as Tc = 41 ◦C. For these values, the dimensionless temperature is turned
out to be ε = Tc

Tc−Tw
= 314

314−310 = 78.5 [39,40]. Hence, the required values of the Prandtl

number for human blood is Pr =
(μCp) f

κ f
= 3.2×10−3×3.9×103

0.5 ≈ 25.
For case (a), the graphical results are obtained for pure blood and blood-Fe3O4, where

magnetic particles are assumed of cylindrical shape. In case (b), the effect of magnetic
particle shape is compared for blood-Fe3O4 flow on a cylindrical surface.

Figures 4–7 present the typical profiles for the velocity and temperature for numerous
values of the ferromagnetic interaction parameter. It is alluded that when the values of
the ferromagnetic interaction parameter are increased, the velocity profile is reduced and,
consequently, the temperature profile is also decreased. This is due to the presence of the
Kelvin force which is also known as resistive force, and it appears because of the fluid
polarization at the inflow region. Figures 4 and 5 show the behaviors of pure blood and
blood-Fe3O4 and for that particular case, the magnetic particles are assumed as cylindrical.
It is seen from those figures that when the magnetic particles are mixed with blood, blood
velocity and temperature is slightly increased throughout to the boundary layer compared
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to the case when pure blood is considered. The more profound reduction in the velocity
with the increment of the applied magnetic field strength is depicted at Figure 6 for the
case b. This reduction in the velocity is immense for η—greater than approximately 1.5.
Analogous suppression of the temperature distributions with the increment of the magnetic
field strength, i.e., as β increases, are also observed at Figure 7. It is also noticed from the
aforementioned figures (see Figure 7) that if the particle shape is cylindrical, then the blood
temperature is more significantly increased than when the spherical shape is adopted. It is
noted that in these figures the above behavior concerns the effect of increasing polarization
for a given electrical conductivity effect, i.e., steady Mn.

Figure 4. (Case a): Variations of F′ for β = 8 , 9, 10 against η.

Figure 5. (Case a): Variations of θ for β = 0 , 2, 3, 5 against η.
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Figure 6. (Case b): Variations of F′ for β = 5, 10 against η.

Figure 7. (Case b): Variations of θ for β = 0, 5, 10 against η.

The impact of the magnetic field parameter on the velocity and temperature distribu-
tions, for a steady ferromagnetic parameter β, are displayed in Figures 8 and 9. Figure 8
shows that blood velocity is decreased up to approximately η ≈ 1.9 but then the fluid
velocity is gradually increased. This is due to the application of the magnetic field which
results to the arising of the Lorentz force, acting in the opposite direction to the fluid flow.
As a result, for a given polarization effect, i.e., β = 10, when the values of the magnetic
field parameter are increased, the temperature distribution is enhanced and that is clearly
observed in Figure 9. A similar type of magnetic particle shape impact is also observed with
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the variation of the magnetic field parameter and the ferromagnetic number. Additionally,
from Figure 10, we found that the temperature of blood-Fe3O4 is much better enhanced
after adding magnetic particles rather than that occurring for pure blood.

Figure 8. (Case b): Variations of F′ for Mn = 1, 3, 5 against η.

Figure 9. (Case b): Variations of θ for Mn = 1, 3, 5 against η.
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Figure 10. (Case a): Variations of θ for Mn = 1, 3, 5 against η.

Figures 11 and 12 present the effects of the magnetic particle volume fraction on
the velocity and temperature profiles, respectively. It is evident that blood temperature
is improved by the imposition of the magnetic particle volume fraction on blood (see
Figure 12). It is also noticeable that it is more effective when particles are cylindrical rather
than spherical. This is justified because of the large concentration of magnetic particles,
which yields a higher proportion of thermal conductivity. From velocity profiles (Figure 11)
two types of solutions are observed. Before the intersection of lines, it is observed that
blood-Fe3O4 flow is decreased but after the intersection reverse trend is noticed as values
of the magnetic particle volume fraction are enhanced. For both occasions, the magnetic
particle shape factor plays a vital role, and their comparison is easily seen by observation
of Figures 11 and 12.

Figure 11. (Case b): Variations of F′ for φ = 0.05, 0.1, 0.2 against η.
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Figure 12. (Case b): Variations of θ for φ = 0.05, 0.1, 0.2 against η.

The influence of the radiation parameter for various values on the velocity and tem-
perature profiles, respectively, are plotted in Figures 13 and 14. From Figures 13 and 14, it
is observed that, for a given magnetic field effect, i.e., Mn and β constants, as the values of
the radiation parameter increase, both velocity and temperature distributions are increased.
This is happening because heat energy is released from the fluid in the flow regime when
the values of the radiation are gradually increased and as a result, the temperature of
blood-Fe3O4 is enhanced.

Figure 13. (Case b): Variations of F′ for Nr = 0.5, 1, 1.5 against η.
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Figure 14. (Case b): Variations of θ for Nr = 0.5, 1, 1.5 against η.

Figures 15 and 16 represent the dimensionless velocity and temperature profiles,
respectively, for various values of the Eckert number. As the Eckert number increases,
both velocity and the temperature profiles are enhanced and especially the flow and heat
of blood-Fe3O4 are remarkably increased compared to pure blood. Major temperature of
fluid is attained for Ec = 0.001, which indicates that lower values of the Eckert number are
responsible for enhancing temperature in fluid regime due to the combined effects of the
magnetic field parameter and ferromagnetic number.

Figure 15. (Case a): Variations of F′ for Ec = 0.001, 0.002, 0.003 against η.
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Figure 16. (Case a): Variations of θ for Ec = 0.001, 0.002, 0.003 against η.

Two quantities of great physical interest are the skin friction coefficient Cf and the rate
of heat transfer Nu (local Nusselt number) which are defined by

Cf =
2 τw

ρ f

(
u0x

L

)2 , (88)

and
Nu =

x qw

κ f (Tc − Tw)
(89)

where τw = μm f

(
∂u
∂r

)
r=R

is the wall shear stress parameter and qw = κm f

(
∂T
∂r

)
r=R

is
the wall heat transfer parameter. Therefore, relations (88) and (89) take the following form:

Cf =
2ϑ f

2

(1− φ)2.5R
4( u0x

L
)2

(
∂u
∂r

)
r=1

, (90)

and

Nu = − xκm f

κ f

(
∂θ

∂r

)
r=1

, (91)

where ϑ f
2 =

μ f υ f
ρ f

.
The skin friction coefficient and the local Nusselt number (the rate of heat transfer) are

presented in Figures 17–22 for various values of the ferromagnetic interaction parameter,
the magnetic particle volume fraction, the magnetic field parameter with regard to the
magnetic field parameter, respectively. From Figures 17 and 18, we found that both the skin
friction coefficient and the rate of heat transfer are increased for the ferromagnetic number
with respect to the magnetic field parameter. It is noticeable from these figures that the rate
of heat transfer of blood-Fe3O4 is significantly increased by approximately 33.2% compared
to that of pure blood, whereas the reverse trend is observed in the skin friction coefficient
and it is decreased by approximately 6.82% (see Figure 17). From Figure 19 to Figure 22,
it is evident that both the skin friction coefficient and the Nusselt number are enhanced
with the increment of the ferromagnetic interaction parameter, but the reverse trend is
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observed from Figures 21 and 22 as the particle volume fraction is increased. However, it
is also noticed that the skin friction coefficient of blood-Fe3O4 is effectively increased for
the cylindrical shape of magnetic particles comparable to that of spherical shape and it is
increased by approximately 1.09%, whereas the local Nusselt number of blood-Fe3O4 is
reduced 0.08% for cylindrical shape than that of spherical shape.

Figure 17. (Case a): Values of the skin friction coefficient for different values of β against Mn.

Figure 18. (Case a): Values of the local Nusselt number for different values of β against Mn.
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Figure 19. (Case b): Values of the skin friction coefficient for different values of β against Mn.

Figure 20. (Case b): Values of the local Nusselt number for different values of β against Mn.

For the ferromagnetic interaction parameter, the velocity profile is reduced and, conse-
quently, the temperature profile is also decreased. This is due to the presence of the Kelvin
force which is also known as resistive force, and it appears because of the fluid polarization
at the inflow region (see Figures 4 and 5).
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Figure 21. (Case b): Values of the skin friction coefficient for different values of φ against Mn.

Figure 22. (Case b): Values of the local Nusselt number for different values of φ against Mn.

Fluid (blood) velocity decreases for enhancing values of the magnetic field parameter
(Figure 8). This is due to the application of the magnetic field which results to the arising of
the Lorentz force, acting in the opposite direction to the fluid flow.

Due to the large concentration of magnetic particles, which yields a higher proportion
of thermal conductivity, blood temperature is enhanced (see Figure 12) and more significant
in case of cylindrical shape.
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Additionally, from graphs 17–22, it is observed that the heat transfer rate of blood-
Fe3O4 is significantly increased by approximately 33.2% compared to that of pure blood,
whereas the coefficient of skin friction is reduced by approximately 6.82%. Moreover,
the coefficient of skin friction of blood-Fe3O4 is increased by approximately 1.09% when
particles are in cylindrical shape compared to that of spherical shape, whereas the rate of
heat transfer is enhanced 0.08% for spherical shape compared to that of cylindrical shape.

8. Concluding Remarks

In this paper, a BFD model is utilized to study blood flow with magnetic particles
under consideration of FHD and MHD principles over a two-dimensional cylinder. The full
form of a group theoretical method, namely a two-parameter group theory, is also applied.
The effect of thermal radiation is also taken into consideration. With the application of
the two-parameter group theory, the number of independent variables is reduced to one
variable and, consequently, the set of PDEs is converted into a set of ODEs subject to
corresponding boundary conditions. This resultant system of ODEs subject to analogous
boundary conditions is numerically solved by applying an efficient numerical technique
that consists of a common finite differences method with central differencing, tridiagonal
matrix manipulation, and finally an iterative procedure. The significant impact of the
variation of the appearing physical parameters is discussed and analogous graphical repre-
sentations are also demonstrated. Moreover, a comparison of results with others, previously
published, is performed to assure the accuracy of the applied numerical algorithm. From
the above analysis, we found that:

1. The blood velocity is appreciably reduced, and temperature is significantly improved
when magnetic particles are injected into a blood flow stream compared to that of
pure blood, where the ferromagnetic interaction parameter plays a significant role.

2. The particle shape plays a vital role in the flow and heat characteristics of blood-Fe3O4,
where a better temperature enhancement is observed for cylindrical shapes compared
to that of spherical shapes.

3. An increase in the values of the magnetic field parameter and/or the volume of the
fraction of the magnetic particles reduced the fluid velocity, whereas for the increment
of the ferromagnetic interaction parameter, the fluid velocity was enhanced.

4. The temperature distributions of the fluids increased for all cases of the variation
of parameters such as the ferromagnetic interaction parameter, the magnetic field
parameter, and the magnetic particle volume fraction.

5. Both velocity and temperature profiles are increased as the values of the radiation
parameter are enhanced, whereas the reverse trend is observed as the Eckert number
is increased.

6. Both the skin friction coefficient and the rate of heat transfer are escalated with
increasing values of the ferromagnetic interaction parameter. The heat transfer rate
of blood-Fe3O4 is enhanced by approximately 33.2% compared to that of pure blood
and the coefficient of skin friction is reduced by approximately 6.82%.

7. Both the coefficient of skin friction and the rate of heat transfer decrease with increas-
ing values of the particle volume fraction. It was found that the skin friction coefficient
is increased by approximately 1.09% for cylindrical shapes compared to that spherical
shapes, while an 0.08% reduction is noticed for cylindrical shapes in the heat transfer
rate compared to spherical shapes.
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List of Symbols

(u, v) Velocity components [m/s] H Magnetic field strength [A/m]
(x, r) Components of the cartesian system[m] I1, I2 Arbitrary function of two-parameter group
R Radius of the cylinder [m]
c Distance between the magnetic dipole and sheet [m] A,B,C Arbitrary constants
L Characteristic length [m] T Fluid temperature [K]
H0 Reference magnetic field strength Tw Temperature of the cylinder surface [K]
t Time [s] Tc Curie temperature [K]
Cp Specific heat at constant pressure [J Kg−1 K−1] Mn Magnetic field parameter
F′ Dimensionless velocity component K Pyromagnetic coefficient [K−1]
γ Strength of the magnetic field at the source position Ec Eckert number
Pr Prandtl number Nu Local Nusselt number
αi, δi Arbitrary constants Cf Skin friction coefficient
qr Radiative heat flux B Magnetic induction
qw wall heat transfer parameter V Scalar potential of the magnetic dipole
φ Dimensionless magnetic particle volume fraction ψ Stream function
η Dimensionless similarity variable ρ Fluid density [Kg/m3]
θ Dimensionless temperature μ Dynamic viscosity [Kg/ms]
μ0 Magnetic fluid permeability [NA−2] υ Kinematical viscosity [m2/s]
ε1 Convergence criteria ε Dimensionless Curie temperature
β Ferromagnetic interaction parameter κ Thermal conductivity [J/m s K]
M Magnetization Nr Thermal radiation parameter
τw Wall shear stress m Magnetic particle’s shape factor
σ1 Stefan–Boltzmann constant σ Electrical conductivity
χ Mean absorption coefficient Ci Arbitrary coefficient
()m f Magnetic fluid Base fluid
()s Magnetic particles ()′ Differentiation with respect to η

() Dimensional quantities υ f Kinematic viscosity of the fluid

Abbreviations

BFD Biomagnetic fluid dynamics
FHD Ferrohydrodynamics
MHD Magnetohydrodynamic
MRI Magnetic resonance imaging
PDEs Partial differential equations
ODEs Ordinary differential equations
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Abstract: Intertemporal choices are those decisions structured over several periods in which the
effects only manifest themselves with the passage of time. The main mathematical reference for
studying the behavior of individuals with respect to this type of decision is the Discounted Utility
Model which hypothesizes completely rational individuals. The empirical evidence that deviates
from normative expectations has motivated the formulation of alternative models with the aim of
better describing the behavior of individuals. The present paper investigates the characteristics
behind hyperbolic discounting starting from the phenomenon of decision inconsistency, i.e., when
individuals’ preferences vary over time. The mechanisms of inconsistency will be explored through
the physical concept of relative time, proving the importance of uncertainty aversion in the hyper-
bolic trend of the discount function. The analysis of the mathematical characteristics of hyperbolic
discounting and the relationship between decision inconsistency and subjective perception of time
defines the maximum distance between rational and non-rational preferences. An experimental part
empirically proves the relationship between uncertainty aversion and time inconsistency. The present
paper contributes to the literature by defining a new characteristic of hyperbolic discounting and
quantifying the impact of the subjective perception of time in the decision-making process.

Keywords: hyperbolic discounting; intertemporal choice; impatience; inconsistency; subjective
perception of time; uncertainty

MSC: 91E45; 91F99

1. Introduction

Recent studies in finance argue that asset pricing should consider both risk and un-
certainty [1]. The decision-making context in which the present research is developed
involves choices under uncertainty, particularly the kind of decisions in which alternatives
are distributed over time, called intertemporal choices. The purpose of the research is to
understand how individuals behave when they have to select an intertemporal prospect
from those available. The reason why intertemporal choices are so complex and interesting
comes down to two characteristics. First, precisely because alternatives are spread over
multiple periods, the selection of later and more important outcomes necessarily involves
foregoing a more imminent and modest outcome [2]. Moreover, even after selecting an
alternative, it is not necessarily perceived over time always to be the optimal one [3]. The
essential mathematical reference model for the study of behavior with respect to intertem-
poral choices was formalized by Samuelson [4,5]. The model predicts that the utility of
an alternative was calculated as the product between its cardinal utility and the discount
function evaluated at the time of receipt. From an operational point of view, the discount
function determines a reduction in the present utility of the outcome based on how the
individual perceives the indeterminacy of the future. The first formulation of the model
predicted an exponential trend in the discount function, in line with the principles of eco-
nomic rationality, which assumes a perfectly rational decision-maker capable of considering
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all components of the decision-making environment. Empirical evidence has over time
motivated research to formulate alternative discount functions that could better describe
the behavior of individuals. The hyperbolic model was formalized later in response to the
discrepancy between the preferences predicted by the exponential model and the behavior
of individuals. The main difference between the hyperbolic model and the exponential
model is that in the former, the discount rate and the degree of impatience [6] are not
constant but decrease over time [7,8]. Initially, this feature of hyperbolic discounting came
to be associated with a kind of non-rationality of decision-making, characterizing nonexpo-
nential preferences with a negative connotation. In 1957, the concept of bounded rationality
introduced by Simon [9] proposed the idea of a decision-maker with limited cognitive
ability and resources. A decision-maker applies her rationality only after simplifying the
available alternatives not being able to perceive, from a cognitive point of view, their
full complexity. The consequence of this mechanism is that the decision-making satisfies
adequacy criteria to determine a satisfactory solution rather than identifying the absolute
best alternative. Later, a variety of works [10,11] clarified that decision-making is affected
by systematic distortions associated with cognitive machinery and the emotional sphere.
Since everyone is prone to certain biases, the work on strategic personalization proposed in
Nudge theory [12] and in behavioral personalized finance [13,14] highlights the importance
of behavioral attitudes in decision-making. At this point, it is even more interesting to
investigate the characteristics of hyperbolic discounting since it is an expression of the
cognitive and behavioral structure of the decision-maker.

This paper aims to understand whether the decreasing discount rate and impatience
are sufficient to describe the mechanisms underlying hyperbolic discounting, or whether
there are concepts within its structure that have not yet been formalized. To achieve the
purpose, the object under consideration in the present paper is the phenomenon of time
inconsistency, for which an individual’s preferences vary over time. The idea is to describe
the phenomenon of inconsistency by integrating within hyperbolic discounting the concept
of subjective perception of time. Using a time transformation, a measure of inconsistency is
defined to quantify the discrepancy between the exponential and hyperbolic models. The
relationships between this new measure and the elements used so far to describe hyperbolic
discounting (discount rate and impatience) will prove that it constitutes distinct and
original elements from those found in the literature. A variety of works that operationally
justify the present study [15–22] also lead one to associate the defined measure with an
uncertainty aversion mechanism. The applicability of this research addresses the Markets
in Financial Instruments Directive, 2014/65/UE (MiFID2), which emphasizes the need to
create customer profiling to ensure personalized strategies and protection mechanisms.
The quantification of bias through the concept of impatience [23] and the quantification of
uncertainty aversion are two useful measures to define classes of behavioral investors. In
fact, although this article is far from dealing with choices under risky conditions, uncertainty
analysis is considered essential by some studies for asset pricing and entrepreneurship [24].
Therefore, any relationships between the measure presented in this article and risk aversion
coefficients [25] could be topics for future research. Finally, the possibility of applying
the measure presented in this paper to the strategic personalization and classification
of individuals is supported by two well-known works in the literature: with respect to
classification, [26] prove that there is a relationship between cognitive ability and hyperbolic
discounting, with respect to customized strategic plans, on the other hand, [27] proves how
it is possible to increase helper-control with techniques to reduce dynamically inconsistent
preferences. This paper is organized as follows. After a brief presentation on the Discounted
Utility Model, some studies are presented that justifies the introduction of a temporal
transformation function in intertemporal choice theory. The problem of time inconsistency
will shift from the trend of the discount function to the evaluation of perceived time. The
new measure of inconsistency is characterized and discussed with respect to the discount
factor and impatience exhibited by the function. An experimental part will empirically
prove the formalized results. This is followed by a discussion and conclusion section.
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2. Motivation and Mathematical Formalization

2.1. Discounted Utility Model and Time in Intertemporal Choice

Let x1, . . . , xn be n alternatives available at the times t1, . . . , tn, respectively. An in-
tertemporal prospect is the n-pla (x1, t1; . . . ; xn, tn) of pairs (xi, ti) where xi ∈ R, ti ∈ R+.
If the individual accepts the prospect, then the outcome xi will be received at time ti. The
Discounted Utility Model [4,5] states that:

U(x1, t1; . . . ; xn, tn) =
n

∑
i=0

U(xi) f (ti)

where U(xi) is the cardinal utility of xi and f (ti) is the discount function. By defini-
tion, the discount function is defined as f : R→ R such that f (0) = 1, f (t) monotonous
decreasing and lim

t→∞
f (t) = 0. It is possible to prove that a discount function gener-

ates a relation, called preference relation (≥), of total order and vice versa [6]. From
a practical point of view, given (x1, t1; . . . ; xn, tn) and (y1, s1; . . . ; yn, sn) two different

prospects then (x1, t1; . . . ; xn, tn) > f (y1, s1; . . . ; ym, sm)⇐⇒
n
∑

i=0
U(xi) f (ti) >

m
∑

i=0
U(yi) f (si)

and (x1, t1; . . . ; xn, tn) ∼ f (y1, s1; . . . ; ym, sm)⇐⇒
n
∑

i=0
U(xi) f (ti) =

m
∑

i=0
U(yi) f (si): the first

case indicates that the decision-making prefers to select the prospect (x1, t1; . . . ; xn, tn); the
second case indicates that the decision-making is indifferent with respect the two prospects.

Preferences in intertemporal choice theory are weak order, continuous, monotone,
and impatient [7]. The performance of the discount function is decisive for preferences
because it determines a reduction in the present utility of the outcome according to the time
distance between evaluation and reception. Table 1 reports the common discount functions
in intertemporal choice theory.

Table 1. Common discount functions in intertemporal choice reported by [8], p. 426.

Linear f (t) = 1− rt

Exponential f (t) =
(

1
1+ρ

)t

Hyperbolic
Generalized

f (t) = (1 + αt)−
β
α

Quasi-hyperbolic

f (t) = β
(

1
1+ρ

)t

One parameter

f (t) =
(

1
1+ρt

)
As can be seen from Table 1, all discount functions have a decreasing trend over time,

which, from a behavioral point of view, is equivalent to saying that in the future the value
of an asset decreases because it is more uncertain. The main difference between the linear,
exponential, and hyperbolic discount functions is that the first two decrease with a constant
rate. In general, empirical evidence proves that hyperbolic discounting has greater descrip-
tive power of individuals’ preferences than exponential discounting [28]. The psychological
mechanisms underlying the decrease in the discount function are quantified by the discount
rate and the degree of impatience. The discount rate, defined as ρ(t) = − f ′(t)

f (t) , represents
“the proportional variation of f over a standard period” [8] (p. 425). The impatience of investor,
defined in [ti,tj] is given by 1− f

(
tj
)
/ f (ti) and represents “the amount of money that the

agent is willing to lose in exchange for anticipating the availability of a $1 reward” [6] (p. 5). The
main difference from a mathematical point of view between the exponential and hyperbolic
formulation of the discount function lies in the fact that the discount rate and the degree of
impatience are not constant over time in the hyperbolic discount. In particular, the degree
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with which impatience decreases represents the gap between preferring an event to occur
and preferring an event to occur sooner [7].

Time is a concept that has attracted the curiosity of various fields of inquiry, such
as philosophy and physics. Although the objective nature of time, associated with the
chronological scanning of events, was obvious, the subjective perception of time is a
dimension of human intuition that cannot be refuted. How the passage of time is perceived
defines the cognitive, emotional, and motivational style of the individual [22,29]. As a
result, decision-making is strongly influenced by the subjective perception of time. In
intertemporal choices, in which the passage of time is critical to prospect evaluation,
one must integrate the subjective perception of time into the dynamics responsible for
the hyperbolic or exponential pattern of preferences. Regarding the key elements of the
discounted Utility Model, a variety of studies prove the existence of a relationship between
subjective perception of time, degree of impatience, and hyperbolic trends. Zauberman
et al. [16] proved that the hyperbolic trend of the discount function decreases, considering
the impact of subjective perception of time. Next, Nyberg et al. [17] verified that the decrease
in impatience is correlated with a nonlinear perception of time. Among the mathematical
formalization of the impact that the subjective perception of time has on decision-making,
the discount function proposed by [30], named the general hyperbolic function, defines
and includes the subjective time duration. The reference to a clear distinction between
subjective time and physical time in intertemporal choice has been empirically proven
by [31]. The present article, with respect to the cited literature, investigates the subjective
perception of time as a physical component of hyperbolic discounting, determining a point
of maximum temporal misperception that, to the best of our knowledge, had not yet been
identified in the dynamics of decision inconsistency. This result also introduces the need
to have to investigate the relationship that exists between impatience, discount rate (both
decreasing over time), and temporal misperception since they have a different trends over
time. From an operational point of view, the mathematical approach used in this paper is
based on a time transformation function, referring to the theory of relativity. Dos Santos
and Martinez [32] have already addressed inconsistency as the result of a subjective time
dilation perception effect but unlike their study, the present work considers that time
perceived by consistent functions is also a “proper time” different from objective time.

From a psychological perspective, the idea of introducing a time transformation to
determine a measure of inconsistency that is associated with the subjective perception of
time refers to the projection mechanism [18–21]. In practice, to evaluate the usefulness of
an alternative available to a prospect, it is necessary to project the choice into the future.
Therefore, defining a measure of inconsistency related to the subjective perception of time
is equivalent to quantifying an individual’s aversion to the uncertainty of the future.

2.2. Aversion to Uncertainty and Inconsistency Function

Temporal inconsistency is the phenomenon whereby preferences vary over time. In
practice, if the decision-maker has to choose between a smaller sooner outcome (SS) and
a larger later outcome (LL), the choice will depend only on the discount applied. From
a theoretical perspective, it is rational to prefer SS or LL, assuming that this preference
remains constant over time. Inconsistency is generated when the decision-maker prefers
LL at first and SS at a later evaluation time. This mechanism generates an intersection point
between the hyperbolic and exponential functions.

Definition 1. Let f (t) be a hyperbolic discount function. For each indifference pair of the type
(x, 0) ∼ f (y, t), y > x > 0, the normative function is the exponential discount function y(t) such
that (x, 0) ∼y (y, t).

Proposition 1. Let f (t) be a hyperbolic discount function whose indifference (x, 0) ∼ (y, T) is
fixed. Then, there is a unique normative function.
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Proof. A generical exponential discount function can be expressed as y(t) = e−zt,
z ∈ [0,+∞) because ∀δε(0, 1)∃!z ∈ [0,+∞) : δ = (1/e)z. As z varies in [0,+∞) there
are infinite exponential discount functions. The only exponential normative function that
verifies Definition 1 is the one for z = −(ln(x/y))/T. �

Figure 1 shows the relationship between the hyperbolic discount function and the
related normative function for a generic indifference pair fixed at the time instant T. We
observe that by the continuity property of the preference relation, it is sufficient to fix the
initial outcome x to determine for each time instant the unique normative function.

Figure 1. Representation of a hyperbolic discount function and the related empirical function.

Proposition 2. Let f (t) be an exponential discount function and y(t) the respective exponential
normative function then the time perceived by f (t) is shorter than that perceived by y(t)∀t ∈ (0, T)
and it is longer than that perceived by (t)∀t ∈ (T,+∞).

Proof. At the instant t = 0, f (t) = y(t) = 1. The existence of the point T such that
f (T) = y(T) and the hyperbolic character of f (t) allows us to state that there exists
at least one R > 0 in which f (t) has a steeper decrement than y(t) in a neighborhood
IR(0) such that (t) < y(t)∀t ∈ (0, T). From the monotony of the discount function
∃!̃t < t for which f

(
t̃
)
= y(t). Thus, the generic instant t is perceived as if it were an

instant closer to the origin, and the time perception of f (t) is contracted with respect to
that of y(t). For the interval (T,+∞), the demonstration is analogous considering that
f (t) > y(t)∀t ∈(T,+∞). �

Proposition 3. Let y1(t) and y2(t) be two exponential normative functions of the hyperbolic
discount function f (t) with respect to two indifference pairs (x1, 0) ∼y1 (y1, T1) and (x2, 0) ∼y2

(y2, T2). If

ln
( x1

y1

)/
T1

>
ln
( x2

y2

)/
T2

(1)

then the time perceived by y1(t) is longer than that perceived by y2(t).

Proof. If (1) then z1 < z2 and δ1 > δ2. What has been said is equivalent to state that
∀t ∈ (0,+∞), y1(t) > y2(t). For the monotony of the discount function exists a point t̃ < t
such that y1(t) = y2

(
t̃
)
. The thesis follows as in Proposition 2. �
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Definition 2. Let f (t) and y(t) be a hyperbolic discount function and the respective exponential
normative function. The time function between f (t) and y(t) is the function defined as:

t̃ : [0,+∞)→ [0,+∞)
t → t̃(t) = t̃

(2)

Proposition 4. Let f (t) and y(t) be a hyperbolic discount function and the respective exponential
normative function, then f

(
t̃(t)

)
= y(t) ∀t ∈ (0,+∞).

Proof. Follows by Proposition 2. �

Figure 2 highlights the contraction mechanism described by the function t̃(t).

Figure 2. Correspondence between the function t̃(t) and the time scanned by exponential discounting.

Proposition 5. Let y1(t) and y2(t) be two exponential normative functions of the hyperbolic
discount function f (t) respect to (x1, 0) ∼y1 (y1, t1) and (x2, 0) ∼y2 (y2, t2) then ∀t ∈ (0,+∞)
t− t̃1(t) < t− t̃2(t)⇔ y1(t)− f (t) < y2(t)− f (t) .

Proof. ⇐ By hypothesis y1(t) < y2(t). Let t̃1(t) and t̃2(t) be the time functions of f (t) with
respect to y1(t) and y2(t), respectively. ∀t ∈ (0,+∞)y1(t) = f

(
t̃1(t)

)
< f

(
t̃2(t)

)
= y2(t).

For the monotony of f (t)t̃1(t) > t̃2(t) and follows the thesis.
=⇒ By hypothesis t̃1(t) > t̃2(t). The thesis follows from the monotony of f (t). �

Definition 3. Let f (t) and y(t) be a hyperbolic discount function and the respective exponential
normative function. The time misperception function dt̃ and the empirical inconsistency function
dy are defined as:

dt̃ : [0,+∞)→ R
t → t− t̃

(3)

dy : [0,+∞)→ R
t → y(t)− f (t)

(4)

Theorem 1. Existence of maximum empirical inconsistency. Let f (t) and y(t) be a hyperbolic
discount function and the respective exponential normative function then dy(t) admits at least one
point of maximum in the interval [0, T).
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Proof. By construction dy(0) = f (0) − y(0) = 0 and dy(T) = y(T) − f (T) = 0. As
discussed in Proposition 2, (t) < y(t)∀t ∈ (0, T). It follows that dy(t) is a continuous and
positive function in the interval (0, T). The thesis follows by considering that

lim
t→0

dy(t) = lim
t→T

dy(t) = 0 (5)

and dy(t) > 0 in (0, T). �

Theorem 2. Uniqueness of maximum empirical inconsistency. Let f (t) and y(t) be a hyperbolic
discount function and the respective exponential normative function then dy(t) admits a unique
point of maximum in the interval [0, T).

Proof. Absurdly
...
t 1 and

...
t 2 are two points of maximum for the function dy(t) and with-

out loss of generality
...
t 1 <

...
t 2. By continuity of the function dy(t), there exists a point

t̂ :
...
t 1 < t̂ <

...
t 2 in which dy(t) reaches a minimum value. Then, we obtained that

y′(t) > f ′(t)∀t ∈ (0,
...
t 1), y′(t) < f ′(t)∀t ∈ (...

t 1, t̂
)

and y′(t) > f ′(t)∀t ∈ (
t̂,

...
t 2

)
.

The above contradicts the nature of the discount functions considered. �

This paper does not discuss the case of the interval [T,+∞). Thus, although the
properties of the discount function ensure the existence of a unique minimum m, it
is not formalized.

Proposition 6. Characterization of maximum empirical inconsistency. Let f (t) and y(t) be a
hyperbolic discount function and the respective exponential normative function and let

...
t ∈ [0, T)

the maximum point for dy(t). Denoted by ρ f = − f ′(t)/ f (t) and ρy = −y′(t)/y(t) the discount
rates of f (t) and y(t) then ∃!t̂ :

...
t < t̂ < T for which ρ f (t) > ρy(t) ∀t ∈ (

0, t̂
)

and ρ f (t) < ρy(t)
∀t ∈ (

t̂,+∞
)
.

Proof. By hypothesis
...
t is the point of maximum for dy(t), i.e., d

dt (y(t)− f (t))t=
...
t = 0. It

follows that y′(
...
t )− f ′(

...
t ) = 0. Since Proposition 2 and from the monotony of y′(t) and

f ′(t) follows that y′(t)− f ′(t) > 0∀t ∈ (0,
...
t ). In the interval (0,

...
t ), y′(t) > f ′(t) implies

−y′(t) < − f ′(t) and considering that dy(t) > 0 in (0, T) follows:

ρ f (t) = − f ′(t)
f (t)

> −y′(t)
y(t)

= ρy(t) (6)

By Theorem 2, ′(t)− f ′(t) < 0∀t ∈ (
...
t , m), with m the point of minimum of dy(t). Since

m > T then ′(t)− f ′(t) < 0∀t ∈ (
...
t , T], i.e., y′(T) < f ′(T). At the T-point, f (T) = y(T):

ρ f (T) = − f ′(T)
f (T)

< −y′(T)
y(T)

= ρy(T) (7)

Then, there exists a point t̂ >
...
t such that ρ f

(
t̂
)
= ρy

(
t̂
)
. The thesis follows considering

that ρy(t) is constant and ρ f (t) decreases. �

Proposition 7. Let f (t) and y(t) be a hyperbolic discount function and the respective exponential
normative function. The time misperception function dt̃ increases (decreases) ⇐⇒ empirical
inconsistency function dy increases (decreases).

Corollary 1. Let f (t) and y(t) be a hyperbolic discount function and the respective exponential
normative function then

...
t ∈ [0,+∞) is a maximum (or minimum) point for dt̃(t)⇔

...
t ∈ [0,+∞)

is a maximum (or minimum) point for dy(t).

Corollary 2. Let f (t) and y(t) be a hyperbolic discount function and the respective exponential
normative function then the time misperception function dt̃ admits a unique point of maximum.
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Proof. Follows by Theorem 1 and Theorem 2 and Corollary 1. �

Theorem 3. Relationship between uncertainty and impatience. Let f (t) and y(t) be a hyper-
bolic discount function and the respective exponential normative function. Let

...
t be the point in

which the time misperception function dt̃ reaches the maximum value then I f [ti,tj ]
> Iy[ti,tj ]

∀t ∈
[ti,tj] ⊆ [0,

...
t ) and I f [ti,tj ]

< Iy[ti,tj ]
∀t ∈ [ti,tj] ⊆ (

...
t ,+∞).

Proof. By Proposition 6, ∀t ∈ (0,
...
t ) it is possible to state that f ′(t) < y′(t). Let ti <

...
t and

h > 0 be such that ti + h = tj <
...
t , then

f ′(t) = lim
h→0

f (ti + h)− f (ti)

h
< lim

h→0

y(ti + h)− y(ti)

h
= y′(t) (8)

f (ti)− f (ti + h)
f (ti)

>
f (ti)− f (ti + h)

y(ti)
>

y(ti)− y(ti + h)
y(ti)

(9)

I f [ti,tj ]
= 1− f (ti + h)

f (ti)
> 1− y(ti + h)

y(ti)
= Iy[ti,tj ]

(10)

The thesis follows from the assumption that f ′(
...
t ) = y′(...t ), and lim

ti→+∞
I f [ti,tj ]

= 0. �

3. Materials and Methods

Among the results proved in Section 2.2, the experimental phase refers in particular to
the following objectives: to find the expression of the best empirical exponential function
starting from a fixed initial outcome x, to analyze the correspondence between dt̃ and dy
function and their respective maximum points, to describe the variation of the sample’s un-
certainty aversion, and to analyze the impatience trend of the hyperbolic discount function
versus the exponential discount function. The questionnaire was implemented with the
creation of a web application, made available and freely accessible by all Italian individuals.
In fact, the test was designed entirely in Italian and voluntarily submitted only to Italian
individuals to avoid the influence of cultural differences. The responses were stored in a
database and processed for data analysis using Python and Excel. When uploading the
link, the respondent had to indicate age and gender. Table 2 shows the distribution of the
sample with a total of 50 individuals with respect to the characteristics considered.

Table 2. Distribution of the sample with respect to age and gender.

Characteristic Categories Percentage

Sex
Male 59.09%

Female 40.91%

Age

20–34 63.67%

35–49 33.23%

50–64 9.10%

The distribution of collected data is uneven with respect to age, probably due to
the type of experimentation adopted (using a web app might be difficult or boring to an
over-50 person). The distribution with respect to gender is uniform, but this article is not
devoted to behavioral differences in the decision-making context between the two genders.
This observation could be an additional line of development for the present research. After
entering the characteristics shown in Table 2, the experiment includes an “INSTRUCTIONS”
section, in which the response mode and the existence of time are briefly introduced. The
questionnaire consists of two questions that alternate with each other: the first question is
used to collect the values needed to construct the empirical discount function using the
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interpolation technique; the second question is used to elicit a sense of confusion. The first
question answers the following:

“You have to receive U(x(ti)) euros in ti days, how much do you want to receive in ti+1
days to consider the offer equivalent?”

The second question, used as distraction, is like the previous one but leaves the figure
constant over time as follows:

“You have to receive 100 euros today, how much do you want to receive in ti days to
consider the offer equivalent?”

In this way, it will be more difficult for respondents to keep track of the figures they
write previously in response to the first question. Individuals undergoing the experimental
phase did not actually receive the proposed figures but were asked to respond hypotheti-
cally. In this regard, from an experimental point of view [33] proves that decision-making
processes may vary whether the money figures are real or hypothetical. However, because
the application of the present article is especially directed toward empirical testing of
theoretically proven results, it is not interested in investigating the influence of decision
context in the proposed inconsistency measure, although this may be a future avenue of
research. The initial outcome has been set as U(x(0)) = €100, a moderate amount to enable
individuals of all ages to realize the hypothesis in a practical way. For each question, the
maximum time to answer was set at 20 s, and the countdown was constantly visible in a
square placed below the question. In this way, each respondent had a constant perception
of the limited passage of time. This dynamic was designed to elicit haste and agitation
from each respondent. At the end of the countdown, if the question had not yet been
submitted, the statement.

“Time’s up! The time available to answer the question has expired. Please answer the
question IMMEDIATELY without further thought.”

Would appear on the website. The introductory display also points out that if the
time expires more than 10 times, the sample analyzed will be disregarded. Fortunately, all
individuals who participated fell within the imposed limit of 10 countdown deadlines.

The time instants for defining indifference pairs are t = 0, 2, 4, 7, 10, 14, 20, 30, 45, 60, 90.
The choice of heterogeneous intervals is related to the need to preserve homogeneity in the
perception of the future (for example, the interval [4, 6] is perceived equivalently to the
interval [4, 7] but the interval [6, 10] is not perceived as the interval [10, 14]).

The discount function was obtained by interpolating the median values of individual
participants as:

f (t) =

{
f (0) = 1

f (ti+1) =
f (ti)∗U(x(ti))

U(x(ti+1))

(11)

The choice of median depends on the high variability of the results obtained at the
end of the interviews (e.g., f (20) ∈ [0.000067; 33.33]).

4. Results

Figure 3 represents the obtained discount function, in which a steeper initial discount,
characteristic of the empirical evidence and hyperbolic discounting, is shown.

To determine the normative exponential function, instead of fixing a priori a point
T needed for definition, the best exponential approximation of the empirical curve was
evaluated with Excel, obtaining T = 60. Any other point chosen would still have defined a
single normative exponential function, but this strategy minimizes the maximum discrep-
ancy between the exponential and hyperbolic trends. The normative exponential function
occurs for z = 0.045 and its trend is shown in Figure 4.

The function, representing the discrepancy between exponential preferences and
hyperbolic trends, was calculated as in Definition 3. The graph is shown in Figure 5.

To check the correspondence between the point at which the maximum discrepancy
occurs and the point at which the maximum contraction to the future occurs, identified
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by the point at which the maximum of the temporal misperception function occurs, the
function dt̃(t) was calculated. The graph is shown in Figure 6.

For the construction of the graph of dt̃(t), it was assumed that the time perceived
by the sample is that associated with the hyperbolic curve. Therefore, the time of the
exponential discount function was calculated by the inverse formula:

t̃−1(t) = − ln( f (t))
0.045

(12)

It is possible to observe that the point at which the functions dt̃(t) and dy(t) reach the
maximum value is for both functions t = 10. The importance of t = 10 is also evident
in Table 3, which confirms the result proved in Theorem 3. In fact, I f [ti,tj ]

> Iy[ti,tj ]
before

the point t = 10 and then the situation changes. This result is an empirical evidence
of the relationship between the quantities used so far to describe inconsistency and the
measure proposed by this paper. In addition, this result confirms that individuals who
apply hyperbolic discounting exhibit greater impatience in periods closer to the present
than those who apply exponential discounting.

Figure 3. Discount function obtained from interview collection.

Figure 4. Empirical and normative functions.
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Figure 5. Graph of dy(t).

Figure 6. Graph of dt̃(t).

Table 3. I f [ti,tj ] and Iy[ti,tj ] for [0, 10] and [10, 90].

If[0, 10] Iy[0, 10] If[10, 90] Iy[10,90]

0.80 0.36 0.73 0.97

5. Discussion

Intertemporal choices have a great influence on everyday life [34]. The discrepancy
between the normative model and empirical evidence has motivated researchers to investi-
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gate the dynamics of decision-making when alternatives distributed over multiple periods
are evaluated. The mechanisms of hyperbolic discounting, a reflection of the human ratio-
nality of the decision-maker, have so far been described through the discount factor and
the degree of impatience.

This paper deepens the characteristics of hyperbolic discounting by adding a third
element to the study of preference trends: time perception. The idea behind the definitions
presented in Section 2.2 is to shift the problem of time inconsistency, a phenomenon
associated with hyperbolic discount function performance, from curve performance to
time perception. The transformation defined in Definition 2 made it possible to derive a
new characteristic of hyperbolic discounting. In fact, although the two functions coincide
punctually (Proposition 4), the discrepancy between hyperbolic and exponential preferences
increases to a point of maximum. The existence of a maximum point is a feature not
associated with either the degree of impatience or the discount rate, both of which assume
a decreasing trend over time. The correspondence between the trend of the functions,
proven in Corollary 1, justifies the idea of considering a psychological relationship between
the two maximum points. In this regard, the present work addresses the mechanism of
projection into the future that occurs when an intertemporal prospect is evaluated. The
temporal contraction of perceived time invokes a dynamic of contraction that the individual
feels with respect to the future. The aversion the decision-maker feels with respect to the
future increases over time because it is more distant and because it is more difficult to
imagine [35]. The existence of the maximum is when the individual becomes emotionally
disinterested in a scenario that she cannot yet perceive (as if it were a future too far in the
future to feel concerned and to imagine its projection sharply). Therefore, the degree of
uncertainty aversion begins to decrease, and so the discrepancy between the hyperbolic
and exponential functions does the same. The dynamic described is equivalent to saying
that the decision-maker is more uncertainty averse, for example, to a future that is 10 days
away, rather than 5 years away. Again, cognitive limitations and the emotional factor of
the decision-maker are responsible for what is observed. The relationships tested with
respect to the discount factor and impatience (Proposition 6 and Theorem 3) show that they
are all distinct objects expressing three different dynamics: the discount factor expresses
how much one prefers an event to happen, impatience expresses how much one prefers
an event to happen sooner, and uncertainty aversion expresses how close one perceives
the future to be.

The experimental phase empirically confirmed the results proven in Section 2. With
respect to the implementation of the experiment, it is possible to observe how simple the
construction of the proposed measure is. In fact, once the discount function is obtained
through the interpolation technique, the construction of the best exponential function
that approximates it is imminent even using simple Excel spreadsheets. Therefore, the
proposed inconsistency measure lends itself to a very wide audience of researchers, who
can investigate the dynamics of decision-making in intertemporal choices by varying the
time instants considered, the lengths of the intervals, the initial digit, and so on, without
necessarily making use of advanced implementation techniques. So far, the calculation
of the degree of inconsistency of a discount function has always been a much-discussed
problem, especially since [7] formalized the measure of the degree of decrease in impatience,

defined as DI(t) = − ln( f (t))′′
ln f (t)′ . The proposed measure, in fact, is very difficult to calculate

from an empirical point of view since it requires the calculation of the first and second
derivatives of the logarithm. Subsequently, the following works deepened the tool proposed
by [7] by improving its quantitative aspect: [36], through the introduction of time trade-off
curves, generally simplified both qualitative and quantitative analysis of inconsistency; [37],
on the other hand, formalized the concept of hyperbolic factor that provides the degree of
decrease in impatience fixed an indifference pair.

The measure formalized in the present paper does not replace those mentioned but
complements them because it conceptually differs from the psychological mechanisms
incorporated in the concept of decreasing impatience, but still turns out to be a description
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of it, as proved in Theorem 3. Particularly important is the correspondence between
Figures 5 and 6 and Table 3, in which the point t = 10 is critical. What has been observed
should not be surprising considering that the same measure defined by Prelec, can be
described as DI(t) = − ln(ρ(t)). The expression is equivalent to saying that the rate at
which the discount rate varies is related to the degree to which impatience decreases, and
the way in which the discount rate varies, by definition, quantifies how the individual’s
perception of the indeterminacy of time changes. In conclusion, the novelty of the measure
of inconsistency proposed by the present paper lies in being characterized by a maximum
point that represents the boundary between the emotional drive and the detachment from
it of the decision-maker.

6. Conclusions

This article refers to the investigation of the discrepancy between normative models
and empirical evidence in the context of intertemporal choices. The characteristics of
hyperbolic discounting, starting from inconsistency, were explored through the concept
of subjective perception of time. A dynamic related to how the decision-maker perceives
the remoteness of the future was quantified. This mechanism generates a contraction
with respect to the time frames involved in the intertemporal prospect and contributes
to the hyperbolic preference trend. An experimental phase empirically confirmed the
proven results. The research conducted aims at three key concepts: anomaly, normalization,
and personalization.

The term anomaly denotes those phenomena that are difficult to rationalize from
a theoretical point of view. The anomalies of the Discounted Utility Model [38,39] are
described by a hyperbolic trend of the discount function. The goal is the full description of
the anomalies through a combination of the quantities mentioned throughout the paper
(impatience, discount rate, uncertainty, and subjective time).

Quantifying the gap between the normative model and the empirical evidence allows
the normalization of anomalous attitudes, defining the extent to which the decision-maker’s
bounded rationality respects economic rationality, also overcoming from a formal point of
view the concept of non-rationality. These first two key concepts are unified in personaliza-
tion: after understanding and quantifying non-rational preferences, these measures can be
used to define classes of investors. The need to introduce personalized strategies is known
from the work of Pompian [13,14] and Thaler [12]: the former refers to personalization by
behavioral attitudes; the latter discusses systematic cognitive alterations in decision-making
and projects them into a strategic architecture. In addition, the planning ability of indi-
viduals is not common to all decision-makers but is related to cognitive ability [26] and is
critical to reducing the effects of myopic behavior in the future [27]. Therefore, quantifying
the elements of the hyperbolic discount, which represents the expression of the individual’s
decision-making process, is a method for calibrating the personalized approach.

The need to concretize these tools responds to the Markets in Financial Instruments
Directive, 2014/65/UE (MiFID2) which emphasizes the need to consider the client’s needs,
but also her behavioral attitudes with respect to available alternatives. Specifically, MiFID
2 can be seen as a tool to protect savers by requiring client assessment mechanisms. The
main goal is to achieve a maximum fit between the individual’s profile and the products
offered. In assessing suitability, customer profiling addresses both objective and subjective
characteristics of the individual: objective characteristics include, for example, criteria such
as investment objectives, duration of service, and associated risks; subjective characteristics,
on the other hand, are all behavioral and individual aspects of the customer such as
risk tolerance, knowledge needed to understand portfolio assets, and financial situation.
Only by increasing the details that describe the client’s profile, recommendable financial
instruments can be determined.

The measure proposed in the present paper refers to the subjective aspect of customer
traits. First, quantifying the impact that subjective time has on intertemporal preferences
can help investigate investor attitudes toward debt and investment dynamics [40], through
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the anomalies of the intertemporal choices [38,39]. The above could provide an additional
criterion, in addition to personality traits [41,42], for the classification required by MiFID
2. With respect to the emotional sphere, on the other hand, the proposed measure of
inconsistency, because it expresses the subjective perception of time, is linked related to
emotional factors that interact with decision-making [43,44] and can help investigate the
relationship between investor sentiment and financial activity [45]. For example, assuming
risk as a feeling [46], assessing the influence of subjective time in the description of decision
inconsistency can improve the description of risk aversion and perception of risk [47–49],
elements on which MiFID 2 places so much emphasis on when designing customized plans.
The transition between measurement and individualized plan design can be guided using
decision support techniques, such as multicriteria methods [50,51].

From a conceptual point of view, one possible development of this paper is the
introduction of another concept fundamental for calibrating strategies, financial inertia [52].
Inertia in finance, as in physics, is the force by which a body, in this case the investor,
opposes a change in its motion. In this sense, inertia, as a force, helps delineate the geometric
properties of the curve associated with the discount function. Finally, in addition to
extending the formalization to the other anomalies of the Discounted Utility Model [38,39],
it would be interesting to discuss the measure in a continuous, not discrete set of definitions.
For although intertemporal choice is determined by precise instants of time, the concept of
uncertainty aversion is continuous over time, and its extension in this sense could enhance
its descriptive capabilities of the psychological mechanisms responsible.
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Abstract: BL-algebras are algebraic structures corresponding to Hajek’s basic fuzzy logic. The aim of
this paper is to analyze the structure of BL-algebras using commutative rings. Due to computational
considerations, we are interested in the finite case. We present new ways to generate finite BL-
algebras using commutative rings and provide summarizing statistics. Furthermore, we investigated
BL-rings, i.e., commutative rings whose the lattice of ideals can be equipped with a structure of
BL-algebra. A new characterization for these rings and their connections to other classes of rings is
established. Furthermore, we give examples of finite BL-rings for which the lattice of ideals is not
an MV-algebra and, using these rings, we construct BL-algebras with 2r + 1 elements, r ≥ 2, and
BL-chains with k elements, k ≥ 4. In addition, we provide an explicit construction of isomorphism
classes of BL-algebras of small n size (2 ≤ n ≤ 5).
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1. Introduction

The origin of residuated lattices is in mathematical logic. They were introduced by
Dilworth and Ward, through the papers [1,2]. The study of residuated lattices originated
in 1930 in the context of the theory of rings, with the study of ring ideals. It is known
that the lattice of ideals of a commutative ring is a residuated lattice; see [3]. Several
researchers ([3–6], etc.) have been interested in this construction.

Two important subvarieties of residuated lattices are BL-algebras (corresponding to
Hajek’s logic; see [7]) and MV-algebras (corresponding to Łukasiewicz’s many-valued
logic; see [8,9]). For instance, rings for which the lattice of ideals is a BL-algebra are called
BL-rings and were introduced in [5].

In this paper, we obtain a description for BL-rings using a new characterization of
BL-algebras, given in Theorem 1, i.e., residuated lattices L in which [x� (x → y)]→ z =
(x → z) ∨ (y → z) for every x, y, z ∈ L. Then, BL-rings are unitary and commutative rings
A with the property that K : [I ⊗ (J : I)] = (K : I) + (K : J), for every I, J, K ∈ Id(A); see
Corollary 1.

Additionally, we show that the class of BL-rings contains other known classes of
commutative rings: rings that are principal ideal domains and some types of finite unitary
commutative rings; see Theorem 2, Corollaries 2 and 3.

One recent application of BCK algebras is in coding theory. In fact, MV-algebras are
commutative BCK-algebras, see [10].

Due to computational considerations, in this paper, we are interested in finding ways
to generate finite BL-algebras using finite commutative rings, since a solution that is
computationally tractable is to consider algebras with a small number of elements. First,
we give examples of finite BL-rings whose lattice of ideals is not an MV-algebra. Using
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these rings, we construct BL-algebras with 2r + 1 elements, r ≥ 2 (see Theorem 3) and
BL-chains with k ≥ 4 elements (see Theorem 4).

In [11], isomorphism classes of BL-algebras of size n ≤ 12 were only counted, not
constructed, using computer algorithms. Up to an isomorphism, there is 1 BL-algebra of
size 2, 2 BL-algebras of size 3, 5 BL-algebras of size 4, 9 BL-algebras of size 5, 20 BL-algebras
of size 6, 38 BL-algebras of size 7, 81 BL-algebras of size 8, 160 BL-algebras of size 9, 326 BL-
algebras of size 10, 643 BL-algebra of size 11 and 1314 BL-algebras of size 12. In Theorem 6,
we present a way to generate (up to an isomorphism) finite BL-algebras with 2 ≤ n ≤ 5
elements by using the ordinal product of residuated lattices, and we present summarizing
statistics. The described method can be used to construct finite BL-algebras of larger size,
the inconvenience being the large number of BL-algebras that must be generated.

2. Preliminaries

Definition 1 ([1,2]). A (commutative) residuated lattice is an algebra (L,∧,∨,�,→, 0, 1)
such that:

(LR1) (L,∧,∨, 0, 1) is a bounded lattice;
(LR2) (L,�, 1) is a commutative ordered monoid;
(LR3) z ≤ x → y iff x� z ≤ y, for all x, y, z ∈ L.

The property (LR3) is called residuation, where ≤ is the partial order of the lattice
(L,∧,∨, 0, 1).

In a residuated lattice, an additional operation is defined; for x ∈ L, we denote
x∗ = x → 0.

Example 1 ([12]). Let (B,∧,∨,′ , 0, 1) be a Boolean algebra. If we define for every x, y ∈ B, x�
y = x ∧ y and x → y = x′ ∨ y, then (B,∧,∨,�,→, 0, 1) becomes a residuated lattice.

Example 2. It is known that, for a commutative unitary ring A, if we denote by Id(A) the set of
all ideals, then for I, J ∈ Id(A), the following sets

I + J =< I ∪ J >= {i + j, i ∈ I, j ∈ J},

I ⊗ J = {
n

∑
k=1

ik jk, ik ∈ I, jk ∈ J},

(I : J) = {x ∈ A, x · J ⊆ I},

Ann(I) = (0 : I), where 0 =< 0 >,

are also ideals of A, called sum, product, quotient and annihilator; see [13]. If we preserve these
notations, (Id(A),∩,+,⊗ →, 0 = {0}, 1 = A) is a residuated lattice in which the order relation
is ⊆ and I → J = (J : I), for every I, J ∈ Id(A); see [6].

In a residuated lattice (L,∧,∨,�,→, 0, 1), we consider the following identities:

(prel) (x → y) ∨ (y → x) = 1 (prelinearity);

(div) x� (x → y) = x ∧ y (divisibility).

Definition 2 ([10,12,14]). A residuated lattice L is called a BL-algebra if L verifies (prel) + (div)
conditions.

A BL-chain is a totally ordered BL-algebra, i.e., a BL-algebra such that its lattice order
is total.

Definition 3 ([8,9]). An MV-algebra is an algebra (L,⊕,∗ , 0) satisfying the following axioms:
(MV1) (L,⊕, 0) is an abelian monoid;
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(MV2) (x∗)∗ = x;
(MV3) x⊕ 0∗ = 0∗;
(MV4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, for all x, y ∈ L.

In fact, a residuated lattice L is an MV-algebra iff it satisfies the additional condition:

(x → y)→ y = (y → x)→ x,

for every x, y ∈ L; see [12].

Remark 1 ([12]). If, in a BL- algebra L, x∗∗ = x, for every x ∈ L, and for x, y ∈ L we denote

x⊕ y = (x∗ � y∗)∗,

then we obtain an MV-algebra (L,⊕,∗ , 0). Conversely, if (L,⊕,∗ , 0) is an MV-algebra, then
(L,∧,∨,�,→, 0, 1) becomes a BL-algebra, in which for x, y ∈ L :

x� y = (x∗ ⊕ y∗)∗,

x → y = x∗ ⊕ y, 1 = 0∗,

x ∨ y = (x → y)→ y = (y → x)→ x and x ∧ y = (x∗ ∨ y∗)∗.

In fact, MV-algebras are exactly involutive BL-algebras.

Example 3 ([10]). We give an example of a finite BL-algebra which is not an MV-algebra. Let
L = {0, a, b, c, 1}; we define the following operations on L:

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

,

� 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

.

We have,0 ≤ c ≤ a, b ≤ 1, but a, b are incomparable; hence, L is a BL-algebra that is
not a chain. We remark that x∗∗ = 1 for every x ∈ L, x �= 0.

3. BL-Rings

Definition 4 ([5]). A commutative ring whose lattice of ideals is a BL-algebra is called a BL-ring.

In particular, we can call a commutative ring whose lattice of ideals is an MV-algebra
an MV-ring.

We recall that, in [15], we showed that a commutative unitary ring A is an MV-ring iff
it has the Chang property, i.e.,

I + J = (J : (J : I)),

for every I, J ∈ Id(A). Obviously, every MV-ring is also a BL-ring.
BL-rings are closed under finite direct products, arbitrary direct sums and homomor-

phic images; see [5].
In the following, using the connections between BL-algebras and BL-rings, we give

new characterizations for commutative and unitary rings for which the lattice of ideals is a
BL-algebra.

Proposition 1 ([10]). Let (L,∨,∧,�,→, 0, 1) be a residuated lattice. Then, we have the equiva-
lences:

(i) L satisfies (prel) condition;
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(ii) (x ∧ y)→ z = (x → z) ∨ (y → z), for every x, y, z ∈ L.

Lemma 1. Let (L,∨,∧,�,→, 0, 1) be a residuated lattice. The following assertions are equivalent:
(i) L satisfies (prel) condition;
(ii) For every x, y, z ∈ L, if x ∧ y ≤ z, then (x → z) ∨ (y → z) = 1.

Proof. (i)⇒ (ii). Following Proposition 1.
(ii) ⇒ (i). Using (ii), for z = x ∧ y we deduce that 1 = (x → (x ∧ y)) ∨ (y →

(x ∧ y)) = [(x → x) ∧ (x → y)] ∨ [(y → x) ∧ (y → y)] = (x → y) ∨ (y → x), so L satisfies
(prel) condition.

Lemma 2. Let (L,∨,∧,�,→, 0, 1) be a residuated lattice. The following assertions are equivalent:
(i) L satisfies (div) condition;
(ii) For every x, y, z ∈ L, if x� (x → y) ≤ z, then x ∧ y ≤ z.

Proof. (i)⇒ (ii), evidently.
(ii) ⇒ (i). Using (ii), for z = x � (x → y) we can deduce that x ∧ y ≤ x � (x →

y). Since in a residuated lattice, x � (x → y) ≤ x ∧ y, we deduce that L satisfies (div)
condition.

Using Lemmas 1 and 2 we deduce Proposition 2.

Proposition 2. Let (L,∨,∧,�,→, 0, 1) be a residuated lattice. The following assertions are
equivalent:

(i) L is a BL-algebra;
(ii) For every x, y, z ∈ L, if x� (x → y) ≤ z, then (x → z) ∨ (y → z) = 1;
(iii) [x� (x → y)]→ z = (x → z) ∨ (y → z), for every x, y, z ∈ L.

Proof. (i)⇒ (ii). Let x, y, z ∈ L such that x� (x → y) ≤ z. Since every BL-algebra satisfies
(div) condition, by Lemma 2, we can deduce that x ∧ y ≤ z. Since every BL-algebra satisfies
(prel) condition, following Lemma 1, we can deduce that 1 = (x → z) ∨ (y → z).

(ii)⇒ (i). First, we prove that L satisfies condition (ii) from Lemma 1. Therefore, let
x, y, z ∈ L such that x ∧ y ≤ z. Thus, (x ∧ y) → z = 1. Since x � (x → y) ≤ x ∧ y, we
deduce that 1 = (x ∧ y)→ z ≤ (x� (x → y))→ z. Then, x� (x → y) ≤ z. By hypothesis,
(x → z) ∨ (y → z) = 1.

To prove that L verifies condition (ii) from Lemma 2, let x, y, z ∈ L such that x� (x →
y) ≤ z. By hypothesis, we deduce that, (x → z) ∨ (y → z) = 1. Since (x → z) ∨ (y → z) ≤
(x ∧ y)→ z, we obtain (x ∧ y)→ z = 1, that is, x ∧ y ≤ z.

(iii)⇒ (ii), evidently.
(ii)⇒ (iii). If we denote t = [x� (x → y)]→ z, we have 1 = t → t = t → [(x� (x →

y))→ z] = [x� (x → y)]→ (t → z); hence, x� (x → y) ≤ t → z.
By hypothesis, we deduce that, (x → (t → z)) ∨ (y → (t → z)) = 1.
Then, 1 = (t → (x → z)) ∨ (t → (y → z)) ≤ t → [(x → z) ∨ (y → z)]. Thus,

t ≤ (x → z) ∨ (y → z).
However, (x → z) ∨ (y → z) ≤ (x ∧ y)→ z ≤ [x� (x → y)]→ z = t.
We conclude that t = (x → z)∨ (y → z), that is, [x� (x → y)]→ z = (x → z)∨ (y →

z), for every x, y, z ∈ L.

Using Proposition 2 we obtain a new characterization for BL-algebras:

Theorem 1. A residuated lattice L is a BL-algebra if and only if for every x, y, z ∈ L,

[x� (x → y)]→ z = (x → z) ∨ (y → z).

Using this result, we can give a new description for BL-rings:
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Corollary 1. Let A be a commutative and unitary ring. The following assertions are equivalent:
(i) A is a BL-ring;
(ii) K : [I ⊗ (J : I)] = (K : I) + (K : J), for every I, J, K ∈ Id(A).

Theorem 2. Let A be a commutative ring that is a principal ideal domain. Then, A is a BL-ring.

Proof. Since A is a principal ideal domain, let I =< a >, J =< b > be the principal
non-zero ideals generated by a, b ∈ A \{0}.

If d =gcd{a, b}, then d = a · α+ b · β, a, b ∈ A, a = a1d and b = b1d, with 1 =gcd{a1, b1}.
Thus, I + J =< d >, I ∩ J =< ab/d >, I ⊗ J =< ab > and (I : J) = < a1 > .

The conditions (prel) are satisfied, (I : J) + (J : I) =< a1 > + < b1 >=< 1 >= A
and (div) is also satisfied: J ⊗ (I : J) =< b > ⊗ < a1 >=< ab/d >= I ∩ J.

If I = {0}, since A is an integral domain, we have that (0 : J) + (J : 0) = Ann(J) +
A = A and J ⊗ (0 : J) = J ⊗ Ann(J) = 0 = 0 ∩ J = 0⊗ (J : 0) for every J ∈ Id(A)\{0}.

Moreover, we remark that (I : (I : J)) = (J : (J : I)) = I + J for every non-zero ideal
I, J ∈ Id(A). Additionally, since A is an integral domain, we obtain Ann(Ann(I)) = A, for
every I ∈ Id(A)\{0}. We conclude that Id(A) is a BL-algebra that is not an MV-algebra.

Corollary 2. A ring factor of a principal ideal domain is a BL-ring.

Proof. We use Theorem 2 since BL-rings are closed under homomorphic images; see [5].
Moreover, we remark that a ring factor of a principal ideal domain is, in particular, an MV-ring,
see [15].

Corollary 3. A finite commutative unitary ring of the form A = Zk1 × Zk2 × ...× Zkr (direct
product of rings, equipped with componentwise operations) where ki = pαi

i , with pi a prime number,
is a BL-ring.

Proof. We apply Corollary 2 using the fact that BL-rings are closed under finite direct
products; see [5].

Moreover, we remark that if A is a finite commutative unitary ring of the above form,
then Id(A) = Id(Zk1)× Id(Zk2)× ...× Id(Zkr ) is an MV-algebra (Id(A),⊕,∗ , 0 = {0}) in
which

I ⊕ J = Ann(Ann(I)⊗ Ann(J)) and I∗ = Ann(I)

for every I, J ∈ Id(A) since, Ann(Ann(I)) = I; see [15].

Example 4. (1) Following Theorem 2, the ring of integers (Z,+, ·) is a BL-ring in which (Id(Z),
∩,+,⊗ →, 0 = {0}, 1 = A) is not an MV-algebra. Indeed, since Z is the principal ideal domain,
we have Ann(Ann(I)) = Z, for every I ∈ Id(Z)\{0}.

(2) Let K be a field and K[X] be the polynomial ring. For f ∈ K[X], the quotient ring
A = K[X]/( f ) is a BL-ring. Indeed, the lattice of ideals of this ring is an MV-algebra; see [15].

4. Examples of BL-Algebras Using Commutative Rings

In this section, we present ways to generate finite BL-algebras using finite commutative
rings.

First, we give examples of finite BL-rings whose lattice of ideals is not an MV-algebra.
Using these rings we construct BL-algebras with 2r + 1 elements, r ≥ 2 (see Theorem 3)
and BL-chains with k ≥ 4 elements (see Theorem 4).

We recall that, in [15], we proved the following proposition.

Proposition 3 ([15]). If A is a finite commutative unitary ring of the form Zk1 ×Zk2 × ...×Zkr

(direct product of rings, equipped with componentwise operations), where ki = pαi
i , with pi

a prime number, for all i ∈ {1, 2..., r} and Id(A) denotes the set of all ideals of the ring A,
then (Id(A),∨,∧,�,→, 0, 1) is an MV-algebra, where the order relation is ⊆, I � J = I ⊗ J,
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I∗ = Ann(I), I → J = (J : I), I ∨ J = I + J, I ∧ J = I ∩ J, 0 = {0} and 1 = A. The set Id(A)

has NA =
r

∏
i=1

(αi + 1) elements.

In the following, we give examples of finite BL-rings whose lattice of ideals is not an
MV-algebra.

Definition 5 ([13]). Let R be a commutative unitary ring. The ideal M of the ring R is maximal if
it is maximal with respect of the set inclusion, amongst all proper ideals of the ring R. That means
there are no other ideals different from R contained in M. The ideal J of the ring R is a minimal
ideal if it is a nonzero ideal that contains no other nonzero ideals. A commutative local ring R is a
ring with a unique maximal ideal.

Example 5. (i) A field F is a local ring, with {0} being the maximal ideal in this ring.
(ii) In (Z8,+, ·), the ideal J = {0̂, 4̂} is a minimal ideal and the ideal M = {0̂, 2̂, 4̂, 6̂} is the

maximal ideal.

Remark 2. Let R be a local ring with M its maximal ideal. Then, the quotient ring R[X]/(Xn)
with n being a positive integer is local. Indeed, the unique maximal ideal of the ring R[X]/(Xn) is−→
M = {−→f ∈ R[X]/(Xn)/ f ∈ R[X], f = a0 + a1X + ... + an−1Xn−1, with a0 ∈ M}. For other
details, the reader is referred to [16].

In the following, we consider the ring (Zn,+, ·) with n = p1 p2...pr, p1, p2, ..., pr being
distinct prime numbers, r ≥ 2 and the factor ring R = Zn[X]/

(
X2).

Remark 3. (i) With the above notations, in the ring (Zn,+, ·), the ideals generated by p̂i, Mpi =

( p̂i), are maximals. The ideals of Zn are of the form Id =
(

d̂
)

, where d is a divisor of n.
(ii) Each element from Zn − {Mp1 ∪ Mp2 ∪ ... ∪ Mpr} is an invertible element. Indeed, if

x̂ ∈ Zn − {Mp1 ∪ Mp2 ∪ ...∪ Mpr}, we have gcd {x, n} = 1; therefore, x is an invertible element.

Proposition 4. (i) With the above notations, the factor ring R = Zn[X]/
(
X2) has 2r + 1 ideals

including {0} and R.
(ii) For γ̂ ∈ Zn − {Mp1 ∪ Mp2 ∪ ...∪ Mpr}, the element X + γ̂ is an invertible element in R.

Proof. (i) Indeed, the ideals are: Jpi = (α̂X + α̂i), α̂i ∈ Mp i , i ∈ {1, 2, ..., r}, which are

maximal, Jd =
(

β̂X + β̂d

)
, β̂d ∈ Id, Id is not maximal, α̂, β̂ ∈ R, d �= n, where d is a proper

divisor of n, the ideals (X), for d = n and (0). Therefore, we have �0
n ideals for ideal (X),

�1
n ideals for ideals Jpi , �2

n ideals for ideals Jpi pj , pi �= pj,...,�n
n ideals for ideal R, for d = 1,

resulting in a total of 2r + 1, if we add ideal (0). Here, �k
n =

(
k
n

)
are combinations.

(ii) Since γ̂ ∈ Zn − {Mp1 ∪ Mp2 ∪ ...∪ Mpr}, we have that γ̂ is invertible, with δ̂ being
its inverse. Therefore, (X + γ̂)[−δ̂−2(X − γ̂)] = 1. As a result, X + γ̂ is invertible; therefore,
(X + γ̂) = R.

Since, for any commutative unitary ring, the lattice of ideals is a residuated lattice
(see [6]), in particular, for the unitary and commutative ring A = Zn[X]/

(
X2), we have

that (Id(Zn/
(
X2)),∩,+,⊗ →, 0 = {0}, 1 = A) is a residuated lattice with 2r + 1 elements.

Remark 4. As we remarked above, the ideals in the ring R = Zn[X]/
(
X2) are:

(i) (0);
(ii) of the form Jd =

(
α̂X + β̂d

)
, α̂ ∈ R, β̂d ∈ Id, where d is a proper divisor of n =

p1 p2...pr, p1, p2, ..., pr being distinct prime numbers, r ≥ 2, by using the notations from Remark 3.
If Id = ( p̂i), then Jd is denoted Jpi and is a maximal ideal in R = Zn[X]/

(
X2) ;
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(iii) The ring R, if d = 1;
(iv) (X), if d = n.

Remark 5. We remark that for all nonzero ideals I of the above ring R, we have (X) ⊆ I and the
ideal (X) is the only minimal ideal of Zn[X]/

(
X2).

Remark 6. Let Dd = {p / p ∈ {p1, p2, ..., pr} such that d = ∏ p}, d �= 1.
(1) We have Jd1 ∩ Jd2 = Jd1 ⊗ Jd2 = Jd3 , where Dd3 = {p ∈ Dd1 ∪ Dd2 , d3 = ∏ p} for

d1, d2 proper divisors.
If d1 = 1, we have R⊗ Jd2 = Jd2 = R ∩ Jd2 .
If d1 = n, d2 �= n, we have (X)⊗ Jd2 = (X) ∩ Jd2 = (X). If d2 = n, we have (X)⊗ (X) =

(0).
(2) We have (Jd1 : Jd2) = Jd3 , with Dd3 = Dd1 −Dd2 . Indeed, (Jd1 : Jd2) = {y ∈ R, y · Jd2 ⊆

Jd1} = Jd3 , for d1, d2 proper divisors.
If Jd1 = (0), we have (0 : Jd2) = (0). Indeed, if (0 : Jd2) = J �= (0), J⊗ Jd2 = (0). However,

from the above, J ⊗ Jd2 = J ∩ Jd2 �= (0), which is false
If Jd2 = (0), we have (Jd1 : 0) = R.
If d1 = 1, we have

(
R : Jd2

)
= R and

(
Jd2 : R

)
= Jd2 .

If d1 = n, d2 �= n, we have Jd1 = (X); therefore, (Jd1 : Jd2) = Jd1 = (X). If d1 �= n, d2 = n,
we have Jd2 = (X); therefore, (Jd1 : Jd2) = R. If d1 = d2 = n, we have Jd1 = Jd2 = (X) and
(Jd1 : Jd2) = R.

Theorem 3. (i) For n ≥ 2,with the above notations, the residuated lattice (Id(Zn[X]/
(
X2)),∩,

+,⊗ →, 0 = {0}, 1 = R), R = Zn[X]/
(
X2) is a BL-algebra with 2r + 1 elements.

(ii) By using notations from Remark 4, we have that (Idpi (Zn[X]/
(
X2)),∩,+,⊗ →, 0 =

{0}, 1 = R), where Idpi (Zn[X]/
(
X2)) = {(0), Jpi , R} is a BL-sublattice of the lattice

Id(Zn[X]/
(
X2)) with 3 elements.

Proof. (i) First, we will prove the (prel) condition:

(I → J) ∨ (J → I) = (J : I) ∨ (I : J) = Zn[X]/
(

X2
)

,

for every I, J ∈ Id(Zn[X]/
(
X2)).

Case 1. If d1 and d2 are proper divisors of n, we have
(

Jd1 → Jd2

)∨ (
Jd2 → Jd1

)
= (Jd2 :

Jd1) ∨ (Jd1 : Jd2) = Jd4 ∨ Jd5 , where Dd5 = Dd1 − Dd2 and Dd4 = Dd2 − Dd1 . We remark that
Dd4 ∩ Dd5 = ∅; then, gcd {d4, d5} = 1. From here, there are the integers a and b such that
ad4 + bd5 = 1. We obtain that Jd4 ∨ Jd5 =< Jd4 ∪ Jd5 >= R from Proposition 4, (ii).

Case 2. If d1 is a proper divisor of n and d2 = n, we have Jd2 = (X). Therefore,(
Jd1 → Jd2

) ∨ (
Jd2 → Jd1

)
= (Jd2 : Jd1) ∨ (Jd1 : Jd2) = Jd2 ∨ R = R using Remark 6.

Case 3. If d1 is a proper divisor of n and Jd2 = (0), we have
(

Jd1 → Jd2

)∨ (
Jd2 → Jd1

)
=

(0 : Jd1) ∨ (Jd1 : 0) = 0∨ R = R using Remark 6.
Case 4. If d1 is a proper divisor of n and Jd2 = R, it is clear. From here, the condition

(prel) is satisfied.
Now, we prove condition (div) :

I ⊗ (I → J) = I ⊗ (J : I) = I ∩ J,

for every I, J ∈ Id(Zn[X]/
(
X2)).

Case 1. If d1 and d2 are proper divisors of n, we have Jd1 ⊗
(

Jd2 : Jd1

)
= Jd1 ⊗ Jd3 =

Jd4 = Jd1 ∩ Jd2 , since Dd3 = Dd2 − Dd1 and Dd4 = {p ∈ Dd1 ∪ Dd3 , d4 = ∏ p} = {p ∈
Dd1 ∪ Dd2 , d4 = ∏ p}.

Case 2. If d1 is a proper divisor of n and d2 = n, we have Jd2 = (X). We obtain
Jd1 ⊗

(
Jd2 : Jd1

)
= Jd1 ⊗

(
(X) : Jd1

)
= Jd1 ⊗ (X) = Jd1 ∩ (X) since (X) ⊂ Jd1 .

Case 3. If d1 = n and d2 is a proper divisor of n, we have Jd1 = (X). We obtain
Jd1 ⊗

(
Jd2 : Jd1

)
= (X)⊗ (

Jd2 : (X)
)
= (X)⊗ R = (X) = Jd2 ∩ (X) since (X) ⊂ Jd2 .
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Case 4. If d1 is a proper divisor of n and Jd2 = (0), we have Jd1 ⊗
(

Jd2 : Jd1

)
=

Jd1 ⊗
(
0 : Jd1

)
= Jd1 ⊗ (0) = (0) = Jd1 ∩ (0) from Remark 6.

Case 5. If Jd1 = (0) and d2 is a proper divisor of n, we have Jd1 ⊗
(

Jd2 : Jd1

)
=

0⊗ (
Jd2 : 0

)
= 0.

Case 6. If d1 is a proper divisor of n and Jd2 = R, we have Jd1 ⊗
(

Jd2 : Jd1

)
= Jd1 ⊗(

R : Jd1

)
= Jd1 ⊗ R = Jd1 . If Jd1 = R and d2 is a proper divisor of n, we have Jd1 ⊗(

Jd2 : Jd1

)
= R⊗ (

Jd2 : R
)
= R⊗ Jd2 = Jd2 . From here, the condition (div) is satisfied and

the proposition is proven.
(ii) It is clear that Jpi � Jpi = Jpi ⊗ Jpi = Jpi ; we obtain the following tables:

→ O Jpi R
O R R R
Jpi O R R
R O Jpi R

� O Jpi R
O O O O
Jpi O Jpi Jpi

R O Jpi R

,

therefore showing a BL-algebra of order 3.

Theorem 4. Let n = pr with p a prime number, p ≥ 2, r a positive integer, r ≥ 2. We consider the
ring R = Zn[X]/

(
X2). The set (Id(Zn[X]/

(
X2)),∩,+,⊗ →, 0 = {0}, 1 = R) is a BL-chain

with r + 2 elements. In this way, for a given positive integer k ≥ 4, we can construct BL-chains
with k elements.

Proof. The ideals in Zn are of the form: (0) ⊆ (
pr−1) ⊆ (

pr−2) ⊆ ... ⊆ (p) ⊆ Zn. The
ideal

(
pr−1) and the ideal (p) are the only maximal ideals of Zn. The ideals in the ring

R are (0) ⊆ (X) ⊆ (αr−1X + βr−1) ⊆ (αr−2X + βr−2) ⊆ ... ⊆ (α1X + β1) ⊆ R, where
αi ∈ Zn, i ∈ {1, ..., r− 1}, βr−1 ∈

(
pr−1), βr−2 ∈

(
pr−2), ..., β1 ∈ (p), meaning r + 2 ideals.

We denote these ideals with (0), (X), Ipr−1 , Ipr−2 , ...Ip, R, with Ip being the only maximal
ideal in R.

First, we prove the (prel) condition:

(I → J) ∨ (J → I) = (J : I) ∨ (I : J) = Zn[X]/
(

X2
)

,

for every I, J ∈ Id(Zn[X]/
(
X2)).

Case 1. We suppose that I and J are proper ideals and I ⊆ J. We have (I → J) ∨
(J → I) = (J : I) ∨ (I : J) = R ∨ (I : J) = R.

Case 2. I = (0) and J are a proper ideal, we have (I → J) ∨ (J → I) = (J : (0)) ∨ ((0) :
J) = R. Therefore, the condition (prel) is satisfied.

Now, we prove the (div) condition:

I ⊗ (I → J) = I ⊗ (J : I) = I ∩ J,

for every I, J ∈ Id(Zn[X]/
(
X2)).

Case 1. We suppose that I and J are proper ideals and I ⊆ J. We have I ⊗ (I → J) =
I ⊗ (J : I) = I ⊗ R = I = I ∩ J. If J ⊆ I, we have I ⊗ (I → J) = I ⊗ (J : I) = J = I ∩ J.

Case 2. I = (0) and J is a proper ideal. We have (0)⊗ ((0)→ J) = (0)⊗ (J : (0)) =
(0) = I ∩ J. If I �= (X) is a proper ideal and J = (0), we have I ⊗ (I → J) = I ⊗ ((0) : I) =
I ⊗ (0) = (0). If I = (X) and J = (0), we have I ⊗ (I → J) = (X) ⊗ ((0) : (X)) =
(X)⊗ (X) = (0) and (0) ∩ (X) = (0).

From here, the condition (div) is satisfied and the theorem is proven.

Example 6. In Theorem 3, we take n = 2 · 3 ; therefore, the ideals of Z6 are (0), (2), (3),Z6, with
(2) and (3) maximal ideals. The ring Z6[X]/

(
X2) has five ideals: O = (0) ⊂ A = (X), B =

(αX + β), C = (γX + δ), E = Z6[X]/
(
X2), with α, γ ∈ Z4, β ∈ (2) and δ ∈ (3). From the

following tables, we have a BL-structure on Id(Z6[X]/
(
X2)):
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→ O A B C E
O E E E E E
A A E E E E
B O C E C E
C O B B E E
E O A B C E

� O A B C E
O O O O O O
A O O A A A
B O A B A B
C O A A C C
E O A B C E

.

From Theorem 3, if we consider Jpi = B, we have the following BL-algebra of order 3:

→ O B E
O E E E
B O E E
E O B E

� O B E
O O O O
B O B B
E O B E

.

Example 7. In Theorem 3, we take n = 2 · 3 · 5 ; therefore, the ideals of the ring Z30 are
(0), (2), (3), (5), (6), (10), (15),Z30, with (2), (3) and (5) being maximal ideals. The ring
Z30[X]/

(
X2) has nine ideals: O = (0) ⊂ A = (X), B = (α1X + β1), C = (α2X + β2),

D = (α3X + β3), E = (α4X + β4), F = (α5X + β5), G = (α6X + β6), R = Z30[X]/
(
X2),

with αi ∈ Z30, i ∈ {1, 2, 3, 4, 5, 6}, β1 ∈ (6), β2 ∈ (10), β3 ∈ (15), β4 ∈ (2), β5 ∈ (3) and
β6 ∈ (5). The ideals E, F and G are maximal. From the following tables, we have a BL-structure on
Id(Z30[X]/

(
X2)):

→ O A B C D E F G R
O R R R R R R R R R
A A R R R R R R R R
B O G R G G R R G R
C O F F R F R F R R
D O E E E R E R R R
E O D F G D R F G R
F O C E C G E R G R
G O B B E F E F R R
R O A B C D E F G R

� O A B C D E F G R
O O O O O O O O O O
A O O A A A A A A A
B O A B A A B B A B
C O A A C A C C A C
D O A A A D A D D D
E O A B C A E A A E
F O A B A D A F A F
G O A A C D A A G G
R O A B C D E F G R

.

Example 8. In Theorem 4, we consider p = 2, r = 2. The ideals in (Z4,+, ·) are (0) ⊂ (2) ⊂ Z4
and Z4 is a local ring. The ring Z4[X]/

(
X2) has four ideals: O = (0) ⊂ A = (X) ⊂ B =

(αX + β) ⊂ E = Z4[X]/
(
X2), with α ∈ Z4, β ∈ (2). From the following tables, we have a

BL-structure for Id(Z4[X]/
(
X2)):

→ O A B E
O E E E E
A A E E E
B O B E E
E O A B E

� O A B E
O O O O O
A O O A A
B O A A B
E O A B E

.

Example 9. In Theorem 4, we consider p = 2, r = 3. The ideals in (Z8,+, ·) are (0) ⊂ (4) ⊂
(2) ⊂ Z8. The ring Z8[X]/

(
X2) has five ideals: O = (0) ⊂ A = (X) ⊂ B = (αX + β) ⊂ C =

(γX + δ) ⊂ E = Z8[X]/
(
X2), with α, γ ∈ Z8, β ∈ (4) and δ ∈ (2). From the following tables,

we have a BL-structure for Id(Z8[X]/
(
X2)):

→ O A B C E
O E E E E E
A A E E E E
B O B E E E
C O B B E E
E O A B C E

� O A B C E
O O O O O O
A O O A A A
B O A A A B
C O A A B C
E O A B C E

.
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In the following, we present a way to generate finite BL-algebras using the ordinal
product of residuated lattices.

We recall that, in [10], Iorgulescu studied the influence of the conditions (prel) and
(div) on the ordinal product of two residuated lattices.

It is known that if L1 = (L1,∧1,∨1,�1,→1, 01, 11) and L2 = (L2,∧2,∨2,�2,→2,
02, 12) are two residuated lattices such that 11 = 02 and (L1\{11}) ∩ (L2\{02}) = #, then
the ordinal product of L1 and L2 is the residuated lattice L1 �L2 = (L1 ∪ L2,∧,∨,�,→,
0, 1) where

0 = 01 and 1 = 12,

x ≤ y if (x, y ∈ L1 and x ≤1 y) or (x, y ∈ L2 and x ≤2 y) or (x ∈ L1 and y ∈ L2) ,

x → y =

⎧⎨⎩
1, if x ≤ y,

x →i y, if x � y, x, y ∈ Li, i = 1, 2,
y, if x � y, x ∈ L2, y ∈ L1\{11}.

x� y =

⎧⎨⎩
x�1 y, if x, y ∈ L1,
x�2 y, if x, y ∈ L2,

x, if x ∈ L1\{11} and y ∈ L2.

The ordinal product is associative, but is not commutative; see [10].

Proposition 5 ([10] (Corollary 3.5.10)). Let L1 and L2 be BL-algebras.
(i) If L1 is a chain, then the ordinal product L1 �L2 is a BL-algebra;
(ii) If L1 is not a chain, then the ordinal product L1 � L2 is only a residuated lattice

satisfying (div) condition.

Remark 7. (i) An ordinal product of two BL-chains is a BL-chain. Indeed, using the definition of
implication in an ordinal product for every x, y we have x → y = 1 or y → x = 1;

(ii) An ordinal product of two BL-algebras is a BL-algebra that is not an MV-algebra. Indeed,
if L1 and L2 are two BL-algebras (the first being a chain), using Proposition 5, the residuated lattice
L1 � L2 is a BL-algebra in which we have (11)

∗∗ = (11 → 01)
∗ = (01)

∗ = 01 → 01 = 1 =
12 �= 11. Thus, L1 �L2 is not an MV-algebra.

For a natural number n ≥ 2, we consider the decomposition (which is not unique) of n
in factors greater than 1. We only count the decompositions one time with the same terms,
but with other orders of terms in the product. We denote by π(n) the number of all such
decompositions. Obviously, if n is prime, then π(n) = 0.

We recall that an MV-algebra is finite iff it is isomorphic to a finite product of MV-
chains; see [17]. Furthermore, for two MV-algebras L1 and L2, the algebras L1 × L2 and
L2 × L1 are isomorphic; see [18]. Using these results, in [15], we showed that for every
natural number n ≥ 2, there are π(n) + 1 non-isomorphic MV-algebras with n elements of
which only one is a chain.

Example 10. For n = 6, we have 6 = 2 · 3 = 3 · 2; thus, π(6) = 1. Therefore, there are
π(6) + 1 = 2 types (up to an isomorphism) of MV-algebras with six elements.

In Table 1, we briefly describe a way of generating finite MV-algebras M with 2 ≤ n ≤ 8
elements using commutative rings; see [15].
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Table 1. Rings that Generate MV-algebras of order n, 2 ≤ n ≤ 8.

|M|= n No. of
MVs

Rings that Generate MV

n = 2 1 Id(Z2) (chain)

n = 3 1 Id(Z4) (chain)

n = 4 2 Id(Z8) (chain) and Id(Z2 ×Z2)

n = 5 1 Id(Z16) (chain)

n = 6 2 Id(Z32) (chain) and Id(Z2 ×Z4)

n = 7 1 Id(Z64) (chain)

n = 8 3 Id(Z128) (chain) and Id(Z2 ×Z8) and Id(Z2 ×Z2 ×Z2)

Using the construction of the ordinal product, Proposition 5 and Remark 7, we can
generate BL-algebras (which are not MV-algebras) using commutative rings.

Example 11. In [15] we show that there is one MV-algebra with three elements (up to an isomor-
phism); see Table 1. This MV-algebra is isomorphic to Id(Z4) and is a chain. To generate a BL-chain
with three elements (which is not an MV-algebra) using the ordinal product, we must consider only
the MV-algebra with two elements (which is, in fact, a Boolean algebra). In the commutative ring
(Z2,+, ·), the ideals are Id(Z2) = {{0̂}, Z2}. Obviously, (Id(Z2),∩,+,⊗ →, 0 = {0}, 1 = Z2)
is an MV-chain. Now we consider two MV-algebras isomorphic with Id(Z2) denoted L1 = (L1 =
{0, a},∧,∨,�,→, 0, a) and L2 = (L2 = {a, 1},∧,∨,�,→, a, 1). Using Proposition 5, we can
construct the BL-algebra L1 �L2 = (L1 ∪ L2 = {0, a, 1},∧,∨,�,→, 0, 1) with 0 ≤ a ≤ 1 and
the following operations:

→ 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

and

� 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

,

obtaining the same BL-algebra of order 3 as in Example 6.
Obviously, L1 �L2 is a BL-chain that is not an MV-chain, since, for example, a∗∗ = 1 �= a.

Example 12. To generate the non-linearly ordered BL-algebra with five elements from Example 3,
we consider the commutative rings (Z2,+, ·) and (Z2 ×Z2,+, ·). For Z2 ×Z2 = {

(
0̂, 0̂

)
,
(

0̂, 1̂
)

,(
1̂, 0̂

)
,
(

1̂, 1̂
)
}, we obtain the lattice Id(Z2 ×Z2) = {

(
0̂, 0̂

)
, {

(
0̂, 0̂

)
,
(

0̂, 1̂
)
}, {

(
0̂, 0̂

)
,
(

1̂, 0̂
)
},

Z2 ×Z2} = {O, R, B, E}, which is an MV-algebra (Id(Z2 ×Z2),∩,+,⊗ →, 0 = {
(

0̂, 0̂
)
}, 1 =

Z2 ×Z2). In Id(Z2 ×Z2), we have the following operations:

→ O R B E
O E E E E
R B E B E
B R R E E
E O R B E

,

⊗ = ∩ O R B E
O O O O O
R O R O R
B O O B B
E O R B E

and

+ O R B E
O O R B E
R R R E E
B B E B E
E E E E E

.

If we consider two MV-algebras isomorphic with (Id(Z2),∩,+,⊗ →, 0 = {0}, 1 = Z2) and
(Id(Z2 ×Z2),∩,+,⊗ →, 0 = {

(
0̂, 0̂

)
}, 1 = Z2 × Z2), denoted by L1 = (L1 = {0, c},∧1,∨1,

�1,→1, 0, c) and L2 = (L2 = {c, a, b, 1},∧2,∨2,�2,→2, c, 1), then, using Proposition 5, we
generate the BL-algebra L1 �L2 = (L1 ∪ L2 = {0, c, a, b, 1},∧,∨,�,→, 0, 1) from Example 3.
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Remark 8. Using the model from Examples 11 and 12 for two BL-algebras L1 and L2 we can use
these algebras to obtain two BL-algebras L′1 and L′2, isomorphic with L1 and L2, respectively, that
satisfy the conditions imposed by the ordinal product.

We denote by L1 �L2 the ordinal product L′1 �L′2.

From Proposition 5 and Remark 7, we deduce the following.

Theorem 5. (i) To generate a BL-algebra with n ≥ 3 elements as an ordinal product L1 �L2 of
two BL-algebras L1 and L2 we have the following possibilities:

L1 is a BL-chain with i elements and L2 is a BL-algebra with j elements

and
L1 is a BL-chain with j elements and L2 is a BL-algebra with i elements

or
L1 is a BL-chain with k elements and L2 is a BL-algebra with k elements

for i, j ≥ 2, i + j = n + 1, i < j and k ≥ 2, k = n+1
2 ∈ N,

(ii) To generate a BL-chain with n ≥ 3 elements as the ordinal product L1 � L2 of two
BL-algebras L1 and L2, we have the following possibilities:

L1 is a BL-chain with i elements and L2 is a BL-chain with j elements

and
L1 is a BL-chain with j elements and L2 is a BL-chain with i elements

or
L1 is a BL-chain with k elements and L2 is a BL-chain with k elements

for i, j ≥ 2, i + j = n + 1, i < j and k ≥ 2, k = n+1
2 ∈ N.

We make the following notations:

BLn = the set of BL-algebras with n elements;

BLn(c) = the set of BL-chains with n elements;

MVn = the set of MV-algebras with n elements;

MVn(c) = the set of MV-chains with n elements.

Theorem 6. (i) Finite BL-algebras (up to an isomorphism) that are not MV-algebras with 3 ≤ n ≤
5 elements can be generated using the ordinal product of BL-algebras.

(ii) The number of non-isomorphic BL-algebras with n elements (with 2 ≤ n ≤ 5) is

|BL2| = |MV2| = π(2) + 1,

|BL3| = |MV3|+ |BL2| = π(3) + π(2) + 2,

|BL4| = |MV4|+ |BL3|+ |BL2| = π(4) + π(3) + 3 · π(2) + 4,

|BL5| = |MV5|+ |BL4|+ |BL3|+ |BL2| =
= π(5) + π(4) + 2 · π(3) + 5 · π(2) + 8.

Proof. From Proposition 5 and Remark 7, we remark that using the ordinal product of two
BL-algebras, we can generate only BL-algebras that are not MV-algebras.

We generate all BL-algebras with n elements (2 ≤ n ≤ 5) that are not MV-algebras.
Case n = 2.
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We obviously only have a BL-algebra (up to an isomorphism) isomorphic with

(Id(Z2),∩,+,⊗ →, 0 = {0}, 1 = Z2).

In fact, this residuated lattice is a BL-chain and is the only MV-algebra with 2 elements.
We deduce that

|MV2| = |BL2| = π(2) + 1 = 1

|MV2(c)| = |BL2(c)| = 1.

Case n = 3.
Using Theorem 5, to generate a BL-algebra with 3 elements as an ordinal product

L1 �L2 of two BL-algebras L1 and L2, we must consider:

L1 is a BL-chain with two elements and L2 is a BL-algebra with two elements.

Since there is only one BL-algebra (up to an isomorphism) with two elements and it is a
chain, we obtain the BL-algebra

Id(Z2)� Id(Z2),

which is a chain.
We deduce that

|MV3| = π(3) + 1 and |BL3| = |MV3|+ 1 · |BL2| = π(3) + π(2) + 2 = 2

|MV3(c)| = 1 and |BL3(c)| = |MV3(c)|+ 1 = 1 + 1 = 2.

We remark that |BL3| = |MV3|+ |BL2|.
Case n = 4.
Using Theorem 5, to generate a BL-algebra with four elements as the ordinal product

L1 �L2 of two BL-algebras L1 and L2 ,we must consider:

L1 is a BL-chain with two elements and L2 is a BL-algebra with three elements;

L1 is a BL-chain with three elements and L2 is a BL-algebra with two elements.

We obtain the following BL-algebras:

Id(Z2)� Id(Z4) and Id(Z2)� (Id(Z2)� Id(Z2))

and
Id(Z4)� Id(Z2) and (Id(Z2)� (Id(Z2))� Id(Z2).

Since � is associative, we obtain three BL-algebras (up to an isomorphism) that are
chains with Remark 7.

We deduce that
|MV4| = π(4) + 1

|BL4|=|MV4|+ 1 · |BL3|+ 2 · |BL2| − 1=π(4) + π(3) + 3 · π(2) + 4=5

|MV4(c)| = 1 and |BL4(c)| = |MV3(c)|+ 3 = 1 + 3 = 4.

We remark that |BL4| = |MV4|+ |BL3|+ |BL2|.
Case n = 5.
To generate a BL-algebra with five elements as the ordinal product L1 �L2 of two

BL-algebras L1 and L2, we must consider:

L1 is a BL-chain with two elements and L2 is a BL-algebra with four elements;

L1 is a BL-chain with four elements and L2 is a BL-algebra with two elements;
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L1 is a BL-chain with three elements and L2 is a BL-algebra with three elements.

We obtain the following BL-algebras:

Id(Z2)� Id(Z8), Id(Z2)� Id(Z2 ×Z2), Id(Z2)� [Id(Z2)� Id(Z4)],

Id(Z2)� [Id(Z4)� Id(Z2)] and Id(Z2)� [Id(Z2)� (Id(Z2)� Id(Z2))]

and

Id(Z8)� Id(Z2), [Id(Z2)� Id(Z4)]� Id(Z2),

[Id(Z4)� Id(Z2)]� Id(Z2) and [Id(Z2)� (Id(Z2)� Id(Z2))]� Id(Z2)

and

Id(Z4)� Id(Z4), [Id(Z2)� Id(Z2)]� [Id(Z2))� Id(Z2)]

Id(Z4)� [Id(Z2)� Id(Z2)] and [Id(Z2)� Id(Z2)]� Id(Z4)

Since � is associative, Id(Z2) � [Id(Z4) � Id(Z2)] = [Id(Z2) � Id(Z4)] � Id(Z2),
Id(Z2) � [Id(Z2) � (Id(Z2) � Id(Z2))] = [Id(Z2) � (Id(Z2) � Id(Z2))] � Id(Z2)
= [Id(Z2)� Id(Z2)]� [Id(Z2))� Id(Z2)], [Id(Z4)� Id(Z2)]� Id(Z2) = Id(Z4)� [Id(Z2)
�Id(Z2)] and Id(Z2)� (Id(Z2) �Id(Z4)) = [Id(Z2)� Id(Z2)]� Id(Z4).

We obtain eight BL-algebras of which seven are chains from Remark 7.
We deduce that

|MV5|=π(5) + 1 = 1 and |BL5|=9 = |MV5|+ |BL4|+ |BL3|+ |BL2|

|MV5(c)| = 1 and |BL5(c)| = 8.

Table 2 presents a basic summary of the structure of BL-algebras L with 2 ≤ n ≤ 5
elements:

Table 2. The structure of BL-algebras of order n, 2 ≤ n ≤ 5.

|L|= n No. of BL-alg Structure

n = 2 1 {Id(Z2) (chain, MV)

n = 3 2
{

Id(Z4) (chain, MV)
Id(Z2)� Id(Z2) (chain)

n = 4 5

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Id(Z8) (chain, MV)
Id(Z2 ×Z2) (MV)

Id(Z2)� Id(Z4) (chain)
Id(Z4)� Id(Z2) (chain)

Id(Z2)� (Id(Z2)� Id(Z2)) (chain)

n = 5 9

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Id(Z16) (chain, MV)
Id(Z2)� Id(Z8) (chain)
Id(Z2)� Id(Z2 ×Z2)

Id(Z2)� (Id(Z2)� Id(Z4)) (chain)
Id(Z2)� (Id(Z4)� Id(Z2)) (chain)

Id(Z2)� (Id(Z2)� (Id(Z2)� Id(Z2))) (chain)
Id(Z8)� Id(Z2) (chain)

(Id(Z4)� Id(Z2))� Id(Z2) (chain)
Id(Z4)� Id(Z4) (chain)

Finally, Table 3 present a summary of the number of MV-algebras, MV-chains, BL-
algebras and BL-chains with n ≤ 5 elements obtained used commutative rings:
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Table 3. A summary of the number of the obtained BL-algebras.

n = 2 n = 3 n = 4 n = 5

MV-algebras 1 1 2 1

MV-chains 1 1 1 1

BL-algebras 1 2 5 9

BL-chains 1 2 4 8

5. Conclusions

It is known that BL-algebras are a particular kind of residuated lattices.
In this paper, we studied rings whose ideals have a BL-algebra structure and we used

some commutative rings to build certain finite BL-algebras by passing to the ideal lattice.
Using the results obtained in this paper, in further research, we will try to describe a

recursive algorithm to construct all isomorphism classes of finite BL-algebras of a given
size. Furthermore, we hope to obtain important results about BL-rings by studying the
binary block codes associated with a BL-algebra in further research.

Author Contributions: Conceptualization, C.F. and D.P.; methodology, C.F. and D.P.; software,
C.F. and D.P.; validation, C.F. and D.P.; formal analysis, C.F. and D.P.; investigation, C.F. and D.P.;
resources, C.F. and D.P.; data curation, C.F. and D.P.; writing—original draft preparation, C.F. and
D.P.; writing—review and editing, C.F. and D.P.; visualization, C.F. and D.P.; supervision, C.F. and
D.P.; project administration, C.F. and D.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to the anonymous reviewers and editor for
their careful reading of the manuscript and many valuable remarks and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dilworth, R.P. Abstract residuation over lattices . Bull. Am. Math. Soc. 1938, 44, 262–268. [CrossRef]
2. Ward, M.; Dilworth, R.P. Residuated lattices. Trans. Am. Math. Soc. 1939, 45, 335–354. [CrossRef]
3. Blair, R.L. Ideal lattices and the structure of rings. Trans. Am. Math. Soc. 1953, 75, 136–153. [CrossRef]
4. Belluce, L.P.; Di Nola, A. Commutative rings whose ideals form an MV-algebra. Math. Log. Quart. 2009, 55, 468–486. [CrossRef]
5. Heubo-Kwegna, O.A.; Lele, C.; Nganou, J.B. BL-rings. Log. J. IGPL 2016, 26, 290–299. [CrossRef]
6. Tchoffo Foka, S.V.; Tonga, M. Rings and residuated lattices whose fuzzy ideals form a Boolean algebra. Soft Comput. 2022, 26,

535–539. [CrossRef]
7. Hájek, P. Metamathematics of Fuzzy Logic. In Trends in Logic-Studia Logica Library 4; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 1998.
8. Cignoli, R.; D’Ottaviano, I.M.L.; Mundici, D. Algebraic Foundations of Many-Valued Reasoning. In Trends in Logic-Studia Logica

Library 7; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
9. Chang, C.C. Algebraic analysis of many-valued logic. Trans. Am. Math. Soc. 1958, 88, 467–490. [CrossRef]
10. Iorgulescu, A. Algebras of Logic as BCK Algebras; A.S.E.: Bucharest, Romania, 2009.
11. Belohlavek, R.; Vychodil, V. Residuated lattices of size n ≤ 12. Order 2010, 27, 147–161. [CrossRef]
12. Turunen, E. Mathematics Behind Fuzzy Logic; Physica-Verlag: Heidelberg, Germany, 1999.
13. Busneag, D.; Piciu, D. Lectii de Algebra; Ed. Universitaria: Craiova, Romania, 2002.
14. Di Nola, A.; Lettieri, A. Finite BL-algebras. Discret. Math. 2003, 269, 93–112. [CrossRef]
15. Flaut, C.; Piciu, D. Connections between commutative rings and some algebras of logic. Iran. J. Fuzzy Syst. 2022, 19, 93–110.
16. Lam, T.Y. A first course in noncommutative rings. In Graduate Texts in Mathematics, 2nd ed.; Springer: Berlin/Heidelberg, Germany,

2001.
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Advances in Singular and Degenerate PDEs

Salvatore Fragapane

University of the Studies of Rome “La Sapienza”, 00161 Rome, Italy; salvatore.fragapane@uniroma1.it

Abstract: This review was written with a dual purpose; on the one hand, to collect all the topics dealt
with during the conference “Advances in Singular and Degenerate PDEs”. For this reason, in the first
part of this work, the abstracts of the lectures during the workshop are shown. On the other hand, as
well as the workshop, this work is a way to celebrate the career of Professor Maria Agostina Vivaldi.
Professor Vivaldi’s long career and her work are hence highlighted in this work; moreover, some
of the more recent results obtained by Professor Vivaldi about problems involving p-Laplace-type
operators in fractal and pre-fractal boundary domains are here illustrated and discussed.
In conclusion, some new recent outcomes and new perspectives are outlined.

Keywords: partial differential equations; singular and degenerate operators

MSC: 35J92; 35J70; 35J75

1. Introduction

The conference “Advances in Singular and Degenerate PDEs” took place on
16–17 September 2021 in the University of the Studies of Rome “La Sapienza”, at the
Department of Basis and Applied Science for Engineering (S.B.A.I., in the following) be-
longing to the Faculty of Civil and Industrial Engineering. The Scientific Committee was
formed by D. Andreucci, R. Capitanelli, D. Giachetti, and M.R. Lancia, and the Organizing
Committee was formed by D. Andreucci, R. Capitanelli, S. Creo, S. Fragapane, D. Gia-
chetti, and M.R. Lancia (https://sites.google.com/uniroma1.it/advances/home, accessed
on 1 November 2022).

The conference was sponsored by GNAMPA (“Gruppo Nazionale per l’Analisi Matematica,
la Probabilità e le loro Applicazioni”) and by the University of the Studies of Rome “La Sapienza”.

During the workshop, all the participants had the opportunity to listen to very-high-
level lectures of the invited speakers (see Section 2).

Participation was extensive both in person and online. The presence of so many
speakers and participants gave a strong contribution to the success of the event and
allowed a huge exchange of opinions and ideas among all. Moreover, this was a way to
start new collaborations and research activities. In particular, many Ph.D. students and
young researchers joined the workshop.

The conference was also a way to celebrate the long career of Professor Maria Agostina
Vivaldi (see Section 3). In addition, some of the most recent results achieved by Professor
Vivaldi, in collaboration with other authors, about problems involving p-Laplace-type
operators in “bad domains”, that is, domains having fractal or pre-fractal boundary, are
reported and illustrated (see Section 4). In conclusion, some new perspectives and open
problems have arisen thanks to these research activities, pointing out the new results
reached following these new directions and their contribution and importance in the
current scenario (see Section 5).

2. Lectures of the Conference

In this section, the titles and the abstracts of the lectures given by the invited speakers
are listed.
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ISABEAU BIRINDELLI—University of the Studies of Rome “La Sapienza”
Truncated Laplacian, a Class of Very Degenerate Operators

Abstract. I will show how the lack of ellipticity leads to surprising phenomena both in the regularity
of the solutions, in particular near the boundary, and in the validity of the maximum principle.

LUCIO BOCCARDO—University of the Studies of Rome “La Sapienza”
Real Analysis Methods in Some Minimization Problems for Integral Functionals of

Calculus of Variations

Abstract. Recent results. We deal with integral problems where the functional J is defined in
W1,p

0 (Ω), p > 1, as

J(v) =
∫

Ω
j
(
x,∇v)−

∫
Ω

f v,

under usual assumptions on j, Ω and f (like f ∈ L(∗)′(Ω)).
If we also assume the strict convexity of j(x, ξ) with respect to ξ, then it is proved in [1] that

the minimizing sequences {un} of J are compact in W1,p
0 (Ω). The main point is the proof of the

convergence in measure of ∇un(x).
If we consider the minimization problems

un ∈ Cn : J(un) ≤ J(v), ∀ v ∈ Cn

and
u0 ∈ C0 : J(u0) ≤ J(v), ∀ v ∈ C0,

the strong convergence in W1,p
0 (Ω) of the sequence {un} to u0 on the assumption that the sequence

{Cn} Mosco-converges to C0. is proved in [2].
Let now f ∈ L1(Ω). A measurable function u is a T-minimum for the functional J if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ti(u) ∈ W1,p
0 (Ω), ∀ i ∈ R+ :

∫
{|u−ϕ|≤i}

j(x, Du)−
∫

Ω
f (x) Ti[u− ϕ] ≤

∫
{|u−ϕ|≤i}

j(x, Dϕ), ∀ i ∈ R+,

∀ ϕ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

(1)

Existence and uniqueness of T-minima are proven in [3].
In [4] is proved that there exists a unique measurable function u such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u ≥ ψ a.e. in Ω, Ti(u) ∈ W1,p
0 (Ω) , ∀i > 0,

∫
Ω

j(x, D{ϕ + Ti[u− ϕ]})−
∫

Ω
f (x) Ti[u− ϕ] ≤

∫
Ω

j(x, Dϕ), ∀ i ∈ R+,

∀ ϕ ∈ W1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ ψ.

(2)

Moreover, if K(ψn) converges to K(ψ0) in the sense of Mosco, then, for every j > 0, Tj(un)

converges to Tj(u0) weakly in W1,p
0 (Ω).

Work in progress: p = 1. Let v ∈ L1(Ω),

I(v) =
∫

Ω

√
1 + |v|2 −

∫
Ω

f (x) v, ‖ f ‖
L∞(Ω)

< 1.

Note that the minimizing sequences {un} of J are bounded in L1(Ω). Then:

• it is proved that {un} is a Cauchy sequence in the distance equivalent to the convergence in measure;
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• thanks to Ekeland’s principle, the following inequality holds

I(un) ≤ I(w) +
√

εn

∫ 1

0
|un − w| , ∀ w ∈ L1,

then this inequality allows us to show the equi-integrability of the sequence {un};
• the proof of the last step hinges on the assumption that I does not depend on ∇v.

ITALO CAPUZZO DOLCETTA—University of the Studies of Rome “La Sapienza”
Invariant Cones for Linear Elliptic Systems with Gradient Coupling

Abstract. I will discuss first the validity of the weak Maximum Principle (wMP) for vector
functions u = (u1, . . . , um) satisfying systems of the form

Au + Cu ≥ 0

in a bounded open set Ω of Rn, where A is a diagonal matrix of linear degenerate second order
elliptic operators and C is a cooperative matrix.
Next, some counterexamples to the validity of (wMP) are discussed when non diagonal couplings in
first order partial derivatives of the ui appear in the system. In this more general setting I will show,
through a suitable reduction to a nonlinear scalar equation of Bellman type, that some algebraic
condition on the structure of gradient couplings and a cooperativity condition on the matrix of zero
order couplings guarantee the existence of invariant cones in the sense of Weinberger.
The presentation is mostly based on the papers [5,6].

PIERLUIGI COLLI—University of Pavia
Analysis, Estimates and Control for a Cahn-Hilliard Type System with

Bio-Medical Applications

Abstract. The talk is concerned with the study of a complex PDE system related to four-species
tumor growth models. The system consists of a Cahn-Hilliard equation for the tumor cell fraction
coupled to a reaction-diffusion equation for a variable representing the nutrient concentration.
Existence of solutions is discussed via an approximation of the system, that is done by adding two
further viscosity terms with small coefficients, and then performing the asymptotic analysis as such
coefficients tend to zero. Error estimates can also be proved. A distributed optimal control problem
is addressed, in which the distributed control u plays in the right-hand side of the reaction-diffusion
equation and can be interpreted as a nutrient supply or a medication, while the cost functional aims
to keep the tumor cell fraction under control during the evolution.

GIANNI DAL MASO—SISSA Trieste
New Results on the Jerky Crack Growth in Elasto-Plastic Materials

Abstract. In the framework of a model for the quasistatic crack growth in elasto-plastic homogeneous
materials in the planar case, we study the properties of the length of the crack as a function of time.
We prove that, under suitable technical assumptions on the crack path, this monotone function
is a pure jump function. Under stronger assumptions we prove also that the number of jumps is finite.

MARCO DEGIOVANNI—Catholic University of the Sacred Heart of Brescia
Critical Points for Functionals without Upper Growth Condition on the Principal Part

Abstract. The talk is devoted to variational methods applied to functionals of the calculus of vari-
ations. We prove the existence of multiple critical points for functionals whose principal part is
not subjected to any upper growth condition. For this purpose, non-smooth variational methods
are applied.

PAOLO MARCELLINI—University of Studies of Florence
Regularity for a Class of Non-Uniformly Elliptic Equations and Systems

Abstract. We give some regularity results for a class of non-uniformly elliptic equations and systems,
as well as some examples and remarks about cases with possibly not regular weak solutions. Part
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of the material has been published on-line in August-September 2021 and it can be found in the
papers [7,8].

UMBERTO MOSCO—Worcester Polytechnic Institute
Un saluto a Maria Agostina

Abstract. I will introduce the scientific personality of Maria Agostina Vivaldi and sketch the topic of
a new research which we plan to carry out together.

CARLO SBORDONE—University of Naples “Federico II”
On the Equation div u = f in the Plane and Dual Sobolev Inequalities

Abstract. Maximal integrability of the gradient ∇ϕ of the solution ϕ ∈ W1
0 L2,∞(Q0), Q0 = [0, 1]2

to quasilinear elliptic equation

Lϕ = div a(x,∇ϕ) = f f ∈ X ⊂ L1(Q0) (3)

with measurable ingredients a(·, z), for z ∈ R2 and a(x, ·) with linear growth at infinity for
a.e. x ∈ Q0, is studied. For X = L(1,r)(log L)δ, Z = L2,r(log L)δ Lorentz-Zygmund spaces,
1 ≤ r < ∞, we obtain

‖∇ϕ‖Z ≤ c‖ f ‖X

and X is optimal among all rearrangement invariant Banach function subspaces of L1(Q0).
In the special case a(x, z) = z we compare regularity of ∇ϕ and ∇ψ, where u is given in
W1X(Q0;R2); ψ ∈ W1

0 L2,∞(Q0) is the solution to

Δψ = div u,

with
‖∇ψ‖Y ≤ c‖u‖Y

and Y is the sharp rearrangement invariant target of X in Sobolev embedding

W1X ↪→ Y.

The gap of regularity of ∇ψ and ∇ϕ is related to the solvability of

div u = f ,

with
‖u‖Y ≤ C‖ f ‖X

and the validity of dual Sobolev embedding

W1(Y�) ↪→ X�.

Work in cooperation with L. D’Onofrio, G. Manzo, R. Schiattarella.

MICHAEL STRUWE—ETH Zurich
Normalized Harmonic Map Flow

Abstract. Finding non-constant harmonic 3-spheres for a closed target manifold N is a prototype of a
super-critical variational problem. In fact, the direct method fails, as the infimum of Dirichlet energy
in any homotopy class of maps from the 3-sphere to any closed N is zero; moreover, the harmonic
map heat flow may blow up in finite time, and even the identity map from the 3-sphere to itself is
not stable under this flow. To overcome these difficulties, we propose the normalized harmonic map
heat flow as a new tool, and we show that for this flow the identity map from the 3-sphere to itself
now, indeed, is stable; moreover, the flow converges to a harmonic 3-sphere also when we perturb
the target geometry. While our results are strongest in the perturbative setting, we also outline a
possible global theory, which may open up a rich research agenda.
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CRISTINA TROMBETTI—University of Naples “Federico II”
Comparison Results for Solutions to Elliptic Problems with Mixed

Boundary Conditions

Abstract. Sharp estimates for solutions to Elliptic Problems with Dirichlet and Neumann boundary
conditions are well established results since decades. So far not many results have been obtained in
the case of Robin (or mixed) boundary conditions, and in this talk, we shall investigate some open
questions related to Talenti-type estimates and Faber-Krahn inequality.

BOGDAN M. VERNESCU—Worcester Polytechnic Institute
Asymptotic Analysis of PDEs on Unbounded Domains

Abstract. The study of PDEs in long cylindrical domains can be approximated by using the solutions
of the corresponding PDEs in infinite cylindrical domains and controlling the solutions’ decay at in-
finity. For periodic heterogeneous materials in domains that become unbounded in one direction, the
problems become two-parameter limit problems, as they depend both on the characteristic period size
and the cylinder length. We will consider a few examples of homogenization in infinite cylindrical
domain for elliptic PDEs with or without mild singularities.

VINCENZO VESPRI- University of the Studies of Florence
A Survey about Anisotropic Parabolic Operators

Abstract. We will speak about evolution anisotropic operators of the type

ut =
N

∑
i=1

Div(|Du|pi−2Du)

The first results on such class operators were found in the eighties, but still, especially for the rough
regularity, the theory is incomplete and fragmented.

GIANLUCA VINTI—University of the Studies of Perugia
Some Results on Approximation and Applications

Abstract. I will present some approximation results for a family of operators and discuss some applications.

3. Professor Vivaldi’s Career

Professor Maria Agostina Vivaldi graduated in Mathematics with Professor F. Scarpini
in 1972 at Faculty of Mathematics, Physical and Natural Sciences at the University of the
Studies of Rome “La Sapienza” with magna cum laude.

From 1976 to 1983, she was a Lecturer of Mathematical Analysis at Faculty of Mathe-
matics, Physical and Natural Sciences at the University of the Studies of Rome “La Sapienza”
and Assistant of Professor G. Fichera (from 1978 to 1983).

From 1983 to 1987, she was an Associate Professor at Faculty of Mathematical, Physical
and Natural Sciences at the University of the Studies of Rome “La Sapienza”.

From 1987 to October 1990, she became a Full Professor at Faculty of Mathematical, Physical
and Natural Sciences at the University of the Studies of L’Aquila and from 1 November 1990 at
Faculty of Engineering at the University of the Studies of Rome “La Sapienza”.

During her long career she held several graduate courses of Mathematical Analysis I
and II and Mathematical Methods for Engineering; moreover, she held various research-
level courses.

She was a member of examination boards, evaluation panels, and committees for
university positions and fellowships. In addition, she was an advisor of several Ph.D.
students at the University of the Studies of Rome “La Sapienza” and an opponent in final
Ph.D. discussions at other universities.

Furthermore, she was the coordinator of many research projects of the University of
the Studies of Rome “La Sapienza”, a member of several national and international research
projects, and Editor of two Special Issues [9,10].
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In 2016, Professor Maria Agostina Vivaldi was awarded the Medal of the National
Academy of Science, “of XL”, as recognition for her contributions to mathematics.

The list of her contributions ranges over various fields:

- Convex analysis;
- Calculus of variations;
- Partial differential equations;
- Numerical analysis;
- Optimization problems;
- Analysis on fractal domains.

In particular, she obtained remarkable results in the following different features con-
cerning the fields previously listed:

- On existence, uniqueness, asymptotics of solutions to variational, quasi-variational, and
nonvariational inequalities, see [11–22];

- On regularity theory, see [23–34];
- On control theory, see [35–39];
- On integro-differential operators, see [40–45];
- On degenerate operators, see [46,47];
- On analysis on irregular structures, see [48–72];
- On asymptotic analysis of singular and degenerate problems, see [73,74];
- On error estimates, see [75–77];
- On existence, uniqueness results, and coercive estimates for systems, see [33,78];
- On functional inequalities, see [79];
- On self-organized criticality structures, see [80,81].

The impact of her scientific work has been truly remarkable, and her contributions
opened several new directions of research, some of which have been studied and developed
by her students during their Ph.D. courses.

4. Professor Vivaldi’s Research

As we pointed out in the previous section, during her career, Professor Vivaldi’s
research activity focused on many different fields and topics. Observing her long list of
papers, it is immediately highlighted that “bad domains”, which are fractal and pre-fractal
domains and domains having fractal and pre-fractal boundary, in this case, has been widely
involved; in particular, it is evident that they have been among the protagonists of her
research, at least since 1999 (see [48]). In actuality, domains with angles were already
considered in her previous works.

From then on, many new results were obtained by Professor Vivaldi in collaboration
with other authors. Moreover, it is important to underline how these studies opened new
research directions and posed new interesting questions and open problems. For example,
the Ph.D. thesis of the author developed issues involving some of the topics discussed here,
and where the domains considered have as boundary the Koch curve or the corresponding
n-th pre-fractal approximating curve.

The following presentations deal principally with the results obtained in the frame-
work of the topics just mentioned.

4.1. Domains and Operators

Before talking about the principal themes and results which were obtained by Professor
Vivaldi’s work, it is appropriate to discuss, at least briefly, the operators and the so-called
“bad domains” involved.

As is well known, since their introduction due to Mandelbrot (see [82,83]), fractals
have shown all their power in providing models to so many applied problems; more
precisely, they are very powerful tools to describe nature in a more appropriate way, but
they are useful in many other situations. Indeed, irregular structures, profiles, and shapes
of natural objects can be represented in a new manner, and decidedly more accurate with
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respect to what the classical shapes of geometry allow. To obtain an idea of a situation in
which the description allowed by fractal geometry shows all its potential, it is sufficient
to think about the pulmonary alveoli. Their high branched structure can be difficult to
describe, or at least surely nontrivial, with the classical shapes of geometry; on the contrary,
the self-similar structure of some fractals, such as the Koch curve for instance, can allow
easier modeling of such types of situations. Many other examples are provided by plants
(Roman broccoli, ferns, etc.). In a physical framework, they lend themselves very well to
those cases where a mathematical description of phenomena in which the surface effects
are prevalent on the volume is required. All this makes it clear as to why and how they
find applications in so many fields, such as physics, biology, medicine, engineering, etc.

Together with fractals, even p-Laplace-type operators occupy a prominent place in Pro-
fessor Vivaldi’s research. More precisely, the operators here discussed have the following
general structure:

Ap(u) = −Div((k2 + |∇u|2) p−2
2 ∇u), with k ∈ R.

In [84] (see also the references quoted there), the origin of operator Ap(u) (in the special
case of k = 0) is identified in the union of continuity equations and nonlinear power law.

Surely, for their interesting properties, but also for their many applications, there exists
a very extensive amount of research involving p-Laplace-type operators.

In the introduction of [85], the author deals with physical motivations of the equations
treated; in particular, he shows how these operators can provide mathematical models
which are necessary for the study of various phenomena such as reaction–diffusion prob-
lems, non-Newtonian fluid mechanics, nonlinear filtration and diffusion (flows through
porous media, plasma physics, etc.). Clearly, in each of these situations the unknown func-
tion u indicates certain physical quantities, density, and velocity, respectively. Furthermore,
it is important to underline that both p and further amounts possibly involved in these
equations that are in the physical models (for instance, the hydrostatic potential identifies
different physical situations and properties of the media) are crucial to distinguish physical
properties and situations.

In this framework, both degenerate case (p > 2 and ∇u = 0) and singular case
(1 ≤ p < 2 and ∇u = 0) could occur (see, for instance, [86,87] and the references therein).
Moreover, another singular case is obtained, for example, when the source term is of the
type f (u) = 1

ua , with a > 0, and the condition u = 0 on the boundary (see, for instance,
ref. [85] and the references quoted there).

4.2. The Problem

The application examples just explained emphasize how the study of problems in-
volving the domains and the operators named before are, without a doubt, useful and
interesting. Nevertheless, the mathematical issues that arise when working with these
problems are of equal importance and need to be examined one by one. From a theoretical
point of view, these new questions were the ones which started extensive research about
these topics.

The results obtained, that we will expose in the following, concern the issues of
existence, regularity, uniqueness, and asymptotic behavior of the solutions of variational
inequalities involving the operator Ap(u), previously introduced, in domains having
fractal or pre-fractal boundary. Moreover, for these problems, the numerical analysis was
performed and some results about error estimates were obtained.

Now, in order to present some of the principal results obtained about the issues just
listed (see [72,74,77]), let us introduce the problems.

Let p ∈ (2, ∞) and let Ω be a bad domain of R2, that is, a domain having re-entrant
corners. Then, let us consider the following two-obstacle problems

find u ∈ K : ap(u, v− u)−
∫

Ω
f (v− u) ≥ 0 , ∀v ∈ K, (4)
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with
ap(u, v) =

∫
Ω
(k2 + |∇u|2) p−2

2 ∇u∇v, k ∈ R,

and
K = {v ∈ W1,p

0 (Ω) : ϕ1 ≤ v ≤ ϕ2 in Ω },

where f , ϕ1, and ϕ2 are given and belong to a suitable space.
Since, under suitable assumptions, both the operator and the convex set K satisfy

some required conditions, for p fixed, the existence and the uniqueness of the solutions to
Problem (4) can be immediately obtained (see [88]).

In the case of homogeneous Dirichlet condition, the uniqueness is guaranteed; in [89],
instead, the authors do not have such type of situation, and the uniqueness is stated,
making a suitable assumption on the datum f .

4.3. Regularity

Surely more delicate is the issue of the regularity.
After a careful discussion on the previous literature about the question, a new result

regarding regularity, for the solution to Problem (4), is given by the authors in [72].
In order to discuss this result, let us consider Problem (4).
The model domain there considered is polygonal, with only one re-entrant corner

(i.e., an angle with amplitude greater than π); however, the results hold even in the case of
a domain with any fixed number of re-entrant corner; thus, also in the case in which, as
Ω, it is taken a pre-fractal boundary domain. In particular, these types of domains, here
considered and denoted with Ωn

α , are polygonal and obtained starting with any regular
polygon (triangle, in the cases discussed) and replacing each side with the n-th pre-fractal
Koch curve Kn

α , where n ∈ N and α ∈ (2, 4) is the inverse of the contraction factor.
Figure 1 shows the initial polygon and the first two following steps in the construction

of the pre-fractal approximating domains Ωn
α .

Figure 1. Ωn
α , with α = 3 and n = 0 (the initial polygon), n = 1, n = 2.

For completeness, we specify that in [77], the authors stated a regularity result in terms
of Besov spaces for the solution to Problem (4), in the case where k = 0, directly considering
the domains Ωn

α .
Now, let us recall the following regularity result, stated in [72] (see Theorem 3.1),

whose proof follows from a series of preliminary results:

Theorem 1. Let us assume{
f ∈ W−1,p′(Ω), 1

p + 1
p′ = 1, ϕi ∈ W1,p(Ω), i = 1, 2,

ϕ1 ≤ ϕ2 in Ω, ϕ1 ≤ 0 ≤ ϕ2 in ∂Ω.
(5)

and ⎧⎪⎨⎪⎩
k �= 0
f , Ap(ϕi) ∈ L∞(Ω), i = 1, 2,
Ap(ϕ2) ∧ f ≥ 0.

(6)
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Then the solution u to double-obstacle Problem (4) belongs to the weighted Sobolev space

H2,μ(Ω), μ > 1− γ, (7)

where
Ap(u) = −Div((k2 + |∇u|2) p−2

2 ∇u),

H2,μ(Ω) =
{

u ∈ H1(Ω) :
( ∫

Ω
ρ2μ|Dβu|2

) 1
2
< ∞ for all β with |β| = 2

}
and ρ : Ω → R is the distance function from the set of the vertex of the re-entrant corners.
Moreover,

||u||H2,μ(Ω) ≤ C
{

1 + || f ||L∞(Ω) + ||Ap(ϕ1)||L∞(Ω) + ||Ap(ϕ2)||L∞(Ω)

}
. (8)

To clarify the meaning and the importance of this result, it is important to specify the
structure of γ.

γ = γ(p, χ) = 1 +
p(1− χ)2 + (1− χ)

√
p2 − χ(2− χ)(p− 2)2

2χ(2− χ)(p− 1)
, (9)

where χ ∈ (1, 2) is related to the amplitude of the re-entrant corner. γ is increasing with
respect to p and decreasing with respect to χ.
In practice, it describes how regularity is affected by the amplitude of the corner: as the
amplitude of the angle tends to 2π, the regularity of the solution will be more “damaged”.
In other words, in such case, the domain becomes “very bad”.
In addition to these results, even the boundedness of the gradient is investigated.

As specified by the authors, to their knowledge, for p > 2, there was no result about
the L2-regularity on the second derivative concerning obstacle problems. In this context,
therefore, this result acquired a certain relevance.

Moreover, together with the importance in itself, this result is very useful even in the
framework of numerical analysis. In fact, as we will illustrate in a following section, it
allowed the authors to use a particular approach (see [90]) in order to obtain sharp estimates
for the approximation error.

4.4. Error Estimates

Regarding numerical analysis, it should be specified that it is performed using the
Galerkin’s method. Starting from Problem (4), with Ω = Ωn

α , the authors obtained sharp
error estimates exploiting the regularity stated and a suitable adapted triangulation Th
(see [91]): these are fundamental ingredients in order to follow Grisvard’s approach
(see [90]).

Thus, the following FEM-problem is considered:

find u ∈ Kh : ap(u, v− u)−
∫

Ωn
α

f (v− u) � 0 ∀v ∈ Kh (10)

where

Sh,0 =
{

v ∈ Sh : v = 0 on ∂Ωn
α

}
, with Sh =

{
v ∈ C(Ω̄n

α) : v|τ is affine ∀τ ∈ Th

}
,

ap(u, v) =
∫

Ωn
α

(k2 + |∇u|2) p−2
2 ∇u∇v

and
Kh = {v ∈ Sh,0 : ϕ1,h � v � ϕ2,h in Ωn

α },

with ϕ1,h = πh ϕ1, ϕ2,h = πh ϕ2, and πh is the interpolation operator.
Hence, the following result (see Theorem 5.5 in [72]) is proved.
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Theorem 2. Let un and uh be the solutions to Problems (4) and (10) in Ωn
α , respectively. Let us

assume that {
ϕi ∈ W1,p(Ωn

α), i = 1, 2
ϕ1 ≤ ϕ2 in Ωn

α , ϕ1 ≤ 0 ≤ ϕ2 in ∂Ωn
α

, (11)

⎧⎪⎨⎪⎩
k �= 0
f , Ap(ϕi) ∈ L∞(Ωn

α), i = 1, 2
Ap(ϕ2) ∧ f ≥ 0

(12)

and
ϕi ∈ H2,μ(Ωn

α), i = 1, 2. (13)

Let Th be a triangulation adapted to the H2,μ(Ωn
α)-regularity of the solution un. Then

||un − uh||W1,t(Ωn
α)
≤ C h

r
t ||un||H2,μ(Ωn

α)
(14)

for any

r ∈
[
1,

2
√

p2 − χ(2− χ)(p− 2)2√
p2 − χ(2− χ)(p− 2)2 + (χ− 1)(p− 2)

)
, t ∈ [2, p]. (15)

Note how r also depends on p and χ.
An analogous result (see Theorem 5.7 in [72]) is stated even in the case where k = 0,

but the H2,μ-regularity of the solution has to be required in the assumptions.
For the sake of completeness, it should be specified that the just-cited theorems are an

improvement of previous error estimates stated in [77].
Figures 2 and 3 (contained in the PhD thesis of the author, see [92]) show the difference

between a classical regular and conformal triangulation and the triangulation Th adapted
to the H2,μ-regularity, on a polygon domain with a re-entrant corner.

Figure 2. “Normal” triangulation.

The previous figures show that it is important to emphasize that the triangulation
becomes finer only near the re-entrant corner (see [90,91]), that is, near the point in which
the regularity is more affected. Moreover, the comparison between the numerical analysis
performed using the two different types of meshes showed in the previous figures would
highlight how the error is lower using the adapted mesh.

4.5. Asymptotic Behavior

To conclude the discussion about the principal topics analyzed, it is necessary to talk
about the asymptotic behavior.

The fact is that considering problems involving p-Laplace-type operators, for p ∈ (2, ∞),
raises questions about what the limit problem as p → ∞ is, about existence, uniqueness,
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and regularity of its solutions, and if the solution of the problem in p converges, in some
way and in some space, to a solution of the limit problem.

Figure 3. Adapted triangulation.

This issue in which the uniqueness can have an important role was studied by the
authors in [74], and previously by many other authors for various problems (see the
references quoted in [74]). In this paper, the authors state sufficient conditions which allow
the possibility to obtain the convergence of the whole sequence of solutions up, for n both
finite and infinite, to a solution of the limit problem, which is the following:

∫
Ω

u∞(x) f (x) = max
{∫

Ω
w(x) f (x) : w ∈ K∞

}
, (16)

where
K∞ = {u ∈ W1,∞(Ω) : ϕ1 ≤ u ≤ ϕ2 in Ωα, ||∇u||L∞(Ω) ≤ 1}.

This result is an improvement of results stated in [89], where the convergence is along subse-
quences.

Together with the asymptotic behavior with respect to p, questions concerning the
behavior with respect to n also arise. Indeed, the fact is that considering a domain with
pre-fractal boundary immediately raises new questions. First, it is natural to wonder if this
domain converges, in some sense, to a certain domain and what this domain is; moreover,
similarly to the case in which p moves, the convergence of the solution with respect to n
must also be faced.

Regarding the convergence of the sets Ωn
α , it is well known (see [93]) that they converge

in the Hausdorff metric to Ωα, which is obtained, in practice, by replacing each side of
the initial polygon with the Koch curve Kα. Moreover, regarding the asymptotic behavior,
in [77], under suitable assumptions, the convergence of the solution of the problem on
the pre-fractal boundary domain to a solution of the problem in the corresponding fractal
domains is stated, in case of p fixed and finite. According to the authors of [89], even the
case of p = ∞ is analyzed, and the convergence is obtained again only along subsequences.

Figure 4 (compare with the one in [89]) shows, in a synthetic way, the convergence
results stated by the authors in [89] and then improved in [72,94].

4.6. Other Works

In the previous sections, principally, the more recent results concerning obstacle
problems involving p-Laplace-type operators on fractal and pre-fractal boundary domains
were recalled.
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Figure 4. Summary of the convergence. The subscripts refer to p and the steps n of the pre-farctal
approximating domains, respectively.

Moving further back in time, it is possible to find many other contributions that
were inspired by Professor Vivaldi’s work (see [19–21,37,44,46,52,53,55,56,59]) and from
the collaborations of Professor Vivaldi and different remarkable authors. Among that
carried out in collaboration, we recall, for instance, the following subjects and papers, again
connected with the fractal framework:

- The new approach to Robin problems on fractal domains in the framework of insulat-
ing layers proposed by the author in [61] (see also the references therein).

- The vanishing viscosity approach to the construction of dynamical fractals of the
so-called nested type in the plane type as collapsing thin two-dimensional manifolds,
presented by the authors in [60] (see also the references therein), which is new.

- A problem consisting of two equations of the second order, which are coupled by
a second-order transmission equation on the layer, firstly considered by the author
in [50] (see also the references quoted there) and the proof, by the same author, in [48],
that the domain of the Dirichlet form on the Koch curve K is the space Lipα,D(2, ∞, K),
where D = α is the Hausdorff dimension of K.

5. Perspectives and Open Problems

In the previous section, some of the principal results concerning the issues connected to
prototype Problem (4) and its related problems, obtained by Professor Vivaldi together with
other authors, was highlighted; moreover, anticipations of some further results developed
by other authors were given.

It should be remembered that, in some case, the answers obtained were in themselves
an improvement of previous results; however, in other cases, new issues arose. Indeed,
we said that in [89] the authors faced the problem of the asymptotic behavior both with
respect to n and p and, except in the case of p finite, they obtained a convergence along
subsequences. Subsequently, this result was improved in [74], where sufficient conditions
which allow to obtain the convergence of the whole sequence as p → ∞ were given. Starting
with the results contained in [74] (see also the references therein), it was possible to provide
sufficient conditions which guaranteed the possibility to obtain even the uniqueness and
the form of the solution in the case of p = ∞, both in the pre-fractal and in the fractal case
for one obstacle problem (see [94]).

It is necessary to specify that asymptotic behavior has been the subject of study by
many authors (see, for instance, [95,96] and the references quoted there). Moreover, one
should not forget the connections of the limit Problem (16) with the mass transport problem
(see, for instance, [97–99] and the references therein).

Furthermore, it should be emphasized how the numerical analysis also highlighted
the importance of the results about asymptotic behavior. In fact, the convergence of
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the approximating solutions to the solution of the problem in the pre-fractal boundary
domains, combined with the asymptotic behavior, which is the convergence to a solution
of the problem in the corresponding fractal domains, allows, in some sense, a numerical
analysis in a fractal set.

Clearly, in the framework of numerical analysis, the error estimates have a crucial role,
and with them comes the study on the regularity of the solutions. The results stated in [72]
permitted to obtain sharp results about the rate of vanishing of the approximation error. In
any case, it would be definitely interesting to continue the study about regularity to see if
and how it is possible to improve upon the results stated up to now.

Analogous studies on similar problems involving both p- and q-Laplace-type operators
were carried out (see, for instance, [100] and the references quoted there). New studies on
such types of problems are in progress; in particular, attention is devoted to the possibility
of obtaining a definitive answer about the possibility of changing the order of the limit,
with respect to p and n, obtaining the same solution of the final problem, i.e., the problem
corresponding to the case of n and p both infinite; this issue, as far as we know, does not
have a complete answer and remains an open problem. Hence, as it is possible to deduce if
a positive answer to this question exists, an important connection among all these problems
is established.
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Abstract: In this paper, we construct two new families of distributions generated by the discrete
Lindley distribution. Some mathematical properties of the new families are derived. Some special
distributions from these families can be constructed by choosing some baseline distributions, such
as exponential, Pareto and standard logistic distributions. We study in detail the properties of the
two models resulting from the exponential baseline, among others. These two models have different
shape characteristics. The model parameters are estimated by maximum likelihood, and related
algorithms are proposed for the computation of the estimates. The existence of the maximum-
likelihood estimators is discussed. Two applications prove its usefulness in real data fitting.

Keywords: discrete lindley distribution; EM algorithm; existence of the maximum likelihood estimate;
moments
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1. Introduction

Compound discrete distributions serve as probabilistic models in various areas of
applications, for instance, in ecology, genetics and physics. See, for example, [1]. Distribu-
tions obtained by compounding a parent distribution with a discrete distribution are very
common in statistics and in many applied areas. Suppose we have a system consisting of
N components, the lifetime of each of which is a random variable. Let X be the maximum
lifetime of the components. Clearly, X has a compound distribution arising out of a random
number N of components; i.e., X = max{Z1, . . . , ZN}. On the other hand, in case of a
system consisting of N components whose energy consumption is a random variable, and
assuming that Z is the component whose energy consumption is minimal, we obtain the
compound distribution of Y = min{Z1, . . . , ZN}. The compounding principle is applied in
the many different areas: insurance [2], ruin problems [3], compound risk models and their
actuarial applications [4,5]. The development of the theory of compounding distribution is
skipped here, because it has been covered in detail in [6].

The random variable N is often determined by economy, customer demand, etc. There
is a practical reason why N might be considered as a random variable. A failure can occur
due to initial defects being present in the system. A discrete version of this distribution has
been studied in [7], having its applications in count data related to insurance.

We will say that random variable X possesses the discrete Lindley distribution intro-
duced by [7] if its probability mass function is given by

P(X = x) =
λx

1− log λ
[λ log λ + (1− λ)(1− log λx+1)],

Mathematics 2023, 11, 290. https://doi.org/10.3390/math11020290 https://www.mdpi.com/journal/mathematics184
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where x = 0, 1, . . . and 0 < λ < 1. The probability generating function (PGF) (see
Equation (4) in [7]) is given by the typo error. The corrected version is defined by

Φ(s) =
(λ− 1)(λs− 1)− (1− 2λ + λ2s) log(λ)

(1− λs)2(1− log(λ))
, s < 1/λ, 0 < λ < 1. (1)

In this manuscript, we consider the previously discrete Lindley distribution for the
random variable N. Why do we assume a discrete Lindley distribution? For example,
using a Poisson distribution has an important assumption: equidispersion of data. The
assumption of equidispersion is not valid in real cases. Some alternative distributions to
the model of overdispersed data are available—binomial negative, generalized Poisson
or zero inflated Poisson. However, judging by the number of parameters used, these
alternatives are more complex than the Poisson distribution. That is why we are introducing
a continuous Lindley distribution with one parameter, which is similar to the Poisson
distribution. The application of the Lindley distribution in modeling the number of claim
data is less suitable because the number of claims data is a discrete number, as opposed to
the Lindley distribution’s continuous nature. That is why we are introducing a new discrete
Lindley distribution, created through discretisation of a continuous Lindley distribution
with one parameter.

Assuming that M is the zero truncated version of N with PGF (1), we will construct
two new families of distributions: the discrete Lindley-generated families of distributions
of the first and second kinds.

The paper is organized as follows. In Section 1, we construct two discrete Lindley
generated families. Section 2 is devoted to shape characteristics. In Section 3 we de-
rive some mathematical properties of the families. Estimation issues are investigated in
Sections 4 and 5. The simulation study is presented in Section 6. Two applications to real
data are addressed in Section 7. The paper is finalized with concluding remarks.

2. Construction of the Families of Distributions

There are various methods for getting the discrete Lindley distribution. For example,
in [8], the authors considered a method of infinite series for constructing the discrete
Lindley distribution. On the other hand, in [9], the discrete Lindley distribution was built
using the survival function method. In this manuscript, we employ the so-called max-min
procedure. This construction is widely used in practice. For a comprehensive literature
review, we refer the reader to [10] and references therein.

In this section, we introduce two new families of distributions as follows. Let {Zi}i≥1
be a sequence of independent and identically distributed (iid) random variables with
baseline cumulative distribution function (CDF) F(x) = F(x; ψ), where x ∈ R and ψ is the
parameter vector. Suppose that N is a discrete random variable with the PGF Φ(s) and let
M have the zero-truncated distribution of the random variable N obtained by removing
zero from N. Then, the probability mass function (pmf) of M is given by

P(M = m) =
P(N = m)

1−Φ(0)
, m ∈ {1, 2, . . . }. (2)

In order to prove that
+∞
∑

m=1
P(M = m) = 1, let us recall that P(N = m) = Φm(0)

m! . After

some algebra, we find

P(N = m) = λm λ− 1 + log λ− 2λ log λ

log λ− 1
+

m λm(1− λ) log λ

log λ− 1
.

185



Mathematics 2023, 11, 290

Using serial representations ∑+∞
m=1 λm = λ

1−λ and ∑+∞
m=1 mλm = λ

(1−λ)2 , one can calculate

+∞

∑
m=1

P(N = m) =
λ(1− 2 log λ)

1− log λ
. (3)

Equation (3) coincides with 1−Φ(0). This completes the proof that
+∞
∑

m=1
P(M = m) = 1.

First, we introduce the family of distributions based on the maximum of random
variables. We define the random variable X = max{Zi}M

i=1 . Then, the CDF and probability
density function (PDF) of X are given by

GX(x) =
Φ[F(x)]
1−Φ(0)

, x ∈ R

and

gX(x) =
f (x)Φ′[F(x)]

1−Φ(0)
, x ∈ R,

respectively.
Further, if we suppose that the random variable N has the PGF given by (1), the CDF

and PDF of X for x ∈ R, λ ∈ (0, 1) are given by

G1(x) = G1(x; θ, λ) =
F(x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + (2λ− 1) log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]2
, (4)

and

g1(x) =
f (x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]3
, (5)

respectively. We say that the family of distributions defined by (4) and (5) is the discrete
Lindley generated family of the first kind (“LiG1” for short). A random variable X having
PDF (5) is denoted by X ∼LiF1(λ, ψ).

The hazard rate function (HRF) of X can be expressed as

τ1(x) =
hF(x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

[1− λF(x)][1− 2 log(λ)− λ(1− log(λ))F(x)]
, x ∈ R, λ ∈ (0, 1). (6)

Let us study the identifiable property of the distribution given by (4) under the
exponential baseline distribution F(x; θ) = 1 − e−θx. We will get the discrete Lindley
exponential distribution of the first kind. We will designate this distribution LiE1.

Theorem 1. The LiE1 distribution is identifiable with respect to the parameters λ and θ.

Proof. Let us suppose that

G1(x; θ1, λ1) = G1(x; θ2, λ2) (7)

for all x > 0 and when F(x) is the CDF of exponential distribution. If we let x → ∞ into
both sides of (7) and after some algebra, it can be concluded that λ1 = λ2. Now it is not
hard to verify that θ1 = θ2. Hence the proof of the theorem.

Second, in [6], it was demonstrated that the random variable Y = min{Zi}M
i=1 has

CDF and PDF given by

GY(y) =
1−Φ[1− F(y)]

1−Φ(0)
, y ∈ R, (8)

and

gY(y) =
f (y)Φ′[1− F(y)]

1−Φ(0)
, y ∈ R, (9)

respectively.
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Now, inserting (1) in Equation (8), the CDF of the random variable Y becomes

G2(x) = G2(x; θ, λ) =
F(x)[1− 2 log(λ)− λ(1− log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]2
, x ∈ R, λ ∈ (0, 1), (10)

where F(x) = 1− F(x) is the survival function of the random variable Z1.
In a similar manner, by replacing (1) in the Equation (9), the PDF of Y reduces to

g2(x) =
f (x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]3
, x ∈ R, λ ∈ (0, 1). (11)

The random variable Y having the PDF (11) is called the discrete Lindley generated family
of the second kind, Y ∼LiF2(λ, ψ).

From Equations (10) and (11), the HRF of Y follows as

τ2(x) =
hF(x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

[1− λF(x)][1− λ + (3λ− 2) log(λ)− λ(1− λ + (2λ− 1) log(λ))F(x)]
, x ∈ R, λ ∈ (0, 1), (12)

where τF(x) = f (x)/F(x) is the HRF of the random variable Zi.
There are at least four motivations for having two families of distributions: Reliability:

From the stochastic representations X and Y, we note that the two families can arise in
parallel and series systems with identical components, which appear in many industrial
applications and biological organisms. The first-activation scheme: If we assume that an
individual is susceptible to a cancer type, then we can call the number of carcinogenic cells
that survived the initial treatment M, and Zi is the time needed for the i−th carcinogenic
cell to metastasise into a detectable tumour, for i ≥ 1. If we assume that {Zi}i≥1 is a
sequence of a total of iid random variables, all independent of M, where M is given by (2),
we can conclude that the time to relapse of cancer of a susceptible individual is defined by
the random variable Y. Last-activation scheme: Let us assume that M equals the number
of latent factors that have to be active by failure, and Zi is the time of disease resistance due
to the latent factor i. According to the last-activation scheme, the failure occurs once all
N factors are active. If the Zis are iid random variables that are independent of N having
the baseline distribution F, where N follows (2), the random variable X can model time to
the failure according to the last-activation scheme. The times to the last and first failures:
Let us assume that the device failure happens due to initial defects numbering M, and
that these can be identified only after causing the failure, and that they are being repaired
perfectly. We will define Zi as the time to the device failure due to the defect number i,
where i ≥ 1. Under the assumptions that the Zis are iid random variables independent of
M given by (2), the random variables X and Y are appropriate for modeling the times to
the last and first failures.

3. Shape Characteristics of the Proposed Models under the Exponential
Baseline Distribution

Let us examine the shapes of the PDF and HRF for the case of the exponential baseline
distribution. Let the random variables Z1 have the exponential distribution with scale
parameter θ > 0. If we set F(x) = 1 − e−θx and replace it in (5), we will get the LiE1
distribution. Its PDF is for x > 0, θ > 0, λ ∈ (0, 1)

g1(x; θ, λ) =
θe−θx[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))(1− e−θx)]

(1− 2 log(λ))[1− λ(1− e−θx)]3
.

The exponential distribution is widely used due to its simplicity and applicability. For
its usage in the theory of the compounding distribution, we recommend [10], where it is
possible to find a long list of the corresponding references.
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In order to study the shape of the last PDF, firstly we will give the following example.
The next example will serve us to prove Theorem 2. It will play a crucial role in the study
of the inequality that is important for drawing the conclusion about the PDF’s shape.

Example 1. Suppose λ ∈ (0, 1). Find λ such that (8λ2 − 9λ + 2) log(λ) > 2λ2 − 3λ + 1.

Solution: An analytical solution of the above inequality is not possible, so we will use
numerical algorithms. Let us consider the corresponding equation (8λ2 − 9λ + 2) log(λ) =
2λ2 − 3λ + 1. Using function Solve in Mathematica software ([11]), we get that λ ≈ 0.3536.
Furthermore, using the function Reduce we see that for λ ∈ (0.3536, 1) the inequality holds.
The graphical solution is given in Figure 1.

f

f

f

Figure 1. Graphical solution of the inequality f1(λ) > f2(λ), where f1(λ) = (8λ2 − 9λ + 2) log(λ)
and f2(λ) = 2λ2 − 3λ + 1 .

Theorem 2. The PDF of LiE1 with parameters θ > 0 and λ ∈ (0, 1) is unimodal if λ ∈ (0.3536, 1).
Otherwise, it is decreasing.

Proof. The first derivative of the logarithm of the PDF g1(x) can be represented in the form

[log g1(x)]′ = −θs(x)
(1− λ(1− e−θx))(a + b(1− e−θx))

,

where s(x) = (a + b)(1 − λ) − 2(aλ + b)e−θx + λbe−2θx, a = 1 − λ + (3λ − 2) log(λ)
and b = −λ(1− λ + λ log(λ)). We transform the function s(x) to a quadratic function
s(y) = λby2 − 2(b + aλ)y + (a + b)(1− λ), y ∈ [0, 1]. Let y1 and y2 represent the roots
of the equation s(y) = 0. Some calculations indicate that a > 0, b < 0, b + aλ > 0 and
a + b > 0. Thus,

y1 + y2 =
2(aλ + b)

λb
< 0,

y1y2 =
(a + b)(1− λ)

λb
< 0,

so we have y1 < 0 < y2 and |y1| > y2. After some calculations, it can be shown that
discriminant D = 4(aλ + b)2 − 4λb(1− λ) is positive and that s(y) is concave. We need to
find when solution y2 ∈ (0, 1). If we set u = −b, one gets

y2 =

√
(aλ− u)2 + λu(a− u)(1− λ)− (aλ− u)

λu
.
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If y2 < 1, then √
(aλ− u)2 + λu(a− u)(1− λ) < λu + aλ− u . (13)

It is not difficult to verify that the right-hand side of the last inequality is positive and we
can quadrate (13). Then, the inequality (13) reduces to

λu(3λa− u− a) > 0.

Now, the assertion of the first part of Theorem follows from Example 1.
In case λ < 0.3536, s(y) is always positive on the interval (0, 1), and hence the PDF is

decreasing.

Different shapes of the PDF in cases of LiE1 model are given in Figure 2.
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Figure 2. The plots of the density function of the LiE1 distribution for various choices of parameters
with θ = 1 (left) and λ = 0.65 (right).

The HRF of the LiE1 distribution is

h1(x) =
θ[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))(1− e−θx)]

[1− λ(1− e−θx)][1− 2 log(λ)− λ(1− log(λ))(1− e−θx)]
, x > 0, θ > 0, λ ∈ (0, 1).

Determining the shape of a HRF of a distribution is an important issue in statistical
reliability and survival analysis. We give it for the LiE1 model in the following theorem.

Theorem 3. The HRF of the LiE1 with parameters θ > 0 and λ ∈ (0, 1) is an increasing function.

Proof. The first derivative of the log h1(x) can be represented as

[log h1(x)]′ = −θe−θxs(x)
(a + b(1− e−θx))(1− λ(1− e−θx))(d− c(1− e−θx))

,

where a and b were defined in Theorem 2, c = λ(1− log(λ)), d = 1− 2 log(λ) and s(x) =
λbce−2θx − 2λc(a + b)e−θx + 2λac− λad− bd + λcb− ca. After extensive calculations, it
can be shown that 2λac− λad− bd + λcb− ca < 0.

189



Mathematics 2023, 11, 290

Again, using the transformation y = e−θx, where y ∈ [0, 1], we get quadratic equation
s(y) = 0 with

y1 + y2 =
2λc(a + b)

λb
< 0,

y1y2 =
2λac− λad− bd + λcb− ca

λb
> 0.

Thus, we have y1 < y2 < 0. The function s(y) is concave, and it holds that s(y) < 0 for all
y ∈ [0, 1]. Finally, the HRF is increasing. Hence, we proved Theorem.

Different shapes of the HRF in the case of the LiE1 model are outlined in Figure 3.
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Figure 3. The plots of the HRF of the LiE1 distribution for various choices of parameter λ with θ = 1.

Now, we will study the shapes of the discrete Lindley exponential distribution of the
second kind (LiE2) of distribution. By replacing F(x) = e−θx in Equation (11), we obtain
the PDF of the LiE2 distribution as

g2(x; θ, λ) =
θe−θx[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θx]

(1− 2 log(λ))(1− λe−θx)3 , x > 0, θ > 0, λ ∈ (0, 1).

The shapes of the LiE2 distribution are given by the following theorem.

Theorem 4. The PDF of the LiE2 with parameters θ > 0 and λ ∈ (0, 1) is a decreasing function
with limx→0 g2(x) = θ(1−λ+(λ−2) log(λ))

(1−λ)2(1−2 log(λ)) and limx→∞ g(x) = 0.

Proof. Similarly to in Theorem 2, we have

[log g2(x)]′ = −θs(x)
(1− λe−θx)(a + be−θx)

,

where s(x) = a− 4λae−θx − 3λbλe−2θx, a = 1− λ + (3λ− 2) log(λ) and b = −λ(1− λ +
λ log(λ)). We can prove that s(x) is positive for all x > 0. Letting y = e−θx, we transform
the function s(x) to a quadratic function s(y) = bλy2 + 2(b + aλ)y + a; y ∈ [0, 1]. Let
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y1 < y2 represent the roots of the equation s(y) = 0. Since we have a > 0, b < 0 and
b + aλ > 0,

y1 + y2 =
4a
3b

< 0,

y1y2 = − a
3bλ

> 0,

which implies y1 < y2 < 0. Since bλ < 0 and the discriminant D = 4(b + aλ)2 − 4abλ is
positive, it follows that s(y) is concave and positive on [y1, y2], which means that s(y) is
positive for y ∈ [0, 1]. Finally, s(x) is positive for all x > 0 and g′2(x) < 0.

The HRF of the LiE2 distribution for x > 0, θ > 0, λ ∈ (0, 1) is given by

h2(x) = h2(x; θ, λ) =
θ[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θx]

[1− λe−θx][1− λ + (3λ− 2) log(λ)− λ(1− λ + (2λ− 1) log(λ))e−θx]
.

The shape of the HRF of the LiE2 distribution is given in the following theorem.

Theorem 5. The HRF of the LiE2 distribution with parameters θ > 0 and λ ∈ (0, 1) is an
increasing function with limx→0 h2(x) = θ(1−λ+(λ−2) log(λ))

(1−λ)2(1−2 log(λ)) and limx→∞ h2(x) = θ.

Proof. We consider the logarithm of the HRF h2(x). Its first derivative can be expressed as

[log h2(x)]′ = −θe−θxt(x)
(a + be−θx)(1− λe−θx)(a + ce−θx)

,

where a and b are defined as in the proof of the previous theorem, c = −λ[1− λ + (2λ−
1) log(λ)] and t(x) = bcλe−2θx + 2acλe−θx + a(b + aλ− c). By letting y = e−θx, we trans-
form the function t(x) to the quadratic function t(y) = bcλy2 + 2acλy + a(b + aλ − c);
y ∈ (0, 1). As before, let y1 < y2 be the roots of the equation t(y) = 0. Some calculations
indicate that a > 0, b < 0, c < 0 and b + aλ− c > 0, which implies that

y1 + y2 = −2a
b

> 0,

y1y2 =
a(b + aλ− c)

bcλ
> 0,

(1− y1)(1− y2) = 1 +
a

bcλ
(b + aλ + 2cλ− c) = 1 +

a
bc
[1− 3λ + 2λ2 − (3− 6λ + 4λ2) log(λ)] > 0.

Thus, two cases can be considered, 0 < y1 < y2 < 1 and 1 < y1 < y2. The first case is not
possible, since

y1y2 − 1 =
a(b + aλ)− c(a + bλ)

bcλ
> 0,

which follows from the fact that a + bλ = (1− λ)2(1 + λ − (λ + 2) log(λ)) > 0. Thus,
1 < y1 < y2. Since bcλ > 0 and the discriminant D = −8acλ3(1− λ)2 log2(λ) is positive, it
follows that t(y) is a convex function and positive on (0, 1). This implies that t(x) is positive
for all x > 0. Finally, h′2(x) < 0, which means that the HRF is an increasing function.

Using similar calculations, we can derive the shapes of the PDF and HRF of X and Y
given by (5), (6), (11) and (12), respectively, under various baseline distributions.

Figure 4 represents plots of the LiE2 density function, while on Figure 5 we have plots
of the LiE2 hazard rate functions for various parameter values.

191



Mathematics 2023, 11, 290

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

f(
x)

λ=0.2
λ=0.4
λ=0.6
λ=0.8

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

f(
x)

θ=0.6
θ=1
θ=1.5
θ=2

Figure 4. The plots of the density function of the LiE2 distribution for various choices of parameters
with θ = 1 (left) and λ = 0.5 (right).
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Figure 5. The hazard plots of the LiE2 distribution for various choices of parameter λ with θ = 1.

Theorem 6. The LiE2 distribution function is identifiable with respect to the parameters θ and λ.

Proof. As was the case in the proof of Theorem 1, we will assume that G2(x; θ1, λ2) =
G2(x; θ2, λ2) for all x > 0 and F(x) is the CDF of an exponential distribution. As a con-
sequence, we have h2(x; θ1, λ2) = h2(x; θ2, λ2). Then, from Theorem 5, we have that
θ1 = θ2 when x → ∞. Now, since θ1 = θ2 after some algebra, it can be shown that
from h2(0; θ1, λ2) = h2(0; θ2, λ2) follows λ1 = λ2.

4. Some Mathematical Properties

4.1. Mixture Representations

In this section, we obtain a very useful representation for the LiG1 density function.
For |z| < 1 and ρ > 0, we can write

(1− z)−ρ =
∞

∑
j=0

wj zj, (14)

where wj = Γ(ρ + j)/[Γ(ρ)j!] and Γ(ρ) =
∫ ∞

0 tρ−1e−tdt is the gamma function. For
α ∈ (0, 1), we can apply (14) in Equation (5) to obtain

g1(x) = f (x) [a(λ) + b(λ) F(x)]
∞

∑
j=0

vj F(x)j, (15)
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where a(λ) = 1− λ + (3λ− 2) log(λ), b(λ) = −λ[1− λ + λ log(λ)] and

vj = vj(λ) =
Γ(j + 3) λj

2(1− 2 log(λ)) j!
.

Henceforth, Ta as a random variable will be said to have the exponentiated-F (“exp-F”)
distribution, its power parameter being a > 0, say, Ta ∼ exp− F(a), if its PDF and CDF are
given by

ha(x) = a f (x) Fa−1(x) and Ha(x) = Fa(x),

respectively.
Then, using the exp-F distribution, we can write Equation (15) as

g1(x) =
∞

∑
j=0

[tj hj+1(x) + sj hj+2(x)] =
∞

∑
j=0

pj hj+1(x), (16)

where tj = a(λ) vj/(j + 1), sj = b(λ) vj/(j + 2), pj = tj + sj−1 (for j ≥ 0) and s−1 = 0.
Equation (16) is this section’s main result. It shows that the LiF1 family density

function is a mixture of exp − F ditributions. Therefore, there are structural properties
(for instance incomplete and ordinary moments, generating functions, mean deviations)
of the LiF1 family that can be obtained from the corresponding properties of the exp-G
distribution. The exp-F mathematical properties have been studied by many authors in
recent years, such as Nadarajah and Kotz (2006). In the following sections, we provide
some mathematical properties of the LiG1 family distribution.

4.2. Moments

Henceforth, let Tj+1 have the the exp-F density hj+1(x) with power parameter j + 1,
say, Tj+1 ∼exp-F(j + 1). A first formula for the nth moment of the LiF1 family can be
obtained from (16) as

μ′n = E(Xn) =
∞

∑
j=0

pj E(Tn
j+1). (17)

Nadarajah and Kotz [12] provide explicit expressions for moments of some exponentiated
distributions. They can be used to produce μ′n.

A second formula for μ′n can be obtained from (17) in terms of the baseline quantile
function (qf) QF(u). We obtain

μ′n =
∞

∑
j=0

(j + 1) pj τ(n, j), (18)

where the integral can be expressed as a function of the F quantile function (qf), say,
QF(u) = F−1(u), as τ(n, j) =

∫ 1
0 QF(u)n ujdu.

Even though there is an infinite sum in the moments’ equation, it is not difficult to
calculate its values. For example, if we set an error to 10−6, then four iterations would be
enough for moments’ calculation.

Equations (17) and (18) can be used to directly determine the ordinary moments of
some LiF1 distributions. Three examples will be provided here. Here, we consider three
examples. LiE1 distribution moments (with scale parameter θ > 0 from the exponential
baseline distribution) are given by

μ′n =
n!
θn

∞

∑
j=0

∞

∑
i=0

(
j
i

)
(−1)i pj(j + 1)

1
(i + 1)n+1 .
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Particularly, we have

E(X) =
∞

∑
j=0

pj[ψ(j + 2)− ψ(1)],

where ψ(·) is the digamma function defined by ψ(·) = Γ
′
(·)/Γ(·).

For the discrete Lindley Pareto of the first kind (LiPa1) of distribution, the baseline
distribution is F(x) = 1− (1 + x)−ν, x > 0 and we have

μ′n =
∞

∑
j=0

n

∑
i=0

(
n
i

)
(−1)i pj(j + 1)B

(
j + 1, 1− i

ν

)
, ν > n,

where B(a, b) =
∫ 1

0 ta−1 (1− t)b−1dt is the standard beta function.
For the discrete Lindley standard logistic of the first kind (LiSL1) of distribution, the

baseline distribution is F(x) = (1 + e−x)−1 and −∞ < x < ∞. Using an integral result
from [13], we have

μ′n =
∞

∑
j=0

n

∑
i=0

(
n
i

)
(−1)2n−i j + 1

Γ(j + 2)
pjΓ

(i)
(1)Γ

(n−i)
(j+1) ,

where
Γ(m)
(a) =

∫ ∞

0
(ln x)mxa−1e−x dx.

Further, central moments, that is, moments around the mean, can also be computed.
The relation between the central moments (μr) and the moments about the origin are
given by

μr =
r

∑
k=0

(−1)k
(

r
k

)
(μ′1)

k μ′r−k.

The cumulants of the distribution can also be computed together with the skewness and
kurtosis measures. For this approach, we refer the reader to [14]. The skewness and kurtosis
plots for these distributions are sketched in Figures 6–9. We observe that various skewness
and kurtosis values can be obtained from these models.
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Figure 6. Skewness and kurtosis plots of the LiE1 distribution as a function of parameter λ.
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Figure 7. Skewness and kurtosis plots of the LiPa1 distribution as a function of parameter λ.
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Figure 8. Skewness and kurtosis plots of the LiPa1 distribution as a function of parameter ν.
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Figure 9. Skewness and kurtosis plots of the LiSL1 distribution as a function of parameter λ.
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4.3. Generating Function

As far as the moment generating function (mgf) M(t) = E(et X) of X is concerned, we
will provide two formulae. The first M(t) formula comes from (16) as

M(t) =
∞

∑
j=0

pj Mj+1(t), (19)

where Mj+1(t) is the mgf of Tj+1. Therefore, M(t) is determined by the generating function
of the exp− F(j + 1) distribution. The second M(t) formula is derived from (16)

M(t) =
∞

∑
j=0

(j + 1) pj ρ(t, j), (20)

where ρ(t, j) can be calculated from QF(x) as

ρ(t, j) =
∫ 1

0
exp{t QG(u)} ujdu. (21)

It is possible to get several mgf of some LiG1 distributions using Equations (20) and
(21), which can be used to directly obtain the mgf of several LiG1 distributions. For example,
we have the mgfs of the LiE1 (with parameter λ) and and LiSL1 as

M(t) =
∞

∑
j=0

(j + 1) B(j + 1, 1− λt) pj, t > λ,

and

M(t) =
∞

∑
j=0

(j + 1) B(t + j + 1, 1− t) pj, t < 1,

respectively.

4.4. Incomplete Moments and Mean Deviations

The shapes of many of the distributions can, for empirical reasons, be conveniently
described as incomplete moments. Such moments are important in measuring inequality,
such as income quantiles and Lorenz and Bonferroni curves, which depend on the distri-
bution incomplete moments. The n−th incomplete moment of the random variable X is
defined as

mn(y) =
∫ y

0
g1(x)dx =

∞

∑
j=0

(j + 1)
∫ F(y)

0
QF(u)n ujdu. (22)

The integral in (22) can be computed in the closed-form for several baseline F distributions.
The mean deviations about the mean (δ1 = E(|X − μ′1|)) and about the median

(δ2 = E(|X − M|)) of X can be expressed as δ1 = 2μ′1 G1(μ
′
1) − 2m1(μ

′
1) and δ2 = μ′1 −

2m1(M), respectively, where μ′1 = E(X), M = Median(X) is the median of X computed
from

G1(M) =
F(M){1− λ + (3λ− 2) log(λ)− λ[1− λ + (2λ− 1) log(λ)]F(x)}

[1− 2 log(λ)][1− λF(M)]2
= 0.5,

G1(μ
′
1) is easily calculated from (4) and m1(z) =

∫ z
−∞ x f (x)dx is the first exp-F incomplete

moment.
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We will provide two ways to compute delta1 and delta2. In the first instance, we can
derive a general equation for m1(z) from (16) by setting u = F(x) as

m1(z) =
∞

∑
j=0

(j + 1) Aj(z), (23)

where

Aj(z) =
∫ z

−∞
x hj+1(x)dx =

∫ F(z)

0
QF(u) ujdu. (24)

Equation (24) provides the basic quantity for computing the mean deviations of the exp-
F distributions. Hence, the mean deviations δ1 and δ2 depend only on the exp-F mean devia-
tions. Thus, alternative representations for δ1 and δ2 are given by
δ1 = 2μ′1G1(μ

′
1)− 2 ∑∞

j=0(j + 1) Aj(μ
′
1) and δ2 = μ′1 − 2 ∑∞

j=0(j + 1) Aj(M).
In a similar way, the mean deviations of any LiF1 distribution can be computed from

Equations (23) and (24). For example, the mean deviations of the LiE1 (with parameter λ),
LiPa1 (with parameter 0 < ν < 1) and LiSL1 are determined immediately (by using the
generalized binomial expansion) from the functions

Aj(z) = λ−1 Γ(j)
∞

∑
m=0

(−1)m {1− exp(−mλz)}
Γ(j−m) (m + 1)!

,

and

Aj(z) =
∞

∑
m=0

m

∑
r=0

(−1)m

(1− rν)

(
j + 1

m

) (
m
r

)
z1−rν,

and

Aj(z) =
1

Γ(j)

∞

∑
m=0

(−1)m Γ(j + m + 1) {1− exp(−mz)}
(m + 1)!

,

respectively.
Bonferroni and Lorenz curves defined can be given to obtain for a given probability π

by B(π) = T(q)/(πμ′1) and L(π) = T(q)/μ′1, respectively, where μ′1 = E(X) and q = Q(π)
is the LiG1-F qf at π.

5. On the Maximum-Likelihood Estimation of Parameters

We propose to use the maximum likelihood (ML) estimation method for the parameter
estimation of the introduced distributions. The log-likelihood function for the general
case (5) is given by

L(λ, ψ) = −n log(1− 2 log(λ))− 3
n

∑
i=1

log(1− λF(xi; ψ)) +
n

∑
i=1

log f (xi; ψ)

+
n

∑
i=1

log[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(xi; ψ)] .

In this special case, we consider the exponential baseline distribution. Thus, for the LiE1
model, the estimating equations are given by
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L(λ, θ)

∂θ
= 3λθ

n

∑
i=1

e−θxi

1− λ(1− e−θxi )
+ bθ

n

∑
i=1

e−θxi

a + b(1− eθxi )
+

n
θ
−

n

∑
i=1

xi = 0 (25)

L(λ, θ)

∂λ
= 3

n

∑
i=1

1− e−xiθ

1− λ(1− e−xiθ)
+

2n
λ(1− 2 log(λ))

+
n

∑
i=1

2− 2
λ + 3 log(λ)− (1− e−xiθ)λ log(λ)− (1− e−xiθ)(1− λ + λ log(λ))

1− λ + (−2 + 3λ) log(λ)− (1− e−xiθ)(1− λ + λ log(λ))
= 0 . (26)

Now, we will study the existence of the ML estimators when the other parameter is
known in advance (or given).

Theorem 7. If the parameter λ is known, then the Equation (25) has at least one root in the interval
(0,+∞).

Proof. One can readily verify that lim
θ→+∞

L(λ,θ)
∂θ = − n

∑
i=1

xi and lim
θ→0+0

L(λ,θ)
∂θ = +∞. Thus,

there exists at least one root of the Equation (25).

Theorem 8. Assuming that

n

∑
i=1

e−xiθ <
n
2

and if the parameter θ is known, then (26) has at least one root on the interval (0, 1).

Proof. Applying L’Hôpital’s rule, we get lim
λ→1−0

L(λ,θ)
∂λ = −∞ and lim

λ→0+0

L(λ,θ)
∂λ = 3

n
∑

i=1
(1−

e−xiθ)− 3n
2 .

In order to have at least one solution, it is necessary to have 3
n
∑

i=1
(1 − e−xiθ) − 3n

2 > 0.

Hence the theorem.

On the other hand, the estimating equations for the LiE2 model are given by

L(λ, θ)

∂θ
= −3λθ

n

∑
i=1

e−θxi

1− λe−θxi
− bθ

n

∑
i=1

e−θxi

a + beθxi
+

n
θ
−

n

∑
i=1

xi = 0 (27)

L(λ, θ)

∂λ
= 3

n

∑
i=1

e−xiθ

1− λe−xiθ
+

2n
λ(1− 2 log(λ))

+
n

∑
i=1

2− 2
λ + 3 log(λ)− e−xiθλ log(λ)− e−xiθ(1− λ + λ log(λ))

1− λ + (−2 + 3λ) log(λ)− e−xiθ(1− λ + λ log(λ))
= 0. (28)

The next two theorems examine the existence problem of the ML estimates via (27)
and (28). Their proofs are very similar to those cases of Theorems 7 and 8, so we here omit
them.

Theorem 9. If the parameter λ is known, then the Equation (27) has at least one root on the interval
(0,+∞).

Theorem 10. If the parameter θ is known and if it is assumed that

n

∑
i=1

e−xiθ >
n
2

,

then the Equation (28) has at least one root on the interval (0, 1).
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Clearly, the log-likelihood estimating equations for the parameters are nonlinear in the
sense that the estimators cannot be obtained in closed forms. Thus, a numerical iterative
method such as the Newton–Raphson one should be used in the estimation.

6. Estimation of Parameters via the EM Algorithm

We propose to use the method of maximum likelihood in estimating the parameters
of the introduced models. The construction method of the models suggests using an
EM (expectation maximization) algorithm. In this section, we provide EM algorithms for
the estimation of the unknown parameters θ and λ for both exponential-discrete Lindley
distributions.

6.1. EM Algorithm for the LiE1 Model

The missing data random variable will be the random variable M with the zero-
truncated discrete Lindley distribution. Let us derive its probability mass function as

P(M = m) =
P(N = m)

1− P(N = 0)

=
λm−1[λ log(λ) + (1− λ)(1− (m + 1) log(λ))]

1− 2 log(λ)
, m = 1, 2, . . . ,

where N is a random variable with the discrete Lindley distribution with the parameter
λ ∈ (0, 1). Next, the random variable X = max(Z1, . . . , ZM) for a given M = m has the
CDF (1− e−θx)m. Then, the PDF of the complete-data distribution is given by

f (x, m) =
θmλm−1{λ log(λ) + (1− λ)[1− (m + 1) log(λ)]}e−θx(1− e−θx)m−1

1− 2 log(λ)
.

The marginal PDF of X is given by

fX(x) =
θe−θx{1− λ + (3λ− 2) log(λ)− (1− e−θx)λ[λ(log(λ)− 1) + 1]

}
(1− 2 log(λ))[1− (1− e−θx)λ]3

.

Then, the conditional PDF of M for given X = x is given by

fM|X(m|x) =
m(1− e−θx)m−1λm−1[1− (1− e−θx)λ]3{λ log(λ) + (1− λ)[1− (m + 1) log(λ)]}

1− λ + (3λ− 2) log(λ)− (1− e−θx)λ[λ(log(λ)− 1) + 1]
,

where m = 1, 2, 3, . . ..
The E-step of the EM algorithm requires the computation of the conditional expectation

of the random variable M for a given X = x. Now, we have

E(M|X) =

=
λ log(λ)(3− ξ2(x; λ, θ) + 4ξ(x; λ, θ))− (4ξ(x; λ, θ) + 2) log(λ) + (1− λ)(1− ξ2(x; λ, θ))

(1− ξ(x; λ, θ)){1− λ + (3λ− 2) log(λ)− ξ(x; λ, θ)[λ(log(λ)− 1) + 1]} ,

where ξ(x; λ, θ) = λ(1− e−θx).
In the M-step, we consider the complete data log-likelihood function ,which is given by

lc(θ, λ) = n log(θ) +
n

∑
i=1

log(mi)− θ
n

∑
i=1

xi +
n

∑
i=1

(mi − 1) log(1− e−θxi ) +

(
n

∑
i=1

mi − n

)
log(λ)

+
n

∑
i=1

log{λ log(λ) + (1− λ)[1− (mi + 1) log(λ)]} − n log(1− 2 log(λ)).

Maximizing the log-likelihood function lc(θ, λ), the obtained estimates in the k + 1 iteration
are given by
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θ(k+1) = n

{
nx̄−

n

∑
i=1

xi(m
(k+1)
i − 1)e−θ(k+1)xi

1− e−θ(k+1)xi

}−1

λ(k+1) =

[
n(1 + 2 log(λ(k+1)))

2 log(λ(k+1))− 1
−

n

∑
i=1

m(k+1)
i

]

×
⎧⎨⎩ n

∑
i=1

(mi + 2) log(λ(k+1))− ((1− λ(k+1))/λ(k+1))(m(k+1)
i + 1)

λ(k+1) log(λ(k+1)) + (1− λ(k+1))
[
1− (m(k+1)

i + 1) log(λ(k+1))
]
⎫⎬⎭
−1

,

where x̄ is the sample mean and

m(k+1)
i =

{
λ(k) log(λ(k))(3− ξ2(xi; λ(k), θ(k)) + 4ξ(xi; λ(k), θ(k)))− (4ξ(xi; λ(k), θ(k)) + 2) log(λ(k))

+(1− λ(k))(1− ξ2(xi; λ(k), θ(k)))
}

/
{
(1− ξ(xi; λ(k), θ(k)))

[
1− λ(k) + (3λ(k) − 2) log(λ(k))

−ξ(xi; λ(k), θ(k))
(

λ(k)(log(λ(k))− 1) + 1
)]}

.

The solutions for these equations can be found using an iterative numerical process.
For example, one can use the uniroot function in R (R Core Team, 2020).

6.2. EM Algorithm for the LiE2 Model

In this case, the random variable Y = min(Z1, . . . , ZM) for a given M = m has the
exponential distribution with the scale parameter θm. Thus, the PDF of the hypothetical
complete-data distribution is

f (y, m) =
λm−1[λ log(λ) + (1− λ)(1− (m + 1) log(λ))]θme−θmy

1− 2 log(λ)
, y > 0, m = 1, 2, . . .

Following some calculations, we can deduce that the marginal PDF of the random variable
Y is given by

f (y) =
θe−θy[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θy]

(1− 2 log(λ))(1− λe−θy)3 , y > 0,

which implies that the conditional PDF of M for given Y = y has the form

fM|Y(m|y) =
mλm−1e−θ(m−1)y(1− λe−θy)3[λ log(λ) + (1− λ)(1− (m + 1) log(λ))]

1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θy , m = 1, 2, . . .

The E-step of the EM algorithm requires the computation of the conditional expectation of
the random variable M for a given Y = y. We have that

E(M|Y = y) =
1− λ + (3λ− 2) log(λ)− 4(1− λ)λe−θy log(λ)− λ2(1− λ + λ log(λ))e−2θy

(1− λe−θy)(1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θy)
.

In the M-step, we need the complete data log-likelihood function, which is given by

lc(θ, λ) = n log(θ) +
n

∑
i=1

log(mi)− θ
n

∑
i=1

miyi +

(
n

∑
i=1

mi − n

)
log(λ)

+
n

∑
i=1

log[λ log λ + (1− λ)(1− (mi + 1) log(λ))]− n log(1− 2 log(λ)).

By maximizing the log-likelihood function lc(θ, λ), we obtain the estimates in the k + 1
iteration as follows:
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θ(k+1) =
n

∑n
i=1 yim

(k+1)
i

,

n

∑
i=1

λ(k+1)(m(k+1)
i + 2) log(λ(k+1))− (1− λ(k+1))(1 + m(k+1)

i )

λ(k+1) log(λ(k+1)) + (1− λ(k+1))(1− (m(k+1)
i + 1) log(λ(k+1)))

+
2n

1− 2 log(λ(k+1))
=

= n−
n

∑
i=1

m(k+1)
i ,

where

m(k+1)
i =

{
1− λ(k) + (3λ(k) − 2) log(λ(k))− 4(1− λ(k))λ(k) log(λ(k))e−θ(k)yi − λ2(k)(1− λ(k)

+λ(k) log(λ(k)))e−2θ(k)yi
}

/
{
(1− λ(k)e−θ(k)yi )(1− λ(k) + (3λ(k) − 2) log(λ(k))

−λ(k)(1− λ(k) + λ(k) log(λ(k)))e−θ(k)yi )
}

.

7. Simulation Study

In this section, we consider LiE1 and LiE2 models and present a simulation study test-
ing the performances of the estimators using the EM algorithm. We generated 10,000 random
samples in batches of 50, 100 and 200 from both models.

We can generate random numbers from the LiE1 distribution by using the inverse
transform method. Let u be a random number from the uniform distribution on [0, 1].
Employing some algebra, we have x = − log(1− y)/θ, a number from the LiE1 distribution.
Here,

y =
2λau + c−√Δ1

2(b + λ2au)
,

where a = 1− 2 log(λ), b = λ[1− λ + (2λ− 1) log(λ)], c = 1− λ + (3λ− 2) log(λ) and
Δ1 = (2λau + c)2 − 4(λ2au + b)au.

Similarly, we can generate random numbers from the LiE2 distribution by using the
inverse transform method. Let u be a random number from the uniform distribution on
[0, 1]. Following some calculations, we have y = − log(x)/θ, a number from the LiE2
distribution. Here,

x =
d + a(1− 2uλ)−√Δ2

2(d− λ2au)
,

where d = λ[1− log(λ)] and Δ2 = [(2uλ− 1)a− d]2 − 4a(d− uaλ2)(1− u).
We used R (R Core Team, 2020) with uniroot to run the EM algorithms. We took the

parameter values as the starting points for the iterations in the algorithms. The algorithms
stopped when |λ(k+1) − λ(k)| < 10−5. The simulation results of the empirical means and
mean square errors (MSEs) are reported in Tables 1 and 2. We observe that the estimates
are close to the parameter values and the MSEs decrease with increasing sample size. This
makes the use of the EM algorithm plausible for estimation.

Table 1. Empirical means and MSEs of the maximum-likelihood estimates of the LiE1 for different
values of the parameters.

n λ θ λ̂ θ̂ λ θ λ̂ θ̂ λ θ λ̂ θ̂

50 0.6 0.5 0.5954 0.5159 0.6 1 0.5963 1.0350 0.6 2 0.5965 2.0675
(0.0163) (0.0089) (0.0161) (0.0369) (0.0159) (0.1448)

100 0.5952 0.5068 0.5957 1.0143 0.5952 2.0264
(0.0081) (0.0041) (0.0080) (0.0164) (0.0082) (0.0685)

200 0.5954 0.5020 0.5970 1.0067 0.5949 2.0058
(0.0040) (0.0020) (0.0041) (0.0083) (0.0040) (0.0334)
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Table 2. Empirical means and the MSEs of the maximum-likelihood estimates of the LiE2 for different
values of the parameters.

n λ θ λ̂ θ̂ λ θ λ̂ θ̂ λ θ λ̂ θ̂

50 0.6 0.2 0.5335 0.2379 0.6 1 0.5344 1.1898 0.8 1 0.6883 1.7007
(0.0368) (0.0119) (0.0375) (0.2993) (0.0434) (1.7356)

100 0.5526 0.2252 0.5455 1.1424 0.7331 1.4154
(0.0240) (0.0068) (0.0248) (0.1737) (0.0213) (0.7965)

200 0.5668 0.2176 0.5669 1.0838 0.7616 1.2371
(0.0127) (0.0036) (0.0128) (0.0884) (0.0093) (0.3335)

8. Real Data Fitting

In this section, we investigate the performance of the introduced distributions in
data fitting. We also compare them with their natural competitor, that is, the generalized
exponential (GE) distribution studied in [15]. The GE distribution was proposed as an
alternative to exponential, gamma and Weibull distributions. A lot of work in the literature
has shown that it is a flexible model with reverse J-shaped and positively skewed unimodal
data fitting. The PDF of the GE distribution is given by

f (x; α, θ) = αθe−θx(1− e−θx)α−1, x, α, β > 0.

We consider the maximum likelihood method in the estimation. Since we compare the
models, we used the direct maximization of the respective log-likelihood functions.

8.1. Carbon Data Set

Let us consider a data set (uncensored) from [16], which includes 100 observations
regarding breaking stress of carbon fibers in Gba. The data are given in Table 3.

Table 3. Data on the breaking stress of carbon fibers.

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25
1.36 1.41 1.47 1.57 1.57 1.59 1.59 1.61 1.61 1.69
1.69 1.71 1.73 1.80 1.84 1.84 1.87 1.89 1.92 2.00
2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 2.41
2.43 2.48 2.48 2.50 2.53 2.55 2.55 2.56 2.59 2.67
2.73 2.74 2.76 2.77 2.79 2.81 2.82 2.83 2.85 2.87
2.88 2.93 2.95 2.96 2.97 2.97 3.09 3.11 3.11 3.15
3.15 3.19 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33
3.39 3.39 3.51 3.56 3.60 3.65 3.68 3.70 3.75 4.20
4.38 4.42 4.70 4.90 4.91 5.08 5.56

The data were also used in [17].
We used the LiE1 distribution in fitting instead of LiE2, since the data exhibits a

unimodal shape (see Figure 10). One can also use the total time test (TTT) plot procedure
to determine an appropriate model shape.

The TTT plots were introduced by [18] for model identification purposes, that is, for
choosing a suitable lifetime distribution. These plots were studied in detail by [19]. Let
x(1) ≤ · · · ≤ x(n) denote the ordered observations from the random sample of size n. The
TTT plot is obtained in the following way:

• Let s0 = 0.
• Calculate the TTT values sj = sj−1 + (n− j + 1)(x(j) − x(j−1)) for j = 1, 2, . . . , n.
• Obtain the normalized TTT values by uj = sj/sn for j = 0, 1, 2, . . . , n.
• Plot the points (j/n, uj) for j = 0, 1, 2, . . . , n, and then join them by line segments.

A TTT plot is a diagnostic tool in the sense that it gives an insight about the aging
properties of the underlying distribution. Then, one can choose an appropriate lifetime
distribution for modeling the data. For example, when the TTT plot is concave, a life
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distribution with an increasing failure rate should be used. The TTT plot for the Carbon
data set is sketched in the lhs of Figure 10. It can be seen that it is concave. Thus, a model
with increasing failure rate like LiE1 should be used.

Further, the HRF can not only be increasing, but also be constant, decreasing or even a
U-shaped. These futures may also be inferred from the TTT plot. The HRF is constant when
the TTT plot is straight diagonal, decreases when the TTT plot is convex and is U-shaped
if the TTT plot is S-shaped—that is, first convex and then changed to a concave shape.
When the ordering is reversed in the S-shaped case, a HRF with a unimodal characteristic
is obtained.

Alternatively, we also fit LiSL1 and GE distributions to this data set and computed
the parameter estimates using the optim function in R [20]. The results are reported in
Table 4. We observe that the Lie1 distribution is better than the others according to the
Akaike information criterion (AIC). The Kolmogorov–Simirnov test statistic was 0.074605
with p-value 0.6338. Figure 10 also supports this good fit. On the other hand, the EM
algorithm gave λ̂ = 0.9415187 and θ̂ = 1.432148, which are similar values to those obtained
from direct maximization.

Table 4. Maximum-likelihood estimates with standard errors in parentheses, log-likelihood and AIC
values for Carbon data.

Model λ̂ θ̂ α̂ log-lik AIC

LiE1 0.9419 1.4344 −142.1633 288.3266
(0.0169) (0.1187)

LiSL1 0.9528 1.5067 −142.9535 289.9069
(0.0127) (0.1109)

GE 1.0132 7.7883 −146.1823 296.3646
(0.0875) (1.4962)
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Figure 10. TTT plot of the data set (on the left) and several fits for the Carbon data (on the right).

8.2. Failure Data Set

The data set is based on the number of successive failures of air conditioning systems
on 13 Boeing 720 air planes. The data set is from [21] and was recently analyzed in [22].
Since the data exhibit a reversed J-shape (see Figure 11), we used the LiE2 distribution
in fitting. TTT plot sketched in the lhs of Figure 11 also supports this conjecture, since it
produces a convex shape.

For convenience, the data are given Table 5.
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Table 5. Data on the successive failures for the air conditioning system of each member in a fleet of
13 Boeing 720 jet air planes.

194 413 90 74 55 23 97 50 359 50 130 487 57 102 15
14 10 57 320 261 51 44 9 254 493 33 18 209 41 58
60 48 56 87 11 102 12 5 14 14 29 37 186 29 104
35 98 54 100 11 181 65 49 12 239 14 18 39 3 12
5 36 79 59 33 246 1 79 3 27 201 84 27 156 21

16 88 130 14 118 44 15 42 106 46 230 26 59 153 104
20 206 5 66 34 29 26 35 5 82 31 118 326 12 54
36 34 18 25 120 31 22 18 216 139 67 310 3 46 210
57 76 14 111 97 62 39 30 7 44 11 63 23 22 23
14 18 13 34 16 18 130 90 163 208 1 24 70 16 101
52 208 95 62 11 191 14 7

The fitting results are given in Table 6. According to the AIC, the LiE2 fit is better than
the GE fit. The Kolmogorov–Simirnov test statistic is 0.050017 with a p-value of 0.7347. In
addition, the EM algorithm gave λ̂ = 0.3837683 and θ̂ = 0.007553028, which are close to
those obtained from direct maximization.

Table 6. Maximum-likelihood estimates with standard errors in parentheses, log-likelihood and AIC
values for failure data.

Model λ̂ θ̂ α̂ log-lik AIC

LiE2 0.3800 0.0076 −1033.644 2071.288
(0.1180) (0.0014)

GE 0.0102 0.9005 −1036.907 2077.814
(0.0010) (0.0852)
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Figure 11. TTT plot of the data set (on the left) and two competing fits for the Failure data (on
the right).

9. Conclusions

In this manuscript, we constructed two general probability distribution families using
the discrete Lindley distribution. The families contain a baseline distribution which can
be manipulated by the user to obtain probability distributions of different shapes. The
resulting distributions are not so complex in the sense that the number of parameters of the
baseline distribution is increased by one only. As an alternative to the direct maximization
of the log-likelihood, we constructed an EM algorithm to compute the ML estimates of
the parameters. We mainly focused on the exponential baseline distribution and used the
newly defined distributions in real data fitting.
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As a part of further research, the introduced distributions may be studied in detail
using other simple baseline distributions like Pareto. Also, the Marshall-Olkin approach of
construction of bivariate distributions can be used to define the bivariate extensions of the
models introduced.
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Abstract: This article deals with a class of nonlinear fractional differential equations, with initial
conditions, involving the Riemann–Liouville fractional derivative of order α ∈ (1, 2). The main
objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate
spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different
conditions for the existence and uniqueness of solutions are obtained based on the analysis of an
associated class of fractional integral equations and distinct fixed-point arguments. Additionally,
using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained
to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis.
Examples are also included to illustrate the theory.

Keywords: fractional differential equations; Riemann–Liouville derivative; fixed point theory;
Ulam–Hyers stability; Ulam–Hyers–Rassias stability

MSC: 34A08; 26A33; 34A12; 34B15; 34D20; 45M10; 47H10

1. Introduction

Given the importance that fractional derivatives and integrals [1–7] have shown to
have in the optimization and improvement of mathematical models of real events or even
of those associated with other areas of knowledge (namely through making these models
more accurate when compared to what they effectively model), we have recently witnessed
a large development in the mathematical analysis of classes of fractional order differential
and integral equations.

In this context, it is essential to know about the possible existence of several solutions
to the problems in question, possible sufficient conditions to obtain a unique solution and
even conditions that eventually guarantee distinct forms of stability of the solutions (this
being a crucial aspect, in particular, for the study of approximate solutions to the problems
in analysis). The most used techniques in these problems involve the consideration and
identification of operators that (in a sense) represent the problem (in some “equivalent”
way) and usually involve different principles of contraction, as well as different estimates,
usually framed, or dependent, on norms (or metrics), within the spaces framework most
suited to the problems under study.

For this type of problem, the analysis of their eventual stability is also a study of sig-
nificant importance. Namely, through the Ulam–Hyers and Ulam–Hyers–Rassias stabilities
[1,8–17] which, with their specific characteristics, make it possible to identify forms of a
slight disturbance in the system (that defines the problem) does not have a too disturbing
effect on that system.

Mathematics 2023, 11, 297. https://doi.org/10.3390/math11020297 https://www.mdpi.com/journal/mathematics206
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Having this general framework in mind, we would like to start by emphasizing that
in [18], Chai studied the existence of solutions to the boundary value problem{ CDα

0+x(t) + rCDα−1
0+ x(t) = f (t, x(t)), t ∈ (0, 1),

x(0) = x(1), x(ξ) = η, ξ ∈ (0, 1),

where CDα
a+ and CDα−1

a+ denote the standard Caputo derivatives of order α and α− 1, re-
spectively, in this case with 1 < α ≤ 2, and r �= 0. Additionally, more recently, Xu et al. [19]
considered the existence of solutions and the Ulam–Hyers stability for the fractional bound-
ary value problem{

λDα
0+x(t) +Dβ

0+x(t) = f (t, x(t)), t ∈ (0, T),

x(0) = 0, μDγ1
0+x(T) + Iγ2

0+x(η) = γ3,

whereDϑ
0+ denotes the Riemann–Liouville fractional derivative operator of order ϑ, 1 < α ≤ 2,

1 ≤ β < α, 0 < λ ≤ 1, 0 < μ ≤ 1, 0 ≤ γ1 ≤ α − β, γ2 ≥ 0, Iγ2
0+ denotes the

Riemann–Liouville fractional integral operator of order γ2, and 0 < η < T. Moreover,
in [20], Ahmad et al. investigated the existence of solutions and the Ulam–Hyers stability
for a fractional initial value problem given by{

(CDα
a+x(t) + λ1

CDα−1
a+ x(t) + λ2

CDα−2
a+ x(t) = f (t, x(t)), t ∈ [a, T],

x(k)(a) = bk, k = 0, 1, 2,

where CDα
a+ is again the Caputo fractional derivative of order α ∈ (2, 3), and λ1 and λ2

are nonzero constants. In [21], Alvan et al. investigated the existence of solutions for the
fractional boundary value problem{ CDα

0+x(t) + 2rCDα−1
0+ x(t) + r2CDα−2

0+ x(t) = f (t, x(t),Dσ−1
0+ ), r > 0, t ∈ (0, 1),

x(0) = x(1), x′(0) = x′(1), x′(ξ) + rx(ξ) = η, ξ ∈ (0, 1),

where 2 ≤ α < 3 and η is a positive real number. Bilgici and Şan [22] considered the
existence and uniqueness of solutions to the problem{

λDα
0+x(t) = f (t, x(t),Dα−1

0+ x(t)), t > 0,

x(0) = 0, Dα−1
0+ x(t)|t=0 = b,

where α ∈ (1, 2) and b �= 0.
Motivated by the analysis and the results already achieved for the above-mentioned

problems (included in the works [18–22]), we investigate in this paper the stabilities of
Ulam–Hyers and Ulam–Hyers–Rassias types [1,8–11,14,16], and the existence and unique-
ness of solutions to the following initial value problem of fractional order (IVPFO){ Dα

a+x(t) + λ(Dα−1
a+ x)(t) = f (t, x(t)), t ∈ [a, b],

x(a) = x′(a) = 0,
(1)

where 1 < α < 2, λ is a nonzero constant, a, b ∈ R (with a < b) and f : [a, b]×R → R
is a continuous function. Thus, this problem can also be viewed as a class of problems
depending on the parameter λ, and with the form of a single-point boundary problem “a”
of a two-term fractional differential equation.

The remaining part of the work is organized as follows: Section 2 contains the nec-
essary definitions and the fundamental tools that are used in the sections that follow; in
Section 3, we derive different conditions for the existence and uniqueness of solutions
for the IVPFO (1); in Section 4, we discuss the Ulam–Hyers and the Ulam–Hyers–Rassias
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stabilities and obtain conditions for their existence. Finally, some examples are included to
describe the obtained results in a more concrete way.

2. Preliminaries and Background Material

We start this section by presenting the known basic definitions of the main objects that
we will use.

Definition 1. The Riemann–Liouville fractional integral of order α ∈ R+ of a function x (on [a, b])
is defined by

Iα
a+x(t) =

1
Γ(α)

∫ t

a
(t− s)α−1x(s)ds (a ≤ t ≤ b)

provided the right-hand side is pointwise defined and where Γ denotes the Euler Gamma function
(given by Γ(α) =

∫ ∞
0 tα−1e−tdt, α > 0).

Definition 2. The Riemann–Liouville fractional derivative of order α > 0 of a function x (on [a, b])
is defined by

Dα
a+x(t) =

1
Γ(n− α)

dn

dtn

∫ t

a
(t− s)n−α−1x(s) ds,

with n = [α] + 1.

In what follows, we denote by L1([a, b]) the Banach space of Lebesgue integrable func-
tions from [a, b] into R with the norm ‖x‖L1 =

∫ b
a |x(t)|dt and by C([a, b]) the Banach space

of all continuous functions g : [a, b]→ R endowed with the norm ‖g‖ = supt∈[a,b] |g(t)|.

Lemma 1 ([3]). Assume that x ∈ C([a, b])∩ L1([a, b]) with a fractional derivative of order α > 0.
Then

Dα
a+ Iα

a+x(t) = x(t)

and
Iα
a+Dα

a+x(t) = x(t) + c1(t− a)α−1 + c2(t− a)α−2 + · · ·+ cn(t− a)α−n,

for some ci ∈ R, i = 1, 2, . . . , n, where n is the smallest integer greater than or equal to α.

For the reader’s convenience, let us recall some classic principles of contraction and
inequalities that we will use later.

Theorem 1 (Banach contraction principle). Let (X, d) be a generalized complete metric space,
and consider a mapping T : X → X which is a strictly contractive operator, that is

d(Tx, Ty) ≤ Ld(x, y), ∀x, y ∈ X,

for some constant 0 ≤ L < 1. Then:

(a) the mapping T has a unique fixed point x∗ = Tx∗;
(b) the fixed point x∗ is globally attractive, namely, for any starting point x ∈ X, the following

identity holds:
lim

n→∞
Tnx = x∗;

(c) we have the following inequalities:

d(Tnx, x∗) ≤ Lnd(x, x∗), n ≥ 0, x ∈ X;

d(Tnx, x∗) ≤ 1
1− L

d(Tnx, Tn+1x), n ≥ 0, x ∈ X;

d(x, x∗) ≤ 1
1− L

d(x, Tx), x ∈ X.
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Theorem 2 (Schauder’s fixed point theorem). If Ω is a closed, bounded, convex subset of a
Banach space X and the mapping T : Ω → Ω is completely continuous, then T has a fixed point
in Ω.

Keeping in mind some parts of the proofs of the next results, let us recall an important
integral inequality that we will actually use later.

Theorem 3 ([23], [Theorem 11.2]). Let u(t), b(t), σ(t) and k(t, s) be nonnegative continuous
functions for a ≤ s ≤ t ≤ b and suppose that

u(t) ≤ c1 + σ(t)
(

c2 +
∫ t

a
b(s)u(s)ds +

∫ t

a

∫ s

a
k(s, τ)u(τ)dτds)

)
,

for t ∈ [a, b], where c1, c2 ≥ 0 are constants. Then,

u(t) ≤ c2e
∫ t

a B(s)σ(s)ds +
∫ t

a
c1B(s)e

∫ t
s B(τ)σ(τ)dτds,

where B(s) = b(s) +
∫ s

a k(s, τ)dτ.

We denote by C2([a, b]) the space of functions x which are 2-times continuously
differentiable on [a, b] endowed with the norm

‖x‖C2 =
2

∑
k=0

sup
t∈[a,b]

|x(k)(t)|.

It is well-known that (C2([a, b]), ‖ · ‖C2) is a Banach space.
In our next analysis of the existence and uniqueness of solutions for the IVPFO (1),

we will make use of the following auxiliary property (which may be considered as a very
natural and expectable property; cf., e.g., [24]).

Lemma 2 (See also [24]). Let α ∈ (1, 2) and x ∈ C2([a, b]) with x(a) = x′(a) = 0. Then
Dα

a+x ∈ C([a, b]) and

(Dα
a+x)(t) =

1
Γ(2− α)

∫ t

a
(t− s)1−αx′′(s)ds.

Moreover,
(Dα

a+x)(t) = (Dα−1
a+ x′)(t). (2)

Proof. For the reader’s convenience, we have chosen to include here a proof of this lemma.
Within the stated conditions, we simply have to use integration by parts to obtain∫ t

a
(t− s)1−αx(s)ds =

1
2− α

∫ t

a
(t− s)2−αx′(s)ds,∫ t

a
(t− s)2−αx′(s)ds =

1
3− α

∫ t

a
(t− s)3−αx′′(s)ds.

And so, it follows
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(Dα
a+x)(t) =

1
Γ(2− α)

(
d
dt

)2 ∫ t

a
(t− s)1−αx(s)ds

=
1

Γ(3− α)

(
d
dt

)2 ∫ t

a
(t− s)2−αx′(s)ds

=
1

Γ(4− α)

(
d
dt

)2 ∫ t

a
(t− s)3−αx′′(s)ds

=
1

Γ(2− α)

∫ t

a
(t− s)1−αx′′(s)ds.

Since under the present conditions
∫ t

a (t− s)1−αx′′(s)ds is continuous on [a, b], we conclude
that Dα

a+x is continuous on [a, b].
Moreover,

(Dα
a+x)(t) =

1
Γ(2− α)

(
d
dt

)2 ∫ t

a
(t− s)1−αx(s)ds

=
1− α

Γ(2− α)

d
dt

∫ t

a
(t− s)−αx(s)ds.

Integrating by parts, and using the circumstance that x(a) = 0, we obtain

(Dα
a+x)(t) =

1
Γ(2− α)

d
dt

∫ t

a
(t− s)1−αx′(s)ds = (Dα−1

a+ x′)(t),

which concludes the proof.

Remark 1. Proceeding in a similar way as in the previous lemma, for α ∈ (1, 2), x ∈ C2([a, b])
and x(a) = x′(a) = 0, it follows that Dα−1

a+ x ∈ C([a, b]) and

(Dα−1
a+ x)(t) =

1
Γ(3− α)

∫ t

a
(t− s)2−αx′′(s)ds.

3. Different Conditions for the Existence and Uniqueness of Solutions

In the present section, we will analyse conditions to ensure the existence of solutions
to the IVPFO (1) and also conditions to guarantee the uniqueness of the solution. In view
of this, let us first start to “translate” the IVPFO (1) through a fractional integral equation.

Proposition 1. As before, let α ∈ (1, 2), f : [a, b] × R → R be a continuous function and
λ �= 0. A function x ∈ C2([a, b]) is a solution of the IVPFO (1) if and only if x satisfies the
integral equation

x(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu. (3)

Proof. Let x ∈ C2([a, b]) be the solution of IVPFO (1). By Lemma 2, we have that
Dα

a+x, Dα−1
a+ x ∈ C([a, b]) and Dα

a+x = Dα−1
a+ x′. Thus, we can rewrite our main equation

in (1),
(Dα

a+x)(t) + λ(Dα−1
a+ x)(t) = f (t, x(t)),

in the form
(Dα−1

a+ x′)(t) + λ(Dα−1
a+ x)(t) = f (t, x(t)). (4)

In view of Lemma 1, one has

(Iα−1
a+ Dα−1

a+ x)(t) = x(t) + c1(t− a)α−2,

(Iα−1
a+ Dα−1

a+ x′)(t) = x′(t) + d1(t− a)α−2, t ∈ [a, b].
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Thus, applying Iα−1
a+ to both members of Equation (4), we obtain

x′(t) + λx(t) + (λc1 + d1)(t− a)α−2 = [Iα−1
a+ f (·, x(·))](t). (5)

Since x(a) = x′(a) = 0, we conclude that

λc1 + d1 = 0,

and so it follows
x′(t) + λx(t) = [Iα−1

a+ f (·, x(·))](t). (6)

Let y(t) = eλtx(t). One has that

x′(t) = −λe−λty(t) + e−λty′(t).

Substituting the last two identities in (6), we obtain

y′(t) = eλt[Iα−1
a+ f (·, e−λ ·y(·))](t). (7)

Since x ∈ C2([a, b]), we have that y′ ∈ C1([a, b]). Moreover, Iα−1
a+ f is a continuously

differentiable function. Thus, integrating Equation (7) from a to t, we obtain

y(t) = y(a) +
1

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, e−λsy(s))dsdu.

Taking into account that y(t) = eλtx(t), it follows that

x(t) = e−λ(t−a)x(a) +
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu,

and using the initial conditions, we conclude that

x(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu.

Conversely, assume that x is given by (3), and thus

eλtx(t) =
1

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu. (8)

It is clear that x(a) = 0 and since x is continuously differentiable on [a, b], differentiating
both sides of (8), we get

eλtx′(t) + λeλtx(t) =
eλt

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds,

which is equivalent to

x′(t) + λx(t) =
1

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds. (9)

Thus x′(a) = 0 and since x ∈ C2([a, b]), accordingly to Lemma 2, we have that Dα
a+x and

Dα−1
a+ x exist. Applying Dα−1

a+ to both sides of Equation (9), using Lemma 1 and (2), we
also obtain

(Dα
a+x)(t) + λ(Dα−1

a+ x)(t) = f (t, x(t)),

which completes the proof.
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Having in mind Proposition 1, we realize that studying the solutions of IVPFO (1) is
the same as studying the solutions of

x = Tx,

where T is the fractional integral operator given by

(Tx)(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu, (10)

for x ∈ C2([a, b]) and λ ∈ R\{0}.

Remark 2. Another way to discover an integral form of x(t) is to consider the integral equation

x(t) = −λ
∫ t

a
x(s)ds +

1
Γ(α)

∫ t

a
(t− s)α−1 f (s, x(s))ds. (11)

In fact, applying Iα
a+ to both members of equation (Dα

a+x)(t) + λ(Dα−1
a+ x)(t) = f (t, x(t)), and

using Lemma 1, we obtain

x(t) + a1(t− a)α−1 + a2(t− a)α−2 + λ
∫ t

a

(
x(s) + b1(s− a)α−2

)
ds = [Iα

a+ f (·, x(·))](t)

(a1, a2, b1 ∈ R), which is equivalent to

x(t) = −
(

a1 + λ
b1

α− 1

)
(t− a)α−1 − a2(t− a)α−2 − λ

∫ t

a
x(s)ds + [Iα

a+ f (·, x(·))](t).

Since x(a) = 0, it follows that a2 = 0. Observing that

x′(t) = −((α− 1)a1 + λb1)(t− a)α−2 − λx(t) + [Iα−1
a+ f (·, x(·))](t),

and using the initial condition x′(a) = 0, we also conclude that a1 + λ b1
α−1 = 0, and thus,

Equation (11) is obtained.

Let us fix the following notation

k− =
(b− a)α−1

λΓ(α)

[
1− (1− λ + λ2)e−λ(b−a)

]
,

k+ =
(b− a)α−1

λΓ(α)

[
1 + 2λ + 2λ2 − (1 + λ + λ2)e−λ(b−a)

]
,

and

K = K(λ) :=
{

k−, λ < 0
k+, λ > 0

. (12)

Theorem 4. If f : [a, b]×R→ R is continuously differentiable, then the IVPFO (1) has at least
one solution in C2([a, b]).
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Proof. We will use the Schauder fixed point theorem for the fractional integral operator
T, defined in (10). The continuity of Tx follows from the continuity of f . Moreover, we
have that

(Tx)′(t) =
−λe−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

=
−λe−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

+
1

Γ(α)

(
(t− a)α−1 f (a, 0) +

∫ t

a
(t− s)α−1 f ′(s, x(s))ds

)
,

and

(Tx)′′(t) =
λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

− λ

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

+
1

Γ(α− 1)

(
(t− a)α−2 f (a, 0) +

∫ t

a
(t− s)α−2 f ′(s, x(s))ds

)
.

Since f is continuously differentiable, there exist positive constants A and B such that
| f (t, x(t)| ≤ A and | f ′(t, x(t))| ≤ B, t ∈ [a, b]. Define Ω = {x ∈ C2([a, b]) : ‖x‖C2 ≤ R}
with R being a positive real number satisfying

R ≥ KA +
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B.

It is clear that Ω is a closed, bounded and convex subset of C2([a, b]). Moreover, we
have that

|(Tx)(t)| =

∣∣∣∣ e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

∣∣∣∣
≤ e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2| f (s, x(s))|dsdu

≤ e−λt A
Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2dsdu

≤ e−λt

Γ(α)
A(b− a)α−1

∫ t

a
eλudu

=
(b− a)α−1

λΓ(α)
(1− e−λ(t−a))A,

|(Tx)′(t)| ≤
∣∣∣∣ −λe−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

∣∣∣∣
+

∣∣∣∣ 1
Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

∣∣∣∣
≤ (b− a)α−1

λΓ(α)

(
|λ|(1− e−λ(t−a)) + λ

)
A,
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and

|(Tx)′′(t)| ≤
∣∣∣∣ λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

∣∣∣∣
+

∣∣∣∣ λ

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

∣∣∣∣
+

∣∣∣∣ 1
Γ(α− 1)

(
(t− a)α−2 f (a, 0) +

∫ t

a
(t− s)α−2 f ′(s, x(s))ds

)∣∣∣∣
≤ (b− a)α−1

λΓ(α)

(
λ2(1− e−λ(t−a))λ|λ|

)
A +

(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B.

Thus, we have that

‖Tx‖C2 ≤ sup
t∈[a,b]

{
(b− a)α−1

λΓ(α)
(1− e−λ(t−a))A

}

+ sup
t∈[a,b]

{
(b− a)α−1

λΓ(α)

(
|λ|(1− e−λ(t−a)) + λ

)
A
}

+ sup
t∈[a,b]

{
(b− a)α−1

λΓ(α)

(
λ2(1− e−λ(t−a)) + λ|λ|

)
A

+
(b− a)α−2 f (a, 0)

Γ(α− 1)
+

(b− a)α−1

Γ(α)
B
}

.

Thus, if λ < 0, we have that

‖Tx‖C2 ≤ (b− a)α−1

λΓ(α)

[
1− λ + λ2 − (1− λ + λ2)e−λ(b−a) + λ− λ2

]
A

+
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B

= k−A +
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B ≤ R,

and if λ > 0, we have

‖Tx‖C2 ≤ (b− a)α−1

λΓ(α)

[
1 + λ + λ2 − (1 + λ + λ2)e−λ(b−a) + λ + λ2

]
A

+
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B

= k+A +
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B ≤ R.

Consequently, we conclude that T is a bounded operator on Ω ⊂ C2([a, b]).
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Let us prove that operator T : Ω → Ω is completely continuous. For t1, t2 ∈ [a, b],
t1 < t2, one has

|(Tx)(t2)− (Tx)(t1)| =

∣∣∣∣ e−λt2

Γ(α− 1)

∫ t2

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

− e−λt1

Γ(α− 1)

∫ t1

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

∣∣∣∣
≤ e−λt2

Γ(α− 1)

∫ t2

t1

∫ u

a
|(u− s)α−2eλu f (s, x(s))|dsdu

+
|e−λt2 − e−λt1 |

Γ(α− 1)

∫ t1

a

∫ u

a
|(u− s)α−2eλu f (s, x(s))|dsdu,

which tends to zero as t2 → t1 (independently of x and λ). In the same way, we get

|(Tx)′(t2)− (Tx)′(t1)|
= |λ||(Tx)(t2)− (Tx)(t1)|+ 1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2| f (s, x(s))|ds +

+
1

Γ(α− 1)

∫ t1

a
[(t2 − s)α−2 − (t1 − s)α−2]| f (s, x(s))|ds,

which tends to zero as t2 → t1. Finally, we observe that

|(Tx)′′(t2)− (Tx)′′(t1)|
= |λ||(Tx)′(t2)− (Tx)′(t1)|+ 1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2| f ′(s, x(s))|ds +

+
1

Γ(α− 1)

∫ t1

a
[(t2 − s)α−2 − (t1 − s)α−2]| f ′(s, x(s))|ds

+
(t2 − a)α−2 − (t1 − a)α−2

Γ(α− 1)
f (a, 0)

tends to zero as t2 → t1. Thus, we conclude that TΩ is equicontinuous. Following Arzelà-
Ascoli Theorem, we obtain that T is completely continuous. Applying Schauder’s fixed
point theorem (cf. Theorem 2), we conclude that the operator T has at least one fixed point,
which means that the IVPFO (1) has at least one solution and the proof is completed.

We will now exhibit other conditions under which, besides the existence of solutions,
we will also guarantee the uniqueness of the solution to the IVPFO (1).

Theorem 5. Let f : [a, b]×R → R be a continuously differentiable function and suppose that
there are L1 and L2 ≥ 0 such that, for t ∈ [a, b],

| f (t, x(t))− f (t, y(t))| ≤ L1|x(t)− y(t)|, (13)

| f ′(t, x(t))− f ′(t, y(t))| ≤ L2
(|x(t)− y(t)|+ |x′(t)− y′(t)|). (14)

If

KL1 + L2
(b− a)α−1

Γ(α)
< 1,

then the problem (1) has a unique solution on C2([a, b]).
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Proof. Since f is a continuously differentiable function, according to Theorem 4, the
IVPFO (1) admits at least one solution. Let us assume that conditions (13)–(14) hold.
Thus, we can obtain that, for x, y ∈ C2([a, b]),

|(Tx)(t)− (Ty)(t)| ≤ e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2| f (s, x(s))− f (s, y(s))|dsdu

≤ L1e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

≤ L1‖x− y‖C2
(b− a)α−1(1− e−λ(t−a))

λΓ(α)
,

|(Tx)′(t)− (Ty)′(t)| ≤ 1
Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s))− f (s, y(s))|ds

+
|λ|e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2| f (s, x(s))− f (s, y(s))|dsdu

≤ L1

Γ(α− 1)

∫ t

a
(t− s)α−2|x(s)− y(s)|ds

+
L1|λ|e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

≤ L1‖x− y‖C2

(b− a)α−1
(

λ + |λ|(1− e−λ(t−a))
)

λΓ(α)
,

and

|(Tx)′′(t)− (Ty)′′(t)| ≤ λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2| f (s, x(s))− f (s, y(s))|dsdu

+
|λ|

Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s))− f (s, y(s))|ds

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2| f ′(s, x(s))− f ′(s, y(s))|ds

≤ L1λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2|x(s)− y(s)|dsdu

+
|λ|L1

Γ(α− 1)

∫ t

a
(t− s)α−2|x(s)− y(s)|ds

+
L2

Γ(α− 1)

∫ t

a
(t− s)α−2(|x(s)− y(s)|+ |x′(s)− y′(s)|)ds

≤ L1‖x− y‖C2

(b− a)α−1
(

λ2(1− e−λ(t−a)) + λ|λ|
)

λΓ(α)

+L2‖x− y‖C2
(b− a)α−1

Γ(α)
.

Thus, we conclude that, for λ > 0

‖Tx− Ty‖C2

= sup
t∈[a,b]

|(Tx)(t)− (Ty)(t)|+ sup
t∈[a,b]

|(Tx)′(t)− (Ty)′(t)|+ sup
t∈[a,b]

|(Tx)′′(t)− (Ty)′′(t)|

≤ ‖x− y‖C2

[
L1

(b− a)α−1[1 + 2λ + 2λ2 − (1 + λ + λ2)e−λ(b−a)]

λΓ(α)
+ L2

(b− a)α−1

Γ(α)

]

=

(
k+L1 + L2

(b− a)α−1

Γ(α)

)
‖x− y‖C2 ,

216



Mathematics 2023, 11, 297

and for λ < 0,

‖Tx− Ty‖C2

≤ ‖x− y‖C2

[
L1

(b− a)α−1[1− e−λ(b−a) + λe−λ(b−a) − λ2e−λ(b−a)]

λΓ(α)
+ L2

(b− a)α−1

Γ(α)

]

=

(
k−L1 + L2

(b− a)α−1

Γ(α)

)
‖x− y‖C2 .

Since KL1 + L2
(b−a)α−1

Γ(α) < 1, we have that T is a contractive operator. Thus, by Banach
contraction principle (cf. Theorem 1), we conclude that T has a unique fixed point, which
from Proposition 1 means that the IVPFO (1) has a unique solution on C2([a, b]).

4. Ulam–Hyers and Ulam–Hyers–Rassias Stabilities

In this section, we analyse the Ulam–Hyers and the Ulam–Hyers–Rassias stabilities of
the above class of problems. In fact, since from Proposition 1 we have a new Equation (3)
to describe the IVPFO (1) equivalently, we may choose to discuss the stabilities of (1) or (3).
Thus, in here, we choose to exhibit, in detail, conditions for the Ulam–Hyers stability of (1)
and the Ulam–Hyers–Rassias stability of (3). To this purpose, let us first point out what are
the definitions of such stabilities in each of those cases.

Definition 3. The IVPFO (1) is Ulam–Hyers stable if there exists a real constant k > 0 such that,
for each ε > 0 and for each solution y ∈ C2([a, b]) of the inequality problem⎧⎨⎩

∣∣∣Dα
a+y(t) + λ(Dα−1

a+ y)(t)− f (t, y(t))
∣∣∣ ≤ ε, t ∈ [a, b],

y(a) = y′(a) = 0,
(15)

there exists a solution x ∈ C2([a, b]) of the problem (1) (or, equivalently, of (3)) such that

|y(t)− x(t)| ≤ kε, t ∈ [a, b].

Remark 3. If we look at what is inside the modulus function in (15) as a single “new” function h,
it directly follows that a function y ∈ C2([a, b]) is a solution of the inequality in (15) if and only if
there exists a function h ∈ C([a, b]) (which depends on y) such that

(i) |h(t)| ≤ ε, t ∈ [a, b],
(ii) y(a) = y′(a) = 0,
(iii) Dα

a+y(t) + λ(Dα−1
a+ y)(t)− f (t, y(t)) = h(t), t ∈ [a, b].

Definition 4. The fractional integral Equation (3) is Ulam–Hyers–Rassias stable with respect to
ϕ : [a, b]→ R+ if there exists a real constant kϕ > 0 such that, for each ε > 0 and for each solution
y of ∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ ≤ εϕ(t), t ∈ [a, b], (16)

there exists a solution x of the problem (3) with

|y(t)− x(t)| ≤ kϕεϕ(t), t ∈ [a, b].

4.1. Ulam–Hyers Stability

As indicated above, we will start by identifying conditions that guarantee the Ulam–
Hyers of the IVPFO (1).
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Theorem 6. Let the continuously differentiable function f satisfy the Lipschitz conditions (13)–(14),
for all t ∈ [a, b], and assume that

KL1 + L2
(b− a)α−1

Γ(α)
< 1. (17)

If y ∈ C2([a, b]) satisfies the inequality and initial conditions (15) (with ε > 0), for all t ∈ [a, b],
then there exists a unique solution x ∈ C2([a, b]) of the IVPFO (1) such that

|y(t)− x(t)| ≤ kε, t ∈ [a, b],

for

k =
(b− a)α−1

α− 1
eL1

(1−e−λ(b−a))(b−a)α−1

λΓ(α) (18)

which, in particular, means that the IVPFO (1) is Ulam–Hyers stable.

Proof. According to the hypothesis, there exists a unique solution of the IVPFO (1).
Let y ∈ C2([a, b]) be any solution of the inequality of (15). By Remark 3, following the

procedure of Proposition 1, one has that

y(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

+
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλuh(s)dsdu,

with |h(t)| < ε. Thus, we have that

|x(t)− y(t)| =

∣∣∣∣ e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu( f (s, x(s))− f (s, y(s)))dsdu

− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλuh(s)dsdu

∣∣∣∣
≤ e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu| f (s, x(s))− f (s, y(s))|dsdu

+
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu|h(s)|dsdu

≤ L1
e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

+ε
e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2dsdu

≤ L1
1− e−λ(t−a)

λΓ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

+ε
(1− e−λ(t−a))(b− a)α−1

λΓ(α)

≤ 1− e−λ(t−a)

λΓ(α− 1)

(
ε
(b− a)α−1

α− 1
+

∫ t

a

∫ u

a
L1(u− s)α−2|x(s)− y(s)|dsdu

)
≤ 1− e−λ(b−a)

λΓ(α− 1)

(
ε
(b− a)α−1

α− 1
+

∫ t

a

∫ u

a
L1(u− s)α−2|x(s)− y(s)|dsdu

)
.
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Thus, according to Theorem 3, we have that

|x(t)− y(t)| ≤ ε
(b− a)α−1

α− 1
e

1−e−λ(b−a)
λΓ(α−1) L1

(t−a)α−1
α−1

≤ ε
(b− a)α−1

α− 1
eL1

(1−e−λ(b−a))(b−a)α−1

λΓ(α) ,

and we conclude the above claimed inequality and that the IVPFO (1) is Ulam–Hyers stable.

4.2. Ulam–Hyers–Rassias Stability

We will now consider the Ulam–Hyers–Rassias stability. For that purpose, we consider
the space C([a, b]) equipped with the Bielecki type metric

d(x, y) = sup
t∈[a,b]

|x(t)− y(t)|
σ(t)

,

where σ is a non-decreasing continuous function σ : [a, b] → R+. It is known that
(C([a, b]), d) is a complete metric space (cf. [25]).

Theorem 7. Let f : [a, b]×R→ R be a continuous function satisfying the Lipschitz condition

| f (t, ρ1)− f (t, ρ2)| ≤ L|ρ1 − ρ2|, ρ1, ρ2 ∈ R, t ∈ [a, b],

with L > 0. Additionally, let σ : [a, b]→ R+ be a nondecreasing function and suppose that exist a
constant ξ ∈ [0, 1) such that

e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλuσ(s)dsdu ≤ ξσ(t), t ∈ [a, b].

If y satisfies∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ ≤ εσ(t), t ∈ [a, b],

and Lξ < 1, then there exist a solution x of the fractional integral Equation (3) such that

|x(t)− y(t)| ≤ εσ(t)
1− Lξ

, t ∈ [a, b],

i.e., under the present conditions, the fractional integral Equation (3) has the Ulam–Hyers–
Rassias stability.

Proof. Having in mind the fractional integral Equation (3), we will consider (in the frame-
work of the above presented Bielecki type metric) the operator T : C([a, b], d)→ C([a, b], d)
defined by

(Ty)(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu.
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Let us first prove that T is strictly contractive in C([a, b], d). For any v, w ∈ C([a, b], d),
we have

d(Tv, Tw) = sup
t∈[a,b]

∣∣∣ e−λt

Γ(α−1)

∫ t
a

∫ u
a (u− s)α−2eλu( f (s, v(s))− f (s, w(s))dsdu

∣∣∣
σ(t)

≤ L sup
t∈[a,b]

∣∣∣ e−λt

Γ(α−1)

∫ t
a

∫ u
a (u− s)α−2eλuσ(s) |v(s)−w(s)|

σ(s) dsdu
∣∣∣

σ(t)

≤ Lξd(v, w).

Consequently, for Lξ < 1, we have that T is strictly contractive in the present framework,
and we have a unique solution x to the equation Ty = y.

Let us now identify ε as an upper bound for d(Ty, y), and use this knowledge. Indeed,
from the hypothesis, we have

|y(t)− Ty(t)| =
∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ < εσ(t),

which allows us to conclude that

d(x, y) ≤ 1
1− Lξ

d(y, Ty) ≤ ε

1− Lξ
,

and so
|x(t)− y(t)| ≤ ε

1− Lξ
σ(t), t ∈ [a, b].

The Ulam–Hyers stability is a particular case of the Ulam–Hyers–Rassias stability in
the sense that instead of having a function ϕ controlling the differences in the last stability,
we simply have a constant k in the first one. Thus, attending that

e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλudsdu ≤ (b− a)α−1

λΓ(α)
(1− e−λ(b−a)), t ∈ [a, b],

and proceeding in an identical way to the proof of Theorem 7, we would pass from an
upper bound that depends on a function (of the variable t) to an upper bound in the form
of a constant, which is here directly concluded (following the proof of Theorem 7) in the
next result:

Corollary 1. Let f : [a, b]×R→ R be a continuous function satisfying the Lipschitz condition

| f (t, ρ1)− f (t, ρ2)| ≤ L|ρ1 − ρ2|, ρ1, ρ2 ∈ R, t ∈ [a, b],

with L > 0. Let

η =
(b− a)α−1

λΓ(α)
(1− e−λ(b−a)). (19)

If Lη < 1 and y satisfies∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ ≤ ε, t ∈ [a, b],

then there exist a solution x of the fractional integral Equation (3) such that

|x(t)− y(t)| ≤ ε

1− Lη
, t ∈ [a, b], (20)
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i.e., under the above conditions, the fractional integral Equation (3) has the Ulam–Hyers stability.

Remark 4. Please, note that the constants k in (18) and 1
1−Lη in (20) cannot be compared for all the

values of the parameters. Consider, for example, the following cases. Admit that L = L1 = L2 = 1
20 ,

α = 7
4 and consider two intervals, one of amplitude equal 1 and another one with amplitude 0.8.

With these values, we have that, for λ ∈]− 2, 0[∪]0, 5[ condition (17) is verified and also, Lη < 1
for η as defined in (19). For the case b− a = 1, it is possible to observe that k > 1

1−Lη (cf. Figure 1,

where p(λ) > q(λ)). For the case b − a = 0.8, we verify that k < 1
1−Lη (cf. Figure 2, where

p(λ) < q(λ)).

Figure 1. The graphs of p(λ) = k(λ) and q(λ) = 1
1−Lη(λ)

for λ ∈ [−2, 0] ∪ [0, 5]: case b− a = 1.

Figure 2. The graphs of p(λ) = k(λ) and q(λ) = 1
1−Lη(λ)

for λ ∈ [−2, 0] ∪ [0, 5]: case b− a = 0.8.

4.3. Concrete Examples

Let us now consider some concrete examples to illustrate the above theory.
We start by considering the following IVPFO{

(D 3
2 x)(t) + λ(D 1

2 x)(t) = t
75 (x(t) + sin(t)),

x(2) = x′(2) = 0,
(21)

for t ∈ [2, 3]. Thus, in the previous notation, we have in here α = 3
2 , a = 2, b = 3 and

f (t, ρ) =
t

75
(ρ + sin(t)),

being clear that f is a continuously differentiable function.
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According to Theorem 4, there exists, at least, one solution of the IVPFO (21). In ad-
dition, having in mind that f ′(t, x(t)) = 1

75 (x(t) + t x′(t) + sin(t) + t cos(t)), for t ∈ [2, 3],
one has that

| f (t, x(t))− f (t, y(t))| ≤ 1
25
|x(t)− y(t)|,

| f ′(t, x(t))− f ′(t, y(t))| ≤ 1
25

(|x′(t)− y′(t)|+ |x(t)− y(t)|).

Following Theorem 5 and its notation, we have in here L1 = L2 = 1
25 . Thus, for a = 2 and

b = 3, we obtain that

KL1 + L2
(b− a)α−1

Γ(α)
< 1,

for λ ∈ [−1, 0] ∪ [0, 9] (cf. (12) and Figure 3). Thus, for these cases of λ, the IVPFO (21)
admits a unique solution in C2([2, 3]). Moreover, from Theorem 6, we also know that for
those λ the IVPFO (21) is Ulam–Hyers stable.

Figure 3. The graphs of z1(λ) = K(λ)L1 +
L2

Γ( 3
2 )

and z2 = 1.

The example we have just analyzed allows us to see that there really are classes of
problems, dependent on λ, in which the conditions required in Theorem 5 are met, and
there are still other cases (for different parameters λ) in which this is not the case. In view
of this, and keeping in mind that the conditions of Theorem 5 are just sufficient conditions,
an open analysis eventually involves obtaining other weaker conditions according to which
the uniqueness of solution for those classes of problems can still be guaranteed. The same
can be envisaged for Theorem 6 and its sufficient conditions to guarantee the stability of
the Ulam–Hyers type.

Let us now investigate the Ulam–Hyers–Rassias stability of

x(t) =
e−λt

Γ( 3
2 − 1)

∫ t

2

∫ u

2
(u− s)

3
2−2eλu t

75
(y(s) + sin(s))dsdu, (22)

for t ∈ [2, 3] and λ = 3.
Letting σ(t) = et, we have that σ is a non-decreasing function and

e−3t

Γ( 1
2 )

∫ t

2

∫ u

2
(u− s)

3
2−2e3uσ(s)dsdu ≤ 1

5
σ(t), t ∈ [2, 3]

(cf. Figure 4). Thus, for the notation of Theorem 7, we have L = 1
25 , ξ = 1

5 and so
Lξ = 1

125 < 1.
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Figure 4. The graphs of p1(t) = 1
5 σ(t) = 1

5 et (the upper one), and p2(t) = e−3t

Γ( 1
2 )

∫ t
2

∫ u
2 (u −

s)
3
2−2e3uσ(s)dsdu, t ∈ [2, 3].

Take y(t) = 1
10 (t− 2)2. We have that y ∈ C2([2, 3]) and y(2) = y′(2) = 0. We have that

(cf. Figure. 5)∣∣∣∣∣y(t)− e−3t

Γ( 3
2 )

∫ t

2

∫ u

2
(u− s)−

1
2 e3u s

75
(y(s) + sin(s))dsdu

∣∣∣∣∣ ≤ 1
200

σ(t), t ∈ [2, 3].

Figure 5. The graphs of q1(t) = 1
200 σ(t) (the upper one) and q2(t) =∣∣∣∣y(t)− e−3t

Γ( 3
2 )

∫ t
2

∫ u
2 (u− s)− 1

2 e3u s
75 (y(s) + sin(s))dsdu

∣∣∣∣, t ∈ [2, 3].

Thus, according to Theorem 7, the problem (22) is Ulam–Hyers–Rassias stable with
respect to σ(t) = et and

|y(t)− x(t)| ≤ 5et

992
, t ∈ [2, 3].

Moreover, we can also observe that∣∣∣∣∣y(t)− e−3t

Γ( 3
2 )

∫ t

2

∫ u

2
(u− s)−

1
2 e3u s

75
(y(s) + sin(s))dsdu

∣∣∣∣∣ ≤ 1
10

, t ∈ [2, 3].

Thus, applying Corollary 1 and the respective notation, we have that ε = 1
10 . Additionally,

η = 1−e−3

3Γ( 3
2 )
≈ 0.36 and we conclude that

|x(t)− y(t)| ≤ 0.1.
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In this last example, it is relevant to emphasize the importance of the function σ in
the whole process, with special predominance, from the outset, in the determination of the
exhibited upper bounds. In this case, we chose to work with the exponential function, and
this had expected consequences given the growth that the function presents. Incidentally,
the importance of the choice and the impact that the σ function has is well evidenced by
the fact that the same problem can be Ulam–Hyers–Rassias stable for a given σ1 function
and not Ulam–Hyers–Rassias stable for another σ2 function. Thus, it is precisely for this
reason that the Ulam–Hyers–Rassias stability is determined depending on the chosen σ
function (and it is also for this reason that this is explicitly mentioned in the name of this
type of stability).

Let us now consider the following different IVPFO{
(D 6

5 x)(t) + λ(D 1
5 x)(t) = t

10 x(t)− e−t, t ∈ [0, 1],

x(0) = x′(0) = 0.
(23)

Accordingly to the previous notations, we have now α = 6
5 , a = 0, b = 1 and

f (t, x(t)) = t
10 x(t) − e−t. It is clear that f is a continuously differentiable function in

[0, 1]×R. Thus there exists, at least, one solution of the IVPFO (23) (cf. Theorem 4). More-
over, one has that

| f (t, x(t))− f (t, y(t))| ≤ 1
10
|x(t)− y(t)|,

| f ′(t, x(t))− f ′(t, y(t))| ≤ 1
10

(|x′(t)− y′(t)|+ |x(t)− y(t)|).

Following Theorem 5, we have L1 = L2 = 1
10 . Since a = 0 and b = 1, we obtain that for

λ ∈]− 1, 0[∪]0, 5
2
[
, the condition

KL1 + L2
(b− a)α−1

Γ(α)
< 1

is verified (cf. Figure 6), which means that the IVPFO (23) admits a unique solution in
C2([0, 1]) when considering those values of λ (cf. Theorem 5).

Figure 6. The graphs of h1(λ) = K(λ)L1 +
L2

Γ( 6
5 )

and h2 = 1.

Thus, for these cases of λ, the IVPFO (23) admits a unique solution in C2([0, 1]). More-
over, from Theorem 6, we also know that for those λ the IVPFO (23) is Ulam–Hyers stable.
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Let us now analyse the Ulam–Hyers–Rassias stability of

x(t) =
e−λt

Γ( 6
5 − 1)

∫ t

0

∫ u

0
(u− s)

6
5−2eλu

( s
10

x(s)− e−s
)

dsdu, (24)

for t ∈ [0, 1], λ = 2, and with respect to σ(t) = t. Let x ∈ C2([0, 1]) be the exact solution
of the IVPFO (23), and let us consider y(t) = sin(t)− t. It follows that y ∈ C2([0, 1]) and
y(0) = y′(0) = 0. We have that σ is a nondecreasing function and

e−2t

Γ( 1
5 )

∫ t

0

∫ u

0
(u− s)−

4
5 e2uσ(s)dsdu ≤ 1

4
σ(t), t ∈ [0, 1]

(cf. Figure 7).

Figure 7. The graphs of m1(t) = e−2t

Γ( 1
5 )

∫ t
0

∫ u
0 (u− s)− 4

5 e2uσ(s)dsdu and m2(t) = 1
4 σ(t) = t

4 , t ∈ [0, 1].

For the notation of Theorem 7, we have L = 1
25 and ξ = 1

4 , and so Lξ = 1
100 < 1. Thus,∣∣∣∣∣y(t)− e−2t

Γ( 1
5 )

∫ t

0

∫ u

0
(u− s)−

4
5 e2u

( s
10

y(s)− e−s
)

dsdu

∣∣∣∣∣ ≤ 7
50

σ(t), t ∈ [0, 1]

(cf. Figure 8).

Figure 8. The graphs of w1(t) =
∣∣∣∣y(t)− e−2t

Γ( 1
5 )

∫ t
0

∫ u
0 (u− s)− 4

5 e2u( s
10 y(s)− e−s)dsdu

∣∣∣∣ (the lower one)

and w2(t) = 7
50 σ(t), t ∈ [0, 1].
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Therefore, according to Theorem 7, the problem (24) is Ulam–Hyers–Rassias stable
with respect to σ(t) = t and

|y(t)− x(t)| ≤ 14
99

σ(t), t ∈ [0, 1].

In this last example, we deliberately chose σ(t) = t to work with y(t) = sin(t)− t,
which can be considered not the most ideal choice (which, by the way, can be easily noticed
when we look at Figure 8 and see, on the right, the “greatest” distance between the two
functions represented there). Anyway, we consider this example important because it
emphasizes that the theoretical conditions obtained earlier are robust enough to guarantee
stability in less favorable or obvious choices.

Moreover, according to Corollary 1, we can also conclude the Ulam–Hyers stability.
Using the respective notation of the Corollary, we have that ε = 7

50 , η = 1−e−2

2Γ( 6
5 )
≈ 0.47 and

L = 1
25 . Thus, we conclude that |x(t)− y(t)| ≤ 7

50 .

5. Conclusions

We conclude this article by summarizing the results obtained. We analyze a class of
nonlinear fractional differential equations, with initial conditions, characterized by having
the Riemann–Liouville fractional derivative of order α ∈ (1, 2). Having made use of distinct
fixed-point arguments, we were able to deduce conditions that guarantee the existence
and uniqueness of solutions in a frame of adequate spaces, and we also obtained sufficient
conditions to have the Ulam–Hyers and Ulam–Hyers–Rassias stabilities of the problems
in the analysis (where the use of a Bielecki-type metric and some additional contractive
arguments were of crucial importance). In the last section, some examples were included
mainly to illustrate that the conditions obtained in the theoretical part really exist and can
be considered in particular cases.
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