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Carlos Féliz-Sánchez, Héctor Pijeira-Cabrera and Javier Quintero-Roba

Asymptotic for Orthogonal Polynomials with Respect to a Rational Modification of a Measure
Supported on the Semi-Axis
Reprinted from: Mathematics 2024, 12, 1082, doi:10.3390/math12071082 . . . . . . . . . . . . . . . 15

Maryam Salem Alatawi, Waseem Ahmad Khan, Can Kızılateş and Cheon Seoung Ryoo
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Abstract: This research aims to introduce and examine a new type of polynomial called the Δh

Legendre–Appell polynomials. We use the monomiality principle and operational rules to define the
Δh Legendre–Appell polynomials and explore their properties. We derive the generating function
and recurrence relations for these polynomials and their explicit formulas, recurrence relations, and
summation formulas. We also verify the monomiality principle for these polynomials and express
them in determinant form. Additionally, we establish similar results for the Δh Legendre–Bernoulli,
Euler, and Genocchi polynomials.

Keywords: Δh sequences; monomiality principle; Legendre–Appell polynomials; explicit forms;
determinant form

MSC: 33E20; 33B10; 33E30; 11T23

1. Introduction and Preliminaries

Complex system behavior has been modeled and described by special polynomials
in a variety of domains, including quantum mechanics and statistical mechanics. These
unique polynomials have also been used to describe and analyze complex systems in a
number of other domains, such as quantum mechanics and statistics. Polynomial sequences
are indispensable in several branches of mathematics, such as algebraic combinatorics,
entropy, and combinatorics. The Legendre, Chebyshev, Laguerre, and Jacobi polynomials
are a few examples of polynomial sequences that are solutions to particular ordinary
differential equations in approximation theory and physics. Legendre polynomials are a
class of orthogonal polynomials with important applications in physics and mathematics.
The French mathematician Edmond Legendre, who first introduced them in the 19th
century, is the reason behind their name. The Legendre differential equation, a second-
order linear differential equation, has solutions that lead to the Legendre polynomials.
They are often represented as Sn(u) [1], where n is a non-negative integer that denotes the
degree of the polynomial. They are defined on the interval [0,+∞). There are numerous
noteworthy characteristics of Legendre polynomials: On the interval [0,+∞), the Legendre
polynomials form an orthogonal set with regard to the weight function e−u. This indicates
that, with the exception of situations in which the polynomials have the same degree,
the integral of the sum of two distinct Laguerre polynomials with the weight function
equals zero. Moreover, the Legendre polynomials satisfy a recurrence relation, enabling
the computation of higher-degree polynomials from lower-degree ones. This characteristic
helps with efficient polynomial generation and numerical computations. Furthermore,
the generating function of these polynomials permits the expansion of some functions
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into a sequence of Legendre polynomials. This characteristic helps in differential equation
solving and yields closed-form solutions. Application areas for the Legendre polynomials
include the solutions of the Schrodinger equation for the hydrogen atom and other quantum
systems with spherical symmetry in mathematics, physics, and engineering. Furthermore,
issues involving diffusion equations, wave propagation, and heat conduction give rise to
these polynomials.

Mathematical physics two-variable special polynomials have been the subject of much
recent research. A class of polynomials known as two-variable special polynomials has
certain attributes, for example, [2,3]. They have numerous uses in mathematics and other
fields and are frequently researched in the area of algebraic geometry. Bivariate Chebyshev,
Hermite, Laguerre, and Laguerre polynomials are a few notable examples of two-variable
special polynomials. They are widely used in signal processing, numerical analysis, and
approximation theory. Bivariate Chebyshev polynomials are symmetric polynomials with
applications in least squares fitting and interpolation. Hermite polynomials of two variables
have applications in quantum mechanics, statistical mechanics, and waveguide theory.
Bivariate Hermite polynomials are often used in the study of harmonic oscillators in two
dimensions. Bivariate Legendre polynomials are a two-variable extension of the Legendre
polynomials. They satisfy a bivariate analogue of the Legendre differential equation and
have applications in quantum mechanics, potential theory, and random matrix theory.
Bivariate Legendre polynomials are particularly useful in studying the behavior of systems
with two degrees of freedom. These polynomials satisfy a certain orthogonality condition
with respect to a weight function and are thus extensively studied in mathematical physics,
probability theory, and approximation theory. The significance of these two-variable
special polynomials lies in their usefulness in solving problems in various mathematical
and scientific domains. They provide a rich framework for expressing and analyzing
multivariate functions and have specific properties that make them suitable for specific
applications. It is well known that huge classes of partial differential equations, which
are frequently encountered in physical issues, can be solved analytically by innovative
methods made possible by the special polynomials of two variables. The two-variable
Legendre polynomials Sω(u, v) [4] are of enormous mathematical significance and have
applications in physics, which makes their introduction intriguing.

The two-variable Legendre polynomials (2VLeP) Sω(u, v) are specified by means of
the following generating equation:

evξ J0(2ξ
√
−u) =

∞

∑
ω=0

Sω(u, v)
ξω

ω!
, (1)

where J0(uξ) is the 0th order ordinary Bessel function of first kind [5] defined by

Jω(2
√

u) =
∞

∑
ν=0

(−1)ν (
√

u)ω+2ν

ν! (ω + ν)!
. (2)

also note that
exp(−γD−1

u ) = J0(2
√

γu), D−ω
u {1} :=

uω

ω!
(3)

is the inverse derivative operator.
Or, alternatively, by

evξC0(−uξ2) =
∞

∑
ω=0

Sω(u, v)
ξω

ω!
, (4)

where C0(uξ) is the 0th order Tricommi function of the first kind [5] with

C0(−uξ2) = eD−1
u ξ2

. (5)
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Thus, in view of Equation (3) or (5), the generating expression for Legendre polynomials
can be cast as:

evξ eD−1
u ξ2

=
∞

∑
ω=0

Sω(u, v)
ξω

ω!
. (6)

Very recently, a large interest has been shown by mathematicians to introduce Δh forms
of special polynomials. Some extensions of the special polynomials were studied in [1,5–10].
After that, by using the classical finite difference operator Δh, a new form of the special poly-
nomials, known as the Δh special polynomials of different polynomials, were introduced
in [11,12]. These Δh special polynomials have been studied because of their remarkable
applications in different branches of mathematics, physics, and statistics.

These Δh Appell polynomials are represented as:

A
[h]
ω (u) := Aω(u), ω ∈ N0 (7)

and defined by
uΔh

{
A
[h]
ω (u)

}
= ωh Aω−1(u), ω ∈ N, (8)

where Δh is the finite difference operator:

uΔhH
[h](u) = H(u + h)−H(u). (9)

The Δh Appell polynomials Aω(u) are specified by the following generating function [12]:

γ(ξ)(1 + hξ)
u
h =

∞

∑
ω=0

A
[h]
ω (u)

ξω

ω!
, (10)

where
γ(ξ) =

∞

∑
ω=0

γω,h
ξω

ω!
, γ0,h �= 0. (11)

Therefore, motivated by the results in [4,11–13], here we introduced the two-variable
Δh Legendre–Appell polynomials:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
(12)

through the generating function concept.
This article is designed as follows: Section 2 discusses how the Legendre–Appell poly-

nomials are generated and explores recurrence relations that govern their behavior. Section
3 presents formulas for summing or evaluating these Legendre–Appell polynomials over
certain ranges or with specific constraints. These formulas can be useful for calculating the
values of the polynomials efficiently. Section 4 discusses the monomiality principle, which
relates to how Legendre–Appell polynomials behave under certain operations. The deter-
minant form for these polynomials is also established. In Section 5, Symmetric identities
for these polynomials are derived. The conclusion section summarizes the findings of the
article and discusses implications, applications, and potential future research directions re-
lated to Legendre–Appell polynomials. Each of these sections likely delves deeper into the
mathematical properties and characteristics of Legendre–Appell polynomials, providing
insights into their behavior and utility in various mathematical contexts.

2. Two-Variable Δh Legendre–Appell Polynomials

The significance of this section lies in its exploration of a novel class of two-variable
Δh Legendre–Appell polynomials and its establishment of essential properties associated
with them. The research expands the existing knowledge base and opens doors to new
avenues of inquiry within polynomial theory and its applications.

The construction of the generating function for these Δh Legendre–Appell polynomi-
als, denoted as SA

[h]
ω (u, v), marks a crucial step forward in understanding the behavior

3
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and properties of these polynomials. Generating functions serve as powerful tools in
combinatorics, analysis, and mathematical physics, providing insights into the structure
and properties of sequences and functions. By proving the existence and constructing the
generating function for Δh Legendre–Appell polynomials, this section lays the foundation
for further exploration of their properties, such as orthogonality, recurrence relations, and
special function identities.

Moreover, by establishing a connection between the Δh Legendre–Appell polynomials
and their generating function, this research contributes to the broader mathematical com-
munity’s understanding of polynomial families and their applications. The traits listed in
this section provide valuable insights into the unique characteristics and behaviors of these
polynomials, paving the way for their utilization in various mathematical and scientific
domains. Overall, this section represents a significant advancement in polynomial theory,
offering fresh perspectives and potential applications that warrant further investigation and
exploration. First, we prove the following conclusion to construct the generating function
for these Δh Legendre–Appell polynomials SA

[h]
ω (u, v) by proving the following result:

Theorem 1. For the two-variable Δh Legendre–Appell polynomials SA
[h]
ω (u, v), the succeeding

generating relation holds true:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
. (13)

Proof. By expanding γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h at u = v = 0 for finite differences by a

Newton series and the order of the product of the developments of the function γ(t)(1 +

hξ)
v
h (1 + hξ2)

D−1
u
h with respect to the powers of ξ, we observe the polynomials SA

[h]
ω (u, v)

expressed in Equation (13) as coefficients of ξω

ω! as the generating function of two-variable

Δh Legendre–Appell polynomials SA
[h]
n (u, v).

Theorem 2. For the two-variable Δh Legendre–Appell polynomials SA
[h]
ω (u, v), the succeeding

relations hold true:

vΔh
h SA

[h]
ω (u, v) = ω SA

[h]
ω−1(u, v) (14)

uΔh
h SA

[h]
ω (u, v) = ω(ω − 1) SA

[h]
ω−2(u, v), D−1

u → u. (15)

Proof. By differentiating (13) with respect to v by taking into consideration of expression (5),
we have

vΔh

{
γ(t)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

}
= γ(ξ)(1 + hξ)

v+h
h (1 + hξ2)

D−1
u
h − γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

= (1 + hξ − 1)γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h

= hξ γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h .

(16)

By substituting the righthand side of expression (13) in (16), we find

vΔh

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= h

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω+1

ω!
. (17)

By replacing ω → ω − 1 in the righthand side of previous expression (16) and com-
paring the coefficients of the same exponents of t in the resultant expression, assertion (14)
is deduced.

Further, on similar grounds, expression (15) is established.

4
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Next, we deduce the explicit form satisfied by these two-variable Δh Legendre–Appell
polynomials SA

[h]
ω (u, v) by demonstrating the result:

Theorem 3. For the two-variable Δh Legendre–Appell polynomials SA
[h]
ω (u, v), the explicit relation

holds true:

SA
[h]
ω (u, v) =

v
h

∑
d=0

(
ω

d

)( v
h
d

)
hd

A
[h]
ω−d(u). (18)

Proof. Expanding generating relation (13) in the given manner:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

v
h

∑
d=0

( v
h
d

)
(hξ)d

d!

∞

∑
ω=0

SA
[h]
ω (u, 0)

ξω

ω!
(19)

which can further be written as

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

[ v
h ]

∑
d=0

( v
h
d

)
hd

A
[h]
ω (u)

ξω+d

ω! d!
. (20)

By replacing ω → ω − d in the righthand side of the previous expression, it follows
that

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

[ v
h ]

∑
d=0

( v
h
d

)
hd

A
[h]
ω (u)

ξω

(ω − d)! d!
. (21)

On multiplying and dividing by ω! on the righthand side of previous expression (21)
and comparing the coefficients of the same exponents of ξ on both sides, assertion (18) is
deduced.

Theorem 4. Further, for the two-variable Δh Legendre–Appell polynomials SA
[h]
ω (u, v), the explicit

relation holds true:

SA
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
γν,h S

[h]
ω−ν(u, v). (22)

Proof. Expanding generating relation (13) in view of expressions (8) and (13) with γ(ξ) = 1
in the given manner:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ν=0

γν,h
ξν

ν!

∞

∑
ω=0

S
[h]
ω (u, v)

ξω

ω!
, (23)

which can further be written as

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

∞

∑
ν=0

γν,h S
[h]
ω (u, v)

ξω+ν

ω!ν!
. (24)

By replacing ω → ω − ν in the righthand side of the previous expression, it follows that

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

ω

∑
ν=0

γν,h S
[h]
ω−ν(u, v)

ξω

(ω − ν)! ν!
. (25)

On multiplying and dividing by ω! on the righthand side of previous expression (25)
and comparing the coefficients of the same exponents of ξ on both sides, assertion (22)
is deduced.

3. Summation Formulae

This section establishes the summation formulae, or sigma notation, essential in
mathematical analysis. These formulae provide systematic methods for computing sums

5
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involving special polynomials, facilitating the evaluation of complex expressions encoun-
tered in various mathematical contexts. By leveraging these formulae, mathematicians
can identify patterns and uncover hidden symmetries within polynomial structures, en-
hancing understanding and fostering innovative applications in combinatorics, probability
theory, and mathematical physics. Additionally, the study of summation formulae aids in
developing efficient computational techniques, enabling researchers to address challenging
problems precisely. These expressions concisely represent the sum of a sequence of terms,
providing a convenient way to compute the total of a series of numbers or expressions.
Thus, we demonstrate the summation formulae by proving the following results:

Theorem 5. For ω ≥ 0, we have

SA
[h]
ω (u, v + 1) =

ω

∑
ν=0

(
ω

ν

)(
−1

h

)
ν

(−h)ν
SA

[h]
ω−ν(u, v). (26)

Proof. By (13), we have

∞
∑

ω=0
SA

[h]
ω (u, v + 1) ξω

ω! −
∞
∑

ω=0
SA

[h]
ω (u, v) ξω

ω! = γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h

(
(1 + hξ)

1
h − 1

)
=

∞
∑

ω=0
SA

[h]
ω (u, v) ξω

ω!

(
∞
∑

ν=0

(
− 1

h

)
ν
(−h)ν ξν

ν! − 1
)

=
∞
∑

ω=0

(
ω

∑
ν=0

(ω
ν )
(
− 1

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, v)

)
ξω

ω! −
∞
∑

ω=0
SA

[h]
ω (v, u) ξω

ω! .

(27)

Comparing the coefficients of ξ, we obtain (26).

Theorem 6. For ω ≥ 0, we have

SA
[h]
ω (u, v) =

ω

∑
ν=0

[ ω−ν
2 ]

∑
j=0

(
−v

h

)
ω−2j−ν

(−h)ω−j−ν
(
−u

h

)
j
(−1)j Aν,h

ω!
(ω − 2j − ν)!(j!)2ν!

. (28)

Proof. Using (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

= γ(ξ)
∞

∑
ω=0

(
−v

h

)
ω
(−h)ω ξω

ω!

∞

∑
j=0

(
−u

h

)
j
(−1)j(−h)j ξ2j

j!j!

=
∞

∑
ν=0

Aν,h
ξν

ν!

∞

∑
ω=0

[ ω
2 ]

∑
j=0

(
−v

h

)
ω−2j

(−h)ω−j
(
−u

h

)
j
(−1)j ξω

(ω − 2j)!(j!)2

=
∞

∑
ω=0

ω

∑
ν=0

[ ω−ν
2 ]

∑
j=0

(
−v

h

)
ω−2j−ν

(−h)ω−j−ν
(
−u

h

)
j
(−1)j Aν,h

ξω

(ω − 2j − ν)!(j!)2ν!
. (29)

Equating the coefficients of ξ, we obtain (28).

Now, we investigate the connection between the Stirling numbers of the first kind and
two-variable Δh Legendre polynomials.

[log(1 + ξ)]ν

ν!
=

∞

∑
i=ν

S1(i, ν)
ξ i

i!
, | ξ |< 1. (30)

From the above definition, we have

(v)i =
i

∑
ν=0

(−1)i−νS1(i, ν)vν. (31)

6
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Theorem 7. For ω ≥ 0, we have

SA
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
SA

[h]
ω−ν(u, 0)

ν

∑
j=0

vjS1(ν, j)hν−j. (32)

Proof. From (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= e

v
h log(1+hξ)γ(ξ)(1 + hξ2)

D−1
u
h

= γ(ξ)(1 + hξ2)
D−1

u
h

∞

∑
j=0

(v
h

)j [log(1 + hξ)]j

j!

=
∞

∑
ω=0

SA
[h]
ω (u, 0)

ξω

ω!

∞

∑
ν=0

ν

∑
j=0

(v
h

)j
S1(ν, j)hν ξν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
SA

[h]
ω−ν(u, 0)

ν

∑
j=0

(v
h

)j
S1(ν, j)hν

)
ξω

ω!
. (33)

Comparing the coefficients of ξ, we obtain the result.

Theorem 8. For ω ≥ 0, we have

SA
[h]
ω (u, v) =

ω

∑
l=0

ω−l

∑
ν=0

ω!
(ω − ν − l)!(ν + l)!

hν
SA

[h]
ω−ν−l(u, 0)S1(ν + l, l)vl . (34)

Proof. From (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

=
∞

∑
ω=0

SA
[h]
ω (u, 0)

ξω

ω!

∞

∑
ν=0

(
−v

h

)
ν
(−h)ν ξν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)(
−v

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, 0)

)
ξω

ω!
. (35)

Comparing the coefficients of ξ, we obtain

SA
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)(
−v

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, 0). (36)

Using, equality (31) in previous expression, we obtain

SA
[h]
ω (u, v) =

(
ω

∑
ν=0

(
ω

ν

)
(−h)ν

SA
[h]
ω−ν(u, 0)

)(
ν

∑
l=0

(−1)ν−lS1(ν, l)(−h)−lvl

)

=
ω

∑
l=0

ω

∑
ν=l

ω!
(ω − ν)!ν!

(−h)ν−l
SA

[h]
ω−ν(u, 0)(−1)ν−lS1(ν, l)vl

=
ω

∑
l=0

ω−l

∑
ν=0

ω!
(ω − ν − l)!(ν + l)!

(−h)ν
SA

[h]
ω−ν−l(u, 0)(−1)νS1(ν + l, l)vl . (37)

This completes the proof of the theorem.
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Theorem 9. For ω ≥ 0, we have

SA
[h]
ω (u, v + s) =

ω

∑
l=0

ω−l

∑
ν=0

ω!
(ω − ν − l)!(ν + l)!

hν
SA

[h]
ω−ν−l(u, v)S1(ν + l, l)sl . (38)

Proof. Taking v + s instead of v in (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v + s)

ξω

ω!
= γ(ξ)(1 + hξ)

v+s
h (1 + hξ2)

D−1
u
h

=

(
∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!

)(
∞

∑
ν=0

(
− s

h

)
ν
(−h)ν ξν

ν!

)
. (39)

Using the Cauchy rule and after comparing the coefficients of ξ on both sides of the
resulting equation, we have

SA
[h]
ω (u, v + s) =

ω

∑
ν=0

(
ω

ν

)(
− s

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, v). (40)

Then, using (31) for
(
− s

h
)

ν
, we obtain (38).

4. Monomiality Principle and Determinant Form

The monomiality principle is a fundamental concept in polynomial theory. It states
that any polynomial can be expressed uniquely as a combination of simple algebraic
terms called monomials. This representation simplifies the polynomial structure and
facilitates their analysis in various mathematical contexts. The principle plays a crucial
role in practical applications across scientific and engineering fields, such as computational
mathematics, signal processing, and physics, where polynomials are used to model complex
systems and phenomena. This highlights the broad applicability and significance of the
monomiality principle in advancing both theoretical understanding and practical problem-
solving capabilities. The exploration and utilization of the monomiality principle, along
with operational guidelines and other properties of hybrid special polynomials, have
been the focus of extensive study. Originating from Steffenson’s concept of poweroids
in 1941 [14], the notion of monomiality was further elaborated upon by Dattoli [15,16].
Central to this framework are the Ĵ and K̂ operators, which serve as multiplicative and
derivative operators, respectively, for a polynomial set gk(u1)k∈N.

These operators adhere to the following expressions:

gk+1(u1) = Ĵ {gk(u1)} (41)

and
k gk−1(u1) = K̂{gk(u1)}. (42)

Consequently, when these multiplicative and derivative operations are applied to the
polynomial set gk(u1)m∈N, they yield a quasi-monomial domain. Of particular importance
is the following formula:

[K̂, Ĵ ] = K̂Ĵ − Ĵ K̂ = 1̂, (43)

which exhibits a Weyl group structure.
Assuming the set {gk(u1)}k∈N is quasi-monomial, the operators Ĵ and K̂ can be

leveraged to derive the significance of this set. Thus, the following axioms hold true:
For Ĵ and K̂ to exhibit differential traits, gk(u1) satisfies the differential equation:

Ĵ K̂{gk(u1)} = k gk(u1). (44)

8
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The expression
gk(u1) = Ĵ k {1} (45)

represents the explicit form, with g0(u1) = 1 and the expression

ewĴ {1} =
∞

∑
k=0

gk(u1)
wk

k!
, |w| < ∞ , (46)

demonstrates generating expression behavior and is obtained by applying identity (45).
In this section, we will discuss the results of our validation efforts. These results aim

to strengthen the reliability and usefulness of the Δh Legendre–Appell polynomials as
important mathematical tools. As a result, we will be verifying the monomiality principle
for the Δh Legendre–Appell polynomials SA

[h]
ω (u, v) by presenting the following results:

Theorem 10. The Δh Legendre–Appell polynomials SA
[h]
ω (u, v) satisfy the succeeding multiplica-

tive and derivative operators:

M̂
SA

=

(
v

1 + vΔh
+

2 D−1
u vΔh

h + vΔh
2 +

γ
′
( vΔh

h )

γ( vΔh
h )

)
(47)

and
ˆD
S
A =

vΔh
h

. (48)

Proof. In consideration of expression (5), taking derivatives with respect to v of expres-
sion (13), we have

vΔh

{
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

}
= γ(ξ)(1 + hξ)

v+h
h (1 + hξ2)

D−1
u
h − γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

= (1 + hξ − 1)γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h

= hξ γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h ,

(49)

thus, we have

vΔh
h

[
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

]
= ξ

[
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

]
, (50)

which gives the identity

vΔh
h

[
SA

[h]
ω (u, v)

]
= ξ

[
SA

[h]
ω (u, v)

]
. (51)

Now, differentiating expression (13) with respect to ξ, we have

∂

∂ξ

{
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

}
=

∂

∂ξ

{
∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!

}
, (52)

(
v

1 + hξ
+ 2

D−1
u ξ

1 + hξ2 +
γ′(ξ)
γ(ξ)

){
∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!

}
=

∞

∑
ω=0

ω SA
[h]
ω (u, v)

ξω−1

ω!
. (53)

On the usage of identity expression (51) and replacing ω → ω + 1 in the righthand
side of previous expression (53), assertion (47) is established.

Further, in view of identity expression (51), we have

vΔh
h

[
SA

[h]
ω (u, v)

]
=
[
ω SA

[h]
ω−1(u, v)

]
, (54)

9
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which gives an expression for the derivative operator (48).

Next, we deduce the differential equation for the Δh Legendre–Appell polynomials

SA
[h]
ω (u, v) by demonstrating the succeeding result:

Theorem 11. The Δh Legendre–Appell polynomials SA
[h]
ω (u, v) satisfy the differential equation:(

v
1 + vΔh

+
2 D−1

u vΔh

h + vΔh
2 +

γ
′
( vΔh

h )

γ( vΔh
h )

− ωh
vΔh

)
SA

[h]
ω (u, v) = 0. (55)

Proof. Inserting expression (47) and (48) in the expression (44), the assertion (55) is proved.

Next, we give the determinant form of Δh Legendre–Appell polynomials SA
[h]
ω (u, v)

in terms of Δh Legendre polynomials S[h]ω (u, v) by proving the result listed below:

Theorem 12. The Δh Legendre–Appell polynomials SA
[h]
ω (u, v) give rise to the determinant

represented by:

SA
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 S
[h]
1 (u, v) S

[h]
2 (u, v) · · · S

[h]
ω−1(u, v) S

[h]
ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (56)

where
γω,h, ω = 0, 1, · · · are the coefficients of Maclaurin series of

1
γ(ξ)

.

Proof. Multiplying both sides of Equation (13) by 1
γ(ξ)

= ∑∞
ω=0 γω,h

ξω

ω! , we find

∞

∑
ω=0

S
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

∞

∑
ν=0

γν,h
ξν

ν! SA
[h]
ω (u, v)

ξω

ω!
, (57)

which, on using the Cauchy product rule, becomes

S
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
γν,h SA

[h]
ω−ν(u, v). (58)

This equality results in a set of ν equations with variables S
[h]
ω (u, v), where ω = 0,

1, 2, · · · . Solving this set using Cramer’s rule, and exploiting the denominator as the
determinant of a lower triangular matrix with a determinant of (γ0,h)

ω+1, while transposing
the numerator and subsequently substituting the i-th row with the (i + 1)-th position for
i = 1, 2, · · · , n − 1 produces the desired outcome.

5. Examples

The Appell polynomial family is diverse, spanning various members derived by se-
lecting an appropriate function γ(ξ). Each member boasts unique characteristics, including
distinct names, generating functions, and associated numerical properties. These polyno-
mials find applications across numerous mathematical domains due to their versatility and
rich properties. The selection of γ(ξ) plays a crucial role in defining the specific polynomial

10
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within the family, allowing for tailored solutions to various problems in mathematics and
physics. Understanding the generating functions associated with these polynomials is
essential for their practical utilization, enabling efficient computation and analysis. In the
following sections, we delve into the intricacies of the generating functions that underpin
the diverse set of Appell polynomials, shedding light on their mathematical elegance and
practical significance in a wide array of applications. The generating function for the Δh

Bernoulli polynomials β
[h]
ω (v) is given by

log(1 + hξ)
1
h

(1 + hξ)
1
h − 1

(1 + hξ)
v
h =

∞

∑
ω=0

β
[h]
ω (v)

ξω

ω!
, | ξ |< 2π. (59)

The generating expression for Δh Euler polynomials E[h]
ω (v) is given by

2

(1 + hξ)
1
h + 1

(1 + hξ)
v
h =

∞

∑
ω=0

E[h]
ω (v)

ξω

ω!
, | ξ |< π. (60)

The generating expression for Δh Genocchi polynomials G[h]
ω (v) is given by

2 log(1 + hξ)
1
h

(1 + hξ)
1
h + 1

(1 + hξ)
v
h =

∞

∑
ω=0

G[h]
ω (v)

ξω

ω!
, | ξ |< π. (61)

For h → 0, these polynomials reduce to the Bω(v), Eω(v) and Gω(v) polynomials [17].
The Bernoulli, Euler, and Genocchi numbers have found numerous applications in

various areas of mathematics, including number theory, combinatorics, and numerical
analysis. These applications extend to practical mathematics, where these polynomials and
numbers are utilized to solve problems and derive mathematical formulas.

For instance, the Bernoulli numbers appear in various mathematical formulas, such as
the Taylor expansion, trigonometric and hyperbolic tangent and cotangent functions, and
sums of powers of natural numbers. These numbers play a crucial role in number theory,
providing insights into patterns and relationships among integers.

Similarly, the Euler numbers arise in the Taylor expansion and have close connec-
tions to trigonometric and hyperbolic secant functions. They have applications in graph
theory, automata theory, and calculating the number of up/down ascending sequences,
contributing to the analysis of structures and patterns in discrete mathematics.

Moreover, the Genocchi numbers find utility in graph theory and automata theory.
They are particularly valuable in counting the number of up/down ascending sequences,
which involves studying the order and arrangement of elements in a sequence. Therefore,
these Δh polynomials and numbers of Bernoulli, Euler, and Genocchi play a significant role
in various mathematical domains, allowing for the exploration of mathematical relation-
ships, the derivation of formulas, and the analysis of patterns and structures.

By appropriately choosing the function γ(ξ) in Equation (13), we can establish the
following generating functions for the Δh Legendre-based Bernoulli SB

[h]
ω (u, v), Euler

SE
[h]
ω (u, v), and Genocchi SG

[h]
ω (u, v) polynomials:

log(1 + hξ)

h(1 + hξ)
1
h − h

(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SB
[h]
ω (u, v)

ξω

ω!
, (62)

2

(1 + hξ)
1
h + 1

(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SE
[h]
ω (u, v)

ξω

ω!
, (63)

and
2 log(1 + hξ)

h(1 + hξ)
1
h + h

(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SG
[h]
ω (u, v)

ξω

ω!
. (64)

11
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Further, in view of expression (22) and Table 1, the polynomials SB
[h]
ω (u, v), SE

[h]
ω (u, v)

and SG
[h]
ω (u, v) satisfy the following explicit form:

SB
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
Bν,h SA

[h]
ω−ν(u, v), (65)

SE
[h]
ω (u, v) =

n

∑
ν=0

(
ω

ν

)
Eν,h SA

[h]
ω−ν(u, v) (66)

and

SG
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
Gν,h SA

[h]
ω−ν(u, v). (67)

Furthermore, in view of expressions (56), the polynomials SB
[h]
ω (u, v), SE

[h]
ω (u, v) and

SG
[h]
ω (u, v) satisfy the following determinant representations:

SB
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 B
[h]
1 (u, v) B

[h]
2 (u, v) · · · B

[h]
ω−1(u, v) B

[h]
ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (68)

SE
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 E
[h]
1 (u, v) E

[h]
2 (u, v) · · · E

[h]
ω−1(u, v) E

[h]
ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (69)

and

SG
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 G
[h]
1 (u, v) G

[h]
2 (u, v) · · · G

[h]
ω−1(u, v) G

[h]
ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (70)
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Table 1. Several members of the Appell polynomials family.

S. No. Appell Polynomials Generating Function A(ξ)

I. The Bernoulli polynomials [11]
ξ

eξ − 1
euξ= ∑∞

ω=0 Bω(u)
ξω

ω! A(ξ) = ξ
eξ−1

II. The Euler polynomials [11]
2

eξ + 1
euξ= ∑∞

ω=0 Eω(u)
ξω

ω! A(ξ) = 2
eξ+1

III. The Genocchi polynomials [11]
2ξ

eξ + 1
euξ= ∑∞

ω=0 Gω(u)
ξω

ω! A(ξ) = 2ξ
eξ+1

6. Conclusions

The introduction and exploration of Δh Legendre–Appell polynomials mark a signifi-
cant advancement in polynomial theory, particularly in quantum mechanics and entropy
modeling. Integrating the monomiality principle and operational rules, these polynomials
offer fresh insights into uncharted mathematical territory. This research provides explicit
formulas and elucidates fundamental properties, deepening our understanding of Leg-
endre polynomials and linking them to established polynomial categories, enriching the
mathematical landscape.

Future research could delve into structural properties and algebraic aspects, uncover-
ing deeper insights and potential applications. Exploring their applicability in quantum
mechanics and mathematical physics may reveal new research directions and practical
implications. Additionally, bridging the gap between mathematical theory and real-world
applications could maximize their potential, especially in statistical mechanics, information
theory, and computational science. Collaborative interdisciplinary efforts could unlock the
full potential of Δh hybrid polynomials across diverse domains.

Therefore, introducing and investigating hybrid Δh polynomials represent a significant
milestone, fostering new research avenues and applications in various mathematical and
scientific fields. Continued exploration and collaboration are essential for realizing their
full potential and understanding their broader implications.
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Abstract: Given a sequence of orthogonal polynomials {Ln}∞
n=0, orthogonal with respect to a positive

Borel ν measure supported on R+, let {Qn}∞
n=0 be the the sequence of orthogonal polynomials with

respect to the modified measure r(x)dν(x), where r is certain rational function. This work is devoted

to the proof of the relative asymptotic formula Q(d)
n (z)

L(d)
n (z)

⇒n ∏N1
k=1

( √
ak+i√

z+
√

ak

)Ak
∏N2

j=1

(√
z+
√

bj√
bj+i

)Bj

, on

compact subsets of C \ R+, where ak and bj are the zeros and poles of r, and the Ak, Bj are their
respective multiplicities.

Keywords: orthogonal polynomials; asymptotic behavior; rational modifications

MSC: 41A60; 42C05; 41A20

1. Introduction

Let μ be a positive, finite, Borel measure on R+ = [0,+∞), such that for all n ∈ Z+

(the set of all non-negative integers)

ηn =
∫ ∞

0
xn dμ(x) < ∞. (1)

If there is no other measure μ0, such that ηn =
∫ ∞

0
xn dμ0(x) for all n ∈ Z+, it is said

that the moment problem associated with {ηn}n∈Z+ is determined (see ([1] Ch. 4)). By a
classical result of T. Carleman (see ([1] Th. 4.3)), a sufficient condition in order to the
moment problem associated with the sequence {ηn}n∈Z+ in (1) to be determined is

∞

∑
n=1

1
2n
√

ηn
= +∞. (2)

We say that the measure μ belongs to the class M′[R+] if {ηn}n∈Z+ satisfies (2) and
μ′ > 0 a.e. on R+ with respect to Lebesgue measure.

Let r(z) =
α(z)
β(z)

be a rational function, where α and β are coprime polynomials with

respective degrees A and B. We say that dμr(x) = r(z)dμ(z) is a rational modification (for
brevity, modification) of the measure μ. Write

α(z) =
N1

∏
i=1

(z − ai)
Ai , β(z) =

N2

∏
j=1

(z − bj)
Bj ,
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Mathematics 2024, 12, 1082

where ai, bj ∈ C \R+, Ai, Bj ∈ N. A = A1 + · · ·+ AN1 and B = B1 + · · ·+ BN2 .
We denote by {Ln}∞

n=0 the sequence of monic orthogonal polynomials with respect
to dμ. Assume that {Qn}∞

n=0 is the sequence of monic polynomials of least degree, not
identically equal to zero, such that∫ ∞

0
xk Qn(x) r(x)dμ(x) = 0, for all k = 0, 1, 2, . . . , n − 1. (3)

The existence of Qn is an immediate consequence of (3). Indeed, it is deduced solving an
homogeneous linear system with n equations and n + 1 unknowns. Uniqueness follows
from the minimality of the degree of the polynomial. We call Qn the nth monic modified
orthogonal polynomial. In ([2] Th.1), explicit formulas are provided in order to compute
Qn when the poles and zeros of the rational modification have a multiplicity of one.

Suppose that {ai}N1
i=1, {bj}N2

j=1 ⊂ C \ [−1, 1]. If μ is a positive (finite Borel) measure
on [−1, 1], such that μ is on the Nevai class M(0, 1), in ([3] Th. 1) the authors prove the
following asymptotic formula

Q(d)
n (z)

L(d)
n (z)

⇒
n

N1

∏
i=1

(
ϕ(z)− ϕ(ai)

2(z − ai)

)Ai N2

∏
j=1

(
1 − 1

ϕ(z)ϕ(bj)

)Bj

, (4)

on K ⊂ C \ [−1, 1]. The notation fn ⇒n f , K ⊂ U means that the sequence of functions
fn converges to f uniformly on a compact subset K of the region U, f (d) denotes the dth
derivative of f , d ∈ Z+ is fixed and

ϕ(z) = z +
√

z2 − 1
(∣∣∣z +√

z2 − 1
∣∣∣ > 1, z ∈ C \ [−1, 1]

)
.

In [3], the asymptotic formula (4) is pivotal in examining the asymptotic properties of
orthogonal polynomials across a broad range of inner products, encompassing Sobolev-type
inner products

〈 f , g〉S =
∫

f g dμ +
m

∑
j=1

dj

∑
i=0

λj,i f (i)(ζ j) g(i)(ζ j),

where λj,i ≥ 0, m, dj > 0, μ is certain kind of complex measure with compact support
is defined on the real line, and ζ j represents complex numbers outside the support of
μ. The authors compare the Sobolev-type orthogonal polynomials associated with this
measure to the orthogonal polynomials with respect to μ. These asymptotic results are of
interest for the electrostatic interpretation of zeros of Jacobi–Sobolev polynomials (cf. [4]).

On the other hand, the use of modified measures provides a stable way of computing
the coefficients of the recurrence relation associated to a family of orthogonal polynomials
(see ([5] Ch. 2)) and in [6,7] the interest of the modified orthogonal polynomials for the
study of the multipoint Padé approximation is shown.

For measures supported on [0,+∞) (or (−∞,+∞)) that satisfy the Carleman condition,
G. López in ([8] Th. 4) (or ([8] Th. 3) for (−∞,+∞)) proves a quite general version of
the relative asymptotic formula (4). In this case, if the modification function, ρ, is a non-
negative function on [0,+∞) in L1(μ), such that there exists an algebraic polynomial G and
k ∈ N for which |G|ρ/(1 + x)k and |G|ρ−1/(1 + x)k belong to L∞(μ), then

Qn(z)
Ln(z)

⇒
n

S(ρ,C \ [0,+∞), z)
S(ρ,C \ [0,+∞), ∞)

, K ⊂ C \ [0,+∞); (5)
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where S(ρ,C \ [0,+∞), z) is the Szegő’s function for ρ with respect to C \ [0,+∞), i.e.,

S(ρ,C \ [0,+∞), z) =es(z), s(z) =
1

2π

∫ ∞

0
log ρ(x)

(√−z
z − x

)
dx√

x
;

S(ρ,C \ [0,+∞), ∞) = lim
r→+∞

S(ρ,C \ [0,+∞),−r);

where the roots are selected from the condition
√

1 = 1. Additionally, it is requested that
f (z) = ρ(−((z + 1)/(z − 1))2) satisfies the Lipschitz condition in z = 1 and f (1) �= 0.

Asymptotic results, analogous to those obtained in [3], are obtained in [9] for the
particular case of (5), when dμ(x) = xae−xdx with a > −1 (the Laguerre measure).

The aim of this paper is to obtain an analog of (4) for measures supported on R+. We
prove the following theorem.

Theorem 1. Given a measure ν ∈ M′[R+], it holds in compact subsets of C \R

Q(d)
n (z)

L(d)
n (z)

⇒
n

N1

∏
i=1

( √
ai + i√

z +
√

ai

)Ai N2

∏
j=1

⎛⎝√
z +

√
bj√

bj + i

⎞⎠Bj

, (6)

for d ∈ Z+.

This situation is not a particular case of (5), because we consider ρ as a rational function
with complex coefficients and no necessarily ρ(x) ≥ 0 on R+.

The structure of the paper is as follows: Sections 2 and 3 are devoted to prove some
preliminary results on varying measures. On the other hand, in Section 4 we obtain an
essential theorem that allows us to finally prove Theorem 1 in Section 5.

2. Varying Measures and Carleman’s Condition

In this section, we introduce auxiliary results on varying measures and prove some
useful lemmas that allow us to extend results that hold for measures with bounded support
to the unbounded case. The following notations will be used throughout the paper:

Ψ(z) =
1 + z
1 − z

for z ∈ C \ [−1, 1].

Ψ−1(z) =
z − 1
z + 1

for z ∈ C \R+.

Φ(z) =
√

z + i√
z − i

where Φ(−1) = ∞ and z ∈ C \ [|z| ≤ 1].

(7)

If σ is a finite positive Borel measure on [−1, 1], we denote

dσn(t) =
dσ(t)

(1 − t)2n and ςn =
∫ 1

−1

dσ(t)
(1 − t)n . (8)

In this paper, we consider the principal branch of the square root, i.e.,
√

reiθ =
√

rei θ
2 , where

r > 0 and 0 ≤ θ < 2π.

Lemma 1. Let μ be a positive Borel measure supported on R+ and suppose that dσ(t) = (1 −
t) dμ(Ψ(t)). Then,

(a) μ′ > 0 a.e. on R+ implies that σ′ > 0 a.e. on [−1, 1],

(b) if
∞

∑
n=1

1
2n
√

ηn
= +∞, then

∞

∑
n=1

1
2n
√

ςn
= +∞,

where, as in (1), ηn denotes the nth moment of the measure dμ.
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Proof. To prove the first assertion note that if dσ(t) =
2

1 − t
μ′(Ψ(t))dt, then

dσ

dt
= (1 − t)

dμ(Ψ(t))
dt

=
2

1 − t
μ′(Ψ(t)) > 0 a.e. on [−1, 1].

The second part is derived using the change of variable t = Ψ−1(x) in the integral

ςn =
∫ 1

−1

(1 − t)
(1 − t)n dμ(Ψ(t)) =

∫ ∞

0

(
x + 1

2

)n−1
dμ(x)

=
∫ 1

0

(
x + 1

2

)n−1
dμ(x) +

∫ ∞

1

(
x + 1

2

)n−1
dμ(x)

≤ η0 +
∫ ∞

1
xn−1dμ(x) ≤ η0 + ηn. (9)

As
∞

∑
n=0

(ηn)
−1/2n = +∞, from (9) we have

∞

∑
n=0

(η0 + ηn)
−1/2n = +∞, then

∞

∑
n=0

(ςn)
−1/2n =

+∞.

Lemma 2. Assume that dν ∈ M′[R+], rk(x) =

(
x + 1

2

)k
and consider the modification

dνrk (x) = rk(x)dν(x). Then dνrk (x) ∈ M′[R+] for all k ∈ Z.

Proof. We now proceed by induction. Obviously, the initial case k = 0 is given by hypothesis.

• Case k > 0. Assume that dνrj(x) ∈ M′[R+] for all j ≤ k − 1. Since dνrk (x) =(
x + 1

2

)
dνrk−1(x), it is immediate that dνrk (x) is positive and

dνrk (x)
dx > 0 a.e. on R+.

Let mn,k be the nth moment of the measure dνrk (x), then

mn,k =
∫ ∞

0
xndνrk (x) =

∫ 1

0
xn
(

x + 1
2

)
dνrk−1(x) +

∫ ∞

1
xn
(

x + 1
2

)
dνrk−1(x),

≤
∫ 1

0
dνrk−1(x) +

∫ ∞

1
xn+1dνrk−1(x) ≤ m0,k−1 + mn+1,k−1,

where we use that xn
(

x + 1
2

)
≤ 1 for x ∈ [0, 1] and

(
x + 1

2

)
≤ x, for x ∈ [1,+∞). Then,

using induction hypothesis, we obtain that mn,k < ∞ and the sequence of moments for
dνrk (x) satisfies Carleman’s condition.

• Case k < 0. Repeating the previous arguments, we obtain that if dνrj(x) ∈ M′[R+] for

all 0 < j ≤ k + 1 then dνrk (x) is positive and
dνrk (x)

dx > 0 a.e. on R+.

For the nth moment of the measure dνrk (x), we have

mn,k =
∫ ∞

0
xndνrk (x) =

∫ 1

0
xn
(

2
x + 1

)
dνrk+1(x) +

∫ ∞

1
xn
(

2
x + 1

)
dνrk+1(x)

≤ 2 m0,k+1 + mn,k+1,

where we use that xn
(

2
x + 1

)
≤ 2 for x ∈ [0, 1] and

(
2

x + 1

)
≤ 1, for x ∈ [1,+∞). Then,

using induction hypothesis, we obtain that mn,k < ∞ and the sequence of moments for
dνrk (x) satisfies Carleman’s condition.
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Lemma 3. [7], Th. 4, Cor. 1. Let Pn,k be the kth monic orthogonal polynomial with respect to dσn.

If σ′ > 0 a.e. on [−1, 1] and
∞

∑
n=1

1
2n
√

ςn
= +∞, then, for each integer k

Pn,n−k+1

Pn,n−k
(z) ⇒

n

ϕ(z)
2

; K ⊂ C \ [−1, 1],

where ϕ(z) = z +
√

z2 − 1
(∣∣∣z +√

z2 − 1
∣∣∣ > 1 z ∈ C \ [−1, 1]

)
.

Lemma 4. Assume μ ∈ M′[R+] and dμm(x) =
(

2
x + 1

)2m
dμ(x), with m ∈ Z+.

(a) Let �m,n be the nth orthogonal polynomial with respect to μm, normalized by the condition
�m,n(−1) = (−1)n, then for d ∈ Z+, on K ⊂ C \R+ it holds

�
(d)
m,n+m(z)

�
(d)
k,n+k(z)

⇒
n

(
z + 1

4

)m−k
Φm−k(z) =

(√
z + i
2

)2(m−k)

. (10)

(b) Let Lm,n be the nth monic orthogonal polynomial with respect to μm, then on K ⊂ C \R+

it holds
L(d)

m,n+m(z)

L(d)
k,n+k(z)

⇒
n
(z + 1)m−kΦm−k(z) =

(√
z + i

)2(m−k). (11)

Proof. (Proof of a). Taking dσn(t) = (1 − t)1−2ndμ(Ψ(t)), from the assumptions and
Lemma 1, we obtain that dσn is a finite positive Borel measure on [−1, 1], σ′

n > 0 a.e. on

[−1, 1] and
∞

∑
n=1

ς
−1/(2n)
n = +∞, where ςn is as in (8).

Let Pn,k be the kth monic orthogonal polynomial with respect to dσn and denote

�∗m,n+m(z) =
(

z + 1
2

)n+m
Pn,n+m

(
Ψ−1(z)

)
. After a change of variable x = Ψ(t) in the next

integral, we obtain

∫ ∞

0

(
x + 1

2

)k
�∗m,n+m(x)dμm(x) =

∫ 1

−1

1

(1 − t)n+m+k Pn,n+m(t)(1 − t)2mdμ(Ψ(t))

=
∫ 1

−1
(1 − t)n+m−1−kPn,n+m(t)

dμ(Ψ(t))
(1 − t)2n−1

=
∫ 1

−1
(1 − t)n+m−1−kPn,n+m(t) dσn(t) = 0, (12)

for k = 0, 1, · · · , n + m − 1.

�∗m,n+m(−1) = lim
z→−1

(
z + 1

2

)n+m
Pn,n+m

(
Ψ−1(z)

)
= (−1)n+m. (13)

From (12) and (13), we have �m,n+m = �∗m,n+m. Therefore,

�m,n+m(z) =
(

z + 1
2

)n+m
Pn,n+m

(
Ψ−1(z)

)
, (14)

�m,n+m(z)
(1 + z)m−k �k,n+k(z)

=
Pn,n+m

(
Ψ−1(z)

)
2m−kPn,n+k(Ψ−1(z))

=
1

2m−k

m−1

∏
j=k

Pn,n+j+1
(
Ψ−1(z)

)
Pn,n+j(Ψ−1(z))

.
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From Lemma 3, for j = k, . . . , m − 1;

Pn,n+j+1
(
Ψ−1(z)

)
Pn,n+j(Ψ−1(z))

⇒
n

ϕ
(
Ψ−1(z)

)
2

; K ⊂ C \R+.

Thus,
�m,n+m(z)
�k,n+k(z)

⇒
n

(
z + 1

4

)m−k
ϕm−k

(
Ψ−1(z)

)
; K ⊂ C \R+,

which establishes (10) for d = 0. In order to proof (10) for d > 0, we proceed by induction
on d.

�
(d+1)
m,n+m(z)

�
(d+1)
k,n+k (z)

=
�
(d)
m,n+m(z)

�
(d)
k,n+k(z)

+
�
(d)
k,n+k(z)

�
(d+1)
k,n+k (z)

·

⎛⎝ �
(d)
m,n+m(z)

�
(d)
k,n+k(z)

⎞⎠′

.

Assume that formula (10) holds for d ∈ Z+, then
(
�
(d)
m,n+m/�(d)0,n

)′
is uniformly bounded on

compact subsets K ⊂ C \R+. Note that �(d)0,n /�(d+1)
0,n ⇒

n
0 on K ⊂ C \R+. This is proved

using an analogous of ([3] (2.9)), and the Bell’s polynomials version of the Faa Di Bruno
formula, see ([10] pp. 218, 219). The assertion (a) is proved.

(Proof of b). Write fd,m,n(z) =
�
(d)
m,n+m(z)

zm �
(d)
0,n(z)

and let κm,n+m be the leading coefficient of

�m,n+m. Hence, for d > 1

fd,m,,k,n(∞) =
(n + m) · · · (n + m − d + 1)κm,n+m

(n + k) · · · (n + k − d + 1)κk,n+k

f0,m,k,n(∞) =
κm,n+m

κk,n+k
.

From (10),

fd,m,k,n(z) ⇒
n

(
z + 1

4z

)m−k
Φm−k(z); K ⊂ C \R+, l ∈ Z+. (15)

lim
n→∞

fd,m,k,n(∞) = lim
n→∞

κm,n+m

κk,n+k
=

(
1
2

)2(m−k)
. (16)

As L(d)
m,n+m(z) =

�
(d)
m,n+m(z)
κm,n+m

for d ≥ 1, from (15) and (16), we get (11).

Denote by M[−1, 1] the class of admissible measures in [−1, 1] defined in ([11] Sec. 5).
Let σn a positive varying Borel measure supported on [−1, 1] and

pn,m(w) = τn,mwm + · · · , τn,m > 0

be the mth orthonormal polynomial with respect to σn, then ([11] Th. 7)

lim
n→∞

τn,n+k+1

τn,n+k
= 2, k ∈ Z. (17)

Lemma 5. Let σn be an admissible measure, then for all v ∈ Z,∫ 1

−1

pn,n+v(t)pn,n(t)
w − t

dσn(t) ⇒
n

1

ϕ|v|(w)
√

w2 − 1
; K ⊂ C \ [−1, 1]. (18)
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Proof. This proof is based on the proof of ([3] Lemma 2). Without loss of generality, let
us consider v ∈ Z+. Applying the Cauchy–Schwarz inequality we have, for z ∈ K ⊂
C \ [−1, 1] ∣∣∣∣∫ 1

−1

pn,n+v(t)pn,n(t)
w − t

dσn(t)
∣∣∣∣ ≤ 1

d(K, [−1, 1])
< ∞,

where d(K, [−1, 1]) denotes the Euclidian distance between the two sets. Thus, for (fixed)
values of v ∈ Z+, the sequence of functions in the left hand side of (18) is normal. Thus,
we deduce uniform convergence from pointwise convergence. The pointwise limit follows
from ([11] Th. 9)

lim
n→∞

∫ 1

−1

pn,n+v(t)pn,n(t)
w − t

dσn(t) =
1
π

∫ 1

−1

Tv(t)
w − t

dt√
1 − t2

,

here, Tv is the vth Chebyshev orthonormal polynomial of the first kind. Therefore, (18)
holds if we prove that

1
π

∫ 1

−1

Tv(t)
w − t

dt√
1 − t2

=
1

ϕv(w)
√

w2 − 1
. (19)

Note that T0(t) = 1, T1(t) = x, and, for v ≤ 1,

2tTv(t) = Tv+1(t) + Tv−1(t),

or equivalently
Tv+1 = 2tTv − Tv−1. (20)

Next, proceed by induction. Start at v = 0, expression (18), is obtained from the residue
theorem and Cauchy’s integral formula. Then, for v = 1 we have

1
π

∫ 1

−1

T1(t)
w − t

dt√
1 − t2

=
w
π

∫ 1

−1

1
w − t

dt√
1 − t2

− 1
π

∫ 1

−1

dt√
1 − t2

=
w

w2 − 1
− 1 =

1

ϕ(w)
√

w2 − 1
.

Now, assume (19) holds for v = 0, 1, . . . , k; k ≥ 1, we will prove that it also holds for
v = k + 1. Combining (20) and the hypothesis of induction, we obtain

1
π

∫ 1

−1

Tk+1(t)
w − t

dt√
1 − t2

=
1
π

∫ 1

−1

2tTk(t)
w − t

dt√
1 − t2

− 1
π

∫ 1

−1

Tk−1(t)
w − t

dt√
1 − t2

=
2z
π

∫ 1

−1

Tk(t)
w − t

dt√
1 − t2

− 1
π

∫ 1

−1

Tk−1(t)
w − t

dt√
1 − t2

=
1

ϕk−1(w)
√

w2 − 1

(
2w

ϕ(z)
− 1

)
=

1

ϕk+1(w)
√

w2 − 1
,

which we wanted to prove.

Lemma 6. Let dμ(x) =
(

x+1
2

)A−B
dν(x), where A, B ∈ Z+, and dν ∈ M′[R+]. We have on

compact subsets of C \R+
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(v − 1)!τ2
n,n−B

∫ ∞

0

(
x + 1

2

)k �A−k,n+A−k(x)�−B,n−B(x)
(x − z)v dν(x)

⇒
n

⎛⎝ −1

(1 + z)(2Φ(z))A+B−k
√
(Ψ−1(z))2 − 1

⎞⎠(v−1)

.

where �n,n+m is defined as in Lemma 4.

Proof. First, the sequence {�n,n+m}n≥0 is well defined because the measure dν ∈ M′[R+],
implies dμ ∈ M′[R+] (see Lemma 2).

Let us use the connection formula (14) and the change of variable (7) to obtain

(v − 1)!τ2
n,n−B

∫ ∞

0

(
x + 1

2

)k �A−k,n+A−k(x)�−B,n−B(x)
(x − z)v dν(x),

= (v − 1)!τ2
n,n−B

∫ 1

−1

Pn,n+A−k(t)Pn,n−B(t)
(Ψ(t)− z)v

dσ(t)
(1 − t)2n+A−B ,

f (v−1)
n (z) =

(v − 1)!τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+A−k(t)pn,n−B(t)
(Ψ(t)− z)v dσn(t).

where we use

dσn(t) =
dμ(Ψ(t))
(1 − t)2n−1 =

(1 − t)B−Adν(Ψ(t))
(1 − t)2n−1

Take the (v − 1) primitive with respect to z of the previous expression

fn(z) =
τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+A−k(t)pn,n−B(t)
Ψ(t)− z

dσn(t). (21)

Since we know that

(1 − t)(Ψ(t)− z) = (1 + z)
(

t − Ψ−1(z)
)

,

we rewrite (21) as

τ2
n,n−B

1 + z

∫ 1

−1

Pn,n+A−k(t)Pn,n−B(t)
t − Ψ−1(z)

dσn(t),

=
τn,n−B

(1 + z)τn,n+A−k

∫ 1

−1

pn,n+A−k(t)pn,n−B(t)
t − Ψ−1(z)

dσn(t).

Then, we use Lemma 5 and (17) to obtain on compact subsets of C \R+,

τn,n−B

(1 + z)τn,n+A−k

∫ 1

−1

pn,n+A−k(t)pn,n−B(t)
t − Ψ−1(z)

dσn(t)

⇒
n

⎛⎝ −1

(1 + z)(2ϕ(Ψ−1(z)))A+B−k
√
(Ψ−1(z))2 − 1

⎞⎠ = f (z).
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Note that by the Cauchy–Schwarz inequality we have for z ∈ C \R+∣∣∣ f (v−1)
n (z)

∣∣∣ = ∣∣∣∣ (v − 1)!τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+B−k(t)pn,n−A(t)
(ψ(t)− z)v dσn(t)

∣∣∣∣
≤ B

d(K,R+)
.

Then, for each v, the family
{

f (v−1)
n

}
n

is uniformly bounded in each K ⊂ C \R+,

which means by Montel’s theorem (c.f. [12], §5.4, Th. 15) that
{

f (v−1)
n

}
n≥0

is normal (see

([12] §5.1 Def. 2)), i.e., we have that from each sequence N ⊂ N we can take a subsequence
N1 ⊂ N such that

f (v)n ⇒
n

g(v); n ∈ N1, K ⊂ C \R+.

Now, taking the (v − 1) derivative and using the uniqueness of the limit we obtain

(v − 1)!τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+A−k(t)pn,n−B(t)
(Ψ(t)− z)v dσn(t)

⇒
n

⎛⎝ −1

(1 + z)(2Φ(z))A+B−k
√
(Ψ−1(z))2 − 1

⎞⎠(v−1)

= f (v−1)(z),

on compact subsets K ⊂ C \R+, which establishes the formula.

3. Relative Asymptotic within Certain Class of Varying Measures

In this section, we obtain the asymptotic relation between orthogonal polynomials

with respect to different measures of the class
(

x+1
2

)m
dμ(x), where μ is any measure of

M′[R+] and m ∈ Z. Note that, because of Lemma 2, the elements of this class belong to
M′[R+].

To maintain a general tone in the expositions in this section we use μ and ν as two
measures in M′[R+] having no relation with the previous use of the notation.

Consider m ∈ Z+ and let hm,n(z) be the nth orthogonal polynomial with respect to(
x+1

2

)m
dν(x), normalized as hm,n(−1) = (−1)n. Consider the following relations

∫ ∞

0

(
x + 1

2

)k
h0,n(x)dν(x) = 0,

for k = 0, . . . , n − 1. Apply the change of variable Ψ(t) = z given in (7) to obtain

0 =
∫ 1

−1

(
1

1 − t

)k
h0,n(Ψ(t))dν(Ψ(t))

=
∫ 1

−1
(1 − t)n−k−1(1 − t)nh0,n(Ψ(t))

(1 − t)dν(Ψ(t))
(1 − t)2n .

Note that the polynomial Hn,n(t) = (1 − t)nh0,n(Ψ(t)) is the nth monic orthogonal
polynomial with respect to the varying measure modified by a polynomial term

(1 − t)dσ∗
n (t) =

(1 − t)dν(Ψ(t))
(1 − t)2n .

Following the same reasoning, we obtain that

H∗
n,n(t) = (1 − t)nh1,n(Ψ(t)),
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is the nth monic orthogonal polynomial with respect to dσ∗
n (t). It is not hard to prove that

the system {σ, {(1 − t)2n}, 0} is an admissible system, see ([11] Def. p 213). Therefore,
by ([11] Th. 10), we have

Hn,n(t)
H∗

n,n(t)
⇒
n

ϕ(t)− ϕ(1)
t − 1

; K ⊂ C \ [−1, 1]. (22)

Theorem 2. Under the previous hypothesis we have on compact subsets of C \R+

h0,n(z)
h1,n(z)

⇒
n

(
z + 1

4

)
(1 − Φ(z)), (23)

hv,n(z)
hw,n(z)

⇒
n

(
z + 1

4

)w−v
(1 − Φ(z))w−v, (24)

where v, w ∈ Z.

Proof. From (22) and taking the change of variable (7) we have

h0,n(Ψ(t))
h1,n(Ψ(t))

=
(1 − t)nh0,n(Ψ(t))
(1 − t)nh1,n(Ψ(t))

=
Hn,n(t)
H∗

n,n(t)
⇒
n

ϕ(t)− ϕ(1)
t − 1

=
Φ−1(z)− 1

Ψ(z)− 1
.

To prove (24), note that from Lemma 2.

dμk =

(
x + 1

2

)k
dμ ∈ M′[R+] if μ ∈ M′[R+].

The only hypothesis needed to obtain (23) is dν ∈ M′[R+]. Thus if we let now

dν =
(

x+1
2

)k
dμ = dμk, then

(
x+1

2

)
dν =

(
x+1

2

)k+1
dμ = dμk+1, where dν ∈ M′[R+].

Therefore, h0,n = hk,n and h1,n = hk+1,n, where hk,n and hk+1,n are the orthogonal
polynomials with respect to the measures dμk and dμk+1, respectively, normalized by
having the value (−1)k at −1. Therefore, we have

hk,n(z)
hk+1,n(z)

⇒
n

−
(

z + 1
4

)
(Φ(z)− 1). (25)

Note that, without loss of generality, we can asume w > v, otherwise the relation between
the measures can be reverted, and they still belong to M′[R+]. Stack formula (25) as

hv1,n(z)
hw1,n

=
hv1,n(z)
hv1+1,n

· hv1+1,n(z)
hv1+2,n

· · · · · hw1−1,n(z)
hw1,n

,

where v1 = v + k and w1 = w + k. Since the measure μ ∈ M′[R+], (24) holds.

4. Asymptotic for Orthogonal Polynomials with Respect to a Measure Modified by a
Rational Factor

Let r = α/β, after canceling out common factors, where

α(z) =
N1

∏
i=1

(z − ai)
Ai , β(z) =

N2

∏
j=1

(z − bj)
Bj ,

ai ∈ C \ (R+ ∪ {−1}), bj ∈ C \R+, Ai, Bj ∈ N,

A =
N1

∑
i=1

Ai, B =
N2

∑
j=1

Bj.

(26)
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Given a measure ν ∈ M′[R+], denote by dμ(x) =
(

x+1
2

)A−B
dν(x) a modified mea-

sure, note that according to Lemma 2 it holds ν ∈ M′[R+].
Assume Sn is the polynomial of least degree not identically equal to zero, such that

0 =
∫ ∞

0
p(x)Sn(x)r(x) dν(x), p ∈ Pn−1, (27)

normalized such that Sn(−1) = (−1)n, and Ln is the nth orthogonal polynomial with
respect to dν, normalized such that Ln(−1) = (−1)n. We are interested in the asymptotic
behavior of Sn/Ln, n ∈ Z+ in compact subsets of C \R+.

Theorem 3. Let μ ∈ M′[R+] and α and β defined as before. Then for all sufficiently large n, for all
fixed d ∈ Z+, in compact subsets of C \R+, it holds

Sn(z)
�0,n(z)

⇒
n

(−1)Aα(−1)
4A(z + 1)−A

N1

∏
i=1

(
Φ(z)− Φ(ai)

z − ai

)Ai N2

∏
j=1

(
1 − 1

Φ(z)Φ(bj)

)Bj

. (28)

Proof. First we focus on (27) for α(x) =
(

x + 1
2

)k
β(x) where k = 0, . . . , n− B− 1, we have

0 =
∫ ∞

0

(
x + 1

2

)k
Sn(x)α(x)dν(x),

now, usingthechangeofvariables (7)andconsideringtheexpression dμ(Ψ(t)) = (1− t)B−Adν(Ψ(t)),
the previous integral becomes

0 =
∫ 1

−1
(1 − t)n−B−k−1(1 − t)n+ASn(Ψ(t)) α(Ψ(t))

dμ(Ψ(t))
(1 − t)2n−1 . (29)

for k = 0, . . . , n − B − 1. Define the (n + A)-degree polynomial Rn+A as

Rn+A(t) := (1 − t)n+ASn(Ψ(t)) α(Ψ(t)).

Thus, we can consider dσn(t) =
dσ(t)

(1−t)2n−1 with dσ(t) = dν(Ψ(t)). The measure dσn(t)
defines a varying orthogonal polynomial system, satisfying Lemma 3. We denote by
Pn,n+A−k the (n + A − k)th monic orthogonal polynomial with respect to dσn(t). According
to (29), we have the following quasi-orthogonality of order n − A

Rn+A(t) := (1 − t)n+ASn(Ψ(t)) α(Ψ(t)) =
A+B

∑
k=0

λn,kPn,n+A−k(t). (30)

Back to (30), we use the connection formula (14) and the change of variables (7)
to obtain (

2
z + 1

)n+A
Sn(z)α(z) =

A+B

∑
k=0

λn,kPn,n+A−k

(
Ψ−1(z)

)
=

A+B

∑
k=0

λn,k

(
2

z + 1

)n+A−k
�A−k,n+A−k(z),

Sn(z)α(z) =
A+B

∑
k=0

λn,k

(
z + 1

2

)k
�A−k,n+A−k(z). (31)
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Note that λn,0 = λ0 = (−1)Aα(−1) or Sn has deg Sn < n. Dividing this relation by �−B,n−B
we get

Sn(z)α(z)
�−B,n−B(z)

=
A+B

∑
k=0

λn,k

(
z + 1

2

)k �A−k,n+A−k(z)
�−B,n−B(z)

. (32)

Set λ∗∗
n,k = λn,k/λ0, λ∗

n =

(
A+B

∑
k=0

|λ∗∗
n,k|

)−1

< ∞ and introduce the polynomials

pn(z) =
A+B

∑
k=0

λ∗∗
n,kzA+B−k, p∗n = λ∗

n pn(z).

We will prove that

pn(z) ⇒
n

p̂(z) =
N1

∏
i=1

(
z − Φ(ai)

2

) N2

∏
j=1

(
z − 1

2Φ(bj)

)
; K ⊂ C.

To this end, it suffices to show that

p∗n(z) ⇒
n

cp̂(z) = c
(

zA+B + λ∗∗
1 zA+B−1 + · · ·+ λ∗∗

A+B

)
, (33)

where

c = lim
n→∞

λ∗
n =

(
A+B

∑
k=0

|λk|
)−1

. (34)

Now, note that {p∗n}, for n ∈ Z+ is contained in PA+B and the sum of the coefficients of
p∗n for each n ∈ Z+, is equal to one. Therefore, this family of polynomials is normal. This
means that (33) can be prove if we check that, for all Λ ⊂ Z+ such that

lim
n→∞
n∈Λ

p∗n(z) = pΛ, (35)

pΛ(z) = cp̂(z), where p̂(z) and c are defined as above. Since pΛ ∈ PA+B and pΛ �≡ 0,
we can uniquely determine pΛ if we find its zeros and leading coefficient. Note that the
leading coefficient of pΛ is positive and the sum of the absolute value of its coefficients
is one. Therefore, we conclude that the leading coefficient is uniquely determined by the
zeros. This automatically implies that pΛ(z) = cp̂(z) if and only if it is divisible by p̂(z).

Note that the factor β is in (32) and all the zeros of �−B,n−B concentrate on R+. Thus,
we immediately obtain the following A equations, for n ≥ n0:

0 =
A+B

∑
k=0

λ∗
nλ∗∗

n,k

[(
z + 1

2

)k( �A−k,n+A−k

�−B,n−B

)](v)
(ai),

for i = 1, . . . , N1 and v = 0, . . . , Aj − 1.
From Lemma 4 it follows that, for compact subsets K ⊂ C \R+, it holds[(

z + 1
2

)k( �n+A,n+A−k(z)
�−B,n−B(z)

)](v)
⇒
n

[(
z + 1

2

)A+B(Φ(z)
2

)A+B−k
](v)

. (36)

Relations (35) and (36), together with the fact that Φ is holomorphic with Φ′ �= 0 in C \R+,
imply, using induction on v, that

p(v)Λ

(
Φ(ai)

2

)
= 0, i = 1, . . . , N1, v = 0, . . . , Ai − 1; (37)
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pΛ(z) = c
(

z + 1
2

)A+B A+B

∑
k=0

λ∗∗
k

(
Φ(z)

2

)A+B−k
.

On the other hand, take p(z) = β(z)�−B,n−B(z)/(z − bj)
v in (27), j = 1, . . . , N2;

v = 1, . . . , Bj. Using (31) and multiplying by (v − 1)! λ∗
n

λ0
τ2

n,n−B we have the additional rela-
tions

0 =
λ∗

n
λ0

τ2
n,n−B

∫ ∞

0

(v − 1)!
(x − bj)v �−B,n−B(x)Sn(x)α(x)dν(x),

=τ2
n,n−B

∫ ∞

0

(v − 1)!
(x − bj)v �−B,n−B(x)

A+B

∑
k=0

λ∗
nλ∗∗

n,k

(
x + 1

2

)k
�A−k,n+A−k(x)dν(x),

0 =
A+B

∑
k=0

λ∗
nλ∗∗

n,k(v − 1)!τ2
n,n−B

∫ ∞

0

(
x + 1

2

)k �A−k,n+A−k(x)�−B,n−B(x)
(x − bj)v dν(x), (38)

for each bj.
Relations (33), (38) and Lemma 6 together with the fact that 1/Φ is holomorphic with

(1/Φ)′ �= 0 and 1/
√
(ψ−1(z))2 − 1 �= 0 in C \R+, give by induction

p(v)Λ

(
1

2Φ(bj)

)
= 0, j = 1, . . . , N2, v = 0, . . . , Bj − 1.

From the previous expression and (37) it follows that pΛ is divisible by p0(z). Therefore
(33) and (34) hold and

pn(z) ⇒
n

p0(z), K ⊂ C.

From the previous expression, the definition of pn, (32), (36) with v = 0, we obtain

Sn(z)α(z)
�−B,n−B(z)

⇒
n
(−1)Aα(−1)

(
z + 1

2

)A+B
p̂
(

Φ(z)
2

)
.

Use the asymptotic formula (10) in the previous expression and group conveniently to obtain

Sn(z)
�−B,n−B(z)

· �−B,n−B(z)
�0,n(z)

⇒
n

(
z + 1

2

)A (−1)Aα(−1)Φ(z)−B

α(z)
N1

∏
i=1

(
Φ(z)− Φ(ai)

2

)Ai N2

∏
i=1

(
Φ(z)

2
− 1

2Φ(bj)

)Bj

and (28) follows for v = 0. To prove the formula for d ∈ Z+, apply the same technique of
the proof of Lemma 4.

Remark 1.

1. The proof depends on the assumption of α(−1) �= 0, we will remove this restriction in
Section 5.

2. We suppose that α, β are monic. We can remove that restriction without loss of generality due
to the fact that orthogonal polynomial systems are invariant under the constant modification
of measures.
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Theorem 3 gives the ratio asymptotic between the orthogonal polynomials with respect
to a rational modification of kind r(x)dν(x) (a general rational modification with no zeros
at −1) denoted as Sn and those orthogonal with respect to a modified measure of type(

x + 1
2

)A−B
, denoted as �0,n.

To obtain the general formula we must find the following limit

lim
n→∞

�0,n(z)
Ln(z)

,

on compact subsets of C \R+, where Ln(z) is the nth orthogonal polynomial with respect
to dν ∈ M′[R+] normalized such that Ln(−1) = (−1)n.

5. Proof of Theorem 1

Next, we obtain an analogous of (4) for measures with support on R+. Define α̂ as

α̂(z) =
(

z + 1
2

)C
α(z)

wherein α is defined in (26) and C ∈ Z+ is the multiplicity of the zero −1 in α̂/β. With-
out loss of generality we can assume that there are more zeros than poles on −1, if not C = 0.
Also, let Ln be the nth orthogonal polynomial with respect to dν̂ ∈ M′[R+], normalized by
the condition Ln(−1) = (−1)n. Denote by Qn the nth orthogonal polynomial with respect
to r̂dν̂, where r = α̂/β, normalized as usual, Qn(−1) = (−1)n.

Note that if C = 0, r̂ = r and Qn = Sn, as defined in Section 4. Under this notation,
(6) is written as

Q(d)
n (z)

L(d)
n (z)

⇒
n

(
2i√
z + i

)C N1

∏
i=1

( √
ai + i√

z +
√

ai

)Ai N2

∏
j=1

⎛⎝√
z +

√
bj√

bj + i

⎞⎠Bj

,

in compact subsets of C \R, for d ∈ Z+.

Proof of Theorem 1. Let us first observe that Qn is orthogonal with respect to
(

x+1
2

)C
α
β dν̂.

Then if we set

dν̂ =

(
x + 1

2

)−C
dν, (39)

we obtain that Qn is orthogonal with respect to α
β dν, and satisfies the hypotheses of

Theorem 3, thus we have on compact subsets of C \R+

Qn(z)
�0,n(z)

⇒
n

F(z),

where F(z) is given in (28).

On the other hand, �0,n is orthogonal with respect to
(

x+1
2

)A−B
dν. This means by (39)

that �0,n is orthogonal with respect to
(

x+1
2

)A−B+C
dν̂. Thus, taking into account Theorem 2,

we have
�0,n(z)
Ln(z)

⇒
n

(
z + 1

4

)B−A−C
(1 − Φ(z))B−A−C.

Multiply the expressions corresponding to(
z + 1

4

)B−A−C
(1 − Φ(z))B−A−C · F(z), (40)
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Let us break down this expression into the following terms

F(z) =
(−1)Aα(−1)
4A(z + 1)−A

N1

∏
i=1

(
Φ(z)− Φ(ai)

z − ai

)Ai N2

∏
i=1

(
1 − 1

Φ(z)Φ(bj)

)Bj

.

(−1)Aα(−1) =
N1

∏
i=1

(1 + ai)
Ai

(1 − φ(z)) = − 2i√
z − i

Φ(z)− Φ(ai)

z − ai
=

−2i
(
√

z − i)(
√

ai − i)(
√

ai +
√

z)

1 − 1
Φ(z)Φ(bj)

=
2i
(√

bj +
√

z
)

(
√

z + i)
(√

bj + i
) .

On the other hand

N1

∏
i=1

(
Φ(z)− Φ(ai)

z − ai

)Ai

=

( −2i√
z − i

)A N1

∏
i=1

(
1

(
√

ai − i)(
√

ai +
√

z)

)Ai

N2

∏
j=1

(
1 − 1

Φ(z)Φ(bj)

)Bj

=

(
2i√
z + i

)B N2

∏
j=1

⎛⎝
√

bj +
√

z√
bj + i

⎞⎠Bj

Combining these terms in (40) we obtain(
z + 1

4

)B−A−C
(1 − Φ(z))B−A−C · F(z)

=
1

4A

N1

∏
i=1

(1 + ai)
Ai

( −2i√
z − i

)B−C−A( z + 1
4

)B−C( −2i√
z − i

)A( 2i√
z + i

)B

·
N1

∏
i=1

(
1

(
√

ai − i)(
√

ai +
√

z)

)Ai N2

∏
j=1

⎛⎝
√

bj +
√

z√
bj + i

⎞⎠Bj

.

Finally, taking into account

N1

∏
i=1

( √
ai + i

√
ai +

√
z

)Ai

=
N1

∏
i=1

(1 + ai)
Ai ·

N1

∏
i=1

(
1

(
√

ai − i)(
√

ai +
√

z)

)Ai

(
2i√
z + i

)C
=

1
4A

( −2i√
z − i

)B−C−A( z + 1
4

)B−C( −2i√
z − i

)A( 2i√
z + i

)B

we obtain (6) for d = 0. To prove (6) for d ≥ 1, use induction in d and the method from the
proof of Lemma 4. The proof is complete.
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Abstract: In this paper, by using the Golden Calculus, we introduce the generalized Apostol-type
Frobenius–Euler–Fibonacci polynomials and numbers; additionally, we obtain various fundamental
identities and properties associated with these polynomials and numbers, such as summation theo-
rems, difference equations, derivative properties, recurrence relations, and more. Subsequently, we
present summation formulas, Stirling–Fibonacci numbers of the second kind, and relationships for
these polynomials and numbers. Finally, we define the new family of the generalized Apostol-type
Frobenius–Euler–Fibonacci matrix and obtain some factorizations of this newly established matrix.
Using Mathematica, the computational formulae and graphical representation for the mentioned
polynomials are obtained.

Keywords: Golden Calculus; Apostol-type Frobenius–Euler polynomials; Apostol-type Frobenius–
Euler–Fibonacci polynomials; Stirling–Fibonacci numbers

MSC: 11B68; 11B83; 05A15; 05A19

1. Introduction

Recently, numerous scholars [1–3] have defined and developed methods of generating
functions for new families of special polynomials, including Bernoulli, Euler, and Genocchi
polynomials. These authors have established the basic properties of these polynomials
and have derived a variety of identities using the generating function. Furthermore,
by using the partial derivative operator to these generating functions, some derivative
formulae and finite combinatorial sums involving the above-mentioned polynomials and
numbers have been obtained. These special polynomials also provide the straightforward
derivation of various important identities. As a result, numerous experts in number theory
and combinatorics have exhaustively studied their properties and obtained a series of
interesting results.

For any u ∈ C, u �= 1 and ζ ∈ R, the Apostol-type Frobenius–Euler polynomials
H

(α)
w (ζ; u; λ) of order α ∈ C are introduced (see [4–7]).(

1 − u
λed − u

)α

eζd =
∞

∑
w=0

H
(α)
w (ζ; u; λ)

dw

w!
, |d| <

∣∣∣∣ln(λ

u

)∣∣∣∣. (1)
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For ζ = 0, H(α)
w (u; λ) = H

(α)
w (0; u; λ) are called the Apostol-type Frobenius–Euler

numbers of order α. From (1), we known that

H
(α)
w (ζ; u; λ) =

w

∑
s=0

(
w
s

)
H

(α)
s (u; λ)ζw−s, (2)

and
H

(α)
w (ζ;−1; λ) = E

(α)
w (ζ; λ), (3)

where E
(α)
w (ζ; λ) are the wth Apostol–Euler polynomials of order α.

The generalized λ-Stirling numbers of the second kind S(w, s; λ) are given by (see [8])

(λed − 1)s

s!
=

∞

∑
w=0

S(w, s; λ)
dw

w!
, (4)

for λ ∈ C and s ∈ N = {0, 1, 2, · · · , }, where λ = 1 gives the well-known Stirling numbers
of the second kind; these are defined as follows (see [9,10]).

(ed − 1)s

s!
=

∞

∑
w=0

S(w, s)
dw

w!
. (5)

By referring to (4), the λ-array type polynomials Sw
s (ζ, λ) are defined by (see [11])

(λed − 1)s

s!
eζd =

∞

∑
w=0

S(w, s; ζ; λ)
dw

w!
. (6)

The Apostol-type Bernoulli polynomials B(α)
w (ζ; λ) of order α, the Apostol-type Euler

polynomials E(α)
w (ζ; λ) of order α, and the Apostol-type Genocchi polynomials G(α)

w (ζ; λ)
of order α are defined by (see [8,12]):(

d
λed − 1

)α

eζd =
∞

∑
w=0

B
(α)
w (ζ; λ)

dw

w!
(| d + log λ |< 2π), (7)

(
2

λed + 1

)α

eζd =
∞

∑
w=0

E
(α)
w (ζ; λ)

dw

w!
(| d + log λ |< π) (8)

and (
2d

λed + 1

)α

eζd =
∞

∑
w=0

G
(α)
w (ζ; λ)

dw

w!
, (| d + log λ |< π), (9)

respectively.
Clearly, we have

B
(α)
w (λ) = B

(α)
w (0; λ),E(α)

w (λ) = E
(α)
w (0; λ),G(α)

w (λ) = G
(α)
w (0; λ).

The subject of Golden Calculus (or F-calculus) emerged in the nineteenth century due
to its wide-ranging applications in fields such as mathematics, physics, and engineering.
The ψ-extended finite operator calculus of Rota was studied by A.K. Kwaśniewski [13].
Krot [14] defined and studied F-calculus and gave some properties of these calculus types.
Pashaev and Nalci [15] dealt extensively with the Golden Calculus and obtained many
properties and used these concepts especially in the field of mathematical physics. The
definitions and notation of Golden Calculus (or F-calculus) are taken from [15–18].

The Fibonacci sequence is defined by the following recurrence relation:

Fw = Fw−1 + Fw−2, w ≥ 2
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where F0 = 0, F1 = 1. Fibonacci numbers can be expressed explicitly as

Fw =
φw − ψw

φ − ψ
,

where φ = 1+
√

5
2 and ψ = 1−

√
5

2 . φ ≈ 16180339 · · · is called Golden ratio. The Golden ratio
is a frequently occurring number in many branches of science and mathematics. Pashaev
and Nalci [15] have thoroughly studied the miscellaneous properties of Golden Calculus.
Additional references include Pashaev [18], Krot [14], and Pashaev and Ozvatan [19].

The F-factorial was defined as follows:

F1F2F3 · · · Fw = Fw!, (10)

where F0! = 1. The binomial theorem for the F-analogues (or the Golden binomial theorem)
are given by

(ζ + η)w := (ζ + η)w
F =

w

∑
l=0

(
w
l

)
F
(−1)(

l
2)ζw−lηl , (11)

in terms of the Golden binomial coefficients, referred to as Fibonomials(
w
l

)
F
=

Fw!
Fw−l!Fl !

,

with w and l being non-negative integers, w ≥ l. The Fibonomial coefficients have follow-
ing identity: (

w
l

)
F

(
l
m

)
F
=

(
w
m

)
F

(
w − m
l − m

)
F
. (12)

The F-derivative is introduced as follows:

∂F
∂Fζ

( f (ζ)) =
f (φζ)− f (ψζ)

(φ − ψ)ζ
. (13)

respectively. The first and second types of Golden exponential functions are defined as

eF(ζ) =
∞

∑
w=0

(ζ)w
F

Fw!
, (14)

EF(ζ) =
∞

∑
w=0

(−1)(
w
2)
(ζ)w

F
Fw!

. (15)

Briefly, we use the following notations throughout the paper

eF(ζ) =
∞

∑
w=0

ζw

Fw!

and

EF(ζ) =
∞

∑
w=0

(−1)(
w
2)

ζw

Fw!
.

eF(ζ) and EF(ζ) satisfy the following identity (see [17]).

eζ
FEη

F = e(ζ+η)F
F . (16)
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The Apostol-type Bernoulli–Fibonacci polynomials B(α)
w,F(ζ; λ) of order α, the Apostol-

type Euler–Fibonacci polynomials E(α)
w,F(ζ; λ) of order α and the Apostol-type Genocchi–

Fibonacci polynomials G(α)
w,F(ζ; λ) of order α are defined by (see [20–22]):(

d
λed

F − 1

)α

eζd
F =

∞

∑
w=0

B
(α)
w,F(ζ; λ)

dw

Fw!
, (17)

(
2

λed
F + 1

)α

eζd
F =

∞

∑
w=0

E
(α)
w,F(ζ; λ)

dw

Fw!
(18)

and (
2d

λed
F + 1

)α

eζd
F =

∞

∑
w=0

G
(α)
w,F(ζ; λ)

dw

Fw!
, (19)

respectively.
Clearly, we have

B
(α)
w,F(λ) = B

(α)
w,F(0; λ),E(α)

w,F(λ) = E
(α)
w,F(0; λ),G(α)

w,F(λ) = G
(α)
w,F(0; λ).

In light of the above studies, we define a new family of two-variable polynomials,
including the polynomials defined by Equation (1) with the help of the Golden Calcu-
lus. Namely, we introduce the concept of the generalized Apostol-type Frobenius–Euler–
Fibonacci polynomials and numbers. Thus, we give some properties of this polynomial
family, such as recurrence relations, sums formulae, and derivative relations, by using
their generating function and functional equations. Additionally, we establish relationships
between Apostol-type Frobenius–Euler–Fibonacci polynomials of order α and various
other polynomial sequences, including Apostol-type Bernoulli–Fibonacci polynomials,
Euler–Fibonacci polynomials, Genocchi–Fibonacci polynomials, and the Stirling–Fibonacci
numbers of the second kind. We also introduce the new family of the generalized Apostol-
type Frobenius–Euler–Fibonacci matrix and derive some factorizations of this newly estab-
lished matrix. Finally, we provide zeroes and graphical illustrations for the generalized
Apostol-type Frobenius–Euler–Fibonacci polynomials.

2. Generalized Apostol-Type Frobenius–Euler–Fibonacci Polynomials H(α)
w,F(ζ, η; u; λ)

In this part, we introduce Apostol-type Frobenius–Euler–Fibonacci polynomials by
means of the Golden Calculus. Some relations for these polynomials are also obtained by
using various identities. At this point, we begin with the following definition.

Definition 1. Let λ ∈ C, α ∈ N, the generalized Apostol-type Frobenius–Euler polynomials
H

(α)
w,F(ζ, η; u; λ) of order α are defined by means of the following generating function:(

1 − u
λed

F − u

)α

eζd
F Eηd

F =
∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!
. (20)

When ζ = η = 0 in (20), H(α)
w,F(u; λ) = H

(α)
w,F(0, 0; u; λ) are called the wth Apostol-type

Frobenius–Euler–Fibonacci numbers of order α.

Theorem 1. The following summation formulas for the generalized Apostol-type Frobenius–Euler–
Fibonacci polynomials H(α)

w,F(ζ, η; u; λ) of order α holds true:

H
(α)
w,F(ζ, η; u; λ) =

w

∑
s=0

(
w
s

)
F
H

(α)
s,F (0, 0; u; λ)(ζ + η)w−s

F , (21)
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H
(α)
w,F(ζ, η; u; λ) =

w

∑
s=0

(
w
s

)
F
H

(α)
s,F (0, η; u; λ)ζw−s (22)

and

H
(α)
w,F(ζ, η; u; λ) =

w

∑
s=0

(−1)
s(s−1)

2

(
w
s

)
F
H

(α)
w−s,F(ζ, 0; u; λ)ηs. (23)

Proof. By virtue of (14)–(16) and (20), we obtain the desired results.

Theorem 2. The following recursive formulas for the generalized Apostol-type Frobenius–Euler–
Fibonacci polynomials H(α)

w,F(ζ, η; u; λ) of order α hold true:

∂F
∂Fζ

{
H

(α)
w,F(ζ, η; u; λ)

}
= FwH

(α)
w−1,F(ζ, η; u; λ), (24)

∂F
∂Fη

{
H

(α)
w,F(ζ, η; u; λ)

}
= FwH

(α)
w−1,F(ζ,−η; u; λ). (25)

Proof. Differentiating both sides of (20) with respect to ζ and η through Equation (13), we
obtain (24) and (25), respectively.

Theorem 3. The following difference formulas for the generalized Apostol-type Frobenius–Euler–
Fibonacci polynomials H(α)

w,F(ζ, η; u; λ) of order α holds true:

λH
(α)
w,F(1, η; u; λ)− uH(α)

w,F(0, η; u; λ) = (1 − u)H(α−1)
w,F (0, η; u; λ) (26)

and
λH

(α)
w,F(1, 0; u; λ)− uH(α)

w,F(1,−1; u; λ) = (1 − u)H(α−1)
w,F (1,−1; u; λ). (27)

Proof. By virtue of (20), we can easily proof of Equations (26) and (27). We omit the proof.

Theorem 4. Let α, β ∈ N, the generalized Apostol-type Frobenius–Euler–Fibonacci polynomials
H

(α)
w,F(ζ, η; u; λ) of order α hold true:

H
(α+β)
w,F (ζ, η; u; λ) =

w

∑
s=0

(
w
s

)
F
H

(α)
w−s,F(0, 0; u; λ)H

(β)
s,F (ζ, η; u; λ), (28)

and

H
(α−β)
w,F (ζ, η; u; λ) =

w

∑
s=0

(
w
s

)
F
H

(α)
w−s,F(0, 0; u; λ)H

(−β)
s,F (ζ, η; u; λ). (29)

Proof. Using generating function (20), we obtain Equations (28) and (29). We omit
the proof.

In the following theorems, we establish some results on the generalized Apostol-type
Frobenius–Euler–Fibonacci polynomials H(α)

w,F(ζ, η; u; λ) of order α and some relationships
for Apostol-type Frobenius–Euler–Fibonacci polynomials of order α related to Apostol-
type Bernoulli–Fibonacci polynomials, Apostol-type Euler–Fibonacci polynomials, and
Apostol-type Genocchi–Fibonacci polynomials. We now begin with the following theorem.

Theorem 5. For the generalized Apostol-type Frobenius–Euler–Fibonacci polynomialsHw,F(ζ, η; u; λ),
one has

(2u − 1)
w

∑
l=0

(
w
l

)
F
Hl,F(0, η; u; λ)Hw−l,F(ζ, 0; 1 − u; λ)
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= uHw,F(ζ, η; u; λ)− (1 − u)Hw,F(ζ, η; 1 − u; λ). (30)

Proof. We set

(2u − 1)
(λed

F − u)(λed
F − (1 − u))

=
1

λed
F − u

− 1
λed

F − (1 − u)
.

From the above equation, we see that

(2u − 1)
(1 − u)eζd

F (1 − (1 − u))Eηd
F

(λed
F − u)(λed

F − (1 − u))

=
(1 − u)eζd

F uEηd
F

λed
F − u

− (1 − u)eζd
F Eηd

F (1 − (1 − u))
λed

F − (1 − u)
,

through which, in using Equations (16) and (20) in both sides, we have

(2u − 1)

(
∞

∑
l=0

Hl,F(0, η; u; λ)
dl

Fl !

)(
∞

∑
w=0

Hw,F(ζ, 0; 1 − u; λ)
dw

Fw!

)

= u
∞

∑
w=0

Hw,F(ζ, η; u; λ)
dw

Fw!
− (1 − u)

∞

∑
w=0

Hw,F(ζ, η; 1 − u; λ)
dw

Fw!
.

By applying the Cauchy product rule in the aforementioned equation and subsequently
comparing the coefficients of dw in both sides of the resulting equation, it can be deduced
that assertion (30) holds true.

Theorem 6. For the generalized Apostol-type Frobenius–Euler–Fibonacci polynomialsHw,F(ζ, η; u; λ),
one has

uHw,F(ζ, η; u; λ) = λ
w

∑
l=0

(
w
l

)
F
Hl,F(ζ, η; u; λ)− (1 − u)(ζ + η)w

F . (31)

Proof. Using the following identity

u
λ(λed

F − u)ed
F
=

1
(λed

F − u)
− 1

λed
F

,

we find that
u(1 − u)eζd

F Eηd
F

λ(λed
F − u)ed

F
=

(1 − u)eζd
F Eηd

F

λed
F − u

− (1 − u)eζd
F Eηd

F

λed
F

u
∞

∑
w=0

Hw,F(ζ, η; u; λ)
dw

Fw!

= λ
∞

∑
w=0

Hw,F(ζ, η; u; λ)
dw

Fw!

∞

∑
l=0

dl

Fl !
− (1 − u)

∞

∑
w=0

(ζ + η)w
F

dw

Fw!
.

By applying the Cauchy product rule in the aforementioned equation and subsequently
comparing the coefficients of dw in both sides of the resulting equation, it can be deduced
that assertion (31) holds true.

Theorem 7. For the generalized Apostol-type Frobenius–Euler–Fibonacci polynomials Hw,F(ζ, η; u; λ)
of order α, we obtain

H
(α)
w,F(ζ, η; u; λ) =

1
1 − u

w

∑
l=0

(
w
l

)
F

[
λHw−l,F(1, η; u; λ)H

(α)
l,F (ζ, 0; u; λ)
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−uHw−l,F(0, η; u; λ)H
(α)
l,F (ζ, 0; u; λ)

]
. (32)

Proof. Using (20), we find that

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!
=

(
1 − u

λed
F − u

)(
λed

F − u
1 − u

)(
1 − u

λed
F − u

)α

eζd
F Eηd

F

=
λ

1 − u

(
1 − u

λed
F − u

)
ed

F

(
1 − u

λed
F − u

)α

eζd
F Eηd

F

− u
1 − u

(
1 − u

λed
F − u

)(
1 − u

λed
F − u

)α

eζd
F Eηd

F .

Simplifying the above equation and using Equation (20), we obtain
∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!
=

λ

1 − u

∞

∑
w=0

Hw,F(1, η; u; λ)
dw

Fw!

∞

∑
l=0

H
(α)
l,F (ζ, 0; u; λ)

dl

Fl !
−

u
1 − u

∞

∑
w=0

Hw,F(0, η; u; λ)
dw

Fw!

∞

∑
l=0

H
(α)
l,F (ζ, 0; u; λ)

dl

Fl !
.

By applying the Cauchy product rule in the aforementioned equation and subsequently
comparing the coefficients of dw in both sides of the resulting equation, it can be deduced
that assertion (32) holds true.

Theorem 8. The following relation between the generalized Apostol-type Frobenius–Euler–Fibonacci
polynomialsH(α)

w,F(ζ, η; u; λ) and Apostol-type Bernoulli–Fibonacci polynomialsBw,F(ζ; λ) holds true:

H
(α)
w,F(ζ, η; u; λ) =

w+1

∑
l=0

(
w + 1

l

)
F

(
λ

l

∑
r=0

(
l
r

)
F
Bl−r,F(ζ; λ)−Bl,F(ζ; λ)

)

×H
(α)
w−l+1,F(0, η; u; λ). (33)

Proof. Consider generating function (20), we have

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!

=

(
1 − u

λed
F − u

)α

eζd
F Eηd

F

(
d

λed
F − 1

)(
λed

F − 1
d

)

=
1
d

(
λ

∞

∑
w=0

H
(α)
w,F(0, η; u; λ)

dw

Fw!

∞

∑
l=0

Bl,F(ζ; λ)
dl

Fl !

∞

∑
r=0

dr

Fr!

−
∞

∑
w=0

H
(α)
w,F(0, η; u; λ)

dw

Fw!

∞

∑
l=0

Bl,F(ζ; λ)
dl

Fl !

)
. (34)

Using the Cauchy product rule in (34), the assertion (33) is obtained.

Theorem 9. The following relation between the generalized Apostol-type Frobenius–Euler–Fibonacci
polynomials H(α)

w,F(ζ, η; u; λ) and generalized Apostol-type Euler–Fibonacci polynomials Ew,F(ζ; λ)
holds true:
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H
(α)
w,F(ζ, η; u; λ) =

1
2

w

∑
l=0

(
w
l

)
F

(
λ

l

∑
r=0

(
l
r

)
F
El−r,F(ζ; λ) +El,F(ζ; λ)

)
H

(α)
w−l,F(0, η; u; λ). (35)

Proof. By virtue of (20), we have

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!

=

(
1 − u

λed
F − u

)α

eζd
F Eηd

F

(
2

λed
F + 1

)(
λed

F + 1
2

)

=
1
2

(
λ

∞

∑
w=0

H
(α)
w,F(0, η; u; λ)

dw

Fw!

∞

∑
l=0

El,F(ζ; λ)
dl

Fl !

∞

∑
r=0

dr

Fr!

+
∞

∑
w=0

H
(α)
w,F(0, η; u; λ)

dw

Fw!

∞

∑
l=0

El,F(ζ; u; λ)
dl

Fl !

)
. (36)

Using the Cauchy product rule in (36), the assertion (35) is obtained.

Theorem 10. The following relation between the generalized Apostol-type Frobenius–Euler–Fibonacci
polynomialsH(α)

w,F(ζ, η; u; λ) and Apostol-type Genocchi–Fibonacci polynomialsGw,F(ζ; λ) holds true:

H
(α)
w,F(ζ, η; u; λ) =

1
2

w+1

∑
l=0

(
w + 1

l

)
F

(
λ

l

∑
r=0

(
l
r

)
F
Gl−r,F(ζ; λ) +Gl,F(ζ; λ)

)

×H
(α)
w−l+1,F(0, η; u; λ). (37)

Proof. Using (20), we obtain
∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!

=

(
1 − u

λed
F − u

)α

eζd
F Eηd

F

(
2d

λed
F + 1

)(
λed

F + 1
2d

)

=
1

2d

(
λ

∞

∑
w=0

H
(α)
w,F(0, η; u; λ)

dw

Fw!

∞

∑
l=0

Gl,F(ζ; λ)
dl

Fl !

∞

∑
r=0

dr

Fr!

+
∞

∑
w=0

H
(α)
w,F(0, η; u; λ)

dw

Fw!

∞

∑
l=0

Gl,F(ζ; λ)
dl

Fl !

)
. (38)

Using the Cauchy product rule in (38), the assertion (37) is obtained.

Theorem 11. For the generalized Apostol-type Frobenius–Euler–Fibonacci polynomialsH(α)
w,F(ζ, η; u; λ)

of order α, we obtain

H
(α+1)
w,F (ζ, η; u; λ) =

w

∑
s=0

(
w
s

)
F
Hw−s,F(u; λ)H

(α)
s,F (ζ, η; u; λ). (39)

Proof. From (20), we obtain

1 − u
λed

F − u

(
1 − u

λed
F − u

)α

eζd
F Eηd

F =
1 − u

λed
F − u

∞

∑
s=0

H
(α)
s,F (ζ, η; u; λ)

ds

Fs!
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=
∞

∑
w=0

Hw,F(u; λ)
dw

Fw!

∞

∑
s=0

H
(α)
s,F (ζ, η; u; λ)

ds

Fs!
.

Now, replacing w with w − s and equating the coefficients of dw leads to Formula (39).

Theorem 12. For the generalized Apostol-type Frobenius–Euler–Fibonacci polynomialsH(α)
w,F(ζ, η; u; λ)

of order α, we have

H
(α)
w,F(ζ + 1, η; u; λ) =

w

∑
l=0

(−1)(
w−l

2 )
(

w
l

)
F
H

(α)
l,F (ζ, η; u; λ). (40)

Proof. Using (20), we have

∞

∑
w=0

H
(α)
w,F(ζ + 1, η; u; λ)

dw

Fw!
−

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!

=

(
1 − u

λed
F − u

)α

eζd
F Eηd

F (Ed
F − 1)

=

(
∞

∑
l=0

H
(α)
l,F (ζ, η; u; λ)

dl

Fl !

)(
∞

∑
w=0

(−1)
(w

2) dw

Fw!

)
−

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!

=
∞

∑
w=0

(
w

∑
l=0

(−1)(
w−l

2 )
(

w
l

)
F
H

(α)
l,F (ζ, η; u; λ)

)
dw

Fw!
−

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!
.

Finally, equating the coefficients of the like powers of dw, we obtain (40).

Theorem 13. Let α and γ be non-negative integers. There is the following relationship between
the numbers SF(w, l; λ) and the generalized Apostol-type Frobenius–Euler–Fibonacci polynomials
H

(α)
w,F(ζ, η; u; λ) of order α, which holds true:

α!
w

∑
l=0

(
w
l

)
F
H

(α)
w−l,F(ζ, η; u; λ)SF

(
l, α;

λ

u

)
=

(
1 − u

u

)α

(ζ + η)w
F (41)

and

H
(α−γ)
w,F (ζ, η; u; λ) = γ!

(
u

1 − u

)γ w

∑
l=0

(
w
l

)
F
H

(α)
w−l,F(ζ, η; u; λ)SF

(
l, γ;

λ

u

)
, (42)

where SF(w, l; λ) is the Stirling–Fibonacci numbers of the second kind are defined by

(λed
F − 1)l

l!
=

∞

∑
w=0

SF(w, l; λ)
dw

Fw!
. (43)

Proof. By virtue of (20), we find that

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!
=

(
1 − u

λed
F − u

)α

eζd
F Eηd

F

(
λed

F − u
)α ∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!
= (1 − u)α

∞

∑
w=0

(ζ + η)w
F

dw

Fw!

α!

(
λ
u ed

F − 1
)α

α!

∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!
=

(
1 − u

u

)α ∞

∑
w=0

(ζ + η)w
F

dw

Fw!
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α!
∞

∑
w=0

H
(α)
w,F(ζ, η; u; λ)

dw

Fw!

∞

∑
l=0

SF

(
l, α;

λ

u

)
dl

Fl !

=

(
1 − u

u

)α ∞

∑
w=0

(ζ + η)w
F

dw

Fw!
,

which, on rearranging the summation and then simplifying the resultant equation, yields
the relation (41).

Once more, we examine the following arrangement of generating function (20) as:

∞

∑
w=0

H
(α−γ)
w,F (ζ, η; u; λ)

dw

Fw!
=

(
1 − u

λed
F − u

)α

eζd
F Eηd

F

(
u

1 − u

)γ

γ!

(
λ
u ed

F − 1
)γ

γ!
, (44)

on use of Equations (44) and (20). After evaluation, the desired result is obtained (42).

Now, we define the new family of generalized Apostol-type Frobenius–Euler–Fibonacci
matrices. By using this definition, we obtain the factorizations of this newly established
matrix in the following theorems.

Definition 2. Let H(α)
w,F(ζ, η; u; λ) be the generalized Apostol-type Frobenius–Euler–Fibonacci

polynomials. The (n + 1)× (n + 1) generalized Apostol-type Frobenius–Euler-Fibonacci matrix,

H
(α)
n,F(ζ, η; u; λ) =

[
h
(α)
ij (ζ, η; u; λ)

]n

i,j=0
is defined by

h
(α)
ij (ζ, η; u; λ)=

⎧⎨⎩
(

i
j

)
F
H

(α)
i−j,F(ζ, η; u; λ) i ≥ j

0 i < j
. (45)

Theorem 14. For the generalized Apostol-type Frobenius–Euler–Fibonacci matrix H
(α)
n,F(ζ, η; u; λ),

we have
H

(α+β)
n,F (ζ + ψ, η; u; λ) = H

(α)
n,F(ζ, η; u; λ)H

(β)
n,F(0, ψ; u; λ).

Proof. By virtue of (12), (16), (20), and (45), we find that

H
(α+β)
n,F (ζ + ψ, η; u; λ) =

(
i
j

)
F
H

(α+β)
i−j,F (ζ + ψ, η; u; λ)

=

(
i
j

)
F

i−j

∑
k=0

(
i − j

k

)
F
H

(α)
i−j−k,F(ζ, η; u; λ)H

(β)
k,F (0, ψ; u; λ)

=
i

∑
k=j

(
i
j

)
F

(
i − j
k − j

)
F
H

(α)
i−k,F(ζ, η; u; λ)H

(β)
k−j,F(0, ψ; u; λ)

=
i

∑
k=j

(
i
k

)
F
H

(α)
i−k,F(ζ, η; u; λ)

(
k
j

)
F
H

(β)
k−j,F(0, ψ; u; λ)

= H
(α)
n,F(ζ, η; u; λ)H

(β)
n,F(0, ψ; u; λ).

Theorem 15. For the generalized Apostol-type Frobenius–Euler–Fibonacci matrix Hn,F(ζ, η; u; λ),
we have

Hn,F(ζ + η, 0; u; λ) = Pn,F(ζ)Hn,F(0, η; u; λ),
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where Pn,F(ζ) =
[
pij(ζ)

]n
i,j=0 is the generalized Pascal matrix [23] via Fibonomial coefficients of

the first kind is defined by

Pn,F(ζ) =

⎧⎨⎩
(

i
j

)
F

ζ i−j i ≥ j

0 i < j
.

Proof. Using (45) and (12), we obtain

Hn,F(ζ + η, 0; u; λ) =

(
i
j

)
F

i−j

∑
k=0

(
i − j

k

)
F

ζ i−j−k
Hk,F(0, η; u; λ)

=
i

∑
k=j

(
i
j

)
F

ζ i−k
(

i − j
k − j

)
F
Hk−j,F(0, η; u; λ)

=
i

∑
k=j

(
i
k

)
F

ζ i−k
(

k
j

)
F
Hk−j,F(0, η; u; λ)

= Pn,F(ζ)Hn,F(0, η; u; λ).

3. Some Values with Graphical Representations and Zeros of the Generalized
Apostol-Type Frobenius–Euler–Fibonacci Polynomials

In this section, evidence of the zeros of the generalized Apostol-type Frobenius–Euler–
Fibonacci polynomials is displayed, along with visually appealing graphical representa-
tions. A few of them are presented here:
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H
(α)
0,F(ζ, η; u; λ) =

(−1 + u
−λ + u

)α

,

H
(α)
1,F(ζ, η; u; λ) = −

uζ
(
−1+u
u−λ

)α

−u + λ
−

uη
(
−1+u
u−λ

)α

−u + λ
−

αλ
(
−1+u
u−λ

)α

−u + λ
+

ζλ
(
−1+u
u−λ

)α

−u + λ
+

ηλ
(
−1+u
u−λ

)α

−u + λ
,

H
(α)
2,F(ζ, η; u; λ) =

u2ζ2
(
−1+u
u−λ

)α

(−u + λ)2 +
u2ζη

(
−1+u
u−λ

)α

(−u + λ)2 −
u2η2

(
−1+u
u−λ

)α

(−u + λ)2 +
uα
(
−1+u
u−λ

)α
λ

(−u + λ)2

+
uαζ

(
−1+u
u−λ

)α
λ

(−u + λ)2 −
2uζ2

(
−1+u
u−λ

)α
λ

(−u + λ)2 +
uαη

(
−1+u
u−λ

)α
λ

(−u + λ)2 −
2uζη

(
−1+u
u−λ

)α
λ

(−u + λ)2

+
2uη2

(
−1+u
u−λ

)α
λ

(−u + λ)2 −
α
(
−1+u
u−λ

)α
λ2

2(−u + λ)2 +
α2
(
−1+u
u−λ

)α
λ2

2(−u + λ)2 −
αζ
(
−1+u
u−λ

)α
λ2

(−u + λ)2

+
ζ2
(
−1+u
u−λ

)α
λ2

(−u + λ)2 −
αη
(
−1+u
u−λ

)α
λ2

(−u + λ)2 +
ζη
(
−1+u
u−λ

)α
λ2

(−u + λ)2 −
η2
(
−1+u
u−λ

)α
λ2

(−u + λ)2 ,

H
(α)
3,F(ζ, η; u; λ) = ζ3

(−1 + u
u − λ

)α

+ 2ζ2η

(−1 + u
u − λ

)α

− 2ζη2
(−1 + u

u − λ

)α

− η3
(−1 + u

u − λ

)α

−
u2α

(
−1+u
u−λ

)α
λ

(−u + λ)3 −
2uα2

(
−1+u
u−λ

)α
λ2

(−u + λ)3 +
α
(
−1+u
u−λ

)α
λ3

3(−u + λ)3 +
α2
(
−1+u
u−λ

)α
λ3

(−u + λ)3

−
α3
(
−1+u
u−λ

)α
λ3

3(−u + λ)3 +
2uαζ

(
−1+u
u−λ

)α
λ

(−u + λ)2 +
2uαη

(
−1+u
u−λ

)α
λ

(−u + λ)2 −
αζ
(
−1+u
u−λ

)α
λ2

(−u + λ)2

+
α2ζ

(
−1+u
u−λ

)α
λ2

(−u + λ)2 −
αη
(
−1+u
u−λ

)α
λ2

(−u + λ)2 +
α2η

(
−1+u
u−λ

)α
λ2

(−u + λ)2 −
2αζ2

(
−1+u
u−λ

)α
λ

−u + λ

−
2αζη

(
−1+u
u−λ

)α
λ

−u + λ
+

2αη2
(
−1+u
u−λ

)α
λ

−u + λ
.

We investigate the beautiful zeros of the generalized Apostol-type Frobenius–Euler
polynomials H

(α)
w,F(ζ, η; u; λ) = 0 of order α by using a computer. We plot the zeros of

generalized Apostol-type Frobenius–Euler polynomials H
(α)
w,F(ζ, η; u; λ) = 0 of order α for

w = 30 (Figure 1).
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Figure 1. Zeros of H(α)
w,F(ζ, η; u; λ) = 0.

In Figure 1 (top left), we choose u = −2, λ = 4, α = 3 and η = 3. In Figure 1 (top
right), we choose u = −2, λ = 4, α = 3 and η = −3. In Figure 1 (bottom left), we choose
u = 2, λ = 6, α = 5 and η = 3. In Figure 1 (bottom right), we choose u = 2, λ = 6, α = 5
and η = −3.

Stacks of zeros of the generalized Apostol-type Frobenius–Euler polynomials
H

(α)
w,F(ζ, η; u; λ) = 0 of order α for 1 ≤ w ≤ 30, forming a 3D structure, are presented

(Figure 2).
In Figure 2 (top left), we choose u = −2, λ = 4, α = 3 and η = 3. In Figure 2 (top

right), we choose u = −2, λ = 4, α = 3 and η = −3. In Figure 2 (bottom left), we choose
u = 2, λ = 6, α = 5 and η = 3. In Figure 2 (bottom right),we choose u = 2, λ = 6, α = 5
and η = −3.

Plots of real zeros of the generalized Apostol-type Frobenius–Euler polynomials
H

(α)
w,F(ζ, η; u; λ) = 0 of order α for 1 ≤ w ≤ 30 are presented (Figure 3).

In Figure 3 (top left), we choose u = −2, λ = 4, α = 3 and η = 3. In Figure 3 (top
right), we choose u = −2, λ = 4, α = 3 and η = −3. In Figure 3 (bottom left), we choose
u = 2, λ = 6, α = 5 and η = 3. In Figure 3 (bottom right),we choose u = 2, λ = 6, α = 5
and η = −3.

Next, we calculated an approximate solution satisfying the generalized Apostol-type
Frobenius–Euler polynomials H

(α)
w,F(ζ, η; u; λ) = 0 of order α. The results are given in

Table 1. We choose u = 2, λ = 6, α = 5 and η = 3.
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Figure 2. Zeros of H(α)
w,F(ζ, η; u; λ) = 0.

Figure 3. Real zeros of H(α)
w,F(ζ, η; u; λ) = 0.
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Table 1. Approximate solutions of H(α)
w,F(ζ, η; u; λ) = 0.

Degree w ζ

1 4.5000

2 −0.96131, 5.4613

3 −3.9141, 5.1740, 7.7401

4 −6.6036, 3.1453 − 2.1145i,
3.1453 + 2.1145i, 13.813

5 −10.775, 1.5396 − 0.9397i, 1.5396 + 0.9397i,
8.4352, 21.761

6 −17.428, −0.72148, 2.5863,
5.7586, 10.197, 35.608

7 −28.214, −1.9256, 2.6753 − 1.4884i, 2.6753 + 1.4884i,
6.7608, 19.152, 57.377

8 −45.645, −3.2315, 1.4614 − 1.2976i, 1.4614 + 1.2976i,
5.7479, 12.138, 29.581, 92.986

9
−73.860, −5.2463, 0.39703, 1.3178,

5.2440, 7.1909, 18.825, 48.769,
150.36

10
−119.51, −8.4883, −0.86402, 2.7850 − 0.2438i,

2.7850 + 0.2438i, 4.6030, 13.531, 30.944,
78.360, 243.35

4. Conclusions

In this article, our objective was to introduce the F-analogues of the Apostol-type
Frobenius–Euler polynomials, which we have denoted as generalized Apostol-type Frobenius–
Euler–Fibonacci polynomials. We have employed the Golden Calculus to introduce these
polynomials and subsequently explored their properties. Our work represents a generalization
of the previously published articles [24]. In our future research studies, we intend to utilize
the Golden Calculus to introduce the parametric types of certain special polynomials and to
derive a plethora of combinatorial identities through their generating functions.
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13. Kwaśniewski, A.K. Towards ψ-extension of Rota’s finite operator calculus. Rep. Math. Phys. 2001, 47, 305–342. [CrossRef]
14. Krot, E. An introduction to finite fibonomial calculus. Cent. Eur. J. Math. 2004, 2, 754–766. [CrossRef]
15. Pashaev, O.K.; Nalci, S. Golden quantum oscillator and Binet–Fibonacci calculus. J. Phys. A Math. Theor. 2012, 45, 015303.

[CrossRef]
16. Kus, S.; Tuglu, N.; Kim, T. Bernoulli F-polynomials and Fibo-Bernoulli matrices. Adv. Differ. Equ. 2019, 2019, 145. [CrossRef]
17. Özvatan, M. Generalized Golden-Fibonacci Calculus and Applications. Master’s Thesis, Izmir Institute of Technology, Urla,

Türkiye, 2018.
18. Pashaev, O.K. Quantum calculus of Fibonacci divisors and infinite hierarchy of bosonic-fermionic golden quantum oscillators.

Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150075. [CrossRef]
19. Pashaev, O.K.; Ozvatan, M. Bernoulli–Fibonacci Polynomials. arXiv 2020, arXiv:2010.15080.
20. Gulal, E.; Tuglu, N. Apostol-Bernoulli–Fibonacci polynomials, Apostol–Euler–Fibonacci polynomials and their generating

functions. Turk. J. Math. Comput. Sci. 2023, 15, 202–210. [CrossRef]
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Abstract: In this paper, we consider a novel family of the mixed-type hypergeometric Bernoulli–
Gegenbauer polynomials. This family represents a fascinating fusion between two distinct categories
of special functions: hypergeometric Bernoulli polynomials and Gegenbauer polynomials. We focus
our attention on some algebraic and differential properties of this class of polynomials, including
its explicit expressions, derivative formulas, matrix representations, matrix-inversion formulas, and
other relations connecting it with the hypergeometric Bernoulli polynomials. Furthermore, we show
that unlike the hypergeometric Bernoulli polynomials and Gegenbauer polynomials, the mixed-type
hypergeometric Bernoulli–Gegenbauer polynomials do not fulfill either Hanh or Appell conditions.

Keywords: Gegenbauer polynomials; generalized Bernoulli polynomials; hypergeometric Bernoulli
polynomials

MSC: 33E20; 32A05; 11B83; 33C45

1. Introduction

For a fixed integer m ∈ N, the mixed-type hypergeometric Bernoulli–Gegenbauer
polynomials V

[m−1,α]
n (x) of order α ∈ (−1/2, ∞), where n ≥ 0, are defined through

generating the functions and series expansions as follows:(
zmexz

ez − ∑m−1
l=0

zl

l!

)(
1 − xz

π
+

z2

4π2

)−α

=
∞

∑
n=0

V
[m−1,α]

n (x)
zn

n!
, (1)

where |z| < 2π, |x| ≤ 1, and α ∈ (−1/2, ∞) \ {0}.

(
zmexz

ez − ∑m−1
l=0

zl

l!

)(
2π − xz

1 − xz
π + z2

4π2

)
=

∞

∑
n=0

V
[m−1,0]

n (x)
zn

n!
, |z| < 2π, |x| ≤ 1. (2)

The polynomials
{

V
[m−1,α]

n (x)
}

n≥0
represent a fascinating fusion between two classes

of special functions: hypergeometric Bernoulli polynomials and Gegenbauer polynomials.
A significant amount of research has been conducted on various generalizations and

analogs of the Bernoulli polynomials and the Bernoulli numbers. For a comprehensive
treatment of the diverse aspects, including summation formulas and applications, inter-
ested readers can refer to recent works [1,2]. Inspired by recent articles [3–7] where au-
thors explore analytic and numerical aspects of hypergeometric Bernoulli polynomials,
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hypergeometric Euler polynomials, generalized mixed-type Bernoulli–Gegenbauer poly-
nomials, and Lagrange-based hypergeometric Bernoulli polynomials, this article focuses
on the algebraic and differential properties of the polynomials

{
V

[m−1,α]
n (x)

}
n≥0

. These

properties include their explicit expressions, derivative formulas, matrix representations,
matrix-inversion formulas, and other relationships connecting them with hypergeometric
Bernoulli polynomials.

The paper is organized as follows. Section 2 provides relevant information about
hypergeometric Bernoulli polynomials and Gegenbauer polynomials. Section 3 is dedicated
to the study of the main algebraic and analytic properties of the HBG polynomials (1)
and (2), which are summarized in Theorems 1–4, and Proposition 6.

2. Background and Previous Results

Throughout this paper, let N, N0, Z, R, and C denote, respectively, the sets of natural
numbers, non-negative integers, integers, real numbers, and complex numbers. As usual,
we always use the principal branch for complex powers, in particular, 1α = 1 for α ∈ C.
Furthermore, the convention 00 = 1 is adopted.

For λ ∈ C and k ∈ Z, we use the notations λ(k) and (λ)k for the rising and falling
factorials, respectively, i.e.,

λ(k) =

⎧⎨⎩
1, if k = 0,

∏k
i=1(λ + i − 1), if k ≥ 1,

0, if k < 0,

and

(λ)k =

⎧⎨⎩
1, if k = 0,

∏k
i=1(λ − i + 1), if k ≥ 1,

0, if k < 0.

From now on, we denote by Pn the linear space of polynomials with real coefficients
and a degree less than or equal to n. Moreover, to present some of our results, we require
the use of the generalized multinomial theorem (cf. [8,9] and the references therein).

2.1. Hypergeometric Bernoulli Polynomials

For a fixed m ∈ N, the hypergeometric Bernoulli polynomials are defined by means of
the following generating function [5,10–14]:

zmexz

ez − ∑m−1
l=0

zl

l!

=
∞

∑
n=0

B[m−1]
n (x)

zn

n!
, |z| < 2π, (3)

and the hypergeometric Bernoulli numbers are defined by B[m−1]
n := B[m−1]

n (0) for all
n ≥ 0. The hypergeometric Bernoulli polynomials also are called generalized Bernoulli
polynomials of level m [5,6]. It is clear that if m = 1 in (3), then we obtain the definition of
the classical Bernoulli polynomials Bn(x) and classical Bernoulli numbers, respectively, i.e.,
Bn(x) = B[0]

n (x) and Bn = B[0]
n , respectively, for all n ≥ 0.

The first four hypergeometric Bernoulli polynomials are as follows:

B[m−1]
0 (x) = m!,

B[m−1]
1 (x) = m!

(
x − 1

m+1

)
,

B[m−1]
2 (x) = m!

(
x2 − 2

m+1 x + 2
(m+1)2(m+2)

)
,

B[m−1]
3 (x) = m!

(
x3 − 3

m+1 x2 + 6
(m+1)2(m+2) x + 6(m−1)

(m+1)3(m+2)(m+3)

)
.

The following results summarize some properties of the hypergeometric Bernoulli
polynomials (cf. [5,6,11,12,15]).
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Proposition 1 ([5], Proposition 1). For a fixed m ∈ N, let
{

B[m−1]
n (x)

}
n≥0

be the sequence of

hypergeometric Bernoulli polynomials. Then the following statements hold:

(a) Summation formula. For every n ≥ 0,

B[m−1]
n (x) =

n

∑
k=0

(
n
k

)
B[m−1]

k xn−k. (4)

(b) Differential relations (Appell polynomial sequences). For n, j ≥ 0 with 0 ≤ j ≤ n, we have

[B[m−1]
n (x)](j) =

n!
(n − j)!

B[m−1]
n−j (x). (5)

(c) Inversion formula. ([12], Equation (2.6)) For every n ≥ 0,

xn =
n

∑
k=0

(
n
k

)
k!

(m + k)!
B[m−1]

n−k (x). (6)

(d) Recurrence relation. ([12], Lemma 3.2) For every n ≥ 1,

B[m−1]
n (x) =

(
x − 1

m + 1

)
B[m−1]

n−1 (x)− 1
n(m − 1)!

n−2

∑
k=0

(
n
k

)
B[m−1]

n−k B[m−1]
k (x).

(e) Integral formulas.∫ x1

x0

B[m−1]
n (x)dx =

1
n + 1

[
B[m−1]

n+1 (x1)− B[m−1]
n+1 (x0)

]
=

n

∑
k=0

1
n − k + 1

(
n
k

)
B[m−1]

k ((x1)
n−k+1 − (x0)

n−k+1).

B[m−1]
n (x) = n

∫ x

0
B[m−1]

n−1 (t)dt + B[m−1]
n .

(f) ([12], Theorem 3.1) Differential equation. For every n ≥ 1, the polynomial B[m−1]
n (x) satisfies

the following differential equation

B[m−1]
n
n!

y(n) +
B[m−1]

n−1
(n − 1)!

y(n−1) + · · ·+ B[m−1]
2
2!

y′′ + (m − 1)!
(

1
m + 1

− x
)

y′ + n(m − 1)!y = 0.

As a straightforward consequence of the inversion Formula (6), the following expected
algebraic property is obtained.

Proposition 2 ([5], Proposition 2). For a fixed m ∈ N and each n ≥ 0, the set{
B[m−1]

0 (x), B[m−1]
1 (x), . . . , B[m−1]

n (x)
}

is a basis for Pn, i.e.,

Pn = span
{

B[m−1]
0 (x), B[m−1]

1 (x), . . . , B[m−1]
n (x)

}
.

Let ζ(s) be the Riemann zeta function defined by

ζ(s) =
∞

∑
n=1

1
ns , �(s) > 1.

The following result provides a formula for evaluating ζ(2r) in terms of the hypergeo-
metric Bernoulli numbers.
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Proposition 3 ([6], Theorem 3.3). For a fixed m ∈ N and any r ∈ N, the following identity holds.

ζ(2r) =
(−1)r−122r−1π2rB[m−1]

2r
m!(2r)!

+ Δ[m−1]
r ,

where

Δ[m−1]
r =

(−1)r−122r−1π2r

m!

⎡⎣B[m−1]
2r (1)− B[m−1]

2r
2(2r)!

−
B[m−1]

2r+1 (1)− B[m−1]
2r+1

(2r + 1)!
−

r−1

∑
j=1

(
B[m−1]

2r−2j+1(1)− B[m−1]
2r−2j+1

)
(2r − 2j + 1)!

B2j

(2j)!

⎤⎦.

2.2. Gegenbauer Polynomials

For α > − 1
2 , we denote by {Ĉ(α)

n (x)}n≥0 the sequence of Gegenbauer polynomials,

orthogonal on [−1, 1] with respect to the measure dμ(x) = (1 − x2)α− 1
2 dx (cf. [16], Chap-

ter IV), normalized by

Ĉ(α)
n (1) =

Γ(n + 2α)

n!Γ(2α)
.

More precisely,

∫ 1

−1
Ĉ(α)

n (x)Ĉ(α)
m (x) dμ(x) =

∫ 1

−1
Ĉ(α)

n (x)Ĉ(α)
m (x)(1 − x2)α− 1

2 dx = Mα
n δn,m, n, m ≥ 0,

where the constant Mα
n is positive. It is clear that the normalization above does not allow α

to be zero or a negative integer. Nevertheless, the following limits exist for every x ∈ [−1, 1]
(see [16], (4.7.8))

lim
α→0

Ĉ(α)
0 (x) = T0(x), lim

α→0

Ĉ(α)
n (x)

α
=

2
n

Tn(x),

where Tn(x) is the nth Chebyshev polynomial of the first kind. In order to avoid confusing
notation, we define the sequence {Ĉ(0)

n (x)}n≥0 as follows:

Ĉ(0)
0 (1) = 1, Ĉ(0)

n (1) =
2
n

, Ĉ(0)
n (x) =

2
n

Tn(x), n ≥ 1.

We denote the nth monic Gegenbauer orthogonal polynomial by

C(α)
n (x) = (kα

n)
−1Ĉ(α)

n (x),

where the constant kα
n (cf. [16], Formula (4.7.31)) is given by

kα
n =

2nΓ(n + α)

n!Γ(α)
, α �= 0,

k0
n = lim

α→0

kα
n

α
=

2n

n
, n ≥ 1.

Then for n ≥ 1, we have

C(0)
n (x) = lim

α→0
(kα

n)
−1Ĉ(α)

n (x) =
1

2n−1 Tn(x). (7)

Gegenbauer polynomials are closely connected with axially symmetric potentials
in n dimensions (cf. [4] and the references cited therein), and contain the Legendre and
Chebyshev polynomials as special cases. Furthermore, they inherit practically all the
formulas known in the classical theory of Legendre polynomials.
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Proposition 4 ([17], cf. Proposition 2.1). Let {C(α)
n }n≥0 be the sequence of monic Gegenbauer

orthogonal polynomials. Then the following statements hold.

(a) Three-term recurrence relation.

xC(α)
n (x) = C(α)

n+1(x) + γ
(α)
n C(α)

n−1(x), α > −1
2

, α �= 0, (8)

with initial conditions C(α)
−1 (x) = 0, C(α)

0 (x) = 1 and recurrence coefficients γ
(α)
0 ∈ R,

γ
(α)
n = n(n+2α−1)

4(n+α)(n+α−1) , n ∈ N.

(b) For every n ∈ N (see [16], (4.7.15))

hα
n := ‖C(α)

n ‖2
μ =

∫ 1

−1
[C(α)

n (x)]2dμ(x) = π21−2α−2n n!Γ(n + 2α)

Γ(n + α + 1)Γ(n + α)
. (9)

(c) Rodrigues formula.

(1 − x2)α− 1
2 C(α)

n (x) =
(−1)nΓ(n + 2α)

Γ(2n + 2α)

dn

dxn

[
(1 − x2)n+α− 1

2

]
, x ∈ (−1, 1).

(d) Structure relation (see [16], (4.7.29)). For every n ≥ 2

C(α−1)
n (x) = C(α)

n (x) + ξ
(α)
n−2C(α)

n−2(x),

where

ξ
(α)
n =

(n + 2)(n + 1)
4(n + α + 1)(n + α)

, n ≥ 0.

(e) For every n ∈ N (see [16], Formula (4.7.14))

d
dx

C(α)
n (x) = nC(α+1)

n−1 (x).

(f) For every n ∈ N (see [18], Proposition 2.1)

d
dx

C(0)
n (x) =

n
2

C(1)
n−1(x).

As is well known, the monic Gegenbauer orthogonal polynomials admit other dif-
ferent definitions [16,19–21]. In order to deal with the definitions (1) and (2) of the HBG
polynomials, we also are interested in the definition of the monic Gegenbauer orthogonal
polynomials by means of the following generating functions:(

1 − xz
π

+
z2

4π2

)−α

=
∞

∑
n=0

Γ(n + α)

πnΓ(α)
C(α)

n (x)
zn

n!
, |z| < 2π, |x| ≤ 1, α ∈ (−1/2, ∞) \ {0}, (10)

and

2π − xz

1 − xz
π + z2

4π2

=
∞

∑
n=0

1
πn−1 C(0)

n (x)zn =
∞

∑
n=0

Γ(n + 1)
πn−1 C(0)

n (x)
zn

n!
, |z| < 2π, |x| ≤ 1. (11)
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Remark 1. Note that (10) and (11) are suitable modifications of the generating functions for the
Gegenbauer polynomials Ĉ(α)

n (x):

(
1 − 2xz + z2

)−α
=

∞

∑
n=0

Ĉ(α)
n (x)zn, |z| < 1, |x| ≤ 1, α ∈ (−1/2, ∞) \ {0},

1 − xz
1 − xz + z2 = 1 +

∞

∑
n=1

n
2

Ĉ(0)
n (x)zn, |z| < 1, |x| ≤ 1.

3. The Polynomials V
[m−1,α]

n (x) and Their Properties

Now, we can proceed to investigate some relevant properties of the HBG polynomials.

Proposition 5. For α ∈ (−1/2, ∞), let
{

V
[m−1,α]

n (x)
}

n≥0
be the sequence of HBG polynomials

of order α. Then the following explicit formulas hold.

V
[m−1,α]

n (x) =
n

∑
k=0

(
n
k

)
Γ(k + α)

πkΓ(α)
C(α)

k (x)B[m−1]
n−k (x), n ≥ 0, α �= 0, (12)

V
[m−1,0]

n (x) =
n

∑
k=0

(
n
k

)
k!

πk−1 C(0)
k (x)B[m−1]

n−k (x), n ≥ 0. (13)

Proof. On account of the generating functions (1) and (10), it suffices to make a suitable
use of Cauchy product of series in order to deduce the expression (12).

Similarly, taking into account the generating functions (2) and (11), we can use an
analogous reasoning to the previous one to obtain expression (13).

Thus, the suitable use of (8) and (12) allow us to check that for α ∈ (−1/2, ∞) \ {0},
the first five HBG polynomials are:

V
[m−1,α]

0 (x) =m! v0(α),

V
[m−1,α]

1 (x) =m!
[

v1(α)x − 1
m + 1

]
,

V
[m−1,α]

2 (x) =m!
[

v2(α)x2 − 2(π + α)

π(m + 1)
x +

4π2(α + 1) + α(m + 1)2(m + 2)
2π2(m + 1)2(m + 2)(1 + α)

]
,

V
[m−1,α]

3 (x) =m!
[

v3(α)x3 − 3
m + 1

v2(α)x2 + 3
(

2
(m + 1)2(m + 2)

(
1 +

α

π

)
− α

2π2

(
1 +

(1 + α)

π

))
x

+3
(

2(m − 1)
(m + 1)3(m + 2)(m + 3)

− α

2π2(m + 1)

)]
,

V
[m−1,α]

4 (x) =m!
[

v4(α)x4 − 4
m + 1

v3(α)x3 + 3
(

m − 2
(m + 1)(m + 2)

+
8α

π(m + 1)2(m + 2)
− α

π2 − 2(1 + α)α

π3

− (2 + α)(1 + α)α

π4

)
x2 + 6

(
5 − m

(m + 1)2(m + 2)(m + 3)
+

4(m − 1)α
π(m + 1)3(m + 2)(m + 3)

+
α

π2(m + 1)

+
(1 + α)α

π3(m + 1)

)
x2 − 6(m3 − 3m2 − 6m + 36)

(m + 1)2(m + 2)2(m + 3)(m + 4)
+

6(1 + 2α)α

π2(m + 1)2(m + 2)
+

3(1 + α)α

4π4

]
,

where vn(α) =
n

∑
k=0

(
n
k

)
α(k)

πk , 0 ≤ n ≤ 4.
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In contrast to the hypergeometric Bernoulli polynomials and Gegenbauer polynomials,
the HBG polynomials neither satisfy a Hanh condition nor an Appell condition. More
precisely, we have the following result.

Theorem 1. For α ∈ (−1/2, ∞), let
{

V
[m−1,α]

n (x)
}

n≥0
be the sequence of HBG polynomials of

order α. Then we have

d
dx

V
[m−1,α]

n+1 (x) = (n + 1)
[ α

π
V

[m−1,α+1]
n (x) + V

[m−1,α]
n (x)

]
, α �= 0, (14)

d
dx

V
[m−1,0]

n+1 (x) = (n + 1)

[
V

[m−1,0]
n (x) +

1
2

n

∑
k=0

(
n
k

)
(k + 1)!

πk C(1)
k (x)B[m−1]

n−k (x)

]
, α = 0.

(15)

Proof. From (12), we have

V[m−1,α]
n+1 (x) =

n+1

∑
k=0

(
n + 1

k

)
Γ(k + α)

πkΓ(α)
C(α)

k (x)B[m−1]
n+1−k(x),

differentiating this last equation, and using part (e) of Proposition 4, (14) follows.

Furthermore, it is possible to establish an integral formula connecting the HBG po-
lynomials with the monic Gegenbauer polynomials. This integral formula allows us to
deduce a concise expression for the Fourier coefficients of the HBG polynomials in terms of
the basis of monic Gegenbauer polynomials.

Lemma 1. For α ∈ (−1/2, ∞), let
{

V
[m−1,α]

n (x)
}

n≥0
be the sequence of HBG polynomials of

order α. Then, the following formula holds.

∫ 1

−1
V

[m−1,α]
n (x)C(α)

n (x)dμ(x) =

⎧⎪⎨⎪⎩
m!n!Γ(n+2α)

π2α+2nΓ(n+α+1)Γ(n+α) ∑n
k=0 (

n
k)

Γ(k+α)
πk−1Γ(α) , α �= 0,

m!π
2n ∑n

k=0 (
n
k)

k!
πk−1 , α = 0,

(16)

whenever n ≥ 0.

Proof. In order to obtain (16), it suffices to use the orthogonality properties of the monic
Gegenbauer polynomials (4), (7), (9), (12) and (13).

Regarding the zero distribution of these polynomials, the numerical evidence indicates
that this distribution does not align with the behavior of either Bernoulli hypergeometric
polynomials or Gegenbauer polynomials. For instance, in Figure 1, the plots for the zeros
of V

[m−1,α]
28 (x) and V

[m−1,α]
30 (x) are shown for m = 2 and α = − 1

4 .
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(a) Zeros of V
[1,− 1

4 ]
28 (x). (b) Zeros of V

[1,− 1
4 ]

30 (x).

Figure 1. Zeros of V
[1,− 1

4 ]
28 (x) and V

[1,− 1
4 ]

30 (x).

As expected, the symmetry property of Gegenbauer polynomials is not inherited by
the HBG polynomials. For instance, Figure 2 displays the induced mesh of V

[m−1,α]
j (x)

for m = 2, α = 1, and j = 1, . . . , 21. Each point on this mesh takes the form (x[m−1,α]
j , j),

j = 1, . . . , 21. In contrast, Figure 3 displays the induced mesh of C(α)
j (x) for α = 1, and

j = 1, . . . , 19.

Figure 2. Induced mesh of V
[m−1,α]

j (x) for m = 2, α = 1, and j = 1, . . . , 21.

Figure 3. Induced mesh of C(α)
j (x) for α = 1, and j = 1, . . . , 19.
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For any α ∈ (−1/2, ∞), it is possible to deduce interesting relations connecting the
HBG polynomials V

[m−1,α]
n (x) and the hypergeometric Bernoulli polynomials B[m−1]

n (x).
The following two results concern these relations.

Proposition 6. For a fixed m ∈ N, let V
[m−1,α]

n (x) be the nth HBG polynomial of order α ∈
(−1/2, ∞) \ {0}. Then, the following relation is satisfied:

∞

∑
n=0

B[m−1]
n (x)

zn

n!
=

∞

∑
n=0

∑
0≤j,k≤|α|

(−1)j

22kπ2k+j

(
α

j, k

)
xjV

[m−1,α]
n (x)

zn+2k+j

n!
. (17)

Proof. On the account of generalized multinomial theorem, we deduce that(
1 − xz

π
+

z2

4π2

)α

= ∑
0≤j,k≤|α|

(−1)j

22kπ2k+j

(
α

j, k

)
xjz2k+j. (18)

Next, (1), (3) and (18) imply that

∞

∑
n=0

B[m−1]
n (x)

zn

n!
=

(
1 − xz

π
+

z2

4π2

)α ∞

∑
n=0

V
[m−1,α]

n
zn

n!

=

⎛⎝ ∑
0≤j,k≤|α|

(−1)j

22kπ2k+j

(
α

j, k

)
xjz2k+j

⎞⎠ ∞

∑
n=0

V
[m−1,α]

n
zn

n!
. (19)

Since the sum on the right-hand side of (18) is finite, (17) follows directly from (19).

Theorem 2. For a fixed m ∈ N, the HBG polynomials V
[m−1,0]

n (x) are related with the hypergeo-
metric Bernoulli polynomials B[m−1]

n (x) by means of the following identities.

2πB[m−1]
0 (x) = V

[m−1,0]
0 (x),

2πB[m−1]
1 (x)− xB[m−1]

0 (x) = V
[m−1,0]

1 (x)− x
π V

[m−1,0]
0 (x),

2πB[m−1]
n (x)− nxB[m−1]

n−1 (x) = V
[m−1,0]

n (x)− nx
π V

[m−1,0]
n−1 (x) + n(n−1)

4π2 V
[m−1,0]

n−2 (x), n ≥ 2.

(20)

Proof. From the identities (2) and (3), we have

(2π − xz)
∞

∑
n=0

B[m−1]
n (x)

zn

n!
=

(
1 − xz

π
+

z2

4π2

) ∞

∑
n=0

V
[m−1,0]

n (x)
zn

n!
.

Multiplying, respectively, the left-hand side of the above expression by (2π − xz) and
the right-hand side by

(
1 − xz

π + z2

4π2

)
, we obtain the following equivalent expression:

2πB[m−1]
0 (x) + 2πB[m−1]

1 (x)z − xB[m−1]
0 (x)z +

∞

∑
n=2

(
2πB[m−1]

n (x)− nxB[m−1]
n−1 (x)

) zn

n!

= V
[m−1,0]

0 (x) + V
[m−1,0]

1 (x)z − x
π

V
[m−1,0]

0 (x)z

+
∞

∑
n=2

(
V

[m−1,0]
n (x)− nx

π
V

[m−1,0]
n−1 (x) +

n(n − 1)
4π2 V

[m−1,0]
n−2 (x)

)
zn

n!
. (21)

Therefore, by comparing the coefficients on both sides of (21), we obtain the identi-
ties (20).
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Remark 2. When α = r ∈ N, Equation (18) becomes(
1 − xz

π
+

z2

4π2

)r

= ∑
j+k=r

(−1)j

22kπ2k+j

(
r

j, k

)
xjz2k+j.

Thus, for r = 1 we can combine the above identity with (17), and obtain the following connecting
relations:

B[m−1]
0 (x) = V

[m−1,1]
0 (x)

B[m−1]
1 (x) = V

[m−1,1]
1 (x)− x

π
V

[m−1,1]
0 (x)

B[m−1]
n (x) = V

[m−1,1]
n (x)− nx

π
V

[m−1,1]
n−1 (x) +

n(n − 1)
4π2 V

[m−1,1]
n−2 (x), n ≥ 2,

(22)

Hence, as a straightforward consequence of (17) and (20), the HBG polynomials V
[m−1,1]

n (x)
and V

[m−1,0]
n (x) are related by means of the following identities:

2πV
[m−1,1]

0 (x) = V
[m−1,0]

0 (x)

2πV
[m−1,1]

1 (x)− 3xV
[m−1,1]

0 (x) = V
[m−1,0]

1 (x)− x
π

V
[m−1,0]

0 (x)

2πV
[m−1,1]

n (x)− 3nxV
[m−1,1]

n−1 (x) +
(

n(n − 1)
2π

+
n(n − 1)x2

π

)
V

[m−1,1]
n−2 (x)− n(n − 1)(n − 2)x

4π2 V
[m−1,1]

n−3 (x)

= V
[m−1,0]

n (x)− nx
π

V
[m−1,0]

n−1 (x) +
n(n − 1)

4π2 V
[m−1,0]

n−2 (x), n ≥ 2.

(23)

Using (12), (13), and employing a matrix approach, we can obtain a matrix representa-
tion for V

[m−1,α]
n (x), n ≥ 0. In order to implement that, we follow some ideas from [4,5].

First of all, we must point out that for r = 0, 1, . . . , n, Equations (12) and (13) allow us
to deduce the following matrix form of V

[m−1,α]
r (x):

V
[m−1,α]

r (x) = C
(α)
r (x)B[m−1](x), r = 0, 1, . . . , n, (24)

where

C
(α)
r (x) =

⎧⎪⎪⎨⎪⎪⎩
[
(r

r)
Γ(r+α)
πrΓ(α) C(α)

r (x) ( r
r−1)

Γ(r−1+α)
πr−1Γ(α) C(α)

r−1(x) · · · C(α)
0 (x) 0 · · · 0

]
, if α �= 0,

[
(r

r)
r!

πr−1 C(0)
r (x) ( r

r−q)
(r−1)!
πr−2 C(0)

r−1(x) · · · C(0)
0 (x) 0 · · · 0

]
, if α = 0,

the null entries of the matrix C
(α)
r (x) appear (n − r)-times, and the matrix B[m−1](x) is

given by B[m−1](x) =
[

B[m−1]
0 (x) B[m−1]

1 (x) · · · B[m−1]
n (x)

]T
.

Now, for α ∈ (−1/2, ∞), let C(α)(x) be the (n + 1)× (n + 1) whose rows are precisely
the matrices C

(α)
r (x) for r = 0, 1, . . . , n. That is,
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C(α)(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(α)
0 (x) 0 · · · 0

(1
1)

Γ(1+α)
πΓ(α) C(α)

1 (x) C(α)
0 (x) · · · 0

(2
2)

Γ(2+α)
π2Γ(α) C(α)

2 (x) (2
1)

Γ(1+α)
πΓ(α) C(α)

1 (x) · · · 0

...
...

. . .
...

(n
n)

Γ(n+α)
πnΓ(α) C(α)

n (x) ( n
n−1)

Γ(n−1+α)
πn−1Γ(α) C(α)

n−1(x) · · · C(α)
0 (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α > −1
2

, α �= 0,

and from (7):

C(0)(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

(1
1)πT1(x) 1 · · · 0

(2
2)

1
π T2(x) (2

1)T1(x) · · · 0

...
...

. . .
...

(n
n)

n!
(2π)n−1 Tn(x) ( n

n−1)
(n−1)!
(2π)n−2 Tn−1(x) · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is clear that the matrix C(α)(x) is a lower triangular matrix for each x ∈ R, so
that det

(
C(α)(x)

)
= 1. Therefore, C(α)(x) is a nonsingular matrix for each x ∈ R and

α ∈ (−1/2, ∞).

Theorem 3. For a fixed m ∈ N and any α ∈ (−1/2, ∞), let
{

V
[m−1,α]

n (x)
}

n≥0
be the sequence

of HBG polynomials. Then, the following matrix representation holds.

V[m−1,α](x) = C(α)(x)B[m−1](x), (25)

where V[m−1,α](x) =
[
V

[m−1,α]
0 (x) V

[m−1,α]
1 (x) · · · V

[m−1,α]
n (x)

]T
.

Proof. For each r = 0, 1, . . . , n, consider the matrix form (24) of V
[m−1,α]

r (x). Then, it is not
difficult to see that the matrix V[m−1,α](x) becomes

V[m−1,α](x) =
[
V

[m−1,α]
0 (x) V

[m−1,α]
1 (x) · · · V

[m−1,α]
n (x)

]T
= C(α)(x)B[m−1](x),

and (25) follows.

The following examples show how Theorem 3 can be used.
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Example 1. Let us consider m = 1, n = 3, and α = 1, then,

B(x) =
(

C(1)(x)
)−1

V[0,1](x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

x
π 1 0 0

4x2−1
2π2

2x
π 1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

V[0,1](x), (26)

where

V[0,1](x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1(
1 + 1

π

)
x − 1

2(
1 + 2

π + 1
π2

)
x2 −

(
1 + 1

π

)
x + 1

6 − 1
2π2(

1 + 3
π + 6

π2 +
6

π3

)
x3 − 3

2

(
1 + 2

π + 2
π2

)
x2 + 1

2

(
1 + 1

π − 3
π2 − 6

π3

)
x + 3

4π2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since

(
C(1)(x)

)−1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

x
π 1 0 0

4x2−1
2π2

2x
π 1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

− x
π 1 0 0

1
2π2 − 2x

π 1 0

0 3
2π2 − 3x

π 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then (26) becomes

B(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x − 1
2

x2 − x + 1
6

x3 − 3
2 x2 + 1

2 x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

That is, the entries of the matrix B(x) are the first four classical Bernoulli polynomials.
It is worth noting that for α = m = 1, the HBG polynomials V

[0,1]
n (x) coincide with the GBG

polynomials V
(1)

n (x), for all n ≥ 0 (cf. [4]).

Example 2. Let m = n = 3 and α = − 1
4 . From (25), we obtain
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C(− 1
4 )(x)B[2](x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

− x
4π 1 0 0

− 3
16π2

(
x2 − 2

3
)

− x
2π 1 0

− 21
64π3

(
x3 − 6x

7
)

− 9
16π2

(
x2 − 2

3
)

− 3x
4π 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6

6x − 3
2

6x2 − 3x + 3
20

6x3 − 9x2

2 + 9x
20 + 3

80

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6

− 3x
2π + 6x − 3

2

−45x2+6π2(40x2−20x+1)+30π(1−4x)x+30
40π2

3(−6π2x(40x2−20x+1)+15x(6−7x2)−15π(12x3−3x2−8x+2)+π3(320x3−240x2+24x+2))
160π3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Straightforward calculations show that this last matrix coincides with

V[2,− 1
4 ](x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6

6
(

1 − 1
4π

)
x − 3

2

6
(

1 − 1
2π − 3

16π2

)
x2 − 3

(
1 − 1

4π

)
x + 3

20 + 3
4π2

6
(

1 − 3
4π − 9

16π2 − 21
64π2

)
x3 − 9

2

(
1 − 1

2π − 3
16π2

)
x2 + 9

4

(
1
5 − 1

20π + 1
π2 +

3
4π3

)
x + 3

80 − 9
16π2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, C(− 1
4 )(x)B[2](x) = V[2,− 1

4 ](x).

We can now proceed as outlined in [5]. From the summation Formula (4) it follows

B[m−1]
r (x) = M

[m−1]
r T(x), r = 0, 1, . . . , n,

where
M

[m−1]
r =

[
(r

r)B[m−1]
r ( r

r−1)B[m−1]
r−1 · · · (r

0)B[m−1]
0 0 · · · 0

]
, (27)

the null entries of the matrix M
[m−1]
r appear (n − r)-times, and T(x) =

[
1 x · · · xn]T .

Analogously, by (27) the matrix B[m−1](x), can be expressed as follows:

B[m−1](x) = M[m−1]T(x)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B[m−1]
0 0 · · · 0

(1
1)B[m−1]

1 (1
0)B[m−1]

0 · · · 0

(2
2)B[m−1]

2 (2
1)B[m−1]

1 · · · 0

...
...

. . .
...

(n
n)B[m−1]

n ( n
n−1)B[m−1]

n−1 · · · (n
0)B[m−1]

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T(x). (28)
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Notice that according to (27) the rows of the matrix M[m−1] are precisely the matrices
M

[m−1]
r for r = 0, . . . , n. Furthermore, the matrix M[m−1] is a lower triangular matrix, so

that det
(

M[m−1]
)
= (m!)n+1. Therefore, M[m−1] is a nonsingular matrix.

Another interesting algebraic property of the HBG polynomials is related with the
following matrix-inversion formula.

Theorem 4. For a fixed m ∈ N and any α ∈ (−1/2, ∞), let
{

V
[m−1,α]

n (x)
}

n≥0
be the sequence

of HBG polynomials. Then, the following formula holds.

T(x) =
(

Q[m−1,α](x)
)−1

V[m−1,α](x), (29)

where Q[m−1,α](x) = C(α)(x)M[m−1].

Proof. Using the inversion Formulas (6), (25) and (28), and the nonsingularity of the
matrices C(α)(x) and M[m−1], it is possible to deduce that

T(x) =
(

M[m−1]
)−1(

C(α)(x)
)−1

V[m−1,α](x),

and (29) follows.

A simple and important consequence of Theorem 4 is:

Corollary 1. For a fixed m ∈ N and any α ∈ (−1/2, ∞) the set
{

V
[m−1,α]

0 (x), . . . , V [m−1,α]
n (x)

}
is a basis for Pn, n ≥ 0, i.e.,

Pn = span
{

V
[m−1,α]

0 (x), V [m−1,α]
1 (x), . . . , V [m−1,α]

n (x)
}

.

4. Conclusions

In the present paper, we introduced the mixed-type hypergeometric Bernoulli–Gegenbauer
polynomials and analyzed some algebraic and differential properties of these polynomials,
including their explicit expressions, derivative formulas, matrix representations, matrix-
inversion formulas, and other relations connecting them with the hypergeometric Bernoulli
polynomials. Furthermore, we demonstrated that unlike the hypergeometric Bernoulli
polynomials and Gegenbauer polynomials, the HBG polynomials do not fulfill either Hanh
or Appell conditions.

It is worth noting that the utilization of a matrix approach, specifically employing the
operational matrix method based on hypergeometric Bernoulli polynomials, underpins
several of our formulations. The matrix approaches using operational matrix methods
associated with special polynomials and their practical applications constitute a relatively
recent area of interest, as evidenced by the substantial body of literature (see, for instance,
refs. [22–28] and the references therein). However, within the context of mixed special
polynomials, to the best of our knowledge, there are no other published works that have
adopted a similar approach, with the possible exception of a recent investigation [4].

Furthermore, we provided some examples to illustrate that the class of HBG polyno-
mials does not generalize to the classical Bernoulli polynomials, although the latter can be
recovered using Theorem 3. Unfortunately, the numerical evidence suggests that the zero
distribution of the HBG polynomials does not align with the behavior of either Bernoulli
hypergeometric polynomials or Gegenbauer polynomials.

Finally, by employing the determinantal approach introduced by Costabile and
Longo [29], which implies that hypergeometric Bernoulli polynomials have a correspon-
ding determinant form, and considering Theorem 3, it becomes feasible to investigate
the determinantal forms associated with the HBG polynomials. Furthermore, Theorem 4
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and the differential equation presented in part (f) of Proposition 1 (cf. [12], Theorem 3.1)
suggest that the HBG polynomials satisfy a differential equation of order n. These two
properties, along with their implications and potential applications, will be the focus of our
future work.

Author Contributions: Conceptualization, D.P. and Y.Q.; methodology, D.P. and Y.Q.; formal analysis,
D.P., Y.Q. and S.A.W.; investigation, D.P., Y.Q. and S.A.W.; writing—original draft preparation, Y.Q.;
writing—review and editing, D.P., Y.Q. and S.A.W.; supervision, Y.Q.; project administration, Y.Q.
and S.A.W.; funding acquisition, Y.Q. All authors have read and agreed to the published version of
the manuscript.

Funding: The research of Y. Quintana has been partially supported by the grant CEX2019-000904-
S funded by MCIN/AEI/10.13039/501100011033, and by the Madrid Government (Comunidad
de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of Uni-
versity Professors (EPUC3M23), in the context of the Fifth Regional Programme of Research and
Technological Innovation (PRICIT).

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors express their profound gratitude to the referees and the academic
editor for their meticulous review of our manuscript and their invaluable comments and suggestions,
which significantly contributed to the enhancement of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Leinartas, E.K.; Shishkina, O.A. The discrete analog of the Newton-Leibniz formula in the problem of summation over simplex
lattice points. J. Sib. Fed. Univ.-Math. Phys. 2019, 12, 503–508. [CrossRef]

2. Cuchta, T.; Luketic, R. Discrete hypergeometric Legendre polynomials. Mathematics 2021, 9, 2546. [CrossRef]
3. Albosaily, S.; Quintana, Y.; Iqbal, A.; Khan, W. Lagrange-based hypergeometric Bernoulli polynomials. Symmetry 2022, 14, 1125.

[CrossRef]
4. Quintana, Y. Generalized mixed type Bernoulli-Gegenbauer polynomial. Kragujev. J. Math. 2023, 47, 245–257. [CrossRef]
5. Quintana, Y.; Ramírez, W.; Urieles, A. On an operational matrix method based on generalized Bernoulli polynomials of level m.

Calcolo 2018, 55, 30. [CrossRef]
6. Quintana, Y.; Torres-Guzmán, H. Some relations between the Riemann zeta function and the generalized Bernoulli polynomials

of level m. Univers. J. Math. Appl. 2019, 2, 188–201. [CrossRef]
7. Quintana, Y.; Urieles, A. Quadrature formulae of Euler-Maclaurin type based on generalized Euler polynomials of level m. Bull.

Comput. Appl. Math. 2018, 6, 43–64.
8. Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, 2nd ed.; D. Reidel Publishing Company, Inc.: Boston,

MA, USA, 1974.
9. Kargin, L.; Kurt, V. On the generalization of the Euler polynomials with the real parameters. Appl. Math. Comput. 2011, 218,

856–859. [CrossRef]
10. Hassen, A.; Nguyen, H.D. Hypergeometric Bernoulli polynomials and Appell sequences. Int. J. Number Theory 2008, 4, 767–774.

[CrossRef]
11. Howard, F.T. Some sequences of rational numbers related to the exponential function. Duke Math. J. 1967, 34, 701–716. [CrossRef]
12. Natalini, P.; Bernardini, A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 2003, 155–163. [CrossRef]
13. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals, 1st ed.; Elsevier: London, UK, 2012.
14. Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions, 1st ed.; Ellis Horwood Ltd.: West Sussex, UK, 1984.
15. Hernández-Llanos, P.; Quintana, Y.; Urieles, A. About extensions of generalized Apostol-type polynomials. Results Math. 2015, 68,

203–225. [CrossRef]
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Abstract: In this paper, we consider the orthogonal polynomials with respect to the weight w(x) =
w(x; s) := xλe−N[x+s(x3−x)], x ∈ R+, where λ > 0, N > 0 and 0 ≤ s ≤ 1. By using the ladder
operator approach, we obtain a pair of second-order nonlinear difference equations and a pair of
differential–difference equations satisfied by the recurrence coefficients αn(s) and βn(s). We also
establish the relation between the associated Hankel determinant and the recurrence coefficients.
From Dyson’s Coulomb fluid approach, we prove that the recurrence coefficients converge and the
limits are derived explicitly when q := n/N is fixed as n → ∞.

Keywords: orthogonal polynomials; Laguerre weight; exponential cubic weight; ladder operators;
difference equations; Coulomb fluid

MSC: 33C45; 42C05

1. Introduction

In this paper, we are concerned with the coefficients in the three-term recurrence
relation for the orthogonal polynomials with respect to the weight

w(x) = w(x; s) := xλe−N[x+s(x3−x)], x ∈ R
+, (1)

with parameters λ > 0, N > 0 and 0 ≤ s ≤ 1.
If s = 0, the weight (1) is the classical (scaled with N) Laguerre weight. If s = 1, it

is an exponential cubic weight. Orthogonal polynomials associated with the exponential
cubic weight have been well studied (see e.g., [1–4]), and have important applications in
numerical analysis [5] and random matrix theory [6–8]. Furthermore, orthogonal poly-
nomials and the Hankel determinant for the so-called semi-classical Laguerre weight
w̃(x) = xλe−N[x+s(x2−x)], x ∈ R+ have been studied in [9,10], which is also the motivation
of the present paper.

Let {Pn(x; s)}∞
n=0 be a sequence of monic polynomials, Pn(x) of degree n, orthogonal

with respect to the weight (1); that is,∫ ∞

0
Pm(x; s)Pn(x; s)w(x; s)dx = hn(s)δmn, m, n = 0, 1, 2, . . . , (2)

where hn(s) > 0 and Pn(x; s) has the expansion

Pn(x; s) = xn + p(n, s)xn−1 + · · ·+ Pn(0; s),

where p(n, s), the sub-leading coefficient of Pn(x; s), will play a significant role in the
following discussions. Note that Pn(x; s) and p(n, s) also depend on the parameters λ
and N.

Mathematics 2023, 11, 3842. https://doi.org/10.3390/math11183842 https://www.mdpi.com/journal/mathematics63
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One of the most important properties of the orthogonal polynomials is that they satisfy
the three-term recurrence relation of the form

xPn(x; s) = Pn+1(x; s) + αn(s)Pn(x; s) + βn(s)Pn−1(x; s), (3)

with the initial conditions

P0(x; s) := 1, β0(s)P−1(x; s) := 0.

As an easy consequence, we have

αn(s) = p(n, s)− p(n + 1, s), (4)

βn(s) =
hn(s)

hn−1(s)
> 0. (5)

Taking a telescopic sum of (4) and noting that p(0, s) := 0, we obtain an important identity

n−1

∑
j=0

αj(s) = −p(n, s). (6)

It is known that (see, e.g., [11] (p. 17)) Pn(x; s) can be expressed as the determinant

Pn(x; s) =
1

Dn(s)

∣∣∣∣∣∣∣∣∣∣∣

μ0(s) μ1(s) · · · μn(s)
μ1(s) μ2(s) · · · μn+1(s)

...
...

...
μn−1(s) μn(s) · · · μ2n−1(s)

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
and

hn(s) =
Dn+1(s)

Dn(s)
, (7)

where Dn(s) is the Hankel determinant for the weight (1) defined by

Dn(s) := det(μi+j(s))n−1
i,j=0 =

∣∣∣∣∣∣∣∣∣
μ0(s) μ1(s) · · · μn−1(s)
μ1(s) μ2(s) · · · μn(s)

...
...

...
μn−1(s) μn(s) · · · μ2n−2(s)

∣∣∣∣∣∣∣∣∣,
and μj(s) is the jth moment given by the integral

μj(s) :=
∫ ∞

0
xjw(x; s)dx.

We mention that the moment μj(s) can be expressed in terms of the generalized
hypergeometric functions after some calculations.

Furthermore, it is easy to see from (7) that the Hankel determinant Dn(s) can be
expressed as the product of hj(s) in the form

Dn(s) =
n−1

∏
j=0

hj(s). (8)

Obviously, the recurrence coefficients αn(s), βn(s) and the Hankel determinant Dn(s)
are all dependent on the parameters λ and N in our problem. For more information about
orthogonal polynomials, see [11–13].
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The remainder of the paper is organized as follows. In Section 2, by using the ladder
operator approach, we derive the discrete system for the recurrence coefficients αn(s)
and βn(s). We also obtain an important identity in the representation of the sub-leading
coefficient p(n, s) in terms of the recurrence coefficients. In Section 3, we derive the
differential–difference equations satisfied by the recurrence coefficients. We establish the
relation between the Hankel determinant Dn(s) and the recurrence coefficients, and also
obtain the differential–difference equations satisfied by Dn(s). In Section 4, by making
use of Dyson’s Coulomb fluid approach, we find that the large n limits of the recurrence
coefficients exist in the sense that n/N is fixed as n → ∞. The expressions of the limits are
also given explicitly. Finally, the conclusions and some remarks are outlined in Section 5.

2. Ladder Operators and Second-Order Difference Equations

The ladder operator approach has been applied to solve a series of problems about
semi-classical orthogonal polynomials and the related Hankel determinants, especially the
relationship to Painlevé equations; see, e.g., [14–16] and the references therein. Note that,
in order to simplify the notations, the s-dependence of many quantities such as Pn(x), w(x),
hn, αn and βn will not be displayed unless it is needed. Following the general set-up of Chen
and Ismail [17,18], the lowering and raising operators for our orthogonal polynomials are(

d
dx

+ Bn(x)
)

Pn(x) = βn An(x)Pn−1(x),

(
d

dx
− Bn(x)− v′(x)

)
Pn−1(x) = −An−1(x)Pn(x),

where the functions An(x) and Bn(x) are defined by

An(x) :=
1
hn

∫ ∞

0

v′(x)− v′(y)
x − y

P2
n(y)w(y)dy, (9)

Bn(x) :=
1

hn−1

∫ ∞

0

v′(x)− v′(y)
x − y

Pn(y)Pn−1(y)w(y)dy, (10)

and v(x) = − ln w(x).
The associated compatibility conditions for the functions An(x) and Bn(x) are

Bn+1(x) + Bn(x) = (x − αn)An(x)− v′(x), (11)

1 + (x − αn)(Bn+1(x)− Bn(x)) = βn+1 An+1(x)− βn An−1(x), (12)

B2
n(x) + v′(x)Bn(x) +

n−1

∑
j=0

Aj(x) = βn An(x)An−1(x). (13)

Here, (13) is obtained by the combination of (11) and (12), and is usually more useful
compared to (12).

For our problem with the weight (1), we have

v(x) = − ln w(x) = N[x + s(x3 − x)]− λ ln x,

and
v′(x)− v′(y)

x − y
= 3Ns(x + y) +

λ

xy
. (14)

Using (14), we compute the functions An(x) and Bn(x) in the following lemma.
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Lemma 1. For our problem, the expressions of An(x) and Bn(x) are given by

An(x) = 3Ns(x + αn) +
Rn(s)

x
, (15)

Bn(x) = 3Nsβn +
rn(s)

x
, (16)

where Rn(s) and rn(s) are the auxiliary quantities

Rn(s) :=
λ

hn

∫ ∞

0

1
y

P2
n(y)w(y)dy,

rn(s) :=
λ

hn−1

∫ ∞

0

1
y

Pn(y)Pn−1(y)w(y)dy.

Proof. Substituting (14) into the definitions of An(x) and Bn(x) in (9) and (10), we obtain
the desired results by using the orthogonality condition (2) and the three-term recurrence
relation (3).

From the compatibility conditions (11) and (13), we have the following results.

Proposition 1. The recurrence coefficients αn, βn and the auxiliary quantities Rn(s), rn(s)
satisfy the relations as follows:

3Ns(βn+1 + βn) = Rn(s)− N(1 − s)− 3Nsα2
n, (17)

rn+1(s) + rn(s) = λ − αnRn(s), (18)

rn(s) + n = 3Nsβn(αn + αn−1), (19)

3Nsβ2
n + N(1 − s)βn +

n−1

∑
j=0

αj = βn
(

Rn(s) + Rn−1(s) + 3Nsαnαn−1
)
, (20)

Nrn(s)(6sβn + 1 − s) +
n−1

∑
j=0

Rj(s) = 3Nsβn
(
αnRn−1(s) + αn−1Rn(s) + λ

)
, (21)

r2
n(s)− λrn(s) = βnRn(s)Rn−1(s). (22)

Proof. Substituting (15) and (16) into (11), and comparing the coefficients of z0 and
z−1 on both sides, we obtain (17) and (18), respectively. Similarly, substituting (15)
and (16) into (13), and comparing the coefficients of z1, z0, z−1 and z−2 on both sides,
we obtain (19), (20), (21) and (22), respectively.

Now we are ready to derive the main result of this section on the discrete system for
the recurrence coefficients.

Theorem 1. The recurrence coefficients αn and βn satisfy a pair of second-order nonlinear difference
equations:

3s
[
α3

n + βn(2αn + αn−1) + βn+1(2αn + αn+1)
]
+ (1 − s)αn =

2n + λ + 1
N

, (23a)
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[
3sβn(αn + αn−1)−

n
N

][
3sβn(αn + αn−1)−

n + λ

N

]
= βn

[
3s(α2

n + βn + βn+1) + 1 − s
]

×
[
3s(α2

n−1 + βn−1 + βn) + 1 − s
]
. (23b)

Proof. From (17) and (19), we can express Rn(s) and rn(s) in terms of the recurrence coefficients:

Rn(s) = 3Ns(α2
n + βn + βn+1) + N(1 − s), (24)

rn(s) = 3Nsβn(αn + αn−1)− n. (25)

Substituting (24) and (25) into (18) and (22), we obtain (23a) and (23b), respectively.

Remark 1. When s = 0, the results in the above theorem are reduced to

Nαn(0) = 2n + λ + 1, N2βn(0) = n(n + λ), (26)

which are consistent with the recurrence coefficients of the classical monic Laguerre polynomials.

At the end of this section, we give an expression of the sub-leading coefficient p(n, s),
which will be very useful in the analysis of the next section.

Corollary 1. The sub-leading coefficient p(n, s) can be expressed in terms of the recurrence coeffi-
cients as follows:

p(n, s) = −Nβn

[
3s
(

α2
n−1 + αn−1αn + α2

n + βn−1 + βn + βn+1

)
+ 1 − s

]
. (27)

Proof. Substituting (6) into (20), we have

p(n, s) = 3Nsβ2
n + N(1 − s)βn − βn

(
Rn(s) + Rn−1(s) + 3Nsαnαn−1

)
.

Eliminating Rn(s) and Rn−1(s) by (24), we obtain (27).

3. S Evolution and Differential-Difference Equations

Note that all the quantities discussed in this paper, such as the recurrence coefficients
αn and βn, depend on the parameter s. We consider the s evolution in this section.

We start from taking a derivative with respect to s in the equation

hn(s) =
∫ ∞

0
P2

n(x; s)xλe−N[x+s(x3−x)]dx,

which gives

3s
d
ds

ln hn(s) =
3Ns
hn

∫ ∞

0
(x − x3)P2

n(x)w(x)dx

=
3Ns
hn

∫ ∞

0
xP2

n(x)w(x)dx − 3Ns
hn

∫ ∞

0
x3P2

n(x)w(x)dx. (28)

By the three-term recurrence relation (3), we obtain the first term

3Ns
hn

∫ ∞

0
xP2

n(x)w(x)dx = 3Nsαn (29)

and the second term

3Ns
hn

∫ ∞

0
x3P2

n(x)w(x)dx = 3Ns
[
α3

n + βn(2αn + αn−1) + βn+1(2αn + αn+1)
]

= 2n + λ + 1 − N(1 − s)αn, (30)
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where we have used (23a) in the second step to simplify the result.
From (28)–(30), it follows that

3s
d
ds

ln hn(s) = N(1 + 2s)αn − (2n + λ + 1). (31)

Using (5), we have

3s
d
ds

ln βn(s) = 3s
d
ds

ln hn(s)− 3s
d
ds

ln hn−1(s) = N(1 + 2s)(αn − αn−1)− 2;

that is,
3sβ′

n(s) = βn[N(1 + 2s)(αn − αn−1)− 2].

On the other hand, differentiating with respect to s in the equation∫ ∞

0
Pn(x; s)Pn−1(x; s)xλe−N[x+s(x3−x)]dx = 0

produces

3s
d
ds

p(n, s) =
3Ns
hn−1

∫ ∞

0
x3Pn(x)Pn−1(x)w(x)dx − 3Ns

hn−1

∫ ∞

0
xPn(x)Pn−1(x)w(x)dx. (32)

The first term is

3Ns
hn−1

∫ ∞

0
x3Pn(x)Pn−1(x)w(x)dx = 3Nsβn

(
α2

n + αnαn−1 + α2
n−1 + βn+1 + βn + βn−1

)
= −p(n, s)− N(1 − s)βn, (33)

where we have used (27) to simplify the result in the second equality. The second term reads

3Ns
hn−1

∫ ∞

0
xPn(x)Pn−1(x)w(x)dx = 3Nsβn. (34)

Substituting (33) and (34) into (32), we find

3s
d
ds

p(n, s) = −p(n, s)− N(1 + 2s)βn. (35)

Taking account of (4), it follows that

3sα′n(s) = −αn + N(1 + 2s)(βn+1 − βn).

To sum up, we have the following theorem.

Theorem 2. The recurrence coefficients αn and βn satisfy the coupled differential–difference equations:

3sα′n(s) = −αn + N(1 + 2s)(βn+1 − βn),

3sβ′
n(s) = βn[N(1 + 2s)(αn − αn−1)− 2].

We also derive some results about the Hankel determinant Dn(s) as follows.

Theorem 3. The logarithmic derivative of the Hankel determinant is expressed in terms of the
recurrence coefficients as follows:

3s
d
ds

ln Dn(s) = N2(1 + 2s)βn

[
3s
(

α2
n−1 + αn−1αn + α2

n + βn−1 + βn + βn+1

)
+ 1 − s

]
− n(n + λ).
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Proof. From (8) and (31), we have

3s
d
ds

ln Dn(s) =
n−1

∑
j=0

3s
d
ds

ln hj(s)

=
n−1

∑
j=0

[
N(1 + 2s)αj − (2j + λ + 1)

]
.

Taking account of (6) and using (27), we find

3s
d
ds

ln Dn(s) = −N(1 + 2s)p(n, s)− n(n + λ) (36)

= N2(1 + 2s)βn

[
3s
(

α2
n−1 + αn−1αn + α2

n + βn−1 + βn + βn+1

)
+ 1 − s

]
−n(n + λ).

The proof is complete.

Corollary 2. The Hankel determinant Dn(s) satisfies the differential–difference equation

9s2(1 + 2s)
d2

ds2 ln Dn(s) + 6s(2 + s)
d
ds

ln Dn(s) + n(n + λ)(1 − 4s) = N2(1 + 2s)3 Dn+1(s)Dn−1(s)
D2

n(s)
.

Proof. From (36), we have

p(n, s) = −3s d
ds ln Dn(s) + n(n + λ)

N(1 + 2s)
. (37)

A combination of (5) and (7) gives

βn(s) =
Dn+1(s)Dn−1(s)

D2
n(s)

. (38)

Substituting (37) and (38) into (35), we obtain the desired result.

4. Asymptotics of the Recurrence Coefficients

Recall that, for our problem, the weight function is

w(x) = xλe−N[x+s(x3−x)], x ∈ R
+ (39)

and the potential is

v(x) = N[x + s(x3 − x)]− λ ln x, x ∈ R
+, (40)

where λ > 0, N > 0 and 0 ≤ s ≤ 1.
In random matrix theory [19–21], it is known that our Hankel determinant Dn(s) is

equal to the partition function for the unitary random matrix ensemble associated with the
weight (39) [11] (Corollary 2.1.3), i.e.,

Dn(s) =
1
n!

∫
(0,∞)n ∏

1≤i<j≤n
(xi − xj)

2
n

∏
k=1

xλ
k e−N[xk+s(x3

k−xk)]dxk,

where {xj}n
j=1 are the eigenvalues of n × n Hermitian matrices from the ensemble with the

joint probability density function

p(x1, x2, . . . , xn) =
1

n! Dn(s)
∏

1≤i<j≤n
(xi − xj)

2
n

∏
k=1

xλ
k e−N[xk+s(x3

k−xk)].
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If we interpret {xj}n
j=1 as the positions of n charged particles, then the collection of

particles can be approximated as a continuous fluid with an equilibrium density σ(x) in the
limit of large n according to Dyson’s Coulomb fluid approach [22]. Since our potential v(x)
in (40) is convex for x ∈ R+, the density σ(x) is supported on an single interval denoted by
(0, b); see Chen and Ismail [23] and also [24] (p. 198).

Following [23], the equilibrium density σ(x) is obtained by minimizing the free en-
ergy functional

F[σ] :=
∫ b

0
σ(x)v(x)dx −

∫ b

0

∫ b

0
σ(x) ln |x − y|σ(y)dxdy

subject to the normalization condition

∫ b

0
σ(x)dx = n. (41)

Upon minimization, the density σ(x) satisfies the integral equation

v(x)− 2
∫ b

0
ln |x − y|σ(y)dy = A, x ∈ (0, b),

where A is the Lagrange multiplier for the constraint (41). Taking a derivative with respect
to x in the above equation gives the singular integral equation

v′(x)− 2P
∫ b

0

σ(y)
x − y

dy = 0, x ∈ (0, b), (42)

where P denotes the Cauchy principal value. From the theory of singular integral equa-
tions [25], the solution of (42) is given by

σ(x) =
1

2π2

√
b − x

x
P
∫ b

0

v′(y)
y − x

√
y

b − y
dy. (43)

Substituting (40) into (43) and after some elaborate computations, we find

σ(x) =
N
2π

√
b − x

x

[
1 + s

(
3x2 +

3bx
2

+
9b2

8
− 1

)]
.

The normalization condition (41) then becomes

1
32

Nb
[
15sb2 + 8(1 − s)

]
= n. (44)

Motivated by the works [9,10], we consider the case that q := n/N is fixed when
n → ∞. Equation (44) is actually a cubic equation for b,

15sb3 + 8(1 − s)b − 32q = 0,

which has a unique real solution given by

b =
24/3

3 × 52/3s

[
ξ1/3 − 101/3s(1 − s)ξ−1/3

]
,

where
ξ = 45qs2 + s

√
5s[2 + 3(135q2 − 2)s + 6s2 − 2s3].
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It was shown in Chen and Ismail [23] that, as n → ∞,

αn(s) =
b
2
+ O

(
∂2 A
∂s∂n

)
,

βn(s) =
b2

16

(
1 + O

(
∂3 A
∂n3

))
.

Hence, we have the following theorem.

Theorem 4. Let q := n/N be fixed when n → ∞. Then, the limits of αn and βn as n → ∞ exist
and are given by

lim
n→∞

αn =
21/3

3 × 52/3s

[
ξ1/3 − 101/3s(1 − s)ξ−1/3

]
, (45)

lim
n→∞

βn =
22/3

180 × 51/3s2

[
ξ2/3 + 102/3s2(1 − s)2ξ−2/3 − 2 × 101/3s(1 − s)

]
, (46)

where
ξ = 45qs2 + s

√
5s[2 + 3(135q2 − 2)s + 6s2 − 2s3].

Remark 2. It is an interesting phenomenon that the limits of the recurrence coefficients in (45) and
(46) are independent of the parameter λ.

Remark 3. When s → 0+, we find from (45) and (46) that

lim
n→∞

αn = 2q, lim
n→∞

βn = q2,

which coincides with the classical results for the Laguerre polynomials; see (26).

Remark 4. We conjecture that αn and βn have the following large n asymptotic expansion

αn =
∞

∑
j=0

aj

nj , βn =
∞

∑
j=0

bj

nj ,

where a0 and b0 are given by the right hand sides of (45) and (46), respectively. Then, one can
determine the expansion coefficients aj and bj recursively by using the discrete system for the
recurrence coefficients in (23) following the procedure in [14–16]. However, the results are too
complicated to write down here.

5. Conclusions

In this paper, we studied the monic polynomials orthogonal with respect to a semi-
classical weight, which interpolates between the classical Laguerre weight and the exponen-
tial cubic weight. By making use of the ladder operator approach, we derived the discrete
system for the recurrence coefficients αn(s) and βn(s). Considering the s evolution, we
obtained the coupled differential–difference equations satisfied by αn(s) and βn(s). We
also studied the relations between the associated Hankel determinant, the sub-leading
coefficient of the monic orthogonal polynomials and the recurrence coefficients. Finally,
we proved that the large n limits of the recurrence coefficients exist and are given when
n/N is fixed as n → ∞. The large n asymptotic expansions of the recurrence coefficients,
the sub-leading coefficient p(n, s) and the Hankel determinant Dn(s) in the sense that n/N
is fixed as n → ∞ can be considered based on the results in this paper; however, we found
that the computations are very cumbersome.
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Abstract: A comprehensive framework has been developed to apply the monomiality principle
from mathematical physics to various mathematical concepts from special functions. This paper
presents research on a novel family of multivariate Hermite polynomials associated with Apostol-
type Frobenius–Euler polynomials. The study derives the generating expression, operational rule,
differential equation, and other defining characteristics for these polynomials. Additionally, the
monomiality principle for these polynomials is verified. Moreover, the research establishes series
representations, summation formulae, and operational and symmetric identities, as well as recurrence
relations satisfied by these polynomials.

Keywords: multivariate special polynomials; monomiality principle; explicit form; operational
connection; symmetric identities; summation formulae

MSC: 33E20; 33C45; 33B10; 33E30; 11T23

1. Introduction and Preliminaries

A current field of study with practical applications involves investigating the con-
volution of multiple polynomials as a method for introducing innovative multivariate
generalized polynomials. These polynomials hold immense importance due to their useful
characteristics, which include recurring and explicit relations, functional and differential
equations, summation formulae, symmetric and convolution identities, determinant forms,
and more.

Multivariate hybrid special polynomials exhibit a wide range of features that show
great promise for their utilization in various areas of pure and practical mathematics, such
as number theory, combinatorics, classical and numerical analysis, theoretical physics, and
approximation theory. The development of diverse new classes of hybrid polynomials is
motivated by the desire to harness their utility and potential for application.

Sequences of polynomials hold significant relevance in various domains of applied
mathematics, theoretical physics, approximation theory, and other branches of mathemat-
ics. Particularly, the Bernstein polynomials of degree n serve as a foundational basis for
the space of polynomials with degrees less than or equal to n. Dattoli and collaborators
utilized operational approaches to examine Bernstein polynomials [1], exploring the Ap-
pell sequences—a broad class encompassing several well-known polynomial sequences,
including the Miller–Lee, Bernoulli, and Euler polynomials, among others.

Mathematics 2023, 11, 3439. https://doi.org/10.3390/math11163439 https://www.mdpi.com/journal/mathematics74
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The introduction and study of classes of hybrid special polynomials connected to
the Appell sequences, as seen in references [2–7], play a significant role in engineering,
biological, medical, and physical sciences. These hybrid polynomials are of paramount
importance due to their key characteristics, such as differential equations, generating
functions, series definitions, integral representations, and more. In numerous scientific and
technical fields, problems are often expressed as differential equations, and their solutions
typically manifest as special functions. Consequently, the challenges encountered in the
development of scientific fields can be addressed by utilizing the differential equations
satisfied by these hybrid special polynomials.

The multivariate special polynomials are extremely important in many areas of mathe-
matics and have many uses. They are crucial in algebraic geometry, which examines the
geometric properties of algebraic varieties. They are used to define and study significant
geometric objects such as algebraic curves, surfaces, and higher-dimensional varieties.
These polynomials describe the intersection of curves and surfaces, the singularities of
algebraic varieties, and the properties of their coordinate rings. They may also be observed
in many areas of theoretical physics, including quantum mechanics and quantum field
theory. They show up as differential equation solutions in mathematical physics, especially
when eigenvalue issues, boundary value issues, and symmetry analysis are involved. These
polynomials have applications in quantum field theory, statistical mechanics, the study of
integrable systems, etc. Due to such significance, several authors introduced multivariate
Hermite and other special polynomials. Datolli et al. [8] introduced the generating function:

eu1t+u2t2+u3t3
=

∞

∑
n=0

Hn(u1, u2, u3)
tn

n!
, (1)

representing three-variable Hermite polynomials (3VHPs) Hn(u1, u2, u3).
Further, by taking u3 = 0, 3VHPs reduce to the polynomials Hn(u1, u2) widely

known as 2-v Hermite Kampé de Fériet polynomials (2VHKdFPs) [9] and on taking
u3 = 0, u1 = 2u1 and u2 = −1 3VHPs become the classical Hermite polynomials
Hn(u1) [10] (Equation (5.1), p. 167).

At this point, it is noteworthy to mention that many semi-classical orthogonal poly-
nomials, serving as generalizations of classical orthogonal polynomials such as Hermite,
Laguerre, and Jacobi polynomials, have been extensively studied in recent years. Enthusias-
tic readers are encouraged to explore the works of [11,12] (and the references cited therein),
along with the valuable insights presented in the book [13]. Furthermore, other interesting
results concerning recurrence relations for generalized Appell polynomials and summation
problems involving simplex lattice points or operators with a summing effect can be found
in [14–16].

Recently, the polynomials represented by Y [m]
n (u1, u2, . . . , um), known as multivariate

Hermite polynomials (MHPs), were introduced in [17] and are given by generating relation:

exp(u1ξ + u2ξ2 + · · ·+ umξm) =
∞

∑
n=0

Y [m]
n (u1, u2, . . . , um)

ξn

n!
, (2)

with the operational rule:

exp
(

u2
∂2

∂u1
2 + u3

∂3

∂u1
3 + · · ·+ um

∂m

∂u1
m

)
un

1 = Y [m]
n (u1, u2, . . . , um), (3)

and series representation:

Y [m]
n (u1, u2, . . . , um) = n!

[n/m]

∑
r=0

ur
m Y [m]

n−mr(u1, u2, . . . , um−1)

r! (n − mr)!
. (4)

Several mathematicians are keen to introduce different forms of various special poly-
nomials. The unified forms of Apostol-type polynomials are introduced in the study of [18].
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These polynomials are known as the Apostol-type Frobenius–Euler polynomials and they
are represented mathematically by the symbol Fn(u1; u) [19]. For λ = 1, these polynomials
reduce to the Frobenius–Euler polynomials [20]. We now recall the generating expression
of these Frobenius–Euler polynomials, which is as follows:(

1 − u
eξ − u

)
eu1ξ =

∞

∑
n=0

Fn(u1; u)
ξn

n!
, (5)

where u ∈ C, u �= 1.
Therefore, on taking u1 = 0, expression (5) gives the Frobenius–Euler numbers (FENs)

Fn(u), defined by
1 − u
eξ − u

=
∞

∑
n=0

Fn(u)
ξn

n!
. (6)

Further, on taking u = −1, the FEPs becomes Euler polynomials (EPs) An(u1) [21].
Extensive research has been dedicated to the advancement and integration of the

monomiality principle, operational rules, and other properties within the domain of hy-
brid special polynomials. This line of investigation traces its roots back to 1941 when
Steffenson initially proposed the concept of poweroids as a means to understanding
monomiality [22]. Building upon Steffenson’s work, Dattoli further refined the theory,
offering valuable insights and refinements [2]. Their contributions have paved the way
for a more comprehensive understanding of the monomiality principle and its appli-
cation within the context of the so-called hybrid special polynomials. Therefore, on a
combination of multivariate Hermite polynomials Y [m]

n (u1, u2, . . . , um) given by (2) and
Frobenius–Euler polynomials [23,24] given by (5) by using the concept of the monomiality
principle and operational rules, the convoluted new polynomial, namely, multivariate
Hermite–Frobenius–Euler polynomials are given by the formal expression:(

1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) :=

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (7)

The rest of the article is as follows: The multivariate Hermite–Frobenius–Euler poly-
nomials are introduced and studied in Section 2. Also, operational formulae for these
polynomials are derived. In Section 3, the monomiality principle is verified and the dif-
ferential equation is deduced. Further, several identities satisfied by these multivariate
Hermite–Frobenius–Euler polynomials are established by using operational formalism. In
Section 4, summation formulae and symmetric identities for these polynomials are estab-
lished. Further, several special cases of these polynomials are taken and the corresponding
results are deduced. Section 5 is devoted to some illustrative examples. Finally, Section 6
consists of concluding remarks.

2. Multivariate Hermite–Frobenius–Euler Polynomials

In this section, a novel and comprehensive method is introduced for determining
the multivariate Hermite–Frobenius–Euler polynomials (MHFEPs) YF

[m]
n (u1, u2, . . . , um; u).

The approach presents an alternative viewpoint and methodology when compared to
existing methods. By employing this innovative technique, our objective is to enrich the
comprehension and investigation of these polynomial sequences, offering a new outlook
on their properties and potential applications. As a result, we have introduced a fresh
perspective to advance the understanding and utilization of these polynomials.

Now, we will use two different approaches to show that the representation series (7) is
meaningful. Thus, MHFEPs are well-defined through the generating function method.
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Theorem 1. The MHFEPs represented by YF
[m]
n (u1, u2, · · · , um; u) satisfy the generating expres-

sion: (
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) =

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (8)

Proof. We prove the result in two alternative ways:

(i) Expanding the product of terms
(

1−u
eξ−u

)
and exp(u1ξ + u2ξ2 + · · ·+ umξm) by New-

ton series and ordering the product of the developments of functions
(

1−u
eξ−u

)
and

exp(u1ξ + u2ξ2 + · · · + umξm) w.r.t. the powers of ξ, we obtain the polynomials

YF
[m]
n (u1, u2, . . . , um; u) expressed in (7) as coefficients of ξn

n! .
(ii) Substituting the multiplicative operator M̂ = u1 + 2u2∂u1 + 3u3∂2

u1
+ · · ·+ mum∂m−1

u1
of MHFEPs given in [17] in expression (5) in place of u1 on both sides, we find(

1 − u
eξ − u

)
e(u1+2u2∂u1+3u3∂2

u1
+···+mum∂m−1

u1
)ξ =

∞

∑
n=0

Fn(u1 + 2u2∂u1 + 3u3∂2
u1
+ · · ·+ mum∂m−1

u1
; u)

ξn

n!
(9)

In view of the identity given in [5], (Equation (7)) gives the l.h.s. of (8) and, denoting
the r.h.s. YFn(u1 + 2u2∂u1 + 3u3∂2

u1
+ . . . + mum∂m−1

u1
; u) by YFn(u1, u2, . . . , um; u),

assertion (8) is deduced.

The following result shows that the MHFEPs behave component-wise as Appell-type
polynomial sequences.

Theorem 2. The multivariate Hermite–Frobenius–Euler polynomials YF
[m]
n (u1, u2, . . . , um; u)

satisfy the following differential relations:

∂

∂uj
[YF

[m]
n (u1, u2, . . . , um; u)] = (n)j YF

[m]
n−j(u1, u2, . . . , um; u), 1 ≤ j ≤ m ≤ n, (10)

where (n)j denotes the falling factorial, given by

(n)j =

⎧⎪⎨⎪⎩
1, if j = 0,

∏
j
i=1(n − i + 1), if j ≥ 1,

0, if j < 0.

Proof. By taking derivatives of expression (7) w.r.t. u1, it follows that

∂

∂u1

[(
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
= ξ

[(
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
. (11)

Substituting the r.h.s. of (7) into (11), we find

∂

∂u1

[
∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!

]
=

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn+1

n!
, (12)

By replacing n → n − 1 on the r.h.s. of the previous expression and then equating
the coefficients of like exponents of ξ, the first expression of the system of expressions (10)
is deduced.

Next, on taking derivatives of expression (7) w.r.t. u2, it follows that

∂

∂u2

[(
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
= ξ2

[(
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
. (13)
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Substituting the r.h.s. of expression (7) into (13), we find

∂

∂u2

[
∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!

]
=

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn+2

n!
, (14)

by replacing n → n − 2 on the r.h.s. of the previous expression and then equating the
coefficients of like exponents of ξ, the second expression of the system of expressions (10)
is deduced.

Similarly, continuing in the same fashion, we deduce other expressions of system (10).

Concerning the operational formalism satisfied by the multivariate polynomials
YFn(u1, u2, . . . , um; u), we have the following:

Theorem 3. For MHFEPs YFn(u1, u2, . . . , um; u), the operational rule:

exp
(

u2
∂2

∂u1
2 + u3

∂3

∂u1
3 + · · ·+ um

∂m

∂u1
m

){
Fn(u1; u)

}
= YF

[m]
n (u1, u2, . . . , um; u) (15)

holds true.

Proof. To prove result (15), we proceed by taking derivatives of expression (7) as:

∂

∂u1
[YF

[m]
n (u1, u2, . . . , um; u)] = n YF

[m]
n−1(u1, u2, . . . , um; u),

∂2

∂u1
2 [YF

[m]
n (u1, u2, . . . , um; u)] = n(n − 1) YF

[m]
n−2(u1, u2, . . . , um; u),

∂3

∂u1
3 [YF

[m]
n (u1, u2, . . . , um; u)] = n(n − 1)(n − 2) YF

[m]
n−3(u1, u2, . . . , um; u),

...
...

∂m

∂u1
m [YF

[m]
n (u1, u2, . . . , um; u)] = (n)m YF

[m]
n−m(u1, u2, . . . , um; u), (16)

and

∂

∂u2
[YF

[m]
n (u1, u2, . . . , um; u)] = n(n − 1) YF

[m]
n−2(u1, u2, . . . , um; u),

∂

∂u3
[YF

[m]
n (u1, u2, . . . , um; u)] = n(n − 1)(n − 2) YF

[m]
n−3(u1, u2, . . . , um; u),

...
...

∂

∂um
[YF

[m]
n (u1, u2, . . . , um; u)] = (n)m YF

[m]
n−m(u1, u2, . . . , um; u). (17)

In consideration of the system of Equations (16) and (17), we find that the MHFEPs
are solutions of the equations:
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∂

∂u2
[YF

[m]
n (u1, u2, . . . , um; u)] =

∂2

∂u1
2 [YF

[m]
n (u1, u2, . . . , um; u)],

∂

∂u3
[YF

[m]
n (u1, u2, . . . , um; u)] =

∂3

∂u1
3 [YF

[m]
n (u1, u2, . . . , um; u)],

...
...

∂

∂um
[YF

[m]
n (u1, u2, . . . , um; u)] =

∂m

∂u1
m [YF

[m]
n (u1, u2, . . . , um; u)], (18)

under the initial conditions:

YF
[m]
n (u1, 0, 0, . . . , 0; u) = Fn(u1; u). (19)

Therefore, in cognizance of previous expressions (18) and (19), assertion (15) is ob-
tained.

Next, we will obtain the series representation of MHFEPs YFn(u1, u2, . . . , um; u) by
proving the succeeding results:

Theorem 4. For MHFEPs YFn(u1, u2, . . . , um; u), the succeeding series representations are demon-
strated:

YF
[m]
n (u1, u2, . . . , um; u) =

n

∑
s=0

(
n
s

)
Fs(u)Y [m]

n−s(u1, u2, . . . , um) (20)

and

YF
[m]
n (u1, u2, . . . , um; u) =

n

∑
s=0

(
n
s

)
Fs(u1; u)Y [m]

n−s(u2, u3, . . . , um). (21)

Proof. Inserting expressions (6) and (2) on the l.h.s. of (7), we find

∞

∑
s=0

Fs(u)
ξs

s!

∞

∑
n=0

Y [m]
n (u1, u2, . . . , um)

ξn

n!
=

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (22)

Interchanging the expressions and replacing n → n − s in the resultant expression in
view of the Cauchy product rule, it follows that

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!
=

∞

∑
n=0

n

∑
s=0

Fs(u)Y [m]
n (u1, u2, . . . , um)

ξn

(n − s)! s!
. (23)

Multiplying and dividing by n! on the r.h.s. of the previous expression and then
equating the coefficients of the same exponents of ξ on both sides, assertion (20) is deduced.

In a similar fashion, inserting expressions (5) and (2) (with u1 = 0) on the l.h.s. of (7),
we find

∞

∑
s=0

Fs(u1; u)
ξs

s!

∞

∑
n=0

Y [m]
n (u2, u3, . . . , um)

ξn

n!
=

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (24)

Interchanging the expressions and replacing n → n − s in the resultant expression in
view of the Cauchy product rule, it follows that

∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn

n!
=

∞

∑
n=0

n

∑
s=0

Fs(u1; u)Y [m]
n (u2, u3, . . . , um)

ξn

(n − s)! s!
. (25)

Multiplying and dividing by n! on the r.h.s. of the previous expression and then equat-
ing the coefficients of the same exponents of ξ on both sides, assertion (21) is deduced.
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3. Monomiality Principle

The development and incorporation of the monomiality principle, operational rules,
and other properties in hybrid special polynomials have been extensively studied. The
concept of monomiality was first introduced by Steffenson in 1941 through the notion
of poweroids [22] and was further refined by Dattoli [2]. In this context, the M̂ and D̂
operators play a crucial role as multiplicative and derivative operators for a polynomial set
bk(u1)k∈N. These operators satisfy the following expressions:

bk+1(u1) = M̂{bk(u1)} (26)

and
k bk−1(u1) = D̂{bk(u1)}. (27)

Subsequently, the polynomial set bk(u1)m∈N under the manipulation of multiplicative
and derivative operators is known as a quasi-monomial. It is essential for this quasi-
monomial to adhere to the following formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂, (28)

and, as a result, it shows a Weyl group structure.
The significance and usage of the operators M̂ and D̂ can be exploited to extract the

significance of the set {bk(u1)}k∈N, provided it is quasi-monomial. Hence, the succeeding
axioms hold:

(i) bk(u1) gives the differential equation

M̂D̂{bk(u1)} = k bk(u1), (29)

provided M̂ and D̂ exhibit differential traits.
(ii) The expression

bk(u1) = M̂k {1}, (30)

gives the explicit form, with b0(u1) = 1.
(iii) Further, the expression

ewM̂{1} =
∞

∑
k=0

bk(u1)
wk

k!
, |w| < ∞ , (31)

behaves as a generating expression, which is derived by usage of identity (30).

Many branches of mathematical physics, quantum mechanics, and classical optics
still employ these methods today. As a result, these methods offer strong and efficient
research tools. We thus confirm the monomiality concept for MHFEPs by taking into
account the importance of this method. Thus we verify the monomiality principle for
MHFEPs YF

[m]
n (u1, u2, . . . , um; u) in this section by demonstrating the succeeding results:

Theorem 5. The MHFEPs YF
[m]
n (u1, u2, . . . , um; u) satisfy the succeeding multiplicative and

derivative operators:

M̂YF = u1 + 2u2∂u1 + 3u3∂2
u1
+ · · ·+ mum∂m−1

u1
− e∂u1

e∂u1 − u
(32)

and
ˆDYF = ∂u1 , (33)

where ∂u1 = ∂
∂u1

.

Proof. By differentiating expression (7) w.r.t. ξ on both sides, we find
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(
u1 + 2u2ξ + 3u3ξ2 + · · ·+ mumξm−1 − eξ

eξ − u

)(
1 − u
eξ − u

exp(u1ξ + u2ξ2 + · · ·+ umξm)

)
=

∞

∑
n=0

n YF
[m]
n (u1, u2, . . . , um; u)

ξn−1

n!
. (34)

which further can be written as follows:

(
u1 + 2u2ξ + 3u3ξ2 + · · ·+ mumξm−1 − eξ

eξ − u

)( ∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)

=
∞

∑
n=0

n YF
[m]
n (u1, u2, . . . , um; u)

ξn−1

n!
. (35)

Also, by taking a derivative of (7) w.r.t. u1, we find the identity

∂

∂u1

(
1 − u
eξ − u

exp(u1ξ + u2ξ2 + · · ·+ umξm)

)
= ξ

(
1 − u
eξ − u

exp(u1ξ + u2ξ2 + · · ·+ umξm)

)
,

∂

∂u1

(
∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)
= ξ

(
∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)
. (36)

By replacing n → n + 1 on the r.h.s. of (35) and equating the coefficients of same
exponents of ξ in view of expressions (37) and (26) in the resultant expression, asser-
tion (32) is demonstrated.

Moreover, the second part of expression (36) can be written as:

∂

∂u1

(
∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)
=

(
∞

∑
n=0

YF
[m]
n (u1, u2, . . . , um; u)

ξn+1

n!

)
. (37)

By replacing n → n − 1 on the r.h.s. of (37) and equating the coefficients of the same
exponents of ξ in view of (27) in the resultant expression, assertion (33) is demonstrated.

Next, we deduce the differential equation for MHFEPs YF
[m]
n (u1, u2, . . . , um; u) by

demonstrating the succeeding result:

Theorem 6. The MHFEPs YF
[m]
n (u1, u2, . . . , um; u) satisfy the differential equation:(

u1∂u1 + 2u2∂2
u1
+ 3u3∂3

u1
+ · · ·+ mum∂m

u1
− e∂u1

e∂u1 − u
∂u1 − n

)
YF

[m]
n (u1, u2, . . . , um; u) = 0. (38)

Proof. Inserting expression (32) and (33) into the expression (29), assertion (38) is proved.

The operational formalism developed in Theorem 6 can be applied to numerous
identities related to the Frobenius–Euler polynomials, which are widely investigated to
produce MHFEPs YF

[m]
n (u1, u2, . . . , um; u). To do this, we carry out the subsequent action

of operator (O) given by exp
(

u2
∂2

∂u1
2 + u3

∂3

∂u1
3 + · · ·+ um

∂m

∂u1
m

)
on the identities involving

Frobenius–Euler polynomials Fn(u1; u) [25]:

u Fn(u1; u−1) + Fn(u1; u) = (1 + u)
n

∑
k=0

(
n
k

)
Fn−k(u−1)Fk(u1; u), (39)

1
n + 1

Fk(u1; u) + Fn−k(u1; u) =
n−1

∑
k=0

(n
k)

n − k + 1

n

∑
l=k

((−u)Fl−k(u)Fn−l(u) + 2uFn−k(u))Fk(u1; u)Fn(u1; u), (40)
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Fn(u1; u) =
n

∑
k=0

(
n
k

)
Fn−k(u)Fk(u1; u), n ∈ Z+ = N∪ {0}. (41)

The MHFEPs YF
[m]
n (u1, u2, . . . , um; u) are obtained after operating (O) on both sides

of (39)–(41):

u YF
[m]
n (u1, u2, . . . , um; u−1; u) + YF

[m]
n (u1, u2, . . . , um; u) = (1 + u)

n

∑
k=0

(
n
k

)
YF

[m]
n−k(u

−1) YF
[m]
k (u1, u2, . . . , um; u),

1
n + 1 YF

[m]
k (u1, u2, u3, · · · , um; u) + YF

[m]
n−k(u1, u2, u3, . . . , um; u)

=
n−1

∑
k=0

(n
k)

n − k + 1

n

∑
l=k

((−u)Fn−l(u)Fl−k(u) + 2uFn−k(u)) YF
[m]
k (u1, u2, u3, . . . , um; u)YF

[m]
n (u1, u2, u3, . . . , um; u),

YF
[m]
n (u1, u2, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
Fn−k(u) YF

[m]
k (u1, u2, u3, . . . , um; u), n ∈ Z+ = N∪ {0}.

4. Summation Formulae and Symmetric Identities

To derive the summation formulae for the MHFEPs YF
[m]
n (u1, u2, u3, . . . , um; u), the

succeeding results are demonstrated:

Theorem 7. For the MHFEPs YF
[m]
n (u1, u2, u3, . . . , um; u), the succeeding implicit summation

formula holds true:

YF
[m]
n (u1 + w, u2, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF

[m]
k (u1, u2, u3, . . . , um; u)wn−k. (42)

Proof. On taking u1 → u1 + w in expression (7), it follows that(
1 − u
eξ − u

)
exp((u1 + w)ξ + u2ξ2 + · · ·+ umξm) =

∞

∑
n=0

YF
[m]
n (u1 + w, u2, . . . , um; u)

ξn

n!

which further can be written as(
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) exp(wξ) =

∞

∑
n=0

YF
[m]
n (u1 + w, u2, . . . , um; u)

ξn

n!
,

By making use of the series expansion of exp(wξ) on the l.h.s. of the previous expres-
sion, we have

∞

∑
k=0

YF
[m]
n (u1 + w, u2, . . . , um; u)wn ξn+k

n!k!
=

∞

∑
n=0

YF
[m]
n (u1 + w, u2, . . . , um; u)

ξn

n!
. (43)

This results in the deduction of assertion (42) by substituting n → n − k into the r.h.s.
of consequent expression and then equating the coefficients of the identical powers of ξ in
the resulting equation.

Corollary 1. For w = 1 in expression (42), we have

YF
[m]
n (u1 + 1, u2, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF

[m]
k (u1, u2, u3, . . . , um; u). (44)

Theorem 8. For the MHFEPs YF
[m]
n (u1, u2, u3, . . . , um; u), the succeeding implicit summation

formula holds true:
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YF
[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF

[m]
n−k(u1, u2, u3, . . . , um; u)Yk(x, y, z). (45)

Proof. On taking u1 → u1 + x, u2 → u1 + y and u3 → u3 + z in expression (7), it follows that(
1 − u
eξ − u

)
exp((u1 + x)ξ + (u2 + y)ξ2 + (u3 + z)ξ3 + · · ·+ umξm) =

∞

∑
n=0

YF
[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u)

ξn

n!
(46)

which further can be written as(
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) exp(xξ + yξ2 + zξ3) =

∞

∑
n=0

YF
[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u)

ξn

n!
. (47)

By making use of the series expansion of exp(xξ + yξ2 + zξ3) on the l.h.s. of the
previous expression, we have

∞

∑
n=0

YF
[m]
n (u1, u2, u3, . . . , um; u)Yk(x, y, z)

ξn+k

n!k!
=

∞

∑
n=0

YF
[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u)

ξn

n!
. (48)

This results in the deduction of assertion (45) by substituting n → n − k on the l.h.s. of
the consequent expression and then equating the coefficients of the identical powers of xi
in the resulting equation.

Corollary 2. For z = 0 in expression (45), we have

YF
[m]
n (u1 + x, u2 + y, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF

[m]
n−k(u1, u2, u3, . . . , um; u)Yk(x, y). (49)

Theorem 9. For the MHFEPs YF
[m]
n (u1, u2, u3, . . . , um; u), the succeeding implicit summation

formula holds true:

YF
[m]
n+s(q, u2, u3, . . . , um; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(q − u1)

l+m
YF

[m]
n+s−l−m(u1, u2, u3, . . . , um; u). (50)

Proof. By replacing ξ → ξ + η and in view of the expression:

∞

∑
M=0

g(M)
(u1 + u2)

M

M!
=

∞

∑
l,m=0

g(l + m)
ul

1 um
2

l! m!
(51)

in relation (7) and afterward simplifying the resultant expression, we have

e−u1(ξ+η)
∞

∑
n,s=0

YF
[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
=

(
1 − u

eξ+η − u

)
exp(u2(ξ + η)2 + · · ·+ um(ξ + η)m). (52)

Substituting u1 → q into (52) and comparing the resultant expression to the previous
expression and further expanding the exponential function gives

∞

∑
n,s=0

YF
[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
=

∞

∑
M=0

(q − u1)
M (ξ + η)M

M!
×

∞

∑
n,s=0

YF
[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
. (53)
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Thus, in view of expression (51) in expression (53) and then replacing n → n − l and
s → s − m in the resultant expression, we find

∞

∑
n,s=0

YF
[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
=

∞

∑
n,s=0

n,s

∑
l,m=0

(q − u1)
l+m

l! m!
× YF

[m]
n+s−l−m(u1, u2, u3, . . . , um; u)

ξn ηs

(n − l)! (s − m)!
. (54)

On comparison of the coefficients of the like exponents of ξ and η on both sides of the
previous expression, assertion (50) is established.

Corollary 3. For n = 0 in expression (50), we find

YF
[m]
s (q, u2, u3, . . . , um; u) =

s

∑
m=0

(
s
m

)
(q − u1)

m
YF

[m]
s−m(u1, u2, u3, . . . , um; u)

Corollary 4. Substituting q → q + u1 and taking m = 2 in expression (50), we have

YF
[m]
n+s(q + u1, u2, u3, . . . , um; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(q)l+m

YF
[m]
n+s−l−m(u1, u2, u3, . . . , um; u).

Corollary 5. Substituting q → q + u1 and taking m = 1 in expression (50), we have

YF
[m]
n+s(q + u1; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(q)l+m

YF
[m]
n+s−l−m(u1; u).

Corollary 6. Substituting q = 0 in expression (50), we have

YF
[m]
n+s(u2, u3, · · · , um; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(−u1)

l+m
YF

[m]
n+s−l−m(u1, u2, u3, . . . , um; u).

In physics and applied mathematics, it is common to encounter problems where
finding a solution requires evaluating infinite sums that involve special functions. The
applications of generalized special functions can be found in various fields, including
electromagnetics and combinatorics. Several authors [23–34] established and examined
different types of identities related to Apostol-type polynomials. These investigations serve
as a motivation to establish symmetry identities for the MHFEPs. Let us now review the
following definitions:

Definition 1. The generalized sum of integer powers Sk(n) is defined by the generating function
shown below for:

∞

∑
j=0

Sj(n)
ξ j

j!
=

e(n+1)ξ − 1
eξ − 1

. (55)

Definition 2. The multiple power sums S(l)
k (m) are defined by the generating function shown below:

∞

∑
n=0

{
n

∑
q=0

(
n
q

)
(−l)n−qS

(l)
k (m)

}
ξn

n!
=

(
1 − emξ

1 − eξ

)l

. (56)

In order to derive the symmetry identities for the MHFEPs YF
[m]
n (u1, u2, u3, . . . , um; u),

we prove the following results:
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Theorem 10. The following symmetry connection between the MHFEPs and generalized integer
power sums is valid for any integers with μ, η > 0 and n ≥ 0, u ∈ C:

n

∑
k=0

(
n
k

)
μn−k

YF
[m]
n−k(ηu1, η2u2, η3u3, . . . , ηmum; u)

k

∑
l=0

(
k
l

)
ηkSl(μ − 1;

1
u
)

× YF
[m]
k−1(μU1, μ2U2, μ3U3, . . . , μmUm; u)

=
n

∑
k=0

(
n
k

)
ηn−k

YF
[m]
n−k(μu1, μ2u2, μ3u3, . . . , μmum; u)

k

∑
l=0

(
k
l

)
μkSl(η − 1;

1
u
)

× YF
[m]
k−1(ηU1, η2U2, η3U3, . . . , ηmUm; u). (57)

Proof. Consider

G(ξ) :=
(1 − u) eμu1ηξ+u2(μηξ)2+u3(μηξ)3

(eμηξ − u) eμηξU1+U2(μηξ)2+U3(μηξ)3

(eμξ − u) (eηξ − u)
, (58)

which in consideration of the Cauchy product rule becomes

G(ξ) =
∞

∑
n=0

( n

∑
k=0

(
n
k

)
μn−k

YF
[m]
n−k(ηu1, η2u2, η3u3, . . . , ηmum; u)

k

∑
l=0

(
k
l

)
ηkSl(μ − 1;

1
u
)

× YF
[m]
k−1(μU1, μ2U2, μ3U3, . . . , μmUm; u)

ξn

n!
. (59)

Continuing in a similar fashion, we find

G(ξ) =
∞

∑
n=0

( n

∑
k=0

(
n
k

)
ηn−k

YF
[m]
n−k(μu1, μ2u2, μ3u3, . . . , μmum; u)

k

∑
l=0

(
k
l

)
μkSl(η − 1;

1
u
)

× YF
[m]
k−1(ηU1, η2U2, η3U3, . . . , ηmUm; u)

ξn

n!
. (60)

On comparison of the coefficients of like exponents of ξ in expressions (59) and (60),
assertion (57) is deduced.

Theorem 11. The following symmetry connection for the MHFEPs is valid for any integers with
μ, η > 0 and n ≥ 0, u ∈ C:

n

∑
k=0

(
n
k

) μ−1

∑
i=0

η−1

∑
j=0

uμ+η−2( 1
u
)i+j

μn−kηk
YF

[m]
k (μU1 +

μ

η
j, μ2U2, μ3U3, . . . , μmUm; u)× YF

[m]
n−k(ηu1 +

η

μ
i, η2u2, η3u3, . . . , ηmum; u)

=
n

∑
k=0

(
n
k

) η−1

∑
i=0

μ−1

∑
j=0

uμ+η−2( 1
u
)i+j

ηn−kμk
YF

[m]
k (ηU1 +

η

μ
j, μ2U2, μ3U3, . . . , μmUm; u)

× YF
[m]
n−k(μu1 +

μ

η
i, η2u2, η3u3, . . . , ηmum; u). (61)

Proof. Consider

H(ξ) := (1 − u)2 eμηξu1+u2(μηξ)2+u3(μηξ)3+···+um(μηξ)m × (eμηξ − uμ) (eμηξ − uη)eμηξU1+U2(μηξ)2+U3(μηξ)3+···+Um(μηξ)m

(eμξ − u) (eηξ − u)
, (62)

which in consideration of series representations of (eμηξ−uμ)

(eηξ−u)
and (eμηξ−uη)

(eμξ−u)
in final expression

gives
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H(ξ) =
( 1 − u

eμξ − u

)
eηu1(μξ)+η2u2(μξ)2+η3u3(μξ)3+···+ηmum(μξ)m

uμ−1
μ−1

∑
i=0

( 1
u

)i
eηξi

×
( 1 − u

eηξ − u

)
eμU1(ηξ)+μ2U2(ηξ)2+μ3U3(ηξ)3+···+μmUm(ηξ)m

uη−1
η−1

∑
j=0

( 1
u

)j
eμξ j. (63)

Thus, in view of (7) and the usage of the Cauchy product rule in the previous expres-
sion (63), we find

H(ξ) :=
∞

∑
n=0

[
n

∑
k=0

(
n
k

) μ−1

∑
i=0

η−1

∑
j=0

uμ+η−2( 1
u
)i+j

μn−kηk
YF

[m]
k (μU1 +

μ

η
j, μ2U2, μ3U3, . . . , μmUm; u)

× YF
[m]
n−k(ηu1 +

η

μ
i, η2u2, η3u3, . . . , ηmum; u)

]
. (64)

Continuing in a similar fashion, we find another identity

H(ξ) :=
∞

∑
n=0

[
n

∑
k=0

(
n
k

) η−1

∑
i=0

μ−1

∑
j=0

uμ+η−2( 1
u
)i+j

ηn−kμk
YF

[m]
k (ηU1 +

η

μ
j, μ2U2, μ3U3, · · · , μmUm; u)

× YF
[m]
n−k(μu1 +

μ

η
i, η2u2, η3u3, . . . , ηmum; u)

]
. (65)

On comparison of the coefficients of like exponents of ξ in expressions (64) and (65),
assertion (61) is deduced.

Theorem 12. The following symmetry connection for the MHFEPs is valid for any integers with
μ, η > 0 and n ≥ 0, u ∈ C:

η−1

∑
k=0

uη−1( 1
u
)k

n

∑
i=0

(
n
i

)
YF

[m]
n−i(μu1, μ2u2, μ3u3, . . . , μmum; u)ηn−i(μk)i

=
μ−1

∑
k=0

uμ−1( 1
u
)k

n

∑
i=0

(
n
i

)
YF

[m]
n−i(ηu1, η2u2, η3u3, . . . , ηmum; u)μn−i(ηk)i. (66)

Proof. Consider

N(ξ) :=
(1 − u) eμηξu1+u2(μηξ)2+u3(μηξ)3+···+um(μηξ)m

(eμηξ − uη) (eμξ − u) (eηξ − u)
.

By continuing in a similar fashion to that performed in Theorem 11, assertion (4) is
deduced.

Theorem 13. The following symmetry connection between the MHFEPs and multiple power sums
is valid for any integers with μ, η > 0 and n ≥ 0, u ∈ C:
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n

∑
k=0

(
n
k

)
YF

[m]
n−k(ηu1, η2u2, η3u3, . . . , ηmum; u)uη

k

∑
l=0

(
k
l

) l

∑
r=0

(
l
r

)
(−1)l−rSk(η;

1
u
)

× YF
[m+1]
k−l (μU1, μ2U2, μ3U3, . . . , μmUm; u)μn−k+lηk−l

=
n

∑
k=0

(
n
k

)
YF

[m]
n−k(μu1, μ2u2, μ3u3, . . . , μmum; u)uμ

k

∑
l=0

(
k
l

) l

∑
r=0

(
l
r

)
(−1)l−rSk(μ;

1
u
)

× YF
[m+1]
k−l (ηU1, η2U2, η3U3, . . . , ηmUm; u)ηn−k+lμk−l . (67)

Proof. Consider

F(ξ) := (1 − u)2 eμu1(ηξ)+μ2u2(ηξ)2+μ3u3(ηξ)3+···+μmum(ηξ)m

× (eμηξ − uη) eμU1(ηξ)+μ2U2(ηξ)2+μ3U3(ηξ)3+···+μmUm(ηξ)m

(eηξ − u) (eμξ − u)
, (68)

which on simplifying the exponents and usage of expressions (7) and (56) in the final
expression gives

F(ξ) :=
∞

∑
n=0

YF
[m]
n (ηu1, η2u2, η3u3, lcdots, ηmum; u)μn ξn

n!
uη

∞

∑
m=0

m

∑
r=0

(
m
r

)
(−1)m−rSk(η;

1
u
)μm ξm

m!

× YF
[m+1]
k−l (μU1, μ2U2, μ3U3, . . . , μmUm; u)ηl ξ l

l!
. (69)

Therefore, in view of the Cauchy product rule, we have

F(ξ) :=
∞

∑
n=0

[
n

∑
l=0

(
n
l

)
YF

[m]
n−l(ηu1, η2u2, η3u3, . . . , ηmum; u)μn−luη

l

∑
m=0

(
l
m

) m

∑
r=0

(
m
r

)
(−1)m−rSk(η;

1
u
)

× YF
[m+1]
l−m (μU1, μ2U2, μ3U3, . . . , μmUm; u)μmηl−m

]
ξn

n!
. (70)

Continuing in a similar fashion, we have

F(ξ) :=
∞

∑
n=0

[
n

∑
l=0

(
n
l

)
YF

[m]
n−l(μu1, μ2u2, μ3u3, . . . , μmum; u)ηn−luμ

l

∑
m=0

(
l
m

) m

∑
r=0

(
m
r

)
(−1)m−rSk(μ;

1
u
)

× YF
[m+1]
l−m (ηU1, η2U2, η3U3, . . . , ηmUm; u)μmμl−m

]
ξn

n!
. (71)

On comparison of the coefficients of like exponents of ξ in expressions (70) and (71),
assertion (67) is deduced.

Theorem 14. The following symmetry connection between the MHFEPs and generalized integer
power sums is valid for any integers with μ, η > 0 and n ≥ 0, u ∈ C:

n

∑
m=0

(
n
m

)
YF

[m]
n−m(ηu1, η2u2, η3u3, . . . , ηmum; u)μn−muμ

m

∑
r=0

(
m
r

)
(−1)m−rSk(μ;

1
u
)ηm

=
n

∑
m=0

(
n
k

)
YF

[m]
n−m(μu1, μ2u2, μ3u3, . . . , μmum; u)ηn−muη

m

∑
r=0

(
m
r

)
(−1)m−rSk(η;

1
u
)μm. (72)
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Proof. Consider

M(ξ) :=
(1 − u) eηu1(μξ)+η2u2(μξ)2+η3u3(μξ)3+···+ηmum(μξ)m

(eμηξ − uμ)

(eηξ − u) (eμξ − u)
.

(73)

By continuing in a similar fashion to that performed in the previous Theorem, assertion
(72) is deduced.

5. Some Illustrative Examples

Here, we give some specific examples of MHFEPs by taking their special cases:
For m = 3, the MHFEPs reduce to three-variable HFEPs YF

[3]
n (u1, u2, u3; u) specified

by the generating expression:(
1 − u
eξ − u

)
exp(u1ξ + u2ξ2 + u3ξ3) =

∞

∑
n=0

YF
[3]
n (u1, u2, u3; u)

ξn

n!
, (74)

operational rule:

exp
(

u2
∂2

∂u1
2 + u3

∂3

∂u1
3

){
Fn(u1; u)

}
= YF

[3]
n (u1, u2, u3; u), (75)

series representations:

YF
[3]
n (u1, u2, u3; u) =

n

∑
s=0

(
n
s

)
Fs(u)Y [3]

n−s(u1, u2, u3) (76)

and

YF
[3]
n (u1, u2, u3; u) =

n

∑
s=0

(
n
s

)
Fs(u1; u)Y [3]

n−s(u2, u3). (77)

For m = 2, the MHFEPs reduce to two-variable HFEPs YFn(u1, u2, u3; u) specified by
the generating expression:(

1 − u
eξ − u

)
exp(u1ξ + u2ξ2) =

∞

∑
n=0

YFn(u1, u2; u)
ξn

n!
, (78)

operational rule:

exp
(

u2
∂2

∂u1
2

){
Fn(u1; u)

}
= YFn(u1, u2; u), (79)

series representations:

YFn(u1, u2; u) =
n

∑
s=0

(
n
s

)
Fs(u)Yn−s(u1, u2) (80)

and

YFn(u1, u2; u) =
n

∑
s=0

(
n
s

)
Fs(u1; u)Yn−s(u2). (81)

For m = 1, they reduce to Frobenius–Euler polynomials.

6. Conclusions

We develop the generation function and recurrence rules for the multivariate Hermite-
type Frobenius–Euler polynomials in this context. We may investigate the polynomials’
characteristics and potential applications to physics and related fields using this approach.
The generating function is derived and gives a compact representation of the polynomials,
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which makes it simpler to analyze their algebraic and analytical properties. The recurrence
relations also enable rapid computation and analysis of polynomial values through the use
of recursive computing.

The multivariate Hermite-type Frobenius–Euler polynomials offer a strong foundation
for further research. They provide opportunities to explore several algebraic and analytical
characteristics, including differential equations, orthogonality, and others. Quantum me-
chanics, statistical physics, mathematical physics, engineering, and other areas of physics
all make use of these polynomials. By developing the generating function and recurrence
relations of extended hybrid-type polynomials, this technique is reinforced. These discov-
eries not only add to our understanding of multivariate Hermite-type Frobenius–Euler
polynomials but also open up new avenues for investigation into their characteristics and
potential applications in physics and related fields.

Operational techniques are effective in constructing new families of special functions
and deriving features related to both common and generalized special functions. By em-
ploying these techniques, explicit solutions for families of partial differential equations,
including those of the Heat and D’Alembert type, can be obtained. The approach de-
scribed in this article, in conjunction with the monomiality principle, enables the analysis
of solutions for a wide range of physical problems involving various types of partial
differential equations.
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Abstract: We study the sequence of monic polynomials {Sn}n�0, orthogonal with respect to the Jacobi-

Sobolev inner product 〈 f , g〉s =
∫ 1
−1 f (x)g(x) dμα,β(x) + ∑N

j=1 ∑
dj

k=0 λj,k f (k)(cj)g(k)(cj), where

N, dj ∈ Z+, λj,k � 0, dμα,β(x) = (1 − x)α(1 + x)βdx, α, β > −1, and cj ∈ R \ (−1, 1). A con-
nection formula that relates the Sobolev polynomials Sn with the Jacobi polynomials is provided, as
well as the ladder differential operators for the sequence {Sn}n�0 and a second-order differential
equation with a polynomial coefficient that they satisfied. We give sufficient conditions under which
the zeros of a wide class of Jacobi-Sobolev polynomials can be interpreted as the solution of an
electrostatic equilibrium problem of n unit charges moving in the presence of a logarithmic potential.
Several examples are presented to illustrate this interpretation.

Keywords: Jacobi polynomials; Sobolev orthogonality; second-order differential equation; electro-
static model

MSC: 30C15; 42C05; 33C45; 33C47; 82B23

1. Introduction

It is well known that the classical orthogonal polynomials (i.e., Jacobi, Laguerre, and
Hermite) satisfy a second-order differential equation with polynomial coefficients, and its
zeros are simple. Based on these facts, Stieltjes gave a very interesting interpretation of the
zeros of the classical orthogonal polynomials as a solution of an electrostatic equilibrium
problem of n movable unit charges in the presence of a logarithmic potential (see [1] Sec. 3).
An excellent introduction to Stieltjes’ result on this subject and its consequences can be
found in ([1] Sec. 3) and ([2] Sec. 2). See also the survey [3] and the introduction of [4,5].

In order to make this paper self-contained, it is convenient to briefly recall the Jacobi,
Laguerre, and Hermite cases. We begin with Jacobi. Let us consider n unit charges at
the points x1, x2, . . . , xn distributed in [−1, 1] and add two positive fixed charges of mass
(α + 1)/2 and (β + 1)/2 at 1 and −1, respectively. If the charges repel each other according
to the logarithmic potential law (i.e., the force is inversely proportional to the relative
distance), then the total energy E(·) of this system is obtained by adding the energy of the
mutual interaction between the charges. This is

E(ω1, ω2, . . . , ωn) = ∑
1�i<j�n

log
1∣∣ωi − ωj

∣∣
+

α + 1
2

n

∑
j=1

log
1∣∣1 − ωj

∣∣ + β + 1
2

n

∑
j=1

log
1∣∣1 + ωj

∣∣ . (1)
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The minimum of (1) gives the electrostatic equilibrium. The points x1, x2, . . . , xn where
the minimum is obtained are the places where the charges will settle down. It is obvious
that, for the minimum, all the xj are distinct and different from ±1.

For a minimum, it is necessary that ∂Et
∂ωj

= 0 (1 � k � n), from which it follows that the

polynomial Pn(x) = ∏n
j=1(x − xj) satisfies the differential equation(

1 − x2
)

P′′
n (x) + (β − α − (α + β + 2)x)P′

n(x) = −n(n + α + β + 1)Pn(x), (2)

which is the differential equation for the monic Jacobi polynomial Pn(x) = Pα,β
n (x) (see [6]

(Theorems 4.2.2 and 4.21.6)). The proof of the uniqueness of the minimum, based on the
inequality between the arithmetic and geometric means, can be found in [6] (Section 6.7).
In conclusion, the global minimum of (1) is reached when each of the n charges is located
on a zero of the nth Jacobi polynomial Pα,β

n (x).
For the other two families of classical orthogonal polynomials on the real line (i.e.,

Laguerre and Hermite), Stieltjes also gave an electrostatic interpretation. Since, in this
situation, the free charges move in an unbounded set, they can escape to infinity. Stieltjes
avoided this situation by constraining the first (Laguerre) or second (Hermite) moment of
his zero-counting measures (see [6] (Theorems 6.7.2 and 6.7.3) and [1] (Section 3.2)).

The electrostatic interpretation of the zeros of the classical orthogonal polynomials,
in addition to Stieltjes, was also studied by Bôcher, Heine, and Van Vleck, among others.
These works were developed between the end of the 19th century and the beginning of
the 20th century. After that, the subject remained dormant for almost a century, until it
received new impulses from advances in logarithmic potential theory, the extensions of the
notion of orthogonality, and the study of new classes of special functions.

Let μ be a finite positive Borel measure with finite moments whose support supp(μ) ⊂ R

contains an infinite set of points. Assume that {Pn}n�0 denotes the monic orthogonal
polynomial sequence with respect to the inner product

〈 f , g〉μ =
∫

f (x)g(x)dμ(x). (3)

In general, an inner product is referred to as “standard” when the multiplication operator
exhibits symmetry with respect to the inner product, i.e., 〈x f , g〉μ = 〈 f , xg〉μ. As (3) is a stan-
dard inner product, we have that Pn has exactly n simple zeros on (a, b) = Ch(supp(μ))◦ ⊂ R,
where Ch(A) denotes the convex hull of a real set A and A◦ denotes the interior set of A.
Furthermore, the sequence {Pn}n�0 satisfies the three-term recurrence relation

xPn(x) = Pn+1(x) + γ1,nPn(x) + γ2,nPn−1(x); P0(x) = 1, P−1(x) = 0,

where γ2,n = ‖Pn‖μ
2/‖Pn−1‖μ

2 for n � 1, γ1,n = 〈Pn, xPn〉μ/‖Pn‖2
μ, and ‖ · ‖μ =

√
〈·, ·〉μ

denotes the norm induced by (3). See [6–8] for these and other properties of {Pn}n�0.
Let (a, b) be as above, N, dj ∈ Z+, λj,k � 0, for j = 1, . . . , N, k = 0, 1, . . . , dj,

{c1, c2, . . . , cN} ⊂ R\(a, b), where ci �= cj if i �= j and I+ = {(j, k) : λj,k > 0}. We
consider the following Sobolev-type inner product:

〈 f , g〉s = 〈 f , g〉μ +
N

∑
j=1

dj

∑
k=0

λj,k f (k)(cj)g(k)(cj)

=
∫

f (x)g(x)dμ(x) + ∑
(j,k)∈I+

λj,k f (k)(cj)g(k)(cj), (4)
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where f (k) denotes the kth derivative of the function f . We also assume, without restriction
of generality, that {(j, dj)}N

j=1 ⊂ I+ and d1 � d2 � · · · � dN . Let us denote by Sn (n ∈ Z+)

the lowest degree monic polynomial that satisfies

〈xk, Sn〉s = 0, for k = 0, 1, . . . , n − 1. (5)

Henceforth, we refer to the sequence {Sn}n�0 of monic polynomials as the system
of monic Sobolev-type orthogonal polynomials. It is not difficult to see that for all n � 0,
there exists a unique polynomial Sn of the degree n. Note that the coefficients of Sn are
the solution of a homogeneous linear system (5) of n + 1 unknowns and n equations. The
uniqueness is a consequence of the required minimality on the degree. For more details on
this type of nonstandard orthogonality, we refer the reader to [9,10].

It is not difficult to see that, in general, (4) is nonstandard, i.e., 〈xp, q〉s �= 〈p, xq〉s. The
properties of orthogonal polynomials concerning standard inner products are distinct from
those of Sobolev-type polynomials. For instance, the roots of Sobolev-type polynomials
either can be complex or, if real, might lie beyond the convex hull of the measure μ support,
as demonstrated in the following example:

Example 1. Let

〈 f , g〉s =
∫ 1

−1
f (x)g(x)dx + f ′(−2)g′(−2) + f ′(2)g′(2),

then the corresponding third-degree monic Sobolev-type orthogonal polynomial is S3(z) = z3 −
183
20 z, whose zeros are 0 and ±

√
183
20 . Note that ±

√
183
20 ≈ ±3 �∈ [−2, 2].

We will denote by P the linear space of all polynomials and by dgr(p) the degree of
p ∈ P. Let

ρ̂(x) = ∏
cj�a

(
x − cj

)dj+1∏
cj�b

(
cj − x

)dj+1 and dμρ̂(x) = ρ̂(x)dμ(x).

Note that ρ̂(x) > 0 for all x ∈ (a, b) and dgr(ρ̂) = d = ∑N
j=1(dj + 1). Additionally, for

n > d, from (5), we have that {Sn} satisfies the following quasi-orthogonality relations:

〈Sn, f 〉μρ̂
= 〈Sn, ρ̂ f 〉μ =

∫
Sn(x) f (x)ρ̂(x)dμ(x) = 〈Sn, ρ̂ f 〉s = 0,

for f ∈ Pn−d−1, where Pn denotes the linear space of polynomials with real coefficients
and degree less than or equal to n ∈ Z+. Thus, Sn is a quasi-orthogonal of order d with
respect to the modified measure μρ̂. Therefore, Sn has at least (n − d) changes of sign in
(a, b).

Taking into account the known results for measures of bounded support (see [11]
(1.10)), the number of zeros located in the interior of the support of the measure is closely
related to d∗ = #(I+), where the symbol #(A) denotes the cardinality of a given set A. Note
that d∗ is the number of terms in the discrete part of 〈·, ·〉s ( i.e., λj,k > 0).

From Section 3 onward, we will restrict our attention to the case when in (4) the
measure dμ is the Jacobi measure dμα,β(x) = (1 − x)α(1 + x)βdx (α, β > −1) on [−1, 1].
Some of the results we obtain are generalizations of previous work, with derivatives up to
order one. For more details, we refer the reader to [12,13] and the references therein.

The aim of this paper is to give an electrostatic interpretation for the distribution of
zeros of a wide class of Jacobi-Sobolev polynomials, following an approach based on the
works [4,14,15] and the original ideas of Stieltjes in [16,17].

In the next section, we obtain a formula that allows us to express the polynomial Sn
as a linear combination of Pn and Pn−1, whose coefficients are rational functions. We refer
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to this formula as “connection formula”. Sections 3 and 4 deal with the ladder (raising
and lowering) equations and operators of {Sn}n�0. We combine the ladder (raising and
lowering) operators to prove that the sequence of monic polynomials {Ŝn(x)}n�0 satisfies
the second-order linear differential Equation (35), with polynomial coefficients.

In the last section, we give a sufficient condition for an electrostatic interpretation of
the distribution of the zeros of {Ŝn(x)}n�0 as the logarithmic potential interaction of unit
positive charges in the presence of an external field. Several examples are given to illustrate
whether or not this condition is satisfied.

2. Connection Formula

Let μ be a finite positive Borel measure with finite moments, whose support supp(μ) ⊂ R

contains an infinite set of points. Assume that {Pn}n�0 denotes the monic orthogonal
polynomial sequence with respect to the inner product (3). We first recall the well-known
Christoffel-Darboux formula for Kn(x, y), the kernel polynomials associated with {Pn}n�0.

Kn−1(x, y) =
n−1

∑
k=0

Pk(x)Pk(y)

‖Pk‖2
μ

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pn(x)Pn−1(y)− Pn(y)Pn−1(x)

‖Pn−1‖2
μ (x − y)

, if x �= y,

P′
n(x)Pn−1(x)− Pn(x)P′

n−1(x)
‖Pn−1‖2

μ
, if x = y.

(6)

We denote by K(j,k)
n (x, y) =

∂j+kKn(x, y)
∂xj∂yk the partial derivatives of the kernel (6).

Then, from the Christoffel-Darboux Formula (6) and the Leibniz rule, it is not difficult to
verify that

K(0,k)
n−1 (x, y) =

n−1

∑
i=0

Pi(x)P(k)
i (y)

‖Pi‖2
μ

=
k!(Qk(x, y; Pn−1)Pn(x)− Qk(x, y; Pn)Pn−1(x))

‖Pn−1‖2
μ (x − y)k+1

, (7)

where Qk(x, y; f ) = ∑k
ν=0

f (ν)(y)
ν! (x − y)ν is the Taylor polynomial of the degree k of f

centered at y. Observe that (7) becomes the usual Christoffel-Darboux formula (6) if k = 0.
From (4), if i < n

〈Sn, Pi〉μ = 〈Sn, Pi〉s − ∑
(j,k)∈I+

λj,kS(k)
n (cj)P(k)

i (cj) = − ∑
(j,k)∈I+

λj,kS(k)
n (cj)P(k)

i (cj). (8)

Therefore, from the Fourier expansion of Sn in terms of the basis {Pn}n�0 and using (8),
we obtain

Sn(x) = Pn(x) +
n−1

∑
i=0

〈Sn, Pi〉μ
Pi(x)

‖Pi‖2
μ

= Pn(x)− ∑
(j,k)∈I+

λj,kS(k)
n (cj)

n−1

∑
i=0

Pi(x)P(k)
i (cj)

‖Pi‖2
μ

= Pn(x)− ∑
(j,k)∈I+

λj,kS(k)
n (cj)K

(0,k)
n−1 (x, cj). (9)
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Now, replacing (7) in (9), we have the connection formula

Sn(x) = F1,n(x)Pn(x) + G1,n(x)Pn−1(x), (10)

where F1,n(x) = 1 − ∑
(j,k)∈I+

λj,kk! S(k)
n (cj)

‖Pn−1‖2
μ

Qk(x, cj; Pn−1)

(x − cj)k+1

and G1,n(x) = ∑
(j,k)∈I+

λj,kk! S(k)
n (cj)

‖Pn−1‖2
μ

Qk(x, cj; Pn)

(x − cj)k+1 .

Deriving Equation (9) �-times and evaluating then at x = ci for each ordered pair
(i, �) ∈ I+, we obtain the following system of d∗ = #(I+) linear equations and d∗ unknowns
S(k)

n (cj).

P(�)
n (ci) =

(
1 + λi,�K

(�,�)
n−1 (ci, ci)

)
S(�)

n (ci) + ∑
(j,k)∈I+
(j,k) �=(i,�)

λj,kK(�,k)
n−1 (ci, cj)S

(k)
n (cj). (11)

The remainder of this section is devoted to proving that system (11) has a unique
solution. The following lemma is essential to achieve this goal.

Lemma 1. Let I ⊂ R×Z+ be a (finite) set of d∗ pairs. Denote {cj}N
j=1 = π1(I) where π1 is the

projection function over the first coordinate, i.e., π1(x, y) = x, dj = max{νi : (cj, νi) ∈ I} and
d = ∑N

j=1(dj + 1). Let Pk be an arbitrary polynomial of the degree k for 0 � k � n − 1. Then, for
all n � d, the d∗×n matrix

A∗ =
(

P(ν)
k−1(c)

)
(c,ν)∈I,k=1,2,...,n

has a full rank d∗.

Proof. First, note that, using elementary column transformations, we can reduce the proof
to the case when Pk(x) = xk, for k = 0, 1, . . . , n − 1. On the other hand, d∗j = #({νi :

(cj, νi) ∈ I}) � dj + 1 for j = 1, 2, . . . , N, so d∗ = ∑N
j=1 d∗j � d � n, and it is sufficient to

prove the case n = d. Consider the m×n matrix

Am(x) =

⎛⎜⎜⎜⎜⎜⎝
1 x x2 x3 · · · xn−1

0 1 2x 3x2 · · · (n − 1)xn−2

0 0 2 6x · · · (n − 1)(n − 2)xn−3

...
...

...
. . .

...
...

0 0 0 0 · · · (n − 1) · · · (n − m + 1)xn−m

⎞⎟⎟⎟⎟⎟⎠,

where m � n. Without loss of generality, we can rearrange the rows of A∗ such that

A∗ =

⎡⎢⎢⎢⎣
A∗

1
A∗

2
...

A∗
N

⎤⎥⎥⎥⎦, where A∗
j =

(
P(ν)

k−1(cj)
)
(cj ,ν)∈I,k=1,2,...,n

.

Note that A∗
j is obtained by taking some rows from Adj+1(cj), the rows ν, such that

(cj, ν − 1) ∈ I. Consider the matrix
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A =

⎡⎢⎢⎢⎣
Ad1+1(c1)
Ad2+1(c2)

...
AdN+1(cN)

⎤⎥⎥⎥⎦.

From [18] (Theorem 20), we compute det(A) as

det(A) = det(Aᵀ) =
N

∏
j=1

dj

∏
i=1

i! ∏
1�j1<j2�N

(cj1 − cj2)
(dj1

+1)(dj2+1) �= 0.

Then the n row vectors of A are linearly independent, and consequently, the d∗ rows
of A∗ are also linearly independent.

Now we can rewrite (11) in the matrix form

Pn(C) = (Id∗ +Kn−1(C, C)L)Sn(C), where (12)

Id∗ is the identity matrix of the order d∗.

L is the d∗×d∗-diagonal matrix with the diagonal entries λj,k, (j, k) ∈ I+.

C is the column vector C = (c1, . . . , c1︸ ︷︷ ︸
d∗1-times

, c2, . . . , c2︸ ︷︷ ︸
d∗2-times

, . . . , cN , . . . , cN︸ ︷︷ ︸
d∗N -times

)ᵀ.

Pn(C) and Sn(C) are column vectors with the entries P(k)
n (cj), and S(k)

n (cj), (j, k) ∈ I+
respectively.

Kn−1(C, C) is a d∗ × d∗ matrix whose entry associated to the (i, �)th row and the (j, k)th

column, (i, �), (j, k) ∈ I+, is K(�,k)
n−1 (ci, cj) =

n−1

∑
ν=0

P(�)
ν (ci)P(k)

ν (cj)

‖Pν‖2
μ

.

Clearly, we can write Kn−1(C, C) = FFᵀ, where F =

(
P(k)

ν−1(cj)

‖Pν−1‖μ

)
(j,k)∈I+ ,ν=1,...,n,

is a

matrix of the order d∗×n and full rank for all n � d, according to Lemma 1.
Then the matrix Kn−1(C, C) is a d∗×d∗ positive definite matrix for all n � d; see [19]

(Theorem 7.2.7(c)). Since L is a diagonal matrix with positives entries, it follows that
L−1 +Kn−1(C, C) is also a positive definite matrix, and consequently, Id∗ +Kn−1(C, C)L =(
L−1 +Kn−1(C, C)

)
L is nonsingular. Then the linear system (12) has the unique solution

Sn(C) = (Id∗ +Kn−1(C, C)L)−1Pn(C). (13)

Using this notation, we can rewrite (9) in the compact form

Sn(x) = Pn(x)−Kn−1(x, C)LSn(C), (14)

where Kn−1(x, C) is a row vector with the entries K(0,k)
n−1 (x, cj), for (j, k) ∈ I+. Now, replac-

ing (13) into (14), we obtain the matrix version of the connection Formula (10)

Sn(x) = Pn(x)−Kn−1(x, C)L(Id∗ +Kn−1(C, C)L)−1Pn(C).

3. Ladder Equations for Jacobi-Sobolev Polynomials

Henceforth, we will restrict our attention to the Jacobi-Sobolev case. Therefore, we
consider in the inner product (4) the measure dμ(x) = dμα,β(x) = (1 − x)α(1 + x)βdx,
where α, β > −1 and whose support is [−1, 1]. To simplify the notation, we will continue to
write Sn instead of Sα,β

n to denote the corresponding nth Jacobi-Sobolev monic polynomial.
In the following, we omit the parameters α and β when no confusion arises.
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From [6] ((4.1.1), (4.3.2), (4.3.3), (4.5.1), and (4.21.6)), for the monic Jacobi polynomials,
we have

Pα,β
n (x) =

(
2n + α + β

n

)−1 n

∑
ν=0

(
n + α

n − ν

)(
n + β

ν

)
(x − 1)ν(x + 1)n−ν.

hα,β
n =

∥∥∥Pα,β
n

∥∥∥2

μα,β
=22n+α+β+1 Γ(n + 1)Γ(n + α + 1)Γ(n + β + 1)Γ(n + α + β + 1)

Γ(2n + α + β + 2)Γ(2n + α + β + 1)
.

Pα,β
n (1) =

2nΓ(n + α + 1)Γ(n + α + β + 1)
Γ(α + 1)Γ(2n + α + β + 1)

.

xPα,β
n (x) =Pα,β

n+1(x) + γ1,nPα,β
n (x) + γ2,nPα,β

n−1(x); Pα,β
0 (x) = 1, Pα,β

−1 (x) = 0, (15)

where

γ1,n =γ
α,β
1,n =

β2 − α2

(2n + α + β)(2n + α + β + 2)
,

γ2,n =γ
α,β
2,n =

4n(n + α)(n + β)(n + α + β)

(2n + α + β)2((2n + α + β)2 − 1)
.

(16)

Let I be the identity operator. We define the two ladder Jacobi differential operators
on P as

L̂↓
n := − ân(x)

b̂n
I+

1 − x2

b̂n

d
dx

(lowering Jacobi differential operator),

L̂↑
n := − ĉn(x)

d̂n
I+

1 − x2

d̂n

d
dx

(raising Jacobi differential operator).

where

ân(x) =− n((2n + α + β)x + β − α)

2n + α + β
, b̂n =

4n(n + α)(n + β)(n + α + β)

(2n + α + β)2(2n + α + β − 1)
,

ĉn(x) =
(n + α + β)((2n + α + β)x + α − β)

2n + α + β
and d̂n = −(2n + α + β − 1).

(17)

From [6] (4.5.7 and 4.21.6), if n � 1, the sequence
{

Pα,β
n

}
n�0

satisfies the relations

L̂↓
n

[
Pα,β

n (x)
]
= − ân(x)

b̂n
Pα,β

n (x) +
1 − x2

b̂n

(
Pα,β

n (x)
)′

= Pα,β
n−1(x),

L̂↑
n

[
Pα,β

n−1(x)
]
= − ĉn(x)

d̂n
Pα,β

n−1(x) +
1 − x2

d̂n

(
Pα,β

n−1(x)
)′

= Pα,β
n (x).

(18)

In this case, the connection Formula (10) becomes

Sn(x) =A1,n(x) Pα,β
n (x) + B1,n(x) Pα,β

n−1(x), (19)

where A1,n(x) =Aα,β
1,n(x) = 1 − ∑

(j,k)∈I+

λj,kk! S(k)
n (cj)

hα,β
n−1

Qk(x, cj; Pα,β
n−1)

(x − cj)k+1

and B1,n(x) =Bα,β
1,n (x) = ∑

(j,k)∈I+

λj,kk! S(k)
n (cj)

hα,β
n−1

Qk(x, cj; Pα,β
n )

(x − cj)k+1 .
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Let ρ(x) =
N

∏
j=1

(
x − cj

)dj+1 and define the (d − k − 1)th degree polynomial

ρj,k(x) :=
ρ(x)

(x − cj)k+1 = (x − cj)
dj−k

N

∏
i=1
i �=j

(x − ci)
di+1, (20)

for every (j, k) ∈ I+. The following four lemmas are essential for defining ladder operators
(lowering and raising operators).

Lemma 2. For the sequences of polynomials {Sn}n�0 and {Pα,β
n }n�0, we obtain

ρ(x)Sn(x) = A2,n(x) Pα,β
n (x) + B2,n(x) Pα,β

n−1(x), (21)(
1 − x2

)
(ρ(x)Sn(x))′ = A3,n(x)Pα,β

n (x) + B3,n(x)Pα,β
n−1(x), (22)

where

A2,n(x) =ρ(x)A1,n(x) = ρ(x)− ∑
(j,k)∈I+

⎛⎝ k!λj,kS(k)
n (cj)

hα,β
n−1

Qk

(
x, cj; Pα,β

n−1

)⎞⎠ρj,k(x),

B2,n(x) =ρ(x)B1,n(x) = ∑
(j,k)∈I+

⎛⎝ k!λj,kS(k)
n (cj)

hα,β
n−1

Qk

(
x, cj; Pα,β

n

)⎞⎠ρj,k(x),

A3,n(x) =A′
2,n(x)

(
1 − x2

)
+ ân(x)A2,n(x) + d̂nB2,n(x),

B3,n(x) =B′
2,n(x)

(
1 − x2

)
+ b̂n A2,n(x) + ĉn(x)B2,n(x),

where A2,n, B2,n, A3,n, and B3,n are polynomials of degree at most d, d− 1, d+ 1 and d, respectively,
and the coefficients ân(x), b̂n, ĉn(x), and d̂n are given by (17).

Proof. From (19) and (20), Equation (21) is immediate. To prove (22), we can take deriva-
tives with respect to x in both hand sides of (21) and then multiply by 1 − x2

(
1 − x2

)
(ρ(x)Sn(x))′ =

(
1 − x2

)
A′

2,nPn(x) + A2,n

(
1 − x2

)(
Pα,β

n (x)
)′

+
(

1 − x2
)

B′
2,nPα,β

n−1(x) + B2,n

(
1 − x2

)(
Pα,β

n−1(x)
)′

.

Using (18) in the above expression, we obtain(
1 − x2

)
(ρ(x)Sn(x))′ =

[
A′

2n(x)
(

1 − x2
)
+ ân(x)A2,n(x) + B2,n(x)d̂n

]
Pα,β

n (x)

+
[

B′
2,n(x)

(
1 − x2

)
+ b̂n A2,n(x) + B2,n(x)ĉn(x)

]
Pα,β

n−1(x),

which is (22).

Lemma 3. The sequences of the monic polynomials {Sn}n�0 and
{

Pα,β
n

}
n�0

are also related by

the equations

ρ(x)Sn−1(x) = C2,n(x)Pα,β
n (x) + D2,n(x)Pα,β

n−1(x), (23)(
1 − x2

)
(ρ(x)Sn−1(x))′ = C3,n(x)Pα,β

n (x) + D3,n(x)Pα,β
n−1(x), (24)
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where

C2,n(x) = −B2,n−1(x)
γ2,n−1

, D2,n(x) = A2,n−1(x) + B2,n−1(x)
(

x − γ1,n−1

γ2,n−1

)
,

C3,n(x) = −B3,n−1(x)
γ2,n−1

, D3,n(x) = A3,n−1(x) + B3,n−1(x)
(

x − γ1,n−1

γ2,n−1

)
,

where C2,n(x), D2,n(x), C3,n(x), and D3,n(x) are polynomials of degree at most d − 1, d, d and
d + 1, respectively.

Proof. The proof of (23) and (24) is a straightforward consequence of Lemma 2 and the
three-term recurrence relation (15), whose coefficients are given in (16).

Lemma 4. The monic orthogonal Jacobi polynomials
{

Pα,β
n

}
n�0

can be expressed in terms of the

monic Sobolev-type polynomials {Sn}n�0 in the following way:

Pα,β
n (x) =

ρ(x)
Δn(x)

(D2,n(x)Sn(x)− B2,n(x)Sn−1(x)), (25)

Pα,β
n−1(x) =

ρ(x)
Δn(x)

(A2,n(x)Sn−1(x)− C2,n(x)Sn(x)). (26)

where

Δn(x) = det
(

A2,n(x) B2,n(x)
C2,n(x) D2,n(x)

)
= A2,n(x)D2,n(x)− C2,n(x)B2,n(x) (27)

is a polynomial of the degree 2d.

Proof. Note that (21) and (23) form a system of two linear equations with the two un-
knowns Pα,β

n (x) and Pα,β
n−1(x). Therefore, from Cramer’s rule, we obtain (25) and (26).

As dgr(C2,n B2,n) � 2d − 2 and lim
x→∞

A2,n(x)
x2d = 1, we obtain

lim
x→∞

Δn(x)
x2d = lim

x→∞

D2,n(x)

xd =

⎧⎪⎨⎪⎩
1, if dgr(B2,n−1) < d − 1,

1 +
Λn−1

γ2,n−1 hα,β
n−2

, if dgr(B2,n−1) = d − 1, (28)

where Λn−1 = ∑
(i,j)∈I+

λk,j
(
Sn−1(cj)

)(k)(Pα.β
n−1(cj)

)(k)
= (Sn−1(C))TLPn−1(C). From (12),

Λn−1 = (Sn−1(C))TL(Id∗ +Kn−2(C, C)L)Sn−1(C).

Since the matrix L(Id∗ +Kn−2(C, C)L) is positive definite, we conclude that

Λn−1 > 0, for all n ∈ N; (29)

i.e., Δn(x) is a polynomial of the degree 2d.

Remark 1. Obviously, from (25) (or (26)), we have that Δn(x) = ρ(x)δn(x), where δn is a
polynomial of the degree d. Hence, from (27),

δn(x) = A1,n(x)D2,n(x)− B1,n(x)C2,n(x).
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Theorem 1. Under the above assumptions, we have the following ladder equations:

A4,n(x)Sn(x) + B4,n(x)S′
n(x) = Sn−1(x), (30)

C4,n(x)Sn−1(x) + D4,n(x)S′
n−1(x) = Sn(x), (31)

where

A4,n(x) =
q2,n(x)
q1,n(x)

, B4,n(x) =
q0,n(x)
q1,n(x)

, C4,n(x) =
q3,n(x)
q4,n(x)

, D4,n(x) =
q0,n(x)
q4,n(x)

.

q0,n(x) =
(

1 − x2
)

Δn(x), dgr(q0,n) = 2d + 2.

q1,n(x) = B3,n(x)A2,n(x)− A3,n(x)B2,n(x), dgr(q1,n) = 2d.

q2,n(x) = (1 − x2)ρ′(x)δn(x) + B3,n(x)C2,n(x)− A3,n(x)D2,n(x), dgr(q2,n) = 2d + 1.

q3,n(x) = (1 − x2)ρ′(x)δn(x) + C3,n(x)B2,n(x)− D3,n(x)A2,n(x), dgr(q3,n) = 2d + 1.

q4,n(x) = C3,n(x)D2,n(x)− D3,n(x)C2,n(x), dgr(q4,n) = 2d.

Proof. Replacing (25) and (26) in (22) and (24), the two ladder Equations (30) and (31)
follow.

1.

lim
x→∞

q1,n(x)
x2d =

⎧⎪⎨⎪⎩
b̂n, if dgr(B2,n) < d − 1,

b̂n + (2n + α + β + 1)
Λn

hα,β
n−1

, if dgr(B2,n) = d − 1,

where, according to (29), Λn > 0, i.e., dgr(q1,n) = 2d.

2. From (28), lim
x→∞

δn(x)
xd = lim

x→∞

D2,n(x)
xd = κ2 > 0.

lim
x→∞

q2,n(x)
x2d+1 = κ2

(
lim

x→∞

(1 − x2)ρ′(x)
xd+1 − lim

x→∞

A3,n(x)
xd+1

)
= κ2(−d + n + d)

=

⎧⎪⎨⎪⎩
n, if dgr(B2,n−1) < d − 1,

n +
nΛn−1

γ2,n−1 hα,β
n−2

, if dgr(B2,n−1) = d − 1,

where, according to (29), Λn−1 > 0, i.e., dgr(q2,n) = 2d + 1.
3.

lim
x→∞

q4,n(x)
x2d =

⎧⎪⎪⎨⎪⎪⎩
− b̂n−1

γ2,n−1
, if dgr(B2,n−1) < d − 1,

−
b̂n−1 + (2n + α + β − 1)Λn−1

hα,β
n−2

γ2,n−1
, if dgr(B2,n−1) = d − 1.

Then, according to (29), dgr(q4,n) = 2d.
4.

lim
x→∞

q3,n(x)
x2d+1 = −dκ2 − lim

x→∞

D3,n(x)
xd+1

=

⎧⎪⎨⎪⎩
−(n + α + β), if dgr(B2,n−1) < d − 1,

−(n + α + β)

(
1 +

Λn−1

γ2,n−1 hα,β
n−2

)
, if dgr(B2,n−1) = d − 1,

where, according to (29), Λn−1 > 0, i.e., dgr(q3,n) = 2d + 1.

In the previous theorem, the polynomials qk,n were defined. Note that these poly-
nomials are closely related to certain determinants. The following result summarizes
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some of their properties that will be of interest later. For brevity, we introduce the follow-
ing notations:

Δ1,n(x) = B3,n(x)A2,n(x)− A3,n(x)B2,n(x).

Δ2,n(x) = B3,n(x)C2,n(x)− A3,n(x)D2,n(x).

Δ3,n(x) = B2,n(x)C3,n(x)− A2,n(x)D3,n(x).

Lemma 5. Let ρN(x) =
N

∏
j=1

(
x − cj

)
and ρd−N(x) =

N

∏
j=1

(
x − cj

)dj =
ρ(x)

ρN(x)
. Then, the above

polynomial determinants admit the following decompositions:

Δ1,n(x) = ρd−N(x) ϕ1,n(x), where dgr(ϕ1,n) = d + N.

Δ2,n(x) = ρd−N(x) ϕ2,n(x), where dgr(ϕ2,n) = d + N + 1.

Δ3,n(x) = ρd−N(x) ϕ3,n(x), where dgr(ϕ3,n) = d + N + 1.

(32)

Proof. Multiplying (21) by B3,n and (22) by B2,n and taking their difference, we have

Δ1,n(x)Pα,β
n (x) = ρ(x)B3,n(x)Sn(x)− (1 − x2)B2,n(x)

(
ρ′(x)Sn(x) + ρ(x)S′

n(x)
)

= ρd−N(x)
(

ρN(x)B3,n(x)Sn(x)− (1 − x2)B2,n(x)( N

∑
j=1

(dj + 1) ρj,dj
(x) Sn(x) + ρN(x) S′

n(x)
))

.

As Pα,β
n (cj) �= 0 for j = 1, . . . , N and dgr(Δ1,n) = dgr(q1,n) = 2d (see the proof of

Theorem 1), then there exists a polynomial ϕ1,n of the degree d + N such that Δ1,n(x) =
ρd−N(x) ϕ1,n(x).

For the decomposition of Δ2,n (Δ3,n) the procedure of the proof is analogous, using the
linear system of (22) and (23) ((21)–(24)).

4. Ladder Jacobi-Sobolev Differential Operators and Consequences

Definition 1 (Ladder Jacobi-Sobolev differential operators). Let I be the identity operator. We
define the two ladder differential operator on P as

L↓
n := A4,n(x)I+ B4,n(x)

d
dx

(lowering Jacobi-Sobolev differential operator),

L↑
n := C4,n(x)I+ D4,n(x)

d
dx

(raising Jacobi-Sobolev differential operator).

Remark 2. Assume in (4) that dμ(x) = dμα,β(x) = (1 − x)α(1 + x)βdx (α, β > −1), whose
support is [−1, 1] and λj,k ≡ 0 for all pairs (j, k). Under these conditions, it is not difficult to verify

that L↓
n ≡ L̂↓

n and L↑
n ≡ L̂↑

n.

Now, we can rewrite the ladder Equations (30) and (31) as

L↓
n[Sn(x)] =

(
A4,n(x)I+ B4,n(x)

d
dx

)
Sn(x) = Sn−1(x), (33)

L↑
n[Sn−1(x)] =

(
C4,n(x)I+ D4,n(x)

d
dx

)
Sn−1(x) = Sn(x). (34)

In this section, we state several consequences of Equations (33) and (34), which gener-
alize known results for classical Jacobi polynomials to the Jacobi-Sobolev case.
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First, we are going to obtain a second-order differential equation with polynomial
coefficients for Sn. The procedure is well known and consists in applying the raising
operator L↑

n to both sides of the formula L↓
n[Sn] = Sn−1. Thus, we have

0 =L↑
n

[
L↓

n[Sn(x)]
]
− Sn(x)

=B4,n(x)D4,n(x)S′′
n(x)

+
(

A4,n(x)D4,n(x) + B4,n(x)C4,n(x) + D4,n(x)B′
4,n(x)

)
S′

n(x)

+
(

A4,n(x)C4,n(x) + D4,n(x)A′
4,n(x)− 1

)
Sn(x)

=
q2

0,n(x)
q1,n(x)q4,n(x)

S′′
n(x)

+
q0,n(x)

(
q1,n(x)q2,n(x) + q1,n(x)q3,n(x) + q′0,n(x)q1,n(x)− q0,n(x)q′1,n(x)

)
q4,n(x)q2

1,n(x)
S′

n(x)

+

⎛⎝ q1,n(x)q2,n(x)q3,n(x) + q0,n(x)
(

q′2,n(x)q1,n(x)− q2,n(x)q′1,n(x)
)

q4,n(x)q2
1,n(x)

− 1

⎞⎠Sn(x),

from where we conclude the following result.

Theorem 2. The nth monic orthogonal polynomial with respect to the inner product (4) is a
polynomial solution of the second-order linear differential equation, with polynomial coefficients

P2,n(x)S′′
n(x) +P1,n(x)S′

n(x) +P0,n(x)Sn(x) = 0, (35)

where

P2,n(x) =q1,n(x)q2
0,n(x),

P1,n(x) =q0,n(x)
(
q1,n(x)q2,n(x) + q1,n(x)q3,n(x) + q′0,n(x)q1,n(x)− q0,n(x)q′1,n(x)

)
,

P0,n(x) =q1,n(x)q2,n(x)q3,n(x) + q0,n(x)
(
q′2,n(x)q1,n(x)− q2,n(x)q′1,n(x)

)
− q4,n(x)q2

1,n(x),

dgr(P2,n) = 6d + 4, dgr(P1,n) � 6d + 3 , and dgr(P0,n) � 6d + 2.

(36)

Remark 3 (The classical Jacobi differential equation). Under the conditions stated in Remark 2,
(4) becomes to the classical Jacobi inner product and Sn(x) = Pα,β

n (x).
Note that, here, A1,n(x) ≡ 1, B1,n(x) = 0 and ρ(x) ≡ 1. For the rest of the expressions

involved in the coefficients of the differential Equation (35), we have

ρ(x) ≡ 1, A1,n(x) ≡ A2,n(x) ≡ D2,n(x) = 1, B1,n(x) ≡ B2,n(x) ≡ C2,n(x) ≡ 0,

Δn(x) ≡ 1, A3,n(x) = ân(x), B3,n(x) = b̂n, C3,n(x) = −γ−1
2,n−1b̂n−1 and

D3,n(x) = ân−1(x) + γ−1
2,n−1b̂n−1(x − γ1,n−1).

Thus,
q0,n(x) =

(
1 − x2

)
, q1,n(x) = b̂n, q2,n(x) = −ân(x),

q3,n(x) = −ân−1(x)− γ−1
2,n−1b̂n−1(x − γ1,n−1)

= −(n + α + β)x +
(n + α + β) (α − β)

2n + β + α
and

q4,n(x) = −γ−1
2,n−1b̂n−1 = −(2n + α + β − 1).

(37)
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Substituting (37) in (36), the reader can verify that the differential Equation (35) becomes (2),
i.e.,

P2,n(x) =
(

1 − x2
)

, P1,n(x) = β − α − (α + β + 2)x and P0,n(x) = n(n + α + β + 1).

Second, we can obtain the polynomial nth degree of the sequence {Sn}n�0 as the
repeated action (n times) of the raising differential operator on the first Sobolev-type
polynomial of the sequence (i.e., the polynomial of degree zero).

Theorem 3. The nth Jacobi-Sobolev polynomial Sn (n � 0) can be given by

Sn(x) =
(
L↑

nL
↑
n−1L

↑
n−2 · · ·L

↑
1

)
S0(x),

where S0(x) = 1.

Proof. Using (34), the theorem follows for n = 1. Next, the expression for Sn is a straight-
forward consequence of the definition of the raising operator.

To conclude this section, we prove an interesting three-term recurrence relation with
rational coefficients, which satisfies the Jacobi-Sobolev monic polynomials. From the
explicit expression of the ladder operators, shifting n to n + 1 in (34), we obtain

C4,n(x)Sn(x) + D4,n(x)
d

dx
Sn(x) = Sn−1(x),

A4,n(x)Sn(x) + B4,n(x)
d

dx
Sn(x) = Sn+1(x).

Next, we multiply the first equation by −B4,n(x) and the second equation by D4,n(x),
and adding two resulting equations, we have the following three-term recurrence reaction
with rational coefficients for the Jacobi-Sobolev monic orthogonal polynomials.

Theorem 4. Under the assumptions of Theorem 2, we have the recurrence relation

q4,n+1(x)q0,n(x)Sn+1(x) =[q3,n+1(x)q0,n(x)− q2,n(x)q0,n+1(x)]Sn(x)

+ q1,n(x)q0,n+1(x)Sn−1(x),
(38)

where the explicit formula of the coefficient is given in Theorem 1.

Proof. From (30), and (31) for n + 1, we have

q2,n(x)Sn(x) + q0,n(x)(x)S′
n(x) = q1,n(x)Sn−1(x).

q3,n+1(x)Sn(x) + q0,n+1(x)S′
n(x) = q4,n+1(x)Sn(x).

Multiplying by q0,n+1(x) and q0,n(x), respectively, we subtract both equations to
eliminate the derivative term obtaining

(q3,n+1(x)q0,n(x)− q2,n(x)q0,n+1(x))Sn(x)

= q4,n+1(x)q0,n(x)Sn+1(x)− q1,n+1(x)q0,n+1(x)Sn−1(x),

which is the required formula.
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Remark 4 (The classical Jacobi three-term recurrence relation). Under the assumptions of
Remark 2, substituting (37) in (38), the reader can verify that the three-term recurrence relation (38)
becomes (35), i.e.,

q3,n+1(x)q0,n(x)− q2,n(x)q0,n+1(x)
q4,n+1(x)q0,n(x)

= x − γ1,n and
q1,n(x)q0,n+1(x)
q4,n+1(x)q0,n(x)

= −γ2,n.

5. Electrostatic Interpretation

Let us begin by recalling the definition of a sequentially ordered Sobolev inner product,
which was stated in [20] (Definition 1) or [21] (Definition 1).

Definition 2. Let {(rj, νj)}M
j=1⊂R×Z+ be a finite sequence of M ordered pairs and A ⊂ R. We

say that {(rj, νj)}M
j=1 is sequentially ordered with respect to A, if

1. 0 � ν1 � ν2 � · · · � νM.
2. rk /∈ Ch(A ∪ {r1, r2, . . . , rk−1})◦ for k = 1, 2, . . . , M, where Ch(B)◦ denotes the interior of

the convex hull of an arbitrary set B ⊂ C.

If A = ∅, we say that {(rj, νj)}M
j=1 is sequentially ordered for brevity.

We say that the discrete Sobolev inner product (4) is sequentially ordered if the set of ordered
pairs {(cj, i) : 1 � j � N, 0 � i � dj and ηj,i > 0} may be arranged to form a finite sequence of
ordered pairs, which is sequentially ordered with respect to (−1, 1).

From the second condition of Definition 2, the coefficient λj,dj
is the only coefficient

λj,i (i = 0, 1, . . . , dj) different from zero, for each j = 1, 2, . . . , N. Hence, (4) takes the form

〈 f , g〉s =
∫ 1

−1
f (x)g(x) dμα,β(x) +

N

∑
j=1

λj,dj
f (dj)(cj)g(dj)(cj), (39)

where dμα,β(x) = (1 − x)α(1 + x)βdx, with α, β > −1.
Hereinafter, we will restrict our attention to sequentially ordered discrete Sobolev

inner products. The following two lemmas show our reasons for this restriction.

Lemma 6 ([20, Th. 1] and [21, Prop. 4]). If (39) is a sequentially ordered discrete Sobolev inner
product, then Sn has at least n − N changes of sign on (−1, 1).

Lemma 7 ([20, Lem. 3.4] and [21, Th. 7]). Let (39) be a sequentially ordered Sobolev inner
product. Then, for all n sufficiently large, each sufficiently small neighborhood of cj, j = 1, . . . , N,
contains exactly one zero of Sn, and the remaining n − N zeros lie on (−1, 1).

As the coefficient of Sn is real, under the same hypotheses of Lemma 7, for all n
sufficiently large, the zeros of Sn are real and simple.

In the rest of this section, we will assume that the zeros of Sn are simple. Note that
sequentially ordered Sobolev inner products provide us with a wide class of Sobolev inner
products such that the zeros of the corresponding orthogonal polynomials are simple.
Therefore, for all n sufficiently large, we have

S′
n(x) =

n

∑
i=1

n
∏

j=1,
j �=i

(x − xn,j), S′′
n(x) =

n

∑
i=1

n

∑
j=1,
j �=i

n

∏
l=1,

i �=j �=l

(x − xn,l),

S′
n(xn,k) =

n

∏
j=1,
j �=k

(xn,k − xn,j), S′′
n(xn,k) = 2

n

∑
i=1,
i �=k

n

∏
j=1,

i �=j �=k

(xn,k − xn,j).
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Now we evaluate the polynomials P2,n(x), P1,n(x), and P0,n(x) in (35) at xn,k, where{
xn,k

}n
k=1 are the zeros of Sn(x) arranged in an increasing order. Then, for k = 1, 2, . . . , n,

we obtain

0 =P2,n(xn,k)S′′
n(xn,k) +P1,n(xn,k)S′

n(xn,k) +P0,n(xn,k)Sn(xn,k)

=P2,n(xn,k)S′′
n(xn,k) +P1,n(xn,k)S′

n(xn,k).

0 =
S′′

n(xn,k)

S′
n(xn,k)

+
P1,n(xn,k)

P2,n(xn,k)
= 2

n

∑
i=1
i �=k

1
xn,k − xn,i

+
P1,n(xn,k)

P2,n(xn,k)
. (40)

Let us recall that, from (32),

ϕ1,n(x) =
Δ1,n(x)

ρd−N(x)
, dgr(ϕ1,n) = d + N,

ϕ2,n(x) =
Δ2,n(x)

ρd−N(x)
, dgr(ϕ2,n) = d + N + 1,

ϕ3,n(x) =
Δ3,n(x)

ρd−N(x)
, dgr(ϕ3,n) = d + N + 1.

Hence, from Theorems 1 and 2 and Lemma 5,

P1,n(x)
P2,n(x)

=
q1,n(x)q2,n(x) + q1,n(x)q3,n(x) + q′0,n(x)q1,n(x)− q0,n(x)q′1,n(x)

q1,n(x)q0,n(x)

=
q2,n(x) + q3,n(x)

q0,n(x)
+

q′0,n(x)
q0,n(x)

−
q′1,n(x)
q1,n(x)

=2
ρ′(x)
ρ(x)

+
Δ2,n(x) + Δ3,n(x)
(1 − x2)ρ(x)δn(x)

+
Δ′

n(x)
Δn(x)

+
2x

x2 − 1
−

Δ′
1,n(x)

Δ1,n(x)

=3
ρ′(x)
ρ(x)

+
ϕ2,n(x) + ϕ3,n(x)

(1 − x2)ρN(x)δn(x)
+

δ′n(x)
δn(x)

+
1

x − 1
+

1
x + 1

−
ϕ′

1,n(x)
ϕ1,n(x)

−
ρ′d−N(x)
ρd−N(x)

. (41)

Let us write
ρ′(x)
ρ(x)

=
N

∑
j=1

dj + 1
x − cj

.
ρ′d−N(x)
ρd−N(x)

=
N

∑
j=1

dj

x − cj
.

As ψ1(x) = ϕ2,n(x) + ϕ3,n(x) and ψ2(x) =
(

1 − x2
)

ρN(x)δn(x) are polynomials of

the degree d + N + 1 and d + N + 2, respectively, we have that
ψ1(x)
ψ2(x)

is a rational proper

fraction. Therefore,

ψ1(x)
ψ2(x)

= − r(1)
x − 1

+
r(−1)
x + 1

+
N

∑
j=1

r(cj)

x − cj
+

d

∑
j=1

r(uj)

x − uj
, where r(x) =

ψ1(x)
ψ′

2(x)
.

Based on the results of our numerical experiments, in the remainder of the section, we
will assume certain restrictions with respect to some functions and parameters involved
in (41). In that sense, we suppose that

1. The zeros of δn are real, simple, and different from xn,k for all k = 1, . . . , n. Therefore,

δn(x) =
d

∏
k=1

(x − uj), where ui �= uj if i �= j, and
δ′n(x)
δn(x)

=
d

∑
j=1

1
x − uj

.
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2. Let ϕ1,n(x) = κ1

N1

∏
j=1

(x − ej)
�5,j , where ej ∈ C \ Ch([−1, 1] ∪ {c1, . . . , cN}) for all

j = 1, . . . , N − 1, and
N1

∑
j=1

�5,j = d + N. Therefore,
ϕ′

1,n(x)
ϕ1,n(x)

=
N1

∑
j=1

�5,j

x − ej
.

3. Substituting into (41) the previous decompositions, we have

P1,n(x)
P2,n(x)

=
�1

x − 1
+

�2

x + 1
+

N

∑
j=1

�3,j

x − cj
+

d

∑
j=1

�4,j

x − uj
−

N1

∑
j=1

�5,j

x − ej
,

where �1 = 1 − r(1), �2 = 1 + r(−1), �3,j = 2dj + r(cj) + 3, and �4,j = r(uj) + 1. We
will assume that �1, �2, �3,j, �4,j � 0.

From (40), for k = 1, . . . , n,

0 =
n

∑
i=1
i �=k

1
xn,k − xn,i

+
�1

2
1

xn,k − 1
+

�2

2
1

xn,k + 1

+
1
2

N

∑
j=1

�3,j

xn,k − cj
+

1
2

d

∑
j=1

�4,j

xn,k − uj
+

1
2

N1

∑
j=1

�5,j

ej − xn,k
. (42)

Let ω = (ω1, ω2, · · · , ωn), xn = (xn,1, xn,2, · · · , xn,n) and denote

E(ω) := ∑
1≤k<j≤n

log
1

|ωj − ωk|
+ F(ω) + G(ω), (43)

F(ω) :=
1
2

n

∑
k=1

(
log

1
|1 − ωk|�1

+ log
1

|1 + ωk|�2
+

N

∑
j=1

log
1

|cj − ωk|�3,j

)
,

G(ω) :=
1
2

n

∑
k=1

(
d

∑
j=1

log
1

|uj − ωk|�4,j
+

N1

∑
j=1

log
1

|ej − ωk|�5,j

)
.

Let us introduce the following electrostatic interpretation:

Consider the system of n movable positive unit charges at n distinct points of the
real line, {ω1, ω2, · · · , ωn}, where their interaction obeys the logarithmic potential
law (that is, the force is inversely proportional to the relative distance) in the presence
of the total external potential Vn(ω) = F(ω) + G(ω). Then, E(ω) is the total energy
of this system.

Following the notations introduced in [14] (Section 2), the Jacobi-Sobolev inner product
creates two external fields. One is a long-range field whose potential is F(ω), and the other
is a short-range field whose potential is G(ω). Therefore, the total external potential Vn(ω)
is the sum of the short- and long-range potentials, which is dependent on n (i.e., varying
external potential).

Therefore, for each k = 1, . . . , n, we have
∂E

∂ωk
(xn) = 0; i.e., the zeros of Sn are the

zeros of the gradient of the total potential of energy E(ω) (∇E(xn) = 0).

Theorem 5. The zeros of Sn(x) are a local minimum of E(ω), if for all k = 1, . . . , n;

1.
∂E

∂ωk
(xn) = 0.

2.
∂2Vn

∂w2
k
(xn) =

∂2F
∂w2

k
(xn) +

∂2G
∂w2

k
(xn) > 0.
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Proof. The Hessian matrix of E at xn is given by

∇2
ω ωE(xn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2E

∂wk∂wj
(xn) = −(xk − xj)

−2, if k �= j,

∂2E
∂w2

k
(xn) =

n

∑
i=1
i �=k

1
(xn,k − xn,i)2 +

∂2(Vn)

∂w2
k

(xn), if k = j.
(44)

Note that (44) is a symmetric real matrix with negative values in the nondiagonal
entries. Additionally, note that

n

∑
j=1
i �=k

∂2E
∂wk∂wj

(xn) +
∂2E
∂w2

k
(xn) =

∂2Vn

∂w2
k
(xn).

Since this is positive, we conclude according to Gershgorin’s theorem [19] (Theorem 6.1.1)
that the eigenvalues of the Hessian are positive, and therefore, (44) is positive definite.
Combining this with the fact that ∇E(xn) = 0, we conclude that xn is a local minimum
of (43).

The computations of the following examples have been performed using the symbolic
computer algebra system Maxima [22]. In all cases, we fixed n = 12 and considered sequen-
tially ordered Sobolev inner products (see Definition 2 and Lemmas 6 and 7). From (42), it is
obvious that ∇E(x12) = 0, where x12 = (x12,1, x12,2, · · · , x12,n) and
S12(x12,k) = 0 for k = 1, 2, . . . , 12. Under the above condition, x12 is a local minimum
(maximum) of E if the corresponding Hessian matrix at x12 is positive (negative) definite;
in any other case, x12 is said to be a saddle point. We recall that a square matrix is positive
(negative) definite if all its eigenvalues are positive (negative).

Example 2 (Case in which the conditions of Theorem 5 are satisfied).

1. Jacobi-Sobolev inner product 〈 f , g〉s =
∫ 1

−1
f (x)g(x)(1 + x)100dx + f ′(2)g′(2).

2. Zeros of S12(x).

x12 =(0.44845, 0.563364, 0.653317, 0.728094, 0.791318, 0.844674,

0.889402, 0.925746, 0.954364, 0.97639, 0.989824, 0.998408).

3. Total potential of energy E(ω) = ∑
1≤k<j≤12

log
1

|ωj − ωk|
+ F(ω) + G(ω), where

F(ω) =
1
2

12

∑
k=1

(
log

1
|ωk − 1| + log

1

|ωk + 1|101 + log
1

|ωk − 2|3

)
,

G(ω) =
1
2

12

∑
k=1

log|(ωk − 1.04563)τ(ωk)| and τ(x) = x2 − 3.8812x + 3.76606 > 0.

4. From (42),
∂E
∂ωj

(x12) = 0, for j = 1, . . . , 12.

5. Computing the corresponding Hessian matrix at x12, we have that the approximate values of
its eigenvalues are

{81.7737, 220.5813, 383.5185, 586.5056, 857.6819, 1248.8, 1857.7, 2927.5, 5039.9,

9986.6, 26185, 214620}.

Thus, Theorem 5 holds for this example, and we have the required local electrostatic equilibrium
distribution.
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Example 3 (Case in which the conditions of Theorem 5 are satisfied).

1. Jacobi-Sobolev inner product

〈 f , g〉s =
∫ 1

−1
f (x)g(x)(1 + x)110dx + f ′(1)g′(1) + f ′′(2)g′′(2).

2. Zeros of S12(x).

x12 =(0.482433, 0.590159, 0.674139, 0.74379, 0.802629, 0.852355,

0.894142, 0.928255, 0.955716, 0.976239, 0.990307, 0.998211).

3. Total potential of energy E(ω) = ∑
1≤k<j≤12

log
1

|ωj − ωk|
+ F(ω) + G(ω), where

F(ω) =
1
2

12

∑
k=1

(
log

1

|ωk − 1|3
+ log

1

|ωk + 1|111 + log
1

|ωk − 2|4

)
,

G(ω) =
1
2

12

∑
k=1

log|(ωk − 1.22268)(ωk − 1.94089)τ(ωk)|

and τ(x) = x2 − 3.8196x + 3.65881 > 0.

4. From (40),
∂E
∂ωj

(x12) = 0, for j = 1, . . . , 12.

5. Computing the corresponding Hessian matrix at x12, we have that the approximate values of
its eigenvalues are

{102.3077, 265.8911, 459.368, 702.7009, 1030.2, 1504.8, 2247.1, 3563.2, 6146,

12806, 38783, 488410}.

Thus, Theorem 5 holds for this example, and we have the required local electrostatic equilibrium
distribution.

Example 4 (Case in which the conditions of Theorem 5 are not satisfied).

1. Jacobi-Sobolev inner product 〈 f , g〉s =
∫ 1

−1
f (x)g(x)dx + f ′(2)g′(2).

2. Zeros of S12(x).

x12 =(−0.979635, −0.894154, −0.746211, −0.545446, −0.305098, −0.0412552,

0.227973, 0.483321, 0.705221, 0.87481, 0.975632, 2.1607).

3. Total potential of energy E(ω) = ∑
1≤k<j≤12

log
1

|ωj − ωk|
+ F(ω) + G(ω), where

F(ω) =
1
2

12

∑
k=1

(
log

1
|ωk − 1| + log

1
|ωk + 1| + log

1

|ωk − 2|3

)
,

G(ω) =
1
2

12

∑
k=1

log|(ωk − 2.12065)τ(ωk)| and τ(x) = x2 − 3.74216 x + 3.51112 > 0.

4. From (42),
∂E
∂ωj

(x12) = 0, for j = 1, . . . , 12.
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5. Computing the corresponding Hessian matrix at x12, we have that the approximate values of
its eigenvalues are

{1388.3, 975.7989, 242.5338, 179.5748, 107.6368, 86.754, 70.7275, 62.6406, 50.3046,

34.4135, 14.0599, −258.3366}.

Then, x12 is a saddle point of E(ω).

Remark 5. As can be noticed, in some cases, the configuration given by the external field includes
complex points; they correspond to ej. Specifically, in the examples, these points are given as the
zeros of τ(x). Since φ1,n(x) is a polynomial of real coefficients, the nonreal zeros arise as complex
conjugate pairs. Note that

a
x − z

+
a

x − z
= a

2x + 2�z
x2 + 2�z + |z|2

where �z denotes the real part of z. The antiderivative of the previous expression is a ln(x2 +
2�z + |z|2). This means in our current case that the presence of complex roots does not change the
formulation of the energy function.

What Happens If the Hessian Is Not Positive Definite? A Case Study

Theorem 5 gives us a general condition to determine whether the electrostatic inter-
pretation is a mere extension of the classical cases. However, in Example 4, the Hessian has
one negative eigenvalue of about −258 corresponding to the last variable ωn. Therefore,
we do not have the nice interpretation given in Theorem 5. However, note that the rest of
the eigenvalues are positive, which means that the number

∂2(Vn)

∂w2
k

(xn)

remains positive for k = 1, . . . , 11. In this case, the potential function exhibits a saddle point.
The presence of the saddle point is somehow justified by the attractor point a ≈ −2.121
having a zero ( x12,12 ≈ 2.161) in its neighborhood. In this case, we are able to give an
interpretation of the position of the zeros by considering a problem of conditional extremes.

Assume that, when checking the Hessian, we obtained that the eigenvalues λi, for
i ∈ E ⊂ {1, 2, . . . , n}, are negative or zero. Without loss of generality, assume that this
happens for the last mE = |E | variables. This is a saddle point. However, the rest of the
eigenvalues are positive, which means that the truncated Hessian ∇2

ωmE ωmE
E formed by

taking the first n − mE rows and columns of ∇2
ω ωER is a positive definite matrix by the

same arguments used in the proof of Theorem 5.
Let us define the following problem of conditional extremum on ω = ωn ∈ Rn

min
ωn∈Rn

E(ωn)

subject to ωk − xk = 0, for all k = n − mE + 1, . . . , n.

Note that this problem is equivalent to solve

min
ωn−mE ∈R

n−mE
ER(ωn−mE , xmE+1, . . . , xn).

Let us prove that xn−mE is a minimum of this problem. Note that the gradient of this
function corresponds to the first n − mE conditions of (42), and the second-order condition
is given by the truncated Hessian ∇2

ωmE ωmE
E(xmE ), which is by hypothesis positive definite.

Therefore, the configuration xn corresponds to the local equilibrium of the energy
function (43) once mE charges are fixed.
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Abstract: In this paper, we consider the generalized degenerate Bernoulli/Euler polynomial matrices
and study some algebraic properties for them. In particular, we focus our attention on some matrix-
inversion formulae involving these matrices. Furthermore, we provide analytic properties for the
so-called generalized degenerate Pascal matrix of the first kind, and some factorizations for the
generalized degenerate Euler polynomial matrix.

Keywords: generalized degenerate Bernoulli polynomials; generalized degenerate Euler polyno-
mials; generalized degenerate Bernoulli matrix; generalized degenerate Euler matrix; generalized
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MSC: 33E20; 11B83; 11B68

1. Introduction

Matrices play an important role in all branches of science, engineering, social science,
and management. In many settings (see, e.g., [1–4] and the references therein), a number of
interesting and useful identities involving binomial (q-binomial or λ-binomial) coefficients
can be obtained from a matrix representation of a particular counting sequence. Such a
matrix representation provides a powerful computational tool for deriving identities and
an explicit formula related to the sequence.

There are many special types of matrices such as Pascal, Vandermonde, Stirling,
Riordan arrays, and others. These matrices are of specific importance in many scientific
and engineering applications. For instance, Pascal matrices appear in combinatorics, image
processing, signal processing, numerical analysis, probability, and surface reconstruction.

In the case of generalized Pascal matrices of the first kind, extensive research has
been devoted to them (cf., e.g., [3–10] and the references therein). Situations with a matrix
representation—including analogs of generalized Pascal matrices of the first kind and
degenerate versions of special classes of polynomials (e.g., Bernstein, Bernoulli, and Euler
polynomials, etc.)—are of particular interest.

Motivated by recent articles [1–4,11–14] that consider degenerate Bernstein polynomi-
als, degenerate Euler polynomials, generalized degenerate Euler–Genocchi polynomials
of order α, and algebraic properties of the generalized Euler and generalized Apostol-
type polynomial matrices, in the present article, we consider the generalized degenerate
Bernoulli/Euler polynomial matrix. In particular, we focus our attention on some inversion-
type formulae from a matrix framework. Furthermore, we show some analytic properties
for the so-called generalized degenerate Pascal matrix of the first kind. Furthermore, some
factorizations for the generalized degenerate Euler polynomial matrix in terms of such a
matrix are given.

The paper is organized as follows. Section 2 is a preliminary section containing the
definitions, notations, and terminology needed. Section 3 contains the main results of this
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paper. First, we provide the corresponding inversion-type formulae for the degenerate
Bernoulli and Euler polynomials, respectively (Theorems 1 and 2). Second, we show that the
generalized degenerate Pascal matrix of the first kind is a matrix exponential (Theorem 4),
and, as a consequence, we obtain an Appell-type property for this matrix (Corollary 5). In
addition, factorizations for the generalized degenerate Pascal matrix of the first kind in
terms of the degenerate Bernoulli/Euler matrices are given (Theorems 6 and 7, respectively).
The remainder of this section is devoted to establishing the corresponding product formulae
for generalized degenerate Euler polynomial matrices and their factorizations in terms of
generalized degenerate Pascal matrices of the first kind (Theorems 8 and 9).

2. Background and Previous Results

Throughout this paper, let N, N0, Z, R, and C denote, respectively, the set of all natural
numbers, the set of all non-negative integers, the set of all integers, the set of all real
numbers, and the set of all complex numbers. As usual, we will always use the principal
branch for complex powers, in particular, 1α = 1 for α ∈ C. Furthermore, the convention
00 = 1 will be adopted.

For w ∈ C and k ∈ Z, we use the notations w(k) and (w)k for the rising and falling
factorials, respectively, i.e.,

w(k) =

⎧⎪⎨⎪⎩
1, if k = 0,

∏k
i=1(w + i − 1), if k ≥ 1,

0, if k < 0,

and

(w)k =

⎧⎪⎨⎪⎩
1, if k = 0,

∏k
i=1(w − i + 1), if k ≥ 1,

0, if k < 0.

Any matrix is assumed an element of Mn+1(R), the set of all (n + 1)-square matri-
ces over the real field R. Moreover, for i, j, any nonnegative integers, and any matrix
A ∈ Mn+1(R) we adopt, respectively, the following conventions(

i
j

)
= 0, whenever j > i, and A0 = In+1 = diag(1, 1, . . . , 1),

where In+1 denotes the identity matrix of order n + 1.
For λ, x ∈ R and z ∈ C, the degenerate exponentials are defined as follows (cf., [15]):

ex
λ(z) =

⎧⎨⎩
(1 + λz)

x
λ , if λ ∈ R \ {0},

exz, if λ = 0.
(1)

As usual, for x = 1, we use the notation eλ(z) = ex
λ(z).

It follows immediately from (1) that

ex
λ(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞

∑
n=0

(x)n,λ
zn

n!
, |λz| < 1, if λ ∈ R \ {0},

∞

∑
n=0

xn zn

n!
, if λ = 0.

(2)

where the generalized falling factorials (x)n,λ, are given by (cf., [1,2,12–15]):
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(x)n,λ =

⎧⎪⎨⎪⎩
1, if n = 0,

∏n
i=1(x − (i − 1)λ), if n ≥ 1,

0, if n < 0,

where x, λ ∈ R and n ∈ Z.
It is clear that lim

λ→0
ex

λ(z) = ex
0(z) = exz, and for n ∈ N0, the polynomial in two variables

Qn(x, λ), given by

Qn(x, λ) =

{
1, if n = 0,

∏n
i=1(x − (i − 1)λ), if n ≥ 1,

is a continuous function on R2, and consequently, (x)n,0 = xn.
In [16,17], Carlitz introduced the degenerate Bernoulli (Euler) and the generalized

degenerate Bernoulli (Euler) polynomials of order α ∈ C, respectively, by means of the
generating functions and series expansions:

z
eλ(z)− 1

ex
λ(z) =

∞

∑
n=0

Bn,λ(x)
zn

n!
, (3)

2
eλ(z) + 1

ex
λ(z) =

∞

∑
n=0

En,λ(x)
zn

n!
, (4)(

z
eλ(z)− 1

)α

ex
λ(z) =

∞

∑
n=0

B
(α)
n,λ(x)

zn

n!
, (5)(

2
eλ(z) + 1

)α

ex
λ(z) =

∞

∑
n=0

E
(α)
n,λ (x)

zn

n!
. (6)

These are valid in a suitable neighborhood of z = 0 and represent degenerate versions
of the classical Bernoulli and Euler polynomials, respectively. In [8], the notation βn(λ, x)
is used for the degenerate Bernoulli (3).

Since the degenerate exponentials (1) satisfy the same exponent product law as the
exponentials functions, i.e.,

ex+y
λ (z) = ex

λ(z) ey
λ(z),

we can use the generating relations (2), (5) and (6) to deduce the following addition
formulas:

(x + y)n,λ =
n

∑
k=0

(
n
k

)
(x)k,λ(y)n−k,λ, n ≥ 0, (7)

B
(α+β)
n,λ (x + y) =

n

∑
k=0

(
n
k

)
B

(α)
k,λ (x)B(β)

n−k,λ(y), n ≥ 0, (8)

E
(α+β)
n,λ (x + y) =

n

∑
k=0

(
n
k

)
E
(α)
k,λ (x)E (β)

n−k,λ(y), n ≥ 0. (9)

For a treatment of diverse aspects of some summation formulas and their applications,
the interested reader is referred to the relatively recent works [18–20].
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For r ∈ N0, λ ∈ R, and α ∈ C, definitions of generalized degenerate Euler–Genocchi
and generalized degenerate Euler–Genocchi polynomials of order α, respectively, have
recently been introduced in [14] (Section 2):

2zr

eλ(z) + 1
ex

λ(z) =
∞

∑
n=0

A
(r)

n,λ (x)
zn

n!
, (10)

zr
(

2
eλ(z) + 1

)α

ex
λ(z) =

∞

∑
n=0

A
(r,α)

n,λ (x)
zn

n!
. (11)

Remark 1. Notice that:

(i) If r ∈ N, then it follows immediately from (2), (4) and (10), that

A
(r)

0,λ (x) = A
(r)

1,λ (x) = · · · = A
(r)

r−1,λ(x) = 0, and

A
(r)

n,λ (x) =
n!

(n − r)!
(x)n,λ = n(r)E

(0)
n−r,λ(x), n ≥ r.

Furthermore, A
(0)

n,λ (x) = En,λ(x), n ≥ 0.
The first above identities guarantee that, up to multiplicative constants, it suffices to take
generalized degenerate Euler polynomials of order 0 instead of the so-called generalized
degenerate Euler–Genocchi polynomials as the main family to study. Similarly, the last identity
tells us that the generalized degenerate Euler polynomials coincides with the generalized
degenerate Euler–Genocchi polynomials of order 0.

(ii) In [14], Theorem 4 proves the following reduction formula:

A
(r,α)

n,λ (x) = n(r)E
(α)
n−r,λ(x), n ≥ r, n, r ∈ N0.

In particular, we obtain that up to multiplicative constants, the generalized degenerate Euler–
Genocchi polynomials of order α = 1 can be reduced to the generalized degenerate Euler
polynomials (4).

Hence, in order to avoid essentially redundant definitions (cf., [21]), the families of polynomials
eqrefeul-gen1 and (11) will not be considered in this paper.

3. The Generalized Degenerate Bernoulli and Euler Matrices and Their Properties

In this section, we present some novel properties for the generalized degenerate
Bernoulli and Euler matrices. Before that, we show the corresponding inversion-type
formulae for the generalized degenerate Bernoulli and Euler polynomials, respectively.

Theorem 1. For every n ≥ 0 and λ ∈ R, the degenerate Bernoulli polynomials satisfy the following
inversion-type formula:

(x)n,λ =
1

n + 1

n

∑
k=0

(
n + 1
k + 1

)
(1)k+1,λBn−k,λ(x) (12)

=
1

n + 1

n

∑
k=0

(
n + 1
k + 1

)
(1 − λ)k,λBn,λ(x). (13)

Proof. Let λ ∈ R. In view of (2) and (3), and the identity

z
∞

∑
n=0

(x)n,λ
zn

n!
=

∞

∑
n=0

(n + 1)(x)n,λ
zn+1

(n + 1)!
,
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we have

∞

∑
n=0

(n + 1)(x)n,λ
zn+1

(n + 1)!
=

[
∞

∑
n=0

(1)n,λ
zn

n!
− 1

][
∞

∑
n=0

Bn,λ(x)
zn

n!

]

=

[
∞

∑
n=0

(1)n+1,λ
zn+1

(n + 1)!

][
∞

∑
n=0

Bn,λ(x)
zn

n!

]
. (14)

From the use of the Cauchy product rule on the right-hand side of (14), it follows that

∞

∑
n=0

(n + 1)(x)n,λ
zn+1

(n + 1)!
=

∞

∑
n=0

[
n

∑
k=0

(
n + 1
k + 1

)
(1)k+1,λBn−k,λ(x)

]
zn+1

(n + 1)!
. (15)

Hence, comparing the coefficients of zn+1 on both sides of (15), we obtain (12).
Finally, (13) is a simple consequence of the identity (1)k+1,λ = (1 − λ)k,λ, for all

k ∈ N0.

Remark 2. Notice that the substitution of λ = 0 into (12) recovers the inversion formula for the
classical Bernoulli polynomials (cf., [22] (Equation (9))).

From a matrix framework, Theorem 1 has the following consequence.

Corollary 1. For n ∈ N0 and λ ∈ R, the matrix Tλ(x) =
(
1 (x)1,λ · · · (x)n,λ

)T can be
expressed as follows:

Tλ(x) = MλBλ(x)

=

⎛⎜⎜⎜⎜⎜⎜⎝
(1

1)(1)1,λ 0 0 · · · 0
1
2 (

2
2)(1)2,λ

1
2 (

2
1)(1)1,λ 0 · · · 0

1
3 (

3
3)(1)3,λ

1
3 (

3
2)(1)2,λ

1
3 (

3
1)(1)1,λ · · · 0

...
...

...
. . .

...
1

n+1 (
n+1
n+1)(1)n+1,λ

1
n+1 (

n+1
n )(1)n,λ

1
n+1 (

n+1
n−1)(1)n−1,λ · · · 1

n+1 (
n+1

1 )(1)1,λ

⎞⎟⎟⎟⎟⎟⎟⎠Bλ(x)

=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0

1
2 (1)2,λ 1 0 · · · 0
1
3 (1)3,λ (1)2,λ 1 · · · 0

...
...

...
. . .

...
1

n+1 (1)n+1,λ (1)n,λ
1
2 (1)n−1,λ · · · 1

⎞⎟⎟⎟⎟⎟⎠Bλ(x), (16)

where Bλ(x) =
(
B0,λ(x) B1,λ(x) · · · Bn,λ(x)

)T.

Theorem 2. For every n ≥ 0 and λ ∈ R. The degenerate Euler polynomials satisfy the following
inversion-type formula:

(x)n,λ =
1
2

n

∑
k=0

(
n
k

)
(1 + ak(λ))(1)k,λEn−k,λ(x) (17)

where

ak(λ) =

{
1, if k = 0,
0, if 1 ≤ k ≤ n,

Proof. From (2) and (4) we have
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2
∞

∑
n=0

(x)n,λ
zn

n!
=

[
∞

∑
n=0

(1)n,λ
zn

n!
+ 1

][
∞

∑
n=0

En,λ(x)
zn

n!

]

=

[
∞

∑
n=0

(1 + ak(λ))(1)n,λ
zn

n!

][
∞

∑
n=0

En,λ(x)
zn

n!

]

=
∞

∑
n=0

[
n

∑
k=0

(1 + ak(λ))

(
n
k

)
(1)k,λEn−k,λ(x)

]
zn

n!
,

where

ak(λ) =

{
1, if k = 0,
0, if 1 ≤ k ≤ n.

Therefore, by comparing the coefficients of zn on both sides, we obtain the identity.

Remark 3. Notice that if λ = 0 in (17), then we recover the inversion formula for the classical
Euler polynomials (cf., [22] (Equation (27))).

Theorem 2 has the following consequence.

Corollary 2. For n ∈ N0 and λ ∈ R, the matrix Tλ(x) =
(
1 (x)1,λ · · · (x)n,λ

)T can be
expressed as follows:

Tλ(x) =
1
2

NλEλ(x)

=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
(0

0)(1 + a0(λ))(1)0,λ 0 · · · 0
(1

1)(1 + a1(λ))(1)1,λ (1
0)(1 + a0(λ))(1)0,λ · · · 0

(2
2)(1 + a2(λ))(1)2,λ (2

1)(1 + a1(λ))(1)1,λ · · · 0
...

...
. . .

...
(n

n)(1 + an(λ))(1)n,λ ( n
n−1)(1 + an−1(λ))(1)n−1,λ · · · (n

0)(1 + a0(λ))(1)0,λ

⎞⎟⎟⎟⎟⎟⎟⎠Eλ(x)

=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0 0 · · · 0

(1)1,λ 2 0 0 · · · 0
(1)2,λ 2(1)1,λ 2 0 · · · 0

...
...

...
...

. . .
...

(1)n,λ n(1)n−1,λ
(n)2

2! (1)n−2,λ
(n)3

3! (1)n−3,λ · · · 2

⎞⎟⎟⎟⎟⎟⎟⎠Eλ(x), (18)

where Eλ(x) =
(
E0,λ(x) E1,λ(x) · · · En,λ(x)

)T and ak(λ) =

{
1, if k = 0,
0, if 1 ≤ k ≤ n.

Clearly, when λ ∈ R, the matrix Nλ is an invertible matrix.

Corollary 3. For n ∈ N0 and λ ∈ R, we have

Eλ(x) = 2(Nλ)
−1MλBλ(x).

The degenerate Pascal matrices corresponding to the generalized falling factorials can
be defined as follows:
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Definition 1. Let x be any nonzero real number. For λ ∈ R, the generalized degenerate Pascal
matrix of the first kind Pλ[x], is an (n + 1)× (n + 1) matrix whose entries are given by

pi,j,λ(x) :=

⎧⎪⎨⎪⎩
(i

j)(x)i−j,λ, i ≥ j,

0, otherwise.
(19)

Remark 4.

(i) It is clear that the matrix Pλ[x] tends to the generalized Pascal matrix of the first kind P[x] as
λ → 0.

(ii) For n ∈ N0, x ∈ R \ {0}, λ ∈ R, it is clear that P−λ[x] = Pn,λ[x], where Pn,λ[x] is the
Pascal functional matrix introduced in [5]. Hence, all results corresponding to P−λ[x] given
in [5] hold in this setting.

(iii) It is worth mentioning that the matrix entries (19) coincide with the entries of the variation
of Pascal functional matrix Pn[x, λ] introduced by Can and Cihat-Dağli in [8]. Hence, all
results corresponding to factorizing the matrix Pn[x, λ] by the summation matrices also hold
for Pλ[x], taking into account the suitable shift on the respective order for these matrices (cf.,
[8] (Lemma 1 and Theorem 2)).

(iv) If for x ∈ R \ {0}, λ ∈ R we consider the truncated exponential generating function for the
binomial-type polynomial sequence {(x)n,λ}n≥0 (cf., [9]):

f (t; x) =
n

∑
k=0

(x)k,λ
tk

k!
,

then, it is easy to see that

Pλ[x] = Pn[ f (x, t)]|t=0 = Pn

[
n

∑
k=0

(x)k,λ
tk

k!

]∣∣∣∣∣
t=0

,

where Pn[ f (t; x)] denotes the generalized Pascal functional matrix introduced by Yang and
Micek in [9].

From now on, we denote Pλ = Pλ[1]. The following theorem summarizes some
properties of Pλ[x].

Theorem 3. Let Pλ[x] ∈ Mn+1(R) be the generalized degenerate Pascal matrix of the first kind.
Then, the following statements hold.

(a) Special value. If the convention (0)0,λ = 1 is adopted, then it is possible to define

Pλ[0] := In+1.

(b) For x, y ∈ R, we have
Pλ[x + y] = Pλ[x]Pλ[y]. (20)

(c) Pλ[x] is an invertible matrix and its inverse is given by

P−1
λ [x] := (Pλ[x])

−1 = Pλ[−x]. (21)

Proof. Since part (a) is a straightforward consequence of the extension of Definition 1 for
the case x = 0, we shall omit its proof. Thus, we focus our efforts on the proof of parts (b)
and (c).
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Let Ai,j,λ(x, y) be the (i, j)-th entry of the matrix product Pλ[x]Pλ[y]. Then, by (7),
we have

Ai,j,λ(x, y) =
n

∑
k=0

(
i
k

)
(x)i−k,λ

(
k
j

)
(y)k−j,λ

=
i

∑
k=j

(
i
k

)
(x)i−k,λ

(
k
j

)
(y)k−j,λ

=
i

∑
k=j

(
i
j

)(
i − j
i − k

)
(x)i−k,λ(y)k−j,λ

=

(
i
j

) i−j

∑
k=0

(
i − j

k

)
(x)i−j−k,λ(y)k,λ

=

(
i
j

)
(x + y)i−j,λ,

which implies (20).
The substitution y = −x into (20) yields

Pλ[0] = Pλ[x]Pλ[−x] = Pλ[−x]Pλ[x].

By part (a), we have Pλ[0] = In+1, thus

Pλ[x]Pλ[−x] = In+1 = Pλ[−x]Pλ[x],

and (21) follows.

Corollary 4. For any λ ∈ R, r ∈ Z and s ∈ Z \ {0} we have

(a) Pr
λ = Pλ[r].

(b)
(

Pλ

[ r
s
])s

= Pr
λ.

Proof. Making the corresponding modifications, we apply the same reasoning as in the
proof of [7] (Corollary 3). Since Pλ = Pλ[1], Pλ[0], and P0

λ coincide with the identity matrix,
it follows from Theorem 3, by induction on r, that Pλ[r] = Pr

λ, for all r ∈ N0. Again, by
Theorem 3, we have that Pλ[−1] = P−1

λ , and a similar induction on |r| shows Pλ[r] = Pr
λ,

for all r < 0.
Next, by Theorem 3 and part (a), we obtain

(
Pλ

[ r
s
])s

= Pλ[r] = Pr
λ.

Remark 5. Part (b) of Corollary 4 shows that for a fixed λ ∈ R and any rational number x, Pλ[x]
is the x-th power of Pλ. Indeed, this property could be expected in the sense that it is satisfied for the
generalized Pascal matrix of the first kind P[x] (cf., [7]).

From the addition Formula (20), we proceed according to [7] and conclude that the
degenerate Pascal matrix Pλ[x] has an exponential form as follows: Assume that for λ ∈ R,
there is a matrix Lλ, such that Pλ[x] = exLλ . Then,

d
dx

Pλ[x] = LλexLλ = LλPλ[x],

and
d

dx
Pλ[x]

∣∣∣∣
x=0

= LλPλ[0] = Lλ In+1 = Lλ.
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Thus, there is at most one matrix Lλ such that Pλ[x] = exLλ . For instance, in the case
n = 3, we can find the only possible value as follows:

d
dx

Pλ[x] =

⎡⎢⎢⎣
0 0 0 0
1 0 0 0

−λ + 2x 2 0 0
x(−2λ + x) + x(−λ + x) + (−2λ + x)(−λ + x) 3(−λ + 2x) 3 0

⎤⎥⎥⎦,

and

Lλ =
d

dx
Pλ[x]

∣∣∣∣
x=0

=

⎡⎢⎢⎣
0 0 0 0
1 0 0 0
−λ 2 0 0
2λ2 −3λ 3 0

⎤⎥⎥⎦.

While, in the case n = 7, we have

Lλ =
d

dx
Pλ[x]

∣∣∣∣
x=0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
−λ 2 0 0 0 0 0 0
2λ2 −3λ 3 0 0 0 0 0
−6λ3 8λ2 −6λ 4 0 0 0 0
24λ4 −30λ3 20λ2 −10λ 5 0 0 0

−120λ5 144λ4 −90λ3 40λ2 −15λ 6 0 0
720λ6 −840λ5 504λ4 −210λ3 70λ2 −21λ2 7 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This suggests a general way of choosing Lλ. More precisely, the entries of Lλ are
given by

(Lλ)i,j =

⎧⎪⎨⎪⎩
sλ(i − j, 1)(i

j), if i ≥ j + 1,

0, otherwise,

where sλ(n, k) denotes the degenerate Stirling number of the first kind, defined as follows
(cf., [17,23] or [24] (Ch. 5)):

n

∑
k=0

sλ(n, k)xk = (x)n,λ. (22)

Furthermore, the entries of the matrix Lk
λ, for 1 ≤ k ≤ n and n ∈ N can be explicitly

represented as follows.

Lemma 1. For every n ∈ N and 1 ≤ k ≤ n, the entries of Lk
λ are given by the formula

(
Lk

λ

)
i,j
=

⎧⎪⎨⎪⎩
k!sλ(i − j, k)(i

j), if i ≥ j + k,

0, otherwise,

where sλ(n, k) is the degenerate Stirling number of the first kind (22).

Proof. It suffices to proceed by induction on k, taking into account that for k > n, we have
Lk

λ = 0.

Theorem 4. For every real numbers x, λ ∈ R, Pλ[x] = exLλ .
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Proof. By part (a) of Theorem 3, if x = 0, then exLλ = In+1 = Pλ[x]. Now, assume that
x �= 0 since Lk

λ = 0 for k > n, the infinite series for exLλ reduces to the finite sum

exLλ = In+1 + xLλ +
x2

2
L2

λ + · · ·+ xn

n!
Ln

λ. (23)

Applying Lemma 1, we can now read off the entries in exLλ . Clearly, it is a lower
triangular matrix, and the diagonal entries are all 1. Now suppose i > j, and let 0 ≤ k ≤
i − j. Then, using (22), we have that the (i, j)-th entry in the sum (23) is

(
exLλ

)
i,j
=

i−j

∑
k=0

xk

k!

(
Lk

λ

)
i,j
=

(
i
j

) i−j

∑
k=0

sλ(i − j, k)xk =

(
i
j

)
(x)i−j,λ = pi,j,λ(x).

This completes the proof.

As a consequence of Lemma 1 and Theorem 4, we obtain the following Appell-
type property.

Corollary 5. The generalized degenerate Pascal matrix of the first kind Pλ[x] satisfies the following
differential equations:

Dk
xPλ[x] = Lk

λPλ[x], 1 ≤ k ≤ n, (24)

where Dk
xPλ[x] is the matrix resulting from the k-th derivative with respect to x of each entry of

Pλ[x].

Definition 2. The generalized degenerate (n + 1)× (n + 1) Bernoulli matrix B
(α)
λ (x) of (real or

complex) order α is defined by the entries

B
(α)
i,j,λ(x) =

⎧⎪⎨⎪⎩
(i

j)B
(α)
i−j,λ(x), i ≥ j,

0, otherwise.

Remark 6.

(i) It is worth mentioning that the entries (2) of B
(α)
λ (x) coincide with the entries of the general-

ized degenerate Bernoulli matrix B
(α)
m [λ, x] introduced in [8], when these matrices are the

same order.
(ii) We denote by Bλ(x) the degenerate Bernoulli matrix B

(1)
λ (x).

The following result was established in [8] (Theorem 4).

Theorem 5. The generalized degenerate Bernoulli matrices B
(α)
λ (x) satisfy the following product

formulas.

B
(α+β)
λ (x + y) = B

(α)
λ (x)B

(β)
λ (y) = B

(β)
λ (x)B

(α)
λ (y)

= B
(α)
λ (y)B

(β)
λ (x). (25)

Definition 2 and the inversion-type Formula (12) lead to the following result:

Theorem 6. The generalized degenerate Pascal matrix of the first kind Pλ[x] can be factorized in
terms of Bλ(x) as follows:

Pλ[x] = Bλ(x)Hλ, (26)
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where Hλ is an (n + 1)× (n + 1) invertible matrix with entries

Hi,j,λ =

⎧⎪⎪⎨⎪⎪⎩
(

i
i − j

)
(1)i−j+1,λ

i − j + 1
, i ≥ j,

0, otherwise.

Proof. Let us consider n ∈ N0 and 0 ≤ i, j ≤ n such that i ≤ j. From Definition 2 and the
inversion-type Formula (12), we have

pi,j,λ(x) =

(
i
j

)
(x)i−j,λ =

(
i
j

)
i − j + 1

i−j

∑
k=0

(
i − j + 1

k + 1

)
(1)k+1,λBi−j−k,λ(x)

=
i−j

∑
k=0

[(
i − j

k

)
Bi−j−k,λ(x)

][(
i

i − j

)
(1)k+1,λ

k + 1

]
. (27)

Since the right hand member of (27) is the (i, j)-th entry of matrix product Bλ(x)Hλ,
we conclude that (26) holds.

The following example shows the validity of Theorem 6.

Example 1. Let us consider n = 2. It follows from Definition 1, (26), and a simple computation that

Pλ[x] =

⎡⎢⎢⎢⎢⎢⎣
(0

0)(x)0,λ 0 0

(1
0)(x)1,λ (1

1)(x)0,λ 0

(2
0)(x)2,λ (2

1)(x)1,λ (2
2)(x)0,λ

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
(0

0)B0,λ(x) 0 0

(1
0)B1,λ(x) (1

1)B0,λ(x) 0

(2
0)B2,λ(x) (2

1)B1,λ(x) (2
2)B0,λ(x)

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Bλ(x)

⎡⎢⎢⎢⎢⎢⎣
(0

0)(1)1,λ 0 0

(1
1)

(1)2,λ
2 (1

0)(1)1,λ 0

(2
2)

(1)3,λ
3 (2

1)
(1)2,λ

2 (2
0)(1)1,λ

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Hλ

Definition 3. The generalized degenerate (n + 1)× (n + 1) Euler matrix E
(α)
λ (x) is defined by

the entries

E
(α)

i,j,λ(x) =

⎧⎪⎨⎪⎩
(i

j)E
(α)

i−j,λ(x), i ≥ j,

0, otherwise.

We denote by Eλ(x) the degenerate Euler matrix E
(1)
λ (x).

Definition 3 and the inversion-type Formula (17) lead to the following result:

Theorem 7. The generalized degenerate Pascal matrix of the first kind Pλ[x] can be factorized in
terms of Eλ(x) as follows:

Pλ[x] = Eλ(x)Tλ, (28)
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where Tλ is an (n + 1)× (n + 1) invertible matrix with entries

Ti,j,λ =

⎧⎪⎪⎨⎪⎪⎩
(

i
i − j

)(
1 + ai−j(λ)

)
(1)i−j,λ

2
, i ≥ j,

0, otherwise.

Proof. Let us consider n ∈ N0 and 0 ≤ i, j ≤ n such that i ≤ j. From Definition 3 and the
inversion-type Formula (17), we have

pi,j,λ(x) =

(
i
j

)
(x)i−j,λ =

1
2

(
i
j

) i−j

∑
k=0

(
i − j

k

)
(1 + ak(λ))(1)k,λEi−j−k,λ(x)

=
i−j

∑
k=0

[(
i − j

k

)
Ei−j−k,λ(x)

][(
i
j

)
(1 + ak(λ))(1)k,λ

2

]
. (29)

Since the right-hand member of (29) is the (i, j)-th entry of matrix product Eλ(x)Tλ,
we conclude that (28) holds.

Combining Theorems 6 and 7 gives the following connection formula.

Corollary 6. For any λ, x ∈ R, we have

Eλ(x) = Bλ(x)HλT −1
λ .

The next result is an immediate consequence of Definition 3 and the addition Formula (9).

Theorem 8. The generalized degenerate Euler matrices E
(α)
λ (x) satisfy the following product

formulas.

E
(α+β)
λ (x + y) = E

(α)
λ (x) E

(β)
λ (y) = E

(β)
λ (x) E

(α)
λ (y)

= E
(α)
λ (y) E

(β)
λ (x). (30)

Proof. Let C(α,β)
i,j,λ (x, y) be the (i, j)-th entry of the matrix product E

(α)
λ (x) E

(β)
λ (y), then, by

the addition Formula (9), we have

C(α,β)
i,j,λ (x, y) =

n

∑
k=0

(
i
k

)
E
(α)

i−k,λ(x)
(

k
j

)
E
(β)
k−j,λ(y), n ≥ 0

=
i

∑
k=j

(
i
j

)(
i − j
i − k

)
E
(α)

i−k,λ(x)E (β)
k−j,λ(y)

=

(
i
j

) i−j

∑
k=0

(
i − j

k

)
E
(α)

i−j−k,λ(x)E (β)
k,λ (y),

=

(
i
j

)
E
(α+β)

i−j,λ (x + y), for i ≥ j,

which implies the first equality of (30). The second and third equalities of (30) can be
derived in a similar way.
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Corollary 7. Let (x1, . . . , xk) ∈ Rk. For αj real or complex parameters, the generalized degenerate

Euler matrices E
(α)
λ (x) satisfy the following product formulas, j = 1, . . . , k.

E
(α1+α2+···+αk)
λ (x1 + x2 + · · ·+ xk) =

k

∏
j=1

E
(αj)

λ (xj).

Proof. The application of induction on k gives the desired result.

Taking x = x1 = x2 = · · · = xk and α = α1 = α2 = · · · = αk, we obtain the following
simple formula for the powers of the generalized degenerate Euler matrices E

(α)
λ (x).

Corollary 8. The generalized degenerate Euler matrices E
(α)
λ (x) satisfy the following identity.(

E
(α)
λ (x)

)k
= E

(α)
λ (kx), k ∈ N.

Remark 7. Analogously, the above corollaries hold, mutatis mutandis, for the generalized degen-
erate Bernoulli matrices. More precisely, from Theorem 5, and using the same assumptions as
Corollaries 7 and 8, we obtain

B
(α1+α2+···+αk)
λ (x1 + x2 + · · ·+ xk) =

k

∏
j=1

B
(αj)

λ (xj),

(
B

(α)
λ (x)

)k
= B

(α)
λ (kx).

Theorem 9. The generalized degenerate Euler matrices E
(α)
λ (x) satisfy the following relations.

E
(α)
λ (x + y) = E

(α)
λ (x) Pλ[y] = Pλ[x] E

(α)
λ (y)

= E
(α)
λ (y) Pλ[x]. (31)

Proof. The substitution β = 0 into (30) yields

E
(α)
λ (x + y) = E

(α)
λ (x) E

(0)
λ (y) = E

(0)
λ (x) E

(α)
λ (y)

= E
(α)
λ (y) E

(0)
λ (x).

Since E
(0)
λ (x) = Pλ[x], we obtain

E
(α)
λ (x + y) = Pλ[x]E

(α)
λ (y).

A similar argument allows us to show that E (α)(x + y) = E (α)(x)Pλ[y] and E
(α)
λ (x +

y) = E
(α)
λ (y)Pλ[x]. This completes the proof of (31).

4. Conclusions

The aim of our research was to determine novel properties of generalized degenerate
Bernoulli and Euler matrices. First, we focused our attention on some matrix-inversion
formulae involving these matrices. Secondly, we showed some analytic properties for the
generalized degenerate Pascal matrix of the first kind and provided some factorizations for
the generalized degenerate Euler polynomial matrix in terms of the generalized degenerate
Pascal matrix of the first kind.

Finally, it is worth mentioning that the use of the Cauchy product of the power series
is the technique behind some of our formulations. This approach is not a novelty; however,
it has been useful for generating new families of special polynomials (satisfying or not
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Appell-type conditions), even very recently. In this regard, we refer the interested reader
to [25,26] and the references therein for a detailed exposition about very recent trends in
this broad field.
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Abstract: We study the sequence of polynomials {Sn}n≥0 that are orthogonal with respect to the gen-

eral discrete Sobolev-type inner product 〈 f , g〉s =
∫

f (x)g(x)dμ(x) + ∑N
j=1 ∑

dj

k=0 λj,k f (k)(cj)g(k)(cj),
where μ is a finite Borel measure whose support supp(μ) is an infinite set of the real line, λj,k ≥ 0,
and the mass points ci, i = 1, . . . , N are real values outside the interior of the convex hull of supp(μ)
(ci ∈ R \ Ch(supp(μ))◦). Under some restriction of order in the discrete part of 〈·, ·〉s, we prove that
Sn has at least n − d∗ zeros on Ch(supp(μ))◦, being d∗ the number of terms in the discrete part of
〈·, ·〉s. Finally, we obtain the outer relative asymptotic for {Sn} in the case that the measure μ is the
classical Laguerre measure, and for each mass point, only one order derivative appears in the discrete
part of 〈·, ·〉s.

Keywords: orthogonal polynomials; Sobolev orthogonality; zeros location; asymptotic behavior

MSC: 41A60; 42C05; 33C45; 33C47

1. Introduction

Let μ be a positive finite Borel measure with finite moments, whose support Δ ⊂ R

contains infinitely many points. We will denote by Ch(A) the convex hull of a set A and by
A◦ its interior.

Let {Pn}n≥0 be the monic orthogonal polynomial sequence with respect to the inner
product

〈 f , g〉μ =
∫

Δ
f (x)g(x)dμ(x).

An inner product is called standard if the multiplication operator is symmetric with
respect to the inner product. Obviously, 〈x f , g〉μ = 〈 f , xg〉μ, i.e., 〈·, ·〉μ is standard. Signif-
icant parts of the applications of orthogonal polynomials in mathematics and particular
sciences are based on the following three consequences of this fact.

1. The polynomial Pn has exactly n real simple zeros in Ch(Δ)
◦. Moreover, there is a zero

of Pn−1 between any two consecutive zeros of Pn.
2. The three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γ2
nPn−1(x); P0(x) = 1, P−1(x) = 0,

where γn = ‖Pn‖μ/‖Pn−1‖μ for n ≥ 1, βn = 〈Pn, xPn〉μ/‖Pn‖2
μ and ‖ · ‖μ =

√
〈·, ·〉μ

denotes the norm induced by 〈·, ·〉μ.
3. For the kernel polynomials

Mathematics 2023, 11, 1956. https://doi.org/10.3390/math11081956 https://www.mdpi.com/journal/mathematics126
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Kn(x, y) =
n

∑
k=0

Pk(x)Pk(y)

‖Pk‖2
μ

, (1)

we have the Christoffel–Darboux identities

Kn(x, y) =

⎧⎨⎩
Pn+1(x)Pn(y)−Pn+1(y)Pn(x)

‖Pn‖2
μ (x−y)

, if x �= y,
P′

n+1(x)Pn(x)−Pn+1(x)P′
n(x)

‖Pn‖2
μ

, if x = y.
(2)

These identities play a fundamental role in the treatment of Fourier expansions with
respect to a system of orthogonal polynomials (see [1], Section 2.2). For a review of the
use of (1) and (2) in the spectral theory of orthogonal polynomials, we refer the reader
to [2]. In addition, see the usual references [3–5], for a basic background on these and other
properties of {Pn}n≥0.

Let (a, b) = Ch(supp(μ))◦, N, dj ∈ Z+, λj,k ≥ 0, for j = 1, . . . , N, k = 0, 1, . . . , dj,
{c1, c2, . . . , cN} ⊂ R\(a, b), where ci �= cj if i �= j and I+ = {(j, k) : λj,k > 0}. We consider
the following Sobolev-type (or discrete Sobolev) inner product

〈 f , g〉s =
∫

f (x)g(x)dμ(x) +
N

∑
j=1

dj

∑
k=0

λj,k f (k)(cj)g(k)(cj)

=
∫

f (x)g(x)dμ(x) + ∑
(j,k)∈I+

λj,k f (k)(cj)g(k)(cj), (3)

where f (k) denotes the k-th derivative of the function f . Without loss of generality, we also
assume {(j, dj)}N

j=1 ⊂ I+ and d1 ≤ d2 ≤ · · · ≤ dN . For n ∈ Z+, we shall denote by Sn the
monic polynomial of the lowest degree satisfying

〈xk, Sn〉s = 0, for k = 0, 1, . . . , n − 1. (4)

It is easy to see that for all n ≥ 0, there exists such a unique polynomial Sn of degree
n. This is deduced by solving a homogeneous linear system with n equations and n + 1
unknowns. Uniqueness follows from the minimality of the degree for the polynomial
solution. We refer the reader to [6,7] for a review of this type of non-standard orthogonality.

Clearly, (3) is not standard, i.e., 〈xp, q〉s �= 〈p, xq〉s, for some p, q ∈ P. It is well known
that the properties of orthogonal polynomials with respect to standard inner products differ
from those of the Sobolev-type polynomials. In particular, the zeros of the Sobolev-type
polynomials can be complex, or if real, they can be located outside the convex hull of the
support of the measure μ, as can be seen in the following example.

Example 1 (Zeros outside the convex hull of the measures supports). Set

〈 f , g〉s =
∫ ∞

0
f (x)g(x)e−xdx + 2 f ′(−1)g′(−1),

then the corresponding second-degree monic Sobolev-type orthogonal polynomial is S2(z) = z2 − 2,
whose zeros are z1,2 = ±

√
2. Note that −

√
2 �∈ [−1, ∞).

Let {Qn}n≥0 be the sequence of monic orthogonal polynomials with respect to the
inner product

〈 f , g〉μρ =
∫

f (x) g(x) dμρ(x), where ρ(x) = ∏
cj≤a

(
x − cj

)dj+1∏
cj≥b

(
cj − x

)dj+1

and dμρ(x) = ρ(x)dμ(x).
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Note that ρ is a polynomial of degree d = ∑N
j=1(dj + 1), which is positive on (a, b).

If n > d, from (4), {Sn} satisfies the following quasi-orthogonality relations with respect
to μρ

〈Sn, f 〉μρ = 〈Sn, ρ f 〉μ =
∫

Sn(x) f (x)ρ(x)dμ(x) = 〈Sn, ρ f 〉s = 0,

for f ∈ Pn−d−1, where Pn is the linear space of polynomials with real coefficients and the
degree at most n ∈ Z+. Hence, the polynomial Sn is quasi-orthogonal of order d with respect to
μρ and by this argument, we obtain that Sn has at least (n − d) changes of sign in (a, b).

The results obtained for measures μ with bounded support (see [8], (1.10)) suggest
that the number of zeros located in the interior of the support of the measure is closely
related to d∗ = |I+|, the number of terms in the discrete part of 〈·, ·〉s (i.e., λj,k > 0), instead
of this greater quantity d.

Our first result, Theorem 1, goes in this direction for the case when the inner product is
sequentially ordered. This kind of inner product is introduced in Section 2 (see Definition 1).

Theorem 1. If the discrete Sobolev inner product (3) is sequentially ordered, then Sn has at least
n − d∗ changes of sign on (a, b), where d∗ is the number of positive coefficients λj,k in (3).

Previously, this result was obtained for more restricted cases in ([9], Th. 2.2) and ([10],
Th. 1). In ([9], Th. 2.2), the authors proved this result for the case N = 1. In ([10], Th. 1),
the notion of a sequentially ordered inner product is more restrictive than here, because it
did not include the case when the Sobolev inner product has more than one derivative
order at the same mass point.

In the second part of this paper, we focus our attention on the Laguerre–Sobolev-type
polynomials (i.e., dμ = xαe−xdx, with α > −1). In the case of the inner product, (3) takes
the form

〈 f , g〉s =
∫ ∞

0
f (x)g(x)xαe−xdx +

N

∑
j=1

λj f (dj)(cj)g(dj)(cj), (5)

where λj := λj,dj
> 0, cj < 0, for j = 1, 2, . . . , N, we obtain the outer relative asymptotic of

the Laguerre–Sobolev-type polynomials.

Theorem 2. Let {Lα
n}n≥0 be the sequence of monic Laguerre polynomials and let {Sn}n≥0 be the

monic orthogonal polynomials with respect to the inner product (5). Then,

Sn(x)
Lα

n (x)
⇒

N

∏
j=1

⎛⎝√−x −
√
|cj|

√−x +
√
|cj|

⎞⎠, K ⊂ C \R+. (6)

Throughout this paper, we use the notation fn ⇒ f , K ⊂ U when the sequence of
functions fn converges to f uniformly on every compact subset K of the region U.

Combining this result with Theorem 1, we obtain that the Sobolev polynomials Sn,
orthogonal with respect to a sequentially ordered inner product in the form (5), have at
least n–N zeros in (0, ∞) and, for sufficiently large n, each one of the other N zeros are
contained in a neighborhood of each mass point cj (j = 1, . . . , N). Then, we have located all
zeros of Sn and we obtain that for a sufficiently large n, they are simple and real, as in the
Krall case (see [11]) or the Krall–Laguerre-type orthogonal polynomial (see [12]). This is
summarized in the following corollary.

Corollary 1. Let μ = μα be the classical Laguerre measure (dμα(x) = xαe−xdx) and (5) a
sequentially ordered discrete Sobolev inner product. Then, the following statements hold:

1. Every point cj attracts exactly one zero of Sn for sufficiently large n, while the remaining n–N
zeros are contained in (0, ∞). This means:
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For every r > 0, there exists a natural value N such that if n ≥ N , then the n zeros of Sn
{ξi}n

i=1 satisfy

ξ j ∈ B(cj, r) for j = 1, . . . , N and ξi ∈ (0, ∞) for i = N + 1, N + 2, . . . , n.

2. The zeros of Sn are real and simple for large-enough values of n.
3. The zeros of {Sn}∞

n=1 are at a finite distance from (0, ∞). This means that there exists a
positive constant M such that if ξ is a zero of Sn, then

d(ξ, (0, ∞)) := inf
x>0

{|x − ξ|} < M.

Section 2 is devoted to introducing the notion of a sequentially ordered Sobolev inner
product and to prove Theorem 1. In Section 3, we summarize some auxiliary properties
of Laguerre polynomials to be used in the proof of Theorem 2. Some results about the
asymptotic behavior of the reproducing kernels are given. The aim of the last section is to
prove Theorem 2 and some of its consequences stated in Corollary 2.

2. Sequentially Ordered Inner Product

Definition 1 (Sequentially ordered Sobolev inner product). Consider a discrete Sobolev inner
product in the general form (3) and assume d1 ≤ d2 ≤ · · · ≤ dN without loss of generality. We say
that a discrete Sobolev inner product is sequentially ordered if the conditions

Δk ∩ Ch

(
∪k−1

i=0 Δi

)◦
= ∅, k = 1, 2, . . . , dN ,

hold, where

Δk =

{
Ch
(
supp(μ) ∪ {cj : λj,0 > 0}

)
, if k = 0,

Ch

(
{cj : λj,k > 0}

)
, if 1 ≤ k ≤ dN .

(7)

Note that Δk is the convex hull of the support of the measure associated with the k-th
order derivative in the Sobolev inner product (3). Let us see two examples.

Example 2 (Sequentially ordered inner product).
Set

〈 f , g〉s =
∫ ∞

0
f (x)g(x)e−xdx + 10 f (−1)g(−1) + 5 f ′(−3)g′(−3)

+ 5 f ′(−9)g′(−9) + 20 f ′′′(−10)g′′′(−10),

then the corresponding fifth-degree Sobolev orthogonal polynomial has the following exact expression

S5(x) =x5 +
380961336355365
16894750106161

x4 +
1836311881214045
16894750106161

x3 − 7830454972601355
16894750106161

x2

− 36972053870326650
16894750106161

x − 22386262325875230
16894750106161

,

whose zeros are approximately ξ1 ≈ 4.46, ξ2 ≈ −0.74, ξ3 ≈ −2.8, ξ4 ≈ −11.74 + 2.51i and
ξ5 ≈ −11.74 − 2.51i. Note that four of them are outside of (0, ∞) and two are even complex.

Example 3 (Non-sequentially ordered inner product).

Set 〈 f , g〉 =
∫ ∞

0
f (x)g(x) e−xdx + f ′(−15)g′(−15) + f ′′(−9)g′′(−9), then the corresponding

fifth-degree Sobolev orthogonal polynomial has the following exact expression
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S5(x) =x5 +
55079160
21682477

x4 − 5053767275
21682477

x3 +
40953207555

21682477
x2

− 98030649090
21682477

x +
42523040550

21682477
,

whose zeros are approximately ξ1 ≈ 0.55, ξ2 ≈ 3.36, ξ3 ≈ 6.66 + 3.02i, ξ4 ≈ 6.66 − 3.02i and
ξ5 ≈ −19.77. Note that, in spite of Theorem 1, d∗ = 2 and three of the zeros of S5 are outside of
(0, ∞), with two of them as not even real.

In the sequentially ordered example (Example 2), S5 has exactly 1 = 5 − 4 = n − d∗

simple zeros on the interior of the convex hull of the support of the Laguerre measure
(0, ∞), and thus, the bound of Theorem 1 is sharp. In addition, this example shows that the
remaining d∗ zeros might even be complex, although Corollary 1 shows that this does not
happen when n is sufficiently large.

On the other hand, in the non-sequentially ordered example (Example 3), this condition
is not satisfied, since S5 has only 2 < 3 = 5 − 2 = n − d∗ zeros on (0, ∞), showing that the
sequential order plays a main role in the localization of the zeros of Sn, at least to obtain
this property for every value of n.

Throughout the remainder of this section, we will consider inner products of the
form (3) that are sequentially ordered. The next lemma is an extension of ([13], Lemma 2.1)
and ([10], Lemma 3.1).

Lemma 1. Let {Ii}m
i=0 be a set of m + 1 intervals on the real line and let P be a polynomial with

real coefficients of degree ≥ m. If

Ik ∩ Ch

(
∪k−1

i=0 Ii

)◦
= ∅, k = 1, 2, . . . , m, (8)

then

Nz(P; J) + N◦(P; I0 \ J) +
m

∑
i=1

N◦
(

P(i); Ii

)
≤ Nz

(
P(m); J

)
+ N◦

(
P(m); Ch(∪m

i=0 Ii) \ J
)
+ m, (9)

for every closed subinterval J of I0
◦ (both empty set and unitary sets are assumed to be intervals).

Here, given a real set A and a polynomial P, N◦(P; A) denotes the number of values where the
polynomial P vanishes on A (i.e., zeros of P on A without counting multiplicities), and Nz(P; A)
denotes the total number of zeros (counting multiplicities) of P on A.

Proof. First, we point out the following consequence of Rolle’s Theorem. If I is a real
interval and J is a closed subinterval of I◦, then

Nz(P; J) + N◦(P; I \ J) ≤ Nz
(

P′; J
)
+ N◦

(
P′; I◦ \ J

)
+ 1. (10)

It is easy to see that (9) holds for m = 0. We now proceed by induction on m. Suppose that
we have m + 1 intervals {Ii}m

i=0 satisfying (8); thus, the first m intervals {Ii}m−1
i=0 also satisfy

(8), and we obtain (9) by induction hypothesis (taking m − 1 instead of m). Then

Nz(P; J) + N◦(P; I0 \ J) +
m

∑
i=1

N◦
(

P(i); Ii

)
,

≤ Nz

(
P(m−1); J

)
+ N◦

(
P(m−1); Ch

(
∪m−1

i=0 Ii

)
\ J
)
+ m − 1 + N◦

(
P(m); Im

)
,

≤ Nz

(
P(m); J

)
+ N◦

(
P(m); Ch

(
∪m−1

i=0 Ii

)◦
\ J
)
+ m + N◦

(
P(m); Im

)
,

≤ Nz

(
P(m); J

)
+ N◦

(
P(m); Ch(∪m

i=0 Ii) \ J
)
+ m,
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where in the second inequality, we have used (10).

As an immediate consequence of Lemma 1, the following result is obtained.

Lemma 2. Under the assumptions of Lemma 1, we have

Nz(P; J) + N◦(P; I0 \ J) +
m

∑
i=1

N◦
(

P(i); Ii

)
≤ deg P (11)

for every J closed subinterval of I0
◦. In particular, for J = ∅, we obtain

m

∑
i=0

N◦
(

P(i); Ii

)
≤ deg P. (12)

Lemma 3. Let {(ri, νi)}M
i=1 ⊂ R×Z+ be a set of M ordered pairs. Then, there exists a unique

monic polynomial UM of minimal degree (with 0 ≤ deg UM ≤ M), such that

U(νi)
M (ri) = 0, i = 1, 2, . . . , M. (13)

Furthermore, if the intervals Ik = Ch({ri : νi = k}), k = 0, 1, 2, . . . , νM, satisfy (8), then UM
has degree uM = min IM − 1, where

IM = {i : 1 ≤ i ≤ M and νi ≥ i} ∪ {M + 1}.

Proof. The existence of a nonidentical zero polynomial with degree ≤ M satisfying (13)
reduces to solving a homogeneous linear system with M equations and M + 1 unknowns
(its coefficients). Thus, a non-trivial solution always exists. In addition, if we suppose that
there exist two different minimal monic polynomials UM and ŨM, then the polynomial
ÛM = UM − ŨM is not identically zero, it satisfies (13), and deg ÛM < deg UM. Thus,
if we divide ÛM by its leading coefficient, we reach a contradiction.

The rest of the proof runs by induction on the number of points M. For M = 1,
the result follows taking

U1(x) =

{
x − r1, if ν1 = 0,
1, if ν1 ≥ 1.

Suppose that, for each sequentially ordered sequence of M ordered pairs, the corre-
sponding minimal polynomial UM has degree uM.

Let {(ri, νi)}M
i=1 be a set of M ordered pairs satisfying (8). Obviously, {(ri, νi)}M−1

i=1 also
satisfies (8) and UM satisfies (13) for i = 1, 2, . . . , M − 1; thus, we obtain deg UM−1 = uM−1
and deg UM ≥ deg UM−1. Now, we divide the proof into two cases:

1. If uM = M, then for all 1 ≤ i ≤ M we have νi < i, which yields

deg UM ≥ deg UM−1 = uM−1 = M − 1 ≥ νM.

Since {(ri, νi)}M
i=1 satisfies (8), from (12) we obtain

M ≤
νM

∑
i=0

N◦
(

U(i)
M ; Ii

)
≤ deg UM,

which implies that deg UM = M = uM.
2. If uM ≤ M − 1, then there exists a minimal j (1 ≤ j ≤ M), such that νj ≥ j, and νi < i

for all 1 ≤ i ≤ j − 1. Therefore, uM = j − 1 = uM−1. From the induction hypothesis,
we obtain

deg UM−1 = uM−1 = j − 1 ≤ νj − 1 ≤ νM − 1,

which gives U(νM)
M−1 ≡ 0. Hence, UM ≡ UM−1 and, consequently, we obtain

deg UM = deg UM−1 = uM−1 = uM.

131



Mathematics 2023, 11, 1956

Note that, in Lemma 3, condition (8) is necessary for asserting that the polynomial UM
has degree uM. If we consider {(−1, 0), (1, 0), (0, 1)}, whose corresponding convex hulls
I0 = [−1, 1] and I1 = {0} do not satisfy (8), we obtain U3(x) = x2 − 1 and u3 = 3 �= deg U3.

Now we are able to prove the zero localization theorem for sequentially ordered
discrete Sobolev inner products.

Proof of Theorem 1. Let ξ1 < ξ2 < · · · < ξη be the points on (a, b) = Ch(supp(μ))◦ where
Sn changes sign and suppose that η < n − d∗. Consider the set of ordered pairs

{(ri, νi)}d∗+η
i=1 = {(ξi, 0)}η

i=1 ∪ {(cj, k) : ηj,k > 0, j = 1, 2, . . . , N, k = 1, . . . , dj}.

Since 〈·, ·〉s is sequentially ordered, the intervals Ik = Δk for k = 0, 1, . . . , νN
(see (7)) satisfy (8) (we can assume without loss of generality that ν1 ≤ ν2 ≤ · · · ≤ νd∗+η).
Consequently, from Lemma 3, there exists a unique monic polynomial Ud∗+η of minimal
degree, such that

Ud∗+η(ξi) = 0; for i = 1, . . . , η,

U(k)
d∗+η(cj) = 0; for each (j, k) : ηj,k > 0, (14)

and deg Ud∗+η = min Id∗+η − 1 ≤ d∗ + η, where

Id∗+η = {i : 1 ≤ i ≤ d∗ + η and νi ≥ i} ∪ {d∗ + η + 1}. (15)

Now, we need to consider the following two cases.

1. If deg Ud∗+η = d∗ + η, from (15), we obtain deg Ud∗+η ≥ νη+d∗ + 1. Thus, taking the
closed interval J = [ξ1, ξη ] ⊂ (a, b) in (11), we obtain

d∗ + η ≤
νd∗+η

∑
k=0

N◦
(

U(k)
d∗+η ; Ik

)
≤ Nz

(
Ud∗+η ; [ξ1, ξη ]

)
+ N◦

(
Ud∗+η ; I0 \ [ξ1, ξη ]

)
+

νd∗+η

∑
k=1

N◦
(

U(k)
d∗+η ; Ik

)
≤ deg Ud∗+η = d∗ + η.

2. If deg Ud∗+η < d∗ + η, from (15), there exists 1 ≤ j ≤ d∗ + η such that deg Ud∗+η =
j − 1, νj ≥ j and νi ≤ i − 1 for i = 1, 2, . . . , j − 1. Hence,

νj−1 + 1 ≤ j − 1 = deg Ud∗+η

and, again, from (11) we have

j − 1 ≤
νj−1

∑
k=0

N◦
(

U(k)
d∗+η ; Ik

)
≤ Nz

(
Ud∗+η ; [ξ1, ξη ]

)
+ N◦

(
Ud∗+η ; I0 \ [ξ1, ξη ]

)
+

νj−1

∑
k=1

N◦
(

U(k)
d∗+η ; Ik

)
≤ deg Ud∗+η = j − 1.

In both cases, we obtain that Ud∗+η has no other zeros in I0 than those given by

construction, and from N◦
(

Ud∗+η ; [ξ1, ξη ]
)
= Nz

(
Ud∗+η ; [ξ1, ξη ]

)
, all the zeros of Sn on I◦

are simple. Thus, in addition to (14), we obtain that SnUd∗+η does not change sign on I◦.
Now, since deg Ud∗+η ≤ d∗ + η < n, we arrive at the contradiction

0 = 〈Sn, Ud∗+η〉 =
∫

Sn(x)Ud∗+η(x)dμ(x) +
N

∑
j=1

dj

∑
k=0

λj,kS(k)
n (cj)U

(k)
d∗+η(cj)

=
∫ b

a
Sn(x)Ud∗+η(x)dμ(x) �= 0.
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3. Auxiliary Results

The family of Laguerre polynomials is one of the three very well-known classical
orthogonal polynomials families (see [3–5]). It consists of the sequence of polynomials
{L(α)

n } that are orthogonal with respect to the measure dμ = xαe−xdx, x ∈ (0, ∞), for
α > −1, and that are normalized by taking (−1)n

n! as the leading coefficient of the n-th
degree polynomial of the sequence. Laguerre polynomials play a key role in applied
mathematics and physics, where they are involved in the solutions of the wave equation of
the hydrogen atom (c.f. [14]).

Some of the structural properties of this family are listed in the following proposition
in order to be used later.

Proposition 1. Let {L(α)
n }n≥0 (note the brackets in parameter α) be the sequence of Laguerre

polynomials and let {Lα
n}n≥0 be the monic sequence of Laguerre polynomials. Then, the following

statements hold.

1. For every n ∈ N,

L(α)
n (x) =

(−1)n

n!
Lα

n(x). (16)

2. Three-term recurrence relation. For every n ≥ 1,

xLα
n(x) = Lα

n+1(x) + (2n + α + 1)Lα
n(x) + n(n + α)Lα

n−1(x)

xL(α)
n (x) = −(n + 1)L(α)

n+1(x) + (2n + α + 1)L(α)
n (x)− (n + α)L(α)

n−1(x)

with L(α)
−1 ≡ Lα

−1 = 0, and L(α)
0 ≡ Lα

0 ≡ 1.
3. Structure relation. For every n ∈ N,

L(α)
n (x) = L(α+1)

n (x)− L(α+1)
n−1 (x).

4. For every n ∈ N,

||L(α)
n ||2μ = Γ(α + 1)

(
n + α

n

)
=

Γ(α + n + 1)
n!

. (17)

In addition, we have
||Lα

n||2μ = n!Γ(n + α + 1)

5. Hahn condition. For every n ∈ N,

[L(α)
n ]′(x) = −L(α+1)

n−1 (x). (18)

6. Outer strong asymptotics (Perron’s asymptotics formula on C \R+). Let α ∈ R. Then

L(α)
n (x) =

ex/2nα/2−1/4e2(−nx)1/2

2π1/2(−x)α/2+1/4

{
p−1

∑
k=0

Ck(x)n−k/2 +O(n−p/2)

}
. (19)

Here, {Ck(x)}p−1
k=0 are certain analytic functions of x independent of n, with C0 ≡ 1. This

relation holds for x in the complex plane with a cut along the positive part of the real axis.
The bound for the remainder holds uniformly in every closed domain with no points in common
with x ≥ 0 (see [5], Theorem 8.22.3).

Now, we summarize some auxiliary lemmas to be used in the proof of Theorem 2 (see
([15], Lem. 1) and ([16], Prop. 6)).
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Lemma 4. For z ∈ C \ [0, ∞), α, β ∈ R and j, k ≥ −n we have

L(α+β)
n+j (z)

L(α)
n+k(z)

=

⎧⎨⎩1 + (j−k)
√−z√
n +

(
α
2 − 1

4 − z (j−k)
2

)
(j−k)

n +Oz

(
n− 3

2

)
if β = 0( √

n√−z

)β(
1 +Oz

(
n−1/2

))
if β �= 0.

(20)

where Oz(n−j) denotes some analytic function sequence {gn(z)}∞
n=1 such that {njgn} is uniformly

bounded on every compact subset of C \ [0, ∞).

To study the outer relative asymptotic between the standard Laguerre polynomials
and the Laguerre–Sobolev orthogonal polynomials (see Formula (6)), we need to compute
the behavior of the Laguerre kernel polynomials and their derivatives when n approaches
infinity. To this end, we prove the following auxiliary result, which is an extension of ([17],
Ch. 5, Th. 16).

Lemma 5. Let G and G′ be two open subsets of the complex plane and fn : G × G′ −→ C be
a sequence of functions that are analytic with respect to each variable separately. If { fn}∞

n=1 is a
uniformly bounded sequence on each set in the form K × K′, where K ⊂ G and K′ ⊂ G′ are compact
sets, then any of its partial derivative sequences are also uniformly bounded on each set in the form
K × K′.

Proof. Note that it is sufficient to prove this for the first derivative order with respect
to any of the variables and then proceed by induction. Let K ⊂ G and K′ ⊂ G′ be two
compact sets. Denote Gc = C \ G, d(K, Gc) = inf

z∈K,w∈Gc
|z − w|, r = d(K, Gc)/2 > 0 and

B(z, r) = {ζ ∈ C : |z − ζ| < r}. Take K∗ as the closure of
⋃

z∈K B(z, r); thus, K∗ is a compact
subset of G. Thus, there exists a positive constant M > 0 such that | fn(z, w)| ≤ M for all
z ∈ K∗, w ∈ K′ and n ∈ N. Hence, for all z ∈ K, w ∈ K′ and n ∈ N, we obtain∣∣∣∣∂ fn

∂z
(z, w)

∣∣∣∣ = ∣∣∣∣ 1
2πi

∫
c(z,r)

fn(ξ, w)

(ξ − z)2 dξ

∣∣∣∣ ≤ V(c(z, r))
2π

max
ξ∈c(z,r)

{ | fn(ξ, w)|
|ξ − z|2

}
=

2πr
2πr2 max

ξ∈c(z,r)
{| fn(ξ, w)|} ≤ M

r
,

where c(z, r) denotes the circle with center at z, radius r and length V(c(z, r)).

From the Fourier expansion of Sn in terms of the basis {Lα
n}n�0 we obtain

Sn(x) =
n

∑
i=0

〈Sn, Lα
i 〉μ

Lα
i (x)∥∥Lα

i

∥∥2
μ

= Lα
n(x) +

n−1

∑
i=0

〈Sn, Lα
i 〉μ

Lα
i (x)∥∥Lα

i

∥∥2
μ

= Lα
n(x) +

n−1

∑
i=0

⎛⎝〈Sn, Lα
i 〉s − ∑

(j,k)∈I+

λj,kS(k)
n (cj)(Lα

i )
(k)(cj)

⎞⎠ Lα
i (x)∥∥Lα

i

∥∥2
μ

= Lα
n(x)− ∑

(j,k)∈I+

λj,kS(k)
n (cj)

n−1

∑
i=0

Lα
i (x)

(
Lα

i
)(k)

(cj)∥∥Lα
i

∥∥2
μ

= Lα
n(x)− ∑

(j,k)∈I+

λj,kS(k)
n (cj)K

(0,k)
n−1 (x, cj), (21)

where we use the notation K(j,k)
n (x, y) =

∂j+kKn(x, y)
∂jx∂ky

to denote the partial derivatives of

the kernel polynomials defined in (1). Differentiating Equation (21) �-times and evaluating
then at x = ci for each ordered pair (i, �) ∈ I+, we obtain the following system of d∗ linear
equations and d∗ unknowns S(k)

n (cj).
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(Lα
n)

(�)(ci) =
(

1 + λi,�K
(�,�)
n−1 (ci, ci)

)
S(�)

n (ci) +

dj

∑
(j,k)∈I+
(j,k) �=(i,�)

λj,kK(�,k)
n−1 (ci, cj)S

(k)
n (cj). (22)

Lemma 6. The Laguerre kernel polynomials and their derivatives satisfy the following behavior
when n approaches infinity for x, y ∈ C \ [0, ∞)

K(i,j)
n−1(x, y) =

∂i+jKn−1

∂ix∂jy
(x, y) =

L(α+i)
n (x)L(α+j)

n (y)

nα− 1
2 (
√−x +

√−y)

(
(−1)i+j +Ox,y(n−1/2)

)
, i, j ≥ 0,

where Ox,y(n−k) denotes some sequence of functions {gn(x, y)}∞
n=1 that are holomorphic with

respect to each variable and whose sequence {nkgn} is uniformly bounded on every set K × K′, such
that K and K′ are compact subsets of C \R+.

Proof. The proof is by induction on k = i + j. First, suppose k = 0 (i.e., i = j = 0) and split
the proof into two cases according to whether x = y or not. If x = y, from (2), (16), (18)
and (20), we obtain

‖L(α)
n−1‖2

μ

n
Kn−1(x, x) =L(α)

n (x)(L(α)
n−1)

′(x)− (L(α)
n )′(x)L(α)

n−1(x)

=L(α+1)
n−1 (x)L(α)

n−1(x)− L(α+1)
n−2 (x)L(α)

n (x)

=L(α+1)
n−2 (x)L(α)

n−1(x)

⎛⎝ L(α+1)
n−1 (x)

L(α+1)
n−2 (x)

− L(α)
n (x)

L(α)
n−1(x)

⎞⎠
=L(α+1)

n−2 (x)L(α)
n−1(x)

[
1 +

√−x√
n

+

[
α + 1

2
− 1

4
− x

2

]
1
n
+Ox(n−3/2)

−
(

1 +
√−x√

n
+

[
α

2
− 1

4
− x

2

]
1
n
+Ox(n−3/2)

)]
=L(α+1)

n−2 (x)L(α)
n−1(x)

(
1

2n
+Ox(n−3/2)

)
=

L(α)
n (x)L(α)

n (x)
2n

( √
n√−x

)(
1 +Ox(n−1/2)

)
=

L(α)
n (x)L(α)

n (x)
2
√

n
√−x

(
1 +Ox(n−1/2)

)
.

On the other hand, if x �= y, from (2) and (20) we obtain

‖L(α)
n−1‖2

μ

n
Kn−1(x, y) =

L(α)
n−1(x)L(α)

n (y)− L(α)
n (x)L(α)

n−1(y)
x − y

=
L(α)

n−1(x)L(α)
n−1(y)

x − y

⎛⎝ L(α)
n (y)

L(α)
n−1(y)

− L(α)
n (x)

L(α)
n−1(x)

⎞⎠
=

L(α)
n−1(x)L(α)

n−1(y)
x − y

(√−y −√−x√
n

+Ox,y(n−1)

)

=
L(α)

n−1(x)L(α)
n−1(y)√−x +
√−y

(
1√
n
+Ox,y(n−1)

)

=
L(α)

n (x)L(α)
n (y)√

n(
√−x +

√−y)

(
1 +Ox,y(n−1/2)

)
.
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From (17) and ([18], Appendix, (1.14))

‖L(α)
n−1‖2

μ =
Γ(n + α)

Γ(n)
= nα(1 +O(n−1)),

which proves the case k = 0. Now, we assume that the theorem is true for i + j = k and
we will prove it for i + j = k + 1. By the symmetry of the formula, the proof is analogous
when any of the variables increase its derivative order; thus, we only will prove it when
the variable y does.

∂k+1Kn−1

∂xi∂j+1y
(x, y) =

∂

∂y

(
L(α+i)

n (x)L(α+j)
n (y)

nα− 1
2 (
√−x +

√−y)

(
(−1)k +Ox,y(n−1/2)

))

=
L(α+i)

n (x)

nα− 1
2

[
∂

∂y

(
L(α+j)

n (y)√−x +
√−y

)(
(−1)k +Ox,y(n−1/2)

)
+

L(α+j)
n (y)√−x +

√−y
∂

∂y

(
(−1)k +Ox,y(n−1/2)

)]

=
L(α+i)

n (x)

nα− 1
2

⎡⎣−(
√−x +

√−y)L(α+j+1)
n−1 (y) + 1

2 L(α+j)
n (y)(−y)−1/2

(
√−x +

√−y)2

·
(
(−1)k +Ox,y(n−1/2)

)
+

L(α+j)
n (y)√−x +

√−y
Ox,y(n−1/2)

]

=
L(α+i)

n (x)L(α+j+1)
n−1 (y)

nα− 1
2 (
√−x +

√−y)

⎡⎣⎛⎝−1 +

√−y√
n +Ox,y(n−1)

2
√−y(

√−x +
√−y)

⎞⎠
·
(
(−1)k +Ox,y(n−1/2)

)
+

(√−y√
n

+Ox,y(n−1)

)
Ox,y(n−1)

]

=
L(α+i)

n (x)L(α+j+1)
n−1 (y)

nα− 1
2 (
√−x +

√−y)

[(
−1 +Ox,y(n−1/2)

)(
(−1)k +Ox,y(n−1/2)

)
+Ox,y(n−3/2)

]
=

L(α+i)
n (x)L(α+j+1)

n (y)

nα− 1
2 (
√−x +

√−y)

[
(−1)k+1 +Ox,y(n−1/2)

]
,

where in the third equality we use Lemma 5 to guarantee that ∂
∂yOx,y(n−1) = Ox,y(n−1),

and in the fourth equality, we use (20).

4. Proof of Theorem 2 and Consequences

Proof of Theorem 2. Without loss of generality, we will consider the polynomials L(α)
n =

(−1)n/n! Lα
n and Ŝn = (−1)n/n! Sn, instead of the monic polynomials Lα

n and Sn.
Multiplying both sides of (21) by (−1)n/n!, we obtain

Ŝn(x) = L(α)
n (x)−

N

∑
j=1

λjŜ
(dj)
n (cj)K

(0,dj)

n−1 (x, cj), (23)

Dividing by L(α)
n (x) on both sides of (23), we obtain

Ŝn(x)

L(α)
n (x)

= 1 −
N

∑
j=1

λjŜ
(dj)
n (cj)

K
(0,dj)

n−1 (x, cj)

L(α)
n (x)

. (24)

Recall that we are considering the Laguerre–Sobolev polynomials {Ŝn} that are or-
thogonal with respect to (5). In this case, the consistent linear system (22) becomes
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(
L(α)

n

)(dk)
(ck)=

(
1+λkK(dk ,dk)

n−1 (ck, ck)
)
Ŝ(dk)

n (ck) +
N

∑
j=1
j �=k

λjK
(dk ,dj)

n−1 (ck, cj)Ŝ
(dj)
n (cj), (25)

for k = 1, 2, . . . , N. Let us define

Pα
n,j(x) := −λjŜ

(dj)
n (cj)

K
(0,dj)

n−1 (x, cj)

L(α)
n (x)

and Pα
j (x) := lim

n→∞
Pα

n,j(x).

From (24), in order to prove the existence of the limit (6), we need to figure out the
values of Pα

j (x). Note that

Ŝ
(dj)
n (cj) = −

L(α)
n (x)P(α)

n,j (x)

λjK
(0,dj)

n−1 (x, cj)
.

If we replace these expressions in (25), then we obtain the following linear system in
the unknowns Pn,j(x)⎛⎜⎜⎜⎝

a1,1(n, x) a1,2(n, x) · · · a1,N(n, x)
a2,1(n, x) a2,2(n, x) · · · a1,N(n, x)

...
...

. . .
...

aN,1(n, x) aN,2(n, x) · · · aN,N(n, x)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Pα
n,1(x)

Pα
n,2(x)

...
Pα

n,N(x)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1
−1

...
−1

⎞⎟⎟⎟⎠, (26)

where

ak,j(n, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(α)
n (x)K

(dk ,dj)
n−1 (ck ,cj)(

L(α)
n

)(dk)
(ck)K

(0,dj)
n−1 (x,cj)

, j �= k,

L(α)
n (x)

(
1

λk
+K

(dk ,dk)
n−1 (ck ,ck)

)
(

L(α)
n

)(dk)
(ck)K

(0,dk)
n−1 (x,ck)

, j = k.

Now, we will find the behavior of the coefficients ak,j(n, x) when n approaches infinity.
If k = j, we have

ak,k(n, x) =
L(α)

n (x)
(

1
λk

+ K(dk ,dk)
n−1 (ck, ck)

)
(

L(α)
n

)(dk)
(ck)K

(0,dk)
n−1 (x, ck)

=

L(α)
n (x)

(
1

λk
+ L

(α+dk)
n (ck)L

(α+dk)
n (ck)

nα− 1
2
√−ck+

√−ck

(
(−1)dk+dk +O(n−1/2)

))
(−1)dk L(α+dk)

n−dk
(ck)

L
(α+dk)
n (ck)L(α)

n (x)

nα− 1
2 (

√−x+
√−ck)

(
(−1)dk +Ox(n−1/2)

)

=

√−x +
√−ck

2
√−ck

(
nα− 1

2

λk L
(α+dk)
n (ck)

+ L(α+dk)
n (ck)

(
1 +O(n−1/2)

))
L(α+dk)

n−dk
(ck)

(
1 +Ox(n−1/2)

)

=

√−x +
√−ck

2
√−ck

⎛⎜⎝ nα− 1
2

λk

(
L
(α+dk)
n (ck)

)2 + 1 +O(n−1/2)

⎞⎟⎠
1 +Ox(n−1/2)

=

√−x +
√−ck

2
√−ck

1 +O(n−1/2)

1 +Ox(n−1/2)
,

where in the last equality we use Perron’s Asymptotic Formula (19) to obtain
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nα− 1
2

(L(α+dk)
n (ck))2

=
4πnα− 1

2

eck+4
√−ck

√
n

(−ck)
α+dk+

1
2

nα+dk− 1
2

O(1) =
1

ndk e4
√−ck

√
n
O(1),

which has exponential decay (ck < 0). On the other hand, if k �= j, we obtain

ak,j(n, x) =
L(α)

n (x)K
(dk ,dj)

n−1 (ck, cj)(
L(α)

n

)(dk)
(ck)K

(0,dj)

n−1 (x, cj)

=

L
(α+dk)
n (ck)√−ck+

√−cj

(
(−1)dk+dj +O(n−1/2)

)
(−1)dk

L
(α+dk)
n−dk

(ck)√−x+
√−cj

(
(−1)dj +O(n−1/2)

)
=

√−x +
√−cj√−ck +
√−cj

(
1 +O(n−1/2)

)
(
1 +O(n−1/2)

) .

Hence,

lim
n→∞

ak,j(n, x) =

⎧⎪⎨⎪⎩
√−x+

√−cj√−ck+
√−cj

, if j �= k
√−x+

√−ck
2
√−ck

, if j = k
=

√−x +
√
|cj|√

|ck|+
√
|cj|

.

Next, taking limits on both sides of (26) when n approaches ∞, we obtain⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√−x+
√

|c1|√
|c1|+

√
|c1|

√−x+
√

|c2|√
|c1|+

√
|c2|

· · ·
√−x+

√
|cN |√

|c1|+
√

|cN |
√−x+

√
|c1|√

|c2|+
√

|c1|

√−x+
√

|c2|√
|c2|+

√
|c2|

· · ·
√−x+

√
|cN |√

|c2|+
√

|cN |
...

...
. . .

...
√−x+

√
|c1|√

|cN |+
√

|c1|

√−x+
√

|c2|√
|cN |+

√
|c2|

· · ·
√−x+

√
|cN |√

|cN |+
√

|cN |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pα
1 (x)

Pα
2 (x)

...

Pα
N(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

−1

...

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using Cauchy determinants, it is not difficult to prove that the N solutions of the
above linear system are

Pα
j (x) =

−2
√
|cj|

√−x +
√
|cj|

N

∏
l=1
l �=j

⎛⎝
√
|cj|+

√
|cl |√

|cj| −
√
|cl |

⎞⎠.

Now, from (24), we obtain

lim
n→∞

Ŝn(x)

L(α)
n (x)

= 1 +
N

∑
j=1

2
√
|cj|

√−x +
√
|cj|

N

∏
l=1
l �=j

⎛⎝
√
|cj|+

√
|cl |√

|cj| −
√
|cl |

⎞⎠.

If we consider the change of variable z =
√−x and for simplicity we also consider the

notation tj =
√
|cj|, then we obtain the following partial fraction decomposition

1 +
N

∑
j=1

2tj

z + tj

N

∏
l=1
l �=j

(
tj + tl

tj − tl

)
.

Thus, we only have to prove that this is the partial fraction decomposition of
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N

∏
j=1

(
z − tj

z + tj

)
.

Let PN(z) = ∏N
j=1(z − tj) and QN(z) = ∏N

j=1(z + tj), then

N

∏
j=1

(
z − tj

z + tj

)
=

PN(z)
QN(z)

= 1 +
PN(z)− QN(z)

QN(z)
= 1 +

N

∑
j=1

Aj

z + tj
,

where

Aj = lim
z→−tj

(z + tj)
PN(z)− QN(z)

QN(z)
=

PN(−tj)− QN(−tj)

Q′
N(−tj)

=

N

∏
l=1

(−tj − tl)−
N

∏
l=1

(−tj + tl)

N

∏
l=1
l �=j

(−tj + tl)

=
(−1)N2tj

(−1)N

N

∏
l=1
l �=j

(
tj + tl

tj − tl

)
= 2tj

N

∏
l=1
l �=j

(
tj + tl

tj − tl

)
,

which completes the proof.

Obviously, the inner product (5) and the monic polynomial Sn depend on the param-
eter α > −1, so that in what follows, we will denote Sα

n = Sn. Formula (6) allows us to
obtain other asymptotic formulas for the polynomials Sα

n. Three of them are included in the
following corollary.

Corollary 2. Let α, β > −1, n ∈ Z+ and k ≥ −n. Under the hypotheses of Theorem 2, we obtain

(1)
Sα+β

n+k (z)

nk+β/2 Lα
n(z)

⇒ (−1)k
(√

−z
)−β N

∏
j=1

⎛⎝√−x −
√
|cj|

√−x +
√
|cj|

⎞⎠, K ⊂ C \R+. (27)

(2)
Sα+β

n+k (z)

nk+β/2 Sα
n(z)

⇒ (−1)k
(√

−z
)−β

, K ⊂ C \R+. (28)

(3)
(Sα

n(z))
(ν)

(Lα
n(z))

(ν)
⇒

N

∏
j=1

⎛⎝√−x −
√
|cj|

√−x +
√
|cj|

⎞⎠, K ⊂ C \R+. (29)

Proof. Formulas (27) and (28) are direct consequences of Theorem 2 and Lemma 4.
The proof of (29) is by induction on ν. Of course, (6) is (29) for ν = 0. Assume that (29)

is true for ν = κ ≥ 0. Note that

(Sα
n(z))

(κ+1)

(Lα
n(z))

(κ+1)
=

(Lα
n(z))

(κ)

(Lα
n(z))

(κ+1)

(
(Sα

n(z))
(κ)

(Lα
n(z))

(κ)

)′
+

(Sα
n(z))

(κ)

(Lα
n(z))

(κ)

From (16), (18) and Lemma 4

(Lα
n(z))

(κ)

(Lα
n(z))

(κ+1)
=

L(α+κ)
n−κ

L(α+κ+1)
n−κ−1

⇒ 0, K ⊂ C \R+.

Hence, from Theorem 2, we obtain (29) for ν = κ + 1.
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Abstract: This article presents a generalization of new classes of degenerated Apostol–Bernoulli,
Apostol–Euler, and Apostol–Genocchi Hermite polynomials of level m. We establish some algebraic
and differential properties for generalizations of new classes of degenerated Apostol–Bernoulli
polynomials. These results are shown using generating function methods for Apostol–Euler and
Apostol–Genocchi Hermite polynomials of level m.

Keywords: Hermite polynomials; Apostol-type polynomials; degenerate Apostol-type polynomials

MSC: 11B68; 11B83; 11B39; 05A19

1. Introduction

In this document, the customary conventions of mathematical notation are employed,
where N := {1, 2, . . .}; N0 := {0, 1, 2, . . .}; Z refers to a set of integers; R refers to a set of
real numbers; and C refers to a set of complex numbers.

There have been numerous studies in the literature that have focused on Apostol–
Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite polynomials, as well as their
extensions and relatives. These studies include works in [1–15]. In recent years, several
researchers have explored degraded versions of well-known polynomials, such as Bernoulli,
Euler, falling factorial, and Bell polynomials, by utilizing generating functions, umbral
calculus, and p-adic integrals. Examples of such studies can be found in [16–18].

The generalization of two-variable Hermite polynomials introduced by Kampé de
Fériet is given by [19]:

Hω(ξ, η) = ω!
[ ω

2 ]

∑
ν=0

ηνξω−2ν

ν!(ω − 2ν)!
.

It is to be noted that [20]
Hω(2ξ,−1) = Hω(ξ).

These polynomials satisfy the following generating equation:

eξτ+ητ2
=

∞

∑
ω=0

Hω(ξ, η)
τω

ω!
. (1)
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Two-variable degenerate Hermite polynomials Hn(ξ, η; μ) ([21], p. 65) are defined by
means of the generating function

(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

Hω(ξ, η; μ)
τω

ω!
. (2)

We note that
lim
μ→0

Hω(ξ, η; μ) = Hω(ξ, η).

The first and second kind of Stirling numbers are given, respectively, by (see [22]):

1
ν!
[ln(1 + τ)]ν =

∞

∑
ω=ν

S(ω, ν)
τω

ω!

and
1
ν!
(eτ − 1)ν =

∞

∑
ω=ν

S(ω, ν)
τω

ω!
.

The generalized falling factorial (ξ|μ)ω with increment μ is defined by (see [18],
Definition 2.3):

(ξ|μ)ω =
ω−1

∏
ν=0

(ξ − μν),

for positive integer ω, with the convention (ξ|μ)0 = 1. Furthermore,

(ξ|μ)ω =
ω

∑
ν=0

S(ω, ν)μω−νξν.

From the Binomial Theorem, we have

(1 + μτ)
ξ
μ =

∞

∑
ω=0

(ξ|mu)ω
τω

ω!
.

Khan [14] introduced degenerate Hermite–Bernoulli polynomials of the second kind,
defined by

log(1 + μτ)
1
μ

(1 + μτ)
1
μ − 1

(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HBω(ξ, η; μ)
τω

ω!
.

For λ, u ∈ C, and α ∈ N, with u �= 1, the generalized degenerate Apostol-type Frobe-
nius Euler–Hermite polynomials of order α are given by a generating function (see [15],
p. 569): ⎛⎝ 1 − u

λ(1 + μτ)
1
μ − u

⎞⎠α

(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

Hhω(ξ, η; μ; λ; u)
τω

ω!
. (3)

Taking u = −1 and α = 1 in (3), the degenerate Hermite–Euler polynomials are
obtained (see [7], p. 3, Equation (17)):

2

λ(1 + μτ)
1
μ + 1

(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HEω(ξ, η; μ; λ)
τω

ω!
.
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Clemente et al. [23] introduced and studied new families of Apostol-type degenerated
polynomials by means of the following generating functions:

τmα[σ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ =

∞

∑
ω=0

B
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
, (4)

2mα[ψ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ =

∞

∑
ω=0

E
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
(5)

and

(2τ)mα[ψ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ =

∞

∑
ω=0

G
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
(6)

where,

σ(λ; a, b; τ) =

(
λ(1 + μτ)

1
μ −

m−1

∑
l=0

(τ log b)l

l!

)−1

and

ψ(λ; μ, b; τ) =

(
λ(1 + μτ)

1
μ +

m−1

∑
l=0

(τ log b)l

l!

)−1

.

If ξ = 0, in (4)–(6), we obtain the Apostol-type degenerated numbers of order α and
level m:

τmα[σ(λ; μ, b; τ)]α =
∞

∑
ω=0

B
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
,

2mα[ψ(λ; μ, b; τ)]α =
∞

∑
ω=0

E
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
,

(2τ)mα[ψ(λ; μ, b; τ)]α =
∞

∑
ω=0

G
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
.

The past few years have seen significant advancements in the generalizations of special
functions used in mathematical physics. These developments provide an analytical foun-
dation for many exact solutions to problems in mathematical physics and have practical
applications in various fields. One important area of development is the introduction of one-
and double-variable special functions, which have been recognized for their significance
in both pure mathematical and applied contexts. Multi-index and multi-variable special
functions are also necessary for solving problems in several branches of mathematics, such
as partial differential equations and abstract group theory. Hermite polynomials, devel-
oped by Hermite [24–27], are an example of such special functions, which are important
in combinatorics, numerical analysis, and physics. They are associated with the quantum
harmonic oscillator and are utilized in solving the Schrödinger equation for the oscillator.
This article aims to introduce new families of Hermite–Apostol-type degenerated polyno-
mials. Some algebraic properties and relations for these polynomials are derived. These
results extend certain relations and identities of the related polynomials.

2. Generalizations of New Classes of Degenerated Apostol–Bernoulli, Apostol–Euler,
and Apostol–Genocchi Hermite Polynomials of Level m

In this section, based on (2) and (4)–(6), we define new families of Hermite–Apostol-
type degenerated polynomials.

Definition 1. For arbitrary real or complex parameter α and for μ, b ∈ R+, the generalizations
degenerate the Apostol–Bernoulli Hermite polynomials HB

[m−1,α]
ω (ξ, η; μ, b; λ), the generalizations

degenerate Apostol–Euler Hermite polynomials HE
[m−1,α]
ω (ξ, η; μ, b; λ), and the generalizations

degenerate Apostol–Genocchi Hermite polynomials HG
[m−1,α]
ω (ξ, η; μ, b; λ), m ∈ N, λ ∈ C of
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order α and level m, are defined, in a suitable neighborhood of t = 0, by means of the generating
functions:

τmα[σ(λ; μ, b; τ)]α(1 + aτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
, (7)

2mα[ψ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
(8)

and

(2τ)mα[ψ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
, (9)

where

σ(λ; μ, b; τ) =

(
λ(1 + μτ)

1
μ −

m−1

∑
l=0

(τ log b)l

l!

)−1

and

ψ(λ; μ, b; τ) =

(
λ(1 + μτ)

1
μ +

m−1

∑
l=0

(τ log b)l

l!

)−1

.

Note that for α = 1, λ = 1, and b = e in (7), we have

∞

∑
ω=0

lim
μ→0

B
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
= lim

μ→0

⎛⎜⎜⎜⎝ τm

λ(1 + μτ)
1
μ −

m−1
∑

l=0

(τ log b)l

l!

⎞⎟⎟⎟⎠
α

(1 + μτ)
ξ
μ (1 + μτ2)

η
μ

=

⎛⎜⎜⎜⎝ τm

eτ −
m−1
∑

l=0

τl

l!

⎞⎟⎟⎟⎠eξτ+ητ2

=
∞

∑
ω=0

B
[m−1]
ω (ξ, η)

τω

ω!
,

where B
[m−1]
ω (ξ) are called generalized Hermite–Bernoulli polynomials (see [28], Equation (6)).

Analogously,

∞

∑
ω=0

lim
μ→0

E
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

E
[m−1]
ω (ξ, η)

τω

ω!
,

∞

∑
ω=0

lim
μ→0

G
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

G
[m−1]
ω (ξ, η)

τω

ω!
.

where E
[m−1,α]
ω (ξ) and E

[m−1,α]
ω (ξ) are called generalized Hermite–Euler polynomials and generalized

Hermite–Genocchi polynomials, respectively.
If ξ = 0 and η = 0, in Definition 1, we obtain the generalizations of degenerate Apostol–

Bernoulli Hermite numbers, generalizations of degenerate Apostol–Euler Hermite numbers, and
generalizations of degenerate Apostol–Genocchi Hermite numbers of order α and level m.

τmα[σ(λ; μ, b; τ)]α =
∞

∑
ω=0

HB
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
,

2mα[ψ(λ; μ, b; τ)]α =
∞

∑
ω=0

HE
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
,

(2τ)mα[ψ(λ; μ, b; τ)]α =
∞

∑
ω=0

HG
[m−1,α]
ω (ξ; μ, b; λ)

τω

ω!
.
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Continuation will show the standard notation for several sub-classes of polynomials, with
parameters λ ∈ C, μ, b ∈ R+, order α ∈ N, and level m ∈ N (see [12,29–31] and the references
therein).

ω-th generalized Bernoulli polynomial of level m B[m−1]
ω (ξ) := lim

μ→0+
HB

[m−1,1]
ω (ξ, 0; μ, e; 1)

ω-th generalized Euler polynomial of level m E(α)
ω (ξ) := lim

μ→0+
HB

[m−1,1]
ω (ξ, 0; μ, e; 1)

ω-th generalized Genocchi polynomial of level m G(α)
ω (ξ) := lim

μ→0+
HG

[m−1,1]
ω (ξ, 0; μ, e; 1)

ω-th generalized Apostol–Genocchi Hermite polynomial G(α)
ω (ξ; λ) := lim

μ→0+
HG

[0,α]
ω (ξ, 0; μ, b; λ)

ω-th Apostol–Bernoulli polynomial Bω(ξ; λ) := lim
μ→0+

HB
[0,1]
ω (ξ, 0; μ, b; λ)

ω-th Apostol–Euler polynomial Eω(ξ; λ) := lim
μ→0+

HE
[0,1]
ω (ξ, 0; μ, b; λ)

ω-th Apostol–Genocchi Hermite polynomial Gω(ξ; λ) := lim
μ→0+

HG
[0,1]
ω (ξ, 0; μ, b; λ)

ω-th generalized Bernoulli polynomial B(α)
ω (ξ) := lim

μ→0+
HB

[0,α]
ω (ξ, 0; μ, b; 1)

ω-th generalized Euler polynomial E(α)
ω (ξ) := lim

μ→0+
HE

[0,α]
ω (ξ, 0; μ, b; 1)

ω-th generalized Genocchi polynomial G(α)
ω (ξ) := limμ→0+ HG

[0,α]
ω (ξ, 0; μ, b; 1)

ω-th Bernoulli polynomial Bω(ξ) := lim
μ→0+

HB
[0,1]
ω (ξ, 0; μ, b; 1)

ω-th Euler polynomial Eω(ξ) := lim
μ→0+

HE
[0,1]
ω (ξ, 0; μ, b; 1)

ω-th Genocchi polynomial Gω(ξ) := lim
μ→0+

HG
[0,1]
ω (ξ, 0; μ, b; 1)

Theorem 1. For m ∈ N and the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m, the following relationship holds

HB
[m−1,α]
ω (ξ + γ, η + w; μ, b; λ) =

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (ξ, η; μ, b; λ)Hk(γ, w; μ), (10)

HE
[m−1,α]
ω (ξ + γ, η + w; μ, b; λ) =

ω

∑
k=0

(
ω

k

)
HE

[m−1,α]
ω−k (ξ, η; μ, b; λ)Hk(γ, w; μ), (11)

HG
[m−1,α]
ω (ξ + γ, η + w; μ, b; λ) =

ω

∑
k=0

(
ω

k

)
HG

[m−1,α]
ω−k (ξ, η; μ, b; λ)Hk(γ, w; μ). (12)

Proof. By (7) and (2), we have

∞

∑
ω=0

HB
[m−1,α]
ω (ξ + γ, η + w; μ, b; λ)

τω

ω!
= τmα[σ(λ; μ, b; τ)]α(1 + μτ)

ξ+γ
μ (1 + μτ2)

η+w
μ

= τmα[σ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ (1 + μτ)

γ
μ (1 + μτ2)

w
μ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

)(
∞

∑
ω=0

Hω(γ, w; μ)
τω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
HB

[m−1,α]
ω−ν (ξ, η; μ, b; λ)Hk(γ, w; μ)

)
τω

ω!
.

In view of the above equation, we get the result (10). The proofs of (11) and (12) are given
analogously.
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Theorem 2. For m ∈ N and the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m, the argument addition theorem holds

HB
[m−1,α+β]
ω (ξ + η, γ + w; μ, b; λ) =

ω

∑
ν=0

(
ω

ν

)
HB

[m−1,β]
ν (η, w; μ, b; λ) (13)

×HB
[m−1,α]
ω−k (ξ, γ; μ, b; λ),

HE
[m−1,α+β]
ω (ξ + η, γ + w; μ, b; λ) =

ω

∑
ν=0

(
ω

ν

)
HE

[m−1,β]
ν (η, w; μ, b; λ) (14)

×HE
[m−1,α]
ω−ν (ξ, γ; μ, b; λ),

HG
[m−1,α+β]
ω (ξ + η, γ + w; μ, bλ) =

ω

∑
ν=0

(
ω

ν

)
HG

[m−1,β]
ν (η, w; μ, b; λ) (15)

×HG
[m−1,α]
ω−ν (ξ, γ; μ, b; λ).

Proof. Observe that,

∞

∑
ω=0

HB
[m−1,α+β])
ω (ξ + η, γ + w; μ, b; λ)

τω

ω!
= (τmσ(λ; μ, b; τ))α+β(1 + μτ)

ξ+η
μ (1 + μτ2)

γ+w
μ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, γ; μ, b; λ)

τω

ω!

)

×
(

∞

∑
ω=0

HB
[m−1,β]
ω (η, w; μ, b; λ)

τω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
HB

[m−1,α]
ω−ν (ξ, γ; μ, b; λ)

×HB
[m−1,β]
ν (η, w; μ, b; λ)

) τω

ω!
.

Therefore, by the above equation, we obtain result (13). The proofs of (14) and (15) are given
analogously.

Theorem 3. For m ∈ N and the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m, the following relationships are obeyed:

HB
[m−1,α]
ω (ξ, η; μ; λ) = HB

[m−1,α]
ω (ξ + μ, η; μ, b; λ)− μωHB

[m−1,α]
ω−1 (ξ, η; μ, b; λ), (16)

HE
[m−1,α]
ω (ξ, η; μ; λ) = HE

[m−1,α]
ω (ξ + μ, η; μ, b; λ)− μωHE

[m−1,α]
ω−1 (ξ, η; μ, b; λ), (17)

HG
[m−1,α]
ω (ξ, η; μ; λ) = HG

[m−1,α]
ω (ξ + μ, η; μ, b; λ)− μωHG

[m−1,α]
ω−1 (ξ, η; μ, b; λ). (18)

Proof. From generating function (8), we have

(τmσ(λ; μ, b; τ))α(1 + μτ)
ξ+μ

μ (1 + μτ2)
η
a = (1 + μτ)

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
∞

∑
ω=0

HE
[m−1,α]
ω (ξ + μ, η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

+μτ
∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
.

Then,

∞

∑
ω=0

HE
[m−1,α]
ω (ξ + μ, η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

+
∞

∑
ω=0

ω HE
[m−1,α]
ω−1 (ξ, η; μ, b; λ)

τμω

ω!
.
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Thus, we have

∞

∑
ω=0

HE
[m−1,α]
ω (ξ + μ, η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

[
HE

[m−1,α]
ω (ξ, η; μ, b; λ)

+μωHE
[m−1,α]
ω−1 (ξ, η; μ, b; λ)

] τω

ω!
.

In view of the above equation, the result is

HE
[m−1,α]
ω (ξ, η; μ, b; λ) = HE

[m−1,α]
ω (ξ + μ, η; μ, b; λ)− μωHE

[m−1,α]
ω−1 (ξ, η; μ, b; λ).

Therefore, we obtain (17). The proofs of (16) and (18) are analogous to the previous proce-
dure.

Theorem 4. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

HB
[m−1,α]
ω (ξ, η; μ; λ) = HB

[m−1,α]
ω (ξ, η + μ; μ, b; λ)− μω(ω − 1)HB

[m−1,α]
ω−2 (ξ, η; μ, b; λ), (19)

HE
[m−1,α]
ω (ξ, η; μ; λ) = HE

[m−1,α]
ω (ξ, η + μ; μ, b; λ)− μω(ω − 1)HE

[m−1,α]
ω−2 (ξ, η; μ, b; λ), (20)

HG
[m−1,α]
ω (ξ, η; μ; λ) = HG

[m−1,α]
ω (ξ, η + μ; μ, b; λ)− μω(ω − 1)HG

[m−1,α]
ω−2 (ξ, η; μ, b; λ). (21)

Proof. From generating function (9), we have

((2τ)mσ(λ; μ, b; τ))α(1 + μτ)
ξ
μ (1 + μτ2)

η+μ
μ = (1 + μτ2)

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η + μ; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

+μτ2
∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
.

Then,

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η + μ; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

+
∞

∑
ω=0

HG
[m−1,α]
ω−2 (ξ, η; μ, b; λ)μω(ω − 1)

τω

ω!
.

Thus, we have

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η + μ; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

[
HG

[m−1,α]
ω (ξ, η; μ, b; λ)

+μω(ω − 1)HG
[m−1,α]
ω−2 (ξ, η; μ, b; λ)

] τω

ω!
.

Comparing the coefficients of τω on both sides of the equation, we obtain the result (21). The
proofs of (19) and (20) are analogous to the previous procedure.

Theorem 5. For m ∈ N, for the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m, the following properties are maintained:

∂HB
[m−1,α]
ω (ξ, η; μ, b; λ)

∂ξ,
=

ω−1

∑
k=0

ω(−1)kμk k!
k + 1

(
ω − 1

k

)
HB

[m−1,α]
ω−1−k (ξ, η; μ, b; λ), (22)

∂HE
[m−1,α]
ω (ξ, η; μ, b; λ)

∂ξ,
=

ω−1

∑
k=0

ω(−1)kμk k!
k + 1

(
ω − 1

k

)
HE

[m−1,α]
ω−1−k (ξ, η; μ, b; λ), (23)
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∂HG
[m−1,α]
ω (ξ, η; μ, b; λ)

∂ξ,
=

ω−1

∑
k=0

ω(−1)kμk k!
k + 1

(
ω − 1

k

)
HG

[m−1,α]
ω−1−k (ξ, η; μ, b; λ). (24)

Proof. Partially differentiating (7) with respect to ξ, we have

∞

∑
ω=0

∂

∂ξ HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
= τmα[σ(λ; μ, b; τ)]α

∂

∂ξ
(1 + μτ)

ξ
μ (1 + μτ2)

η
μ ,

= τmα[σ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ ln(1 + μτ)

1
μ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

)

×
(

∞

∑
ω=0

(−1)ω

ω + 1
μω+1τω+1 1

μ

)

=
∞

∑
ω=0

ω

∑
k=0

HB
[m−1,α]
ω−k (ξ, η; μ, b; λ)

×(−1)kμk
(

ω

k

)
k!

k + 1
τω+1

ω!
.

Thus, we have

∞

∑
ω=0

∂

∂ξ HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

ω−1

∑
k=0

HB
[m−1,α]
ω−1−k (ξ, η; μ, b; λ)

×(−1)kμkω

(
ω − 1

k

)
k!

k + 1
τω

ω!
.

Comparing the coefficients of τω on both sides of the equation, the result is

∂HB
[m−1,α]
ω (ξ, η; μ, b; λ)

∂ξ
=

ω−1

∑
k=0

ω(−1)kμk k!
k + 1

(
ω − 1

k

)
HB

[m−1,α]
ω−1−k (ξ, η; μ, b; λ).

The proofs of (23) and (24) are analogous to (22).

Theorem 6. For m ∈ N, for the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m, the following properties are maintained:

∂HB
[m−1,α]
ω (ξ, η; μ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω − 1)(−1)kμk 2k!
k + 1

(
ω − 2

2k

)
HB

[m−1,α]
ω−2k−2(ξ, η; μ, b; λ), (25)

∂HE
[m−1,α]
ω (ξ, η; μ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω − 1)(−1)kak 2k!
k + 1

(
ω − 2

2k

)
HE

[m−1,α]
ω−2k−2(ξ, η; μ, b; λ), (26)

∂HG
[m−1,α]
ω (ξ, η; μ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω − 1)(−1)kak 2k!
k + 1

(
ω − 2

2k

)
HG

[m−1,α]
ω−2k−2(ξ, η; μ, b; λ). (27)
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Proof. Partially differentiating (7) with respect to η, we have

∞

∑
ω=0

∂

∂η HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
= τmα[σ(λ; μ, b; τ)]α(1 + μτ)

ξ
μ

∂

∂η
(1 + μτ2)

η
μ

= τmα[σ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ ln(1 + μτ2)

1
μ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

)(
∞

∑
ω=0

(−1)ω

ω + 1
μω+1τ2n+2 1

μ

)

=
∞

∑
ω=0

ω

∑
k=0

HB
[m−1,α]
ω−k (ξ, η; μ, b; λ)

(−1)k

k + 1
μk τω+k+2

(ω − k)!
.

Thus, we have

∞

∑
ω=0

∂

∂η HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

ω−k

∑
k=0

HB
[m−1,α]
ω−2−2k(ξ, η; μ, b; λ)

×(−1)kμkω(ω − 1)
(

ω − 2
2k

)
2k!

k + 1
τω

ω!
.

Comparing the coefficients of τω on both sides of the equation, the result is

∂HB
[m−1,α]
ω (ξ, η; μ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω − 1)(−1)kμk 2k!
k + 1

(
ω − 2

2k

)
HB

[m−1,α]
ω−2k−2(ξ, η; μ, b; λ).

The proofs of (26) and (27) are analogous to (25).

Theorem 7. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

ω

∑
k=0

HB
[m−1,α]
ω−k (ξ, η; μ, b; λ)HB

[m−1,α]
k (ξ, η; μ, b; λ) =

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (μ, b; λ) (28)

×HB
[m−1,α]
k (2ξ, 2η; μ, b; λ),

ω

∑
k=0

HE
[m−1,α]
ω−k (ξ, η; μ, b; λ)HE

[m−1,α]
k (ξ, η; μ, b; λ) =

ω

∑
k=0

(
ω

k

)
HE

[m−1,α]
ω−k (μ, b; λ) (29)

×HE
[m−1,α]
k (2ξ, 2η; μ, b; λ),

ω

∑
k=0

HG
[m−1,α]
ω−k (ξ, η; μ, b; λ)HG

[m−1,α]
k (ξ, η; μ, b; λ) =

ω

∑
k=0

(
ω

k

)
HG

[m−1,α]
ω−k (μ, b; λ) (30)

×HG
[m−1,α]
k (2ξ, 2η; μ, b; λ).

Proof. Consider the following expressions:

τmα[σ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
(31)

and

τmα[σ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
r=0

HB
[m−1,α]
r (ξ, η; μ, b; λ)

τω

ω!
. (32)
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From (31) and (32), we have

[τmα[σ(λ; μ, b; τ)]]2α(1 + μτ)
2ξ
μ (1 + μτ2)

2η
μ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

∞

∑
r=0

HB
[m−1,α]
r (ξ, η; μ, b; λ)

τω

ω!

∞

∑
ω=0

HB
[m−1,α]
ω (μ, b; λ)

τω

ω!

∞

∑
r=0

HB
[m−1,α]
r (2ξ, 2η; μ, b; λ)

τω

ω!
=

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

∞

∑
r=0

HB
[m−1,α]
r (ξ, η; μ, b; λ)

τω

ω!

∞

∑
ω=0

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (μ, b; λ)HB

[m−1,α]
k (2ξ, 2η, μ, b; λ)

τω

ω!
=

∞

∑
ω=0

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (ξ, η; μ, b; λ)HB

[m−1,α]
k (ξ, η; μ, b; λ)

τω

ω!
.

Hence, we get contention (28).

The proofs of (29) and (30) are comparable to (28).

Theorem 8. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

HB
[m−1,α]
ω (ξ, η; μ, b;−λ) =

(−1)αω!
(2)mα(ω − mα)! HE

[m−1,α]
ω−mα (ξ, η; μ, b; λ), (33)

HE
[m−1,α]
ω (ξ, η; μ, b;−λ) =

(−2)mαω!
(n + mα)! HB

[m−1,α]
n+mα (ξ, η; μ, b; λ). (34)

Proof. Proof of (33). Considering the generating function (7):

τmα[σ(−λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b;−λ)

τω

ω!

(−1)α2mα

2mα
τmα[ψ(λ; μ, b; τ)]α(1 + μτ)

ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b;−λ)

τω

ω!
,

we have

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b;−λ)

τω

ω!
=

(−1)α

2mα

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τn+mα

ω!
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b;−λ)

τω

ω!
=

(−1)α

2mα

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

(ω − mα)!
.

Therefore, by the above equation, we obtain the result.

Proof. Proof of (34). Considering the generating function (8):

2mα[ψ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

(−1)α2mα

τmα
τmα[σ(λ; μ, b; τ)]α(1 + μτ)

ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b;−λ)

τω

ω!
,
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we have

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b;−λ)

τω

ω!
= (−2)mα

∞

∑
ω=0

B
[m−1,α]
ω (ξ, η; μ, b; λ)

τ(ω−mα)

ω!
∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b;−λ)

τω

ω!
= (−2)mα

∞

∑
ω=0

HB
[m−1,α]
n+mα (ξ, η; μ, b; λ)

τω

(n + mα)!
.

In view of the above equation, we obtain the result.

Theorem 9. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and μ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

HG
[m−1,α]
ω (ξ, η; μ, b;−λ) = (−2)mα

HB
[m−1,α]
ω (ξ, η; μ, b; λ), (35)

HG
[m−1,α]
ω (ξ, η; μ, b; λ) =

ω!
(ω − mα)! HE

[m−1,α]
ω−mα (ξ, η; μ, b; λ). (36)

Proof. Proof of (35). Taking into account the generating function (7), we can observe that

τmα[σ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
μ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!

2mατmα[ψ(−λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
a = (−2m)α

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
. (37)

Therefore, from (9) and (37), we obtain

∞

∑
ω=0

HG
[m−1,α]
ω (x; μ, b;−λ)

τω

ω!
=

∞

∑
ω=0

(−2)mα
HB

[m−1,α]
ω (x; μ, b; λ)

τω

ω!
.

In view of the above equation, we obtain the result.

Proof. Proof of (36). From (9), we have:

2mατmα[ψ(λ; μ, b; τ)]α(1 + μτ)
ξ
μ (1 + μτ2)

η
a =

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; μ, b; λ)

τn+mα

ω!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
,

then,

∞

∑
ω=0

HE
[m−1,α]
ω−mα (ξ, η; μ, b; λ)

τω

(ω − mα)!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; μ, b; λ)

τω

ω!
.

Therefore, by the above equation, we obtain the result.

3. Conclusions

In recent years, Apostol-type polynomials have become the subject of intensive research due
to their diverse range of applications, while Bernoulli, Euler, Genocchi, and Hermite polynomials
are well-known families of polynomials with many applications in areas such as numerical analysis,
asymptotic approximation, and special function theory, which have led to a wide range of uses in
engineering and applied sciences [20]. Due to the importance of these application areas, many exten-
sions of Apostol-type polynomials have been studied, such as degenerate Apostol-type polynomials
in [19], Hermite-based Apostol-type polynomials in [2], Laguerre-based Apostol-type polynomials
in [3,24,32], and truncated-exponential-based Apostol-type polynomials, especially in the last decade.
In the literature, extensions of several structures are considered essential if the extension unifies
existing structures. Unification focuses researchers on investigating advanced properties rather than
just studying modified families that have similar properties to the existing area.

The objective of this paper is to examine new families of Hermite–Apostol-type degenerated
polynomials, specifically the Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite
polynomials of level m. These polynomials have significant applications in the areas of applied
mathematics, physics, and engineering. The properties of these polynomials are established based on
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classical special functions. The theorems presented in this study demonstrate the usefulness of the
series rearrangement technique for the treatment of special functions theory.
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Abstract: In this paper, we introduce the notion of the Cauchy exponential of a linear functional on
the linear space of polynomials in one variable with real or complex coefficients using a functional
equation by using the so-called moment equation. It seems that this notion hides several properties
and results. Our purpose is to explore some of these properties and to compute the Cauchy exponen-
tial of some special linear functionals. Finally, a new characterization of the positive-definiteness of a
linear functional is given.

Keywords: cauchy power of linear functional; cauchy exponential of linear functional; weakly-
regular linear functional; regular linear functional; positive-definite linear functional; orthogonal
polynomial sequence; Du-Laguerre–Hahn operator

MSC: 33C45; 42C05; 46F10

1. Introduction

We start with a brief overview of some basic notions and results about the linear
space of polynomials in one variable PK := K[x], where K = R or C. Let P′

K
be the algebraic

dual space of PK, i.e., the set of all linear functionals from PK to K. Here, 〈u, p〉 is the action
of u ∈ P′

K
on p ∈ PK. We denote by (u)n := 〈u, xn〉, n ≥ 0, the moment of order n of the

linear functional u ∈ P′
K

. In the sequel, we recall some useful operations in P′
K

and some
of their properties. For u and v in P′

K
, f (x) = ∑m

ν=0 aνxν in PK, a, b and c in K, with a �= 0,
let Du = u′, f u, uv, (x − c)−1u, ha(u), tb(u) and σ(u) be the linear functionals defined by
duality [1–4].

- The derivative of a linear functional

〈u′, p〉 := −〈u, p′〉, p ∈ PK.

Its moments are (u′)n = −n(u)n−1, n ≥ 0, (u)−1 = 0.

- The left-multiplication of a linear functional by a polynomial f (x) = ∑m
k=0 akxk.

〈 f u, p〉 : = 〈u, f p〉, p ∈ PK.

The corresponding moments are ( f u)n = ∑m
ν=0 aν(u)n+ν, n ≥ 0.

- The Cauchy product of two linear functionals.

〈uv, p〉 := 〈u, vp〉, p ∈ PK,
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where the right-multiplication of v by p is a polynomial given by

(vp)(x) := 〈vy,
xp(x)− yp(y)

x − y
〉, p ∈ Pc.

Its moments are (uv)n = ∑n
ν=0(u)ν(v)n−ν, n ≥ 0.

- The Dirac delta linear functional at a point c.

Given c ∈ K, δc is the Dirac linear functional at point c, defined by

〈δc, p〉 := p(c), p ∈ PK.

In the sequel, we denote δ = δ0. Notice that δ is the unit element for the Cauchy
product of linear functionals.

- The division of a linear functional by a polynomial of first degree.

〈(x − c)−1u, p〉 := 〈u, θc(p)〉 = 〈u,
p(x)− p(c)

x − c
〉, p ∈ PK.

Its moments are
(
(x − c)−1u

)
n =

n−1

∑
ν=0

cν(u)n−1−ν, n ≥ 0.

- The dilation of a linear functional.

〈ha(u), p〉 := 〈u, ha(p)〉 = 〈u, p(ax)〉, p ∈ PK.

The corresponding moments are
(
ha(u)

)
n = an(u)n, n ≥ 0.

- The shift of a linear functional.

〈tb(u), p〉 := 〈u, t−b(p)〉 = 〈u, p(x + b)〉, p ∈ PK.

Its moments are (tb(u))n = ∑n
ν=0

(
n
ν

)
bν(u)n−ν, n ≥ 0.

- The σ-transformation of a linear functional.

〈σ(u), p〉 := 〈u, σ(p)〉 = 〈u, p(x2)〉, p ∈ PK.

Its moments are
(
σ(u)

)
n = (u)2n, n ≥ 0.

As usual, u(n) will denote the nth derivative of u ∈ P′
K

, with the convention u(0) = u.
By referring to [3], u ∈ P′

K
has an inverse for the Cauchy product, denoted by u−1, i.e.,

uu−1 = u−1u = δ, if and only if (u)0 �= 0.
Recall that u ∈ P′

K
is said to be symmetric if (u)2n+1 = 0, for all n ≥ 0. Moreover, u is

symmetric if and only if σ(xu) = 0, or, equivalently, h−1u = u.

Definition 1 ([5]). A linear functional u ∈ P′
K

is said to be weakly-regular if φu = 0, where
φ ∈ PK, then φ ≡ 0.

Definition 2 ([1,3]). A linear functional u ∈ P′
K

is said to be regular (quasi-definite, according
to [6]), if there exists a sequence of monic polynomials {Bn(x)}n≥0 in PK, deg Bn = n, n ≥ 0,
such that 〈u, BnBm〉 = rnδn.m, n, m ≥ 0, where rn ∈ K, rn �= 0, n ≥ 0, (δn,m is the Kronecker
delta).

In this case, {Bn(x)}n≥0 is said to be a monic orthogonal polynomial sequence with
respect to u (in short, MOPS). Any regular linear functional on polynomials is weakly-
regular. The converse is not true; see [5].
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Definition 3 ([1,6,7]). A linear functional u ∈ P′
R

is said to be positive (resp. positive-definite),
if 〈u, p2〉 ≥ 0, (resp. 〈u, p2〉 > 0), for all p ∈ PR, p �≡ 0.

Proposition 1 ([1,6,7]). Let u ∈ P′
R

. The following statements are equivalent.

(i) u is positive-definite.
(ii) There exists a MOPS {Bn(x)}n≥0 in PR such that 〈u, BnBm〉 = rnδn,m, for every n, m ≥ 0,

where rn > 0, for all n ≥ 0.

This contribution aims to introduce the analog of the exponential function in the
framework of linear functionals and then provide some of its properties. First of all, we
must specify that the Cauchy exponential of a linear functional is also a linear functional.
We will denote it as eu. On the other hand, it satisfies

eλδ = eλδ, λ ∈ PK.

eu+v = euev, u, v ∈ P
′
K

.

Here, euev is the Cauchy product of eu and ev. The Cauchy exponential of a linear
functional on the linear space of polynomials can be defined in several equivalent ways.
The easiest one, which fits best with the theory of linear functionals on the linear space
of polynomials, is based on its moments. Indeed, the moments of eu can be defined in an
iterate way as follows:

(eu)0 = e(u)0 , n(eu)n =
n−1

∑
ν=0

(n − ν)(eu)ν(u)n−ν, n ≥ 1.

Once defined, we highlight several formulas and properties satisfied by the Cauchy
exponential map as a function from P′

K
to P′

K
, and to compute the Cauchy exponential of

some classical linear functionals (see [6,8,9]).

e2δ′ = B(1/2) : Bessel linear functional with parameter α = 1/2.

e−(1/8)δ′′ = B[0] : Symmetric D−semiclassical linear functional of class 1.

eαδ−2 = t−1J (α,−1 − α) : Shifted Jacobi linear functional.

Among others, the following formulas: are deduced.

ha(eu) = ehau,

δ−1
b tb(eu) = eδ−1

b tb(u),

σ(eu) = e
1
2 σ(u),

for every u in P′
K

and every a, b in K, where a �= 0.

The manuscript is structured as follows. In Section 2, we first introduce the notion of
the Cauchy exponential of a linear functional on the linear space of polynomials. Second,
we establish several formulas and properties satisfied by the Cauchy exponential map.
In Section 3, we compute the Cauchy power of some special linear functionals by using
some properties of the Cauchy exponential map. In Section 4, we give necessary and
sufficient conditions on a given linear functional on the linear space of polynomials for
its Cauchy exponential will be weakly-regular. In Section 5, we establish a necessary and
sufficient condition on a given linear functional in the linear space of polynomials so that its
Cauchy exponential will be positive-definite. This enables us to give a new characterization
of the positive-definite of a linear functional on the linear space of polynomials. Finally,
some open problems concerning orthogonal polynomials associated with the Cauchy
exponential function of a linear functional are stated.
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2. The Cauchy Exponential of a Linear Functional on the Linear Space of Polynomials

2.1. Definition and Basic Properties

For any u ∈ P′
K

, let M(u) be the linear functional in P′
K

that is the solution of the
following functional equation:(

M(u)
)

0 = e(u)0 ,
(
xM(u)

)′
= (xu)′M(u). (1)

Equivalently, the sequence of moments {(M(u))n}n≥0 satisfies the following recur-
rence relation:

(
M(u)

)
0 = e(u)0 , n

(
M(u)

)
n =

n−1

∑
ν=0

(n − ν)
(
M(u)

)
ν
(u)n−ν, n ≥ 1. (2)

To list some properties of M, we need the following formulas.

Lemma 1 ([2,3]). For any u, v in P′
K

, any f ∈ PK, and any a, c in K with a �= 0, we have

(x − c)
(
(x − c)−1u

)
= u, (3)

(x − c)−1((x − c)u
)
= u − (u)0δc, (4)

uv = vu, δu = u, (5)

(uv)′ = u′v + uv′ + x−1(uv), (6)

( f u)′ = f u′ + f ′u, (7)

x−1(uv) = (x−1u)v = u(x−1v). (8)

Following (3), where c = 0, (1) is equivalent to(
M(u)

)
0 = e(u)0 , M(u)′ = −x−1M(u) + x−1(xu)′M(u). (9)

Proposition 2. For any u, v in P′
K

, any τ ∈ K, and any non-negative integer n, we have the
following properties

(i) M(τδ) = eτδ.
(ii) M(u + v) = M(u)M(v).
(iii)

(
M(u)

)n
= M(nu).

Proof. From (1) taken with u = τδ, where τ ∈ K, we get
(
M(τδ)

)
0 = eτ and

(
xM(τδ)

)′
=

0. Thus, xM(τδ) = 0. Then, M(τδ) =
(
M(τδ)

)
0δ = eτδ, according to (4) when c = 0.

Hence, (i) holds.
Let u, v in P′

K
. Putting v1 = M(u), v2 = M(v), w1 = M(u + v) and w2 = v1v2. From

(9), we have

(v1)0 = e(u)0 , v′1 = −x−1v1 + x−1(xu)′v1, (10)

(v2)0 = e(v)0 , v′2 = −x−1v2 + x−1(xv)′v2, (11)

(w1)0 = e(u+v)0 , w′
1 = −x−1w1 + x−1(x(u + v)

)′w1. (12)

Clearly, (w2)0 = (v1v2)0 = (v1)0(v2)0 = e(u)0 e(v)0 = e(u+v)0 .
From (6), (8), (10) and (11), we obtain

w′
2 = (v1v2)

′ = v′1v2 + v1v′2 + x−1(v1v2)

=
(
− x−1v1 + x−1(xu)′v1

)
v2 +

(
− x−1v2 + x−1(xv)′v2

)
v1 + x−1(v1v2)

= −x−1v1v2 + x−1
((

x(u + v)
)′v1v2

)
.
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Therefore,

(w2)0 = e(u+v)0 , w′
2 = −x−1v1v2 + x−1

((
x(u + v)

)′v1v2

)
. (13)

From (12), (13), and by the definition of the operator M, we infer that w1 = w2, i.e.,
M(u + v) = M(u)M(v). Hence, (ii) holds.

The property (iii) is a straightforward consequence of (i) and (ii).

In a natural way, it is convenient to use the following notation

eu := M(u), for every u ∈ P
′
K

. (14)

Definition 4. For any u ∈ P′
K

, the Cauchy exponential of u, that we denote by eu, is the unique
linear functional in P′

K
that satisfies(

eu)
0 = e(u)0 ,

(
xeu)′ = (xu)′eu.

By an iteration process, we deduce

(eu)1 = e(u)0(u)1,

(eu)2 = e(u)0
(1

2
(u)2

1 + (u)2
)
,(

eu)
3 = e(u)0

(1
6
(u)3

1 + (u)1(u)2 + (u)3
)
.

From Proposition 2 and Definition 4, the following formulas hold.

eτδ = eτδ, (15)

eu+v = euev, (16)

(eu)n = enu, (17)

for any u, v in P′
K

, any τ ∈ K and any non-negative integer n.

2.2. Some Properties of the Cauchy Exponential Map

The linear functional Cauchy exponential induces a map in the algebraic dual space
P′
K

as follows

ExpP′
K

: P′
K
−→ P

′
K

u �−→ ExpP′
K
(u) = eu.

Proposition 3. For any u, v in P′
K

, the following properties hold.

(i) When K = C, then eu = ev if and only if there exists an integer k such that u = v + (2kπi)δ,
where i2 = −1.

(ii) When K = R, then eu = ev if and only u = v.
(iii) ExpP′

R
is an isomorphism of Abelian groups from (P′

R
,+) to (P′

R

+, .), where P′
R

+ = {v ∈
P′
R
|(v)0 > 0}.

Proof. Assume that u, v in P′
C

are such that eu = ev. Then,

(eu)0 = e(u)0 , (eu)′ = −x−1eu + x−1(xu)′eu,

(ev)0 = e(v)0 , (ev)′ = −x−1ev + x−1(xv)′ev.
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Since e(u)0 = e(v)0 in C, then there exists an integer k such that (u)0 = (v)0 + 2kπi, i2 = −1.

Moreover, we can see that x−1
((

x(u − v)
)′eu

)
= 0. Thus,

(
x(u − v)

)′eu = 0, according to

(3) for c = 0. However, since eu is invertible, (eu)0 �= 0, then
(
x(u − v)

)′
= 0. This requires

that, x(u − v) = 0. Thus, u − v =
(
(u)0 − (v)0

)
δ = (2kπi)δ, on account of (4) taken with

c = 0.
Conversely, assume that u and v are in P′

C
such that u = v + (2kπi)δ. From (15) and

(16), we get eu = ev+(2kπi)δ = eve(2kπi)δ = ev(e2kπiδ) = ev.
Hence, (i) holds.

The property (ii) is a straightforward consequence of (i).
For any v ∈ P′

R

+, let u be the unique linear functional defined by

(u)0 = ln
(
(v)0

)
, n(u)n(v)0 = n(v)n −

n−1

∑
ν=1

(n − ν)(u)n−ν(v)ν, n ≥ 1. (18)

Equivalently,
(v)0 = e(u)0 , (xv)′ = (xu)′v. (19)

By Definition 4, we infer that v = eu. This concludes the proof of (iii).

Furthermore, we need the following formulas.

Lemma 2 ([2,3]). For any u, v in P′
K

, any f ∈ PK, and any a, c in K with a �= 0, we have the
following formulas.

ha(u′) = a
(
ha(u)

)′, (20)

x−1ha(u) = a−1ha(x−1u), (21)

ha( f u) = f (a−1x)hau, (22)

ha(uv) = ha(u)ha(v), (23)

tb(u′) =
(
tb(u)

)′, (24)

tb( f u) = tb( f )tb(u), (25)

tb(uv) = tb(u)tb(v)δ−1
b , (26)

f (uv) = ( f u)v + x(uθ0 f )(x)v, (27)

σ
(

f (x2)u
)
= f (x)σ(u), (28)

σ(u′) = 2
(
σ(xu)

)′, (29)

2
(
σ(u)

)′
= σ

(
(xu)′

)
, (30)

σ(uv) = σ(u)σ(v), if either u or v is symmetric. (31)

Proposition 4. For any a, b in K, where a �= 0, we have

(i) ExpP′
K
◦ ha = ha ◦ ExpP′

K
.

(ii) tb(eu)δ−1
b = eδ−1

b tb(u), for all u ∈ P′
K

.
(iii) σ

(
eu) = eσ(u), for all symmetric u ∈ P′

K
.

(iv) eu is symmetric if and only if u is symmetric.

Proof. Let a ∈ K, with a �= 0, and u in P′
K

. Putting w1 = eha(u), then

(w1)0 = e(ha(u))0 = e(u)0 , w′
1 = −x−1w1 + x−1(xha(u)

)′w1. (32)
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Using (20)–(23) and (27), we can derive

ha−1 w′
1 = a−1(ha−1 w1)

′,

ha−1(x−1w1) = a−1x−1ha−1 w1,

ha−1(xhau)′ = a−1(ha−1(xhau)
)′

= (xu)′,

ha−1
(
(xhau)′w1

)
= (xu)′ha−1 w1,

ha−1

(
x−1(xha(u)

)′w1

)
= a−1x−1ha−1

((
xha(u)

)′w1

)
= a−1x−1(xu)′ha−1 w1.

Applying the operator ha−1 in both sides of (32), it follows that

(ha−1 w1)0 = e(u)0 , (ha−1 w1)
′ = −x−1ha−1 w1 + x−1(xu)′ha−1 w1.

From the uniqueness of the solution of the last equation, we can say that ha−1 w1 = eu

and, then, w1 = ha(eu). Hence, (i) holds.
Assume that b ∈ K and u in P′

K
. Let first establish the following formula

tb(vδ−b) = tb(v)δ−1
b , v ∈ P

′
K

. (33)

Indeed, by (26), tb(vδ−b) = tb(v)tb(δ−b)δ
−1
b . Since tb(δ−b) = δ, then we have tb(vδ−b) =

tb(v)δ−1
b . Setting w = tb(eu)δ−1

b . Clearly,
(
tb(u)δ−1

b
)

0 = (u)0 and (w)0 = (eu)0 = e(u)0 . On
the other hand, by (25), (33) and (27),

xw = x
(
tb(eu)δ−1

b
)

= xtb(euδ−b)

= tb

(
(x + b)

(
euδ−b

))
= tb

((
(x + b)δ−b

)
eu + x

(
δ−bθ0(x + b)

)
(x)eu

)
.

However, from (x + b)δ−b = 0 and
(
δ−bθ0(x + b)

)
(x) = 1, we get xw = tb(xeu). From

Definition 4, and while using (24), (26) and (33), we obtain

(xw)′ = tb

((
(xeu)′)

= tb
(
(xu)′eu)

= tb
(
(xu)′

)
tb
(
eu)δ−1

b = tb
(
(xu)′

)
w

=
(
tb(xu)

)′w.

From (27), we have xu =
(
(x + b)δ−b

)
u + x

(
δ−bθ0(x + b)

)
u = (x + b)(uδ−b). By (25)

and (26), we deduce

tb(xu) = tb
(
(x + b)(δ−bu)

)
= xtb(δ−bu)

= xtb(δ−b)tb(u)δ−1
b

= xtb(u)δ−1
b .

Accordingly, we have (w)0 = e(tb(u)δ
−1
b )0 and (xw)′ =

(
x
(
tb(u)δ−1

b
))′w. From the

uniqueness of the solution of the last equation, we get w = etb(u)δ
−1
b and, as a consequence,

tb
(
eu)δ−1

b = etb(u)δ
−1
b . Hence, (ii) holds.
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Next, assume that u is a symmetric linear functional, i.e., σ(xu) = 0. If w2 = eu, then

(w2)0 = e(u)0 , (xw2)
′ = −(xu)′w2. (34)

Since u is symmetric, then (xu)′ is also symmetric. By (31), (29), and (28), it follows
that

σ
(
(xu)′w2

)
= σ

(
(xu)′

)
σ w2

= 2
(
σ(x2u)

)′
σ w2

= 2
(
xσ(u)

)′
σw2.

Therefore, if we apply the operator σ in both hand sides of (34), then

(σw2)0 = e(u)0 ,
(
xσ(w2)

)′
= −

(
xσ(u)

)′
σ(w2).

The uniqueness of the solution of the last equation yields σw2 = eσu.
Hence, (iii) holds.
Assume that u is symmetric, i.e., h−1u = u. By (i), taken with a = −1, we obtain

h−1(eu) = eh−1(u) = eu. Thus, eu is also symmetric.
Conversely, assume that eu is symmetric, i.e., h−1(eu) = eu. Again by (i), when a = −1,

we deduce eh−1(u) = eu. Notice that

(eu)0 = e(u)0 , (xeu)′ = (xu)′eu.

(eh−1(u))0 = e(u)0 , (xeu)′ = (xh−1(u))′eu.

This implies (xu)′eu = (xh−1(u))′eu. If we multiply both hand sides of the last equa-
tion by e−u, then (xu)′ = (xh−1(u))′, and so that xu = xh−1(u). Since (h−1u)0 = (u)0,
then h−1u = u, by (4) taken with c = 0. Hence, u is symmetric. Thus, the statement (iv) is
proved.

3. Cauchy Power of a Linear Functional

We start recalling the following formulas.

Lemma 3 ([2,3,10]). For any u, v in P′
K

, any f ∈ PK and any a, c in K where a �= 0, we have

(u−1)′ = −u−2u′ − 2x−1u−1. (35)

For any u in P′
K

and any arbitrary non-negative integer number n, we can define the
Cauchy power of order n of u, denoted by un, as follows

un = u...u︸︷︷︸
n−times

, u0 = δ.

When (u)0 �= 0, recall that u is invertible. In such a case, we can extend the definition
of un to negative integer numbers n as follows un = u−1...u−1︸ ︷︷ ︸

(−n)−times

.

In [11], we have deduced that (u2)′ = 2uu′ + x−1u2. More generally, we have

Proposition 5. For any u ∈ P′
K

, the following properties hold.

(i) For every positive integer number n we have

(un)′ = nun−1u′ + (n − 1)x−1un.
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(ii) If (u)0 �= 0, then for every integer number n,

(un)′ = nun−1u′ + (n − 1)x−1un.

Proof. We proceed by induction. If n = 1, then u′ = δu′. Therefore, the statement is true.
We assume that the statement is true for n = k, i.e., (uk)′ = kuk−1u′ + (k − 1)x−1uk. From
the previous Lemma, we get

(uk+1)′ = (uku)′

= (uk)′u + uku′ + x−1uk+1

=
(
kuk−1u′ + (k − 1)x−1uk)u + uku′ + x−1uk+1

= (k + 1)uku′ + (k)x−1uk+1.

Thus, if the statement is true for n = k, then it also holds for n = k + 1. Hence, (i)
holds.

Assume that (u)0 �= 0. Then u is invertible and uu−1 = u−1u = δ. Clearly, the state-
ment (ii) is true, for n = 0, it comes back to δ′ = −x−1δ. Let n be a negative integer number
n. By (i) and Lemma 3, we have

(un)′ =
(
(u−1)−n)′

= −n(u−1)−n−1(u−1)′ − (n + 1)x−1(u−1)−n

= −nun+1(u−1)′ − (n + 1)x−1un

= −nun+1(−u−2u′ − 2x−1u−1)− (n + 1)x−1un

= nun−1u′ + (n − 1)x−1un.

Hence, (ii) holds.

First application. Recall that the moments of the classical Bessel linear functional
B(1/2), with parameter α = 1

2 , are (B(1/2))n = (−2)n

n! , n ≥ 0. Equivalently, see [7–9],(
B(1/2)

)
0 = 1,

(
B(1/2)

)′ − (x + 2)B(1/2) = 0.

Proposition 6. For any integer number m and λ ∈ K, λ �= 0, we have

(i) h− λ
2

e−2 δ′ = eλδ′ .

(ii)
(
B(1/2)

)m
= hm

(
B(1/2)

)
.

Proof. We start by showing that e−2 δ′ = B( 1
2 ). Indeed, observe that (xe−2 δ′)′+ δ′e−2 δ′ = 0.

If we compute the first moments of e−2 δ′ and multiply the last equation by x, after using
(27) and an easy computation, we find

(
e−2 δ′)

0 = 1,
(
x2e−2 δ′)′ − (x + 2)e−2 δ′ = 0. By the

uniqueness of the solution of the last equation, e−2 δ′ = B( 1
2 ). By Proposition 4, (i), we get

h− λ
2

e−2 δ′ = e
h− λ

2
(−2δ′)

. Since 〈h− λ
2
(−2δ′), p〉 = 〈−2δ′, p(− λ

2 x)〉 = −λp′(0), p ∈ PK, then

h− λ
2
(−2δ′) = λδ′. Thus, h− λ

2
(e−2 δ′) = eλδ′ . Hence, (i) holds.

Let m be a non-zero integer. By (17) and the last property (i), we get
(
B( 1

2 )
)m

=

(e−2 δ′)m = e−2m δ′ = hm
(
B( 1

2 )
)
. Hence, (ii) holds.
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Second application. Let first recall that the moments of the generalized Bessel linear
functional B[0] with parameter ν = 0, a symmetric D—semi-classical linear functional of
class one, see [8,9], are

(B[0])2n+1 = 0, (B[0])2n =
(−1)n

22nn!
, n ≥ 0.

Equivalently, B[0] satisfies the Pearson equation:

(
x3B[0]

)′ − (2x2 +
1
2
)B[0] = 0, where (B[0])0 = 1 and (B[0])1 = 0.

Proposition 7. For any integer number m and λ ∈ K, λ �= 0, we have

(i) h2i
√

2λe
1
4 δ′′ = eλδ′′ .

(ii)
(
B[0]

)m
= h√m

(
B[0]

)
.

Proof. First, let us show that e−
1
8 δ′′ = B[0]. Indeed, we have (xe−

1
8 δ′′)′ − 1

4 δ′′e−
1
8 δ′′ =

0. If we compute the first moments of e−
1
8 δ′′ and then multiply the last equation by

x2, we get after using (27) and an easy computation,
(
x3e−

1
8 δ′′)′ − (2x2 + 1

2 )e
− 1

8 δ′′ =

0, with (e
1
4 δ′′)0 = 1, and (e−

1
8 δ′′)1 = 0. By the uniqueness of the solution of this equation,

we get e−
1
8 δ′′ = B[0]. By Proposition 4, (i), we get h2i

√
2λ(e

− 1
8 δ′′) = e−

1
8h2i

√
2λ
(δ′′). However,

since h2i
√

2λ(δ
′′) = −8λδ′′, it follows that h2i

√
2λe−

1
8 δ′′ = eλδ′′ . Hence, (i) holds.

Let m be a non-zero integer number. By (17) and the last property (i), we get
(
B[0]

)m
=

(e−
1
8 δ′′)

m
= e−

m
2 δ′′ = h√m

(
B[0]

)
. Hence, (ii) holds.

Third application. Recall that the moments with respect to the sequence {(x− 1)n}n≥0
of the classical Jacobi linear functional J (α,−1 − α) with parameter α, a non-integer
number, are

(
J (α,−1 − α)

)
n,1 = 〈J (α,−1 − α), (x − 1)n〉 = (−2)n Γ(n − α)Γ(α)

Γ(−α)n!
, n ≥ 0.

Equivalently, (see [1,7,8])(
J (α,−1 − α)

)
0 = 1,

(
(x2 − 1)J (α,−1 − α)

)′
+ (−x + 2α + 1)J (α,−1 − α) = 0.

Notice that the shifted linear functional w = t−1J (α,−1 − α) satisfies

(w)0 = 1,
(
x(x + 2)w

)′
+ (−x + 2α)w = 0.

Proposition 8. For any non-zero complex number c and any positive integer number n, we have

(i) For any non-integer complex number α such nα is a non-integer number,
(
t−1J (α,−1 −

α)
)n

= t−1J (nα,−1 − nα). Equivalently,

(
J (α,−1 − α)

)n
= J (nα,−1 − nα) δn−1

1 .

(ii) For any pair of non-integer complex numbers (α, γ) such that α + γ is a non-integer number,(
t−1J (α,−1 − α)

)(
t−1J (γ,−1 − γ)

)
= t−1J (α + γ,−1 − α − γ).

Equivalently, J (α,−1 − α)J (γ,−1 − γ) = J (α + γ,−1 − α − γ) δ1.
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Proof. Let α be a fixed non-integer complex number. First, let’s show that eαδ−2 =
t−1J (α,−1 − α). Indeed, if we put w = eαδ−2 , then (w)0 = 1, w′ − x−1(δ−2w) = x−1w.
Since, δ−2w = (w)0δ− 2(x + 2)−1w = δ− 2(x + 2)−1w, then (w)0 = 1, w′ − x−1(w− 2(x +
2)−1w

)
= x−1w. If we multiply both hand sides of the last equation by x(x + 2), we get

x(x + 2)w′ +
(
x + 2(α + 1)

)
w = 0, i.e.,

(
x(x + 2)w

)′
+ (−x + 2α)w = 0. This implies that

w = t−1J (α,−1 − α). By Proposition 4, (i), h− c
2
(eα δ−2) = e

α h− c
2

δ−2 . Since, h− c
2
(δ−2) = δc,

then h− c
2
(eα δ−2) = eα δc . Hence, the first statement in (i) holds.

Let n be a non-zero integer number and α be a non-integer complex number such that
nα is a non-integer number. From (17) and the previous property (i), we get

(
t−1J (α,−1 −

α)
)n

= enα δ−2 = t−1J (nα,−1− nα). Therefore,
(
t−1J (α,−1− α)

)n
= t−1J (nα,−1− nα).

By applying the operator t1 and using (26), we get
(
J (α,−1 − α)

)n
δ−n+1

1 = J (nα,−1 −
nα). This yields

(
J (α,−1 − α)

)n
= J (nα,−1 − nα) δn−1

1 .
Hence, the second statement in (i) holds.

Let (α, γ) be a pair of non-integer complex numbers such that α + γ is a non-integer
number. We can write(

t−1J (α,−1 − α)
)(
t−1J (γ,−1 − γ)

)
= eα δ−2 eγ δ−2

= e(α+γ) δ−2

= t−1J (α + γ,−1 − α − γ).

Finally, if we apply the operator t1 and we use (26), we find

J (α,−1 − α)J (γ,−1 − γ) = J (α + γ,−1 − α − γ) δ1.

Hence, (ii) holds.

4. Weak-Regularity Property

We start with the following Lemma.

Lemma 4. For any u ∈ P′
K

, if (xu)′ is weakly-regular, then eu is also weakly-regular.

Proof. Assume that u ∈ P′
K

is such that (xu)′ is weakly-regular. Suppose that there exists
φ ∈ PK, φ �≡ 0 such that φeu = 0. Necessarily, deg(φ) ≥ 1. Indeed, if we suppose that
deg(φ) = 0, then 0 = (φeu)0 = φe(u)0 . This is a contradiction, because φ �= 0 and e(u)0 �= 0.
From (7), (27) and the definition of Cauchy exponential of a linear functional, we obtain

0 = (φxeu)′

= φ′(xeu) + φ(xeu)′

= φ′(xeu) + φ
(
(xu)′eu)

= φ′(xeu) + (φeu)(xu)′ + x
(
euθ0φ

)
(x)(xu)′

= φ′(xeu) + x
(
euθ0φ

)
(x)(xu)′.

Multiplying both hand sides of the last equation by φ and assuming φeu = 0, we get
xφ(euθ0φ)(x)(xu)′ = 0. This is a contradiction, taking into account (xu)′ is weakly-regular
and the fact that deg(φ) ≥ 1, (eu)0 �= 0 and so that deg(euθ0φ) ≥ 0.

Proposition 9. For any u in P′
K

, the following statements are equivalent.

(i) eu is weakly-regular.
(ii) (xu)′ is weakly-regular. Otherwise, we must have

min{deg(A) | A ∈ PK, A �≡ 0 and A(xu)′ = 0} ≥ 2.
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Proof. (i) ⇒ (ii). Assume that eu is weakly-regular. Suppose that (xu)′ is not weakly-
regular. Then there exists A ∈ PK, A �≡ 0, with minimum degree, such that A(xu)′ = 0 and
deg A ≥ 2. We have to treat two cases.

First case: deg(A) = 0. In such a situation (xu)′ = 0, and then u = (u)0δ. In this case,
eu = e(u)0 eδ = e(u)0 δ and then xeu = 0. This contradicts the assumption eu is weakly-regular.

Second case: deg(A) = 1. Therefore, there exists c ∈ K such that (x − c)(xu)′ = 0. Thus,
(xu)′ = ((xu)′)0δ = 0 and so that u = (u)0δ. This is a contradiction.
Hence, min{deg(A) | A ∈ PK, A �≡ 0 and A(xu)′ = 0} ≥ 2.

(ii) ⇒ (i). By Lemma 4, if (xu)′ is weakly-regular, eu is also weakly-regular. Assume
that min{deg(A)| A ∈ PK, A �≡ 0 and A(xu)′ = 0} ≥ 2. Then, there exists A ∈ PK,
deg(A) ≥ 2, with minimum degree that satisfies A(xu)′ = 0. We have

A(xeu)′ = A
(
(xu)′eu)

= A(xu)′eu + x
(
(xu)′θ0 A

)
eu

= x
(
(xu)′θ0 A

)
eu.

Equivalently,

(Axeu)′ −
(

A′(x) +
(
(xu)′θ0 A

)
(x)

)
xeu = 0.

The last equation can not be simplified. Otherwise, suppose that it can be simplified
by x − c, where A(c) = 0. Then,

(x − c)θc(A)
(
xeu)′ − [

(xu)′θ0
(
(x − c)θc(A)

)
(x)

]
xeu = 0.

Notice that

(xu)′θ0
(
(x − c)θc(A)

)
(x) = 〈(yu)′,

(x − c)θc(A)(x)− (y − c)θc(A)(y)
x − y

〉

= 〈(yu)′, (x − c)
θc(A)(x)− θc(A)(y)

x − y
+ θc(A)(y)〉

= (x − c)〈(yu)′,
θc(A)(x)− θc(A)(y)

x − y
〉+ 〈(yu)′, θc(A)(y)〉.

Then, (x− c)
(

θc(A)
(
xeu)′ − (

(xu)′θ0θc(A)
)
xeu

)
− 〈(yu)′, θc(A)(y)〉xeu = 0. The sim-

plification by (x − c) requires the two following conditions:{ 〈θc(A)(xeu)′ −
(
(xu)′θ0θc(A)

)
(x)xeu, 1〉 = 0,

〈(yu)′, θc(A)(y)〉 = 0.

The simplification gives θc(A)
(
xeu)′ − (

(xu)′θ0θc(A)
)
(xeu) = 0. By the definition of

the Cauchy exponential, θc(A)(xu)′eu − (xu)′θ0θc(A)(xeu) = 0. By (27), it follows that(
θc(A)(xu)′

)
eu = 0. If we multiply both hand sides of the last equation by e−u and we use

the property e−ueu = eue−u = δ, we get θc(A)(xu)′ = 0. This contradicts the fact that A is
of minimum degree such that A(xu)′ = 0.

If V = xeu, then it satisfies (AV)′ −
(

A′ +
(
(xu)′θ0 A

))
V = 0, where deg A ≥ 2, which

can not be simplified. Moreover, V �= 0. Indeed, if V = 0, then eu = e(u)0 δ. This implies
(xu)′ = 0. This is a contradiction. For the sequel, notice that V is weakly-regular if and
only if eu is weakly-regular. Indeed, suppose that there exists a non-zero polynomial Φ
with a minimal degree such that ΦV = 0. Thus, we have

AV′ =
(
(xu)′θ0 A

)
V, (36)

ΦV′ = −Φ′V. (37)
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Since the pseudo-class (see [11]) of V is equal to deg(A), then A divides Φ. So, there
exists Q ∈ PK such that Φ = AQ. From (36) and (37), we have

QAV′ = −(QA)′V, (38)

Q
(
(xu)′θ0 A

)
V = −(QA)′V. (39)

So, BV = 0, where B = Q
(
(xu)′θ0 A

)
+ (QA)′. Since deg(A) ≥ 2, then deg(B) =

deg(Q) + deg(A)− 1 ≥ deg(Q) + 1. Moreover, deg(B) < deg(Φ). This contradicts the
fact that Φ is of minimal degree such that ΦV = 0. Thus, V is weakly-regular and then eu is
also weakly-regular.

5. A Du-Laguerre–Hahn Property

In what follows, let P′
K

� = {u ∈ P′
K
| (u)0 �= −n, for all integer n ≥ 1}. For any u

in P′
K

�, the non-singular lowering operator Du on the linear space of polynomials is defined
by [10,11]

Du(p)(x) := p′(x) + uθ0 p(x) = p′(x) + 〈uy,
p(x)− p(y)

x − y
〉, p ∈ PK. (40)

Let us give some fundamental properties satisfied by the non-singular lowering
operator Du.

Linearity: Du(αp + βq) = αDu(p) + βDu(q), p, q ∈ PK, α, β ∈ K.

Lowering of degrees:

Du(xn)(x) =
(
n + (u)0

)
xn−1 +

n−2

∑
ν=0

(u)n−ν−1xν, n ≥ 1, (
−1

∑
ν=0

= 0),

Du(1) = 0.

Under the condition (u)0 �= −n, for all integer n ≥ 1, we can see that deg(Du(p)) =
deg(p)− 1, for all p ∈ PK.

Symmetry:
When u is symmetric, i.e., (u)2n+1 = 0, n ≥ 0, and the MPS {Bn(x)}n≥0 is symmetric,

then the polynomial sequence {Qn(x)}n≥0 defined by Qn(x) = Du(Bn+1)(x), n ≥ 0, is
also symmetric.

The product rule:

Du( f g) = Du( f )g + f Du(g) + uθ0( f g)− (uθ0 f )g − (uθ0g) f , f , g ∈ PK. (41)

In particular, we have

Du(x f )(x) = xDu( f )(x) + f (x) + 〈u, f 〉, f ∈ PK. (42)

By transposition of the operator Du, we obtain

〈tDu(w), p〉 = 〈w, Du(p)〉
= 〈w, p′ + uθ0 p〉
= 〈−w′ + x−1wu, p〉, p ∈ PK, w ∈ P

′
K

.

Then, tDu(w) = −w′ + x−1(wu), w ∈ P′
K

. If we set Du := −tDu, we have

Du(w) = w′ − x−1(uw), w ∈ P
′
K

, (43)

and we can write
〈Du(w), p〉 = −〈w, Du(p)〉, p ∈ PK. (44)
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The following product rule is a straightforward consequence of the previous defini-
tions and formulas

Du( f w) = Du( f )w + f Duw + (wθ0 f )u − (uθ0 f )w, f ∈ PK, w ∈ P
′
K

. (45)

For any u ∈ P′
K

�, let S = S(u) be the unique linear functional defined by [2]{
(S)0 = 1,

Du(S) = −
(
(u)0 + 1

)
x−1S.

(46)

Equivalently, {
(S)0 = 1,

S′ − x−1(uS) = −
(
(u)0 + 1

)
x−1S.

(47)

i.e., {
(S)0 = 1,

(xS)′ −
(
u − (u)0δ

)
S = 0.

(48)

Let {en(x; u)}n≥0 be the sequence of monic polynomials defined by

en := en(x; u) = S−1xn, n ≥ 0, (49)

where S is given by (46). Observe that

Du(en) = (n + (u)0)en−1, n ≥ 0. (50)

Clearly, {en(x; u)}n≥0 is an Appell sequence with respect to Du. In addition, the poly-
nomial sequence {en(x)}n≥0 can be characterized by

e0(x) = 1, en+1(x) = xen(x) + (S−1)n+1, n ≥ 0. (51)

Proposition 10. For any v ∈ P′
K

, we have

D(xv)′(e
v) = −x−1ev. (52)

Proof. Assume that v ∈ P′
K

and recall that ev is defined by

(ev)0 = e(v)0 , (xev)′ = (xv)′ev. (53)

Observe that (xv)′ ∈ P′
K

�, because
(
(xv)′

)
0 = 0 �= −n, n ≥ 1. From (48) taken with

u = (xv)′, we have(
S
(
(xv)′

))
0 = 1,

(
xS
(
(xv)′

))′ − (xv)′S
(
(xv)′

)
= 0. (54)

By the uniqueness of the solution of each of (53) and (54), we deduce

ev = e(v)0 S
(
(xv)′

)
. (55)

This yields the desired result, according to (46), where u = (xv)′.
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Setting ẽn(x) = en
(
x; (xv)′

)
= S

(
(xv)′

)−1xn, n ≥ 0. According to (49) and (50), we
can say that

ẽn(x) = e(v)0 e−vxn, n ≥ 0. (56)

Du(ẽn) = nẽn−1, n ≥ 0. (57)

ẽ0(x) = 1, ẽn+1(x) = xẽn(x) + e(v)0(e−v)n+1, n ≥ 0. (58)

From (56), observe that

〈ev, ẽn〉 = e(v)0 δn,0, n ≥ 0. (59)

Lemma 5. For any v ∈ P′
K

, the monic polynomial sequence {ẽn(x)}n≥0 defined by ẽn(x) =

e(v)0 e−vxn, n ≥ 0, satisfies

xẽ′n(x) + (xv)′ ẽn(x) = nẽn(x), n ≥ 0. (60)

Proof. Assume that v ∈ P′
K

. Notice that (57) can be rewritten as ẽ′n(x) + (xv)′θ0 ẽn(x) =
nẽn−1(x), n ≥ 0. If we multiply both hand sides of the last equation by x and we use (58),
then we obtain

xẽ′n(x) + x
(
(xv)′θ0 ẽn(x)

)
(x) = n

(
ẽn − e(v)0(e−v)n

)
, n ≥ 0. (61)

However, from (ye−v)′ = −(yv)′e−v and while taking into account (56), we get

x
(
(xv)′θ0 ẽn

)
(x) = 〈(yv)′,

xẽn(x)− yẽn(y)
x − y

− ẽn(y)〉

= (xv)′ ẽn(x)− 〈(yv)′, ẽn(y)〉
= (xv)′ ẽn(x)− e(v)0〈(yv)′e−v, yn〉
= (xv)′ ẽn(x) + e(v)0〈(ye−v)′, yn〉
= (xv)′ ẽn(x)− ne(v)0

(
e−v)n, n ≥ 0.

Then, (61) gives xẽ′n + (xv)′ ẽn − ne(v)0
(
e−v)n = n

(
ẽn − e(v)0(e−v)n

)
= nẽn, n ≥ 0.

Hence, the desired result.

6. A New Characterization of Positive-Definiteness

We start with the two following technical Lemmas.

Lemma 6 ([5]). For any w ∈ PR
′, the following statements are equivalent.

(i) w is positive-definite.
(ii) w is weakly-regular and positive.

Lemma 7. For any g ∈ PK, there exists p ∈ PK, with deg(p) = deg(g), such that

g(x)− e−(v)0〈ev, g〉 = xp′(x) +
(
(xv)′p

)
(x). (62)
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Proof. Assume that g ∈ PK. We always have g = ∑N
ν=0 θν ẽν, where θν ∈ K, 0 ≤ ν ≤ N.

From (59) and (60), we have

g(x)− e−(v)0〈ev, g〉 =
N

∑
ν=0

θν

(
ẽν(x)− e−(v)0〈ev, ẽν〉

)
=

N

∑
ν=0

θν

(
ẽν(x)− e−(v)0 e(v)0 δν,0

)
=

N

∑
ν=1

θν ẽν(x)

=
N

∑
ν=1

θν

ν

(
xẽ′ν(x) + (xv)′ ẽν(x)

)
= xp′(x) +

(
(xv)′p

)
(x),

where p(x) = ∑N
ν=1

θν
ν ẽν(x).

Theorem 1. For any linear functional v ∈ PR
′ such that ev is weakly-regular, the following

statements are equivalent.

(i) ev is positive-definite.
(ii) For any p ∈ PR, deg(p) = 2l, l ≥ 1, the polynomial xp′(x) +

(
(xv)′p

)
(x) has at least one

real zero.

Proof. (i) ⇒ (ii). Let v ∈ PR
′ such that ev is positive-definite. Suppose that there exists

p ∈ PR, deg(p) = 2l, l ≥ 1, and such that xp′(x) +
(
(xv)′p

)
(x) has not real zeros. Clearly,

deg
(
xp′ + (xv)′p

)
= 2l. Without loss of generality, we can suppose that the leading

coefficient of p is positive. Then xp′(x) +
(
(xv)′p

)
(x) is a positive polynomial. Under the

assumption ev is positive-definite, then we get 〈ev, xp′ + (xv)′p〉 > 0. This is a contradiction,
because 〈ev, xp′ + (xv)′p〉 = 〈−(xev)′ + (xv)′ev, p〉 = 0, by the definition of ev. Thus,
xp′(x) +

(
(xv)′p

)
(x) must have at least one real zero.

(ii) ⇒ (i). Let g ∈ PR, p �≡ 0 and g ≥ 0. Let deg(g) = 2l, l ≥ 0.
If l = 0, i.e., g(x) = m > 0, then we have 〈ev, g〉 = me(v)0 > 0.
If l ≥ 1, there exists p ∈ PR, deg(p) = 2l, such that g(x)− e−(v)0〈ev, g〉 = xp′(x) +(

(xv)′p
)
(x), by virtue of Lemma 7. By the assumption, there exists c ∈ R, such that

g(c)− e−(v)0〈ev, g〉 = 0. Then, 〈ev, g〉 = e(v)0 g(c) ≥ 0. Thus, ev is a positive linear functional.
Since ev is weakly-regular, it follows that ev is positive-definite, according to Lemma 6.

Corollary 1. For any weakly-regular linear functional w ∈ P′
R

+, the following statements
are equivalent.

(i) w is positive-definite.
(ii) For any p ∈ PR, deg(p) = 2l, l ≥ 1, the polynomial w−1x(wp)′(x) has at least one real

zero.

Proof. Let w ∈ P′
R

+. By Proposition 3, (iii), there exists a unique v ∈ PR
′ such that w = ev.

By Lemma 7, Theorem 1, and under the assumption w is weakly-regular, we infer that
w is positive-definite, if and only if xp′(x) +

(
(xv)′p

)
(x) has at least one real zero, for all

p ∈ PR, where deg(p) = 2l, l ≥ 1. Let p ∈ PR, deg(p) = 2l, l ≥ 1. We always have
p(x) = ∑2l

ν=0 θν ẽν(x), where ẽn(x) = e(v)0 e−vxn, n ≥ 0. Then,
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xp′(x) +
(
(xv)′p

)
(x) =

2l

∑
ν=0

θν

(
xẽ′ν(x) + (xv)′ ẽν(x)

)
=

2l

∑
ν=0

νθν ẽν(x)

= e(v)0 e−v
2l

∑
ν=0

νθνxν

= e(v)0 e−vx
( 2l

∑
ν=0

θνe−(v)0 evxν
)′

= w−1x
(
w

2l

∑
ν=0

θνxν
)′

= w−1x(wp)′(x).

This concludes the proof.

7. Concluding Remarks

In this contribution, the Cauchy exponential of a linear functional in the linear space
of polynomials with either real or complex coefficients has been introduced. Some analytic
and algebraic properties are studied. The Cauchy power of a linear functional is defined.
Some illustrative examples of Jacobi and Bessel’s classical linear functionals are discussed.
A characterization of the weak regularity of the Cauchy exponential of a linear functional is
given. A characterization of the positive definiteness of the Cauchy exponential of a linear
functional is presented.

As further work, we are dealing with the following problems.

(i) Given a regular linear functional u such that its Cauchy exponential eu is also a
regular linear functional there exists a connection formula between the corresponding
sequences of orthogonal polynomials?

(ii) Assuming u is a D—semiclassical linear functional, see [3], is eu a D−semiclassical
linear functional?

(iii) Can do you define other analytic functions of linear functionals in a natural way, by
using the corresponding Taylor expansions?
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Abstract: Functional inequalities involving special functions are very useful in mathematical analysis,
and several interesting results have been obtained in this topic. Several methods have been used by
many authors in order to derive upper or lower bounds of certain special functions. In this paper,
we establish some general integral inequalities involving strictly monotone functions. Next, some
special cases are discussed. In particular, several estimates of trigonometric and hyperbolic functions
are deduced. For instance, we show that Mitrinović-Adamović inequality, Lazarevic inequality, and
Cusa-Huygens inequality are special cases of our obtained results. Moreover, an application to
integral equations is provided.

Keywords: integral inequalities; strictly monotone functions; functional inequalities

MSC: 26D15; 26D05; 33B10

1. Introduction

The use of integral inequalities is very frequent in various branches of mathematics
such as differential and partial differential equations, numerical analysis, stability analysis
and measure theory. Due to this fact, the study of integral inequalities is of particular
importance.

Several results related to the development of integral inequalities involving monotone
functions have been published. One of the most useful inequalities in analysis is due to
Bellman [1]: Let ι, τ, κ ∈ C([α, β]), α, β ∈ R, α < β, ι > 0 and τ, κ ≥ 0. If ι is monotonic
nondecerasing, and

τ(x) ≤ ι(x) +
∫ x

α
κ(s)τ(s) ds

for all x ∈ [α, β], then

τ(x) ≤ ι(x) exp
(∫ x

α
κ(s) ds

)
for all x ∈ [α, β]. Another important inequality is due to Chebyshev (see e.g., [2]). This
inequality can be stated as follows. Let ωi ∈ L1([α, β]), i = 1, 2, ωi is decreasing for all i, or
ωi is increasing for all i. Let ϑ ∈ L1([α, β]) and ϑ > 0. Then

2

∏
i=1

(∫ β

α
ωi(x)ϑ(x) dx

)
≤
(∫ β

α
ϑ(x) dx

)(∫ β

α
ω1(x)ω2(x)ϑ(x) dx

)
. (1)

An extension of the above inequality to higher dimensions have been derived in [3]. In [4–7],
reversed inequalities of Hölder, Hardy and Poincaré type have been proved. Some results
related to integral inequalities for operator monotonic functions can be found in [8]. Other
integral inequalities involving monotone functions can be found in [9–13].

In [14], using inequality (1), Qi, Cui and Xu established several inequalities involving
trigonometric functions and other inequalities involving the integral of sin x

x . Motivated by
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the above mentioned contribution and also by the importance of trigonometric inequalities
in real analysis, we establish in this paper new integral inequalities for strictly monotone
functions, which can be useful for obtaining several functional inequalities involving
trigonometric and hyperbolic functions.

Before stating our main results, let us fix some notations:

• N: The set of positive integers.
• a, b ∈ R, a < b.
• f ∈ V([a, b]) means that f : [a, b] → R is C1, f ([a, b]) ⊂ [0,+∞[ and

f ′(]a, b[) ⊂]0,+∞[ or f ′(]a, b[) ⊂]− ∞, 0[.

We present below our results.

Theorem 1. Let σ ∈ R\{0,−2}, f ∈ V([a, b]), w ∈ C([a, b[) and w(]a, b[) ⊂]0,+∞[. Then,
for every n ∈ N and x ∈]a, b[, it holds that

∫ x

a
(x − t)n−1 f σ(t)

(
f 2(a)

σ
− f 2(t)

σ + 2

)
w(t) dt <

2 f σ+2(a)
σ(σ + 2)

∫ x

a
(x − t)n−1w(t) dt. (2)

Theorem 2. Let σ ∈ R\{0,−2}, f ∈ V([a, b]), w ∈ C(]a, b]) and w(]a, b[) ⊂]0,+∞[. Then,
for every n ∈ N and x ∈]a, b[, it holds that

∫ b

x
(t − x)n−1 f σ(t)

(
f 2(b)

σ
− f 2(t)

σ + 2

)
w(t) dt <

2 f σ+2(b)
σ(σ + 2)

∫ b

x
(t − x)n−1w(t) dt. (3)

Theorem 3. Let f ∈ C1([a, b]). Assume that f ′(]a, b[) ⊂]− ∞, 0[. Then, for every n ∈ N, n ≥ 2,
and x ∈]a, b[, it holds that∫ x

a
(x − t)n−1 f (t) dt > (n − 1)

∫ x

a
(x − t)n−2(t − a) f (t) dt. (4)

In the case when f ′(]a, b[) ⊂]0,+∞[, we have the following result.

Theorem 4. Let f ∈ C1([a, b]). Assume that f ′(]a, b[) ⊂]0,+∞[. Then, for every n ∈ N, n ≥ 2,
and x ∈]a, b[, it holds that∫ x

a
(x − t)n−1 f (t) dt < (n − 1)

∫ x

a
(x − t)n−2(t − a) f (t) dt.

Theorem 5. Let f ∈ C1([a, b]). Assume that f ′(]a, b[) ⊂]− ∞, 0[. Then, for every n ∈ N, n ≥ 2,
and x ∈]a, b[, it holds that

∫ b

x
(t − x)n−1 f (t) dt < (n − 1)

∫ b

x
(t − x)n−2(b − t) f (t) dt.

Theorem 6. Let f ∈ C1([a, b]). Assume that f ′(]a, b[) ⊂]0,+∞[. Then, for every n ∈ N, n ≥ 2,
and x ∈]a, b[, it holds that

∫ b

x
(t − x)n−1 f (t) dt > (n − 1)

∫ b

x
(t − x)n−2(b − t) f (t) dt

for all integer n ≥ 2 and a < x < b.

The proofs of The above theorems are given in Section 2. Next, some special cases are
discussed in Section 3. Finally, in Section 4, an application to integral equations is provided.
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2. The Proofs

Proof of Theorem 1. Let

F(t) = − f ′(t) f σ−1(t)
(

f 2(t)− f 2(a)
)

for all t ∈]a, b[. Due to the assumptions on f and f ′, we have two possible cases:

f ′(t) < 0, 0 ≤ f (b) < f (t) < f (a), a < t < b

or
f ′(t) > 0, 0 ≤ f (a) < f (t) < f (b), a < t < b.

Observe that in both cases, we have

f (]a, b[) ⊂]0,+∞[, F(]a, b[) ⊂]− ∞, 0[.

Then, for all s ∈]a, b[, it holds that ∫ s

a
F(t) dt < 0,

which is equivalent to∫ s

a

(
− f ′(t) f σ+1(t) + f 2(a) f ′(t) f σ−1(t)

)
dt < 0. (5)

On the other hand, we have∫ s

a

(
− f ′(t) f σ+1(t) + f 2(a) f ′(t) f σ−1(t)

)
dt

=

[
− f σ+2(t)

σ + 2
+

f 2(a) f σ(t)
σ

]s

t=a

= − f σ+2(s)
σ + 2

+
f 2(a) f σ(s)

σ
+

f σ+2(a)
σ + 2

− f σ+2(a)
σ

= f σ(s)
(

f 2(a)
σ

− f 2(s)
σ + 2

)
− 2

σ(σ + 2)
f σ+2(a),

which implies by (5) that

f σ(s)
(

f 2(a)
σ

− f 2(s)
σ + 2

)
<

2
σ(σ + 2)

f σ+2(a).

Multiplying by w and integrating over ]a, x[, where x]a, b[, we obtainr

∫ x

a
f σ(s)

(
f 2(a)

σ
− f 2(s)

σ + 2

)
w(s) ds <

2
σ(σ + 2)

f σ+2(a)
∫ x

a
w(s) ds,

which shows that (2) holds for n = 1.
Let us now assume that (2) holds for some p ∈ N, that is,

∫ y

a
(y − t)p−1 f σ(t)

(
f 2(a)

σ
− f 2(t)

σ + 2

)
w(t) dt <

2 f σ+2(a)
σ(σ + 2)

∫ y

a
(y − t)p−1w(t) dt
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for all y ∈]a, b[. Integrating over ]a, x[, where x ∈]a, b[, we obtain

∫ x

a

(∫ y

a
(y − t)p−1 f σ(t)

(
f 2(a)

σ
− f 2(t)

σ + 2

)
w(t) dt

)
dy

<
2 f σ+2(a)
σ(σ + 2)

∫ x

a

(∫ y

a
(y − t)p−1w(t) dt

)
dy.

(6)

On the other hand, by Fubini’s theorem, we have

∫ x

a

(∫ y

a
(y − t)p−1 f σ(t)

(
f 2(a)

σ
− f 2(t)

σ + 2

)
w(t) dt

)
dy

=
∫ x

a
f σ(t)

(
f 2(a)

σ
− f 2(t)

σ + 2

)
w(t)

(∫ x

t
(y − t)p−1 dy

)
dt

=
1
p

∫ x

a
(x − t)p f σ(t)

(
f 2(a)

σ
− f 2(t)

σ + 2

)
w(t) dt.

(7)

Similarly, we have ∫ x

a

(∫ y

a
(y − t)p−1w(t) dt

)
dy

=
∫ x

a
w(t)

(∫ x

t
(y − t)p−1 dy

)
dt

=
1
p

∫ x

a
(x − t)pw(t) dt.

(8)

Thus, it follows from (6)–(8) that

∫ x

a
(x − t)p f σ(t)

(
f 2(a)

σ
− f 2(t)

σ + 2

)
w(t) dt <

2 f σ+2(a)
σ(σ + 2)

∫ x

a
(x − t)pw(t) dt,

which shows that (2) holds for p + 1. Thus, by induction, (2) holds for every n ∈ N.

Proof of Theorem 2. Let

G(t) = − f ′(t) f σ−1(t)( f 2(b)− f 2(t))

for all t ∈]a, b[. Due to the assumptions on f and f ′, we have

f (]a, b[) ⊂]0,+∞[, G(]a, b[) ⊂]− ∞, 0[.

Then, for every s ∈]a, b[, there holds

∫ b

s
G(t) dt < 0,

which is equivalent to

∫ b

s

(
− f ′(t) f σ−1(t) f 2(b) + f ′(t) f σ+1(t)

)
dt < 0. (9)

On the other hand, we have∫ b

s

(
− f ′(t) f σ−1(t) f 2(b) + f ′(t) f σ+1(t)

)
dt = f σ(s)

(
f 2(b)

σ
− f 2(s)

σ + 2

)
− 2 f σ+2(b)

σ(σ + 2)
,

which implies by (9) that

f σ(s)
(

f 2(b)
σ

− f 2(s)
σ + 2

)
<

2 f σ+2(b)
σ(σ + 2)

, a < s < b.
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Multiplying the above inequality by w(s), we get

f σ(s)
(

f 2(b)
σ

− f 2(s)
σ + 2

)
w(s) <

2 f σ+2(b)
σ(σ + 2)

w(s), a < s < b.

Integrating the above inequality over ]x, b[, where a < x < b, we obtain

∫ b

x
f σ(s)

(
f 2(b)

σ
− f 2(s)

σ + 2

)
w(s) ds <

2 f σ+2(b)
σ(σ + 2)

∫ b

x
w(s) ds,

which shows that (3) holds for n = 1.
The rest of the proof is similar to that of the previous theorem.

Proof of Theorem 3. We provide two different proofs of Theorem 3. The second proof was
suggested by one of the referees of the paper.

Proof 1. Let
H(t) = −(t − a) f ′(t)

for all t ∈]a, b[. Due to the assumption on f ′, we have

H(]a, b[) ⊂]0,+∞[,

which implies that ∫ s

a
H(t) dt > 0 (10)

for every s ∈]a, b[. Integrating by parts, we get∫ s

a
H(t) dt = −

∫ s

a
(t − a) f ′(t) dt

= −
(
[(t − a) f (t)]st=a −

∫ s

a
f (t) dt

)
= −

(
(s − a) f (s)−

∫ s

a
f (t) dt

)

= −(s − a) f (s) +
∫ s

a
f (t) dt,

which implies by (10) that ∫ s

a
f (t) dt > (s − a) f (s).

Integrating over ]a, x[, where x ∈]a, b[, we obtain∫ x

a

(∫ s

a
f (t) dt

)
ds >

∫ x

a
(s − a) f (s) ds. (11)

Furthermore, an integration by parts yields

∫ x

a

(∫ s

a
f (t) dt

)
ds =

[
s
∫ s

a
f (t) dt

]x

s=a
−
∫ x

a
s f (s) ds

= x
∫ x

a
f (t) dt −

∫ x

a
s f (s) ds,

that is, ∫ x

a

(∫ s

a
f (t) dt

)
ds =

∫ x

a
(x − t) f (t) dt,
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which implies by (11) that∫ x

a
(x − t) f (t) dt >

∫ x

a
(t − a) f (t) dt, a < x < b.

This shows that (4) holds for n = 2.
Let us now assume that (4) is satisfied for some p ∈ N, p ≥ 2, that is,∫ y

a
(y − t)p−1 f (t) dt > (p − 1)

∫ y

a
(y − t)p−2(t − a) f (t) dt

for all y ∈]a, b[. Integrating over ]a, x[, where x ∈]a, b[, we obtain∫ x

a

(∫ y

a
(y − t)p−1 f (t) dt

)
dy > (p − 1)

∫ x

a

(∫ y

a
(y − t)p−2(t − a) f (t) dt

)
dy. (12)

On the other hand, by Fubini’s theorem, we have∫ x

a

(∫ y

a
(y − t)p−1 f (t) dt

)
dy

=
∫ x

a
f (t)

(∫ x

t
(y − t)p−1 dy

)
dt

=
1
p

∫ x

a
(x − t)p f (t) dt

(13)

and ∫ x

a

(∫ y

a
(y − t)p−2(t − a) f (t) dt

)
dy

=
∫ x

a
(t − a) f (t)

(∫ x

t
(y − t)p−2 dy

)
dt

=
1

p − 1

∫ x

a
(x − t)p−1(t − a) f (t) dt.

(14)

Thus, it follows form (12)–(14) that∫ x

a
(x − t)p f (t) dt > p

∫ x

a
(x − t)p−1(t − a) f (t) dt,

which shows that (4) holds for p + 1. Hence, by induction, (4) holds for all n ∈ N, n ≥ 2.

Proof 2. Observe first that (4) is equivalent to∫ x

a
(x − t)n−2(x − nt + (n − 1)a) f (t) dt > 0. (15)

On the other hand, we have∫ x

a
(x − t)n−2(x − nt + (n − 1)a) f (t) dt

=
∫ x−a

n +a

a
(x − t)n−2(x − nt + (n − 1)a) f (t) dt

+
∫ x

x−a
n +a

(x − t)n−2(x − nt + (n − 1)a) f (t) dt.

(16)

Observe that
x − nt + (n − 1)a > 0, a < t <

x − a
n

+ a
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and
x − nt + (n − 1)a < 0,

x − a
n

+ a < t < x.

Then, since f ′(t) < 0 for all a < t < b, we have

∫ x−a
n +a

a
(x − t)n−2(x − nt + (n − 1)a) f (t) dt

> f
(

x − a
n

+ a
) ∫ x−a

n +a

a
(x − t)n−2(x − nt + (n − 1)a) dt

(17)

and ∫ x

x−a
n +a

(x − t)n−2(x − nt + (n − 1)a) f (t) dt

> f
(

x − a
n

+ a
) ∫ x

x−a
n +a

(x − t)n−2(x − nt + (n − 1)a) dt.
(18)

Thus, (16)–(18) yield∫ x

a
(x − t)n−2(x − nt + (n − 1)a) f (t) dt

> f
(

x − a
n

+ a
) ∫ x

a
(x − t)n−2(x − nt + (n − 1)a) dt.

(19)

On the other hand, an integration by parts yields∫ x

a
(x − t)n−2(x − nt + (n − 1)a) dt

= − 1
n − 1

[
(x − nt + (n − 1)a)(x − t)n−1

]x

t=a
− n

n − 1

∫ x

a
(x − t)n−1 dt

=
(x − a)n

n − 1
− (x − a)n

n − 1
= 0.

Hence, by (19), we obtain (15).

Proof of Theorem 4. Applying inequality (4) with − f instead of f , we obtain the re-
sult.

Proof of Theorem 5. Introducing the function

I(t) = −(b − t) f ′(t)

for all t ∈]a, b[, and proceeding as in the proof of Theorem 3, the desired inequality
follows.

Proof of Theorem 6. Applying Theorem 5 with − f instead of f , we obtain the desired
inequality.

3. Some Special Cases

Functional inequalities involving special functions are very useful in mathematical
analysis, and several interesting results have been obtained in this topic. See e.g., [2,15–25].

Here, some estimates involving trigonometric and hyperbolic functions are deduced
from our main results.

Corollary 1. Let σ ∈ R\{0,−2}, w ∈ C([0, π
2 )) and w(t) > 0 for every t ∈

]
0, π

2
[
. Then, for

evry n ∈ N and x ∈
]
0, π

2
[
, it holds that

∫ x

0
(x − t)n−1 cosσ(t)

(
1
σ
− cos2(t)

σ + 2

)
w(t) dt <

2
σ(σ + 2)

∫ x

0
(x − t)n−1w(t) dt. (20)
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Proof. Let
f (t) = cos t

for all t ∈
[
0, π

2
]
. It can be easily seen that f ∈ V([a, b]) with a = 0 and b = π

2 . Then,
the functions f and w verify the assumptions of Theorem 1, and (2) holds for all n ∈ N,
σ ∈ R\{0,−2} and 0 < x < π

2 . Namely, we have

∫ x

0
(x − t)n−1 cosσ(t)

(
cos2(0)

σ
− cos2(t)

σ + 2

)
w(t) dt <

2 cosσ+2(0)
σ(σ + 2)

∫ x

0
(x − t)n−1w(t) dt,

which yields (20).

Taking w = 1 in the above result, we obtain the following

Corollary 2. Let σ ∈ R\{0,−2}. Then, for all n ∈ N and 0 < x < π
2 , we have

1
xn

∫ x

0
(x − t)n−1 cosσ(t)

(
1
σ
− cos2(t)

σ + 2

)
dt <

2
nσ(σ + 2)

. (21)

The following inequality derived by Mitrinović and Adamović [15] is a special case of
Corollary 2.

Corollary 3. For all 0 < x < π
2 , we have(

sin x
x

)3
> cos x. (22)

Proof. Taking n = 1 and σ = − 4
3 in (21), we obtain

1
x

∫ x

0
cos−

4
3 (t)

(
−3

4
− 3 cos2(t)

2

)
dt < −9

4
,

that is, ∫ x

0
cos−

4
3 (t)

(
3
4
+

3 cos2(t)
2

)
dt >

9x
4

. (23)

On the other hand, for all 0 < t < x, we have

cos−
4
3 (t)

(
3
4
+

3 cos2(t)
2

)
= cos−

4
3 (t)

(
3
4

cos2 t +
3
4

sin2 t +
3 cos2(t)

2

)
=

9
4

cos
2
3 (t) +

3
4

cos−
4
3 (t) sin2 t

=
9
4

(
cos

2
3 (t) +

1
3

cos−
4
3 (t) sin2 t

)
=

d
dt

(
9
4

sin t cos
−1
3 (t)

)
,

which yields ∫ x

0
cos−

4
3 (t)

(
3
4
+

3 cos2(t)
2

)
dt =

9
4

sin x cos
−1
3 (x). (24)

Finally, (22) follows from (23) and (24).

Corollary 4. Let σ ∈ R\{0,−2} and w ∈ C(R) be such that

w(t) > 0
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for every t > 0. Then, for all n ∈ N and x > 0, it holds that

∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
w(t) dt <

2
σ(σ + 2)

∫ x

0
(x − t)n−1w(t) dt. (25)

Proof. Let b > 0 and
f (t) = cosh t

for every t ∈ [0, b]. It can be easily seen that f ∈ V([a, b]), where a = 0. Then, the
functions f and w verify the assumptions of Theorem 1, and (2) is satusfied for every n ∈ N,
σ ∈ R\{0,−2} and x > 0 (since b > 0 is arbitrary chosen). Namely, we obtain

∫ x

0
(x − t)n−1 coshσ(t)

(
cosh2(0)

σ
− cosh2(t)

σ + 2

)
w(t) dt <

2 coshσ+2(0)
σ(σ + 2)

∫ x

0
(x − t)n−1w(t) dt,

which yields (25).

Taking w = 1 in the above result, we deduce the following inequality.

Corollary 5. Let σ ∈ R\{0,−2}. Then, for all n ∈ N and x > 0, we have

1
xn

∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
dt <

2
nσ(σ + 2)

. (26)

The following result due to Lazarevic [16] is a special case of Corollary 5.

Corollary 6. We have (
sinh x

x

)3
> cosh x (27)

for every x �= 0.

Proof. Without restriction of the generality, we may suppose that x > 0. Taking n = 1 and
σ = − 4

3 in (26), we obtain

1
x

∫ x

0
cosh− 4

3 (t)

(
−3

4
− 3 cosh2(t)

2

)
dt < −9

4
,

that is, ∫ x

0
cosh− 4

3 (t)

(
3
4
+

3 cosh2(t)
2

)
dt >

9x
4

. (28)

On the other hand, for all 0 < t < x, we have

cosh− 4
3 (t)

(
3
4
+

3 cosh2(t)
2

)
= cosh− 4

3 (t)

(
3
4

cosh2 t − 3
4

sinh2 t +
3 cosh2(t)

2

)

=
9
4

cosh
2
3 (t)− 3

4
cosh− 4

3 (t) sinh2 t

=
9
4

(
cosh

2
3 (t)− 1

3
cosh− 4

3 (t) sinh2 t
)

=
d
dt

(
9
4

sinh t cosh
−1
3 (t)

)
,
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which yields

∫ x

0
cosh− 4

3 (t)

(
3
4
+

3 cosh2(t)
2

)
dt =

9
4

sinh x cosh
−1
3 (x). (29)

Finally, (27) follows from (28) and (29).

From Theorem 3, we deduce the following inequality.

Corollary 7. For all n ∈ N, n ≥ 2 and 0 < x < π
2 , we have∫ x

0
(x − nt)(x − t)n−2 cos t dt > 0. (30)

Proof. Let
f (t) = cos t, t ∈ R.

Let a = 0 and b = π
2 . One has

f ′(t) = − sin t < 0, a < t < b.

Then, the function f satisfies the assumptions of Theorem 3. Hence, using (4), we ob-
tain (30).

From Corollary 7, we deduce the following Cusa-Huygens inequality (see [2]).

Corollary 8. For all 0 < x < π
2 , we have

sin x
x

<
2 + cos x

3
. (31)

Proof. Taking n = 3 in (30), we obtain that∫ x

0
(x − t)(x − 3t) cos t dt > 0 (32)

for all 0 < x < π
2 . A double integration by parts shows that∫ x

0
(x − t)(x − 3t) cos t dt =

2 + cos x
3

− sin x
x

. (33)

Hence, (31) follows from (32) and (33).

Similarly, taking f (t) = cosh(t), t > 0, in Theorem 4, we obtain the following result.

Corollary 9. For all n ∈ N, n ≥ 2 and x > 0, we have∫ x

0
(x − nt)(x − t)n−2 cosh(t) dt < 0. (34)

Taking n = 3 in (34), we obtain the following hyperbolic version of inequality (31)
(see [16]).

Corollary 10. We have
sinh x

x
<

2 + cosh x
3

, x �= 0.

From Theorem 1, we deduce the following inequality.
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Corollary 11. We have

ln(tan x + sec x)
x

>

(
20
3

− 2
3

sec3 x − sec x
)

tan x
x

− 4, 0 < x <
π

2
. (35)

Proof. Using Theorem 1 with f (t) = cos t, w(t) = cos−5t, a = 0, b = π
2 , σ = 3 and n = 1,

we obtain ∫ x

0
cos−2 t

(
1
3
− cos2 t

5

)
dt <

2
15

∫ x

0
cos−5 t dt (36)

for all 0 < x < π
2 . Moreover, we have

∫ x

0
cos−2 t

(
1
3
− cos2 t

5

)
dt =

tan x
3

− x
5

(37)

and ∫ x

0
cos−5 t dt =

sec4 x sin x + 3
(

1
2 sec x tan x + 1

2 ln(tan x + sec x)
)

4
. (38)

Using, (36)–(38), we obtain (35).

4. An Application

Our aim is to investigate the the existence and uniqueness of solutions to

u(x) =
∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
F(t, u(t)) dt, 0 ≤ x ≤ h, (39)

where h > 0, σ > 0, n ∈ N and F : [0, h]×R → R is a continuous function. Namely, using
Corollary 5, we shall establish the following result.

Theorem 7. Assume that there exists α > 0 such that

|F(t, y)− F(t, z)| ≤ α|y − z| (40)

for all 0 < t < h and y, z ∈ R. If

0 < h < min

{(
nσ(σ + 2)

2α

) 1
n

, cosh−1

(√
1 +

2
σ

)}
, (41)

then (39) admits a unique solution u∗ ∈ C([0, h]). Moreover, for any u0 ∈ C([0, h]), the Picard
sequence {up} ⊂ C([0, h]) defined by

up+1(x) =
∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
F(t, up(t)) dt, 0 ≤ x ≤ h

converges uniformly to u∗.

Proof. Let us equip C([0, h]) with the norm

‖u‖ = max
0≤x≤h

|u(x)|, u ∈ C([0, h]).

It is well-known that (C([0, h]), ‖ · ‖) is a Banach space. We introduce the mapping

T : C([0, h]) → C([0, h])
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defined by

(Tu)(x) =
∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
F(t, u(t)) dt, 0 ≤ x ≤ h, u ∈ C([0, h]).

Observe that u ∈ C([0, h]) is a solution to (39) if and only if u is a fixed point of the mapping
T (i.e., Tu = u). On the other hand, for all u, v ∈ C([0, h]) and 0 ≤ x ≤ h, we have

|(Tu)(x)− (Tv)(x)|

≤
∫ x

0
(x − t)n−1 coshσ(t)

∣∣∣∣∣ 1
σ
− cosh2(t)

σ + 2

∣∣∣∣∣|F(t, u(t))− F(t, v(t))| dt.

On the other hand, by (41), we have

0 < h < cosh−1

(√
1 +

2
σ

)
,

which implies that
1
σ
− cosh2(t)

σ + 2
≥ 0, 0 ≤ t ≤ h.

Hence, it holds that

|(Tu)(x)− (Tv)(x)|

≤
∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
|F(t, u(t))− F(t, v(t))| dt.

Making use of (40), we obtain

|(Tu)(x)− (Tv)(x)|

≤ α
∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
|u(t)− v(t)| dt

≤ α‖u − v‖
∫ x

0
(x − t)n−1 coshσ(t)

(
1
σ
− cosh2(t)

σ + 2

)
dt.

Furthermore, using Corollary 5, we get

|(Tu)(x)− (Tv)(x)| ≤ 2αxn

nσ(σ + 2)
xn‖u − v‖

≤ 2αhn

nσ(σ + 2)
‖u − v‖.

Consequently, we deduce that

‖Tu − Tv‖ ≤ k‖u − v‖, u, v ∈ C([0, h]),

where
k =

2αhn

nσ(σ + 2)
.

On the other hand, due to (41), one has

0 < h <

(
nσ(σ + 2)

2α

) 1
n

,
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which yields
0 < k < 1.

Thus, from Banach contraction principle (see e.g., [26]), we deduce that T admits a unique
fixed point u∗ ∈ C([0, h]), and the Picard sequence {up} defined by up+1 = Tup converges
to u∗ with respect to the norm ‖ · ‖. This completes the proof of Theorem 7.

5. Conclusions

Some integral inequalities involving strictly monotone functions are provided. We
shown that the obtained inequalities can be useful for deriving several functional inequal-
ities involving trigonometric and hyperbolic functions. For instance, Theorem 1 unifies
and generalizes Mitrinović-Adamović [15] and Lazarevic [16] inequalities, and Theorem 3
generalizes Cusa-Huygens inequality [2]. By applying Theorem 1, we also obtained a new

inequality (see Corollary 11) that provides a lower bound of the function
ln(tan x + sec x)

x
.

Further inequalities can also be obtained by considering other functions f in Theorems 1–6. We
also shown that our obtained results are useful for studying the existence and uniqueness
of solutions to integral equations.
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Abstract: To avoid the undesired angular expansion of the sampling grid in the discrete non-isotropic
Stockwell transform, in this communication we propose a scale-dependent discretization scheme that
controls both the radial and angular expansions in unison. Based on the new discretization scheme,
we derive a sufficient condition for the construction of Stockwell frames in L2(R2).
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1. Introduction

For an efficient representation of non-transient signals, R.G. Stockwell [1] introduced
a hybrid time-frequency tool by combining the merits of the classical short-time Fourier
and wavelet transforms. For any finite energy signal f ∈ L2(R), the Stockwell transform
with respect to a window function ψ ∈ L2(R) is defined by

Sψ

[
f
]
(ω, b) = |ω|

∫
R

f (t)ψ
(
ω(t − b)

)
e−2πitω dt, b ∈ R, ω ∈ R \ {0}, (1)

where b and ω denote the time and spectral localization parameters, respectively. The Stock-
well transform (1) offers the absolutely referenced phase information of the given sig-
nal f by fixing the modulating sinusoids with respect to the time axis while translat-
ing and dilating the window function ψ. Thus, the Stockwell transform provides a
frequency-dependent resolution while maintaining a direct relationship with the Fourier
spectrum [2–5]. These unique features of the Stockwell transform are apt for diversified
applications to different branches of science and engineering, including geophysics, optics,
quantum mechanics, signal and image processing, and so on [5–12].

To harness the merits of the Stockwell transform in higher dimensions, we have
recently introduced the notion of non-isotropic angular Stockwell transform in [11].
The essence of such a non-isotropic Stockwell transform lies in the fact that the underlying
window functions are directionally tunable, which enhances the potency for resolving
geometric features in two-dimensional signals. For any f ∈ L2(R2), the non-isotropic
angular Stockwell transform with respect to the window function Ψ ∈ L2(R2) is defined as

SΨ

[
f
]
(w, b, θ) = |det Aw|

∫
R2

f (t)Ψ
(

Rθ Aw(t − b)
)

e−2πitTw dt, (2)
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where t = (t1, t2)
T ∈ R

2, b = (b1, b2)
T ∈ R

2, w = (ω1, ω2)
T ∈ R

2 with ω1, ω2 �= 0 and
θ ∈ [0, 2π). The matrix Aw ∈ GL(2,R) and the rotation matrix Rθ appearing in (2) are
given by

Aw =

(
ω1 0
0 ω2

)
and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, (3)

respectively. Furthermore, in the same article [11], we have also presented a discrete
analogue of (2) by adopting the following procedure:

(i). The frequency variable w = (ω1, ω2)
T is discretized by choosing wj = (λj, λj)T ,

where λ > 1 and j ∈ Z. Consequently, the matrix Aw given by (3) takes the form:

Aj =

(
λj 0
0 λj

)
.

(ii). The angular parameter θ is discretized by sub-dividing the interval [0, 2π) into
L-equally spaced angles by taking θ� = � θ0, where θ0 = 2π/L and � ∈ ZL ={

0, 1, 2, . . . , L − 1
}

.
(iii). For m = (m0, m1)

T ∈ Z
2 and α0, α1 > 0, the translation parameter b is discretized

by taking into consideration both of the preceding discretizations of w and θ and
choosing b

j,�
m = A−jR−θ�

(
m0α0, m1α1

)
.

However, much to the dismay, the aforementioned discretization process suffers
from a couple of severe limitations: first, the discretization of the frequency variable w is
non-parabolic in nature; second, the discretization of the angular variable θ is completely
independent of the scale λ, which results in an uncontrollable angular expansion of the
grid at higher values of j (see Figure 1), thereby limiting the directional selectivity at
higher frequencies. In this communication, our goal is to circumvent these limitations
by proposing a new scale-dependent discretization scheme for the discrete non-isotropic
angular Stockwell transform. Under the new discretization scheme, the frequency di-
lation is always doubly effective in one fixed direction as in the orthogonal direction.
Moreover, at each higher level of resolution, the split in the angular region is increased
proportionally, thereby preventing the undesired angular expansion of the sampling grid
and enhancing the directional selectivity at high frequencies.

The rest of the article is organized as follows: Section 2 serves as the pedestal and
deals with the formal aspects of the novel discretization scheme. In Section 3, we derive a
sufficient condition for the non-isotropic Stockwell frames in L2(R2). Finally, a conclusion
together with an impetus to the future research work is extracted in Section 4.

2. Discourse on the New Discretization Scheme

This section is solely devoted to the formulation of a new discretization scheme for the
non-isotropic angular Stockwell transform (2). We reiterate that the proposed discretization
scheme is not only based on the parabolic scaling law but also prevents the undesired
angular expansion of the underlying sampling grid. A detailed exposition of the formal
discrete scheme is given below:

(i). The discretization of the frequency variable w = (ω1, ω2)
T is achieved via the

parabolic scaling law by choosing wj = (λj, λj/2)T , where λ > 1 is a fixed inte-
ger and j ∈ Z determines the level of resolution. Consequently, the anisotropy matrix
is given by

Aj =

(
λj 0
0 λj/2

)
, (4)
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and the discretized frequency variable wj can be expressed via the matrix Aj as

wj = (λj, λj/2)T = Aj(1, 1)T . (5)

(ii) For fixed L0 ∈ Z, the rotation parameter θ is sampled into L0 equi-spaced pieces as

θ� =
2π�

L0
, where � ∈ ZL0 =

{
0, 1, 2, . . . , L0 − 1

}
. (6)

To prevent the expansion of the angular region at higher values of j, it is desirable to
make the spacing between the consecutive angles scale-dependent. As such, we choose
L0 = λ�j/2�, where �j/2� denotes the integral part of j/2.
Consequently, the scale-dependent angular discretization is given below:

θ�j
=

2π�

λ�j/2� , where � ∈ Zλ�j/2� =
{

0, 1, 2, . . . , λ�j/2� − 1
}

. (7)

(iii) The discretization of the spatial variable b is carried out by taking into consider-
ation both the previous discretizations of frequency and angular variables. For
m = (m1, m2)

T ∈ Z
2 and β > 0, the spatial variable b is sampled as

b
j,�
m :=

(
A−jR−θ�j

)(
βm

)
. (8)

In view of the above discretization scheme, the novel sampling grid associated with the
discrete non-isotropic angular Stockwell transform takes the following form:

Λ =

{(
Aj(1, 1)T ,

(
A−jR−θ�j

)
(βm), θ�j

)
: j ∈ Z, m ∈ Z

2, � ∈ Zλ�j/2� , θ�j
=

2π�

λ�j/2�

}
. (9)

In order to appreciate the nuances between the existing and the newly proposed dis-
cretization schemes, we depict the respective sampling grids separately in Figures 1 and 2.
For plotting the sampling grid associated with the discretization scheme proposed in [11],
we choose λ = 2, m = (1, 1)T and then partition the angular variable θ = 2π�/L, � ∈ Z�

in two ways by taking L = 8 and L = 16. Since the existing discretization is not scale-
dependent in the angular variable, with increased levels of resolution the angular expansion
is uncontrollable, as shown in Figure 1.

Figure 1. Basic discrete sampling grid for j = 0, 2, 4, 6, 8 with L = 8 (left) and L = 16 (right) [11].
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In contrast to this, the sampling grid (9) efficiently prevents the angular expansion at
higher scales because the new discretization scheme is completely scale-dependent, and
the split in the angular region is increased at each next level of resolution. For a pictorial
illustration of the aforementioned fact, we choose λ = 2, β = 1 in (9) and vary the level
of resolution j over the set {0, 2, 4, 6, 8, 10, . . . }. Then, we observe that for j = 0, there is
no partition in the angular region. Additionally, for j = 2 there are two partitions in the
angular region determined by the points θ02 = 0 and θ12 = π, and the corresponding
partition in the spatial variable is determined by the points b2,0

m = (A−2R−θ02
)m and

b2,1
m = (A−2R−θ12

)m. Furthermore, for j = 4 the angular region attains quadruple partition
at the points θ04 = 0, θ14 = π/2, θ24 = π, and θ34 = 3π/2, and consequently the spatial
region is partitioned at b4,0

m = (A−4R−θ04
)m, b4,1

m = (A−4R−θ14
)m, b4,2

m = (A−4R−θ24
)m

and b4,3
m = (A−4R−θ34

)m. In a similar fashion, we can show that for j = 6, 8, 10, . . . both
the angular and spatial regions are partitioned into 8, 16, 32, . . . equispaced regions. Thus,
we infer that at higher values of j, the partition points of the angular region are increased
proportionally; as such, the angular expansion of sampling grid (9) can be efficiently
controlled, as shown in Figure 2.

Figure 2. Refined discrete sampling grid (9) at j = 0, 2, 4, 6, 8, 10.

3. The Non-Isotropic Stockwell Frames

This section is completely devoted to demonstrating that the new discretization scheme
proposed in Section 2 is also helpful for the construction of Stockwell frames in L2(R2).
For

(
Aj(1, 1)T ,

(
A−jR−θ�j

)
(βm), θ�j

)
∈ Λ, we define a quadruple of fundamental op-

erators, viz, translation (T(A−jR−θ�j
)(βm)), dilation (DAj ), rotation (Rθ�j

), and modulation

(MAj(1,1)T ) operators acting on Ψ ∈ L2(R2) as :

T(A−jR−θ�j
)(βm)Ψ(t) = Ψ(t − (A−jR−θ�j

)(βm))

DAj Ψ(t) =
∣∣det Aj

∣∣Ψ(Ajt)

Rθ�j
Ψ(t) = Ψ�j

(t) := Ψ
(

Rθ�j
t
)

MAj(1,1)T Ψ(t) = Ψ(t) exp
{

2πi tT(Aj(1, 1)T)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (10)
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Upon joint application of the elementary operators defined in (10), we obtain a discrete
collection of analyzing functions Ψj,m,�(t) as

Ψj,m,�(t) = MAj(1,1)T Rθ�j
T(A−jR−θ�j

)(βm)DAj Ψ(t)

=
∣∣det Aj

∣∣Ψ�j

(
Aj
(
t − A−jR−θ�j

βm
))

exp
{

2πi tT(Aj(1, 1)T)} (11)

=
∣∣det Aj

∣∣Ψ�j

(
Ajt − R−θ�j

βm
)

exp
{

2πi tT(Aj(1, 1)T)}.

Moreover, the two-dimensional Fourier transform of the analyzing functions (11) can
be computed as follows:

F
[
Ψj,m,�

]
(w) =

∫
R2

Ψj,m,�(t) e−2πi tTw dt

=
∣∣det Aj

∣∣ ∫
R2

Ψ�j

(
Ajt − R−θ�j

βm
)

exp
{

2πi tT(Aj(1, 1)T)} e−2πitTw dt

=
∫
R2

Ψ�j
(z) exp

{
2πi

(
A−jz + A−jR−θ�j

βm

)T
Aj(1, 1)T

}
exp

{
− 2πi

(
A−jz + A−jR−θ�j

βm

)T
w
}

dz

= exp
{

2πi(βm)T Rθ�j

(
(1, 1)T − A−jw

)} ∫
R2

Ψ�j
(z) exp

{
2πi zT(1, 1)T

}
exp

{
−2πi zT(A−jw

)}
dz

= exp
{

2πi(βm)T Rθ�j

(
(1, 1)T − A−jw

)}
F
[
Φ�j

](
A−jw

)
,

where Φ is the modulated version of the given window function Ψ and is given by

Φ�j
(t) = Ψ�j

(t) exp
{

2πi tT(1, 1)T
}

. (12)

Based on the refined sampling grid (9) and the family of analyzing functions con-
structed in (11), we define the novel discrete non-isotropic Stockwell system Γ(Ψ, Λ) as

Γ(Ψ, Λ) :=
{

Ψj,m,�(t) = MAj(1,1)T Rθ�j
T(A−jR−θ�j

)(βm)DAj Ψ(t) : j ∈ Z, m ∈ Z
2, � ∈ Zλ�j/2�

}
. (13)

Then, our main goal is to demonstrate that the system Γ(Ψ, Λ) constitutes a frame for
L2(R2). To facilitate the motive, below we recall the fundamental notion of a frame in a
separable Hilbert space [3]:

Definition 1. Given a separable Hilbert space H, a sequence of elements
{

fi
}

in H is said to be a
frame for H, if there exists constants 0 < C1 ≤ C2 < ∞, such that

C1

∥∥∥ f
∥∥∥
H
≤ ∑

i

∣∣∣〈 f , fi

〉
2

∣∣∣2 ≤ C2

∥∥∥ f
∥∥∥
H

, ∀ f ∈ H. (14)

The constants C1 and C2 appearing in (14) are called as the lower and upper frame bounds,
respectively. In case C1 = C2 = C > 1, the frame is said to be tight, and if C = 1, the frame is
called a Parseval’s frame.

In the following theorem, we shall derive a sufficient condition for the system Γ(Ψ, Λ)
to be a frame for L2(R2). Prior to that, for any Φ(t) as given by (12), we set

H(ξ1, ξ2) = ess. sup
ω1,ω2∈R

⎛⎝∑
j∈Z

∑
�∈Z

λ�j/2�

∣∣∣F [
Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣∣∣∣F [
Φ�j

](
λ−jω1 + ξ1, λ−j/2ω2 + ξ2

)∣∣∣
⎞⎠. (15)
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Theorem 1. Let Ψ ∈ L2(R2) be any window function and Φ be the corresponding modulated
version given by (12) such that

C1 ≤ ∑
j∈Z

∑
�∈Z

λ�j/2�

∣∣∣F [
Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣2 ≤ C2, (16)

almost everywhere ω1, ω2 ∈ R, with 0 < C1 ≤ C2 < ∞. Then, for fixed β > 0 the system (13)
constitutes a frame for L2(R2) if the function H(x, y) given by (15) satisfies:

∑
0 �=r∈Z

∑
0 �=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
= C3 < C1. (17)

Moreover, in that case the lower and upper frame bounds are given by
(

C1−C3
β2

)
and

(
C2+C3

β2

)
,

respectively.

Proof. For any f ∈ L2(R2), the implication of Plancheral theorem for the two-dimensional
Fourier transform yields

∑
j∈Z

∑
m∈Z2

∑
�∈Z

λ�j/2�

∣∣∣〈 f , Ψj,m,�

〉
2

∣∣∣2
= ∑

j∈Z
∑

m∈Z2
∑

�∈Z
λ�j/2�

∣∣∣∣∫
R2

F
[

f
]
(w)F

[
Ψj,m,�

]
(w) dw

∣∣∣∣2

= ∑
j∈Z

∑
m∈Z2

∑
�∈Z

λ�j/2�

∣∣∣∣ ∫
R2

F
[

f
]
(w)F

[
Φ�j

](
A−jw

)
exp

{
−2πi(βm)T Rθ�j

(
(1, 1)T − A−jw

)}
dw

∣∣∣∣2

= ∑
j∈Z

∑
m∈Z2

∑
�∈Z

λ�j/2�

λ3j/2
∣∣∣∣ ∫ β−1λj

0

∫ β−1λj/2

0
exp

{
−2πi(βm)T Rθ�j

(
(1, 1)T − A−jw

)}

×
(

∑
n1∈Z

∑
n2∈Z

F
[

f
](

ω1 + β−1λjn1, ω2 + β−1λj/2n2
)
F
[
Φ�j

](
λ−jω1 + β−1n1, λ−j/2ω2 + β−1n2

))
dω1 dω2

∣∣∣∣2

=
1
β2 ∑

j∈Z
∑

�∈Z
λ�j/2�

∫ β−1λj

0

∫ β−1λj/2

0

∣∣∣∣ ∑
n1∈Z

∑
n2∈Z

[
F
[

f
](

ω1 + β−1n1, ω2 + β−1n2
)

(18)

×F
[
Φ�j

](
λ−jω1 + β−1λjn1, λ−j/2ω2 + β−1λj/2n2

)]∣∣∣∣2dω1 dω2

=
1
β2 ∑

j∈Z
∑
r∈Z

∑
s∈Z

∑
�∈Z

λ�j/2�

∫ ∞

−∞

∫ ∞

−∞

[
F
[

f
](

ω1, ω2
)
F
[

f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)

×F
[
Φ�j

](
λ−jω1, λ−j/2ω2

)
F
[
Φ�j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)]
dω1 dω2

=
1
β2

∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [
f
](

ω1, ω2
)∣∣∣2
⎧⎨⎩∑

j∈Z
∑

�∈Z
λ�j/2�

∣∣∣F [
Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣2
⎫⎬⎭dω1 dω2

+
1
β2 ∑

j∈Z
∑

0 �=r∈Z
∑

0 �=s∈Z
∑

�∈Z
λ�j/2�

∫ ∞

−∞

∫ ∞

−∞

[
F
[

f
](

ω1, ω2
)
F
[

f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)

×F
[
Φ�j

](
λ−jω1, λ−j/2ω2

)
F
[
Φ�j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)]
dω1 dω2

= P (principle term) + R (residue term).
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Note that the principle term is the product between the power of the input function
and the sum of the spectral powers of the analyzers. Therefore, in view of (16), it follows
that the lower and upper bounds for the principal term are given by(

C1

β2

)∥∥∥ f
∥∥∥2

2
≤ P ≤

(
C2

β2

)∥∥∥ f
∥∥∥2

2
. (19)

The residue term captures the interference effect among the analyzing functions and
can be computed by invoking the Cauchy–Schwarz inequality twice successively in the
following fashion:

R =

∣∣∣∣ 1
β2 ∑

j∈Z
∑

0 �=r∈Z
∑

0 �=s∈Z
∑

�∈Z
λ�j/2�

∫ ∞

−∞

∫ ∞

−∞

[
F
[

f
](

ω1, ω2
)
F
[

f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)

×F
[
Φ�j

](
λ−jω1, λ−j/2ω2

)
F
[
Φ�j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)]
dω1 dω2

∣∣∣∣
≤ 1

β2 ∑
j∈Z

∑
0 �=r∈Z

∑
0 �=s∈Z

∑
�∈Z

λ�j/2�

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [
f
](

ω1, ω2
)∣∣∣2∣∣∣F [

Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣ (20)

×
∣∣∣F [

Φ�j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)∣∣∣dω1 dω2

]1/2

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [
f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)∣∣∣2∣∣∣F [

Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣
×
∣∣∣F [

Φ�j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)∣∣∣dω1 dω2

]1/2

.

Making use of the substitutions ω1 + β−1λjr = ξ1 and ω2 + β−1λj/2s = ξ2 in the
post-factor on the R.H.S of inequality (20), we obtain

R ≤ 1
β2 ∑

0 �=r∈Z
∑

0 �=s∈Z

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [
f
](

ω1, ω2
)∣∣∣2( ∑

j∈Z
∑

�∈Z
λ�j/2�

∣∣∣F [
Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣
×
∣∣∣F [

Φ�j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)∣∣∣)dω1 dω2

]1/2

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [
f
](

ξ1, ξ2
)∣∣∣2( ∑

j∈Z
∑

�∈Z
λ�j/2�

∣∣∣F [
Φ�j

](
λ−jξ1, λ−j/2ξ2

)∣∣∣ (21)

×
∣∣∣F [

Φ�j

](
λ−jξ1 − β−1r, λ−j/2ξ2 − β−1s

)∣∣∣)dξ1 dξ2

]1/2

≤ 1
β2

∥∥∥ f
∥∥∥2

2

(
∑

0 �=r∈Z
∑

0 �=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
)

,

Consequently, the infimum and supremum of the power output are given by

inf
f∈L2(R2), f �=0

⎛⎝∥∥∥ f
∥∥∥−2

2
∑
j∈Z

∑
m∈Z2

∑
�∈Z

λ�j/2�

∣∣∣〈 f , Ψj,m,�

〉
2

∣∣∣2
⎞⎠ ≥ 1

β2

{
inf

ω1,ω2∈S

⎛⎝∑
j∈Z

∑
�∈Z

λ�j/2�

∣∣∣F [
Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣2
⎞⎠ (22)

− ∑
0 �=r∈Z

∑
0 �=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
}

.

and
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sup
f∈L2(R2), f �=0

⎛⎝∥∥∥ f
∥∥∥−2

2
∑
j∈Z

∑
m∈Z2

∑
�∈Z

λ�j/2�

∣∣∣〈 f , Ψj,m,�

〉
2

∣∣∣2
⎞⎠ ≥ 1

β2

{
sup

ω1,ω2∈R

⎛⎝∑
j∈Z

∑
�∈Z

λ�j/2�

∣∣∣F [
Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣2
⎞⎠ (23)

+ ∑
0 �=r∈Z

∑
0 �=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
}

.

By virtue of the estimates (22) and (23), it follows that(
C1 − C3

β2

)∥∥∥ f
∥∥∥2

2
≤ ∑

j∈Z
∑

m∈Z2
∑

�∈Z
λ�j/2�

∣∣∣〈 f , Ψj,m,�

〉
2

∣∣∣2 ≤
(

C2 + C3

β2

)∥∥∥ f
∥∥∥2

2
.

This completes the proof of Theorem 1.

Towards the end of the ongoing section, we aim to formulate a simple condition under
which the hypothesis (17) is satisfied. More explicitly, we shall demonstrate that if the
function (12) is band-limited to a certain closed ball B∞(t0, r) centered at t0 ∈ R

2 with
radius r > 0, then the system (13) constitutes a frame for L2(R2) provided the sampling
constant β > 0 is chosen to be small enough.

Corollary 1. Let Φ ∈ L2(R2) be as given in (12) and 0 < β < 1/2r. If supp
(
F
[
Φ
]
(w)

)
⊂

B∞(0, r), the closed ball centered about 0 = (0, 0)T ∈ R
2 having radius r, and

C1 ≤ ∑
j∈Z

∑
�∈Z

λ�j/2�

∣∣∣F [
Φ�j

](
λ−jω1, λ−j/2ω2

)∣∣∣2 ≤ C2, (24)

almost everywhere ω1, ω2 ∈ R, with 0 < C1 ≤ C2 < ∞, then the system (13) constitutes a frame
for L2(R2) with the lower and upper frame bounds as β−2C1 and β−2C2, respectively. In particular,
if C1 = C2 = C, then the system (13) turns to be a tight frame with the frame bound as β−2C.

Proof. According to the hypothesis, the window function Ψ is so chosen that the corre-
sponding modulated version Φ given by (12) is band-limited in the sense that F

[
Φ
]
(w) ⊂

B∞(0, r). Therefore, we have F
[
Φ
](

Rθ�j
A−jw

)
�= 0 if and only if Rθ�j

A−jw ∈ B∞(0, r).

Consequently, for ξ = (ξ1, ξ2)
T ∈ R

2 we obtain∣∣∣∣F [
Φ
](

Rθ�j
A−jw + ξ

)∣∣∣∣ �= 0 ⇐⇒ Rθ�j
A−jw ∈ B∞(−ξ, r). (25)

Clearly, if ξ ∈ R
2 is such that B∞(0, r) ∩B∞(−ξ, r) = ϕ, then in view of (15) we have

H(ξ) = 0. Indeed, this is the case if
∥∥ξ
∥∥

∞ > 2r. Hence, we conclude that

∑
0 �=r∈Z

∑
0 �=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
= 0, ∀ β < 1/2r. (26)

This evidently completes the proof of Corollary 1.

Remark 1. Since modulation in the spatial domain corresponds to a simple shift in the frequency
domain; therefore, in view of (12) it suffices to verify the conditions (16) and (17) for the function
Ψ�j

(t) instead of the modulated version Φ�j
(t) = Ψ�j

(t) exp
{

2πi tT(1, 1)T}. Moreover, it is also
quite conspicuous that the argument of Corollary 1 holds in case the function Ψ is band-limited to the
closed ball centered about 1 = (1, 1)T ∈ R

2 and having radius r; that is, F
[
Ψ
]
(w) ⊂ B∞(1, r).
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4. Conclusions and Future Work

In this communication, we introduced a scale-dependent discretization scheme for the
non-isotropic Stockwell transform. Under the refined discretization procedure, one can effi-
ciently control both the radial and angular expansions simultaneously. As an endorsement
to the undertaken problem, we also demonstrated that the novel discretization scheme
allows for the construction of Stockwell frames in L2(R2). Nevertheless, as a future re-
search aspect, it is lucrative to numerically compute the frame bounds for several classes of
two-dimensional functions, particularly the Gabor functions, so that general results can be
made regarding tightness of the frame with an increase in the number of frequency, spatial,
and orientation sampling steps. Based on the numerical outcomes, certain experimental
results concerning the image representation and reconstruction processes can be executed.
Moreover, in view of the fact that the two-dimensional Gabor functions play an important
role in many computer vision applications and modelling biological vision, the study can
further be extended in that direction.
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Abstract: In this paper, we aim to construct inequalities of the Redheffer type for certain functions
defined by the infinite product involving the zeroes of these functions. The key tools used in our
proofs are classical results on the monotonicity of the ratio of differentiable functions. The results
are proved using the nth positive zero, denoted by bn(ν). Special cases lead to several examples
involving special functions, namely, Bessel, Struve, and Hurwitz functions, as well as several other
trigonometric functions.
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1. Introduction

Several famous inequalities for real functions have been proposed in the literature.
One of them is the Redheffer inequality, which states that

sin(x)
x

≥ π2 − x2

π2 + x2 , for all x ∈ R. (1)

Inequality (1) was proposed by Redheffer [1] and proved by Williams [2]. This work
motivated many researchers, regarding its generalization, refinement, and applications.
A new (but relatively difficult) proof of (1) using the Lagrange mean value theorem in
combination with induction was given in [3]. In 2015, Sándor and Bhayo [4] offered two
new interesting proofs and established two converse inequalities. They also pointed out a
hyperbolic analog. Other notable works related to the Redheffer inequality include [5–10].
Motivated by the inequality (1), C.P. Chen, J.W. Zhao, and F. Qi [8], using mathematical
induction and infinite product representations of cos(x), sinh(x), cosh(x)

cos(x) = ∏
n≥1

[
1 − 4x2

(2n − 1)2π2

]
, cosh(x) = ∏

n≥1

[
1 +

4x2

(2n − 1)2π2

]
, (2)

and

sinh(x)
x

= ∏
n≥1

(
1 +

x2

n2π2

)
, (3)

respectively, established the following Redheffer-type inequalities:

cos(x) ≥ π2 − 4x2

π2 + 4x2 and cosh(x) ≤ π2 + 4x2

π2 − 4x2 , for all |x| ≤ π

2
. (4)
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A hyperbolic analog of inequality (1) has also been established [8], by proving that

sinh(x)
x

≤ π2 + x2

π2 − x2 , for all |x| < π. (5)

In [6], inequalities (1) and (4) were extended and sharpened, and a Redheffer-type
inequality for tan(x) was also established, as follows:

(i) Let 0 < x < π. Then,

(
π2 − x2

π2 + x2

)β

≤ sin(x)
x

≤
(

π2 − x2

π2 + x2

)α

(6)

hold if and only if α ≤ π2/12 and β ≥ 1.
(ii) Let 0 ≤ x ≤ π/2. Then,

(
π2 − 4x2

π2 + 4x2

)β

≤ cos(x) ≤
(

π2 − 4x2

π2 + 4x2

)α

(7)

hold if and only if α ≤ π2/16 and β ≥ 1.
(iii) Let 0 < x < π/2. Then,

(
π2 + 4x2

π2 − 4x2

)α

≤ tan(x)
x

≤
(

π2 + 4x2

π2 − 4x2

)β

(8)

hold if and only if α ≤ π2/24 and β ≥ 1.
(iv) Let 0 < x < r. Then,

(
r2 + x2

r2 − x2

)α

≤ sinh(x)
x

≤
(

r2 + x2

r2 − x2

)β

(9)

hold if and only if α ≤ 0 and β ≥ r2/12.
(v) Let 0 < x < r. Then,

(
r2 + x2

r2 − x2

)α

≤ cosh(x) ≤
(

r2 + x2

r2 − x2

)β

(10)

hold if and only if α ≤ 0 and β ≥ r2/4.
(vi) Let 0 < x < r. Then,

(
r2 − x2

r2 + x2

)β

≤ tanh(x)
x

≤
(

r2 − x2

r2 + x2

)α

(11)

hold if and only if α ≤ 0 and β ≥ r2/6.

The Bessel function Jν of order ν is the solution of the differential equation:

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0. (12)
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The function Iν(x) = −i Jν(ix) is known as the modified Bessel function. It is well
known that trigonometric functions are connected with Bessel and modified Bessel func-
tions, as follows

sin(x) =
√

πx
2

J1/2(x), cos(x) =
√

πx
2

J−1/2(x),

sinh(x) =
√

πx
2

I1/2(x), cosh(x) =
√

πx
2

I−1/2(x).

Based on the relationship between trigonometric and Bessel functions as stated above, and
as Bessel and modified Bessel functions have infinite product representations involving
their zeros, the Redheffer inequality (1) has been generalized for modified Bessel functions
in [7], and sharpened in [9]. There are several other special functions, such as Struve and
q-Bessel functions, which have infinite product representations and are also related to
trigonometric functions.

Motivated by the above facts, the aim of this study was to address the following
problem:

Problem 1. Construct the class of functions f that can be represented by an infinite product with
the factors involving the zeroes of f , such that f exhibits a Redheffer-type inequality.

To answer Problem 1, we consider a sequence {bn(ν)}ν∈R,n≥1, such that

∞

∑
n=1

1
b2

n(ν)
�→ l(ν)

for ν ∈ I ⊂ R and the infinite product

∞

∏
n=1

(
1 − x2

b2
n(ν)

)
is also absolutely convergent to a function of x for x ∈ Ix ⊂ R.

We study several properties of functions that are members of the following two classes:

Fν : =

{
ην(x) =

∞

∏
n=1

(
1 − x2

b2
n(ν)

)}
, (13)

Gν : =

{
χν(x) =

∞

∏
n=1

(
1 +

x2

b2
n(ν)

)}
. (14)

It is easy to check that, for a fixed ν, {b1(ν), b2(ν), . . . , bn(ν), . . .} is a set of zeroes of the
functions in the class Fν. Unless mentioned otherwise, throughout the article, we denote
by bn(ν) the nth positive zero of the functions in the class Fν. For λν ∈ Gν and ην ∈ Fν, it
immediately follows that λν(x) = ην(ix), where i =

√
−1.

Using a similar concept as in [7,9], we derived the Redheffer inequality for the func-
tions from both classes, Fν and Gν. We also investigate the increasing/decreasing, log
convexity, and convexity nature of the functions (or their products) from the above two
classes. The main results are discussed in Section 2, while Section 3 provides several
examples based on the main result in Section 2. In Section 4, we compare the obtained
result with known results; especially the results given in [7,9–11].

The following lemma is required in the following.
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Lemma 1 ([12]). Suppose f (x) = ∑∞
k=0 akxk and g(x) = ∑∞

k=0 bkxk, where ak ∈ R and bk > 0
for all k. Furthermore, suppose that both series converge on |x| < r. If the sequence {ak/bk}k≥0 is
increasing (or decreasing), then the function x �→ f (x)/g(x) is also increasing (or decreasing) on
(0, r).

Lemma 2 (Lemma 2.2 in [13]). Suppose that −∞ < a < b < ∞ and p, q : [a, b) �→ ∞ are
differentiable functions, such that q′(x) �= 0 for x ∈ (a, b). If p′/q′ is increasing (or decreasing) on
(a, b), then so is (p(x)− p(a))/(q(x)− q(a)).

2. Main Results

Theorem 1. Suppose that λν ∈ Gν and ην ∈ Fν. Then, the following assertions are true:

1. The function x �→ λν(x) is increasing on (0, ∞).
2. The function x �→ λν(x) is strictly log-convex on Iν = (−b1(ν), b1(ν)) and strictly geomet-

ric convex on (0, ∞).
3. The function x �→ λν(x) satisfies the sharp exponential Redheffer-type inequality(

b2
1(ν) + x2

b2
1(ν)− x2

)aν

≤ λν(x) ≤
(

b2
1(ν) + x2

b2
1(ν)− x2

)bν

(15)

on Iν. Here, aν = 0 and bν = b2
1(ν)l(ν)/2 are the best possible constants.

4. The function x �→ λν(x)ην(x) is increasing on (−b1(ν), 0] and decreasing on
(
0, b1(ν)

]
5. The function x �→ λν(x)/ην(x) is strictly log-convex on Iν.
6. The function x �→ ην(x) satisfies the sharp Redheffer-type inequality.

(
b2

1(ν)− x2

b2
1(ν)

)aν

≤ ην(x) ≤
(

b2
1(ν)− x2

b2
1(ν)

)bν

(16)

on Iν. Here, bν = 1 and aν = b2
1(ν)l(ν) are the best possible constants.

Proof. As λν ∈ Gν, from (14), it follows that

λν(x) =
∞

∏
n=1

(
1 +

x2

b2
n(ν)

)
. (17)

Similarly, as ην ∈ Gν, from (13), it follows that

ην(x) =
∞

∏
n=1

(
1 − x2

b2
n(ν)

)
. (18)

1. Logarithmic differentiation of (17) leads to

(log(λν(x)))′ =
λ′

ν(x)
λν(x)

=
∞

∑
n=1

2x
b2

n(ν) + x2 > 0 (19)

for x ∈ (0, ∞). This implies that log(λν(x)) is increasing and, consequently, λν(x) is
also increasing.
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2. Let x ∈ Iν. Differentiation of both sides of (19) gives

(log(λν(x)))′′ =
∞

∑
n=1

(
2

b2
n(ν) + x2 − 4x2

(b2
n(ν) + x2)

2

)

=
∞

∑
n=1

2
(
b2

n(ν)− x2)
(b2

n(ν) + x2)
2 > 0,

for x ∈ Iν This is equivalent to the function x �−→ λν(x) being log-convex on Iν.
From (19), we also have(

xλ′
ν(x)

λν(x)

)′
=

∞

∑
n=1

(
2 − b2

n(ν)

b2
n(ν) + x2

)′

=
∞

∑
n=1

2xb2
n(ν)

(b2
n(ν) + x2)2

.

This implies that x �−→ xλ′
ν(x)/λν(x) is increasing on x ∈ (0, ∞) and, as a conse-

quence, we have that x �−→ λν(x) is geometrically convex on (0, ∞).

3. Consider the function

hν(x) :=
log(λν(x))

log(b2
1(ν) + x2)− log(b2

1(ν)− x2)
.

For x ∈ [0, ∞), define

p(x) = log(λν(x)), q(x) = log(b2
1(ν) + x2)− log(b2

1(ν)− x2).

From the calculation along with (19), it follows that

p′(x)
q′(x)

=

λ′
ν(x)

λν(x)
2x

b2
1(ν)+x2 +

2x
b2

1(ν)−x2

=
λ′

ν(x)
2xλν(x)

.
b4

1(ν)− x4

2b2
1(ν)

=
1

2b2
1(ν)

∞

∑
n=1

b4
1(ν)− x4

b2
n(ν) + x2 .

Then,

d
dx

(
p′(x)
q′(x)

)
=

1
2b2

1(ν)

∞

∑
n=1

−4x3(b2
n(ν) + x2)− 2x(b4

1(ν)− x4)

(b2
n(ν) + x2)2

= − x
b2

1(ν)

∞

∑
n=1

2x2b2
n(ν) + x4 + b2

1(ν)

(b2
n(ν) + x2)2 ≤ 0

on x ∈ [0, ∞). Thus, p′(x)/q′(x) is decreasing and, hence,

hν(x) =
p(x)
q(x)

=
p(x)− p(0)
q(x)− q(0)

is also decreasing on [0, b1(ν)]. Finally,

lim
x→b1(ν)

hν(x) < hν(x) < lim
x→0

hν(x),
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where

aν := lim
x→b1(ν)

hν(x) = lim
x→b1(ν)

p(x)
q(x)

= lim
x→b1(ν)

p′(x)
q′(x)

= 0,

bν := lim
x→0

hν(x) = lim
x→0

p(x)
q(x)

= lim
x→0

p′(x)
q′(x)

=
b2

1(ν)

2
l(ν)

are the best possible constants and

l(ν) =
∞

∑
n=1

1
b2

n(ν)
.

4. As λν ∈ Gν and ην ∈ Fν, from (13) and (14), it follows that

λν(x)ην(x) =
∞

∏
n=1

(
1 − x4

b4
n(ν)

)
.

Logarithmic differentiation yields

(λν(x)ην(x))′

λν(x)ην(x)
= −

∞

∑
n=1

4x3

b4
n(ν)− x4 ,

which is negative for x ∈ (0, b1(ν)) and positive for x ∈ (−b1(ν), 0). Hence, the result
follows.

5. From part (2), it follows that x �−→ λν(x) is strictly log-convex on Iν. Now, consider
the function x �−→ (ην(x))−1. From (2), it follows that

(
log

(
(ην(x))−1

))′
=

∞

∑
n=1

2x
b2

n(ν)− x2

and (
log

(
(ην(x))−1

))′′
= 2

∞

∑
n=1

b2
n(ν) + x2

(b2
n(ν)− x2)2 > 0.

This implies that x �−→ (ην(x))−1 is strictly log-convex on Iν. Finally, being the
product of two strictly log-convex functions, x �−→ λν(x)/ην(x) is strictly log-convex
on Iν.

6. To prove this result, we first need to set up a Rayleigh-type function for the Lommel
function. Define the function

α
(2m)
n (ν) :=

∞

∑
n=1

b−2m
n (ν), m = 1, 2, . . . . (20)

Logarithmic differentiation of χν(x) yields

xχ′
ν(x)

χν(x)
= −2

∞

∑
n=1

x2

b2
n(ν)− x2 =

∞

∑
n=1

x2

b2
n(ν)

(
1 − x2

b2
n(ν)

)−1

=
∞

∑
n=1

x2

b2
n(ν)

∞

∑
m=0

x2m

b2m
n (ν)

.

Interchanging the order of the summation, it follows that

xχ′
ν(x)

χν(x)
= −2

∞

∑
m=0

∞

∑
n=1

x2m+2

b2m+2
n (ν)

= −2
∞

∑
m=1

α
(2m)
n (ν)x2m. (21)
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Consider the function

ϕμ(x) :=
log(χν(x))

log
(

1 − x2

b2
1(ν)

) =
pμ(x)
qμ(x)

. (22)

The binomial series, together with (21), gives the ratio of p′μ and q′μ as

p′μ(x)
q′μ(x)

=

xχ′
ν(x)

χν(x)

−2x2

b1(ν)2

(
1 − x2

b1(ν)2

)−1 =
∑∞

m=1 α
(2m)
n (ν)x2m

∑∞
m=1 b−2m

1 (ν)x2m
. (23)

Denote dm = b2m
1 (ν)α

(2m)
n (ν). Then,

dm+1 − dm = b2m+2
1 (ν)α

(2m+2)
n n(ν)− b2m

1 (ν)α
(2m)
n n(ν)

=
∞

∑
n=1

b2m
1 (ν)

b2m
n (ν)

(
b2

1(ν)

b2
n(ν)

− 1

)
< 0.

This is equivalent to saying that the sequence {dm} is decreasing. Hence, by Lemma 1,
it follows that the ratio p′μ/q′μ is decreasing. In view of Lemma 2, we have that
τμ = pμ/qμ is decreasing.
From (22) and (23), it can be shown that

lim
x→0

τμ(x) = lim
x→0

p′μ(x)
q′μ(x)

= lim
x→0

p′′μ(x)
q′′μ(x)

= lim
x→0

p′′μ(x)
q′′μ(x)

= b2
1(ν)α

(2)
n (ν), (24)

and

lim
x→b1(ν)

τμ(x) = lim
x→b2

1(ν)

p′μ(x)
q′μ(x)

= lim
x→b2

1(ν)

∞

∑
n=1

b2
1(ν)− x2

b2
n(ν)− x2 = 1. (25)

It is easy to see that b2
1(ν)α

(2)
n (ν) = b2

1(ν)l(ν) = bν.

This completes the proof of all of the results.

In the next result, by approaching a similar proof as in Theorem 1, we prove a sharper
upper bound for λν, compared to that presented in Theorem 1 (Part 3).

Theorem 2. If r > 0 and |x| < r, then the following inequality(
r2 − x2

r2

)aν

≤ λν(x) ≤
(

r2 − x2

r2

)bν

(26)

holds, where aν = 0 and bν = −r2l(ν) are the best possible constants.

Proof. Due to symmetry, it is sufficient to show the result for [0, r). Define Ψ : [0, r) −→ R as

Ψ(x) := log(λν(x))− r2l(ν)log
(

r2

r2 − x2

)
.
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Then,

Ψ′(x) =
λ′

ν(x)
λν(x)

− 2xr2

r2 − x2 l(ν) =
∞

∑
n=1

2x
b2

n(ν) + x2 −
∞

∑
n=1

2xr2

(r2 − x2)b2
n(ν)

=
∞

∑
n=1

2x(r2 − x2)b2
n(ν)− 2xr2(b2

n(ν) + x2)

b2
n(ν)(r2 − x2)(b2

n(ν) + x2)

= −2x3
∞

∑
n=1

b2
n(ν) + r2

b2
n(ν)(r2 − x2)(b2

n(ν) + x2)
≤ 0,

for x ∈ [0, r). This implies that Ψ is decreasing, and Ψ(x) ≤ Ψ(0) = 0. This is equivalent to

log(λν(x)) ≤ log
(

r2

r2 − x2

)r2l(ν)

=⇒ λν(x) ≤
(

r2 − x2

r2

)−r2l(ν)

.

This completes the proof. Now, to show the bν = −r2l(ν) is the best possible constant,
consider

δν :=
log(λν(x))

log
(

r2−x2

r2

) .

Then, using the Bernoulli–L’Hôpital rule, we have

lim
x↘0

δν(x) = lim
x↘0

log(λν(x))

log
(

r2

r2−x2

)
= lim

x↘0

(
λ′

ν(x)
λν(x)

− r2 − x2

2x

)
= lim

x↘0

∞

∑
n=1

−(r2 − x2)

b2
n(ν) + x2 = −

∞

∑
n=1

r2

b2
n(ν)

= −r2l(ν) = bν.

Thus, bν is the best possible constant.

3. Application Examples

As stated before, the primary aim of this work is to find a Redheffer-type inequality
for functions that are combinations of well-known functions. By constructing examples,
we show that Theorem 1 not only covers known results but also covers a wide range of
functions. We list each case as an example.

3.1. Example Involving Trigonometric Functions

Our very first example involves the well-known function f (x) = sinc(x). In math-
ematics, physics, and engineering, there are two forms of the sinc(x) function; namely,
non-normalized and normalized sinc functions. In mathematics, the non-normalized sinc
function is defined, for x �= 0, as:

sinc(x) :=
sin(x)

x
.

On the other hand, in digital and communication systems, the normalized form is defined as:

sinc(x) :=
sin(πx)

πx
, x �= 0.

The scaling of the independent variable (the x-axis) by a factor of π is the only dis-
tinction between the two definitions. In both scenarios, it is assumed that the limit value 1
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corresponds to the function’s value at the removable singularity at zero. The sinc function
is an entire function, as it is analytic everywhere.

The normalized sinc has the following infinite product representation:

sin(πx)
πx

=
∞

∏
n=1

(
1 − x2

n2

)
. (27)

It is well known that the infinite series ∑∞
n=1 n−2 is convergent and

∞

∑
n=1

1
n2 =

π2

6
.

We can conclude that sinc(x) ∈ Fν. From Theorem 1, it follows that

(1 − x2)aν ≤ sinc(x) ≤ (1 − x2)bν

with |x| < 1, bν = 1, and aν = π2/6.
Now, replacing x with ix in (27), we have

sinh(πx)
πx

=
∞

∏
n=1

(
1 +

x2

n2

)
. (28)

Clearly, sinh(πx)/πx ∈ Fν. Hence, by Theorem 1 (part 3), it follows that(
1 + x2

1 − x2

)τν

≤ sinh(πx)
πx

≤
(

1 + x2

1 − x2

)δν

for |x| < 1. Here, τν = 0 and δν = π2/6 are the best possible values of the constants.
On the other hand, from Theorem 2, it follows that

sinh(πx)
πx

≤
(

r
r2 − x2

)δν

for |x| < r, where δν = π2/6 is the best possible constant.
Next, we consider the infinite product

∞

∏
n=1

(
1 − x2

n2π2 − ν2

)
, |ν| < π. (29)

Using the Mathematica software, we find that

∞

∏
n=1

(
1 − x2

n2π2 − ν2

)
=

ν csc(ν) sin
(√

ν2 + x2
)

√
ν2 + x2

(30)

and

∞

∑
n=1

1
n2π2 − ν2 =

1 − ν cot(ν)
2ν2 . (31)

Clearly, ν csc(ν) sin
(√

ν2 + x2
)

/
√

ν2 + x2 ∈ Fν, and we have the following result, accord-
ing to Theorem 1.
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Corollary 1. Let 0 �= ν ∈ (−π, π). Then, the following inequality

(
π2 − ν2 + x2

π2 − ν2 − x2

)aν

≤
ν csc(ν) sin

(√
ν2 + x2

)
√

ν2 + x2
≤
(

π2 − ν2 + x2

π2 − ν2 − x2

)bν

holds for |x| < π2 − ν2. Here, aν = 0 and bν = (1− ν cot(ν))/4ν2(π2 − ν2) are the best possible
constants.

3.2. Examples Involving Hurwitz Zeta Functions

The Hurwitz zeta functions are zeta functions defined for the complex variable s, with
Re(s) > 0 and ν �= −1,−2,−3, . . ., defined by

ζ(s, ν) :=
∞

∑
n=0

1
(n + ν)s . (32)

This series is absolutely convergent for given values of s and ν, and can be extended to
meromorphic functions defined for all s �= 1. In particular, the Riemann zeta function is
given by ζ(s, 1). For our study in this section, we consider s = m ∈ N \ {1} and ν > −1.

Now, consider the infinite product

χm,ν(x) :=
∞

∏
n=1

(
1 − x2

(n + ν)m

)
, m ≥ 2 and ν > −1, (33)

for which the product is convergent. In the closed form of the product, we consider
m = 2, 3, 4. Then, χm,ν(x) have the forms

χ2,ν(x) = Γ(ν+1)2

Γ(−x+ν+1)Γ(x+ν+1)

χ3,ν(x) = Γ(ν+1)3

Γ(−x2/3+ν+1)Γ( 1
2 ((1−i

√
3)x2/3+2(ν+1)))Γ( 1

2 ((1+i
√

3)x2/3+2(ν+1)))

χ4,ν(x) = Γ(ν+1)4

Γ(ν−√−x+1)Γ(ν+
√−x+1)Γ(ν−√

x+1)Γ(ν+
√

x+1)
.

Next, we state a result related to the inequalities involving χm,ν(x). Although the
result is a direct consequence of Theorem 1 (Part 6), taking bn(ν) = (n + ν)m/2 for m ≥ 2
and ν > −1, we state it as a theorem due to its independent interest. Clearly,

∞

∑
n=1

1
b2

n(ν)
=

∞

∑
n=1

1
(n + ν)m = ζ(m, ν)− 1

νm .

Theorem 3. If m ≥ 2, ν > −1 and |x| < (n + ν)m, then the following sharp exponential
inequality holds: (

(1 + ν)m − x2

(1 + ν)m

)am,ν

≤ χm,ν(x) ≤
(
(1 + ν)m − x2

(1 + ν)m

)bm,ν

, (34)

with the best possible constants as bm,ν = 1 and am,ν = (1 + ν)m(ζ(m, ν)− ν−m).

Taking ν = 1 in (34), it follows that(
1 − x2

2m

)am,1

≤ χm,1(x) ≤
(

1 − x2

2m

)bm,1

. (35)
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Now, by choosing m = 2, 3, 4, 5, 6 in (35), we have the following special cases of
Theorem 3:

(i)
(

1 − x2

4

)a2,1

≤ χ2,1(x) ≤
(

1 − x2

4

)b2,1

with a2,1 =
2π2

3
,

(ii)
(

1 − x2

8

)a3,1

≤ χ3,1(x) ≤
(

1 − x2

8

)b3,1

with a3,1 = 8ζ(3, 1) = 9.61646,

(iii)
(

1 − x2

16

)a4,1

≤ χ4,1(x) ≤
(

1 − x2

16

)b4,1

with a4,1 =
8π4

45
,

(iv)
(

1 − x2

16

)a5,1

≤ χ5,1(x) ≤
(

1 − x2

16

)b5,1

with a5,1 = 32 ζ(5, 1) = 33.1817,

(v)
(

1 − x2

16

)a6,1

≤ χ6,1(x) ≤
(

1 − x2

16

)b6,1

with a6,1 =
64π6

945

where, in each of the cases (m = 2, 3, 4, 5, 6), the best values of bm,1 = 1 and χm,1(x) are
listed below

χ2,1(x) =
sin(πx)

πx − πx3 ,

χ3,1(x) = − 1

(x2 − 1)Γ
(
1 − x2/3

)
Γ
(

1
2

(
1 − i

√
3
)

x2/3 + 1
)

Γ
(

1
2

(
1 + i

√
3
)

x2/3 + 1
) ,

χ4,1(x) = − sin
(
π
√

x
)

sinh
(
π
√

x
)

π2(x3 − x)

χ5,1(x) = 1
(1−x2)Γ(1−x2/5)Γ( 5√−1x2/5+1)Γ(1−(−1)2/5x2/5)Γ((−1)3/5x2/5+1)Γ(1−(−1)4/5x2/5)

,

χ6,1(x) =
sin
(
π 3
√

x
)(

cos
(
π 3
√

x
)
− cosh

(√
3π 3

√
x
))

2π3x(x2 − 1)
.

3.3. Examples Involving Bessel Functions

In this part, we discuss the generalization of the Redheffer type bound in terms of
Bessel and modified Bessel functions. In this regard, we consider the very first result given
by Baricz [7], and later by Khalid [9], as well as Baricz and Wu [10].

From ([14], p. 498), it is known that the Bessel function Jν has the infinite product

Jν(x) = 2νΓ(ν + 1)x−ν Jν(x) = ∏
n≥1

(
1 − x2

j2ν,n

)
(36)

for arbitrary x and ν �= −1,−2,−3, . . .. It is also well known that ([14], P. 502)

∞

∑
n=1

1
j2n,ν

=
1

4(ν + 1)
.

This implies Jν ∈ Fν. Similarly, Iν(x)—the normalized form of the modified Bessel
function Iν—can be expressed as

Iν(x) = 2νΓ(ν + 1)x−ν Iν(x) = ∏
n≥1

(
1 +

x2

j2ν,n

)
, (37)

which indicates that Iν ∈ Gν. Now, from Theorem 1 (3) and Theorem 2, we have the
following results.

Theorem 4. Consider ν > −1 and Iν ∈ Gν.
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1. For |x| < jν,1, we have (
j2ν,1 + x2

j2ν,1 − x2

)aν

≤ Iν(x) ≤
(

j2ν,1 + x2

j2ν,1 − x2

)bν

, (38)

with the best possible constants as aν = 0 and bν = j2ν,1/8(ν + 1).
2. For any r > 0 and |x| < r, we have

(
r2 − x2

r2

)aν

≤ Iν(x) ≤
(

r2 − x2

r2

)bν

, (39)

with the best possible constants as aν = 0 and bν = −r2/4(ν + 1).

Now, from Theorem 1 (6), the following inequality holds for normalized Bessel func-
tions.

Theorem 5. Consider ν > −1 and Jν ∈ Fν. For |x| < jν,1, we have(
j2ν,1 − x2

j2ν,1

)aν

≤ Jν(x) ≤
(

j2ν,1 − x2

j2ν,1

)bν

, (40)

with the best possible constants as bν = 1 and aν = j2ν,1/4(ν + 1).

3.4. Examples Involving Struve Functions

One of the most well-known special functions is the solution to the non-homogeneous
Bessel differential equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = zμ+1,

called the Struve functions, Sν. If hν,n denotes the nth positive zero of Sν, then, for |ν| ≤ 1/2,
the function Sν can be expressed as (see [15])

Sν(z) =
zν+1

2ν
√

πΓ
(
ν + 3

2
) ∞

∏
n=1

(
1 − z2

h2
ν,n

)
. (41)

From [16] (Theorem 1), it is useful to note that hν,n > hν,1 > 1 for |ν| < 1/2. From (41),
consider the normalized form

Sν(z) :=
√

π2νΓ
(

ν +
3
2

)
z−νSν(z) =

∞

∏
n=1

(
1 − z2

h2
ν,n

)
. (42)

From [17], it follows that for |ν| ≤ 1/2,

∑
n≥1

1
h2

v,n
=

1
3(2v + 3)

.

Consider the modified form of the Struve function

Lν(z) = Sν(iz) =
∞

∏
n=1

(
1 +

z2

h2
ν,n

)
.

Clearly, Sν ∈ Fν and Lν ∈ Gν.
Now, from Theorem 1 (3) and Theorem 2, we have the following results.

Theorem 6. Consider |ν| < 1/2 and Lν ∈ Gν.
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1. For |x| < hν,1, we have(
h2

ν,1 + x2

h2
ν,1 − x2

)aν

≤ Lν(x) ≤
(

h2
ν,1 + x2

h2
ν,1 − x2

)bν

, (43)

with the best possible constants as aν = 0 and bν = h2
ν,1/6(2ν + 3).

2. For any r > 0 and |x| < r, we have

(
r2 − x2

r2

)aν

≤ Lν(x) ≤
(

r2 − x2

r2

)bν

, (44)

with the best possible constants as aν = 0 and bν = −r2/3(2ν + 3).

Now, from Theorem 1 (6), the following inequality holds for normalized Bessel func-
tions.

Theorem 7. Consider ν > −1 and Sν ∈ Fν. For |x| < hν,1, we have(
h2

ν,1 − x2

h2
ν,1

)aν

≤ Sν(x) ≤
(

h2
ν,1 − x2

h2
ν,1

)bν

, (45)

with the best possible constants as bν = 1 and aν = h2
ν,1/3(2ν + 3).

3.5. Examples Involving Dini Functions

The Dini function dν : Ω � C −→ C is defined by

dν(z) = (1 − v)Jν(z) + zJ′ν(z) = Jν(z)− zJν+1(z).

The modified Bessel functions are related to the Bessel functions by Iν(z) = i−νJν(iz), which
gives the modified Dini function

ξν = Ω � C −→ C,

defined by

ξν(z) = i−νdν(iz) = (1 − ν)Iν(z) + zI′ν(z) = Iν(z)− zIν+1(z).

For an integer ν, the domain Ω can be taken as the whole complex plane, while Ω is the
whole complex plane minus an infinite slit from the origin if ν is not an integer.

In view of the Weierstrassian factorization of dν(z)

dν(z) =
zν

2νΓ(ν + 1) ∏
n≥1

(
1 − z2

α2
ν,n

)
, (46)

where ν > −1 and the formula ξ(z) = i−1dν(iz), we have the following Weierstrassian
factorization of ξν(z) for all ν > −1 and z ∈ Ω:

ξν(z) =
zν

2νΓ(ν + 1) ∏
n≥1

(
1 +

z2

α2
ν,n

)
, (47)

where the infinite product is uniformly convergent on each compact subset of the complex
plane, where αν,n is the nth positive zero of the Dini function dν. The principal branches of
dν(z) and ξν(z) correspond to the principal value of (z/2)ν, and are analytic in the z-plane
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cut along the negative real axis from 0 to infinity; that is, the half line (∞, 0]. Now for
ν > −1, define the function Λν : R −→ [1, ∞) as

Λν(x) = 2νΓ(ν + 1)x−νξν(x) = ∏
n≥1

(
1 +

x2

α2
ν,n

)
. (48)

Furthermore, for ν > −1, let us define the function Dν : R −→ R

Dν(x) = 2νΓ(ν + 1)x−νdν(x) = ∏
n≥1

(
1 − x2

α2
ν,n

)
. (49)

From [18], it follows that
∞

∑
n=1

1
α2

ν,n
=

3
4(ν + 1)

.

Comprehensive details of the properties of Dini functions can be found in [11,18] and
the references therein.

From the definition of the classes Fν and Gν, it is clear that Λν ∈ Gν and Dν ∈ Gν.
Thus, we have the following results, by Theorems 1 and 2.

Theorem 8. Consider ν > −1 and Λν ∈ Gν.

1. For |x| < αν,1, we have(
α2

ν,1 + x2

α2
ν,1 − x2

)aν

≤ Λν(x) ≤
(

α2
ν,1 + x2

α2
ν,1 − x2

)bν

, (50)

with the best possible constants as aν = 0 and bν = 3α2
ν,1/8(ν + 1).

2. For any r > 0 and |x| < r, we have

(
r2 − x2

r2

)aν

≤ Λν(x) ≤
(

r2 − x2

r2

)bν

, (51)

with the best possible constants as aν = 0 and bν = −3r2/4(ν + 1).

Further, Theorem 1 (6) gives the following result.

Theorem 9. For ν > −1 and |x| < αν,1, we have(
α2

ν,1 − x2

α2
ν,1

)aν

≤ Dν(x) ≤
(

α2
ν,1 − x2

α2
ν,1

)bν

, (52)

with the best possible constants as bν = 1 and aν = 3α2
ν,1/4(ν + 1).

3.6. Examples Involving q-Bessel Functions

This section considers the Jackson and Hahn–Exton q-Bessel functions, respectively
denoted by J

(2)
ν (z; q) and J

(3)
ν (z; q). For z ∈ C, ν > −1 and q ∈ (0, 1), both functions are

defined by the series

J
(2)
ν (z; q) :=

(
qν+1; q

)
∞

(q; q)∞
∑
n≥0

(−1)n( z
2
)2n+ν

(q; q)n(qν+1; q)n
qn(n+ν) (53)

J
(3)
ν (z; q) :=

(
qν+1; q

)
∞

(q; q)∞
∑
n≥0

(−1)nz2n+ν

(q; q)n(qν+1; q)n
q

n(n+1)
2 . (54)
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Here,

(a; q)0 = 1, (a; q)n =
n

∏
k=1

(
1 − aqk−1

)
, and (a; q)∞ = ∏

k≥1

(
1 − aqk−1

)
are known as the q-Pochhammer symbol. For a fixed z and q → 1, both of the above
q-Bessel functions relate to the classical Bessel function Jν as J

(2)
ν ((1 − z)q; q) → Jν(z)

and J
(3)
ν ((1 − z)q; q) → Jν(2z). The q-extension of Bessel functions has been studied

by several authors, notably, references [19–24] and the various references therein. The
geometric properties of q-Bessel functions have been discussed in [25]. It is worth noting
that abundant results are available in the literature, regarding the q-extension of Bessel
functions; however, we limit ourselves to the requirements of this article. For this purpose,
we recall the Hadamard factorization for the normalized q-Bessel functions:

z → J (2)
ν (z; q) = 2νcν(q)z−νJ

(2)
ν (z; q) and z → J (3)

ν (z; q) = cν(q)z−νJ
(3)
ν (z; q),

where cν(q) = (q; q)∞/
(
qν+1; q

)
∞.

Lemma 3 ([25]). For ν > −1, the functions z → J (2)
ν (z; q) and z → J (3)

ν (z; q) are entire
functions of order zero, which have Hadamard factorization of the form

J (2)
ν (z; q) = ∏

n≥1

(
1 − z2

j2ν,n(q)

)
, J (3)

ν (z; q) = ∏
n≥1

(
1 − z2

l2
ν,n(q)

)
, (55)

where jν,n(q) and lν,n(q) are the nth positive zeros of the functions J (2)
ν (.; q) and J (3)

ν (.; q),
respectively.

We recall that, from [25], the q-extension of the first Rayleigh sum for Bessel functions
of the first kind is

∞

∑
n=1

1
j2ν,n

=
1

4(ν + 1)
, is

∞

∑
n=1

1
j2ν,n(q)

=
qν+1

4(q − 1)(qν+1 − 1)
. (56)

The series form of J (3)
ν (z; q) is

J (3)
ν (z; q) =

∞

∑
n=0

(−1)nz2nq
n(n+1)

2

(q, q)n(qν+1, q)n
. (57)

Comparing the coefficients of z2 in (55) and (57), it follows that

∞

∑
n=1

1
l2
ν,n(q)

=
q

(q − 1)(qν+1 − 1)
. (58)

The above facts imply that J (i)
ν (z; q) ∈ Fν for i = {1, 2}. For i = {1, 2} and ν > −1, denote

the nth zero of J (i)
ν (z; q) by bi,n(ν). From (56) and (58), it follows that

li(ν) :=
∞

∑
n=1

1
b2

i,n(ν)
=

⎧⎪⎪⎨⎪⎪⎩
qν+1

4(q−1)(qν+1−1) i = 1,

q
(q−1)(qν+1−1) i = 2.

Now, we have the following result, by Theorem 1 (6).
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Theorem 10. The function x �→ J (i)
ν (z; q) ∈ Fν for i = {1, 2} satisfies the sharp Redheffer-type

inequality

(
b2

i,1(ν)− x2

b2
i,1(ν)

)aν

≤ J (i)
ν (z; q) ≤

(
b2

i,1(ν)− x2

b2
i,1(ν)

)bν

(59)

on Iν. Here, bν = 1 and aν = b2
i,1(ν)li(ν) are the best possible constants.

4. Conclusions

In this article, we defined two classes of functions on the real domain, using the infinite
products of factors involving the positive zeroes of the function. We assume that the infinite
product is uniformly convergent, and it is also assumed that the sum of the square of zeroes
is convergent. We illustrate several examples that ensure that these classes are non-empty.
Functions starting from the most fundamental trigonometric functions (i.e., sin, cos) to
special functions, such as Bessel and q-Bessel functions, Hurwitz functions, Dini functions,
and their hyperbolic forms, are included in the classes. In conclusion, it follows that the
results obtained in Section 2 are similar to the results available in the literature for each of the
individual functions listed above. For example, Redheffer-type inequalities for Bessel and
modified functions, as stated in Theorem 5 and Theorem 4, form part of the results given
previously in [7,9,10], while the inequality obtained in Theorem 8 has also been obtained in
([11], Theorem 7). From Theorem 1 (part 4), it follows that the function x �→ Λν(x)Dν(x) is
increasing on (−αν,n, 0) and decreasing on (0, αν,n), which has also been obtained in ([11],
Theorem 8 (i)). To the best of our knowledge, Theorems 3 and 10 have not been published
in the existing literature. We finally conclude that the Redheffer-type inequalities obtained
in this study cover a wide range of functions, regarding Theorems 1 and 2. Using the
Rayleigh concepts provided in [26], more investigations into the zeroes of special functions
may lead to more examples related to the work in this study, and we intend to follow this
line of research for future investigations.
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