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Preface

Machine learning and data mining are intertwined fields that leverage mathematical principles

to extract valuable insights from data. Machine learning involves developing algorithms that improve

through experience, enabling machines to learn from data without explicit human intervention.

This field aims to create intelligent systems that automate complex tasks and provide smart

solutions. In contrast, data mining focuses on discovering new, accurate, and useful patterns to

inform decision-making, serving as a tool for humans to analyze vast datasets. Both fields rely

heavily on mathematical foundations, including statistics, linear algebra, calculus, graph theory,

and optimization, which are essential for analyzing data, optimizing models, and understanding

relationships within datasets.

Recent decades have seen a dramatic rise in the application of machine learning and data

mining. Recent technologies, e.g., the Internet of Things (IoTs), neural networks, deep learning,

and smart things, have brought new developments in machine learning and data mining to areas

such as healthcare, manufacturing, automobiles, and agriculture. One important breakthrough in

artificial intelligence techniques is deep learning, which includes a large family of neural computing

methods, e.g., convolutional neural networks (CNNs), generative adversarial networks (GANs), and

transformers, that employ deep architectures composed of multiple non-linear transformations to

model high-level abstractions of raw data. Recent studies have shown that deep neural networks

significantly improve the performance of learning tasks such as object detection, image classification,

and segmentation. As a consequence, many advanced real-world applications have developed

increasingly close relations with machine learning and data mining technologies.

The following book contains 14 articles accepted and published in the Special Issue

”Mathematics and Computer Science, 2024” of the MDPI journal Mathematics. The included articles

cover a wide range of topics related to the theory and applications of Machine Learning and Data

Mining, as well as their extensions and generalizations. These topics include, but are not limited

to, supervised, unsupervised, and self-learning methods; large-scale data mining; applicable neural

networks and artificial intelligence; neural network-based industrial applications; neural models

for natural language processing; deep learning for health informatics and biomedical engineering;

graph convolutional neural networks and their applications; deep reinforcement learning and its

applications; deep sparse and low-rank representation; and computer vision and pattern recognition

techniques.

As the Guest Editor of this Special Issue, I am grateful to the authors for their quality

contributions, to the reviewers for their valuable comments that contributed to the improvement

of the submitted works, and to the administrative staff of MDPI Publications for their support in

completing this project. Special thanks are due to Ms. Rebecca Xue, the Managing Editor of the

Special Issue, for her excellent collaboration and valuable assistance.

Mingbo Zhao, Haijun Zhang, and Zhou Wu

Editors
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Abstract: Predicting breakthrough papers holds great significance; however, prior studies encoun-
tered challenges in this task, indicating a need for substantial improvement. We propose that the
failure to capture the dynamic structural-evolutionary features of citation networks is one of the
major reasons. To overcome this limitation, this paper introduces a new method for constructing
citation cascades of focus papers, allowing the creation of a time-series-like set of citation cascades.
Then, through a thorough review, three types of structural indicators in these citation networks that
could reflect breakthroughs are identified, including certain basic topological metrics, PageRank
values, and the von Neumann graph entropy. Based on the time-series-like set of citation cascades,
the dynamic trajectories of these indicators are calculated and employed as predictors. Using the
Nobel Prize-winning papers as a landmark dataset, our prediction method yields approximately a
7% improvement in the ROC-AUC score compared to static-based prior methods. Additionally, our
method advances in achieving earlier predictions than other previous methods. The main contribu-
tion of this paper is proposing a novel method for creating citation cascades in chronological order
and confirming the significance of predicting breakthroughs from a dynamic structural perspective.

Keywords: predictions; breakthroughs; networks; structure; dynamics

MSC: 05C82; 68T20

1. Introduction

Scientific breakthroughs often imply the new emergence and growth of science or
society [1]. Many recent studies have focused on capturing the characteristics of break-
throughs and trying to predict them. One of the characteristics drawn from classical and
widely acknowledged theories exhibits potential power in predictions: breakthrough dis-
coveries often lead to dramatic changes in knowledge evolution [2]. Certain theories, like
the theory of disruptive innovation [3], Kuhn’s concept of paradigm shift [4], and other
classical theories, all share this perspective.

In this perspective, the variation in the knowledge structure represents one important
dimension of the so-called “dramatic changes”, which is accessible and easy to quantify
compared to other dimensions. In recent years, this idea has attracted great interest,
and several works of literature have been designed based on it. They benefit from the
advancement of complex network technology, which allows them to model the knowledge
evolution structure. Among them, there is one kind of complex network, the citation
cascades [5], showing power in breakthrough predictions. Citation cascades refer to a
type of citation structure that involves the constitution of a series of subsequent citing
events initiated by a focus paper (more details are in the reference [6]). Using the citing
cascades, Min et al. [2] predicted the Nobel Prize-winning papers based on their topological
metrics and achieved a performance that exceeded prior methods. Theoretically, they also
confirmed that the variation in knowledge structure indicated scientific breakthroughs.

Mathematics 2024, 12, 1741. https://doi.org/10.3390/math12111741 https://www.mdpi.com/journal/mathematics1
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However, despite numerous methods proposed to predict scientific breakthroughs,
accurately predicting them remains very hard, as confirmed consistently [2,7,8]. They
claim that it is challenging to identify scientific breakthroughs, with predicting them being
even more difficult. The aforementioned prediction, based on the basic topological metrics
of citation cascades by Min et al. [2], only achieved less than 70% of the highest AUC
score, indicating great room for improvement and a long distance to go before practical
application. Through a literature review, we conclude that the static nature of prior methods,
which are based mostly on a particular snapshot of the structure of knowledge evolution,
impedes the prediction performance, while intuitively, the “dramatic change in knowledge
structure” exhibits a strong dynamic nature.

We argue that the dynamic structure of knowledge evolution can reveal further in-
formation beyond static topological metrics, enhancing the prediction of breakthrough
papers. One possibility, for example, is that different structural features may exhibit
distinct characteristics at earlier and later stages of knowledge evolution. Nevertheless,
capturing information about the dynamic evolution of citation cascades poses a challenge.
This is closely related to the construction methods of citation cascades (more details in
Sections 2.2 and 3.3). Due to the explosive growth potential of citation cascade networks,
certain restrictions are necessary. Previous studies limit the time span of citation cas-
cades (for example, restricting the cascades within 2, 3, or 4 years after the focus paper’s
publication year), and though it is effective to some extent, this also poses difficulties
in capturing the dynamic properties of citation cascades. Hence, we aim to adjust the
construction method of cascade citations to capture their dynamic nature for predicting
scientific breakthroughs.

In this paper, we modify the construction of citation cascades. Under this construction
method, the citation cascades grow the edges in a chronological order and have a limited
number of edges. By considering the citation cascades at various growth stages, a series of
snapshots is generated. Then, specific structure metrics of these snapshots are calculated,
thereby leading to time-series-like data, and they serve as the raw predictors. In the experi-
ment of this study, the structure metrics involve the basic topological metrics, PageRank
values, and the von Neumann graph entropy. Finally, we extract certain features as predic-
tors from this time-series-like data and utilize them to predict scientific breakthroughs.

In summary, we aim to quantify the dynamic evolution of knowledge structure to
predict scientific breakthroughs, with citation cascades as the agents. Using the Nobel Prize-
winning papers as a landmark dataset of scientific breakthroughs, prediction experiments
are performed; it is anticipated that our method surpasses the static approach and achieves
a higher prediction performance.

In Section 2, we provide a brief overview of scientific breakthroughs, predicting
breakthroughs, and citation cascades. Section 3 illustrates our forecasting method and
modeling process. Section 4 shows the prediction performance and compares our method
with previous approaches. The final Section 5 addresses our contributions, implications,
and future directions.

2. Background

2.1. Definition and Prediction of Breakthroughs
2.1.1. Scientific Breakthroughs

Scientific breakthroughs do not have a widely accepted definition. Some studies in re-
cent years have defined them as scientific advancements that can override and significantly
expand existing knowledge and even create new fields [9]. Many studies that predict or
identify breakthroughs often root in this idea.

A breakthrough drives new growth [10]. And scientific breakthroughs are more
transformative, triggering new growth in wide ranges and involving academic, social,
and economic aspects. Therefore, forecasting and nurturing scientific breakthroughs are
crucial. Especially in the post-epidemic era, the COVID-19 pandemic not only threatens
human health but also profoundly changes the socioeconomic structure [11]. Scientific
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breakthroughs hold more significance. They are the key to offering novel solutions to some
global challenges, drawing new growth points to stimulate economics, and providing the
potential to address development disparities.

Some scholars categorize scientific breakthroughs into different types. For instance, the
well-known cha-cha-cha theory [12]. It argues that scientific breakthroughs can be divided
into three types: “solving obvious but previously unsolvable problems”, “addressing some
accidental but crucial problems”, and “some discoveries challenge or cannot be explained
by existing knowledge”. While the types of scientific breakthroughs are well explored,
where and when they occur remains unclear. Some studies have identified correlations with
scientific breakthroughs, such as diverse knowledge [13] and scientists’ characteristics [14],
but none of these can predict them. For example, in datasets with artificially constructed
control groups, atypical combination index is not able to differentiate Nobel Prize-winning
papers [15]. It is challenging to pinpoint when and where a scientific breakthrough happens
in a vast dataset instead of with artificially constructed control groups. In short, predicting
scientific breakthroughs is a challenging task. In the following section, we will also highlight
this point.

2.1.2. Predicting Breakthroughs

In this section, the primary methods for identifying or predicting scientific break-
throughs are outlined.

From the perspective of knowledge structure variation to predict scientific break-
throughs, there are various methods. The most famous one is the Disruption Index [16,17],
which has been featured in papers published in some reputed journals like Nature or
Science several times [18,19]. Figure 1 illustrates its basic idea and computation method.
This method evaluates the breakthrough of a focus paper by checking if the citing papers
(of the focus paper) cite the focus paper’s references. There are numerous variations of
this method, including adjustments to the detailed calculation process and integrated
knowledge entities in it [7,20]. However, all these methods have significant difficulty pre-
dicting scientific breakthroughs effectively. The Disruptive Index fails to differentiate Nobel
Prize-winning papers, and its enhanced methodology also struggles with this task [7,21].

Figure 1. The basic idea and calculation of the Disruption Index. Note: After constructing the citation
structure, DIl in the lower right corner is the value of the Disruptive Index. Generally speaking, l is
equal to 1, and Bormann et al. [20] expanded this index and extended the l to any value.

Another approach based on knowledge structure variation utilizes the citation cas-
cades as an agent for scientific evolution. The topological indicators of them are employed
to predict breakthroughs, and they achieve promising outcomes [2,8]. However, only
certain topological indicators are effective in predicting, including the average clustering

3
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coefficient, average degree, maximum closeness centrality, and number of components.
They discover that papers with distinct characteristics of the above indicators indicate
breakthroughs, which may suggest that breakthrough findings lead to greater knowledge
structure variation. These effective indicators also hold theoretical significance. In the
citation structure, the node’s degree indicates its influence on knowledge diffusion [22],
and the closeness centrality reflects the effectiveness of knowledge dissemination [23],
among other factors. However, the highest AUC scores in their papers on breakthrough
predictions are only 69% in economics science and 67.5% in natural science, indicating the
great challenge of predicting them. One of the reasons may be that they rely solely on static
characteristics; they only use some topological metrics of citation cascades within a specific
fixed time (a snapshot).

Other algorithms based on knowledge structure perspectives have also been pro-
posed, in addition to the Disruption Index and the topological metrics of citation cascades.
PageRank is a classical algorithm that measures the importance of a node and is commonly
utilized in the information retrieval field [24]. Some literature has also used it to iden-
tify breakthrough patents, suggesting that an important node in a citation network may
indicate a breakthrough [25].

However, these above indicators may remain limited. Other indicators may still
be worth considering, especially those from complex network techniques. Entropy, for
instance. Entropy is a crucial concept for complex networks, representing a wealth of
information. The structure entropy of a graph can serve as an indicator of the complexity
of a network. We believe that it is related to the “dramatic change” brought about by
scientific breakthroughs. Therefore, we incorporate the von Neumann graph entropy [26]
into our experiment.

Besides the method based on structure information, there are also many other di-
mensional methods. These approaches include expert-manual selection, content-based
identification, and citation-count-based methods. (1) Manual selection is an effective but
relatively inefficient method, yet it remains important [27]. Some examples are the selection
of breakthroughs by the Science journal, the MIT press, and others. (2) At the content-based
identification level, studies often analyze the topic distribution of focus papers using a
topic model and assess their breakthroughs by examining the extent to which they cover
previous and subsequent topics [28,29]. In the field of business, breakthrough patents
are those that significantly differ from previous patents but are similar to subsequent
patents [30]. Alternatively, keyword networks can be created, and their entropy is used to
detect the surge in topic evolution [27]. Those that led to sudden topic evolution may be
breakthroughs. (3) Citation count is often used as a proxy for breakthroughs [31], particu-
larly in defining patent breakthroughs [32]. However, it exhibits obvious shortcomings. For
example, review papers have higher citation counts but lack breakthroughs. Some studies
point out its limitations: it may lead to bias [1], and it is proven to be challenging to identify
scientific breakthroughs [2].

2.2. Citation Cascades

From the perspective of forecasting breakthroughs through the structure variation
features, proxying knowledge structure is a challenging task. Citation behavior, or citation
structure, is a crucial tool for analyzing the evolution of knowledge. Citation behavior
is often viewed as a form of knowledge diffusion [33]. Then, these citations interact,
forming a network-like citation structure. These network structures provide a strong foun-
dation for modeling knowledge structures and creating advanced models to predict and
improve organizational outcomes [34]. Since the whole citation network, being a huge
complex graph, is challenging to use directly. The variational methods based on it are
more practical. Among them, citation cascades have become a prominent one in recent
years [5,6,35]. It is utilized for various tasks such as technology forecasting [2], agent
knowledge structure [36] or intelligence structure [37], impact evaluation [38], scientific
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evaluation [39], topic detection or hot spot prediction [6], and cascade information explo-
ration in social media [40]. A typical example of citation cascades is illustrated in Figure 2B.

Figure 2. Notation and construction methods of citation cascades. Note: In (A), each focal document
in our approach has a corresponding citation cascade. (B) illustrates an example of citation cascade
networks. (C,D) show two previous methods of creating cascading citations.

We specifically explain the citation cascades, as they are a feasible and promising tool
for forecasting scientific breakthroughs [5]. Citation cascades are created from a focus paper
to represent the knowledge flow it initiates. Initially, the generation of citations is defined as
“the collection of papers that cite a focus paper either directly (first generation) or indirectly
(through a path in the citation graph originating from a citing paper and ending at the
focus paper)” [41]. Min et al. develop this idea and use it to predict breakthroughs [2]. It is
notable that each focus paper spans its citation cascade networks, which occur individually,
as depicted in Figure 2A. They utilize the basic topological metrics of these citation cascades
to predict which focus paper is a scientific breakthrough.

However, as mentioned in Section 1, the growth of citation cascade networks is
inherently explosive. For a simple example, if each generation has 20 citations, there will be
millions of citations with only five generations. Therefore, certain restrictions are typically
necessary when using them. Create citation cascades with a limited number of generations,
and in Figure 2C, three generations are selected. However, this approach remains limited by
the highly uneven distribution of the number of papers in the citation cascades. Min et al.
address this issue by restricting their growth time, such as limiting them to 2–4 years
after the publication of the focus paper. An example can be seen in Figure 2D. While this
approach is effective in some cases, it is static and struggles to capture the dynamic nature
of knowledge structures. Additionally, this approach may lead to an uneven distribution of
citation sizes among papers: some papers may experience rapid growth in the cascades,
while others, known as “sleeping beauty literature” [42], may remain dormant for a long
time. Hence, we adjust the structure of cascading citations to reflect their dynamic nature,
as detailed in Section 3.3.

The citation structure not only involves the citation cascades but also includes var-
ious forms like main path analysis [43], the max-min method to identify core nodes in
the network [44,45], and others. These technologies, especially their combination with
intelligence algorithms like deep learning and machine learning, are potential methods for
future studies.

5
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3. Methodology

3.1. Overviews of the Research Processs

The following paragraphs describe the methodology used in this study. The basic
process is illustrated in Figure 3, and further details are presented in the following Sections
(Sections 3.2–3.6).

(1) The dataset of Nobel Prize-winning papers is chosen as a landmark of scientific
breakthroughs. (More details are shown in Section 3.2).

(2) Find a control group for the breakthrough dataset, representing the non-breakthrough
papers. (More details are shown in Section 3.2).

(3) Construct citation cascade networks for each paper using our method. After that, a
series of snapshots of the cascade networks is generated. (More details are shown
in Section 3.3).

(4) Calculate specific structural indicators for these series of citation cascade network
snapshots. The indicators include the number of nodes, average clustering coefficient,
average degree, maximum closeness centrality, number of components, PageRank
value of the focus paper, mean value and variance of PageRank, and the von Neumann
graph entropy. In this step, the series data for these metrics is then generated. (More
details are shown in Sections 3.4 and 3.5).

(5) Feature selections: extract certain features from the series data. (More details are
shown in Section 3.5).

(6) Finally, the extracted features are utilized to forecast scientific breakthroughs using
machine learning algorithms. (More details are shown in Section 3.5).

 

Figure 3. Overview of the process. Note: The process of our study follows the sequence (A)→
(B)→ (C). (A) illustrates the process of constructing the dataset. (B) provides a basic description
of our dynamic approach. The red dot represents the focus paper, and the blue dots represent
papers that directly or indirectly cite the focus papers. As the number of edges expands, we
capture lots of snapshots of the citation cascade. For each one, we calculate specific structural
metrics (e.g., the average cluster coefficient). As a result, time-series-like data is generated.
Afterward, extract features from these sequences, which then serve as predictors. (C) illustrates
the final machine learning process.

3.2. Landmark Dataset

With increased attention to scientific breakthroughs, landmark datasets have been cre-
ated. Among them, the most widely used and acknowledged are the Nobel Prize-winning
papers. The Nobel Prize signifies broad recognition within the academic community, often
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acknowledging the scientists who discover breakthrough findings. Though the Nobel Prize
is awarded to individual scientists, it is primarily based on one or a few specific paper(s) by
those winners. Hence, scholars have manually identified a dataset of Nobel Prize-winning
papers [46], which is published in Scientific Data. According to this work, we compile a
dataset of Nobel Prize-winning papers published after 1960, totaling 648 papers.

In the work of [46], the prize-winning papers are determined by the laureate’s speech.
In general, winning papers are cited as references in the lectures. The paper that meets all
the following criteria is considered a Nobel Prize-winning paper: (1) has at least one author
with the same name as a Nobel Prize winner; (2) is published in the same period as the
winning paper; (3) has consistent institution and co-author information with the award-
winning paper; and (4) has a subject consistent with the motivation of the Nobel Prize.

To enable a prediction, it is necessary to establish a suitable control group. Based
on previous research, certain variables need to be controlled [2,7]. According to previous
literature, the citation count, team size (the number of authors of a paper), publication year,
and academic discipline all influence breakthroughs and should be involved. Then, we
ensure that the breakthrough and non-breakthrough paper groups have similar citation
counts, which differ by 20% or less, are authored by the same number of individuals,
published in the same year, and belong to the same discipline. Only one paper is randomly
selected from the control papers that meet these criteria, thereby creating a one-to-one
paired dataset.

The Matthew effect is significant, as Nobel Prize-winning papers tend to receive a
high number of citations. Therefore, we ensure that the citation cascade networks for each
Nobel Prize-winning paper have a shorter span than the prize year. Those who do not meet
this criterion are excluded, and then 335 papers remain.

The metadata and citation data of papers in this study are sourced from the
SciSciNet [47] and OpenAlex databases [48]. These databases are built on the well-known
MAG (Microsoft academic graph) database, and their quality has also been checked by
several studies.

3.3. Construction of Citation Cascades

As discussed earlier, constructing a citation cascade network for modeling scientific
evolution is challenging due to its explosive nature. Previous studies have restricted
cascading citation networks to 2–4 years after the focus paper publication. However,
this approach leads to a static nature, making it hard to capture their dynamic structure
characteristics for prediction.

To tackle the aforementioned issues, we suggest a new approach to constructing
citation cascade networks. This method creates cascade citations by controlling the number
of edges and selecting a fixed number (threshold) of edges in a chronological sequence.
See Figure 4 for details. Firstly, we obtain the citation time for each citation, and all the
citations are then sorted chronologically. Then, a threshold is set, and a fixed number
of edges with the earliest citation time are chosen to build the citation cascade network.
These processes can be executed using a graph traversal algorithm. With this construction
method, it is possible to ensure an equal number of edges for each paper’s citation cascades.
Most importantly, this method is able to capture citation cascade networks at different
temporal snapshots. For instance, the snapshots of a cascade network have thresholds for
the number of edges at 100, 200, 500, and 1000.

In our study, we set the maximum number of edges threshold at 1000. Starting with
the 100 edges, every 10th edge increases, creating a snapshot until reaching 1000 edges. So,
in total, this process yields 90 snapshots of the citation cascade networks. In the following
sections, certain structure features of these snapshots are computed, then forming the
time-series-like predictors.

The construction of cascade networks for the entire dataset, including the Nobel
Prize-winning papers dataset and its control group, consists of 327,245 papers and
752,849 citations.
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Figure 4. The new approach proposed in this study to constructing citation cascade networks for
capturing dynamic structural information. Note: (A) shows that the citation time of each citation is
recorded. A chronological order is added to each citation based on the citation time, with “2” indicating
the second citation in the chronological sequence, as shown in (B). Finally, a threshold (the maximum
number of edges) is selected. (C) shows the result of setting the threshold at 4, and (D) illustrates a
network with a maximum of 7 edges. In our experiments, the threshold is indeed set at 1000.

Formally, the pseudocode creating the citation cascades in chronological order is
provided in Algorithm 1.

Algorithm 1. Create citation cascade network.

Input: Pf (Focus paper).
Output: Citation cascade in chronological order.

1: PPotentialPapers ← ∅

2: PSelectedPapers ← ∅

3: Index ← 0
4: Threshould← 1000
5: Add all papers that cite to PPotentialPapers

6: while Index < 1000 and PPotentialPapers �= ∅do
7: Select paperPIndex with thee arliest citation date f rom PPotentialPaper

8: Add PIndex to PSelectedPapers

9: Remove PIndex f rom PPotentialPapers

10: Add all papers that cite PIndex to PPotentialPaper

11: Index ← Index + 1
12: end while
13: return PSelectedPapers

In Algorithm 1, start by initializing the input focus papers. Create empty sets for the
potential paper set and the selected paper set, and set the index to zero. Define a threshold
of 1000 and include all papers citing the focus paper in the potential paper set. If the index
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is below 1000 and there are papers in the potential paper set, choose the paper with the
earliest citation date, add it to the selected paper set, and remove it from the potential paper
set. Add all articles citing this paper to the potential paper set and increment the index
value by one. Finally, return the selected papers, which constitute the citation cascades.

3.4. Predictors

In this step, we calculate various metrics for each snapshot (cascade networks gener-
ated from every 10 edges increased), including the number of nodes, average clustering
coefficient, average degree, maximum closeness centrality, number of components, PageR-
ank value of the focus paper, average of PageRank values, variance of PageRank values,
and the von Neumann graph entropy. The calculation of von Neumann graph entropy is de-
tailed in a paper [49]. For each network structural metric abovementioned, time-series-like
data are generated.

There are numerous mature algorithms available for extracting features from time-
series data. Python’s tsfresh package [50] is one of them, and we extract features of
the metrics time series using it. For the time series of indicators mentioned, a total of
1602 features were extracted.

3.4.1. Topological Indicators

The formal calculations of certain topological indicators used above are explained in
this section.

Average degree:

AVD =
1
N ∑N

i=1 ki (1)

Average clustering coefficient:

ACC =
1
N ∑N

i=1 Ci (2)

Maximum closeness centrality:

MCC = CCmax
c = max

(
1

∑j �=i d(i, j)

)
(3)

where the Ci is defined as:

Ci =
2Ei

ki(ki − 1)
(4)

Number of components (NOC): the number of connected components in a network.
In the Formulas (1)–(4), Ei is the actual number of edges between the neighbors of

node (i), ki is the degree of node (i) like the number of neighbor nodes directly connected
to node (i), N is the number of nodes of the network, Ci is the clustering coefficient of node
(i), and d(i, j) denotes the shortest path between node (i) and node (j).

3.4.2. PageRank Indicator

The calculation of the PageRank value is defined by the Formula (5).

P(i) =
1− d

N
+ d∑j∈M(i)

P(j)
L(j)

(5)

In Formula (5), P(i) is the PageRank value of the node (i), d is the damping factor
(usually takes the value 0.85), N is the total number of pages in the network, M(i) is the
set of all pages pointing to page (i), P(j) is the PageRank value of page (j), and L(j) is the
number of outgoing links on page (j).

9
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3.4.3. Graph Entropy Indicator

This section introduces some detail on the calculation of the von-Neumann graph entropy.
Given a first unweighted graph G = (V, E, A), where A is the symmetric adjacency matrix.
The degree matrix is defined as D = diag(d1, . . . , dn), and its Laplacian matrix is L = D− A.
Its eigenvalues λi are called the Laplacian spectrum. Here, Hvn(G) is the von Neumann
graph entropy.

Hvn(G) = −∑n
i=1

(
λi

vol(G)
log

λi
vol(G)

)
(6)

The volume of the graph is:

vol(G) = ∑n
i=1 λi = trace(L) (7)

However, the time complexity of computing the von-Neumann graph entropy directly
is relatively high, which is O

(
n3). The approximation is necessary. It is worth noting that

Chen et al. have proposed an approximation method called FINGER [35], which reduces
the cubic complexity to a linear complexity concerning the number of nodes and edges.
The pseudocode is displayed in Algorithm 2.

Algorithm 2. Approximate Von-Neumann Graph Entropy (VNGE).

Input: Adjacency matrixA.
Output: Approximate von Neumann graph entropy Hvn.

1: A← adjacency matrix o f a graph with node number and sparsity
2: d← sum o f elements in each row o f A
3: c← 1/∑ bd
4: W ← edge weights f rom non− zero elements o f A
5: approx ← 1− c2(∑ bd2 + ∑ bW2)
6: L← UnnormalizedLaplacian(A)
7: λmax ← largest eigen value o f L
8: Hvn ← −approx× log2(λmax)
9: return Hvn

In Algorithm 2, the input is the adjacency matrix of the graph representation. The
sum of elements in each row of the adjacency matrix is calculated and stored to create
a vector. The inverse of the sum of these values is calculated to derive a constant. The
edge weights of all non-zero elements in the adjacency matrix are then extracted. Use
the extracted weights and the previously calculated vector to determine an intermediate
approximation. Then, calculate the maximum eigenvalue of unnormalized Laplacian
matrix. Finally, utilize the prior approximation and the maximum eigenvalue to compute
the approximate von-Neumann graph entropy.

3.5. Forecasting Process

Due to the large number of features generated by our method, feature selection is
required. Then, we utilize grid search to choose the top N variables and sequentially place
variables to determine the optimal variable group and prediction impact. The N ranges
from 1 to 100 with the step of 1 (i.e., 1, 2, 3, . . ., 100) and from 100 to 1600 with the step of
100 (i.e., 100, 150, . . ., 1600).

Indeed, we attempt various methods for feature selection engineering. Various meth-
ods, including the single filter method, RFE (Recursive Feature Elimination) and RFECV
(Recursive Feature Elimination with Cross-Validation) [51], the shadow search method [52],
and the filter combined with sequential modeling, are included. Finally, the used method
(filter combined with sequential modeling) is found to be optimal.

The performance is assessed through two-repetitions and five-fold cross-validation
(outer resampling), with the average ROC-AUC serving as the evaluation metric. The pre-
diction performance using various representative classification models, including Random

10
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Forest, Logistic Regression, SVM (Support Vector Machine), LDA (Linear Discriminant
Analysis), and Naive Bayes, is all considered. The best classification model is selected, and
parameter tuning is conducted.

Here, we provide some brief introductions for each model. The random forest algo-
rithm is an ensemble learning method using multiple decision trees to enhance classification
and regression accuracy by averaging their results [53]. Logistic regression is a statistical
model used for binary classification that estimates the probability of an input belonging to
a specific category. SVM is a supervised learning model that finds the optimal hyperplane
for classifying data into different categories in higher-dimensional space [54]. LDA is a
dimensionality reduction technique used for classification by finding the linear combination
of features that best separates classes. Naive Bayes is a probabilistic classifier based on
Bayes’ theorem, assuming independence between predictors, suitable for large datasets
and text classification.

3.6. Benchmark Indicators

In order to compare with the prior approaches, the static methods are selected for
comparison. As mentioned in Section 2, certain static methods have been developed in
prior studies. Here, we use the following indicators as benchmarks: The prediction process
for these benchmark indicators follows the same procedure as described in Section 3.4, but
without the need for feature selection.

(1) The static topological indicators of citation cascade networks. We select the topolog-
ical metrics, including the number of nodes, average degree, maximum closeness centrality,
number of components, and average clustering coefficient of the cascade networks, with a
number of edges set at 1000 as a benchmark.

(2) The static PageRank indicators. The PageRank-based metrics (the PageRank value
of the focus paper, average of PageRank values, and variance of PageRank values) are
benchmarks, with the number of edges at 1000.

(3) The Disruptive Index. The Disruptive Index is a widely recognized metric for
measuring disruption. The specific principles and calculation details can be found in
Section 2 and the corresponding references.

(4) The (aggregated) static method, the union of static indicators in (1), (2), and (3).
The descriptions and calculation method of indicator (3), the Disruption Index, can be

seen in Section 2.1.2 and especially in Figure 1. For Indicators (2) and (3), their descriptions
and calculation methods are provided in Sections 3.4.1–3.4.3.

4. Results

4.1. Descriptive Analysis

Figure 5 presents the trajectories of various metrics of the network as the number of edges
expands. These trajectories in breakthrough and non-breakthrough papers show significant
differences. In terms of certain metrics, including the average clustering coefficient and the
variance of PageRank value, the gap between breakthrough and non-breakthrough papers is
evident in the early stage of citation network growth, while for others, it is more pronounced
in the later stages. This highlights the importance of tracking the dynamic trajectories of these
multiple structural metrics, which offers more predictive insights than static networks.

The average time required to span a citation cascade network within 1000 edges
is depicted in Figure 6. Figure 6B illustrates the distribution of the time needed in our
empirical study, and the peak is typically less than 6 years. Figure 6A shows the relationship
between the time needed for spanning citation cascades and the papers’ publication year.
It is evident that, as time progresses, the speed of spanning cascade citations increases
significantly, with the span time dropping to about 2 years around 2010. The above analysis
shows that this network construction method allows for early prediction of breakthrough
papers. In the future, it will be earlier due to the faster growth of cascades.

11
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Figure 5. The tendency of the indicators used when the number of edges increases. Note: This graph
illustrates the “time-series” distribution of the selected structural indicators. The x-axis represents
the number of edges (increasing to the right), and the y-axis represents the magnitude of the values.
Below is an explanation of the notation. NON: the number of nodes. AVD: the average degree. NOC:
the number of components. MCC: the maximum closeness centrality. ACC: the average clustering
coefficient. VNGE: the von Neumann graph entropy. PR-FP: the PageRank value of the focus paper.
PR-MEAN: the average of PageRank values. PR-SD: the variance of PageRank values.

Figure 6. The span of time across publication years and its distribution.
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4.2. Prediction Results

We make the prediction based on the process outlined in Chapter 3. The optimal model
is random forests, and the ROC-AUC score for our method is 73.9%. And Tables 1 and 2
below display the additional prediction results using our method. Our study also demon-
strates the challenge of predicting breakthrough papers or Nobel Prize-winning papers.
For further analysis, the following section shows the performance of our method compared
to other metrics. Learning curves are also offered in Figure 7. It can be seen that, although
there is overfitting, as the sample size increases, the AUC value of the test set converges
with that of the training set.

Table 1. Confusion matrix and evaluation metrics.

Pred-Ture Pred-False

Truth-True 436 216
Truth-False 226 462

Note: The confusion matrix presented here is the sum of predictions made using the two-repeat, five-fold strategy
(10 times in total).

Table 2. Certain evaluation metrics.

Metrics ROC-AUC (%) ACCURACY (%) F1-SCORE (%) RECALL (%)

Score 73.9 67.01 66.38 66.32

Figure 7. The learning curves.

4.3. Comparisons

To emphasize the improvement of our proposed approach, we compare it with the
prior static method within the same prediction process (Section 3.5). The comparison
results (ROC curves) of the selected benchmark indicators (Section 3.6) are displayed
in Figure 8, and the detailed ROC scores are shown in Table 3. Our dynamic method
shows superior results, achieving an improvement of about 7%. This suggests that the
dynamic evolutionary-structure information from the citation cascade networks enhances
the prediction of scientific breakthroughs.
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Figure 8. The ROC curves of the benchmark indicators. Note: (A) shows the dynamic method against
the static method. The static method denotes the union of the three static methods in (B) and the
(4) benchmark in Section 3.6. (B) shows the dynamic method against each static method. “DI” denotes
the disruption index, the (3) benchmark in Section 3.6. “Topo” denotes the prediction using the basic
topological metrics of citation cascade networks, the (1) benchmark in Section 3.6. “PR” denotes
PageRank-based metrics, the (2) benchmark in Section 3.6. For presentation, the 95% confidence
interval (CI) is not displayed in the figure.

Table 3. ROC scores of benchmark indicators.

Benchmarks ROC-AUC Improvement (%)

Dynamic method 73.9% \
Static method 66.0% +7.9%

Static: DI (Disruption Index) 59.9% +14.0%
Static: TOPO (Topological indicator of cascades) 66.4% +7.5%

Static: PR (PageRank) 67.0% +6.9%
Note: The notation of the benchmark indicators can be seen in the legend of Figure 8. Improvement indicates the
degree to which our method can outperform previous indicators.

The ROC curve is located on a two-dimensional coordinate axis, where the x-axis
represents FPR (Fault Positive Rate) and the y-axis represents TPR (True Positive Rate). The
area under the ROC curve (AUC) is a common metric used to measure the performance of
classification algorithms in machine learning. The algorithm’s performance improves as
the value approaches 1.

The previous static methods achieved an overall ROC score of around 66–67%. Despite
combining indicators from various prior static methods, their effectiveness did not signifi-
cantly improve. The combining may have even slightly made the predictions less accurate,
possibly due to the covariance between these variables. Additionally, the prediction in our
study is made using the method of Min et al., yielding similar results (ROC scores between
65% and 70%).

5. Discussions and Conclusions

5.1. Main Contributions

Our main work has utilized the dynamic structural information of citation cascade
networks instead of the (prior) static methods to enhance the performance of predicting
scientific breakthroughs. Two main contributions are detailed below:
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(1) We have enhanced the static approach to the dynamic method by measuring
the dynamic structure evolution of citation cascade networks. The method has been
validated and yields an evident improvement using a landmark dataset (Nobel Prize-
winning papers).

(2) This study proposes a new method for constructing citation cascade networks to
capture the network’s dynamic information. Although citation cascade networks play a
crucial role in predicting scientific breakthroughs, the practical construction of them poses
a challenging issue. Previous construction methods have impeded the measurement of
their dynamic nature.

(3) Additionally, our method of constructing a cascade citation network (Section 4.1)
allows for earlier prediction of breakthrough papers than before. Furthermore, the growth
rate of cascade citation networks is accelerating over time, thereby reaching earlier predic-
tions in the future. It is recognized that early prediction holds special importance [55].

5.2. Implications

This study differs from previous studies by basing our predictions on citation cascade
networks’ dynamic structure information instead of the static information used in previous
studies. Our ability to achieve this change relies on the proposed construction method of
citation cascade networks. We also highlight the benefits of citation cascades as a proxy for
scientific evolution. It offers a cost-effective modeling method to capture dynamic scientific
evolution information.

At the theoretical level, we further expand relevant theories. Scientific breakthroughs
lead to significant changes in the knowledge structure, which varies across different stages
of knowledge evolution. Or, the structure of intelligence and knowledge diffusion evolves
differently over time. Intuitively (Section 4.1), we reveal the distinct information provided
by different indicators during the early and late stages of knowledge evolution. In the
early stages, indicators like the average cluster coefficient and the variance of the PageRank
values are better at differentiating breakthrough from non-breakthrough papers, while
indicators such as the average degree, the PageRank value of the focus paper, the maximum
closeness centrality, and others are more predictive in later stages.

This paper highlights the importance of understanding and predicting breakthroughs
from a dynamic perspective. As mentioned in Section 1, though scientific breakthroughs
often lead to changes in the structure of knowledge, most previous approaches have mainly
viewed this concept statically. Our study indicates that the temporal-like characteristics
of knowledge structure evolution offer valuable insights into predicting scientific break-
throughs. Thus, considering scientific breakthroughs dynamically is promising.

Despite significant efforts to improve prediction performance, identifying scientific
breakthroughs remains challenging, and prediction performance is not yet at a level ready
for practical applications. However, our method has significant potential for enhancement
and solidifies the foundation for future practical applications of breakthrough predictions.
(1) The threshold for maximum edges can be increased beyond 1000. More edges and
a bigger cascade may provide more predictive power. (2) More indicators of cascade
networks, especially the technique in complex networks, are valuable to be developed,
measuring more information that reflects breakthroughs. (3) Additionally, our method for
constructing cascaded networks ensure low computational costs in practice by controlling
the number of edges, thus avoiding the need to compute excessively large networks.

Despite promising improvements and the potential for enhancement in our method,
predicting scientific breakthroughs remains a challenging task. Our predictions, including
those from previous literature, are mainly based on a dataset with an artificially created
control group. Hence, it is more challenging (of course, and more valuable) to pinpoint the
exact moment and place of a scientific breakthrough in the extensive literature.
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5.3. Limitations and Future Directions

(1) Although we have utilized the dynamic structure information from citation cascade
networks to predict scientific breakthroughs, relying solely on structural information may
have limitations. Other-dimensional information, particularly dynamic factors, also has
the potential to predict breakthroughs. In the future, measuring the dynamic evolution of
other information is a potential direction.

(2) Citation cascade networks, while effective for modeling, may introduce additional
noise. It is acknowledged that some citations may not accurately reflect scientific knowledge.
In the future, enhancing the cascade citation networks to accurately identify scientific flows
or developing a more efficient complex network are possible improvements. For instance,
in the background, we highlight modeling solutions like main path analysis and max-min
core document identification.

(3) The opaque nature of extracting features in time series impedes our under-
standing of scientific breakthrough generations and their characterization. Understand-
ing that is helpful for developing policies that facilitate the implementation of break-
through catalysts. In the future, it is essential to design specific algorithms to understand
scientific breakthroughs.

5.4. Conclusions

Previous methods for predicting scientific breakthroughs have encountered great
challenges. Most of them have utilized many static methods, while information regarding
dynamic evolution is overlooked. We propose a dynamic method that captures the struc-
tural information of the cascade citation and achieves an improvement compared to the
prior static methods. We revise the construction method of citation cascade networks to
enable the measurement of their dynamic structural characteristics. Certain topological
indicators, PageRank values, and the von-Neumann graph entropy of a series of cascade
network snapshots are computed, forming the time-series-like predictors. The prediction
results indicate that our dynamic method offers better prediction performance. This high-
lights the validity of the dynamic perspective on scientific breakthrough predictions; in the
future, enhanced modelling on dynamic knowledge structure evolution and more complex
network indicators are promising.
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Abstract: With the increasing demand for road traffic safety assessment, global concerns about
road safety have been rising. This is particularly evident with the widespread adoption of V2X
(Vehicle-to-Everything) technology, where people are more intensively focused on how to leverage
advanced technological means to effectively address challenges in traffic safety. Through the research
of driving style recognition technology, accurate assessment of driving behavior and the provision of
personalized safety prompts and warnings have become crucial for preventing traffic accidents. This
paper proposes a risk field construction technique based on environmental data collected by in-vehicle
sensors. This paper introduces a driving style recognition algorithm utilizing risk field visualization
and mask learning technologies. The research results indicate that, compared to traditional classical
models, the improved algorithm performs excellently in terms of accuracy, stability, and robustness,
enhancing the accuracy of driving style recognition and enabling a more effective evaluation of
road safety.

Keywords: driving style recognition; driving risk field; mask learning; environmental data; safety
tips and warnings; vehicle-to-everything

MSC: 68T07

1. Introduction

With the continuous growth of urban traffic congestion and the increasing number
of vehicles, traffic accidents have become a serious societal issue. In this context, V2X
(Vehicle-to-Everything) technology, as a key component of intelligent transportation sys-
tems, offers new solutions to enhance traffic safety, playing a crucial role in improving road
safety [1]. V2X technology enables vehicles to communicate wirelessly, sharing information
such as location, speed, and direction, fostering real-time connectivity among vehicles,
and facilitating information exchange with infrastructure, pedestrians, and other traffic
participants. Despite the potential of V2X technology to enhance communication and
coordination among vehicles, preventing traffic accidents still poses challenges. One reason
is the behavioral differences among drivers, and existing technologies have not fully lever-
aged V2X data to address this issue effectively. Research on driving style recognition plays
a vital role in improving road safety assessment and preventing traffic accidents. Through
the study of driving style recognition, a more accurate assessment of a driver’s driving
habits and style can be achieved, leading to personalized safety prompts and warnings and
ultimately reducing the occurrence of traffic accidents.

Driver style recognition methods are primarily categorized into unsupervised learn-
ing, semi-supervised learning, and supervised learning. Unsupervised learning [2–6]
and semi-supervised learning [7–9] methods require a smaller amount of data but face
challenges in obtaining reliable sample features within limited data. In situations where
data are sufficiently abundant, researchers opt for supervised learning for driver style

Mathematics 2024, 12, 1363. https://doi.org/10.3390/math12091363 https://www.mdpi.com/journal/mathematics19



Mathematics 2024, 12, 1363

recognition [10–16]. This approach achieves high accuracy but demands high requirements
for both the quantity and quality of training data.

Researchers have seldom considered the variations in environmental data in the al-
gorithms for discriminating driving styles. However, it is evident that driving styles that
involve the same operations differ across different environments. With advancements in
sensor technology and the gradual proliferation of V2X (Vehicle-to-Everything) technology,
smart vehicles now acquire a more diverse and extensive set of driving data. Consequently,
there is a growing body of research related to assessing environmental conditions. The
concept of a driving risk field serves as a model for evaluating driving risks on roads.
By modeling a driving risk field, one can assess environmental risks and gather relevant
variable information about the current environmental conditions. Through real-time mon-
itoring and analysis of driving risks, this model allows for the assessment of real-time
risks [17–25] in driving environments and the planning of feasible paths [21]. It also
facilitates the prediction of potential risks under different road and traffic conditions.

In comparison to traditional machine learning methods, contrastive learning, as a
form of self-supervised learning, has gained widespread research and application in fields
such as computer vision and natural language processing. It is characterized by high data
efficiency, strong generalization capabilities, and robust resistance to interference, achieving
results that approach or even surpass the performance of supervised learning [26–28].
Mask learning, as a branch of contrastive learning, can handle more complex data features
and exhibits superior performance compared to traditional contrastive learning methods.
Currently, mask learning has demonstrated outstanding performance in the fields of image
recognition and video recognition [29,30].

This study aims to explore a new approach for comprehensively assessing driving
styles through changes in driving risk. We believe that the evaluation of driving styles
should not be solely based on characteristics observed at a single moment but should
instead delve into the trends of driving risk variations over a period of time. For instance, a
driver who transitions suddenly from a prolonged period of low-risk driving to a high-risk
state may indicate a temporary lapse of attention, reflecting a more aggressive driving
tendency. Similarly, a consistent high-risk driving state may reveal a lower sensitivity to
risk perception, manifesting as an impulsive driving pattern.

Furthermore, we recognize the pivotal role of environmental factors in driving risk
variations and have thus introduced the concept of driving risk fields to address the over-
sights in earlier research. By further refining the driving risk field model, we strive to
comprehensively consider various factors that influence driving risk, including vehicle dy-
namics, road environmental factors, and individual driver braking behavior characteristics.
This enhancement not only enriches the dataset for prediction models but also significantly
enhances the dimensionality and precision of the data.

To address the challenges of processing high-dimensional data, we have adopted a
driving style recognition model similar to the MAE architecture, which efficiently extracts
features from high-dimensional data, demonstrating significant advantages in handling
such data. Compared to traditional methods, this model exhibits more stable performance
when dealing with complex data, effectively overcoming the limitations of traditional
methods in handling high-dimensional data with decreasing performance.

In summary, this study aims to achieve accurate identification of driving styles by
improving the driving risk field model and combining advanced feature extraction and
recognition techniques, thereby providing stronger technical support for road traffic safety.

2. Method

2.1. Design of Driving Risk Field Model

The driving risk field is divided into the “Vehicle Driving Risk Field” and the “Road
Boundary Risk Field Model”. The former assesses the risks generated during the vehicle’s
travel, while the latter evaluates the risks associated with road boundaries (including solid
and broken lines).
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In the past, research on driving risk fields has exhibited several notable shortcomings.
Firstly, these studies have failed to adequately consider the braking reaction characteristics
of drivers when operating a vehicle, which is a crucial factor in real-world driving scenarios.
Secondly, some risk value functions exhibit excessively large differences over similar
distances, potentially leading to inaccurate assessments of driving risks. Additionally,
when road participants change, the computational burden of existing models often becomes
significant, compromising their efficiency in practical applications.

To address these issues, we propose utilizing the sigmoid function to optimize the
model. By incorporating the sigmoid function, we aim to more accurately capture the
braking reaction characteristics of drivers, thereby enhancing the model’s precision. Based
on this, we introduce a novel vehicle driving risk field model that incorporates the braking
reaction time. The braking reaction time, defined as the duration from when a driver detects
the need to brake to the point when their foot reaches the brake pedal, serves as a critical
metric for assessing driving safety. By comprehensively considering the braking reaction
time and other relevant factors, our model offers a more comprehensive assessment of
driving risks, providing effective support for road traffic safety.

Some studies have suggested [20] that from the perspective of physical fields, vehicles
driving on roads are subject to a virtual “force” due to the presence of driving risks.
Under the influence of this force, vehicles adjust their motion state to ensure driving safety,
which is very similar to the phenomenon of particles being affected by forces in physical
fields. Following this consideration, Tian et al. [20], drawing inspiration from the Yukawa
potential [31] for field construction, formulated the driving risk field model in the form of
an exponential function, integrating both physical attributes and kinematic states. When the
vehicle heading angle is 0°, the driving risk assessment formula constructed by Tian et al.
is shown in Formula (1).

Ei = λ1Meq−ie
λ2mjΔv

|k| · e−βa cos θ · k
|k| (1)

In this context, Ei represents the driving risk generated by object i towards its sur-
roundings, vi denotes the speed magnitude of object i, λ1, λ2, and β are coefficients to
be determined, θ is the angle between the distance vector from the vehicle’s centroid to
a certain point around the vehicle and the positive direction of the x-axis, Δv represents
the speed difference, a is the acceleration of the vehicle, meq−i is the equivalent mass of
object i, mj is the mass of object j, k is the distance vector from the vehicle’s centroid to a
point around the vehicle, and |k| is the scalar distance from the vehicle’s centroid to that
specific point.

The definition of equivalent mass is crucial for assessing the potential hazards encoun-
tered during vehicle operation. It takes into account both the mass and speed of a vehicle
to quantify the risk it poses to other road users. Put simply, the greater the mass and speed
of a vehicle, the larger its equivalent mass becomes, thus increasing the potential driving
risk. This viewpoint is strongly supported by multiple studies, including the findings of the
World Bank and the World Health Organization’s report on “Road Safety Countermeasures
in Developing Countries” published in 2004. The report points out that in developing
countries, there is a significant correlation between the number of traffic accidents, the
number of injured individuals, and the number of fatalities, and the average road speed,
exhibiting a relationship of the second, third, and fourth power, respectively.

Building on this theoretical foundation, Wu and their colleagues [17,32] conducted fur-
ther research on the impact of speed on driving risk, utilizing a polynomial incorporating
speed power function terms to represent this effect. By leveraging accident data from high-
ways, they fitted relevant parameters and derived an empirical formula (Formula (2)) for
vehicle equivalent mass. By substituting this empirical formula into the calculation formula
for vehicle equivalent mass, the original formula (Formula (1)) was transformed into a new
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formula (Formula (3)). This transformation not only enhances the accuracy of risk assess-
ments but also provides a more scientific and effective tool for our subsequent research.

Meq−i = 1.566miv6.687
i × 10−14 + 0.3345 (2)

Ei =
(

1.566miv6.687
i × 10−14 + 0.3345

)
λ1e

λ2mjΔv

|k| · e−βa cos θ · k
|k| (3)

Let A = e
λ2mjΔv

|k| and B = e−βa cos θ . The formula is then transformed into Formula (4).

Ei = λ1meq−i A · B · k
|k| (4)

The function A serves to assess the level of risk based on the Time-to-Collision (TTC)
model [20], while the function B is designed to evaluate the risk distribution under different
angles. According to Formula (1), it is evident that function A is an exponential function,
indicating that, when Δv remains constant, the rate of change is also an exponential function.
Over the domain [0, +inf], the derivative of this function is consistently less than 0, but the
absolute value of its rate of change gradually decreases.

However, scientific studies indicate that drivers have a reaction time when encounter-
ing danger. During this braking reaction time, drivers are in an unconscious state and are
unable to actively perform braking, steering, or other operations. Therefore, during this
period, the risk should be higher, and the rate of change in risk should be smaller. After
exceeding the reaction time, it can be assumed that drivers have the ability and initiate a
response, at which point the rate of change in risk should reach its maximum and gradually
decrease. Therefore, to align with the operational characteristics of drivers, and based on
relevant research and experiments, the sigmoid function is chosen as the core function for
part A. The formula for function A is then modified to meet driver behavior, as shown in
Formula (5).

A = c1 × sigmoid
(
−c2

(
|k| − creaction v− v2

2amax

))
(5)

where c1, c2, and creaction are constants. c1 is a threshold constant, a positive constant
such that the threshold of A is constrained within the range (0, c1); c2 is another positive
constant controlling the horizontal shape of the sigmoid function, with larger values of c2
leading to a quicker saturation of A; creaction is a positive constant representing the driver’s
braking reaction time. |k| is the distance from the experimental point to the current vehicle’s
center of mass; v is the speed of the vehicle itself; and amax is the maximum acceleration
of the vehicle. Ultimately, the Vehicle Driving Risk Field Model is obtained, as shown in
Formula (6).

Ei = λ1meq−ic1 × sigmoid
(
−c2

(
|k| − creaction v− v2

2amax

))
eβa cos θ · k

|k| (6)

The Road Boundary Risk Field refers to a collection of potential hazards or adverse
factors associated with the road edge. It describes various risks that may occur along
the road boundary, such as traffic accidents, conflicts between pedestrians and vehicles,
visibility issues, and more. It assists decision makers in understanding potential risk factors,
optimizing road design and traffic planning, and implementing preventive measures to
reduce the occurrence of traffic accidents.

Based on research on the Road Boundary Risk Field [17,20], the formula for the road
risk field used is depicted in Formula (7).

E = c3e
−s2

2γ 2 (7)

22



Mathematics 2024, 12, 1363

where c3 is a positive constant used to control the maximum field strength; s is the perpen-
dicular distance from a point to the lane line; and γ is a positive constant used to control
the decay rate of the field strength from the boundary line to the center, with a larger γ
resulting in slower decay.

2.2. Driving Style Recognition Based on Mask Learning Technology

The masked autoencoder (MAE) [29] is a self-supervised learning method used in
computer vision. It is based on the Vision Transformer (ViT) architecture, known for its
strong scalability and simplicity. The MAE method trains by randomly masking parts of
input images and reconstructing the missing pixels. Today, MAE is also applied to process
temporal images, with VideoMAE [30] being an extension that views images as individuals
within temporal data, making it suitable for handling video data. Similarly, each frame of
a risk field can be considered as an image, and the temporal data of the risk field can be
likened to video data, enabling relevant feature extraction.

In this research, we have developed a driving style recognition process grounded
in the MAE philosophy with the goal of effectively classifying driving risk styles. The
classification aims to categorize driving styles into “Aggressive”, “Moderate”, and “Con-
servative”. This procedure is principally divided into two phases: the pre-training phase
and the downstream training phase. Figure 1 illustrates the training process and network
architecture.
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Figure 1. The overall training process and structure of masked autoencoder.

As indicated on the left side of Figure 1, in the pre-training phase, we initially apply
data augmentation techniques such as rotation and blurring to the input images to enhance
the model’s generalization abilities. Once augmented, we mask certain regions of the image
to replicate the visual system’s handling of incomplete information. Then, segments from
the unmasked image are extracted and processed through the backbone network. We chose
the Vit-Base as our backbone network, which employs the self-attention mechanism from
Transformers, particularly suited for image-centric tasks. The processed image segments
are then passed on to the Header network, a densely connected neural network consisting
of multiple dense layers. Each dense layer features neurons tightly interconnected, with
each neuron connecting to all neurons from the preceding layer. The Header network
is tasked with predicting the content of the masked portions of the image. During this
process, the mean square error (MSE) loss between the prediction and the actual image is
computed to guide the model’s self-optimization in future iterations. Additionally, in our
research on driving style recognition, we recognize that the data augmentation approach
differs from that of traditional image recognition. Traditional image recognition mainly
focuses on detecting the presence of relevant semantics within the image and emphasizes
the extraction of image contour features; on the other hand, driving style recognition is
less sensitive to the extraction of image contour features but more attentive to the variation
differences between adjacent risk field intensity images and certain statistical parameters.
Therefore, data augmentation strategies from traditional image recognition cannot be
entirely applicable, and we opt for only those data augmentation strategies that marginally
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impact semantics. The final determined data augmentation strategy is the application of
random rotation and blurring to temporal images. Rotation itself does not affect semantics,
so each data augmentation instance includes a random rotation, and the range of random
rotation is between −10 degrees and 10 degrees; blurring is randomly applied with a
minimal probability and range during the data augmentation process.

As shown on the right side of Figure 1, we have selected the ViT-Base architecture
as our backbone network due to its exemplary performance in processing visual infor-
mation. The “Embedded Patch” module divides the input image into 16x16 patches and
adds positional encoding to these feature vectors. Afterward, these patches are trans-
formed into a series of lower-dimensional vectors through a linear layer to be fed into
the Transformer model. Subsequently, a series of self-attention layers process each vec-
tor within the sequence, with each layer capable of establishing intricate dependencies
between different patches. The entire network also employs residual connections and layer
normalization to refine the process, which aids in preventing gradient vanishing issues in
deep networks while also expediting the training procedure. This entire process, through
the cohesion of pre-training and downstream training, fortifies the model’s capability in
identifying driving risks. This comprehensive training methodology not only enhances
the model’s efficiency in recognizing complex driving risk images but also, through an
in-depth combination of self-supervised and supervised learning, is set to improve driving
style recognition performance.

3. Experiment

3.1. Experimental Design

The experiment utilized a dataset constructed by X. Liu et al. [13]. This dataset was
acquired through Liu’s self-built vehicle data collection platform, capturing natural driving
trajectories such as straight driving and lane changes on roads. The data were collected on
highways and urban roads in Shanghai, covering various regions of the city and amassing
over 1000 km of travel data. The dataset includes diverse road conditions and spans
different time periods throughout the day.

For the experiment, representative left lane change and right lane change data were
selected from the dataset. Figure 2 illustrates the trajectory routes of lane change data. In
these sets, each line of a different color represents a different lane change trajectory. It is
notable that the starting point of each lane change trajectory is located in the very center
of the lane, while the end point is the last trajectory point where the vehicle stops after
completing the lane change. In establishing the coordinate system, we used the starting
point of each lane change trajectory as the origin of coordinates. The forward direction of
the lane is defined as the positive direction of the x-axis, and rotating the positive direction
of the x-axis counterclockwise by 90 degrees yields the positive direction of the y-axis. Such
a definition constructs a global Cartesian coordinate system, enabling us to describe more
accurately the position and movement of the vehicles on the road. Additionally, in the data
collection experiment, the width of each lane was 4.4 m.

Figure 2. Visualization of lane change data.
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Table 1 illustrates the basic attributes of the dataset. In this context, the lon_speed
field represents longitudinal speed, and the lat_speed field represents lateral speed, both
measured in meters per second. The lon_acc field corresponds to longitudinal acceleration,
the lat_acc field corresponds to lateral acceleration, and both are measured in meters per
second squared. The Angleheadingrate field represents the yaw rate.

Table 1. Basic properties of the dataset.

lon_speed lat_speed lon_acc lat_acc Angleheadingrate

mean 9.610189 1.153941 −0.189604 −0.001717 0.050463

std 1.233309 0.436482 0.535301 0.588758 3.525656

min 6.495732 −0.099031 −4.649437 −2.236996 −9.725

25% 8.669245 0.786684 −0.531937 −0.498131 −3.004

50% 9.476567 1.168756 −0.222171 −0.048021 −0.018

75% 10.347681 1.496506 0.132453 0.543476 3.317

max 13.376584 2.453871 3.579057 1.606629 9.001

The experiment will utilize the aforementioned dataset and, after further preprocess-
ing, generate a new dataset for driver style recognition. We will compare the use of different
data extraction modules and prediction networks, examining the differences across various
models.

3.1.1. Data Preprocessing

The original dataset has a sampling frequency of 100 Hz, recording data every 0.01 s.
Following previous research [13], this experiment uses data collected every 0.3 s as input
to discern driving styles. For every 30 raw data entries, 30 images of driving risk fields
are generated. The data preprocessing workflow is as shown in Figure 3. Subsequently,
the images of driving risk fields are fed into the model for driving style discrimination.
Figure 4 illustrates the variation pattern of field strength when both the road boundary risk
field and vehicle risk field coexist under different parameters. The field strength generated
by both types of fields is vector-based. Directly adding these vectors does not assess the
overall level of risk but only the combined field strength of the experimental object in
multiple fields. Therefore, a vector modulus superposition method is employed to assess
the risk level at a specific point.

Generation of driving
risk field images

Time series variables with a
number of variables 30 times
that of the original single data

30 frame driving risk field image

Figure 3. Data preprocessing process.
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The speed is 1m/s, the speed 
direction is the positive x-axis 
direction, and the acceleration 
is 0m/s2

The speed is 5m/s, the speed 
direction is the positive x-axis 
direction, and the acceleration 
is 0m/s2

The speed is 5m/s, the speed 
direction is the positive x-axis 
direction, the acceleration is 
3m/s2, and the direction is the 
positive x-axis direction

The speed is 5m/s, the speed 
direction is in the direction of the 
bisector of the x-axis positive 
direction and the y-axis positive 
direction angle, and the 
acceleration is 0m/s2

Figure 4. Field strength images of road boundary risk field and vehicle risk field coexisting under
different parameters.

After obtaining the driving risk images, the dataset is labeled for driving style. Re-
ferring to the labeling method proposed by X. Liu et al. [13], relevant statistical properties
are computed. A Gaussian Mixture Model is used for pre-labeling, with a cluster count of
3. The three driving styles are categorized as aggressive, moderate, and conservative. We
posit that data points with a confidence level greater than 90% have a distinct driving style
classification. Conversely, other data points exhibit some classification ambiguity, yet the
labels themselves are accurate. Therefore, data points with confidence levels below 90% can
be utilized to assess robustness. The experiment selects data points with confidence levels
exceeding 90% for each driving style as their labels. For these data points, 20% are used as
the training set, 80% as the validation set, and the remaining points with confidence levels
below 90% are designated as the test set. The experiment will conduct relevant tests on
this dataset.

3.1.2. Comparative Experiment

We will prove the effectiveness of the models under the MAE framework through
comparative experiments, and the model comparison framework is illustrated in Figure 5.
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Data
preprocessing

Driving risk
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Figure 5. Model comparison framework.

Three models are designed for comparison: MAE-Pretrain, MAE-Untrained (ViT), and
LSTM. The ViT model and LSTM model each have advantages in image feature extraction
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and temporal feature extraction, making them classic benchmark models. Additionally,
since MAE, as a training framework, shares the same backbone network and ViT-base
network structure, the MAE-Untrained model is equivalent to the ViT-base model. Com-
paring MAE-Pretrain and MAE-Untrained is essentially comparing the effectiveness of
the pre-trained structure of MAE. Long Short-Term Memory (LSTM) [33] is a variant
of recurrent neural networks (RNNs) and is a classic model in extracting temporal data
features. Moreover, X. Liu et al. proposed using LSTM for driver style recognition [13],
demonstrating the effectiveness of LSTM in extracting features from temporal variables.

3.2. Experimental Parameters

As part of the upstream task training, the MAE-Pretrain model employs a masking
rate of 70% to enhance the model’s generalization capabilities. The Decoder network
architecture utilizes the TransformerEncoder structure, repeated eight times, with an em-
bed_dim of 512. Correspondingly, the Encoder network architecture is also based on the
TransformerEncoder, repeated twelve times, and has an embed_dim set to 768. In the
upstream task, the header section comprises a single linear layer with 768 neurons, whose
primary function is to transform the output of the Decoder network into an image, fulfilling
the output requirements of the target task.

When transitioning to the downstream task, the backbone network directly adopts the
model obtained from the upstream task training to ensure the effectiveness of knowledge
transfer. The head network consists of two LinearLayers, with the number of neurons in the
first and second layers being 768 and 3, respectively. This design facilitates the extraction
and refinement of feature information. The loss function chosen is the cross-entropy
function, suitable for classification tasks.

The MAE-Untrained model, on the other hand, has not undergone the pre-training
phase. Therefore, its network structure and loss function remain consistent with the MAE-
Pretrain model in downstream tasks, maintaining fairness in comparisons. Additionally, in
the context of LSTM models, a two-layer stacked LSTM model with a hidden layer feature
count of 768 is employed, and the cross-entropy function is selected as the loss function.

The experiment was conducted using the Ubuntu 20.04 system and the NVIDIA
A4000 graphics card for training. During the pre-training phase of MAE-Pretrain, the
AdamW optimizer was used, employing a cosine annealing schedule for learning rate
adjustment, and a total of 200 epochs were trained. For both the MAE-Pretrain and MAE-
Untrained downstream tasks, the AdamW optimizer was utilized, employing a cosine
annealing with restarts scheduler for learning rate adjustment. Full fine-tuning was applied
as the training method for these downstream tasks, with each task trained for a total of
200 epochs. Additionally, an LSTM model was trained separately using the SGD optimizer,
also adopting a cosine annealing with restarts scheduler for learning rate adjustment, and
underwent 200 epochs of training.

3.3. Result Analysis

The processing and analysis of experimental data demonstrate the accuracy, stability,
and robustness of the MAE-based model. In the experiments assessing generalization under
different conditions, both models exhibit excellent performance, accurately discerning
driving styles.

Figure 6 illustrates the accuracy and loss variations during the training process of
different models under two operating conditions. Figure 6a,c depict the data changes
during left lane change conditions, while Figure 6b,d show the data changes during right
lane change conditions. Whether in left lane change or right lane change conditions, the
accuracy of the MAE-Pretrain model is consistently higher than that of the MAE-Untrained
and LSTM models at any given moment. Based on the statistical data presented in Table 2
and an integrated analysis of the statistical characteristics of left-turn and right-turn condi-
tions, it can be observed that the accuracy characteristics are noteworthy. The MAE-Pretrain
model has an average accuracy of around 97%, with peak accuracy consistently exceeding
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98%. In comparison to the other two classical models, its accuracy is significantly improved.
Moreover, the accuracy curves of the MAE-Pretrain model and the LSTM model fluctuate
more smoothly in both conditions, with the MAE-Pretrain model exhibiting greater sta-
bility than the LSTM model. In contrast, the fluctuation of the MAE-Untrained model is
pronounced. Combining the relevant statistical data from Tables 2 and 3, it is evident that
the range and variance of the MAE-Pretrain model are significantly smaller than the other
two models. Additionally, its average accuracy surpasses the other two models, indicating
better training stability.
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Figure 6. Accuracy and loss changes during downstream task training under left and right lane
changing conditions. (a) Accuracy variation graphs of the three models under left lane change
conditions, (b) Accuracy variation graphs of the three models under right lane change conditions,
(c) Loss variation graphs of the three models under left lane change conditions, (d) Loss variation
graphs of the three models under right lane change conditions.
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Table 2. Statistical data on accuracy during downstream task training process.

MAE ViT LSTM MAE ViT LSTM

count 200 200 200 count 200 200 200

mean 97.64517 56.54148 88.47549 mean 96.58314 63.51776 81.86565

std 1.33474 25.01102 4.08483 std 2.04889 24.80087 3.34323

min 89.54546 23.08712 52.67578 min 86.17064 22.00397 55.38651

25% 97.36269 32.08334 87.33887 25% 96.14584 39.7123 80.29914

50% 97.95455 49.89584 89.24805 50% 97.10318 70.1885 82.56579

75% 98.4375 82.06439 90.60059 75% 97.89683 88.69544 83.8456

max 98.97727 95.17046 93.20313 max 98.47223 92.93651 86.51316

Left Right

Table 3. Statistical data on losses during downstream task training.

MAE ViT LSTM MAE ViT LSTM

count 200 200 200 count 200 200 200

mean 0.02443 0.09204 0.26841 mean 0.04367 0.18668 0.39453

std 0.05108 0.05989 0.10822 std 0.07612 0.08009 0.11427

min 1.00E-06 0.0219 0.14414 min 0.00001 0.07958 0.24852

25% 0.00269 0.0219 0.20878 25% 0.00373 0.1404 0.31935

50% 0.01306 0.07677 0.25021 50% 0.02319 0.17134 0.37981

75% 0.02795 0.11113 0.29671 75% 0.0526 0.2116 0.437

max 0.61776 0.471 1.07257 max 0.82601 0.63153 1.07428

Left Right

To further evaluate the effectiveness of the experiments, testing was conducted on
additional data with confidence levels below 90%, i.e., the trained models were applied to a
new dataset for testing. Table 4 illustrates the difference in accuracy between the validation
set and the test set under different methods.

Table 4. The difference in accuracy between the validation set and the test set under different
methods.

MAE ViT LSTM MAE ViT LSTM

Val-acc 98.97727 95.17046 93.20313 Val-acc 98.47223 92.93651 86.51316

Test-acc 90.2789 84.9561 78.7145 Test-acc 88.9945 81.5197 80.27

Left Right

The MAE model achieved the highest accuracy on all three sets, especially on the test
set, which had a significantly larger data quantity than the training and validation sets.
This implies that, in scenarios with a small amount of high-confidence data as input, the
robustness of the MAE-based driving style recognition model is significantly stronger than
that of other models.

In conclusion, by taking into account Figure 6 and Tables 2–4, we can deduce the
advantages of the MAE model in comparison to other models, as outlined in Table 5.
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Table 5. Performance improvement comparison of MAE model relative to ViT and LSTM models.

ViT LSTM

Accuracy (Training Set) At least 3% improvement At least 5% improvement

Stability Significantly improved Improved

Accuracy (Test Set) At least 5% improvement At least 8% improvement

Regarding the superior accuracy, stability, and robustness of the MAE-Pretrain model
in comparison, we have the following hypotheses: The effectiveness of the MAE-Pretrain
model in accuracy, stability, and robustness stems from its superior feature extraction
performance in the upstream task. The reason for this superiority lies in the high similarity
between the pre-training task under the mask mode and the downstream task in driving
style recognition.

The MAE-Pretrain and MAE-Untrained models have identical network structures,
with the only difference being their involvement in upstream task training, indicating the
crucial role of the upstream task in improving accuracy. Generally, in the full fine-tune
training mode, when the similarity between the upstream and downstream tasks is high,
i.e., when the two tasks require similar features, the effect is better. Based on this experience,
it can indirectly suggest that the reconstruction features extracted from the upstream tasks
of the two methods in this paper, i.e., driving risk field visualization and MAE temporal
image reconstruction, are closely related and effective for driving style discrimination.

From another perspective, both image-based models achieved higher maximum accu-
racy than the LSTM model, indicating that after visualizing the driving risk field, features
can be better extracted through image-based methods.

As the features extracted from the upstream task have high similarity to the target
features required by the downstream task, the MAE-Pretrain model experiences minor
changes to the backbone network during downstream task training, leading to relatively
small variations in loss and accuracy. In contrast, the MAE-Untrained model, without
pre-training, needs continuous learning and adjustment to find the extremum of the loss
function, resulting in larger fluctuations.

Furthermore, in discussing the architecture of this paper, Figure 1A illustrates the
upstream task. Within this task, the Encoder module plays a crucial role in extracting the
inherent features from the sequential image series. The quality of this feature extraction
directly impacts the capabilities of the downstream task. On the other hand, the Decoder
module utilizes a relatively simple feature reconstruction network to reconstruct image
information. Figure 1B depicts the downstream task, which relies heavily on the Encoder
module from the upstream task. If the Encoder module is able to extract features effectively,
it will significantly enhance the training speed, accuracy, and overall performance of the
downstream task.

4. Conclusions

In this research, we present a cutting-edge methodology for risk evaluation and
driving style identification, designed to navigate the complexities of driving environments.
Utilizing a method that constructs driving risk field images based on braking reaction
times, and coupled with an autoencoder-based driving style recognition algorithm that
leverages masked learning for data feature enhancement, our approach not only offers a
fresh perspective in visualizing risk fields but also fully exploits the potential of masked
learning for data augmentation, refining the risk discrimination process.

Regarding performance evaluation, the model demonstrates at least a 3% increase
in accuracy over the ViT and at least a 5% increase over LSTM networks on the training
dataset. In terms of stability, it shows marked improvements compared to both ViT and
LSTM. Most notably, on the testing dataset, the model’s accuracy outperforms ViT by at
least 5% and LSTM by at least 8%.
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In summary, the model proposed in this paper not only introduces innovation in
the construction of driving risk field imagery but also exhibits significant advantages in
data feature extraction. Empirical evidence confirms its superior performance in accuracy,
stability, and robustness, promising to offer an effective technological solution for driving
safety evaluation and personalized driving style recognition.

The main contributions of this paper are as follows:

1. An innovative method for constructing a driving risk field based on braking reaction
time is proposed. This method breaks through the limitations of existing research
by more comprehensively considering the actual reaction characteristics of drivers
during the driving process, thus improving the accuracy and reliability of driving risk
assessment.

2. The concept of converting the driving risk field into image representation is creatively
proposed, and the idea of masked autoencoder is utilized for feature extraction. This
innovation provides a more effective means of feature extraction for the pre-trainer,
thereby contributing to the enhancement of subsequent driving style recognition
performance.

3. A multi-stage training approach is adopted, which effectively reduces the influence of
subjective factors on transfer tasks while addressing the common clustering bias issues
in traditional unsupervised clustering algorithms. The application of this method
improves accuracy and stability, providing more reliable technical support for the
practical application of driving risk style recognition.

4. In response to the problem of decreasing effectiveness of traditional time-series algo-
rithms in handling high-dimensional data, this paper innovatively adopts algorithms
from the field of computer vision to address this issue, providing a new perspective
for driving style recognition.

Further research:
We will enrich the data augmentation techniques used in the upstream task stage, con-

sidering factors such as the driver’s position in the main driving seat within the vehicle. We
will explore generating similar paths and evaluate driving style recognition by comparing
the driving styles of generated paths with the original paths.
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Abstract: Navigation aids play a crucial role in guiding ship navigation and marking safe water areas.
Therefore, ensuring the accurate and efficient recognition of a navigation aid’s state is critical for
maritime safety. To address the issue of sparse features in navigation aid data, this paper proposes
an approach that involves three distinct processes: the extension of rank entropy space, the fusion
of multi-domain features, and the extraction of hidden features (EFE). Based on these processes,
this paper introduces a new LSTM model termed EFE-LSTM. Specifically, in the feature extension
module, we introduce a rank entropy operator for space extension. This method effectively captures
uncertainty in data distribution and the interrelationships among features. The feature fusion
module introduces new features in the time domain, frequency domain, and time–frequency domain,
capturing the dynamic features of signals across multiple dimensions. Finally, in the feature extraction
module, we employ the BiLSTM model to capture the hidden abstract features of navigational signals,
enabling the model to more effectively differentiate between various navigation aids states. Extensive
experimental results on four real-world navigation aid datasets indicate that the proposed model
outperforms other benchmark algorithms, achieving the highest accuracy among all state recognition
models at 92.32%.

Keywords: navigation aids; state recognition; extended space; multi-domain features; hidden feature
extraction; maritime safety

MSC: 68T01

1. Introduction

Navigation aids are specialized floating devices used extensively in maritime naviga-
tion to assist with navigation and waterway positioning. Their primary functions include
indicating the position, direction, and boundaries of navigable channels as well as provid-
ing warnings of obstacles or hazardous areas in the water, such as reefs, shoals, or other
navigation impediments. These devices are typically equipped with distinctive identifying
features, such as unique shapes, colors, patterns, and markers, to ensure recognition under
various visual conditions. Moreover, certain aids to navigation are equipped with lights,
reflectors, or sound signals to enhance visibility and identifiability in conditions of reduced
visibility. As integral components of maritime traffic, navigation aids play an indispens-
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able role in maintaining navigation safety, fostering effective waterway management, and
ensuring the smooth and efficient flow of maritime traffic [1].

In the traditional maintenance and management of navigation aids, the predominant
approach has long been reliant on periodic manual inspections. However, due to the
scattered distribution of navigation aids, this inspection process is both time-consuming
and labor-intensive. With the rapid development of communication technology, various
countries have adopted the approach of installing sensors on traditional navigation aids [2].
By regularly collecting sensor data and conducting continuous monitoring, the subjectivity
bias associated with manual monitoring has been successfully mitigated, and the accuracy
of monitoring has been significantly enhanced. The recognition of navigation aid states
is typically achieved by collecting sensor data related to the aids which encompass infor-
mation on their positions, movements, and lighting apparatuses [3]. Specific models are
then employed to accurately discern whether the aids are operating normally or exhibiting
anomalies. Considering that navigation aid devices are commonly deployed in complex
and dynamic natural environments such as rivers and oceans, acquiring key environmental
features like water flow velocity, water level, maritime traffic volume, sunlight intensity,
and river surface wind force [3] poses considerable challenges. Currently, the feature data
collected by navigation aid sensors mainly include latitude, longitude, current, voltage,
and offset distance. The magnitude of these datasets, compounded by the absence or
indistinctness of pivotal information, introduces complexities in the effective interpretation
and analysis of data. Consequently, the development of models capable of efficiently and
accurately recognizing states of navigation aid in the presence of sparse features remains
an unresolved challenge for researchers in this field.

Given the limited research on navigation aids, which primarily focuses on aspects
such as the development of navigation aids [4–6], risk assessments of navigation aids [7,8],
and the impact of navigation aids on maritime transportation [9,10], we have opted to
conduct a review of the literature on status recognition in fields such as transportation.
Although the research subjects of these papers are not navigation aids, we believe that the
findings are applicable to a certain extent and can be generalized to the field of navigation
aids to some degree. Alharbi et al. [11] proposed an integrated model that combines long
short-term memory (LSTM) and convolutional neural networks (CNNs) for the precise
classification of electrocardiogram signals. The objective is to enhance the efficiency of
cardiovascular disease prevention and medical care. Mustaqeem et al. [12] proposed
a hierarchical convolutional LSTM network to enhance the accuracy of speech emotion
recognition. By employing deep feature extraction and optimizing using the center loss
function, the model achieved high recognition rates on prominent datasets. Chen et al. [13]
addressed the dependency on fault state monitoring data in fault detection by modifying
bidirectional long short-term memory (BiLSTM). The modification involved excluding
the input corresponding to a predicted outputted data point. Dong et al. [14] proposed a
mixed-truth-value CNN framework, TKRNet, which effectively addresses the counting
challenges in navigation aid state recognition through coarse-to-fine density maps and
an adaptive Top-k relation module. An et al. [15], based on the principles of calculus
and in conjunction with LSTM networks and a novel loss function, significantly enhanced
the accuracy and efficiency of state recognition under time-varying operating conditions.
Alotaibi et al. [16] developed a model that integrates LSTM with attention mechanisms to
enhance the accuracy of electromyographic signal recognition. By effectively incorporating
the advantages of time series analysis and focused attention, the experiment yielded a high
average accuracy of 91.5%. These scholarly works collectively underscore the superior
efficacy of LSTM models in the domain of state recognition, thereby providing a compelling
foundation for this study to further investigate and extend upon the capabilities of LSTM-
based methodologies.

Wang et al. [17] introduced an innovative CNN-LSTM architecture for equipment
health monitoring, demonstrating the feasibility of state recognition in raw datasets with-
out the necessity for extensive feature engineering. Building upon this foundation, our
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research extends these methodologies by enhancing feature learning to improve recognition
accuracy, thereby addressing gaps not yet fully explored [17]. Zhao et al. [18] utilized a
BiLSTM network to analyze data from smartphone sensors, such as accelerometers and
gyroscopes, circumventing the limitations of sole reliance on GPS data. However, given
the complex environmental conditions of buoys, which preclude the acquisition of diverse
sensor data, our study employs advanced feature processing techniques to enhance feature
representation, thereby improving state recognition accuracy under conditions of limited
feature availability. Mekruksavanich et al. [19] demonstrated the capability of deep learning
frameworks to process complex time series data and extract meaningful features, inspiring
our application of deep learning, particularly LSTM techniques, to extract intricate features
from limited sensor data for more precise state recognition. Our work not only inherits
methodologies from these studies but also innovatively expands upon them to meet the
unique requirements of buoy state recognition, aiming to facilitate more accurate state
recognition under conditions of feature sparsity through feature extension. However, when
confronted with specific sparse datasets, relying solely on raw data may not accurately
identify the working state of a device.

Some researchers attempt to improve state recognition accuracy by integrating data
from sensors such as smartphones. Wang et al. [20] significantly enhanced the accuracy
and efficiency of transportation mode detection through the multimodal sensors of smart-
phones. Wang et al. [21] presented a traffic mode detection method based on low-power
sensors in smartphones and LSTM. The utilization of these sensors resulted in the successful
achievement of a 96.9% recognition rate for traffic modes. Drosouli et al. [22] successfully
elevated the accuracy of traffic mode detection by applying an optimized LSTM model to
multimodal sensor data from smartphones. Wang et al. [20] further leveraged data from
smartphone sensors to construct a neural network model, significantly improving the accu-
racy of identifying different traffic states. Shi et al. [23] constructed a gait recognition LSTM
network based on multimodal wearable inertial sensor data with features automatically
extracted. Nevertheless, the methods proposed in these studies still face limitations in
obtaining data, and the correlation with device states is not sufficiently prominent.

Some studies focus on processing raw features to obtain a more comprehensive dataset.
In [24], the researchers propose an Extended Space Forest (ESF) method for decision tree
construction, enhancing the performance of ensemble algorithms by introducing original
features and their random combinations into the training set. Dhibi et al. [25] innovatively
combined multiple learning models and kernel principal component analysis for feature
extraction and selection, significantly enhancing the accuracy and decision efficiency of
diagnosis. Wen et al. [3] enhanced the accuracy of navigation aids status recognition by
generating additional features through the use of Extended Space Forests and integrating
temporal domain feature fusion to capture the dynamic changes and temporal correlations
of data, achieving a maximum precision of 84.17%. Sun et al. [26] proposed an end-to-
end intelligent bearing-fault-diagnosis method that combines 1D convolutional neural
networks (1DCNNs) and LSTM networks, eliminating the need for manual feature extrac-
tion. This approach avoids errors caused by reliance on expert experience and incomplete
information, achieving an average fault identification accuracy of 99.95%. Malik et al. [27]
carried out training by utilizing an extended feature space generated through an analysis
of the original feature space, incorporating the original features, supervised randomized
features, and unsupervised randomized features. Xu et al. [28] employed a combination
of multiscale rotation reconstruction and subspace-enhanced features in a mixed space-
enhancement process, effectively enhancing the method’s performance through various
feature combination strategies. Wang et al. [29] refined features by comparing the overall
contributions of each feature to the construction of classification regression trees in a cross-
validation framework. This process aids the model in better capturing latent relationships
within the data. Nonetheless, acquiring data from sensors and obtaining deep features
containing more information from a limited set of features still present a certain level of
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complexity. Thus, the research methods employed in the literature mentioned above have
certain limitations.

This research paper elaborates on a new LSTM-based model that is based on rank
entropy extended space, along with multi-domain feature fusion and hidden feature
extraction techniques, to achieve highly accurate classifications of navigation aid states. The
core innovation of this model lies in the introduction of a space-extending operator called
“rank entropy”. This operator not only provides a different framework for quantifying and
comparing the uncertainty of various features in the dataset but also facilitates an insightful
understanding of complex data structures. Additionally, the model designs a unique multi-
domain feature fusion method which captures and analyzes the inter-dependencies of
signals in the time and frequency domains. This module comprehensively and precisely
reflects dynamic changes in navigation aid states. Finally, through the application of
hidden feature extraction techniques, the model further explores and extracts abstract
representations from the data, enhancing the recognition and understanding of multi-level
features related to navigation aid states. The integration of these three different modules
allows the model to fully leverage and enrich the features of the dataset, resulting in
considerable accuracy in navigation aid state recognition.

The main contributions of this paper are as follows:

• This study represents the first introduction of a new feature-processing framework in
the field of maritime safety, with a specific focus on navigation aids under complex
conditions. By employing advanced feature-processing techniques, our approach
accurately captures relationships among features and comprehensively considers the
impact of multidimensional characteristics, leading to a more precise identification of
the operational status of navigation aids.

• We propose three independent feature-processing modules. The feature expansion
module utilizes the rank entropy operator to capture associations between features.
The feature fusion module integrates features from the time domain, frequency do-
main, and time–frequency domain, capturing the correlation of signals in both the
time and frequency domains, providing a more comprehensive reflection of the dy-
namic evolution of navigation aids states. The feature extraction module, through the
BiLSTM model, better captures the abstract representation of navigation aids signals.

• We conducted a comprehensive comparison of our model with deep learning network
models such as LSTM, BiLSTM, 1DCNN, and LSTM-CNN. Through experimental
validation on four actual navigation aids datasets collected by the Guangzhou Mar-
itime Safety Administration, the results indicate that our proposed model significantly
surpasses current leading methods in terms of performance. This provides strong
support for research and practical applications in the field of maritime navigation.

The remaining sections of this research paper are organized as follows: Section 2
provides a detailed exposition of the three feature-processing methods proposed in this
paper. Section 3 details the experimental results, and Section 4 summarizes the study and
discusses its limitations.

2. Materials and Methods

This chapter provides a detailed introduction to the proposed EFE-LSTM model
framework, depicted in Figure 1.

The model consists of three main modules: a feature extension module, a feature fu-
sion module, and a feature extraction module. Firstly, in the feature extension module, the
rank entropy operator is introduced, integrating the concept of entropy into the extended
space algorithm. This operator effectively captures the uncertainty of data distribution and
complex relationships between features, greatly enhancing the model’s ability to handle
and understand high-dimensional, complex data. Next, in the feature fusion module,
we conduct in-depth feature fusion from three different dimensions: the time domain,
frequency domain, and time–frequency domain. The core advantage of this stage lies in
the ability to comprehensively consider the relevant characteristics of signals in the time
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and frequency domains, comprehensively revealing dynamic changes in the navigation
state. This multidimensional fusion not only improves the accuracy of recognizing the
time patterns and spectral features of navigation signals but also significantly enhances the
uniqueness and expressiveness of the model’s features. In the feature extraction module,
we employ the BiLSTM model to extract hidden features. The bidirectional modeling
capability of the BiLSTM model demonstrates outstanding performance in capturing the
spatiotemporal correlations of time series data. Through this step, the model can more ac-
curately grasp the abstract features of navigation signals, thereby effectively distinguishing
subtle differences between various navigation aid states. Finally, after finely processing
the original features through the three aforementioned modules, the LSTM base model is
employed for navigation state recognition.

Figure 1. The framework of the EFE-LSTM model.

2.1. Feature Extension Module

The Extended Space Forest (ESF) [24] method marks a progressive strategy in building
decision trees, incorporating an innovative training tactic that employs both the existing
features and those created via random combinations. This approach of feature amalga-
mation not only broadens the diversity of data portrayal but also elevates data collection
quality. The ESF algorithm exhibits exceptional performance in classification predictions,
surpassing traditional approaches, particularly in situations with datasets containing a
limited number of features.

The core concept of this module rests on the generation of new features through the
application of a series of simple yet effective feature-generating operators (such as sum, diff,
multiply, and tanh_multiply) on randomly paired sets of original features. The detailed
procedure for this method is outlined in Table 1, where feaX and feaY denote any two
features from the original dataset. To eliminate bias arising from predetermined feature
ordering, the algorithm initially randomizes the arrangement of all features, subsequently
selecting pairs from this randomized set for operation to create new features. With n
original features, the theoretical maximum number of feature pairs that can be generated is
n ∗ (n− 1)/2, which could potentially lead to duplicate features. Consequently, this study
opts to generate only n/2 new features at a time, and through a process repeated twice,
it effectively generates a total of n new features. The process flow of the ESF algorithm is
illustrated in Figure 2.
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Entropy plays a pivotal role in information theory, in which it serves as a metric for
quantifying the uncertainty and information content associated with random variables.
Within the domain of state recognition, the field of feature engineering strives to identify
features that exhibit enhanced discriminative capabilities across distinct categories. The
incorporation of entropy values is primarily geared toward cultivating a profound compre-
hension of the information interdependencies among features, thereby increasing feature
distinctiveness and consequently optimizing model performance.

Table 1. Feature-generating operators.

Operator Name Equation

Sum NewFea = f eaX + f eaY
Diff NewFea = f eaX− f eaY

Multiply NewFea = f eaX× f eaY
Tanh_multiply NewFea = tanh( f eaX× f eaY)

Figure 2. ESF algorithm flowchart.

To begin, we calculate the entropy value for each feature and normalize it to serve
as a coefficient for the original feature. This step is designed to introduce information
interplay among features, leveraging the entropy value to precisely evaluate each feature’s
significance. Features with high entropy, indicative of a wealth of information, are accorded
great weight, while features with low entropy, indicating a dearth of information, receive
a correspondingly reduced weight. This augmentation significantly bolsters the model’s
capacity to acquire data, especially in complex datasets in which the interrelationship
between features assumes heightened significance. The process for generating new features
is as follows:

NewFea = w1 · x1 + w2 · x2. (1)

Here, x1 and x2 represent any two original features, and w1 and w2 represent the
entropy values of the corresponding x1 and x2.

To broaden our analytical scope, we develop a method for determining the relative
ranking of each sample’s features and design a new operator named rank entropy. Its
fundamental principle unfolds as follows: initially, we employ an exponential function
to map each feature value of every sample to the realm of probability, ensuring that data
points with lower rankings receive higher probabilities. Specifically, for the ith sample
(i = 1, 2, 3, . . . , m), the probability mapping process for the jth (j = 1, 2, 3, . . . , n) feature
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value can be elucidated through the ensuing equation, where xij represent the jth feature
value of the ith sample., and rij denotes the rank of xij within the feature values, ranging
from 1 to n. The parameter λ is a modifiable factor that regulates the steepness of the
probability distribution. Through the computation of Equation (2), we derive the probability
distribution p(xij) among the features.

p(xij) = e−λ·rij ·xij . (2)

Subsequently, we substitute these probability values into Equation (3) to calculate the
feature entropy H(xi), where xi denotes the ith sample vector. By calculating the entropy
value of each sample for the jth feature, a new feature f eaN1 = [H(x1), H(x2), ..., H(xm)]T

can be obtained.

H(xi) = −
n

∑
j=1

p(xij) log(p(xij)). (3)

In comparison to traditional extended space operators such as sum, diff, etc., this
operator enables us to calculate the rank entropy value between any two features. This rank
entropy value can be perceived as a new feature, serving to more accurately capture the
interrelations between features, thereby enhancing model performance and the precision of
data analysis.

2.2. Feature Fusion Module

This module focuses on introducing the time domain, frequency domain, and time–
frequency domain features adopted in this study, along with their corresponding computa-
tional formulas.

(1) Time domain features: The temporal features employed in this study include the
following: the mean value Ft1, variance Ft2, mean square value Ft3, root mean square
value Ft4, maximum value Ft5, minimum value Ft6, peak value Ft7, peak-to-peak
value Ft8, and root amplitude Ft9. Additionally, dimensionless indicators include
skewness Ft10, kurtosis Ft11, a waveform indicator Ft12, a peak indicator Ft13, an
impulse indicator Ft14, a clearance indicator Ft15, a skewness indicator Ft16, and a
kurtosis indicator Ft17 [30].

(2) Frequency domain features: The frequency domain describes the relationship between
the frequency and amplitude of a signal, usually with frequency as the independent
variable and amplitude as the dependent variable. By employing a Fourier transform,
the time-domain signal is mapped to the frequency domain. Subsequently, based
on the frequency distribution characteristics and trends of the signal, the navigation
state or fault conditions of the beacon can be determined. Frequency domain analyses
include methods such as spectrum analysis, energy spectrum analysis, and envelope
analysis. A basic introduction to these methods is provided below.

(1) Spectral analysis: A spectrum analysis usually provides more intuitive feature
information than time-domain waveforms. For a time-domain signal x(t), its
spectrum X( f ) can be obtained through the Fourier transform:

X( f ) =
∫ ∞

−∞
x(t)e−j2π f tdt. (4)

Here, X( f ) is the frequency domain representation, f is the frequency, and x(t)
is the original time-domain signal.

(2) Energy spectral analysis: The energy spectrum is the magnitude squared of the
signal’s Fourier transform, representing the distribution of energy across dif-
ferent frequencies. The energy spectrum E( f ) of a signal x(t) can be expressed
as follows:

E( f ) = |X( f )|2. (5)

where |X( f )| is the magnitude of the Fourier transform X( f ) of the signal x(t).
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(3) Envelope analysis: An envelope analysis extracts low-frequency signals from
high-frequency signals. From a time-domain perspective, it is equivalent
to extracting the envelope trajectory of a time-domain waveform. First, the
analytic signal xa(t) of the signal x(t) can be obtained via the Hilbert transform:

xa(t) = x(t) + jx̂(t). (6)

where x̂(t) is the Hilbert transform of x(t). The envelope E(t) can then be
determined by calculating the magnitude of the analytic signal:

E(t) = |xa(t)| =
√

x(t)2 + x̂(t)2. (7)

(3) Time–frequency domain features: Time–frequency analysis methods provide a more
comprehensive description of the relationship between frequency, energy, and time
for non-stationary signals. Classical methods for analyzing non-stationary signals
include the short-time Fourier transform (STFT) [31] and wavelet decomposition [32],
both of which serve as important tools in the analysis of non-stationary signals. These
methods can effectively illustrate variations in the frequency and energy of a signal at
different time points. The STFT is suited for signals whose frequency content changes
gradually over time, whereas wavelet decomposition is more appropriate for signals
with sharp transitions or localized features.

(1) Short-time Fourier transform: The STFT operates by sliding a window across
the signal and performing a Fourier transform on the signal within this window.
This approach reveals the frequency content of the signal at various time
instances. The formula for STFT is expressed as follows:

STFT{x(t)}(τ, ω) =
∫

x(t)w(t− τ)e−jωtdt. (8)

Here, x(t) represents the original signal, w(t− τ) denotes the window function
centered at τ, and ω is the frequency variable.

(2) Wavelet decomposition: Wavelet decomposition involves analyzing the signal
using a series of wavelet functions derived by scaling and translating a mother
wavelet. This method provides insights into the signal’s characteristics at
different scales (frequencies) and locations (times). The wavelet decomposition
is formulated as follows:

Wx(a, b) =
∫

x(t)
1√
a

ψ

(
t− b

a

)
dt. (9)

In this equation, x(t) is the original signal, ψ(t) is the mother wavelet function,
a is the scaling parameter, and b is the translation parameter.

Multi-domain feature fusion is a data-processing process aimed at enhancing the
feature representation of time series datasets. The key steps of this process are as follows:

(a) For each feature column, we employ a time window with a length of n to slide over
each sampling data point, including the current sampling point and its adjacent two
sampling points.

(b) Calculate specific time domain or frequency domain features, such as the standard
deviation, spectral analysis short-time Fourier transform, etc.

(c) Finally, add the calculated new features to the original feature columns to extend the
feature set.

This process enables us to capture local features of time series data while integrating
time domain, frequency domain, and time–frequency domain information, thereby improv-
ing the diversity and information density of data features. The process of multi-domain
feature fusion is depicted in Figure 3.
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Figure 3. The process of the feature fusion module.

2.3. Feature Extraction Module

This paper constructs a BiLSTM architecture, as depicted in Figure 4. Utilizing it as a
feature converter, the input navigation data are mapped to a new feature space to more
effectively express the temporal dependencies within the data. The network comprises an
input layer, two LSTM layers, two fully connected layers (FCs), and an output layer.

The input layer is responsible for receiving input sequences Xi−1, Xi, Xi+1, . . . in which
each X represents a different time step of the input feature vector. The first LSTM layer
processes the input sequence in the forward direction, with each unit containing a Constant
Error Carousel (CEC) for storing and forgetting information as the memory component and
a hidden state h representing the network’s short-term memory. The second LSTM layer,
similar to the first, processes the sequence in the reverse direction, enabling the network
to utilize information from future time steps during training [33]. The subsequent two
fully connected layers (FCs) are dense layers, with each neuron connected to all neurons
in the preceding layer, facilitating the nonlinear transformation of learned features. The
ReLU activation function applied after each FC layer introduces nonlinearity, assisting
the network in learning complex data patterns. The output layer provides the final out-
puts Yi−1, Yi, Yi+1, . . ., corresponding to the predictions of the input sequence after being
processed by the network.

Finally, the hidden features extracted from the first fully connected layer are labeled
as f eaN3. The deep temporal features learned by the BiLSTM reveal critical information
about the navigation state, such as variations, periodicities, or anomalous behaviors in the
navigation signals, which are not directly evident in the original features. Combining these
hidden features with the original features provides a rich feature set for classifier training,
enhancing the model’s recognition accuracy and robustness.

Figure 4. The architectural diagram of the feature extraction network.
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2.4. LSTM

The long short-term memory (LSTM) neural network, a specialized variant of recur-
rent neural networks, demonstrates outstanding performance in sequence modeling and
processing, rendering it a crucial algorithm in the realm of deep learning. In recent years,
significant progress has been made in LSTM research, particularly in the domain of state
recognition [34–37]. Conventional recurrent neural networks are plagued by issues such as
gradient vanishing and exploding, rendering them unsuitable for effective long-sequence
modeling. In contrast, LSTM networks incorporate temporal memory units, enabling
the adept assimilation of dependencies across varying temporal scales within time series
data. Consequently, LSTM exhibits notable efficacy in handling and forecasting events
characterized by intervals and delays in time series data. Within the LSTM hidden layer,
the computational process of an individual neuron encompasses updating cell states and
calculating output values. Internally, each neuron is equipped with three gating functions:
the forget gate, input gate, and output gate. These gating functions judiciously regulate
input values, memory states, and output values. The structural configuration of a neuron
is delineated in Figure 5, with the mathematical formulations for the forget gate, input gate,
and output gate denoted, respectively.

Figure 5. The hidden layer structure of LSTM.

ft = σ
(

Wf ht−1 + Wf xt + b f

)
. (10)

it = σ(Wiht−1 + Wixt + bi). (11)

ot = σ(Woht−1 + Woxt + bo). (12)

In these equations, ht−1 represents the hidden state from the previous time step, and
sigma denotes the sigmoid function. ft, it, and ot denote the computed results of the
forget gate, input gate, and output gate states, respectively. Wf , Wi, and Wo are the weight
matrices corresponding to the forget gate, input gate, and output gate, respectively. b f , bi,
and bo represent the bias terms associated with the forget gate, input gate, and output gate.
The final output of the LSTM is jointly determined by the output gate and the cell state.

C̃t represents the candidate value vector, and the product of the input value and the
candidate value vector is utilized to update the cell state. The computational process is
delineated as follows. Here, Wc represents the weight matrix of the input unit state, bc is
the bias term associated with the input unit state, and tanh denotes the activation function.
The forget gate regulates the extent to which information is discarded from the current cell
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state. ot represents the output value of the neuron, and ht signifies the hidden state at the
current time step.

C̃t = tanh(Wcht−1 + Wcxt + bc). (13)

Ct = ftCt−1 + iC̃t. (14)

ht = ot tanh(Ct). (15)

f (x) =
1

1 + e−x . (16)

f (x) = tanh(x). (17)

2.5. Hyperparameter Optimization

The Adam optimizer was utilized in this study to minimize the cross-entropy loss
function, with a learning rate set to 0.001. To alleviate overfitting and expedite model
convergence, dropout and batch normalization techniques were applied [38–40]. The
dropout rate was set to 0.3, and the batch size was set to 100. Detailed architecture
specifications of the LSTM model can be found in Table 2.

Table 2. LSTM model summary

Layer (Type) Output Shape Param

lstm_1 (LSTM) (None, 256) 268,288
dense_3 (Dense)) (None, 256) 65,792

activation_3 (Activation) (None, 256) 0
dropout_2 (Dropout) (None, 256) 0

batch_normalization_2 (Batch Normalization) (None, 256) 1024
dense_4 (Dense) (None, 64) 16,448

activation_4 (Activation) (None, 64) 0
dropout_3 (Dropout) (None, 64) 0

batch_normalization_3 (Batch Normalization) (None, 64) 256
dense_5 (Dense) (None, 2) 130

activation_5 (Activation) (None, 2) 0

3. Data Source Description and Analysis of Results

This section aims to validate the effectiveness of the algorithm proposed in this paper
through comprehensive experiments. Firstly, we conducted an experimental analysis
using four different datasets from the Guangzhou Maritime Bureau. We comprehensively
compared and evaluated the navigation aid state recognition results of our proposed EFE-
LSTM algorithm combined with a classic LSTM algorithm [41] and an LSTM model with
three modules. Subsequently, to verify the stability and reliability of the experimental
results, we compared our EFE-LSTM algorithm with other algorithms such as BiLSTM,
1DCNN and LSTM_CNN. To mitigate the impact of random factors on the experimental
results, we conducted five repetitions of the experiments and recorded the average results.

3.1. Data Description and Preprocessing

Ensuring diversity in datasets is crucial when evaluating the performance of the
navigation aid state recognition model. The data employed in this study originate from
the historical records of four navigation buoys managed by the Guangzhou Maritime
Bureau. It’s pertinent to note that within the context of this study, the term “navigation
aids” refers explicitly to buoys. These datasets encompass various features of the buoys,
including longitude, latitude, voltage, current, and offset distance. Specifically, Figure 6
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illustrates the geographical coordinates of the four buoys, namely, Beihai Port Buoy No.
19 (Beihai No. 19), Huizhou Port Buoy No. 5 (Huizhou No. 5), Houjiang Waterway Buoy
No. 3 (Houjiang No. 3), and Guang’ao Port Area Buoy No. 1 (Guang’ao No. 1), with
coordinates as follows: 109°5′36.48′ ′ N, 21°29′54.45′ ′ E; 114°38′39.87′ ′ N, 22°36′52.49′ ′ E;
116°57′31.23′ ′ N, 23°28′12.92′ ′ E; and 116°46′8.87′ ′ N, 23°9′52.56′ ′ E. A detailed descrip-
tion of each dataset is provided in Table 3. The diversity and richness of these datasets
hold significant implications for assessing the performance of the navigation buoy state
recognition model.

In order to guarantee the model’s robustness and accuracy, this paper employs a range
of meticulous data preprocessing techniques. Using historical record table data for Beihai
No. 19 as a case study, the dataset spans from 9 September 2019 to 11 July 2023. A portion
of the data is displayed in Table 4.

Firstly, we conducted rigorous data cleaning to eliminate samples with abnormal
values or errors, which is crucial for reducing interference factors in the dataset. Secondly,
when dealing with missing data, this paper adopted a mean imputation strategy to maintain
data integrity and availability as much as possible. Next, to enhance the stability of model
training and accelerate the convergence speed, we normalized the dataset. This step
involved mapping different feature data into a standardized numerical range, effectively
reducing biases caused by varying feature scales during the model training process. The
normalization formula is presented below:

x′ = x− xmin

xmax − xmin
(18)

Here, x represents the original data, x′ represents the normalized data, and xmin and
xmax represent the minimum and maximum values within the feature vector, respectively.

Figure 6. Schematic diagram of the position of the light buoy.
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Table 3. The description of each dataset.

Dataset ID Dataset Name Sample Quantity Feature Quantity

1 Beihai No. 19 26,727 5
2 Huizhou No. 5 5152 5
3 Houjiang No. 3 4891 5
4 Guang’ao No. 1 17,016 5

Table 4. Partial data of Yangjiang Port navigation aid dataset.

Acquisition Time Latitude Longitude Voltage Current Offset Distance

9 September 2019 15:04:36 21.48142333 109.08951500 12.3 0 9.7579337793
9 September 2019 15:30:43 21.48151500 109.47328333 12.3 0 8.4548264142
9 September 2019 17:30:46 21.48174833 109.08964500 12.3 0 10.062118750

... ... ... ... ... ...
11 July 2023 13:38:13 21.49850000 109.09360500 13.700 0 13.305813355
11 July 2023 13:48:59 21.49850000 109.09360500 13.700 0.35 9.8824060802
11 July 2023 14:00:47 21.49850500 109.09360500 13.700 0.36 9.6478582663

3.2. Model Evaluation Metrics

When it comes to identifying the state of a navigation aid, there is a significant
imbalance in sample categories. If we only use accuracy as the sole evaluation criterion,
models that tend to classify unknown samples as majority classes (normal labels) will be
considered to have better performance. To avoid this issue, we chose to use several other
evaluation criteria, including accuracy, precision, recall, and F1 score, when measuring the
performance of the model. The F1 score is a calculation definition that takes into account
both precision and recall, providing us with a more comprehensive measure of the model’s
performance [42].

Accuracy =
TP + TN

TP + FP + TN + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 = 2× Precision× Recall
Precision + Recall

(22)

3.3. Assessment Results
3.3.1. Experimental Comparison of Extended Space Operators

In a paper by Amasyali, M.F. et al. [24], the concept of extended space was introduced
for the first time. However, although traditional extension methods provided a larger
feature space for data, they failed to fully exploit the information within the original
features. To address this issue, our research innovatively introduces the concept of entropy
and proposes a novel rank entropy for feature extraction. This rank entropy not only
considers the distribution characteristics of the data but also comprehensively captures the
complexity and uncertainty of features within the framework of information theory. The
experimental results, as presented in Table 5, validate the effectiveness and superiority of
our method in feature extraction.
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Table 5. Comparison of performance among different extended space operators.

Operator Mean Accuracy Mean Recall Mean Precision Mean F1

/ 60.53% 74.87% 60.53% 53.59%
Sum 61.03% 71.86% 61.02% 55.39%
Diff 63.10% 74.44% 63.09% 58.22%

Multiply 62.65% 74.10% 62.65% 57.59%
Tanh_multiply 62.99% 73.89% 62.97% 58.31%

Entropy 62.06% 73.31% 62.05% 56.80%
Rank entropy (Proposed) 71.63% 78.66% 71.62% 69.68%

Note: Bold numbers represent the best performance among each evaluation metric. Under-
lined numbers indicate the second-best performance.

In Table 5, “/” denotes direct model training using the original dataset, while “sum”,
“diff”, “multiply”, and “tanh_multiply” represent traditional extended space operators;
“entropy” signifies the direct introduction of entropy as a coefficient, and “rank entropy”
is the ranking entropy proposed in this paper. All results in the table represent outcomes
averaged across the four datasets. The optimal results are highlighted in bold, while the
second-best results are underscored.

As illustrated in Table 5, upon the introduction of the extended space operators, an
overall improvement in the model’s performance was observed. Among the traditional
extended space operators, the “diff” operator exhibited the best performance across four
evaluation metrics. Specifically, compared to the direct use of the original dataset, the “diff”
operator significantly improved both the average accuracy and average precision by 2.57%
and 2.56%, respectively. In terms of the average F1 score, the improvement reached 4.63%
when using the “diff” operator compared to the original features. Despite a slight decrease
of 0.43% in the average recall rate, considering all four metrics together, the use of the
“diff” operator for extended space still shows significant advantages. This indicates that
traditional extended space operators effectively enhance the overall performance of the
model while maintaining balance.

Furthermore, the direct introduction of the concept of entropy does not lead to a signif-
icant performance improvement. Although the “entropy” operator exhibits improvements
across all metrics compared to the original model, the improvement is relatively modest. In
this context, the proposed “rank entropy” operator stands out. Compared to the traditional
extended space operator “diff”, “rank entropy” achieves a significant enhancement in all
evaluation metrics. Specifically, relative to “diff”, “rank entropy” improves the average
accuracy, recall, precision, and F1 score by approximately 8.53%, 4.22%, 8.53%, and 11.46%,
respectively. This indicates that the “rank entropy” operator successfully introduces a
more effective feature extraction mechanism, significantly improving the model’s ability to
identify navigation aid states. All subsequent experiments in the following text are based
on the proposed “rank entropy” operator introduced in this paper.

3.3.2. Select Multi-Domain Features

Through the multi-domain feature fusion method proposed in this paper, the original
dataset’s 5 features were extended to 260. An analysis of the features revealed inconsistent
correlations between different features and relatively high similarity among some feature
values. A PCA was employed for dimensionality reduction, allowing for the elimination of
insignificant principal components while retaining maximal data variance. According to
the analysis results, the cumulative variance of the first 30 principal components reached
90%, with the remaining components contributing insignificantly to the total variance.
Consequently, analyzing these principal components is sufficient for achieving a dimen-
sionality reduction, ensuring the preservation of essential data information. The specific
retention states of feature vectors are delineated in Table 6. Following the PCA-based
dimensionality reduction, the overall relationships within the dataset are preserved, critical

47



Mathematics 2024, 12, 1048

data information is retained, and a substantial reduction in computational load is achieved
during the feature extraction process.

Table 6. Preserved features.

Domain Reserved Features

Time domain

root amplitude
variance

skewness indicator
kurtosis indicator

Frequency domain spectral analysis

Time–frequency domain wavelet decomposition

3.3.3. Comparison with Other Feature Extraction Models

In this study, we designed and compared multiple deep-learning models to extract
effective hidden features from navigation aid state data. Specifically, we developed four dif-
ferent model architectures: the LSTM model [43], BiLSTM model [44], 1DCNN model [45],
and LSTM-CNN model [46], each comprising two respective feature extraction layers and
two fully connected layers. All models use the output of the first fully connected layer
as the extracted hidden features. The “/” in Table 7 represents direct utilization of raw
features without extraction.

As is evident from Table 7, BiLSTM demonstrates significant advantages over other
models in multiple key performance indicators. Specifically, BiLSTM achieves an accuracy
of 68.35% and an F1 score of 65.51%, reflecting its outstanding performance in overall
prediction accuracy and true positive identification. Moreover, BiLSTM exhibits impressive
performance in recall and precision, reaching 74.85% and 68.35%, respectively, highlighting
its efficient performance in true positive identification and prediction accuracy. These data
unequivocally indicate the exceptional performance of BiLSTM in the complex task of
extracting features from time-series data.

Table 7. Comparison with other feature extraction models.

Model Mean Accuracy Mean Recall Mean Precision Mean F1

/ 60.53% 74.87% 60.53% 53.59%
LSTM 62.60% 73.45% 62.60% 57.02%

1DCNN 66.86% 74.48% 66.87% 63.15%
LSTM_CNN 67.10% 73.87% 67.11% 63.97%

BiLSTM 68.35% 74.85% 68.35% 65.51%

Note: Bold numbers represent the best performance among each evaluation metric.

3.3.4. Comparison of Performance among Different Modules

Next, a detailed comparative analysis of the performance of the standard LSTM, rank
entropy LSTM (RE-LSTM), multi-domain feature fusion LSTM (MD-LSTM), and hidden
feature extraction LSTM (HF-LSTM) models and the LSTM model incorporating rank
entropy extension, multi-domain feature fusion, and hidden feature extraction (EFE-LSTM)
was conducted across various datasets, as shown in Figure 7.
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Figure 7. Comparison of classification accuracies of five models.

Firstly, the introduction of rank entropy results in increases in accuracy for LSTM on
the BeiHai and GuangAo datasets by approximately 0.13 and 0.07, respectively, compared
to the standard LSTM. This highlights its effectiveness in capturing the importance of
sequence elements, emphasizing its crucial role in enhancing the model’s understanding
of inherent relationships within the data. Secondly, introducing the multi-domain feature
fusion module provides a noticeable improvement in model performance. On the BeiHai,
HuiZhou, and GuangAo datasets, TF-LSTM shows an accuracy increase of approximately
0.4 to 0.5 relative to the standard LSTM. This suggests that by fusing multi-domain features,
the model can more comprehensively capture changes in the temporal dimension, enhanc-
ing its adaptability in the context of complex and variable data backgrounds. Thirdly, the
introduction of the hidden feature extraction module leads to a slight increase in accuracy
for LSTM on the BeiHai and GuangAo datasets relative to the standard LSTM, with an
improvement of about 0.2 to 0.3. On the HuiZhou dataset, the improvement for HF-LSTM
is more pronounced at around 0.2. This demonstrates that the hidden feature extraction
module has a significant positive effect on capturing abstract features within the data.

Finally, the EFE-LSTM model, integrating the rank entropy, multi-domain feature
fusion, and hidden feature extraction modules, demonstrates outstanding performance
across all datasets. The EFE-LSTM model achieves an accuracy increase of approximately
0.4 on the BeiHai dataset relative to the standard LSTM, while the improvements on
the HuiZhou and GuangAo datasets are more significant, ranging from 0.4 to 0.5. This
further validates that by integrating different feature fusion modules, our model can more
comprehensively and accurately capture key features in multidimensional time data. This
provides an effective and comprehensive modeling approach for multidimensional time
data classification tasks, as demonstrated by experimental validation. Even without relying
on a complex network structure, the proposed method achieves highly accurate navigation
state recognition, highlighting the robust performance and practical value of this approach.

3.3.5. Comparison of Performance among Different Models

Finally, this paper provides a comprehensive comparison of different models in the
navigation aid state recognition task, as depicted in Table 8. Compared to 1DCNN, EFE-
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LSTM demonstrates more stable and significant improvements in accuracy. Across various
datasets, EFE-LSTM’s accuracy increases by approximately 0.12 to 0.28 relative to 1DCNN.
In comparison to LSTM-CNN, EFE-LSTM exhibits a more noticeable improvement in
accuracy. Across multiple datasets, EFE-LSTM’s accuracy increases by about 0.05 to 0.16
compared to LSTM-CNN. When compared to BiLSTM, EFE-LSTM consistently shows
higher accuracy across multiple datasets, with an improvement ranging from 0.28 to 0.41.
Relative to TCN, EFE-LSTM also achieves higher accuracy, with an improvement ranging
from 0.16 to 0.27.

In summary, EFE-LSTM outperforms models such as 1DCNN, LSTM-CNN, BiLSTM,
and TCN in multidimensional time data classification tasks. Its performance improvement
is not only remarkable across various datasets but also demonstrates significant advantages
in capturing time series information and handling complex associations in comparisons
with different models.

Table 8. Performance metrics for different methods on four datasets.

Beihai No. 19

Method Confusion Matrix
Mean

Accuracy
Mean

Precision
Mean
Recall

Mean
F1

961.8 48.4
0.6511 0.7505 0.6507 0.6134LSTM 656.6 353.6

907.8 102.4
0.6602 0.7124 0.6606 0.6352BiLSTM 584.2 426

947.2 63
0.7821 0.8125 0.7821 0.77671DCNN 377.2 633

971.8 38.4
0.7614 0.8119 0.7614 0.7514LSTM-CNN 443.6 566.6

1004.2 6
0.9922 0.9921 0.9922 0.9922EFE-LSTM 9.8 1000.4

Huizhou No. 5

Method Confusion Matrix
Mean

Accuracy
Mean

Precision
Mean
Recall

Mean
F1

185 14
0.7010 0.7547 0.7008 0.6841LSTM 105 94

164.8 34.2
0.7020 0.7173 0.7022 0.6969BiLSTM 84.4 114.6

180.6 18.4
0.7231 0.7584 0.7233 0.71331DCNN 91.8 107.2

181.2 17.8
0.7085 0.7497 0.7087 0.6959LSTM-CNN 98.2 100.8

189.4 9.6
0.9191 0.9212 0.9191 0.9189EFE-LSTM 22.6 176.4

Houjiang No. 3

Method Confusion Matrix
Mean

Accuracy
Mean

Precision
Mean
Recall

Mean
F1

175.4 8.8
0.5994 0.7013 0.5996 0.5418LSTM 138.8 45.4

177.2 7
0.5874 0.7001 0.5875 0.5199BiLSTM 145 39.2

173.6 10.6
0.5993 0.6890 0.5995 0.54561DCNN 137 47.2

171.6 12.6
0.5988 0.6788 0.5995 0.5456LSTM-CNN 135.2 49

166 18.2
0.8334 0.8404 0.8339 0.8325EFE-LSTM 43.2 141

50



Mathematics 2024, 12, 1048

Table 8. Cont.

Guang’ao No. 1

Method Confusion Matrix
Mean

Accuracy
Mean

Precision
Mean
Recall

Mean
F1

598.4 21.2
0.5734 0.6913 0.5734 0.4956LSTM 507.4 112.2

584.2 35.4
0.5689 0.6636 0.5699 0.4978BiLSTM 498.8 120.8

577.6 42
0.6067 0.6876 0.6074 0.55991DCNN 445.4 174.2

598.2 21.4
0.5778 0.6947 0.5778 0.5030LSTM-CNN 501.8 117.8

588.4 31.2
0.9385 0.9387 0.9387 0.9385EFE-LSTM 45 574.6

Note: The gray background in the confusion matrix cells highlights true positives and true negatives.

4. Conclusions

This paper introduces the EFE-LSTM model, which achieves significant progress in the
recognition of navigation beacon states through the integration of entropy space extension,
multi-domain feature fusion, and hidden feature extraction. Its primary advantage lies in
extending the feature space through rank entropy, allowing for a more nuanced understand-
ing of complex signal patterns by capturing uncertainty in data distribution. Additionally,
the model integrates time and frequency domain features, providing a multidimensional
and comprehensive representation of the data, which is crucial for accurately capturing
the dynamic evolution of navigation beacon states. Finally, extracting hidden features
from the data to capture abstract representations of beacon signals further enhances the
modeling capability for navigation beacon states. Compared to traditional models, the
proposed EFE-LSTM model achieved average accuracy rates of 99.22%, 91.91%, 83.34%,
and 93.85% on four datasets, respectively. This represents an improvement of over 20% in
accuracy compared to the best-performing model in traditional models for navigational
beacon state recognition, highlighting its robustness in handling complex multidimensional
temporal data.

Future research should focus on enhancing the real-time performance of the model and
further optimizing computational efficiency to ensure that the model maintains excellent
performance when processing large datasets. Additionally, exploring a variety of feature
extension methods to enhance the model’s generalizability will be an important research
direction. Moreover, constructing more complex deep learning models to delve deeper into
the intrinsic connections among data could also improve the accuracy of status recognition.
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Abstract: Mega sports events generate significant media coverage and have a considerable economic
impact on the host cities. Organizing such events is a complex task that requires extensive planning.
The success of these events hinges on the attendees’ satisfaction. Therefore, accurately predicting the
number of fans from each country is essential for the organizers to optimize planning and ensure a
positive experience. This study aims to introduce a new application for machine learning in order to
accurately predict the number of attendees. The model is developed using attendance data from the
FIFA World Cup (FWC) Russia 2018 to forecast the FWC Qatar 2022 attendance. Stochastic gradient
descent (SGD) was found to be the top-performing algorithm, achieving an R2 metric of 0.633 in
an Auto-Sklearn experiment that considered a total of 2523 models. After a thorough analysis of
the result, it was found that team qualification has the highest impact on attendance. Other factors
such as distance, number of expatriates in the host country, and socio-geopolitical factors have a
considerable influence on visitor counts. Although the model produces good results, with ML it is
always recommended to have more data inputs. Therefore, using previous tournament data has the
potential to increase the accuracy of the results.

Keywords: mega sports events; FIFA World Cup; machine learning; attendee prediction; stochastic
gradient descent

MSC: 68T07

1. Introduction

Mega sports events bring together the world’s top athletes to compete in international
competitions and represent their countries at the highest level of sports. Examples of such
events include the Olympic Games and the FIFA World Cup (FWC). These events receive
significant media coverage and can bring economic benefits and enhance the host country’s
global profile [1]. However, hosting a mega-sport is a challenging undertaking that requires
significant planning, resources, and investment [2]. The success of these events is often
determined by the number of fans who attend and their satisfaction level [3]. Therefore,
accurately predicting the number of fans expected to attend from each country is crucial
for the host nation. This can help optimize the planning process and ensure a positive
experience for both fans and players.

Over the years, attendance at FWC tournaments has steadily increased. In this regard,
from 1930 to 1950, average FWC attendance ranged from fewer than 10,000 to around
25,000 [4]. By the 1970s and 1980s, average attendance had increased from around 40,000 to
50,000 and reached an all-time high of almost 60,000 in the 1990s and early 2000s [4]. Overall,
total attendance has grown dramatically, from under 500,000 in 1930 to over 2 million at the
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World Cup held in Russia in 2018 and Qatar in 2022. The rising number of spectators is due
in large part to the growth of the global economy and the rise of the middle class in many
countries, making it affordable for more people to attend these events [5]. Additionally,
improvements in transportation and communication technology have made it easier for
people to travel and follow their teams [5]. Despite the COVID-19 pandemic fears, the 2022
World Cup in Qatar saw a relatively high attendance, with 3,404,252 fans [6].

Ref. [7] highlights that planning an FWC event usually involves identifying a suit-
able location and facilities to host the event, securing funding and managing the budget,
coordinating transportation, housing, and other logistics for athletes, officials, and fans,
and ensuring the safety and security of all participants and attendees. For example, the
planning process for the 2018 FWC in Russia first took into consideration the expected
numbers of fans from different countries [8]. The Russian government then collaborated
with local and international transportation providers to ensure that fans from all over the
world could easily and safely travel to and from the tournament venues.

Additionally, Russia secured enough hotel rooms and other types of accommodations
to host all fans [8]. Furthermore, the local organizing committee provided fans with
multilingual support and information to assist them in navigating the tournament and
the host city. They also made certain that a wide range of food and beverage options
were available to meet the diverse dietary needs and preferences of fans from different
cultures [8]. Overall, the 2018 FWC provided a positive and memorable experience for all
participants and attendees, regardless of their cultural backgrounds [9]. This is attributable
to good planning for the expected number of fans from all over the world. However, there
is still room for improvement in fan prediction models, which is what this study aims
to address.

In recent years, the significance of big data and predictive analytics has soared [10].
Organizations now handle vast volumes of data due to the proliferation of digital devices
and the increased availability of big data. Predictive analytics, a subset of data analytics,
involves using historical data, machine learning algorithms, and statistical models to predict
future events or outcomes [11]. Widely applied across industries, predictive analytics drives
data-driven decision-making to improve business outcomes [11]. By employing prediction
models, organizations effectively utilize predictive analytics to inform their decisions.

On the other hand, prediction models use historical data to forecast events. Trained
on historical data comprising inputs and outputs, these models generate predictions based
on new inputs [12]. They aim to estimate outcomes based on inputs, enabling accurate
predictions to guide decision-making and anticipate future trends [12]. Designed using
various statistical techniques and tools, the accuracy of prediction models relies on data
quality, availability, choice of model, and validation methods [13]. Thus, prediction models
are valuable for enhancing decision-making and anticipating trends.

To achieve the expected economic benefits, nations that host mega sports events strive
to maximize fan attendance and their level of satisfaction [14]. However, predicting fan
attendance at these events is a complex task due to various factors that can impact the
number of attendees. Specifically, for the FWC, fan attendance can be influenced by factors
such as team qualification, football popularity in the host nation, event location, and travel
and accommodation costs, to quote just a few.

Accurate prediction of fan attendance is crucial for optimizing FWC planning and re-
source utilization. Understanding these factors allows organizers to enhance the overall fan
experience and maximize the event’s impact. This study utilizes various prediction models
to develop the optimal fan attendance prediction model, including linear regression, logistic
regression, decision trees, random forests, gradient boosting, and neural networks [15].
The choice of prediction model depends on the data type and prediction goals [15]. Some
models are suitable for linear relationships, while others handle non-linear relationships or
data with many variables [16].

Recent advancements in predictive analytics and data science have significantly impacted
the development of models that forecast fan attendance at mega sporting events [17,18].
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The integration of various innovative methodologies and technologies is pushing the
boundaries of existing research, offering new insights and approaches, as follows.

1. Advanced machine learning and AI applications: The application of cutting-edge
machine learning and AI technologies has marked a significant shift in predictive
analytics. These technologies facilitate nuanced analysis and forecasting, offering a
more dynamic understanding of fan behavior [19].

2. Exploitation of big data: The exponential growth in data generation and the strategic
utilization of big data analytics have enabled researchers to harness diverse datasets,
providing a multifaceted view of fan engagement and preferences [20].

3. Adoption of real-time data analytics: Leveraging real-time data has become crucial
for timely and relevant insights, enabling stakeholders to make informed decisions
rapidly as event dynamics unfold [21].

4. Focus on personalization and fan engagement: Emphasizing personalization, re-
searchers are exploring how targeted strategies can enhance fan experiences, thereby
potentially increasing attendance and satisfaction [22].

5. Comprehensive economic and social impact assessments: The economic and social
ramifications of mega sports events are being examined in greater detail, providing
a holistic view of their impact and informing better planning and execution strate-
gies [23].

6. Sustainability and ethical frameworks: The integration of sustainability and ethics
into predictive analytics underscores the field’s progression toward responsible and
conscientious research practices [24].

7. Interdisciplinary research approaches: The convergence of various fields, including
economics, psychology, and data science, is enriching the research landscape, fostering
a deeper and more comprehensive understanding of fan attendance dynamics [25].

In recent research, the importance of integrating domain knowledge in machine
learning applications for sports predictions has been emphasized, particularly in soccer [26].
One study highlights the nuanced ways domain expertise can enhance the predictive
accuracy of machine learning models and tailoring algorithms to better understand and
anticipate the outcomes of soccer matches. Furthermore, ref. [27] provide an innovative
perspective by analyzing a soccer team’s adaptive behaviors through an entropy-based
framework. This approach offers a deeper insight into the dynamics and variability of
team performance, suggesting that a team’s ability to adapt and vary its strategies is crucial
for success. These findings underscore the potential of combining advanced data analysis
techniques with expert insights to refine predictive models in sports analytics.

1.1. Paper’s Objective

Specifically, the primary objective of this study is to introduce a novel application
for machine learning, enabling accurate predictions of fan attendance at the FIFA World
Cup. The machine learning model takes into consideration a wide range of factors that can
significantly influence the number of fans attending the tournament. By leveraging data
from the FIFA World Cup Russia 2018, this model is constructed to forecast the expected
fan attendance at the FIFA World Cup Qatar 2022. The overarching aim of this research
is to provide a valuable tool that future FWC hosts can utilize to optimize their planning,
ultimately enhancing the overall fan experience.

The study uses automated machine learning (AutoML) to experiment with different
models and validate the results. AutoML is a method of automating the machine learning
model selection and hyperparameter tuning process, making it easier and faster for non-
experts to develop predictive models [28]. With AutoML, the system can automatically
search for the best combination of algorithms and parameters to use based on the data
being analyzed and the goals of the prediction model [28]. This helps in reducing the time
and effort required to develop a predictive model, as well as improving its accuracy [29].
However, we are aware that AutoML is not a silver bullet and still requires careful data
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preparation, feature engineering, and validation to ensure that the results are reliable
and accurate.

This study aims to advance sports event management by developing a comprehensive
and accurate prediction model for fan attendance that is not limited to the FIFA World
Cup, but can be applied to other major sporting events as well. By providing future hosts
with a valuable tool, this research enables them to optimize planning, allocate resources
efficiently, and ultimately enhance the fan experience. The findings will contribute to
the development of best practices for predicting fan attendance at mega sports events,
benefiting both researchers and practitioners in the fields of sports event management and
fan behavior.

1.2. Paper’s Organization

The remainder of the paper is organized as follows. In Section 2, we present the
methodology and data used for this study. In Section 3, we present the findings of the study
and discuss the implications. In Section 4, we present the limitations of the study and the
work that needs to be done. Finally, in Section 5, we conclude the paper and summarize
the key findings.

2. Materials and Methods

During the FIFA World Cup qualification process, the 211 member associations of
FIFA compete for a spot in the tournament. The FIFA World Cup spots are allocated to the
six confederations in the following manner: AFC (Asia: four or five), CAF (Africa: five),
CONCACAF (North, Central America, and the Caribbean: three or four), CONMEBOL
(South America: four or five), OFC (Oceania: zero or one), and thirteen for UEFA. Addi-
tionally, host nations currently qualify automatically for the World Cup. Our objective is to
leverage machine learning techniques to accurately forecast the number of visitors from
each country prior to the start of the qualifying matches. By utilizing the FIFA rankings
of the participating teams and various socio-economic factors of the countries, we aim to
provide the host nation with valuable insights that will assist in the efficient planning and
execution of the tournament.

To accurately predict visitor counts for World Cup tournaments, access to historical
data from previous events is crucial. Unfortunately, this information is not readily available
to the public. Despite this challenge, we were able to obtain data for the 2018 Russia World
Cup by contacting Russian delegates and for the 2022 Qatar World Cup by contacting the
Qatar Supreme Committee. Although we attempted to gather data from other delegates
for previous World Cups, we were unfortunately unable to do so. This shortage of data
significantly limits our ability to construct a machine learning model that can be generalized
to unseen data well. It is important to consider this limitation when evaluating the results
of our study.

2.1. Overview

The study involved a thorough data collection approach from numerous sources,
followed by data wrangling and feature engineering in order to create a machine learning
model to estimate the number of visitors from each country at least one year before the
tournament. We carried out experiments with Python Scikit Learn and chose the best-
performing model with AutoML in order to build an ideal machine learning model.

To enhance a model’s resilience against overfitting, especially in scenarios where
certain predictors wield substantial influence, a few measures were implemented. Firstly,
employing a technique known as data splitting, the dataset is partitioned into distinct
subsets for training, validation, and testing purposes. This segmentation ensures that the
model is not assessed on data it has already encountered, thereby providing a more accurate
evaluation of its generalizability. Secondly, following the utilization of cross-validation
techniques, whereby the dataset is divided into multiple folds, the model is then trained on
all but one fold and validated on the excluded fold, iteratively rotating through each parti-
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tion. This iterative validation process aids in obtaining a more reliable assessment of the
model’s performance while mitigating variance in performance estimation. Lastly, feature
selection strategies play a pivotal role in curbing overfitting by identifying and retaining
only the most pertinent predictors. By incorporating these methodologies, the robustness
of a model against overfitting, particularly in scenarios with influential predictors, can be
substantially fortified.

2.2. System Setup

We used a Dell Precision 7920 Tower Workstation with an Intel Xeon Gold 6244 16-core
processor, 64 GB of RAM, and an NVIDIA Quadro RTX 5000 graphics card to carry out the
tasks related to this article. To make sure that our work can be replicated on any hardware
setup, we used Docker containers to run the AutoML pipeline and Jupyter notebooks for
data manipulation.

2.3. Training Dataset

In order to effectively train and validate our machine learning model, we obtained
various datasets pertaining to each country. These datasets included historical visitor
count data from past World Cups, FIFA rankings of the participating teams, geographical
information, and socio-economic data from the World Bank. By incorporating a diverse
range of data sources, we aimed to build a robust and comprehensive model that accurately
predicts the visitor count for future tournaments.

2.3.1. Historical Dataset

In order to train and validate our model, we collected historical data on past World
Cups. However, the availability of these data are limited, and we were able to acquire
information specifically only for the 2018 World Cup held in Russia. The dataset we
obtained includes the country names and the corresponding visitor count for 75 countries
for the 2018 World Cup as shown in Table 1 below:

Table 1. Sample of historical dataset from Russia 2018.

Country Visitor Count

United States 99,799
Brazil 73,850

Germany 73,050
Colombia 67,563

Mexico 65,595

2.3.2. FIFA Rankings Dataset

Men’s national teams are ranked by their performance in games under the FIFA rank-
ing system, which has been in place since 1992. The teams with the best records are given
the highest rankings. These rankings are released internationally within predetermined
windows. We obtained the team rankings prior to the commencement of the World Cup
qualifiers in order to conduct our analysis. The World Cup was held on the following dates:
1994 (31 December 1992), 1998 (21 February 1996), 2002 (16 February 2000), 2006 (27 August
2003), 22 August 2007, 2014 (18 May 2011), 12 March 2015, and 2022 (4 April 2019). To
collect the rankings information from the FIFA website, we utilized Python requests and
the Pandas packages. The dataset contains data about team names, confederations, current
and past points, and rankings. The dataset comprises 8 columns and 1544 rows.

2.3.3. Historical Performance Data

We used specialized sections that include details on the qualification procedure, match
schedules, and outcomes to compile data on World Cup qualifiers. We used information
from these pages, including the qualification date, the number of times a team has qual-
ified in the past, the most recent qualification, the team’s current streak of consecutive
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appearances, and the team’s previous best results. In order to extract this information from
the Wikipedia website, we used the Python Pandas and Beautiful Soup 4 tools. A dataset
with 336 rows and 9 columns with information on World Cup qualifiers from 1978 to 2022
was created. Earlier World Cup data were utilized for feature engineering and to impute
missing values.

2.3.4. Geographical Information Data

In order to incorporate geographical information into our model, we obtained a
curated dataset from a CSV file provided as a gist file (Discover gists · github). This dataset
includes various geographical attributes, such as the average latitude, average longitude,
and ISO country codes of each country. The inclusion of this information allows us to take
into account the geographical location of each country and its potential impact on visitor
count. We will be using these data to generate meaningful features as shown below in
Table 2.

Table 2. Sample of geographical information dataset.

Country Argentina Brazil France India United States

Alpha-2 code AR BR FR IN US
Alpha-3 code ARG BRA FRA IND USA
Numeric code 32 76 250 356 840

Latitude (average) −34.0 −10.0 46.0 20.0 38.0
Longitude (average) −64.0 −55.0 2.0 77.0 −97.0

2.3.5. World Bank Data

We leveraged the World Bank’s Python package, wbgapi, to gather a range of socio-
economic indicators that can potentially impact visitor count [30]. These data were used to
gain insight into the economic and social conditions of each country, including population,
GDP, remittance, working population, employment percentage, employee percentage,
tourism expenses, purchasing power parity, and unemployment percentage. We utilized
the Python library wbgapi along with Pandas to access and organize this dataset from the
year 2000 to 2022. Our goal was to consider a broad range of socio-economic factors that
could affect visitor count and inform our machine learning model.

To achieve this, we initially analyzed 120 features from the World Bank data to de-
termine their potential impact on visitor count. However, after further analysis of the
percentage of missing values, some of these features were not deemed useful and were
excluded from our study. Some of the features we considered had annual data, while others
were only published every 5 years. Some of the features had low data, making them unsuit-
able for our analysis. Our selection of features was based on the information provided by
the World Bank site (indicators). By incorporating these selected socio-economic indicators
into our machine learning model, we aimed to provide a more comprehensive and accurate
prediction of visitor count from each country.

2.4. Dataset Wrangling

Dataset wrangling, which entails cleaning, preparing, and organizing data so that it is
ready for analysis and modeling, is a crucial phase in the data science process.

2.4.1. Dataset Cleaning

We carried out a number of data-cleaning activities to get the data ready for analysis.
These procedures were created to make sure the data were reliable, consistent, and prepared
for inclusion in our machine learning model. We performed several measures, one of which
was to find and fix inconsistencies in the naming of country codes that existed in multiple
datasets. Some datasets used ISO codes, while others used country name abbreviations.
For instance, the country code for Germany was listed as GER in some datasets, while the
ISO country code for Germany is DEU. We standardized the country codes by converting
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all country codes to the ISO format, which is widely accepted and recognized. This
standardization process allowed us to seamlessly integrate the data from different sources
and ensure that all data were consistent and accurate.

Removing hyperlink information and other non-numeric data from the Wikipedia
dataset was another crucial step we took. In order to make the data consistent, several
columns in this dataset that had hyperlinks had to be cleaned. To exclude this information
and guarantee that numerical columns contained just numerical data, we used Pandas
and regular expressions. In order to improve the quality of the World Bank dataset, we
conducted an analysis of all columns to assess the percentage of missing data for each
country. We found that many columns had a high number of missing values, which
could potentially affect the accuracy of our results. Features with high missing values
were removed.

2.4.2. Feature Engineering

The practice of adding new features to a dataset or changing already existing features
is known as feature engineering. It is a crucial phase in the data science process because it
has the potential to enhance the effectiveness of machine learning algorithms and assist in
extracting useful information from the data.

Historical Dataset

We enhanced the historical dataset obtained from Russia in 2018 by adding the nec-
essary information to perform data merging and analysis. To begin with, we added a
column for ISO country codes using the python package pycountry to ensure consistent
country identification across all datasets. Additionally, we added a year column, with 2018
as the value, to differentiate between the World Cup events. To prepare for predictions
for the Qatar 2022 World Cup, we duplicated the country data and added it to the end
of the dataset, with the “Visitor Count” column left empty for future predictions. This
standardized format enabled us to effectively utilize the historical data and merge them
with other relevant data sources for accurate predictions.

FIFA Rankings and Historical Performance Dataset

We developed numerous new features based on the discrepancies between the present
rank and previous ranks to comprehend how a team’s rating has changed over time and
maybe predict their likelihood of qualifying for the World Cup. These elements enabled us
to monitor each team’s growth (or fall) throughout a variety of time frames, from the most
recent rating to the ranking from 20 years prior. These characteristics were developed by
comparing the current rank to ranks from various time periods, such as the most recent
rank and rank from 4, 8, 12, 16, and 20 years ago. We can find trends and patterns that
can be predictive of a team’s performance in the future by examining these discrepancies.
The raw columns “PreviousRank”, “PreviousPoints”, “CountryCode”, and “TotalPoints”
were also eliminated from the dataset so that our research could concentrate on the most
significant and valuable attributes.

We developed numerous additional features based on the dataset to enhance the
analysis of the historical data provided by Wikipedia. These elements were created to offer
insightful data on each team’s prior results and assist us in forecasting their chances of
making the World Cup.

• Our first feature was a binary column named “IsQualified,” which displays whether
or not a team has qualified for the World Cup. We set the value of this column to 1
for each team because the Wikipedia data include only teams that made it. The goal
variable for our machine learning models’ training will be this column.

• The second feature that we developed was the “IsHost” column, which indicates
the host nation depending on the “Method of Qualification” column. Understand-
ing the benefits a host team has during the qualification process can be assisted by
this information.
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• Our third feature was the “Total Times Qualified” column, which shows how many
times a national team has qualified for the World Cup. Based on the “Total Times
Qualified” column from the Wikipedia dataset, this value was computed. To prevent
data leaking, the current qualification was eliminated from the analysis. We can learn
more about a team’s level of skill and tournament success by knowing how frequently
they have qualified.

In order to reflect the team’s greatest World Cup performance, we also constructed
a set of binary columns. “IsPreviousWinner”, “IsPreviousRunnersUp”, “IsPreviousFinal-
ist”, “IsPreviousThirdPlace”, “IsPreviousFourthPlace”, “IsPreviousSemiFinalist”, “IsPrevi-
ousQuarterFinalist”, and “IsPreviousRound16Finalist” were among the columns in these
lists. In order to concentrate on the most significant and valuable features of our study, we
finally deleted the raw columns “Method of Qualification”, “Date of Qualification”, and
“Previous Best Performance” from the dataset.

Geographical Dataset

A major factor that greatly impacts the number of visitors is the geographical distance
between their home country and the host country. This affects various factors, such as
travel mode, cost, and time of travel, as well as climate conditions. To capture these factors,
various features were generated, such as travel costs, climate comparisons, visa restrictions,
and the number of expatriates living in the host country. These expatriates could serve
as potential sources of accommodation during the tournament, leading to reduced costs.
However, obtaining data for these factors for all previous World Cup tournaments is a
challenge due to limited availability.

To capture the geographical proximity, we introduced a new feature—the distance
between the source country and the host country. This feature considers the impact of
various factors like mode of travel, cost and time of travel, and climatic conditions. To
calculate the distance, we used the Haversine formula, which measures the angular distance
between two points on the surface of a sphere. The latitude and longitude coordinates of
the source country (x1 and y1) and the host country (x2 and y2) were utilized to calculate
the distance between them. This was done using the Haversine distance metric from the
Scikit Learn Python package. The distance was then converted to kilometers for ease of
interpretation. The Haversine formula provides a reliable approximation of the surface
distance between two points on Earth, with an average error of less than 1%.

The latitude and longitude coordinates (x1, y1) of the source country S and the host
country H, with coordinates (x2, y2), were utilized to calculate the distance D(S, H) between
them. This was achieved using the following Haversine distance metric:

D(S, H) = 2arcsin

√
sin2

(
x1 − y1

2

)
+ cos(x1) cos(y1)sin2

(
x2 − y2

2

)
The distance was then converted to kilometers for ease of interpretation. The Haversine

formula provides a reliable approximation of the surface distance between two points on
Earth, with an average error of less than 1%.

2.5. Dataset Merging

Through the use of the country code and the years as the key, we combined all
the datasets into one. As a result, we were able to include significant information for
each country from all datasets. To make our predictions as accurate as possible, we took
into consideration the most recent available socio-economic data from the World Bank.
Specifically, we used the data from the last year prior to the tournament year to reflect
real-time conditions. For example, when predicting the visitor count for the 2022 World
Cup, we used the data from 2021. In cases where data were not available for a specific year,
we used the last available data. For instance, since there was no purchasing power parity
(PPP) data for Venezuela after 2011, we used the same data for both the 2018 and 2022
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World Cup predictions. This approach allowed us to incorporate the latest socio-economic
information into our predictions.

We detected missing values that had been added as a result of the merging procedure
and eliminated them. These missing values were present in recently established columns
of historical performance data that had a value of 0 imputed to them. Missing values for
the “Total Times Qualified” column were imputed using the most recent data or, in the
absence of data, assigned a value of 0. The backfilling procedure contributed to the merged
dataset’s accuracy and completeness.

2.6. Data Visualization

We utilized a variety of data visualization techniques to analyze and understand the
data. Some of the key visualizations used in this study are as follows Figure 1.

Figure 1. Visitor counts for the fans that attended FWC Russia 2018 illustrated in a world map.

From Figures 2 and 3, it can be observed that the data are highly skewed, with the top
country (USA) having more visitors than the number of visitors from the bottom 35 countries
combined. The mean number of visitors is 14,289, while the USA has 99,799 visitors.

Figure 2. Visitor count distribution for Russia 2018 FIFA World Cup.
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Figure 3. Box plot for visitor count distribution for Russia 2018 FIFA World Cup.

The scatterplot in Figure 4 reveals the relationship between the GDP per capita and
the number of visitors per continent. This visualization was critical in gaining insight into
how economic prosperity affects the number of visitors from different continents attending
the World Cup. A noticeable cluster of four countries—Brazil, Colombia, Mexico, and
Argentina—can be seen in the top left of the plot, highlighting that fans participate in the
World Cup even from countries with poorer economies.

Figure 4. Scatterplot showing the relation of GDP per capita vs. the number of visitors per continent.

2.7. Validation Technique

To assess the performance of our machine learning models, it is ideal to use a holdout
validation dataset. This involves training the model on historical data and evaluating its
performance on a separate, unseen dataset. In order to evaluate the performance of our
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machine learning models, we will be using the Qatar 2022 data as a holdout validation
dataset and training with the Russia 2018 dataset.

There are several validation techniques that are widely used in the industry. One
of the most common techniques is the train–test split, where the dataset is split into two
parts—the training set and the testing set. The training set is used to train the model and the
testing set is used to evaluate its performance. There are two variations of this technique,
one with shuffling of the data and one without shuffling. When the data are shuffled, the
model is trained on a random subset of the data, and this helps in avoiding bias due to
any patterns in the data. On the other hand, when the data are not shuffled, the model is
trained on a contiguous subset of the data, which can help in understanding the model’s
behavior over time.

Another popular validation technique is k-fold cross-validation, where the dataset
is split into k-folds. The model is trained on k-1 folds and tested on the remaining folds.
This process is repeated k times with different folds as the testing set, providing a more
robust evaluation of the model’s performance. There are other validation techniques, such
as leave-one-out cross-validation, stratified k-fold cross-validation, and more, each with its
own strengths and weaknesses.

Using a 5-fold cross-validation technique, we assess the models while they are being
trained. To do this, divide the training data into 5 equal folds, train the model on 4 of
those folds, and then evaluate it on the 5th fold. Five repetitions of this process are carried
out, with one of each fold serving as the evaluation set. By averaging the assessment
scores across each of the five folds, we may obtain a more precise measure of the model’s
performance (Figure 5).

Figure 5. Five-fold cross-validation with holdout test.

2.8. Evaluation Metric

The coefficient of determination, abbreviated R2, is the optimization metric that we
will be using. This is the percentage of the dependent variable’s variance that is predicted
by the independent variable(s). Based on the percentage of overall variation in outcomes
that the model accounts for, it provides a gauge of how well-observed results are duplicated
by the model. The maximum score is 1.0, which may be unfavorable. The coefficient of
determination, which can be expressed as a percentage while the other measures have
arbitrary ranges, can be more intuitively instructive than the MAE (mean absolute error),
MSE (mean squared error), MSLE (mean squared log error), MedAE (median absolute error),
and RMSE (root mean squared error) in the evaluation of regression analysis. However, we
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will also be considering other metrics such as MAE, MSE, MSLE, MedAE, and RMSE to get
a more comprehensive understanding of the model’s performance.

2.9. Modeling

To develop outstanding features, we used an iterative experimentation process with a
variety of machine learning models. Using the Python Scikit Learn module, we put this
technique to use. We started by building simple models to understand which features the
models were emphasizing and to examine their predictions. We used AutoML to fine-tune
the parameters and increase model accuracy to create the final high-quality model. In our
experimentations, we used the Scikit Learn algorithms with default parameters.

As shown in Figure 3 the target column of the visitor count is highly skewed. This
poses a challenge for regression algorithms to fit the data. To overcome this challenge and
improve the model performance, we performed a log transformation on the target variable
(visitor count) to normalize the data. The log transform of the target variable is a technique
used to normalize skewed data. In this technique, the target variable is transformed by
taking its logarithmic value. The log transform helps to reduce the impact of outliers
and skewness in the data, making the dataset more suitable for regression algorithms.
The log transform also helps to convert exponential growth into linear growth, making it
easier for the model to understand and predict the target variable. This leads to improved
model performance and more accurate predictions. After obtaining the predictions, we
will perform an inverse log transformation to obtain the actual visitor count values. This is
because the log transformation was applied to normalize the skewed data and improve the
model performance, but the actual visitor count values should be in their original format
for meaningful interpretation.

We experimented with four sets of features: a selected small set of columns, all
columns, highly correlated columns, and important features selected by the models. This
enabled us to evaluate how the algorithms are learning from a diverse set of features. We
started our experiments with a small subset of features and eventually added more features
for experimentation. Figures 6–9 show the correlations for each dataset.

Figure 6. Correlation plot for an initial small subset of data.
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Figure 7. Correlation plot for features highly correlated.

Figure 8. Correlation plot for features with top feature importance.
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Figure 9. Correlation plot for all features.

2.10. AutoML

The thesis model showcases several innovative aspects of automated machine learning
(AutoML), highlighting its ability to simplify and accelerate the entire machine learning
pipeline. Key strengths include the following.

End-to-end automation: AutoML automates key steps like data preprocessing, feature
engineering, model training, and hyperparameter tuning, enabling faster development of
robust models.

Enhanced data quality: Advanced algorithms address data issues like missing values,
outliers, and scaling, ensuring data consistency and quality.

Sophisticated feature engineering: AutoML automates feature selection, reduction, and
generation, leading to better prediction accuracy by extracting more meaningful insights
from the data.

Optimized model selection and training: This evaluates various algorithms, finds the
best fit for the data, compares them, and selects the optimal one for deployment, improving
model accuracy and reliability.

Diverse optimization techniques: By employing different optimization strategies
(like Bayesian optimization, genetic algorithms, and neural architecture search), AutoML
demonstrates adaptability and precision in navigating the search space.

Small-dataset proficiency: The model emphasizes AutoML’s effectiveness in handling
limited data, effectively finding suitable model and hyperparameter combinations while
preventing overfitting, ensuring robustness and generalizability.

Accessibility and breadth: By integrating Auto-Sklearn, the model provides accessible
APIs and supports a wide range of machine learning models, offering broader applicability.
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Comprehensive model assessment: This includes diverse model types like linear
models, KNNs, decision trees, ensemble methods, SVMs, and MLPs, facilitating adaptation
to different data and tasks.

Innovative training techniques: Techniques like SGD training, ensemble methods, and
multilayer perceptrons highlight the model’s innovative approach to learning, offering
various strategies for improved prediction accuracy and reliability.

By combining these techniques, the thesis model significantly advances AutoML,
establishing a robust platform that democratizes access to advanced machine learning
capabilities and empowers better decision-making across various domains.

3. Results

We conducted several experiments with various configurations of our machine learn-
ing models to optimize performance. We explored different factors, such as the number
of columns used, target column transformations, run time, and ensembling. We tested
models using all columns, highly correlated columns, and important features selected
by the models. We evaluated the impact of target column transformations, including log
transformation, quantile transformation, and power transformation from the Scikit Learn
preprocessing module. Our results showed that log transformation improved model perfor-
mance the most. As we increased the run time for Auto-Sklearn, performance continued to
improve. This could have been the result of hyperparameters being optimized for individual
data points. Ensembling of models also improved the performance of the models. Based
on our experiments, we selected the best-performing model for this study: an ensembled
model trained on important columns with a log-transformed target column, run for 12 h.

The Auto-Sklearn experiment, which lasted for 12 h, evaluated 2523 models using
a diverse range of algorithms and optimizing their hyperparameters. Specifically, we
addressed the following key areas.

1. Data preprocessing techniques:

• The datasets outlined in Appendix A underwent thorough cleansing following
the process defined in Section 2.4.1.

• Preprocessing steps were meticulously executed as specified in Section 2.4.2.
These steps ensured that the data were suitably prepared for feeding into the
AutoML optimization process.

• The AutoML process automatically applied additional preprocessing tech-
niques, including feature scaling, during the optimization phase. Given the
small size of the dataset, these preprocessing steps remained an integral part
of the model pipeline and were not further explored.

2. Algorithms and hyperparameters evaluated:

• Our AutoML process, as outlined in Section 2.10, systematically evaluated
various algorithms and their corresponding hyperparameters.

• Notably, we did not define a custom range of hyperparameters. Instead, we
utilized the default configurations provided by Auto Sklearn regressors.

3. Auto Sklearn configurations:

• We explored a variety of configurations, including:

Regression models.
Data preprocessing steps.
Feature preprocessing.

4. Algorithms evaluated:

• Our evaluation encompassed the following algorithms:

AdaBoostRegressor
ARDRegression
DecisionTreeRegressor
ExtraTreesRegressor
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GaussianProcessRegressor
GradientBoostingRegressor
KNNRegressor
Support Vector Regressor

The results of the experiment are analyzed and displayed in Table 3, showcasing the
top 10 models for each algorithm.

Table 3. Best fivefold cross-validation scores for top-performing algorithms.

Rank Model R2 MAE MSE RMSE MSLE MedAE

1 Stochastic Gradient Descent 0.633 0.556 0.480 0.670 0.0050 0.497
302 ARD 0.578 0.546 0.518 0.691 0.0056 0.462
348 Liblinear SVR 0.573 0.574 0.550 0.713 0.0058 0.449
354 LibSVM SVR 0.572 0.578 0.617 0.732 0.0066 0.509
718 Extra trees 0.528 0.618 0.679 0.793 0.0071 0.438
882 Random forest 0.486 0.635 0.692 0.803 0.0073 0.548
936 Gradient boosting 0.464 0.672 0.705 0.828 0.0077 0.529
938 Ada boost 0.463 0.653 0.773 0.842 0.0082 0.472
956 Multilayer perceptron 0.455 0.677 0.721 0.834 0.0076 0.597
984 K-nearest neighbors 0.437 0.718 0.809 0.868 0.0083 0.540

The ranking was based on the R2 metric, which is a commonly used measure of
the goodness of fit in regression problems. The top-performing algorithm was stochastic
gradient descent (SGD), which dominated the top 300 ranks with a slight improvement in
the R2 metric. The best SGD model had an R2 metric of 0.633, while the 300th SGD model
had an R2 metric of 0.578. This highlights the focus of Auto-Sklearn in optimizing the
hyperparameters of the best-identified algorithm over a longer period of time.

Table 4 shows how the permutation feature importance calculation approach from
Scikit Learn was used to determine the feature importance of the best-performing model.
The feature significance score indicates the impact of each feature on the performance of
the model. A higher score means that the feature in the study has a bigger impact on the
model’s prediction result. We can acquire insight into the data, improve the model, and
improve its interpretability by comprehending the significance of the feature.

Table 4. Most important features of the best-performing model.

Feature Description Importance

Is the team qualified? Is the team qualified for the tournament? 0.505 +/− 0.044
SL.EMP.1524.SP.ZS Employment:population ratio, ages 15–24, total (%) 0.043 +/− 0.014
SP.POP.1564.FE.IN Female population, ages 15–64 0.040 +/− 0.013

SL.FAM.WORK.MA.ZS Contributing family workers, male (% of male employment) 0.035 +/− 0.019
IT.CEL.SETS Mobile cellular subscriptions in the country 0.032 +/− 0.011

SP.POP.TOTL.MA.IN Male population 0.025 +/− 0.010

The permutation feature importance in Scikit Learn provides a feature importance
score that is a normalized sum of 1. This means that the relative importance of features
derived from permutation is proportional and add up to a total of 1. Given that the
relative value of each attribute is measured using the same scale, this can be helpful in
situations where you want to compare their respective importance. It can be used to get
a rough understanding of the relevance of features independently of the model being
used because the feature importance is also calculated without relying on the specific
model characteristics.

The contribution of each feature to the prediction generated by the stochastic gradient
descent model is shown in Table 4. In almost all studies, a significant amount of weight
has consistently been placed on the “Is the team qualified?” element. Table 4 explains the
meaning of other features from the World Bank dataset.
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We tested the robustness of the best-performing model by evaluating its performance
on a holdout validation dataset. The results presented in Table 5 showed that the model
was not generalized well with the holdout dataset.

Table 5. Training and holdout test set validation scores for the best-performing model.

Dataset R2 MAE MSE RMSE MSLE MedAE

Training 0.633 0.556 0.480 0.670 0.0050 0.497
Holdout 0.259 1.155 1.889 1.374 0.023 1.063

Additionally, we evaluated how the different validation mechanisms would have
performed in evaluating the performance of the models. We experimented with different
feature subsets, target column transformations, ensemble configurations, and validation
mechanisms. Tables 6 and 7 present some of the results from our experimentation.

Table 6. Training and holdout test set validation scores for models with different validation strategies
for top features with target column transformation.

Validation Dataset R2 MAE MSE RMSE MSLE MedAE

Train–Test Shuffled
(0.75/0.25)

Training 0.909 0.248 0.089 0.298 0.001 0.210
Holdout 0.114 1.189 2.259 1.503 0.029 0.985

Train–Test Not
Shuffled (0.75/0.25)

Training −2.351 0.429 0.253 0.503 0.004 0.338
Holdout −0.086 1.339 2.768 1.664 0.033 1.098

Fivefold cross-
validation

Training 0.633 0.556 0.480 0.670 0.0050 0.497
Holdout 0.259 1.155 1.889 1.374 0.023 1.063

Tenfold cross-
validation

Training 0.664 0.536 0.469 0.661 0.005 0.438
Holdout 0.247 1.168 1.918 1.385 0.024 1.010

Table 7. Training and holdout test set validation scores for models with different validation strategies
for top features without target column transformation.

Validation Dataset R2 MAE MSE RMSE MSLE MedAE

Train–Test Shuffled
(0.75/0.25)

Training 0.960 2603.70 10,375,390 3221.09 0.990 2607.319
Holdout −0.311 13,197.09 749,443,752 27,375.97 2.170 4494.401

Train–Test
Not Shuffled
(0.75/0.25)

Training −0.938 432.99 302,851 550.32 0.140 375.000

Holdout −0.154 10,789.99 659,404,817 25,678.89 2.646 2588.484

Fivefold cross-
validation

Training 0.518 6890.26 152,701,900 11,469.93 1.495 3901.640
Holdout −0.132 13,747.16 646,955,961 25,435.39 2.295 6099.449

Tenfold cross-
validation

Training 0.629 7252.67 175,867,800 11,188.15 1.381 4199.995
Holdout −0.049 12,338.23 599,748,885 24,489.77 2.312 5392.570

4. Discussion

Using Auto-Sklearn, as shown in Table 3, the best fivefold cross-validation score for
top-performing algorithms revealed that the algorithm focused heavily on optimizing the
hyperparameters of the stochastic gradient descent model with R2 of 0.633 and MAE of
0.556. The model was tested with different validation techniques like train–test shuffled,
train–test not shuffled, and fivefold and tenfold cross-validation in order to observe the
best results. According to Yamashita et al. (2022), regardless of the size of the sports, the use
of empirical prediction techniques leads to inaccurate results and therefore poor decisions
by the organizers. We can confirm this statement when comparing the results against the
results of King and Rice (2018), where they examined different prediction techniques and a
best result MAE of 1219.
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4.1. Reasons for Discrepancies

The deficiency in diverse examples available for learning directly impacts our models’
capacity to distinguish meaningful trends and generate reliable predictions. Despite our
efforts to enrich the dataset with a diverse array of columns encompassing factors such
as geographical distance, FIFA rankings, historical World Cup performances and other
socio-geopolitical dynamics, the underlying training data pertain solely to the year 2018.
Consequently, our models lack exposure to patterns spanning different years, thereby causing
some difficulties in capturing the evolving behavioral trends. As a result, the scarcity of
training data serves as a definitive explanation for the disparities observed in our predictions.

The comparison of predicted and actual visitor counts in the Qatar 2022 World Cup
can be seen in Figure 10. Figures 11 and 12 reveal that Saudi Arabia and India had higher
visitor counts than expected, while there was a significant reduction in visitors from top
countries in the Russia 2018 World Cup. This could be attributed to factors such as distance,
number of expatriates, visa restrictions, and other socio-geopolitical factors. These findings
highlight the need for caution when making predictions based on limited data and suggest
the importance of further study to better understand the factors that influence World Cup
attendance. The section below discusses the possible causes of the difference between the
predicted and actual attendance for Qatar 2022 World Cup.

Figure 10. Comparison of predictions: actual visitor counts for Qatar 2022 and Russia 2018.

Figure 11. Difference between actual visitor counts and predicted counts for Qatar 2022.
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Figure 12. Difference between actual visitor counts for Qatar 2022 and Russia 2018.

4.1.1. COVID-19 Pandemic

It was observed that the actual fan attendance from East Asian countries such as China,
Japan, and South Korea was lower than the prediction, and this may be attributed to the
COVID-19 pandemic impact on these countries. This is more evident in China, where they
had imposed travel restrictions on citizens to travel outside China until January 2023. In
addition, COVID-19 caused some financial issues where individuals and employees were
dismissed from their work, which affected their ability to travel for tourism and fun. The
number of Chinese fans dropped by more than 30,000 when comparing Russia in 2018 and
Qatar in 2022.

4.1.2. Unexpected Team Performance during the Tournament

Another factor that seems to have played a role in the difference between actual and
predicted fan attendance is the unexpected performance of a team during the tournament.
This can be observed in Morocco and Saudi Arabia fans’ attendance, whose teams per-
formed very well, which encouraged many fans to travel and attend. Saudi Arabia won the
first game against Argentina and later performed strongly against Poland and Mexico. Mo-
rocco performed well too, and eliminated Spain and Portugal during the knockout stages
and later faced France in the semifinal. The number of chartered flights was organized by
the Moroccan government to transport the fans willing to travel and support their team.

4.1.3. Culture and Traditions

As Qatar was the first Middle Eastern and Arab country to host such an event, there
will be some factors that could be different from any other tournament. In the case of the
Qatar 2022 World Cup, it was observed that some Arab countries contributed more to
fan attendance than the model predicted. This is evident in the cases of Morocco, Egypt,
Bahrain, UAE, Lebanon, Jordan, and Saudi Arabia. Therefore, factors such as tradition and
cultural similarity might play a big role in attracting fans from different countries having
similar traditions and cultures.

4.1.4. Number of Residents in the Host Country

The FIFA World Cup in Qatar showed an important factor that could affect the ten-
dency of fans to come to the host country. Qatar has a large number of different communities
that make up more than 80 percent of the total population. The impact of this factor can
be seen by observing the number of fans who attended the FWC 22 from countries such
as India, Pakistan, and Egypt. Indian fans numbered 90,000 more than in Russia in 2018,
which might be due to the fact that Indian residents are present in large numbers in Qatar.
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4.1.5. Political and Negative Media Coverage

As with any other major sporting event, political controversies and negative media
coverage can impact the attendance of fans from certain countries. At the 2022 FIFA World
Cup in Qatar, factors unrelated to sports led to lower attendance from countries such as
Germany and the Netherlands compared to the 2018 tournament in Russia. These factors
are challenging to predict, as the relationships between countries and the media are volatile
and can change rapidly. For example, more than 60,000 German fans attended the 2018
FIFA World Cup, but did not attend the Qatar 2022 tournament.

Global uncertainties undeniably affect the accuracy of prediction models. However,
those using the approach presented in this paper can take measures to mitigate these
uncertainties. For example, political conflict uncertainty can be mitigated by adjusting
restrictions and incorporating additional input data, such as the nature of the conflict and
travel bans. Training the model requires similar situations from previous tournaments
to ensure accurate results. Additionally, postprocessing can involve expert judgment to
determine reduction factors for model results.

Regarding pandemic situations, the model can incorporate factors like the number
of vaccinated individuals, travel restrictions, and financial impacts. However, requiring
similar situations to be included in the training data is crucial for accurate results.

While this paper does not incorporate these mitigation strategies, it is noteworthy
that the model is primarily intended for use in the early planning stages, where pandemic
regulations and political changes occur rapidly and unexpectedly.

The outcome of our feature importance analysis, which is shown in Table 4, indicates
that the model heavily relies on a team’s qualification status as a predictor of World Cup
attendance. This is a reasonable observation, as fans of qualified teams are more likely
to be incentivized to attend the event. However, observations from our holdout data
also highlight that other factors such as the distance of the host country, the number of
expatriates, and socio-geopolitical factors also play a role in determining visitor counts.
To gain a deeper understanding of these factors, more historical data would be necessary.
Additionally, the analysis shows that the model places significant importance on socio-
economic factors such as employment rate, population size, and mobile phone usage. These
factors demonstrate the impact of modern technology and economic stability on travel
patterns from different countries.

The validation techniques utilized in our analysis demonstrate that cross-validation,
particularly fivefold validation, is an effective method in ensuring stable and reliable results
in both training and holdout sets. The transformation of the target column played a crucial
role in stabilizing the results, as the holdout set often possesses a different data distribution
from the training set. On the other hand, using a traditional train–test split has proven to
be unreliable, as the results are heavily dependent on the presence of skewed data in the
test or holdout set. The use of k-fold cross-validation mitigates this issue by distributing
the data evenly across all iterations. A tenfold cross-validation, however, was found to be
slightly less reliable than fivefold, as the validation set size in each iteration was too small.

Incorporating real-time data up to the event starting date could potentially improve the
model’s results, particularly as team qualification status was the most significant predictor.
Access to this real-time information might enhance the model’s accuracy and its output.

4.2. Limitations

It is crucial to recognize the limitations of our model in order to fully comprehend
its capabilities and limitations. Our approach has several restrictions that must be taken
into consideration. Firstly, our dataset consists only of data from a single year, which
limits our ability to generalize the model for future World Cup events. As the patterns
that influence fans’ travel can vary greatly from year to year, it is imperative that a model
trained on data from multiple World Cup events is used to truly understand the factors
that drive attendance. The feature importance analysis shows that the model heavily relies
on socio-economic factors rather than historical performance or distance of travel, which
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could only be confirmed if the model were trained on data from different World Cups.
Additionally, our data are highly skewed, which could mean that the model optimizes for
reducing errors in countries with high attendance, rather than generalizing. This issue
could be mitigated by incorporating more data from different tournaments. Lastly, it is
important to keep in mind that the World Cup is a unique event, and each host country may
have its own set of factors that influence the rate of travel. For instance, a European country
hosting the event will have different influencing factors from a Middle Eastern country
hosting the event. With the expansion of the World Cup to 48 participating countries in
2026, these intricacies must be taken into consideration when making decisions based on
the model’s output.

While the applicability of this model is currently limited, its methodology can be
adapted for future tournaments and further data collection efforts. This adaptation will
enhance the accuracy and usability of the model. We hope that this research will inspire
additional studies on the use of machine learning in predicting visitor counts for major
sports events. Importantly, the model’s versatility extends beyond the FIFA World Cup:
it can be applied to various sports events such as continental nations cups and the UEFA
Champions League, and with minor adjustments, the model can be used for other team
sports like basketball, cricket, or volleyball. However, predicting individual sports out-
comes remains challenging. Factors such as qualified players and the presence of a fan base
in each country significantly impact attendance. Consequently, individual sports events
tend to attract primarily citizens and residents of the host country.

5. Conclusions

This paper aimed to enhance the planning of mega sports events by accurately pre-
dicting fan attendance from each country. Leveraging attendance data from the 2018 FIFA
World Cup in Russia, this research identified several key factors that contributed to the
prediction of fan attendance at the 2022 FIFA World Cup in Qatar, utilizing a range of
models. Among the models tested, stochastic gradient descent (SGD) emerged as the most
suitable, achieving an R2 value of 0.633. However, it is important to note that the predicted
attendance exhibited a discrepancy with the actual attendance, with an R2 value of 0.259.
This discrepancy can be attributed to the limited availability of sufficient data. To achieve
higher accuracy in attendance prediction, it is essential to incorporate data from a more di-
verse range of tournaments. By doing so, the models can capture the nuances and dynamics
of different sporting events and fan behaviors, leading to improved predictive performance.

Furthermore, it is crucial to acknowledge that factors beyond the scope of sports can
significantly impact attendance at mega events. Political disputes, pandemics, cultural
and racial factors, as well as global acceptance or resistance to the event, all play a role
in shaping attendance patterns. To enhance prediction accuracy, it is recommended that
further research be conducted to explore the influence of these non-sports-related factors
on attendance at mega events. By considering a more comprehensive range of variables,
future models can provide more nuanced and robust predictions, contributing to better
planning and decision-making for host countries. In summary, this study highlights the
potential of machine learning in predicting fan attendance at mega sports events. While the
stochastic gradient descent model demonstrated promise, the research underscores the need
for more extensive data inputs and the inclusion of non-sports-related factors to achieve
higher accuracy in attendance prediction. These efforts are encouraged for host countries,
as accurate estimation of potential visitors is essential for effective planning, resource
allocation, and ensuring a successful and enjoyable experience for fans and players alike.
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Appendix A

We merged the following datasets to obtain the final dataset used for training and
testing the model.

1. Testing Dataset for Qatar 2022

Summary: This dataset contains the visitor counts for the 2022 Qatar World Cup.
Source: Supreme Committee for FIFA World Cup 2022.

2. Historical Dataset for Russia 2018

Summary: This dataset contains the visitor counts for the 2018 Russia World Cup
for 75 countries.
Source: Russian delegation.

3. FIFA Rankings Dataset

Summary: This dataset contains the FIFA rankings for each country.
Source: Extracted from the FIFA website using Python requests and Pandas library.

4. Historical Performance Dataset

Summary: This dataset contains the historical performances in the FIFA World Cup
for each country.
Source: Extracted Python Beautiful Soup 4 and Pandas library.

5. Geographical Information Dataset

Summary: This dataset contains the geographical information for countries.
Source: Gist.

6. World Bank Data

Summary: This dataset contains the socio-economic indicators for countries.
Source: World Bank’s Python package—wbgapi.
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Abstract: Learning-based classifiers are found to be vulnerable to attacks by adversarial samples.
Some works suggested that ensemble classifiers tend to be more robust than single classifiers against
evasion attacks. However, recent studies have shown that this is not necessarily the case under
more realistic settings of black-box attacks. In this paper, we propose a novel ensemble approach to
improve the robustness of classifiers against evasion attacks by using diversified feature selection and
a stochastic aggregation strategy. Our proposed scheme includes three stages. Firstly, the adversarial
feature selection algorithm is used to select a feature each time that can trade-offbetween classification
accuracy and robustness, and add it to the feature vector bank. Secondly, each feature vector in the
bank is used to train a base classifier and is added to the base classifier bank. Finally, m classifiers
from the classifier bank are randomly selected for decision-making. In this way, it can cause each
classifier in the base classifier bank to have good performance in terms of classification accuracy and
robustness, and it also makes it difficult to estimate the gradients of the ensemble accurately. Thus, the
robustness of classifiers can be improved without reducing the classification accuracy. Experiments
performed using both Linear and Kernel SVMs on genuine datasets for spam filtering, malware
detection, and handwritten digit recognition demonstrate that our proposed approach significantly
improves the classifiers’ robustness against evasion attacks.

Keywords: adversarial machine learning; evasion attacks; classifier robustness; ensemble classifiers;
gradient correlation

MSC: 68T50

1. Introduction

With the rapid expansion of global data volumes, machine learning has become ex-
tensively adopted and serves as a principal tool for data analysis across various sectors
such as transportation, computer vision, finance, and security [1,2]. However, a widely ac-
knowledged truth is that machine learning models are susceptible to adversarial examples.
Attackers can probe machine learning models and maliciously manipulate their inputs to
mislead the recognition outcomes [3,4]. For instance, a machine learning-powered malware
detector ingests features extracted from Portable Executable (PE) files and categorizes a
test case as either malware or benign software. Here, an adversary could tamper with
a malware input by introducing barely perceptible perturbations, thereby tricking the
detector into classifying it as benign software [5].

Adversarial samples become serious security threats for many machine learning-based
systems, e.g., by extracting sufficient knowledge to exploit Google’s phishing pages filter [6]
and PDFRATE system-based attack [7].

Various countermeasures against evasion attacks have been proposed. Previous
research demonstrates that dimensionality reduction can be an effective defense mechanism
against evasion attacks [8]. Another defensive strategy is adversarial training [9], which
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incorporates adversarial examples into the training process. Some studies indicate that
defensive distillation can be leveraged to enhance the robustness of neural networks against
adversarial examples [10].

Furthermore, ensemble methods have been put forward as defense mechanisms.
Intuitively, it is more challenging for an attacker to undermine a group of models than
a single one. Strauss et al. [11] argue that compromising individual classifiers does not
necessarily imply that other classifiers within the ensemble will also succumb to the attack.
Their experimental findings substantiate that ensemble methods can indeed act as defensive
strategies against evasion attacks. Tramèr et al. [12] propose an ’Ensemble Adversarial
Training’ approach, aimed at training a robust classification model that is resilient to such
attacks. Previous research has also demonstrated that ensemble SVMs are generally more
robust against evasion attacks compared to a single SVM [13].

However, recent studies have indicated that conventional ensemble learning methods
may not necessarily enhance the robustness of learning models. Zhang et al. [14] and
Kantchelian et al. [15] have demonstrated that tree ensembles can be more prone to evasion
attacks than SVM classifiers, whether they are single or an ensemble. Zhang et al. [16]
noted that ensemble SVMs are not necessarily more robust against evasion attacks com-
pared to single SVMs. These studies show that it is still possible for attackers to launch
evasion attacks on ensemble models. In 2019, Pang et al. [17] proposed a novel method,
Adaptive Diversity Promoting (ADP), which improves the robustness of deep ensembles
by promoting diversity in non-maximal predictive scores while keeping the maximal (most
likely) prediction consistent with the true label for members in the ensemble. It reveals
that promoting the diversity of ensemble models can improve their robustness against
adversarial samples.

The main limitations of Linear and Kernel SVM classifiers lie in the fact that their
designs do not inherently account for security aspects, rendering them less robust against
evasion attacks. Zhang et al. [18] proposed an adversarial feature selection approach
that incorporates security considerations into the training process, thereby improving
the robustness of single SVM classifiers. Despite this improvement, single SVM classi-
fiers generally exhibit lower classification accuracy when compared to ensemble methods.
Smutz et al. [13] advocated for the use of ensemble SVMs to against evasion attacks; how-
ever, Zhang et al. [16] pointed out that ensemble SVMs are not necessarily more robust
than single SVMs against evasion attacks in practical settings.

Consequently, we propose to improve the robustness of ensemble classifiers by em-
ploying diversified feature selection and stochastic aggregation, thus aiming to create a
more resilient solution against adversarial threats. The underlying idea of our approach
is to build ensemble classifiers not based on the combination of weaker classifiers, but
the ensemble of classifiers that are robust against adversarial samples. We exploit the
adversarial feature selection approach [18] to train the base classifiers because this method
makes a trade-off between the generalization capability and its security against evasion
attacks. Experimental results on real-world datasets demonstrate that our approach signifi-
cantly enhances the classifiers’ robustness against adversarial examples while maintaining
comparable accuracy levels even when there is no attack.

The main contributions are summarized as follows:

• We propose a novel approach to train base classifiers using sequential feature selection,
wherein each base classifier encompasses all the features of the preceding trained
classifier and subsequently selects an additional new feature.

• We introduce stochastic aggregation, in which m classifiers are randomly selected from
the base classifier bank to participate in decision-making, which not only improves
the classification accuracy, but also improves the robustness against evasion attacks.

• We re-investigate the security evaluation problem, and update the gradient correlation
measure to extend it to be suitable for any real number feature.

78



Mathematics 2024, 12, 834

• To evaluate the performance of the proposed model, we launched lots of experiments,
and the experimental results demonstrate that the proposed ensemble model can
improve the robustness against evasion attacks.

2. Related Work

2.1. Evasion Attacks

The susceptibility of machine learning systems to attacks has been extensively re-
searched within the academic community [19]. These studies not only aim to uncover
the unknown vulnerabilities present in learning models but also to evaluate and address
security concerns when these models face adversarial actions. Among the plethora of
such research, evasion attacks during the testing phase have emerged as a prominent area
of interest.

Previous studies have shown that the amount and types of knowledge obtained by
an adversary can affect the success of the attack [16,19]. Many of the previously proposed
attack strategies focus on white-box attacks [15,20–22]. Gradient descent attacks were
proposed to employ the discriminant function from the targeted model to probe the decision
boundary [20]. Kantchelian et al. [15] proposed two algorithms to attack tree ensemble
classifiers. Their experimental results showed that tree ensembles such as random forests
and gradient-boosted trees are vulnerable to evasion attacks in terms of white-box attacks.

There exist works that concentrate specifically on black-box attacks. These stud-
ies mainly aim to design a robust classifier in terms of the application domains [23].
Liu et al. [24] presented ensemble-based approaches to generate transferable adversar-
ial samples that can be used as a black-box attack against (Available online: clarifai.com).
Shokri et al. [25] studied the targeted model where ‘machine learning’ was used as a
service, and presented a shadow training approach to launch black-box attacks using realistic
datasets. Their work shows that the ‘machine learning’ service model is vulnerable to
membership inference attacks. Alzantot et al. [26] argued that existing black-box attacks
usually require many times more queries either in obtaining the training information
or in obtaining the gradients based on the output scores. Therefore, they developed a
gradient-free optimization approach to create visually imperceptible adversarial samples.

2.2. Defense Against Evasion Attacks

Adversarial training has become a widely adopted approach for training robust
machine learning models [27]. The core concept behind adversarial training involves
training a classifier by incorporating adversarial examples into the training data set.
Goodfellow et al. [28] introduced the idea of considering an augmented objective dur-
ing the training procedure, which entails adding adversarial examples to the original
training dataset. Huang et al. [9], on the other hand, proposed a more efficient method
for generating adversarial examples, specifically referring to them as supervised samples.
They highlighted that the robustness of neural networks should be learned by utilizing
these supervised adversarial samples to train a substantially improved robust model.

Defensive distillation uses the additional information extracted from the distillation to
return to the training regimen to improve the robustness of networks [10]. This method
is especially robust against gradient-based attacks. However, studies [29,30] showed that
distillation is not robust to adversarial samples. Especially, when facing white-box attacks.
Thus, Meng and Chen [31] proposed MagNet, which employs several detectors and a
reformer network for defending neural networks.

As illustrated by Metzen et al. in [32], they devised subnetworks that are intercon-
nected with the main network, designed to discern whether the input to the network
is a non-adversarial sample or an adversarial one. Specifically, their process involves
initially training a classification network using non-adversarial samples. Following this,
adversarial samples are generated for each individual data point. Subsequently, a sub-
network is further trained using both the generated adversarial samples and the original
non-adversarial ones. In another work by Zhang et al. [18], they proposed an adversarial
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feature selection model which enhances the security of classifiers against evasion attacks.
This model improves robustness by incorporating specific assumptions about the attacker’s
data manipulation strategy.

On the other hand, Smutz et al. [13] demonstrated that ensemble classifiers, such as
ensemble trees or SVMs, can serve as a defense strategy against evasion attacks by leverag-
ing the diversity within the ensembles themselves. In contrast, Huang et al. [33] employed
deep ensembles as a means of adversarial defense, enhancing their resistance by promot-
ing diversity in the high-level feature representations and gradient dispersion during the
simultaneous training of deep ensemble networks. Table 1 presents the defense strategies
obtained from a literature review of current defense methods against evasion attacks.

Table 1. Defense strategies against evasion attacks.

Defense Technique Description Publication

Adversarial training Add adversarial samples to the original training data. [9,28]

Defensive distillation
Employ the extra information extracted from the
distillation process to feed back into the training
regimen for enhancing the robustness of the network.

[10]

Several detectors Employ several detectors alongside a reformer network
to defend against attacks. [31]

Statistical tests Use a statistical test to differentiate adversarial
examples from training data. [34]

Binary detector network Subnetworks that branch off from the main network
are trained to discern the input to the network. [32]

Pre-trained softmax
neural classifier

A framework for identifying out-of-distribution
samples and adversarial attacks. [35]

Random perturbations Analyze the model’s responses to an input subjected to
random perturbations. [36]

Adversarial feature
selection

This method enhances the security of the classifier
against evasion attacks by incorporating specific
assumptions about the adversary’s data manipulation
tactics.

[18]

Ensemble trees or SVMs To defend against evasion attacks by examining the
diversity within the ensembles themselves. [13]

Deep ensemble
Encourage diversity in the learning of high-level
feature representations and gradient dispersion during
the concurrent training of deep ensemble networks.

[33]

However, an adversary can still launch attacks against an ensemble of classifiers
because they generalize across classifiers. For example, Zhang et al. [16] conducted
research on evasion attacks against ensembles of SVMs and highlighted that, in practical
scenarios, ensemble SVMs can be more susceptible to evasion attacks compared to a single
SVM. Kantchelian et al. [15] showed that it is possible to employ a Mixed Integer Linear
Program solver to generate an evading instance and launch attacks against ensemble of
regression trees. In this paper, we focus on improving adversarial robustness of ensemble
classifiers by diversified feature selection and stochastic aggregation strategy.

3. Overview of the Proposed Model

In this section, we begin with a review of the evasion attack model, followed by a
description of the motivation and structure of the proposed model.

3.1. Evasion Attack Model

In order to efficaciously evaluate the robustness of learning-based classifiers against
evasion attacks, we utilize the evasion attack model initially defined in the works [19,20]. In
an evasion attack, an adversary’s goal is to estimate the decision boundary of the targeted
system and manipulate the input sample to mislead the decision of the targeted system.
Without the loss of generality, the problem of an evasion attack can be described as: given a
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machine learning system M, and an input sample x, where x can be correctly classified by
M and the output is c(x). An adversary’s goal is to try to find its classification boundary
by probing the classifier. Then, an adversary can modify the content of x after knowing
what kinds of instances can be misclassified by the classifier. Therefore, it is possible for
x be modified to x′ by minimally manipulating x, where x′ is classified incorrectly (i.e.,
c(x′) �= c(x)). Suppose the amount of manipulations is characterized by distance function
d(x, x′), the evasion attack problem can be written as [18]

E(x) = arg minx′ d(x, x′), s.t. c(x′) �= c(x). (1)

3.2. Motivation and Architecture of the Proposed Model

Conventional ensemble classifiers, such as Random Forest [37,38], Gradient-Boosting
Trees [39], Ensemble SVMs [40,41] and so on, consist of multiple weak classifiers, which in-
crease the diversity of classifiers and improve classification performance [42,43], while our
primary objective is to enhance the robustness of classifiers. Therefore, the first motivation
of our approach is to ensemble with strong classifiers. The strong classifiers here refer to the
robust classifiers without significantly reducing classification accuracy. Intuitively, the en-
semble of multiple strong classifiers guarantees both robustness and classification accuracy.

Another motivation is that the learning procedure of conventional ensemble classifiers
may enable an attacker to train a classifier with a decision boundary that closely mimics
the targeted system using a minimal amount of training data, thereby facilitating the
attack [16]. Thus, our idea revolves around modifying the learning process to obfuscate
the decision boundary, such that even if an attacker possesses knowledge of some or all
of the training data, it becomes challenging for them to accurately learn the true decision
boundary, thereby enhancing the robustness of the targeted system.

The last point is about the aggregation strategy, which usually adopts voting or
averaging [40]. No matter which method, all the classifiers in the ensemble are utilized
to make the decision for better performance. However, we intend to use strong classifiers
as the base classifiers of the ensemble. Any single classifier in the ensemble can achieve
good performance. It does not need all classifiers to participate in decision-making. We
can randomly selecting m classifiers to make the decision. There are two benefits for
doing this. One is that combining the decision of m classifiers can boost the accuracy
performance compared with a single classifier. Second, randomly select m classifiers can
confuse classification boundaries. Even if an attacker is aware of all the parameters of the
targeted system, the real decision boundary remains elusive due to the random selection of
classifiers that contribute to the decision-making process.

The architecture of the proposed model is depicted in Figure 1. Within the model, we
initially conduct feature selection to identify a set of feature vectors that are advantageous
for both robustness and accuracy performance. All selected feature vectors are stored in
a feature vector bank. Subsequently, base classifiers are trained using the chosen feature
vectors from this bank, and these classifiers are then placed in a classifier bank. Ultimately,
the decision made by the proposed model is determined through the consensus of m
randomly selected classifiers from the classifier bank.
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Figure 1. Architecture of the proposed model.

4. Proposed Model

In this section, we present the proposed model for improving adversarial robustness
of ensemble classifiers (AREC). In evasion attacks, the more an attacker knows about the
decision boundary of the targeted classifier, the easier it becomes to execute a successful
evasion. Our fundamental approach is to obfuscate the decision boundary, making it
unpredictable, while concurrently maximizing the generalization capacity of the classifier,
thus enhancing its resilience against evasion attacks.

4.1. Training Procedure of AREC

As discussed in Section 3, each classifier used in our model should not only optimize
accuracy—it is more appropriate to optimize a trade-off between accuracy and robustness.
We apply the adversarial feature selection approach to optimize the trade-off [18]. Given a
d-dimensional sample x, the criterion can be formalized as

k∗ = arg maxx̂k
G(x̂k) + λS(x̂k) (2)

where G symbolizes an estimation of the classifier’s generalization ability in the absence of
attack. S represents the classifier security against evasion attacks, λ is a trade-off parameter,
x̂k, k = 1, 2, ...d, is the mapping of x in the subspace of k selected features, and k∗ is the kth
optimal feature be selected.

Let g : X → Y be a classifier. For a given sample x ∈ X and its label y ∈ Y , G can be
formalized as

G = E(x,y)∼PX×Y l(g(x̂k), y) (3)

where E represents the expectation operator, PX×Y is the data distribution, and g(·) is the
discriminant function of classifier g. For binary classifiers Y = {0, 1} and

l(g(x̂k), y) =

{
1, if yg(x̂k) > 0
0, otherwise

(4)

As discussed in Section 3, the security term S can be formalized as

S = E(x,y)∼PX |Y=1
d(x̂k, x̂′k) (5)

where Y = 1 represents the label of malicious samples, and x̂′k is the optimal solution to
problem (1).

As the data distribution PX×Y and PX |Y=1 are typically unknown, we can estimate G
and S using a set of n fixed samples, which can be written as
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G ≈ 1
n

n

∑
i=1

l(g(x̂i
k), yi) (6)

S ≈ 1
n+

n+

∑
i=1

d(x̂k, x̂′k) (7)

where n+ denotes the number of malicious samples within the set of n samples. It should be
emphasized that the value of S varies depending on the datasets and the distance function
d(·, ·). Therefore, we can use parameter λ to avoid the dependency, e.g., one may rescale
λ by dividing its value by the maximum value of d(·, ·). Also, λ can be used to trade-off
between G and S.

The criterion (2) can be exploited to select one optimal feature at a time. After each
feature selection, the selected features are put in the feature vector bank and also used for
the next feature selection step. The base classifiers of AREC are trained using the selected
feature vectors in the feature vector bank. The training procedure of the proposed model is
shown in Figure 2. The detailed training process is given by Algorithm 1.

Figure 2. Training procedure of the proposed model.

Algorithm 1 Training AREC

Input: D = {xi, yi}d
i=1:the training dataset, λ: the trade-off parameter.

Output: M[d, d]: the selected feature matrix.
1: M[a, b] = 0, a = 1, ..., d and b = 1, ..., d
2: S ← ∅, U ← {1, ..., d}
3: for j from 1 to d do
4: for each feature k ∈ U do
5: F ← S ∪ {k}
6: θ = 0, and then θ f = 1 for f ∈ F
7: Estimate Gk(θ) and Sk(θ) using cross-validation on D⊆ = {xi

θ, yi}d
i=1

8: end for
9: λ

′
= λ(maxk Sk)

−1

10: k∗ =arg maxk Gk(θ) + λ
′
Sk(θ)

11: S ← S ∪ {k∗}
12: F ← S
13: θ = 0, and then θ f = 1 for f ∈ F
14: M[j] = θ
15: end for
16: return: M

4.2. Aggregation Strategy of AREC

Following feature selection, each feature vector in the feature vector bank is utilized
to train a base classifier and subsequently added to the base classifier bank. Ultimately, m
classifiers are randomly selected from the classifier bank for decision-making purposes.
This design inherently increases confusion, making it difficult for an attacker to predict
which classifiers will be engaged in the decision process. Put simply, this configuration
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renders evasion attacks more challenging. Moreover, it is important to note that every
individual classifier within the ensemble is trained using carefully selected features, striking
a balance between accuracy and robustness. Each classifier operates within a unique feature
space and assigns different feature weights. Collectively, these characteristics render the
proposed approach more robust against evasion attacks. The classification procedure of the
proposed model is shown in Figure 3 and Algorithm 2.

Figure 3. Classification procedure of the proposed model.

Algorithm 2 Classification Procedure of AREC

Input: x : the input sample.
Output: y : the label of x.

1: Randomly select m classifiers from [Gd1 , Gd2 , ..., Gdn ] to formR = {Gr1 , ..., Grm}, where
m is an odd number and m < n

2: k = 1
3: for G ∈ R do
4: If G(x) > 0 then Ck = 1, else if G(x) < 0 then Ck = −1
5: k = k + 1
6: end for

7: If
m
∑

k=1
Ck > 0 then y = 1, else y = −1

8: return: y

5. Classifier Security Evaluation

Following the adversary model presented in [19,20,44], an attacker’s knowledge
can be described in four levels: (1) the training data D; (2) the feature set X ; (3) the
learning algorithm f , and (4) the targeted model parameters p. Thus, the knowledge can be
characterized in terms of ϕ = (D,X , f , p). According to this assumption, the knowledge of
an attacker can be divided into two categories:

White-box attacks: An attacker is assumed to know all of the targeted model, namely
ϕ = (D,X , f , p).

Black-box attacks: In this scenario, an attacker is assumed to possess some level
of knowledge about the targeted model. In this paper, we suppose that the attacker
knows f and X , whereas D and p remain unknown to the attacker. However, an attacker
can estimate the parameters namely p̂ trained on a subset of D or a surrogate dataset
D̂ = {(x̂i, ŷi)}Ns

i=1 of Ns samples drawn from the resemble distribution of D. The surrogate
dataset may be collected from an alternate source. Thus, we can define this scenario as
ϕ̂ = (D̂,X , f , p̂).

In this paper, we examine the robustness of SVM classifiers under black-box attack
scenarios (while the evaluation under white-box attacks will be given in discussion). With
regard to the attacker’s knowledge about the dataset D, we consider two distinct attack
situations. One is subset scenario which assumes a subset of D is able to be collected by an
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attacker, i.e., D̂ ⊂ D. The other is surrogate data scenario which assumes a surrogate dataset
D̂ drawn from the resemble distribution of D can be collected by an attacker.

The gradient descent evasion attack is adopted to solve the optimization problem in
Equation (1), which was shown to be effective against SVM-based classifiers [16,20]. The
process of the gradient descent evasion attack is detailed in Algorithm 3.

The gradients of single SVMs and ensemble SVMs can be found in [16]. Here, we give
the gradients of the proposed ensemble SVMs used in this paper followed by the updated
gradient correlation measure.

Algorithm 3 Gradient Descent Evasion Attack

Input: x0: the initial attack point, α: the gradient step size, dmax: the maximum number
of iterations.
Output: x: the final attack point.

1: Make ∇g(x0) and x0 a matrix [∇g(x0), x0]
2: [v, x] ← Rearrange the matrix [∇g(x0), x0] according to the descending order of
|∇g(x0)|

3: i← 0
4: while g(x) > 0 && i < dmax do
5: i← i + 1
6: if vi > 0 && (xi − α) ∈ [0, 1] then
7: xi ← xi − α
8: else if vi < 0 && (xi + α) ∈ [0, 1] then
9: xi ← xi + α

10: end if
11: end while
12: return: x

5.1. Gradients of the Proposed Ensemble SVMs

Because the classifiers that participate in decision-making are randomly selected from
the classifier bank, it is difficult to find the exact gradient. In this section, we give three
approaches to find approximate gradients. As discussed above, we assume an attacker
knows X and f . Here, we further assume that the attacker is aware of the number of
classifiers selected in the ensemble, which is parameter m.

• Averaging gradient: This means we average each gradient of the classifier from the
classifier bank, the gradient function is just like gradients of ensemble SVMs.

• Gradient of the minimal features: Since only one feature is added from one feature
vector to the next, the shortest feature vector must be contained within all the other
vectors, suggesting that these features could be the most significant in the ensemble.
Typically, classifiers do not use very few features, such as just one or two. It is
worthwhile to investigate the attack efficiency leveraging this gradient.

• Gradient of the maximal features: Given the difficulty in determining which specific
features contribute significantly to the classification process, it is a prudent choice to
employ all available features.

5.2. Updated Gradient Correlation

In [16], we proposed a gradient correlation measure to evaluate the similarity of
gradient between the surrogate and targeted classifiers, which is given by

GC =
∑n

k=1 C(k)
n

(8)

where

C(k) =
∑k

i=1 v′i
∑k

i=1 vi
(9)

85



Mathematics 2024, 12, 834

Let v+ denote the original gradient vector of the targeted classifier, v is the vector
which sorted |v+| in descending order, i.e., v1 ≥ v2 ≥ ... ≥ vn. v′ is the gradient vector of
surrogate classifier with the absolute gradient value of target classifier for the same features
between the targeted and surrogate classifiers. n is the amount of features adopted in the
targeted classifier.

There are two issues with this metric. First, in GC, gradients of all n features are
computed, but not all features need to be modified to launch an attack. Therefore, in the
updated gradient correlation (UGC), only gradients of the modified features are taken
into account. The second issue is that the original GC only considers binary features. In
the updated version of GC, we expand it to accommodate any real-valued feature. The
updated gradient correlation is given by

UGC =
∑l

i=1 αv′i
∑l

i=1 αvi
=

∑l
i=1 v′i

∑l
i=1 vi

(10)

where l represents the number of modified features to let c(x′) �= c(x). α denotes the step
size and α ∈ (0, 1], when each feature value is normalized to [0,1]. For binary features, α = 1.
The detailed procedure of updated gradient correlation measure is given by Algorithm 4.
From Algorithm 4, we can see that UGC ∈ [0, 1], UGC = 1 and UGC = 0 correspond to
the most correlated and the most uncorrelated gradient distribution, respectively.

Algorithm 4 Updated Gradient Correlation

Input: [v+, f+], v+: the original gradient vector of the targeted classifier, f+: the
features adopted in the targeted classifier; [v−, f−], v−: the original gradient vector of
the surrogate classifier, f−: the features adopted in the surrogate classifier, f− ⊆ f+; n:
the amount of features adopted in the targeted classifier; m: the amount of features
adopted in the surrogate classifier; l: the amount of modified features.
Output: UGC

1: [v, f]← sort |v+| in descending order;
2: [v∗, f∗]← sort |v−| in descending order;
3: j← 1;
4: while j ≤ m do
5: p← find the position of f ∗j in f if exist, otherwise p← 0;
6: if p > 0 then
7: v′j ← vp

8: else
9: v′j ← 0

10: end if
11: j← j + 1
12: end while
13: if m < n then
14: v′j ← 0, j = m, m + 1, ..., n
15: end if

16: UGC =
∑l

i=1 v′i
∑l

i=1 vi
17: return: UGC

To illustrate how the updated gradient correlation works, consider the following
case with five binary features (see Figure 4). The top left of Figure 4 shows the original
gradient vector v+ and the feature vector f+ from the targeted classifier. v denotes the
vector sorted by |v+| in descending order and f is the feature vector sorted with v. The top
right of Figure 4 shows the original gradient vector v− and the feature vector f− from the
surrogate classifier. v∗ denotes the vector sorted by |v−| in descending order and f∗ is the
feature vector sorted with v∗. v′ is the gradient vector of the surrogate classifier relative to
the targeted classifier.
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Why use v′? From Algorithm 3, one can see that, in a gradient descent attack, an
attacker modifies features according to the value of their gradients. In this example,
according to the sequence of modifying features obtained by an attacker, the first feature
should be modified is f3, and the gradient change is 3 for the targeted system by modifying
f3. According to the gradient of the targeted system, the feature with the greatest impact is
f5. By modifying f5, the gradient change is 4. Therefore, in the case of modifying only one
feature (l = 1), the gradient ratio between the surrogate system and the targeted system is
UGC = 3/4. If two features need to be modified (l = 2), an attacker will modify f3 and f2,
the sum of the gradients corresponding to these two features is 4, while for the targeted
system, modifying two features can make the gradient change 7, so UGC = 4/7. In the
case, we assume an attacker needs to modify three features to let c(x′) �= c(x). Thus, l = 3
and UGC = 6/9. It should be noted that we use GC to represent the updated version of
gradient correlation.

Figure 4. An example of the updated gradient correlation.

6. Experimental Evaluation

In this section, we evaluate the robustness of ARE SVMs, RSE SVMs (Random Sub-
space Ensemble SVMs [13,37]), a conventional SVM and a SVM trained by adversarial
feature selection [18]; we call this approach AFS SVM. However, the authors did not show
how to determine the optimal number of selected features. Through the analysis of the
results in the paper [18], we discovered that both classification accuracy and robustness
perform satisfactorily when approximately half of the total number of features are selected
to train the SVM. Consequently, half the number of features were chosen to train the AFS
SVM. Three tasks, namely spam email filtering, malware detection and digit recognition,
are considered in the evaluation. In both the subset scenario and the surrogate data scenario,
we vary an attacker’s knowledge by portions of data, 10%, 20%, ..., 100%.

For RSE SVMs, each ensemble classifier contained 100 independent base classifiers
and the feature bagging ratio was set to 50%. For ARE SVMs, we applied five-fold cross-
validation to train models. For each Linear-SVM-based classifier, the SVM regularization
parameter was set to C = 1. For all RBF-SVM-based classifiers, we set the regularization
parameter C = 100 and the kernel parameter γ = 0.01.

Both the updated gradient correlation and the hardness of evasion [18] measures were
adopted for security evaluation. For a single SVM, AFS SVM and RSE SVMs, we ran
each experiment 30 times and the results were averaged to produce the figures. For ARE
SVMs, 30 independent models were built and we ran 30 times on each model. Thus, the
results showed in the figures were averaged by 900. All experiments in the paper were
implemented using MATLAB. The following shows the experimental results on three real
application datasets.
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6.1. Feasibility Analysis on Spam Email Filtering

We consider the PU3 dataset in the spam email filtering task [45,46]. We apply the
experimental setup described in [16]. There are three subsets split by 4130 emails—one for
training, one is used for the surrogate data, and the last one is used for testing.

Firstly, we give the results based on Linear-SVM and use the spam email filtering case
study to show how to select parameters for ARE SVMs. Then we compare the results with
single SVM, AFS SVM and RSE SVMs. The left side of Figure 5 shows the classification
accuracy achieved by ARE Linear-SVMs trained using single feature vectors. We can see
that the more features are selected in the vector, the the higher accuracy, when less than
40 features are selected. The accuracy is not much different when more than 40 features are
selected in the vector. In order to obtain high and stable classification accuracy, the feature
vectors whose feature number is more than half of the original feature space are selected
to train the classifiers in the rest of the experiments. The right side of Figure 5 shows the
classification accuracy achieved by ARE Linear-SVMs in which the base classifiers are
trained using feature vectors with more than 100 features. It is clear that higher accuracy is
achieved with a larger m. We believe m = 3 is a good choice for our evaluation tasks.
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Figure 5. Classification accuracy achieved by ARE Linear-SVMs trained using single feature vector
(left) and by ARE Linear-SVMs with m (right) on the PU3 dataset.

Figure 6 shows the mean ROC curves of the four methods based on Linear-SVM and
RBF-SVM, respectively. From the figure, it is evident that ARE SVMs exhibit the second-
highest classification performance, with RSE SVMs demonstrating the top performance
among them.
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Figure 6. Mean ROC curves based on Linear-SVM (left) and RBF-SVM (right) on the PU3 dataset.

As illustrated on the left-hand side of Figure 7, ARE SVMs consistently demonstrate
higher robustness compared to RSE SVMs and single SVMs, regardless of the amount of
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data accessible to the attacker. Furthermore, this figure highlights that among the three
types of gradients in ARE SVMs, the averaging gradient proves to be more effective than
the rest. There is not a significant distinction between the gradient of minimal features and
the gradient of maximal features.

On the right side of Figure 7, the gradient correlation measures for the four methodolo-
gies are displayed. It can be observed that ARE SVMs consistently exhibit lower GC scores
than RSE SVMs and single SVMs, corroborating the findings in the left-hand portion of the
figure. A higher GC score indicates a closer approximation of the gradient estimate between
the surrogate and targeted classifiers, rendering the system more susceptible to attacks.
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Figure 7. Hardness of evasion (i.e., the average minimum number of modified words required to
classify all spam emails as legitimate) (left) and gradient correlation GC (right) based on Linear-SVM
in the subset scenario.

Figure 7 also reveals that, for the ARE approach, the averaging gradient attack is more
effective than the other two methods. Thus, we only give results of the averaging gradient
attack in the rest of the paper.

Figure 8 shows that, under the surrogate data attack scenario, ARE SVMs are still
harder to compromise than RSE SVMs and single SVMs. In this scenario, the amount of
surrogate data is not as critical as that in the subset scenario and RSE SVMs are always
easier to compromise by modifying fewer words on average. The gradient correlation
results shown in the right side of Figure 8 also support this observation, which is ARE
SVMs always have lower gradient correlation scores than RSE SVMs and single SVMs and
the scores of RSE SVMs much higher than the others.

10 20 30 40 50 60 70 80 90 100
Percentage of Surrogate Data (%)

4

6

8

10

12

14

16

18

20

H
ar

dn
es

s 
of

 E
va

si
on

Linear-SVM
AFS Linear-SVM
RSE Linear-SVMs
ARE Linear-SVMs

10 20 30 40 50 60 70 80 90 100
Percentage of Surrogate Data (%)

0.4

0.5

0.6

0.7

0.8

0.9

1

G
ra

di
en

t C
or

re
la

tio
n

Linear-SVM
AFS Linear-SVM
RSE Linear-SVMs
ARE Linear-SVMs

Figure 8. Hardness of evasion (left) and gradient correlation GC (right) based on Linear-SVM in the
surrogate data scenario on PU3 dataset.

The results of RBF-SVM-based classifiers are shown in Figure 9. The results show the
same trend as Linear-SVM-based classifiers. The ARE classifiers always have the highest
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hardness of evasion scores and lowest gradient correlation scores, which indicates the ARE
approach is more robust than RSE SVMs and single SVMs.
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Figure 9. Hardness of evasion (top) and gradient correlation GC (bottom) based on RBF-SVM on the
PU3 dataset.

6.2. Case Study on Malware Detection in PDF

Malware detection is another real-world task we considered in this paper. Also, the
PDF dataset and the experimental setup described in [16] are applied in these experiments.

In this task, the gap in evasion difficulty between single SVMs and RSE SVMs is
quite narrow for both Linear-based and RBF-based SVMs, and AFS SVMs significantly
outperform these two methods according to Figure 10. Notably, ARE SVMs prove to be the
most resistant to evasion, requiring almost twice the number of features to be manipulated
for successful evasion compared to Linear-SVMs, RBF-SVMs, and RSE SVMs when the
attacker possesses identical knowledge about the datasetD. Figure 11 presents the gradient
correlation scores, which further substantiate this observation, showing that ARE SVMs
consistently display the lowest scores. This suggests that ARE SVMs exhibit enhanced
robustness against gradient descent attacks.
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Figure 10. Hardness of evasion (i.e., average minimum number of keywords that need to be added
to make each malicious PDF file be misclassified as benign) on the PDF dataset in the subset scenario
(left) and the surrogate scenario (right).
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Figure 11. Gradient correlation GC on the PDF dataset in the subset scenario (left) and the surrogate
data scenario (right).
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6.3. Case Study on Handwritten Digit Recognition

The third task involves handwritten digit recognition, utilizing the MNIST dataset. In
accordance with [14], we specifically discriminate between the digits “2” and “6”. Thus,
we have 11,876 images for training and 1990 images for testing purposes. From the pool of
11,876 images, we randomly select 1000 samples and partition them into two subsets, each
containing 500 images, which serve as the training data and the surrogate data, respectively.
To assess robustness, we choose 100 instances of the digit “6” from the test data, ensuring
that all the considered models accurately recognize these 100 instances. For evaluating the
overall classification performance, all 1990 images are employed.

From Figure 12, it can be discerned that for both Linear-based and RBF-based SVMs,
ARE SVMs consistently maintain the second-highest classification performance. However, in
the case of Linear-based SVMs, the optimal performance is achieved by RSE Linear-SVMs,
while for RBF-based SVMs, the highest degree of performance is attributed to RBF-SVM.
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Figure 12. Mean ROC curves on MNIST dataset based on Linear-SVM (left) and RBF-SVM (right).

In the digit-recognition task, Figure 13 confirms that ARE SVMs remain the most
robust classifiers. The performances of the other methods are relatively similar. The
gradient correlation scores displayed in Figure 14 further validate this observation, as ARE
SVMs consistently exhibit the lowest scores, while the scores of the other three approaches
are closely clustered.
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Figure 13. Cont.
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Figure 13. Hardness of evasion (i.e., average minimum number of modified pixels required to
misclassify each digit “6” as “2”) on MNIST dataset in the subset scenario (left) and the surrogate
scenario (right).
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Figure 14. Gradient correlation GC on MNIST dataset in the subset scenario (left) and the surrogate
data scenario (right).

7. Discussion and Limitations

7.1. Robustness under White-Box Attacks

As discussed above, even if an attacker knows all of the training data, they still cannot
estimate the targeted model parameters p accurately. Usually, an attacker does not have the
ability to directly attack the targeted system to obtain the parameters p. However, in order
to evaluate the robustness of AREC in the worst-case, we show the experimental results
under white-box attacks. In this case, an attacker is assumed to know the same knowledge
as the targeted system, ϕ = (D,X , F, p). Nevertheless, the final classifiers used for making
the decision are still selected randomly. The optimal attack for an attacker is applying the
average gradient. Experimental results are shown in Table 2. All results are obtained by
averaging 30 independent runs. It should be noted that the experimental results of other
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algorithms in Table 2 are also obtained under the assumption that an attacker knows the
same knowledge as the targeted system.

Table 2. Hardness of evasion under white-box attacks.

Model PU3 PDF MNIST

Linear-SVM 4.08 5.61 10.44
AFS Linear-SVM 4.41 9.60 8.00
RSE Linear-SVMs 5.21 6.48 11.17
ARE Linear-SVMs 5.43 12.01 11.28

RBF-SVM 4.33 6.44 21.48
AFS RBF-SVM 4.83 10.44 14.87
RSE RBF-SVMs 5.31 6.88 18.76
ARE RBF-SVMs 5.64 13.95 20.96

For the PU3 dataset, the results obtained with ARE SVMs and RSE SVMs are compa-
rable, both outperforming single SVMs. When it comes to the PDF dataset, ARE SVMs
notably surpass RSE SVMs and single SVMs in terms of performance. Regarding the
MNIST dataset, ARE SVMs continue to deliver strong performance. Based on these ob-
servations, we can conclude that even under the most adverse conditions, the proposed
method exhibits greater robustness against evasion attacks compared to RSE SVMs and
single SVMs.

7.2. Generalization Capability

Each base classifier in AREC is selected by evaluating G(θ) and S(θ). According to [18],
these classifiers will not reduce the classification accuracy significantly compared with a
single classifier. Moreover, decision-making involving m classifiers improves classification
accuracy. Our experimental results show that the classification performance of ARE SVMs
outperforms single SVMs in most cases. It is noteworthy that almost every malicious PDF
is correctly recognized by all eight models in the PDF dataset, hence we do not include
these results in Table 3.

Table 3. Classification accuracy.

Model PU3 MNIST

Linear-SVM 0.9440 0.9729
AFS Linear-SVM 0.9395 0.9698
RSE Linear-SVMs 0.9565 0.9746
ARE Linear-SVMs 0.9447 0.9733

RBF-SVM 0.9448 0.9910
AFS RBF-SVM 0.9410 0.9763
RSE RBF-SVMs 0.9599 0.9874
ARE RBF-SVMs 0.9499 0.9800

7.3. Limitations

While the proposed approach yields encouraging outcomes, there are several limita-
tions to consider. Firstly, the wrapper-based adversarial feature selection technique intro-
duced in [18] is incorporated during the training process. This feature selection method
effectively balances accuracy and robustness. However, it entails increased computational
complexity relative to single classifiers and RSE classifiers, particularly when dealing with
a large initial number of features. Although classifiers with very few features are generally
not preferred, employing feature selection via backward elimination can potentially reduce
training time. Nonetheless, this does not address the issue at its core. Future work calls for
the development of more efficient strategies to overcome this challenge.

Secondly, due to the hierarchical nature of feature selection in the proposed model,
each classifier in the ensemble adds only one additional feature based on the previous
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classifier. In theory, it is possible that an attacker might infer some critical features from
the feedback provided by the targeted system. However, practically speaking, this is quite
challenging. The reason being that the outcome returned by the targeted system each time
is derived from a unique combination of classifiers, and the system only returns the label
of a sample, which does not reveal the value of the discriminant function g(x). Hence, it
becomes difficult to estimate the features of classifiers from the received results. An extreme
scenario that cannot be entirely dismissed is if an attacker gains access to the parameters p

of the targeted system through social engineering tactics or other means.

8. Conclusions

Machine learning technology was initially designed with the aim of enhancing gener-
alization capabilities. Under this objective, machine learning has thrived and been widely
deployed across numerous domains such as image recognition, intrusion detection, among
others. However, conventional learning-based algorithms are inherently susceptible to ad-
versarial attacks because their original design did not account for the presence of intelligent
adversaries capable of manipulating their behavior to deceive classification algorithms.

In this paper, we propose a method to improve the adversarial robustness of ensemble
classifiers through diversified feature selection and stochastic aggregation. Unlike con-
ventional ensemble classifiers that aggregate multiple weak classifiers, our ensemble is
composed of multiple strong classifiers. The strong classifiers within AREC are trained by
optimizing both their generalization ability and robustness against evasion attacks. For the
ensemble integration strategy, the generalization capacity is further bolstered by employing
multiple classifier voting. The application of randomly selecting decision classifiers serves
to obfuscate the decision boundary of AREC. Additionally, we have updated the gradient
correlation measure to ensure it is applicable to any real-number feature. Experimental
results across various tasks such as spam email filtering, PDF malware detection, and
handwritten digit recognition demonstrate that our proposed approach offers superior
robustness compared to conventional single and ensemble classifiers. Furthermore, in
contrast to the state-of-the-art algorithm AFS [18], which trades off generalization capabil-
ity for security, our method significantly boosts robustness while marginally improving
generalization capability.

Our future works involve designing an efficient adversarial feature selection algo-
rithm to mitigate the training costs associated with AREC. Additionally, we aim to extend
the proposed gradient correlation metric to explore the security performance of diverse
learning-based classifiers beyond the current scope.
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Abstract: The concentration of ammonia nitrogen is significant for intensive aquaculture, and if
the concentration of ammonia nitrogen is too high, it will seriously affect the survival state of
aquaculture. Therefore, prediction and control of the ammonia nitrogen concentration in advance is
essential. This paper proposed a combined model based on X Adaptive Boosting (XAdaBoost) and
the Long Short-Term Memory neural network (LSTM) to predict ammonia nitrogen concentration in
mariculture. Firstly, the weight assignment strategy was improved, and the number of correction
iterations was introduced to retard the shortcomings of data error accumulation caused by the
AdaBoost basic algorithm. Then, the XAdaBoost algorithm generated and combined several LSTM
su-models to predict the ammonia nitrogen concentration. Finally, there were two experiments
conducted to verify the effectiveness of the proposed prediction model. In the ammonia nitrogen
concentration prediction experiment, compared with the LSTM and other comparison models, the
RMSE of the XAdaBoost–LSTM model was reduced by about 0.89–2.82%, the MAE was reduced
by about 0.72–2.47%, and the MAPE was reduced by about 8.69–18.39%. In the model stability
experiment, the RMSE, MAE, and MAPE of the XAdaBoost–LSTM model decreased by about 1–1.5%,
0.7–1.7%, and 7–14%. From these two experiments, the evaluation indexes of the XAdaBoost–LSTM
model were superior to the comparison models, which proves that the model has good prediction
accuracy and stability and lays a foundation for monitoring and regulating the change of ammonia
nitrogen concentration in the future.

Keywords: aquaculture; adaptive boosting algorithm; LSTM; combined prediction

MSC: 37N99

1. Introduction

In the world, China is the first aquaculture country and the first fishery country [1], and
the output of aquatic products has ranked first in the world for 29 consecutive years since
1989 [2]. China’s fish production from aquaculture has been far more than other countries
since 1991. Aquaculture has changed the status quo of traditional capture fisheries, and
aquaculture production has exceeded capture production. In the aquaculture process, the
complex culture environment, high culture density, biological excretion, and other reasons
will lead to the rise of ammonia nitrogen concentration in the water body. The increase in
ammonia nitrogen concentration will lead to the rise of toxicity in water, which will lead to
the poisoning of large areas of aquatic animals. If water quality control is not carried out in
time, it will lead to many deaths [3]. Therefore, in aquaculture, it is crucial to monitor and
control the ammonia concentration in advance.

At present, the detection of ammonia nitrogen concentration in China is divided into
two categories [4]. One is the sampling laboratory detection method, which is highly
accurate, but the time of detection is long, the cost is high, and the experimental results
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cannot be reproduced. The other is the reagent method, using reagents or test paper on-
site inspection; the method is short in time, but the accuracy is low, and both detection
methods cannot provide a stable basis for the current water quality control. With the
development of deep learning, the emergence of the neural network prediction model
provides a new method for monitoring and controlling water quality in aquaculture. In
the past, many scholars used mathematical models or statistical models to predict water
quality parameters in aquaculture water quality; the standard models mainly included
linear regression [5] and multiple regression models [6]. The researchers used these models
to establish a linear relationship between water quality parameters and input variables.
However, due to the complex environment of aquaculture water quality and the coupling
relationship between water quality parameters, although these regression models can
realize the prediction of water quality parameters, the prediction accuracy is difficult to
guarantee. With deep research, water quality parameter prediction models gradually
considered the nonlinear relationship between input and output. Commonly used models
include back propagation neural network (BPNN) and support vector machine (SVM)
neural network. Chen et al. [7] used backward propagation neural network (BPNN), the
adaptive neural fuzzy inference system (ANFIS) method, and multiple linear regression
(MLR) models to predict the dissolved oxygen concentration of Feitsui Reservoir in northern
Taiwan. The results showed that the BPNN model and MLR model are less accurate than
the ANFIS. Nong et al. [8] used an SVM neural network model coupled with data denoising,
feature selection technology, and parameter optimization methods to establish a dissolved
oxygen model. They used the model to predict dissolved oxygen in different locations of
the South-to-North Water Transfer project. The results showed that the SVM neural network
coupled with multiple intelligent technologies is more accurate than the comparison model.
Liu Ru et al. [9] used the Pearson correlation coefficient (PCC) to analyze the correlation of
each index in water and monitor water quality with five indicators with high correlation.
The K nearest neighbors (KNN) algorithm was used. The integrated learning AdaBoost
algorithm and decision tree three machine learning algorithms predicted the monthly
average value of ammonia nitrogen concentration in a water body. This method provided
solutions for water body data analysis and adopted a variety of algorithms to verify the
prediction. The structure of these models is relatively simple and cannot be predicted
with high precision. Recurrent neural networks (RNN) have emerged with the continuous
development of theories and techniques. RNN can retain the history information in the
data by hiding the state and contributing the included history information to the calculation
of the current time step. In addition, RNN can capture historical patterns in the data as it is
input, improving the accuracy of the final prediction. Sagar et al. [10] used wireless sensors
to collect pollutant concentration data in Indian cities and input the acquired data into
the RNN model. Experiments showed that the RNN model performed well on different
urban pollutant data sets. However, RNN has the phenomenon of gradient disappearance
or explosion, so many scholars have improved the RNN to obtain two models: Long
Short-Term Memory Network (LSTM) and Gated Recurrent Unit (GRU). Nitzan et al. [11]
combined climate measurement data with water quality data and used LSTM to predict
ammonia nitrogen and nitrate concentrations in water after wastewater treatment. The final
experiment showed that the accuracy of ammonia nitrogen concentration was 99%, and the
accuracy of nitrate concentration was 90%. Huan et al. [12] used a gradient lifting decision
tree to select data features and LSTM to predict dissolved oxygen; the results showed
that the accuracy was better than that of the comparison model PSO-LSSVM. In data
acquisition, the sensor will cause noise in the collected data due to human or environmental
factors. Therefore, some scholars have combined the denoising intelligence algorithm
with the neural network model and applied it to water quality parameter prediction (see
Yan et al. [13]). First, the original ammonia nitrogen concentration data is divided into
several sub-sequences using variational modes. Secondly, the GRU model is used to
model and predict the subsequence. Finally, the prediction results of the subsequences are
added together. The results show that the prediction accuracy is improved compared with
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the comparison model. In addition, some scholars use intelligent algorithms to enhance
the performance of neural network models. Jannatul et al. [14] used the particle swarm
optimization (PSO) method to optimize the hyperparameters in the LSTM model to improve
the LSTM model’s ability to learn time series features. They conducted experiments
using the water level observation data of observation stations along the Brahmaputra
River, Ganges River, and Megna River in Bangladesh. The final results showed that the
PSO–LSTM model was superior to the ANN, PSO–ANN, and LSTM models in predicting
water level. Ganiyu et al. [15] adopted adaptive boosting (AdaBoost) to improve the LSTM
and GRU models and conducted experiments on the crude oil price data set. By comparing
single LSTM and GRU models, it has been proved that AdaBoost improves the prediction
performance of the LSTM and GRU models.

This paper proposes a solution to the issue of inaccurate and unstable prediction mod-
els for ammonia nitrogen concentration. The proposed solution is a combined XAdaBoost
and LSTM prediction model that utilizes turbot culture data collected by the intensive
seawater circulation control system. The model takes inputs such as temperature, dissolved
oxygen, pH, and conductivity and predicts the ammonia nitrogen concentration for the
next moment. To address the error accumulation problem of the AdaBoost base algorithm,
the paper proposes a new weight assignment strategy, introduces a corrective iteration
number, and combines the improved AdaBoost algorithm with multiple LSTM sub-models
for prediction.

2. Introduction of Basic Theory

2.1. Adaptive Enhancement Algorithm

Adaptive boosting [16] (AdaBoost) is a common type of integrated learning algorithm
boosting class, first applied to classification problems and gradually used in regression
tasks as the algorithm evolves [17]. AdaBoost’s key feature is its adaptability. This is
achieved by adjusting the weights of data points based on their error rates in the previous
sub-prediction model. Data with high error rates are given more weight, while data with
low error rates are given less weight. This process is repeated for each sub-prediction model,
using the newly weighted data to train the next model. Each sub-prediction model builds
on the previous one in the iteration process, aiming to solve the data poorly processed by
the earlier sub-model. When the number of iterations or the error rate satisfies the set value,
the algorithm will stop the operation and save the final model. The principle of AdaBoost
is shown in Figure 1.

Figure 1. Schematic diagram of adaptive enhancement algorithm.

As can be seen from Figure 1, the algorithm can be divided into three modules: the
initial value weight assignment module, the sub-prediction model training module, and
the sub-model combination module. The initial value weight assignment module mainly
assigns initial values to the data sample weights D(1). m sample training sets are shown in
the figure, and then each data initial value is 1/m. Suppose our training samples are:

T = {(x1, y1), (x2, y2), (x3, y3) . . . (xm, ym)} (1)
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where represents the sample set, xm, ym represents the input quantity and output quantity,
respectively.

Then the output weights of the nth weak learner in the training set are

D(n) = (wn1, wn2, wn3, wn4, . . . , wnm); w1i =
1
m

; i = 1, 2, 3, . . . , m (2)

The sub-model training module refers to training the weak learner model to the
optimal state by selecting part of the data set, comparing the predicted values with the
actual values in the training process, obtaining the training data errors, and increasing the
data weights with significant error rates; otherwise, reducing them. The updated weights
are applied to the next sub-model in the prediction process, and each sub-model puts more
operations on the data with more significant error rates based on the previous sub-model.
The sub-model combination is the process of combining trained models to form a robust
learning model, in which more weights are assigned to the sub-prediction models with
small error rates to ensure the accuracy of the vital learning model.

2.2. Long and Short-Term Memory Neural Networks

Recurrent neural networks can handle time series problems, but with the continuous
input of time series, the traditional recurrent neural networks are prone to gradient dis-
appearance or gradient explosion due to the abnormal computation of gradients, which
leads to the degradation of model accuracy [18]. To solve the impact caused by gradient
disappearance or gradient explosion of recurrent neural networks, the LSTM model is
generated by introducing three gating units and memory units based on the improvement
of traditional recurrent neural networks [19]. The control of the information replaces the
information retained in the memory unit through the three gating units; the principle of
the LSTM algorithm is shown in Figure 2.

Figure 2. LSTM algorithm schematic.

Figure 2 shows that the input of each LSTM cell contains the current moment input
information and the previous moment memory information, and the LSTM cell contains
forgetting gates, input gates, and output gates to filter the information in the memory cell
by forgetting gates:

ft = σ(Wf ∗ [ht−1, xt] + b f ) (3)

where, ft is the output activation value, σ is the Sigmoid function, after Sigmoid can obtain
the number between 0 and 1, it will be multiplied with the memory unit of the previous
moment bit by bit for memory retention and forgetting, Wf represents the weight matrix in
the forget gate, b f represents the bias matrix in the forget gate, ht−1 represents the output
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state at the previous time, xt represents the input at the current time. The final result is a
number between 0 and 1. When ft is zero, the information is forgotten, and when ft is 1,
the information is retained.

The input gate determines how much information about the current moment is re-
tained. The purpose of the input gate is to determine the importance of the current input to
the overall situation:

it = σ(Wi ∗ [ht−1, xt] + bi) (4)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc) (5)

where i is similar to the formula of the forgetting gate, which filters the input at the current
moment. The candidate output state of the current moment of the input gate is a nonlinear
transformation of the hidden state of the previous moment and the input of the current
moment. tanh is another activation function, no matter how large the input of the activation
function is; the final output is the number in the interval [−1,1]. W represents the weight
matrix in the output gate, and C represents the candidate state weight matrix in the output
gate. Both W and C are bias matrices.

The forgetting gate and the input gate work together to update the memory, and the
new memory contains the memory retained by the forgetting gate and the memory added
by the input gate.

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

Ct represents the state of the cell at the current time; it can be seen from Equation (6) that
the current cell state is affected by the forgetting gate as well as the input gate.

Filter which of the current memory cells are used as the hidden state and output for
the next moment through the output gate.

Ot = σ(Wo ∗ [ht−1, xt] + bo) (7)

Ot is the output value of the output gate at the current time and Wo is the weight matrix
of the output gate at the current time. bo is the bias matrix of the output gate. The output
state at the current moment is calculated using the following formula:

ht = Ot ∗ tanh(Ct) (8)

ht will be fed into the next LSTM cell as the input information at the next moment.
LSTM improves the long-term dependence problem in RNN by introducing the struc-

ture of the cell state including the forgetting gate, input gate, and output gate, and its
performance is usually better than the temporal recurrent neural network and hidden
Markov model. LSTM itself can also be used as a complex nonlinear unit to construct a
larger deep network and this sets the stage for our following research.

3. XAdaBoost–LSTM Based Ammonia Concentration Prediction Model

3.1. Fundamentals of Predictive Models

The LSTM ammonia nitrogen concentration prediction model is based on time series
prediction, taking into account the effects of temperature, salinity, and pH while also
considering the temporal nature of ammonia nitrogen concentration. However, the stability
of a single LSTM ammonia nitrogen concentration prediction model is poor, so ensemble
learning algorithms are selected to combine multiple sub models to improve model accuracy
and robustness. The proposed model mainly combines the advantages of the XAdaBoost
algorithm and LSTM model. The basic idea of XAdaboost–LSTM is to use LSTM as the base
model and enhance it using the XAdaboost algorithm. Specifically, multiple LSTM models
can be trained, each using different data sets and features, and their prediction results can
be combined to form a more accurate and robust model. The basic working principle of the
XAdaboost LSTM model is as follows: Firstly, the weight W is initialized through the total
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number of experimental samples, and then the LSTM model is used as a sub model. The
LSTM sub model is trained using the sample data with weight W to obtain the prediction
results. The weight of the sample data is recalculated based on the prediction results, and
the weight of data with high prediction error rates is amplified; the sample weight of data
with small prediction error coefficients is reduced. When the number of predicted sample
points with an error rate greater than the set error rate is equal to T, the sample weight is
set to 0. Linear combination is performed on weak learners based on their performance,
and the proportion of each sub model in the strong learning model is determined based on
the performance of each sub model. Finally, the final weight is combined with the model to
obtain the final prediction model.

3.2. Improved Adaptive Enhancement Algorithm (XAaBoost)

Prediction tasks can have error data during data collection and recording, and since
most tasks are used to predict outliers, the sample error data cannot be accurately removed
during preprocessing. Therefore, it is essential to identify the error data when AdaBoost is
reassigned to the sample data. In this paper, we deal with the prediction task and propose
that the XAdaBoost algorithm is used to improve the model prediction accuracy and
robustness by combining previous research on classification tasks to address this drawback
of AdaBoost’s error accumulation.

Suppose the number of iterations of the AdaBoost algorithm is T. Given an error
range according to the model, it is divided into four categories according to the number of
accurate predictions.

(1) If the prediction error is less than d in each of the T iterations, then the prediction
value of each iteration is less than the error range, which means that each sub-model
is correct in processing this sample.

(2) The number of errors less than d in T iterations is greater than T/2, which means that
the number of correct predictions in T sub-models is greater than the number of errors
in this data.

(3) Similarly, less than T/2 means that the number of correctly predicted sub-models is
less than the number of incorrect ones.

(4) The error rate is greater than d in all T iterations, which means that none of the
samples are accurate after T iterations.

Based on the above four cases, one more correction iteration is performed, at which
point the sample weight update strategy is as follows:

The data in (4) above are considered as wrong data and the weights are assigned to 0;
case (3) is assigned a larger value of weights than case (4), and since there are less than the
number of correct ones, the weights are low in the previous sub-models and are assigned
more in the last time for correction. Then, as per (1), each prediction results in lower correct
weights. Therefore, T + 1 iterations are used, and the error data are removed in the last
iteration, and the weights are assigned more reasonably; the last sub-model is used to
correct the previous model containing error data. The previous sub-models are combined
on the basis of the last correction.

3.3. Constructing a Prediction Model

In this paper, we used XAdaBoost combined with LSTM, which could effectively
take into account the data temporality as the ammonia nitrogen concentration prediction
sub-model, and used the AdaBoost integrated learning algorithm to iteratively enhance the
LSTM sub-model.

(1) Assume that the number of iterations t = 1, 2, . . . , T and the initialized data
weights are

Wt(i) = 1/N (9)

where WT−1(i) denotes the sample weight of the algorithm at the Tth iteration of the LSTM
sub-model, and N denotes the total number of samples of the experiment.
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(2) The LSTM was used to build the sub-model WT−1(i) to train the sample data with
the weight of WT−1(i) to obtain the prediction result ŷ and save the obtained sub-model.

(3) The sample data weights were recalculated by the prediction results ŷ, and
the weights of the data with large prediction error rate were enlarged and trained by
sub-model iterations.

emax(x) = max(y− ŷ) (10)

eT−1(x) =
(y− ŷ)

emax
(11)

where: emax denotes the maximum error, and eT−1 denotes the error rate of the sub-model
at T − 1 iterations.

(4) After repeating iterations T times.
At the T + 1 st iteration, given the error rate d, eT(i) denotes the error of the ith sample

in t iterations. If the number of eT(i) > d is equal to T let WT(i) = 0.
(5) The weak learners were combined linearly according to their performance, and their

weight in the strong learning model was judged by the performance of each sub-model:

∂T =
1− eT

eT
(12)

where, ∂T denotes the weight of the Tth sub-model to the strong learning model.
(6) After each training session, the training data weights could be updated by the data

error rate and the model share:

WT+1 =
WT
ZT

∂T
1−eT (13)

ZT =
N

∑
i=1

WT∂T
1−eT (14)

where ZT denotes the normalization factor, in order to normalize the data weights after
the iteration.

(7) The strong learning model was obtained by the combination of the final weights
and the model.

H(x) =
T

∑
t=1

∂t Mt(x) (15)

where the output result of the final combined model represented the output of each sub-
model, which represented the weight of the T-th sub-model. The above improved AdaBoost
combination was used to generate the LSTM sub-model; the model structure is shown in
Figure 3.
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Figure 3. XAdaBoost–LSTM model frame diagram.

In Figure 3, We can divide the diagram into four parts: data input, sub-model training,
sub-model combination, and result output. The data input part was mainly used to
preprocess the data and specify the input and output variables for the preprocessed data.
The sub-model training part was mainly used for data to train the XAdaBoost and LSTM
models and update and determine model weights. The sub-model combination part was
used to obtain the strong learning model by combining the final weights and the model
and then outputting the final result. Such a model architecture inevitably has some defects.
The model architecture contained two algorithms, XAdaBoost and LSTM, so the overall
combined model also had problems, such as the model accuracy being affected by the
balance of data set division and long training time.

3.4. Forecasting Process

The flow chart is divided into four parts: data acquisition, data pre-processing, model
training and combination, and output. The data acquisition test object was turbot, which
was reared in intensive recirculating seawater culture mode. The temperature, dissolved
oxygen, pH, and conductivity data in the culture water were collected by sensors and
saved to the corresponding database through PLC (programmable logic controller). A pro-
grammable controller was mainly used in the experiment to automatically realize the water
level regulation, oxygen pump work, and sensor acquisition of the circulation aquaculture
system. The nano reagent method [20] was used to measure ammonia nitrogen concentra-
tion, which was simple, rapid, and sensitive to meet the data collection requirements. The
data pre-processing part consisted of three primary operations, namely: outlier processing,
normalization, and partitioning of the training data set. If the original data contained
outliers then the outliers were cleaned up and supplemented by linear interpolation. Since
the original data had different units of each feature variable, the actual data was normalized
in order to eliminate the effect of dimensionality [21], and was used to divide the data into
training set and test set. The model training and combination part mainly used the training
data to train the XAdaBoost–LSTM model and saved the final parameters to combine into
a robust learner model. The output section outputted the prediction results of the training
and test sets; the model prediction process is shown in Figure 4.
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Figure 4. Model prediction flow chart.

4. Analysis of Results

4.1. Raw Data

To verify the feasibility of the XAdaBoost algorithm improvement strategy and the
accuracy and stability of the XAdaBoost–LSTM algorithm modeling prediction, the turbot
breeding data measured by the intensive seawater circulation control system was used as
the modeling data in the experiment. The data collection period was from 08:00 to 18:00
every day from April to June 2017, with a time interval of 2 h; a total of 236 data groups
were collected. In the experiment, the corresponding sensor module was used to collect
water quality parameters such as temperature, dissolved oxygen, pH value, and electrical
conductivity of each group, and the ammonia nitrogen concentration of each group was
measured using the chemical reagent method. Among them, the temperature sensor model
used was a PT100-type platinum resistance contact sensor; the sensor range was −5–60 ◦C.
The dissolved oxygen concentration sensor used was the FDO 700 IQ sensor of the German
WTW company; the measurement range of the dissolved oxygen sensor was 0–20 mg/L.
The pH sensor used was a Senso-Lyt 700 IQ SEA sensor from WTW, Germany, which had a
measurement range of 2–14. The conductivity sensor used was the TetraCon700 IQ sensor
of WTW company in Germany; the measurement range was 0.1–500 ms/cm. Of course,
there are some accuracy errors in the actual data acquisition process of the sensor that could
be avoided; for example, the temperature sensor had an error of ±0.5%, and the dissolved
oxygen concentration also had an error of ±0.01 mg/L. However, these errors are minor
compared to the numerical value, and you can make negligible assumptions. Among them,
the measured value of ammonia nitrogen concentration was the predicted quantity, which
was the model output, and the other water quality factors were used as auxiliary variables
as the model input. Some experimental data are shown in Table 1.

Table 1. Partial data of water quality parameters of turbot culture.

Moment
Temperature

◦C

Dissolved
Oxygen

(mg·L−1)
pH

Electrical Conductivity
(ms·cm−1)

Ammonia Nitrogen Concentration
(mg·L−1)

8:00 14.9 8.2 7.85 41.1 0.18
10:00 14.7 8.26 7.85 41.1 0.21
12:00 14.5 8.27 7.91 41.2 0.23

... ... ... ... ...
18:00 14.3 8.33 7.91 41.1 0.24

Table 1 shows that the turbot culture data contained four input features, tem-
perature, dissolved oxygen, pH, and conductivity, and one output feature, ammonia
nitrogen concentration.
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4.2. Data Pre-Processing

The 3σ rule and median filtering method have been used to detect outliers in previous
research in the lab [22]. The 3σ criterion, where σ stands for standard deviation, measures
how far a number in a data set deviates from its mean. In typically or nearly normally
distributed data sets, approximately 68.27% of the data is within the mean ±1σ, 95.45% of
the data is within the mean ±2σ, and 99.73% of the data is within the mean ±3σ. Therefore,
if the value of a data point is outside the range of the mean ±3σ, we can consider this data
point as an outlier.

Since the input variables are not unique and have different values and units, it is
necessary to normalize the data to eliminate the influence of the magnitude [23]. There
are two standard normalization methods: the first is linear function normalization, which
converts all input values into values in the interval [0, 1]. The second method is zero-
mean normalization, which transforms the data set into a data set with zero mean and
one variance. This experiment uses the first normalization method, i.e., linear function
normalization, with the following equation:

XN =
X− XMIN

XMAX − XMIN
(16)

where XN represents the normalized data, XMIN represents the smallest number in a
feature data set, and XMAX represents the largest number in a feature data set. For the
missing values among them, linear interpolation is used to fill the missing data. If there is
a missing value at time t, a linear interpolation operation is performed using the known
data before and after time t, and the result is supplemented as the value at time t with the
following formula:

xt = xtq +
(xth − xtq)(t− tq)

th − tq
(17)

where xt represents the missing value at the time t, xtq represents the most recent known
data before time t, and xth represents the most recent known data after time t.

4.3. Operating Environment and Evaluation Criteria

The ammonia nitrogen concentration prediction is a multivariate prediction model that
uses SciPy(1.5.4), NumPy(1.14.3), Matplotlib(2.2.2), Pandas(0.23.0), and Scikit-learn(0.24.2)
libraries in machine learning and Theano, TensorFlow(2.0), and Keras(2.3.1) libraries in
deep learning. This experiment used the LSTM model as a sub-model, which contained
150 neurons in the input layer, 50 neurons in the hidden layer, and 1 neuron in the output
layer. In order to prevent the occurrence of overfitting, the value of Dropout was set to 0.3,
the Optimizer selected the ADAM algorithm to optimize, and the loss function selected the
mean square error (MAE) to calculate. After experimental verification in the XAdaBoost
model, the number of iterations was finally selected as three, and the model used for
iteration was the LSTM model, in which the loss function was linear. The experiment used
the temperature, conductivity, pH value, and dissolved oxygen concentration as the feature
data input, and the ammonia nitrogen concentration was used as the output to train the
model. Before training the model, the data was divided into 76% of the training set and 24%
of the test set. In the laboratory culture process, temperature, electrical conductivity, water
pH and dissolved oxygen concentration changes all affect the change of ammonia nitrogen
concentration in the water. Therefore, in aquaculture, temperature, electrical conductivity,
water pH, dissolved oxygen concentration, and ammonia nitrogen concentration interact
with each other, and the relationship is coupled. Therefore, in this experiment, temperature,
electrical conductivity, water pH, and dissolved oxygen concentration closely related to
ammonia nitrogen concentration were used as inputs.

In evaluating the model, the evaluation criteria used in this paper were as follows: the
root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute
percentage error (MAPE) [24].
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The formulas of the three evaluation criteria are shown below:

RMSE =

√√√√√ n
∑

i=1
(y∗ i − yi)

2

n
(18)

MAE =

n
∑

i=1

∣∣∣ y∗ i−yi
yi

∣∣∣
n

(19)

MAPE =

n
∑

i=1

∣∣∣ y∗ i
yi

∣∣∣
n

(20)

where y∗ i represents the predicted value of the model, yi represents the true value, and n
represents the number of samples. RMSE, MAE, MAPE represent three evaluation criteria
containing information on the error between the predicted and true values as well as the
sample proportion.

4.4. Experimental Analysis and Evaluation

Since the last iteration of the XAdaBoost algorithm was to be based on the comparison
of multiple error rate results, the number of iterations T = 3 was finally selected in this paper
after several experiments; the last one was used as the corrected iteration after improvement.
The error rate range d in the experiment was selected based on the distribution of the first
2 error rates in the model. A comparison of the LSTM prediction model with the AdaBoost–
LSTM prediction model and the prediction results are shown in Figure 5.

Figure 5. Comparison chart of experimental results.

In the figure, the XAdaBoost–LSTM is the prediction model of the improved Ad-
aBoost algorithm for LSTM enhancement and compares the two models of LSTM and
AdaBoost–LSTM. Firstly, it can be seen that the AdaBoost algorithm could improve the
accuracy of the LSTM prediction model through iteration, which was better in some
details compared to the LSTM; secondly, it can be seen that the XAdaBoost–LSTM pre-
diction graph is more obvious in the fitting effect, which verifies the feasibility of the
improved AdaBoost algorithm. It can be seen that the change trends before and after the
improvement are very similar, but its results in some details are better and more stable
compared to the improved one. In Figure 5, when the XAdaBoost–LSTM model predicts
the low value of ammonia nitrogen concentration, the prediction accuracy is insufficient,
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but compared with the other two models, the accuracy is the highest when the low value
of ammonia nitrogen concentration is predicted.

Meanwhile, a comparison experiment was set up to compare the effectiveness of the
proposed method with MLP and another LSTM method using CNN improvement; the
prediction results are shown in Figure 6.

Figure 6. Comparison chart of multi-model experimental results.

As can be seen from the figure, adding the CNN network before the recurrent neural
network to extract the features of the data, the CNN–LSTM model was better in some
details, but the overall fitting effect was not as good as the XAdaboost–LSTM model; the
MLP model had abrupt variability in the prediction points in the figure several times, which
was because the network did not consider the temporality of the sequence. On the contrary,
the LSTM model with XAdaBoost boost had high error tolerance, so it had better results in
dealing with the task of temporality and the presence of errors.

In this paper, three sub-models were generated after iteration, and each sub-model
handled data with different weights. To facilitate the observation of features, some data
points were intercepted to show the prediction effects of the three sub-models, as shown in
Figures 7–9.

Figure 7. Sub-model 1 result plot.
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Figure 8. Sub-model 2 result plot.

 

Figure 9. Sub-model 3 result plot.

Figure 7 shows the first generated sub-model 1; it can be seen that the trend of most
points in the figure is not apparent and has a significant error. After the first weak model
was obtained, the data weights were reassigned according to the prediction results.

Figure 8 shows sub-model 2 generated after iteration. The weights of the poorly
predicted data were enlarged based on the results predicted by sub-model 1, so the model
was more accurate in dealing with the points that did not work well in sub-model 1. At the
same time, the image was better fitted because the weights of other points are reduced.

Figure 9 shows the sub-model 3 generated after the iteration, which was also the
corrective iteration. The model was built based on the first two iterations, and by comparing
the magnitude of the error rate, the weights of the cases where both error rates were not
satisfied were set to 0. After zooming in again for the data with poor prediction results,
it can be seen that the distribution of some points in the weak model 3 differs from
sub-models 1 and 2, but the overall effect was better than the first two prediction results.

In the last iteration, the error rate d was selected as 0.058 by the results of the first
two model processing results of the data. If the first two sub-model prediction results’ error
rate was greater than d, the weight was set to 0 in the third correction iteration process. The
model error rate distribution is shown in Figure 10.

110



Mathematics 2024, 12, 627

Figure 10. Two model prediction error rate distributions.

e1, e2 were the first and second iteration error rate distributions; we can see that
through the change of data weights most of the data in the two prediction results error rate
difference was not large, but there were also noticeable differences in the second rather than
the first good point, which provides a the basis that AdaBoost can improve the accuracy
rate. There are also some points where the error rate became larger with the amplification
of the data, and the combination of different data changes could effectively improve the
stability. Some of the data in the figure have large error rates on both occasions, and treating
such data as error data and disregarding their effects in the last iteration can effectively
improve model stability and accuracy. The same three metrics, RMSE, MAE, and MAPE,
were used in this experiment to assess the accuracy and stability of the model. The results
are shown in Table 2.

Table 2. Model evaluation index.

Models RMSE MAE MAPE

MLP 0.0634 0.0523 41.4199
LSTM 0.0601 0.0456 38.1255

CNN–LSTM 0.0489 0.0412 31.9996
ADABOOST–LSTM 0.0441 0.0348 31.7202

XADABOOST–LSTM 0.0352 0.0276 23.0314

Table 2 shows the average of the results of 20 experiments. After AdaBoost’s iterative
enhancement to LSTM, the three indicators were significantly reduced so that AdaBoost
could improve the accuracy of the model prediction. The three indicators of the XAdaBoost–
LSTM model were lower than those of AdaBoost, which could prove the effect of the
improved algorithm and the effect of the model. These three indicators could intuitively
reflect that the indicators of the XAdaBoost–LSTM prediction model are significantly lower
than those of other machine learning models and artificial intelligence models such as MLP.

In addition, the GRU series models have fewer parameters, which makes the model
widely used in the field of aquaculture. Therefore, we also used the evaluation criteria to
verify that the prediction accuracy of XAdaBoost–LSTM was higher than that of the GRU
series models. Since its introduction, the CNN model has been widely used and achieved
good performance in different fields. Therefore, we also added the CNN model to make
the supplementary experiment more perfect. The comparison of evaluation criteria of the
supplementary model is shown in Table 3.
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Table 3. Supplementary model evaluation indicators.

Models RMSE MAE MAPE

CNN 0.0685 0.0610 52.8130
GRU 0.0546 0.0424 37.307

CONV-GRU 0.0416 0.0313 26.4624
XADABOOST–LSTM 0.0352 0.0276 23.0314

It can be seen from Table 3 that the XAdaBoost–LSTM model had more accurate pre-
diction performance than the GRU series models with fewer parameters and computational
complexity and the CNN model with a wide range of applications.

4.5. Model Stability Analysis

To verify that the XAdaBoost algorithm and AdaBoost algorithm could improve the
stability of the models, the stability and robustness of the models were reacted by observing
the changes of RMSE, MAE, and MAPE for 20 predictions of the LSTM, AdaBoost–LSTM,
and XAdaBoost–LSTM models, as shown in Figures 11–13.

 
Figure 11. RMSE change chart.

It can be seen from the figure that the changes in the three indicators of the prediction
model were smoother than those of the LSTM model after the iterative enhancement
of XAdaBoost and AdaBoost during multiple experiments. The changes of XAdaBoost
indicators were the smoothest and the changes were the smallest, indicating that the
XAdaBoost–LSTM prediction model was more stable. It proves that the XAdaBoost
algorithm can effectively solve the problems of poor single prediction robustness and
low stability of traditional prediction models.

Figure 12. MAE change chart.
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Figure 13. MAPE change chart.

AdaBoost improves model stability and accuracy from the perspective of data
weights, but the different number of iterations will affect the model performance. The
XAdaBoost–LSTM ammonia nitrogen concentration prediction model is the traditional
Adaboost–LSTM algorithm when the number of iterations is less than 3, and corrective
iterations can be introduced when T > 3. The RMSE, MAE, and MAPE for different
iterations are shown in Table 4.

Table 4. The results of XAdaBoost–LSTM in different iterations.

Number of
Iterations

RMSE MAE MAPE

1 0.0591 0.0443 38.1255
2 0.0441 0.0348 31.7202
3 0.0352 0.0276 23.0314
4 0.0426 0.0344 28.1742

The table shows the average results of 20 experiments. The model works best at the
third iteration, and the model prediction effect starts to decrease when the number of
iterations continues to increase, because the AdaBoost integrated learning model keeps
amplifying the error data when assigning weights to the training data each time, so after
the model reaches the optimum, increasing the number of iterations will only increase
the error rate of the model, and the number of iterations will change depending on the
data type. XAdaBoost introduces corrective iterations, but the error accumulation is not
eliminated, so the effect of the model will still decrease with more iterations.

5. Conclusions

To solve the problem that a single LSTM ammonia nitrogen prediction model is suscepti-
ble to sudden changes and error information in the prediction process, which leads to low
prediction accuracy and robustness, an XAdaBoost integrated algorithm with an improved
combination approach was proposed to consider the feature that the combined learning algo-
rithm can build multiple sub-models; the XAdaBoost–LSTM ammonia nitrogen concentration
prediction model was proposed. The ammonia nitrogen concentration prediction sub-model
was established using LSTM, and the data weights were updated by the XAdaBoost inte-
grated learning algorithm so that the model could fully consider the sample characteristics.
The distribution of the sub-model on different data was analyzed, and the model changes
were compared for multiple experiments. It was verified that XAdaBoost could improve
the accuracy and stability of the prediction model, and the effect was better than AdaBoost.
The algorithm had universal applicability to different models, and the proposed method was
verified to be more effective than MLP and CNN–LSTM in the task of ammonia nitrogen
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concentration prediction through comparison experiments, and more suitable for the design
of an ammonia nitrogen concentration prediction system in aquaculture water quality.

Applying the prediction model in this paper to the aquaculture system is of great
significance for formulating the regulation strategy in advance. By setting the prediction
time step, the change curve of ammonia nitrogen concentration can be predicted in the
future. By analyzing the change curve of ammonia nitrogen concentration, the safe range
of ammonia nitrogen concentration corresponded to determine the exceedance time of
ammonia nitrogen concentration, and the reasons for the exceedance of ammonia nitrogen
concentration were analyzed. Suppose the ammonia nitrogen concentration in the water
body increases due to the accumulation of food residues and excreta in the aquaculture
pond without water change operation for a long time. In that case, management strategies
such as water change and silt removal should be adopted at that point. If the water change
interval is short, the concentration of ammonia nitrogen is also in the excessive range,
which is the method of oxygen increase that can be used to reduce the concentration of
ammonia nitrogen. High oxygen content means that ammonia nitrogen has little toxic
effect on aquaculture. In addition, in this case, it is necessary to check whether the pH value
of the water and the temperature are within the reasonable range for the survival of the
aquaculture. When the pH value is higher, the ammonia nitrogen concentration increases
more rapidly; otherwise, it is slower. When the temperature is too high, it will also increase
the concentration of ammonia nitrogen in the water. When the above methods have not
solved the problem of unreasonable concentration of ammonia nitrogen, the method of
drug delivery can be used to reduce the concentration of ammonia nitrogen. If the previous
methods have failed to address the issue of excessive concentration of ammonia nitrogen,
drug delivery can be used to reduce its concentration. However, applying this model in
aquaculture systems poses certain challenges. The model’s prediction accuracy can be
impacted by large-scale data, and it is yet to be determined whether the model can maintain
stability and prediction accuracy across different aquaculture species. The application of
the prediction model in aquaculture management systems involves designing the function
and relationship of each module and encapsulating all modules into a platform system,
which includes data acquisition and processing, prediction, output, and storage modules.
Water quality data is collected by sensors and transmitted to the database, and a prediction
model module is established in the system. The data is then inputted into the prediction
module to obtain the predicted value.

In the future, we will further use the data sets collected by different aquaculture systems
to verify the model, proving that the model also has good prediction accuracy and stability
in different systems. In addition, we will use feature construction, merging data, and other
methods to increase the number of features of aquaculture water quality in the data and
combine the model with the actual Internet of Things devices to further improve the model’s
generalization. Finally, we will apply the model to the water quality management system to
assess the practice.
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Abstract: The open-source software platform hosts a large number of software defects, and the
task of relying on administrators to manually assign developers is often time consuming. Thus,
it is crucial to determine how to assign software defects to appropriate developers. This paper
presents DARIP, a method for assigning developers to address software defects. First, the correlation
between software defects and issues is considered, predicting related issues for each defect and
comprehensively calculating the textual characteristics of the defect using the BERT model. Second,
a heterogeneous collaborative network is constructed based on the three development behaviors
of developers: reporting, commenting, and fixing. The meta-paths are defined based on the four
collaborative relationships between developers: report–comment, report–fix, comment–comment,
and comment–fix. The graph-embedding algorithm metapath2vec extracts developer characteristics
from the heterogeneous collaborative network. Then, a classifier based on a deep learning model
calculates the probability assigned to each developer category. Finally, the assignment list is obtained
according to the probability ranking. Experiments on a dataset of 20,280 defects from 9 popular
projects show that the DARIP method improves the average of the Recall@5, the Recall@10, and the
MRR by 31.13%, 21.40%, and 25.45%, respectively, compared to the state-of-the-art method.

Keywords: defect fixing; developer assignment; prediction of related issues; heterogeneous
collaborative network

MSC: 68M20

1. Introduction

GitHub is a web-based project-hosting platform [1–3] that provides an Issue-Tracking
System to help users manage issues that occur in their projects. In the Issue-Tracking
System [4,5], users can report software defects found during development [6–8], project
managers can assign software defects to appropriate developers, and other developers
can participate in discussions around defects of interest. However, with over 200 million
open-source projects and 1.2 billion issues hosted on the GitHub platform worldwide, there
are a large number of software defects that need to be fixed every day. Manually assigning
developers to software defects by managers alone can be a tedious and time-consuming
task [9–12]. To streamline this process, researchers have conducted studies on the task
of assigning or recommending developers [13–22]. For example, Yang et al. [13] filtered
developers from historical defects by calculating textual similarities between different soft-
ware defects, and then assigned developers to software defects based on their development
experience. Aung et al. [14] processed code snippets and text information in defect reports
separately and improved the performance of developer assignments through joint learning
of developer assignment tasks and label classification tasks.

Empirical studies have shown that some software defects may be related [23,24], and
two related software defects could involve the same source code file. Almhana and Kessen-
tini [25] define dependencies based on two software defects involving the same source code
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file. They leverage the dependencies to help resolve the task of developer assignment on
the Mozilla platform. Jahanshahi et al. [26] discovered that some software defects may be
blocked by others during the repair process. They studied how to assign developers for
software defects based on their blocking relationships. Since there are correlations between
software defects for reasons such as involving the same source code files or blocking rela-
tionships, referring to related software defects may help assign appropriate developers to
software defects. However, most existing studies only consider the characteristics of the
current software defect itself and overlook the correlation between software defects when
automatically assigning developers to software defects.

Meanwhile, existing studies do not consider developers’ different development behav-
iors when collecting candidates and extracting their characteristics [27,28]. For example,
Xuan et al. [28] considered the commenting behavior among developers to build social net-
works and designed a model for assigning developer priorities. Considering the different
behaviors of developers can help to understand their characteristics, which can help to
assign the appropriate developer to a software defect.

This paper proposes an automated Developer Assignment method for open-source
software defects based on Related Issue Prediction, named DARIP. First, this paper extracts
the text vectors of software defects and all their historical software defects using the BERT
model, predicts the Top-N potential related software defects for each software defect from
all the historical software defects based on cosine similarity, takes the text information
of related software defects as an extension of the text information of software defects,
and takes the text information of software defects together with the text information of
related software defects as text input. The text characteristics of software defects are ob-
tained by comprehensively calculating the text vectors of software defects and related
software defects. Second, a heterogeneous collaborative network is constructed based on
the three development behaviors of developers: reporting, commenting, and fixing. The
meta-paths are defined based on the four collaborative relationships between developers:
report–comment, report–fix, comment–comment, and comment–fix. The graph-embedding
algorithm metapath2vec extracts developer characteristics from the heterogeneous collabo-
rative network. Then, a classifier based on a deep learning model calculates the probability
assigned to each developer category. Finally, the assignment list is obtained according to
the probability ranking.

In order to evaluate the effectiveness of the DARIP method, this paper collects 20,280
software defects from 9 popular open-source projects. The experimental results show that
the average values of the Recall@5, the Recall@10, and the MRR of the method DARIP in 9
projects are 0.5902, 0.7160, and 0.4136, respectively. Compared with the existing method
Multi-triage, the average values of the Recall@5, the Recall@10, and the MRR of the DARIP
method in 9 projects are increased by 31.13%, 21.40%, and 25.45%, respectively.

2. Background

In the GitHub open-source community, the Issue Tracker System supports developers
to contribute freely to open-source projects. In the Issue Tracker System, users can report
software defects or functional requirements found during the development process. For
example, managers may identify an issue as a software defect [29] by adding the label
“bug”, “defect” or other synonyms. After the issue is reported, other interested developers
participate in the issue comments to discuss the solution. In response to the reported
software defects, managers have the option of assigning appropriate developers. Moreover,
developers can create a pull request to submit fixable code for code review based on the
solution to a software defect. After passing the code review, the code is merged into the
repository, and the software defect is fixed. Therefore, this paper refers to the literature [14],
which defines the fixer of a software defect as the assignee or the creator who creates the
corresponding pull request and is successfully merged into the repository.

In this paper, we study the software defects in the Issue-Tracking System. Take the
software defect of No. 29391 (https://github.com/tensorflow/tensorflow/issues/29391,
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(accessed on 14 December 2023)) in the project tensorflow/tensorflow as an example, and its
basic structure is shown in Figure 1.

Figure 1. A sample of a software defect.

(1) Title: A brief overview of the software defect.
(2) Description: The body of the defect report, including a specific description of the

software defect.
(3) Comment: Information about developers participating in discussions about a

software defect.
(4) Label: Managers add labels to identify the category of a issue. For example, add

the label type:bug to indicate that the current issue is a software defect.
(5) Reporter: The developer who reported the current software defect.
(6) Commentator: Developers involved in the discussion of a software defect.
(7) Assignee: A developer assigned by the manager to fix the software defect.
(8) Link: A hyperlink left by a developer during the discussion of an issue, often used

to refer to other relevant information.
As shown in Figure 1, the developer pt**** reported a software defect number 29391,

which was assigned to developers ql***** and ym**** on the project tensorflow/tensorflow.
Subsequently, the developer ql***** indicated that the current software defect was related to
the historical software defect number 29187 (https://github.com/tensorflow/tensorflow/
issues/29187, (accessed on 14 December 2023)) in the same project, and the submitted code
had fixed the related software defect. By validation from the developer pt****, the current
software defect can also be fixed using the same version of the fixed code. The historically
related software defect number 29187 was reported earlier than the software defect number
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29391 and has been fixed by the developer ql*****. In particular, the assignee ql***** of
the software defect number 29391 was also the assignee of the related software defect
number 29187. Already familiar with the resolution of the historically related software
defect number 29187, the developer ql***** immediately fixed the software defect number
29391 with the same fixable code.

As a related issue, the resolution of software defect number 29391 helped to fix the
software defect number 29187. At the same time, the experience of developer ql***** in
fixing related issues helped reduce the resolution time for software defect number 29187.
Therefore, referring to the issues associated with the software defect may help to assign the
appropriate developer to the software defect.

3. Related Work

3.1. Related Issue

Due to the fact that open-source software can share or reuse code, many open-source
projects rely on the same libraries and components [12]. Dependencies between open-
source projects further affect software defects in the project, and issues in one project
may be linked to related issues from the same or other projects [30–33]. Ma et al. [30]
conducted an empirical study of software defects in seven open-source projects in the
Python ecosystem on the GitHub platform. They found that developers point to related
issues by leaving links in the text messages of software defects. Zhang et al. [31] performed
both qualitative and quantitative analysis of links in the Rails ecosystem and found that the
percentage of issues with links reached 24.8%. Of these, 82.8% were links within projects,
and 17.2% were links between different projects. Li et al. [32] analyzed 16,584 Python
projects on the GitHub platform. They classified the relationship between software defects
and related issues into six different types through qualitative analysis, and each type
of related issue could help to fix software defects. Previous studies have shown that
referencing related issues may help fix corresponding software defects.

Zhang et al. [34] stated that issue reports on GitHub are essential knowledge in
software development and proposed iLinker, a method to automatically obtain related
issues to help fix issues by sharing knowledge of related issues. The Linker method
calculated three similarity scores between query issues and candidate issues using TF-IDF,
word embedding, and document embedding, respectively. Then, the final scores of the
query issues and the candidate issues are combined, and the related issues of query issues
are recommended based on the final scores. In our previous work [35], we focused on
software defects and related issues and proposed an algorithm, CPIRecom, to predict
cross-project related issues automatically. Firstly, the pre-selecting set construction method
is proposed to filter the massive issues. Secondly, the BERT pre-training model is used to
extract text features and analyze project features. Then, the random forest algorithm is
used to calculate the probability of the pre-selecting issues and the software defects. Finally,
the recommendation list is obtained according to the ranking.

In this paper, we draw on the idea of the CPIRecom method of related issue recommen-
dation to predict potentially related issues for each software defect in order to help solve
the task of developer assignment. Our existing work and our current work are different
because they are designed to solve different research questions. Our prior work [35] aimed
at predicting relevant issues from other projects for software defects. However, the purpose
of the current work is to assign appropriate developers for software defects.

3.2. Developer Assignment

In this section, we present existing research on developer assignment and divide existing
work into four categories: information retrieval-based approaches, machine learning-based
approaches, social network-based approaches, and defect relationship-based approaches.
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3.2.1. Information Retrieval-Based Approach

Information retrieval refers to the process of finding information from a collection of
data that meets information needs. The developer assignment method based on information
retrieval assumes that developers can fix specific types of software defects because they
have some specialized knowledge. Some researchers introduced the concept of topic
model for assigning developers [13,15–17]. Among them, Yang et al. [13] proposed a
developer assignment method with a multi-feature combination, extracted topics from
historical defect reports, extracted features such as components, products, priorities, and
severity of software defects, calculated textual similarities among software defects, and
collected developers who contributed as candidates. Finally, they obtained a ranking list of
candidate developers based on development experience. Xia et al. [16] proposed a multi-
featured topic model that extends the Latent Dirichlet Allocation(LDA) to the developer
recommendation task. They considered product information and component information
of software defects and assigned appropriate developers to software defects based on the
affinity of the developer to the topics.

Most of the above information retrieval-based methods are divided into two steps:
filtering out a small number of eligible historical software defects and collecting all the
developers from them to obtain a candidate set, then extracting the characteristics of all
the candidates in the candidate set and finally assigning appropriate developers to the
software defects. If the real developers do not appear in the candidate set, it will directly
affect the effectiveness of the method.

3.2.2. Machine Learning-Based Approach

With the continuous development of machine learning technology, some researchers
utilized traditional machine-learning and deep-learning algorithms to solve the devel-
oper assignment task [14,18–22,36–39]. Jonsson et al. [19] proposed a defect assignment
method based on ensemble learner, using TF-IDF technology to extract features from
the title information and description information of defect reports and combining Naive
Bayes, Support Vector Machines, KNN, and Decision Tree classifiers to create a stacked
generalization classifier for improving the prediction accuracy of automatic developer
assignment. Lee et al. [21] propose a developer assignment method based on a CNN and
word embedding, using the word2vec model to convert each word in the summary and
description in defect reports into a word vector and then using a CNN to learn the text
features of software defects to solve the defect classification task. Mani et al. [22] proposed
a developer assignment method based on deep bidirectional recurrent neural networks,
which learns paragraph-level representations of software defects based on deep learning
algorithms, learned word order and semantic relationships from the context of defect
reports, and finally, realized defect classification using a softmax classifier. Aung et al. [14]
proposed a multi-task learning classification model using a text encoder to extract text
features from defect reports and an AST encoder to extract code features from code snippets
to improve the performance of the model by jointly learning defect assignment and label
classification tasks.

Most of the existing methods based on machine learning use various models to learn
feature representations from the text information of software defects and apply the text
classification to solve the developer assignment task. However, many of these methods
only focus on the software defects themselves and overlook the correlation between them.
Therefore, it is crucial to consider the related issues of software defects when extracting
textual characteristics, as this can aid in solving the task of developer assignment by
extending the text information of software defects.

3.2.3. Social Network-Based Approach

Some researchers utilized methods based on social network analysis to solve the task
of developer assignment [14,40–45]. For example, Banitaan and Alenezi [40] proposed
DECOBA, a developer assignment method based on developer communities. They used de-
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velopers’ commenting behavior on software defects to construct a developer social network.
Then, they detected developer communities and ranked developers by their experience in
each community to obtain a developer assignment list. Zhang et al. [41] took commentators
on software defects as potential developers. They constructed heterogeneous social net-
works based on developers, software defects, comments, components, and products. They
then calculated three types of collaborative proximity among developers in these networks
based on defects, components, and products. The researchers ranked developers according
to their comprehensive score and generated a recommended list of potential developers.
Zaidi and Lee [42] proposed a graphical representation of defect reports, extracted the title
and description information from the defect reports, took the defect report as a document,
the document and the word in a document as two types of nodes, and built a heterogeneous
network with the document-to-word and the word-to-word as two types of edges. The
Graph Convolutional Network was used to learn the graph representation of software
defects, and the task of defect classification was solved by using node classification.

The social network-based approaches mentioned above did not consider the reporting,
commenting, and fixing behavior of developers in software defects. Therefore, it is essential
to analyze the personal characteristics of developers when extracting developer character-
istics for software defects. This analysis can help in assigning appropriate developers to
software defects.

3.2.4. Defect Relationship-Based Approach

A few researchers consider the relationship between software defects in the developer
assignment task of studying software defects [12,25,26]. Almhana and Kessentini [25]
proposed a defect classification method based on the dependency between defect reports,
which defined the dependency between two defect reports as the number of shared files to
be inspected to localize the defects. Then, they adopted a multi-objective search to rank the
bug reports for developers based on both of their priorities and the dependency between
them. Jahanshahi et al. [26] introduced a defect-triaging method called DABT, which
considered the text information, the cost associated with each defect, and the dependency
among them. They leveraged natural language processing and integer programming to
assign software defects to appropriate developers.

Although the defect relationship-based methods mentioned above have proven to be
effective, they rely on platforms like Mozilla and Bugzilla that contain information such as
dependency relationships and source code files. Unfortunately, the GitHub platform lacks
this information, making it impossible to apply these methods directly to it. Therefore, it is
necessary to draw on the related issue recommendation method to predict the potential
related issues for each software defect to assist in the task of assigning developers.

4. Method

Given the difficulty of manually assigning developers to software defects in GitHub,
this paper proposes a method for automatically assigning developers to software defects.
Then, we present the design idea and the individual modules of the DARIP method.

4.1. Design Idea

After a software defect is reported, it may be assigned to different developers. This
allows us to label the type of software defect as the assignee and convert the developer
assignment task into a multi-classification task in the field of machine learning. In this
paper, we propose the automated developer assignment method, DARIP, which is divided
into two phases: the training phase and the testing phase. The overall architecture is shown
in Figure 2. The DARIP methodology consists of the following components:

(1) Collect historical software defects and developers.
(2) Predict potentially related issues for software defects based on their textual information.
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(3) The feature vectors of text information in software defects and the feature vectors
of text information in related issues are used to calculate the textual features of software
defects comprehensively.

(4) Consider the three development behaviors of developers in software defects:
reporting, commenting, and fixing. Construct a heterogeneous collaborative network with
developers and software defects as two types of nodes and three development behaviors as
three types of edges.

(5) A graph-embedding algorithm is used to extract the developer features of software
defects from heterogeneous collaborative networks.

(6) The textual features and textual features of software defects are input into the
classifier for training and learning, and the developer assignment model is obtained.

(7) Extract the text feature and developer feature for a newly reported software defect.
(8) Input the extracted text feature and developer feature into the trained developer

assignment model and output the developer assignment list.

Figure 2. Overall procedure of DARIP method.

In the training phase, this paper first collects software defects from the GitHub plat-
form and the developers. Then, potentially related issues are predicted for software defects,
and text features are calculated comprehensively. At the same time, a heterogeneous col-
laborative network is constructed based on three development behaviors of developers:
reporting, commenting, and fixing. The graph-embedding algorithm is used to learn
the feature representation of developers. Finally, the feature vectors of software defects
are input to the classifier for training and learning, and the developer assignment model
is obtained.

During the testing phase, when new software defects are reported on the GitHub
platform, the DARIP method extracts the textual and developer characteristics of the
software defects. It then calculates the probability of each candidate developer being able
to fix the software defects using the assignment model generated during the training phase.
Finally, the candidate developers are ranked based on their probability, from highest to
lowest, to create an assignment list of potential developers.

4.2. Textual Characteristic

When developers report software defects, they provide detailed information about
the problem using both the title and description. Therefore, text information is an essential
reference to help assign developers. At the same time, a software defect in open-source
software may be related to other issues, and referring to the related issues may help
fix the software defect. Therefore, the following section describes how to extract the
textual characteristic.

122



Mathematics 2024, 12, 425

To prepare the text information of software defect for analysis, we first preprocess the
text information. The pre-processing includes removing non-text information, converting
all letters to lowercase, removing stop words, segmenting the text, and lemmatization.
In our study, we remove non-text information such as phone numbers, email addresses,
and emoticons from the title and description. We then use blank spaces to separate the
remaining text into individual words, creating an array of words for analysis.

Secondly, for a software defect, the potentially related issue is predicted, and the
text information of the related issue is taken as an extension of the text information of
the software defect. The text information of the software defect and the text information
of the related issue are taken as the text input. Specifically, the DARIP method collects
all historical software defects corresponding to each software defect from the dataset.
Then, natural language processing techniques are used to extract the textual vectors of
software defects and all their historical software defects. Currently, the BERT pre-training
model [46] is an important technique in the field of natural language processing. We use
the BERT pre-training model to transform the preprocessed word arrays into text vectors
that can characterize the semantic information. Then, we use cosine similarity to calculate
the textual similarity of feature vectors between the software defect and each historical
software defect, rank all its historical software defects from highest to lowest according
to the textual similarity, and select the Top-N historical software defects with the highest
textual similarity as the potential N related issues of the software defect. Extend the text
information of related issues as the text information of software defect, and take the text
information of software defect and related issues together as text input.

Finally, the textual vectors of software defects and the textual vectors of Top-N related
issues are weighted to get the final textual characteristic of the software defect. Specifically,
the cosine similarity between the textual vector of the related issues and the textual vector
of the software defect is calculated as the correlation coefficient of the related issues. For
each related issue, the weighted value is then obtained by multiplying its textual vector
with the correlation coefficient. Next, we calculate the cumulative weighted value of N
related issues. Then, we calculate the sum of the cumulative weighted values of N related
issues and the textual vector of software defect. Finally, divide the sum by N+1 to obtain
the final textual feature of the software defect. The formula for calculating the textual
characteristic of software defect is as follows:

tFeat(i) =
1

N + 1

(
b f (i) +

N

∑
k=1

(Cosine(i)k ∗ b f (i)k)

)
(1)

where N represents the number of potentially related issues predicted by the i-th software
defect, b f (i) represents the text vector of the i-th software defect, b f (i)k represents the
text vector of the i-th software defect corresponding to the k-th related issue, Cosine(i)k
represents the cosine similarity between the i-th software defect and the corresponding
k-th related issue, and tFeat(i) represents the final textual characteristic of the i-th software
defect. According to Section 6.3, the value of N is set to 1. This means that the text
information of a software defect is used as textual input together with the text information
of the TOP-1 related issue.

4.3. Developer Characteristic

The development behaviors of developers in software defects mainly include report-
ing, commenting, and fixing, and developers can participate in the development of different
software defects based on different development behaviors according to their personal
wishes. For the newly reported software defects, the DARIP method considers the three de-
velopment behaviors of developers: reporting, commenting, and fixing. Based on the three
development behaviors of developers in a software defect and its historical software defects,
a heterogeneous collaborative network is constructed. The graph-embedding algorithm is
then used to mine the personal features of developers from the heterogeneous collaborative
network and learn the vector representations of developers. Finally, the feature vector of

123



Mathematics 2024, 12, 425

the reporter of the new software defect is used as the developer characteristic of the current
software defect.

4.3.1. Heterogeneous Collaborative Network

First, for a software defect and all corresponding historical software defects, collect
the participating developers, including reporters, commentators, and fixers. Then, based
on the three development behaviors of reporting, commenting, and fixing software defects,
a heterogeneous collaborative network is built corresponding to current software defect, all
historical software defects, and all developers involved in the above defects. In this paper,
we consider assigning appropriate developers to the software defect as soon as they are
reported, so that the only participant in newly reported software defects is the reporter.

The definition of a heterogeneous collaborative network is shown in Table 1. The
flowchart for constructing a heterogeneous collaborative network for a software defect
is shown in Figure 3. First, we collect all historical software defects. Second, we select a
software defect to be addressed from the historical software defects. Third, we collect the
developers from the software defect, including reporter, commentator, and fixer. Fourth,
we construct the reporting relationship, the commenting relationship, and the fixing re-
lationship between developers and software defects, respectively. Fifth, we determine
whether there are any software defects to be addressed. If so, go back to the second step. If
not, it indicates that all software defects have been handled and the final heterogeneous
collaborative network is output.

Figure 3. The flowchart for construct heterogeneous collaborative network.

In heterogeneous collaborative networks, the node types include software defects
and developers, and the edge types include developers’ reporting behavior, commenting
behavior, and fixing behavior. We represent a software defect as B (also known as Bug ),
a Developer as D, a reporting behavior as r, a commenting behavior as c, and a fixing
behavior as f . An example of a heterogeneous collaborative network is shown in Figure 4,
where Bnew is the newly reported software defect, developer D3 is the reporter of the
software defect, B1 and B2 belong to the historical software defects, and D1 and D2 are the
developers involved. At the same time, developer D3 also participated in commenting on
historical software defect B1 and historical software defect B2. So far, the DARIP method
has obtained a heterogeneous collaborative network built for software defect Bnew.
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Figure 4. A sample of a heterogeneous collaborative network.

It should be noted that the heterogeneous collaborative network constructed by the
DARIP method is undirected, because D-c-B and B-c-D illustrate the same scenario in the
real software development process: the developer D comments on the software defect B.
Since each software defect is reported at a different time, the historical software defects
collected for each software defect are not the same. This makes the heterogeneous collabo-
rative network built by each software defect unique. Therefore, this paper needs to build a
separate heterogeneous collaborative network for each software defect.

Table 1. Definition of the heterogeneous collaborative network.

Structure Type Description

Node
Software Defect/Bug (B) Software defects in a heterogeneous collaborative network include: current software

defect and its historical software defects.

Developer (D)
Developers in a heterogeneous collaborative network include: reporters, commentators,

and fixers. Among them, the only developer involved in the current software defect is the
reporter.

Edge
Report (r) Developer report a software defect.

Comment (c) Developer comment on a software defect.
Fix (f) Developer fix a software defect.

4.3.2. Developer Characteristic Extraction

The heterogeneous collaborative network constructed for software defects is typical
non-Euclidean spatial data. Therefore, it is necessary to select a suitable graph-embedding
algorithm to extract the feature vectors of the reporter in current software defect from
the heterogeneous collaborative network. Since the heterogeneous collaborative network
constructed in this paper contains two types of nodes and three types of edges, it is
crucial to select an algorithm that can handle heterogeneous networks. Dong et al. [47]
proposed a graph-embedding algorithm, metapath2vec, which can deal with heterogeneous
information networks, support custom meta-paths to guide the random wandering of
nodes, and is able to obtain semantic and structural information between different nodes.
Therefore, the metapath2vec algorithm is used in this paper to extract the reporter’s feature
vector in the current software defect from heterogeneous collaborative networks.
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Extracting feature vectors of nodes from the network based on graph-embedding
algorithm metapath2vec usually involves three steps: (1) Customising meta-paths. Meta-
paths are paths formed by connecting different types of nodes in a heterogeneous network
in a specific way. The metapath2vec algorithm supports researchers in fixing personalized
problems by customizing meta-paths. (2) For a heterogeneous network, the metapath2vec
algorithm guides random walks of nodes and obtains all node walk sequences based on
metapath2vec. Considering the nodes in the network as words and the walk sequences of
nodes as sentences, all possible node sequences form a corpus. (3) Feature vectors of nodes
in the network are obtained by using the skip-gram model to extract word vectors in the
corpus. According to the above steps, this paper needs to propose the custom meta-paths
and then guide nodes in the heterogeneous collaborative network to walk around based on
the custom meta-paths and obtain all possible walk sequences. Finally, all walk sequences
are input into the skit-gram model, and the feature vector of the reporter in new software
defect from the heterogeneous collaborative network are output.

(1) Custom meta-paths.

This paper defines the meta-paths based on the different collaborative relationships be-
tween developers. When constructing a heterogeneous collaborative network, we consider
the three behaviors of developers: reporting, commenting, and fixing. According to the
three development behaviors of developers, we can get six kinds of collaborative relation-
ships among developers: report–report, report–comment, report–fix, comment–comment,
comment–fix, and fix–fix. In this case, the report–report collaboration does not really exist
because there is only one reporter for a software defect. Furthermore, the analysis of the
dataset in Section 5 reveals that most software defects have only one fixer, and the per-
centage of defects with multiple fixers (two or more) is less than eight percent on average.
Therefore, we ignore the collaborative relationship of fix–fix and finally obtain four types of
collaborative relationships between developers and define the meta-paths. The meta-paths
and the corresponding collaborative relationships are shown in Table 2.

Table 2. The meta-paths and collaborative relationships.

Meta-Paths Collaborative Relationships

D− f − B− r− D / D− r− B− f − D A developer fixed a software defect reported
by another developer.

D− c− B− r− D / D− r− B− c− D A developer commented on a software defect
reported by another developer.

D− c− B− f − D / D− f − B− c− D A developer commented on a software defect
fixed by another developer.

D− c− B− c− D Both developers commented on the same
software defect.

It is important to note that collaboration between developers does not take direction
into account. For example, D1 − f − B− r− D2 and D2 − r− B− f − D1 illustrate the
same scenario in the real software development process, where developer D2 reported
software defect B and developer D1 fixed it.

(2) Guide random walks.

The defined meta-paths guide the nodes to walk randomly on the heterogeneous
collaborative network, so that the node sequence containing the semantic information of
the collaborative relationship can be obtained. Then, all the node sequences containing
semantic information of collaborative relationships are inputted into the skip-gram model.
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(3) Extract feature vectors.

The skip-gram model is a kind of Word2Vec model that predicts the context based
on the central word. Specifically, it predicts other words before and after the word in the
sliding window. Among them, the number of prediction words is determined by the size
of the sliding window w. Thus, this paper essentially uses the skip-gram model to predict
the other developers in a sequence of nodes that collaborate with a developer. For example,
given a sequence of nodes as follows:

D1 − c− B1 − f − D2 − f − B2 − c− D3 − c− B3 − r− D4 − f − B4 − r− D5 (2)

Assuming that the central word is D2, when the sliding window w = 2, the model can
learn the set of developers S1 = {D1, D3} that has collaborative relationships with D2. The
collaborative distance between developer D2 and developers D1 and D3 is 0. When the
sliding window w = 4, the model can learn the set of developers S2 = {D1, D3, D4} that
has collaborative relationships with D2. Among them, the collaborative distance between
developer D2 and developers D1 and D3 is 0, the collaborative distance between developer
D2 and developers D4 is 1. When the sliding window w = 6, the model can learn the set
of developers S3 = {D1, D3, D4, D5} that has collaborative relationships with D2. Among
them, the collaborative distance between developer D2 and developers D1 and D3 is 0,
the collaborative distance between developer D2 and developers D4 is 1, the collaborative
distance between developer D2 and developers D5 is 2.

Finally, the skip-gram model outputs the feature vector of each node in the hetero-
geneous collaborative network. We take the feature vector of the reporter in the current
software defect as the developer characteristic of the current software defect. According to
the experimental results in Section 6.3, this paper sets the value of sliding window w = 4.

4.4. Classifier

In this paper, the DARIP method takes the fixers as the labels of software defects.
Therefore, the task of assigning a developer to a software defect can be transformed into a
classification task, and the developer assignment task can be solved by using the method
of classification task.

In this paper, a fully connected neural network is used to build a classifier, which
trains and learns the textual characteristics, developer characteristics, and labels input of
software defects in the classifier and uses the ReLU function as the activation function.
Since there are cases where there are multiple fixers for a software defect, i.e., multiple
labels for a single sample, our classification task belongs to multi-label classification. For
this purpose, for the last layer of full connectivity, we use the Sigmoid activation function
to calculate the probability of assigning a software defect to each developer category. The
mathematical formula of the Sigmoid function is shown in Formula (3),

σ(x) =
1

1 + e−x (3)

In the field of mathematics, the Sigmoid function is monotonically increasing, deriv-
able, and continuous. Its value domain R(s) ∈ (0, 1). When the input value tends to
negative infinity, the output value is close to 0. When the input value tends to positive
infinity, the output value is close to 1. The mathematical properties of the Sigmoid function
allow it to be used in neural networks as an activation function to normalize the output of
each neuron. In addition, since the probability also takes values in the range of 0 to 1, the
Sigmoid function is often applied to prediction probability models to solve classification
problems. This paper uses the Sigmoid function to predict the probability of each label in
the software defect separately [48], and the probability of different categories do not affect
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each other. In the classifier, the formula for calculating the probability of assigning the i-th
software defect to the j-th fixer is defined by Formulas (4)–(6),

σ
(
zj
)
=

1
1 + e−zj

(4)

σ
(
zj
)
= p

(
devj|bugi

)
(5)

p
(
devj|bugi

)
=

1
1 + e−zj

(6)

where zj is the ouput of the fully connected layer and the input of the Sigmoid function.
Formula (4) is obtained by inserting x = zj into Formula (3). In Formula (5), bugi is the i-th
software defect, and devj is the j-th fixer. σ

(
zj
)

is expressed as the probability of assigning
the i-th software defect to the j-th fixer. The final probability calculation Formula (6) can be
obtained by substituting Formula (5) with Formula (4).

In addition, the number of software defects fixed by each developer varies, making
the sample size different for different developer types, which may lead to a category
imbalance in the dataset. This paper addresses the problem of category imbalance by
using data augmentation technique [49], which extends the dataset by generating new
training data from existing data, effectively reducing model overfitting. Specifically, we
first delete the categories with a sample size of 1 in the dataset because too few samples
will affect the training effect of the model. Secondly, the sample size of the largest category
in the dataset is denoted as maxNum. Then, the formula Threshold = p ∗maxNum for the
small number of samples is proposed by setting the parameter p = 0.8. For each category,
when the sample size of the category is less than Threshold, a sample is randomly selected
from the original dataset of the category, and the original textual content in the sample is
randomly exchanged to generate new textual content. For the newly generated text, the
same processing method is used to obtain the textual characteristic of the sample. At the
same time, we keep the developer characteristic unchanged and finally get the characteristic
vector of the new sample. When the sample size of the category is not less than Threshold,
the data augmentation process for the current category is stopped. Finally, the problem of
category imbalance in the dataset is solved by traversing and processing each category.

We evaluate the performance of the model by splitting the training set and the test set
and dividing them by a ratio of 8:2. During the training phase, we obtain the augmented
training set based on the above data-augmentation method. We construct the cross-entropy
loss function, train the classifiers based on the gradient descent optimization algorithm,
use the dropout strategy to prevent the overfitting phenomenon, and finally generate the
assignment model. During the test phase, the assignment model generated in the training
phase is used to recommend appropriate developers for each software defect based on the
data in the test set.

5. Dataset

In order to study the assignment of software defects, this paper needs to collect data
on software defects and construct a dataset.

In order to collect software defects, this paper needs to select suitable open-source
projects from the GitHub platform. First, we sorted projects in GitHub from highest to
lowest based on the number of stars in order to select some popular projects. For the Top-50
open-source projects with the highest number of stars, we further filtered out projects
that shared documentation or books and only considered projects that involved software
development work. Then, for such projects, we counted the number of software defects
in each project from inception until 2023. Since GitHub supports developers to identify
features for reported issues by adding labels, we manually checked the label described as a
bug in each software project and selected the issue with that label as a software defect. In
order to ensure that software defects do not change in the future, this paper only considers

128



Mathematics 2024, 12, 425

software defects whose status is closed. At the same time, in order to ensure that the
collected software defects can be used for the training and learning of the assignment
model, we selected the software defects with fixers. For the software defects that meet
the above conditions, we filtered out the projects with a number of software defects that
were less than 500 to ensure that there were enough software defects in each software
project. Finally, we selected the Top-9 open-source software projects with a high number
of stars and more than 500 software defects. The details of the 9 open-source projects are
shown in Table 3. In Table 3, the number of software defects in the 9 open-source projects
reached 20,280, using programming languages such as C++, C#, JavaScript, Go, and other
mainstream programming languages.

For the software defects in nine open-source projects, we used GitHub Rest API to
extract the title, body, reporter, commentator, and fixer information of each defect. At the
same time, we collected the reporting time and closing time of the software defects. We
define other software defects whose closing time is earlier than the reporting time of the
current defect as their historical software defects. Some software defects may be assigned
to virtual bots (users registered on the platform with a “bot” string in their name) instead of
real developers. Since no real developers were used, these software defects were not useful
for the training and learning the automated developer assignment task. Therefore, we
removed these software defects assigned to virtual bots based on the “bot” string contained
in the registered name. At the same time, we also removed the virtual bots when collecting
developers. In addition, there are a small number of cases where the reporters of software
defects are also their fixers. In order to better study the developer assignment method, we
treated these software defects as follows: (1) If there was only one fixer and the fixer was
also the reporter, the software defect was deleted directly. (2) If the software defect had
more than one fixer, the defect was retained, and the fixer, who was also the reporter, was
deleted from the fixer list.

Table 3. Information of nine open-source projects.

Open-Source Project Period
Number of

Stars
Label of
Defects

Number of
Defects

Number of
Fixers

Main
Programming

Language

tensorflow/tensorflow 2015/11–
2022/12 170k type:bug 7208 341 C++

flutter/flutter 2015/11–
2022/12 148 k P4 741 143 Dart

electron/electron 2014/05–
2022/12 105 k bug 755 35 C++

vercel/next.js 2016/10–
2022/12 97.9 k kind: bug 592 33 JavaScript

kubernetes/kubernetes 2014/06–
2022/12 94.5 k kind/bug 3768 778 Go

microsoft/TypeScript 2014/07–
2022/12 87 k Bug 4601 51 TypeScript

microsoft/terminal 2017/10–
2022/12 86.7 k Issue-Bug 577 30 C++

microsoft/PowerToys 2019/09–
2022/12 83.7 k Issue-Bug 973 56 C#

ant-design/ant-design 2015/07–
2022/12 83.5 k Bug 1065 44 TypeScript

In addition, software defects may have one or multiple fixers. We measured the
percentage of software bugs with multiple fixers across 9 projects and found that only 7.57%
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of software defects had two or more fixers, and 92.43% of software defects had only one
fixer. Therefore, when we customized the meta-paths, we did not consider the collaboration
of two developers fixing a software defect at the same time.

6. Experimental Evaluation

6.1. Evaluation Metrics

For the developer assignment method DARIP, this paper evaluates the DARIP method
by using two metrics: Mean Reciprocal Rank(MRR) [50] and Recall@k [51].

(1) Mean Reciprocal Rank (MRR)

The Mean Reciprocal Rank is a widely used evaluation metric in recommendation
algorithms. It represents the average reciprocal ranking of the real fixers in the assignment
list. The higher the ranking of a real fixer in the assignment list, the higher the average
reciprocal ranking. If there are multiple real fixers, the one with the highest ranking is
selected for the calculation. In this paper, we denote N as the number of software defects,
and rank(i) as the rank of the real fixer in the assignment list for the i-th software defect.
The formula for calculating the Mean Reciprocal Rank is as follows:

MRR =
1
N

N

∑
i=1

1
rank(i)

(7)

(2) Recall@k

The k indicates a configurable option. The Recall@k is the number of real fixers in
the top-k ranking divided by the number of real fixers. The research goal of this paper is
to assign appropriate fixers to software defects, so we hope to find out the real fixers of
software defects as much as possible, so we use the Recall@k to evaluate the ability of the
model to predict the fixers. In this paper, we denote N as the number of software defects,
real(i)k as the number of real fixers in the top-k ranking of the assignment list for the i-th
software defect, and real(i)all as the number of all real fixers for the i-th software defect.
Finally, the average of the Recall@k of N software defects is calculated. The calculation
formula is as follows:

Recall@k =
1
N

N

∑
i=1

real(i)k
real(i)all

(8)

In addition, in order to compare the difference in the assignment effect of different
methods, this paper defines the gain value to calculate the difference in the assignment
effect of method M1 and method M2, including the gain value of MRR and the gain value
of Recall@k. The definitions are as follows:

Gain(MRR) =
MRR(M1)−MRR(M2)

MRR(M2)
(9)

Gain(Recall@k) =
Recall@k(M1)− Recall@k(M2)

Recall@k(M2)
(10)

6.2. Research Questions

This paper studies the following three questions:

RQ1: How is the performance of the DARIP method in assigning developers for
software defects?

In this paper, we compare the DARIP method with the Multi-triage method proposed
by Aung et al. [14] and validate the effect of the DARIP method of developer assignment
for software defects in the datasets of nine open-source projects, respectively.

RQ2: Does the combination of different characteristics improve the assignment
effect of the DARIP method?
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The automatic developer assignment method proposed in this paper considers the
textual and developer characteristics of software defects, respectively. In order to evaluate
the necessity of selecting the above characteristics, this paper compares the assignment
effect of different characteristic combinations and selects the appropriate characteristic
combinations to apply to the DARIP method.

RQ3: How do different parameter settings affect the assignment effect of the
DARIP method?

Different parameters are involved in the developer assignment method DARIP de-
signed in this paper. We predict Top-N potentially related issues for software defects when
extracting textual characteristics. We use the skip-gram model with a specified value of
sliding window w to learn the feature representations of developers in heterogeneous
collaborative networks. In order to evaluate the effect of different parameter settings on
the developer assignment effect, this paper compares the assignment effect under different
parameter values and selects the appropriate parameter size for the DARIP method.

6.3. Evaluation Results
6.3.1. RQ1: How Is the Performance of the DARIP Method in Assigning Developers for
Software Defects?

Aung et al. [11] proposed multi-triage, a multi-task learning multi-classification
method, which extracted the feature representation of bug descriptions and code snippets
using a text encoder and an AST encoder, and improved the performance of the model by
jointly learning the developer assignment and label classification tasks. In this paper, the
Multi-triage method is used as a comparison method.

The experimental results are shown in Table 4. The average values of the Recall@5, the
Recall@10, and the MRR of the method DARIP in 9 projects are 0.5902, 0.7160, and 0.4136,
respectively. It can be seen that the assignment method DARIP in this paper outperforms
the Multi-triage method in the Recall@5, the Recall@10, and the MRR.

Table 4. Definition of the heterogeneous collaborative network.

Project Method Recall@5 Recall@10 MRR

ant-design DARIP 0.9156 0.9778 0.6708
Multi-traige 0.7426 0.7919 0.5741

electron DARIP 0.7319 0.8795 0.5784
Multi-traige 0.7219 0.8278 0.5699

flutter DARIP 0.2000 0.3125 0.1412
Multi-traige 0.2569 0.2926 0.1306

kubernetes DARIP 0.1271 0.1766 0.1073
Multi-traige 0.1286 0.2084 0.0998

next.js DARIP 0.8202 0.9071 0.5997
Multi-traige 0.3517 0.6695 0.2397

PowerToys DARIP 0.6501 0.8347 0.4284
Multi-traige 0.5155 0.6443 0.4020

tensorflow DARIP 0.2980 0.4344 0.1770
Multi-traige 0.1446 0.3174 0.1333

terminal DARIP 0.8281 0.9676 0.5439
Multi-traige 0.5725 0.7812 0.4174

TypeScript DARIP 0.7410 0.9542 0.4757
Multi-traige 0.6163 0.7750 0.4004

Average DARIP 0.5902 0.7160 0.4136
Multi-traige 0.4501 0.5898 0.3297
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Then, the gains of the DARIP method over the Multi-triage method are calculated on
9 projects for the two evaluation metrics, as shown in Table 5. Compared with the existing
method Multi-triage, the average values of the Recall@5, the Recall@10, and the MRR of
the DARIP method in 9 projects are increased by 31.13%, 21.40%, and 25.45%, respectively.

Table 5. The gain values of the DARIP method relative to the Multi-triage method.

Project
Gain(%)

Recall@5 Recall@10 MRR

ant-design 23.30% 23.48% 16.84%

electron 1.39% 6.25% 1.49%

flutter −22.15% 6.80% 8.12%

kubernetes −1.17% −15.26% 7.52%

next.js 133.21% 35.49% 150.19%

PowerToys 26.11% 29.55% 6.57%

tensorflow 106.09% 36.86% 32.78%

terminal 44.65% 23.86% 30.31%

TypeScript 20.23% 23.12% 18.81%

Average 31.13% 21.40% 25.45%

6.3.2. RQ2: Does the Combination of Different Features Improve the Assignment Effect of
the DARIP Method?

The assignment method proposed in this paper considers the textual and developer
characteristics of software defects, respectively. In order to evaluate the necessity of
selecting the above characteristics, this paper compares the assignment effect of different
characteristic combinations and selects the appropriate characteristic combinations to apply
to the DARIP method.

We remove textual characteristics and developer characteristics, respectively, and
compare the differences in the assignment effect between the method of removing textual
characteristic, the method of removing developer characteristic, and the DARIP method, as
shown in Table 6. The results show that the DARIP method has higher Recall@5, Recall@10,
and MRR on nine projects than the methods with textual characteristic removed and
developer characteristic removed. This shows that considering both textual and developer
characteristics can help improve the effect of developer assignment.

In conclusion, compared with the method of removing textual characteristic and
the method of removing developer characteristic, the DARIP method shows a better
assignment effect on nine projects. This fully demonstrates the importance of selecting the
above characteristics in this paper.

Table 6. Comparison of different characteristics.

Project Experimental Group Recall@5 Recall@10 MRR

ant-design
DARIP 0.9156 0.9778 0.6708

Remove Text 0.8828 0.9294 0.5418
Remove Developer 0.8891 0.9682 0.6462

electron
DARIP 0.7319 0.8795 0.5784

Remove Text 0.6632 0.8160 0.5477
Remove Developer 0.6899 0.8501 0.5636

flutter
DARIP 0.2 0.3125 0.1412

Remove Text 0.1761 0.2689 0.1298
Remove Developer 0.1714 0.2642 0.1294
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Table 6. Cont.

Project Experimental Group Recall@5 Recall@10 MRR

kubernetes
DARIP 0.1271 0.1766 0.1073

Remove Text 0.1136 0.1655 0.1005
Remove Developer 0.1253 0.1725 0.0980

next.js
DARIP 0.8202 0.9071 0.5997

Remove Text 0.7598 0.8993 0.5928
Remove Developer 0.8046 0.9013 0.5961

PowerToys
DARIP 0.6501 0.8347 0.4284

Remove Text 0.6275 0.7264 0.3344
Remove Developer 0.6359 0.8002 0.4220

tensorflow
DARIP 0.2980 0.4344 0.1770

Remove Text 0.2275 0.3893 0.1402
Remove Developer 0.2764 0.4250 0.1734

terminal
DARIP 0.8281 0.9676 0.5439

Remove Text 0.7016 0.9656 0.4303
Remove Developer 0.8221 0.9656 0.5414

TypeScript
DARIP 0.7410 0.9542 0.4757

Remove Text 0.5089 0.8407 0.3271
Remove Developer 0.7304 0.9404 0.4724

6.3.3. RQ3: How Do Different Parameter Settings Affect the Assignment Effect of the
DARIP Method?

Different parameters are involved in the developer assignment method DARIP de-
signed in this paper. This section analyzes the parameter settings of the number of predicted
related issues N and the sliding window w in the skip-gram model.

When extracting the textual characteristics of software defects, we predict Top-N
potential related issues for each software defect, weight them based on the cosine similarity
between software defects and related issues, and finally get the textual characteristics
of each software defect. If the parameter N takes different values, the resulting textual
characteristics also have certain differences. We set the parameter N to 0, 1, 3, and 5,
respectively, and compare the difference in the assignment effect when N takes different
values, as shown in Table 7. Among them, N = 0 means that we do not consider the
related issues and only extract textual characteristics based on the text information of
software defects.

Table 7. Comparison of different characteristics.

Project Top-N Recall@5 Recall@10 MRR

ant-design

Without Issues 0.8989 0.9689 0.6451
Top-1 0.9156 0.9778 0.6708
Top-3 0.8891 0.9597 0.6507
Top-5 0.8859 0.9640 0.6415

electron

Without Issues 0.7064 0.8716 0.5738
Top-1 0.7319 0.8795 0.5784
Top-3 0.6914 0.8501 0.5606
Top-5 0.6751 0.8472 0.5552

flutter

Without Issues 0.1897 0.2773 0.1360
Top-1 0.2 0.3125 0.1412
Top-3 0.1811 0.3062 0.1323
Top-5 0.1748 0.3046 0.1279
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Table 7. Cont.

Project Top-N Recall@5 Recall@10 MRR

kubernetes

Without Issues 0.1261 0.1638 0.0911
Top-1 0.1271 0.1766 0.1073
Top-3 0.1015 0.1575 0.0976
Top-5 0.1184 0.1572 0.0875

next.js

Without Issues 0.7549 0.8961 0.5677
Top-1 0.8202 0.9071 0.5997
Top-3 0.7851 0.8974 0.5698
Top-5 0.7618 0.8916 0.5844

PowerToys

Without Issues 0.6376 0.8259 0.4202
Top-1 0.6501 0.8347 0.4284
Top-3 0.6085 0.7787 0.3865
Top-5 0.6049 0.7859 0.3702

tensorflow

Without Issues 0.2937 0.4025 0.1698
Top-1 0.2980 0.4344 0.1770
Top-3 0.2773 0.3899 0.1598
Top-5 0.2836 0.4105 0.1680

terminal

Without Issues 0.7916 0.9652 0.5345
Top-1 0.8281 0.9676 0.5439
Top-3 0.8221 0.9834 0.5371
Top-5 0.8004 0.9755 0.5394

TypeScript

Without Issues 0.7119 0.9535 0.4519
Top-1 0.7410 0.9542 0.4757
Top-3 0.7286 0.9487 0.4666
Top-5 0.7195 0.9509 0.4560

When considering related issues, it can be found that the Recall@5, the Recall@10,
and the MRR when N is 1 are better than the Recall@5, the Recall@10, and the MRR when
N is 3 and 5. This indicates that the method considering Top-1 related issues has better
assignment effect than the methods considering Top-3 and Top-5 related issues. Moreover,
with the increase of N, the assignment effect of the DARIP method decreases.

In the case of not considering related issues, it can be found that the Recall@5, the
Recall@10, and the MRR when N takes the value of 1 are better than the Recall@5, the
Recall@10, and the MRR without related issues on 9 projects. This suggests that considering
the text information of related issues can help to improve the developers’ assignment effect.

In conclusion, the DARIP method is the most effective when predicting the Top-1
potentially related issues for software defects. Therefore, in this paper, we set the value of
N to 1.

At the same time, this paper uses the skip-gram model to extract developer char-
acteristics from the walk sequences. The size of the sliding window w in the skip-gram
model limits the collaborative distance between developers that can be learned. When w
takes different values, the developer characteristics extracted from software defects are
also different.

We set the sliding window w to 2, 4, and 6, respectively, and compare the differences
in the assignment effect when w is set to different values, as shown in Table 8. The results
show that the Recall@5, the Recall@10, and the MRR of the DARIP method when w is set to
4 are better than that of the methods when w is set to 2 and 6. Therefore, we set the value of
w to 4 in this paper.
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Table 8. Comparison of different characteristics.

Project w Recall@5 Recall@10 MRR

ant-design
2 0.8649 0.9564 0.5979
4 0.9156 0.9778 0.6708
6 0.8992 0.9682 0.6544

electron
2 0.7018 0.8532 0.5656
4 0.7319 0.8795 0.5784
6 0.6815 0.8408 0.5476

flutter
2 0.1968 0.3043 0.1353
4 0.2 0.3125 0.1412
6 0.1841 0.2991 0.1326

kubernetes
2 0.1254 0.1188 0.0888
4 0.1271 0.1766 0.1073
6 0.1229 0.1745 0.0978

next.js
2 0.7949 0.8976 0.5645
4 0.8202 0.9071 0.5997
6 0.8194 0.8863 0.5435

PowerToys
2 0.6199 0.7878 0.3946
4 0.6501 0.8347 0.4284
6 0.6206 0.7892 0.4050

tensorflow
2 0.2860 0.4554 0.1685
4 0.2980 0.4344 0.1770
6 0.2892 0.4298 0.1625

terminal
2 0.8180 0.9660 0.5274
4 0.8281 0.9676 0.5439
6 0.8101 0.9556 0.5395

TypeScript
2 0.6930 0.8995 0.4393
4 0.7410 0.9542 0.4757
6 0.6951 0.8953 0.4348

7. Discussion

In this paper, we propose the developer assignment method DARIP, which assigns
appropriate developers to software defects by considering the prediction of related issues
and the collaborative relationship between developers. Experimental results validate the
effectiveness of the DARIP method in several ways.

The DARIP method takes into account the possible correlation between software
defects and other issues, and mines additional valuable text information for software
defects by predicting related issues. As shown in Table 7, the Recall@5, the Recall@10, and
the MRR when N is 1 are better than the Recall@5, the Recall@10, and the MRR when N is 0.
This indicates that the method considering Top-1 related issues has better assignment effect
than the method without considering related issues. However, we find that the assignment
effect of the DARIP method decreases with the increase of N. In the ant-design project,
the Recall@5, the Recall@10, and the MRR when N is 5 are lower than the Recall@5, the
Recall@10, and the MRR when N is 0. We analyze the difference of the assignment effect
when N takes different values, and find that it is optimal when predicting Top-1 related
issues for software defects.

Meanwhile, the DARIP method considers four types of collaborative relationships
between developers: report–comment, report–fix, comment–comment, and comment–fix,
and uses graph-embedding algorithm to learn collaboration between developers from the
constructed heterogeneous collaborative network. We analyze the difference in assignment
effect with different values of sliding window w, as shown in Table 8. The Recall@5, the
Recall@10, and the MRR of the DARIP method when w is set to 4 are better than that of the
method when w is set to 2. This indicates that it is not sufficient to consider collaborative
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relationships where the collaborative distance between developers is 0 (direct collaboration,
where two developers collaborate on the same software defect) but also collaborative rela-
tionships where the collaborative distance between developers is 1 (indirect collaboration,
where both developers have a direct collaborative relationship with the same developer).
However, the Recall@5, the Recall@10, and the MRR of the DARIP method when w is set
to 4 are better than that of the method when w is set to 6. This indicates that the assign-
ment effect decreases when considering collaborative relationships with greater distances.
Therefore, when assigning developers for software defects, direct and indirect collaborative
relationships between developers need to be considered, and collaborative relationships
with greater distances are not recommended.

8. Threats to Validity

Threats to construct validity is concerned with the suitability of experimental results
to the concepts or theories behind the experiments. Firstly, we selected 9 popular projects
from the GitHub platform to verify our method. The 9 open-source projects involve a
variety of common programming languages and contain 20,280 software defects, which is
representative. Future work can collect more open-source projects to validate our method.
Then, we predict related issues for a software defect from its historical software defects.
These historical software defects belong to the same project as the software defect. However,
when Li et al. [29] studied the correlation between issues, they found that the related issues
of an issue in a project may originate from other projects on the GitHub platform. In future
work, we will expand the data sources of related issues to evaluate the DARIP method.

Threats to internal validity is the degree to which research establishes a credible
causal relationship between disposition and outcome. First, we investigate the assignment
effect of the method based on the standard answer of the assignee to the software defect as
the fixer. However, the real fixer may not be the best developer to fix the software defect,
and other developers may also be capable of fixing it. Future work can manually label
the developers who are capable of fixing software defects to construct the dataset. Then,
this paper uses cosine similarity to calculate the correlation between software defects and
related issues. In future work, we try to use different text similarity calculation methods
and analyze the impact of using different similarity calculation methods on developer
assignment methods.

Threats to external validity have to do with the universality of our research. This
paper selects the GitHub platform to study the developer assignment of software defects
but is uncertain about the effect of this method on other open-source platforms. Future
work can collect data from more platforms to validate the DARIP method. Meanwhile,
this paper investigates the developer assignment method for software defects in the Issue-
Tracking System. However, the issues recorded in the Issue-Tracking System include not
only software defects but also functional requirements proposed by developers. Such issues
may also be assigned to developers to complete software development tasks. In future
work, we consider extending the DARIP method to assign developers to all issues in the
Issue-Tracking System.

9. Conclusions

In this paper, we propose a developer assignment method, DARIP, for open-source
software defects. First, the DARIP method uses the BERT model to extract the textual
vectors from software defects and all its historical software defects. Based on the cosine
similarity, Top-N potential related issues are predicted for each software defect from all the
historical software defects, and takes the text information of related issues together with the
text information of software defects as textual input. The textual characteristics of software
defects are obtained by comprehensively calculating the text vector of software defects and
related issues. Secondly, a heterogeneous collaborative network is constructed based on
the three development behaviors of developers: reporting, commenting, and fixing. The
meta-paths are defined based on the four collaboration relationships between developers:
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report–comment, report–fix, comment–comment, and comment–fix. The graph-embedding
algorithm metapath2vec is used to extract developer characteristics from the heterogeneous
collaborative network. Then, a classifier based on a deep learning model calculates the
probability assigned to each developer category. Finally, the assignment list is obtained
according to the probability ranking.

This paper verifies the performance of the DARIP method on 20,280 software defects in
9 popular projects. The experimental results show that the average values of the Recall@5,
the Recall@10, and the MRR of the DARIP method in 9 projects are 0.5902, 0.7160, and
0.4136, respectively. Compared with the existing method Multi-triage, the average values of
the Recall@5, the Recall@10, and the MRR of the DARIP method in 9 projects are increased
by 31.13%, 21.40%, and 25.45%, respectively.
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Abstract: Against the backdrop of the current Chinese national carbon peak and carbon neutrality
policies, higher requirements have been put forward for the construction and upgrading of smart grids.
Non-intrusive Load Monitoring (NILM) technology is a key technology for advanced measurement
systems at the end of the power grid. This technology obtains detailed power information about the
load without the need for traditional hardware deployment. The key step to solve this problem is load
decomposition and identification. This study first utilized the Long Short-Term Memory Denoising
Autoencoder (LSTM-DAE) to decompose the mixed current signal of a household busbar and obtain
the current signals of the multiple independent loads that constituted the mixed current. Then, the
obtained independent current signals were combined with the voltage signals to generate multicycle
colored Voltage–Current (VI) trajectories, which were color-coded according to the background. These
color-coded VI trajectories formed a feature library. When the Convolutional Neural Network (CNN)
was used for load recognition, in light of the influence of the hyperparameters on the recognition
results, the Bayesian Optimization Algorithm (BOA) was used for optimization, and the optimized
CNN network was employed for VI trajectory recognition. Finally, the proposed method was
validated using the PLAID dataset. The experimental results show that the proposed method
exhibited better performance in load decomposition and identification than current methods.

Keywords: denoising autoencoder; Bayesian optimization; non-intrusive load recognition;
convolutional neural network

MSC: 86T20

1. Introduction

Given the ongoing increase in domestic electricity consumption, incorporating effec-
tive daily electricity usage planning is important to minimize energy waste. In this regard,
NILM can help identify domestic electrical appliances and their states, enabling domestic
consumers to have a better understanding of their electricity consumption behavior and
improve their usage patterns [1]. Moreover, NILM can also enhance the management and
optimization of the demand side of the power grid to achieve energy saving goals. There-
fore, NILM holds great significance for energy conservation and emission reduction [2].
Unlike traditional methods requiring the installation of multiple sensors, NILM integrates
electricity information into a single collection signal, making it more cost-effective and
practical [3]. NILM can be primarily divided into two categories based on its objectives.
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The first is load identification, which involves recognizing the electrical appliances that
users are currently using or identifying changes in the switch status of the appliances.
The second is load decomposition, where the total power is broken down into the power
consumption of individual electrical devices. By analyzing information from these two
categories, NILM can provide users and power suppliers with accurate device-level elec-
tricity consumption details, including startup and shutdown times, operating duration,
power consumption, and the associated costs. In terms of event changes, NILM can be
classified into event-based load identification and non-event-based load decomposition [4].
Event-based load identification methods typically include three steps: event detection,
feature extraction, and load classification [5]. Non-event-based load decomposition usually
does not require event detection; instead, it directly uses the total power sequence as the
model input. This is because its purpose is not to identify the electrical appliances running
during a specific time period but to decompose the total power based on the differences
in the power and operating modes of different appliances, directly obtaining the power
sequences of individual electrical devices.

Regarding load identification technology, a 2019 study [6] utilized the Dynamic Time
Warping (DTW) algorithm to calculate the similarity between test templates and reference
templates, using transient waveforms and the power change values of household load
switching events as feature quantities for load recognition. A more recent study [7] clus-
tered load data based on steady-state values and proposed a non-intrusive load recognition
method using Feature Weighted K-Nearest Neighbor (FWKNN), which improved the
feature distance calculations with feature weights and achieved high accuracy. A further
study [8] presented an attention model that combined global and sliding window ap-
proaches, employing bidirectional Long Short-Term Memory (LSTM) networks as encoders
to extract information, utilizing an attention mechanism to capture the current load infor-
mation and decode the output decomposition results. A 2020 study [9] encoded different
power states of target appliances using a deep recurrent convolutional model, extracting
spatiotemporal features of input total load power, and implemented state modeling of
different target appliances through transfer learning, achieving significant improvements
compared to Markov models. In another recent study [10], a lightweight recognition task
was accomplished by combining CNN and K-Nearest Neighbor (KNN) networks. Simulta-
neously, for unknown loads, user feedback may not be required, allowing the system to
operate in unfamiliar home environments. Even more recently [11], a novel method was
proposed to extract distorted images of current harmonics from aggregated signals over
60 cycles, enabling appliance classification within 1 s with low computational complexity.
Earlier, a study [12] described in detail eight shape features such as the asymmetry observed
in VI trajectories and conducted recognition using hierarchical clustering. Subsequently,
researchers [13] used the elliptical Fourier descriptor of VI trajectory contours as input for
a classification algorithm. A further study [14], based on [12], introduced a new feature
called “span” and compared it with the harmonic content, active power, and reactive
power of the current, utilizing four classification algorithms. The results showed that the
VI trajectories had good recognition capability. The authors of [15] introduced a transfer
learning methodology grounded in the VI trajectory to address the challenge of limited
data label acquisition. Additionally, the VI trajectory underwent a transformation into a
visual representation through color encoding. This process not only heightened the unique-
ness of the appliance signature but also facilitated the integration of transfer learning into
NILM. The authors of [16] proposed adaptive weighted recurrence graph blocks for the
representation of appliance signatures in event-based NILM. By converting the activation
current of a single cycle into a weighted recursive graph, the proposed method ensured
the distinctiveness of appliance signatures. Consequently, this approach demonstrated
superior recognition performance on the LILACD and PLAID public datasets compared
to traditional VI-trajectory-based methods. A reconstructed VI trajectory was introduced,
incorporating the Particle Swarm Optimization (PSO) algorithm to ascertain the optimal
threshold parameters. This enhancement aims to maximize the model’s classification
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capability, addressing the challenge faced by conventional VI-trajectory-based methods
in effectively distinguishing similar appliances [17]. A 2021 study [18] introduced the
Asymmetric Deep Supervised Hashing (ADSH) method, utilizing VI trajectory signatures
for NILM. This approach employed the VI trajectory as the model input, effectively ad-
dressing challenges related to the inefficient computation of massive data and the limited
discrimination of manually extracted signatures. Simultaneously, an asymmetric learn-
ing architecture was applied for hash code learning. Specifically, a convolutional neural
network model was used for high-dimensional feature extraction and hash function learn-
ing in some training trajectories to establish coding rules. For all training trajectories,
the direct learning of coding rules ensured consistency in the codes, thereby achieving
accurate appliance recognition. This approach significantly enhanced recognition accuracy
while maintaining a small code length and reducing the space complexity. To tackle the
difficulties associated with acquiring label data and correctly identifying the VI trajectory
of multistate appliances, a semi-supervised learning method based on the semi-supervised
teacher graph network [19] was proposed. This method compacted the feature distribution
of multistate appliances by constructing a teacher graph, leading to improved recognition
results. However, while significant progress has been made in the accuracy of load iden-
tification using VI trajectories as features, several challenges persist. Firstly, the current
approach normalizes the voltage and current data to derive the VI trajectories, leading
to a loss of energy information. Secondly, appliances with continuous power variations,
such as computers, are difficult to represent using steady-state VI trajectories. Lastly, VI
trajectories fail to capture the stability characteristics of a load’s operational state during
runtime, specifically the amplitude of the current oscillations.

In the realm of load decomposition techniques, traditional methods rely on low-
frequency data to decompose aggregated data into device-level information. This process
does not necessitate event detection and typically focuses on power data as the primary
research object. The Hidden Markov Model (HMM) has been a commonly used regression
model. Kim et al. validated four HMM extension models and introduced non-electrical
characteristics such as the load switching duration, load usage frequency, and interdepen-
dence among loads, which improved the decomposition accuracy to a certain extent [20].
Kolter et al. applied the Factorial Hidden Markov Model (FHMM) algorithm to establish a
load decomposition model, using the total current signals as the research object. When a
signal change was detected, the signal differences between the load currents were encoded,
resulting in the optimal solution for the model and achieving a high decomposition accu-
racy [21]. With the continuous development of deep learning technology, non-intrusive
load decomposition models based on deep learning have emerged [22]. In 2015, Kelly
introduced deep learning methods into the NILM field and coined the term “Neural NILM”.
Kelly proposed three neural network structures: LSTM, Recurrent Neural Network (RNN),
and Distributed Agent Environment (DAE), which were effective in handling long time-
series data [23]. Roberto improved Kelly’s DAE model by combining it with a median filter,
which partially eliminated the noise interference and improved the model’s robustness [24].
Odysseas modified Kelly’s LSTM network to tackle the issue of the high number of network
neurons, which led to long training times and thus, its unsuitability for embedded devices.
Instead, the Gated Recurrent Unit (GRU) algorithm was used, reducing the network’s
depth while maintaining the accuracy and reducing the computational complexity [25].
Zhang proposed a load decomposition framework that mapped sequences to individual
load points, with aggregated power data of windows as the network’s input and the corre-
sponding single-point load data as the network’s output. This mapping pattern accelerated
the training speed and improved the load decomposition’s real-time performance [26].
Barsim proposed a general deep decomposition model that automatically adjusted the
model parameters based on the characteristics of different loads, thus obtaining more
accurate load-switching state sequences [27]. Piccialli adopted a neural network model
with an attention mechanism, which strengthened the correlation between the input and
output and improved the decomposition accuracy [28].
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The tasks of load decomposition and load identification have conventionally been
regarded as independent processes. However, during load identification tasks, it is imper-
ative to conduct load decomposition. Distinctive load characteristics can only be further
extracted by obtaining the independent electrical signals of individual loads through load
decomposition. In the load identification process, the commonly employed method for
decomposition is the differencing technique. This involves taking the difference between
the total voltage and current data before and after the occurrence of an “event”. However,
practical challenges arise in obtaining accurate current–voltage data through differencing
during actual operations, particularly when loads with substantial fluctuations exist on
the user bus. Obtaining precise current signals is especially challenging. Consequently,
this study introduces the notion of traditional load decomposition into the load identifi-
cation task to replace the differencing method. Given that voltage signals are minimally
affected by load switch actions, only current signals require decomposition. Hence, a deep
learning approach is employed for current decomposition, obtaining independent current
signals. The current decomposition in load identification differs from traditional load
decomposition, which employs low-frequency signals with a sampling frequency typically
ranging from 1/6 Hz to 1 Hz. Traditional methods require neural networks to learn the
features of the entire load operating cycle over an extended period. In contrast, load
identification necessitates high-frequency features, often employing data exceeding 1 kHz.
As high-frequency signals exhibit strong periodicity, this study transforms the decompo-
sition issue in load identification into a denoising problem. By denoising mixed current
signals, independent current signals for individual loads are obtained.

Thanks to the higher discriminability of electrical quantities in VI trajectories compared
to other features and its effective integration with image recognition, the complexity
of feature extraction and load identification was reduced. Consequently, the current
study opted for VI trajectories as the distinctive feature for load recognition. Despite
the significant progress achieved in load recognition accuracy by using VI trajectories
as features, the existing issues still exerted a considerable impact on the precision of
load identification.

To address these issues, this paper proposed an approach based on LSTM-DAE.
This method was employed to decompose complex mixed current signals and obtain
independent current signals of unknown loads. The decomposed current signals were
combined with voltage signals, and the resulting VI trajectories were plotted as features for
load identification. Recognizing the limitations inherent in VI trajectories, traditional single-
cycle VI trajectories were enhanced by transforming them into multicycle VI trajectories to
capture fluctuations during load operation. Additionally, color coding was applied to VI
trajectories to enhance the distinctiveness between different loads. Different background
colors were assigned to VI trajectories based on varying current amplitudes, addressing the
issue of energy information loss caused by the normalization of current–voltage data.

Following the completion of VI trajectory feature extraction, the improved VI trajecto-
ries were subjected to image recognition using the AlexNet architecture within a CNN to
accomplish the load identification task. Given the numerous parameters of the AlexNet
network and their significant influence on recognition accuracy, the BOA was employed
to optimize the hyperparameters of the AlexNet network, aiming to achieve the optimal
solution. The specific methodology was as follows:

(1) The high-frequency mixed current signals were decomposed using the LSTM-DAE.
This work accurately acquired the current signals of each load by exploiting the
high sensitivity of LSTM to temporal signal features and the ability of the DAE to
transform the load decomposition problems into denoising problems, which were
then utilized as the fundamental data for load recognition;

(2) Colored VI trajectories were generated by plotting the VI trajectories obtained from
the multicycle voltage and current data. The R channel represented the normal mul-
ticycle VI trajectory, the G channel represented the current variation slope between
adjacent sampling points, and the B channel represented the rate of power changes.
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Additionally, the VI trajectory background was color processed based on the dif-
ference in the current amplitude to obtain a multicycle color-encoded VI trajectory
feature library with filled background colors;

(3) The VI trajectory feature library was transformed into an n×n image format and
input into the AlexNet network for training. Since the traditional AlexNet network
was not suitable for load recognition tasks, the BOA algorithm was employed to
optimize the network parameters, thereby achieving better recognition performance;

(4) The PLAID dataset was utilized in the experiments, and the results demonstrated
that the six selected load decomposition accuracies all exceeded 94.

2. LSTM-DAE-Based Load Decomposition

2.1. Load Decomposition

Load decomposition is the process of decomposing one mixed telecommunications
signal into the independent telecommunications signals for each load. This research
transformed this process into a denoising problem to obtain accurate information about the
current of each load. Assuming there were N loads, the total current [29] at time t was:

I(t) =
N

∑
k=1

Ik(t) + Iδ(t), (1)

where I(t) was the total current at the current moment, Ik(t) was the current generated by
the kth load, and Iδ(t) was the noise disturbance.

Assuming the target load current represented the actual signal and considering the
total current signal as the composite of the actual signal and noise interference, the equation
was modified as follows:

I(t) = Iη(t) + Iβ(t), (2)

where Iη(t) is the current of the target load and also the real current in the denoising process,
and Iβ(t) is the noise in the denoising process, which is the superposition of the currents of
the loads other than the current of the target load and the real noise, expressed as:

Iβ(t) =
N−1

∑
k=1

Ik(t) + Iδ(t). (3)

2.2. Denoising Autoencoder

As shown in Figure 1, the Autoencoder (AE) had an equal number of nodes for the
input and output, with the aim of minimizing the reconstruction error between the input
and output. The AE consisted of an encoder φ and a decoder ψ, where the encoder mapped
the input to a low-dimensional feature space, and the decoder mapped the data from the
low-dimensional feature space back to the original input. In Figure 1, x represented the
input data to the encoder, h represents the data mapped from x to the hidden feature space,
and x′ represents the data reconstructed by the decoder using the hidden feature space
data h. Assuming the input space was I = Rn (where n was the number of variables),
the working principle of the autoencoder was defined as follows:

φ : I → F
ψ : F → I
φ, ψ = argmin

φ,ψ
‖x− x′‖2 , (4)

where ‖ · ‖ denoted the Frobenius norm. Taking an AE with one hidden layer as an example,
the encoder mapped the input x ∈ I to the hidden feature space h ∈ F = Rp (p was the
dimension of the hidden layer), and the mapping process was

h = σ(Wx + b), (5)
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where σ was the activation function in the encoder, W was the weight matrix, and b was the
bias vector. After the encoder mapped the input variable to the hidden layer, the decoder
reconstructed the variable x′ into a variable of the same size as the input variable x based
on the information in the hidden layer h. The mapping process was as follows:

x′ = σ′
(
W ′x + b′

)
, (6)

where σ′ represented the activation function in the decoder, and W′ and b′ corresponded
to the weight matrix and deviation vector in the decoder, respectively. The goal of the
self-encoder was to find the process that minimized the residuals between the input and
the reconstructed quantity x′:

L
(

x, x′
)
=

1
m

∥∥x− x′
∥∥2

=
1
m

∥∥x− σ′
(
W ′σ(Wx + b)

)
+ b′

∥∥2,
(7)

where m represented the number of sample points in the AE network. The optimization
problem of the self-encoder was solved by backpropagation.

Figure 1. Basic structure of an Autoencoder.

The Denoising Autoencoder (DAE) is a variant of an AE first proposed by Vin-
cent et al. [30]; its network structure is shown in Figure 2. The difference between the
DAE and an AE is that it uses partially corrupted data to train the DAE network in order to
recover the real inputs, and its function is to separate and remove the noise in the data to
obtain the real data. The workflow of a DAE is as follows:

(1) We obtain the corrupted data by adding noise to the normal data or randomly
discarding parts of the normal data;

x̃ = q(x̃ | x) (8)

(2) In this study, the corrupted data x̃ is mapped to the low-dimensional hidden feature
space by the self-encoder coding process h = σ(Wx + b);

(3) The decoder decodes the corrupted data’s mapping in the hidden feature space using
Equation (6) and obtains the reconstructed data;

(4) The minimization problem of Equation (7) is solved using the backpropagation algorithm.
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Figure 2. Structure of the Denoising Autoencoder.

In this way, in this paper, signal decomposition was converted into a denoising
problem. Specifically, the mixed current signals were treated as noisy signals, and the
independent load signals were seen as real data after undergoing denoising processing.

2.3. Decomposition Model Based on LSTM-DAE

The LSTM network has exhibited good performance in extracting features from time-
series signals [31,32]. Therefore, LSTM was combined with DAE. The encoder and decoder
parts of the DAE were composed of a dual-layer LSTM and Dropout layers, respectively.
The input data were the mixed current data, and a sliding window approach was employed
in which multiple cycles of a mixed current were used as inputs. This work selected a
window size of 10 cycles to achieve the functionality of seq2seq and obtain the output of
the independent current. The structure is shown in Figure 3.

Figure 3. The LSTM-DAE neural network model.

3. Load Recognition of VI Traces Based on Background Color Coding

3.1. Construction of the VI Trajectory Pixelization

The VI trajectory refers to the voltage–current relationship curve used to describe
the performance characteristics of electrical equipment. Traditional VI trajectory analysis
methods mapped the curve onto a unit grid, where each grid cell represented the presence
or absence of VI trajectory information (0 or 1). The grid was then transformed into an
image, thereby converting the load recognition problem into an image recognition problem
for automated identification. However, previous methods only utilized binary values to
represent each grid cell, resulting in relatively limited information content. Therefore, the
current study proposes an improved approach aimed at enhancing the expressive power of
the VI trajectory data.

(1) Conventional VI traces typically analyzed changes in a single cycle, which failed
to capture the characteristic changes of the load across different operating cycles.
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Therefore, this work utilized 20 consecutive cycles of current–voltage signals to
generate VI traces, aiming to provide a more comprehensive reflection of the changes
across different cycles;

(2) Color coding the VI trajectory: The multicycle VI trajectory was represented in red (R
channel), the slope of the straight line segment between adjacent sampling points of
the VI trajectory was represented in green (G channel), and the instantaneous power
value was represented in blue (B channel), thereby generating a VI trajectory image
with colored tracks;

(3) Due to the significant differences in current amplitude between certain loads with
similar VI trajectories, and considering that current amplitude is an important load
characteristic, this research assigned different colors to the background of the VI tra-
jectories based on the varying current amplitudes in order to highlight the differences
in current amplitude.

The specific steps were as follows:

(1) In this study, the voltage and current values were standardized, and the resulting
standardized data were used to plot the standardized VI trajectory. The standardiza-
tion formula employed in this research is as follows:

ΔVm =
Vm

max |V| (9)

ΔIm =
Im

max |I| , (10)

where max|V| was the maximum value of the voltage in the steady-state sequence
and max|I| was the maximum value of current in the steady state sequence. Vm and
Im were the voltage and current values of the mth sampling point in the sequence,
respectively, and ΔVm and ΔIm were the voltage and current values of the mth
sampling point after normalization, respectively;

(2) In this study, the VI trajectory was created using normalized data, and the resultant
VI trajectory served as the R channel of the colored VI trajectory. Subsequently,
the green (G) and blue (B) channels were established in sequence, facilitating the
amalgamation of the RGB channels to form a colorful VI trajectory;

(3) In this study, the G channel was created by mapping the slope of the straight line
segments to the (0, 1) range using the arctan function.

Kj =
i f (j + 1)− i f (j)
V(j + 1)−V(j)

× max(|V|)
max

(∣∣∣I f

∣∣∣) (11)

Gj =
1
2
+

arctan
(
Kj

)
π

, (12)

where Kj was the slope of the jth straight line segment, and Gj was the G-channel
depth value of the jth straight line segment. i f (j) signified the current value at the
present data point, and i f (j + 1) represented the subsequent data point’s current
value. Vf (j) corresponded to the voltage value at the current data point, while
Vf (j + 1) represented the voltage value at the next data point. max|V| was utilized
to extract the absolute value of the maximum voltage obtained from the data used to
plot the VI trajectory, and max

∣∣∣I f

∣∣∣ was employed to extract the absolute value of the
maximum current obtained from the data depicting the VI trajectory.
The Gj was mapped to the VI trajectory to obtain the corresponding G-channel depth
value Gm,n for each grid, which was then normalized to obtain the G-channel value
for each grid point;

Gm,n
′ = Gm,n

max G
(13)
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maxG = max{G1,1, G1,2, G1,3, · · · , Gn,n} (14)

(4) The B channel was created with the following instantaneous power values:

Pj = IjVj (15)

Mapping Pj onto the VI trajectory results in depth values Pm,n for each grid. Following
this, the multiperiod power was normalized.

Pm,n
′ = Pm,n

max P
(16)

max P = max{P1,1, P1,2, P1,3, · · · , Pn,n}, (17)

where Pj was the instantaneous power value, Pm,n was the power superimposed
on each grid in the grid, max P was the maximum value of power in all the grids,
and the resulting P′m,n was the value of the B channel;

(5) For the addition of the background color, the average of the RMS values of the current
energy of 25 adjacent cycles was obtained and matched with the set background
color to determine the background color.

Figure 4 shows the multicycle monochromatic VI trajectory, the multicycle color-coded
VI trajectory, and the color-coded VI trajectory with background fill.

(a) Air Conditioner

(b) Compact Fluorescent

(c) Laptop
Figure 4. Cont.
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(d) Vacuum

(e) Microwave Oven

(f) Washing Machine
Figure 4. Monochromatic VI trajectory, VI trajectory with color coding, and color-coded VI trajectory
with background colors.

3.2. Construction of a Convolutional Neural Network

CNN possess outstanding advantages in handling two-dimensional input data [33,34].
Therefore, the AlexNet network, proposed in 2012, was chosen for load recognition, as it
represented a significant breakthrough in deep learning in the field of image recognition.
The structure of this model consisted of five convolutional layers, three pooling layers,
two Dropout layers, and three fully connected layers, with the activation function being
Rectified Linear Units (ReLU). To accomplish the recognition task, the encoded VI trajectory
image with filled background color was used as the model input (an n× n matrix, where
n = 50). The schematic diagram of the AlexNet network is shown in Figure 5.

The classic AlexNet network could not be directly applied to load recognition tasks and
required some modifications to make it work properly. Additionally, due to the numerous
hyperparameters, there was a need to optimize the hyperparameters of the convolutional
layers, pooling layers, and fully connected layers in order to obtain a highly accurate
recognition model.
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Figure 5. AlexNet network model diagram.

3.3. Bayesian Optimization Algorithm

Bayesian Optimization (BO) is used to estimate the maximum value of a function based
on existing sampled points when the functional equation is unknown [35]. It effectively
addresses the classical problem of finding the next evaluation point based on the infor-
mation acquired about the unknown objective function, to quickly search for the optimal
solution [36]. Bayesian Optimization has been highly applicable in evaluating costly and
complex optimization problems and has been widely used in the optimization of machine
learning hyperparameters, deep learning model hyperparameters, and other related areas.
In this study, the hyperparameters selected for optimization were the number of convolu-
tional kernels, the size of the convolutional kernels, the stride of the convolutional kernels,
the size of pooling kernels, the stride, and the Dropout probability. The optimization ranges
are presented in Table 1. The parameter definitions for Bayesian Optimization are provided
in Table 2.

Table 1. Hyperparameters to be optimized and their ranges.

Layers Hyperparameters Dynamic Range

Number of convolution kernels 30∼135
Conv Convolution kernel size 2∼6

Convolution kernel step 1∼3
Pool Pool core size 2∼6

Pool nucleation step size 1∼3
Dropout Dropout rate 0∼1

Table 2. Parameter definitions in the Bayesian Optimization algorithms.

Layers Hyperparameters

a1, a2, a3, a4, a5 The number of convolution kernels in five
convolutional layers

b1, b2, b3, b4, b5 Convolutional kernel size for five
convolutional layers

c1, c2, c3, c4, c5 Convolutional kernel step size for five
convolution layers

d1, d2, d3 The number of pooling kernels in three
pooling layers

e1, e2, e3 Step size of pooling kernels in three
pooling layers

f1, f2 Dropout rate of the two layers
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4. Dataset and Evaluation Criteria

This research validated the effectiveness of the algorithm using the PLAID dataset
from Carnegie Mellon University in the United States. The dataset included instantaneous
values of current and voltage for 11 different types of appliances, sampled at 30 kHz,
recorded in multiple households in Pittsburgh, Pennsylvania. In this dataset, mixed
currents with multiple loads are missing, and only individual current data when each
load operated separately are available. Therefore, before analysis, it was necessary to
align and superimpose the current values based on the voltage values to obtain mixed
currents. This article selected six loads for load decomposition verification, namely, an air
conditioner, an energy-saving lamp, a laptop, a vacuum cleaner, a microwave oven, and a
washing machine.

5. Experimental Analysis

5.1. Assessment of Indicators
5.1.1. Evaluation Indexes of Decomposition Process

The root mean square error (RMSE), mean absolute error (MAE), phase error, and cor-
relation coefficient were selected as the evaluation metrics. The RMSE is a commonly used
metric that measures the mean square difference between the predicted and actual values,
representing the average magnitude of the prediction errors. A lower RMSE value indicates
that the predicted results are closer to the actual values. The MAE is another common
evaluation metric that measures the average absolute difference between the predicted
and actual values, reflecting the absolute error of the predictions. The phase error is an
important metric for high-frequency current decomposition, measuring the error between
the predicted and actual phase of the signals. The correlation coefficient is used to measure
the linear correlation between the predicted and actual values. A correlation coefficient
closer to 1 indicates a better linear relationship between the predictions and the actual
values. The definitions of these four evaluation metrics are as follows:

RMSE =

√
1
n

n

∑
i=1

(
Ii − Îi

)2
; (18)

MAE =
1
n

n

∑
i=1

∣∣∣Ii − Îi

∣∣∣; (19)

Phase Error = arccos

⎛⎝ ∑n
i=1 Ii Îi√

∑n
i=1 I2

i ∑n
i=1 Î2

i

⎞⎠; (20)

Correlation =
∑n

i=1(Ii − Ī)
(

Îi − Î
)

√
∑n

i=1(Ii − Ī)2 ∑n
i=1

(
Îi − Î

)2
. (21)

5.1.2. Evaluation Metrics for the Load Recognition Process

For the evaluation of non-intrusive load identification performance, common eval-
uation metrics such as recognition accuracy (Acc), F1 score, and F-measure [37] were
primarily utilized. The calculation formulas are depicted in Equations (22)–(25).

Acc =
m
n

, (22)

where m denotes the number of correct classifications of the model, and n is the total
number of samples;

F1i = 2 · precision · recall
precision + recall

; (23)
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precision =
TP

TP + FP
; (24)

recall =
TP

TP + FN
. (25)

In the above equation, TP represents the number of true positives, where both the
true value and the predicted value are positive; FP represents the number of false positives,
where the true value is negative, but the predicted value is positive; and FN represents
the number of false negatives, where the true value is positive, but the predicted value is
negative. The following equation was used to obtain the average value for each device:

Fi,mean =
1
L

L

∑
g=1

F1g,i . (26)

In this equation, L represents the total number of occurrences of device i in the test
set; F1g,i represents the F1 value of device i in the g-th occurrence; and Fi,mean represents
the average F1 score for the i-th device over L trials, explicitly portraying the F-measures
for device i. Finally, by calculating the average of all the F-measures using Equation (26),
the macro-average value Fmacro is obtained.

Fmacro =
1
A

A

∑
i=1

Fi,mean, (27)

where A represents the total number of different equipment types.

5.2. Example Analysis
5.2.1. Load Decomposition

The input of the LSTM-DAE model was a mixed current obtained by superimposing
multiple load currents. The window size of the data input was set to 10 cycles of current
data. In the PLAID dataset, one cycle contains 500 data points. Therefore, the size of each
window was set to 5000. The sliding step was one cycle of data, which was 500 data points.
The training times (epochs) were set to 1000. The decomposition results are shown in
Figure 6. Each figure contains three curves representing, from top to bottom, the mixed
current, the true target load current, and the predicted target load current.

From Figure 6, it can be observed that the latent information of strongly correlated
current sequences was effectively extracted, and the temporal features within the time-series
signals were mined using the LSTM-DAE network model. Even in cases where irregular
variations were present in the mixed signals and actual signals, the target signal was
accurately decomposed by the model. Overall, the decomposed current signals output by
this model were well able to track the variations in the actual current signals and essentially
fit the rising and falling trends of the actual current curves. These results suggest that the
decomposition and fitting of current signals were performed effectively by the model.

From Table 3, it can be seen that out of the six types of loads, five had correlation
coefficients exceeding 98%. Even the load with the lowest correlation coefficient, which
belonged to the laptop (notebook) category, had a coefficient close to 95%. This indicated
a strong linear relationship between the predicted results of the algorithm and the actual
values, effectively capturing the changing trends in the load current. Additionally, the max-
imum values for the RMSE, MAE, and phase error were 0.866, 0.551, and 0.332, respectively.
In comparison to the four network models listed in Reference [38], the algorithm in this
study achieved a minimum MAE score of 5.97 and a minimum RMSE of 10.52, demonstrat-
ing a significant improvement in algorithm performance. Overall, the algorithm exhibited
high precision, a low phase error, and a strong correlation in current signal decomposition
tasks, making it particularly suitable for handling high-frequency currents. These advan-
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tages give the algorithm potentially high practical value in applications such as power load
analysis and energy management, providing a reliable tool.

���

���

�

��

��

����

����

���

���

���

� ���� ���� ���� ���� ����
����

����

���

���

���

�
�
�
��
��
�
	

�
�

�
�
�
��
��
�
	

�
�

�
�
�
��
��
�
	

�
�

	
���������

(a) Air conditioning

���

���

�

��

��

����

����

���

���

���

� ���� ���� ���� 	��� ����
����

����

���

���

���

�
�
�
��
��
�
	

�
�

�
�
�
��
��
�
	

�
�

�
�
�
��
��
�
	

�
�

��������	
��

(b) Energy-saving lamps
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(c) Laptops

Figure 6. Cont.
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(d) Vacuum cleaners
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(e) Microwave ovens
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(f) Washing machines

Figure 6. Monochromatic VI trajectory, VI trajectory with color coding, and color−coded VI trajectory
with background colors.
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Table 3. Evaluation metrics scores of the LATM-DAE algorithm.

Load Type RMSE MAE Phase Error
Correlation

Coefficient (%)

Air conditioner 0.109 0.081 0.068 99.8
Energy-saving lamps 0.033 0.020 0.196 98.1

Notebook 0.097 0.040 0.332 94.5
Vacuum cleaner 0.295 0.220 0.035 99.9
Microwave oven 0.668 0.456 0.129 99.2

Washing machines 0.866 0.551 0.046 99.9

5.2.2. Load Recognition

After converting the dataset into VI trajectory images with background color coding,
it was input into the CNN network, and the Bayesian Optimization algorithm was used to
optimize the hyperparameters of the convolutional layers, pooling layers, and Dropout
layers. There were a total of five convolutional layers, three pooling layers, and two
Dropout layers. The comparison of the hyperparameters before and after optimization is
shown in Table 4. The data in the table indicate, for example, that the parameters of Conv1
layer were 3 × 3/48/1, which meant the convolutional kernel size was 3 × 3, the number
of convolutional kernels was 48, and the stride was 1. The parameter of Dropout1 layer
was 0.5, indicating a Dropout probability of 0.5.

Table 4. Comparison of the hyperparameter information between CNN and BOA-CNN.

Catagory CNN BOA-CNN

Conv1 3 × 3/48/1 4 × 4/60/1
Pool1 3 × 3/2 2 × 2/1
Conv2 5 × 5/128/2 4 × 4/121/1
Pool2 3 × 3/2 2 × 2/1
Conv3 3 × 3/192/1 4 × 4/126/1
Conv4 3 × 3/192/1 3 × 3/55/1
Conv5 3 × 3/192/1 3 × 3/125/1

Droout1 0.5 0.4
Droout1 0.5 0.1

The accuracy of the optimized model was compared with the recognition accuracy
of other models in the literature, as shown in Table 5. The accuracy of the CNN network
optimized by Bayesian Optimization was approximately 96.5%, while the accuracy of
the regular CNN network was approximately 93.1%, indicating a 3.4% improvement.
The recognition accuracy was also higher than that of other models in the literature.

Table 5. Comparison of the recognition accuracy of various algorithms.

Model Accuracy (%)

BOA-CNN 96.5%
CNN 93.1%

Model in [39] 90.0%
Model in [19] 92.8%
Model in [40] 91.7%
Model in [41] 93.20%

In order to test the stability of the BOA-CNN algorithm, 12 experiments were con-
ducted on the PLAID dataset . As shown in Figure 7, the recognition accuracy of the
BOA-CNN algorithm was superior to that of the ordinary CNN model in all experiments,
with good robustness. However, in terms of stability, the BOA-CNN algorithm performed
poorly and fluctuated significantly. Specifically, in the 12 experiments, the difference be-
tween the maximum and minimum accuracy of the BOA-CNN algorithm was about 4.7%,

155



Mathematics 2024, 12, 30

while the difference between those of the ordinary CNN model was about 3.5%. This
indicates that the BOA-CNN algorithm is unstable across different experiments. Further
analysis showed that this instability may be caused by the randomness and local optimal
solution of Bayesian Optimization algorithms. However, its automatic search for the opti-
mal hyperparameters of the convolution layer, pooling layer, and Dropout layer reduces
the time and labor costs of manual parameter adjustment.
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Figure 7. Comparison of the recognition accuracy between the BOA-CNN and CNN.

The model confusion matrix is shown in Figure 8, in which the number in each cell
represents the number of corresponding devices, the abscissa represents the predicted
value for an appliance, and the ordinate represents the actual value for that appliance. It
can be seen that in the PLAID dataset, compared to the ordinary CNN model, the BOA-
CNN model reduced the number of false negatives (FN) and false positives (FP) for each
electrical appliance and also reduced the number of device types that were incorrectly
classified for each electrical appliance. This indicates that the BOA-CNN model showed
excellent results in the accuracy of electrical identification and has practical value.

Figure 8. Comparison of the BOA-CNN and CNN confusion matrices.
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In the case of the F-measure indicators and Fmacro indicators, as shown in Figure 9,
the Fmacro indicator for the BOA-CNN was 87%, while the Fmacro indicator for the CNN
was 81%. In addition, the F-measure values for the hair dryers were lower than the macro
average. This may be due to the small amount of measurement data for some devices in the
dataset, which limits the learning ability of the model, resulting in lower F-measure values
for some devices. However, in general, the convolutional neural network model based on
Bayesian Optimization proposed in this paper showed improved performance compared
to the original convolutional neural network model for 11 types of electrical appliances
in the PLAID dataset, with a maximum improvement of 21%. Therefore, the model has
good performance.

The incremental addition of numerous features during the CNN construction process
led to a significant increase in computational workload. The experiment was conducted
on a laptop equipped with 16 GB of RAM and 16 cores (12th Gen Intel(R) Core(TM) i5-
1240P @1.70 GHz). On this platform, the time required for VI trajectory construction
was 2016.47 milliseconds, while the recognition of input images took 868.01 milliseconds,
resulting in a total of 2884.48 milliseconds, which is less than 3 s. In comparison, the to-
tal time spent in Reference [11] was 388.24 milliseconds, and in Reference [42], it was
923 milliseconds. Despite the relatively substantial computational workload, the CNN
exhibits the capability to perform load recognition within seconds in the context of NILM
tasks, aligning with the intended goals and requirements of recognition.
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Figure 9. Comparison between the BOA-CNN and CNN F-measure indicators and Fmacro indicators.

6. Conclusions

This paper introduced a load decomposition method based on the LSTM-DAE and
presented a load recognition approach that employed color-coded VI trajectories with
background color filling. The experimental results revealed that the proposed load de-
composition method achieved an accuracy exceeding 98%, accompanied by a notable
current reproduction effect, thereby providing precise data support for high-frequency
load recognition. The amalgamation of multicycle signals, the color coding of VI trajec-
tories, and the background color filling enhanced the distinguishability among different
load VI trajectories. Moreover, the utilization of a BOA-optimized AlexNet network for
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VI trajectory recognition illustrated that the BOA-CNN model effectively mitigated the
issue of confusing devices compared to existing algorithms, showcasing elevated accuracy
and robustness. Relative to conventional CNN models, this method excelled in various
aspects of electrical appliance recognition. Although the algorithm presented in this paper
imposed a higher computational load than other lightweight algorithms, the processing
time aligned seamlessly with the requirements of load recognition. Nevertheless, despite
the high accuracy of the proposed decomposition method, it required preliminary data
training, unlike the differencing method, which does not require data pretraining. Conse-
quently, the proposed decomposition method exhibited certain limitations compared to the
differencing approach. Additionally, errors might have arisen in the CNN’s recognition of
VI trajectories due to significant differences among similar loads resulting from variations
in brand and power. Therefore, future research should further explore the scalability of the
load recognition capabilities of the proposed algorithm.
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Abstract: Foundation models trained on vast quantities of data have demonstrated impressive per-
formance in capturing complex nonlinear relationships and accurately predicting neuronal responses.
Due to the fact that deep learning neural networks depend on massive amounts of data samples and
high energy consumption, foundation models based on spiking neural networks (SNNs) have the
potential to significantly reduce calculation costs by training on neuromorphic hardware. In this
paper, a visually inspired computational model composed of an SNN and echo state network (ESN)
is proposed for the recognition of optic flow. The visually inspired SNN model serves as a foundation
model that is trained using spike-timing-dependent plasticity (STDP) for extracting core features.
The ESN model makes readout decisions for recognition tasks using the linear regression method.
The results show that STDP can perform similar functions as non-negative matrix decomposition
(NMF), i.e., generating sparse and linear superimposed readouts based on basis flow fields. Once
the foundation model is fully trained from enough input samples, it can considerably reduce the
training samples required for ESN readout learning. Our proposed SNN-based foundation model
facilitates efficient and cost-effective task learning and could also be adapted to new stimuli that are
not included in the training of the foundation model. Moreover, compared with the NMF algorithm,
the foundation model trained using STDP does not need to be retrained during the testing procedure,
contributing to a more efficient computational performance.

Keywords: foundation model; MT-MSTd; STDP; SNN; optic flow

MSC: 62M45

1. Introduction

Recently, foundation models based on deep artificial neural networks have shown
robust representations of their modeling domain and achieved breakthroughs for accurately
predicting neuronal responses to arbitrary natural images in a visual cortex [1–6]. However,
despite the appearance of deep learning artificial neural networks, which have recently
shown remarkable capability on a broad range of computational tasks, these models require
high energy consumption and need to run on graphics processors that consume many
kilowatts of power [7]. Therefore, brain-inspired algorithmic models and neuromorphic
hardware processors are increasingly emerging and can potentially lead to low-power
intelligent systems for large-scale real-world applications.

Spiking neural networks (SNNs) have attracted significant attention from researchers
across various domains due to their brain-like information processing mechanism. How-
ever, training SNNs directly on neuromorphic hardware remains a significant challenge due
to the non-differentiable nature of the spike-generation function. Amirhossein T. proposed
a method called BP-STDP, which uses the difference between the desired output sequence
and the actual firing sequence for backpropagation [8]. Converting the well-trained rate-
based ANNs to SNNs by directly mapping the connection weights has also been broadly
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studied [9,10]. Zhang et al. demonstrate that both the learning speed and the robustness of
computation accuracy can be significantly improved by applying the biologically inspired
intrinsic plasticity learning scheme into spiking feed-forward neural networks [11,12]. Kim
S. from Seoul National University proposed Spiking-YOLO, which was the first application
of SNNs in object detection, achieving a performance comparable to CNNs with extremely
low power consumption [13]. However, these efforts to improve learning algorithms based
on gradient descent iterations are far from the mechanism of real visual processing in the
brain cortex, with the limitations of single network structure, high computational cost, and
lack of biological plausibility.

It has been known that sparse coding, also known as sparse representation, uses a
small number of elements to represent most or all of the original signals and explains
how the visual cortex achieves efficient encoding and processing of information using a
small number of neurons in an iterative manner. Therefore, modeling SNNs based on visu-
ally inspired information processing is of great significance for improving computational
performance. In 1999, Professor Daniel D. proposed non-negative matrix factorization
(NMF), which enables neural networks to achieve modular recognition of images and has
significant implications for visual cognitive computational models [14]. Some evidence
suggests that its dimensionality reduction and sparsity constraints are an effective form
of population coding [15]. Beyeler M. proposed a hypothesis that the medial superior
temporal region (MSTd) effectively encodes various visual flow patterns from neurons in
the middle temporal region (MT) [16], and the sparse coding process is similar to NMF [17].
Further, an SNN model based on evolved and homomorphic synaptic scaling (STDP-H)
learning rules was proposed and confirmed this hypothesis [18]. This model learns a
compressed and efficient representation of input patterns similar to NMF, thus generating
a receptive field similar to what is observed in the MSTd of monkeys. This suggests that
the observed STDP-H in the neural system may have similar functionality to NMF with
sparse constraints, providing an experimental platform for theoretical mechanisms on how
MSTd efficiently encodes complex visual motion patterns to support robust self-motion
perception.

Neurons in the visual cortex receive optic flow-like input and inherit their speed and
direction preferences to process video sequences of realistic visual scenes. Optic flow can be
used to avoid obstacles and approach goals in novel cluttered environments for animals by
perceiving the heading direction of self-motion and guiding locomotion. Therefore, accurate
recognition of optic flow is crucial for the development of visually based navigation models,
such as the ViSTARS neural model, which was developed to describe neuronal information
processing of the V1, MT, and MSTd areas in the primate visual dorsal pathway [19,20].
In [21], a biologically inspired neural network that learns patterns in optic flow is proposed
based on fuzzy adaptive resonance theory. The paper [22] presented an artificial neural
network that accurately estimates the parameters describing the observer’s self-motion
from MSTd-like optic flow templates. However, how to efficiently recognize the patterns of
optic flow based on spiking neural networks and spike-based learning rules has not been
fully studied yet.

Based on the above-mentioned literature, a visually inspired computational model
inspired by the image processing mechanisms of the primary visual cortex for the recogni-
tion of optic flow is proposed in this paper. The visually inspired SNN model serves as a
foundation model that is trained using spike-timing-dependent plasticity (STDP) on large
amounts of optic flows for extracting core features. The ESN model trained using the linear
regression method makes readout decisions for recognition tasks of optic flow. The results
show that STDP can perform similar functions as non-negative matrix decomposition
(NMF), i.e., generating sparse and linear superimposed readout based on local features,
which is an ideal core/foundation model to accurately reconstruct input stimuli for image
reconstruction. Based on the well-trained core network, ESN can accurately recognize
not only optical flows but also new stimuli such as the grating stimulus. Moreover, ESN
requires significantly less training data than the one without a fully trained core SNN
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model. Compared with the NMF algorithm, the foundation model trained with STDP does
not need to be retrained during the testing procedure for new stimuli, contributing to more
efficient computational performance.

In summary, our main contributions are: (1) a foundation model for the recognition of
optic flow is established based on biologically realistic spiking neural networks and trained
with a neurophysiologically observed learning rule (STDP); (2) the efficiency and necessity
of feature extraction from the foundation model is confirmed from our simulation results.
That is, the computational performance mainly depends on feature extraction instead of
readout training, indicating that learning is a multi-stage feature-extraction process instead
of end-to-end training, as commonly used in neural networks.

2. Materials and Methods

The overall architecture of the model is depicted in Figure 1. There are two sub-
networks: the foundational model of SNN and the decision model of ESN, which are
trained separately. Since it is known that neurons in the MSTd region of the visual cortex
can efficiently recognize firing patterns from neurons in the MT region, here the SNN
model consists of two visual cortical layers, i.e., the MT layer and the MSTd layer. The
input optic flow stimuli are initially processed by a group of MT neurons, which encode the
information into Poisson spike trains. These spike trains are then transmitted to a group of
excitatory spiking neurons representing MSTd. The connection weights from MT to MSTd
are updated using spike-timing-dependent plasticity (STDP) based on large amounts of
optic flow with different patterns to extract the core features of the training dataset. After
training, all core features are saved in the form of MT-MSTd synaptic weights. Then, the
firing rate of the MSTd layer encoding the relative importance of the core’s features to the
current visual input is transformed into an ESN model trained using the linear regression
method, which makes readout decisions to recognize which patterns the input stimuli
belong to. Detailed models are described in the below subsections.

Figure 1. Model architecture. This model consists of three aspects: visual input, foundation model of
the visual cortex, and decision network. The input stimuli to the network are computer-generated
15× 15 pixel arrays representing optic flow. Inputs encode information into Poisson spike trains,
which are then transmitted to the MT layer. The architecture of the MT group is 15× 15× 8, that
of the MSTd group is 8 × 8 × 1, and the Inh group is 8 × 8 × 8. Both MSTd-to-Inh and Inh-to-
MSTd connections follow uniform random connectivity with a 0.1 probability. STDP learning rule is
employed to adjust the network weights from MT to MSTd. ESN consisting of a random reservoir
network and readout layer is trained for making decisions for recognition tasks.

2.1. Visual Input

The input stimuli to the network are computer-generated 15× 15 pixel arrays rep-
resenting optic flow. To simulate the visual motion on the retina caused by an observer
moving in a 3D environment, a motion field model is utilized to generate the optic flow
stimuli. Please refer to the papers [17,23] for details. Using computer-generated data,
we created 6000 samples of optic flow data. Each sample contains input information for
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different directions and velocities, where the values represent the length of the optic flow
vectors. Therefore, when plotting, the information of the 8 directions and velocity is su-
perimposed within a 15× 15 grid. This means that the vectors are converted into values
on the x and y coordinates and added together to obtain the coordinates of the vector
endpoints. The MATLAB function “quiver” can be used to plot the optic flow vector map.
Figure 2 depicts optic flow maps with different patterns that simulate the projection of
three-dimensional coordinates onto the retina as the observer moves in a three-dimensional
world. From the figures, it can be observed how the projection of the three-dimensional
points on the retina changes when the observer moves backward, rotates, and translates in
the three-dimensional world. Input stimuli encode information into Poisson spike trains,
which are then transmitted to a group of excitatory spiking neurons in the MT layer.

Figure 2. Sample plots of visual optic flow to simulate the projection of three-dimensional coordinates
on the retina as the observer moves in the three-dimensional world [17].

2.2. Foundation Model of Spiking Neural Networks

This SNN model focuses on extracting core features of optic flow patterns result-
ing from self-movement. Each optic flow field is processed by MT units that resem-
ble the orientation selectivity of MT neurons, which selectively respond to optic flows
with specific positions, directions, and velocities. Here, the MT layer is composed of
15× 15× 8 = 1800 units, representing the responses to the specified eight directions (45◦,
90◦, 135◦,180◦, 225◦, 270◦, 315◦, 360◦) and one velocity. The population code of local direc-
tion and speed of motion acts as the activity pattern of these 8 units/pixel. All neurons
within the MT layer are isolated and the neural activity is modeled using Izhikevich neu-
rons [24] exhibiting excitatory regular spiking behavior. The input optic flow stimuli are
initially processed by a group of MT neurons, which encode the information into Poisson
spike trains. The average pixel value of input determines the mean firing rate of spike
trains. These spike trains are then transmitted to the MSTd layer. The MSTd group contains
64 isolated Izhikevich neurons corresponding to 64 core features. The weight connections
from MT to MSTd follow a Gaussian distribution, in which close neurons have a higher
probability of connectivity and higher initial connection weights. Additionally, the MSTd
group projects to a set of inhibitory neurons (Inh), providing feedback inhibition to regulate
network activity. The inhibitory group has 512 neurons. The population size of MT is
15× 15× 8, that of MST is 8× 8× 1, and that of the inhibitory group is 8× 8× 8. Both
MSTd-to-Inh and Inh-to-MSTd connections follow uniform random connectivity with a
0.1 probability [25]. The detailed models for the Izhikevich neuron and synapses are as
follows:

dV(t)
dt

= 0.04V(t)2 + 5V(t) + 140−U(t) + Isyn(t) (1)

dU(t)
dt

= a(bV(t)−U(t)) (2)

if V > Vcuto f f , then
{

V = c
U = U + d

(3)

where V and U represent membrane potential and membrane recovery variables, respec-
tively. Isyn is the external synaptic current, the membrane potential V has an mv scale,
and time has a ms scale. The parameters a, b, c, d in (2) and (3) are set as a = 0.02, b = 0.2,
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c = −65, d = 8 or a = 0.1, b = 0.2, c = −65, d = 2, representing regular-spiking (RS)
neurons (excitatory neurons) or fast-spiking (FS) neurons (inhibitory neurons). Here, we
use the conductance-based description for synaptic models, which calculates the synaptic
current using complex conductance equations for each synaptic receptor type. AMPA
and NMDA are excitatory synaptic connection types. GABAA and GABAB are inhibitory
synaptic connection types.

ie = iNMDA + iAMPA
ii = iGABAA + iGABAB

(4)

The total current Isyn can be expanded to:

isyn =− gAMPA(v− vrev
AMPA)− gNMDA

[ v+80
60

]2

1 +
[ v+80

60
]2 (v− vrev

NMDA)

− gGABAa(v− vrev
GABAA

)− gGABAB(v− vrev
GABAB

)

(5)

where g and vrev are specific to a particular ion channel or receptor. The synaptic con-
ductance g obeys the exponential decay and changes when presynaptic spikes arrive.

dgr(t)
dt

= − 1
τr

gr(t) + w ∑
i

δ(t− ti) (6)

where δ is the Dirac delta function, and r is the receptor type (AMPA, NMDA, GABAa,
GABAb). ti is the presynaptic spikes arrival time [24].

Since topological structure enhances temporal-spatial processing ability and biological
plausibility, the training of the synaptic matrix W from MT to MSTd directly affects the
effectiveness of feature extraction of the foundation model. In this paper, all connections
in SNN are plastic, whose weight values are modulated by the heterosynaptic STDP
(STDP-H) to optimize the learning rule parameters based on an evolutionary algorithm, as
proposed in [18]. Simulations were conducted using the CARLSim SNN simulator platform
https://github.com/UCI-CARL/CARLsim6 (accessed on 1 March 2022) [26,27].

The model of STDP-H can be described as follows [18]:

dwi,j

dt
= [

hom eostasis︷ ︸︸ ︷
α · wi,j(1− R/Rt arg et) +

STDP︷ ︸︸ ︷
β(LTPi,j + LTDi,j)] · K (7)

Equation (7) describes the cumulative impact of STDP-H on a specific synapse wi,j that
connects the presynaptic neuron i and the postsynaptic neuron j. Equation (7) consists
of two key components. The first component pertains to homeostatic scaling, which is
determined by the ratio of the average firing rate R to the target firing rate Rt arg et of neuron
j. Homeostatic scaling modulates the rate of synaptic weight changes, reducing it when the
neuron is excessively active and increasing it when the neuron is too inactive. The second
component in Equation (7) deals with spike-timing-dependent plasticity (STDP [28], encom-
passing both long-term potentiation (LTP) and long-term depression (LTD). STDP adjusts
the strength of synaptic connections based on the timing of spikes between presynaptic
and postsynaptic neurons. Specific details can be found in reference [18].

For STDP learning, parameter optimization was performed with the Parameter Tuning
Interface in CARLsim 6, which used the Evolutionary Computations in JAVA library
(ECJ) [29]. By leveraging the parallel execution capabilities provided by CARLsim, the
computations were distributed among GPU and CPU cores, resulting in a significant
acceleration of the simulation process. ECJ was used to evolve suitable parameters for
STDP learning. It automatically constructs multiple independent individuals based on
the network structure and selects the best-adapted parameters according to evaluation
rules. During learning, the input data were shuffled. A portion of the samples was used for
training to adjust the MT-to-MST connection weights. The remaining samples were used
for testing and parameter evaluation. Each sample ran for 0.5 s before stopping the Poisson
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process for spike generation. An additional 0.5 s of idle time was added between samples
to allow neuronal voltages to decay without affecting subsequent inputs. The evaluation
metric was the correlation coefficient between the input and reconstructed samples.

f itness =
∑
m

∑
n
(Amn − Ā)(Bmn − B̄)√

∑
m

∑
n
(Amn − Ā)∑

m
∑
n
(Bmn − B̄)

(8)

The correlation coefficient is calculated as: Ā and B̄ are the column-wise mean values of
matrices A and B, respectively. A is the test samples from the input data, and B is the
product of the MT-to-MST connection weight matrix W and the MST neuronal firing rate
matrix H. The ECJ parameters were configured with adjustment ranges as mentioned
in [25]. Each iteration evaluated 15 network individuals, and after 100 iterations the best
fitness of 72.66% was achieved. The 18 parameters corresponding to the highest fitness
network were selected as the adapted parameters.

2.3. Decision Model of Echo State Network

Based on the above well-trained foundation SNN model, all core features are saved in
the form of MT-MSTd synaptic weights. Then, the firing rates of MSTd neurons encoding
the relative importance of the core features to the current visual input are transferred
to the readout decision model. In this paper, an echo state network (ESN) proposed by
Jaeger [30–32] is utilized as the decision model. It consists of a random sparse network
(reservoir) and one readout layer. The reservoir acts as an information processing medium,
which maps the low-dimensional input signal to the high-dimensional state space.

Specifically, we have the following weight matrices: Win, Wres, Wback, and Wout. Win
signifies the weight matrix governing connections from the input layer to the reservoir,
Wres represents the internal weight matrix regulating connections within the reservoir, and
Wback is responsible for feedback connections from the output layer to the reservoir. Lastly,
Wout corresponds to the weight matrix that manages connections from the reservoir to the
output layer. In terms of variables, we use u(n) to denote the network input at time n,
x(n) signifies the state vector representing the network’s reservoir, and y(n) represents the
network’s output.

The updated reservoir status is calculated according to Formula (9) and the network
output is calculated according to the following Formula (10) :

x(n + 1) = f (Winu(n + 1) + Wresx(n) + Wbacky(n)) (9)

y(n + 1) = fout(Wout[x(n + 1)|u(n + 1)] (10)

where f (•) is the activation function of the neuron of the network reservoir. f (•) can be
typically defined as a sigmoid or tanh function [33], and f out(•) represents the output
function of the output layer neurons. In ESN, Win, Wres, and Wback are randomly generated
before training and no longer adjusted. Wout is the only matrix that needs to be learned.
Algorithms such as the ridge regression algorithm are used to learn Wout.

There are 500 units in the reservoir network. Only synaptic weights from the readout
layer to the reservoir are updated using the linear regression method and connections
within the reservoir are randomly generated. Furthermore, the connection weights in the
foundation model of SNN are also frozen and unchanged during the readout training
process. This ESN model for recognition tasks makes readout decisions to recognize
which patterns of the input stimuli belong. The ESN network structure parameters for this
experiment are shown in Table 1.
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Table 1. Key parameters of ESN model.

ESN Parameters Values

Reservoir Sparsity (SP) 0.5

Displacement Scale (IS) 1

Input Unit Scale (IC) 1

Spectral Radius (SR) 0.85

Reservoir Activation Function (f) Tanh

Output Unit Activation Function ( fout) 1

Regularization Coefficient (λ) 1 × 10−3

3. Results

The proposed model framework, as shown in Figure 1, consists of three aspects: input
layer, feature extraction in the foundation model of the visual cortex, and decision layer.
First, optic flow data V are encoded as spike sequences using Poisson frequency encoding,
serving as the input to the MT-group neurons in the SNN model. Synaptic weights from
MT to MSTd are saved in the W matrix, and the firing frequency of the MSTd group is
represented as the H matrix. The STDP learning rule is employed to adjust the network
parameters, aiming to reconstruct the original optic flow data V with the W × H matrix
and automatically optimize the network by evaluating the reconstruction performance at
each iteration. Finally, the effectiveness of the foundation SNN model is validated through
image recognition of the optic flow and grating stimulus by training the ESN model. The
pseudo-code is as follows (Algorithm 1):

Algorithm 1: A visually inspired computational model for recognition of optic flow

1 Step 1: Foundation model of SNN

2 for each optic flow data do

3 Encode input optic flow into Poisson spike trains
4 Adjust MT-MSTd weight connections W with STDP-H learning
5 Compute MSTd firing rates H
6 Reconstruct input data V to verify the efficiency of feature extraction using

V ≈W × H
7 Step 2: Decision model of ESN

8 for each Hi do

9 Initialize synaptic weights randomly
10 Use ridge regression algorithm to obtain Wout while keeping the other weights

fixed
11 Achieve recognition for optic flow

3.1. Feature Extraction of SNN Model

Non-negative matrix factorization (NMF) is known for its key feature of feature
extraction by decomposing data into linear combinations of different local features [14,34].
This algorithm is a sparse decomposition processing with dimensional reduction, which
has been previously shown to be capable of mimicking a wide range of monkey MSTd
visual response properties [15,17]. The input stimuli can be accurately reconstructed from a
linear superposition of the sparse, parts-based features regarded as basis flow fields (see
Figure 3a). Considering the columns of an input matrix V with a set of samples, these data
can be linearly decomposed as V ≈ W × H, where the columns of the matrix W contain
the basis feature vectors of the decomposition and the rows of H contain the corresponding
coefficients that give the contribution of each basis vector. In NMF, the basis functions W
and the corresponding coefficient vector H are obtained simultaneously in one calculation.
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Although the basis matrix W obtained in NMF can be considered the synaptic weights of a
population of simulated neurons in a neural network, both the W and H matrices need to
be retrained every time a new sample is added to the input matrix V, that is, all of the data
must be re-decomposed.

Figure 3. Decomposition and reconstruction of optic flow from NMF (a) and STDP learning (b). Vi

is a single sample. Basis flow fields are shown in an 8× 8 MT-MSTd weight matrix W, which is
visualized using the population vector decoding method. H is a grayscale image containing weight
information of core features. Input optic flow V can be reconstructed from a sparse activation of
model MSTd neurons, i.e., V ≈ W × H. The optic flow of each square in the basis matrix W is
different, indicating that the features are separated and contain the local features of the original data.
By multiplying the coefficient matrix H, the features in W are combined to reconstruct the original
data. Therefore, the coefficient matrix H contains the weight of each local feature and can represent
the original data for classification verification.

Recent studies have shown that the SNN model can learn efficient representations and
reconstructions of the input patterns similar to that emerging from NMF [18]. Therefore,
we adopt SNN with STDP learning to achieve feature extraction of optic flow. Figure 3b
demonstrates that a set of basis flow fields (shown in an 8× 8 MT-MSTd weight matrix W,
which is visualized as basis flow fields using the population vector decoding method) can
emerge from both NMF and STDP learning, indicating that the core features are successfully
extracted from the original input data. Meanwhile, optic flow fields can be reconstructed
from a sparse firing activation of model MSTd neurons that prefer various orientations of
the basis flow fields. That is, the optic flow input samples V can then be approximated by a
linear superposition of basis flow fields, i.e., V ≈ W × H, which means that the original
1800-dimensional input data V are compressed into a 64-dimension coefficient matrix
H. In this way, sparse coding reduces the overall neural activity necessary to represent
the information. This not only reduces the number of nodes in the MSTd layer but also
improves the learning efficiency of the decision layer.
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Unlike the NMF method, once the connection MT-MSTd weight matrix W is well-
trained, it can be frozen and the parts-based features saved in W can be re-used or shared
for new input stimuli. The coefficient vector H that gives the contribution of each basis
feature for the current input stimuli can be directly obtained through the firing responses of
the MSTd layer. Inputs belonging to the same patterns share similar value distributions of
the H vector, while H coefficients are different for different input patterns. To validate the
effectiveness of this feature-extraction method, an ESN model is used to train the readout
decision layer for the recognition task of optic flow.

3.2. Recognition Performance

Image reconstruction based on feature extraction is shown in Figure 3b, which indi-
cates that good image reconstruction means accurate feature representation of the MSTd
neurons. In order to test the effectiveness of the SNN model, eight categories with different
directions ranging from 0◦ to 360◦ in 45◦ increments are selected from a sample of 6000 MT
optic streams that had previously been generated. As shown in Figure 1, the readout
neurons are divided into eight classes corresponding to the superimposed directions. Each
class included 120 samples, resulting in a total of 960 samples. A fully trained foundation
model has the capability to achieve more diverse parts-based features than the partially
trained foundation model (see Figure 4a). The weight visualization of a fully trained model
demonstrates more distinct and concrete feature extraction compared to the incompletely
trained model. Therefore, we can see from Figure 4b that the fully trained base model sig-
nificantly outperforms the incompletely trained counterpart, contributing to the reduction
in training samples for readout learning.

Furthermore, we conducted a comparative analysis of the classification performance
between the fully trained SNN model and a basic CNN model, as depicted in Figure 4c.
The CNN architecture employed in this paper consists of six layers. The initial layer is the
input layer, which receives data of size 15× 15× 8. Following this is the second layer, a
convolutional layer comprising 16 convolutional kernels of size 3× 3 utilized to extract
features from the input. Subsequently, the third layer is the activation function, employing
the rectified linear unit (ReLU) activation function to introduce non-linear characteristics
and enhance the network’s expressive capability. The fourth layer is a pooling layer,
utilizing a 2× 2 max-pooling operation to reduce the dimensions of the feature maps. Next
is the fully connected output layer containing ten nodes. Finally, through the combination of
a Softmax layer and a classification layer, the network completes its output and transforms
it into a probability distribution for executing the ultimate classification task. Since CNN is
trained end-to-end for all layers, pattern recognition is examined with different numbers of
training data.

Remarkably, we observed that our two-layer SNN model with ESN readout outper-
forms the six-layer CNN throughout the whole experimental process. Note that even when
inputting different pattern samples, retraining for SNN is unnecessary, i.e., the weights
in the SNN model are frozen and only the ESN readout is trained to learn new patterns.
In contrast, the CNN model shows lower classification accuracy, and all layers need to
be end-to-end retrained when new input patterns are added. This result demonstrates
the advantages of our model in terms of low power consumption and high precision of
computation.

Our model not only excels in recognizing visual optic flow (in-domain) but also
accurately recognizes out-of-domain stimuli, such as the sinusoidal grating stimulus [35].
We use the model of the V1 visual cortex proposed in [36] to transfer the stimuli into the
optic flow, as shown in Figure 5a. The left image represents the input grating stimulus,
where v represents the direction of the grating motion. The right image represents the
integrated optic flow. The results demonstrate that the V1 response accurately identifies the
motion direction of the grating stimulus, indicating that the grating stimulus is transformed
into optic flow stimuli and can be used for recognition validation of this model.
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Figure 4. Fully trained foundation model can considerably reduce the training samples required for
recognition tasks during the readout learning. (a) Basis flow fields trained from full or partial input
data. (b) Performance comparison of fully trained or not fully trained foundation models under
different training samples for readout learning. (c) Comparison of classification performance between
a six-layer CNN model and our proposed model on optic flow data.

Based on the above-obtained foundation model trained from the optic flow stimulus,
here the MT-MSTd connection weights in SNN are fixed. Training data from the new
stimulus are only used to fit the readout weights of the ESN model. The recognition
performance for the grating input is shown in Figure 5b. It can be seen that the training
accuracy for the grating stimulus can reach up to 99.85% and the testing accuracy is 99.25%.
This indicates that the foundation SNN model performs exceptionally well in classifying
new stimulus data with no need to retrain the basis features, even when compared to its
performance in recognizing optic flow data. This result reveals that a foundation model
trained from vast quantities of data has remarkable capabilities and generalization in
performing computational tasks.

However, if the grating stimulus is directed and projected to the SNN model without
the processing of the V1 layer, recognition will not succeed. Because the MT layer can
only process orientation-based input, images must be processed with V1 before input to
the MT layer. Preliminary feature extraction for stripe shapes with V1 is also crucial for
image recognition. Therefore, further study considering the V1 and V2 visual cortex as the
foundation model is necessary for expanding its applicability to the recognition of broader
image datasets.
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Figure 5. Recognition performance for grating stimulus. (a) Left: grating motion stimulus sample.
Right: optic flow transformed from the original grating stimuli using V1 visual cortex model proposed
in [36]. (b) Left: Average classification accuracy in each direction. Right: Classification accuracy
with different numbers of grating training samples.

4. Conclusions

We introduce a visually inspired computational model that achieves efficient perfor-
mance in the recognition of optic flow. Here, a foundation model based on SNNs with STDP
learning is shown to be an efficient sparse coding for parts-based representation, where
any flow field could be represented by only a small set of simulated MSTd neurons (H
coefficient) as compared with vast quantities of input samples. The results show that STDP
can perform similar functions as NMF, i.e., generating sparse and linear superimposed
readouts based on basis flow fields. The visually inspired SNN is an ideal core/founda-
tion model to accurately reconstruct input stimuli for image reconstruction. Based on the
well-trained SNN, the readouts can accurately recognize not only optic flow but also new
stimuli such as the grating stimulus. Moreover, the ESN requires significantly less training
data than the one without a fully trained core SNN model.

Our model based on biologically realistic SNNs offers a powerful new approach for the
efficient recognition of visual optic flow, which has the potential to be used in neuromorphic
applications to reduce computations. This study may give insight into the development
of visually based navigation models, brain-inspired robots, and new-generation artificial
intelligence machines.
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Abstract: Identifying the weak buses in power system networks is crucial for planning and operation
since most generators operate close to their operating limits, resulting in generator failures. This
work aims to identify the critical/weak node and reduce the system’s power loss. The line stability
index (Lmn) and fast voltage stability index (FVSI) were used to identify the critical node and lines
close to instability in the power system networks. Enhanced particle swarm optimization (EPSO)
was chosen because of its ability to communicate with better individuals, making it more efficient to
obtain a prominent solution. EPSO and other PSO variants minimized the system’s actual/real losses.
Nodes 8 and 14 were identified as the critical nodes of the IEEE 9 and 14 bus systems, respectively.
The power loss of the IEEE 9 bus system was reduced from 9.842 MW to 7.543 MW, and for the IEEE
14 bus system, the loss was reduced from 13.775 MW of the base case to 12.253 MW for EPSO. EPSO
gives a better active power loss reduction and improves the node’s voltage profile than other PSO
variants and algorithms in the literature. This suggests the feasibility and suitability of EPSO to
improve the grid voltage quality.

Keywords: voltage stability; identification of weak bus; FVSI and Lmn; diminish power loss;
PSO variants; EPSO

MSC: 90C11; 90C30

1. Introduction

Voltage stability (VS) is a major focus of modern power system (PS) utility companies.
Therefore, VS is the ability of systems to keep the voltage profile stable when undergoing
large or small disturbances. Different means have been used to improve the voltage profile
in modern PS, such as battery storage systems and distributed energy resources (DER) [1–4].
The increase in the infrastructure and load demand rate leads to the high utilization of PS
energy equipment. This has made systems experience voltage instability that has led to
blackouts in some parts of the world, destruction of some businesses and daily activities,
and increased power loss. Based on this problem, this study is motivated by identifying
the weak bus that could cause a blackout in a system and reducing system transmission
loss, which is caused by a shortage of reactive power (RP), which significantly affects the
quality of energy delivery to the consumer end. Environmental and economic factors are
two leading causes for establishing a new transmission line (TL). As the load increases,
the system is heavily loaded, and maintaining stability becomes difficult; thus, the system
operates close to the instability point [5–8]. Evaluation of system stability is based on the
node/bus voltage profile. Presently, there are numerous techniques for finding system
stability. The line voltage stability index (LVSI) [9], a simplified voltage stability index
(SVSI) [10], L-index [11], a global voltage stability index (GVSI) [12], etc. Some classical
voltage stability assessments and various techniques have been proposed for weak bus
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identification in power system networks. Some of them are genetic algorithms based on
support vector machine (GA-VSM) [13], ant colony (AC) [14], electric cactus structure
(ECS) [15], and network response structural characteristic (NRSC) [16].

A shortage of RP in a PS network causes a tremendous waste of electricity in the
distribution system, resulting in extra emission of carbon and power generation cost.
Therefore, reducing losses in transmission line networks (TLN) is essential for system safety.
However, the best way to reduce losses in TLs of PS networks is RP optimization (RPO).
Two methods used in solving the RPO problem are traditional and evolutionary algorithms.
Traditional methods include the Newton–Raphson (NR) method, interior point methods,
quadratic programming, and linear programming [17]. Recently, evolution algorithms have
been used to solve RPO problems, such as the hybrid pathfinder algorithm (HPFA) [18],
hybrid PSO (HPSO-PFA) [17], modified PFA (mPFA) [19], chaotic krill herd [20], ant lion
optimizer (ALO) [21], the tree seed algorithm (TSA) [22], and the improved pathfinder
algorithm (IPFA) [23]. However, PSO is good in search capacity and has less programming
than others [17].

Harish et al. used the fast voltage stability index (FVSI) and line stability index (Lmn)
to identify the location of flexible alternating current transmission system (FACTS) devices
along with PSO, artificial bee colony (ABC), and the hybrid genetic algorithm (H-GA)
to find the sizing of the FACTS devices [24]. Also, a novel method for strengthening
PS stability was proposed by Jaramillo et al. [25]. FVSI was used to identify the node
on which the SVC should be installed under an N-1 scenario. It was reported that the
result obtained could reestablish the FVSI in each contingency before the outage [25]. The
voltage collapse critical bus index (VCCBI) [26], L-Index, voltage collapse proximity index
(VCPI), and modal analysis [27], which are part of voltage stability indices (VSI), were
used to identify weak/vulnerable buses in electrical power systems. Power loss reduction
was made using a hybrid loop-genetic-based algorithm (HLGBA) [28], the Jaya algorithm
(JAYA), diversity-enhanced (DEPSO), etc. [29].

This research considers the identification of critical nodes and loss reduction, which
serve as merit over the previous work mentioned above. FVSI and Lmn were used to
find the critical node in the system based on load flow (LF) results from MATLAB 2018b
software (MathWorks, Inc., Natick, MA, USA). FVSI and Lmn were chosen because of their
efficiency in identifying the weak/vulnerable bus (i.e., the fastness of FVSI and the accuracy
of Lmn) [30]. The critical node was determined by the value of the indices (i.e., FVSI and
Lmn). When the indices value reaches unity or is close to unity, that node is the critical node
of the system. The reactive powers of all the load buses were increased one after the other
to determine the maximum RP on each of the load buses/nodes. Also, each line’s value
of FVSI and Lmn was computed to determine the load-ability limit on each load bus. The
ranking was carried out based on the indices value of each node; hence, the node with
the highest indices values is the system’s critical bus. This bus contained the smallest RP
when the load bus was varied. The identified node needs reactive power support to avoid
voltage collapse. Also, enhanced PSO (EPSO) was used to minimize the PS network loss
along with PSO variants that have been developed by previous research, such as PSO-based
time-varying acceleration coefficients (PSO-TVAC) [31], random inertia weight PSO (RPSO),
and PSO based on success rate (PSO-SR) [32]. To overcome the premature convergence
of PSO, the chosen EPSO was applied, and it uses neighborhood exchange to share more
information with the other best individual (neighborhood) to improve itself, which makes
it more efficient in getting a prominent solution (i.e., exploitation stage) to optimizing the
objective function. The novelty of this research and this paper’s contribution is that each
particle learns from its own personal and global positions in the PSO algorithm in the social
cognitive system. Apart from personal experience and better information received from the
search areas, it is advisable to share with better individuals to enhance or improve itself.
Therefore, a new acceleration constant ( c3) is added to the original PSO equation, making
obtaining the best solution more efficient. Also, additional c3 gives the swarm the capability
to reach the exploitation stage, which helps to overcome the premature convergence of PSO.
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However, this paper has contributed by (1) comparing different PSO variants and EPSO
for power loss reduction; (2) identifying the power system critical node for the perfect
operation of generators to avoid breakdown.

The rest of the paper is structured as follows: Section 2 presents the problem formula-
tion of voltage stability indices and RPO, and Section 3 discusses the PSO, its variants, and
EPSO. The results and discussion are presented in Section 4, and the conclusion and future
work is the last section.

2. Problem Formulation

2.1. Formulation of Voltage Stability Indices

FVSI and Lmn are part of the VSI methods for identifying weak buses. They were
formed based on two bus systems. For a system to be stable, the value of FVSI and Lmn
must be smaller than unity and unstable when it equals unity and above.

2.1.1. FVSI

FVSI was developed [33] based on the concept of a single line of power flow (PF). The
FVSI is evaluated by:

FVSI =
4Zj2Q1

V2
1 Xr

≤ 1 (1)

where Zj is the impedance, Q1 is the RP at sending ends, Xr is the reactance of the line, and
V1 is the voltage at the sending end.

2.1.2. Lmn

Lmn was proposed by the authors of [34]. Using the concept of PF from a single-line
diagram, the discriminant of the quadratic voltage equation is set to be higher than or equal
to zero. The equation is given below.

Lmn =
4XQ2

[V1sin(θ − δ)]2
≤ 1 (2)

where θ is the angle of the TL, δ is the power angle, and Q2 is the RP at receiving end.

2.2. Steps Involve in Identifying Critical Node in EPS

Identifying critical nodes in EPS is essential for delivering stable electricity to the
consumer end. The following steps are involved:

1. Input the line and bus data of the IEEE test case;
2. Run the PF solution in MATLAB using the NR method at the base case;
3. Calculate the stability values of FVSI and Lmn of the IEEE test system;
4. Gradually increased the RP of the load bus until the values of FVSI and Lmn are closer

to one (1);
5. The load bus with the highest FVSI and Lmn value is selected at the critical node;
6. Steps 1 to 5 are repeated for all the load buses;
7. The highest RP loading is selected and called maximum load-ability;
8. The voltage magnitude at the critical loading of a particular load bus is obtained and

is called the critical voltage of a specific load bus.

2.3. Formulation of RPO

The main objective of RPO is to reduce the network’s actual power loss.

2.3.1. Objective Function

The main goal of RPO is to reduce the network’s actual power losses, which are
described as follows.

Minimize f= Ploss(x, u) (3)
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which satisfying {
g(x, u) = 0
h(x, u) ≤ 0

(4)

where f (x, u) is the objective function, g(x, u) is the equality constraints, h(x, u) is the
inequality constraints, x is the vector of the state variables, and u is the vector of the
control variables.

The real power loss minimization in the TL is given below, and its purpose is to reduce
the overall loss in the TLN.

Min f = Ploss

NL

∑
K=1

Gk

(
v2

i + v2
j − 2ViVjcos θij

)
(5)

where Ploss is the real total losses, k is the branch, Gk is the conductance of the branch k,
Vj and Vi is the voltage at the ith and jth bus, NL is the total number of TL, and θij is the
voltage angle between bus i and j.

2.3.2. Equality Constraints

The PS network’s active and reactive PF equation are called the equality constraints.

Pgi − Pdi −Vi

N

∑
j=1

Vj(g ijcos θij + bijsin θij
)
= 0 (6)

Qgi −Qdi −Vi

N

∑
j=1

Vj(g ijsin θij − bijcos θij) = 0 (7)

Here, gij and bij are conductance and susceptance, and θij is the phase difference
of voltages.

2.3.3. Inequality Constraints

Inequality constraints are operational variables that must be kept within acceptable limits.

(1). Generator constraints

Vmin
gi ≤ Vgi ≤ Vmax

gi i = 1 . . . , Ng (8)

Qmin
gi ≤ Qgi ≤ Qmax

gi i = 1 . . . , Ng (9)

(2). Reactive compensation constraints

Qmin
ci ≤ Qci ≤ Qmax

ci i = 1 . . . , NC (10)

(3). Transformer tap ratio constraints

Tmin
k ≤ Tk ≤ Tmax

k i = 1 . . . , NT (11)

where Vmin
gi and Vmax

gi are voltage amplitude limits, Qmin
gi and Qmax

gi are the generation

limits of reactive power, Pmin
gi and Pmax

gi are the limits of active power, Qmin
ci and Qmax

ci

are the reactive compensation limits, and Tmin
k and Tmax

k are the transformer tap limits.

The penalty function is used to make optimization problems more straightforward
and rigorous. In other to solve the optimization problem, the penalty function has to be
selected. The primary function of the penalty function is to keep system security within the
acceptable limits.
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fT = f + λV

NB

∑
K=1

(
Vi −Vlim

i

)2
+ λg

NB

∑
K=1

(
Qgi −Qlim

gi

)2
+ λs

NB

∑
K=1

(
Si − Slim

i

)2
(12)

where λV , λg, and λs

Vlim
i =

{
Vlim

i , i f Vi < Vmin
i

Vlim
i , i f Vi > Vmax

i
(13)

Qlim
gi =

{
Qlim

gi , i f Qgi < Qmin
gi

Qlim
gi , i f Qgi > Qmax

gi
(14)

Slim
i =

{
Slim

i , i f Si < Smin
i

Slim
i , i f Si > Smax

i
(15)

3. Particle Swarm Optimization (PSO)

3.1. PSO and Its Variants
3.1.1. Overview of PSO

PSO was created in 1995 by Kennedy and Eberhart [35]. The social behavior of birds
and schooling fish was the basis for the population-based stochastic optimization method
known as PSO. In the search space, PSO makes use of the promising area. Each particle
moves and adjusts its position following its past behavior and the best particle within a
decision time. Each particle is identified by a d-dimensional vector that depicts its location
in the search space. The position of the vector is represented as a possible solution to the
optimization issue. Whenever an iterative process is performed, the velocity is added
to update each particle’s position [36]. The best particle in the swarm (population) and
the distance from the best cognitive both impact the particle’s velocity. The formulae for
velocity and position are shown below.

Vk+1
i = wvk

i + c1 × r1

(
pbest − sk

i

)
+ c2 × r2

(
gbest − sk

i

)
(16)

sk+1
i = sk

i + Vk+1
i (17)

where Vk
i is the velocity of the particle, sk

i is the position of the particle, r1 and r2 are two
randomly generated numbers between (0, 1), c1 and c2 are the coefficients of accelerated
particles, w is the inertia weight, pbest is the personal best, and gbest is the global best.

3.1.2. RPSO

In RPSO, the weight factor was usually between 0.5 and 1 [37]. Roy Ghatak et al. claim
that the random inertia weight component enhanced the initial objective function. Stocking
to the local optimal at the end of the iteration may affect the accuracy of the solution [32].
The value of w is found in Equation (19).

w = 0.5 + rand()/2 (18)

3.1.3. PSO-SR

To find the best method for the effective management of inertia weight (w), a novel
adaptive w was developed based on success rate (SR) [37]. At each iteration, the swarm
position is determined using the SR. Indicate that a big value of w is necessary to advance
toward the optimal point when the SR is large. Additionally, for a low value, the particle
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oscillates around the ideal location and requires a small increase in the w value to reach the
perfect result [32].

w(t) =
(

wmax − wmin
)
∗ SR + wmin (19)

where SR is the success rate and is chosen to be 1 (otherwise, it is zero), wmin and wmax are
the minimum and maximum limits of the w [32].

3.1.4. PSO-TVAC

Due to the lack of diversity towards the end of the search area, PSO with PSOTV-
w was utilized, which locates the optimal solution more quickly but is less effective at
tuning the optimal solution. The accuracy and effectiveness of the PSO to obtain optimal
solutions are significantly influenced by the tuning parameter [31,38]. Based on this
concept, a TVAC was proposed to enhance the global search at the start of optimization,
allowing the particle to move to the global optimum at the end of the search space. As
the search progresses, c1 and c2 alter over time, decreasing the cognitive components and
increasing the social components. This indicates that the particle converges to the global
optimum towards the end of the search process due to minor cognitive and greater social
components. Additionally, the particle can roam throughout the search area rather than
initially gravitating toward the best population due to enhanced cognitive and minor social
components [31].

C1 = (C1t − C1k)
z

itermax
+ C1k (20)

C2 = (C2t − C2k)
z

itermax
+ C2k (21)

where z is the current iteration, itermax is the maximum iteration, and C1k, C1t, C2t, and C2k
are the initial and final values of the cognitive and social acceleration factors. The value for
C1t and C2k is 0.5, and 2.5 for C1k and C2t is the most accurate value [39].

3.2. EPSO

To overcome the issue of falling into a local optimal from the standard PSO, the
chosen EPSO added some expansion to the basic PSO, such as a constriction factor and a
neighborhood model.

3.2.1. Exchange of Neighborhood

Since each particle learns from its own personal and global positions in the PSO algo-
rithm in the social cognitive system, apart from personal experience and better information
received from the search areas, it is advisable to share with better individuals to enhance
or improve itself [40]. Therefore, using that concept, a new acceleration constant (c3) is
added to the original PSO equation, making it more efficient to obtain the best solution.
The additional c3 gives the swarm the capability to reach the exploitation stage.

Vk+1
i = ϕ

(
w1vk

i + c1r1

(
pbest − sk

i

)
+ c2r2

(
gbest − sk

i

)
+ c3 × r3

(
pbest, t − sk

i

))
(22)

where pbest,t is the vector position for an excellent individual domain (i.e., the overall best
position), ϕ is the constriction factor, and r3 is random numbers in the interval of (0,1).

3.2.2. Implementation of EPSO to RPO

The steps involved in solving the RPO problem are given below, and the flow chart is
shown in Figure 1:

1. Initialize: Set the number of particles, initial velocity, the total number of iterations,
generator voltages, the transformer tap settings, and accelerated constants;

2. Run load flows to determine the objective function (real power loss) and evaluate the
penalty function concerning inequality constraint violation;
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3. Counter updating: Update the iter = iter + 1;
4. Evaluate each particle and save the global and personal best positions;
5. Update the velocity as given in Equation (22);
6. Update the position as given in Equation (17);
7. Check whether solutions in Steps 3 and 4 are within the limit; if it is above the limit,

apply Equation (12) to keep the violation;
8. The position of the local best should be updated if the current fitness value is smaller

than the best one;
9. Update global best;
10. Search for minimum value: The minimum value in all the individual iterations is

considered the best solution;
11. Stopping criteria: If the stopping criteria have been satisfied, stop; if not, go back to

Step 5.

 
Figure 1. Flow chart of EPSO.

4. Result and Discussion

This section is divided into two. The first section discusses the results of voltage
stability indices. The second section discusses the results of the RPO algorithm. The
algorithm settings used in the second section is shown in Table 1. The simulation was
executed using MATLAB 2018b. The IEEE 9 and 14 bus systems were employed to evaluate
the effectiveness of the techniques for actual power reduction. The best outcomes are
documented after each test system has been run 30 times.
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Table 1. Optimum setting of the algorithm.

Parameters Value

Number of iterations 200

Particle number 50

Acceleration constant C1 = C2 = C3 = 2.05

Maximum and minimum w 0.9 and 0.4

Constriction factor 0.729

4.1. Voltage Stability Indices
4.1.1. IEEE 9 Bus System

The system consists of three generators located at buses 1, 2, and 3; three load buses
located at buses 5, 6, and 8; and three transformers located at buses 1, 2, and 3. Also, the
system has six transmission lines and 100 MVA at the base. The line and bus data are
taken [41,42]. The single-line diagram/scheme of the IEEE 9 bus system was given in
Figure 2. The MATLAB 2018b software was used to validate the FVSI and Lmn and the
results obtained after varying reactive power of load buses are presented in Table 2. The
critical node of the system was selected by varying/increasing the RP of the load bus until
one of the indices values approaches unity, and the bus contains the lowest permissible
RP. The load buses’ RP was increased one after the other to find the maximum reactive
power of each load bus. In Table 2, the value of the indices, the voltage magnitude, and
each load bus ranking are presented. The bus with the highest values of the index and a
smaller load-ability value of RP is ranked first and is the system’s critical node. Node 8 is
the critical node and ranks first in the system because it contains a small RP load variation
of 240 MVar and a value of 1.028 for FVSI. The lines connected to it are 7–8 and 8–9. This
bus needs urgent attention to avoid the breakdown of the generator.

Figure 2. Single-line diagram of the IEEE 9 bus system [43].

Table 2. The indices value and ranking of the bus in the IEEE 9 bus system.

Bus Numbers Q (MVar) Lmn FVSI Voltage Magnitude (p.u) Ranking

5 260 0.902 0.933 0.800 2

6 290 0.865 0.889 0.824 3

8 240 0.998 1.028 0.802 1
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4.1.2. IEEE 14 Bus System

The IEEE 14 bus system contains four generators, a slack bus, twenty transmission
lines, and nine load buses located at buses 4, 5, 7, 9, 10, 11, 12, 13, and 14. The line and
bus data were taken [29,30]. The single-line diagram/scheme of the IEEE 14 bus system
is given in Figure 3. Table 3 shows each load bus’s indices value, ranking, and voltage
magnitude. The validation was carried out on MATLAB 2018b software, the FVSI and
Lmn results were obtained after varying the reactive power of load buses. The RP of the
load bus was varied one bus at a time until the value of indices reached unity, or the LF
solution failed to converge. When varying the RP of each load bus, one of the indices values
makes the bus vulnerable to voltage collapse; at this stage, the indices values were noted,
and the bus was selected as the critical bus. The result obtained was compared with the
previous study reported by Samuel et al. [30], and it was observed that the result of this
study shows its validity and effectiveness as it aligned with that of the literature [30]. It
also presents the ranking of each bus, which was carried out based on the highest values of
the indices and the least RP injected into the load bus. The load node/bus with the highest
indices value and the small permissible reactive load was selected as the critical node of the
system and ranked first. It clearly shows that node 14 is the critical bus/node of the system
because it had the highest values of the index of 1.023 for FVSI and a small permissible
reactive load of 76.5 MVar. This node/bus had two connected lines, 9–14 and 13–14.
The load connected to the line experienced voltage instability. This was identified as the
weakest bus that needs proper attention to avoid voltage collapse. The most stable bus are
nodes/buses 4 and 5. They had the height value of RP injected into the bus, 360 MVar, and
352.5 MVar, respectively.

 
Figure 3. Single-line diagram of the IEEE 14 bus system [30].
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Table 3. The indices value and ranking of the bus in the IEEE 14 bus system.

Bus Number Q (Var) Voltage Magnitude (p.u) Ranking Lmn FVSI

4 360 0.833 9 0.944 0.892

5 352.5 0.997 8 0.998 0.999

7 160 0.771 7 0.929 0.928

9 150 0.712 5 0.981 0.970

10 120 0.663 4 0.942 0.904

11 103 0.748 3 0.912 0.974

12 78 0.790 2 0.865 0.868

13 151.8 0.747 6 0.923 0.993

14 76.5 0.693 1 0.966 1.023

4.2. Reactive Power Optimization

To test the chosen EPSO for RPO, EPSO and other PSO variants are coded in MATLAB
2018b software. Table 4 shows the control variable limits of the two test systems. The
maximum and minimum limits for voltage magnitude are 1.1 p.u and 0.95 p.u, respectively.
Also, the maximum and minimum limits for the transformer tab limits are 1.025 and 0.975,
respectively. However, the limits for the shunt compensator are set in the ranges of 0 MVar
and 20 MVar [44].

Table 4. Control variable limits for the IEEE 9 and 14 bus system.

Voltage Test Systems

Vmax 1.10

Vmin 0.95

Tmax 1.025

Tmin 0.975

Qmax 20

Qmin 0.0

4.2.1. IEEE 9 Bus System

Table 4 illustrates the variable control limits of the algorithms used in this research.
The N-R was used to obtain the base case power loss. EPSO and other PSO variants are
compared to obtain the smallest power loss. Figure 4 illustrates the convergence curve of the
system. The loss of PSO, EPSO, PSO-TVAC, PSO-SR, and RPSO are 7.608 MW, 7.543 MW,
7.589 MW, 7.600 MW, and 7.602 MW, respectively, from the base case of 9.842 MW. The
optimized power loss is expected to be smaller than the base case result. Therefore, EPSO
gives the smallest power loss of 7.543 MW; this shows the significance of the chosen method
in power loss reduction. Figure 5 illustrates the voltage profile at each bus before and
after the optimization. It can be seen that EPSO offered the highest voltage profile. This
shows that EPSO is more suitable for improving the node voltage than the rest of the PSO
variants. Table 5 gives the comparison of power loss for EPSO with other PSO variants and
algorithms. It can be seen that EPSO gave the smallest power loss of 7.543 MW. This shows
the effectiveness of EPSO in offering accurate results and outperforms all of them.
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Figure 4. The convergence curve minimizes real power loss for the IEEE 9 bus system.

 

Figure 5. Voltage magnitude before optimization (base case) and after optimization of the IEEE 9
bus system.

Table 5. Comparison of the IEEE 9 bus system with other algorithms.

Algorithms PSO EPSO PSO-TVAC PSO-SR RPSO DA [45] CA [45]

Best MW 7.6077 7.543 7.5894 7.600 7.6023 14.74 14.82

Worst MW 8.957 8.257 8.685 8.878 8.989 - -

Mean MW 8.282 7.900 8.137 8.239 8.296 - -

STD 0.954 0.505 0.775 0.902 0.957 - -

The bold value indicates the lowest power loss and the superiority of this study to others presented in the table.
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4.2.2. IEEE 14 Bus System

The control variable is given in Table 4. The N-R was used as the base case, while
EPSO was chosen and compared with other PSO variants. The initial/base case system
loads, total generation, and power losses of the test system from the LF solution by NR
method are given below.

Pload = 259 MW, Ploss = 13.775 MW, and PG = 272.757 MW

The curve of the real power loss of EPSO is demonstrated in Figure 6. The power
loss reduction of PSO, EPSO, PSO-TVAC, PSO-SR, and RPSO are 12.263 MW, 12.253 MW,
12.260 MW, 12.261 MW, and 12.264 MW, respectively, from the base case of 13.775 MW.
After optimization, the power loss is expected to be less than the base case result. It can be
seen that EPSO outperforms all other PSO variants, giving a lower reduction of 12.253 MW.
However, EPSO has more computation times. Furthermore, Figure 7 shows the voltage
magnitude of each bus/node before and after optimization. EPSO effectively increases
each node’s voltage and gives the smallest loss reduction. The superiority of EPSO was
validated by comparing the real power loss, mean, and standard deviation (STD) of the
result obtained with other algorithms, like PSO, PSO-TVAC, RPSO, LCA, JAYA, and PBIL,
as presented in Table 6. Notably, it shows that EPSO reduced the power loss to 12.253 MW,
while PSO offers 12.263 MW, PSO-TVAC offers 12.260 MW, RPSO offers 12.259 MW, etc.
Thus, EPSO methods give excellent results by lowering power loss and outperforming
other techniques.

 

Figure 6. Convergence minimization of real power loss for the IEEE 14 bus system.

Table 6. Comparison of the IEEE 14 bus system with other algorithms.

Algorithms Best Worst Mean STD

PSO 12.263 12.879 12.571 0.436

EPSO 12.253 12.311 12.282 0.041
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Table 6. Cont.

Algorithms Best Worst Mean STD

PSO-TVAC 12.260 12.587 12.424 0.232

PSO-SR 12.261 12.762 12.512 0.354

RPSO 12.259 12.324 12.292 0.046

HLGBA [28] 13.1229 - - -

LCA [46] 12.9891 13.1638 - 5.5283 × 10−3

PBIL [46] 13.0008 13.1947 - 9.7075 × 10−4

JAYA [47] 12.281 - - -

PSO [44] 12.36 - - -
The bold value indicates the lowest power loss and the superiority of this study to others presented in the table.

 

Figure 7. Voltage magnitude before optimization (base case) and after optimization for the IEEE 14
bus system.

5. Conclusions and Future Work

The role of PS operations is to ensure a stable voltage at the consumer end. Unfortu-
nately, the PS failed to meet the desired goal due to generator failures and losses in the TL.
This work applied EPSO to reduce the real power loss and other PSO variants. FVSI and
Lmn were used to identify the critical bus and to learn the stressfulness of the lines in a PS.
For the IEEE 9 bus system, bus 8 is the critical node, and the lines connected to it are the
most stressful lines of the system. It has the lowest value of RP of 240 MVar, and one of the
indices reaches unity (1). Node 14 was the critical node in the IEEE 14 bus system, and the
lines connected to it experienced voltage instability. EPSO was used to reduce/diminish the
actual/real power loss on the IEEE 9 and 14 bus systems. The loss was reduced from 9.842
MW to 7.543 MW for EPSO and 7.608 MW, 7.602 MW, 7.589 MW, and 7.600 MW for PSO,
RPSO, PSO-TVAC, and PSO-SR, respectively, for the IEEE 9 bus system. Also, the losses on
the IEEE 14 bus system were reduced from 13.775 MW (the base case) to 12.253 MW for
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EPSO and 12.263 MW, 12.259 MW, 12.260 MW, and 12.261 MW for PSO, RPSO, PSO-TVAC,
and PSO-SR, respectively. The result shows that the EPSO algorithm gives a better loss
reduction than other techniques and PSO variants in the literature. This indicates that EPSO
is suitable for improving grid voltage quality, thereby suggesting that the technique will be
a valuable tool for PS engineers in the planning and operation of electrical PS networks.
This work recommends applying EPSO to other metaheuristic algorithms to form a hybrid
method to solve engineering problems and some standard IEEE benchmark functions. Also,
the computation time should be improved in future work.
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Nomenclature

FVSI fast voltage stability index
Lmn line stability index
TL transmission line
RP reactive power
Zj is the impedance
Q1 is the RP at sending end
Xr is the reactance of the line
θ is the angle of the TL
V1 is the voltage at the sending end
δ is the power angle
Q2 is the RP at receiving end
Ploss is the real total losses
k is the branch
Gk is the conductance of the branch k
Vj and Vi are the voltage at the ith and jth bus
NL is the total number of TL
θij is the voltage angle between bus i and j
gij and bij are conductance and susceptance

Vmin
gi and Vmax

gi are voltage magnitude limits
Qmin

gi and Qmax
gi are the generation limits of reactive power

Pmin
gi and Pmax

gi are the limits of active power
Qmin

ci and Qmax
ci are the reactive compensation limits

Tmin
k and Tmax

k are the transformer tap limits
Vk

i is the velocity of the particle
sk

i is the position of the particle
pbest is the personal best
gbest is the global best
r1 and r2 are two randomly generated numbers between (0, 1)
c1 and c2 are the coefficients of accelerated particles
w is the inertia weight
SR is the success rate
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wmin and wmax is the minimum and maximum limits of the w
z is the current iteration
itermax is the maximum iteration
C1k, C1t, C2t, and C2k are the initial and final values of the cognitive and social acceleration factors

pbest,t
is the vector position for an excellent individual domain (i.e., the overall
best position)

ϕ is the constriction factor
PSO particle swarm optimization
PF power flow
P.U per unit
RPSO random inertia weight PSO
TVAC time-varying acceleration coefficients
VS is the voltage stability
DER is the distributed energy resources
PS is the power system
RPO is the reactive power optimization
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Abstract: In the context of the continuous development and maturity of intelligent manufacturing
and intelligent logistics, it has been observed that the majority of vehicle maintenance in EMU trains
still relies on traditional methods, which are characterized by excessive manual intervention and low
efficiency. To address these deficiencies, the present study proposes the integration of Automatic
Guided Vehicles (AGVs) to improve the traditional maintenance processes, thereby enhancing the
efficiency and quality of vehicle maintenance. Specifically, this research focuses on the scenario of the
maintenance workshop in EMU trains and investigates the task allocation problem for multiple AGVs.
Taking into consideration factors such as the maximum load capacity of AGVs, remaining battery
power, and task execution time, a mathematical model is formulated with the objective of minimizing
the total distance and time required to complete all tasks. A multi-population genetic algorithm is
designed to solve the model. The effectiveness of the proposed model and algorithm is validated
through simulation experiments, considering both small-scale and large-scale scenarios. The results
indicate that the multi-population genetic algorithm outperforms the particle swarm algorithm and
the genetic algorithm in terms of stability, optimization performance, and convergence. This research
provides scientific guidance and practical insights for enterprises adopting task allocation strategies
using multiple AGVs.

Keywords: automated guided vehicle; task allocation; multi-population genetic algorithm; particle
swarm optimization; genetic algorithm

MSC: 65D99; 90B06

1. Introduction

Intelligent manufacturing has emerged as a primary means of enhancing a nation’s
industrial competitiveness [1]. Within the framework of “Industry 4.0” and intelligent
manufacturing, intelligent logistics is considered a fundamental and crucial component
in achieving intelligent manufacturing objectives [2]. In this context, Automated Guided
Vehicles (AGVs) are extensively utilized as indispensable material handling equipment
to fulfill the objectives of intelligent logistics. Regarding intelligent manufacturing, China
has witnessed a continuous elevation in its railway equipment capabilities. Over the
span of ten years, from 2012 to 2021, the nationwide inventory of railway passenger cars
has increased from 57,700 to 78,000 units, while the number of high-speed train sets has
escalated from 825 to 4153 sets [3]. With the ongoing growth in high-speed train sets, a
corresponding surge in equipment maintenance has also been observed. The maintenance
of high-speed train sets constitutes a critical link in ensuring their seamless operation. The
train unit maintenance workshop possesses several significant characteristics that have
a crucial impact on its operations and efficiency. Firstly, the workshop is equipped with
advanced equipment and technology specifically designed to meet the maintenance needs
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of high-speed train sets. These technologies cover mechanical, electrical, and electronic
systems, enabling comprehensive and efficient repair tasks. Secondly, the workshop faces
diverse maintenance tasks that encompass various fields such as mechanical, electrical,
and electronic repairs. These tasks require specialized skills and expertise to ensure the
effective and reliable operation of the train sets. Thirdly, due to the critical importance
of maintenance for ensuring safe operations, the workshop operates under strict time
constraints. Timely completion of repair tasks is essential to ensuring the prompt return of
train sets to operation. Fourthly, the workshop needs to manage a large number of train
sets, which involves effective vehicle allocation, scheduling, and maintenance planning
to handle multiple train set repairs simultaneously. Fifthly, the workshop must meet the
power demands of train sets and maintenance equipment. A stable and reliable power
supply is essential to guaranteeing continuous operation. Sixthly, vehicle scheduling and
transportation present significant challenges for the workshop. Proper vehicle scheduling
and route planning are crucial for the timely delivery of train sets and transportation to the
workshop. Seventhly, safety and quality control are paramount concerns for the workshop.
Strict adherence to safety protocols and reinforcement of quality control measures are
essential for ensuring operational safety and reliability.

In summary, the train unit maintenance workshop is a complex and efficient system
that requires specialized skills and effective management to ensure the safe and reliable
maintenance of high-speed train sets. This study explores the multi-AGV task allocation
problem in the workshop, addressing challenges related to vehicle management, scheduling,
and task assignment, thus improving the operational efficiency and maintenance quality of
the workshop. As a result, this research optimizes the workshop’s operations and enhances
the overall performance of the maintenance system.

2. Literature Review

The multi-AGV task allocation problem refers to the allocation of tasks to multiple
AGVs and scheduling the execution order of tasks, with the objective of maximizing the
efficiency and quality of task completion. Due to its complexity and intractability, the
multi-AGV task allocation problem is a typical NP-hard problem [4]. In the domain of task
allocation models, there are primarily single-objective and multi-objective planning models.
Single-objective planning models, such as Lu et al. [5], aim to minimize the total completion
time as the objective function to optimize the task allocation and sequencing of mobile
robots. Zhuang et al. [6] focus on minimizing the number of shelf transportation operations
as the objective, considering handling conflicts in the task allocation model for mobile
robots. Li et al. [7] consider minimizing the maximum travel time of AGVs and propose an
AGV task allocation algorithm based on shelf priority. Multi-objective planning models,
like Li Teng et al. [8], establish a two-level task allocation model, minimizing the total cost
at the upper level and minimizing the number of idle robots at the lower level. To mitigate
uncertainties and discrepancies between the model and actual operational conditions, a
robust optimization model was further developed. Zou et al. [9] design a greedy algorithm
to construct a multi-objective task allocation model, optimizing the total energy consump-
tion of AGVs, the number of AGVs used, and the task timeliness that affects customer
satisfaction. Li et al. [10] have developed a dual-objective, energy-saving single-load AGV
planning model for multiple transportation tasks, aiming to minimize transportation dis-
tance and energy consumption. Mousavi et al. [11], considering the battery level of AGVs,
optimize AGV task scheduling with the objectives of minimizing completion time and the
number of AGVs. Regarding algorithm design, most current studies employ metaheuristic
algorithms [12–16] for solving the task allocation problem. In recent years, with the ad-
vancement of machine learning and deep learning [17–21], these methods have gradually
found applications in addressing task allocation problems. Zou et al. [22] proposed the
Discrete Artificial Bee Colony algorithm (DABC) and other novel advanced techniques for
task allocation problem-solving. Tang et al. [23] designed a two-layer genetic algorithm,
with the inner layer optimizing the task scheduling sequence of AGVs and picking stations
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and the results being fed back to the outer layer model to optimize equipment configu-
ration and sorting station layout. Yue et al. [24] introduced an enhanced hybrid genetic
algorithm and particle swarm optimization algorithm (PSO-GA) to establish multi-AGV
task allocation models. Liu et al. [25] proposed an improved particle swarm optimization
algorithm to solve multi-objective task allocation models, exhibiting enhancements in
population convergence speed and algorithm performance. Tang et al. [26] presented a
novel approach based on classical soft Actor-Critic and hierarchical reinforcement learning
algorithms, namely the layered soft Actor-Critic algorithm, to address dynamic scheduling
problems in order picking. Yang Wei et al. [27] proposed a variable neighborhood simulated
annealing algorithm to solve the job scheduling problem of mobile robots in warehousing
systems. They designed three types of neighborhood perturbation operations, including
insertion, swap, and “2-opt”, to systematically transform the search space and improve
the algorithm’s search ability and scope. Yang Zhifei et al. [28] extracted the advantages
of different algorithms and proposed an adaptive multi-objective genetic-differential evo-
lution algorithm to address robot dispatching tasks. They introduced a new multi-stage
real-number coding rule and incorporated elite and adaptive strategies to enhance the
algorithm’s convergence speed. Song Wei et al. [29] applied an ant colony algorithm to
process task sequences and then used a genetic algorithm to allocate subsets of tasks for
task chaining. Xu Liyun et al. [30] improved the encoding method and genetic operators of
the cultural genetic algorithm and demonstrated through simulation experiments that the
improved algorithm achieved faster convergence. In terms of applying these algorithms to
other research domains, Chen et al. [31] introduced a multi-agent control structure model
to solve complex distributed resource planning problems by leveraging the advantages
of multi-agent systems. Kler et al. [32] utilized data analysis to optimize inventory and
supply chain networks in meat and poultry farms, aiming to achieve the goals of a green
supply chain. Ntawuzumunsi et al. [21] proposed an energy-efficient algorithm based
on data aggregation technology for communication between intelligent beekeeping de-
vices. Joshi et al. [20] investigated how machine learning techniques can be used to predict
phishing attacks in blockchain networks.

Existing research has demonstrated the wide applicability and potential of various
intelligent algorithms in different domains, contributing to improved efficiency, resource
utilization, and problem-solving capabilities. Regarding the AGV task allocation research,
the focus has mainly been on the allocation of only one task per AGV within a certain
period. Researchers have constructed single-objective and multi-objective models and
made improvements to the original algorithms to enhance their convergence and solution
performance. However, some of the improved algorithms have resulted in increased
complexity in the theoretical derivation steps and higher computational requirements. In
the case of AGVs operating in a single-task mode, system optimization is constrained,
and as task volume escalates, task backlog issues can emerge. Increasing the number of
AGVs for task execution may exert pressure on traffic, thereby impeding overall system
efficiency improvements. Furthermore, existing research has primarily concentrated on
algorithmic enhancements while neglecting optimization pertaining to research scenarios
and model characteristics. Hence, this paper aims to address these gaps by focusing on
the research scenario of a high-speed train maintenance workshop. The objective is to
minimize the total distance and time required to complete all tasks while considering
constraints such as the AGV’s maximum load capacity, remaining battery level, and time.
Multiple population-based genetic algorithms are designed to solve the task allocation
model. Theoretical contributions are made to the field of multi-AGV task allocation, and
practical implications are expected to enhance the overall efficiency of the logistics system
in the high-speed train maintenance workshop.

3. Problem Description and Hypotheses

In the logistics system of a high-speed train maintenance workshop, Automated
Guided Vehicles (AGVs) are responsible for the transportation of all raw materials within
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the workshop. Their primary task involves delivering raw materials from the storage points
to the designated maintenance workstation points. Considering the specific characteristics
of the high-speed train maintenance workshop, it is worth noting that different systems
can undergo maintenance simultaneously at the same workstation. In other words, when
repairing a specific section of a train car, there is a unique target maintenance workstation.
In a given time period, the high-speed train maintenance workshop generates a set of n
delivery tasks, denoted as N = {1, 2, . . .. . .n}. These tasks can be grouped as Gk = {i, j . . .. . .|i,
j ∈ N}. The workshop has a total of m AGVs available for task execution, forming the set
K = {1, 2, . . .. . .m}. As the AGVs purchased for the workshop are of the same model, each
AGV shares the same maximum load capacity and travel distance when fully charged. To
closely resemble real-world scenarios, this study considers the delivery tasks performed
by AGVs at non-saturated battery levels. With respect to the discharge characteristics of
lithium batteries, the remaining travel distance decreases rapidly as battery usage increases.
To align with the maintenance rhythm, each task i should be assigned in such a manner
that the AGV’s arrival time is no earlier than the task generation time ai, and the task
completion time falls within the task deadline bi. Given these conditions, how can the task
grouping and allocation problem be formulated to maximize the overall system efficiency?
Specifically, the optimization objectives are to minimize the total travel distance under the
task grouping and to minimize the AGV task completion time. Constraints such as the
AGV’s maximum load capacity, remaining battery level, and time availability are taken
into consideration. By establishing a mathematical model, an optimal task grouping, and
allocation scheme can be derived.

In order to account for the discrepancies between the model’s solution and the actual
operational scenario, the following assumptions should be met:

(1) The maintenance task represents the comprehensive system of the first section of a
train car.

(2) The inventory of raw materials at the storage points adequately meets the require-
ments of the delivery tasks.

(3) AGV travel paths can be reliably and consistently planned without encountering
conflicts.

(4) The consideration of raw material volumes and the loading/unloading times of AGVs
is omitted.

(5) Under normal circumstances, all AGVs maintain a uniform speed during travel.
(6) When executing a task group, each required storage point for a task can be traversed

by an AGV only once.
(7) AGVs start their operations by uniformly parking at a designated location, known as

the starting point, with Task 1 assigned as the initial task.
(8) Upon completion of all tasks within a task group, AGVs park at the target maintenance

workstation, referred to as the endpoint, with Task n designated as the final task.

4. Model Establishment

Based on the problem description above, the model parameters and definitions of
decision variables are as follows:

Model Parameters:
W: represents the maximum load capacity of each AGV;
wi: represents the weight of raw materials required for task i;
ek: represents the remaining battery level of AGV k;
f : represents the safety battery level expressed as a percentage;
L: represents the function that relates the percentage of battery consumption to the

remaining travel distance for each AGV;
ai: represents the generation time of task i;
bi: represents the deadline time of task i;
v: represents the travel speed of each AGV;
di,j,k: represents the shortest distance from task i to task j for AGV k;
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DGk ,k: represents the shortest total distance for AGV k to complete task group Gk;
ti,j,k: represents the minimum time from task i to task j for AGV k;
t′i,k: represents the time required for AGV k to complete task i;
TGk ,k: represents the minimum total time for AGV k to complete task group Gk.
Decision Variables:

xi,j,k =

{
1, AGV k travels f rom task i to task j
0, others

(1)

yi,k =

{
1, task i is delivered by AGV k
0, others

(2)

Objective function:
Z = min

{
DGk ,k +

(
maxTGk ,k

)}
(3)

Constraint function:

DGk ,k =
n

∑
i=1

n

∑
j=1

m

∑
k=1

xi,j,kdi,j,k (4)

TGk ,k =
n

∑
i=1

n

∑
j=1

m

∑
k=1

xi,j,kti,j,k (5)

ti,j,k =
di,j,k

v
, ∀i, j ∈ N, k ∈ K (6)

m

∑
k=1

yi,k = 1, ∀i ∈ N (7)

n

∑
i=1

xi,j,k = yj,k, ∀j ∈ N, k ∈ K (8)

n

∑
j=1

xi,j,k = yi,k, ∀i ∈ N, k ∈ K (9)

m

∑
k=1

wiyi,k ≤W, ∀i ∈ N (10)

xi,j,k(t′i,k + ti,j,k − aj) ≤ 0, ∀i, j ∈ N(i, j �= 1, n), k ∈ K (11)

m

∑
k=1

xi,j,k(t′i,k + ti,j,k + t′j,k)− bi ≤ 0, ∀i, j ∈ N(i, j �= 1, n) (12)

L(x) = ax2 + bx + c (13)

n

∑
i=1

n

∑
j=1

m

∑
k=1

xi,j,kdi,j,k ≤ L(1− ek)− L(1− f ) (14)

n−1

∑
j=2

x1,j,k = 1, ∀k ∈ K (15)

n−1

∑
i=2

xi,n,k = 1, ∀k ∈ K (16)

xi,j,k ∈ (0, 1), ∀i, j ∈ N, k ∈ K
yi,k ∈ (0, 1), ∀i ∈ N, k ∈ K

(17)
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In the aforementioned model, xi,j,k and yi,j,k are binary decision variables taking values
of 0 or 1. Equation (3) represents the objective function, which aims to minimize the total
distance and time required to complete all tasks. Equations (4) and (5) are utilized to
calculate the total distance and total time, respectively, for completing all tasks within each
task group. Equation (6) computes the completion time between two tasks based on speed
and distance. Constraint (7) ensures that each task is assigned to an AGV. Constraints
(8) and (9) guarantee that tasks within the same task group are exclusively assigned to a
single AGV. Constraint (10) ensures that the weight of each task group does not exceed
the maximum load capacity of the AGV. Constraint (11) guarantees that an AGV, which
sequentially performs tasks i and j, arrives at the storage point of task j no earlier than the
task generation time of task j after completing task i. Constraint (12) ensures that the total
completion time of the task group does not exceed the deadline time of each individual task.
Equation (13) expresses the relationship between the AGV’s battery consumption curve
and the remaining travel distance [33]. Constraint (14) ensures that each AGV operates
within its battery constraint range, with a safety battery level reserved for returning to the
charging area. Equation (15) states that each AGV must pass through task 1 and can do
so only once. Equation (16) states that each AGV must pass through task n and can do so
only once.

5. Algorithm Design

The multi-population genetic algorithm [34–37] is an optimization algorithm based
on the genetic algorithm that enhances search capability and global optimization perfor-
mance by introducing multiple independent populations. Each population functions as
an independent subsystem of the genetic algorithm, possessing its own set of individuals
and evolutionary process. Below is a detailed introduction to the main characteristics of
the Multi-Population Genetic Algorithm (MGA) and the algorithm design process in this
paper, as shown in Figure 1.

Figure 1. Flowchart of the Design Process for the Multi-Population Genetic Algorithm in this Study.
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5.1. Main Characteristics of the Algorithm

(1) Multiple Independent Populations: The multi-population genetic algorithm consists
of several independent populations, each with its own unique set of individuals and
evolutionary process. Each population can be configured with distinct parameters
and operational strategies.

(2) Population Interaction: Information and individuals are shared among multiple pop-
ulations through exchange strategies, facilitating global search capability. Exchange
strategies may include periodic individual migration, sharing of optimal solutions,
and exchange operations.

(3) Parallel Computation: The ability for multiple populations to undergo parallel evo-
lution endows the multi-population genetic algorithm with high computational effi-
ciency and search capability.

5.2. Algorithm Design Process

(1) Encoding: The encoding process involves generating a sequence of mutually distinct
natural numbers from 1 to n, where n represents the number of delivery tasks. This
sequence constructs a permutation representing a combination of delivery tasks, with
each number denoting a specific task. Each permutation corresponds to a potential
task allocation scheme. Adhering to the given constraints, the elements of the solution
are systematically assigned to the delivery routes of the respective AGVs. To elaborate,
consider the example solution 123456. The first element of the solution represents the
first target point for the delivery route of the first AGV. It is then checked whether this
allocation adheres to the imposed constraints, including the AGV’s maximum load
capacity, remaining battery level, and time requirements. If the constraints are met,
the second element of the solution is assigned as the second task point for the first
AGV. In cases where the constraints are not satisfied, indicating that the task cannot
be assigned to the first AGV, it is then assigned as the first task point for the second
AGV, and this process continues iteratively.

(2) Initializing Populations: In this study, four populations are created, each comprising
20 individuals (solutions). To generate these individuals, 20 randomly generated
non-repeating sequences between 1 and n, where n represents the number of delivery
tasks, are utilized. Each individual within a population represents a distinct task
allocation solution. To promote diversity and facilitate thorough exploration of the
search space, unique crossover and mutation probabilities are randomly assigned to
each population. The crossover probability ranges from 0.7 to 0.9, while the mutation
probability ranges from 0.001 to 0.05. Both probabilities are generated using random
number distributions.

(3) Selection, Crossover, and Mutation: Firstly, fitness evaluation is conducted for each
individual within the population, with the fitness function value being the reciprocal
of the objective function value. By computing the total distance and time of the corre-
sponding task allocation solution for each individual, their respective fitness values
are derived. Lower fitness values indicate more superior task allocation solutions,
increasing the likelihood of individuals being selected as parents to produce the next
generation. Subsequently, these individuals are randomly paired for information
exchange through the crossover operation. This process introduces diversity among
individuals within the population, facilitating exploration of a broader solution space.
Lastly, following the crossover operation, the genes of the offspring individuals are
subjected to mutation with a certain probability. The mutation operation introduces
new gene combinations within individuals, further enhancing population diversity
and avoiding being trapped in local optima.

(4) Reverse Evolution: In order to enhance the local search capability of the genetic
algorithm, a reverse evolution operation is introduced after the selection, crossover,
and mutation operations. The reverse evolution operation randomly selects a gene
segment from the parent and performs a reverse order operation on that segment.
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Subsequently, the fitness value of the parent after the reverse operation is calculated
to determine whether to accept the parent with the reverse operation. The reverse
operation is only effective if the fitness of the parent improves after the reverse
operation, in which case it is included in the next generation of individuals. Otherwise,
the reverse operation is considered ineffective.

(5) Migration Operator: To facilitate information exchange among populations, a strategy
of periodically introducing the best individual from one population into another pop-
ulation is employed. Specifically, the best individual from one population is selected
to replace the worst individual in another population. Through this information
exchange mechanism, the flow and sharing of information among populations are
encouraged. Introducing the best individual allows beneficial genetic information to
be transmitted to other populations, thereby enhancing their overall fitness. Simulta-
neously, replacing the worst individual helps prevent populations from prematurely
converging to local optima and increases the diversity of the populations.

(6) Elite Population: To enhance information exchange and sharing among populations,
a strategy of selecting the best individuals from other populations and placing them
into a special elite population for preservation is adopted. The elite population can
be viewed as a collection of the best solutions from each population. By regularly
selecting the best individuals from other populations and adding them to the elite
population, excellent solutions from various populations can be accumulated and
shared with other populations for evolution.

(7) Termination Criteria: To further enhance the stability and convergence of the algo-
rithm, the best individual in the elite population is required to maintain its status as
the best solution for a consecutive number of generations equal to or greater than 10.
In other words, when the best individual in the elite population remains unchanged
for 10 or more consecutive generations, it can be considered that the algorithm has
reached a relatively stable state, and the iteration process can be terminated.

6. Simulation Experiments and Analysis

To verify the correctness of the mathematical model and the effectiveness of the Multi-
population Genetic Algorithm (MGA), comparative experiments were conducted in this
study. The experiments were designed and implemented using Matlab. The results obtained
from Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA) were compared
and analyzed against the results of the Multi-Population Genetic Algorithm. Through
this comparative analysis, the solving capabilities and performance of each algorithm can
be evaluated, confirming the correctness of the mathematical model, and validating the
effectiveness of the Multi-Population Genetic Algorithm in problem-solving.

In this study, an 80 × 80 maintenance workshop for high-speed trains was established,
with the starting point of tasks set at (1, 1) and the destination point at (80, 80). Randomly
generated obstacle distributions were introduced to represent walls, shelves, and other
objects within the maintenance workshop. These obstacles contribute to creating a more
realistic map of the maintenance workshop, thereby enhancing the authenticity and reli-
ability of the experiments. By incorporating randomly generated obstacle distributions,
various constraints and challenges present in real-world scenarios can be considered during
the simulation experiments. Consequently, this approach allows for a more comprehen-
sive evaluation and optimization of the operational efficiency within the maintenance
workshop.

6.1. Small-Scale Simulation Experiment

Assuming the maintenance workshop is equipped with five Automatic Guided Ve-
hicles (AGVs) capable of executing distribution tasks. Each AGV has a full battery range
of 200 km. To ensure the safe operation of AGVs, a safety battery level of 10% of the total
battery capacity is set, allowing AGVs to maintain sufficient charge to return to the charging
area during their journeys. The remaining battery percentages for each AGV are shown in
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Table 1. Additionally, each AGV has a maximum load capacity of 100 kg and a travel speed
of 20 km/h. For further investigation of the performance of distribution tasks, 20 sets of
distribution tasks were randomly selected through code. The locations of these tasks are
between the starting point and the destination point, with random coordinates assigned to
each task. The dataset includes the coordinates of the task points, task generation times,
task completion deadlines, and the weight of the materials, as presented in Table 2.

Table 1. Remaining Battery Levels of AGVs.

AGV No. Remaining Battery Percentage

1 67
2 88
3 96
4 78
5 76

Table 2. Task Information.

Task No. Task Points X Task Points Y Material Weight (kg) Task Generation Time (s) Task Deadline Time (s)

1 1 1 / / /
2 40 48 11 160 170
3 35 16 6 49 59
4 45 55 12 14 114
5 20 55 19 50 160
6 14 29 27 35 45
7 23 30 12 98 108
8 21 51 4 80 90
9 11 44 12 95 105
10 55 60 17 97 107
11 30 60 17 13 133
12 20 60 12 67 77
13 50 35 20 65 74
14 30 25 24 159 169
15 15 10 19 32 42
16 30 5 7 61 71
17 10 20 19 75 85
18 5 30 3 157 167
19 20 40 12 87 97
20 15 55 17 76 86
21 40 60 9 26 136
22 80 80 / / /

The algorithm was implemented in Matlab2021b with the following parameter settings:
Population size np = 20 Maximum iteration count Imax = 50. For the Particle Swarm
Algorithm (PSO): Inertia weight w = 0.01, Learning factors c1 = c2 = 1. For the Genetic
Algorithm (GA), the crossover probability p1 = 0.85 Mutation probability p2 = 0.1. For the
proposed Multi-population Genetic Algorithm (MGA), the number of populations is set to
mp = 4. The simulation results of the three algorithms for the multi-AGV task allocation
problem in the maintenance workshop are presented in Figure 2.

In Figure 2, the horizontal axis represents the number of iterations, and the vertical axis
represents the fitness value, which corresponds to the objective function in our model, i.e.,
the total sum of AGV’s running distance and delivery time under the given task allocation.
From Figure 2, it can be observed that as the number of iterations increases, the fitness
value continuously decreases until it reaches a stable state. Eventually, the optimal task
allocation result that minimizes the objective function is obtained. To eliminate the impact
of randomness on the experimental results, the algorithm parameters and experimental
scenarios were kept unchanged, and the experiment was repeated 50 times. The average
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optimal results and the number of iterations obtained from the statistical analysis are shown
in Table 3.

Figure 2. The fitness function curves for the three algorithms on the small-scale test case.

Table 3. The average optimal results obtained from the algorithms.

Algorithm Average Optimal Results Average Number of Iterations

PSO 542 34
GA 574 48

MGA 528 31

According to Table 3, the Particle Swarm Optimization (PSO) algorithm found the
average optimal result of 542 in the 34th iteration, the Genetic Algorithm (GA) found
the average optimal result of 574 in the 48th iteration, and the Multi-population Genetic
Algorithm (MGA) found the average optimal result of 528 in the 31st iteration. Moreover,
the MGA achieved a better optimal result than the other two algorithms, indicating that the
proposed mathematical model is correct and effective and that the MGA exhibits superior
performance in terms of solving ability and efficiency.

From the above 50 experiments, the optimal results obtained from the three algorithms
are used for the multi-AGV task allocation search to obtain the task execution sequences,
as shown in Table 4. In Table 4, Task ID 1 represents the starting point, and Task ID
22 represents the endpoint. When the AGV task execution sequence is 1, it indicates that
the corresponding AGV vehicle was not assigned. From the contents of Table 4, it can be
observed that by using the multi-population genetic algorithm for the multi-AGV task
allocation model, three automatic guided vehicles (AGV1, AGV4, and AGV5) can complete
the 20 sets of delivery tasks, achieving dynamic optimality in matching the delivery of raw
materials with AGV vehicles.

Based on the multi-AGV task allocation results obtained from the three algorithms,
corresponding route maps were generated, denoted as Figure 3a–c, respectively. In the
figures, black dots represent randomly generated obstacles. From Figure 3c, it can be
observed that the route generated by the multi-population genetic algorithm successfully
avoids all obstacles and delivers all target points from the starting point to the endpoint.
This visually demonstrates the effectiveness of the multi-population genetic algorithm in
optimizing the task allocation order and path selection for the delivery tasks.
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Table 4. The optimized task combinations for the three algorithms.

Algorithm AGV No. The Task Execution Sequence

PSO 1 1

2 1-17-7-5-8-9-19-10-22

3 1

4 1-6-11-21-4-13-2-22

5 1-15-16-3-14-18-20-12-22

GA 1 1-17-6-9-20-5-8-22

2 1

3 1-15-16-12-11-21-10-4-22

4 1

5 1-3-13-2-14-18-19-7-22

MGA 1 1-17-7-14-18-2-10-22

2 1

3 1

4 1-16-3-13-19-9-11-21-4-22

5 1-15-6-5-12-20-8-22

6.2. Large-Scale Simulation Experiment

To further investigate the algorithm’s generalization, we increase the number of AGVs
to 4 and add 20 additional randomly generated delivery tasks based on the small-scale
case. The parameters for the additional AGVs and the information for the new tasks
are presented in Table 5 and Table 6, respectively. The other AGV parameters remain
unchanged.

(a)

Figure 3. Cont.

200



Mathematics 2023, 11, 3509

(b)

(c)

Figure 3. (a) The route generated by the Particle Swarm Optimization (PSO) algorithm for the small-
scale case; (b) The route generated by the Genetic Algorithm (GA) for the small-scale case; (c) The
route generated by the Multi-Population Genetic Algorithm (MGA) for the small-scale case. (The
black dots in the figure represent randomly generated obstacles.).

Table 5. Additional AGV Battery Residual Capacity.

AGV No. Remaining Battery Percentage

6 71
7 95
8 88
9 87

The algorithm in this study was implemented using Matlab2021b. To ensure con-
sistency between the small-scale and large-scale experiments, the algorithm parameters
were kept unchanged as specified in Section 5.1. The algorithm was run, and the iterative
convergence plot of the best solution was obtained, as shown in Figure 4. Additionally, the
optimal solutions and optimized task assignments were compiled and presented in Table 7.
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Table 6. Additional Task Information.

Task No. Task Points X Task Points Y Material Weight (kg) Task Generation Time (s) Task Deadline Time (s)

1 1 1 / / /
22 45 20 21 7 107
23 45 10 5 62 72
24 55 5 9 68 78
25 65 35 5 3 163
26 65 20 16 172 182
27 45 30 16 132 142
28 35 40 14 37 47
29 41 37 9 39 49
30 64 42 10 63 73
31 10 30 3 71 81
32 5 15 5 111 121
33 24 55 7 36 56
34 35 25 23 55 65
35 13 35 12 45 55
36 40 35 5 8 128
37 40 25 7 4 14
38 25 25 9 56 66
39 30 15 9 48 58
40 30 20 7 88 98
41 5 20 12 43 53
42 80 80 / / /

Figure 4. The fitness function curves for the three algorithms on the large-scale test case.

In the case of large-scale instances, the Particle Swarm Optimization (PSO) algorithm
converges to the optimal solution around the 21st iteration, while the Genetic Algorithm
(GA) finds the optimal solution around the 18th iteration. On the other hand, the proposed
Multi-Group Genetic Algorithm (MGA) obtains the optimal solution around the 41st
iteration. In terms of computational efficiency, PSO takes approximately 1.974 s, GA takes
about 1.802 s, and MGA requires 6.886 s. Despite MGA’s longer computational time due to
its complex structure, it achieves significantly superior optimal results within a reasonable
computational time. This demonstrates the enhanced computational performance of MGA,
enabling it to generate superior task allocation solutions within a relatively short time.
MGA is suitable for multi-AGV task allocation problems because it efficiently generates
feasible task allocation solutions. Although its computational time is slightly longer than
other algorithms, it can attain significantly better results within the same computational
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time. This validates the effectiveness and practicality of the proposed Multi-Group Genetic
Algorithm in solving multi-AGV task allocation problems.

Table 7. Optimal Results and Optimized Task Assignments for Three Algorithms in Large-Scale
Experiment.

Algorithm Optimal Result AGV No. The Task Execution Sequence

PSO 1073

1 1-16-40-32-18-14-2-10-42
2 1-17-6-31-9-12-11-33-42
3 1-41-35-5-28-36-22-25-30-42
4 1-15-3-23-24-27-26-42
5 1-38-39-7-19-8-20-42
6 1
7 1
8 1
9 1-37-34-29-4-21-13-42

GA 1099

1 1
2 1-6-31-17-32-18-14-27-42
3 1
4 1-34-24-26-10-42
5 1-38-40-7-16-39-23-3-13-42
6 1
7 1-22-36-29-28-12-20-33-2-42
8 1-15-41-35-9-19-8-5-21-42
9 1-37-4-11-30-25-42

MGA 1062

1 1-25-30-10-8-20-11-21-4-42
2 1-6-17-32-18-9-2-26-42
3 1-16-3-34-22-13-24-23-39-42
4 1
5 1
6 1
7 1-15-41-38-7-40-14-27-42
8 1-37-36-29-28-5-12-33-19-35-31-42
9 1

Based on the results from Table 7, it can be concluded that the multi-population
genetic algorithm effectively solves the multi-AGV task allocation problem. Compared to
the other two algorithms, the multi-population genetic algorithm reduces the number of
deployed AGV vehicles, increases the utilization rate of each AGV, and lowers the total
cost of the logistics system. This, in turn, enhances the overall efficiency of the dynamic
train maintenance workshop’s logistics system.

Figure 5a–c illustrate the route maps for the three algorithms. In the large-scale sce-
nario, from the route map of the multi-population genetic algorithm, it can be observed that
the system successfully avoids all obstacles and completes the delivery of all task groups.
This further demonstrates the effectiveness of the multi-population genetic algorithm in
improving the system’s operational efficiency.

In conclusion, the multi-population genetic algorithm exhibits excellent optimization,
convergence, and stability performance in both large-scale and small-scale scenarios. As
the problem size increases, the algorithm produces solutions of higher quality compared to
the other two algorithms. Although there is a certain difference in running time, it is within
an acceptable range with the improvement of computer performance. Therefore, it can
be concluded that the proposed multi-population genetic algorithm is effective in solving
the multi-AGV task allocation problem. Specifically, Unique Probability Mechanism: The
unique probability mechanism is a crucial component in the multi-population genetic
algorithm, aiming to maintain population diversity and avoid premature convergence
to local optima. This mechanism assigns a unique probability value to each individual
in the population based on its fitness evaluation, where the fitness function value is the
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objective function value. Individuals with lower fitness values (corresponding to better
task allocation solutions) are assigned higher probabilities being selected as parents for
reproduction in the next generation. By doing so, the algorithm ensures a balance between
exploration and exploitation, allowing the population to thoroughly explore the solution
space and prevent getting stuck in suboptimal solutions. Local Search Strategy: The local
search strategy is another key element introduced in the multi-population genetic algorithm
to enhance its local search capabilities. After performing crossover, the offspring individuals
undergo a local search process to fine-tune their solutions within a local neighborhood.
This process involves exploring the surrounding solutions and adjusting the genes in a
probabilistic manner. The local search strategy promotes intensification around promising
regions of the solution space, enabling the algorithm to converge more quickly to good-
quality solutions. It effectively improves the exploitation ability of the algorithm and further
refines the task allocation solutions. Information Exchange Methods: Information exchange
is a significant aspect of the multi-population genetic algorithm, which encourages inter-
population cooperation and knowledge sharing. Individuals from different populations are
randomly paired for information exchange through crossover, facilitating the integration
of diverse genetic information and promoting the global search ability of the algorithm.
Additionally, information is also exchanged among individuals within the same population
through mutation, which introduces new gene combinations and maintains population
diversity. This comprehensive information exchange mechanism ensures that valuable
genetic information is propagated effectively throughout the entire population, contributing
to a more thorough exploration of the solution space.

(a)

(b)

Figure 5. Cont.
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(c)

Figure 5. (a) The route generated by the Particle Swarm Optimization (PSO) algorithm for the large-
scale case; (b) The route generated by the Genetic Algorithm (GA) for the large-scale case; (c) The
route generated by the Multi-Population Genetic Algorithm (MGA) for the large-scale case. (The
black dots in the figure represent randomly generated obstacles).

In summary, the unique probability mechanism, local search strategy, and information
exchange methods synergistically enhance the performance of the multi-population genetic
algorithm. The unique probability mechanism maintains population diversity, the local
search strategy refines solutions around local optima, and the information exchange meth-
ods foster global search and knowledge sharing. The experimental results demonstrate
that the multi-population genetic algorithm outperforms other algorithms, such as Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA), in terms of stability, optimization
performance, and convergence speed, making it a powerful and effective approach to tackle
the multi-AGV task allocation problem.

7. Conclusions

The aim of this research is to address the multi-AGV task allocation problem in real
maintenance workshops and optimize task assignment using the Multi-population Genetic
Algorithm (MGA). Our study primarily focuses on maximizing production efficiency
and resource utilization in the workshop, aiming to enhance operational efficiency and
reduce costs. Throughout the research process, we developed a comprehensive AGV
allocation model that considers constraints such as the AGV’s maximum load capacity,
remaining battery power, and time availability to ensure reasonable task distribution and
path planning.

The main contribution of this research lies in the introduction of the MGA algorithm,
which takes into account factors like task priority, distance between tasks, and proximity to
maintenance workstations, resulting in more rational and efficient task allocation. Com-
parative experiments with traditional Particle Swarm Optimization (PSO) and the Genetic
Algorithm (GA) demonstrated that MGA exhibited faster convergence and superior optimal
solutions for large-scale instances, highlighting its competitive advantage in multi-AGV
task allocation. However, our research also has certain limitations. The algorithm may
require longer computation times when dealing with more complex and dynamic operating
environments, necessitating further optimization of algorithm parameters and structures
to improve efficiency. Additionally, some assumptions made in the algorithm may not
entirely align with real workshop conditions, calling for the consideration of additional
real-world factors to enhance the model’s practical applicability. Future improvements
could involve incorporating factors such as loading and unloading times and raw ma-
terial volumes to more accurately reflect real workshop scenarios. Further optimization
of local search and information exchange methods within the algorithm could enhance
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convergence and optimization performance. Additionally, exploring the combination of
the MGA algorithm with other intelligent techniques could address more complex and
diverse industrial scenarios.

Overall, this research offers an efficient and optimized solution for AGV task allocation
in practical maintenance workshops and provides valuable references for related research
and applications. Continual refinement and optimization will allow these findings to have a
greater impact in a broader range of industrial settings, driving advancements in intelligent
manufacturing and logistics. We believe that the outcomes of this research will provide
robust support in tackling challenges faced in actual maintenance operations and offer new
insights and directions for future improvements and adaptations in this field.
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Abstract: This study analyzed the psychological factors that influence mathematical achievement
in order to classify students’ mathematical achievement. Here, we employed linear regression
to investigate the variables that contribute to mathematical achievement, and we found that self-
efficacy, math-efficacy, learning approach motivation, and reliance on academies affect mathematical
achievement. These variables are derived from the Test of Learning Psychology (TLP), a psychological
test developed by Able Edutech Inc. specifically to measure students’ learning psychology in the
mathematics field. We then conducted machine learning classification with the identified variables.
As a result, the random forest model demonstrated the best performance, achieving accuracy values
of 73% (Test 1) and 81% (Test 2), with F1-scores of 79% (Test 1) and 82% (Test 2). Finally, students’
skills were classified according to the TLP items. The results demonstrated that students’ academic
abilities could be identified using a psychological test in the field of mathematics. Thus, the TLP
results can serve as a valuable resource to develop personalized learning programs and enhance
students’ mathematical skills.

Keywords: machine learning; linear regression; psychological test; mathematical achievement

MSC: 68T01

1. Introduction

The EdTech market has been growing steadily with new value created by integrating
information technologies, e.g., big data and artificial intelligence (AI), with education [1]. In
particular, AI is becoming increasingly influential, especially in the field of mathematics ed-
ucation, because it enables students to develop and improve their mathematical skills [2,3].
MATHia, which was developed by researchers at Carnegie Mellon University, utilizes AI
technology to provide feedback and customize learning programs by identifying students’
weaknesses. In addition, Woongjin ThinkBig, a South Korean education group, has de-
veloped an AI application to teach mathematics and analyze each student’s individual
learning abilities based on big data and AI to provide personalized learning materials that
are appropriate for each student.

Similarly, there is an active movement to provide personalized content recommen-
dations in the mathematics education field, which promotes the need for research on
identifying student skills and the factors that affect mathematical achievement. To develop
such a personalized learning system, it is important to understand students’ psychology
because the student’s abilities must be assessed to realize personalized learning, and indi-
vidual psychological factors, e.g., self-confidence and anxiety, can influence the student’s
abilities [4,5].

Previous studies have shown that psychological factors are significant contributors to
academic achievements [4–12]; however, these studies primarily focused on general psy-
chological factors and did not specifically explore the field of mathematical psychology in
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predicting student abilities. In addition, most mathematics education institutions have tradi-
tionally relied solely on grades as the primary indicator of students’ skills, thereby overlook-
ing the potential insights that can be acquired through a more comprehensive approach.

Given these gaps in the existing research, the purpose of this study is to analyze
mathematics-related psychological factors that impact students’ mathematical achievement.
By examining these factors, we seek to gain a deeper understanding of their influence on
students’ mathematics performance. In addition, our objective is to go beyond the analysis
of these mathematics-related psychological factors and advance toward a more proactive
approach. In doing so, we intend to uncover prediction models that can classify students’
mathematical abilities effectively. To achieve this goal, we employed machine learning
classification techniques based on the identified psychological factors. By adopting this
methodology, we aim to identify the key psychological factors and harness their potential
predictive power. Ultimately, this study aims to contribute to the field by bridging the gap
between mathematics and psychology and shed light on the relationship between relevant
psychological factors and mathematical achievement.

2. Related Work

Related studies can be broadly categorized into those that reveal psychological factors
affecting academic achievement and those that classify or predict students’ grades. In terms
of identifying the psychological factors that affect academic achievement, a previous study
stated that personal traits, e.g., self-confidence, are among the most crucial variables that de-
termine a student’s mathematical achievement [4]. Another study proved that Anxiety and
depression have been shown to disrupt concentration and reduce academic achievement
in high school students [5]. According to one study [6], students’ self-efficacy, engage-
ment, and mathematical achievement are positively associated. In addition, a negative
relationship between anxiety (from multiple psychological test items) and mathematical
achievement has been reported [7]. Students with self-efficacy tend to have more positive
emotions, thereby resulting in better academic performance [8].

A previous study that analyzed the aspects of learning motivation reported that intrin-
sic motivation affects the behaviors and achievement of learners [9]. Another study [10]
reported that burnout increases the probability of experiencing psychological and physical
disengagement from academic pursuits, which in turn can result in a decline in academic
achievement. It has also been found that higher levels of academic self-efficacy were posi-
tively associated with greater academic achievement and resilience, thereby indicating a
direct relationship between these variables [11]. In addition, a previous study [12] found
that various costs, including emotion, effort, opportunity, and ego costs, play a crucial role
in predicting mathematical achievement.

In studies on the classification of student grades [13–16], student performance has
been classified using machine learning technologies. The classification and regression tree
(CART) algorithm and k-nearest neighbors (KNN) techniques have been used to classify
the skills of college students attending web-based lectures based on data related to their
homework assignments and quizzes [13]. In addition, the average grades of Bulgarian
university students were classified according to their admission scores using KNN and
decision tree techniques [14]. Another study employed a support vector machine (SVM) to
classify college students’ academic performances based on Internet usage data [15], and one
study [16] employed the random forest to predict the final grades of Malaysia Polytechnics
students based on their previous semester’s final examination results.

Studies have also investigated grade prediction using machine learning techniques [17–19].
For example, one study performed linear regression to predict academic achievement based
on students’ backgrounds and past academic scores from the Institute of Aeronautical Engi-
neering in India [17]. In addition, the random forest method has been employed to predict
the grade point averages of master students in computer science at ETH Zurich based on
their bachelor’s grade point averages [18]. In addition, a machine learning–based recom-
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mendation system considered the grades of students at the Ho Chi Minh City University of
Technology in Vietnam to predict students’ future grades [19].

Previous studies have analyzed various variables that influence academic performance;
however, there is an identifiable research gap when it comes to psychological factors
specifically related to mathematics. To address this gap, this study focuses on the field
of mathematics and utilizes a psychological test to identify the factors that influence
mathematical achievement.

Furthermore, to the best of our knowledge, no prior study has focused on predicting
academic achievements primarily based on psychological factors. Thus, in this study, we
employed machine learning techniques to classify students’ abilities based on the identified
psychological variables. Through these techniques, we aim to provide insights into how
psychological factors can be utilized to predict and understand mathematical achievement.

3. Materials and Methods

3.1. Data Description

In this study, we considered 1880 elementary, middle, and high school students
who were learning mathematics at Able Edutech Inc., a mathematics EdTech company,
from August 2016 to April 2022. Table 1 shows the variables, i.e., the ID (each student’s
unique number), mathematical achievement (Test 1 and Test 2 scores, which are diagnostic
tests), and the Test of Learning Psychology (TLP) scores of each student. To facilitate
our research, Able Edutech Inc. coded the students’ personal data into a unique ID
number to anonymize the data. The TLP is a psychological test about mathematics learning
developed by the Korea Learning Psychometric Research Institute and the Yonsei University
Cognitive Science Research Center. The TLP results were collected when students first
enrolled in the company, and the mathematical achievements were obtained through
two tests after attending courses. Regarding the TLP items used in this study, some were
difficult to analyze due to limited or missing data on student responses; thus, these items
were excluded from the analysis. The five selected psychological test factors were self-
efficacy, math-efficacy, learning approach motivation, performance approach motivation,
and reliance on academies.

Table 1. Variables considered in this study.

Variables Description Range Count

ID Student’s
unique number 1–1880 1880

Mathematical achievement Test 1 and Test 2
Scores 0–100 2

TLP items
(self-efficacy, math-efficacy, learning
approach motivation, performance

approach motivation, reliance
on academies)

Scores of psychological test items 0–100 5

Self-efficacy refers to the belief and confidence in one’s ability and the degree of belief
one possesses in their ability to perform a certain task. Math-efficacy, similar to self-efficacy,
refers to the belief and confidence students have in their mathematical abilities. Learning
approach motivation represents the extent to which a student enjoys seeking knowledge
and the extent to which they study to obtain knowledge. Reliance on academies measures
students’ dependence on academies and their awareness of the importance of academies in
supporting their studies.

3.2. Data Visualization

Based on the collected data, the number of students sorted by grade level is shown in
Figure 1. Most students were fifth-graders (in elementary schools), first-graders (in middle
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schools), and first-graders (in high schools). However, in the original data, in terms of
a grade-wise analysis, the data for only 464 students were linked to relevant variables,
e.g., elementary/middle/high school grades, TLP test results, and mathematics scores. In
contrast, the data for 1880 students contained TLP test and mathematics scores when grade
information was excluded. Thus, in this study, rather than analyzing the students by grade,
we analyzed the data and classified the abilities of all 1880 students using machine learning.

Figure 1. Number of students by grade.

The data on the mathematical achievement comprised the scores for Test 1 and Test 2,
which are diagnostic tests for learning mathematics. The Test 1 scores are shown in Figure 2.
The results revealed that 202 students were in the 0–10 points range, followed by 65, 53,
45, 32, 30, 18, 13, 5, and 1 students in the 30–40, 20–30, 10–20, 40–50, 50–60, 60–70, 70–80,
90–100, and 80–90 points range, respectively.

Figure 2. Distribution of Test 1 scores.

The results of Test 2 are shown in Figure 3. Here, 218 students scored in the 0–10-point
range. For the remaining scores, 75, 61, 59, 17, 16, 14, 3, 1, and 0 students scored in the
10–20, 20–30, 30–40, 70–80, 40–50, 60–70, 50–60, 90–100, and 80–90.

Then, the number of students was analyzed according to their TLP scores, as shown in
Figure 4. The histograms of self-efficacy, math-efficacy, and learning approach motivation
exhibit a left-skewed distribution, and their medians are greater than the means. Perfor-
mance approach motivation and reliance on academies have a symmetric tendency, which
is similar to a normal distribution.
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Figure 3. Distribution of Test 2 scores.

Figure 4. Number of students by TLP.

Specifically, regarding the point ranges of students according to their self-efficacy,
444 students scored in the 60–70-point range. Then, 384, 324, 289, 165, 137, 95, 21, 18,
and 3 students scored in the 50–60, 80–90, 70–80, 0–100, 40–50, 30–40, 20–30, 10–20, and
0–10 point ranges, respectively. In terms of math-efficacy, the largest number of students
was 395, with a score range of 50–60. Then, 391, 339, 258, 230, 137, 73, 32, 17, and 8 students
scored in the 70–80, 60–70, 80–90, 40–50, 90–100, 30–40, 20–30, 10–20, and 0–10 point
ranges, respectively. Regarding learning approach motivation, 529 students scored in the
60–70 point range. Then 287, 240, 226, 221, 207, 89, 50, 23, and 8 students scored in the
80–90, 70–80, 40–50, 90–100, 50–60, 30–40, 20–30, 0–10, and 10–20 point ranges, respectively.
For performance approach motivation, 455 students scored in the 40–50 point range. Then,
326, 236, 226, 176, 118, 110, 107, 90, and 36 students scored in the 60–70, 50–60, 20–30, 30–40,
0–10, 70–80, 10–20, 80–90, and 90–100 point ranges, respectively. Regarding reliance on
academies, most students (n = 539) scored in the 30–40 range. Then, 373, 266, 260, 196, 105,
103, 26, and 6 students scored in the 40–50, 20–30, 50–60, 10–20, 0–10, 60–70, 70–80, and
both 80–90 and 90–100 point ranges, respectively.
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4. Method

The overall workflow of this study is illustrated in Figure 5. In this study, we attempted
to identify TLP items that impact mathematical achievement and classify the students’
abilities accordingly.

Figure 5. Workflow.

In the first step, we collected and preprocessed the data (TLP items and Test 1/Test 2
scores) provided by Able Edutech, and we selected the variables required for analysis. In
the preprocessing stage, we removed missing values. In addition, outliers were observed in
the mathematical achievement variable, and according to an agreement with Able Edutech,
we replaced these outliers with the maximum value. The dependent variable for machine
learning, i.e., mathematical achievement (Test 1 and Test 2), was categorized into high and
low levels based on the grades. However, there was a significant data imbalance in all tests;
thus, oversampling techniques were utilized to balance the data. The results are shown in
Tables 2 and 3.

Table 2. Count of Test 1 classes after oversampling.

Test 1 Classes Count Oversampled Count

High level 276 1604

Low level 1604 1604

Table 3. Count of Test 2 classes after oversampling.

Test 2 Classes Count Oversampled Count

High level 126 1754

Low level 1754 1754

In the second step, linear regression analysis was conducted to identify the TLP items
that have a statistically significant influence on students’ mathematical achievement and
select relevant variables for machine learning classification.

In the final step, we classified students’ mathematical achievements according to these
variables using machine learning techniques. Here, we employed various algorithms, i.e.,
the logistic regression, K-nearest neighbors (KNN), random forest, decision tree, Support
vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine
(LGBM), and extreme gradient boosting (XGBoost) algorithms. These algorithms are
described in the following.
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4.1. Used Algorithms
4.1.1. Linear Regression

Linear regression is a regression analysis technique that models the linear correlation
between the dependent variable y and the independent variable x. A linear relationship
implies that the independent variable x affects the dependent variable y according to
y = ax + b, where the slope a and y-intercept b are obtained from the training data. For
such a linear relationship, the value of y for the dependent variable can be predicted
when a new variable, x, is given. Linear regression results can be easily interpreted and
modeled quickly.

4.1.2. Machine Learning Classification Algorithms

Logistic regression is a representative supervised machine learning algorithm used for
binary classification tasks. Using a sigmoid function with a value between 0–1, classification
is performed based on the probability that an item belongs to a particular category. The
sigmoid function is expressed in Equation (1), where e, i.e., Euler’s number, is (2.718281. . .).

Sigmoid Function =
1

(1 + e−x)
(1)

Here, if the input value x is a large negative number, it is set to 0, and if x is a large
positive number, it is set to 1. Thus, classification is performed by predicting a probability
value between 0–1.

A support vector machine (SVM) is a supervised machine learning algorithm and
a powerful classification model [20]. Support vectors are the nearest data points to the
decision boundary. The decision boundary is selected in a way that maximizes the distance
between them. The objective of the SVM is to find an optimal decision boundary, which
can be expressed as follows:

wTx + b = 0. (2)

Here, w represents the normal vector to the decision boundary, and b is the intercept.
In addition, wT denotes the transpose of w. The goal of the SVM is to maximize the
distance between the support vectors and the decision boundary. Therefore, the SVM can
be formulated as the following optimization problem:

minimize
1
2
‖w‖2, subject to yi

(
wTxi + b

)
≥ 1 (for all data points). (3)

Here, ‖w‖2 represents the norm of w, and yi represents the class of the data point. The
SVM can find the optimal decision boundary by solving this optimization problem. SVM is
a model that classifies which side of the boundary the input data belongs to through the
decision boundary.

The K-nearest neighbors (KNN) technique is a simple supervised classification algo-
rithm that works to identify classes with a set number of k data that are near to new data
among the existing data and classify the new data into a class that has more existing data.
The distance calculation is performed based on the Euclidean distance metric:

Euclidean distance = ∑ n
i = 1(xi − yi)

2 (4)

Here, x represents a new data point, and y represents all data points in the dataset.
Compared with other models, the KNN algorithm is advantageous because it is relatively
easier to understand.

A random forest is a type of ensemble learning method wherein results are obtained
by collecting the classification results from multiple decision trees constructed during the
training process. Random forests are used to solve various problems, e.g., classification
and regression tasks. The random forest model was developed according to Breiman’s
method [21]. Note that random forest predictions are based on the results of many randomly
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generated decision trees; thus, overfitting is reduced, and good generalization performance
is demonstrated. Therefore, the random forest algorithm is a fast technique that provides
highly accurate results.

A decision tree is a supervised machine learning algorithm that classifies data us-
ing classification criteria based on the attributes of each data item. In other words, the
decision tree method classifies data by branching based on whether specific criteria are
satisfied. The results of decision trees are easy to interpret and understand. Regarding
other techniques, regularization or variable creation/removal is required in some cases,
whereas decision trees rarely require data processing. Additionally, the decision tree model
is rarely affected by outliers, exhibits good stability, and can be applied to both numerical
and categorical data.

The gradient boosting machine (GBM), developed by Friedman [22], is a supervised
machine learning technique used for regression or classification tasks that reduces residuals
through gradient descent and incorporates boosting techniques. Here, boosting refers to
combining weak learners to reduce errors and create a strong learner. In other words,
a strong prediction model is constructed using an ensemble of weak prediction models,
and the subsequent classifier is trained based on the prediction error of the previous weak
classifier to compensate for its error. Generally, the GBM method outperforms the random
forests method.

The extreme gradient boosting (XGBoost) algorithm, developed by Chen [23] at the
University of Washington, improves and extends gradient boosting algorithms to support
parallel learning. The XGBoost method comprises a Classification and Regression Tree
(CART) model, which is expressed as follows.

ŷi = ∑K
k = 1 fk(xi), fk ∈ F (5)

Here, ŷi represents the predicted value of data point xi, K denotes the number of
CARTs used, and f represents the CART models. The objective function for training the
CART model is expressed as follows.

Obj = ∑n
i = 1 l(yi, ŷi) + ∑K

k = 1 Ω( fk) (6)

Here, l(yi, ŷi) represents the objective function computed from the true answer yi and
the predicted value ŷi, and Ω is the regularization function of the model used to prevent
overfitting. This algorithm executes faster than the gradient boosting method and provides
excellent performance in classification and regression tasks. Additionally, it includes an
overfitting regulation function; thus, it exhibits strong durability.

The light gradient boosting machine (LGBM) algorithm was developed by Microsoft.
This algorithm performs ranking and classification based on the decision tree algorithm
and overcomes the shortcoming of existing models that require a long computation time.
This process is achieved by deepening the tree in a leaf-wise manner as opposed to gradient
boosting-type trees, which are generally level-wise methods, thereby reducing both time
and memory costs.

4.1.3. Machine Learning Evaluation Metrics

In this study, various evaluation metrics were utilized to assess the performance
of the machine learning classification algorithms. Accuracy measures the proportion of
correctly predicted samples out of the total samples. It represents how well the model
classifies the data correctly. Precision is the proportion of true positive predictions (correctly
predicted positive samples) to the total positive predictions made by the model. It assesses
the accuracy of positive predictions. Recall measures the proportion of true positive
predictions to the total actual positive samples. It evaluates the model’s ability to find all
positive samples. The F1-score is the harmonic mean of Precision and Recall, providing a
balance between the two metrics. It is useful when both Precision and Recall are important,
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and a higher F1-score indicates a better model performance. The evaluation metrics were
calculated as follows:

Accuracy =
TP + TN

TP + FN + FP + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− Score = 2× Precision·Recall
Precision·Recall

True Positive = TP, True Negative = TN, False Positives = FP, False Negatives = FN.
ROC-AUC is a widely used evaluation metric for binary classification models. It

evaluates the model’s performance by plotting the True Positive Rate (Recall) against the
False Positive Rate and calculating the area under the ROC curve (AUC). A higher AUC
value, ranging from 0 to 1, indicates better model performance.

5. Results

5.1. Linear Regression

Data processing for regression analysis was performed using the statsmodels Python
package. Table 4 shows the results of the linear regression analysis with the results of
the TLP items as independent variables and the Test 1 and Test 2 scores (mathematical
achievement) as dependent variables. The variables are statistically significant (p < 0.05).

Table 4. Variables considered in the study.

Dependent
Variables

Independent Variables Coefficient T-Value P-Value
Prob

(F-Statistics)

Test 1

Self-Efficacy 0.160 *** 3.579 0.000 0.000

Math-Efficacy 0.190 *** 4.102 0.000 0.000

Learning Approach
Motivation 0.119 ** 2.846 0.004 0.004

Test 2
Self-Efficacy 0.074 * 2.216 0.027 0.027

Reliance on Academies −0.079 * −2.214 0.027 0.027
***: p < 0.001, **: p < 0.01, *: p < 0.05.

Table 4 shows that Prob (F-statistics) verifies the significance of the models (<0.05). The
significance of the p-value for each dependent variable was confirmed. Here, self-efficacy,
math-efficacy, and learning approach motivation had a statistically significant effect on
Test 1, with math-efficacy having a relatively greater influence than the other factors. In Test
2, self-efficacy and reliance on academies were identified as statistically significant variables,
and reliance on academies exhibited a relatively greater influence than self-efficacy.

5.2. Performance Evaluation of Machine Learning Classification Models

In the linear regression results, we confirmed which TLP variables affect mathematical
achievement. Additionally, to classify mathematical achievement, we applied machine
learning techniques that enable the classification of students’ mathematical achievements
using the identified variables.

We considered the logistic regression, KNN, random forest, decision tree, SVM, GBM,
LGBM, and XGBoost, which are machine learning classification models implemented in
Python. Using these models, machine learning classification was performed with self-
efficacy, math-efficacy, and learning approach motivation as the independent variables for
the dependent variable Test 1 and self-efficacy and reliance on academies as the independent
variables for Test 2. The training and test data were split at a ratio of 8:2, and the evaluation
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results of all machine learning application models were performed with five-fold cross-
validation. The evaluation results of the machine learning-based classification of the
dependent variable scores (i.e., Test 1 and Test 2) into high and low ranks are shown in
Table 5.

Table 5. Evaluation results.

Model Accuracy Precision Recall F1-Score AUC

Test 1

Logistic
regression 0.58 0.59 0.58 0.58 0.59

KNN 0.58 0.57 0.62 0.60 0.60

Random forest 0.73 0.70 0.74 0.79 0.78

Decision tree 0.69 0.68 0.77 0.71 0.70

SVM 0.60 0.62 0.51 0.56 0.63

GBM 0.65 0.65 0.69 0.67 0.68

LGBM 0.66 0.65 0.69 0.67 0.70

XGBoost 0.70 0.68 0.76 0.71 0.74

Test 2

Logistic
regression 0.57 0.57 0.55 0.56 0.60

KNN 0.65 0.62 0.78 0.69 0.67

Random forest 0.81 0.76 0.88 0.82 0.88

Decision tree 0.77 0.73 0.87 0.79 0.79

SVM 0.59 0.57 0.66 0.61 0.62

GBM 0.68 0.65 0.76 0.70 0.70

LGBM 0.69 0.66 0.75 0.70 0.73

XGBoost 0.77 0.73 0.86 0.79 0.80

Machine learning-based classification was performed with the Test 1 score as the
dependent variable. The best accuracy obtained by the random forest model was 73%.
Then, accuracy values of 70, 69, 66, 65, 60, and 58% were obtained by the XGBoost, decision
tree, LGBM, GBM, SVM, and both KNN and logistic regression methods, respectively. The
precision of the random forest method was the highest at 70%. Then, 68, 65, 62, 59, and 57%,
respectively, for decision tree and XGBoost, GBM and LGBM, SVM, logistic regression, and
KNN. The decision tree method obtained the highest recall score of 77%, followed by the
XGBoost, random forest, GBM and LGBM, KNN, logistic regression, and SVM with 76, 74,
69, 62, 58, and 51%, respectively. The highest F1-score of 79% was obtained by the random
forest method, followed by the decision tree and XGBoost, GBM and LGBM, KNN, logistic
regression, and SVM methods with 71, 67, 60, 58, and 56%, respectively.

Then, machine learning–based classification was performed with the Test 2 scores as
the dependent variable. The results showed that the best accuracy of 81% was obtained by
the random forest model, followed by the decision tree and XGBoost, LGBM, GBM, KNN,
SVM, and logistic regression methods with 77, 69, 68, 65, 59, and 57%, respectively. The
random forest method obtained the best precision of 76%, followed by the decision tree and
XGBoost, LGBM, GBM, KNN, and both logistic regression and SVM methods with 73, 66,
65, 62, and 57%, respectively. The recall of the random forest method was the highest at 88%,
followed by the decision tree, XGBoost, KNN, GBM, LGBM, SVM, and logistic regression
methods, which obtained recall values of 87, 86, 78, 76, 75, 66, and 55%, respectively. The
highest F1-score of 82% was obtained by the random forest method. The F1-scores of the
decision tree and XGBoost, GBM and LGBM, KNN, SVM, and logistic regression methods
were 79, 70, 69, 61, and 56%, respectively. In terms of the AUC, both Test 1 and Test 2
demonstrated that the random forest method obtained the highest value (Test 1: 0.78, Test 2:
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0.88), and the logistic regression method obtained the lowest value (Test 1: 0.59, Test 2: 0.60).
Comprehensively, we found that the random forest method obtained the best performance
in terms of Test 1 and Test 2 across most of the performance metrics. Thus, we classified the
students’ abilities by TLP items, resulting in high evaluation values.

6. Discussion

In this study, we identified the psychological factors that influence mathematical
achievement and classified students’ abilities based on the identified variables. As a
result, the following academic implications arise from this research: By introducing the
TLP, which is a psychological assessment test specifically designed to measure students’
learning psychology in the mathematics field, we investigated the relationship between
psychological factors and mathematical achievement. We believe that our findings have
significant academic value because they effectively fill an identified gap in previous studies
by focusing on a mathematics-centric psychological test. Furthermore, we discovered the
influence of new variables, e.g., math-efficacy, learning approach motivation, and reliance
on academies, on the mathematical achievements of students. These findings establish a
foundation to utilize these relevant variables in predicting mathematical achievement.

The practical implications of this study are summarized as follows. We have identified
variables that influence students’ abilities and identified machine learning classification
algorithms that can be applied in the mathematics education field. Previously, educational
institutions, particularly academies, have relied solely on grades to assess students’ abilities.
However, through our findings, we have demonstrated the ability to predict students’
abilities using mathematics-related psychological factors and identified psychological
elements that may be lacking in students’ mathematical proficiency. Ultimately, we expect
that this will enable educational institutions to design effective personalized learning
programs to improve students’ academic performance by positively transforming their
deficient psychological factors in addition to the existing grade-based management system.

7. Conclusions

In this study, we utilized the TLP items to identify their impact on students’ mathemati-
cal test scores and employed machine learning techniques to classify students’ mathematical
skills. We believe that our research findings provide two significant insights.

First, the linear regression analysis results indicated that self-efficacy, math-efficacy,
and learning approach motivation influenced mathematical achievement in Test 1. In Test 2,
self-efficacy and reliance on academies affected mathematical test scores, which measured
mathematical achievement. Overall, we have confirmed the influence of self-efficacy on
mathematical achievement and demonstrated that the psychological test of mathematical
learning can measure these achievements effectively.

Second, by applying several machine learning techniques, we achieved high perfor-
mance in all performance evaluation indicators (accuracy, precision, recall, and F1-Score),
and students’ skills were successfully classified based on the TLP items.

These results have practical implications for both educators and psychologists seeking
to understand the psychological factors that influence students’ mathematical learning. In
addition, the results can support the development of personalized study programs based
on each student’s skills and enhance their mathematical achievements.

In future research, it would be beneficial to obtain psychological test results on math-
ematical learning from a larger sample of students and collect mathematics scores over
a more extended period compared to the data used in the current study. In terms of the
TLP items employed in this study, some items had limited or no data on student responses,
thereby making it challenging to analyze these items effectively. Thus, these items were
excluded; however, by acquiring additional data on these psychological variables, future
studies could explore their impact further. Similarly, it would be beneficial to examine the
effects of additional variables, e.g., age, gender, grade, and study hours, on mathematical
achievement. This expanded analysis is expected to realize more accurate predictions of
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students’ mathematical skills and provide a more comprehensive understanding of the
factors that influence student performance. Furthermore, our findings can be utilized to
develop a personalized learning system that incorporates the classification of students’
skills. Such a system could recommend relevant mathematics content tailored to indi-
vidual students’ abilities, thereby offering a promising method to improve mathematical
learning outcomes.
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Abstract: The analysis of epilepsy electro-encephalography (EEG) signals is of great significance for
the diagnosis of epilepsy, which is one of the common neurological diseases of all age groups. With
the developments of machine learning, many data-driven models have achieved great performance
in EEG signals classification. However, it is difficult to select appropriate hyperparameters for the
models to file a specific task. In this paper, an evolutionary algorithm enhanced model is proposed,
which optimizes the fixed weights of the reservoir layer of the echo state network (ESN) according
to the specific task. As evaluating a feature extractor relies heavily on the classifiers, a new feature
distribution evaluation function (FDEF) using the label information of EEG signals is defined as the
fitness function, which is an objective way to evaluate the performance of a feature extractor that
not only focuses on the degree of dispersion, but also considers the relation amongst triplets. The
performance of the proposed method is verified on the Bonn University dataset with an accuracy of
98.16% and on the CHB-MIT dataset with the highest sensitivity of 96.14%. The proposed method
outperforms the previous EEG methods, as it can automatically optimize the hyperparameters of
ESN to adjust the structure and initial parameters for a specific classification task. Furthermore, the
optimization direction by using FDEF as the fitness of MFO no longer relies on the performance of
the classifier but on the relative separability amongst classes.

Keywords: epilepsy detection; moth–flame optimization; echo state network; feature extraction;
EEG signals

MSC: 68W50

1. Introduction

As a chronic non-communicable brain disease, epilepsy can occur in people of any age.
It is one of the most common neurological diseases with about 50 million patients, and about
5 million people are diagnosed each year around the world [1]. Electro-encephalography
(EEG) is a commonly used auxiliary diagnostic method in the discovery and treatment
of brain diseases [2], but there are certain limitations in traditional EEG methods. On the
one hand, traditional EEG diagnosis based on visual assessments requires experienced
specialists for correct judgments, which is subject to their professional experience. Fur-
ther, as the frequency of using EEG equipment in outpatients and inpatients increases,
it usually takes several hours or days to record the EEG data, analyze and diagnose.
On the other hand, patients with epilepsy can register as completely normal when un-
dergoing an outpatient EEG examination, because the brain of an epilepsy patient usu-
ally does not consistently trigger seizures. Recording EEG for longer periods can cap-
ture abnormal EEG signals, but it is expensive and time-consuming for both patients
and doctors.

EEG signals are nonlinear and nonstationary [3]. Figure 1 displays a group of normal,
inter-ictal, and seizure EEG signals collected by Bonn University that are difficult to be
interpreted visually. Moreover, the inter-ictal signals, which are important for the diagnosis
and treatment of patients, cannot be easily distinguished from normal signals.
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Figure 1. Samples of normal, interictal, and seizure EEG signals from the Bonn University data set.

With the development of computer technologies, a variety of algorithms have been
designed with excellent results in the automatic classification of EEG signals [4]. EEG signal
classification consists of two parts: feature extraction, which is the most important part,
and classification. Methods based on time–frequency domain, such as the AR model [5],
fast Fourier transform method [6], and Hilbert Huang method [7], have been applied to
extract the features of EEG signals with trivial information loss. However, these methods
are generally based on linear models, so the non-linear characteristics of EEG signals that
are essential in EEG signals processing can be ignored.

In recent years, machine learning and deep learning models have been applied to
capture the features of EEG signals. Zhou et al. [8] used CNN to extract features for EEG
signals and applied the model to a seizure detection task. Although CNN can effectively
focus on local features, it cannot directly capture the long-term relationships in the EEG
signals. To solve this problem, Mishra et al. [9] combined CNN and RNN models to
solve the sleep stage classification problem based on the EEG signals. RNN contains
connections between nodes to form a directed graph sequence. This structure allows RNN
to naturally handle the time dynamic behavior of time series. However, it also causes
the problem of gradient vanishing [10], which makes the training of RNN very difficult
and time-consuming. Sun et al. [11] proposed an ESN feature extractor model, which
is an unsupervised self-encoding model based on an ESN. The model can extract EEG
signal features and achieves good performance in the classification of the epileptic EEG
signals. ESN is a special network model that provides a new structure of the recurrent
neural network and a new criterion of supervised training [12]. Compared to RNN, most
parameters of ESN are randomly generated, except for the readout layer that needs training,
so the model is very fast and does not suffer from the problem of gradient vanishing.
ESN can achieve excellent performance on a variety of chaotic time series prediction tasks
and complex industrial time series problems. However, the performance of ESN largely
depends on the choice of hyperparameters that requires massive experimental cost for
achieving a good configuration [13].

Evolutionary algorithms, which are inspired by biological evolution, are effective
in optimizing the hyperparameters of the model. Wang et al. [14] chose the genetic al-
gorithm (GA) to optimize the hyperparameters of ESN and applied ESN to ECG sig-
nal prediction tasks, which achieves better results compared to the original ESN model.
Moth–flame optimization (MFO) [15] is an extended version of the swarm intelligence
algorithm, which simulates the special navigation method of moths flying around flames
and provides a new heuristic search paradigm in the optimization field, called spiral
search. The new search paradigm enables the MFO algorithm to search near the can-
didate optimal solutions. Mei et al. [16] applied MFO in ORPD problems to obtain the
best combination of control variables. The MFO algorithm has good performances in
various fields and the advantages of simplicity and rapid searching over other optimiza-
tion algorithms [17]. In this paper, we propose a new model named MFO-ESN that
applies the MFO algorithm to automatically search for better hyperparameters of an ESN
feature extractor.
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An essential problem of combining MFO and ESN is to define the fitness function,
which can evaluate the performance of the feature extractors and determine the optimiza-
tion direction. For classification tasks, the most intuitive way is to use the accuracy of a
classifier. However, the method relies significantly on the choice of classifiers, which is not
objective and may lead to overfitting problems. The basic idea behind a good feature extrac-
tion for classification tasks is to find a way to map the raw data onto a feature space, which
draws the feature vectors from the same class closer than those from the different ones. We
propose a new feature distribution evaluation function to fit the MFO-ESN, named FDEF.
FDEF is based on the idea of triplet loss [18] and can evaluate the performance of a feature
extractor without using a specific classifier.

Triplet loss is a metric that concerns the relation of the triplet. For classification tasks,
a triplet consists of the observed sample: the corresponding positive sample whose class is
the same as the observed sample, and the corresponding negative sample whose class is
different from the observed sample. Triplet loss is a detailed and objective way to judge
how easy the sample can be classified, which not only focuses on the degree of dispersion,
but also considers the relation amongst triplets.

The main contributions of this work can be summarized as follows:

(1) A novel feature extraction called moth–flame optimized echo state network (MFO-
ESN) is developed, which uses MFO to optimize the hyperparameters of ESN for
fitting the specific tasks.

(2) A new function based on the triplet is introduced to evaluate the distribution of
features extracted by MFO-ESN without relying on specific classifiers.

(3) MFO-ESN is verified on the real-world single-channel EEG signals classification task
with an accuracy of 98.16%. The results also show that MFO-ESN with FDEF can
promote the performances of many classifiers.

(4) We also conduct experiments on the multi-channel EEG signals classification task
with the highest specificity of both the patient specific and the cross-patient task. The
cross-patient task simulates the real diagnosis situation with high specificity, proving
the strong generalization ability of MFO-ESN.

The remainder of this paper is organized as follows. In Section 2, a review of related
works is given, including the ESN algorithm and the MFO algorithm. In Section 3, a new
feature evaluation function (FDEF) fitting MFO-ESN is presented. A detailed description of
the feature extractor combining ESN and MFO named MFO-ESN is also proposed. The
experiment process and results of the single-channel and multi-channel epilepsy EEG
signals classification task are described in Sections 4 and 5, respectively. In Section 6, we
conclude this paper and propose a future study direction.

2. Related Works

2.1. Echo State Network (ESN)

The echo state network (ESN) is a particular RNN and a typical representative of
reservoir computing (RC) [12]. The canonical ESN model is a neural network with a
three-layer structure, including an input layer, a reservoir layer, and an output layer. ESN
simulates the connection of neurons in the cerebral cortex and constructs a huge and sparse
neuron reservoir layer. The neurons in the reservoir layer are randomly initialized and
do not need training. The reservoir layer that imitates the sparsely connected structure of
brain neurons replaces the hidden layer of the traditional feedforward neural networks for
the function of information processing and storage [19]. Therefore, the reservoir layer is
the most important part of a canonical echo state network, whose architecture is shown in
Figure 2.

Focusing on the architecture details of the canonical ESN, we denote the number of
neurons for the input layer, reservoir layer, and output layer as K, P, and L, respectively.
The input unit, reservoir state, and output unit at time t can be represented as follows:

u(t) = (u1(t), . . . , uK(t))
T (1)
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x(t) = (x1(t), . . . , xM(t))T (2)

y(t) = (y1(t), . . . , yL(t))
T (3)

The weights from the input layer to the reservoir layer amongst the internal neurons
in the reservoir layer, and from the reservoir layer to the output layer, are denoted as Win,
Wres and Wout, respectively.

Figure 2. The ESN architecture.

The activation states of the reservoir neurons x(t + 1) and the output layer y(t + 1) at
time t + 1 can be updated through the following equations [20]:

x(t + 1) = f (Winu(t + 1) + Wresx(t)) (4)

y(t + 1) = Woutx(t + 1) (5)

where f presents the activation function of the neurons in the reservoir layer. We use tanh
function as the activation function.

In the canonical ESN model, Win and Wres are initialized randomly and fixed, and
the readout matrix Wout is trained by using the certain supervised learning algorithm [19].
This is called “free training”, and enables the ESN model to be a fast-training model. The
purpose of the training process is to minimize the error between the desired output (ydesired)
and the real output of the ESN model (y(t)) [21].

Furthermore, we apply the ridge regression algorithm to calculate the weights of the
readout matrix Wout as follows [22]:

Wout =
(

XTX + λ2 I
)−1

XTydesired (6)

where X = (x(t), u(t))T , I is the identity matrix, and λ > 0 is a regularization coefficient.
The hyperparameters of ESN include the number of neurons in the reserve pool (M),

the spectral radius (SR), the connection density (CD), and the input scaling coefficient (IS).
ESN has the advantage in training because most parameters of ESN are “free-training”.
ESN is a simple and effective model but suffers from the problem that the effectiveness of
ESN relies heavily on the selection of hyperparameters [23]. Therefore, hyperparameter
configuration is an urgent problem to be solved. In the following, we will briefly introduce
these hyperparameters and explain their importance.

(1) The number of neurons in the reservoir layer (P): P is the most important hyperparameter,
which determines the complexity of ESN and directly affects its performance in
various tasks. Generally, increasing P can increase the memory capacity of ESN [24]
that is of significance to handling complex tasks. However, excessively increasing P
will lead to overfitting.

(2) Spectral radius (SR): SR is the maximum achievable value of the characteristic value
of the reservoir matrix Wres. To guarantee the echo state principle (ESP) of ESN, the
value of SR should be less than 1 [25].
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(3) Connection density (CD): CD indicates the number of neurons in the reservoir layer
that participate in random connections. The selection range of CD is usually between
0.01 and 0.2 [26]. In addition, a range of interesting initial structures is proposed to
select proper CD, such as distance-based [13], small-world [27], or scale-free [28,29].

(4) Input scaling coefficient (IS): It is important to choose an appropriate IS that can scale
the input data to a proper range, so that the neurons of ESN can be well activated and
fully take advantage of the non-linearity of the activation function [30].

2.2. Moth–Flame Optimization (MFO)

Moth–flame optimization (MFO) is an extension of the swarm intelligence algo-
rithm [15]. It imitates the behavior of a moth flying spirally around the flame and, finally,
reaching the flame.

MFO assumes that both moths and flames are candidate solutions to the problem.
The sets of moths and flames are denoted as matrices M = (N, dim) and F = (N, dim),
respectively, where N is the max numbers of moths and flames, and dim is the dimension
of the solution. Moths represent real searching individuals in the solution space searching
around the flame in a spiral motion. Flames denote the historical optimal solution reached
by the moths spiraling around the closest flame. The positions of the individual moths and
flames can be updated while the moths are flying [15] and have the following characteristics:

(1) The moths can only fly within a limited search range.
(2) The initialized positions of the moths are the starting points of the spiral flight.
(3) The endpoints of the spiral flight are the positions of the flames.
(4) The positions of the flames are adjusted during the process of searching.

The position of each moth can be updated by Equation (7), which simulates the flight
mode of the moth.

Mi = Di · ebt · cos(2πt) + Fj (7)

where Mi denotes the ith moth, and Fj denotes the jth flame that is the closest flame to
Mi. Di is the Euclidean distance between Mi and Fj, which denotes the closest distance
amongst Mi and flames. The shape of the spiral flight is controlled by the parameter b that
is generally set to 1. The coefficient t is used to control the distance between the moth and
the flame during the spiral flight and can be calculated by Equation (8).

t =
(
− l + L

L
− 1

)
× rand + 1 (8)

where l is the current iterations and L is the maximum iterations. rand is a uniformly dis-
tributed random number. For a certain iteration, the coefficient t calculated by Equation (8)
is used to update the positions of all moths using Equation (7).

Equation (9) is used to decrease the number of flames ( f lameno) during each iteration.
L and l denote the maximum iterations and the current iterations, separately. N demotes
the max number of flames.

With the number of flames decreasing in a linear way, the local search capacity of the
moths is improved.

f lameno = round
(

N − l × N − 1
L

)
(9)

3. Methodology

The previous introduction shows that the reservoir layer constructed by random ini-
tialization is the most important part of ESN. However, many researchers have proposed
various methods to initialize ESN. For example, Strauss et al. [31] presented the design
strategy of ESN, such as ensuring the echo state property (ESP) and reducing the influence
of noise during the training process. Bianchi et al. [32] studied the dynamic characteris-
tics of ESN through a recursive analysis, which contributes to further understanding and
constructing the optimal reservoir layer. However, it is difficult to consider multiple param-
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eters of a reservoir layer simultaneously, such as M, SR, CD, and IS. Therefore, tuning the
hyperparameters is usually time-consuming and difficult, particularly for complex tasks.

To improve the above shortcomings, moth–flame optimization is used to select the
hyperparameters of ESN, named MFO-ESN. Meanwhile, a novel evaluation function
(FDEF), which can evaluate the performance of the feature extractor in a detailed and more
objective way, is proposed as the fitness function of MFO-ESN.

3.1. Feature Distribution Evaluation Function (FDEF)

Features are the most important factor in machine learning projects where learning
is easy if many independent features can be acquired and each correlate well with the
class [33]. The quality of the features extracted from the original EEG signal has a great
impact on the classification of the subsequent classifier. An excellent feature extractor
should be able to produce obvious differences in the extracted features from different
classes of EEG signals in distribution. For the extracted features of the same class, the
similarities will be retained, while the differences that we are not concerned about will be
ignored. Therefore, we propose a novel feature distribution evaluation function (FDEF),
which is calculated as Equation (10).

FDEF = ∑
D(Io

i ,Ip
i )

D(Io
i ,In

i )

s.t.

{
D
(

Io
i , Ip

i

)
< D

(
Io
i , In

i
)

Io
i ∈ I

(10)

where I is the feature set containing all features extracted from raw data, while Io
i is the

feature point we observed.
For every observed feature point Io

i , we construct a triplet Ii =< Io
i , Ip

i , In
i >, including

the positive point Ip
i and the negative point In

i . Ip
i is the center of the feature points whose

class is the same as Io
i , and In

i is the center of the feature points whose class is different from

Io
i . D

(
Io
i , Ip

i

)
and D

(
Io
i , In

i
)

denote the distance amongst Io
i , Ip

i , and In
i , as measured by the

L2-norm, respectively.
D
(

Io
i , Ip

i

)
is the positive distance that is the smaller the better, and D

(
Io
i , In

i
)

is the

negative distance that should be larger than D
(

Io
i , Ip

i

)
. FDEF can evaluate the ratio between

positive distance and negative distance, which is different from another direct metric using
subtraction, such as Equation (11):

Loss(Io, Ip, In) = ∑
(

D
(

Io
i , Ip

i

)
−D(Io

i , In
i ) + m

)
+

(11)

where m is a margin that is enforced between a positive pair and a negative pair. The
purpose of minimizing Equation (11) is to make the distance between the positive pair
smaller than the distance between the negative pairs by more than m.

Equation (11) is a direct way to describe the difference between positive distance and
negative distance. It has been applied in FaceNet [18] as a loss function that achieved
state-of-the-art performances in the person re-ID tasks. However, compared to Equation
(11), Equation (10) has two advantages:

(1) FDEF is robust to the mean value of features. The mean values of the features extracted
through different ESN feature extractors are different. Further, features with a bigger
mean value always obtain a better result using Equation (11) without considering the
distribution of features.

(2) FDEF is not sensitive to the dimension of the feature. The number of neurons in the
reservoir layer (P) is a key parameter that needs to be adjusted. The feature dimension
is the same as P, which means the feature dimension changes during the training
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process of MFO-ESN. Equation (11) is sensitive to the varying feature dimensions that
force the model to reduce P.

Therefore, compared to Equation (11), FDEF using the ratio description pays more at-
tention to the distribution state of the aggregation and dispersion of the samples in the sam-
ple space, rather than the specific distance value and the difference in feature dimensions.

For Equation (10), the positive distance should be smaller than the negative distance,
which promises that the observed feature point is closer to the center of the corresponding
class—in other words, it is more centralized. Therefore, penalty items are added to those
points that do not meet the constraint. The new form of FDEF is shown in the following:

FDEF = ∑

⎛⎝D
(

Io
i , Ip

i

)
D
(

Io
i , In

i
) + α · Relu

⎛⎝D
(

Io
i , Ip

i

)
D
(

Io
i , In

i
) −1

⎞⎠⎞⎠ (12)

where α > 0 is the punishment coefficient and Relu(x) is the rectified linear unit. The
parameter α is similar to the parameter m in Equation (11) that needs to be modified
carefully to ensure the convergence of the model.

Regarding multiple classes, we follow the strictest method, which is to choose the
smallest negative distance as the negative distance in the FDEF formula. This choice forces
the spacing between classes to be more obvious. Of course, since all calculations are based
on the L2 normalization, when the number of classes or points become larger, the issue of
convergence should be considered.

3.2. Moth–Flame Optimized ESN

As mentioned above, most parameters of ESN are initialized randomly and fixed, and
the initialization of ESN largely depends on the selection of the hyperparameters. The
selection and adjustment of hyperparameters are crucial to the ESN model. Unfortunately,
because the relations amongst these hyperparameters of ESN are not clear, choosing ap-
propriate hyperparameters for the specific tasks is difficult and usually not sufficient. In
response to this situation, the MFO-ESN model is proposed, and its structure is shown in
Figure 3. In MFO-ESN, MFO is used to optimize the hyperparameters of ESN, so that the
ESN feature extractor can better extract the features of the input EEG signal fitting EEG
classification tasks.

The number of neurons in the reservoir layer (P), spectral radius (SR), connection
density (CD), and input scaling coefficient (IS) are selected as the hyperparameters to
be adjusted. Therefore, we set the dimension of moth and flame as 4 to represent these
hyperparameters.

The features of the EEG signals are extracted using an ESN feature extractor [9] whose
architecture is the same as ESN. The ESN feature extractor is an unsupervised model that
applies the idea of the autoencoder to extract features from the EEG signals. It utilizes
a readout matrix Wout as the hidden layer, as well as the extracted feature. MFO-ESN
uses the label information to optimize the effectiveness of ESN by selecting appropriate
hyperparameters. Different from the usual optimization ways, MFO-ESN does not use
the classification accuracy of the classification task that may be influenced by classifiers
as a fitness function; rather, it uses FDEF to evaluate the distribution of features extracted
by ESN.

To evaluate the fitness of the moth, the corresponding hyperparameters are used
to initialize ESN for extracting features from the raw EEG signals. Then, the fitness is
calculated according to Equation (12). With the positions of moths updated according to
Equation (7), their fitness changes. Flames denote the historical optimal solution reached
by the moths that spiral around the closest flame.

Considering the calculation cost and the suggestion of initializing the ESN model
in [31], P is set within the range of [5, 100], SR is within the range of [0.1, 1], CD is within
the range of [0.1, 1], and IS is within the range of [0.1, 5].
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Figure 3. The structure of MFO-ESN.

MFO requires multiple moths to search around multiple flames. Since the search path
of the moth is spiral, it converges slowly in the latter part of the iteration, while the local
search capability decreases. Therefore, the number of moths cannot be too small. We set 20
as the population of moths as well as flames and set the maximum iterations as 100. The
running process of the MFO-ESN algorithm is shown in Algorithm 1.

Algorithm 1 MFO-ESN

Input: the population number (N), the maximum times of iteration (T)
Output: the best hyperparameters of ESN
Steps:

(a) Set the population number and maximum number of iterations.
(b) Initialize the moth population.
(c) Initialize the ESN using hyperparameters represented by moths.
(d) Extract features using initialized ESN.
(e) Calculate fitness values of moths according to Equation (12) and sort fitness values.
(f) Update the moth position based on Equation (7).
(g) Update the flame position to determine the current optimal solution.
(h) Determine the number of moths and flames based on Equation (9).
(i) Repeat step (c) to step (h) until the constraint is met.
(j) The process ends.
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4. Experiments on the Bonn University EEG Data Set

4.1. A Brief Description of the Data Set

We used the epileptic seizure events data from the Bonn University EEG data set that
were provided by Andrzejak et al. in 2001 [34]. The complete data set consists of five subsets
denoted from A to E, and each subset contains 100 single-channel EEG signals of 23.6-s
duration (4097 time steps). These EEG signals are cut and selected from continuous multi-
channel EEG records and after artificial artifact removal that mainly removes myoelectric
artifacts and ocular artifacts. The electrode position adopts the international 10–20 system.
The sampling frequency is 173.61 Hz and the filter bandwidth is 0.53–40 Hz (12 db/oct).
Subsets A and B are taken from five healthy volunteers with eyes open and closed separately.
Subsets C, D, and E are recorded from patients with epilepsy. Subsets C and D store the
EEG signals during seizure-free intervals. The difference in C and D lies in the zone in
which they are recorded. Set D is recorded within the epileptogenic zone, while set C is
from the hippocampal formation of the opposite part of the brain. Each EEG segment in set
E contains data related to at least one seizure activity.

4.2. Feature Extraction of Epileptic Seizure EEG Signals

To evaluate the performance of the MFO-ESN feature extraction model and compare
this study with other similar studies, this paper divides the five groups of EEG signals
into three classes (AB/CD/E), representing normal EEG signals, EEG signals from patients
without seizures, and EEG signals from patients with epilepsy seizures.

We separated the training set and testing set using a random division whose division
ratio is 8:2, and the MFO-ESN was trained with the training set. During each iteration of
MFO-ESN, we recorded the fitness function FDEF and hyperparameters of the best extractor
in the training set. Figure 4 shows the change of FDEF as the number of iterations increases.

Figure 4. FDEF after 100 iterations by MFO-ESN.

To visualize the distribution of the extracted features, two dimensions of the extracted
features are shown in Figure 5. It can be observed that the distribution of the three classes
of the extracted features is regional. The first dimension of the class of A/B and the class
of C/D is close because the EEG of two classes is not in the epileptic period. The second
dimension is obviously different, which reflects the difference of two classes, i.e., the class
of A/B is from healthy people, while the class of C/D is the inter-ictal EEG.
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Figure 5. The distribution of extracted features in two dimensions.

4.3. Epileptic EEG Signal Classification

To compare the performance of MFO-ESN with other works, we applied the MFO-ESN
combined with SVM to solve the epileptic classification task. SVM is a type of supervised
learning method whose target is to find the maximum-margin hyperplane of the learning
samples. The performance of SVM is widely verified by various applications [35,36]. The
division of the data set is the same as in Section 4.2. In detail, we repeated the experiment
20 times and took the average value as the results for the MFO-ESN combining SVM.

Table 1 shows the results achieved by the MFO-ESN combining SVM and that of other
methods. It is reasonable that the performance of MFO-ESN is better than the ESN feature
extractor because the MFO-ESN can optimize the hyperparameters of the ESN feature
extractor. Therefore, MFO-ESN combined with SVM obtained the highest accuracy of
98.16%. Moreover, to prove the effectiveness of FDEF, MFO-ESN without FDEF is proposed
as the ablation experiment that uses the accuracy of SVM in the data set as the fitness
function of MFO. However, MFO-ESN without FDEF achieves an accuracy of 93.19%,
which is lower than the ESN feature extractor because of the problem of overfitting. As
the direction of optimization is not to promote the accuracy for a specific classifier in the
training set but to maximize the relative separability between classes, the MFO-ESN can
achieve a more robust extractor. The ablation study shows that the FDEF plays an essential
role in the MFO-ESN, which is also the main contribution of this research.

Table 1. Comparison of MFO-ESN + SVM with other methods.

Methods Feature Extractor Classifier Accuracy

Guler et al. (2005) [37] Lyapunov Exponents + RNN Logistic regression 0.9697
Guo et al. (2011) [38] Genetic Programming KNN 0.9350

Shoeibi et al. (2018) [39] CNN Logistic regression 0.8870
Tuncer et al. (2019) [40] LSP + NCA SVM 0.9650
Raghu et al. (2019) [41] Matrix Determinant MLP 0.9652
Sema et al. (2020) [42] 5 BPFs + TFEBE SVM 0.9488

this paper ESN feature extractor SVM 0.9592
this paper MFO-ESN without FDEF SVM 0.9319
this paper MFO-ESN SVM 0.9816
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We aimed to evaluate the effectiveness of the features extracted by the MFO-ESN
with other classifiers in the epilepsy classification task. We trained a variety of different
classifiers using the training set data and evaluated them in the testing set. We compared
the results with the original models and display the results in Table 2. It can be seen from
the results that the proposed method can also outperform most of the previous research. It
can be observed that compared with the original feature extraction models, the MFO-ESN
feature extraction improves the classification accuracy of the classifier to varying degrees,
which proves the effectiveness of MFO-ESN.

Table 2. The results of different classifiers using MFO-ESN.

Methods Feature Extractors Classifier Accuracy

Guler et al. (2005) [37] Lyapunov Exponents + RNN Logistic
regression

0.9697
this paper MFO-ESN 0.9713

Guo et al. (2011) [38] Genetic Programming
KNN

0.9350
this paper MFO-ESN 0.9760

Raghu et al. (2019) [41] Matrix Determinant
MLP

0.9652
this paper MFO-ESN 0.9793

Shoeibi et al. (2018) [39] CNN Logistic
regression

0.8870
this paper MFO-ESN 0.9426

this paper ESN feature extractor
SVM

0.9392
this paper MFO-ESN 0.9816

5. Experiments on the CHB-MIT EEG Data Set

ESN can be effectively used to process multi-channel time series data, while all the
EEG signals in the Bonn University data set are in single-channel form. To demonstrate that
MFO-ESN is also suitable for multi-channel EEG tasks and to evaluate the performance of
MFO-ESN with SVM in a further step, we conducted experiments on epilepsy classification
by using the CHB-MIT EEG dataset.

5.1. A Brief Description of the Data Set

This dataset collected by Boston Children’s Hospital (CHB) and the Massachusetts
Institute of Technology (MIT) consists of 916 h of continuous scalp EEG recordings grouped
into 24 cases. This dataset is available to download online [43] and is described in detail
in [44]. The EEG signals of each case recorded in the international 10–20 electrode system,
with a sampling rate of 256 Hz, are saved in several EDF format files, and most of them
contain 23 channels (24 or 26 channels in a few cases). Most files contain exactly one hour of
EEG signals, while some files belonging to case 10 are two hours long, and those belonging
to cases 4, case 6, case 7, case 9, and case 23 are four hours long.

A total of 198 seizures are manually annotated by medical specialists (pointing out the
start time and end time) in 916 h. There are 45 s of seizure activity recordings on average
that are too small compared to the normal EEG signals. To increase the sample number of
seizure class and balance the data set, the data used in the experiments are converted into a
series of segments using a sliding window whose size is 5 s, and every segment contains
23 channels as case 1. Segments belonging to a normal class do not include seizure EEG
signals annotated by the experts; meanwhile, segments belonging to a seizure class do not
include normal EEG signals. Figure 6 shows a period of EEG signals of case 5 and, according
to the doctor’s annotations, the seizure begins in 2348 seconds and ends in 2465 seconds.
The five-seconds-long window slides on the EEG signals without overlapping. In more
detail, for a 117-seconds-long seizure process, we can obtain 23 segments of 5 seconds
in length.
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Figure 6. The division of the CHB-MIT data set.

This experiment consists of two parts: patient-specific and cross-patient. Patient
specific denotes that the training set and testing set are both from the same case. We
randomly chose a 20% segment of the seizure class; we chose the same number of segments
from the seizure class for training and the rest of the segments for testing. Cross-patient
denotes that the data from different cases are used to train and test. In more detail, the
data from case 1, whose EEG signals are collected from an 11-year-old female, and case 2
from an 11-year-old male, are not involved in training but are only used for testing. The
data from the other 22 cases are divided into the training set and the testing set. This
setting, where case 1 and case 2 do not participate in training, can better simulate epilepsy
diagnosis where the data from new patients cannot be trained.

5.2. Results and Discussion of the Multi-Channel Classification

To better evaluate the performance of the model and compare it to other works, three
statistical indicators are used for evaluation:

Sensitivity =
TP

TP + FN
(13)

Speci f icity =
TN

TN + FP
(14)

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where TP, TN, FN, and TP are shown in Table 3.

Table 3. Confusion matrix.

Predict Class

Seizure Class Normal Class

Actual class
Seizure class TP FN

Normal class FP TN
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The quantity of the seizure class is far lower than the normal class, which heavily
affects the accuracy. Therefore, of greater concern to us is the sensitivity, which evaluates
how many seizure segments are classified correctly, and the specificity, which represents
the ability of the model to accurately classify normal segments.

Table 4 shows the results of the patient-specific and cross-patient experiments. The
patient-specific experiment can be considered as a private custom system where the training
set and testing set are from the same case. The overall performance achieves a specificity of
92.56%, a sensitivity of 96.79%, and an accuracy of 92.75%. Out of all cases, case 7 obtains
the highest accuracy of 99.97%, with a specificity of 100% and a sensitivity of 99.96%. As
we can see, the accuracy is much closer to the specificity because the number of normal
segments in the testing set is far greater than seizure segments. For an epilepsy diagnosis,
sensitivity is more important than either accuracy or specificity, as high sensitivity can
ensure that any suspicious patients will be further judged by the doctor in time.

Table 4. Results of patient-specific and cross-patient experiments.

Case
Patient-Specific Cross-Patient

Sen. (%) Spec. (%) Acc. (%) F1 (%) Sen. (%) Spec. (%) Acc. (%) F1 (%)

1 95.76 97.05 97.09 97.07 94.26 93.64 95.36 94.49
2 99.46 100.00 99.51 99.75 99.03 97.54 98.65 98.09
3 100.00 84.28 84.63 84.45 100.00 81.22 82.39 81.80
4 94.52 97.51 98.06 97.78 94.74 95.73 97.19 96.45
5 98.36 87.65 88.48 88.06 97.12 87.99 88.46 88.22
6 100.00 83.26 83.64 83.45 97.81 82.91 83.01 82.96
7 99.96 100.00 99.97 99.98 98.73 99.09 99.52 99.30
8 96.25 83.44 83.52 83.48 93.59 81.98 82.86 82.42
9 94.71 75.53 75.59 75.56 94.56 73.04 74.21 73.62

10 93.45 100.00 99.32 99.66 94.36 99.43 99.52 99.47
11 96.25 100.00 99.45 99.72 94.69 98.88 99.01 98.94
12 99.46 81.53 81.77 81.65 96.68 78.74 79.33 79.03
13 97.72 99.10 98.16 98.63 95.30 98.23 98.29 98.26
14 99.75 89.49 89.64 89.56 100.00 87.19 88.03 87.61
15 97.54 88.13 88.43 88.28 93.69 85.22 86.83 86.02
16 96.35 98.69 99.52 99.10 96.35 97.54 99.46 98.49
17 90.13 93.24 93.63 93.43 90.13 93.91 95.42 94.66
18 98.96 86.36 86.37 86.36 95.29 86.51 87.07 86.79
19 100.00 99.46 99.61 99.53 96.24 98.54 98.16 98.35
20 95.80 98.36 99.10 98.73 96.72 96.76 98.15 97.45
21 98.05 88.83 88.86 88.84 96.81 86.69 87.25 86.97
22 96.38 99.58 99.84 99.71 100.00 98.46 99.41 98.93
23 90.25 94.66 94.67 94.66 97.16 91.59 92.21 91.90
24 93.83 95.30 95.98 95.64 94.00 93.67 95.06 94.36

Ave. 96.79 92.56 92.75 92.63 96.14 91.02 91.92 91.44

Sen. = sensitivity, Spec. = specificity, Acc. = accuracy.

Compared to the patient-specific experiment, the cross-patient experiment achieves
an average specificity of 91.02%, a sensitivity of 96.14%, and an accuracy of 91.92%. With
the increase in the training segments and test samples, the performance of the model is
not significantly different from the patient-specific experiment. More importantly, the
performance of case 1 and case 2, which have not been trained before, is still good enough.
The results prove that our model not only performs well on existing patient data, but also
on other unseen patients.

As shown in Table 5, we compared the studies that use the CHB-MIT data set. Most
of these studies use complex deep models such as CNNs, RNNs, and their variants. Li
et al. [45] obtained the highest accuracy of 95.96% and highest sensitivity of 96.05% for the
patient-specific experiment. Chen et al. [46] obtained the highest accuracy of 92.30% and
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highest sensitivity of 92.89% for the cross-patient experiment. This is probably because
ESN is a simple fast-training model whose ability to handle complex tasks is inferior to
complex deep learning models. However, we achieved the highest sensitivity—which is
more significant for diagnosis—of 96.79% in the patient-specific and 96.14% in cross-patient
experiments. This may be one reason why minimizing FDEF can be regarded as a new way
to maximize the difference between classes, so that our model can more effectively detect
seizure segments.

Table 5. Comparisons of results between MFO-ESN + SVM and other methods.

Methods Detector Type Sen. (%) Spec. (%) Acc. (%) F1 (%)

MIDS + CNN [47] Patient-specific 74.08 92.46 83.27 87.62
Data argument + CNN [47] Patient-specific 72.11 95.89 84.00 89.55

LMD + Bi-LSTM [48] Patient-specific 93.61 91.85 92.66 92.25
CE-stSENet [45] Patient-specific 92.41 96.05 95.96 96.00

KNN [49] Cross-patient 88.00 88.00 88.00 88.00
Dyadic WT + SVM [46] Cross-patient 91.71 92.89 92.30 92.59

MFO-ESN + SVM Patient-specific 96.79 92.56 92.75 92.65
MFO-ESN + SVM Cross-patient 96.14 91.02 91.92 91.47

6. Conclusions

In this paper, the proposed MFO-ESN model uses MFO to optimize the hyperparame-
ters of ESN. Further, a new feature distribution evaluation function, FDEF, is proposed as
the fitness function of MFO-ESN by using the label information of the EEG signals. Without
using specific classifiers, MFO-ESN can extract more suitable features for the classification
tasks. Combined with the SVM model, the effectiveness of the extracted features is verified
on the Bonn EEG multi-classification data set and obtains an average accuracy of 98.16%. It
is also found that the features extracted by the MFO-ESN model improve the performance
of multiple classifiers, which means that MFO-ESN is an effective preprocessing method
for EEG signal classification tasks. Furthermore, we apply MFO-ESN with SVM in the
multi-channel EEG signals classification task of CHB-MIT and obtain the highest sensitivity
of 96.79% in patient-specific and 96.14% in cross-patient experiments with good specificity
and accuracy.

Apart from its higher performance, MFO-ESN with FDEF has two additional advan-
tages compared with the previous EEG feature extraction methods: (1) it can automatically
optimize the hyperparameters of ESN to adjust the architecture and initial parameters
for the specific classification task; (2) using FDEF as the fitness of MFO decouples the
optimization of the feature extractor from the classifier, which means the optimization
direction no longer relies on the performance of the classifier but on the relative separability
amongst classes. These advantages mean that the proposed MFO-ESN model can achieve
efficient feature extraction and demonstrate that it has a better generalization ability.

In the future, this method can be further studied with respect to the following consid-
erations. From the perspective of practical applications, the efficiency of MFO-ESN can be
further evaluated on other EEG signal classification tasks. Given that the hyperparameters
of ESN are searched in the set parameter space, how to improve the efficiency of the search
and stop functions in the proper time are also key problems. In the theoretical direction,
we can further improve the current ESN method. For example, the relationships amongst
channels can be well described by the positioned EEG electrodes where epileptic seizures
in different brain regions have different manifestations and treatments. By designing the
structure of ESN to combine both the spatial information represented by the channels and
the temporal information existing in the EEG time series, a better feature extraction result
is promising.
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Abstract: Modern rail/road transportation systems are critical to global travel and commercial trans-
portation. The improvement of transport systems that are needed for efficient cargo movements
possesses further challenges. For instance, diesel-powered trucks and goods trains are widely used in
long-haul unimodal transportation of heavy cargo in most landlocked and developing countries, a
situation that leads to concerns of greenhouse gases (GHGs) such as carbon dioxide coming from
diesel fuel combustion. In this context, it is critical to understand aspects such as the use of some
parameters, variables and constraints in the formulation of mathematical models, optimization tech-
niques and algorithms that directly contribute to sustainable transportation solutions. In seeking
sustainable solutions to the bulk cargo long-haul transportation problems in Zambia, we conduct
a systematic review of various transportation modes and related mathematical models, and opti-
mization approaches. In this paper, we provide an updated survey of various transport models for
bulk cargo and their associated optimized combinations. We identify key research challenges and
notable issues to be considered for further studies in transport system optimization, especially when
dealing with long-haul unimodal or single-mode heavy cargo movement in countries that are yet to
implement intermodal and multimodal systems.

Keywords: greenhouse gases; intermodal; mathematical optimization; multimodal; rail/road
transportation; sustainable transport; unimodal

MSC: 35Q49

1. Introduction

In the last few years, there has been growth in the use of mathematical optimization in
finding optimal routes for the planning of transportation systems (rail, road, water and air
transportation). These optimization techniques have mostly been aimed at reducing carbon
dioxide emissions and related costs [1]. Consequently, the reduction of CO2 emissions in
transportation has been the focus of what could be determined as sustainable transporta-
tion. However, sustainable transportation is more than just emission reduction as defined
by Litman [2]. Litman mentions that sustainability encompasses economic, social and
environmental concerns from long-term impacts of transportation. Despite agreeing with
most researchers seeking sustainable transportation modes, Litman further gives guidance
to the fact that desired values can be obtained by understanding the presumed assumptions
and effects of different types of experiments.
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Figure 1 illustrates three major issues that mathematical models and algorithms seek
to address under sustainable transportation mechanisms.

Figure 1. Direct and indirect effects of transportation [2].

Landlocked countries such as Zambia have seen an increase in the transportation of
bulk mining cargo by either road or rail without consideration of long-term transportation
sustainability. Countries like Indonesia [3] with over 31% rail freight of the total transport
freight share have researchers working on the optimization of the rail transport sector to
improve its operations. China is equally yet to fully develop it’s freight carbon dioxide
emission optimization models at a provincial level [4]. This level of research based on
modal optimization for sustainable transportation still remains a niche in developing
countries such as Zambia. As Zambia is poised to increase its annual copper production
from the current annual production of eight hundred thousand (800,000) to three million
(3,000,000) tons [5], a need arises to develop local monitoring mechanics as bulk cargo is
being transported on the existing two main rail/road networks. For Zambia, being one of
the major producers of copper concentrates and copper cathodes, it’s transportation routes
to the ports of Dar es salaam, Walvis Bay and Durban are mainly by rail and road networks
and this compelled the government of Zambia to introduce a law forcing transporters to
divert 30% [6] of bulk mining cargo towards the rail network without prior study.

This work focuses on the local and regional impacts of the transportation of bulk
cargo and specifically bulk mining cargo. For our study, we have picked Zambia as
our locality of reference because of it being a major copper producer with a unimodal
transport system. Further pushes by the local government to move mining cargo to rail
has motivated us to conduct this study. We feel the local transport variations would have a
ripple effect on the regional and global movement of bulk cargo as most copper shipments
in Zambia are destined for Asia via several regional countries. In this regard, this paper
highlights the opportunities available for mathematical optimization in bulk cargo transport
programming with the aim of ensuring long-term sustainability. This particularly for a
country like Zambia that relies on a unimodal mechanism of transportation (either road,
rail or a combination).

This study further explores various intervention mechanisms carried out across dif-
ferent continents towards the sustainable transportation of cargo. Generally, sustainable
transportation goals can be achieved through good planning and the proper use of math-
ematical optimization techniques. There have been several papers on the performance
of multimodal and intermodal transport systems along with proposals of associated op-
timization techniques aimed at transport sustainability. However, this paper focuses on
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single-mode (unimodal) transport system optimization techniques that may be valuable for
application in landlocked countries like Zambia that rely mainly on unimodal transportation.

As part of the survey, we conducted an exhaustive search of scholarly articles to
identify papers published in the area of optimization and sustainable freight transportation.
The keywords were intermodal, multimodal, unimodal, optimization and sustainability.
No study has been conducted in a situation where rail and road systems are independently
used for long-haul bulk mining cargo transportation towards the same destinations under
a real driving environment, a position that has created a problem in national bulk cargo
freight emission policy regulation formulation. This calls for more research to be conducted
for the optimization of unimodal transportation systems in situations where there are
disparities in rail/road cargo share where each transport mechanism wants a larger share
of the bulk cargo while ignoring the emission concerns.

In summary, this paper makes the following key contributions:

1. We present an up-to-date review of the application of mathematical optimization
in sustainable transportation of cargo with a focus on unimodal transport systems
suitable for landlocked countries.

2. For the reviewed transport models, we identify the key challenges in implementation
suitability for a developed country like Zambia.

3. We provide potential solutions for adaptation of these optimization models to suit
the Zambian transport system for bulk mining cargo and ultimately enable the drive
towards sustainability.

The rest of the paper is laid out as follows: Section 2 discusses work related to
the focus of this survey paper while highlighting the unique contributions of this work
and Section 3 discusses the available mathematical optimization models for sustainable
transport. Section 3 is segmented to discuss three transportation modes, namely intermodal,
multimodal and unimodal which is the focus of this work. In Section 4, we shift focus to
the effect of cargo overloading, an aspect that affects rail/road sustainability. Here, we try
to highlight how cargo weight plays an important role in the mathematical optimization
model for sustainable transport. Section 5 discusses the lessons learnt in this review and it
is in this section that implementation and research challenges are discussed. The paper is
then concluded in Section 6 with potential solutions and future works discussed therein.

2. Related Work

This section presents several works in the area of long-term sustainability for the
transportation of cargo based on mathematical optimization approaches. The work in
this paper draws attention to the Zambian long-haul freight system which is similar to
most developing countries. Zambia’s rail/road long-haul routes are well defined and not
prone to any obstructions like buildings because the Zambian government has assigned
some independent deviations in some high-density areas. An illustration of a single-mode
long-haul freight system being practiced in Zambia is shown in Figure 2. Loading bays are
mining companies’ warehouses whilst the offloading points are the exit ports of Dar es
Salaam (Tanzania), Walvis-bay (Namibia) and Durban [7].

Before we can streamline efforts towards sustainable transports in Zambia, it is es-
sential to look at related applications from the research. For example, Diaz-Parra et al. [8]
present an algorithm that solves the planning, routing and scheduling problems presented
under land transportation to minimize transportation costs and transit time. In their
work, a school bus routing solution using a mixed integer or non-linear mixed integer
programming model is used to minimize operational and cost-related problems where
the number of buses is regarded as the variable. The authors Wu et al. [9] agree with
Diaz-Parra et al. [8] on the importance of routing planning in transportation. However,
Wu et al. [9] developed a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to solve
the localized problem of route planning during the transportation of hazardous materials
across the city of Guangzhou, China where the authors endeavor to reduce the costs and
risks as a result of the transportation of hazardous materials.
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Figure 2. Illustration of single-mode road/rail long-haul transportation to Dar es Salaam.

Despite Wu et al. [9] and Diaz-Parra et al. [8] having contributed to the solution of
transportation problems in network routing where transit time and distance between the
sources and destinations are considered in the development of solution models, parameters
related to emissions are not considered.

On the other hand, Archetti et al. [10] looked at long-haul freight as an integral
transport system of road, sea and rail. The authors propose similar modal shifts as a
requirement for the reduction of emissions and other costs while recommending unimodal
transportation as a preference when transportation distance increases. This has also been
supported in several works including [10–15].

While there is a mention of emission reduction in [10], there is no mention of emission
reduction in [8]. In agreement to [10] on the reduction of emissions in transportation,
the authors Fan et al. [16] conducted a search on publications that concern topics on
transportation and carbon emissions using the bibliometric method for the period 1997 to
2023. The authors present that the major contributor to carbon dioxide emissions during
transportation is the energy use (fuel consumption). Despite researchers [10] proposing
modal shift as a solution towards transportation emissions reduction, the authors in [16]
still argue that more emission collection methods still need to be improved to obtain more
usable emissions data. The demand for sustainable transportation in the area of greenhouse
gases (GHGs) has recently increased prompting [17] to develop a model to calculate road
traffic emissions on German transport networks. Two major situations were considered in
the development of the model, namely the free and regulated modes. Under the free mode,
the tests were conducted without any controls or constraints while the regulated mode
meant the tests were under certain conditions such as emission limits. Though their findings
showed a reduction of nitric oxide by 32% and 13% particulate matter under the regulated
mode compared to the free mode, their study left out the critical greenhouse contributor
carbon dioxide in their analysis [18]. The authors recommended the use of the developed
model outside Germany; however, the exclusion of carbon dioxide emissions may not
be very useful for developing countries. CO2 emission analysis is critical in developing
countries due to the presence of old, disposed-of vehicles imported from developed nations.

Further, Praveen et al. [19] present a survey on several optimization algorithms to
help in identifying those that would provide optimal vehicle routing values and reduce on
environmental emissions when they are all subjected to similar conditions and parameters.
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They conducted studies on several algorithms that include Simulated Annealing, Genetic
Algorithm, Anty Colony Optimization [20], Discrete and Improved Bat Algorithm (DaIBA),
Evolutionary Simulated Annealing [21], BAT Algorithm and Firefly Algorithm (FA). Results
in their work showed that the Discrete and Improved Bat Algorithm (DaIBA) provided a
better optimal solution when compared to other algorithms.

However, without infrastructure planning, transportation routing studies cannot be
conclusive. To resolve these existing challenges in transportation infrastructure planning
and maintenance, studies were conducted to develop optimization techniques that could
be used to easily resolve the challenges in road network infrastructure restoration. The
existing needs and transit time were used as part of the parameters in developing the
bi-objective bi-level optimization model by [22]. Although the impact on the environment
was not directly mentioned in their study, the development of optimization models for
infrastructure improvement affects the transit time, consequently affecting emission of
greenhouse gases.

Apart from the route selection algorithms, Ref. [23] believed that when people share
transport facilities with cargo, this would reduce the adverse effects on the environment
and traffic congestion. A survey on various studies on shared mobility were conducted
with a consideration of model parameters and constraints such as routing, time, loading
capacity, cost, and synchronization. The objective functions in this study were grouped
into operational and quality-oriented categories. It was assumed that when people park
their vehicles to use one car during travel, traffic jams occur due to the increase of vehicles
on the road. The reviewed literature was grouped according to problem variations such as
dynamic ride sharing (DARP) and solution methods of either exact or heuristic approaches.
Mourad et al. [23] further proposed more research to be conducted to develop new models
on the shared mobility of people and cargo transportation so that environmental matters
can also be addressed. However, the environmental concerns have been brought to the
attention of other authors such as Gandhi et al. [12] and Heinold et al. [24].

Heinold et al. [24] reviewed emission estimation models using the methodologies
for estimating air pollutant emissions from transport that give real outputs of the emitted
greenhouse gases from rail transportation, while other surveys conducted in the area of
railway systems concern the improvement of train time scheduling and management.
Han [25] conducted a survey study on works solving vehicle routing problems to identify
gaps and make necessary proposals that would improve the optimization models and
algorithms that were earlier developed. The notable constraints seen in the study were the
time and distance (route). System dynamic modelling was performed by [26] to scrutinize
the improvements made to the earlier system dynamic mathematical models. Despite
Han [25] modelling time and distance problems, Prabowo [3] had earlier considered cost
and efficiency as the major problems that needed to solved in Indonesia by considering
modal shifts of rail and road systems. The study assumed that it is cheaper to transport
goods by road when the transportation route is up to 350 km but expensive beyond that.
The motivation for the optimization of the railway transport systems was derived from the
lack of innovation by the main railway company and the discovery that cargo customers
preferred transportation of their goods by road (trucks) to transportation via railways.

Prabowo’s study [3] follows an earlier study by [27] that reviewed optimization models
and algorithms to distinguish parameters used in the development of the routing models
and algorithms in multimodal transportation.

Table 1 provides a summary of the related works covered in this section in comparison
with what is covered in this work.
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Table 1. Summary of related work and solution approaches.

Ref. Title Solution Approach Parameters

Transport
System (Modal)

Transportation
Cost per

Ton-Kilometers and
Road/Rail

Maintenance

Exhaust Emissions
(Kilograms/Ton-

Kilometers) under
Real Driving

Conditions (RDC)

Time (h) Distance (km)

[10] Optimization in multimodal freight
transportation problems: A Survey Multimodal

√ × × √

[8] A Survey of Transportation
Problems Multimodal

√ × √ ×

[25] A Survey for Vehicle Routing
Problems and Its Derivatives. Multimodal × × √ √

[28]
A review of online dynamic models

and algorithms for railway
traffic management.

Multimodal × × √ √

[23] A survey of models and algorithms
for optimizing shared mobility Multimodal/Intermodal

√ × × √

[19]
A Survey on Various Optimization

Algorithms to Solve Vehicle
Routing Problem

General × × √ √

[9]
Multi-class hazmat distribution

network design with inventory and
superimposed risks

General × × √ √

[16]
A review of transportation carbon

emissions research
using bibliometric analyses

General × √ × √

This Survey

Sustainable Rail/Road
Transportation of Bulk Cargo: A

Review of Algorithm-Based
Optimization Techniques

Unimodal
√ √ √ √

3. Transport Optimization Models for Cargo Movement

3.1. Intermodal Transport Optimization

Intermodal transportation is the movement of a single cargo from one transport system
to a different transport system but under different transfer contracts [29]. Sörensen et al. [30]
proposed the improvement to the mathematical modelling of the intermodal transport
system by considering various parameters and constraints in the transportation problem for-
mulation. The proposed problem parameters with symbols from the general transportation
problem formulation are considered as follows:

All customers to be considered (set notation, I),
Proposed locations (set notation, K),
Goods to be transported from i to j (notation, qij),
Cost of transportation through route ij (notation, Cij)
Transportation cost if part of the goods from route ij are transported via terminals k

and m (notation, Cij
km),

Loading capacity of terminal k (notation, Ck),
Building cost (fixed) of terminal k (notation, Fk).
As is always the case when formulating a mathematical model, the following variables

were considered in the model improvement:
yk: considered as a binary variable where the binary is 1 when k is a terminal and 0

when not,
wij: when part of qij is transported from i to j without diverting,
xkm

ij : When part of qij is transported from i to j through terminals k and m
The main objective of the authors [30], was to reduce costs and the following objective

function was developed:

Min, ∑
i,j∈I

∑
k,m∈K

ckm
ij xkm

ij + ∑
i,j∈I

cijwij + ∑
k∈K

Fkyk (Objective function)
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The constraints considered in their study are as follows:

(1) xkm
ij ≤ qijyk ∀k, m ∈ K, ∀i, j ∈ I,

(2) xkm
ij ≤ qijym ∀k, m ∈ K, ∀i , j ∈ I,

(3) ∑
k, m∈K

xkm
ij + wij = qij ∀i , j ∈ I,

(4) ∑
i,j∈I

∑
m∈K

xkm
ij + ∑

i,j∈I
∑

m∈K
xmk

ij ≤ Ckwij, ∀k ∈ K,

(5) wij ≥ 0, xkm
ij ≥ 0, xkk

ij ≥ 0, ∀i, j ∈ I, ∀k, m ∈ K,

(6) The value of yk ∈ {0, 1} ∀k ∈ K.

The objective function reduces the sum of the associated costs with unimodal and
intermodal transportation modes including the cost of terminal opening. If the terminal k is
open, the products must be transported through it due to restrictions (1) and (2). Constraint
or restriction (3) guarantees that the total supplies routed both directly and through termi-
nals matches the demand related to each origin/destination pair. Restriction (4) addresses
the terminals’ limited capacity. Two distinct terminals are needed to satisfy constraints
number (5). Furthermore, restrictions (6) ensure that yk can only take the values 0 or 1 and
that the quantities of items carried by road via terminals are not negative. The developed
program is a linear one where binary and real variables exit.

Liu et al. [31] developed a cost analysis and route selection logistics optimization model
named Geospatial Intermodal Freight Transportation (GIFT) to optimize the containerized
soybeans freight flow nationally. The GIFT model optimized supply, demand sharing,
routing methods, intermodal cargo transport mode switching and flow distribution with
infrastructure capacity as the constraint. However, this study does not consider the cost
related to infrastructure maintenance and emission constraints resulting from the bulk
transportation of soya beans on road and rail systems.

Wiegmans and Konings [32] cited road transport as a major contributor to conges-
tion, air pollution, increases in accidents and noise as a motivation to develop a model
to analyze and compare the transport costs of intermodal inland waterway transport to
that of the road system. This was performed to ascertain the variance (fixed and variable)
between intermodal and unimodal road transport systems, though the findings were not
conclusive because of so many cost factors (fuel, equipment maintenance, labor, cargo
handling charges, etc.) that required consideration in their study. Their study, however,
did not consider the sustainability of both transport systems in terms of tonnage per
kilometer maintenance of the multi-transport networks (rail, road and waterway). How-
ever, ref. [33] proposed other cost models for terminal location analysis and operational
activities. Mostert et al. [34] hoped to bridge the gap that exists in the research between
cargo transportation modes and human external costs as a result of goods haulage at the
transport mode selection level by developing an intermodal allocation model in Belgium
that would lead to the reduction of operational and other indirect costs (pollution affects
medical expenses).

During studies to analyze the preferences between road and rail/road intermodal
transport systems in terms of freight costs, Christian Bierwirth [35] used a mixed integer
programming model (MIP) to model freight costs from the factories. This followed similar
research for Indian Railways under rail–truck intermodal transportation where a mathe-
matical model was developed for pricing and terminal location optimization purposes to
ease solutions of optimal freight rates and the matching intermodal terminal sites in Delhi
and Mumbai transport routes [36]. However, both studies still lacked vital information on
the emission costs emanating from transportation systems that would be helpful in future
searches for environmentally friendly transportation.

Another aspect is the use of mixed integer algorithms meant to solve intermodal
transportation risks and apportion containers to various transport modes in Turkey by
using the fuzzy-based method [37]. The risk factors considered during the evaluation
process included human accidents and deaths, emission values and noise levels leading
to the conclusion that their method produced a transportation system that was more
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economical and environmentally acceptable. Their study, however, also had a bias toward
intermodal transportation than long-haul unimodal transportation without considering
emissions and optimal cargo tonnage in the mathematical model development.

Several research papers reviewed under this section focused on costs, routing and
cargo freight timing on mixed rail/road transport systems without much consideration
of a single long haul of bulk cargo on unimodal rail/road transportation systems existing
in many landlocked countries. The time effect and emissions do not seem to be the main
factor in modal choice planning. This drawback encourages researchers to conduct more
studies on time-dependent long-haul road or rail freight systems.

The articles cited in this section are summarized in Table 2. The summary gives a
clear glance at the direction taken by the researchers in trying to resolve the challenges in
intermodal transportation systems.

Table 2. Summary of different approaches highlighted under Intermodal Transport Research.

Ref.
Transportation

Mode
Method of Analysis Parameters and Constraints Considered

Infrastructure
Maintenance

Costs and
Investment

Transportation
Cost

(Handling
and

Movement)

Emissions
(Environmental

and Social
Effects/Costs

Fuel Costs
(L/ton-km)

Time
(h)

Distance

[31] Intermodal
(Geospatial Intermodal Freight

Transportation) GIFT model
and GAMS software.

x
√

x x x
√

[32] Intermodal Intermodal transport problems
and analyses model

√
x x x

√ √

[33] Intermodal General Optimization
√ √

x x x x

[34] Intermodal Intermodal allocation model
√ √ √

x x x

[35] Intermodal
Intermodal Transportation

Problem (ITP) model- ILOG
Cplex 12.1

x
√

x x x
√

[36] Intermodal Non-linear trucker shipping
cost minimization function x

√
x x

√ √

[37] Intermodal Mixed Integer Programming
and Fuzzy methods x

√ √
x x

√

3.2. Multimodal Transport Optimization

Multimodal transportation is the movement of cargo from one transport system to
another using the same contract or under one logistics company [29]. This section looks at a
few techniques towards the solutions of transportation problems. Sun et al. [1] optimizes the
freight route selection problem to lower transport costs during goods movement through
the multimodal transport networks. Optimization objectives such as emission costs have
been presented using fuzzy time windows [38] though both techniques do not consider
tonnage under real-driving conditions when considering emission costs.

Despite the routing problem being dominant, researchers in Turkey [39] further opti-
mized travelling time to solve the routing problem in the city of Izmir using round-based
transit optimizer routers, transit mode routing and contraction hierarchies on transporta-
tion graphs as their first path-finding algorithm. In coming up with the model for optimal
multimodal transportation route selection, Huynh et al. [40] used an analytical hierarchy
process (AHP) and zero one-goal programs (ZOGP). The multi-objective optimization
technique resulted in the solution of an optimal route selection problem in the affected
region. However, the cargo weight per fuel distance cost relationship was not properly
defined in this research.

Shen and Wang [41] introduced a binary logic and a regression model for the trans-
portation of some grain crops using mixed rail/road transport systems using from United
States of America Freight Analysis Framework (FAF2.2) databases. Other information used
came from US highway networks and TransCAD. Their study approach, however, did not
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include the variables in terms of exhaust emissions per tonnage transported in solving their
multimodal transportation problem.

The economic and travel desire behavioral changes that accompany transportation
infrastructure developments prompted Moeckel et al. [42] to develop a nested multinomial
logic mode selection model with the consideration of travel-related costs, distance, transit
stations access, transport service frequency, number of transfers and parking costs. The
transit station choice model was conducted with consideration of the increase in fuel prices
and the corresponding bus services. The authors support investment in long-distance
travel infrastructure bearing in mind that the investments to be made would come with
other effects such as environmental, social and economic changes.

However, environmental effects on transportation systems changes call for further
models to be developed using real-life measured parameters, especially concerning uni-
modal long-distance bulk cargo hauling and led Kraft and Stanislav [43] to present a model
to predict long-distance traffic flows with a focus on road transport in the Czech Republic.
The use of data collected from the existing road traffic flows in the development of the
model and distance–decay function makes it easier to predict future traffic flows on the
highways to be constructed. The above-cited method has a very good intention in land-
scape planning. However, it is worth recommending that the model should have included
bulk cargo capacity tests during planning for future road developments as this determines
the life span of the roads. Further, the environmental impacts of the emissions coming
from the vehicles involved in long-haul transportation should be considered. Various
approaches taken in trying to solve transportation problems under a multimodal system
are summarized in Table 3.

Table 3. Summary of different approaches highlighted under Multimodal Transport Research.

Ref.
Transportation

Mode
Method of Analysis Parameters and Constraints Considered

Infrastructure
Maintenance

Costs and
Investment

Transportation
Cost

(Handling
and

Movement)

Emissions
(Environmental

and Social
Effects/Costs)

Fuel Costs
(L/Ton-km)

Time
(h)

Distance
[44]

[27] Multimodal Various (Review) x
√ √

x
√

x

[39] Multimodal Dijkstra’s Algorithm x x
√

x
√ √

[40] Multimodal
Analytic hierarchy process
(AHP) and Zero-one goal

programming (ZOGP)
x

√
x x

√ √

[41] Multimodal
Binary Logit Model and

Geographical Information
System [45]

x
√

x
√ √ √

[3] Multimodal Explorative and Comparable
descriptive Methods

√ √
x x x

√

[42] Multimodal Multinomial logit
mode-choice

√ √
x

√
x

√

[43] Multimodal Statistical program
√

x x x x
√

[10] Multimodal General (Uni-
modal/Intermodal/Multimodal)

√ √ √
x x

√

3.3. Unimodal Transport Systems

Problems involving rail and road long-haul single-mode transportation have rarely
been explored, especially the use of parameters such as tonnage, transit time, emissions
and fuel consumption to solve real-world and real driving problems towards sustainable
transportation [46]. Unimodal transportation is receiving less attention from researchers
in preference to the multimodal systems as the latter is considered to not be viable when
considering intercontinental cargo shipping as highlighted in the literature survey by [10].
The researchers do not consider the unimodal freight system, especially transportation by
road, to be a very optimal solution to the transportation problems. They encourage a shift
from unimodal to a combination of unimodal and multimodal systems. Despite unimodal
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transportation being considered a lesser solution to transportation problems, the system
still exists in many landlocked countries with no option for alternative transport modes.

Despite many researchers calling for a shift from unimodal transport systems to
other modes (multimodal and intermodal), there is a need to do more in terms of real-life
challenges because of bulk cargo transportation so that overall sustainable freight service is
achieved. This calls for more proactive research activities to optimize this transportation
system to develop optimal solutions to social, economic and environmental problems that
arise as a result of overwhelming bulk cargo either by road or rail networks.

According to Singh et al. [47], the traditional transportation problem comprises of ‘m’
sources each creating a limited accessible unit of a specific item and ‘n’ demand points each
having limited interest of that commodity. The particular bulk transportation problems
(BTPs) considered by researchers are the single-mode, multi-standards, multi-file and
non-raised transportation problems. The single-mode approach involves the reduction of
either cost or total time taken during transportation while the multi bulk transportation
problem considers more objectives such as minimizing cost, time and damage of goods
during transportation. When there are more indices such as source, destination, make of
goods, transport modes and usable resources, then a multi-index method is utilized. In this
regard, we present the mathematical model approaches provided by Singh et al. [47].

3.3.1. Single Function Formulation

Minimizing cost objective function;

Minimize, C =
m
∑

i=1

n
∑

j=1
cijxij.

The objective function is subjected to the following constraints;

(1)
n
∑

j=1
bjxij ≤ ai (i = 1, 2, . . . , m)

(2)
m
∑

i=1
xij = 1 (j = 1, 2, . . . , n)

(3) The value xij = 0 or 1(i = 1, 2, . . . , m; j = 1, 2, . . . , n). xij are the decision variables
such that;

The quantity of units of the available item is given by ai(i = 1, 2, 3 . . . , m) based at
source location i, whereas bj(j = 1, 2, 3, . . . , n) is the unit of the items wanted at destination
j. The cost of bulk transportation of a particular item from source i to end point j is given
by parameter cij(i = 1, 2, . . . , n) and xij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is the variable
of the assumption whether the requirement is fulfilled or not at the demand or destination
point j coming from source point i. For this mathematical formulation, a′is, b′js and c′ijs are
all considered as positive real values. C denotes the overall cost of the bulk transportation.

Minimizing time objective function;
To develop the time objective function, the following is considered,
Minimize, T = max

{
tij:xij = 1

}
,

Subject to;

(1)
n
∑

j=1
bjxij ≤ ai (i = 1, 2, . . . , m),

(2)
m
∑

i=1
xij= 1 (i = 1, 2, . . . , n),

(3) The value of xij = 0 or 1 (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

T is the overall time taken to transport the bulk cargo from i to j. xij are the de-
cision variables such that there is 1 if the cargo is transported and if not, there is 0.
tij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is the bulk cargo movement time from the origin i to
destination j. a′is, b′js and t′ijs are positive real figures.
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3.3.2. Two-Dimensional Function Assignment

According to [47], the general mathematical model objective functions for both time
and cost assignment problems are expressed in the following equations;

For cost minimization;

Minimize, C =
m
∑

i=1

n
∑

j=1
cijxij

For time minimization
Minimize, T = max

{
tijxij : i = 1, 2, . . . , m; j = 1, 2, . . . , n

}
.

The letters C and T represent the Cost and Time functions during bulk cargo
transportation.

The two equations (cost and time functions) are subjected to the following listed
restrictions;

(1)
n
∑

j=1
bjxij ≤ ai (i = 1, 2, . . . , m),

(2)
m
∑

i=1
xij = 1 (j = 1, 2, . . . , n),

(3) The value of xij = 0 or 1 (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The letters m and n represent the origins and destinations of the respective bulk cargo
being transported. The quantity of the commodity present at source i is represented by
ai(i = 1, 2, 3 . . . , m) and the demand value at destination j is bj(j = 1, 2, 3, . . . , n). The
value of cij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is the cost of transportation from i to j and
the time taken during transportation is tij(i = 1, 2, . . . , m; j = 1, 2, . . . , n). The decision
variables describing whether the conditions of destination j are met by the source i are
represented by xij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) where the variable is 1 if the condition
is met and 0 when not. a′is, b′js, c′ijs and t′ijs parameters are considered to be positive
real figures.

Logistic companies would love to transport the cargo of the customers at a lower cost
to make some profit. In another development, the cargo owners would love to have their
goods transported to the customers or other need areas with fewer costs.

From the literature survey conducted in [10], a source–truck–train–truck–destination
cost analysis mathematical model was presented where the authors looked at costs related to
network design for long-haul rail services. The objective function of minimizing linear costs
in terms of development of infrastructure and associated facilities was presented where N
represented origins/destinations and A for a set of connections or routes connecting the
origins and demand (destination) points. Parameters considered in the mathematical are
listed as follows:

c−ij standing for costs for construction of fixed network (i, j),

ck
ij for transportation cost of cargo k along route (i, j),

uij representing the transportation capacity of network (i, j),
dk

i being the demand of item k at destination k.
The variables considered in the model are given by the following expressions:
yij (i, j) ∈ A. These parameters are used to model abstract design decisions using

integer variables,
Decision variables are such that y ∈ {0, 1}when action is limited to a certain route and

y ∈ N+ represents the number of facilities constructions that include the service capability,
f k
ij, (i, j) ∈ A, k ∈ K represents the traffic passing through route (i, j) carrying cargo k.

When yij decision variables are considered to be binary numbers, the objective function
is developed as follows:

Minimize, ∑
(i,j)∈A

c−ij yij + ∑
(i,j)∈A,k∈K

ck
ij f k

ij

This objective function is subjected to the following restrictions or constraints:

(1) ∑
j∈N

f k
ij − ∑

j∈N
f k
ji = dk

i i ∈ N, k ∈ K,
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(2) ∑
k∈K

f k
ij ≤ uijyij, (i, j) ∈ A,

(3) f k
ij ≥ 0, (i, j) ∈ A, k ∈ K,

(4) yij ∈ {0, 1}, (i, j) ∈ A

Constraint (1) is there to satisfy the destination demand requirement from the source
on a specific route. The route restriction in terms of capacity was fulfilled by constraint (2).
The ultimate goal of the research on train/road transportation was to optimize costs related
to the movement of goods from the source to the destination via the road and train networks
with consideration for the costs of the route and facilities construction. However, constraints
in terms of emission levels during transit were not considered during the study.

Problems tackled by researchers in the field of unimodal transportation are not often
inspired by real case applications of real size data in order to find solutions that can be
effectively used in practice. The majority of the studies analyze the problem without
making use of real data and relying mostly on simulated instances.

4. Overview on the Impact of Overloading Cargo on Transport Sustainability

Simulation models have been developed to improve transport systems policy formu-
lation for sustainable bulk cargo transportation and this led to a system dynamic technique.
The techniques can be used to determine the possible and the negative situations on param-
eters like operational costs, social impact costs, accidents and pavement maintenance when
roads are subjected to weights beyond stipulated tonnage during stone transportation. Sim-
ulation results in studies have shown that with reduced tonnage, there is a corresponding
reduction in operational costs [48].

According to [45], an excellent loading policy is relative to the economic and social
costs involved. To this effect, Ghisolfi et al. [45] presented a generalized cost function that
depended on the vehicle make, road condition, travelling distance, transit time and fixed
costs such as toll fees and other related expenses. The general cost function was presented
as follows:

GCv,r,p = β1 ·
(
Tv,r,p · CTv,r,p

)
+ β2 ·

(
Lr,p · CLv,r,p

)
+ β3 · (CTv) + β4 · (CFv) (1)

Equation (1) parameters are explained below:
GCv,r,p: This represents the general cost as a result of transportation using vehicle v

along route (r, p) where r is the terrain type and p is the condition status of the pavement,
Tv,r,p: Travel time by vehicle v through route type (r, p),
CTv,r,p: Cost per travel time using vehicle v via link (r, p),
Lr,p: Length of route (r, p),
CLv,r,p: Cost per unit distance using vehicle v along route (r, p),
CTv: Toll fee chargeable on vehicle v along a selected route,
CFv: Represents the fine imposed on overloaded vehicle v and
β1, β2, β3 and β4 represent perceived values.
Some researchers had earlier utilized a system dynamic model in China to get rid

of overloading and to achieve a sustainable means of intercity cargo transportation [49].
The researchers looked at the impacts that arise because of the predominant two types of
road freight systems which include the ordinary and express highways. Transporters using
the faster road network are subjected to higher tariffs than those that opt for the ordinary
route leading to most freight participants shunning the faster routes. This study seeks
to assess the results of modal shift efforts and related policies to identify the useful ones
that provide sustainable intercity freight systems. This study discovered that there was
compliance during the day because of random inspections by route patrol police officers
but the situation changes at night as more overloaded vehicles avoid the toll fees along the
faster route.

According to Liu et al. [49], there is congestion on ordinary road routes because drivers
with overloaded vehicles avoid higher charges at night resulting in unsustainable effects
like accidents and road damage. In Nigeria, highway pavement damage has been a source
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of concern leading to studies to resolve the problem where some of the parameters such as
time, handling costs and costs incurred by the government, such as accident compensation
and environmental protection activities costs, have been considered [50]. Sustainability
in bulk cargo transportation is very important to resolve the overloading on unimodal
transport networks, especially the road network in most landlocked countries. It is also
proper to appreciate the study conducted in seeking sustainable transport systems modal
shifts to reduce truck overloading negative impacts in [48].

Table 4 gives us a further indication that much concern is on infrastructure degradation
without equal consideration on the emission rates.

Table 4. Summary of literature related to overloading.

Ref. Transportation Mode
Method of
Analysis

Parameters and Constraints Considered

Infrastructure
Maintenance

Costs

Transportation
Cost per
ton-km

Emissions
(kgs/ton-km)

Fuel Costs
(L/ton-km)

Time
(h)

Distance

[50] Unimodal (road) Weigh-in-motion
(WIM) system

√
x x x

√ √

[45] Unimodal (road) System Dynamics
(SD) Model

√ √
x x x x

[48] General (Uni-
modal/Intermodal/Multimodal)

System Dynamics
(SD) Model

√
x x

√ √
x

[49] Intermodal and Multimodal System Dynamics
(SD) Model

√ √ √
x x

√

5. Research Challenges and Lessons Learnt

From the reviewed literature, route selection, modal shift controls, transportation time
and distance reduction seemed to have been the main cause for transport systems opti-
mization. The research has exposed various approaches and studies hinging on intermodal
and multimodal systems and luck of some practical parameter scientific data. However,
the summary provided in Table 4 gives a picture that unimodal transportation is much
considered in the studies looking at the mitigation of overloading, especially on truck
transportation and the cost of transportation encored by transporters.

The second transportation problem receiving much attention is the reduction of trans-
portation distances. Emissions arising from vehicles, trains and other systems have not
received much attention in the studies of modal shifts and routing and this can be con-
firmed by the strategy for low-emission mobility [11] where the European commission
sought the intervention of several consultants in coming up with modern techniques and
technologies in the optimization of transportation systems. Further proposals were made
to improve the emission measurement methods on automotive vehicles by developing
more ‘real driving’ emission measurement tools. In its Regulation (EU) 2019/1242, the
European Union and Council of 2019 proposed a new technique of finding out the levels
of exhaust emissions for heavy-duty vehicles to simulate quantities of emissions and fuel
consumption to determine the impact of fuel consumption and emission levels [51]. All
these efforts by the European Union prove that the exhaust emission factor or parameter is
paramount in the optimization and determination of a sustainable transportation system,
especially when dealing with the transportation of heavy cargo.

The European Union has agreed on strategies to improve on activities to reduce carbon
dioxide (CO2) emissions by introducing efficient vehicle models leading to zero greenhouse
gas emissions. These activities of research carried out by the European Union are com-
mendable because carbon dioxide is believed to be the main contributor to the production
of greenhouse gases harmful to the environment. Exhaust emission parameters under real
driving conditions is very important in the development of optimization techniques, hence
the need for efficient equipment to measure it. However, the literature reviewed does not
provide overwhelming approaches and data usable for the development of a universal
optimization model for bulk transportation control.
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6. Conclusions and Future Work

Most of the papers reviewed so far have dealt with the problem of reducing costs re-
lated to transportation and distance studies. Unimodal long-haul distance studies have not
received much attention as most researchers focus on the improvement of intermodal and
multimodal transportation systems. It is worth noting that there is a considerable research
gap in bulk cargo rail/road transportation systems emissions and tonnage in landlocked
Zambia and other low-income countries where long-haul single-mode rail/road transport
system is still the only means of cargo transportation. Additionally, there is an absence of
exhaustive, current rail/road emission statistics for Zambia in the scientific literature, and
the development of mathematical models of transportation under a real driving environ-
ment (RDE) and related parameters like emissions, tonnage, fuel consumption and transit
time. All this, while taking into account stipulated government regulations.
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