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Abstract: In this study, an energy-saving control strategy based on instantaneous optimization is
proposed to improve the energy efficiency of hybrid tractors. Using a parallel diesel–electric hybrid
tractor as the research object, the topological and working characteristics were analyzed, and a
coupled dynamic model of rotary tillage and tractor plow was constructed. Aiming to minimize the
equivalent fuel consumption of the entire machine, the motor and diesel engine torques were taken
as the control variables, and the state of charge of the power battery was taken as the state variable.
Subsequently, an energy-saving control strategy based on instantaneous optimization is proposed.
Finally, a simulation experiment was carried out using MATLAB to verify the effectiveness of the
energy-saving control strategy based on instantaneous optimization. Compared with the energy-
saving control strategy based on power-following, the results show that energy-saving control strategy
based on instantaneous optimization can reasonably control the operating state of the diesel engine
and motor. Therefore, the diesel engine and motor work in the high-efficiency area, and effectively
reduce the equivalent fuel consumption of the tractor during field operation. Under rotary tillage
and plowing conditions, equivalent fuel consumption is reduced by 4.70% and 6.31%, respectively.

Keywords: hybrid tractor; instantaneous optimization; energy-saving control; equivalent
fuel consumption

1. Introduction

Recently, with the introduction of various agricultural machinery subsidy policies,
there has been an increase in the use of tractors as the main power machinery for agricul-
tural production operations. The national “14th Five-Year Plan and 2035 Long-term Goals”
proposed goals regarding a carbon emission peak in 2030 and carbon neutrality in 2060. At
this stage, agricultural machinery mainly uses diesel engines as the main power source,
which consume a significant amount of fuel during operation and result in greenhouse
gas emissions [1]. Under the double pressure of the global energy crisis and environ-
mental pollution, it is particularly important to design and develop energy-saving and
environmentally friendly agricultural machinery vehicles [2–4]. With the improvements
in hybrid vehicle technology, hybrid tractors have been developed [5]. Hybrid tractors
are energy-saving and environmentally friendly agricultural machinery vehicles that have
the advantages of both traditionally fueled tractors and electric tractors [6–8]. The energy
conversion of a series hybrid tractor is repeated during operation, which results in low
energy utilization efficiency. Meanwhile, parallel hybrid tractors can be powered directly by
diesel engines or electric motors. It has no secondary energy conversion and realizes high
energy utilization efficiency. Therefore, based on the topology of a parallel diesel-electric
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hybrid tractor, this study develops an energy-saving control strategy to improve the energy
utilization efficiency of the entire machinery.

Using the energy-saving control strategy as the core control strategy of a hybrid
tractor directly affects the performance of a hybrid tractor. Currently, energy-saving control
strategies can be mainly divided into two categories: rule-based control strategies and
optimization-based control strategies [9,10].

Rule-based control strategies are inexpensive to develop and simple to implement,
and they are widely used in various types of hybrid vehicles. Luo et al. [11] proposed a
fuzzy reasoning energy management strategy for a series of diesel-electric hybrid tractors.
The engine demand power is determined according to the self-set fuzzy reasoning rule
table. The corresponding results demonstrate that the fuel economy is improved by 20.92%
compared with the power following control strategy. Xu et al. [12] proposed a predefined
energy management strategy for extended-range electric tractors; they indicated that the
fuel consumption was reduced by 34.22% in the continuous transition operation mode.
Based on series hybrid tractors, Fang et al. [13] proposed a fuzzy control energy manage-
ment strategy that differentiated between electric vehicles and electric tractors. Their results
showed that the battery of the state of charge (SOC) curve shows the slowest change when
the fuzzy control energy management strategy is adopted. However, rule-based control
strategies are certain and according to the designer’s experience, they do not exhibit good
adaptability to working conditions [14].

Optimization-based control strategies are solved by minimizing or maximizing a cost
function, which is generally a measure of the control target. Lee et al. [15] established
a power shunt ratio strategy based on a drivetrain simulation model. The power allo-
cation strategy of a hybrid electric tractor was optimized using a deterministic dynamic
programming algorithm. Simulation results show that the proposed control strategy can
reduce the fuel consumption of a hybrid electric tractor. Spano et al. [16] proposed a
multi-objective particle swarm optimization algorithm to determine the optimal power
system layout of parallel P2 hybrid electric vehicles, aiming to maximize fuel economy and
minimize production costs. The results showed that the control algorithm can improve
the fuel economy of HEV and reduce HEV production costs. Qian et al. [17] proposed a
calculation method based on the fuzzy PID torque recognition coefficient K. Subsequently,
they used the particle swarm-ant colony combination optimization algorithm to optimize
the key control parameters in the control strategy. Their results indicated that the fuel
consumption and emissions are reduced by ensuring the dynamics of the entire vehicle.
However, the solution of deterministic dynamic programming algorithms requires extract-
ing control rules, which is computationally intensive and time-consuming. The particle
swarm optimization algorithm has strong global search ability and is a simple algorithm,
but it has poor local search ability. Meanwhile, the control strategy of particle swarm-ant
colony combination optimization algorithm is more complicated. Recently, energy-saving
control strategies based on instantaneous optimization have become a research hotspot in
the vehicle control field, owing to their advantages of fast calculation speed, good control
effect, smaller calculation amount than dynamic programming algorithms, and simple
control algorithms.

In this study, a diesel-electric parallel hybrid tractor is considered as the research
object. Meanwhile, an energy-saving control strategy based on instantaneous optimization
of the required torque is proposed [18–23]. By optimizing the torque of both the diesel
engine and motor, the required torque of the entire machine can be distributed in real
time, which reduces the equivalent fuel consumption of the entire machine while ensuring
power stability. First, the topology and performance parameters of the hybrid tractor
are introduced; then, the main components are simulated and modeled [24,25]. Based
on the entire machine model, an energy-saving control strategy based on instantaneous
optimization was designed. The simulation results were analyzed and compared with
the power-following energy-saving control strategy. Finally, the conclusions of this study
are presented.

2



World Electr. Veh. J. 2023, 14, 27

2. Tractor Topology and Main Parameters

2.1. Subsection Model of Hybrid Tractor Drivetraino

Figure 1 shows the topology of a parallel diesel–electric hybrid tractor, which has
two drive systems, namely a diesel engine and an electric motor. The diesel engine is the
main power source, and the electric motor is the auxiliary power source [26]. The engine
and motor output torques are transmitted to the transmission input shaft through the
torque coupler, followed by the transmission output power. It is used as the power input
of the central transmission device and power take-off (PTO) shaft. The vehicle controller
and power battery, low-voltage battery, diesel engine, clutch, drive motor, transmission,
AC/DC module, and DC/DC module are connected through the CAN bus. According
to the total power demand of the entire machine and SOC value of the power battery, the
torques of the diesel engine and motor are dynamically distributed according to the control
strategy and algorithm of the entire machine. Accordingly, the tractor can achieve the best
power and economic performance.

Figure 1. Topology of a diesel–electric parallel hybrid tractor.

2.2. Subsection Model of Hybrid Tractor Drivetraino

In this study, the energy-saving control strategy of a 220 hp hybrid tractors is investi-
gated. The main components of the hybrid tractor were selected according to its working
conditions [27]. The specific parameters are listed in Table 1.

Table 1. Topology of a diesel–electric parallel hybrid tractor.

Name Parameter Value (Unit)

Diesel engine
Rated power 162 (kW)
Rated speed 2500 (rpm)

Maximum torque 800 (Nm)

Motor
Rated power 30 (kW)
Rated speed 3000 (rpm)
Rated torque 96 (Nm)

Power battery
Energy capacity 70 (Ah)
Rated voltage 360 (V)

SOC 0.90–0.25

3
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2.3. Determination of Theoretical Speed and Transmission Ratio

The design of the transmission gear ratio is based on the working characteristics of the
tractor, speed range of various working conditions of the current tractor, and the output
characteristics of the hybrid tractor coupling system. Subsequently, the main reducer and
gearbox transmission ratio, and its theoretical speeds are matched and calculated [28,29].

When rotary tillage is performed, the traveling speed of the tractor is 4–5 km/h,
and the theoretical value of the PTO speed is 540 rpm. From this, the speed ratio of
the main reducer is determined as i0, which is taken as 19.10. Seven forward gears are
designed, including three transport gears, two working gears, and two amble gears [30,31].
The corresponding transmission ratio increases sequentially, while the theoretical speed
decreases sequentially. The specific parameters used are listed in Table 2.

Table 2. Hybrid tractor transmission ratios and theoretical speeds.

Forward Gear Transport III Transport II Transport I Working II Working I Amble II Amble I

Ratio 0.864 1.377 2.307 3.296 4.963 7.405 11.208
Theoretical

speed (km/h) 39.980 28.668 17.164 11.977 7.654 5.231 3.522

3. Hybrid Tractor Model Building

Based on the topology of the hybrid tractor, its main components were modelled,
including the transmission system, rotary tillage unit dynamic, plowing unit dynamic, tire,
motor, diesel engine, power battery model. Subsequently, the simulation model of the
machine was built.

3.1. Model of Hybrid Tractor Drivetraino

The required torque of the hybrid tractors provided by the motor and diesel engine.
The required torque of the entire machine is obtained at the input end of the torque coupler,
which can be expressed as follows:

Treq = (Tm · ηm + Te · ηe) (1)

where Tm and Te are the motor and diesel engine torques, respectively. ηm and ηe represent
the working efficiencies of the motor and diesel engine, respectively. Treq is the torque
required for the torque coupler input.

According to the tractor working speed and parameters of each component used to
calculate the power source speed, this study considers the diesel engine speed as the power
source speed, which can be expressed as follows:

ntire =
v

0.377 · r
(2)

ne = ntire · it · i0 (3)

where it and i0 are the transmission and main reducer speed ratios, respectively. ntire and
ne are the drive and diesel engine speeds, respectively. v is the speed of the hybrid tractor
during operation. r is the driving wheel radius of the hybrid tractor.

3.2. Dyanmic Model of Rotary Tillage Unit

The power balance relationship characterizing the working time group of the hybrid
tractor traction rotary cultivator is formulated as follows:

Preq(Treq, nreq) =

(
Pdrive
ηzjηb

+
Pr

ηb

)
/ηo (4)

4
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Pdrive =

(
mg f cos α + mg sin α + mδ

.
v + Cd Av2

21.15

)
v

3600
(5)

Pr =
Pc + Pth + Pa + Ph

ηr
(6)

where Pdrive and Pr are the tractor travel power and rotary cultivator power consumptions,
respectively. ηr, ηzj, ηb, and ηo represent the rotary tillage unit mechanical transmission
efficiency, main reducer transmission efficiency, transmission efficiency, and torque-coupler
efficiency, respectively. Pc, Pth, Pa, and Ph are the cutting power consumption, throwing
earth power consumption, rotary cultivator forward power consumption and power re-
quired to overcome the soil horizontal reaction forces, respectively. m is the tractor mass.
f is the rolling resistance coefficient. δ is the mass conversion of the factor. α is the tilt of
the ground. Cd and A are the tractor drag coefficient and windward area, respectively.

When the tractor is operating at a low speed, the influence of air resistance and
acceleration resistance on the tractor can be ignored [28].

The hybrid tractor is equipped with a double-acting clutch, which can realize indepen-
dent control of the PTO power [29]. The relationship formula of the rotary tillage operation
timing group is as follows:

Pr = PPTO =
nPTOTPTO

9550
(7)

v = vr (8)

where PPTO, TPTO, and nPTO are the power, torque, and speed of PTO, respectively. vr is the
forward speed of the rotary cultivator.

3.3. Dyanmic Model of Plowing Unit

When the tractor is working, its driving force must overcome the rolling resistance
and other driving resistances before it can be operated. The balance between the driving
force FTN and various resistances when the tractor is operating is formulated as follows:

FTN = Fg + Ff + Fp + FA f + Fi (9)

where Fg, Ff, Fp, FAf, and Fi are the tillage, rolling, slope, air, and acceleration resistances,
respectively. FTN is the driving force.

When the tractor is operating at a low speed, the influence of air and acceleration
resistances on the tractor can be ignored.

Under normal circumstances, the tractor drive force FTN is primarily determined by
the tillage resistance Fg when the supporting agricultural tools are working. The calculation
formula is stated as follows:

Fg = Z · bl · hk · k (10)

where Z denotes the number of plowshares. bl and hk represent the individual plow width
and depth, respectively. k is the soil specific resistance coefficient.

The power demand at the input end of the torque coupler when the hybrid tractor
pulls the plow unit can be expressed as follows:

Preq(Treq, nreq) =
FTNv

ηzjηbηo
(11)

5
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3.4. Tire Model

The Duggof model belongs to the theoretical model and is suitable for the studying
vehicle dynamics control algorithms. Therefore, the Duggof tire model is used to calculate
the driving force of the driving wheel [32], which can be expressed as follows:

Fq =

⎧⎨
⎩

FZ

[
ϕ − ϕ2 FZ(1−ζ)

4cζ

]
, cζ

1−ζ ≥ ϕFZ
2

cζ
1−ζ , cζ

1−ζ ≤ ϕFZ
2

(12)

where Fq and Fz are the driving and loading forces of the drive wheel, respectively. ϕ
and ζ represent the slip rate of the corresponding drive wheel and adhesion factor of the
corresponding drive wheel, respectively. c is the horizontal distance of the hitch traction
point from the center of the rear wheel.

3.5. Motor Model

A permanent magnet synchronous motor with superior performance is selected as the
electric drive system of the tractor, which can operate not only in the forward direction,
but also in the reverse direction. Moreover, it has the working characteristics of low-
speed constant torque and high-speed constant power. The formula characterizing the
relationship between the power, speed, and torque is stated as follows:

Pm =
nm · Tm

9550
(13)

where nm is the speed of the motor.
The motor model is established via a numerical model method, and the relationship

between motor system efficiency, torque, and speed are obtained via the spline interpolation
method based on experimental motor efficiency experimental data. The relationship is
determined and unique, which is suitable for the studied control strategies. The numerical
model of motor efficiency is shown in Figure 2.

Figure 2. Motor model MAP diagram.

6
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3.6. Diesel Engine Model

The diesel engine of the corresponding power is selected according to the use condi-
tions of the hybrid tractor considering only the input and output parameters of the engine.
The formula characterizing their relationship is stated as follows:

Pe =
ne · Te

9550
(14)

where ne denotes the speed of the diesel engine.
Diesel engine modeling methods are mainly divided into two types: theoretical

modeling and numerical modeling methods. The theoretical modeling method is based on
the structural parameters of the engine, using thermodynamic theory, combustion theory,
fluid mechanics, and heat transfer theory to establish a mathematical model of the engine
working process. The numerical modeling method tests the load characteristics and speed
characteristic curves of the engine by building an experimental bench of the engine and then
constructing a numerical model by interpolation fitting. This study mainly uses the engine
output characteristics to study the drive system of the whole machine, and only considers
the relationship between the input and output parameters of the engine. Therefore, the
method of measured modeling is adopted. On the basis of the engine steady-state test
data, the number table or formula is used to fit to obtain an accurate and simple engine
numerical model [33], as shown in Figure 3.

Figure 3. Diesel engine model MAP diagram.

3.7. Power Battery Model

The power battery model describes the external characteristics of the power battery
during operation, and most of the equivalent circuit models are currently used. Because
the model has good applicability to various working states of power batteries, the equation
of state of the model can be derived.

Therefore, the equivalent internal resistance model in the equivalent circuit model is
used here. The power battery is equivalent to an ideal voltage source and a circuit model
with a resistor connected in series. The mathematical equations are simple and easy to
calculate and model, as shown in Figure 4.

7
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Figure 4. Power battery internal resistance model.

According to Ohm’s law, the voltage characteristic equation of a power battery is
stated as follows:

Ub = E0 − IbR0 (15)

where Ub and E0 are the power battery output voltage and terminal voltage, respectively. Ib
and R0 represent the output current and internal resistance of the power battery, respectively.

Ignoring the influence of the internal resistance and discharge factors of the power
battery on the electromotive force E0 and setting it as a constant, the output power equation
of the power battery can be stated as follows:

Pbmax =
Ub Ib
1000

=
(E0 − IbR0)Ib

1000
(16)

The charge and discharge power Pbat(t) of the battery is positive when discharged and
negative when charging. This parameter is determined as follows:

Pbat =
Pm

ηbat
(17)

where ηbat is the battery charging and discharging efficiency.
The ampere-hour integral method is used to calculate the change in the SOC value of

the power battery, which is formulated as follows:

SOC(t) = SOC0 −
∫ t

0 Ib(t)dt
Qb

(18)

where Qb denotes the rated power battery capacity. SOC0 represents the initial the state of
charge value.

3.8. Power Battery Model

Based on the characteristics of the hybrid tractor transmission system, the simulation
model of the entire machine is built using MATLAB. A simplified diagram of the entire
machine model is shown in Figure 5. The simulation model includes the dynamic model
of the unit (rotary tillage and plowing), motor model, diesel engine model, transmission
system model, battery model, and tire model. FTN and v are the resistance and travel speed
of the tractor, respectively, which are determined based on the operating conditions of the
tractor and are the output parameters of the dynamic model of the unit. Drivetrain model

8
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output torque and speed (Treq and nreq) at the input end of the torque coupler. The motor
and diesel engine models receive the instructions (Tmreq, nmreq, Tereq, and nereq).

{
Tmreq = Tm · ηm
Tereq = Te · ηe

(19)

where Tmreq and Tereq are the torques required for the motor and diesel engine, respectively,
at the input of the torque coupler.

Figure 5. Schematic diagram of the whole machine simulation model.

Finally, the diesel engine and motor work according to the command and output the
corresponding torque and speed. Through the drivetrain model, the power is transmitted
to the tire model to ensure the normal operation of the whole machine.

4. Energy Saving Control Strategy Design

Based on the entire machine model, two energy-saving control strategies (based on
instantaneous optimization and power follower) were designed. The design process of an
energy-saving control strategy based on instantaneous optimization is introduced in detail,
while that of a comparative control strategy (power-following) is briefly introduced.

4.1. Energy-Saving Control Strategy Based on Instantaneous Optimization

First, according to the topological structure and main component model of hybrid
electric tractor, an energy-saving control optimization model of the entire machine is
designed. Then, the optimization solution is carried out according to the instantaneous
optimization algorithm. Finally, the solution flow is discussed in detail.

4.1.1. Optimization Model of Energy-Saving Control Strategy

A hybrid tractor has two energy sources, electric power and fuel. To unify the energy,
the equivalent fuel consumption is used for the evaluation. The goal of energy manage-
ment is to minimize the equivalent fuel consumption by optimizing and rationalizing the
operating state between the diesel engine and motor. The equivalent fuel consumption in
the operation process of the hybrid electric tractor, namely, the objective function, can be
expressed as follows:

Qc(t) =
∫ t

0
f
(

Q f (Te, ne) +
jmPm(Tm, nm)

jeηbatηm

)
dt (20)

9
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Q f (t) =
fe · Pe(Te, ne)

1000 · 3600 · 0.84
(21)

where Qc(t) and Qf(t) are the equivalent fuel consumption and instantaneous fuel consump-
tion, respectively. tf represents the terminal moment. je and jm are the prices per liter of oil
and per kWh of electricity, respectively. fe is engine fuel consumption at that moment.

According to the calculation of the battery SOC value using Equation (18), the system
state equation can be obtained as follows:

S
.

OC(t) = − Ib(t)
Qb

= −
Ub(t)−

√
U2

b − 4Pb(t)R0(t)

2R0(t)Qb
(22)

The control variables of the system are Te(t) of the diesel engine and Tm(t) of the motor
torque. The relationship between them and the required torque is introduced based on
Equation (1).

Because the working capacity of each component is limited by realistic conditions, the
system must satisfy the following constraints:

⎧⎨
⎩

Tmmin(nm,t) ≤ Tm(t) ≤ Tmmax(nm,t)
Temin(ne,t) ≤ Te(t) ≤ Temax(ne,t)
SOCmin ≤ SOC(t) ≤ SOCmax

(23)

where Tmmin and Tmmax are the minimum and maximum torques of the motor, respectively.
Temin and Temax are the minimum and maximum torque of the diesel engine, respectively.
SOCmin and SOCmax represent the minimum and maximum values allowed by the SOC
value of the power battery, respectively.

Equation (22) constitutes the permissive reach of the control variables.

4.1.2. Establish the Optimal Torque Distribution Table

To optimize the energy-saving control, an instantaneous optimization control strategy
is adopted to solve this problem. The SOC value of the power battery is taken as the state
variable. Moreover, the diesel engine torque Te and motor torque Tm are taken as the control
variables to address the optimal torque distribution table. The specific process is illustrated
in Figure 6.

1. According to the typical working conditions of a tractor, a set of operating parameters
(speed ratio it, required torque Treq, and power source speed ne) within a short period
of time are used as the system input parameters;

2. In the value range, step sizes ΔTreq and Δne are used to discretize the required torque
and power source speed, respectively;

{
k = 0 : ΔTreq(t) : Treq(t)
j = 0 : Δne(t) : ne(t)

(24)

3. According to the speed ne, determine the maximum torques Temax and Tmmax that the
diesel engine and motor can achieve at this speed;

4. Take the SOC state value of the power battery as the state variable, the torques of motor
and diesel engine as the control variable, and minimum equivalent fuel consumption
as the objective function Qc, to determines the optimal instantaneous torque of the
diesel engine and motor;

5. Record the torque of the diesel engine and motor corresponding to the required
instantaneous torque and speed until the end of tf at the final moment, summarize
the data at all moments, and form the optimal torque distribution table.
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Figure 6. The flowchart of optimal torque distribution table solves.

According to the solution process presented in Figure 6, the torque distribution MAP
of the diesel engine and motor can be obtained under at given speed and torque setpoint of
the input of the torque coupler. This is illustrated in Figure 7.

(a) (b)

Figure 7. Torque distribution under hybrid drive. (a) Torque of the diesel engines. (b) Torque of
the motor.
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4.1.3. Instantaneous Optimization Control

According to the instantaneous optimization control strategy, the optimal torque
distribution of the diesel engine and motor during tractor operation is solved, as shown in
Figure 8.

Figure 8. Torque distribution flowchart based on instantaneous optimization.

The specific solving steps are shown as follows:

1. According to the dynamic equation, calculate the required torque Tv(t) and wheel
speed ntire(t) at the wheel of the entire machine.

ntire(t) =
v(t)

0.377 · r
(25)

Tv(t) =
9550 · Pv(t)

ntire(t)
(26)

where Pv(t) is the required power at the wheels of the entire machine.
2. Obtain the required torque Tzj(t) and speed nzj(t) for the input of the main reducer.
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⎧⎨
⎩ nzj(t) =

nv(t)
i0

Tzj(t) =
Tv(t)·i0

ηzj

(27)

3. Obtain the required transmission input torque Tbsq(t) and speed nbsq(t). First, according
to the torque required by the main reducer and the tractor speed, the transmission
ratio is calculated by looking up the table. Then, the transmission efficiency is obtained
by looking up the transmission ratio and torque table. Finally, the transmission input
torque and speed are calculated using the transmission speed ratio and efficiency.⎧⎨

⎩ nbsq(t) =
nzj(t)

it

Tbsq(t) =
Tzj(t)
it ·ηb

(28)

4. Calculate the required torque Treq(t) and speed nreq(t) of the torque coupler input.

{
nreq(t) = nbsq(t)

Treq(t) =
Tbsq(t)

ηo

(29)

5. The required torque Treq(t) and speed nreq(t) at the input end of the torque coupler
obtained in the previous step are interpolated according to the optimal torque distri-
bution table. Obtain the optimal torque distribution of the diesel engine and motor
during tractor operation.

4.2. Energy-Saving Control Strategy Based on Power Following
4.2.1. Control Principle Based on Power Following

As a comparative control strategy, the power following energy-saving control strategy,
which is also a rule-based control strategy, is considered. Taking the ratio of the rated
power between the diesel engine and motor as the distribution ratio, the power demand
of the entire machine is allocated according to the fixed proportion to fully leverage the
working capacity of the diesel engine and motor.

4.2.2. Solving Process of Power Following Energy-Saving Control

According to the operating conditions of the hybrid electric tractor and dynamic model
analysis conducted on the entire machine, the power required of the entire machine Preq
and diesel engine speed ne can be obtained. Accordingly, the required torque of the entire
machine Treq can be obtained.

According to the rated power of the diesel engine and motor, the torque distribution
proportion coefficient K can be determined, as follows:

K =
Perated

Perated + Pmrated
(30)

where Perated and Pmrated are the rated powers of the diesel engine and motor, respectively.
According to the torque distribution proportion coefficient K, the respective working

torques of the diesel engine and motor can be obtained using the following equations:{
Tereq = K · Treq
Tmreq = (1 − K) · Treq

(31)

The constraint conditions are as follows:⎧⎨
⎩

Tmmin(nm,t) ≤ Tm(t) ≤ Tmmax(nm,t)
Temin(ne,t) ≤ Te(t) ≤ Temax(ne,t)
SOCmin ≤ SOC(t) ≤ SOCmax

(32)
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5. Result Analysis

Two types of energy-saving control strategies were simulated and tested for the two
typical working conditions of rotary tillage and plowing. Accordingly, the simulation
results were compared and analyzed. The superiority of the energy-saving control strategy
based on instantaneous optimization was verified.

5.1. Analysis of Results Obtained Rotary Tillage Condition

During the rotary tillage operation of the tractor, the PTO works independently and is
unaffected by the driving conditions of the tractor. The torque and speed characteristics are
presented in Figure 9. The driving speed of the tractor rotary tillage operation is shown in
Figure 10.

Figure 9. Torque and tachograph of the PTO.

Figure 10. Speed of rotary tillage operations.
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With respect to the tractor rotary tillage operations in the two control strategies, the
motor power is shown in Figure 11; diesel power is shown in Figure 12, and battery SOC
value variations are shown in Figure 13.

Figure 11. Working power of motor.

Figure 12. Working power of diesel engine.
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Figure 13. SOC state value changes.

From the simulation results, it can be seen that the load of the hybrid tractor is
large, reaching 140 kW under rotary tilling conditions. Utilizing the energy-saving control
strategy based on instantaneous optimization, the working power of the motor reaches
more than 80% of the load. The working power of the diesel engine is mostly concentrated
at 95 kW. The initial SOC value is 0.90, while the final value is 0.27. Using the power
following energy-saving control strategy, the working power of the motor is relatively
small and concentrated at approximately 20 kW. The maximum power of the diesel engine
is approximately 115 kW, while the minimum power is approximately 100 kW. The initial
SOC value is 0.90, while the final value is 0.48.

The MAP of the two control strategies for the diesel engine and motor under rotary
tilling operation are presented in Figures 14 and 15, respectively.

The control strategy based on instantaneous optimization can dynamically adjust
the operating regions of the motor and diesel engine according to the change of torque
demand; subsequently, the diesel engine works near the optimal power curve with good
dynamics and small power. The torque distribution of the energy-saving control strategy
based on power following is based on the given ratio, where the adjustable range is small.
The working area of the diesel engine is large, whereas that of the motor is small.
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Figure 14. Diesel engine operating points.

Figure 15. Motor operating points.
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5.2. Analysis of Results Under Plow Condition

The tractor plowing speed is shown in Figure 16, and the plowing resistance is shown
in Figure 17.

Figure 16. Plowing speed.

Figure 17. Resistance of plowing operation.

For tractor plowing operations conducted using the two control strategies, the motor
power is shown in Figure 18, diesel power is shown in Figure 19, and battery SOC value
variations are shown in Figure 20.
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Figure 18. Working power of motor.

Figure 19. Working power of diesel engine.

It can be seen from the simulation results that under plowing conditions, based on the
energy-saving control strategy of instantaneous optimization, the working power of the
motor is dispersed while that of the diesel engine is concentrated. The diesel engine power
is mostly between 85 and 105 kW. The initial SOC value is 0.90, while the final value is 0.42.
Based on the power following the energy-saving control strategy, the working power of
the motor was concentrated between 17 and 24 kW. The power of the diesel engine is large
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over a significant range between 85 and 130 kW. The initial value of SOC is 0.90, while the
final value is 0.50.

Figure 20. SOC state value changes.

The MAP of the diesel engine and motor for the two control strategies under plowing
conditions are shown in Figures 21 and 22, respectively.

Figure 21. Diesel engine operating points.
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Figure 22. Motor operating points.

Based on the instantaneous optimization of the energy-saving control strategy, the
overall working area of the diesel engine is low, near the optimal power curve. The fuel
consumption is low with good dynamic performance. The efficiency within the overall
operating region of the motor is also high, which improves the efficiency of the energy
utilization. Based on the power following energy-saving control strategy, the working
torque of the diesel engine at constant speed is large, the working power is large, and fuel
consumption is increased. The overall operating region of the motor has a low efficiency
and poor energy utilization.

6. Conclusions

This study describes an energy-saving control strategy for a hybrid tractor based on
an instantaneous optimization algorithm. The objective is to minimize the equivalent fuel
consumption of the entire machine. The motor torque and diesel engine torque are the
control variables, while the state of charge of the power battery is the state variable. Finally,
the instantaneous optimal distribution of torque is obtained.

Considering 220 hp tractors as the research object, the simulation models of the main
components were built based on the topology of a parallel diesel-electric hybrid tractor.
Finally, a control simulation model was built using MATLAB. To solve the problem of
low energy utilization efficiency of hybrid tractors, an energy-saving control strategy
based on instantaneous optimization is proposed and compared with the energy-saving
control strategy based on power following. The results demonstrate that the proposed
energy-saving control strategy based on instantaneous optimization effectively improves
the energy efficiency of the tractor during plowing and rotary tillage and reduces equivalent
fuel consumption. Under rotary tillage condition, the equivalent fuel consumption of an
energy-saving control strategy based on power following is 14.46 L, whereas the equivalent
fuel consumption of an energy-saving control strategy based on instantaneous optimization
is 13.78 L. Accordingly, the equivalent fuel consumption decreases by 4.70%. Under plowing
condition, the equivalent fuel consumption is 14.10 L based on the power following energy
saving control strategy and 13.21 L based on the instantaneous optimization energy saving
control strategy. Accordingly, the equivalent fuel consumption decreases by 6.31%.
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The instantaneous optimal control strategy was designed for a 220 hp hybrid tractor,
and acceptable results were obtained. In the future, we will design and test an instantaneous
optimization control strategy framework that can meet a variety of different types of
hybrid tractors. In addition, researchers can improve the energy-saving control effect of
hybrid tractors by constructing models of the diesel engine and motor with more accurate
dynamic simulation.
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Abstract: This paper presents a proposed global optimal energy management strategy based on
dynamic programming to enhance the energy consumption efficiency of an agricultural hybrid tractor
that is equipped with a continuously variable transmission (CVT). Firstly, using a diesel-electric
parallel agricultural hybrid tractor as the research object, a tractor-rotary tillage coupling dynamics
model is constructed. Secondly, with the torque and speed of the motor, the torque and speed of
the diesel engine, and the CVT speed ratio as the control variables, the state of charge (SOC) of the
power battery as the state variable, and the goal of minimizing the total energy consumption of the
whole machine, a global optimal energy management model based on dynamic programming is
established. Finally, the field operation measured data is injected into the MATLAB simulation model,
and experiments are carried out to verify the effectiveness of the energy management strategy. The
results show that compared with the power-following energy management strategy, the proposed
energy management strategy can make the diesel engine and electric motor work in the optimal area,
and effectively reduce the total cost of energy consumption of the tractor during field operations.
Under the condition of rotary tillage, the total cost of energy consumption is decreased by 16.89%.

Keywords: agricultural hybrid tractor; dynamic programming; energy management; total cost of
energy consumption

1. Introduction

In the global agricultural machinery industry, tractors are the largest category. How-
ever, traditional internal combustion engine tractors consume a large amount of fossil fuels
and have poor emissions, resulting in energy shortages and environmental pollution [1–3].
With the advocacy of protecting the environment and reducing energy consumption around
the world, it is of great significance to study new energy-saving tractors [4–6]. In the last
decade, strict regulations were progressively applied to the Non-Road Mobile Machineries
(NRMM). The field of NRMM is now more than ever considering the adoption of electric
systems to reduce the amount of pollutant emissions and to improve energy efficiency
per unit of work [7]. Pure electric agricultural tractors have a short operating mileage
and are not suitable for long-term heavy-duty traction operations, whereas agricultural
hybrid tractors can solve this problem by configuring two or more power sources under
appropriate control strategies [8].

As the core control strategy of hybrid tractor, energy management strategy has a
direct impact on the power, economy, comfort, and emission of the whole machine, so it
has become the focus and difficulty of research in the field of hybrid electric vehicles [9].

World Electr. Veh. J. 2023, 14, 127. https://doi.org/10.3390/wevj14050127 https://www.mdpi.com/journal/wevj24



World Electr. Veh. J. 2023, 14, 127

Currently, there are primarily two classifications of energy management approaches: control
strategies based on rules and those based on optimization [10–12]. The development cost of
the rule-based control strategy is low, simple, and intuitive, and has strong practicability. It
is extensively utilized in a diverse range of hybrid automobiles. For four-wheel drive hybrid
electric vehicles, Ma et al. [13] proposed a rule-based logic threshold energy management
strategy model to control the torque distribution of the hybrid system and realize the
reasonable selection of the working mode. The results show that compared with the
comprehensive fuel consumption of the prototype traditional vehicle, the designed control
strategy can reduce the fuel consumption. Lv et al. [14] proposed an energy management
strategy based on rule-based fuzzy control for plug-in hybrid electric vehicles. The results
show that the proposed strategy significantly reduces fuel consumption. Luo et al. [15]
proposed a control strategy based on the optimal use of electric energy to solve the poor
fuel economy problem of hybrid vehicles on longer driving distances. The results show
that this strategy can significantly improve the vehicle’s fuel economy over a longer driving
range. However, deterministic rule-based control strategies are determined based on
the experience of the designer. It has high reliability but poor adaptability to working
conditions. For the fuzzy control strategy, the utilization of a basic fuzzy information
processing approach in the control strategy may result in compromised control precision
and decreased dynamic quality of the system [16].

Control strategies that utilize optimization require minimizing or maximizing a cost
function, which typically serves as a gauge for the control objective. Geng et al. [17] pro-
posed a multi-objective energy management strategy based on particle swarm optimization
(PSO) aiming to reduce vehicle energy consumption and control battery power at the
same time. The findings indicate that the suggested approach is capable of accomplishing
two objectives simultaneously, namely decreasing car energy usage and managing battery
energy. Zhang et al. [18] proposed an energy management strategy based on instantaneous
torque optimization for hybrid tractors. The findings indicate that the suggested approach
effectively manages the operational status of the electric motor and diesel engine, leading
to lower overall fuel usage when compared to the power-following energy management
technique. Chen et al. [19] proposed a power distribution energy management strategy
for plug-in hybrid electric vehicles. A series of quadratic equations are used to estimate
the fuel rate of the vehicle, and the battery current is used as input, and the pontryagin
minimum principle (PMP) is introduced to solve the problem. The results show that the
proposed algorithm is able to reduce fuel consumption compared to charge depletion (CD)
and charge maintenance (CS) modes. However, the instantaneous optimization method
can only ensure the optimal fuel economy at each moment, but cannot guarantee the final
global optimal. The PMP control strategy can only achieve an approximate global optimum.

In order to comply with the new energy trend and improve the energy utilization
rate of agricultural machinery, a hybrid tractor used in agriculture is taken as the research
object, which combines diesel and electric power sources. Then a global optimal energy
management strategy based on dynamic programming (DP) is proposed in this study [20–24].
By optimizing the torque distribution of the diesel engine and the electric motor, the total
energy consumption cost of the whole machine can be reduced while ensuring the power
performance. The remainder of this study is organized as follows. In Section 2, presents
a hybrid tractor topology and its main performance parameters. In Section 3, simulation
modeling of major components of the hybrid tractor is described. A global optimal energy
management strategy for hybrid tractors is designed in Section 4. Section 5 delineates the
description of simulation verification and discussion. Finally, the conclusions drawn from
the study are summarized in Section 6.

2. Topology and Principal Parameters of Hybrid Tractors

Taking a diesel-electric parallel agricultural hybrid tractor as the research object, the
establishment of the hybrid tractor topology and the performance parameters of its main
components are stated.
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2.1. Hybrid Tractor Topology

Figure 1 shows the topology of a hybrid tractor equipped with continuously variable
transmission (CVT), which has two power sources, namely a diesel engine and an electric
motor. The two can work together or independently. The output torque of the diesel engine
and the motor are transmitted to the CVT input shaft and the power take off (PTO) power
output shaft through the torque coupling, which are served as the source of power for the
central transmission and the PTO, respectively.

Figure 1. Topology of a hybrid tractor equipped with CVT.

The vehicle controller and diesel engine, power battery, clutch, electric motor, and CVT
are connected through the controller area network (CAN) bus. According to the overall
power demand of the whole system and the corresponding state of charge (SOC) index
of the power battery, the torque output of the diesel engine and the motor is dynamically
allocated to the whole machine through the control strategy. Consequently, the hybrid
tractor has the capacity to attain the most optimal combination of power and economic
efficiency.

2.2. Main Performance Parameters of Hybrid Tractor

The present investigation employs a diesel-electric parallel hybrid tractor as the re-
search object and aims to investigate its energy management strategy [25–27]. The pa-
rameters characterizing primary components of the hybrid tractor are shown in Table 1.

Table 1. Parameters characterizing primary components of hybrid tractors.

Component Parameter Value (Unit)

Diesel engine
Rated power 60 (kW)
Rated speed 2200 (rpm)

Maximum torque 280 (Nm) (1700 rpm)

Motor
Maximum power 40 (kW)

Rated speed 2800 (rpm)
Maximum torque 140 (Nm)
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Table 1. Cont.

Component Parameter Value (Unit)

Power battery
Rated capacity 70 (Ah)
Rated voltage 320 (V)

SOC 0.25–0.90

Central drive Speed ratio 19.27

CVT Speed ratio 0.864–9.728

3. Model Construction of Hybrid Tractor

Taking into account the topology of the hybrid tractor, an analysis was carried out
to model its principal components, which encompass the transmission system, the diesel
engine, the motor, the dynamics of the rotary tillage unit, the CVT, and the power battery
model. Finally, the simulation model of the hybrid tractor was developed.

3.1. Hybrid Tractor Transmission System Model

The motor and diesel engine are responsible for supplying the necessary energy to
operate the hybrid tractors. The total power of the tractor is derived from the input of the
torque coupler, represented by the following expression:

Preq(Treq, nreq) = Pmreq + Pereq (1)

Pmreq = Pm(Tm, nm)ηm (2)

Pereq = Pe(Te, ne)ηe (3)

where Pereq and Pmreq are the diesel engine and motor required power, respectively. nreq and
Treq denote the required speed and torque at the input end of the torque coupler, respectively.
ηe and ηm are the working efficiencies of the diesel engine and motor, respectively. Pe and
Pm denote the power required for the diesel engine and motor, respectively. Te, Tm, ne and
nm denote the torques and speeds of the diesel engine and motor, respectively.

Based on the tractor topology depicted in Figure 1, analyze the power transmission
process. The relationship between the wheel and the diesel engine speeds is expressed as
follows:

ne = nreq = ntireicvti0 (4)

ntire =
v

0.377r
(5)

where i0 and icvt denote the main reducer and CVT speed ratios, respectively. ne and ntire
represent the diesel engine and driving wheel speeds, respectively. r denotes the driving
wheel radius of the hybrid tractor. v represents the speed of the hybrid tractor during
working.

3.2. Dynamic Model of Rotary Tillage Unit

The power balance relationship of the unit when the hybrid tractor is towing the rotary
tillage unit is similar to that in the literature [18]. Based on the previous research results of
the research group, combined with the hybrid tractor topology in this paper. In particular,
CVT and PTO shafts are connected with torque couplings [28–30]. The power balance
equation for the rotary tillage process of the hybrid tractor can be expressed as follows:

Preq(Treq, nreq) =

(
Pdrive

ηzyηcvt
+ Pr

)
/ηo (6)
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where ηzy, ηcvt, and ηo represent the central drive efficiency, CVT efficiency, and torque-
coupler efficiency, respectively. Pr and Pdrive denote the rotary cultivator power and tractor
travel power consumptions, respectively.

3.3. Motor Model

Electric motors can convert between electrical energy and mechanical energy. The
relationship between the conversion efficiency, torque and speed is expressed as follows:

ηm = fm(nm, Tm) (7)

The numerical model method is employed to establish the motor model, whereby the
spline interpolation method is utilized to determine the correlation between the efficiency,
torque, and speed of the motor system. This approach is underpinned by experimental data
pertaining to motor efficiency. This method has a fast calculation speed and can meet the
rapidity requirements of simulation. Therefore, it is suitable for control strategy research.
The numerical model representing the efficiency of the motor is shown in Figure 2.

 

Figure 2. MAP diagram of motor model.

3.4. Diesel Engine Model

The modeling of diesel engines can be classified into two principal categories: math-
ematical modeling method and experimental modeling method [31]. The mathematical
modeling method needs to analyze the transient characteristics of the diesel engine, and
test the detailed parameters of each process. Also, the process is complex and the cal-
culation speed is slow. The experimental modeling method is based on the measured
data of the diesel engine, and constructs the MAP diagram by formulating the mapping
relationship of the diesel engine torque and fuel consumption rate corresponding to the
speed or throttle opening. In the simulation process, only the output and input parameters
of the diesel engine are concerned, and its transient characteristics are ignored. Therefore,
the experimental modeling method is used here to obtain the numerical model of the fuel
consumption rate of the diesel engine, as shown in Figure 3.
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Figure 3. MAP diagram of diesel engine model.

3.5. CVT Model

The CVT has a continuously variable speed ratio, and can adjust the speed ratio in real
time to adjust the working point of the motor and the diesel engine. Hence, it is evident
that both the motor and the diesel engine can operate in the realm of optimal efficiency.
This paper only considers the transmission efficiency of CVT, ignores its dynamic response
characteristics, and does not consider the complex hydraulic actuators in CVT. A CVT
numerical model was established based on bench test data [32]. CVT transmission efficiency
is related to its input torque and speed ratio, which can be expressed as:

ηcvt = fcvt(Tcvt_in, icvt) (8)

where Tcvt_in is the input torque of the CVT.
The relationship surface of CVT efficiency, speed, and torque are obtained by interpo-

lation fitting method. That is the numerical model of CVT efficiency, as shown in Figure 4.

 

Figure 4. CVT efficiency model.
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The calculation formula of CVT output torque and output speed is as follows:

Tcvt_out = icvtTcvt_inηcvt (9)

ncvt_out =
ncvt_in

icvt
(10)

where ncvt_in and ncvt_out are the CVT driving pulley and driven pulley speeds, respectively.
Tcvt_out is the CVT output torque.

3.6. Power Battery Model

There are two prevalent battery models in common use, namely the resistance-
capacitance model and the internal resistance model [33]. The internal resistance model
regards the battery pack as an equivalent circuit in series with an ideal voltage source and
an internal resistance, which belongs to the first-order model. The resistance-capacitance
model regards the battery pack as a circuit composed of two capacitors and three resistors,
which belongs to the second-order model. In comparison, the internal resistance model is
simple to model and has good applicability to various working conditions of the power
battery. Therefore, the internal resistance model is adopted here. The power battery is
equivalent to a circuit model of an ideal voltage source and a resistor connected in series,
the mathematical equation is simple, and it is convenient for calculation and modeling.

The relationship curve between the electromotive force of the power battery, the
internal resistance of charge or discharge and the SOC of the power battery is shown
in Figure 5.

  
(a) (b) 

Figure 5. (a) The relationship curve between electromotive force and SOC; (b) The relationship curve
between charge or discharge internal resistance and SOC.

The equation for calculating the required power of the power battery is as follows:

Pbat =

{
Pm

ηbat
, Pm > 0

Pmηbat , Pm < 0
(11)

where ηbat denotes the battery charging or discharging efficiency. Pm greater than 0 is
discharging, and Pm less than 0 is charging. Pbat represents the required power of the
power battery.
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The formulas for calculating the SOC and current of the power battery are as follows:

I(t) =
U(t)−

√
[U(t)]2 − 4R(t)Pm(t)

2R(t)
(12)

SOC(t + 1) = SOC(t)− I(t)Δt
Qb

(13)

where I(t), U(t), and R(t) are the output current, output voltage, and internal resistance of
the power battery, respectively. Qb denotes the rated power battery capacity. SOC(t) and
SOC(t + 1) are the SOC at the current and next moment, respectively. Δt is the time step.

3.7. Machine Simulation Model

The simulation model of the entire hybrid tractor has been constructed using MATLAB,
taking into account the characteristics of its transmission system, as depicted in Figure 6.
The machine simulation model includes the transmission system model, dynamic model of
rotary tiller, diesel engine model, motor model, and power battery model. The controller
collects signals based on the working conditions of the tractor. The required power and
speed (Preq and nreq) of the whole machine are obtained through calculation and processing
according to Equations (1), (4) and (6). Inside the controller, the required power of the
whole machine is allocated according to the established control strategy (including the
proposed and compared strategies). Then output the corresponding motor required power
(Pmreq) and diesel engine required power (Pereq) as the input of the motor model and diesel
engine model.

 
Figure 6. Schematic diagram of the whole machine simulation model.

The motor model and diesel engine model work in accordance with prescribed in-
structions, output the corresponding required torque and speed (Tmreq, nmreq, Tereq, and
nereq) and transmit the power to the rotary tiller dynamic model (Pdrive and Pr) through the
transmission system model. At the same time, the power battery model performs energy
transfer according to the required power of the motor model (Pbat).

4. Energy Management Strategy Design

This section details the design process of a globally optimized energy management
strategy based on dynamic programming. Firstly, an energy management optimization
model is built, and then the principle of dynamic programming algorithm is expounded.
Finally, the dynamic programming algorithm is combined with the energy management
optimization model, and the solution process of the dynamic programming control strategy
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is described. In addition, the control principle of the power-following energy management
strategy is briefly described.

4.1. Global Optimal Energy Management Strategy Based on Dynamic Programming
4.1.1. Energy Management Optimization Model

Hybrid tractors derive their power from two distinct sources, namely electricity and
diesel fuel. In order to measure the two kinds of energy uniformly, the energy consumption
economy function is defined as the sum of electric energy cost and diesel engine fuel cost.
The goal of energy management is to minimize the total cost of energy consumption by
optimally allocating the operating states between the diesel engine and the electric motor.
The total cost of energy consumption during hybrid tractor operation can be defined as:

Qc(t) =
∫ t f

0

(
jeQ f (Te, ne) +

jmPbat
ηbat

)
dt (14)

where Qc(t) is the total cost of energy consumption. Qf(t) denotes the instantaneous fuel
consumption. tf denotes the end moment. jm and je represent the prices per kWh of
electricity and liter of oil, respectively.

According to the Equation (13), the power battery SOC changes as follows:

S
.

OC(t) = − I(t)
Qb

= −U(t)−
√
[U(t)]2 − 4Pbat(t)R(t)

2R(t)Qb
(15)

4.1.2. Dynamic Programming Algorithm

Dynamic programming is a multi-step optimization algorithm, which divides the
multi-stage decision-making process into stages. Then properly selects state variables
and decision variables to define the optimal objective function. Thus, the problem can be
transformed into a family of sub-problems of the same type, and finally solved one by one.
The solution begins with the boundary conditions. The process proceeds in reverse order,
and the optimization is recursively searched segment by segment. When solving each
sub-problem, the optimal result of the previous sub-problems must be used. The optimal
solution to the last subproblem is the optimal solution to the entire problem. Using reverse
solution, according to the given tractor operating conditions, it is divided into m parts.

When establishing the dynamic programming algorithm, set the sampling time as 1 s.
Computation starts at m stage and goes forward. When calculating each stage, with the
optimal control as the goal, the optimal control variable u(k) is calculated by global search
under the given component parameters. To ensure the lowest fuel consumption of the
diesel engine and maintain the power SOC within the range of the set value. Accordingly,
the optimal optimization result is calculated. The decision variables, namely the control
variables, include motor torque, diesel engine torque, motor speed, diesel engine speed,
and CVT gear ratio. The power battery SOC is defined as the state variable, and the total
energy consumption cost is set as the optimal objective function. Based on this, a DP energy
management strategy is established.

The state variables are as follows:

x(k) = [SOC(k)]T (16)

At the same time, the state variables need to be discretized, as follows:

SOC(k) ∈ {SOC1, SOC2, · · · , SOCm} (17)

where m is the discrete state space dimension, that is, the number of discrete points.
The control variables are as follows:

u(k) = [Tm(k), Te(k), nm(k), ne(k), icvt(k)]
T (18)
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In the calculation process, the control variables are discretized as follows:

um(k) ∈
{

um1, um2, · · · , umj
}

(19)

where j denotes the number of discrete points.
The state equation of the system is as follows:

x(k + 1) = f (x(k), u(k)) (20)

According to Equations (14) and (16), the optimal objective function of dynamic
programming is constructed as follows:

J = min
m−1

∑
k=0

[Q(SOC(k), Pe(k))] (21)

where J is the minimum cumulative energy consumption total cost in the operation cycle.
Q is the total cost of energy consumption at a certain stage.

Constraints can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tmmin(nm(k), SOC(k)) ≤ Tm(k) ≤ Tmmax(nm(k), SOC(k))
Temin(ne(k)) ≤ Tm(k) ≤ Temax(ne(k))
nmmin ≤ nm(k) ≤ nmmax
nemin ≤ nm(k) ≤ nemax
icvtmin ≤ icvt(k) ≤ icvtmax
SOCmin ≤ SOC(k) ≤ SOCmax

(22)

where Tm min, Tm max, Te min, and Te max represent the minimum and maximum torques of
the electric motor and diesel engine at the current moment, respectively. nm min, nm max,
ne min, and ne max represent the minimum and maximum speeds of the electric motor and
diesel engine at the current moment, respectively. icvt min and icvt max denote the minimum
and maximum speed ratios of the CVT, respectively. SOCmin and SOCmax are the least and
greatest values permitted by the SOC, respectively.

4.1.3. Dynamic Programming Control Strategy Solution Process

The control strategy based on dynamic programming refers to the use of cyclic iteration
method to reasonably optimize the working torque of diesel engine and electric motor, so
as to minimize the total cost of energy consumption of the whole machine. The solution
process is depicted in Figure 7.
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v

zy

req

cvt_in

 

Figure 7. The solution process of dynamic programming algorithm control strategy.

1. Based on the operative circumstances, the dynamic programming algorithm is set to
1800 stages (m = 1800). According to the known vehicle speed and vehicle parameters
in each stage, the required torque Tv(k) of the tractor at the wheels of each stage is
obtained through the dynamic equation.

Tv(k) =
Pv(k)

ntire(k)
(23)

where Pv(k) denotes the required power at the wheel of the tractor.
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2. Obtain the required torque Tzy(k) at the input end of the central drive.

Tzy(k) =
Tv(k)
i0ηzy

(24)

where Tzy(k) represent the required torque at the input end of the central drive.

3. Obtain the required torque Tcvt_in at the input end of the CVT. Firstly, the CVT speed
ratio is obtained according to the central transmission demand torque and the tractor
speed look-up table, and the output torque of the CVT is calculated on the basis of the
known speed ratio. Then the CVT efficiency is obtained through the CVT speed ratio
and torque look-up table. Accordingly, the CVT input torque is calculated from the
CVT speed ratio and efficiency.

4. Obtain the required torque Treq(k) at the input end of the torque coupler.

Treq(k) =
Tcvt_in(k)

ηo(k)
+

TPTO(k)
iPTO(k)ηo(k)

(25)

where iPTO(k) denotes the PTO gear ratio inside the torque coupling.

5. According to the required torque Treq(k) and speed nreq(k), based on the set SOC upper
and lower limits, CVT speed ratio, maximum and minimum torque values of diesel
engine and electric motor, diesel engine fuel consumption rate, and electric motor
efficiency, interpolation calculation each stage may control variables.

6. From all the possible control variables calculated, select the speed and torque of the
diesel engine and motor that satisfy the constraints of the Equation (22). Calculate the
control variables and state parameter values of each component when the objective
Equation (21) is the minimum value. The state change and interpolation calculation
of the control variables are shown in Figure 8.

 
Figure 8. The solution process of dynamic programming algorithm control strategy.

When the state variables of x(i) and x(i + 1) change, the optimal control variable at
stage k is uk. In the k + 1 stage, the optimal control variable uk+1 is obtained by interpolating
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uk+1(j) and uk+1(j + 1). The red line in Figure 8 shows that in the k + 1 stage, the state
variable x(i + 1) exceeds the set upper and lower limits of the SOC.

7. Let m = m − 1, carry out the operation of the next stage until k = 0, get the optimal
control parameter and SOC value, and the operation ends.

4.2. Power following Energy Management Strategy

The power-following energy management strategy is adopted as a comparative control
strategy, which is simple in design and easy to implement. Moreover, it is a rule-based
control strategy. The power-following energy management strategy employs the ratio of
the diesel engine’s rated power to that of the electric motor as the distribution ratio. The
power demand of the whole machine is allocated based on a fixed ratio, which controls
the operational status of both the diesel engine and electric motor, and give full play to the
working capabilities of both.

5. Simulation Results and Analysis

During rotary tillage operations of the hybrid tractor, the PTO operates independently
and is not affected by the driving conditions of the tractor. According to the field rotary
tillage operation experiment, the speed, driving resistance, and PTO torque and rotational
speed during the operation process are obtained. Then the measured data are input into the
simulation model. Its torque speed is shown in Figure 9, and the rotary tillage operation
speed is displayed in Figure 10.

Figures 11 and 12 show the MAP diagrams of diesel engine and electric motor under
two control strategies during hybrid tractor rotary tillage operation. Under the global
optimal energy management strategy based on dynamic programming, the working torque
of the motor is large, and some negative torques appear. The diesel engine also produces a
large working torque, and it is concentrated in the high-efficiency area. Under the power
following energy management strategy, the motor generates a small working torque, and
there is no negative torque. The working torque of the diesel engine is also small, and the
efficiency of the working area is low.

Under the two control strategies, the change of CVT speed ratio is shown in Figure 13.
The state change of power battery SOC is shown in Figure 14. Energy costs are shown
in Figure 15.

From Figures 13–15, it can be known the CVT speed ratio is the same when the
working speed is 0–3 km/h, but the CVT speed ratio is different when the working speed
is 3–6 km/h under the two control strategies. Under the global optimization energy
management strategy based on dynamic programming, the CVT speed ratio can not
only change according to the working speed, but also make adjustments according to
the required torque of the whole machine and the SOC value of the power battery. The
SOC change trend of the two is basically the same, both showing a downward trend.
Under the dynamic programming strategy, the SOC first drops rapidly to around 0.35, then
fluctuates slowly, and some SOC rises. This corresponds to the negative torque part of
the motor in Figure 13. Under the power-following control strategy, the SOC has been
decreasing without increasing. In the end, the total energy consumption cost of the global
optimal energy management strategy is ¥ 20.02. The total energy consumption cost of the
power-following energy management strategy is ¥ 24.09.
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Figure 9. Torque and rotate speed of the PTO.

 

Figure 10. The speed during rotary tillage operations.

 
Figure 11. MAP diagram of diesel engine working.
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Figure 12. MAP diagram of motor working.

  
(a) (b) 

Figure 13. CVT speed ratio change diagram. (a) Based on dynamic programming strategy; (b) Based
on power-following strategy.
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Figure 14. SOC state value changes.

 

Figure 15. Energy Cost Chart.

6. Conclusions

This study describes a globally optimized energy management for an agricultural
hybrid tractor equipped with a CVT. Firstly, the motor torque and speed, diesel engine
torque and speed, and CVT speed ratio are used as control variables, then the SOC for
the power battery is used as the state variable, and minimize the total cost of energy
consumption of the whole machine is the goal. Finally, an energy management strategy
based on dynamic programming is designed.

To address the issue of low energy utilization efficiency in agricultural hybrid tractors,
we propose a global optimal energy management approach based on dynamic program-
ming. Taking a hybrid tractor as the research object, based on the topology structure of
the hybrid tractor equipped with CVT, the simulation model of the main components is
built. Then, the control simulation model is established by adopting MATLAB. Finally,
the simulation test results are obtained. Through the analysis of the simulation results of
the hybrid tractor rotary tillage working conditions, it can be obtained that the control
strategy based on dynamic programming can be adjusted according to specific working
conditions, and the working torque of the diesel engine and electric motor and CVT speed
ratio can be reasonably allocated to make the electric motor and diesel engine work in a
high-efficiency area. However, the control strategy based on power following can only
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distribute the torque of the motor and diesel engine according to the established rules, and
cannot make corresponding torque distribution according to the working conditions. In
the end, the total energy consumption cost of the power-following energy management
strategy and the proposed strategy are ¥ 24.09 and ¥ 20.02, respectively. Compared with
the power-following energy management strategy, the total energy consumption cost of
the proposed strategy is decreased by 16.89%.

A dynamic programming control strategy is designed for the agricultural hybrid trac-
tor with CVT, and the research shows that the strategy can significantly improve the energy
consumption economy of tractor. It provides new ideas for the design and research of new
energy agricultural tractors. At present, we have only studied the working conditions of
tractor rotary tillage. In the future, we will study the plowing and transportation conditions
of the tractor, and design a control strategy framework which may contain neuro-fuzzy
that can meet multiple working conditions. Additionally, readers can further improve the
energy consumption economy of the whole machine by optimizing the CVT speed ratio.
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Abstract: To combat the impacts of uncertain noise on the estimation of vehicle state parameters and
the high cost of sensors, a state-observer design with an adaptive unscented Kalman filter (AUKF)
is developed. The design equation of the state observer is derived by establishing the vehicle’s
three degrees-of-freedom (DOF) model. On this basis, the Sage–Husa algorithm and unscented
Kalman filter (UKF) are combined to form the AUKF algorithm to adaptively update the statistical
feature estimation of measurement noise. Finally, a co-simulation using Carsim and Matlab/Simulink
confirms the algorithm is effective and reasonable. The simulation results demonstrate that the
proposed algorithm, compared with the UKF algorithm, increases estimation accuracy by 19.13%,
32.8%, and 39.46% in yaw rate, side-slip angle, and longitudinal velocity, respectively. This is because
the proposed algorithm adaptively adjusts the measurement noise covariance matrix, which can
estimate the state parameters of the vehicle more accurately.

Keywords: vehicle state parameter estimation; Sage–Husa filtering; unscented Kalman filtering;
adaptive control

1. Introduction

Faced with the shortage of oil resources and increasing environmental pollution, elec-
tric vehicles (EVs) are considered the key to solving these problems. With the growing
demand for vehicle handling characteristics and active safety in various application sce-
narios associated with the next-generation EVs control, more and more advanced vehicle
stability control and driver assistance systems have been developed, such as active front-
wheel steering (AFS), direct yaw moment control (DYC), and four-wheel steering (4WS),
etc. [1]. At the core of these advanced control methods is the accurate vehicle dynamic state
information, such as yaw rate, longitudinal vehicle speed, lateral and longitudinal accelera-
tion, and side-slip angle, etc. The control effect is primarily influenced by the accuracy of
the vehicle state information and the real-time availability of obtaining this information.

However, it is too expensive to equip mass-production vehicles with high-precision
inertial navigation sensors (INS) and global navigation satellite systems (GNSS), and
low-cost onboard sensors may fail to measure dynamic state information accurately [2].
Moreover, some of the critical state parameters are hard to measure directly, such as roll of
the vehicle body. Consequently, the estimation of vehicle dynamic state is widely explored
and adopted, which is the process of using sensor data and estimation schemes to estimate
the dynamic state of vehicles [3].

Currently, state parameter estimation methods are broadly classified into three major
categories, kinematics model-based estimation methods, data-driven-based estimation
methods, and dynamics model-based estimation methods [4].

The kinematic methods, concerning the motion of vehicles, estimate the vehicle state
information by directly integrating the lateral acceleration and yaw rate signals of vehicle
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sensors [5,6]. However, this method also integrates the noisy signals of the system, and
the accumulated error increases with time, which can lead to significant deviations in the
estimation results. The estimation results are also affected by unknown factors, such as
sensor drift errors or calibration errors caused by temperature. Therefore, the method has
some limitations.

With artificial intelligence’s rapid development and application, data-driven estima-
tion methods based on data are gradually becoming familiar. For example, neural networks
estimate state parameter based on deep learning and supervised learning methods. This
method does not require an accurate model. It only involves using neural networks to
train the data from real-vehicle tests and verify the training effect through real-vehicle
tests [7–9]. Novi et al. [9] obtained data from the Vi-Grade model, trained the artificial
neural network (ANN), and combined ANN with UKF to estimate the side-slip angle.
However, this training mode is mainly offline and more dependent on the existing data.
In addition, changes in vehicle parameters can lead to changes in the fitted relationship
derived from and based on the original data, bringing some bias to the estimation results.

For dynamic model-based methods, vehicle state information is estimated by leverag-
ing different vehicle and tire dynamic models. Therefore, the accuracy of the model can
have a significant impact on the estimation results. The vehicle dynamic models currently
used are mainly 2-DOF models, 3-DOF models, and 7-DOF models [10]. Sun Wen et al. [11]
used a 2-DOF model, which does not consider the effect of longitudinal motion on the
state parameters. Jeong et al. [12] used the same model and established a linear tire model.
However, a linear model will affect the estimation performance of the algorithm when
the vehicle is running in a nonlinear region. The 7-DOF model, on the other hand, has a
complex structure, which undoubtedly increases the computational effort of the algorithm.
Therefore, the 3-DOF model, which considers lateral, yaw, and longitudinal motions, be-
comes the preferred choice. Based on this, the estimation methods can be further divided
into filter-based vehicle state estimation, such as the Kalman filter (KF), extended Kalman
filter (EKF), unscented Kalman filter (UKF), particle filter (PF), unscented particle filter
(UPF), etc., and observer-based vehicle state estimation, such as sliding mode observer [13],
nonlinear observer, etc.

KF is a linear optimal filter that obtains a posterior optimal estimate based on the
system’s state equation, measurement equation, and the statistical properties of noise
between them, using observations and prior forecast. References [14,15] used KF to estimate
vehicle parameters. However, systems are often nonlinear, and the linear model-based KF
estimator cannot be applied in all cases. So, the KF needs to be improved. Currently, EKF
and UKF are relatively popular. The EKF expands the nonlinear equations in a Taylor series
around priori state estimates, and then uses the KF to handle the linear problem [16,17].
For the EKF algorithm, the accuracy of the vehicle model parameters significantly impacts
the estimation accuracy. Compared to the EKF, UKF uses sigma points instead of the Taylor
series expansion. In most cases, sigma points approximate nonlinear transformation better
than linearization. It can eliminate the process of calculating complex Jacobi matrices, and
its accuracy is higher in dealing with more complex nonlinear problems [18,19]. Huang
Yuhao et al. [20] compared UKF with EKF, proving that UKF has a higher accuracy. In
addition, many scholars have also studied state estimation based on PF [21,22]. Chu
Wenbo et al. [23] proposed an information-fusion observer based on the UPF algorithm.
Although the UPF algorithm can handle nonlinear and non-Gaussian distributions, it is
computationally intensive, affecting its efficiency and real-time requirement.

Regarding the UKF algorithm, matrices Q and R are both noise covariance matri-
ces, and their values usually require experience or trial and error to determine. How-
ever, the noise constantly changes when a vehicle is driving, and the original UKF can-
not achieve sound filtering effects under different working conditions. Therefore, some
scholars have proposed a filtering method for adaptive adjustment of the noise covari-
ance matrix, which enables better adaptability and robustness for the filtering algorithm.
Wang Zhenpo et al. [24] combined UKF with fuzzy control to realize the process’s adaptive
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adjustment of measuring the noise covariance matrix. Fan Tiane et al. [25] used shallow
long short-term memory networks (LSTM) to optimize UKF. The estimation error of battery
state of charge (SOC) and state of energy (SOE) is reduced to 0.43% and 0.46%, respectively.
Li Gang et al. [26] introduced a Sage–Husa adaptive EKF algorithm and enhanced the
adaptive rules built upon it, which increased the estimation accuracy of the center of mass’s
side-slip angle. Zhou Bing et al. [27] suggested a double adaptive unscented Kalman filter
algorithm based on the fuzzy control adaptive adjustment of slip rate to address the issue
of starting value sensitivity in semi-trailer state estimation. Xu Daxing et al. [28] proposed
an improved algorithm based on Sage–Husa for process noise and provided an accurate es-
timation method for process noise statistics. Luo Zeyuan et al. [29] researched the transient
interference problem of the Sage–Husa algorithm and proposed the divergence calculation
technique. The simulation results show that the improved algorithm has strong robustness.

When the process noise variance is known or small, Yang Rui et al. [30] used the
Sage–Husa algorithm to estimate the noise variance. However, in the Sage–Husa algorithm,
compensating for both Q and R at the same time can easily lead to a divergence in the
filtering results, and the process noise covariance matrix Q has a certain degree of robustness
after compensation [31–33]. In comparison, the size of the measurement noise covariance
matrix R has a more significant impact on the filtering effect.

Through research on existing achievements, this paper proposes an adaptive unscented
Kalman filter method based on the Sage–Husa algorithm to obtain vehicle state parameters
under uncertain noise interference accurately. This algorithm takes the front wheel angle
and vehicle lateral acceleration as input signals, ignoring the process noise covariance
matrix Q update, and adaptively adjusts the statistical feature estimation of the system
measurement noise. Moreover, we improve the estimator to ensure that the covariance of
the measurement noise is always positive to prevent the filtering results from diverging.
Finally, we verified the rationality of the algorithm through joint simulation with Carsim
and Matlab/Simulink, and typical operating condition experiments were conducted.

The main contributions of this paper are as follows:

(1) The Sage–Husa algorithm is improved to avoid non-positive definiteness of the
covariance matrix and to ensure its positivity.

(2) The improved Sage–Husa algorithms are adopted to dynamically update the mean
and covariance matrices of the measurement noise, which effectively improves the
filtering accuracy and prevents its divergence.

(3) Sage–Husa algorithm is integrated with the UKF algorithm to form the AUKF algo-
rithm for dynamic vehicle state estimation. The simulation results demonstrate that
AUKF increases estimation accuracy by 19.13%, 32.8%, and 39.46% in yaw rate, side-
slip angle, and longitudinal velocity, respectively, proving the algorithm’s validity in
providing accurate vehicle state information for active vehicle safety control.

The structure of this paper is as follows.
In Section 2, we establish the vehicle dynamics model and the tire model. Section 3

describes the principle and implementation of UKF and AUKF. Section 4 presents the
comparative simulation results of UKF and AUKF. Section 5 provides a summary of
this work.

2. Vehicle State Parameter Estimation Model

2.1. 3-DOF Vehicle Dynamics Model

A non-linear 3-DOF vehicle dynamic model with lateral, longitudinal, and yaw is
built, based on a linear 2-DOF model [34] as shown in Figure 1, to simulate the vehicle
motion state more accurately and reliably under various road circumstances. This model
treats the car as if it were a rigid body, ignoring the pitch, roll, and vertical motions, as
well as air resistance and tire-rolling resistance. Meanwhile, this model assumes that the
steering angles of the two front wheels are equal.
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Figure 1. 3-DOF vehicle dynamics model.

The 3-DOF’s vehicle dynamics model equations are as follows
The longitudinal dynamic equation is

max = (Fxfl + Fxfr) cos δ − (Fyfl + Fyfr) sin δ + Fxrl + Fxrr (1)

The lateral dynamic equation is

may = (Fxfl + Fxfr) sin δ − (Fyfl + Fyfr) cos δ + Fyrl + Fyrr (2)

The yaw dynamics equation is

Iz
.

ωr =
tf
2
[(Fxfr − Fxfl) cos δ + (Fyfl − Fyfr) sin δ] +

tr

2
(Fxrr − Fxrl) + a[(Fxfl + Fxfr) sin δ + (Fyfl + Fyfr) cos δ]− b(Fyfl + Fyfr) (3)

where m is the vehicle mass; Fx and Fy are the longitudinal and lateral forces of the wheels,
respectively; fl, fr, rl and rr represent the left front wheel, right front wheel, left rear wheel
and right rear wheel, respectively; tf and tr are wheelbases of the front and rear wheels of
automobiles;

.
ωr is the yaw acceleration of the vehicle; Iz is the moment of inertia of the

vehicle around the Z axis; and a and b are the distance between the center of gravity of the
vehicle and the front and rear axles, respectively.

From the vehicle’s dynamics model equations, the state equation and measurement
equation of the 3-DOF vehicle can be derived as follows

⎧⎪⎨
⎪⎩

.
ωr =

(a2k1+b2k2)
Izvx

ωr +
ak1−bk2

Iz
β − ak1

Iz
δ

.
β = ( ak1−bk2

mv2
x

− 1)ωr +
k1+k2
mvx

β − k1
mvx

δ
.
vx = ωrβvx + ax

(4)

ay =
ak1 − bk2

mvx
ωr +

k1 + k2

m
β − k1

m
δ (5)

where k1 and k2 are the cornering stiffness of the front and rear axle, respectively; vx is the
vehicle longitudinal speed; δ is the front wheel steering angle; β is side-slip angle; ωr is yaw
rate; and ax and ay are the longitudinal and lateral acceleration of the vehicle, respectively.

The mechanism for maintaining vehicle stability relies heavily on sensors. This paper
estimates the side-slip angle, yaw rate, and longitudinal vehicle speed from the vehicle’s
lower-cost longitudinal acceleration and steering-angle sensor outputs. For nonlinear
systems, the standard state space formulae are

{
X(k) = f (X(k − 1), u(k)) + W(k)
Z(k) = h(X(k), u(k)) + V(k)

(6)
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where f and h are nonlinear state-equation functions and observation-equation functions,
respectively; X(k) is the state vector that cannot be observed directly; u(k) is the control-
input vector; W(k) is the system Gauss white noise and its covariance matrix is Q; and
V(k) is the measurement of Gauss white noise and its covariance matrix is R.

The two-dimensional system-input vector is defined as

u = [δ ax]
T (7)

The three-dimensional system-state vector is defined as

X = [ωr β vx]
T (8)

The system-observation vector is defined as

Z =
[
ay
]T (9)

2.2. Tire Model

Tires are one of the most essential components of automobiles. In the simulation
analysis, the precision of the selected tire model should match the accuracy of the built
3-DOF vehicle model, and the tires have the structural complexity and nonlinearity of
mechanical properties. Therefore, it is imperative to select the appropriate tire model.

The most often used formula in vehicle dynamics studies is H.B. Pacejka’s “magic tire”.
It is a model of a tire constructed by a unique sine function. One set of straightforward
formulas with excellent simulation accuracy thoroughly explain the mechanical properties
of tires under various operating circumstances [35]. It can be provided as follows

y = D sin{Carctan[Bx − E(Bx − arctan(Bx))]} (10)

Y(X) = y(x) + ΔSv (11)

x = X + ΔSh (12)

where Y denotes the lateral or longitudinal force; x represents the side-slip angle β or slip
rate s; y is the tire-roll angle; D is the peak value, representing the maximum of the curve;
C is the shape factor of the curve, i.e., whether the curve symbolizes longitudinal force,
lateral force or correction moment; B is the stiffness factor; E is the curvature factor and
represents the shape near the maximum value of the curve. Sv represents the offset in the
vertical direction of the curve, and Sh represents the offset in the horizontal direction of
the curve.

Then, the longitudinal and lateral forces of the tire can be expressed as

Fxij = Dij sin
{

Cij tan−1[Bij(1 − Eij)sij + Eij tan−1(Bijsij)]
}

(13)

Fyij = Dij sin
{

Cij tan−1[Bij(1 − Eij)aij + Eij tan−1(Bijaij)]
}

(14)

3. Vehicle State Parameter Estimation Based on AUKF

3.1. UKF Algorithm

The main idea of UKF is to transform a nonlinear system into a linear system for pro-
cessing by unscented transformation (UT). The UKF algorithm is expressed as follows [36]:

(1) Obtain a set of sampling points (sigma points) and calculate the corresponding weights
of these sampling points It is assumed that the X and variance P of the n-dimensional
random variable state vector X are known. Then, by obtaining 2n + 1 sigma points
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X and the appropriate weights via the subsequent unscented transformation, the
statistical properties of f (x) may be computed.⎧⎪⎨

⎪⎩
X(0) = X, i = 0
Xk−1

(i) = X + (
√
(n + λ)P)i, i = 1 ∼ n

Xk−q
(i) = X − (

√
(n + λ)P)i, i = n + 1 ∼ 2n

(15)

These sampling sites’ related weights are determined as{
ωm

(0) = ωc
(0) = λ

n+λ , i = 0
ωm

(i) = ωc
(i) = 1

2(n+λ)
, i = 1 ∼ 2n (16)

where λ is used to reduce the overall prediction error, which can be chosen based on
experience but should ensure that the matrix (n + λ) P is a positive semi-definite. The
subscripts m and c stand for the mean and covariance, respectively.

(2) According to Equations (15) and (16), a set of sampling points and their corresponding
weights are calculated

X(i)(k|k) = [X̂(k|k), X̂(k|k) +
√
(n + λ)P(k|k), X̂(k|k)−

√
(n + λ)P(k|k)] (17)

(3) One-step prediction of the set of 2n + 1 sigma points using the state equation

X(i)(k + 1|k) = f [X(i)(k|k), k] (18)

(4) Calculation of one-step prediction and covariance matrix of the system state variables

�
X(k + 1|k) =

2n

∑
i=0

ω(i)X(i)(k + 1|k) (19)

Pxk =
2n

∑
i=0

ω(i)[X(i)(k + 1|k)−�
X(k + 1|k)][X(i)(k + 1|k)−�

X(k + 1|k)]
T
+ Q (20)

(5) The predicted observations are calculated by bringing sigma points into the observa-
tion equation

Z(i)(k + 1|k) = h [X(i)(k + 1|k), k + 1] (21)

(6) The mean, covariance and cross-covariance are calculated analogously to
Equations (19) and (20)

Z(k + 1|k) =
2n

∑
i=0

ω(i)Z(i)(k + 1|k) (22)

Pzk =
2n

∑
i=0

ω(i)[Z(i)(k + 1|k)− Z(k + 1|k)][Z(i)(k + 1|k)− Z(k + 1|k)]T + R (23)

Pxkzk =
2n

∑
i=0

ω(i)[X(i)(k + 1|k)−�
X(k + 1|k)][Z(i)(k + 1|k)− Z(k + 1|k)]T (24)

(7) Kalman gain matrix is calculated

K(k + 1) = Pxkzk P−1
zk

(25)
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(8) System status and covariance matrix are updated

�
X(k + 1|k + 1) =

�
X(k + 1|k) + K(k + 1)[Z(k + 1)− Z(k + 1|k)] (26)

P(k + 1|k + 1) = P(k + 1|k)− K(k + 1)Pzk KT(k + 1) (27)

3.2. AUKF Algorithm

The Sage–Husa algorithm is a maximum a posteriori (MAP) estimation algorithm [37].
When the noise means and covariance matrix are unknown, the magnitudes of q, r, Q, and
R are approximated online from the observations. In the estimate phase, the Sage–Husa
method optimizes the filtering performance by raising the weighting coefficients of the
fresh data by an asymptotic elimination factor, reducing the influence of time-old data on
the present estimation results.

For the uncertainty of measurement noise in the actual process, this paper proposes an
adaptive unscented Kalman filter algorithm based on the Sage–Husa theory and updates
Rk online to reduce the algorithm’s complexity without affecting the accuracy. Its flow
chart is shown in Figure 2. The AUKF algorithm, in contrast to the conventional UKF algo-
rithm, continuously corrects and estimates the model parameters, as well as the statistical
characteristics of the noise based on its quantitative data, which can decrease the estimation
error, suppress filtering divergence, and increase filtering accuracy.

 
Figure 2. The block diagram of AUKF.

The steps are as follows

dk =
1 − γ

1 − γk (28)

εk = Zk − h[X(k|k − 1)]− rk (29)

r̂k = (1 − dk)r̂k−1 + dk[Zk −
2n

∑
i=0

ω(i)Z(i)(k|k − 1)] (30)
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R̂k = (1 − dk)R̂k−1 + dk[εkεT
k −

2n

∑
i=0

ω(i)[Z(i)(k + 1|k)− Z(k + 1|k)][Z(i)(k + 1|k)− Z(k + 1|k)]T] (31)

where rk represents the observed noise’s mean, while Rk represents its covariance; εk is a
new information sequence, representing the discrepancy between the actual and expected
observations; γ is a gradual elimination factor, and the range of values is 0~1.

Sage–Husa adaptive filtering is suboptimal filtering, so the filtering results sometimes
diverge. The primary cause is that filter divergence may result from subtraction in a solution
of Equation (31) for Rk because it has a non-positive definite condition. To guarantee that
Rk is positive, the following techniques are employed in this paper

R̂k = (1 − dk)R̂k−1 + dk(εkεT
k ), R̂k ≤ 0 (32)

4. Simulation Results and Analyses

In order to verify the accuracy and feasibility of the proposed vehicle state observer
based on the Sage–Husa adaptive UKF algorithm, co-joint simulation performs in Carsim
and MATLAB/Simulink. Finally, the estimation results of AUKF and UKF are compared.
All simulations below are carried out in Matlab R2020a and Carsim2019 running on a
laptop computer with AMD R7-5800H CPU @3.2 GHz and 16 GB RAM.

The simulation environment in Carsim is set to a typical steering angle step-input
condition, sinusoidal steering condition, and double-lane change condition. These driving
conditions can cover various situations in daily driving, such as turning, overtaking, and
continuous overtaking. In addition, when the noise covariance matrix is time-varying,
the algorithm’s performance is tested by altering the statistical properties of measurement
noise under the double-lane change condition. The road adhesion coefficient is set to 0.85,
the vehicle’s initial speed is 40 km/h, the transmission ratio of the steering wheel to the
front wheel is 20, and the sampling time is 0.001 s. In Carsim, the car is chosen as a C-class
hatchback with the fundamental parameters in Table 1.

Table 1. Vehicle Parameter Settings.

Parameter Value

m 1410 kg
a 1.015 m
b 1.895 m
k1 −122,540 N·rad−1

k2 −100,500 N·rad−1

Iz 1536.7 kg·m2

Assigning the basic parameters of the algorithm, the initial value of the error covari-
ance matrix P is set to eye (3), the initial value of the system process noise covariance matrix
Q is set to eye (3) × 0.001, and the initial value of the measurement noise covariance matrix
R is set to 100.

4.1. Steering Angle Step-Input Condition

We set the initial value of the system-state vector X(t0) to [0, 0, 40/3.6]T. The initial
value of the system-input vector u(t) is [δ, ax]T, and its input waveform is shown in Figure 3.
The observed quantity Z is ay, and the waveform after adding Gaussian white noise is
shown in Figure 4.
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Figure 3. Steering angle variation under the step-input condition.

Figure 4. Observation signal with noise under the steering angle step-input condition.

Figures 5–7 depict the simulation results, where Carsim’s output represents the ideal
value, UKF and AUKF originating from the estimated values obtained by the UKF and
AUKF algorithms, respectively. Figures 5 and 6 show how the standard UKF estimation are
significantly impacted when the steering wheel is twisted violently at 10 s. They demon-
strate that UKF cannot be precisely predicted when there is unknown noise interference.
The AUKF algorithm’s estimated value is more accurately calculated than the classic UKF
algorithm and is roughly consistent with the ideal value, which can effectively lessen the
influence of unidentified noise.
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Figure 5. Comparison of yaw rate estimates under the steering angle step-input condition.

Figure 6. Comparison of side-slip angle estimates under the steering angle step-input condition.

Figure 7 shows that there is a certain deviation in the estimation of UKF and AUKF
within 0–3 s when calculating the longitudinal vehicle speed. Then, within 3–10 s, both
UKF and AUKF are approaching the actual value. At 10 s, due to step input of the steering
wheel, the input value of the observer undergoes a significant change in an instant, and
the estimated value of UKF suddenly increases and deviates from the actual value. At the
same time, AUKF is less affected and can still accurately estimate the longitudinal speed of
the vehicle within 10–20 s.
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Figure 7. Comparison of longitudinal velocity estimates under the steering angle step-input condition.

The mean absolute error (MAE) and root mean square error (RMSE) are indicators
used in this research to quantify further and examine the estimation values. The root means
square error and means absolute error can be used to assess the precision and tracking
abilities of the estimation results, respectively. The expressions are defined as

MAE =
1
n

n

∑
i=1

|yi − ŷi| (33)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (34)

As shown in Tables 2 and 3, the estimation accuracy and stability of the AUKF algo-
rithm are better than those of the UKF algorithm in the MAE indicators and the RMSE
indicators. The accuracy of yaw rate estimation under the steering angle step-input con-
dition has been improved by 3.2%, the accuracy of side-slip angle estimation has been
improved by 9.5%, and the estimation of longitudinal velocity has been improved by 32.5%.

Table 2. MAE between estimated value and true value under the steering angle step-input condition.

Algorithm Yaw Rate (rad/s) Side-Slip Angle (rad)
Longitudinal

Velocity (km/h)

UKF 0.0012 0.000462 0.3726
AUKF 0.0009 0.000140 0.1982

Table 3. RMSE between estimated value and true value under the steering angle step-input condition.

Algorithm Yaw Rate (rad/s) Side-Slip Angle (rad)
Longitudinal

Velocity (km/h)

UKF 0.0063 0.000907 0.4644
AUKF 0.0061 0.000821 0.3133

4.2. Sinusoidal Steering Condition

We set the initial value of the system state vector X(t0) to [0, 0, 40/3.6]T. The initial
value of the system input vector u(t) is [δ, ax]T, and its input waveform is shown in Figure 8.
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The observed quantity Z is ay, and the waveform after adding Gaussian white noise is
shown in Figure 9.

Figure 8. Steering-angle variation under the sinusoidal steering condition.

Figure 9. Observation Signal with Gaussian white noise.

The simulation results are shown in Figures 10–15. Figures 10 and 12 show that under
the sinusoidal steering condition, the car changes lanes after 5 s. The original UKF deviates
from the ideal value when the steering wheel angle experiences a quick shift, but the
proposed AUKF algorithm can successfully track the ideal value. Figures 11 and 13 show
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that the error and diffusion of AUKF are smaller than those of UKF, indicating that AUKF
can better reduce the impact of unknown noise. It can be seen from Figures 14 and 15 that
the divergence of UKF is larger than AUKF because UKF cannot dynamically adjust the
measurement noise covariance matrix. The error of UKF becomes larger and larger as
time goes on, and the error of AUKF is relatively stable, which proves that the algorithm
can effectively reduce the influence of unknown noise and curb the divergence of the
filtering results.

Figure 10. Comparison of yaw rate estimates under the sinusoidal steering condition.

Figure 11. Absolute error of yaw rate estimates under the sinusoidal steering condition.
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Figure 12. Comparison of side-slip angle estimates under the sinusoidal steering condition.

Figure 13. Absolute error of side-slip angle estimates under the sinusoidal steering condition.

55



World Electr. Veh. J. 2023, 14, 167

Figure 14. Comparison of longitudinal velocity estimates under the sinusoidal steering condition.

Figure 15. Absolute error of longitudinal velocity estimates under the sinusoidal steering condition.

As shown in Tables 4 and 5, the accuracy of yaw rate estimation has been improved
by 24.8%, the accuracy of side-slip angle estimation has been improved by 19.6%, and
the estimation of longitudinal velocity by AUKF has been improved by 63.4% under the
sinusoidal steering condition.

Table 4. MAE between estimated value and true value under the sinusoidal steering condition.

Algorithm Yaw Rate (rad/s) Side-Slip Angle (rad)
Longitudinal

Velocity (km/h)

UKF 0.000726 0.000176 0.557
AUKF 0.000551 0.000141 0.154
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Table 5. RMSE between estimated value and true value under the sinusoidal steering condition.

Algorithm Yaw Rate (rad/s) Side-Slip Angle (rad)
Longitudinal

Velocity (km/h)

UKF 0.000916 0.000219 0.6434
AUKF 0.000689 0.000176 0.2356

4.3. Double-Lane Change Condition

We set the initial value of the system state vector X(t0) to [0, 0, 40/3.6]T. The initial
value of the system input vector u(t) is [δ, ax]T, and its input waveform is shown in
Figure 16. The observed quantity Z is ay, and the waveform after adding time-varying
Gaussian white noise is shown in Figure 17, in which the statistical characteristics of the
measurement noise becomes 10 times that of the first 10 s at 10–20 s, i.e., 10Rk.

Figure 16. Steering-angle variation under the double-lane change condition.

Figure 17. Observation Signal with time-varying Gaussian white noise.
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The simulation results are shown in Figures 18–23. Figures 18 and 20 show that under
the double-lane change condition, the car changes lanes between 5–15 s. The original UKF
deviates from the ideal value when the steering wheel angle experiences a quick shift, but
the proposed AUKF algorithm can successfully track the ideal value. Figures 19 and 21
show that the error of AUKF is smaller than that of UKF, indicating that AUKF can better
reduce the impact of unknown noise. And after 10 s, when the statistical characteristics of
the measurement noise covariance increase by ten times, the divergence of UKF significantly
increases, proving that UKF cannot accurately estimate state parameters when the noise
covariance is time-varying. The fluctuation of AUKF is relatively small, and the error is
within an acceptable range.

Figure 18. Comparison of yaw rate estimates under the double-lane change condition.

Figure 19. Absolute error of yaw rate estimates under the double-lane change condition.
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Figure 20. Comparison of side-slip angle estimates under the double-lane change condition.

Figure 21. Absolute error of side-slip angle estimates under the double-lane change condition.

As shown in Figure 22, the estimates of UKF and AUKF are the same within 0–5 s, and
both show some deviation. Whereas, after 5 s, when the driver starts to turn the steering
wheel, the UFK is unable to provide real-time updates in calculating the longitudinal speed
and deviates as the error increases. As can be seen in Figure 23, both UKF and AUKF are
affected after the statistical characteristics of the noise is expanded by a factor of 10, but the
fluctuation of AUKF is smaller than that of UKF, and the estimation results are still more
accurate than those of UKF. The simulation results show that the proposed algorithm has a
higher accuracy and can cope with the time-varying noise covariance characteristic values.
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Figure 22. Comparison of longitudinal velocity estimates under the double-lane change condition.

Figure 23. Absolute error of longitudinal velocity estimates under the double-lane change condition.

As shown in Tables 6 and 7, the accuracy of yaw rate estimation has been improved
by 29.4%, the accuracy of side-slip angle estimation has been improved by 69.3%, and
the estimation of longitudinal velocity by AUKF has been improved by 22.5% under the
double-lane change condition.

Table 6. MAE between estimated value and true value under the double-lane change condition.

Algorithm Yaw Rate (rad/s) Side-Slip Angle (rad)
Longitudinal

Velocity (km/h)

UKF 0.0020 0.000363 0.348
AUKF 0.0016 0.000116 0.234
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Table 7. RMSE between estimated value and true value under the double-lane change condition.

Algorithm Yaw Rate (rad/s) Side-Slip Angle (rad)
Longitudinal

Velocity (km/h)

UKF 0.0034 0.000578 0.4289
AUKF 0.0024 0.000177 0.3321

As shown in Tables 8–10, the AUKF algorithm has a longer single-step running time
than the UKF algorithm. This is because the AUKF algorithm needs to calculate the weight
factors and check whether the covariance matrix is positively definite. The computational
complexity is higher than that of the UKF algorithm, and therefore, the total running time
is longer.

Table 8. Comparison of algorithm complexity in steering angle step-input condition.

Algorithm Total Running Time (s)
Single-Step

Running Time (s)
Computational

Complexity

UKF 23.433 0.00117 O(n2)
AUKF 24.026 0.00120 O(n2)

Table 9. Comparison of algorithm complexity in sinusoidal steering condition.

Algorithm Total Running Time (s)
Single-Step

Running Time (s)
Computational

Complexity

UKF 52.716 0.00132 O(n2)
AUKF 56.439 0.00141 O(n2)

Table 10. Comparison of algorithm complexity in double-lane change condition.

Algorithm Total Running Time (s)
Single-Step

Running Time (s)
Computational

Complexity

UKF 24.892 0.00124 O(n2)
AUKF 26.214 0.00131 O(n2)

5. Conclusions

When the vehicle is disturbed by uncertain noises, the traditional vehicle state estima-
tion methods will appear to reduce the accuracy or even diverge. To solve this problem, an
AUKF algorithm based on the Sage–Husa algorithm is proposed in this paper. By ignoring
the update of the process noise covariance matrix Q and adjusting the measurement noise
covariance matrix R online, the estimation of vehicle state parameters under unknown
noise disturbance is solved.

This article uses Carsim and Matlab/Simulink for joint simulation to estimate the
vehicle’s side-slip angle, yaw rate, and longitudinal speed. The simulation results show
that the accuracy of the AUKF algorithm is improved by 3.2%, 9.5%, and 32.5% under
the steering angle step-input condition, 24.8%, 19.6%, and 63.4% under the sinusoidal
steering condition, and 29.4%, 69.3%, and 22.5% under the double-lane change condition.
Compared with the UKF algorithm, although the single-step running time of the AUKF
algorithm is slightly increased, its accuracy is greatly improved, which can effectively filter
out unknown noise. In practical applications, the three working conditions proposed in
this article can cover various situations in daily driving. The proposed method eliminates
the need to obtain critical state parameters from high-precision sensors, reduces the cost of
the vehicle, and can provide more accurate parameters for vehicle decision-making and
control systems, which significantly helps to improve the vehicle’s handling characteristics.

However, when estimating the longitudinal speed of the vehicle, both UKF and AUKF
have significant errors at the beginning. This may be caused by errors in the tire model. In
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our future research, we will build more accurate models to reduce the uncertainty error
further and consider the vehicle state estimation under different road surface adhesion co-
efficients and road slopes. Then, we will improve our proposed algorithm by incorporating
more complex working conditions verification and conduct a real-vehicle test.
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Abstract: Based on the analysis of the operating conditions of the tractor, a Hybrid four-wheel drive
tractor is proposed, and formulate the torque distribution control strategy based on fuzzy control,
to control the driving wheel slip rate of the Hybrid four-wheel drive tractor in the high traction
efficiency operating range of the tractor. The vehicle model of the Hybrid four-wheel drive tractor is
established in AVL-CRUISE software, and the torque distribution control strategy based on fuzzy
control is established in MATLAB/Simulink software. The AVL-CRUISE and MATLAB/Simulink
co-simulation was carried out based on the plowing condition of the tractor. The simulation results
show that the torque distribution control strategy based on fuzzy control can control the driving
wheel slip rate of the Hybrid four-wheel drive tractor in the high traction efficiency operating range,
the power performance of the Hybrid four-wheel drive tractor is improved, while the engine runs
smoothly and is always in the high-efficiency range of engine operation, and the economy is better.

Keywords: parallel hybrid; hybrid tractor; slip rate; torque distribution; fuzzy control; four-wheel drive

1. Introduction

The tractor is the most widely used agricultural machinery. Its main job is to mount
agricultural implements for operation in the field and for transportation on the road [1,2].
With the change in tractive force, the slip rate of the tractor also constantly varies [3,4].
With the increase in tractive force, the slip rate will also increase. Excessive slip rate on
the one hand will affect the tractor’s tractive force, wasting engine power; on the other
hand, excessive wheel slip will damage the soil structure and cause increased tires wear,
reducing efficiency [5,6]. Related research shows that the wheel tractor will have high
traction efficiency if the slip rate is controlled between 10% and 15% [7], so the slip rate of
the tractor drive wheel needs to be controlled to improve the tractor’s traction efficiency.
The current research on changing the slip rate of tractor drive wheels is mainly focused on
changing the tillage depth [8,9]. The change in tillage depth will have some effect on the
growth of crops [10,11]. The torque distribution of the tractor drive wheels directly affects
the slip rate of the drive wheels [12–14], and the four-wheel drive tractor can effectively
reduce the slip rate of the drive wheels [15]. The traditional four-wheel drive tractor uses a
splitter to distribute the torque of the front- and rear-drive wheels, and the arrangement of
the mechanical components is not convenient, at the same time, the four-wheel drive tractor
with the splitter is not able to distribute the front- and rear-drive wheel torque flexibly,
and the working condition is poorly adapted. The electric drive system can conveniently
arrange the power source, realize the front- and rear-independent drive, and flexibly
distribute the torque of the front- and rear-drive wheels [16–18]. Some researchers in the
vehicle field have proposed a compound hybrid electric vehicle configuration, which adds a
front-drive motor to drive the front wheels based on the power-split hybrid electric vehicle
configuration, and Toyota’s Highlander vehicle uses three motors and an engine to improve
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the fuel economy and power of the vehicle [19]. However, both compound hybrid electric
vehicle configurations and power-split hybrid electric vehicle configurations have complex
control systems and high costs. Cong Guo et al. proposed coordinated control of torque
distribution and drive anti-skid for front- and rear-independent drive electric vehicles in the
vehicle field, which achieved good results and improved the dynamics of four-wheel drive
Electric vehicles [20]. However, the current Electric vehicle has the problem of short range,
which is not conducive to agricultural production. Liyou Xu et al. proposed an Extended
range four-wheel drive electric tractor [21], which distributes the torque of the front- and
rear-drive wheels of the tractor and achieved good results. However, the Extended range
electric vehicle configuration has the problem of too many energy conversions and low
energy utilization.

The four-wheel drive tractor with a splitter has the problem of difficult component
arrangement and not being able to flexibly distribute the torque of the front- and rear-drive
wheels; the compound hybrid configuration has the problem of complex structure and
difficult design of the control system; the pure electric system has the problem of short-
range time; and the Extended range electric vehicle configuration has the problem of low
energy utilization with a high number of energy conversions. In this paper, by analyzing
the defects of the existing tractor power system, a Hybrid four-wheel drive tractor is
proposed by adding the front-drive motor to the parallel hybrid tractor, the parameters
of the main components are calculated and matched, and a torque distribution control
strategy is developed to distribute the torque to the front-drive motor, the rear-drive motor
and the engine. The effectiveness of the torque distribution control strategy was verified by
joint simulation of AVL-CRUISE and Matlab/Simulink. A theoretical basis is provided for
the design and development of the Hybrid four-wheel drive tractor.

2. Hybrid Four-Wheel Drive Tractor Working Condition Analysis

The main work of the tractor is in the field mounted agricultural equipment for
plowing, harrowing, fertilization, seeding, and other operations, as well as road transport
operations. Plowing condition is the highest frequency of tractor working condition, but
also the most basic and heavy working condition, the tractor plowing condition analysis,
can fully reflect the performance of the tractor, and this paper to plowing condition as an
example of the tractor analysis.

The longitudinal mechanics of the tractor during operation is modeled as

Fqt = Ff + Fi + Fw + Fj + Fg = Fqr + Fq f , (1)

where, Fqt, total tractor tractive force; Ff , rolling resistance; Fi, gradient resistance; Fw, air
resistance; Fj, acceleration resistance; Fg, plowing resistance; Fqr, rear-drive wheel tractive
force; Fq f , front-drive wheel tractive force.

Air resistance and acceleration resistance are negligible during tractor operation. The
resistance of tractor operation mainly comes from plowing resistance, rolling resistance,
and gradient resistance.

Fqt = Ff + Fi + Fg = Fqr + Fq f , (2)

Fi = Gi (3)

Ff = G f (4)

where, G, tractor gravity; i, road gradient; f , rolling resistance coefficient.
Tractor operation will produce slip, reducing the efficiency of the tractor. Research

shows that as the tractive force increases, the slip rate will also increase.
The relationship between tractive force and adhesion coefficient can be expressed as:

Fq = ϕFz, (5)
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ϕ = ϕmax

(
1 − e−

δ
δ∗
)

(6)

where, ϕ, drive wheel tractive force coefficient; ϕmax, maximum adhesion coefficient; δ, slip
rate; δ∗, characteristic slip rate; Fq, drive wheel tractive force; Fz, drive wheel vertical load.

Therefore, by reasonably distributing the tractor front- and rear-drive wheel, tractive
forces can effectively reduce the slip rate and improve the traction efficiency of the tractor.

The tire model describes the ground forces on the tires as a mathematical function [22].
The selection of the tire model, which directly affects the prediction of the traction per-
formance of the drive wheels, is crucial for the drive system modeling. In this paper, the
tire model uses the Duggof tire model [23], and the tractive force expression of the drive
wheels is:

Fq =

{
Fz

[
ϕ − ϕ2 Fz(1−δ)

4cδ

]
, cδ

1−δ ≥ ϕFz
2

cδ
1−δ , cδ

1−δ < ϕFz
2

, (7)

where, c, tire longitudinal stiffness.
The tractor distributes the front- and rear-drive wheel tractive forces according to the

tractive force distribution coefficient (k) to obtain:

Fq f = Fqtk, (8)

Fqr = Fqt(1 − k) (9)

From Formulas (7) and (8), the front-drive wheel tractive force is

Fq f =

⎧⎨
⎩
(

Fz f

[
ϕ f − ϕ2

f
Fz f (1−δ)

4cδ

]
+ Fqr

)
k, cδ

1−δ ≥ ϕFz f
2(

cδ
1−δ + Fqr

)
k , cδ

1−δ <
ϕFz f

2

, (10)

where, k, tractive force distribution coefficient; Fz f , front-drive wheel vertical load; ϕ f ,
front-drive wheel tractive force coefficient.

From Formulas (7) and (9), the rear-drive wheel tractive force is

Fqr =

⎧⎨
⎩
(

Fzr

[
ϕr − ϕ2

r
Fzr(1−δ)

4cδ

]
+ Fq f

)
(1 − k), cδ

1−δ ≥ ϕFzr
2(

cδ
1−δ + Fq f

)
(1 − k) , cδ

1−δ < ϕFzr
2

, (11)

where, Fzr, the rear-drive wheel vertical load; ϕr, the rear-drive wheel tractive force coefficient.
From Formulas (10) and (11), it can be obtained that there is a high degree of non-

linearity between the front-drive wheel tractive force, the rear-drive wheel tractive force,
and the tractive force distribution coefficient of the tractor.

3. Hybrid Four-Wheel Drive Tractor Model Analysis

3.1. Hybrid Four-Wheel Drive Tractor Drive System Model Analysis

The drive configuration of the tractor has an important impact on the dynamics of
the tractor. The traditional four-wheel drive tractor uses a mechanical splitter to distribute
the torque of the front- and rear-drive wheels, which has a complex structure and difficult
arrangement of mechanical components, and cannot adjust the tractive force distribution
of the front- and rear-drive wheels according to the road conditions, and has a low traction
efficiency [24]. The power system of the Hybrid four-wheel drive tractor in this paper
includes the front-drive system and the rear-drive system. The front-drive system includes
the front-drive motor, which is responsible for driving the front-drive wheels. The rear-
drive system includes the engine and the rear-drive motor, the engine is the main power
source and the rear-drive motor is the auxiliary power source, the power of the engine and
the rear-drive motor output power to the rear-drive wheels through the coupling action of
the power coupler. The engine and the rear-drive motor can work separately or jointly to
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provide power to the rear-drive wheels. No mechanical connection between the front-drive
system and the rear-drive system, convenient for the arrangement of components, and the
front- and rear-drive wheel tractive force can be flexibly adjusted according to the road
conditions, to develop a flexible front- and rear wheel torque distribution control strategy,
in order to make the tractor slip rate control in a more reasonable range, to improve the
tractor traction efficiency, the Hybrid four-wheel drive tractor power system used in this
paper is shown in Figure 1.

Figure 1. Hybrid four-wheel drive tractor power system.

3.2. Power System Matching Design
3.2.1. Determination of Rated Tractive Force

Rated tractive force is the tractor in the horizontal lot with the basic plowing speed
and drive wheel slip rate in the specified value or engine in the standard working condition,
the maximum tractive force can be issued (take the smaller of the two values). Plowing is
the most basic and heavy tractor operation in agricultural production, rated tractive force
determination, the first should meet the plowing operation requirements.

Fg = zbhk, (12)

where, Fg, plowing resistance; z, the number of plowshares, according to the selection of
agricultural machinery, z = 6; b, the width of the single plowshare, b = 0.45m; h, plowing
depth, h = 0.25m; k, soil specific resistance, take 7N/cm2.

The driving resistance of the tractor will fluctuate due to changes in operating condi-
tions and farm equipment, and should generally have a reserve tractive force of 10~20%.
Therefore, the rated tractive force is:

FT = (1.1 ∼ 1.2)Fg. (13)

3.2.2. Power System Matching Design

In conventional tractor design, the rated tractive force is used to determine the engine
power. In the design of a Hybrid four-wheel drive tractor, the rear-drive system proposed
in this paper can be considered as a traditional tractor engine for power selection compared
to the traditional tractor engine power selection. And in the rear-drive system power
distribution, the traditional parallel hybrid tractor compared to the traditional tractor
in the structure of only a small power motor used to improve the power output of the
engine, cannot play well with the electric drive system drive efficiency high environmental
pollution low characteristics, in recent years with the development of electric drive system,
electric drive system costs continue to reduce, so this paper uses a small power engine with
high power electric motor. At the same time, in order to achieve a better anti-skid effect,
the front-drive motor also uses a high-power motor.

Engine power:

Pe =
0.65 × FT × vl

3.6ηT
, (14)
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Rear-drive motor power:

Prm =
0.35 × FT × vl

3.6ηT
, (15)

Front-drive motor power:

Pf m =
0.35 × FT × vl

3.6ηT
, (16)

where, vl , the driving speed of the tractor during plowing operation, take 7 km/h; ηT , the
efficiency of the transmission system, take 0.86.

In summary, the engine is an inline 4-cylinder supercharged inter-cooled high-pressure
common rail diesel engine, model LR4A3LRP-T4-U3, with a rated power of 85 kw and
rated speed of 2300 r/min. The rear-drive motor is a permanent magnet synchronous
motor with a rated power of 45 kw, rated speed of 2500 r/min and rated voltage of 320 v.
The front-drive motor is a Permanent magnet synchronous motor, its rated power is 45 kw,
rated speed 2500 r/min, rated voltage 320 v.

3.2.3. Torque Coupler Design

For the selection of coupling device of parallel hybrid vehicle configuration, it can be
divided into torque coupling type, speed coupling type, and power coupling type. Torque-
coupled power sources are coupled in such a way that the output torques of the engine and
motor are independent of each other, and the torque after coupling is the algebraic sum of
the output torques of the two power sources. Speed coupling refers to the engine and motor
power in the coupling, the two output speeds independent of each other, the final synthesis
of the speed is a number of power sources each speed of the algebraic sum, and the output
torque into a fixed proportion, the actual use of the tractor need to output a larger force,
so the speed coupling for the tractor is not suitable for the design. Power-coupled engine
and motor torque and speed are independent of each other, the output torque and output
speed are the algebraic sums of the engine and motor [25], but the control system design
is more complex. The torque-coupled type has a simple structure and the control system
design is simple, so the torque-coupled type is used in this paper. The torque coupler is
shown in Figure 2.

 
Figure 2. Torque coupler.

The torque coupler port 1 herein is a unidirectional torque and speed input, and ports
2 and 3 are bidirectional torque and speed inputs or outputs. In a hybrid tractor application,
port 1 is connected to the engine via a transmission; port 2 is connected to the rear-drive
motor via a transmission; and port 3 is connected to the drive wheels via a transmission.

4. Torque Distribution Control Strategy for Hybrid Four-Wheel Drive Tractor

The torque distribution control strategy of the Hybrid four-wheel drive tractor pro-
posed in this paper includes the front- and rear-drive wheel torque distribution control
strategy and the rear-drive system torque distribution control strategy, and the two torque
distribution control strategies will be described separately below.
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4.1. Front- and Rear-Drive Wheel Torque Distribution Control Strategy

From Formulas (2)–(4), the tractor in the plowing operation, plowing resistance,
gradient resistance, and rolling resistance are important factors affecting the drive wheel
slip rotation, air resistance and acceleration resistance value is small, neglected. Therefore,
the concept of road resistance coefficient is introduced, the road resistance coefficient is the
sum of the gradient and rolling resistance coefficient, and it can reflect the road resistance
situation. The tractor’s drive wheel slip rate is controlled at about 10~15%, and the tractor
has the highest traction efficiency.

During tractor plowing, the tractor center of mass will move backwards, the tractor
axle load distribution will change, the rear axle load will become larger, and the rear-drive
wheel rolling resistance will also become larger. The change in rear-drive wheel rolling
resistance will have an effect on the distribution of tractive force between the front- and
rear-drive wheels of the tractor. From the joint simulation data of AVL-CRUISE and MAT-
LAB/Simulink, the real-time rolling resistance of the rear-drive wheel and the real-time
axle load distribution of the tractor are obtained, and the rolling resistance coefficients of
the front-drive wheel, the rear-drive wheel and the whole vehicle are calculated. Com-
paring each rolling resistance coefficient, it can be seen that the rear-drive wheel rolling
resistance coefficient is larger than the whole vehicle rolling resistance coefficient than the
front-drive wheel rolling resistance coefficient. The rear-drive wheel of the tractor carries
more tractive force compared with the front-drive theory, so the rear-drive wheel rolling
resistance coefficient is substituted into the calculation of road resistance coefficient, which
can better reflect the resistance of the tractor.

The tractor operating conditions are complex and variable, and it is known from
Formulas (10) and (11) that there is a high degree of nonlinearity between the tractor’s front-
drive wheel tractive force, rear-drive wheel tractive force, and tractive force distribution
coefficient k. The fuzzy controller has a better control effect for the nonlinear system. The
plowing resistance and road resistance coefficient are selected as the input variables of the
fuzzy controller, and the tractive force distribution factor k is selected as the output variable
of the fuzzy controller.

The front- and rear-torque distribution control strategy of a Hybrid four-wheel drive
tractor is shown in Figure 3. In order to verify the superiority of the front- and rear-drive
wheel torque distribution control strategy based on fuzzy control proposed in this paper,
the front- and rear-torque distribution control strategy based on fixed ratio distribution is
set as the comparison control strategy, and the front- and rear-torque distribution control
strategy based on fixed ratio distribution is shown in Figure 4.

Figure 3. Control strategy for torque distribution of front- and rear-drive wheels based on
fuzzy control.
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Figure 4. Control strategy for torque distribution of front- and rear-drive wheels based on fixed
ratio distribution.

In Figure 3, the AVL-CRUISE software inputs the driving resistance and outputs
the desired tractive force through the desired tractive force calculation module. The
plowing resistance and road resistance coefficient are used as input variables of fuzzy
controller 1, and the output variable tractive force distribution coefficient k is obtained
by fuzzification, fuzzy inference and anti-fuzzification of fuzzy controller 1, and then
the k value is transmitted to the front- and rear-drive wheel tractive force distribution
module. The front- and rear-drive wheel tractive force distribution module distributes
the tractive force of the front-drive wheel and the rear-drive wheel through the demand
tractive force and the tractive force distribution coefficient. The front-drive wheel tractive
force and rear-drive wheel tractive force are calculated to obtain the front-drive system
torque and rear-drive system torque, which are transmitted to the front-drive wheels and
rear-drive wheels through the transmission system. In Figure 4, the torque distribution
control strategy based on fixed ratio distribution is the same as the strategy proposed in
this paper except that the tractive force distribution coefficient is different from the strategy
proposed in this paper.

4.1.1. Affiliation Function Design

The exact values of plowing resistance were converted into proportional values with
the theoretical domain of [0.8, 1] for plowing resistance, [−0.05, 0.22] for road resistance
coefficient, and [0.12, 0.22] for tractive force distribution coefficient.

The formula for converting the exact value of plowing resistance into a proportional
value is:

Fgp =
Fg

Fgmax
, (17)

where, Fgp, the proportional value of the plowing resistance; Fg, the plowing resistance at a
certain moment; Fgmax, the maximum value of the plowing resistance.

And, respectively, stipulate the following fuzzy subsets: the fuzzy subset of pro-
portional values of plowing resistance is E(F) = {NB,NM,Z,PM,PB}. The fuzzy subset of
road resistance coefficient is E(R) = {NH,NL,Z,PL,PH}. The fuzzy subset of the tractive
force distribution coefficient is E(k) = {ND,NB,NM,NS,Z,PS,PM,PB,PD}. The fuzzy sub-
sets {NH,NL,Z,PL,PH} represent negative high, negative low, medium, positive low, and
positive high, respectively. The fuzzy subsets {ND,NB,NM,NS,Z,PS,PM,PB,PD} represent
negative pole, negative large, negative medium, negative small, medium, positive small,
positive medium, positive large, and positive pole, respectively.

In summary, the affiliation function of plowing resistance is shown in Figure 5, the
affiliation function of road resistance coefficient is shown in Figure 6, and the affiliation
function of tractive force distribution coefficient is shown in Figure 7.
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Figure 5. Affiliation function of plowing resistance.

 
Figure 6. Affiliation function of road resistance coefficient.

 
Figure 7. Affiliation function of tractive force distribution coefficient.

4.1.2. Fuzzy Rules Design

The design of fuzzy rules needs to fully consider the operating conditions of the tractor,
the design of fuzzy rules as shown in Table 1.

Table 1. Fuzzy control rules library.

k Plowing Resistance

Road resistance coefficient

NB NM Z PM PB
NH ND ND ND NB NM
NL ND NB NM NS Z
Z NM NS Z PS PM

PL Z PS PM PB PD
PH PS PM PB PD PD

where, k, tractive force distribution coefficient.
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4.2. Control Strategy for Torque Distribution of Rear-Drive System

The torque distribution of the parallel hybrid tractor is highly nonlinear, and the fuzzy
control strategy is well suited for the hybrid tractor control system. The rear-drive system
desired torque and battery SOC are used as input variables, and the motor torque distribu-
tion coefficient is used as the output variable to establish the fuzzy control-based rear-drive
system torque distribution control strategy. The rear-drive system torque distribution
control strategy is shown in Figure 8.

Figure 8. Control strategy for torque distribution of rear-drive system.

4.2.1. Affiliation Function Design

The exact value of the desired torque of the rear-drive system is converted into a
proportional value, and the domain of the desired torque of the rear-drive system is [0, 1],
the domain of the battery SOC is [0, 1], and the domain of the motor torque distribution
coefficient is [−0.2, 1].

Motor torque distribution coefficient is the ratio of the rear motor torque to the desired
torque of the rear-drive system.

λ =
Tm

Tr
, (18)

where, Tr, the desired torque of the rear-drive system at a certain moment; Tm, rear motor
torque; λ, motor torque distribution coefficient.

The formula for converting the exact value of the desired torque of the rear-drive
system into a proportional value is:

Trp =
T

Tmax
, (19)

where, Trp, the proportional value of the desired torque of the rear-drive system; Tmax, the
maximum desired torque of the rear-drive system.

And, respectively, stipulate the following fuzzy subsets: E(Trp) = {NB,NM,Z,PM,PB},
E(SOC) = {NH,NL,Z,PL,PH}, E(λ) = {TS,S,M,B,TB}. The fuzzy subsets {NB,NM,Z,PM,PB}
represent negative large, negative medium, medium, medium, and large, respectively. The
fuzzy subsets {NH,NL, Z,PL,PH}stand for negative high, negative low, medium, positive
low, and positive high, respectively. Fuzzy subsets {TS,S,M,B,TB} represent very small,
small, medium, large, and very large, respectively.

In summary, the affiliation function of the desired torque is shown in Figure 9, the
affiliation function of the SOC is shown in Figure 10, and the affiliation function of the
motor torque distribution coefficient is shown in Figure 11.

4.2.2. Fuzzy Rules Design

The design of fuzzy rules needs to fully consider the operating characteristics of the
parallel hybrid configuration. The designed fuzzy rules are shown in Table 2.

72



World Electr. Veh. J. 2023, 14, 190

 
Figure 9. Affiliation function of desired torque.

 
Figure 10. Affiliation function of SOC.

 
Figure 11. Affiliation function of motor torque distribution coefficient.

Table 2. Fuzzy control rules library.

λ Desired Torque

SOC

NB NM Z PM PB
NH TS TS S S M
NL TS S S M M
Z S S M B B

PL TB B B M B
PH TB TB B M B

where, λ, motor torque distribution coefficient.

5. Comparative Analysis

In this paper, AVL-CRUISE software is used to establish a vehicle model of a Hybrid
four-wheel drive tractor [26–28], the main technical parameters of the Hybrid four-wheel
drive tractor are shown in Table 3, and MATLAB/Simulink software is used to build a
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torque distribution control strategy based on fuzzy control, and the joint simulation analysis
of AVL-CRUISE and MATLAB/Simulink is carried out.

Table 3. Hybrid four-wheel drive tractor main technical parameters.

Project Parameter Value

Vehicle
Quality/kg 7350

Wheel base/mm 2800

Engine
Rated power/kw 85

Rated speed/(r/min) 2300

Front motor
Rated power/kw 45

Rated speed/(r/min) 2500

Rear motor
Rated power/kw 45

Rated speed/(r/min) 2500

Gearbox 4th gear transmission ratio 3.6

Front final reduction drive transmission ratio 5.5

Rear final reduction drive transmission ratio 5.0

The vehicle model of the Hybrid four-wheel drive tractor built by AVL-CRUISE
software is shown in Figure 12. The force1 module and force2 module in the figure are the
two sets of plowing resistance modules established.

 
Figure 12. Hybrid four-wheel drive tractor vehicle model.

The torque distribution control strategy based on fuzzy control established by MAT-
LAB/Simulink software is shown in Figure 13.

Figure 13. Torque distribution control strategy based on fuzzy control.

When the tractor is actually working, the resistance of different operating conditions
is different. According to different operating conditions, tractor operation mode can be
divided into three: heavy load mode (80% of the rated tractive effort above), medium load
mode (about 20% to 80% of the rated tractive effort), and light load mode (20% of the rated
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tractive effort below). Tractor plowing working condition operation, resistance is higher,
belong to the heavy load mode.

The actual plowing operation of the tractor is mostly flat, and the gradient is generally
less than 10%. In order to fully verify the effect of the two torque distribution control strate-
gies on the performance of the Hybrid four-wheel drive tractor, a certain road gradient was
set along with the plowing resistance. Considering the effect of rolling friction resistance
and gradient resistance set plowing resistance. At the same time, in order to verify the
effect of two torque distribution control strategies on the working stability of a Hybrid
four-wheel drive tractor set two groups of plowing resistance, one group for small plowing
resistance group, and one group for large plowing resistance group.

The established small plowing resistance group is shown in Figure 14 and the estab-
lished large plowing resistance group is shown in Figure 15.

Figure 14. Small plowing resistance.

Figure 15. Big plowing resistance.

The set road slope is shown in Figure 16.

Figure 16. Gradient.

As shown in Figures 17 and 18, when the Hybrid four-wheel drive tractor was loaded
with a small plow resistance group, the fuzzy control-based torque distribution control
strategy reduced the tractor rear wheel slip rate by 4.5% on average and the maximum slip
rate by 18.7% compared to the fixed ratio-based torque distribution control strategy. The
fuzzy control-based torque distribution control strategy can basically control the rear-drive
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wheel slip rate in the range of 10% to 15%, and the variance of the rear-drive wheel slip rate
is only 1.16 for the fuzzy control-based torque distribution control strategy and 3.87 for the
fixed ratio-based torque distribution control strategy, which shows that the fuzzy control
strategy based torque distribution control strategy can not only control the rear-drive wheel
slip rate. This shows that the torque distribution control strategy based on the fuzzy control
strategy can not only control the slip rate of the rear-drive wheel at 10%~15%, but also
the slip rate fluctuation is small, and the Hybrid four-wheel drive tractor can obtain high
traction efficiency. At the same time, the fuzzy control-based torque distribution control
strategy has a small difference in the slip rate of the front-drive wheel compared to the
fixed ratio-based torque distribution control strategy.

Figure 17. Slip rate of rear-drive wheels with fuzzy control.

Figure 18. Slip rate of rear-drive wheels with fixed ratio distribution.

When the Hybrid four-wheel drive tractor is loaded with a large plowing resistance
group, as shown in Figure 19, the Hybrid four-wheel drive tractor with fuzzy control-based
torque distribution control strategy can complete the operation task, and as shown in
Figure 20, the Hybrid four-wheel drive tractor with fixed ratio distribution based torque
distribution control strategy cannot complete the operation, which shows that the Hybrid
four-wheel drive tractor with fuzzy control-based torque distribution control strategy has
better adaptability to the working conditions and can cope with the complex agricultural
production environment.

Figure 19. Slip rate of rear-drive wheels with fuzzy control.
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Figure 20. Tractor velocity with fixed ratio distribution.

Through the comparative analysis of two torque distribution control strategies, it can
be seen that the fuzzy control-based torque distribution control strategy can significantly
reduce the drive wheel slip rate, and the Hybrid four-wheel drive tractor can obtain higher
traction efficiency. And good adaptability to working conditions, more widely used.

The rear-drive system adopts the fuzzy control-based torque distribution control
strategy, based on the analysis of the tractor plowing conditions, as shown in Figure 21,
the tractor plowing operation engine speed fluctuations are not large, smooth operation,
while the engine torque in the engine high efficiency torque operating range, the economy
is better.

Figure 21. Engine working point distribution map.

6. Conclusions

(1). By analyzing the defects of the existing tractor power system, this paper, a Hybrid
four-wheel drive tractor is proposed, and the parameters of the main components are
calculated and matched, while a torque distribution control strategy is developed.

(2). The vehicle model of the Hybrid four-wheel drive tractor was established in
AVL/CRUISE software, and the vehicle torque distribution control strategy based on fuzzy
control and the vehicle torque distribution control strategy based on fixed ratio distribution
were established in MATLAB/SIMULINK software. The joint simulation was carried out
with the tractor’s plowing operation as an example.

(3). The simulation results show that the fuzzy control-based front- and rear-drive
wheel torque distribution control strategy can control the slip rate of the tractor rear-drive
wheel at 10%~15% compared with the fixed ratio distribution based front- and rear-drive
wheel torque distribution control strategy, the average slip rate of the tractor rear wheels
has been reduced by 4.5%, the maximum slip rate of the rear-drive wheels has been reduced
by 18.7%, and the variance has been reduced by 70%, and the traction performance has
been greatly improved.

(4). The simulation results show that when the Hybrid four-wheel drive tractor was
loaded with a large plowing resistance group, the Hybrid four-wheel drive tractor with the
fuzzy control-based front- and rear-drive wheel torque distribution control strategy was
able to complete the operation, and the Hybrid four-wheel drive tractor with the fixed ratio
distribution based front- and rear-drive wheel torque distribution control strategy was not
able to complete the operation. The results show that the Hybrid four-wheel drive tractor
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with fuzzy control-based front- and rear-drive wheel torque distribution control strategy
has better adaptability to working conditions and can cope with complex agricultural
production environments.

(5). The simulation results show that the established torque distribution control
strategy for the rear-drive system is able to control the engine operating point within the
period of efficient engine operation with better economy.
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Abstract: To improve energy utilization efficiency and extend the driving range of electric vehicles,
this paper proposes a Dual-Motor Coupled Drive System (DMCDS) with a simple structure and
establishes a dynamic mathematical model to analyze power flow characteristics under different
driving modes. Considering the interdependence between the optimization of component sizes and
system control in multi-motor drive systems, a two-layer hybrid optimization method is proposed
to determine the optimal component sizes, balancing vehicle performance with minimal system
energy losses. To evaluate the effectiveness of the proposed optimization design method, extensive
simulation analysis was carried out in MATLAB. The results demonstrate that the optimization of
motor sizes and gear ratios can enhance the energy efficiency of the drive system. In comparison with
prototype scheme before optimization, the high-efficiency region utilization of motors EM_R and
EM_S increased by 45% and 48%, respectively. Compared with the prototype and single-motor drive
system, the average drive efficiency after optimization increased by 2.5% and 4.2%, respectively, and
the energy consumption per 100 km decreased by 3.6% and 6.8%, respectively. These results confirm
the efficacy of the proposed optimization design method in achieving an energy-saving effect.

Keywords: electric vehicles; dual-motor coupled drive; two-layer hybrid optimization

1. Introduction

As global petroleum resources continue to deplete rapidly and air quality worsens,
electric vehicles have been experiencing rapid advancements [1]. Pure electric vehicles have
diverse energy sources, such as wind, solar, and hydro power, providing advantages like
simple structures and zero emissions in comparison to conventional vehicles [2]. However,
the main challenge for electric vehicles remains their limited energy density, long charging
times, and restricted driving range due to current battery technology [3]. To mitigate these
challenges, besides technological breakthroughs in batteries, the widely embraced and most
effective solution lies in reducing the energy losses in the drive system [4]. In pursuit of this
objective, a plethora of methods have been proposed, primarily focusing on powertrain
configurations, energy management strategies (EMSs), and component size optimization.

At present, the powertrains of EVs on the market are mostly driven by a single motor
coupled to a single-speed transmission. The utilization of a single-speed transmission
offers a cost-effective solution by effectively reducing the mass, volume, and cost [5–7].
However, the single-motor drive systems exhibit a lower efficiency at low torques and low
speeds, leading to a higher probability of the motor operating within the low-efficiency
region. Therefore, it is necessary to find other powertrain structures that can improve
drive efficiency. Many studies have shown that dual-input coupling powertrain systems
have been widely used in electric vehicles to reduce energy consumption and improve
efficiency [8–11]. Utilizing two smaller motors instead of a single high-power source allows
for a reduction in the torque capacity of each individual motor, thereby facilitating the
development of high-speed motors and increasing the power density of the drive system.
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Moreover, the operating points of the two motors can be adjusted to optimize the efficiency
of the drive system [12].

After determining the powertrain configuration, the subsequent task involves opti-
mizing the component sizes and designing the EMS for the drive system [13]. Regarding
EMS design, stochastic dynamic programming (SDP) [14], Pontryagin’s Maximum Princi-
ple (PMP) [15], and the dynamic programming (DP) algorithm [16] are widely employed
optimization algorithms. The DP algorithm can provide a global optimal strategy when
the entire driving cycle information is available. Nevertheless, its real-time online ap-
plication is limited as it necessitates knowledge of future road grade and vehicle speed
information [17].

Currently, some research progress has been made in the optimization of drive system
parameters. References [18–20] utilized genetic algorithms and particle swarm optimization
(PSO) algorithms to optimize the component parameters of hybrid drive systems, resulting
in reduced energy consumption. However, these studies only performed static optimization
of the objective function during parameter optimization, without considering the impact
of component parameter variations on the high-efficiency region and the coordinated
control of power sources. Focusing on a single aspect alone cannot achieve optimal system
performance; instead, an integrated optimization of both component parameters and
system control strategies is required.

In recent years, researchers around the world have made notable progress in coop-
erative optimization methods and double-layer control strategies [21–25]. Angelo et al.
proposed a novel double-layer control architecture designed to drive the longitudinal mo-
tion of electric vehicles. The control architecture, by combining the two control strategies,
can reduce the overall energy consumption of electric vehicles [26]. Fathy et al. demon-
strated the significant influence of control strategy optimization on the effectiveness of
parameter optimization, affirming the existence of coupling between parameter optimiza-
tion and control strategy optimization [27]. Fang et al. identified Pareto optimal solutions
using a comprehensive optimization approach to concurrently optimize powertrain com-
ponents and control systems [28]. In the context of multi-mode hybrid electric vehicles,
Zhuang integrated energy management control strategy optimization, topology configura-
tion optimization, and component parameter matching, proposing both cage optimization
and iterative optimization architectures. The results demonstrated that the iterative opti-
mization architecture efficiently converged to the global optimal solution [29]. Nguyen et al.
proposed a two-loop optimization algorithm, combined with the global search method and
non-dominated sorting genetic algorithm-II to find optimal motor sizes and transmission
ratios for the powertrain of electric vehicles equipped with two motors and multi-gear
ratios. The simulation results showed that the optimization of both motor sizes and gear
ratios considerably enhances the energy efficiency of the powertrain system [30].

The objective of this research is to develop a dual-motor coupled drive system for
electric vehicles that enhances the vehicle’s energy efficiency while ensuring dynamic
performance. To further improve the energy utilization efficiency of the DMCDS, a two-
layer hybrid optimization method is proposed to synergistically optimize the system
component sizes and control strategies. Through simulation experiments, the optimal
control parameters are determined, and the most suitable parameter configuration for the
driving cycle conditions is identified.

The rest of this paper is organized as follows: Section 2.1 introduces the overall config-
uration of the DMCDS. The modeling and driving modes of the DMCDS are displayed in
Section 2.2. In Section 2.3, a two-layer hybrid optimization method is presented, which aims
to determine the optimal parameters of the system components. The simulation results and
discussion are given in Section 3, where two typical driving cycles are used to evaluate the
effectiveness of the proposed method. Finally, the conclusions are presented in Section 4.
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2. Materials and Methods

2.1. Configuration of DMCDS

As the central component of electric vehicles, the Dual-Motor Coupled Drive System
exerts a direct impact on the dynamic performance of the vehicle. By conducting a compar-
ative analysis of multiple configuration schemes, this study proposes a dual-motor coupled
drive system configuration that incorporates a planetary gear mechanism as the power
coupling device, as illustrated in Figure 1. It is mainly composed of two motors, EM_R and
EM_S, two electromagnetic brakes, B1 and B2, and a power coupling gearbox. Notably,
motors EM_S and EM_R are, respectively, linked to the sun gear and ring gear, while the
carrier establishes a connection to the power output of the main reducer.

Figure 1. Schematic diagram of DMCDS. 1. EM_S; 2. EM_R; 3. B1; 4. B2; 5. ring gear; 6. planetary
gear mechanism; 7. main reduction gear; 8. differential mechanism.

2.2. Modeling and Mode Analysis
2.2.1. Dynamics Modeling of DMCDS

The primary focus of this paper is to investigate a dual-motor coupled drive system,
consisting of two motors, which achieve power coupling through the utilization of a
planetary gear mechanism. In situations where the vehicle speed and required torque are
known, the operational states of EM_S and EM_R are not uniquely determined for the
DMCDS. By combining the static kinematic equations of the planetary gear mechanism
with the dynamic model of the planetary gear set, we derive the dynamic model of the
dual-motor coupled drive system as shown in the following equation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
ωms =

a(Tms − Tmr
k + 1 ) − b(Tms − Tmr − 2Tc

k + 1 )

ad − bc
.

ωmr =
c(Tms − Tmr

k + 1 ) − d(Tms − Tmr − 2Tc
k + 1 )

bc − ad
.

ωc =
.

ωms + k
.

ωmr
1 + k = im

.
va

rw

a = Jr
k + 1 + 2kJc

(k + 1)2 , b = −( Jr
k + 1 +

kJp

(k − 1)2 )

c = Js +
2Jc

(k + 1)2 , d = Js +
2Jp

(k − 1)2

(1)

where ωms, ωmr, and ωc are the output speeds of motors EM_S and EM_R, and the carrier,
respectively; Tms, Tmr, and Tc are the output torque of motors EM_S and EM_R, and the
planet carrier; Js, Jr, Jc, and Jp represent the equivalent moments of inertia of the sun gear,
ring gear, carrier, and planetary gear, respectively; im, rw, and k denote the main reduction
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ratio, rolling radius of the wheels, and the planetary gear ratio, respectively; and va denotes
the vehicle speed.

2.2.2. Driving Mode Analysis

The operational states of components in the DMCDS vary as it operates in different
driving modes, leading to distinct dynamic mathematical models. Therefore, determining
the operational states for different driving modes is crucial for the efficient functioning of
the DMCDS. Through effective coordination of motor and brake controls, the DMCDS can
seamlessly switch between three driving modes: Motor EM_S independent drive (M1S),
Motor EM_R independent drive (M1R), and Dual-Motor Coupled Drive (DMC). Table 1
provides the working states of each component under different driving modes.

Table 1. System operation status.

Working States Driving Modes M1 M2 B1 B2

Park/Neutral N/P � � � �
Driving states

M1S • � � •
M1R � • • �
DMC • • � �

• signifies the activation of the motor or engagement of the brake, while � denotes the deactivation of the motor
or disengagement of the brake.

When operating in the M1S mode, the DMCDS disengages brake B1, engages brake B2,
and deactivates motor EM_R. The power from motor EM_S is transmitted through the sun
gear and output by the planet carrier, resulting in a higher transmission ratio for the system.
This mode exhibits its advantage in situations where the vehicle requires significant torque
at low speeds, allowing EM_S to operate efficiently in its high-efficiency region. It proves
particularly effective for low-speed, high-torque scenarios, such as rapid acceleration and
uphill driving. Figure 2 illustrates the equivalent lever model of the DMCDS.

Figure 2. Equivalent lever model in M1S mode. The red line in the figure represents the lever and the
green line represents the power flow.
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Utilizing the equivalent lever model in conjunction with the dynamic model described
by Equation (1), the dynamic mathematical model for the M1S mode can be deduced.

⎧⎪⎨
⎪⎩

(Tms − Jms
.

ωms)·(1 + k)− Tw
im = Jc

.
ωc

Jc
.

ωc =
msrw

2

im2 ·
.
vaim
rw

= msrw
.
va

im
ωms =

vaim
rw

(1 + k)
(2)

where Jms denotes the equivalent moment of inertia of motor EM_S, Tw denotes the load
torque on the driving wheel, and ms denotes the vehicle weight.

When operating in the M1R mode, the DMCDS deactivates motor EM_S and engages
brake B1 to apply a braking force on the sun gear, effectively transforming the DMCDS
into a single-degree-of-freedom system. The output torque of EM_R is transmitted through
the ring gear and planet carrier, delivering power to the wheels via the main reducer.
Therefore, selecting the M1R mode when the vehicle demands higher power allows the
system to leverage its advantages, with motor EM_R operating more efficiently within its
high-efficiency range. Figure 3 illustrates the equivalent lever model of the DMCDS.

Figure 3. Equivalent lever model in M1R mode. The red line in the figure represents the lever and
the green line represents the power flow.

Utilizing the equivalent lever model in conjunction with the dynamic model described
by Equation (1), the dynamic mathematical model for the M1S mode can be deduced.{

(Tmr − Jmr
.

ωmr)
1+k

k − Tw
im = msrw

.
va

im
ωmr =

vaim
rw

· 1+k
k

(3)

where Jmr denotes the equivalent moment of inertia of motor EM_R.
When operating in the Dual-Motor Coupled Drive mode, the DMCDS disengages

both brakes B1 and B2. Motors EM_S and EM_R operate simultaneously, with both motors
providing power to the planetary gear mechanism. The equivalent lever model of the
DMCDS in this mode is illustrated in Figure 4.
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Figure 4. Equivalent lever model in DMC mode. The red line in the figure represents the lever and
the green line represents the power flow.

When the single-motor drive mode falls short of satisfying the high-power require-
ments or when the motor cannot operate within the high-efficiency range, the Dual-Motor
Coupled Drive mode can be utilized. By adjusting the output speeds of both motors, con-
tinuous speed regulation is achieved, contributing to the improved operational efficiency
of both motors. This mode proves advantageous for driving scenarios with substantial
power demands or higher vehicle speeds. The dynamic model under the DMC drive mode
can be represented as follows:{

(min(Tms, Tmr/k)− Jms
.

ωms − Jmr
.

ωmr/k)(1 + k) = msrw
.
va + Tw
im

ωms + kωmr = (1 + k) vaim
rw

(4)

2.3. Parameter Optimization of DMCDS
2.3.1. Mathematical Models

(1) Vehicle model

To examine the relationship between variations in vehicle speed and the output
characteristics of the Dual-Motor Coupled Drive System, it is essential to establish a
longitudinal vehicle dynamics model that accounts for slip ratio. Leveraging the system
configuration and vehicle dynamics, the longitudinal dynamic model of the vehicle can be
expressed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tcimηt − Tw = Jw
.

ωw

Tw =
(

msg fr + CD A f va
2/21.15

)
rw

va =
ωwrw
1 + λ

ωwim(k + 1) = ωms + kωmr

(5)

where ωw, Tw, and Jw are the speed, torque, and moment of inertia of the wheel, respectively;
fr is the tire rolling resistance coefficient; CD is the aerodynamic drag coefficient; Af is the
vehicular frontal area; and λ is the slip ratio of the driving wheel. The values of the vehicle
parameters are displayed in Table 2.
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Table 2. Basic parameters of the vehicle.

Parameter Meaning Value

ms (kg) Mass of vehicle 1949
Af (m2) Frontal area 2.66

CD Air resistance coefficient 0.4
fr Tire rolling friction coefficient 0.015

rw (m) Tire radius 0.343
vmax (km/h) Maximum velocity 150

tacc (s) 0–100 km/h acceleration time 9

(2) Motor model

In the domain of electric vehicles, the peak power of the motor is commonly de-
termined by the acceleration demands. Consequently, if the acceleration time is pre-
established, the total peak power of the two motors remains constant and can be expressed
as

Pmaxs + Pmaxr = 2Pmaxb (6)

where Pmaxs and Pmaxr are the peak power of motors EM_S and EM_R, respectively;
and Pmaxb denotes the peak power of the baseline motor EMB, which equals half of the
maximum vehicle power.

To maximize the average efficiency of the DMCDS under various driving cycles,
selection of the power levels for the motors is essential. To streamline the model, the
efficiency map of both motors has the same shape as motor EMB. As a result, EM_S and
EM_R share the same speed range as EMB, while the torque range is proportional to their
respective power, which can be expressed as

⎧⎨
⎩

Pmaxs = 2αPmaxb, Pmaxr = 2(1 − α)Pmaxb
Tmaxs = 2αTmaxb, Tmaxr = 2(1 − α)Tmaxb
α ∈ (0, 1)

(7)

where α is the power scaling factor between the motors; and Tmaxs, Tmaxr, and Tmaxb are
the peak output torque of motors EM_S, EM_R, and EMB, respectively.

The case of α = 1 corresponds to EM_S and EM_R being the baseline motors in the
efficiency map shown in Figure 5.

Figure 5. Efficiency map of motor EMB.
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(3) Battery model

The thermal temperature effect and battery life are ignored in this paper, and the basic
physical model of the battery is simplified as a voltage source with open-circuit voltage
and internal resistance, each of which depend on the battery SOC, so the mathematical
model of the battery can be expressed as

SOC(t + 1) = −Uoc −
√

Uoc2 − 4Rbat·Pbat
2Rbat·Qbat

+ SOC(t) (8)

where Uoc is the battery open circuit voltage; Rbat is the internal resistance; Pbat is the output
power of the battery, which is also the electric power consumed by the two motors; Qbat is
the capacity of battery; and the index t represents any time instant.

It is worth noting that both Uoc and Rbat can be obtained from the look-up table of
the battery SOC, and then the instantaneous internal energy of battery Pele can be obtained
from

Pele = −UocQbat(SOC(t + 1)− SOC(t)) (9)

(4) Efficiency model

Since this paper is mainly focused on the influence of the selection of the DMCDS on
the economic performance of electric vehicles, it is necessary to establish efficiency models
of the DMCDS, including a motor efficiency model and a transmission efficiency model.

The motor efficiency can be defined as a function of output speed and torque, and
the efficiency in a certain state can be obtained by the interpolation method. The efficiency
map of the motors has the same shape as motor EMB.

Here, we only consider the gear efficiency in the coupling box, including the dynamic
efficiency of the planetary gear set and the efficiency of the main reduction gears. For a
pair of gears, one of the most widely used efficiency models is as follows [31]:

η = 1 −
∣∣∣∣15 ( 1

za
± 1

zb
)

∣∣∣∣ (10)

where Za and Zb represent the number of teeth, and the ± symbol indicates external (+)
and internal gear pairs (−). In terms of the planetary gear set, there are different control
strategies and energy losses for different design parameters and driving modes, so the
efficiency model should be established for each of the three driving modes.

⎧⎪⎪⎨
⎪⎪⎩

ηr(s−c) = 1 − k·(1 − ηc(s−r))

1 + k M1S

ηs,r−c = 1 −
∣∣∣ ωms − ωc

ωms + kωmr

∣∣∣(1 − ηc(s−r))DMC

ηs(r−c) = 1 − 1 − ηc(s−r)
1 + k M1R

(11)

where ηr(s−c) indicates the efficiency when the ring gear is fixed and power is input into the
sun gear and output from the planet carrier; ηc(s−r) is the efficiency when the planet carrier
is fixed with power input into the sun gear and output from the ring gear; ηs(r−c) denotes
the efficiency when the sun gear is fixed and power is input into the ring gear and output
from the planet carrier; and ηs,r−c denotes the efficiency when power is input into the ring
gear and sun gear and output from the planet carrier.

2.3.2. Optimization Problem

The performance of the DMCDS is closely related to the parameter design of compo-
nents such as the motors and the power-coupled gearbox. To achieve the optimal match
between the DMCDS output characteristics and the vehicle load requirements, it is crucial
to determine the external characteristic parameters of the motors based on the power
constraints. Furthermore, considering the driving cycle conditions, the rated parameters

87



World Electr. Veh. J. 2023, 14, 282

and transmission ratio should be determined, and the high-efficiency region should be
optimized to enhance the energy utilization efficiency.

(5) Inner-layer optimization

Once the system configuration and component parameters have been established, the
state transition equation of the DMCDS can be formulated based on Bellman’s optimization
theory. The optimal control problem of the system can be formulated as follows:

{
x(t + 1) = f (x(t), u(t))
J∗(x(t)) = min

u(t)
{J∗(x(t + 1)) + L(x(t), u(t))} (12)

where xt is the current state variables, ut is the current decision variables, xt+1 denotes the
state variables at the next time step, J*(x(t)) denotes the optimal value function from stage t
to the terminal state, and L(x(t), u(t)) is the stage cost function of the system.

For the dual-motor coupled drive system, determining the optimal power allocation
ratio at each moment under specific driving cycles is essential to enhance the driving
performance and improve the energy-economic efficiency. Consequently, the state variables
primarily consist of the power allocation ratios of the two motors, denoted as x1, and the
current operating mode of the drive system, denoted as x2. The power allocation ratio
increment is denoted as the decision variable u1, while the command for mode switching
serves as the decision variable u2. The power allocation ratio of the two motors represents
the ratio of the output power of motor EM_R to the total required power and can be
expressed as follows:

PAR =
Pmr·ηc

ωc·Tc
(13)

where PAR denotes the power allocation ratio of the two motors, Pmr is the output power
of motor EM_R, and ηc represents the transmission efficiency of the planetary gear.

When PAR = 0, the DMCDS operates in the M1S mode. Conversely, when PAR = 1,
the DMCDS operates in the M1R mode. For the range 0 < PAR < 1, the DMCDS operates in
the DMC mode. The state transition equations for state variables x1 and x2 are as follows:

x1(t + 1) = x1(t) + u1(t)

x2(t + 1) =

⎧⎨
⎩

−1 x2(t) + u2(t) < −1
x2(t) + u2(t) other
1 x2(t) + u2(t) > 1

(14)

where x2 takes values from the set {−1, 0, 1}, corresponding to the M1S mode, DMC
mode, and M1R mode, respectively; and u2 is restricted to the set {−1, 0, 1}, signifying the
downshift, neutral, and upshift, respectively.

During the adoption of the dynamic programming optimization process, the primary
objective of the system is to minimize the energy losses within the DMCDS, which can be
expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

J =
N−1
∑

t=0
L(x(t), u(t)) =

N−1
∑

t=0
LmR(t) + LmS(t) + Lgear(t)

LmR(t) =
Tmr(t)·ωmr(t)

1000·ηmr(t)
sign(Tmr) ·

(
1 − ηmr(t)

sign(Tmr)
)

LmS(t) =
Tms(t)·ωms(t)

1000·ηms(t)
sign(Tms) ·

(
1 − ηms(t)

sign(Tms)
)

Lgear(t) =
Tmr(t)·ωmr(t) + Tms(t)·ωms(t)

1000 (1 − ηC(t))

(15)

where LmR, LmS, and Lgear represent the power losses of motors EM_R and EM_S, and the
planetary gear mechanism, respectively; and ηmr and ηms denote the operational efficiencies
of motors EM_R and EM_S, respectively.
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To ensure the safety and efficient operation of the DMCDS during the optimization
process, the following constraints need to be applied:

⎧⎪⎪⎨
⎪⎪⎩

Tms_min(nms(t)) ≤ Tms(t) ≤ Tms_max(nms(t))
Tmr_min(nmr(t)) ≤ Tmr(t) ≤ Tmr_max(nmr(t))

nms_min ≤ nms(t) ≤ nms_max
nmr_min ≤ nmr(t) ≤ nmr_max

(16)

where Tms_min, Tms_max and Tmr_min, Tmr_max denote the minimum and maximum torque
of motors EM_S and EM_R at the current speed, respectively; and nms_min, nms_max and
nmr_min, nmr_max denote the minimum and maximum speed of motors EM_S and EM_R,
respectively.

(6) Outer-layer component parameter optimization

When optimizing the parameters of the DMCDS, it is necessary to consider the joint
minimization of energy losses and component costs. Therefore, the objective function J(p)
is defined as a weighted sum of energy losses and component costs:

⎧⎪⎪⎨
⎪⎪⎩

J(p) = γ1·J1(p)/J1
N + γ2·J2(p)/J2

N

J2(p) = Cmot + Cpe
Cmot = −779.1 + 450.8· ln(Tmax)
Cpe = 3160 + 30.1·Tmax

(17)

where J1(p) is the energy losses of the DMCDS, corresponding to the inner optimization
objective; J2(p) is the overall cost of the electric system; Cmot and Cpe are the costs associated
with the motor and controller, respectively; and Tmax is the peak torque of the motors. γ1
and γ2 are the weighting factors, γ1,γ2 ∈ [0,1], and γ1 + γ2 = 1. To achieve a more reasonable
weight distribution, and recognizing that the two objective sub-functions carry distinct
physical meanings, we introduce the objective expectations J1

N and J2
N as normalization

factors.
Since the efficient performance of the DMCDS primarily relies on the rated parameters

of the motors and the planetary gear ratio, these five parameters are chosen as the opti-
mization variables. These optimization variables need to satisfy the dynamic performance
requirements, including maximum vehicle speed, maximum climbing gradient, and 0–100
km/h acceleration time. When the vehicle is operating at the maximum speed, the DMCDS
component parameters must satisfy the following equation:

⎧⎨
⎩

Pms + Pmr ≥ (msg fr + CD A f vmax
2/21.15)vmax

3600ηsys

Tc(vmax) ≥ (msg fr + CD A f vmax
2/21.15)rw

ηsysim

(18)

To meet the requirements for the maximum climbing gradient, the component param-
eters must satisfy the following equation:

⎧⎨
⎩

Pms ≥ (msg fr cos(θmax) + msg sin(θmax) + CD A f v10
2/21.15)v10

3600ηsys

Tmaxs(k + 1) ≥ (msg fr cos(θmax) + msg sin(θmax) + CD A f v10
2/21.15)rw

ηsysim

(19)

To meet the requirements for the 0–100 km/h acceleration time, the component pa-
rameters need to satisfy the following equation:{

Pms + Pmr ≥ 1
3600ηsystacc

(
(msg fr + CD A f vacc

2/21.15)
∫ tacc

0
vacc

(
t

tacc

)0.5
dt

)
(20)

where ηsys is the system efficiency, θmax is the maximum gradient, vacc is the vehicle speed
at the end of acceleration, and tacc is the acceleration time.
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Considering vehicle dynamic performance indicators, the feasible range of the opti-
mization variables is obtained and shown in Table 3.

Table 3. Range of parameters to be optimized.

Parameter Lower Limit Upper Limit

Rated power of EM_S (kW) 30 60
Rated speed of EM_S (r/min) 2500 4000
Rated power of EM_R (kW) 30 60

Rated speed of EM_R (r/min) 2500 4000
Planetary gear ratio 1.5 4

Final drive ratio 4 6.5

2.3.3. Optimization Process

To achieve superior energy efficiency while ensuring dynamic performance, we pro-
pose a two-layer hybrid optimization method based on the Particle Swarm Optimization
(PSO) algorithm and Dynamic Programming (DP) algorithm for the DMCDS. This method
effectively addresses the coupled effect of component parameters and system control. The
two optimization layers work in conjunction to optimize the critical component parameters
of the DMCDS. In the outer layer, the PSO algorithm optimizes the component parameters
using the optimal control parameters provided by the inner layer. In the inner layer, the
DP algorithm is applied to determine the optimal control parameters based on the com-
ponent parameters given by the outer layer. This comprehensive approach enables global
optimization of both component parameters and system control. The optimization process
is visually illustrated in Figure 6.

 
Figure 6. Optimization process of two-layer hybrid optimization method.
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3. Results and Discussion

This section provides an overview of the Dual-Motor Coupled Drive System (DM-
CDS) parameter optimization results achieved through the two-layer hybrid optimization
method, while highlighting the differences in energy-economic efficiency between pre-
optimization and post-optimization. In this study, the DMCDS was specifically designed
for urban SUVs, and the China light-duty vehicle test cycle and worldwide harmonized
light-duty vehicles test cycles (CLTC and WLTC) were employed as the optimized driving
cycles. Therefore, the vehicle speed over the driving cycles is shown in Figure 7.

  
(a) (b) 

Figure 7. Optimized driving cycles: (a) CLTC-P and (b) WLTC.

Under these two driving cycles, the component parameters of the DMCDS were opti-
mized using the two-layer hybrid optimization approach, and the optimized parameters
are listed in Table 4. A comparative analysis was conducted, which resulted in comparing
the optimized configuration with the prototype configuration that utilized two identical
baseline motors.

Table 4. Comparison of component parameters.

Optimization Parameter Optimized Parameter Value Prototype Parameter Value

Rated power of EM_S (kW) 33.5 32
Rated speed of EM_S (r/min) 3500 2250
Rated power of EM_R (kW) 31.5 32

Rated speed of EM_R (r/min) 4000 2250
Planetary gear ratio 2.26 1.86

Final drive ratio 5.15 4.93

Compared to the prototype scheme, the optimized motors (EM_S and EM_R) exhibit
increased rated speeds and reduced peak torques. Consequently, the motor’s constant
power region shifts to higher speeds, accompanied by an expanded constant torque region.
These enhancements significantly contribute to elevated operational load rates for both
motors, improving the utilization of the high-efficiency operational range. Furthermore, the
increase in the planetary gear ratio (k) leads to a higher proportion of output power from
EM_R and amplifies the output torque of EM_S, thus elevating the operational efficiency
during high-speed, high-power and low-speed, high-torque conditions, fully leveraging
the advantages of the DMCDS for efficient operation across various modes.

In contrast, the prototype scheme merely aligns with extreme load conditions of the
vehicle, neglecting the critical match between the motor’s high-efficiency range and the
driving cycles. This oversight increases the probability of the motor operating in low-load
and low-efficiency regions, affecting the driving range of the electric vehicle.

To explore the effects of the two-layer hybrid optimization method on the energy-
economic efficiency of the DMCDS, this study conducted a comparative analysis of three
drive system schemes under the same vehicle parameters and driving cycle conditions.
The three schemes include the Single Motor Drive System (SMDS), the DMCDS prototype
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scheme (DMCDS-pro), and the optimized DMCDS scheme (DMCDS-opt). The primary
parameters of the SMDS can be found in Table 5. It is worth noting that the efficiency map
of the motor in SMDS has the same shape as the baseline motor. To attain the optimal
economic efficiency for the SMDS, we adopted the enumeration method for the gear ratio
optimization.

Table 5. Parameters of SMDS.

Parameter Value

Rated power of motor (kW) 64
Peak power of motor (kW) 106

Rated speed of motor (r/min) 2250
First gear ratio 3.27

Second gear ratio 1.98
Final drive ratio 2.826

Figure 8 illustrates the distribution of operating points for the motors in the three
drive system configurations. It is evident that, compared to SMDS, both DMCDS-pro and
DMCDS-opt have a higher number of operational points located in the high-efficiency
region for motors EM_S and EM_R. This indicates the advantage of the dual-motor coupled
drive system in achieving efficient operation through coordinated control in various modes.
When comparing the operational point distribution of DMCDS-pro and DMCDS-opt, the
optimized DMCDS demonstrates a greater number of operational points in the high-
efficiency region. This can be attributed to the increase in rated speed and decrease in peak
torque of the two motors, resulting in higher load rates for both motors. Consequently,
the utilization efficiency of the high-efficiency region for the motors is enhanced, so the
DMCDS-opt should have higher system efficiency in this case.

(a) (b) 

(c) (d) 

Figure 8. (a) Motor working points in SMDS; (b) working points of motors in DMCDS-pro;
(c) working points of EM_S in DMCDS-opt; (d) working points of EM_R in DMCDS-opt.
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The average drive efficiency (ADE) was adopted as one of the evaluation indicators
for assessing the system economic performance in this work. For a given driving cycle, the
system drive efficiency is represented as

ηADE =
∫ t

0

Pw

Pele
dt (21)

where ηADE is the average drive efficiency and Pw is the vehicle demand power.
Figure 9 illustrates the time-varying drive efficiency of the three propulsion systems.

The findings reveal that the SMDS has the lowest efficiency, followed by DMCDS-pro, which
exhibits an average efficiency 1.75% higher than that of SMDS. Significantly, DMCDS-opt
displays the highest average efficiency, exceeding DMCDS-pro by 2.5%.

 

Figure 9. Efficiency of driving system in CLTC and WLTC.

Compared to SMDS, DMCDS-pro, which employs two identical motors, facilitates
adaptation to varying vehicle speeds and loads through three driving modes. Moreover,
the DMC mode enables continuous speed regulation, thereby enhancing motor operating
efficiency. Consequently, DMCDS-pro exhibits a higher average drive efficiency compared
to SMDS, which relies on a single motor and a two-gear transmission. However, the
parameter matching of DMCDS-pro is based on vehicle performance indicators, without
considering the alignment of the motor’s high-efficiency range with the vehicle operating
conditions. As a result, the utilization efficiency of the high-efficiency region for the two
motors is relatively low.

Conversely, DMCDS-opt, featuring two motors with different efficiency characteristics,
establishes three high-efficiency regions within the drive system. This design enhances
the utilization efficiency of the motor high-efficiency regions and contributes to reducing
energy consumption.

The high-efficiency region utilization and electricity consumption were adopted as
another two economic evaluation indicators in this study. The indicator values for the three
drive system schemes were obtained through simulations and are presented in Table 6.

Table 6. Economic evaluation indicators.

Indicator

Schemes
SMDS DMCDS-pro DMCDS-opt

High-efficiency region utilization
(efficiency > 90%) 6.6%

EM_R 30.2% EM_R 43.8%
EM_S 8.6% EM_S 12.8%

Electricity consumption (kWh/100 km) 18.18 17.58 16.95
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The results indicate that the utilization efficiency of the high-efficiency region in the
dual-motor coupled drive configuration was significantly superior to SMDS, resulting in
SMDS exhibiting the highest electricity consumption (18.18 kWh/100 km). In contrast,
DMCDS-pro and DMCDS-opt demonstrated reductions in electricity consumption of 3.3%
and 6.8%, respectively. It is evident that DMCDS-opt exhibited a remarkable increase
in high-efficiency region utilization after optimization, resulting in reduced electricity
consumption. In conclusion, the DMCDS achieves a higher efficiency through the synergis-
tic optimization of component parameters and system control, effectively enhancing the
driving range.

4. Conclusions

In order to enhance the energy utilization efficiency and extend the driving range of
electric vehicles, a dual-motor coupled drive system with a simple structure is proposed,
and a dynamic mathematical model is established to analyze the power flow characteristics
under different driving modes. Considering the interdependence between the optimization
of component sizes and the system coordinated control in the dual-motor coupled drive
system, this paper proposes a two-layer hybrid optimization approach. In the outer layer,
a multi-objective particle swarm algorithm is employed to optimize the component sizes.
Meanwhile, in the inner layer optimization, the given feasible component parameters from
the outer layer are subjected to the DP algorithm to identify the optimal control parameters.
The primary findings of this paper are summarized as follows:

(1) The selection of motor parameters and gear ratios exerts a substantial influence
on the power losses and drive efficiency of the system. While keeping the system
maximum output power unchanged, adjustments to the rated power, rated speed,
and gear ratios can enhance the utilization efficiency of the high-efficiency region and
effectively reduce electrical energy consumption.

(2) The optimized motors exhibit an increase in rated speed and a decrease in peak
torque, resulting in a substantial improvement in the utilization efficiency of the
high-efficiency region. Compared to the prototype scheme, motors EM_R and EM_S
experience an increase of 45% and 48%, respectively. Moreover, the optimized DMCDS
achieves an average drive efficiency 2.5% and 4.2% higher than that of DMCDS-
pro and SMDS, respectively, leading to DMCDS-opt possessing the lowest energy
consumption of 16.95 kWh/100 km.
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Abstract: The Dual Credit Policy is an important policy to promote the development of new energy
vehicles unique to China. There is a lack of research that intuitively reflects the impact of the Dual
Credit Policy on industrial development through an industry-based factual comparison of this policy.
Based on the Taylor expansion and Cross-Entropy description, this article obtains the development
regression function by the quantitative analysis of five indicators—the number of new energy vehicle-
related patents, sales volume, production volume, the number of newly registered enterprises,
infrastructure construction (the number of charging piles) before and after the implementation of
the policy, and describes them quantitatively using the Taylor expansion to obtain the CPTI index.
The CPCEI index is obtained by calculating the Cross-Entropy of the distribution of each indicator
before and after policy implementation. The above two indices were compared for the growth trend
and growth quantity, respectively. Finally, the following conclusions were obtained: 1. the Dual
Credit Policy is more significantly promoted at the market level than the impact on the technical
level; 2. although there is also incentive in infrastructure construction, it cannot fully react to the
market demand; 3. the number of start-up’s operating in the new energy field increases, but the
overall growth trend gradually slows down and fails to significantly change the existing structure of
the market. This study suggests that the government should launch a special incentive policy for
charging piles, and new energy manufacturers should expand their production capacity to meet the
market demand.

Keywords: Dual Credit Policy; policy impacts; Taylor series expansion; Cross-Entropy

1. Introduction

China’s Dual Credit Policy is a policy measure implemented to promote the develop-
ment of New Energy Vehicles (NEVs). Its developmental timeline includes the introduction
of the policy by the government in 2017, which required automobile manufacturers to en-
sure that a certain proportion of their total sales consisted of NEVs and set energy efficiency
standards for vehicles. Subsequently, in 2019, the policy underwent modifications, further
raising the requirements for manufacturers.

In 2021, the government released a new automotive industry development policy,
continuing its support for the development of NEVs and announcing plans for carbon
peaking and carbon neutrality aimed at further boosting the demand for NEVs. This policy
plays a crucial role in the Chinese automotive market by encouraging manufacturers to
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increase the production and sales of NEVs. Additionally, it has significant implications for
the global automotive market and the development of new energy technologies.

2. Literature Review

Research on China’s Dual Credit Policy began to gain momentum around 2018, and
to date, there are relatively few studies available for reference. Prior to 2020, research on
the Dual Credit Policy primarily focused on whether the government subsidies and macro
support measures under this policy were excessive. For instance, researchers like Zheng
Jichuan [1] found that combining research and development (R&D) subsidies with the
Dual Credit Policy could enhance market mechanisms, promote technological innovation,
and facilitate the healthy development of automotive companies. Shiqi Ou and others [2]
studied the policy’s impact on the profits of plug-in electric vehicle companies, suggesting
that pure electric cars with a range exceeding 250 km and plug-in hybrid SUVs might be
popular. Some scholars also optimized the subsidies under the Dual Credit Policy [3].

In 2020, the subsidy intensity of this policy began to decrease, prompting scholars to
shift their focus toward predicting the post-subsidy impact. As China’s new energy vehicle
industry developed and supporting infrastructure improved, a market-driven reshuffling
of enterprises ensued. Companies that had profited by deceiving the government for
subsidies were gradually phased out due to low product quality. After 2020, scholars began
to concentrate on demonstrating whether the Dual Credit Policy truly had a driving effect on
the industry and validating it through various models. For example, Yuchao Li conducted
empirical tests on the “corner overtaking theory” using a difference-in-differences (DID)
model with China’s new energy vehicle industry as the research subject [4,5]. Ding Lian
explored the impact of the Dual Credit Policy on production and cooperative research
and development by constructing a game theory model [6]. Liu Chunling and others
based their analysis on the Arrow-Karlin model, using the Hamilton function to analyze
optimal control conditions for producing new energy vehicles in the context of cumulative
points and carbon trading [6]. Their model was more comprehensive than others as it
considered situations with no points, only points, or both points and carbon trading. Lu
Chao and colleagues [7] argued that the Dual Credit Policy imposed higher requirements
on the quality and energy efficiency of automotive products from the supply side. Their
research considered coordination in the automotive supply chain regarding price, emissions
reduction, and mileage, leading to three conclusions that provide guidance for supply chain
coordination in automotive companies. Yu et al. [8] analyzed the impact of withdrawal
and cumulative points on the optimal decisions of both automakers and dealers using the
Stackelberg game.

To date, research on the aforementioned topics has become relatively abundant. The
academic community largely agrees that the Dual Credit Policy effectively promoted the
development of China’s new energy vehicle industry and strongly recommends it as
a policy that other countries can emulate. However, there has been limited discussion
regarding the underlying mechanisms and reasons for the policy’s effectiveness. Without a
thorough study and analysis of the intrinsic logic and process by which the policy drives
industry development, it may not be conducive to other countries attempting to formulate
similar systems. Some scholars have conducted comparative analyses of the policy’s
implementation process and industry feedback paths [9,10]. Nevertheless, these studies
tend to focus on fundamental industry development logic and lack comprehensive data
support and mathematical logic. To gain a more direct and clear understanding of how
China’s Dual Credit Policy impacts industrial development, this study utilizes a large
volume of data, condenses it into indices through mathematical modeling, and compares
the indices before and after the policy’s implementation.

There are various methods for policy research, and quantifiable approaches include
text analysis, cost-benefit (utility) analysis, multi-criteria decision analysis, policy simula-
tion, and dynamic modeling, among others. Li et al. [11] employed cost-benefit (utility)
analysis using Chinese publicly listed new energy vehicle companies as research samples,
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applying a difference-in-differences model to analyze the Dual Credit Policy based on firm
heterogeneity. They analyzed changes in investment scale, intensity, and structure of new
energy enterprises under this policy and found that the Dual Credit Policy significantly
promoted R&D investment by new energy vehicle companies, with the growth in the scale
of R&D investment being more significant than the growth in intensity. Cheng et al. [12]
analyzed the production decisions of automakers under the fuel consumption credit and
new energy vehicle credit systems, proposing optimizations for production decisions under
the credit system. Li and Xiong [13] analyzed the dynamic changes in the operational
and environmental performance of new energy vehicle enterprises under the Dual Credit
Policy from the dimensions of significance, agility, and stability. They concluded that the
Dual Credit Policy had released positive effects during its incubation period, with more
significant and stable growth in environmental performance and more agile responses in
operational performance. Lu et al. [14] introduced externalities from the field of economics
and the Pirlo theory to explain the intrinsic mechanism of the Dual Credit Policy. Their
research provides theoretical support for the positioning and direction of the Dual Credit
Policy in the development of the new energy vehicle industry.

In existing policy research, both domestic and international scholars have proposed
numerous models. Zang Wei et al. [15] conducted quantitative AI policy research using
policy tools and the PMC policy evaluation model, employing text mining and content
analysis methods to quantitatively analyze current AI policy texts in China. They combined
this with an analysis of China’s AI research frontier trends to explore future policy develop-
ment directions, providing specific and actionable recommendations for the formulation
and revision of AI policies. To avoid the subjectivity of variable scoring, they used the
results of policy text mining to assign values to variables based on the spatial vector model
and used PMC indicator scores and PMC surface synthesis to reflect various dimensions of
the policy. Although their policy quantification method is relatively traditional, it achieves
multi-dimensional analysis and allows for a more comprehensive policy evaluation, mak-
ing it very helpful for our research. Remal Abotah et al. [16] studied a comprehensive
policy development evaluation model to assess the effectiveness of energy policy tools
in increasing the adoption of renewable energy. They used a hierarchical decision model
(HDM) to construct a comprehensive policy evaluation framework. Their policy evaluation
model provides ideas from multiple perspectives for construction.

It can be seen that scholars have employed a wide range of models, all of which are
reasonably explained. This paper proposes a new index to demonstrate the impact of
policies on industrial development. The underlying logic is to approximate the coefficients
of functions using the Taylor expansion method to analyze the trends in different variables.
The Taylor expansion is widely used in fields such as physics, engineering, and the natural
sciences [17]. It can be used to approximate the behavior of complex physical phenomena
to better understand and predict experimental results. Similarly, this method has broad
applicability in policy research. The Taylor expansion provides an effective tool for ap-
proximating complex industrial or economic models into simpler mathematical forms,
making the analysis of policy impact more feasible. By analyzing the coefficients after
Taylor expansion, researchers can understand the linear and nonlinear responses between
different variables, revealing the potential impacts of policy changes. However, careful
consideration of data quality and model applicability is needed, especially when policy
changes are significant or nonlinear, to ensure the accuracy and reliability of the analysis.

3. Method and Proceeding

For a more concise description of the data and experiments, Table 1 presents the
symbols used in this study to represent the relevant meanings.
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Table 1. Symbol representation and related meaning.

Symbols Meaning

b before
a after
t time

Pab Pre-policy patent growth
Paa Patent growth after the policy
Sb Pre-policy sales volume growth
Sa Sales growth after the policy

Prb Pre-policy production growth
Pra Production growth after the policy
Cob Pre-policy new business growth
Coa New business growth after the policy
Chb Pre-policy charging pile growth
Cha Charging pile growth after the policy
Min Minimum value
Max Maximum value

T Indicator data for the year
Ppa Patent probability distribution before policy implementation
Qpa Patent probability distribution after policy implementation
Ps Probability distribution of sales volume (units) before policy implementation
Qs Probability distribution of sales volume (units) after policy implementation
Ppr Probability distribution of production (units) before policy implementation
Qpr Probability distribution of production (units) after policy implementation
PcO Probability distribution of the number of newly established companies before the policy was implemented
QcO Probability distribution of the number of newly established companies after the policy was implemented
Pch Probability distribution of the number of charging posts before the policy was implemented
Qch Probability distribution of the number of charging posts after the policy is implemented
H Comparative data by year before and after the policy

CPTI Dual Credit Policy Taylor expansion index
CPCEI Dual Credit Policy Cross-Entropy index

Based on previous studies on policy quantification, this study will measure the impact
of the Dual Credit Policy on the development of the new energy vehicle industry in terms of
technology, market, capital, and infrastructure development. The specific indicators of these
aspects are the number of patents granted for new energy, the production of new energy
vehicles, the sales of new energy vehicles, the registration of companies providing new
energy services, and the number of charging piles. According to the relevant documents
from the Ministry of Industry and Information Technology of the People’s Republic of
China and combined with previous studies, 2017 is widely considered to be the first year
when the Dual Credit Policy became widely known and played a role in the development
of the industry, so this study looked for data from the five years before and five years after
the policy was implemented, as shown in Table 2.

According to previous studies (some literature’s serial numbers), the time series data
can be fitted to the time series development function of a certain indicator by regression
and make a forecast of the future trend. This function can better reflect the development
pattern of this indicator at that stage and is a good quantitative tool. Therefore, in this
study, regression analysis is conducted separately for the above indicators before and after
the policy to obtain the statistically optimal fit function. Comparing the changes of the two
functions of the same indicator before and after the policy, the impact of the Dual Credit
Policy on different indicators in terms of development trends can be reflected more clearly,
thus illustrating the impact of the Dual Credit Policy on the overall industry.
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Table 2. Relevant data before and after 5 years.

Patents
Sales Volume

(Units)
Production
(Volume)

Number of Newly
Established Companies

Number of
Charging Piles

2012 27 12,800 12,600 2491 18,000
2013 43 17,600 17,500 3102 22,528
2014 54 74,800 78,500 4766 31,000
2015 99 331,100 340,500 5758 49,000
2016 412 507,000 517,000 8755 141,000
2017 233 777,000 794,000 13,442 240,000
2018 643 1,256,000 127,0000 21,516 387,000
2019 677 1,206,000 1,242,000 23,311 516,000
2020 610 1,367,000 1,366,000 32,848 807,000
2021 993 3,521,000 3,545,000 72,707 1,147,000

Maximum value 993 3,521,000 3,545,000 72,707 1,147,000
Minimum value 27 12,800 12,600 2491 18,000
Average value 379.1 90,7030 918,310 18,869.6 335,852.8

Data source: CNKI, SAIC.

In the comparison between the two functions before and after, this study adopts
two treatments, the Taylor expansion and Cross-Entropy, for continuous functions and
discontinuous point sets, respectively. The Taylor formula can expand the functions of
different shapes in the form of continuous sub-polynomials of the independent variable,
which serves the purpose of standardizing and unifying the description of the functions.
By summing up the complex weights of different term coefficients, the eigenvalues of
the growth trend of the function—i.e., the acceleration of the function change—can be
effectively defined and extracted, i.e., the Taylor index of the effect of the double integra-
tion policy. Cross-Entropy is now widely used in machine learning. It is used similarly
to describe the mathematical treatment of the difference between the function obtained
from machine learning and the target function; the value can effectively feedback on the
difference between the two and feedback to the computer to correct its learning results and
make it more accurate for continuous iteration. In this study, with the help of the concept of
Cross-Entropy, the changes of each index before and after the double integration policy are
analyzed, and the Cross-Entropy index of the policy impact is finally obtained. It should be
noted that the Cross-Entropy index of double integration policy impact is used to describe
the change of indicators, while the Taylor index of double integration policy impact is used
to express the change of the indicator development trend.

To facilitate statistical analysis, some necessary processing of the raw data is required.
In this study, the above data are normalized and standardized according to the indicators.
Further, considering the requirements of regression analysis for the dependent variable,
this study uses the standardization process of determining the range, and the data interval
is set to [0.2,0.8]. The formula is

Equivalent value of each item = 0.2 +
0.6

max − min
∗ (T − min) (1)

The processing results are shown in Table 3.
Based on the above processing results, this study conducted regression analysis using

IBM SPSS Statistics 26 data processing software and obtained ten sets of parameter estimates
and function images. Based on the statistical residual sum-of-squares test, F-test, and
significance test, this study selected the most appropriate function type possible to fit the
ten functions of the five variables before and after the policy, and the process was as follows.
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Table 3. Processed data.

Patents Sales Volume (Units) Production (Volume)
Number of Newly

Established Companies
Number of

Charging Piles

2012 0.2 0.2 0.2 0.2 0.2
2013 0.210 0.201 0.201 0.205 0.202
2014 0.217 0.211 0.211 0.219 0.207
2015 0.245 0.254 0.256 0.228 0.216
2016 0.439 0.285 0.286 0.254 0.265
2017 0.328 0.331 0.333 0.294 0.318
2018 0.583 0.413 0.414 0.363 0.396
2019 0.604 0.404 0.409 0.378 0.465
2020 0.5621 0.432 0.430 0.459 0.619
2021 0.8 0.8 0.8 0.8 0.8

Table 4 represents the selection of the growth equation of the number of patents before
the implementation of the policy.

Table 4. Growth in the number of patents before the implementation of the policy.

Square of R F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.654 5.659 1 3 0.098 0.108 0.051
Logarithmic 0.470 2.657 1 3 0.202 0.158 0.108
Secondary 0.923 12.056 2 2 0.077 0.303 −0.116 0.028

Index 0.712 7.423 1 3 0.072 0.149 0.173
Logistic 0.712 7.423 1 3 0.072 6.712 0.841

Figure 1 shows a fitting function image of the changes in patent index over the five
years prior to policy implementation.

Figure 1. Growth in the number of patents before the implementation of the policy.

According to the statistical requirements, the model with a smaller sum-of-squared
residual and a larger and less significant F-test was chosen as the most suitable expression.
Considered together, the exponential function was chosen as the mathematical expression
in this study.

Pab(t) = 0.1490.173t (2)
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Table 5 represents the selection of the equation for the growth of the number of patents
after the implementation of the policy. Figure 2 shows a fitting function image of the
changes in patent index over the five years after policy implementation

Table 5. The number of patents increased after the implementation of the policy.

Square of R F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.757 9.339 1 3 0.055 0.298 0.092
Logarithmic 0.792 11.425 1 3 0.043 0.350 0.235
Secondary 0.763 3.215 2 2 0.237 0.250 0.134 −0.007

Index 0.727 7.996 1 3 0.066 0.328 0.175
Logistic 0.727 7.996 1 3 0.066 3.053 0.840

Figure 2. The number of patents increased after the implementation of the policy.

The model with a small sum-of-squared residual and a larger and less significant
F-test was chosen as the most suitable expression according to statistical requirements.
Considering the influence of chance factors such as the new crown epidemic in the fourth
year after the implementation of the policy, data with a large deviation from the overall
trend in the fourth year are not considered. Based on this study, the exponential function
was chosen as the mathematical expression.

Paa(t) = 0.3280.328t (3)

Based on the same research approach and the way the expressions are chosen, the
growth in the number of new energy vehicles sold, the growth in the number of productions,
the growth in the number of newly registered enterprises, and the growth in infrastructure
construction (taking the growth in the number of charging piles as an example) before and
after the implementation of the policy are analyzed as follows.

The data were processed to obtain the model summary and parameter estimates,
respectively, to obtain the following Tables 6–13. Figures 3–10 show the exponential fitting
functions of sales volume, production, the number of newly registered enterprises in the
field, and the number of charging stations in the five years before and after the policy.

Sb(t) = 0.1720.94t (4)

Sa(t) = 0.2630.181t (5)

Prb(t) = 0.1710.95t (6)

Pra(t) = 0.1710.95t (7)
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Cob(t) = 0.1850.185t (8)

Coa(t) = 0.1790.224t (9)

Chb(t) = 0.1790.63t (10)

Cha(t) = 0.2480.229t (11)

Table 6. Pre-policy sales volume increase.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.870 20.108 1 3 0.021 0.163 0.022
Logarithmic 0.691 6.695 1 3 0.081 0.183 0.049
Secondary 0.978 43.690 2 2 0.022 0.210 −0.017 0.007

Index 0.881 22.188 1 3 0.018 0.172 0.094
Logistic 0.881 22.188 1 3 0.018 5.825 0.910

Table 7. Increase in sales after the policy.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.668 6.039 1 3 0.091 0.189 0.096
Logarithmic 0.515 3.186 1 3 0.172 0.276 0.209
Secondary 0.861 6.202 2 2 0.139 0.493 −0.165 0.044

Index 0.735 8.322 1 3 0.063 0.263 0.181
Logistic 0.735 8.322 1 3 0.063 3.803 0.834

Table 8. Pre-policy production growths.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.873 20.610 1 3 0.020 0.163 0.023
Logarithmic 0.694 6.819 1 3 0.080 0.183 0.050
Secondary 0.977 42.568 2 2 0.023 0.209 −0.017 0.007

Index 0.884 22.791 1 3 0.017 0.171 0.095
Logistic 0.884 22.791 1 3 0.017 5.834 0.909

Table 9. Production growth after the policy.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.665 5.945 1 3 0.093 0.192 0.095
Logarithmic 0.513 3.156 1 3 0.174 0.278 0.208
Secondary 0.856 5.964 2 2 0.144 0.494 −0.164 0.043

Index 0.731 8.134 1 3 0.065 0.265 0.179
Logistic 0.731 8.134 1 3 0.065 3.770 0.836

Table 10. Growth in new registrations before the policy.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.936 44.106 1 3 0.007 0.182 0.013
Logarithmic 0.801 12.063 1 3 0.040 0.193 0.030
Secondary 0.985 66.011 2 2 0.015 0.200 −0.002 0.003

Index 0.951 58.204 1 3 0.005 0.185 0.058
Logistic 0.951 58.204 1 3 0.005 5.397 0.944
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Table 11. Growth of newly registered businesses after the policy.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.772 10.154 1 3 0.050 0.126 0.111
Logarithmic 0.605 4.599 1 3 0.121 0.225 0.244
Secondary 0.938 15.182 2 2 0.062 0.430 −0.150 0.044

Index 0.865 19.151 1 3 0.022 0.220 0.224
Logistic 0.865 19.151 1 3 0.022 4.551 0.799

Table 12. Pre-policy charging post growth.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.714 7.496 1 3 0.071 0.175 0.014
Logarithmic 0.527 3.349 1 3 0.165 0.189 0.031
Secondary 0.948 18.239 2 2 0.052 0.224 −0.028 0.007

Index 0.738 8.447 1 3 0.062 0.179 0.063
Logistic 0.738 8.447 1 3 0.062 5.572 0.939

Table 13. Charger growth after the policy.

Square
of R

F
Degree of
Freedom 1

Degree of
Freedom 2

Significance Constants b1 b2

Linear 0.956 64.743 1 3 0.004 0.163 0.119
Logarithmic 0.826 14.196 1 3 0.033 0.257 0.275
Secondary 0.997 310.703 2 2 0.003 0.309 −0.006 0.021

Index 0.991 337.811 1 3 0.000 0.248 0.229
Logistic 0.991 337.811 1 3 0.000 4.038 0.795

Figure 3. Changes in sales volume in the 5 years prior to policy implementation.
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Figure 4. Changes in sales volume within 5 years after policy implementation.

Figure 5. Changes in production in the 5 years prior to policy implementation.

Figure 6. Changes in production over the past 5 years after policy implementation.
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Figure 7. Changes in the number of newly registered enterprises in relevant fields in the 5 years
before policy implementation.

Figure 8. Changes in the number of newly registered enterprises in relevant fields within 5 years of
the implementation of policies.

Figure 9. Changes in the number of charging power stations in the 5 years before the implementation
of the policy.
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Figure 10. Changes in the number of charging power stations in the next 5 years after the implemen-
tation of the policy.

The above data are plotted against the corresponding images and the expressions are
derived in the same manner as above, and the expressions and images are shown below.

The Taylor expansions of the above ten functions were studied and calculated, the
parameters of the first five orders were listed, and the following table was obtained.

Through Table 14, it can be seen that the fourth- and fifth-order coefficients are close
to zero, which is also consistent with the mathematical mechanism of the Taylor expansion.
The higher the order of expansion, the smaller the overall impact on the function, that is, the
higher order infinitesimal in higher mathematics. In order to facilitate the calculation and to
consider the different degrees of influence of different orders on the overall expression of the
function, this study selects the coefficients of the first three orders of the Taylor expansion
and performs the summation of the complex weights to finally obtain the relative growth
indices describing the different types of influencing factors before and after the policy. The
first-order compound weight is the original value, the second-order compound weight is
1/2, and the third-order compound weight is 1/3. From this data, Table 15 is obtained.

Table 14. Taylor’s Expanded Form.

Coefficient Matrix
before Compound

Weighting

Fifth Order
Pole Number

Forth Order
Pole Number

Third Order
Pole Number

Secord Order
Pole Number

First Order
Pole Number

Constant
Term

Patents-before 0.000 0.000 0.000 0.010 −0.143 1.000
Patents-after 0.000 0.000 −0.001 0.013 −0.159 1.000
Sales-before −0.002 0.011 −0.062 0.258 −0.719 1.000
Sales-after 0.000 0.000 0.000 0.006 −0.105 1.000

Production-before −0.002 0.012 −0.064 0.265 −0.729 1.000
Production-after 0.000 0.000 0.000 0.005 −0.103 1.000

Companies-before 0.000 0.000 0.000 0.009 −0.136 1.000
Companies-after 0.000 0.000 −0.001 0.014 −0.167 1.000
Charging-before 0.000 0.002 −0.017 0.111 −0.471 1.000
Charging-after 0.000 0.000 0.000 0.010 −0.139 1.000
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Table 15. Empowering Taylor Unfolds.

Coefficient Matrix
before Compound

Weighting

Fifth Order
Pole Number

Forth Order
Pole Number

Third Order
Pole Number

Secord Order
Pole Number

First Order
Pole Number

Relative
Growth Index

Patents-before 0.000 0.000 0.000 0.005 −0.143 −0.138
Patents-after 0.000 0.000 0.000 0.006 −0.159 −0.153
Sales-before 0.000 0.003 −0.021 0.129 −0.719 −0.610
Sales-after 0.000 0.000 0.000 0.003 −0.105 −0.102

Production-before 0.000 0.003 −0.021 0.133 −0.729 −0.617
Production-after 0.000 0.000 0.000 0.003 −0.103 −0.101

Companies-before 0.000 0.000 0.000 0.005 −0.136 −0.131
Companies-after 0.000 0.000 0.000 0.007 −0.167 −0.161
Charging-before 0.000 0.001 −0.006 0.055 −0.471 −0.421
Charging-after 0.000 0.000 0.000 0.005 −0.139 −0.134

It should be noted that the positive, negative, and magnitude of the relative growth
index do not represent the actual growth because the above data are obtained through
independent normalization and standardization of different factors under the influence of
policies, and it can only be compared with the relative growth index of similar factors to
illustrate the changes in different indicators before and after the policy change.

The relative growth indices of similar factors are compared to obtain the policy impact
coefficient for a single factor, as shown in Table 16.

Table 16. Policy Impact Factor.

Policy Impact Indicators Patents
Sales Volume

(Units)
Production
(Volume)

Number of Newly
Established Companies

Number of
Charging Piles

Policy Impact Factor 0.904 5.964 6.135 0.816 3.142

Cross-Entropy is using the same set of events to measure the information about the
variability between two probability distributions. In information theory, Cross-Entropy is
denoted as two probability distributions, P and Q, where P denotes the true distribution and
Q denotes the untrue distribution in the same set of events, where the untrue distribution
Q is used to denote the average number of bits required for an event to occur. Let the
two probability distributions of different indicators before and after the policy study in
this study be P and Q, where P is the pre-policy distribution and Q is the post-policy
distribution.

In this study, the variability of the pre-policy indicator P is expressed in terms of the
post-policy indicator Q, which can be given by the following equation.

H(P, Q) = ∑
t

P(t)·ln
(

1
Q(t)

)
(12)

The base of the logarithmic function is chosen to be e, which is in line with the general
convention of Cross-Entropy calculation, and the value reflects only the relative influence
without strict requirements of taking values, as shown in Table 17.

Table 17. Data comparison before and after the policy.

Indicator Category Patents
Sales Volume

(Units)
Production
(Volume)

Number of Newly
Established Companies

Number of
Charging Piles

Comparative data by year
before and after the policy

0.223 0.221 0.220 0.245 0.229
0.113 0.1778 0.177 0.208 0.187
0.109 0.191 0.189 0.214 0.159
0.141 0.214 0.216 0.177 0.104
0.0980 0.0635 0.0637 0.057 0.059
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By summing the above data according to the indicator categories, the Cross-Entropy
index of the impact of the Dual Credit Policy for a particular indicator is obtained, and the
results are shown in Table 18.

Table 18. Policy Impact Cross-Entropy Index.

Patents
Sales Volume

(Units)
Production
(Volume)

Number of Newly
Established Companies

Number of
Charging Piles

Dual Credit Policy affects
Cross-Entropy index 0.685 0.867 0.866 0.901 0.738

4. Data Analysis and Interpretation

According to the formula of the policy impact Taylor index, when the value is less
than 1, it means that the growth rate of the indicator has slowed down after the policy,
and when the value is greater than 1, it means that the growth rate of the indicator has
significantly increased after the policy implementation, and the larger the value, the faster
the growth rate, which means the higher the sensitivity of the policy introduction to the
indicator. According to the formula and definition of the Cross-Entropy index of policy
impact, the larger the value, the more obvious the change of the indicator before and after
the policy.

Observing the table, it is obvious that the Taylor index of policy influence on the
sales, production, and the number of charging piles of new energy vehicles is greater than
one, which indicates that the introduction of the policy has a greater incentive effect on
the production of enterprises, the purchase intention of consumers, and the construction
of infrastructure. According to Qiao Jiantong et al. [18], it is the above three factors that
play a dominant role in industry evaluation. Therefore, this study concludes that China’s
Dual Credit Policy has a greater driving effect on the development of the new energy
vehicle industry.

Among the three indicators greater than one, the policy impact coefficients of sales
volume and production volume are close, indicating that the policy introduction has a
relatively similar driving effect on these two indicators. The number of charging piles,
however, is much lower than the incentive effect on production and sales, although it also
shows a significant incentive effect after the policy is introduced. With the accumulation
of time, the number of new energy vehicles grows year by year, while the growth of the
number of charging piles has difficulty matching the considerable number of new energy
vehicles. As a result, China has experienced a significant shortage of charging piles in
recent years during peak travel periods such as holidays. Further, the data results of this
study are in line with what is really happening in the current usage scenario.

The results of the study also show that there was a slowdown in the growth of patents
and the number of new companies formed after the policy was introduced. This does not
mean that the policy has had a negative impact on industry development. First, according
to Qiao Jiantong et al. [16], the weight of IPR and willingness to capital in the industry
development index is small in measuring the current industry development. These two
can be screened in terms of intuitive factors such as the number of patents granted and
the number of new companies formed. Of course, this study does not suggest that these
two are not important for the industry. According to Li Xueqing [19], intellectual property
rights and willingness to invest are the basis for the development of the industry, and both
are prerequisites for the formation of good products and market feedback. Therefore, there
has been a lot of technology research and investment in this study even before the national
Dual Credit Policy was introduced.

Comparing the difference between the two above, the policy impact coefficient of
IP is closer to 1, indicating that the growth rate of patent applications has slowed down
since the policy came out, but basically followed its original development trajectory. This
also indicates that technology research is relatively less sensitive to policy. Scientific
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research is something that requires technology accumulation over a long time, meaning
that generations of scientists and engineers keep innovating a little bit at a time, until its
properties are stable and its development law is inherent. The number of newly established
companies, on the other hand, has slowed down more significantly, with a numerical
decrease of nearly 20%.

Through the comparison of the Cross-Entropy index, we can see that all indicators
continue to grow after the policy, and the Cross-Entropy index of sales and production is
basically the same, with sales slightly larger than production. Among them, new start-ups
have, relatively, the most growth in terms of number. This data indicates that there are more
entrepreneurs joining the new energy track in an attempt to gain a foothold in the market.

5. Conclusions

Overall, the Dual Credit Policy has strongly promoted the development of China’s
new energy vehicle industry and can be a policy widely studied and referred to around
the world. Synthesizing the results of the above research and data analysis, the following
specific conclusions and recommendations can be obtained from this study.

China’s Dual Credit Policy has played an important role in promoting the development
of the new energy vehicle industry, which is mainly reflected in the production capacity
of enterprises, consumers’ willingness to purchase, and infrastructure construction. The
output of scientific research is hardly affected by the policy in the short term. The policy
offers far less incentive for infrastructure than the market needs and expects, and there will
continue to be a large gap in the coming years.

The incentive of the Dual Credit Policy makes investors more willing to invest in
original enterprises rather than in new enterprises, which also reduces the possibility of
cheating the national policy preferences and rubbing the hot spot to rub the wind from
the dimension of the capital market. The willingness of capital to invest in new energy
companies is decreasing, and they are more willing to allocate resources to companies with
accumulated technology and long production experience. The number of newly established
companies exceeds the market needs. Further, a large part of the new energy enterprises
cannot meet the market requirements, and this lack of technical production capacity will be
shut down. At present, market supply and demand have basically reached equilibrium,
and consumers’ purchasing power will continue to be maintained for a period of time.
With the replacement of traditional fuel and vehicles, the market dividend will continue for
some time.

We believe that, with the passage of time, especially after 2030, pure electric models will
occupy the absolute market dominance and become the mainstream of the automotive market.
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Abstract: The growing awareness about climate change and environmental pollution is pushing the
industrial and academic world to investigate more sustainable solutions to reduce the impact of
anthropic activities. As a consequence, a process of electrification is involving all kind of vehicles with
a view to gradually substitute traditional powertrains that emit several pollutants in the exhaust due
to the combustion process. In this context, fuel cell powertrains are a more promising strategy, with
respect to battery electric alternatives where productivity and endurance are crucial. It is important
to replace internal combustion engines in those vehicles, such as the those in the sector of Non-
Road Mobile Machinery. In the present paper, a preliminary analysis of a fuel cell powertrain for a
telehandler is proposed. The analysis focused on performance, fuel economy, durability, applicability
and environmental impact of the vehicle. Numerical models were built in MATLAB/Simulink and a
simple power follower strategy was developed with the aim of reducing components degradation
and to guarantee a charge sustaining operation. Simulations were carried out regarding both peak
power conditions and a typical real work scenario. The simulations’ results showed that the fuel
cell powertrain was able to achieve almost the same performances without excessive stress on its
components. Indeed, a degradation analysis was conducted, showing that the fuel cell system can
achieve satisfactory durability. Moreover, a Well-to-Wheel approach was adopted to evaluate the
benefits, in terms of greenhouse gases, of adopting the fuel cell system. The results of the analysis
demonstrated that, even if considering grey hydrogen to feed the fuel cell system, the proposed
powertrain can reduce the equivalent CO2 emissions of 69%. This reduction can be further enhanced
using hydrogen from cleaner production processes. The proposed preliminary analysis demonstrated
that fuel cell powertrains can be a feasible solution to substitute traditional systems on off-road
vehicles, even if a higher investment cost might be required.

Keywords: fuel cell; hydrogen; GHG emissions reduction; hybrid electric vehicle; telehandler;
innovative powertrain; Non-Road Mobile Machineries

1. Introduction

In recent years, the scientific community has deeply investigated the effects of an-
thropic activities in terms of environmental pollution, as well as the consequences on
human health, climate change and economics [1–6]. Indeed, almost all human acitivi-
ties involve systems that are sources of emissions. The emissions produced can differ in
quantity, depending on the specific pollutant or greenhouse gas under consideration, for
the different sectors of anthropic activity. Industry, agriculture and transport sectors are
characterized by high emission levels due to the adoption of internal combustion engines,
which are required to accomplish several tasks. Indeed, internal combustion engines (ICEs)
are one of the major contributors to air pollution, mainly due to fuel extraction processes
and by-products of combustion [7,8]. In this context, several efforts are made, both from
academic and industrial worlds, to study and develop innovative powertrains with lower
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emission levels, in order to reduce the impact related to the transport sector [9]. These
efforts are supported by policies that will force the introduction of electric and alternatives
powertrains as substitutions for their traditional diesel and gasoline counterparts [10]. If
this trend already has a clearly visible effect on passenger cars, with several countries
experiencing a quick introduction of electric vehicles on the market [11], the sector of
Non-Road Mobile Machinery (NRMM) will still be at an earlier stage of electrification, even
if studies have demonstrated that these vehicles have a high impact in terms of life cycle
emissions [12,13]. The reason for that is related to the operative requirements that these
vehicles must fulfill, with high productivity and endurance that represent a barrier to the
development of pure battery electric powertrains [14]. As a consequences, several studies
focused on hybrid powertrains [15–19]. Indeed, the hybridization of the powertrain allows
for a downsizing of the thermal unit, which can lead to a higher efficiency and better fuel
economy. Moreover, the adoption of a smaller engine can allow for simplier aftertreatment
systems since the emission limits are usually defined according to the rated power of
the ICE. As a consequence, different manufacturers have presented prototypes of hybrid
off-road vehicles [20,21]. However, hybrid powertrains featuring the presence of an internal
combustion engine still produce several harmful pollutants in the exhaust. To overcome
this limit, an alternative solution for the electrification of the sector of NRMM is represented
by fuel cell powertrains [22–28]. Fuel cell hybrid electric powertrains have gained attention
due to their characteristics that combine the advantage of having approximately zero local
emissions with high endurance and low refuelling time [29]. These properties, along with
the high energy density of hydrogen, are of particular interest for the sector of NRMM. As
a consequence, fuel cells, powered using hydrogen or other fuels, such as ammonia, are a
promising solution to decarbonize the so-called hard-to-abate sectors, such as the marimite
one [30]. Indeed, fuel cell powertrains can operate for several hours straight, which is a
severe operational requirement for off-road vehicles, without having the issue of range
anxiety. Moreover, fuel cell systems have higher efficiency with respect to thermal engines;
thus, a better fuel economy is expected. From an economical point of view, using hydrogen
as fuel can allow for energy independence and self-sufficiency, along with the possibility of
defining circular economy scenarios [31]. The most promising type of fuel cell for vehicular
applications is the proton-exchange membrane fuel cell (PEMFC), due to its high efficiency,
low working temperature, compactness and long operational life [32,33]. However, the
benefits of introducing fuel cell systems in terms of greenhouse gases emission reduction
strongly depends on the hydrogen production method [34–36], with production through
steam methane reforming that, at present, is the most adopted one and contributes to more
than 60% of the global hydrogen production [37]. Other issues related to fuel cell systems
are represented by their high purchasing costs and the inadequate state of the hydrogen
refuelling network, which are two of the major challenges that must be addressed in the
near future to promote their diffusion [38,39]. From an applicative point of view, fuel cell
powertrains can have different topologies. Indeed, to avoid the fast degradation of fuel
cells, one or more auxiliary units, generally batteries or supercapacitors, should be intro-
duced to the powertrain to help manage sudden changes in the external load [40]. Indeed,
fuel cell degradation is related to start and stop cycles, idling, high power conditions and
load changes [41]. With the introduction of other power sources comes the mandatory
development of an energy management strategy (EMS) that must determine how the elec-
trical power requested by the electric motor is split among the different units [42]. Given
these premises, in the present paper a fuel cell hybrid electric powertrain for a off-road
heavy duty vehicle, namely a telehandler, is presented. The specifications of the traditional
vehicle under investigation are defined according to existing and commercially available
models. In detail, the Merlo Turbofarmer 42.7 vehicle was taken as a reference for the
analysis [43]. This vehicle was designed specifically for agricultural applications. These
vehicles are characterized by the presence of an hydraulic system for the actuation of the
mechanical arm, thus the total load is determined by the sum of the power requested
by the driveline and the power requested by the hydraulic system [? ]. The powertrain
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architecture is composed of a PEMFC and a battery pack, with DC-DC power converters for
the connection of both the fuel cell and the battery pack with the DC bus. As for the EMS,
a simple power follower strategy was developed. Numerical models of both the fuel cell
powertrain and the traditional counterpart were built in MATLAB/Simulink. Simulations
were carried out to evaluate performances and fuel consumptions, in order to compare the
two powertrains. Moreover, the environmental impacts, considering the global warming
potential, of the two powertrains were compared using Well-to-Wheel (WtW) coefficients
for both Diesel and Hydrogen. This paper is structured as follows: Section 2 introduces
the case study and the proposed fuel cell powertrain, Section 3 presents the numerical
models used for the simulations, Section 4 describes the EMS and the simulated work
scenario, Section 5 shows and discusses the results obtained from the simulations, and
finally Section 6 summarizes the conclusions.

2. Case Study

2.1. Traditional Vehicle

The traditional vehicle under investigation is a 105 kW diesel-powered telehandler,
with a unladen mass of 7800 kg, a maximum load capacity of 4200 kg and a maximum
lifting height of 7 m [43]. A telehandler is a machine with a telescopic boom that can
be extended to lift, handle and place loads. The boom can be equipped with different
implements to complete different tasks depending on the specific application. Due to
their properties, telehandlers are widely adopted in the industry sector and in agriculture.
Indeed, their particular design configuration allows for moving loads from and to places
that are unreachable for the other vehicles. A schematic representation of the powertrain
is reported in Figure 1, while the main properties of the vehicle are reported in Table 1.
The transmission is a hydrostatic transmission with a variable displacement pump and
fixed displacement motor. This type of transmission is adopted since it allows for a
continously variable transmission, thus reducing the complexity of the whole driveline,
and, moreover, it features high power transmission capabilities without requiring expensive
and bulky components. However, the higher power losses with respect to a pure mechanical
driveline have a non-neglibile impact on the overall vehicle efficiency. Downstream from
the hydrostatic transmission, there is a two-speed gearbox, which allows for operating
in low-speed and high-speed conditions. This gearbox is useful for having optimized
gear ratios for the two most common work conditions. Indeed, during work scenarios
involving the use of the telescopic boom, the vehicle generally operates in a speed range
below 15 km/h, while during road transportation it operates at speeds up to 40 km/h. The
low-speed regime is also useful for overcoming slopes. As for the hydraulic system for
work operations, it comprises a lifting arm and an extension boom.

Hydrostatic
Transmission

Auxiliaries

Hydraulic
Boom

ICEFuel Tank

Gearbox

Figure 1. Schematic representation of the traditional reference powertrain.
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Table 1. Traditional telehandler’s main properties.

Parameter Value

Unladen Mass 7800 kg
Max Load capacity 4200 kg
Max lift height 7 m
Max vehicle speed 40 km/h
Transmission Hydrostatic transmission
Diesel Engine 4-cyl 3.6 L 105 kW

2.2. Fuel Cell Hybrid Electric Vehicle

The proposed fuel cell configuration is shown in Figure 2. Apart from the powertrain
system, comprising the fuel cell system, the batteries, the power converters and the electric
motor, the other elements of the vehicle, namely the hydrostatic transmission, hydraulic
system and gearbox, were considered the same as the traditional vehicle. The main proper-
ties of the electric motor, fuel cell stack and battery pack for the proposed configuration
are reported in Table 2. The fuel cell system was dimensioned considering the average
expected power required by the vehicle, to guarantee a high productivity comparable with
that of the traditional counterpart. As for the battery pack, it was sized to have enough
power capabilities to satisfy sudden and abrupt changes in the power request without
excessive C-rates. Indeed, considering a discharge current of 5C, the battery pack is able
to provide an electric power that is equal to 75% of the electric motor nominal power.
Moreover, the two units were selected considering reasonable space availability constraints
for the on-board integration. The vehicle mass was assumed to be the same, or at least not
substantially different, as the traditional case.

Fuel cell

DC

DC

Unidirectional 
DC-DC

DC

AC

Electric MotorInverter

Hydrostatic
Transmission

AuxiliariesElectric Path

Mechanical Path

Current directionality

Hydraulic
Boom

Gearbox
DC

DC

Bidirectional 
DC-DC

H2 tank

Chemical Path

Battery pack

- +

Figure 2. Schematic representation of the fuel cell hybrid electric powertrain.

Table 2. Proposed fuel cell powertrain main properties.

Element Parameter Value

Fuel cell system

Stack max power 53 kW
Number of cells 300
Max operating point 312.5 A @ 170 V
Stack efficiency 47.5% @ 50 kW

Battery Pack Rated Capacity 50 Ah
Rated Voltage 320 V

Electric Motor
Rated Power 105 kW
Rated Torque 502 Nm
Maximum Efficiency 95%
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3. Numerical Modelling

3.1. Traditional Vehicle Numerical Modelling

The numerical models were built in MATLAB/Simulink using the Simscape tool. As a
consequence, a Physical Network modelling approach was used [45]; thus, each entity is
considered as a physical entity capable of exchanging energy with all the other elements to
which it is connected. The same modelling approach was used for previous studies from
the author’s research group [15,16,18,22]. During the development of the numerical model,
the following aspects were covered:

• Vehicle dynamics;
• Transmission;
• Hydro-mechanical system;
• Lifting arm and extension boom;
• Engine power output and fuel consumption.

As for the vehicle dynamics, the approach adopted by the authors consisted of a 1D
longitudinal model, represented in Figure 3, and was characterized by the following equations:

mV̇x = 2(Fx f + Fxr)− Faero − mg · sin(β) (1)

Fz f =
−h(Faero + mg · sinβ) + b · mg · cos(β)

2(a + b)
(2)

Fzr =
+h(Faero + mg · sinβ) + a · mg · cos(β)

2(a + b)
(3)

where:

• a, b, and h represent the relative position of the center of gravity of the vehicle with
respect to the front and rear axles.

• m is the tractor mass; g is the acceleration of gravity.
• β is the road slope angle.
• Vx is the vehicle longitudinal speed.
• Faero is the aerodynamic drag force as Faero = 0.5ρCd AVx

2sign(Vx), with ρ being the
air density, Cd being the drag coefficient and A being the frontal cross-sectional area of
the vehicle.

• Fx f and Fxr are the contact forces between the wheels and the ground on the longitudinal
direction (front and rear axel); these forces are determined by the tire–soil interaction.

• Fz f and Fzr are the contact forces between the wheels and the ground on the longitudi-
nal direction (front and rear axel).

Vx

Faero

Fxf

Fxr
Fzr

Fzf

mg

CG

Figure 3. One-dimensional longitudinal model for the vehicle dynamics.
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The contact between the tires and the soil was parameterized in terms of static and
kinetic coefficients. The first determines the applied torque at which the tire loses traction
and begins to slip, and the second determines the amount of torque the tire transmits to the
pavement once it begins to slip. Thus, the traction force was evaluated according to the
following equations:

Fxi =

{ Twheel
Rwheel

if Twheel
Rwheel

≤ μstatic ∗ Fzi

μkinetic ∗ Fzi if Twheel
Rwheel

> μstatic ∗ Fzi
(4)

where Fxi is the traction force on the i-axle, Fzi is the normal force on the i-axle, Twheel is the
torque at the wheel downstream from the driveline, Rwheel is the wheel radius, and μstatic
and μdynamic are, respectively, the static and kinetic friction coefficients.

As for the transmission, the hydrostatic transmission was modelled considering three
main elements: a variable displacement pump, a fixed displacement motor and a pressure
relief valve. The characteristics considered for those elements are reported in Table 3. The
no-load torque and friction torque vs. pressure gain/drop coefficients of the hydraulic units
were modelled so that the hydrostatic transmission was characterized by the efficiency
curve shown in Figure 4. That efficiency curve was obtained considering that the datasheets
of hydraulic pumps and motors had similar applications and nominal specifications in the
proposed case study.

Table 3. Hydrostatic transmission characteristics.

Parameter Value

Pump max displacement 150 cm3

Motor displacement 150 cm3

Pump nominal pressure gain 250 bar
Motor nominal pressure drop 250 bar
Pump and motor nominal shaft speed 2000 rpm
Pump nominal volumetric efficiency 92%
Motor nominal volumetric efficiency 92%
Valve pressure setting 300 bar

Figure 4. Hydrostatic transmission efficiency (pump displacement = 150 cm3; pump shaft
speed = 2000 rpm).

As for the hydraulic system for the lifting arm and the extension boom, the following
approach was adopted: firstly, the hydro-mechanical system was modelled considering
an hydraulic pump, two four-way directional valves and two double-acting hydraulic
cylinders. Secondly, the lifting arm and extension boom were modelled using Simscape
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Multibody. For the development of the Multibody, the kinematics of the system was
defined in accordance with [46]. In detail, the Multibody model included two hydraulic
cylinders, one to control the lifing angle of the telescopic arm, and the other to control the
extension of the boom. The hydraulic pistons were modelled as cylindrical solids and were
connected to the cylinder barrels, modelled as revolved solids, by means of prismatic joints.
The head of the hydraulic piston for the regulation of the lift angle was connected to the
body of the lifting arm by means of a bearing joint. The bottom of the hydraulic cylinders
was connected to the chassis of the vehicle using revolute joints. The body, representing
the bucket, was linked to the head of the hydraulic boom using a revolute joint that was
controlled so that it maintained the same angle with respect to the pavament during lifting
operations. To take into account the presence of a mass in the bucket, an external force,
as a function of time, was added and placed in the middle of the bucket. After defining
the Multibody system, it was interfaced with the hydro-mechanical network so that the
translational force coming from the physical network model was used to evaluate the
movement of the multibody joints, and, as a consequence, of the lifting arm and extension
boom. As a feedback from the multibody network, the hydraulic cylinders received the
information of position and speed. The two four-way directional valves were used as
actuators for the hydraulic cylinders. A pressure relief valve, with a pressure setting of
300 bar, was introduced in the hydraulic system to prevent excessive peaks in the circuit.

The internal combustion engine was modelled using its speed-torque profile. As
for the fuel consumption, the fuel consumption estimation model described in [47] was
adopted. According to this model, the brake-specific fuel consumption (BSFC) is evaluated
using a polynomial curve that is a function of the engine speed and torque:

Z = b1 + b2 · X + b3 · Y + b4 · X2 + b5 · X · Y + b6 · Y2 (5)

where:

• X is the normalized engine speed: X =
n

nnom
· 100.

• Y is the normalized brake torque: Y =
T

Tnom
· 100.

• Z is the normalized BSFC: Z =
BSFC

BSFCmin
· 100.

• bi=1,...,6 are the polynomial coefficients.

According to this model, the region of the minimum BSFC is usually located at about
73–77% of the nominal engine rotational speed and at a high load, namely 85–95% of the
nominal torque. Finally, the power required by the vehicle auxiliaries was considered,
assuming that they require around 8% of the rated engine power. The numerical model
developed in MATLAB/Simulink is shown in Figure 5.

Figure 5. Numerical model for the traditional powertrain.
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3.2. Fuel Cell Vehicle Numerical Modelling

As for the fuel cell vehicle, the authors assumed that, apart from the engine, all
the other subparts are the same as the traditional counterpart. Thus, the vehicle chassis,
transmission, hydraulic system, lifting arm and extension boom were not modified. As for
the powertrain, the following elements were considered during the modelling:

• The fuel cell system.
• The battery pack.
• The power converters.
• The electric motor.

The fuel cell system was modelled as an equivalent circuit using the following equa-
tion [22,48]:

Vstack = Ncell ∗ (ENernst − Vact − Vohm − Vconc) (6)

where Vstack is the overall voltage of the fuel cell stack, Ncell is the number of cells in the
stack, ENernst is the Nernst voltage, Vact represents the voltage loss due to activation, Vohm
represents the voltage loss due to internal ohmic resistance and Vconc stands for the voltage
loss due to concentration (mass transport processes). Given the operative conditions, the
following equations can be used to determine the voltage of the fuel cell stack:

ENernst = 1.229 + (T − 298) ∗ −44.43
2F

+
RgT
2F

∗ ln(
pH2 p1/2

O2

pH2O
) (7)

Vact =
RgT
2Fα

∗ log(
idens

i0
) (8)

Vohm = Rohm ∗ idens (9)

Vact =
RgT
2F

∗ log(1 − idens
ilim

) (10)

where:

• T is the stack temperature.
• F is the Faraday constant, equal to 96,485.33 C/mol.
• Rg is the ideal gas constant.
• pH2 , pO2 and pH2O represent, respectively, the hydrogen, oxygen and water

partial pressures.
• α is the charge transfer coefficient.
• idens is the current density.
• i0 is the exchange current density.
• Rohm is the ohmic resistance.
• ilim is the maximum current density.

Using the aforementioned equations with operational parameters generally adopted
for these systems, the voltage–current curve reported in Figure 6 was obtained. As for the
hydrogen consumption, the following equation was used:

qH2 =
Ncell iFC MMH2

2F
(11)

where qH2 is the hydrogen mass flow that reacts at the anode, MMH2 is the H2 molar mass
and iFC is the current delivered by the fuel cell stack.

However, the sole fuel cell stack model is not enough to properly simulate the be-
haviour of the whole fuel cell system. Indeed, to effectively evaluate the system efficiency,
the power absorbed by the Balance of Plant (BoP) system should be considered [22,26,33].
According to [49], the fuel cell BoP approximately absorbs around 13–19% of the power
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delivered by the stack. To address this issue, the power required by the BoP was added
into the numerical model as an additional electrical load on the DC bus.

Figure 6. Fuel Cell stack curves.

As for the battery pack, it was modelled using a dynamic equivalent circuit
model [50,51]. In detail, the dual polarization model shown in Figure 7 was used. In
the adopted model, resistors and capacitors were considered constant, while the open
circuit voltage was modelled as a function of the SOC. The SOC was evaluated using a
simple Coulomb counting mode, neglecting more detailed models.

Concerning the power converters, their efficiency was considered constant and equal
to 95%. Finally, the electric motor was modelled considering the torque-dependent electrical
losses and the speed-dependent electrical losses. Moreover, a series resistance was consid-
ered between the DC bus and the electric motor, in order to take into account the ohmic
losses along the wires. The numerical model of the fuel cell hybrid electric telehandler is
shown in Figure 8.

+

Voc(SOC)

Ro

Ra

Ca

Rc

Cc

Vbatt

Figure 7. Dynamic equivalent circuit model for the battery pack.

Figure 8. Fuel Cell hybrid electric telehandler numerical model.
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4. Numerical Simulations

4.1. Powertrain Control Strategy

Regarding the traditional vehicle, the internal combustion engine is set at a fixed
speed of 2000 rpm and is controlled using a proportional-integral (PI) controller. The
vehicle speed is determined by changing the displacement of the pump in the hydrostatic
transmission. As for the hydraulic system, it is controlled acting on the pump and on the
valves. As for the fuel cell hybrid electric vehicle, the approach is the same. However, since
there are two power sources, namely the fuel cell stack and the battery pack, an energy
management strategy must be defined to determine how to split the power required by the
motor between the two different sources. For this preliminary analysis, the authors opted
for a simple power follower control strategy. Power follower strategies, like other rule-
based strategies, have the advantage of easy implementation and integration in embedded
controllers, and are able to provide good and stable control even if they could lead to
not optimal fuel economy or component degradation with respect to optimization-based
energy management strategies [52]. However, the authors deemed that a simple power
follower strategy was sufficient for this preliminary analysis. The main goal of the strategy
is to operate in a charge-sustaining mode without exceeding the power limits of the fuel
cell. To prevent fast degradation, the fuel cell stack should operate following the low
frequency component of the load. Indeed, sudden and intense changes in the fuel cell
power output could reduce its lifetime due to reactant starvation or membrane flooding
processes [41,53–55]. In fuel cell powertrains, the power conditioning units are represented
by the DC-DC converters, which can be controlled both in the voltage or the current
reference mode. Therefore, to perform the power split between the fuel cell and the battery
pack, the power control system evaluates a reference current for the fuel cell, which is
used to control the unidirectional DC-DC converter. In detail, the current reference is
evaluated, using a predefined set of rules, according to the current required by the electric
motor. To operate in a charge-sustaining mode, the control strategy adopts penalty factors
depending on the batteries’ State of Charge (SOC). The fuel cell minimum output was set to
be equal to its idle power and assumed to be approximately 10% of the nominal stack power.
A schematic representation of the control strategy for the fuel cell powertrain is represented
in Figure 9. As for the bidirectional DC-DC converter on the batteries’ side, it was used to
control the voltage of the DC-DC bus, which was set to 640 V.
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Figure 9. Fuel Cell hybrid electric powertrain control strategy.
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4.2. Simulated Work Scenarios

To assess the powertrain performance and to perform a comparison between the
traditional vehicle and the fuel cell hybrid electric counterpart, the simulations were
defined in order to evaluate the behaviour of the two vehicles in terms of acceleration time,
overcoming slopes, fuel economy and environmental impact. Moreover, the simulations
were also used to assess the maximum change rate, expressed in kW/s, in the fuel cell
power output. For the performance assessment, the following tests were performed:

• Acceleration from 0 to 40 km/h with no load.
• Acceleration from 0 to 40 km/h, handling a trailer with a total weight of 4200 kg.
• Maximum speed at 20% of slope.
• Maximum approachable slope, handling a load of 4200 kg.
• Maximum approachable slope at 15 km/h.

The acceleration tests were conducted using the high-speed regime gear. Thus, during
the acceleration, no gearshifting is performed. As for the slope tests, they were conducted
with a standing start at the prescribed slope. The friction coefficients for the wheel-ground
contact were defined according to a pavement road. To assess the fuel economy, a work
cycle based on a typical real operartive scenario was defined. The proposed real work
scenario was based on the one defined in [56], which corresponds to the telehandler picking
and handling a load, and is composed of the following phases:

• Approaching: the vehicle approaches to the load that must be moved.
• Loading: the vehicle picks up the load using the telescopic arm; in this phase, the

telescopic arm lift angle starts to increase, lifting the load and reaching a maximum
angle of approximately 50 degrees, and then decreases to 25 degrees, which is the
angle at which the vehicle handles the load during the transfer phase.

• Release: the vehicle moves back from the point where the load was located; the
telescopic arm maintains a constant lift angle of 25 degrees.

• Transfer with load: the vehicle handles the load up to 15 km/h and reaches the point
where the load must be placed; the lifting angle remains constant at 25 degrees during
the whole phase.

• Unloading: the vehicle deposits the load by means of the telescopic arm and the
extension boom; in this phase, the lift angle increases to 50 degrees, then the extension
of the telescopic boom starts to increase, reaching 1000 mmm, and then the load is
placed; after that, the extension boom returns to 0 mm and the lift angle decreases to
0 degrees.

• Transfer without load: the vehicle moves back without the load.

The work cycle is reproduced twice with two different loads, one corresponding to
approximately 3000 kg and the other to 1500 kg. As for the wheel–ground contact, in a real
work scenario the friction coefficients were defined considering off-road conditions.

5. Results and Discussion

5.1. Simulations Results
5.1.1. Performance Tests

The results of the performance evaluation tests are reported in Table 4. As expected,
the two powertrains showed approximately the same performances. The traditional vehicle
performed slightly better due to the higher power of the internal combustion engine in the
range 1400–1900 rpm with respect to the electric motor. As for the slope tests, it should be
highlighted that the maximum performance was limited, not by the capacity of the wheel
to transmit force to the ground, but by the available power at the driveline downstream
from the hydrostatic transmission.
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Table 4. Performance test results.

Performed Test Traditional Vehicle Fuel Cell Hybrid Vehicle

Time for 0–40 km/h no load 12 s 12.5 s
Time for 0–40 km/h with 4200 kg 20 s 21 s
Max speed with 20% slope 9 km/h 8 km/h
Max slope with 4200 kg 15% @ 5 km/h 15% @ 5 km/h
Max slope at 15 km/h 12% 10%

However, the aim of the performance tests was also to evaluate the behaviour of the
fuel cell powertrain under peak power conditions. Therefore, the maximum instantaneous
hydrogen consumption, the maximum C-rates in charge and discharge for the battery pack
and the mean change rate in the fuel cell power output were evaluated. The results are
shown in Table 5. As stated, the acceleration tests were the most impactful in terms of stress
on both the FC system and the battery pack.

Table 5. Fuel cell powertrain behaviour during the performance tests.

FC System Battery Pack

Max Change Rate (kW/s) Max H2 Flow (g/s) Max Charge C-Rate Max Discharge C-Rate

0–40 km/h no load 8.7 0.69 0.6 6.3
0–40 km/h 4200 kg 5.1 0.66 0.35 6.1

Top speed 20% slope 4.2 0.47 0.35 5.6
Max slope with 4200 kg 3.4 0.52 0.35 5.2
Max slope at 15 km/h 4.0 0.55 0.35 4.9

5.1.2. Real Work Scenario

The simulation results for the real work scenario are reported in Figures 10 and 11. As
can be observed from the figure, the 0–15 km/h acceleration phase is the most demanding
one due to the high vehicle mass, with a peak power of approximately 55 kW when carrying
a 3000 kg load. Also in this case, the simulation was used to evaluate the behaviour of the
fuel cell powertrain, and the results are summarized in Table 6.

Figure 10. Real work scenario results for the traditional powertrain.
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Figure 11. Real work scenario results for the fuel cell hybrid electric powertrain.

Table 6. Fuel cell powertrain behaviour during the real work scenario test.

Parameter Value

Max FC change rate (kW/s) 4.04
Max H2 consumption (g/s) 0.23
Max charging C-rate 1.7 C
Max discharging C-rate 2.7 C
Total H2 consumption (g) 60.4

5.2. Fuel Cell System Degradation Analysis

To estimate the fuel cell system durability, in this section a degradation analysis, based
on models available in the literature, is proposed. According to [41], the lifetime of a fuel
cell system can be defined as follows:

Tli f etime,FC =
ΔP

kp(β1n1 + β2n2 + β3t1 + β4t2)
(12)

where Tli f etime,FC is the expected lifetime, ΔP is the maximum acceptable reduction in
the fuel cell output performance, generally fixed at 10%; βi=1,...,4 are the performance
degradation rates related, respectively, to load change cycling, start-stop cycling, idle
condition and high power condition; n1, n2, t1 and t2 are the load changing cycles, start
and stop cycles, idle condition time and high-power condition time; and finally, kp is an
accelerating coefficient. The main limitations of this model are related to the coefficients
that may not be updated since the study was published in 2008. However, this model is
considered a key reference for fuel cells’ degradation evaluation and was used in more
recent studies that proposed this kind of analysis [53,54,57,58]. Nevertheless, fuel cell
systems’ durability has experienced relevant improvements in the last few years. Indeed,
according to [59], in 2007, the state of the art in terms of the durability for fuel cell systems in
automotive applications corresponded to 1250 h. Considering the present DOE targets [60],
the ultimate targets in terms of durability are set to 8000 h. However, to be conservative,
the authors opted for considering the coefficients used in [41]. In [53], an additional
coefficient, related to the natural degradation of the fuel cell due to material aging, was
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added. However, no details are provided about how that coefficient was determined.
Therefore, in the present paper, the authors opted for not considering it. The adopted
values for the degradation analysis of the fuel cell systems are reported in Table 7. The
degradation analysis was conducted considering the real work scenario, which should be
the most common operating condition, and the 0–40 km/h acceleration test with no load,
which was the test that exhibited the highest change rate in the fuel cell power output. The
results in terms of the expected life, considering a maximum decrease of 10% in the system
performance for the two scenarios, are reported in Table 8. As it can be stated, severe and
frequent accelerations can lead to a reduction in the lifetime expectancy. On the contrary,
the lifetime estimation considering the real work scenario exceeded the DOE ultimate
target of 8000 h. However, the authors wanted to highlight that the adopted powertrain
control strategy was not optimized through an optimization process, but was a simplified
control based on a power follower algorithm with a low dynamic response of the fuel cell
system. The aim was to roughly reduce the load changes in the fuel cell power output,
but no optimization algorithm was used. Future works might focus on a more developed
aging-aware control strategy.

Table 7. Adopted coefficients for the degradation analysis of the fuel cell system. The coefficients
were defined according to [41].

Factor Condition Value Unit

β1 Load cycling 5.93 × 10−5 %/cycle
β2 Start and Stop 1.96 × 10−3 %/cycle
β3 Idling (Pout,FC ≤ 10%) 1.26 × 10−3 %/h
β4 High power (Pout,FC ≥ 90%) 1.47 × 10−3 %/h
kp - 1.72 -

Table 8. Degradation analysis results for the two considered scenarios: real work scenario and
0–40 km/h acceleration test with no load.

Test Scenario FC System Expected Life

0–40 km/h acceleration test no load 1257 h
Real work scenario 9410 h

5.3. Environmental Analysis

To assess the environmental performances of the fuel cell powertrain with respect
to the traditional model, the authors opted for using a WtW approach. This approach is
useful for evaluating the environmental performances of a vehicle during its use phase,
since it accounts for the emissions related to fuel extraction, treatment, distribution and
conversion [61]. The authors opted for considering the use of hydrogen from the actual
hydrogen production mix, which is mainly from fossil fuel resources; hydrogen from
steam methane reforming but with a carbon capture system, namely blue hydrogen; and
hydrogen from electrolysis, based on the grid, nuclear and renewables. The authors
also decided to consider the global warming potential as an impact category, since the
climate change issue is one of the major challenges that humankind has to face within
the near future, and the efforts to mitigate it are among the main reasons behind the
electrification of powertrains. For hydrogen from the actual production mix and Diesel
consumption, the WtW factors for the equivalent CO2 emissions were derived from [8],
while the coefficients for the other considered hydrogen production methods were taken
from [34]. The WtW emission factors adopted for the environmental impact analysis are
summarized in Table 9. The factor for the hydrogen from electrolysis based on renewables
was determined considering the average values for electrolysis based on biomass, wind
and solar. As for the electrolysis based on the grid, the WtW emission factor may vary
depending on the country, since it mainly depends on the electricity production mix.
The analysis was conducted considering the real work scenario. The results are shown
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in Table 10. As can be stated, with the present hydrogen production mix, the fuel cell
powertrain can reduce the CO2 equivalent emissions of 68.6%. However, with cleaner
and greener production methods, the emission reduction can be enhanced. In detail,
the emission reduction can reach 97.5% using electrolysis with electricity from nuclear,
and 92.6% using hydrogen from electrolysis powered with electricity from renewables.
Furthermore, a noticeable reduction in GHG emissions can also be achieved using hydrogen
produced from fossil fuel resources with carbon capture technologies. Instead, with the
production of hydrogen from electrolysis using the electricity grid mix, no effective emission
reduction might be obtained. This demonstrates that coupling electrolysis with clean
electricity is a key element to achieve greater results in terms of the environmental impact
reduction in hydrogen-powered vehicles. The results obtained from the environmental
analysis were coherent with other studies that estimated the life cycle CO2 emissions of fuel
cell vehicles to be less than 50% of that of the traditional counterpart, with very low-use
phase impacts when hydrogen is produced from renewables [62–64].

Table 9. WtW equivalent emission factors for Diesel and H2 according to [8,34].

Emission Source WtW Emission Factor Unit

Diesel 3.18 kg CO2-eq./L
Actual Hydrogen production mix 9.13 kg CO2-eq./kg
Blue Hydrogen 3.70 kg CO2-eq./kg
Hydrogen from Electrolysis (based on nuclear) 0.71 kg CO2-eq./kg
Hydrogen from Electrolysis (based on grid) 29.21 kg CO2-eq./kg
Hydrogen from Electrolysis (based on renewables) 1.87 kg CO2-eq./kg

Table 10. Environmental impact comparison for the real work scenario.

Fuel Consumptions

Diesel consumption 0.55 L
Hydrogen consumption 60.4 g

Fuel Emissions (kg CO2-eq.) Difference (%)

Diesel 1.75 -
Hydrogen (actual production mix) 0.55 −68.6
Blue Hydrogen 0.22 −87.4
Hydrogen from Electrolysis (based on nuclear) 0.043 −97.5
Hydrogen from Electrolysis (based on grid) 1.76 +0.1
Hydrogen from Electrolysis (based on renewables) 0.13 −92.6

5.4. Discussion

The degradation and environmental analysis showed that fuel cell powertrains can be a
feasible solution to mitigate the impact of Non-Road Mobile Machinery on the environment
in terms of equivalent CO2 emissions. However, the applicability of these systems on a real
vehicle is not straightforward. From a technical point of view, one of the major challenges
is the integration of the fuel cell system on-board the vehicle. Another technical issue
is regarding the on-board hydrogen storage system. Considering the simulation results
for the real work scenario, to operate for 8 h straight without the need for refuelling, the
hydrogen storage system should be able to stock around 4.5 kg of H2. This storage capacity
requirement can be satisfied implementing a modern type IV tank, which can store 5.8 kg
of hydrogen in its gaseous form at 700 bar. The system weighs approximately 133.6 kg
and has a volume of 229.6 litres [65]. Alternatively, to reduce the volume of the storage
system, another possible solution is represented by metal hydride tanks. These systems
can reach higher volumetric densities, up to five times higher, but have a lower gravimetric
density compared to gaseous tanks [66]. Furthermore, metal hydride tanks require a heat
management system to operate properly, thus a higher complexity of the whole powertrain
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might be introduced [67]. On the contrary, the adoption of a type IV storage tank involves
safety issues that must be considered during the design stage of the vehicle [68]. However,
the most insidious challenges are related to other factors that go beyond the technical issues
related to the realization of a first propotype. As stated in [38], one of the most critical
factors that is slowing the diffusion of fuel cell systems on vehicular applications is the
early stage of development of the hydrogen refuelling network. Furthemore, the hydrogen
refueling infrastructure requires an investment cost that is extremely high compared to
the cost of other fuel refueling stations [69]. Another important challenge is represented
by the higher purchasing cost of fuel cell vehicles with respect to their traditional and
battery electric counterpart [70]. Indeed, the hydrogen tanks and the stack are the most
expensive components of the fuel cell system due to the presence of expensive materials,
such as platinum, used as catalyst in the stack; and carbon fibre, used to manufacture the
type IV tank [39,65,71]. To reduce the cost of the fuel cell systems, DOE targets have been
defined for the future [72,73]. Along with the problem related to the high cost, another
aspect that must be faced is the lack of consumer awareness about fuel cell vehicles, which
results in a distorted perception about their safety and performances [74]. According to [75],
in vehicle users there is a combination of aversion to high purchase costs and negative
perceptions of environmental benefits from adopting hydrogen that is creating a barrier
between the market and fuel cell vehicles. As a consequence, overcoming the problem
of a social attitude towards the acceptance of fuel cell vehicles is mandatory to promote
their diffusion [76]. However, environmental policies and regulations might be important
drivers for the adoption of hydrogen technologies [77,78]. In this context, the European
Community is pursuing the goal of reaching a reduction of 55% in net greenhouse gas
emissions for 2030 with respect to the emission levels of 1990, and of achieving carbon
neutrality for 2050 [79]. However, the sector of Non-Road Mobile Machinery is at an earlier
stage of decarbonisation with respect to passenger vehicles. Indeed, the actual regulation
for Non-Road Mobile Machinery focuses on the emission levels of CO, HC, NOx and
particulate matter, while no limits for CO2 are, at present, introduced [80]. Nevertheless,
the limits for the aforementioned pollutants are becoming more and more stringent and are
requiring more complex and bulky exhaust gas aftertreament systems. Thus, this poses
technical challenges that may be drivers for the adoption of fuel cell systems, which instead
do not require an aftertreatment system since they produce water at the exhaust.

6. Conclusions

Fuel cell hybrid electric powertrains represent a promising strategy to replace tradi-
tional internal combustion engines in the sector of Non-Road Mobile Machinery. Indeed,
fuel cell vehicles feature zero local emission levels, high-energy density and low refuelling
time, which make them more interesting than battery electric vehicles for applications
where endurance and productivity are crucial with a view to be competitive on the mar-
ket. In this article, the preliminary design of a fuel cell hybrid electric powertrain for
a telehandler was presented. The proposed system is characterized by the presence of
a PEMFC stack, with a rated power approximately equal to 50% of the electric motor
nominal power, whose role is to satisfy the low-frequency component of the external load,
and a battery pack, which has to handle the high frequency part of the load to avoid the
fast degradation of the fuel cell system. To make a comparison between the proposed
system and the traditional one, numerical models of both the powertrain were built in a
MATLAB/Simulink environment. The modelling included a Multibody model to simulate
the use of the telescopic arm and the extension boom. For the simulations, the authors
developed a simple charge-sustaining power follower strategy to determine the power
split between the fuel cell and the battery pack. The simulations were regarding two type
of tests: peak power performance tests and the real work scenario simulation test. The
first set of tests aimed at evaluating both the performances in terms of the acceleration and
overcoming of slopes, and the behaviour of the fuel cell powertrain in terms of stress on
its main components. On the contrary, the real work scenario test aimed at evaluating the
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fuel economy and the environmental impact of the powertrains during a typical operative
scenario, characterized by the handling of loads by the mean of the telescopic arm. The
results of the simulations are summarized as follows:

• The fuel cell powertrain was able to show almost the same performances of the
traditional one without excessive stress on its components; indeed, a degradation
analysis was conducted to address the fuel cell durability issue.

• The most stressful tests for the fuel cell powertrain were the acceleration tests, since
the max change rate in the fuel cell output was equal to 15% of the rated stack power
per second, and the max discharge C-rate of the battery pack was equal to 6.3.

• During the real work scenario test, the fuel cell powertrain showed a reduction in terms
of the equivalent CO2 emissions of 69% with respect to the traditional powertrain; this
result was obtained considering the use of grey hydrogen for the fuel cell system and
can be improved using hydrogen from a cleaner production mix.

Therefore, the authors concluded that the adoption of fuel cell systems are a feasible
solution for replacing traditional internal combustion engines in telehandlers, since they can
have the same performances without excessive degradation and with a reduction in terms
of equivalent CO2 emissions. However, a higher purchase cost is expected for the fuel cell
vehicle with respect to the diesel-powered counterpart. Therefore, to be competitive on the
market, consumers’ awareness of environmental performances and safety of the proposed
powertrain is mandatory. A further analysis might be regarding the development of a
more detailed and optimized energy management strategy, with the aim of minimizing fuel
consumption, component degradation or both of them according to a predefined objective
function. As demonstrated in the literature, the adoption of optimization algorithms can
enhance the powertrain performance. Other future works could investigate the possibility
of introducing supercapacitors to reduce batteries’ degradation. Furthermore, due to the
lack of experimental data, the adoption of a monitoring device that could be installed
on-board a real telehandler, to outline its realistic mission profile, could be the subject of
research and attention. To immprove the simulation reliability, tests on a scaled test bench
with a real fuel cell system might be conducted in the future. To promote circular economy,
another subject of research could be the integration of green hydrogen production systems,
powered using electricity from renewable sources, to locally produce clean hydrogen to
be used in the vehicle. A typical case study might be a farm with an electrolyser powered
using renewable sources. In that scenario, the farm is able to produce green hydrogen with
very low equivalent CO2 emissions using water and, for example, electricity coming from
solar panels. That hydrogen can be used to power the vehicle. Furthermore, the water
produced at the exhaust can be re-used in the electrolyser for the hydrogen production.
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Abstract: This article aims to address the unnecessary stopping and low efficiency issues present
in existing multi-machine cooperative steering control methods. To tackle this challenge, a novel
cooperative control approach for multiple agricultural machines is proposed, considering two typical
steering modes of farm machinery. This approach encompasses a multi-machine cooperative control
framework suitable for both steering modes. Based on the established lateral and longitudinal kine-
matics models of the farm machines, the method includes a path-tracking controller designed using
the pure pursuit and Stanley algorithms, a formation-keeping controller based on PID control, and a
T-turn cooperative-steering controller based on a problem-solving approach. To assess the method’s
viability, a collaborative simulation platform utilizing CarSim and Simulink was constructed, which
conducted simulations for both U-turn and T-turn cooperative steering controls. The simulation
results indicate that the proposed control framework and methodology can effectively ensure no
collision risk during the U-turn and T-turn cooperative steering processes for three farm machines,
eliminating stopping in T-turn, enhancing safety, and improving fuel economy. Compared with
traditional sequential control methods, the proposed approach reduced operation time by 17.47 s and
increased efficiency by 15.29% in the same scenarios.

Keywords: agricultural vehicle steering mode; multiple agricultural machine cooperative control;
path tracking; formation maintenance

1. Introduction

With the intensification, scaling, and industrialization of agriculture in China, as well
as the rising demands for efficiency and the increasing complexity of tasks in agricultural
operations, traditional automatic navigation techniques for agricultural machinery are no
longer sufficient to meet the challenges of safety and break through efficiency bottlenecks [1].
Therefore, the development of intelligent agricultural machinery technology, including
multi-machine cooperative systems, has become an urgent need for the evolution of China’s
agriculture [2–4].

The multi-machine cooperative technology has garnered extensive recognition from
both domestic and international researchers. Its primary components encompass position-
ing and communication technology, path planning technology, and control technology [5].
The positioning and communication sector is responsible for acquiring and exchanging
critical data such as the position and heading of both the subject vehicle and others in the
vicinity. To this end, Zhu Z et al. equipped farm machinery with potentiometers, magnetic
speed sensors, and RTK-GPS to ascertain front wheel steering angles, velocities, heading
angles, and positional coordinates [6]. Gerasimos G. Rigatos proposed a multi-machine col-
laborative control approach based on state estimation. This method integrates information
from multiple sensors using a derivative-free nonlinear filtering technique. The accurate es-
timation of the agricultural machinery’s position and its motion characteristics is achieved
by replacing the extended information filter with a recursive standard information filter
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for distributed state estimation [7]. Li S et al. designed communication protocol frames for
inter-vehicle communication within a master–slave coordinated system among agricultural
vehicles, enabling the exchange of status information [8]. Wenju Mao et al. developed a
robotic navigation system for orchard-harvesting machines featuring a dual master–slave
mode. The communication protocol data frame format between orchard-harvesting robots
was elucidated for the transmission of GNSS coordinates, velocity, navigation modes, and
other information pertaining to the harvesting and transport machines [9]. Path planning
technology considers the optimal path for a multi-machine system to avoid collisions, plan-
ning and calculating the route for each agricultural machine accordingly. Martin Andreas
Falk Jensen et al. incorporated optimization criteria such as time and operational distance,
utilizing the Dijkstra algorithm to address path planning for a multi-machine system in field
and intra-field transportation scenarios [10]. Addressing the challenges of heterogeneous
agricultural machinery fleets, which vary in speed, fuel consumption, turning radius, and
fuel tank size, Jesus Conesa-Muñoz et al. proposed a practical multi-machine cooperative
path planning method. This approach deliberates over various optimization standards
such as distance, time, and input costs, ensuring a comprehensive strategy for efficient path
planning [11]. Timo Blender et al. employed a centralized entity, Opti-Visor, to manage
the path planning and optimization for a fleet of agricultural machines. The architecture
and functionality of Opti-Visor within the agricultural machine fleet system were delin-
eated [12]. Control technology ensures the synchronized operation of a multi-machine
cooperative system in prescribed formations, at designated speeds, and with appropriate
longitudinal and lateral spacing as per mission specifications. A cooperative navigation
control method for a harvesting fleet, premised upon a leader–follower structure, was
proposed by Bai X et al. [13]. To manage headland turning maneuvers, Zhang C et al.
devised control strategies and conducted field tests with real machinery, thereby laying the
groundwork for operational efficacy in agricultural tasks requiring such complex turns [14].

Current research on multi-machine cooperative localization, communication technol-
ogy, and path planning has reached a relatively mature stage. However, in the domain of
control technology research, most studies are focused on employing various methodologies
to address the challenges associated with the collaborative control of two agricultural
machines. Noboru Noguchi proposed two fundamental motion control algorithms for
master–slave agricultural machine systems: the GOTO algorithm and the FOLLOW algo-
rithm [15]. In response to uncertainties such as variations in workload and soil conditions
during agricultural operations, leading to issues of instability, delayed response, and con-
trol challenges in the cooperative following of agricultural machinery, Xu Guangfei et al.
proposed a hierarchical control architecture for master–slave multi-agricultural machine
following [16]. Wang Zhiqing designed the speed control system, heading–following con-
trol system, and following distance control system for two agricultural machines, as well
as a collaborative control system for the lead and follow vehicles [17]. Chi Zhang et al.
proposed a multi-tractor system for field operations aimed at reducing total operation time,
improving work efficiency, and presenting strategies for lateral and longitudinal spacing
control [18]. While a minority of studies address three or more agricultural machines,
Stavros G. Vougioukas proposed a distributed control framework for multiple agricultural
machines, wherein each machine was equipped with a nonlinear model predictive tracking
controller. Additionally, it received motion trajectories from other machines, incorporating
them into its own control considerations [19]. Zhang Wenyu et al. designed a longitu-
dinal relative position collaborative control method suitable for master–slave navigation
in coordinated harvesting and unloading operations [20]. Zheng Xinyao addressed the
steering control issue for the follower machine by proposing a fuzzy adaptive PID variable
damping steering control method. This approach aims to ensure precise and rapid tracking
of the desired steering angle command for the follower machine’s steering wheel [21]. Gou
ABE et al. developed a control algorithm based on a laser scanner to recognize the relative
distance and direction to the lead vehicle and follow it [22].
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In summary, existing research on multi-machine cooperative control is limited to linear
path coordination, and the rare studies on headland turn control typically focus on only one
type of turning method and often employ time-sequential control [23,24]. This approach
can lead to unnecessary stopping and waiting, reducing operational efficiency. The main
contributions of the paper are as follows:

(1) This article proposes a versatile multi-machine control architecture, applicable to two
typical agricultural machine steering modes, including U-turn and T-turn.

(2) Building upon the control architecture, a cooperative control approach for multiple
agricultural machines in both straight-line and headland turn steering scenarios is
proposed. This method, while ensuring the safety of agricultural machines, aims to
enhance operational efficiency and fuel economy.

The rest of the paper is organized as follows: Section 2 provides a detailed description
of the problem addressed in this paper, while Section 3 presents the overall control architec-
ture, establishes the longitudinal and lateral kinematic models for agricultural machine, and
designs a multi-robot cooperative controller based on this foundation. Section 4 discusses
the simulation results; Section 5 concludes the article and discusses future work.

2. Problem Description

This article focuses on a cohort of three homogenized machines equipped with imple-
ments, aimed at maintaining formation during straight-line operations, as well as ensuring
safety and efficiency during headland turns. The lead machine in this group is driven by a
human, operating at a constant speed, while the second and third tractors are autonomous
agricultural machines, programmed to follow their respective preceding vehicle.

During straight-line operations, the following agricultural machines maintain the
formation, as depicted in Figure 1, while working in tandem with the lead agricultural
machine. The green lines in the Figure 1 refer to the operation lines of agricultural machine.

Figure 1. Multi-machine straight-line operation formation.

During headland turns in agricultural operations, the steering method of the ma-
chinery can be classified into U-turn and T-turn, based on the relationship between the
machine’s minimum turning radius (r) and the working width (w), as shown in Figure 2.
The turning path consists of two terminal circular arcs, T1T2 and T3T4, and a connecting line
segment, T2T3. T1 marks the commencement of the turn, while T4 indicates the completion.
Centers O1 and O2 correspond to the turning circular arcs T1T2 and T3T4, respectively, with
r representing the turning radius, and w indicating the working width. A U-turn approach
is used when the working width w is greater than or equal to twice the turning radius,
signified as w ≥ 2r; conversely, a T-turn method is preferred when the working width w is
less than double the turning radius, denoted as w < 2r [25].

Addressing straight-line conditions, control measures are implemented on the agri-
cultural machines to maintain a designated formation among the three machines while
ensuring operational safety. Concerning headland turn coordination, the aim is to minimize
the overall turning time without any risk of collision, and to eliminate stopping and waiting
during the turn, thereby enhancing turning efficiency and fuel economy.
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(a) (b) 

Figure 2. Agricultural machine steering model: (a) U-turn and (b) T-turn.

3. Methodology

3.1. Integral Control Framework

The multi-machine cooperative control architecture proposed in this study primarily
comprises a comprehensive kinematic model for universal agricultural machinery, a path-
tracking controller, a formation-maintenance controller, a collision risk detection module,
and a controller to optimize cooperative steering during T-turns. This framework ensures
that the steering actions performed during U-turns do not elevate the risk of collision;
thus, an additional controller for cooperative steering optimization during U-turns is
unnecessary. It is sufficient to confirm the safety of the agricultural machinery throughout
these maneuvers.

The kinematic model of agricultural machinery, encompassing both lateral and longitu-
dinal dynamics, forms the essential groundwork for the associated lateral and longitudinal
control systems. A path-tracking controller is derived based on the lateral kinematic model
of the agricultural machinery, enabling machinery operation along pre-planned straight
and headland turn paths. Furthermore, based on the longitudinal dynamic model and
data such as speed and spacing from the onboard millimeter-wave radar, a multi-machine
formation-keeping controller for straight trajectories is designed. This controller gener-
ates the necessary speeds to maintain formation, which serves as the speed input for the
path-tracking controller on straight paths.

Additionally, a collision risk detection module based on the Separating Axis Theorem
was designed to accommodate multi-machine coordinated steering under two steering
modes. This module verifies the safety of three agricultural machines during the coop-
erative steering, providing collision-free minimum spacing for the formation-keeping
controllers of both steering types. For the multi-machine T-turn cooperative steering, a
steering optimization controller was engineered. Its output determines the speed under
the cooperative steering path of the path-tracking controller, enabling three agricultural
machines to execute the cooperative steering without topping and waiting, thus minimizing
the overall turning time. The integrated control architecture is illustrated in Figure 3, and
the control flow chart is shown in Figure 4. v and δ in Figure 4 represent the desired speed
and the desired front wheel angle that the formation-keeping controller and pure pursuit
controller outputs to the kinematic model.
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Figure 3. Integrated control architecture.

Figure 4. Control flow chart.

3.2. Kinematic Model
3.2.1. Lateral Kinematics

The lateral kinematic model provides a basis for the design of the path-tracking
controller. Assuming there is no interaction between the machine and the ground, and
disregarding motions such as roll, pitch, and sideslip, the agricultural machinery can be
simplified to a two-wheeled machine model for kinematic analysis, as illustrated in Figure 5.
Within this simplified model, point M represents the point on the path that is closest to the
control point O.
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Figure 5. Lateral kinematics model diagram.

Based on the schematic of the kinematic model demonstrated above, along with
geometric knowledge and physical principles, it is possible to derive a set of differential
equations representing the kinematics of agricultural machinery, which are presented
as follows: ⎧⎪⎪⎨

⎪⎪⎩
ds
dt =

vcosθ
1−c(s)y

dy
dt = vsinθ

dθ
dt = v

(
tanδ

l − c(s)cosθ
c(s)y

) (1)

where c(s) is the curvature of the following curve path at point M; v is the speed of the
agricultural machine; l is the wheelbase of the agricultural machine; s is the arc length of
point M along curve C; y is the lateral deviation of the agricultural machine from the set
path; θ is the heading deviation angle of the agricultural machine; and δ is the steering
wheel deviation angle of the agricultural machine.

The kinematic model for agricultural machinery along a straight-path trajectory is
described as follows: ⎧⎪⎨

⎪⎩
ds
dt = vcosθ
dy
dt = vsinθ
dθ
dt = v tanδ

l

(2)

Performing elementary calculations yields the system of differential equations for the
lateral kinematic model of the agricultural machine, as follows:{

dy
ds = tanθ
dθ
ds = tanδ

lcosθ

(3)

3.2.2. Longitudinal Kinematics

The longitudinal kinematic model provides a foundation for the design of formation-
maintenance controllers. The longitudinal motion state of the following agricultural ma-
chinery during cooperative operation can be represented as:

NgN0ηt

rw
Me − KPPb = m

.
v f + CAv f

2 + mgf (4)

where Ng is the engine power transmission ratio; N0 is the engine-to-wheel transmission
ratio; ηt is the mechanical efficiency of the transmission system; Me is the engine output
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torque; Kp is the scaling factor; Pb is the brake pressure; rw is the wheel radius; vf is the
speed of the following agricultural machine; m is the weight of the following agricultural
machine; CA is the aerodynamic drag coefficient; g is the acceleration due to gravity; and f
is the rolling resistance coefficient.

During the following process, a fixed spacing model is employed, from which the
desired following distance, denoted as dd, can be derived using the collision risk detection
module. For detailed derivation, refer to Section 3.3.2. The derived longitudinal kinematic
model for agricultural machinery following is as follows:

Δ
.
d= Δv (5)

Δ
.
v =

1
m

(
CAv f

2 + mgf
)
− NgN0ηt

mrw
Me (6)

where Δd is the following distance error; dr is the actual following distance; Δv is the
following speed error; and vm is the speed of the leading machine.

3.3. Controller Design

In accordance with the integral control framework and the kinematic models estab-
lished in Section 2, the multi-machine cooperative control system is delineated into three
distinct components: the linear formation-keeping controller, the headland cooperated
steering optimization controller, and the path-tracking controller design. The formation-
keeping controller and the headland cooperated steering optimization controller function
to furnish the longitudinal velocity inputs requisite for the path-tracking controller, which
undertakes the lateral control tasks of the agricultural machinery.

3.3.1. Straight-Line Formation-Keeping Controller

The functionality of the formation-keeping controller lies in adjustments made to the
following farm machine’s speed, ensuring that the follower maintains a set longitudinal
distance from the leader during field operations.

The controller employs a fixed-spacing strategy PID controller, in which the spacing
error ‘ei’ is fed into the PID as an error term. This error is then subjected to a linear
combination of proportional, integral, and differential calculations to produce the control
variable. The model is illustrated in Figure 6.

Figure 6. PID controller model.

After being processed by the PID controller, the error ‘ei’ yields the desired acceleration
for the subject machine. The module ‘Hi’ represents the spacing strategy, which determines
the desired spacing between the subject machine and the lead machine. The ‘Gi’ module is
the longitudinal machine controller, which provides the subject machine’s velocity as the
input to the spacing strategy module.
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3.3.2. Headland-Turn Cooperative Steering Optimization Controller

(1) Collision Risk Detection

A safety model for agricultural machinery is structured through the implementation
of an Oriented Bounding Box (OBB) [26] to identify zones susceptible to collision. Given
that the outline of the agricultural machine typically projects a nearly rectangular shape on
the ground, a rectangle defined by the points P1 P2 P3 P4 serves as the enclosing surface
of the safety model, as illustrated in Figure 7. The dimensions of this rectangle are the
combined aggregate of the length and width of the machine’s ground projection including
its implements, with an additional minimum safety margin incorporated. The heading
angle of the machine is represented by θ, and a minimum safety distance of 0.5 m is
established to uphold the standard of operational safety.

Figure 7. Agricultural machine safety model.

Utilizing the Separating Axis Theorem [27], a model for detecting the safety state of
agricultural machinery is established, as illustrated in Figure 8. In this model, OA and OB
are identified as the geometric centers of the OBB for machine 1 and 2, respectively.

Figure 8. Agricultural machine safety state detection mode.
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A separated axis coordinate system is established using OA as the origin, where the
separating axis is parallel to the lateral symmetry axis of the OBB of machine 1. LAB denotes
the projection length of the geometric center distance between the OBB of the two machines
on the separating axis. RA and RB are the half-lengths of the maximum projection lengths
on the separating axis of machine 1 and 2’s OBB section, which can be referred to as the
projection radius. The formulas for calculating RA, RB, and LAB are as follows:

⎧⎨
⎩

RA = WA/2
RB = WBcosθB

2 + LBsinθB
2

LAB = xB − xA

(7)

where WA is the width of the OBB for agricultural machine 1; θB is the heading angle of
agricultural machine 2 relative to agricultural machine 1; LB is the length of the OBB for
agricultural machine 2; and WB is the width of agricultural machine 2.

According to the Separating Axis Theorem, if the combined projection radius of the
agricultural machine OBB sections on the separating axis (denoted as LAB) exceed the sum
of the projection lengths of the geometric center distances on the separating axis (denoted
as RA + RB), it indicates that there is no collision between the machines, hence, no risk
of collision.

(2) U-turn Cooperative Steering

As the agricultural machinery reaches the headland and begins the coordinated steer-
ing of U-turns, the distance between the machines widens. Therefore, to achieve effective
control, it is necessary to minimize the spacing as much as possible while ensuring there is
no risk of collision during straight-line operations.

(3) T-turn Cooperative Steering

In T-turn cooperative steering, the large turning radius of the agricultural machine
makes it unable to directly turn into the next work path without reversing adjustments.
This reduces the distance between machines and increases the risk of collision. Hence,
the two following machines must decelerate in advance during straight-line operations
to avoid stopping and waiting in the entire cooperative steering process. After the lead
agricultural machine and the first following machine have completed the turn, to ensure the
distance between the machines is within a safe range, both the lead and the first following
agricultural machine need to decelerate. They should continue at a reduced speed until
the minimum safe distance is restored, after which they can resume work at the original
speed. The control logic is as follows: First, the formation-keeping controller shortens the
distance to the minimum safety distance. Once the three machines reach a stable speed,
the T-turn headland-steering controller calculates the deceleration, target speeds, and the
duration of target speeds for the two following machines, so they can complete the turn
without stopping and waiting and without the risk of collision. After completing the turn,
the controller instructs the lead agricultural machine and the first following machine to
decelerate until they reach the minimum safe distance, after which they resume working
speed to continue operations.

Based on the above description, the design of the headland steering optimization
controller is as follows:

Sahead − Sego ≥ L (8)

where:

Sahead =
∫ t2

0
vaheaddt (9)

Sego =
∫ t1

0

(−at + vego
)
dt +

∫ t2

t2

vdesiredt (10)

L = LABmintanθB (11)
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And to ensure the comfort during the deceleration process of the agricultural ma-
chines, the acceleration ‘a’, which is measured in meters per second squared (m/s2), needs
to satisfy:

a ≤ 1.5 (12)

In Equations (9)–(11), Sahead denotes the travel distance of the preceding machine during
the deceleration process, measured in meters (m); Sego signifies the travel distance of the
ego vehicle, which refers to the machine under consideration or the machine executing
the maneuver, also measured in meters (m).; LABmin is the minimum safe distance for the
agricultural machine; Vahead is the lead machine speed; Vego is the machine speed before
it decelerates; Vdesire is the machine speed after it decelerates; t1 is the duration of the
deceleration phase; and t2 is the duration of the Vdesire.

Based on the above controllers, the deceleration, target speed, and the duration of
the target speed during the T-type coordinated steering process can be determined. These
values serve as inputs for the following agricultural machine.

3.3.3. Path-Tracking Controller

The primary function of the path-tracking controller is to ascertain that the lead agri-
cultural machine and the two following machines accurately execute their operations along
designated pathways, thereby maintaining a preset lateral distance between each machine,
equivalent to the working row width of the machines. The controller employs the actual
positional data of the agricultural machinery along with the lateral and heading error
from the set path as input parameters. Through a carefully designed control algorithm, it
generates the desired steering angle for the wheels. This process ensures that the lateral dis-
tance between each following machine and the leading machine is consistently maintained
within the defined numerical range. The integrity of this system is critical to achieve precise
alignment and coordination in agricultural operations, enabling the efficient utilization of
the machinery within the prescribed operational parameters.

(1) U-turn Cooperative Steering

For the comparatively straightforward U-turn cooperative steering, the path-tracking
controller utilizes a pure pursuit algorithm, as illustrated in Figure 9. In this schematic,
point A represents the center of the rear axle, B is the center of the front axle, and C
designates the target point on the path closest to point A.

Figure 9. Schematic diagram of pure pursuit algorithm.
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The geometric relationships in conjunction with the formula for calculating the turning
radius yield the following result: {

1
R = 2sinα

ld
tanδ = L

R
(13)

The target steering angle for the front wheels can be derived as follows:

δ = arctan
(

2Lsinα

ld

)
(14)

where R is the steering radius; L is the wheelbase; δ is the front wheel angle; α is the angle
between the machine body and the look-ahead point; and ld is the look-ahead distance.

‘e’ is defined as the lateral error of the look-ahead point, then

e = ldsinα (15)

The control law for the pure pursuit algorithm is derived as follows:

δ = arctan
(

2Le
ld

2

)
(16)

(2) T-turn Cooperative Steering

For the T-turn cooperative steering, which involves both forward and reverse move-
ments, the path-tracking controller adopts the Stanley algorithm, which can better handle
curved paths and lateral errors. The principles of this algorithm are depicted in Figure 10.
Analogous to the pure pursuit algorithm, point A marks the center of the rear axle, and
point B marks the center of the front axle. Point P represents the nearest path point to the
center of the front axle.

Figure 10. Schematic diagram of Stanley algorithm.

Neglecting the lateral tracking error ‘e’, the angle of the front wheel aligns with the
tangent to the given path, which results in the following equation:

δθe = θe(t) (17)

Disregarding the heading error (θe), a more substantial lateral tracking error results
in a greater steering angle of the front wheel. Assuming that the vehicle’s anticipated
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trajectory intersects with the tangent of the nearest point on the given path at a distance d(t)
ahead of the front wheel, the following nonlinear proportional function is deduced based
on the geometric relationships:

δe(t) = arctan
ke(t)
v(t)

(18)

Considering both control factors, the control law for the front wheel steering angle is
as follows:

δ(t) = θe(t) +
ke(t)
v(t)

(19)

Based on the linear bicycle kinematics model and geometric relationships, the rate of
change of lateral error can be obtained as follows:

.
e(t) =

−ke(t)√
1+
(

ke(t)
v(t)

)2
(20)

When the lateral tracking error e(t) is small, it can be deduced that:

e(t) = e(0) × e−kt (21)

Therefore, the lateral error exponent converges to e(t) = 0, where the parameter k
determines the convergence speed of the lateral error. For any lateral error, the differential
equation monotonically approaches 0.

4. Simulation Validation

To validate the model and method proposed in this article, a simulation scenario was
established in CarSim, as shown in Figure 11, and the proposed control algorithm was con-
structed in Simulink to set up a CarSim/Simulink joint simulation platform. The platform
was then used to conduct a simulated validation of U-turn and T-turn cooperative steering
control with one lead agricultural machine and two following agricultural machines.

 

Figure 11. CarSim simulation scenario diagram.
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4.1. Scenario Design

The YTO-LX800 tractor is chosen for this study, and its parameters are presented in
Table 1. It is equipped with implements of dimensions 8000 × 2000 mm and 4000 × 2000 mm
for U-turn and T-turn scenarios, respectively, determined based on the relationship be-
tween turning radius and working width. The safety model can be approximated as a
7 × 7 m rectangle.

Table 1. Parameters of YTO-LX800.

Parameter Value

Model YTO-LX800
Dimensions (mm) 4250 × 2090 × 2850

Minimum turning radius (m) 4
Wheelbase (mm) 2342

Total vehicle weight (kg) 2725

Speed range (km/h) Forward 1.92 to 31.72
Reverse 5 to 15.01

Maximum traction force (kN) ≥22.4

A field block, MNPQ, is selected, approximately 100 m in length, and the routes for
three tractors to perform cooperative U-turn and T-turn maneuvers are planned, as shown
in Figure 12. Different colors in Figure 12 represent the paths of different farm machines.
The path AB represents the path of the lead machine, while A1B1 and A2B2 correspond to
the paths of the following machines. The coordinates of the path points are entered into
the path-tracking controller. It is stipulated that the machines maintain a stable working
speed of 10 km/h, while the speed during reverse motion is set to 5 km/h. Furthermore,
the acceleration during the entire process is to be confined within the limits of ±1.5 m/s2.

  
(a) (b) 

Figure 12. Path diagram: (a) U-turn cooperative steering and (b) T-turn cooperative steering.

In addition, due to the significant curvature changes in the T-turn cooperative steering
and the involvement of forward and reverse path transitions, it is necessary to divide
the T-turn into three segments and track each segment separately, as shown in Figure 13.
Serial number 1–3 in Figure 13 indicates the sequence of the segmented path of agricultural
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machine. The switching conditions between different paths are determined based on factors
such as the position and heading angle of the tractors.

Figure 13. Path segmentation diagram.

A joint simulation platform with Carsim and Simulink is built, where U-turn and
T-turn cooperative scenarios for straight-line and steering path simulations are constructed
within Carsim. Meanwhile, in Simulink, the various controllers, as described in Section 3,
are established for simulation validation.

4.2. Analysis of Results
4.2.1. U-Type Cooperative Steering

Under the U-turn cooperative steering scenario, the path tracking trajectories of three
agricultural machines are shown in Figure 14, where VL represents the lead machine, while
VF1 and VF2 are the first and second following machines, respectively. On each machine’s
trajectory, squares are used to denote the position of the machine at 16 different points in
time, with the number 1–16 indicating the sequence of moments. Establishing VF2′s initial
position as the coordinate origin, with the travel direction along the positive X-axis and
the steering direction along the positive Y-axis, the initial coordinates for VL, VF1, and
VF2 are defined as (20, 12), (10, 6), and (0, 0), respectively. The collaborative operation
task is deemed completed and the simulation is terminated upon VF2 achieving a new
X-coordinate of 0 after steering, corresponding to the coordinates (0, 18).

(a) 

Figure 14. Cont.
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(b) 

Figure 14. U-type cooperative steering trajectory diagram: (a) global trajectory and (b) local trajectory.

The longitudinal speeds are depicted in Figure 15, where the two following agricultural
vehicles initially accelerate to reduce the distance to the leading vehicle and then reach a
stable state at approximately 30 s. The simulation concludes at the 78.353 s mark upon the
completion of the operational task. The inter-vehicle spacing is illustrated in Figure 16,
with VL/VF1 representing the distance between the leading agricultural vehicle and the
first following agricultural vehicle, and VF1/VF2 indicating the spacing between the first
and second agricultural vehicles. Additionally, the red dashed line in Figure 16 represents
the minimum safety distance, and the results from the collision risk detection module
consistently indicate the absence of collision risks throughout the entire process.

Figure 15. U-type cooperative steering longitudinal speed diagram.
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Figure 16. U-type cooperative steering agricultural vehicle distance diagram.

Based on the trajectory and spacing charts from the U-turn cooperative steering
simulation, as well as the results of the collision risk detection module, it can be discerned
that throughout the whole process, the distances between the agricultural machines were
always above the minimum safety gap. Moreover, at any given moment, the plotted paths
of the machines did not conflict, and there was no risk of collision.

The simulation results indicate that the method proposed in this study for the multiple
agricultural machine cooperative operation and U-turn cooperative steering enables the
leader and follower machines to work according to the planned paths while maintaining a
certain formation. Furthermore, throughout the entire operation and cooperative steering
process, there is no risk of collision between the machines.

4.2.2. T-Type Cooperative Steering

In a T-turn cooperative steering scenario, the path tracking trajectories of three agricul-
tural machines are depicted in Figure 17. The squares and numerals within the figure carry
the same meaning as in the U-turn cooperative steering scenario, representing the location
of the machines at various time intervals and the sequential order of these moments, respec-
tively. Similarly, stipulating VF2′s initial position as the coordinate origin, with the travel
direction along the positive X-axis and the steering direction along the positive Y-axis, the
initial coordinates for VL, VF1, and VF2 are set at (20, 6), (10, 3), and (0, 0), respectively. The
collaborative operation task is considered complete and the simulation is halted upon VF2
reaching a new X-coordinate of 0 after steering, corresponding to the coordinates (0, 9).

As illustrated in Figure 18, the longitudinal speed of the agricultural machinery
begins with an acceleration by the two following machines to reduce the distance to the
lead vehicle, subsequently stabilizing at 10 km/h. Once stable, the headland cooperative
steering controller calculates the required deceleration, target velocity, and the duration
for maintaining the target velocity to ensure a collision-free turning process. This results
in a controlled deceleration of the two following machines, corresponding to the section
between the blue lines in the diagram. In particular, the second following machine must
sustain the target speed for a longer period to increase the gap from the first following
machine. After the lead agricultural machine and the first trailing machine have completed
the turn, they decelerate to wait for the following machine, corresponding to the section
between the green lines in the diagram. The three machines then shorten the interval
between them to the minimum safety distance before resuming a stable speed and state. At
96.73 s, the operational task is completed, and the simulation is terminated.
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(a) 

(b) 

Figure 17. T-turn cooperative steering trajectory diagram: (a) global trajectory and (b) local trajectory.

Figure 18. T-type cooperative steering longitudinal speed diagram.
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Figure 19 illustrates the relationship between the spacing of the three agricultural
machines during the T-turn collaborative turning process, and their correlation with the
minimum safety distance, corresponding to the red dashed line.

 
Figure 19. T-type cooperative steering agricultural vehicle distance diagram.

In addition, under the same scenario as the T-turn cooperative turning, a simulation
of sequential cooperative steering control is conducted, involving a straight-line segment
of 200 m at a forward speed of 10 km/h and a reverse speed of 5 km/h. The steering
controller halts the rear machine once the front machine initiates steering and waits until
the front vehicle has fully completed the turn. The rear machine begins its turn after
the front machine reaches point T4 in Figure 2b. The simulation results are illustrated in
Figures 20 and 21. The squares and numerals within the figure carry the same meaning as
in the T-turn cooperative steering scenario, representing the location of the machines at
various time intervals and the sequential order of these moments, respectively.

Figure 20. T-turn cooperative steering comparison method trajectory diagram.
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Figure 21. T-turn cooperative steering comparison method longitudinal speed diagram.

The initial coordinates for the comparative methods are the same as those mentioned
earlier for the T-turn steering. Similarly, when VF2 completes the operational task, reaching
coordinates (0, 9), it is considered that the three agricultural machines have completed the
task, and the simulation is terminated, corresponding to a time of 114.2 s. Therefore, it can
be considered that the control method proposed in this paper, compared to the sequential
control method, reduces the operation time per 200 m by 17.47 s, thereby improving
efficiency by 15.29%.

5. Conclusions

Addressing the issue of unnecessary stopping and waiting, as well as reduced op-
erational efficiency due to the sequential control in existing multi-machine cooperative
headland steering, this paper proposes a novel method for multi-machine cooperative
straight-line and headland steering that accounts for both U-turn and T-turn cooperative
maneuvers. The method comprises the design of a path-following controller, a formation-
keeping controller, and a headland cooperative steering controller. The simulation results
indicate that during U-turn cooperative steering, three agricultural machines can success-
fully navigate a pre-planned path and maintain formation while collaborating and steering
without any risk of collision. In the case of T-turn cooperative steering, the three machines
can complete the process without collision risks, unnecessary stopping, or waiting. Com-
pared to sequential control, the operational time is reduced by 17.47 s per 200 m, enhancing
efficiency by 15.29%.

However, this paper has some apparent limitations: (1) The kinematic model of agri-
cultural machinery is simplified to a two-wheel model with front-wheel steering, without
considering actual position feedback. (2) The cooperative steering control is only addressed
for the same model of agricultural machines, neglecting coordinated steering control for
machines with different turning radii or operating widths. Further discussions and investi-
gations addressing these limitations will be pursued in subsequent research endeavors.
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Abstract: In response to the issues of hybrid tractors’ energy management strategies, such as reliance
on experience, difficulty in achieving optimal control, and incomplete analysis of typical operating
conditions of tractors, an energy management strategy based on dynamic programming is proposed
in combination with various typical operating conditions of tractors. This is aimed at providing a
reference for the modeling and energy management strategies of series hybrid tractors. Taking the
series hybrid tractor as the research object, the tractor dynamics models under three typical working
conditions of plowing, rotary tillage, and transportation were established. With the minimum total
fuel consumption of the tractor as the optimization target, the engine power as the control variable,
and the state of charge of the power battery as the state variable, an energy management strategy
based on a dynamic programming algorithm was established and simulation experiments were
conducted. The simulation results show that, compared with the power-following energy manage-
ment strategy, the energy management strategy based on the dynamic programming algorithm can
reasonably control the operating state of the engine. Under the three typical working conditions of
plowing, rotary tillage, and transportation, the battery SOC consumption increased by approximately
8.37%, 7.24%, and 0.77%, respectively, while the total fuel consumption decreased by approximately
25.28%, 21.54%, and 13.24%, respectively.

Keywords: hybrid tractor; energy management strategy; dynamic programming; minimum total
fuel consumption

1. Introduction

Tractors occupy an important position in the development of modern agriculture and
are one of the main types of agricultural power machinery. However, traditional diesel
tractors have problems such as high pollution emissions and poor fuel economy [1–3].
Facing increasingly strict emission standards around the world, the agricultural machinery
industry is also increasingly urgent in its demand for environmentally friendly and energy-
saving agricultural tractors [4,5]. Pure electric tractors can achieve zero pollution, but, due
to current battery technology limitations, they have a short continuous operation time and
are unable to perform high-load agricultural production for extended periods of time [6,7].
The series hybrid tractor is equipped with an engine and a generator on the basis of the
pure electric tractor. By reasonably controlling the operating state of the engine, it can
achieve the same power performance as the traditional diesel tractor while reducing fuel
consumption [8–10].

The energy management strategy has an important impact on the fuel economy, power
performance, and lifespan of the power source of the hybrid tractor [11,12]. Currently,
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energy management strategies are basically divided into three categories: rule-based energy
management strategies, learning-based energy management strategies, and optimization-
based energy management strategies [13]. Rule-based energy management strategies are
simple to develop and highly feasible, and were the first energy management strategies
applied to hybrid vehicles [14]. Chen et al. [15] designed an adaptive fuzzy energy manage-
ment strategy for extended-range electric vehicles by using BP neural network optimized by
an improved genetic algorithm, which effectively improved the fuel economy of the whole
vehicle. Yang et al. [16] designed an energy management strategy that combines constant
temperature control, power following, and fuzzy rules. This strategy reduces equivalent
hydrogen consumption while increasing the lifespan of the system. Zou et al. [17] proposed
an energy management strategy for fuel cell hybrid vehicles that utilizes fuzzy logic to
optimize the power following control strategy. This control strategy optimizes the out-
put power of the hydrogen fuel cell while reducing hydrogen consumption. However,
rule-based energy management strategies usually require a great deal of debugging to
determine suitable parameters, relying on the developer’s design experience, and it is
difficult to achieve optimal control [18].

Learning-based energy management strategies are control strategies with adaptive
learning capabilities and good robustness [19]. Xu et al. [20] proposed a supervised learning-
based driving cycle pattern recognition method that can accurately predict road conditions
and improve the fuel economy of hybrid vehicles. Wu et al. [21] proposed an energy
management strategy based on deep deterministic policy gradients, which has near-global
optimal dynamic programming performance and can achieve optimal energy allocation
for vehicles in continuous spaces. Wang et al. [22] combined computer vision with deep
reinforcement learning, enabling the algorithm to autonomously learn the optimal control
strategy using visual information collected from on-board cameras, which resulted in
reduced fuel consumption and achieved performance at 96.5% of the global optimum
dynamic programming. However, learning-based energy management strategies require
a large amount of data for training, have high computational requirements, and have
relatively complex control strategies [23].

Optimization-based energy management strategies use cost functions as optimiza-
tion objectives and measure the optimization effect by minimizing the cost function [24].
Zhao et al. [25] proposed an energy management strategy based on the principle of maxi-
mizing external energy efficiency, which significantly reduces equivalent hydrogen con-
sumption and improves the overall efficiency of the hybrid tractor. Dou et al. [26] proposed
an energy management strategy based on an equivalent fuel consumption minimization
algorithm. This strategy can adaptively distribute the required torque based on the load
condition, resulting in better fuel consumption compared to rule-based energy manage-
ment strategies. Curiel-Olivares et al. [27] proposed a model-predictive-based energy
management strategy for series hybrid tractors. This strategy outperforms rule-based
energy management strategies in terms of fuel consumption while also optimizing the
operating state of the battery.

This article takes a series diesel–electric hybrid tractor as the research object and
proposes a globally optimal hybrid energy management strategy based on dynamic pro-
gramming (DP) [28–30]. By reasonably controlling the operating state of the engine and
optimizing its output power, it is possible to reduce the total fuel consumption of tractors
under three typical working conditions of plowing, tilling, and transportation while ensur-
ing the tractor’s power performance. The remainder of this article is organized as follows.
Section 2 introduces the topological structure and main performance parameters of the
power system for series hybrid tractors. Section 3 explains the simulation models of various
components of series hybrid tractors. Section 4 designs two energy management strategies,
namely those based on dynamic programming and power following (PF). Section 5 verifies
and analyzes the energy management strategies through simulation experiments. Section 6
discusses the results of the simulation experiments and outlines future research directions.
Section 7 summarizes the research content and experimental results of this paper.
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2. Structural Parameters of Tractor’s Power System

Figure 1 shows the topological structure of the power system of a series diesel–electric
hybrid tractor. This tractor uses a drive motor as the power source, and the torque output
by the drive motor is transmitted to the drive wheels and power takeoff (PTO) through
the transmission system. The power battery delivers power to the drive motor through
a power converter. When the power battery’s charge is insufficient, the engine drives the
generator to generate electricity, which is then delivered to the power battery through
the power converter to charge the battery. The main component parameters of the series
diesel–electric hybrid tractor are shown in Table 1, including the rated power and rated
speed of the diesel engine and the drive motor, as well as the rated capacity and rated
voltage of the power battery and other specification parameters.

Transmission 
system

Engine Generator

Power 
battery

Drive 
motor

Power 
converter

PTO

Mechanical 
connection

Electrical 
connection

Figure 1. Topological structure diagram of the power system for a series hybrid tractor.

Table 1. Parameters of main components of hybrid tractor.

Component Parameter Value (Unit)

Diesel engine
Rated power 85 (kW)
Rated speed 2300 (r/min)

Maximum torque speed 1500~1700 (r/min)

Drive motor
Rated power 63 (kW)
Rated speed 2000 (r/min)
Rated torque 300 (N·m)

Power battery
Rated capacity 70 (A·h)
Rated voltage 330 (V)

SOC 0.25~0.90

3. Hybrid Tractor Model Construction

3.1. Driver Model

Based on the principle of forward modeling, this article uses the difference between
the target vehicle speed and the current vehicle speed as input, and the acceleration pedal
opening and the brake pedal opening as output to build a driver model based on PI control.
The principle of the driver model is shown in the following equation [31]:

Op = kpe + ki

∫
edt (1)

e = vre f − vact (2)

where kp is the proportional coefficient, ki is the integral coefficient; e is the difference
between the target velocity of the tractor and the current velocity of the tractor, km/h;
Op is the pedal opening, where Op ∈ (0,1) indicates the accelerator pedal opening, and
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Op ∈ (−1,0) indicates the brake pedal opening; vref is the target velocity of the tractor, km/h,
and vact is the current velocity of the tractor, km/h.

3.2. Generator Set Model

In the structure of a series hybrid system, the engine drives the generator to generate
electricity through mechanical connection, and the engine and generator are not connected
to the transmission system, relatively independent of the power system of the entire vehicle.
Therefore, the engine and generator are usually considered as a whole, namely the generator
set. The research on hybrid energy management strategies focuses on analyzing the fuel
economy of tractors, so numerical modeling methods are adopted, considering only the
input and output relationships of the generator set, as shown in the following equation [32]:

Pe =
neTe

9549
(3)

PG = PeηG (4)

where Pe is the engine power, kW; ne is the engine speed, r/min; Te is the engine torque,
N·m; PG is the generator set power, kW; ηG is the generator efficiency.

Under the entire set of operating conditions, the total fuel consumption of the engine
is represented by the following equation:

be = f (ne, Te) (5)

E =
∫ Pebe

3600ρ f
dt (6)

where E is the total fuel consumption of the engine, L; be is the fuel consumption rate of the
engine, g/kWh; and ρf is the density of diesel fuel, g/L.

In order to achieve optimal fuel economy for the engine, the engine MAP and optimal
operating line (OOL) were fitted using engine bench test data, as shown in Figure 2.

Figure 2. Diesel engine MAP.

Figure 2 includes the engine fuel consumption rate MAP, optimal operating line of the
engine, and the external characteristic curve of the engine. The fitted engine characteristic
curve in Figure 2 can provide data support for the engine to operate in the optimal state
and accurately obtain the current fuel consumption rate of the engine.
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3.3. Drive Motor Model

The drive motor model employs a numerical modeling approach. The corresponding
relationship between motor speed and motor torque is determined through drive motor
bench test data using a look-up table method. The torque control mode is adopted, and the
motor output is controlled through the accelerator pedal opening signal. The mathematical
modeling principle of the drive motor is shown in Equation (7). Based on the drive motor
bench test data, the drive motor’s external characteristic curve is obtained, and then the
motor efficiency MAP is obtained through interpolation fitting, as shown in Figure 3 [33]:

⎧⎪⎪⎨
⎪⎪⎩

Tm_max = f (nm)
Tm = kacTm_max
ηm = f (nm, Tm)

Pm = nmTm
9549ηm

(7)

where nm is the drive motor speed, r/min; Tm is the drive motor torque, N·m; Tm_max is the
maximum torque at the current drive motor speed; kac is the accelerator pedal opening; ηm
is the drive motor efficiency; and Pm is the drive motor power, kW.

Figure 3. Motor efficiency MAP.

3.4. Transmission System Model

The power source of a series hybrid tractor comes from the drive motor, and the
torque generated by the drive motor acts on the drive wheels and the PTO through the
transmission system. The transmission system model is shown in the following equation:

Ftr =
Tmigi0ηT

Rw
− Fbr (8)

Fbr = kbrFbr_max (9)

where Ftr is the forward traction force acting on the tractor through the transmission system
by the drive motor torque, N; ig is the gear ratio of the transmission; i0 is the gear ratio of
the final drive; ηT is the efficiency of the transmission system; Rw is the radius of the drive
wheel, m; Fbr is the braking force of the brake, N; kbr is the brake pedal opening; Fbr_max is
the maximum braking force of the brake, N.

The drive motor speed can also be calculated based on the tractor’s current vehicle
speed and transmission system parameters, as shown in Equation (10):

nm =
vactigi0

0.377Rw
(10)
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3.5. Tractor Plowing Condition Dynamics Model

Under the plowing condition of a tractor, its driving resistance is mainly determined
by the plowing resistance and the rolling resistance, which are calculated as shown in the
following equation:

Ft = Ftr −
(

FL + Ff

)
(11)

FL = Zbhk (12)

Ff = mg f cos α (13)

where Ft is the driving force, N; FL is the plowing resistance, N; Ff is the rolling resistance,
N; Z is the number of plowshares; b is the width of a single plowshare, cm; h is the plowing
depth, cm; k is the specific resistance of the soil, N/cm2; m is the operating mass of the
tractor, kg; g is the acceleration of gravity, m/s2; f is the rolling resistance coefficient; α is
the slope angle, (o).

The current vehicle speed of the tractor can also be calculated based on the driving
force, as shown in Equation (14):

vact =
∫ Ft

3.6m
dt (14)

3.6. Tractor Rotary Tillage Condition Dynamics Model

When performing rotary tillage operations, the series hybrid tractor can neglect the
effects of air resistance and acceleration resistance. Due to the complexity of the formula for
calculating rotary tillage power and the many influencing factors, this paper uses empirical
formulas for calculation. The power balance is shown in the following equation [34,35]:

Pm = Pdrive + Pr (15)

Pdrive =
vact

(
Ff + Fi

)
3600ηT

(16)

Fi = mg sin α (17)

Pr =
3.6kBhvact

ηr
(18)

where Pdrive is the tractor’s driving power, kW; Fi is the slope resistance, N; Pr is the power
of the rotary tiller, kW; B is the width of the rotary tillage area; ηr is the transmission
efficiency of the rotary tiller unit.

3.7. Tractor Transportation Condition Dynamics Model

When a tractor is performing transportation operations, the relationship between the
driving force and the driving resistance is balanced as shown in the following equation:

Ft = Ftr −
(

Ff + Fi + Fac + Far

)
(19)

Fac = mδa (20)

Far =
CD Av2

act
21.15

(21)
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where Fac is the acceleration resistance, N; Faf is the air resistance, N; δ is the tractor
mass conversion coefficient; a is the tractor acceleration, m/s2; CD is the wind resistance
coefficient of the tractor; A is the windward area of the tractor, m2.

3.8. Power Battery Model

In the research on energy management strategies for hybrid electric vehicles, the
battery model mainly reflects the interrelationship between the battery power and the
power of other power systems in the vehicle. Therefore, this article treats the power battery
as an ideal voltage source, ignores the temperature’s impact on the battery’s voltage, and
adopts the Rint model to model the power battery. The dynamic equations for the battery’s
state of charge (SOC) and battery power are shown in the following equation:

•
SOC = −Uoc −

√
U2

oc − 4RintPB
2QBRint

(22)

PB =

{
(Pm + Pe)ηB, (Pm + Pe) < 0
(Pm+Pe)

ηB
, (Pm + Pe) > 0

(23)

where Uoc is the open-circuit voltage of the power battery, V; Rint is the internal resistance
of the power battery, Ω; PB is the battery power, kW; QB is the rated capacity of the battery,
A·h; ηB is the charge and discharge efficiency of the power battery. When (Pm + Pe) is less
than 0, the power battery is charging; when (Pm + Pe) is greater than 0, the power battery
is discharging.

3.9. Tractor Simulation Model

By studying the working characteristics and structural composition of a series hybrid
tractor and combining the modeling requirements of the energy management strategy, a
tractor simulation model is built based on Matlab/Simulink. The model includes a driver
model, a drive motor model, a transmission system model, a power battery model, tractor
(plowing, rotary tillage, and transportation) dynamics models, a generator set model, and
an energy management strategy model. The specific model structure is shown in Figure 4.
Based on the difference e between the target vehicle speed and the current vehicle speed
under the current operating conditions, the driver model outputs the acceleration pedal
angle and brake pedal angle (kac, kbr). By controlling the transmission system model, the
dynamic model of the tractor under various operating conditions, and the drive motor
model through the acceleration pedal angle and brake pedal angle, the drive motor power
Pm is obtained. Meanwhile, the power PG of the generator set model is allocated according
to the established control strategy through the energy management strategy model. Finally,
the battery power PB and SOC are calculated through the power battery model.

Tm nm ne Te

PGkac

kbr
Ftr

vact

Pm Generator Set 
Model

Drive motor 
model

Transmission system 
model

Tractor (plowing, rotary 
tillage, and transportation) 

dynamics model

Power battery 
model

Energy management 
strategy model

Driver 
Model

SOC Pme

Figure 4. Simplified diagram of tractor simulation model.

4. Energy Management Strategy Design

4.1. Energy Management Strategy Based on Dynamic Programming
4.1.1. Dynamic Programming Energy Management Strategy Model

For a series hybrid tractor, the optimization goal of its energy management strategy is
to reasonably control the operating state and output power of the engine so that the tractor
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achieves the optimal fuel consumption under the current working conditions. The DP
algorithm is a multi-stage decision optimization algorithm that divides the multi-stage de-
cisionmaking process into multiple single-stage problems based on the Bellman optimality
principle. By defining appropriate control variables, state variables, and objective functions,
the DP algorithm uses reverse calculation to solve the multiple single-stage problems to
obtain the optimal control.

During the entire set of operating conditions of a tractor, its overall state changes over
time. Therefore, when establishing a dynamic programming algorithm, the entire set of
operating conditions is divided into N stages with a 1 s interval based on the tractor’s
operating conditions. State variables reflect the change process of the controlled object. For
a series hybrid tractor, the state of charge (SOC) of the power battery can represent the state
changes of the tractor under the entire set of operating conditions. Therefore, the SOC of
the power battery is selected as the state variable. During the operation of the tractor, the
main factor affecting the change in the SOC of the power battery is the output power of the
engine. Therefore, the engine power is selected as the control variable.

The state variables and control variables are discretized as shown in Equation (24):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(k) = [SOC(k)]T

SOC(k) ∈ {SOC1, SOC2, · · · , SOCN}
u(k) = [Pe(k)]

T

um(k) ∈
{

um1, um2, · · · , umj
} (24)

where N is the dimensions of the discrete space; j is the number of discrete points.
From Equation (22), the state transition equation can be obtained as

SOC(k + 1) = SOC(k) +
Uoc(t)−

√
U2

oc(t)− 4Rint(t)PB(t)
2QBRint(t)

(25)

Taking the total fuel consumption of the engine under the entire set of operating
conditions as the optimization objective, the optimization objective function can be obtained
from Equation (6) as

J = min
N−1

∑
k=0

E(k) (26)

To ensure that all components of the tractor operate within a reasonable range, the
following constraints are added:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SOCmin ≤ SOC(k) ≤ SOCmax
PB_min ≤ PB(k) ≤ PB_max
Pe_min ≤ Pe(k) ≤ Pe_max
ne_min ≤ ne(k) ≤ ne_max
Te_min ≤ Te(k) ≤ Te_max

(27)

where SOCmin and SOCmax are the minimum and maximum allowable values for the
SOC of the power battery; PB_min and PB_max are the minimum and maximum power of
the power battery during operation; Pe_min, Pe_max, ne_min, ne_max, Te_min, and Te_max are
the minimum and maximum power, minimum and maximum speed, and minimum and
maximum torque of the engine during operation, respectively.

4.1.2. The Solution Process of Dynamic Programming Algorithm

The energy management strategy based on dynamic programming optimizes the
operating state and output power of the engine throughout the entire set of working
conditions using the dynamic programming algorithm, aiming to achieve the best fuel
economy for the tractor. The solution process of dynamic programming is shown in
Figure 5.
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The specific steps are as follows:

1. The solution process is divided into N stages based on the operating conditions. The
operational parameters of each component of the tractor at each stage are calculated
using the tractor’s mathematical model, and all control variables are solved. To
further optimize the fuel consumption of the tractor, all control variables, including
the calculated engine power Pe, corresponding engine speed ne, and engine torque Te,
are selected from the OOL fitted in Figure 2.

2. Select control variables that satisfy the constraints of the current stage and use dynamic
programming to solve for the state variables and control variable parameter values
that yield the minimum value of the objective function J for that stage.

3. Let N = N − 1, which enters the next stage of the solution operation. This process
continues until k = 0, at which point the optimal control variables and corresponding
SOC dataset are obtained, and the solution process is complete.
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Y

N

Start

Divide the solution 
process into N 

stages

Calculate the operating parameters 
of each component using the 

mathematical model of the tractor 
to obtain all the control variables.

Stage N 1 k=N 1

k=k 1

Select control variables 
within the constraints of 

stage k
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programming algorithm

The objective 
function J is 
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Obtain the optimal control 
variables for stage k and their 

corresponding SOC values

k 1

Obtain the optimal 
control parameters

End

Figure 5. The solution process of dynamic programming.

4.2. Energy Management Strategy Based on Power Following

The power following-based energy management strategy is a rule-based control
strategy. In a series hybrid tractor, this strategy uses the demand power of the drive motor
and the remaining battery charge of the power battery to determine the start–stop and
output power of the engine. The principle of this strategy is shown in Figure 6.
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N

Engine maintains its 
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Figure 6. Power following schematic diagram.

Where Pm_req is the required power of the drive motor; Pm_req_max is the maximum
required power of the drive motor.

The specific steps are as follows:
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1. When SOC ≤ SOCmin, the engine starts.
2. When SOCmin ≤ SOC ≤ SOCmax, if Pm_req ≥ Pm_req_max, the engine starts; otherwise,

the engine maintains the started state from the previous moment.
3. When SOC ≥ SOCmax, if Pm_req ≥ Pm_req_max, the engine maintains the started state

from the previous moment; otherwise, the engine shuts down.

To better compare the two control strategies, the engine control parameters output
by the power following-based energy management strategy will also be selected from the
OOL fitted in Figure 2.

5. Simulation and Results Analysis

5.1. Plowing Condition

As shown in Figure 7, the target vehicle speed tracking effect of the simulation model
under the plowing condition is demonstrated. The results indicate that, under the plowing
condition, the simulation model can effectively track the target vehicle speed with a
maximum error of no more than 0.24 km/h, meeting the test requirements.

Figure 7. Vehicle speed tracking effect under plowing condition.

When the tractor performs plowing operations, the changes in drive motor power and
battery power under two energy management strategies are shown in Figure 8. As can be
observed from Figure 8a, under the plowing condition, the peak power of the drive motor is
approximately 49.66 kW. As can be observed from Figure 8b, under the energy management
strategy based on power following, the battery power will have negative values as the
load of the plowing condition increases, indicating that the generator set will be activated
to charge the battery during each plowing cycle. Under the energy management strategy
based on dynamic programming, the battery power remains positive for approximately
the first 2118 s. After approximately 2118 s, the battery power begins to decrease, at which
point the generator set starts to operate and charge the battery. During the periods from
approximately 2471 s to 2499 s and from 2971 s to 2999 s, the battery exhibits negative
power, indicating that the entire tractor’s load power is being supplied by the generator set.
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(a) (b)

Figure 8. (a) Drive motor power; (b) battery power.

The operating state of the engine under the plowing condition is shown in Figure 9.
As can be observed from Figure 9a, under the energy management strategy based on
power following, the engine starts and stops multiple times throughout the entire plowing
condition, with relatively short continuous operating times, and the peak power of the
generator set is approximately 53.76 kW. On the other hand, under the energy management
strategy based on dynamic programming, the engine starts to operate around 2118 s, and
it does not frequently start and stop, with relatively concentrated operating times and
a peak power of approximately 41.03 kW. As shown in Figure 9b, under both energy
management strategies, the engine operates along the optimal operating curve, but, under
the energy management strategy based on dynamic programming, the engine operates
within a wider range.

(a) (b)

Figure 9. (a) Engine power; (b) engine operating point.

As can be observed from Figure 10a, the final SOC under the energy management
strategy based on power following is approximately 50.54%, while the final SOC under the
energy management strategy based on dynamic programming is approximately 46.31%.
Compared to the energy management strategy based on power following, the battery SOC
consumed approximately 8.37% more under the energy management strategy based on
dynamic programming.
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(a) (b)

Figure 10. (a) SOC change curve; (b) fuel consumption change curve.

As shown in Figure 10b, the total fuel consumption under the energy management
strategy based on power following is 2.65 L, while the total fuel consumption under the
energy management strategy based on dynamic programming is 1.98 L. With the energy
management strategy based on dynamic programming, the total fuel consumption is
reduced by approximately 25.28%.

5.2. Rotary Tillage Condition

As shown in Figure 11, the target vehicle speed tracking effect of the simulation model
under the rotary tillage condition is demonstrated. The results indicate that, under the
rotary tillage condition, the simulation model can effectively track the target vehicle speed
with a maximum error of no more than 0.22 km/h, meeting the test requirements.

Figure 11. Vehicle speed tracking effect under rotary tillage condition.

When the tractor performs rotary tillage operations, the changes in drive motor power
and battery power under two energy management strategies are shown in Figure 12. As
can be observed from Figure 12a, under the rotary tillage condition, the peak power of the
drive motor is approximately 46.10 kW. As can be observed from Figure 12b, under the
energy management strategy based on power following, the trend regarding battery power
changes is basically consistent with that of the plowing condition. In each rotary tillage
cycle, the battery exhibits negative power, causing the generator set to start and charge
the battery. Under the energy management strategy based on dynamic programming, the
battery power remains positive for approximately the first 2145 s. After approximately
2145 s, the battery power begins to decrease, at which point the generator set starts to
operate and charge the battery. During the periods from approximately 2464 s to 2506 s
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and from 2963 s to 3000 s, the battery exhibits negative power, indicating that the entire
tractor’s load power is being supplied by the generator set.

(a) (b)

Figure 12. (a) Drive motor power; (b) battery power.

The operating state of the engine under the rotary tillage condition is shown in
Figure 13. As can be observed from Figure 13a, under the energy management strategy
based on power following, the number of starts and stops of the engine during the entire
rotary tillage condition has decreased compared to the plowing condition, but they remain
relatively frequent, with short continuous operating times, and the peak power of the
generator set is approximately 50.17 kW. On the other hand, under the energy management
strategy based on dynamic programming, the engine starts to operate around 2145 s
and continues to operate until the end of the rotary tillage operation, with relatively
concentrated operating times and a peak power of approximately 35.39 kW. As shown
in Figure 13b, under both energy management strategies, the engine operates along the
optimal operating curve. However, under the energy management strategy based on
dynamic programming, the engine operates within a wider range.

(a) (b)

Figure 13. (a) Engine power; (b) engine operating point.

As shown in Figure 14a, the final SOC under the power-following energy management
strategy is approximately 48.76%, while the final SOC under the dynamic programming-
based energy management strategy is approximately 45.23%. Compared to the power-
following energy management strategy, the battery SOC consumed approximately 7.24%
more under the dynamic programming-based energy management strategy.
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(a) (b)

Figure 14. (a) SOC change curve; (b) fuel consumption change curve.

As shown in Figure 14b, the total fuel consumption under the energy management
strategy based on power following is 2.46 L, while the total fuel consumption under the
energy management strategy based on dynamic programming is 1.93 L. With the energy
management strategy based on dynamic programming, the total fuel consumption is
reduced by approximately 21.54%.

5.3. Transportation Condition

The tractor transportation condition refers to the EUDC_Man driving cycle, and,
based on the tractor powertrain system parameters, the maximum vehicle speed has been
adjusted to 25.5 km/h. As shown in Figure 15, the target vehicle speed tracking effect
of the simulation model under the transportation condition is demonstrated. The results
indicate that, under the transportation condition, the simulation model can effectively track
the target vehicle speed with a maximum error of no more than 0.27 km/h, meeting the
test requirements.

Figure 15. Vehicle speed tracking effect under transportation condition.

During the transportation operation of the tractor, the changes in the drive motor
power and battery power under the two energy management strategies are shown in
Figure 16. As can be observed from Figure 16a, under the transportation condition, the peak
power of the drive motor is approximately 112.40 kW. As shown in Figure 16b, the trends
in battery power changes are basically consistent under both the power-following energy
management strategy and the dynamic programming-based energy management strategy,
and no negative battery power occurs. Under the power-following energy management
strategy, the generator set operates and the battery power decreases during approximately
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60 s to 118 s and 200 s to 368 s. Under the dynamic programming-based energy management
strategy, the generator set operates and the battery power decreases during approximately
53 s to 113 s and 197 s to 362 s.

(a) (b)

Figure 16. (a) Drive motor power; (b) battery power.

The operating state of the engine under transportation conditions is shown in Fig-
ure 17. As can be observed from Figure 17a, under both the power-following energy
management strategy and the dynamic programming-based energy management strategy,
the number of starts and stops of the engine during the entire transportation condition is
the same. Under the power-following energy management strategy, the peak power of the
generator set is approximately 52.00 kW. Under the dynamic programming-based energy
management strategy, the peak power of the generator set is approximately 37.74 kW. As
shown in Figure 17b, under both energy management strategies, the engine operates along
the optimal operating curve. However, under the dynamic programming-based energy
management strategy, the engine operates within a wider range.

(a) (b)

Figure 17. (a) Engine power; (b) engine operating point.

As shown in Figure 18a, the final SOC under the power-following energy management
strategy is approximately 73.01%, while the final SOC under the dynamic programming-
based energy management strategy is approximately 72.45%. Compared to the power-
following energy management strategy, the battery SOC consumed approximately 0.77%
more under the dynamic programming-based energy management strategy.
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(a) (b)

Figure 18. (a) SOC change curve; (b) fuel consumption change curve.

As shown in Figure 18b, the total fuel consumption under the power-following en-
ergy management strategy is 0.68 L, while the total fuel consumption under the dynamic
programming-based energy management strategy is 0.59 L. The total fuel consumption
decreased by approximately 13.24% under the dynamic programming-based energy man-
agement strategy.

6. Discussion

The results of this study emphasize the impact of the proposed energy management
strategy for hybrid tractors on fuel economy under various typical operating conditions of
tractors. Using the dynamic programming algorithm, the operating status of the engine in
a series hybrid tractor was optimized under three typical operating conditions: plowing,
rotary tilling, and transportation. Based on the simulation test results, this study provides
a comprehensive reference for future related research. The main findings of the discussion
are as follows.

The optimization effect of the energy management strategy based on the dynamic
programming algorithm is closely related to the operating conditions of the tractor. By
analyzing the simulation test results of three typical operating conditions, namely plowing,
rotary tilling, and transportation, it is found that, the larger the load of the operating condi-
tion, the better the fuel-saving effect of the dynamic programming algorithm compared to
the power-following energy management strategy.

According to the simulation test results, the power-following energy management
strategy leads to frequent engine starts and stops in both plowing and rotary tilling test con-
ditions. In actual tractor operation, frequent engine starts and stops can further increase fuel
consumption. However, the dynamic programming-based energy management strategy
does not exhibit frequent engine starts and stops. Future research on energy management
strategies should also consider the issue of engine starts and stops.

To better compare the control effects of energy management strategies, it is necessary to
consider not only fuel consumption but also the cost impact of battery power consumption.
In the simulation tests conducted in this study, the dynamic programming-based energy
management strategy optimizes the operating state of the engine based on the entire
working conditions. Under the same working conditions, it is difficult to achieve the same
final SOC value as the power-following energy management strategy, which has a certain
impact on testing the optimization effect of the energy management strategy. Therefore,
future research work should also consider issues related to electricity costs.

7. Conclusions

This study describes an energy management strategy for a series hybrid tractor, aiming
to achieve optimal fuel consumption throughout the entire operating cycle of the tractor.
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Firstly, the SOC of the power battery is considered as the state variable, and the engine
power is the control variable. Then, the total fuel consumption of the engine throughout
the entire set of operating conditions is taken as the objective function. Finally, a series
hybrid tractor energy management strategy based on a dynamic programming algorithm
is designed. The main conclusions are as follows.

Under the conditions of plowing, rotary tillage, and transportation operations, the
total fuel consumption values for the power following-based energy management strategy
are 2.65 L, 2.46 L, and 0.68 L, respectively. For the dynamic programming-based energy
management strategy, the total fuel consumption values are 1.98 L, 1.93 L, and 0.59 L,
respectively. Compared to the power-following energy management strategy, the dynamic
programming-based energy management strategy results in an additional consumption of
approximately 8.37%, 7.24%, and 0.77% in battery SOC for plowing, rotary tilling, and trans-
portation operations, respectively. Simultaneously, the total fuel consumption of the tractor
decreases by approximately 25.28%, 21.54%, and 13.24% for the respective operations.

In this paper, the total workload of the tractor during plowing operations is the
highest, followed by rotary tillage operations, and transportation operations have the
lowest workload. The trend of total workload change is consistent with the effect of
reduced total fuel consumption observed in the simulation results. Specifically, the greater
the total workload, the better the fuel-saving effect achieved by the dynamic programming-
based energy management strategy compared to the power following-based strategy.

Compared to the power following-based energy management strategy, the dynamic
programming-based strategy can better adjust the operating state of the engine, reasonably
control the start–stop and output power of the engine, and keep the engine operating in a
high-efficiency range.
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Abstract: Hydrogen fuel cell tractors are emerging as a new power source for tractors. Currently,
there is no mature energy management control method available. Existing methods mostly rely on
engineers’ experience to determine the output power of the fuel cell and the power battery, resulting
in relatively low energy utilization efficiency of the energy system. To address the aforementioned
problems, a power optimization method for the energy system of hydrogen fuel cell wheel-driven
electric tractor was proposed. A dynamic model of tractor ploughing conditions was established
based on the system dynamics theory. From this, based on the equivalent hydrogen consumption
theory, the charging and discharging of the power battery were equivalent to the fuel consumption of
the hydrogen fuel cell, forming an equivalent hydrogen consumption model for the tractor. Using
the state of charge (SOC) of the power battery as a constraint, and with the minimum equivalent
hydrogen consumption as the objective function, an instantaneously optimized power allocation
method based on load demand in the energy system is proposed by using a traversal algorithm. The
optimization method was simulated and tested based on the MATLAB simulation platform, and
the results showed under ploughing conditions, compared with the rule-based control strategy, the
proposed energy system power optimization method optimized the power output of hydrogen fuel
cells and power batteries, allowing the energy system to work in a high-efficiency range, reducing
the equivalent hydrogen consumption of the tractor by 7.79%, and solving the energy system power
distribution problem.

Keywords: hydrogen fuel cell; electric tractor; equivalent hydrogen consumption; energy system;
power optimization

1. Introduction

The International Energy Agency’s “World Energy Outlook 2022” points out it is
still very important to promote the energy revolution and build clean, low-carbon, safe,
and efficient energy [1]. Hydrogen, although not an energy source itself, has gained
extensive utilization as a readily available, environmentally friendly, and low-carbon
secondary energy carrier. Hydrogen, being colorless and odorless, and exhibiting no toxic
effects on humans or ecology [2], is emerging as a significant contributor to the global
energy transition and development. It serves as one of the key carriers for sustainable
energy advancement worldwide [3]. With the development of clean hydrogen production
technologies such as water electrolysis, a hydrogen fuel cell (FC) utilizes carbon-free
hydrogen as fuel during operation, with water being the main reaction product. This
positions FC as a promising, important, and clean energy conversion technology for the
future. Furthermore, since an FC operates based on electrochemical reactions converting
chemical energy into electrical energy, its reaction process does not involve combustion.
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Therefore, the energy conversion efficiency is not constrained by the limitations of the
Carnot cycle [4,5], making it an ideal source of energy for power machinery.

There are few known studies on energy management of hydrogen FC tractors, mainly
focusing on road vehicles [6,7]. Energy management approaches can be classified into
two distinct categories: rule-based energy management and optimization-based energy
management methodologies [8–10]. The rule-based energy management method can design
power allocation rules based on expert experience and operational knowledge, so that the
FC can operate in a high-efficiency range as much as possible. The main implementation
methods include fuzzy logic, finite state machine, and power following [11]. To protect FCs
and ensure their efficiency, Shen et al. [12] propose a fuzzy control energy management
strategy that takes into account the characteristics of FCs. This strategy aims to achieve
stable and efficient output from the FCs. However, it does not consider the state of charge
(SOC) of the power battery. Considering the influence of the power battery SOC and
the supercapacitor state voltage on its performance, Wen et al. [13] proposed an energy
management strategy based on a “thermostat”, which could maintain the power battery
SOC and improve the whole machine economy. However, this method is not suitable for
scenarios with more complex operating conditions. In response to this, Wang et al. [14]
proposed a management strategy for the battery/supercapacitor/fuel cell system based on
an effective state machine, which improved the power density of the power system and
the net output power of the FC; it is capable of meeting the power requirements of most
driving conditions. However, although rule-based energy management strategies have the
advantages of low technical difficulty and small online computing volume, it is difficult
to achieve control effects close to optimal. The optimization-based energy management
methods optimize the target through optimization algorithms to make vehicle operation
more energy-efficient. To realize the reasonable distribution of energy between different
energy sources, Wang et al. [15] combined the dynamic programming global optimization
method with fuzzy logic control to reduce the hydrogen consumption of the whole machine
and improve the efficiency of the FC. However, this method has the issue of cumulative
errors in battery SOC estimation. To solve this problem, Song et al. [16] proposed an FC
vehicle energy management strategy based on dynamic programming, which improved
the energy system efficiency and reduced the error accumulation in the control process.
This dynamic programming algorithm has a large amount of calculations and takes a long
time. Therefore, Zhou et al. [17] proposed a fast and unified method for solving dynamic
programming problems, which effectively reduced the calculation time while reducing the
energy consumption of the whole machine. Global optimization can greatly improve the
energy-saving effect of the system, but it requires a large amount of calculation and has poor
real-time performance. Instantaneous optimization can perform real-time optimization
within the sampling period. Compared with global optimization, it has the advantages
of smaller number of calculations and higher real-time performance. Therefore, it is an
ideal online optimization method [18]. Zhou et al. [19] used a Markov pattern recognizer
to divide driving modes into three types and used a multi-mode predictive controller to
formulate a control strategy, which ensured the safe and stable operation of the FC while
improving economy. This method did not consider the SOC of the power battery. Wang
et al. [20] proposed an energy management strategy based on the Pontryagin’s minimum
principle, which can ensure both overall economy and stable SOC, but it cannot adapt to
the dynamic changes in complex traffic environments. To solve this problem, Nie et al. [21]
used the model predictive control method to carry out the energy scheduling of hybrid
systems, which can effectively optimize driving performance and improve economy. In the
field of non-road vehicles, there are few known studies on hydrogen FC power distribution.
Regarding the energy management strategy of tractors, Xu et al. [22] developed an energy
management strategy based on fuzzy control for FC power battery hybrid tractors; the
simulation results showed this strategy reduced the depth of discharge of the dynamic
battery and decreased the equivalent hydrogen consumption of the tractor, but this method
also did not consider the impact of load on the strategy.
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The joint operation of power batteries and hydrogen fuel cells to drive tractors, and
determining the power distribution between the two, is crucial to achieving efficient
operation of the energy system, representing an urgent problem that needs to be addressed.
Traditional rule-based optimization strategies often directly determine a fixed proportion
factor for the power allocation between the power battery and hydrogen fuel cell, which
makes it difficult to achieve efficient output of the energy system. Furthermore, the
load is crucial for the power allocation within the energy system of hydrogen fuel cell
tractors. To tackle the challenge of instantaneous power optimization in hydrogen fuel cell
electric tractors, this paper focuses on hydrogen fuel cell wheel-drive electric tractors. By
integrating dynamics and the theory of equivalent hydrogen consumption, and introducing
a charge retention strategy, a load-demand-based instantaneous optimization method for
power allocation within the energy system is proposed, aiming to effectively distribute
power between the power battery and hydrogen fuel cell. The main contributions of
this paper are as follows: a real-time power allocation method based on instantaneous
optimization is proposed to address the power allocation challenges faced by hydrogen
fuel cell tractors under time-varying conditions.

The subsequent sections of this paper follow the following structure: in Section 2,
the topology structure and main technical parameters of the hydrogen FC electric tractor
are introduced. Section 3 models the main components of the tractor. In Section 4, an
instantaneously optimized power allocation method based on load demand is proposed
for the energy system. Section 5 conducts strategy verification on the MATLAB/Simulink
simulation platform. Finally, Section 6 presents the research conclusions.

2. Tractor Topology Structure and Main Parameters

2.1. Hydrogen Fuel Cell Wheel-Driven Electric Tractor Topology Structure

Hydrogen FCs use carbon-free hydrogen as fuel and have advantages such as high
energy density, long service life, clean and pollution-free process. Tractors that use hydro-
gen fuel cells/power cells effectively integrate the advantages of high-power density in
power batteries with the high energy density in FCs, which is one of the directions for
future research on energy-saving and environmentally friendly tractors.

The topology structure of the hydrogen FC wheel-driven electric tractor is shown in
Figure 1. The tractor has two energy sources, hydrogen FCs and batteries. The output torque
of the wheel-driven motor is directly transmitted to the drive wheel through the reducer.

 
Figure 1. Topology of the hydrogen fuel cell wheel-driven electric tractor.
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The vehicle control unit is connected to the hydrogen FC, battery, DC/DC module,
DC/AC module, and two wheel-side driven electric motors through the Controller Area
Network (CAN) bus. According to the power demand of the whole machine and the power
battery SOC, the output power of the FC and the battery is dynamically allocated according
to the power optimization method of the energy system, thereby enabling the tractor to
achieve optimal power performance and economy.

2.2. Main Technical Parameters of Hydrogen Fuel Cell Wheel-Drive Electric Tractor

Expanding upon the preceding research findings of the research group, the main
technical parameters of the hydrogen FC wheel-driven electric tractor used in this study
are shown in Table 1.

Table 1. Topology of a diesel-electric parallel hybrid tractor.

Project Parameters/Units Value

Vehicle parameters

Tractor mass (kg) 2500
Driving wheel rolling radius (m) 0.63

Rolling resistance coefficient 0.07
Reducer speed ratio 17

Motor
Rated speed (rpm) 1500
Rated torque (N·m) 140
Rated power (kW) 22

Power System
Energy capacity (kW·h) 41

Battery voltage (V) 380
Battery capacity (A·h) 108

3. Hydrogen Fuel Cell Tractor Model Construction

The key components of a hydrogen FC tractor include the hydrogen FC, power battery,
motor, etc. The tractor model forms the foundation for the control of the entire machine.
Therefore, the model established in this section includes the dynamics model, transmission
system model, hydrogen FC model, power battery model, motor model, tyre model, and
whole machine simulation mode.

3.1. Tractor Dynamics Model

By conducting the analysis of the tractor’s driving force and driving resistance, the
condition for the tractor to operate normally is the driving force equals the sum of all
driving resistances. When the tractor is working in the field, the load of towing agricultural
machinery is very large. Therefore, the driving resistance includes the resistance that
must be overcome when towing agricultural machinery, that is, the towing resistance FTN.
Since the operating velocity of the tractor is low and close to uniform, the air resistance
and acceleration resistance can be ignored [23]. Therefore, the driving equation for the
ploughing condition of the tractor can be expressed as:

Ft = Ff + FTN (1)

where Ft is the total driving force, N. Ff is the rolling resistance, N. FTN is the rated traction
resistance, N.

During field operations, ploughing is a common high-load operation, so the driving
force of the tractor should meet the needs of the tractor’s ploughing operation. Considering
the large load fluctuations caused by the working conditions of the tractor and the changes
in the performance of agricultural machinery, a reserve of 10~20% should be left [24].
Therefore, the rated traction force when the tractor is ploughing is:

FTN = (1.1 ∼ 1.2)FTa (2)
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where FTa is the ploughing resistance, N.
The required torque and speed of the drive wheel during the hydrogen FC wheel-drive

electric tractor ploughing operation are:

{
Tq = Ft

r
nq = v

3.6 × 0.377r
(3)

where Tq is the torque required for the drive wheels, N·m. nq is the required speed of the
drive wheels, rpm. v is the tractor velocity, m/s. And, r is the driving wheel radius, m.

3.2. Transmission System Model

The transmission system of wheel-driven tractors mainly consists of wheel-side reduc-
ers, which belong to the gear transmission mechanism. Unlike urban vehicles that require
frequent gear shifting, tractors experience relatively small variations in operating speeds
during field work. Therefore, this paper simplifies the transmission system model to a
fixed gear ratio gear model [25]: {

Treqm =
Tq
i

nreqm = inq
(4)

where Treqm is the required torque of the motor, N·m. nreqm is the required speed of the
motor, rpm. And, i is the speed ratio of the wheel-side reducer.

3.3. Motor Model

The motor uses a permanent magnet synchronous motor. Compared with other
motors, the permanent magnet synchronous motor has advantages such as good reliability,
high work efficiency, large torque, small size, and light weight. It can cope with the
relatively complex operating environment when the tractor is working in outdoor fields.
The efficiency model of the motor can be determined by establishing a quasi-static graph
of output speed and torque. Subsequently, the efficiency of the motor can be obtained
by referring to a table. The relationship between motor efficiency, speed, and torque is
as follows:

ηm = f (nm, Tm) (5)

where ηm is the motor efficiency, %. nm is the motor speed, rpm. And, Tm is the motor
torque, N·m.

The required driving power (Preqm) of the motor is:

Preqm =
nreqmTreqm

9550ηm
(6)

where Preqm is expressed in kW.
When calculating the efficiency of the drive motor, since the trend of the motor’s

electric efficiency and power generation efficiency is similar, it is assumed in the model
building that the power generation efficiency and electric efficiency of the permanent
magnet synchronous motor used are the same. The efficiency numerical model of the
permanent magnet synchronous motor used in this paper is shown in Figure 2.
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Figure 2. MAP diagram of a motor model.

3.4. Power Battery Model

The Rint model [26] is a common equivalent circuit model. The battery is modeled
as an ideal voltage source connected in series with an internal resistance. The structure is
simple, and the parameters are easy to identify, making it suitable for whole vehicle energy
management algorithms. In the Rint model, the effects of temperature on the battery pack
are ignored. The open circuit voltage and charge-discharge internal resistance of the battery
are affected by the state of charge (SOC) and the charge-discharge current of the battery.

In accordance with the Rint model [27,28] of the battery, the power of the battery,
denoted as Pbat, can be expressed by the following equation:

Pbat = Voc(SOC)Ibat(t)− Ibat(t)
2Rint(SOC) (7)

where Pbat is the battery power, kW. Voc is the battery open circuit voltage, V. Rint is the
battery internal resistance, Ω. And, Ibat is the battery current, A.

The SOC of the battery can be represented by the ampere-hour method [29] as follows:

Ibat(t) =
Voc(SOC)−

√
Voc(SOC)2 − 4Rint(SOC)Pbat(t)

2Rint(SOC)
(8)

SOC(t) = SOC(0)−
∫ t

0 Ibat(t)dt
Qbat

(9)

where Qbat is the battery rated capacity, A·h.
The instantaneous discharge efficiency/charge efficiency, denoted as ηdis and ηchg, of

the battery [30] can be represented as follows:

{
ηdis =

Voc−Ibat(t)Rint
Voc

× 100%, Pbat ≥ 0
ηchg = Voc

Voc−Ibat(t)Rint
× 100%, Pbat < 0

(10)

where ηdis is the instantaneous discharge efficiency of the battery, %. And, ηchg is the
instantaneous charge efficiency of the battery, %.

Substituting (8) into (10) yields the following result:

⎧⎪⎪⎨
⎪⎪⎩

ηdis =
1+
√

1− 4RintPbat(t)
Voc2

2 × 100%, Pbat ≥ 0
ηchg = 2

1+
√

1− 4RintPbat(t)
Voc2

× 100%, Pbat < 0
(11)
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3.5. Hydrogen Fuel Cell Model

Hydrogen FCs convert the chemical energy in hydrogen into electricity and are a clean
and efficient power generation device. This paper uses the proton exchange membrane
fuel cell (PEMFC), which is widely used in engineering, and has the advantages of fast cold
start and high energy conversion rate and can be used as a mobile power supply. Hydrogen
FC models can be divided into mechanism models and numerical models. Although the
mechanism model has good dynamic response, the model is more complex and requires
a large amount of calculation. The operating characteristics of the hydrogen FC system
used in this paper are shown in Figure 3, which shows the optimal operating area of the
hydrogen FC system is within 10% to 80% of its power range.

 

Figure 3. Operational characteristics of the hydrogen FC system.

Through polynomial fitting, the voltage model of the FC is obtained as follows:

Vf c = ξ1P3
f c + ξ2P2

f c + ξ3Pf c + ξ4 (12)

where Vfc is the FC output voltage, V. Pfc is the FC system power, kW. ξj is the fitting
parameters, j = 1, 2, 3, 4.

In practical use, a hydrogen FC requires auxiliary equipment to support its operation.
The auxiliary equipment mainly includes air circulation pumps, cooling water circulation
pumps, exhaust fans, hydrogen supply pumps, and electronic control equipment. The
efficiency decreases at high power because a larger voltage drop occurs in the hydrogen
FC stack at high power. On the other hand, the lower efficiency at low power is due to the
increased percentage in energy consumed by auxiliary equipment at low power [31]. The
hydrogen FC efficiency used in this paper is fitted by polynomial and yielded as follows:

η f c =
(

γ1P8
f c + γ2P7

f c + γ3P6
f c + γ4P5

f c + γ5P4
f c + γ6P3

f c + γ7P2
f c + γ8Pf c + γ9

)
× 100% (13)

where ηfc is the FC system efficiency, %. And, γj is the fitting parameters, j = 1–9.

3.6. Tyre Model

Commonly used tyre models include theoretical models such as the Gim model and
Finala model, as well as empirical or semi-empirical models such as the power exponential
formula, semi-empirical model, UniTire model, and magic tyre model [32]. The magic
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formula model not only has a simple structure but also has high simulation accuracy. Its
general expression is:

⎧⎨
⎩

Y(x) = y(x) + SV
y(x) = D sin{Carctan[Bx(1 − E) + EarctanBx]}
x = X + SH

(14)

where X is the tyre slip rate. Y(x) is the longitudinal force of the tyre(Fx), N. B is the stiffness
coefficient. C is the curve shape coefficient. D is the peak adhesion coefficient. E is the
curve curvature coefficient. SV is the vertical drift of the curve. SH is the horizontal drift of
the curve.

3.7. Whole-Machine Simulation Model

Combining the characteristics of the fuel cell wheeled drive tractor system, a full vehi-
cle simulation model was established based on MATLAB, as shown in Figure 4. According
to the working conditions of the tractor, the controller acquires signals and provides the
plow resistance and plow speed (Ft, v) of the tractor as inputs to the controller. Inside the
controller, calculations and processing are performed according to Equations (1), (3) and (4),
etc., and corresponding power demand (Preqbat) from the power battery, and motor required
speed (nreqm) are output according to the predetermined control strategies (including com-
parative strategies and the strategy proposed in this paper). Preqfc is provided as an input
to the fuel cell model, and the fuel cell model works according to the instructions to output
corresponding power (Pfc); Preqbat is provided as an input to the power battery model, and
the power battery model works according to the instructions to output corresponding
power (Pbat). Pbat and nreqm are provided as inputs to the dynamical system, which out-
puts power (Ft, Fx). Ft is provided as input to the tractor dynamics model, and Fx is also
provided as input to the tyre model.

Figure 4. Schematic diagram of the whole-machine simulation mode.

4. Hydrogen Fuel Cell Tractor Energy System Power Optimization Method

The hydrogen FC tractor incorporates two different energy sources and establishes
an equivalent hydrogen consumption model based on the calorific value method. Com-
bining the equivalent hydrogen consumption model, an instantaneously optimized power
allocation method based on load demand is proposed. The aim is to minimize equivalent
hydrogen consumption by optimizing the rational distribution of power output between
the hydrogen FC and the power battery.

4.1. Equivalent Hydrogen Consumption Model

The hydrogen consumption of the FC system is:

Cf c =
Pf c

EH2,lowη f c

(
Pf c

) (15)

where Cfc is the hydrogen consumption of the FC system, kg/s. EH2,low is the low calorific
value of hydrogen, 1.2 × 108 J/kg.
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The equivalent hydrogen consumption during battery charging/discharging is repre-
sented as follow:

Cbat =

⎧⎨
⎩

Pbat
EH2,lowη f c(Pf c)

· 1
ηdisηchg

, Pbat ≥ 0
Pbat

EH2,lowη f c(Pf c)
· ηchgηdis, Pbat < 0

(16)

where Cbat is the equivalent hydrogen consumption during battery charging/discharging,
kg/s. ηdis, ηchg are the average discharge and charging efficiency of power battery, %.

After introducing the battery charge holding strategy [33], the equivalent hydrogen
consumption of the whole machine can be expressed by the following function:

Csys = Cf c + α(SOC)Cbat (17)

where α is the linear compensation coefficient used to keep the battery SOC within a certain
range. Its value is represented as follows:

α(SOC) = 1 − β

(
2SOC − (SOCH + SOCL)

(SOCH − SOCL)

)
(18)

where SOCH is the given maximum limit of SOC. SOCL is the given minimum limit of SOC.
β is the adjustment coefficient.

By calibrating β, the battery’s SOC can be effectively kept within a certain range. After
calibration, β equals 0.5.

4.2. Instantaneously Optimized Power Allocation Method Based on Load Demand in the
Energy System

Tractor ploughing demonstrates significant time-varying nonlinear load changes,
which profoundly influence the energy management strategy, so it is crucial to study the
power distribution strategy in energy systems in response to load demand. This study starts
with load input as the basis, optimizing the power distribution between the hydrogen FC
and the power battery in the energy system of the hydrogen FC tractor. The optimization
goal of the instantaneous optimized energy system power allocation method based on
load demand is to improve the FC efficiency on the basis of meeting the power required
by the tractor load. After taking the equivalent hydrogen consumption of the system as
the optimization target and introducing the charge retention strategy of the power battery,
the optimization objective function f (Pfc, Pbat) can be obtained by combining (15)–(18)
as follows:

f
(

Pf c, Pbat

)
= min

(
Csys
)
= min

⎡
⎢⎣
⎧⎪⎨
⎪⎩

Pf c

EH2,lown f c(Pf c)
+ 1 − α Pbat

EH2,lown f c(Pf c)
1

ηdisηchg
, Pbat ≥ 0

Pf c

EH2,lown f c(Pf c)
+ 1 − α Pbat

EH2,lown f c(Pf c)
ηchgηdis, Pbat < 0

⎤
⎥⎦ (19)

Considering the working capabilities of hydrogen FCs and power batteries are limited
by their output characteristics; the following constraints need to be met:

⎧⎪⎪⎨
⎪⎪⎩

Preqm = Preq f c + Preqbat
SOCmin ≤ SOC ≤ SOCmax
Pdismax ≤ Pbat ≤ Pchgmax
10 kW ≤ Pf c ≤ Pf c·max

(20)

The power allocation method in the energy system adopts a cyclic iterative approach,
starting from load demand and constraining with the power battery SOC. It traverses
and searches for the output power of the FC and power battery, to reduce the equivalent
hydrogen usage of the whole machine to the minimum possible. The scheme process is
shown in Figure 5. When the power battery SOC is less than 0.3: when Preqm ≤ p0 kW, the
hydrogen FC works at the highest efficiency point, meeting the tractor’s power demand
and charging the battery at the same time. When Preqm > p0 kW, the power needed for the
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tractor is supplied solely by the hydrogen FC. When the power battery SOC is between
0.3 and 0.8 when Preqm ≤ p0 kW, the hydrogen FC works at the highest efficiency point,
meeting the tractor’s power demand and charging the battery at the same time. When
Preqm > p0 kW, the hydrogen FC and the battery simultaneously provide the required power
for the tractor, and the power ratio is determined by the optimization result. When the
power battery SOC is higher than 0.8: when Preqm ≤ p0 kW, The hydrogen FC outputs the
minimum output power, and the battery output power meets the difference between the
hydrogen FC and the tractor’s power demand. When Preqm > p0 kW, the hydrogen FC
and the battery simultaneously provide the required power for the tractor, and the power
ratio is determined by the optimization result; where p0 is the power corresponding to the
highest efficiency point of the hydrogen FC.

Figure 5. Scheme process of energy system power optimization method.
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5. Simulation Analysis

To demonstrate the effectiveness of the optimization approach outlined in this paper,
we choose the rule-based control strategy for comparison. In the rule-based control strategy,
when the power battery SOC is less than 0.3, the hydrogen FC provides the required power
of the tractor. When the power battery SOC is greater than 0.8, the hydrogen FC stops
working, and the power battery provides the required power of the tractor. When the
power battery SOC is between 0.3 and 0.8, if the power required by the tractor is higher
than the rated power of the power battery, the hydrogen FC starts to work. If the power
required by the tractor is lower than the rated power of the power battery, the hydrogen
FC maintains its previous state until the power battery SOC is no longer between 0.3 and
0.8, and then changes its state.

We built the control strategy and whole machine model based on the MATLAB/Simulink
simulation platform, and conducted experimental verification. The changes in velocity and
resistance of the tractor during ploughing operations in the field are shown in Figure 6.

 

Figure 6. Ploughing velocity and resistance over time.

Figure 7 shows the distribution of the working efficiency of the hydrogen FC system
under field ploughing conditions.

 

Figure 7. Hydrogen fuel cell operating point.
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From Figure 7, it can be seen the instantaneously optimized power allocation method
based on load demand is more efficient in power allocation for the energy system than the
rule-based control strategy. Under the rule-based control strategy, the efficiency points of the
FC are distributed within a range of 35–60% efficiency, with an average output efficiency of
53.93% and an overall variance of 18.63%. However, using the power optimization method
allows for a tighter distribution of the hydrogen fuel cell’s efficiency points closer to the
best efficiency point on the efficiency curve, resulting in an average output efficiency of
60.50% and an overall variance of just 0.14%. From the data presented, it can be concluded
the method proposed in this paper effectively increases the output efficiency of the fuel
cell system while reducing the fluctuations in system output, thereby contributing to the
improvement of the overall performance and stability of the fuel cell system.

Figure 8 shows the instantaneous efficiency of the hydrogen FC system under field
ploughing conditions.

 
Figure 8. Hydrogen fuel cell system instantaneous efficiency over time.

From Figure 8, it can be seen the hydrogen FCs under the control of the instantaneously
optimized power allocation method based on load demand can always operate in the
high-efficiency region during operation. However, the rule-based control strategy cannot
guarantee the hydrogen FCs work in the high-efficiency region when the SOC is in the
normal range. When the SOC is too low, the hydrogen FCs also cannot operate in the
highest efficiency region to provide the required power for the entire machine and ensure
charging efficiency.

Figure 9 shows the power distribution between the hydrogen FC and the power battery
under the control of two control strategies.

207



World Electr. Veh. J. 2024, 15, 188

 

Figure 9. The output power of the fuel cell and power battery over time.

From Figure 9, it can be seen during the ploughing operation, the rule-based control
strategy ensures continuous power output from the power battery before 346 s. After 346 s,
when the power battery SOC becomes too low, the required power for the entire machine
is provided by hydrogen FCs, which also charge the power battery. Under the control of
the instantaneously optimized power allocation method based on load demand, the power
output curve of the hydrogen FCs remains relatively stable, with the operating power
consistently staying around 22 kW without significant sudden changes.

Figure 10 shows the relationship between power battery SOC with time under field
ploughing conditions.

 

Figure 10. The power battery SOC over time.

From Figure 10, it can be observed under the control of the rule-based control strategy,
the variation of the SOC of the power battery is significant, decreasing to around 0.3 at
346 s. Then, the required power for the entire machine is supplied by hydrogen FCs, and
they also charge the power battery. However, due to the introduction of the power battery
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charge maintenance strategy, the variation of the power battery SOC, when using the
instantaneously optimized power allocation method based on load demand, is relatively
stable, and it remains around 0.48 even after the simulation ends.

Figure 11 shows the variation of equivalent hydrogen consumption over time under
field ploughing conditions.

 
Figure 11. Variation of equivalent hydrogen consumption over time.

Combining Figure 7, Figure 8, and Figure 11, it can be clearly seen the rule-based
control strategy results in low hydrogen FC efficiency and a faster growth rate of equivalent
hydrogen consumption. At 346 s, when the hydrogen FC provides the required power for
the whole machine and charges the power battery, the hydrogen FC efficiency is improved,
and the slope of the equivalent hydrogen consumption curve decreases. However, the
instantaneously optimized power allocation method based on load demand controls the FC
operation point to focus on the high-efficiency range of the FC, resulting in a lower growth
rate of equivalent hydrogen consumption compared with the rule-based control strategy,
and thus a lower overall equivalent hydrogen consumption of the machine.

As shown in Figure 12, under the rule-based control strategy, the actual hydrogen
consumption at the end of the operating condition is 1.75 × 10−1 kg, with an equivalent
hydrogen consumption of 2.15 × 10−1 kg. However, when the tractor adopts the instanta-
neous optimized power allocation method based on load deceleration, the actual hydrogen
consumption at the end of the operating condition is 1.95 × 10−1 kg, and the equivalent
hydrogen consumption decreases to 1.98 × 10−1 kg, which is 7.79% lower compared to the
rule-based control strategy. The increase in the actual hydrogen consumption and the de-
crease in the equivalent hydrogen consumption suggest that after optimization, the system
more efficiently and stably outputs power from the fuel cell, while less frequently drawing
power from the battery. This benefits in maintaining the battery’s state of operation within
an ideal range, thus helping to extend the service life of the power battery.

As shown in Figure 12, the rule-based control strategy results in an equivalent hydro-
gen consumption of 2.15 × 10−1 kg at the end of the operating condition. However, when
the tractor uses the instantaneously optimized power allocation method based on load
demand, the equivalent hydrogen consumption at the end of the operating condition is
reduced to 1.98 × 10−1 kg, which is 7.79% lower than that of the rule-based control strategy.
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Figure 12. Hydrogen consumption under two control strategies.

In conclusion, starting from the load demand, the simulation results analysis of
tractor plowing operation can verify that compared to rule-based control strategies, the
instantaneously optimized power allocation method based on load demand ensures the
FC operates in the high-efficiency range and controls the power battery SOC within a
reasonable range. This reduces the equivalent hydrogen consumption of the tractor and
improves the overall efficiency of the machine.

6. Conclusions

To address the power allocation challenge of the energy system of a hydrogen FC
electric tractor under time-varying operating conditions, this paper takes a hydrogen FC
wheel-side drive electric tractor as the research object and proposes an instantaneously
optimized power allocation method based on load demand, which effectively improves the
energy utilization efficiency.

By simulating and comparing with a rule-based control strategy [22], this paper
ultimately proves the strategy proposed herein: effectively improves the output efficiency
of the fuel cell system, reduces the fluctuation of the system’s output, enhances the overall
performance and stability of the fuel cell system. This simultaneously causes the energy
system to rely more on the efficient and stable output of the fuel cell while utilizing the
power battery less, which is beneficial for maintaining the power battery’s SOC within an
ideal range and for extending the lifespan of the power battery.

There are many factors that affect the performance of hydrogen FCs, which are an
important source of energy for the entire machine. The future research goals will focus on
the following issues: the threshold power value at which the FC begins to intervene and
the minimum operating power set to prevent frequent start-stop of the FC; these values can
be further optimized. Furthermore, the strategies in this paper did not take into account
the impact of motor efficiency on the overall energy utilization of the system. In the future,
further optimization can be conducted on transmission system parameters such as gear
ratios of the reducers to improve motor efficiency, thereby enhancing the overall energy
utilization efficiency of the system.
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Nomenclature

B Stiffness coefficient.
C Curve shape coefficient.
CAN Controller Area Network. It is a serial communication protocol used for communication

between electronic control units in the automotive and industrial fields.
Cfc Hydrogen consumption of the fuel cell system (kg/s).
Cbat Equivalent hydrogen consumption of the power battery (kg/s).
D Peak adhesion coefficient.
DC/AC Direct Current-Alternating Current converter. It is a device that transforms a direct

current power source (typically the input power) into another voltage, current,
or power level of alternating current.

DC/DC Direct Current-Direct Current converter. It is a device that transforms a direct current
power source (typically the input power) into another voltage, current
or power level of direct current.

E Curve curvature coefficient.
EH2,low Low calorific value of hydrogen (1.2 × 108 J/kg).
FC Fuel cell.
Ft Total driving force (N).
Ff Rolling resistance (N).
FTN Rated traction resistance (N).
FTa Ploughing resistance (N).
Fx Longitudinal force of the tyre (N).
i Speed ratio of the wheel-side reducer.
Ibat Battery current (A).
MAP A graph that describes the performance characteristics of an electric motor. It is usually

used to express the relationship between the speed, torque and efficiency of the motor
under certain conditions.

nq Required speed of the drive wheels (rpm).
nreqm Required speed of the motor (rpm).
PEMFC Proton Exchange Membrane Fuel Cell. It is a type of fuel cell that uses a proton

exchange membrane as the electrolyte.
Pbat Battery power (kw).
Pfc Fuel cell system power (kw).
Preqbat Power battery required power (kw).
Preqfc Fuel cell required power (kw).
Preqm Required driving power of the motor (kw).
Qbat Battery rated capacity (A·h).
r Driving wheel radius (m).
Rint Battery internal resistance (Ω).
SV Vertical drift of the curve.
SH Horizontal drift of the curve.
SOC State of charge.
SOCH Given maximum limit of SOC.
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SOCL Given minimum limit of SOC.
Tm Motor torque (N·m).
Tq Torque required for the drive wheels (N·m).
Treqm Required torque of the motor (N·m).
v Tractor velocity (m/s).
Voc Battery open circuit voltage (V).
Vfc Fuel cell output voltage (V).
X Tyre slip rate.
Y(x) Longitudinal force of the tyre (N).
α Linear compensation coefficient.
β Adjustment coefficient.
γj Fitting parameters, j = 1–9.
ηdis Instantaneous discharge efficiency of power battery (%).
ηchg Instantaneous charging efficiency of power battery (%).
ηdis Average discharge efficiency of power battery (%).
ηchg Average charging efficiency of power battery (%).
ηfc Fuel cell system efficiency (%).
ηm Motor efficiency (%).
ξj Fitting parameters, j = 1, 2, 3, 4.
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Abstract: The dual-credit policy promotes green transition in automobile companies. This paper
investigates the dual-credit policy framework in the Chinese automotive industry, with a focus
on the phenomenon of free riding. This occurs when traditional vehicle manufacturers within an
alliance benefit from the excess credits generated by a transitioning vehicle company without fully
committing to their own green transitioning. The focus of this study lies on an alliance constituted
by a transitioning vehicle company in partnership with two traditional vehicle manufacturers, all
interconnected via equity ties. Utilizing an agent-based system dynamics model, this study explores
the strategic behaviors emerging from such credit collaborations and their consequent effects on
operational efficiency and financial performance. The findings reveal that 1. free riding negatively
impacts the transitioning company’s revenue but benefits the alliance by easing transition pressures
and boosting collective performance; 2. stricter policies increase intra-alliance credit transfers and
performance, while lower credit prices reduce transfer value and harm the transitioning company’s
earnings. This study implies that transitioning vehicle companies with equity-linked partners can
benefit from a nuanced understanding of how policy mechanisms interact with alliance dynamics
under free riding. By adjusting credit transfer strategies in line with market conditions and policy
trends, they can better navigate the dual-credit policy landscape, balancing individual profitability
with the needs of the broader alliance and long-term sustainability goals.

Keywords: dual-credit policy; system dynamics; horizontal alliance; free riding

1. Introduction

“Parallel Management Regulation for Corporate Average Fuel Consumption and New
Energy Vehicle Credits for Passenger Cars”, conventionally referred to as the dual-credit
policy, was jointly issued and enforced by the government of China in 2017 [1]. This policy
is specifically designed for passenger vehicle companies, introducing a groundbreaking
regulatory framework that measures automotive energy efficiency through a credit system.
Furthermore, it imposes credit limits and implements stringent punitive actions to enforce
compliance with energy efficiency standards [2]. The dual-credit policy boosts technological
innovation and transition within vehicle companies. It holds significant importance for the
development of the global new energy vehicle industry [3].

The dual-credit policy permits credit transfers among affiliated enterprises [4], thereby
indirectly promoting the formation of horizontal alliance among equity-related enter-
prises [5]. Within alliances, the transfer of credits between companies serves as a primary
mode of collaboration. However, credit cooperation could potentially give rise to free
riding behavior, wherein one party gains resources without bearing the associated costs [6].
For example, cooperation among the Shanghai Automotive Group, the Volkswagen Group
of Germany, and General Motors of the United States has formed the horizontal alliance [7].
Within this alliance, Chinese vehicle companies display a pronounced tendency towards
transitioning to new energy vehicles. The production and sales share of new energy vehi-
cles within joint venture (JV) portfolios remains significantly diminutive, resulting in their
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substantial need to acquire large amounts of credits externally. Chinese vehicle companies
confront the dilemma of whether to transfer surplus credits at no cost to JV partners. Re-
search on the dual-credit policy has primarily concentrated on the strategic production
decisions of vehicle manufacturers, underscoring the significance of collaborative efforts
that harness complementary resources to amplify overall performance and expedite the
transition to cleaner energy solutions [8,9]. Nonetheless, a gap exists in understanding the
impacts that arise when the collaborative dynamics within horizontal alliances composed
of vehicle companies become intricate due to free riding behaviors.

This study adopts an agent-based perspective to delineate the internal structure and
interactive traits of equity-related horizontal alliances. It utilizes system dynamics to create
a model for technology management, production operations, and credit settlement in
passenger vehicle companies under the influence of the dual-credit policy. Through this
process, it devises several comparative scenarios that effectively simulate how traditional
companies might exhibit free riding behavior within a horizontal alliance context, as well
as examining the strategic options available to those companies undergoing transition. The
purpose of this study was to answer the following research questions:

(1) Faced with the free riding behavior of partners, would the supportive actions of
transitioning vehicle companies harm their own and alliance performance?

(2) How does corporate transition and policy change affect performance under free
riding behavior?

The innovative contributions and significance of this research lie in the following:
1© It focus on free riding behavior and member strategies within equity-related horizontal

alliances, which will aid in enriching the theoretical framework of strategic alliances.
2© This study employs modeling tools to simulate annual rollovers, credit transfers among

affiliates, and secondary market transactions under the framework of the dual-credit policy.
These comprehensive simulations and the strategic decisions offer valuable groundwork
for comprehending complex industrial policies analogous to the dual-credit policy. 3© This
study provides guidance for enterprises to optimize their production strategies under the
scrutiny of policy assessment, offering valuable feedback and suggestions for policymakers
on the effective implementation of policies. The research positively contributes to the
ongoing promotion of sustainable development within the new energy vehicle industry.

The remainder of this paper is structured as follows. Section 2 provides a summary
of the literature relevant to this study. In Section 3, based on the analysis of policy mech-
anisms, we employed the system dynamics methodology to construct a model, defining
the parameters of the model accordingly. Section 4 conducts a simulation analysis to ex-
amine the free riding behavior of conventional vehicle manufacturers within a horizontal
alliance and evaluate the strategic options of transitioning vehicle companies in this context.
Section 5 summarizes the findings and implications, along with suggesting avenues for
future research.

2. Literature Review

2.1. The Dual-Credit Policy

Since 2017, academic research has extensively engaged with the intricacies of China’s
dual-credit policy, a regulatory framework designed to incentivize the production and
sale of new energy vehicles (NEVs) while promoting overall energy efficiency in the
automotive industry [10]. On a macroeconomic level, studies have delved into the far-
reaching implications of this policy, including its facilitation of industry-wide growth and
market expansion [11,12], its role in mitigating greenhouse gas emissions and contributing
to climate change mitigation targets [13], and its stimulation of technological progress and
innovation in both NEV and conventional vehicle technologies [14,15]. Collectively, this
body of research underscores the dual-credit policy’s multifaceted nature, its ability to
reshape industry dynamics, and its contribution to the broader objectives of environmental
sustainability.
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From a more granular, micro-economic perspective, the literature has explored the
policy’s influence on specific aspects of automobile manufacturing and market dynamics.
These inquiries have ranged from the direct impact on vehicle production volumes and the
resultant changes in energy efficiency standards of gasoline vehicles [16] to strategic timing
considerations for manufacturers’ investments in electric vehicle (EV) production capacity
and portfolio transitions [17]. The policy’s effect on financial decisions regarding green
technology investments and research and development (R&D) [18], as well as the strategic
interplay between competition and cooperation among manufacturers in their production
and credit trading activities [1,8], have also been meticulously analyzed. Moreover, the
implications for supply chain management, particularly the coordination and alignment of
efforts between upstream suppliers and downstream manufacturers to meet the dual-credit
criteria [9], have been a significant focus of investigation.

Most studies on the dual credit policy typically take into account the purchase of NEV
credits as an integral aspect of the policy [19]. The rollover, transfer, and trade of credits are
pivotal features of the dual-credit policy, which are integrated into the decision-making
framework along with technology management and production operations. Despite this,
this specific aspect has not received sufficient attention, particularly from the viewpoint of
alliances forged by equity-related enterprises.

2.2. Free Riding Behavior

Existing research commonly asserts that the formation of strategic alliances serves
as a pivotal approach for companies to establish competitive advantages and elevate
performance [5]. Horizontal alliances comprising competitors within the same industry
segment typically necessitate external facilitation. However, they exhibit intricate game-
theoretic dynamics among members due to technological spill-over effects.

There is a substantial amount of research dedicated to vertical strategic alliances,
predominantly focusing on how supply chain contract choices affect costs and profits [20].
Regarding horizontal alliances, scholars have investigated the collaborative mechanisms
for sharing resources and the associated arrangements for distributing benefits among par-
ticipating parties [21], the pricing decisions of company alliances in the supply chain [22],
and the influence of partner resemblance on horizontal alliances [23]. Under the dual-credit
policy, researchers have looked at coordination contracts from the vantage point of compo-
nent suppliers and vehicle companies [24]. Resources obtained through complementary
partnerships enable enterprises to enhance alliance performance [25]. However, there is a
dearth of inquiry into production collaboration within enterprise alliances when free riding
behavior is present.

The phenomenon of free riding in common-interest entities garners attention from
experts. Free riding refers to a situation where one party benefits from the sales efforts or
resources of another party without incurring the corresponding cost [6]. Differentiated
pricing in dual distribution channels results in varying degrees of consumer free riding be-
havior, affecting sales efforts and service levels across channels [26,27]. Researchers like Liu
et al. [28] and Guo et al. [29] have approached the topic from a consumer angle, addressing
pricing and service level issues for businesses and supply chains across different channel
combinations. Inter-firm free riding also occurs, such as instances where both companies
and consumers exploit services provided by traditional retailers [30]. Scholars have used
evolutionary game theory and similar methods to analyze supplementary benefits attached
to free riding behavior in supply chain structures [6] and identify key determinants that
weaken free riding behavior in supply chains [31] to mitigate the detrimental effects of
free riding on corporate interests. While most existing literature addresses free riding
from consumer and supply chain viewpoints, supply chain members need to carefully
design incentive mechanisms and coordination strategies to balance individual interests
with collective emission reduction goals, while mitigating the detrimental effects of free
riding [32]. However, in the field of the new energy vehicle industry, existing research fails
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to take into account the impact of free riding behavior on corporations’ manufacturing
choices within the framework of a horizontal alliance.

In conclusion, current research on the dual-credit policy mostly emphasizes produc-
tion decisions made by companies within the supply chain. in the context of the dual-credit
policy, cooperation mechanisms and performance improvements via resource complemen-
tary partnerships are emphasized, with a gap in understanding how these dynamics affect
production collaboration amidst free riding. This behavior, characterized by one party
benefiting without equal investment, garners interest in management circles, especially
concerning its implications across dual distribution channels and in balancing individual
and collective goals within supply chains. Thus, there is a clear need to bridge this gap by
examining free riding’s influence on manufacturing strategies within horizontal alliances
more closely.

3. Agent-Based System Dynamics Modeling Approach

3.1. Model Framework

The dual-credit policy plays a pivotal role in forging a community of interests among
certain Chinese vehicle companies, with its policy framework consisting of three core
mechanisms [4]: (1) the calculation and offset rules for corporate average fuel consumption
credits (CAFC) and new energy vehicle credits (NEV); (2) the carryover and inter-affiliate
transfer of CAFC; and (3) the carryover and trading of NEV credits. If a company incurs
negative credits that cannot be cleared in a given year, it faces penalties such as the
suspension of new product registration and production. After clearing the negative credits,
excess NEV can be sold in the credit market. According to the dual-credit policy, enterprises
are considered related if they hold direct or indirect equity totaling 25% or more in another
domestic passenger vehicle company, or if they are both held by a third party with direct or
indirect equity totaling 25% or more.

Considering the reality of China’s automotive industry, as depicted in Figure 1, this
study focuses on a horizontal alliance consisting of three equity-related enterprises. All
three companies are domestic passenger vehicle companies engaged in both internal
combustion engine vehicles and new energy vehicles, with equity types classified as
joint venture, joint venture, and Chinese enterprise. This assumption aligns with “China
Passenger Vehicle Enterprise Average Fuel Consumption and New Energy Vehicle Credits
Calculation Sheet”, as well as the equity relationships among major Chinese passenger
vehicle producers.
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equity
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Figure 1. Structure of equity-linked horizontal alliance system.
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Adhering to the agent-based modeling philosophy, each entity is an independent
decision-maker despite complex equity linkages. Each agent in the model can possess
distinct decision-making rules and behavioral logic, reflecting the diversity and complexity
of real-world market participants [33]. System dynamics is a cross-disciplinary research
method applied to comprehend and analyze complex systems with dynamic character-
istics [34]. It involves designing stable information feedback structures to describe and
analyze the behavior of time-varying systems, thereby exploring the effectiveness of strate-
gies and their optimization. The combination of agents and modeling is intended to solve
complex systems [35]. This approach allows for the modeling of intricate systems, the
prediction of future trends, and the evaluation of policy interventions under different
scenarios, contributing to a deeper understanding and more informed decision-making
in managing complex real-world problems. As a pioneering integrated industrial policy
that directly influences the management and operation of both emerging and established
technologies, the dual-credit policy is designed around fuel consumption targets linked to
research and development endeavors, driving range indicators, and production volume,
which collectively constitute several pivotal credit calculation parameters. Based on the
dual-credit policy mechanisms and drawing upon existing research, a system dynamics
modeling method is adopted. The affected single decision-making entity is decomposed
into four primary sub-models: the production sub-model, the R&D sub-model, the credit
calculation sub-model, and the credit interaction sub-model, with the causal loop diagram
illustrated in Figure 2, where arrows denote the interdependencies among key variables.
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Figure 2. Causal loop diagram.

From the causal loop diagram, it is evident that in the production and R&D input sub-
models, R&D strategies influence vehicle performance, which, combined with production
decisions, determines the CAFC and NEV credit values in the credit calculation sub-model.
The surplus or deficit of credits dictates the amount needed to offset and zero out annually.
When internal credit transfers and rollovers fail to meet the required credit offset, companies
must purchase credits from external markets. This feedback loop influences the company’s
production and R&D strategies, prompting adjustments in vehicle production allocation
and investment in R&D.

218



World Electr. Veh. J. 2024, 15, 227

3.2. Stock and Flow Diagrams of Sub-Models
3.2.1. Production Sub-Model

The production sub-model reflects the automotive production processes and decision-
making within a vehicle company. Fundamentally, vehicle companies engage in profit-
seeking behavior through external market activities and refine their strategies internally.
considering the external characteristics of the dual credit policy, there exists a more intimate
relationship of response between enterprises and the market as two main stakeholders.
This is largely due to the distinct preferences of consumers towards traditional ICEVs and
NEVs in terms of attributes and purchase decisions [36]. Consequently, under the impetus
of respective market demands, automobile manufacturers primarily adjust the production
volume of both vehicle types by manipulating production capacity and capacity utilization
rates [11]. As shown in Figure 3, the company produces traditional fuel vehicles and new
energy vehicles according to market demands and adjusts production based on purchasing
credits from the external credit market. This study assumes that over time, market demand
changes, and companies respond to these changes, indicating their operational strategies in
both internal combustion engine vehicles and new energy vehicle sectors.
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Figure 3. Production sub-model stock flow diagram.

The operating mechanisms for internal combustion engine vehicles and new energy
vehicles are detailed in Table 1. When market demand exceeds current production capac-
ity, if the demand increase is less than the potential utilization rate increase, the vehicle
company first boosts the utilization rate; if higher, it simultaneously raises capacity while
increasing the utilization rate. Conversely, when demand falls below current production,
a threshold for capacity utilization is established. If actual utilization is lower than the
threshold, it suggests severe overcapacity, warranting a rational decision to reduce capacity.
If the adjusted utilization rate after considering market decline is above the threshold, the
vehicle company merely adjusts the utilization rate; otherwise, it reduces both utilization
and capacity.
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Table 1. Analysis of the decision-making mechanism of passenger car producers in response to
market demand.

Market Situation
Decision-Making

Mechanisms
Market Factor Adjustments

Market demand ≥ Production

Increase in demand <
1—Utilization rate Increased capacity utilization (Demand—production)/capacity

Increase in demand ≥
1—Utilization rate

Increased capacity utilization
increase production capacity

Increased capacity utilization to 100%
Capacity increase:

(demand—capacity)/capacity

market
<Yield

Utilization < threshold / Reduce production capacity Capacity—demand/utilization

Utilization > threshold Decrease in demand <
Utilization rate—threshold Reduced capacity utilization (Production—demand)/capacity

Under the influence of the dual-credit policy, companies give priority to producing
more new energy vehicles and, based on credit status, may opt for a moderate overproduc-
tion of new energy vehicles before considering reducing internal combustion engine vehicle
production. The extent of new energy vehicle production increase and internal combus-
tion engine vehicle production decrease is determined by the strictness of the dual-credit
policy execution and the company’s credit situation. The auxiliary variable “Policy-based
Decision” will be further elaborated in the R&D sub-model.

3.2.2. R&D Sub-Model

R&D on engine technology is a primary means to improve fuel economy [22]. Im-
proved fuel economy translates to a lower actual average fuel consumption, and similar
logic applies to R&D investments in battery ranges for new energy vehicles [37]. The
R&D sub-model is shown in Figure 4. In response to the dual-credit policy, vehicle compa-
nies can also consider boosting automotive R&D investment. In the R&D sub-model, the
company invests in R&D based on a percentage of revenue. However, the uncertainty in
R&D investment and the non-linear nature of learning curves can complicate the analysis
of their impact on enterprise strategies. Therefore, this model assumes that passenger
vehicle companies adopt a fixed R&D investment strategy. Drawing from annual reports of
automotive groups and historical data from “China Passenger Vehicle Enterprise Average
Fuel Consumption and New Energy Vehicle Credits Calculation Sheet”, the relationship
between R&D investment and vehicle performance is linearly modeled as follows:

Actual value of CAFC = −0.0005 × Cumulative R&D investment for ICEV + 7 (1)

Unit credit for NEV = (2 × Cumulative R&D investment for NEV + 3600)/1900 (2)
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Figure 4. R&D sub-model stock flow diagrams.

Moreover, if the two types of negative credits cannot be offset, the vehicle company
must purchase NEV credits from the external market. This transaction provides feedback
to the company, shaping a policy-based decision that not only adjusts the production
configuration in the production sub-model but also increases the revenue percentage
allocated to R&D expenses for the current period.

3.2.3. Credit Calculation Sub-Model

In the credit calculation sub-model, the credits for CAFC and NEV are computed
based on the company’s produced vehicle quantities and performances, following policy-
regulated formulas [38]. Since the introduction of the dual-credit policy in 2017, it has
achieved positive outcomes in supporting new energy vehicle development. To optimize
policy effectiveness and promote high-quality development of energy-saving and new
energy vehicle industries in line with carbon neutrality goals, relevant parameters for
credit calculations have become stricter over the years [39]. For instance, the multiplication
factor for NEV production declined from 5 times in 2017 to 1.6 times in 2023, and the
required proportion of NEV credits rose from 10% in 2019 to 18% in 2023. The two formulas
for calculating CAFC and NEV credits as per the dual-credit policy are listed in Table 2.
Using vehicle production quantities, average fuel consumption rates, and policy-controlled
parameters, the model calculates the company’s annual CAFC and NEV credits.

Table 2. Average fuel consumption and new energy vehicle points calculation rules.

Formula Number
Key Function Expressions and

Interpretations
Variable Description

(3) Actual value of CAFC
ACAFC = CAFC×PICEV

PICEV+W×PNEV

ACAFC—Actual value of CAFC
CAFC—Corporate average fuel consumption of ICEV

PICEV—Annual production of ICEV
PNEV—Annual production of NEV

W—NEV production multiplier (policy control)

(4) Corporate average fuel consumption credits
Credit − ICEV = (TCAFC − ACAFC)× PICEV

Credit-ICEV—Corporate average fuel consumption credits
TCAFC—Target value of CAFC (policy control)

(5) New energy vehicle credits
Credit − NEV = PNEV × U − PICEV× R

Credit-NEV—New energy vehicle credits
R—Required ratio of NEV (policy control)

U—Unit credit for NEV (policy control)

3.2.4. Credit Interaction Sub-Model

In the credit interaction sub-model, the vehicle company’s current CAFC positive
credits can carryover or transfer, while CAFC negative credits can be offset by carryover
credits, transferred credits, or NEV positive credits. Current NEV credits can carryover,
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or trade within related companies, and NEV negative credits can be offset by carryover
credits or traded credits. As shown in Figure 5, this study stipulates that the order of
credit settlement for companies is carryover, transfer between related companies, and then
trading in the external credit market. Vehicle companies first use carryover credits to offset
negative credits. If there are still CAFC (NEV) negative credits after settling carryovers, the
priority for transferring (trading) related companies’ CAFC (NEV) positive credits is from
Chinese-owned to joint venture companies. If there are still negative credits after settling
with related companies, credits are purchased from the credit market. This assumption
conforms to the parallel management rules of the dual-credit policy and reflects the actual
conditions of passenger vehicle companies.

Current Period CAFC(NEV) 
Credits

Credits after using carried 
forward credits

Credits after utilizing 
transferred (traded) credits 

from affiliate companies

Zeroing out negative credits for 
the current period

Carryover credits from the 
previous three periods

Positive credits of 
affiliate companies

Negative credit

External credit 
market

Non-negative credit

Negative credits of 
affiliate companies

Non-negative credit
Credit carryover

Negative credit

Offsetting with credits Transferring Trading Trading

Negative credit

Non-negative credit

 

Figure 5. Credit accounting path for a single decision subject.

3.3. Model Parameter Settings

Data obtained from sources such as group annual reports and credit accounting
disclosure tables reveal distinct characteristics in production configurations and credit
situations between these two types of companies under the same group. As a representative
case, this research selects the Shanghai Automotive Group (SAIC). Specifically, data for
conventional companies A and B come from SAIC Volkswagen and SAIC-GM, while data
for transitioning company C come from SAIC Motor Passenger Car Company. Table 3
presents the initial and fixed values of the variables for these three companies, providing
reasonable estimates for their parameter values.
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Table 3. Model initial values and fixed value settings.

Variable Type
Value

Unit Descriptive
A B C

Fuel vehicle
production capacity Initial value 2000 2000 1000 thousand Estimated based on existing capacity data

disclosed in the 2022 Annual Report of SAIC

Fuel vehicle capacity
utilization Initial value 80% 80% 80% /

Derived from the proportion of ICEV
production capacity utilization reported in

the 2022 Annual Report of SAIC

Total R&D investment
in fuel vehicles Initial value 800 800 400 billion

Estimated based on the cumulative R&D
investment figures from the annual reports of

SAIC between 2013 and 2022

New energy vehicle
production capacity Initial value 100 100 200 thousand

Estimated using NEV production data
compiled by the China Association of

Automobile companies for SAIC

New energy vehicle
capacity utilization rate Initial value 10% 10% 30% / Based on the ratio of production volume in

2022 to total capacity

Total R&D investment
in new energy vehicles Initial value 10 10 100 billion

Estimated from the cumulative R&D
investment figures in the Annual Reports of

SAIC between 2013 and 2022

Average selling price of
fuel vehicles Constant 150 150 100 thousand

Estimated using the sales volume and
revenue of ICEV as reported in the 2022

Annual Report of SAIC

Average selling price of
new energy vehicles Constant 200 200 150 thousand

Estimated using the sales volume and
revenue of NEV as reported in the 2022

Annual Report of SAIC

Regarding the equity-related horizontal alliance under the dual-credit policy, this study
explores the credit transfer strategies of transitioning vehicle companies in the context
of free riding behavior. This study designs four different scenarios through parameter
adjustments, as shown in Tables 4 and 5. The specific ideas and differences behind these
scenarios are explained below:

• Scenario 1: Baseline scenario. Transitioning vehicle companies settle their own credits
independently, and there is no credit transfer between equity-related vehicle compa-
nies.

• Scenario 2: Free riding scenario. The transitioning vehicle company considers choosing
to partially or fully transfer its surplus credits to traditional vehicle companies. This
eases the credit pressure on the traditional companies, weakening their motivation to
cut down on fuel vehicle production, thereby exhibiting free riding behavior.

• Scenario 3: Impact of corporate transition. Building upon Scenarios 1 and 2, this
scenario examines the credit transfer strategies of transitioning vehicle companies at
varying degrees of transition. Three different situations are set up to form Scenario 3,
with parameter adjustments detailed in Table 5.

• Scenario 4: Influence of policy regulation. Also building on Scenarios 1 and 2, this
scenario investigates the impacts of varying stringency levels of the dual-credit policy.
The policy adjustment parameter chosen is the requirement for the proportion of NEV
credits. Details are presented in Table 5, where “time” represents the simulation time
in the model. Considering the actual price of NEV credits in recent years, a base
unit credit price of 2000 yuan is assigned in the baseline scenario. When the policy
tightens, the availability of tradable credits in the market becomes scarce, leading to
an increase in the unit credit price. Conversely, when the policy relaxes, the unit credit
price decreases.

223



World Electr. Veh. J. 2024, 15, 227

Table 4. Scenarios 1 and 2 vehicle decision adjustment parameters.

Scenario 1—Separate
Settlements

Scenario 2—Half
Transfers

Scenario 2—Total
Transfer

Transfer coefficient 0 0.25 0.5

Adjustment of ICEV
production for ICEV 0% +10% +20%

Table 5. Transitioning vehicle company C’s production strategy and policy credit adjustment parameters.

Transitional car
decision-making

Slow Base Fast

Adjustment of NEV
production −20% 0% +20%

Policy adjustment Base Austerity Easing

NEV points ratio
requirements

IF THEN ELSE (Time ≤ 18, IF
THEN ELSE (Time ≤ 2, 0,

0.1 + 0.02 × (Time − 3)), 0.4)

IF THEN ELSE (Time ≤ 18, IF
THEN ELSE (Time ≤ 2, 0,

0.1 + 0.03 × (Time − 3)), 0.55)

IF THEN ELSE (Time ≤ 18, IF
THEN ELSE (Time ≤ 2, 0,

0.1 + 0.01 × (Time − 3)), 0.25)

Credit price 0.2 0.3 0.1

4. Simulation Analysis

4.1. Sensitivity Analysis

This paper conducts relevant tests on the model. Based on a thorough review of
existing research results and actual conditions, it meticulously revises and enhances the
causal diagrams and flowcharts within the model, ensuring that extraneous research
variables are not included. With an annual time step, a total of 60 simulation periods are
executed, starting from an initial time of 0. The system dynamics model constructed in this
research is simulated using Vensim PLE 7.3.5.

Sensitivity analysis examines whether conclusions significantly change in a manner
relevant to the objective when assumptions vary within a reasonable range of uncertainty.
To conduct a sensitivity analysis on the revenues of automobile manufacturers, three
indicators—NEV market demand, ICEV market demand, and the credit transfer coefficient—
were each increased by 5%. The simulation forecasts obtained using Vensim PLE 7.3.5 were
compiled into a dataset, represented as Table 6. Observations from the table indicate that
despite varying influencing factors, the trends in revenue changes align consistently. The
simulation outcomes closely match the known patterns observed in the real world, thereby
validating the system dynamics model established in this paper.
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Table 6. Sensitivity analysis.

Time
Revenue

NEV Market
Demand

ICEV Market Demand Transfer Coefficient

− +5% +5% +5%

1 463.947 463.947 463.947 463.947
2 474.948 478.945 494.698 474.948
3 480.334 485.132 499.737 480.334
4 490 495.25 509.25 490
5 500 506 519 500
6 510 516.75 528.75 510
7 520 527.5 538.5 520

. . . . . . . . . . . . . . .
53 1012.67 1058.49 1019.52 1012.27
54 1024.4 1071.07 1031.01 1023.99
55 1036.18 1083.7 1042.55 1035.76
56 1048 1096.37 1054.13 1047.56
57 1059.86 1109.09 1065.76 1059.41
58 1071.77 1121.85 1077.43 1071.31
59 1083.72 1134.67 1089.15 1083.25
60 1095.72 1147.53 1100.91 1095.24

4.2. Free Riding Behavior and Credit Transfer Decisions

Under Scenario 1 and Scenario 2, the annual operating revenue of transitioning vehicle
companies C is shown in Figure 6. As a company involved in both traditional fuel cars
and new energy vehicles, this revenue includes the performance of its own two types of
vehicle businesses, along with income from selling surplus NEV credits or expenses from
purchasing NEV credits. Additionally, the Chinese capital group holds a 50% stake in each
of the two traditional companies, thereby gaining a corresponding share of their operational
performance. In Scenario 1, where all three companies settle credits independently, the
annual revenue of the transitioning company rapidly rises during the first 20 periods
and slows down after the transition, as it accumulates more credits by improving vehicle
performance and increases corporate performance through credit trading. In Scenario 2,
the transitioning company C transfers credits to its equity-affiliated horizontal alliance
partners, traditional companies A and B, offsetting their negative credits free of charge.

As seen in Figure 6, when transitioning company C transfers surplus credits to its
equity-related companies in Scenario 2, its operating revenue is lower compared with
settling credits individually. The underlying reason is that traditional companies A and B
benefit from the credit transfer, reducing their pressure on credits and consequently slowing
down the pace of cutting production of fuel cars. With reduced demand for purchasing
credits from the external market, there is also a decreased incentive effect on adjusting
the production strategies of traditional companies A and B, leading to a decrease in the
annual average proportion of new energy vehicle production. This causes a higher amount
of negative credits annually compared with Scenario 1, necessitating the transitioning
company C to transfer more credits over a longer period, which reduces the number of
NEV credits available for sale in the credit trading market. If all credits can be transferred,
the annual average revenue of the transitioning company C decreases by 3.63% compared
with Scenario 1. Conversely, as shown in Figure 7, the overall operating performance of
the group indicates that in Scenario 1, traditional companies A and B purchase credits
externally. This causes them to reduce production and hence lower their operating income,
reducing the total profits attributable to the Chinese capital group. Under Scenario 2, with
smaller production cuts by traditional companies, the difference in sales revenues from fuel
cars outweighs the income gap from the transitioning company C selling credits. When
transitioning company C transfers all its surplus credits, the group attains the highest profit.
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Figure 6. Revenue of transitioning company C in Scenarios 1–2.

Figure 7. Total revenue of Chinese group in Scenarios 1–2.

4.3. Impacts of Company Transition

Scenario 3 compares the annual revenue results of transitioning company C under
different transition speeds. The annual revenue of the transitioning company is illustrated
in Figure 8. When the transitioning company C undergoes rapid transition and the credits
are settled independently among the three companies, company C has the highest revenue.
On the other hand, when the transitioning company C transitions slowly and transfers all
current-period credits, its revenue is at its lowest. Regardless of the transition speed, the
revenue of transitioning company C still inversely correlates with the transfer coefficient.
Furthermore, when transitioning quickly, not transferring any credits leads to a 3.71%
higher average annual revenue for company C compared with fully transferring credits,
and this percentage increases to 3.45% when transitioning slowly. Therefore, the higher
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the proportion of surplus credits transferred by transitioning company C, the lower its
revenue, and the faster the transition speed, the greater the cumulative revenue disparity.
Additionally, the speed of the transition of company C does not affect the timing at which
the average annual revenue plateaus across scenarios.

Figure 8. Revenue of transitioning company C in Scenario 3.

For the Chinese capital group, the total operating revenue resulting from the transition
of company C is depicted in Figure 9. Similar to Scenarios 1 and 2, under the rapid or
slow transition of company C, the higher the credit transfer ratio, the higher the group’s
total operating income. This is because the transition of company C does not reverse the
degree of free riding by traditional companies A and B, who continue to adjust production
according to the credit transfer ratio. Moreover, the compression of fuel car production
by traditional companies A and B affects the group’s total revenue in the early stages,
with the allowance of credit transfer enhancing early-stage performance. An increase in
the transition speed of company C brings about more revenue in later stages; thus, when
company C transforms rapidly and transfers all surplus credits, the group achieves the
highest total revenue. Independently settling credits does not affect traditional companies’
purchases of credits due to the transition speed of the transitioning company. However,
when all credits are transferred by the transitioning company, the faster the transition speed,
and the fewer credits the group needs to buy from the market.

227



World Electr. Veh. J. 2024, 15, 227

 
Figure 9. Total revenue of Chinese group in Scenario 3.

4.4. Impact of Policy Regulation

Scenario 4 compares the annual revenue of transitioning company C under varying de-
grees of policy tightness, as shown in Figure 10. When policies become stringent, the NEV
credit ratio requirement increases, and the three companies settle credits independently,
and the revenue of transitioning company C is at its highest. When policy requirements
tighten, companies receive fewer credits, and the supply of credits in the external market
also shrinks, causing credit prices to rise. This increased credit price benefits transitioning
company C, which does not need to assist affiliated companies, resulting in a 6.22% higher
average annual revenue when settling credits independently compared with fully transfer-
ring, while under loose policy conditions, the difference is only 1.63%. As seen in Figure 10,
under different levels of policy tightness, the revenue of transitioning company C continues
to form an inverse relationship with the transfer coefficient, with credit prices amplifying
differences in corporate revenues. Furthermore, if transitioning company C chooses to
transfer all surplus credits to traditional companies A and B, its revenue stays relatively
constant in the first 20 periods. Due to policy adjustments, the significant negative credit
balance from the large-scale production of fuel cars by traditional companies A and B
leaves transitioning company C with no surplus credits to sell and thus no related revenue.

Figure 11 shows the total operating revenue of the Chinese capital group. Based on
the parameters of Scenarios 1 and 2, under both relaxed and tightened policy regulations, if
a horizontal alliance strategy involves the full transfer of surplus credits, the group realizes
higher revenue performance. Under tightened policy conditions, compared with relaxed
or standard policy scenarios, joint ventures generate more negative credits, leading to a
lower level of total revenue in the early to mid-simulation periods due to a combination
of increased credit prices caused by a reduction in market supply and the compressed
production of fuel cars following the purchase of credits. Once the three companies
complete their transitions and contribute credits to the market, the total revenue of the
Chinese capital group rebounds and exceeds that under other policy regulation scenarios.
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Figure 10. Revenue of transitioning company C in Scenario 4.

 
Figure 11. Total revenue of Chinese group in Scenario 4.

5. Conclusions and Implications

5.1. Conclusions

This study focuses on a specific form of affiliation that arises in response to the dual-
credit policy—a horizontal equity-based alliance. In this alliance, a representative Chinese-
funded transitioning vehicle company collaborates with two joint venture traditional
company collaborates. This study employs agent-based modeling concepts and develops a
system dynamics model to explore the effects of policy mechanisms and credit free riding
behavior on company operations.

Through multi-scenario simulation analysis, the following is demonstrated: (1) When
the transitioning vehicle company allows credit transfers, an increase in the transfer ra-
tio negatively impacts the transitioning company’s revenue performance, but it weakens
the willingness for drastic production cuts among traditional auto companies, thus in-
directly contributing to improved overall alliance performance. (2) Under free riding,
accelerating the transition towards new energy vehicles amplifies the effect on the tran-
sitioning company’s performance. Stringent policy requirements enhance the role of
increasing the credit transfer ratio in boosting overall alliance performance. A decline
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in credit prices mitigates the extent to which a high credit transfer ratio depresses the
transitioning company’s revenue.

According to the findings, traditional vehicle companies, considering factors such
as market demand for fossil-fuel vehicles and their business strategies, face difficulties in
transitioning to green technology. And stringent policy requirements could lead to profit
losses due to insufficient credit generation. However, the policy allowing credit transfers
provides traditional vehicle companies within the alliance an opportunity to “free-ride” on
the credits of transitioning companies. It alleviates their immediate transition pressures
under the policy, potentially providing a positive effect on the alliance. It is also noted that
such free riding behavior might dampen the transitioning company’s enthusiasm for green
innovation and transition.

5.2. Implications

For practitioners, our research underscores the importance of strategic decision-
making in credit allocation within alliances. Transitioning vehicle companies must deli-
cately balance individual profitability against the collective performance of the alliance.
Our findings suggest that, practically, these companies could adopt flexible credit transfer
strategies that adjust based on market conditions and policy stringency. By doing so,
they can maximize the value of their credits while supporting the gradual transition of
traditional partners towards producing electric vehicles.

In the domain of electric vehicle industry evolution, this study enriches the understand-
ing of strategic management and organizational behavior in the context of environmental
policy-driven collaborations. It introduces a new dimension to the analysis of coordination
strategies within horizontal alliances, especially under regulatory frameworks that incen-
tivize green transition. The integration of agent-based modeling and system dynamics
offers a powerful toolset for analyzing complex systems influenced by policy mechanisms,
setting a foundation for future theoretical advancements.

The present study has certain limitations that call for further research. It assumes that
the transitioning vehicle company transfers credits gratuitously and with a fixed transfer
ratio. It does not consider contractual arrangements for credit transfers or the dynamic
adjustment of the transfer ratio. Moreover, the technical performance of vehicles plays a
critical role in the effectiveness of the dual-credit policy. Future studies could delve into
innovation decisions made by enterprises in horizontal strategic alliances with free riding
behavior under the dual-credit policy.
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