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Editorial

Symmetry and Symmetry-Breaking in Fluid Dynamics
Andrzej Herczyński 1,*and Roberto Zenit 2

1 Department of Physics, Boston College, Chestnut Hill, MA 02467, USA
2 School of Engineering, Brown University, Providence, RI 02912, USA; roberto_zenit@brown.edu
* Correspondence: andrzej@bc.edu

It may seem that the heading of this Special Issue of Symmetry—though narrower
than the famous all-inclusive title of an essay by Jean-Paul Sartre, Being and Nothingness—
encompasses most, if not all, fluid phenomena. While we did endeavor to represent a
broad range of flows, the primary aim was to provoke new questions and insights to those
wherein the role of symmetry, a lack thereof, or transition away or toward symmetry are
key to understanding them.

We thus anticipated attracting contributions spanning different scales and levels of
complexity, in either two or three dimensions, including symmetry-breaking instabilities,
symmetry-imposing boundary conditions, and flows that are symmetric partially, locally,
or intermittently. Our hope was that a collection of such varied topics and results may
suggest new approaches to fluid phenomena, whether well studied already or less familiar.

The eleven papers collected in this Special Issue are indeed diverse: in two or three
dimensions, fundamental and applied, at macro and micro scales, elucidating flows that
are symmetric, symmetry-breaking, and intermittently symmetric, and in uniform and
stratified fluids. The phenomena addressed include single-drop dynamics, hydrodynamic
lattices, viscous flows, interfacial instability, magneto-hydrodynamics, turbulence, swim-
ming dynamics, sedimentation, and diffusion flames.

Several papers—contributions on spreading and rotating drops, viscous jets, the
dynamo problem, and diffusion flames—illustrate phenomena wherein a flow ceases to
be symmetrical when it transitions from one regime to another, an indication of the non-
linear nature of the Navier–Stokes equations. The solutions can jump from symmetric to
non-symmetric only when the balance of forces (viscous, inertial, surface tension) is broken,
leading to a new state.

The collection opens with three papers [1–3] concerning drops but in highly diverse
settings. The contribution from the research group of Sunghwan (Sunny) Jung [1] at Cornell
University presents new experiments exploring the spreading of a water droplet on a bath
of glycerol–water solutions. In this scenario, the outward buoyancy competes with the
inward forcing due to Marangoni and viscous effects and a quasi-symmetric fingering
pattern develops. A paper by Roach and Huppert [2] from the University of Cambridge
takes up the problem of axisymmetric drop expanding between two rotating discs at low
Reynolds numbers, and also the effect of squeezing the droplet, which has a similar solution.
In the latter case, critical parameters are determined when the system breaks symmetry.
The third contribution in this trio, by John Bush and his collaborators at MIT [3], considers
the stability of a two-dimensional lattices, square and triangular, of oil droplets bouncing
in synchrony on the surface of the same liquid.

The next paper, by Sznajder, Cichocki and Ekiel-Jeżewska [4] from the Polish Academy
of Science and the University of Warsaw, analyzes the sedimentation of particles in the
vanishing Reynolds number limit. Their results, based on BBGKY hierarchy derived from
the Liouville equation, suggest the breaking of translational symmetry of the system due to
plasma-like screening.

The next two papers [5,6] concern viscous jets falling on a moving substrate, symmetry-
breaking extensions of the classical, axis-symmetric coiling instability. The first of these
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contributions, by Neil Ribe from CNRS and collaborators [5], revisits the version of the
problem wherein the substrate is a translating belt, the so-called fluid mechanical sewing
machine. As the name suggests, a rich variety of trace patterns can be obtained depending
on the relative speed of the belt and the fluid at the contact point, such as overlapping loops,
separated loops, meanders, figures of eight, and other forms. In the second, experimental
contribution from Lisicki, Adamowicz, Herczyński, and Moffatt [6], the jet falls on a
spinning surface at various radial distances. Similar patterns emerge in this case, but their
center-line symmetry is subtly broken by centrifugal effects.

Three papers [7–9] bring the lens of symmetry/symmetry-breaking to somewhat
more specialized problems. The magnetohydrodynamic turbulence in the Earth’s core,
the dynamo problem, is the subject of a paper by Krzysztof Mizerski [7] from the Polish
Academy of Science. The focus here is on the asymmetric flow due to turbulent wave
fields. The role of both symmetric and asymmetric edge flames in stabilizing diffusion
flames is analyzed in a paper by Lu and Matalon [8]. The asymmetry is caused not by
the geometry of the mixing zone, but by the unequal fuel and oxidizer Lewis numbers.
The third paper in this group, a review article by Yuli Chashechkin [9] from the Russian
Academy of Science, concerns stratified flow past a sphere, which has been visualized
using the schlieren method. The images reveal the presence of very fine ligaments that, at
higher velocities, introduce asymmetric features to the flow in the wake.

The last two papers [10,11] address propulsion in water, but in very different contexts:
the first is a fundamental investigation of a surprising swimming mechanism; the second,
an engineering design for reducing drag in high-speed vessels. Jean-Luc Thiffeault from
the University of Wisconsin-Madison offers [10] a simple mechanical “toy” model for a
micro swimmer, which shakes from side to side but nevertheless moves forward. The effect
depends on forcing that also exerts a torque and, crucially, on some form of friction. A
numerical investigation of a drag-reducing mechanism for a surface ship is carried out in
the concluding paper by a group of researchers from Harbin Engineering University led by
Hai An [11]. The paper proposes a novel design of a partially submerged strut attached
to the vehicle, with the air intake above the water line and air outlet below, producing a
bubbly flow, which reduces skin friction.

It is our hope that this small collection of papers may serve to illustrate a remarkably
wide range of fluid dynamical phenomena wherein consideration of symmetry proves
worthwhile, and perhaps also to encourage such considerations. After all, as Blaise Pascal
remarked in his Pensée, “symmetry is what we see at a glance”.

Conflicts of Interest: The authors declare no conflict of interest.
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4. Sznajder, P.; Cichocki, B.; Ekiel-Jeżewska, M. Lack of Plasma-like Screening Mechanism in Sedimentation of a Non-Brownian

Suspension. Symmetry 2022, 14, 63. [CrossRef]
5. Ribe, N.M.; Brun, P.T.; Audoly, B. Symmetry and asymmetry in the fluid mechanical sewing machine. Symmetry 2022, 14, 772.

[CrossRef]
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Article

Buoyancy-Marangoni Fingering of a Miscible Spreading Drop
Alireza Hooshanginejad * and Sunghwan Jung *

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
* Correspondence: hooshanginejad@cornell.edu (A.H.); sunnyjsh@cornell.edu (S.J.)

Abstract: We experimentally investigate the interfacial instability that emerges when a water droplet
is deposited on a bath of glycerol-water solution. Despite the absence of surface tension to stabilize
short-wavelength undulations, we observe finite-size fingers that grow and pinch off from the drop.
We show that the fingering patterns formed in the experiments resultes from a balance between the
outward buoyancy effect and inward Marangoni flow. This induced Marangoni flow inhibits small
perturbations and acts as an effective surface tension on the miscible interface of the spreading drop.
To characterize the final size and shape of the drop, we perform systematic experiments by varying
the drop volume and the glycerol-water volume fraction. In addition, we have developed scaling
arguments for the drop’s final radius using key physical forces, and show that the final wavelength is
inversely proportional to the Bond number.

Keywords: Marangoni flow; interfacial instability; miscible interface

1. Introduction

The spreading of a drop over a liquid layer is a fundamental problem of great impor-
tance in many natural and industrial problems, such as oil spills [1], polymer processing [2],
shaping optical lenses [3,4], and lab-on-a-chip devices [5]. The mechanics of a drop spread-
ing on an immiscible liquid layer under buoyancy have been studied extensively (e.g., [6–8]),
as two immiscible fluids create a clear interface to be characterized.

Marangoni stress (i.e., stress induced by a gradient in surface tension) can be used to
manipulate the spreading dynamics of drops [9–11]. The physical picture of drop spreading
is more intricate when mixing comes into play in miscible fluids [12–14]. Marangoni
spreading of a miscible drop has been studied both in the presence of surfactants [15,16]
and with lower surface tension of the drop [14,17–19]. In the latter case, the outward
Marangoni flow often causes fingering instabilities [20–22]. Despite numerous previous
studies, the dynamics of a drop on a miscible liquid layer is still poorly characterized due
to the complexity of visualizations [14]. A better understanding of this topic would benefit
various applications in the areas of renewable energy [23] and biomaterials [24].

Although a number of studies have investigated the spreading of miscible drops under
outward Marangoni flow, very few studies exist that focus on an inward Marangoni flow.
Tan and Thoroddsen [25] first reported that when a drop of water impacts a bath of glycerol,
the drop forms flower-like fingering patterns. They showed that the combined effect of
an inward Marangoni flow with the impact inertia leads to an intermediate circle drained
from the water. Similarly, when a liquid drop of calcium chloride is deposited on a bath of
sodium silicate with higher surface tension, fingering patterns emerge at the growing front,
whereas a spiral channel forms in the center [26].

In this study, we present a new instability caused by the interactions between buoyancy
and Marangoni effects. We conducted a series of experiments, depositing a water drop on a
millimetric layer of glycerol. Unlike [25], we observed interfacial fingers pinching off at the
growing front. In addition, we observed an outer shallow layer separated from a deeper
inner drop from the top-down view. We also performed experiments with different volume
fractions of a glycerol-water mixture to observe its effect on the instability. The paper is
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organized as follows. In Section 2, we describe our experimental procedure, along with
our observations. In Section 3 we present the results from image processing of the data
and scaling arguments justifying our observations. Finally, in Section 4 our findings and
potential future studies are discussed.

2. Experiments

We gently deposit a drop of deionized water with volume V on a bath of glycerol-water
solution that is 5 mm deep, as illustrated in Figure 1a. To remove any effects of inertia,
the drops are slowly deposited using a pipette on the glycerol-water surface. The volume
fraction of glycerol in the glycerol-water solution is denoted by φg. To make the glycerol-
water mixture, we prepare a total volume of 200 mL for each trial. First, we collect the
required volumes of water and pure glycerol in two different containers. Then, we mix
and stir the two liquids for 15–20 min until the solution turnes from a semi-transparent
color to a completely transparent color. The solution is then left for at least 4–5 h before
stirring again for another 5 min. We establish this procedure to ensure the homogeneity
of the glycerol and water mixture. The water surface tension with air, and the glycerol-
water solution’s surface tension with air, density, and viscosity are denoted by γwa, γga, ρg,
and µg, respectively. We note that water and glycerol are miscible. In addition, γga < γwa.
To express the glycerol-water solution density, we use Equation (3) in [27]. To find the
value for the solution’s viscosity, we use Equation (6) and Figure 1 in [28]. To calculate
the solution’s surface tension, we use the interpolation of Table 4 in [29] after converting
the volume fraction of glycerol to a mass fraction. All variables are evaluated at the
room temperature (i.e., T = 21 C). We record the top view of the drop as it spread on the
glycerol-water solution, as shown in Figure 1b, using a digital camera (Nikon 7500) and
a macro lens (Nikkor 105 mm). A small amount of food dye is added to the water for
clearer visualization.

Figure 1. (a) Side-view and (b) top-view schematics of the experiments.

Figure 2 shows snapshots of a 500 µL water drop spreading on a bath of pure glycerol
(i.e., φg = 0.999). As the drop of water starts spreading on glycerol, the symmetry of the
growing contact line is broken, and interfacial undulations emerge, as shown in Figure 2i.
The instantaneous outer radius of the drop is denoted as ro(t), whereas the mean outer
radius is denoted as ro. The perturbations continue to grow as indicated in Figure 2ii,
with a certain wave number, n, that changes with time. At the early stage of spreading,
the Marangoni flow from glycerol to the water drop is strong. As the perturbations grow,
a number of discrete finger-like undulations form at the interface, and continue to evolve
in the radial direction, as shown in Figure 2iii and its inset. In addition, the internal flows
induced by the Marangoni stress at the mixing front begin to divide the drop into two
regions of an inner zone and an outer zone. The inset of Figure 2v demonstrates the
borderline separating the two regions with a mean radius ri(t). The dark borderline is
indicative of either a depth change, which suggests that the inner zone is deeper than the
outer zone, or an abrupt concentration gradient for glycerol in water. We note that the
glycerol solution has a higher density than the water drop. Hence, separation of the drop
into an inner and outer zone is presumably due to the Rayleigh–Taylor instability, which
happens when the glycerol solution is flowing over the water drop under Marangoni effects.
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Confirming this hypothesis requires further investigation of visualizing the side-view of
the drop, which will be carried out in a future study.

As the fingers grow, the centerline of each finger is filled with the glycerol-water
mixture, as shown in the inset of Figure 2iv. However, the fingers still continue to grow
radially outward (see the inset of Figure 2iv) until they pinch off from the miscible interface.
After the pinch-off, the separated fingers start to expand along the azimuthal direction,
as shown in Figure 2v. A ring of separated fingers continues to gradually move away
from the center even after the interface stops spreading, as shown in Figure 2v and its
inset. After the pinch-off event, the Marangoni flow weakens noticeably; therefore, the
drop’s shape remains unchanged. At this stage, dark radial lines are seen in the outer
zone, as shown in Figure 2v, which is indicative of variations in either depth or glycerol
concentration in the azimuthal direction. These variations are presumably induced by the
vortical Marangoni flows as water mixes with glycerol at the interface, as illustrated in the
inset of Figure 2. The right inset of Figure 2v shows that the final shape of the drop’s outer
interface maintains its cusp-like fingers remaining from the finger pinch-off event due to
the absence of interfacial tension between water and the glycerol solution. The mean outer
radius and mean inner radius for the final shape of the drop are denoted as Ro and Ri,
respectively. In addition, the wave number and wave length of the final drop shape are
denoted as N and λ, respectively.

Figure 2. Sequential snapshots of a water drop spreading on glycerol (V = 500 µL, and φg = 0.999)
at (i) t = 10 s, (ii) t = 20 s, (iii) t = 30 s, (iv) t = 40 s, and (v) t = 50 s, where the inner zone is fully
formed with a clear borderline. The scale bar shows 1 cm. The insets in the second row represent
zoomed-in views of a single finger. The schematics in the third row illustrate the key characteristics
of the spreading mechanism, including the outer interface undulations, the emergence of the inner
zone, and the fingers pinch-off event.

3. Results

In this section, we first discuss the effects of two parameters (V and φg) on the growth
of the fingers. We then discuss the final size and wavelength of the drop in the form of
scaling arguments and dimensionless parameters.

Figure 3a shows the time evolution of ro along the azimuthal direction, θ, starting
from when the drop is completely deposited on the liquid layer. As indicated in Figure 3a,
the fingers grow over time until the drop reaches its final shape with a certain wavenumber.
Figure 3b shows ro and ri over the same timespan. At t ' 35 s the inner zone emerges when
the outer interface has nearly reached its final size, as shown in Figure 3b. Here, the size

6
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of the inner zone does not change noticeably. In addition, we note that the outer interface
spreading scales as t1/7, which is in the same range as the scalings reported for the dynamic
wetting of a viscous liquid on a smooth solid surface [30–33]. Finally, Figure 3c shows the
dominant wavenumber based on the FFT results of the interface temporal shape. As seen
in Figure 3c, the wavenumber in the experiments increases with time until the drop reaches
its final shape.

Figure 3. (a) Time evolution of ro vs. θ for V = 200 µL, and φg = 0.999; (b) ro vs. t on the left vertical
axis, and ri vs. t on the right vertical axis for V = 200 µL, and φg = 0.999. The inset plot shows the
log-log plot of ro scaling as t1/7. (c) n vs. t for V = 200 µL, and φg = 0.999.

3.1. Effect of the Drop Volume, V

We systematically changed the volume of the deposited water drop in the range of V
= 100–600 µL on pure glycerol (i.e., φ = 0.999) to characterize the effect of the drop volume
on the final radius and shape of the drop. Figure 4a(i–iii) shows the final shapes of three
different drops with V = 200, 400, and 600 µL, respectively. Figure 4b shows how the final
outer radius, Ro, and the inner radius, Ri, of the drop increase with the volume, V. Notably,
Ro − Ri remains nearly constant even with different V. We also extracted the dominant
wavenumber, N, which increases monotonically with volume V, as shown in Figure 4c.
Notably, the corresponding wavelength, namely, λ = 2πRo/N, decreases with increasing
V (see the inset of Figure 4c).

7
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Figure 4. (a) The final drop shape for (i) V = 200 µL, (ii) V = 400 µL, and (iii) V = 600 µL on pure
glycerol (i.e., φg = 0.999). The scale bars show 1 cm. (b) Ro vs. V on the left vertical axis, and Ri vs. V
on the right vertical axis for φg = 0.999. The error bars represent 3 trials. (c) N vs. V for φg = 0.999.
The inset shows λ = 2πRo/N vs. V.

3.2. Effect of the Glycerol Volume Fraction, φg

We systematically changed the volume fraction of the glycerol solution in the range of
φg = 0.8–0.999 to characterize the Marangoni effects and the effects of buoyancy and viscos-
ity on the final size and shape of the drop. With decreasing φg, both the density difference
and the surface tension difference between the water drop and the glycerol-water solution
decrease. Therefore, the outward buoyance force and inward Marangoni stress of the drop
get suppressed. The values of ρ, µg, and γga for varying φg are extracted from [27–29],
and listed in the supplemental material. In addition, the corresponding molar fraction of
glycerol in the mix, χg, is included for varying φg values in the supplemental material.

As φg decreases, the shape of the fingers changes from the cusp-like fingers, shown
in Figure 2a, to rounded fingers, shown in Figure 5a(iv–v) at φg = 0.9, until the outer
interface becomes stable at φg = 0.8, as shown in Figure 5b. However, groove-like patterns
are observed to grow in the middle of the water drop at φg = 0.8, as shown in sequential
snapshots in Figure 5b. Figure 5c shows that Ro and Ri decrease as φg increases. Note
that the inner zone forms closer to the outer interface with decreasing φg until Ro = Ri,
when φg ≤ 0.85. Finally, Figure 5d shows that N increases and λ decreases as φg increases.
This suggests that the Marangoni stress is more effective in stabilizing short-wavelength
perturbations; therefore, inhibiting the Marangoni stress (i.e., lower φg) yields smaller λ.
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Figure 5. (a) Snapshots for V = 300 µL, and φg = 0.9 at (i) t = 10 s, (ii) t = 20 s, (iii) t = 30 s, (iv)
t = 40 s, and (v) t = 50 s. The scale bars show 1 cm. (b) Snapshots for V = 300 µL, and φg = 0.8 at
(i) t = 10 s, (ii) t = 20 s, (iii) t = 30 s, (iv) t = 40 s, and (v) t = 50 s. The scale bars show 1 cm. (c) Ro

vs. φg on the left vertical axis, and Ri vs. φg on the right vertical axis for V = 300 µL. The error bars
represent 3 trials. (d) N vs. φg for V = 300 µL. The inset shows λ = 2πRo/N vs. φg.

3.3. Scaling Arguments

Here we consider the forces acting on the drop as it spreads over the fluid interface.
The stress from surface tension scales as ∆γ/H, whereas the viscous force scales as µgu/H,
where ∆γ = γwa− γga, u is the characteristic speed, and H denotes the characteristic height
of the drop, as indicated in Figure 6a. Then, balancing the two forces yields a modified
capillary number in the form of Ca = µgu/∆γ. Using the mean velocity of the outer
interface, the capillary number ranged from 0.009–0.04 in our experiments. Therefore,
neglecting viscous forces gives buoyancy and Marangoni stress as the driving force and
resisting force, respectively. The force balance yields

∆γ/H2 ∼ g∆ρ, (1)

where ∆ρ denotes the difference between the glycerol solution density and the water density.
Substituting H ∼ V/R2

o in Equation (1) yields

∆γR4
o/V2 ∼ g∆ρ (2)

Ro ∼
(

g∆ρ

∆γ
V2
)1/4

.

Figure 6b shows the plot of Ro versus
(

g∆ρV2/∆γ
)1/4 for all cases of varying V and

φg. Despite the changes in V, ∆γ, and ∆ρ, all experimental data show a good agreement
with the scaling for Ro from Equation (2).

In addition, we nondimensionalize λ by means of the capillary length, lc =
√

∆γ/(ρgg).
Figure 6c shows that the non-dimensional wavelength is inversely proportional to the Bond
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number as λ/lc ∼ B̃o−1, where B̃o = ∆ρgV2/3/∆γ is the Bond number. Qualitatively, it is
expected that the wavelength increases with the Marangoni stress and inversely with buoyancy.

Figure 6. (a) Force balance schematic. (b) Ro vs.
(

g∆ρV2/∆γ
)1/4 for all cases of varying V and φg.

(c) λ vs. B̃o−1
= ∆γ/∆ρgV2/3 for all cases of varying V and φg.

4. Discussion and Conclusions

In this paper, we have presented a new form of instability when a less viscous and
less buoyant drop spreads over a millimetric miscible liquid layer that has lower surface
tension than the drop. As the glycerol solution mixes with water at the moving front,
an inward Marangoni flow is generated against a spreading flow under buoyancy effects.
Therefore, the glycerol solution flows along the free surface under the Marangoni flow.
As a high concentration of glycerol solution flows over the water drop, it becomes unstable
due to buoyancy effects. Therefore, there must be a characteristic length arising from the
interplay between the Marangoni flow and the occurrence of Rayleigh–Taylor instability.
This characteristic length hints at the formation of the inner zone, separated by the observed
borderline in the experiments, which is indicative of either a depth gradient or concentration
gradient. In addition, we showed that after the outer interface stops spreading, the fingers
continue to grow until they pinch off from the miscible interface. After the pinch-off,
the fingers continue moving radially outward and slowly mix with the glycerol solution.
In the final stages, the Marangoni flow is noticeably weakened; therefore, the drop’s outer
interface maintains its cusp-like patterns.

We observed that both the outer and inner radii, R0 and Ri, grow with a similar
trend regardless of the drop volume. In addition, the total number of fingers in the
final shape increases monotonically with increasing droplet volume, whereas the final
wavelength decreases. These results showed that buoyancy shortens the wavelength,
thereby increasing the wavenumber. Furthermore, we showed that by adding water to
glycerol and suppressing the inward Marangoni flow, the borderline between the two zones
approaches the outer interface until it is not observed below φg ' 0.85. In addition, the final
wavenumber increases with a decreasing volume fraction, whereas the final wavelength
decreases. In other words, inhibiting the Marangoni flow yields a smaller wavelength.
Therefore, the results of our two parametric experiments suggest that buoyancy destabilizes
the interface as the driving force, and the Marangoni stress stabilizes small undulations

10
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as the resisting force. By balancing the two opposite forces, we incorporated scaling laws
for the growing outer interface, which were in good agreement with the experiments.
In addition, we found that the final wavelength is inversely proportional to the modified
bond number for all cases.

Despite the similarities between our system and that of [25], we observed new be-
haviors, such as the pinch-off of fingers, the formation of inner and outer zones, and new
inner streak patterns that emerged for lower glycerol concentrations. These differences
are presumably due to the negligible effect of inertia in the present study as opposed to
that in [25], in which drops impacted a fluid bath. The radial motion of the fingers after
the pinch-off event is reminiscent of the atomization process of drops as a water-IPA drop
spreads on an oil bath [11]. However, we note that in the case of a water-IPA drop on an
oil bath, outward Marangoni flow induced by IPA evaporation results in fragmentation,
whereas in the current system, the inward Marangoni flow induces the fragmentation of
the fingers. Further analysis is required to gain a better understanding of the underlying
mechanism in order to rationalize the wavelength. More details related to the current
miscible instability will be investigated in a future study.
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Abstract: We analyse the motions of a axisymmetric drop expanding between two rotating discs.
We restrict to the case of a highly viscous fluid and a rapid rate of rotation. Therefore, we make
modelling assumptions following from both a low Reynolds number and a low Rossby number. We
investigate both the squeezing problem, where the top disc is pushed down on the drop; and the
contraction problem, where the top plate is pulled away from the drop. Both problems have similar
solutions to the non-rotating case but we find that the rotation term in the contraction problem allows
a critical rotation rate that prevents the plates from moving apart. This exists because pressure in the
fluid layer is lowered by the rotation and thus there is a suction effect between the two plates which
promotes adhesion. We also complete the linear instability analysis of the squeezing problem and
determine the critical values where the system shifts from symmetrical to asymmetrical.

Keywords: Hele-Shaw cell; rotation; viscous; squeezing; contraction

1. Introduction

The study of expanding viscous drops has seen a lot of development in the last few
decades. A good outline of this field can be found in Huppert (2006) [1], beginning with
analysis from von Kármán (1940) [2]. Recent developments from Ward (2006) [3] and Mof-
fatt et al. (2021) [4] have focused on the case of a drop expanding in the thin layer between
two horizontal plates (a Hele-Shaw cell). These papers have fully described the motion and
shown that the squeezing problem is stable under linear perturbations. Investigation by
Gay (2002) [5] has demonstrated that the contraction problem is unstable: air is drawn in
as the radius of the viscous drop decreases and, as the two interact, a viscous fingering
instability develops and thus the symmetry breaks down. This is an example of a Saffman-
Taylor instability (Saffman and Taylor, 1958 [6]). The rotating contraction problem is also
expected to dominated by a Saffman-Taylor instability, despite the additional complexities
caused by rotation but this has not previously been investigated; this paper is original in its
inclusion of rotation in both the squeezing and contraction problems. Both of these rotating
problems have great relevance to the adhesion industry which, in turn, has applications to
the construction, transportation and machinery manufacture industries, among others, as
detailed in Dinte and Sylvester (2017) [7]. The viscous fluid we consider throughout this
paper can be used to model an adhesive, which Dinte and Sylvester (2017) [7] define “as a
mixture in a liquid or semi-liquid state, capable to join permanently to surfaces, by an adhe-
sive process”. In particular, the theory of this paper is most relevant to adhesively-bonded
lap joints which were analytically investigated by Her (1999) [8]. It was demonstrated
by de Bruyne and Houwink (1952) [9] that such a joint between the ends of two coaxial
cylinders will break at high loads when subjected to torsion (by applying torque in opposite
directions of rotation to the two cylinders). We can investigate an identical joint, but in
the case that the cylinders rotate in the same direction, using the theory of this paper. In
industry, such joints are used for torque transmission and have applications in aircraft,
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space structures and robot arms as outlined by Choi and Lee (1994) [10]. It is demonstrated
in this paper that, by rotating such cylinders at a sufficiently fast rate, the adhesive layer
between them can pull them closer together, even when the external forces are pulling
them apart. We explicitly identify the minimum rotation rate required to achieve this effect.

2. Background

The system we are analysing consists of two plates which are a vertical distance h
apart. Between the two plates is a volume of fluid V with surface tension γ, uniform
density ρ and uniform dynamic viscosity µ. The two plates are rotated about a vertical axis
through the centre of the fluid drop at a rate of rotation Ω = Ωez and a force F = −Fez
acts vertically and uniformly on the top plate. The fluid begins in a cylindrical drop of
radius a0 and the initial vertical distance between the plates is h0. We make the modelling
assumptions that the height of the fluid drop does not vary radially and that the front of
the fluid drop remains vertical at all times. We choose to work in a coordinate system with
origin on the bottom plate directly below initial centre of the fluid drop. The pressure field
in the fluid is denoted by p and the velocity field by u.

We investigate this system by following a similar mathematical analysis to
Moffatt et al. (2021) [4]. In contrast, we work in a rapidly rotating frame, more specif-
ically at low Rossby number. The axis of rotation is vertical and passes through the centre
of the drop.

We consider a reference frame rotating with the plates at constant angular frequency
Ω. This gives the same no-slip boundary conditions as the initial problem investigated
by Moffatt et al. (2021) [4]; as well as adding Coriolis and centrifugal terms to the Navier-
Stokes equations. We consider low Rossby number, so the centrifugal force dominates over
both the Coriolis and advective effects, leaving us with the governing equation

ρ
∂u
∂t

+ ρΩ× (Ω× x) = −∇p + ρg + µ∇2u. (1)

3. The Pseudo-Pressure Field

We now observe the following identity from vector calculus, as in Tritton (1988) [11]

Ω× (Ω× x) = ∇(−1
2
|Ω× x|2). (2)

Hence, we can rewrite the governing equation as

ρ
∂u
∂t

= −∇P + ρg + µ∇2u, (3)

where P = p− 1
2

ρ|Ω× x|2. (4)

Since we are working in the case where the axis of rotation passes vertically through
the centre of the drop, Ω = Ωez and x = rer + zez. Hence

P = p− 1
2

ρΩ2r2. (5)

We can also use the pseudo-pressure field to rewrite another of the key equations
from Moffatt et al. (2021) [4]. Standard lubrication theory indicates that the pressure is
independent of z, i.e., p = p(r, t), and the radial component of velocity, u = u(r, z, t),
satisfies |∂u/∂z| >> |∂u/∂r| and obeys:

∂p
∂r

= µ
∂2u
∂y2 + ρΩ2r, (6)
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which we can rewrite as
∂P
∂r

= µ
∂2u
∂z2 . (7)

It is also worth noting that

p = p(r, t)⇒ P = P(r, t). (8)

Hence, the problem now closely resembles that investigated by Moffatt et al. (2021) [4]
but with this pseudo-pressure field, P(r, t), in the place of p(r, t). The only difference being
that, on the boundary r = a, we have the condition P = pa − 1

2 ρΩ2a2 − 2γ/h, where γ is
the surface tension. This result can be recovered from Ungarish and Huppert (1998) [12] by
directly considering the pressure field and neglecting the gravitational term due to both
the thin layer approximation and low Rossby number.

4. Analysis of Basic State

Using the no slip boundary conditions, u(r, 0, t) = u(r, h, t) = 0, we can solve for
u(r, z, t) in terms of the pressure field

u(r, z, t) =
1

2µ

∂P
∂r

z(z− h). (9)

Thus, averaging over the depth, we find that:

ū(r, t) ≡ 1
h

∫ h

0
u(r, z, t)dz = − h2

12µ

∂P
∂r

, (10)

i.e., ū(r, t) = − h2

12µ

(
∂p
∂r
− ρΩ2r

)
. (11)

Proceeding with the analysis, we find a corresponding result to the Reynolds equation

∇2P =
12µ

h3
dh
dt

(12)

⇒ ∇2 p =
12µ

h3
dh
dt

+ 2ρΩ2, (13)

with boundary condition p(a, t) = pa − 2γ/h. We determine the solution as

p(r, t) =
(

3µ

h3
dh
dt

+
1
2

ρΩ2
)(

r2 − a2
)
+ pa − 2γ/h. (14)

We balance forces on the upper plate to obtain:

F = 2π
∫ a

0
(p− pa)rdr (15)

and arrive at the nonlinear ODE

F =
3µV2

8π

d
dt

(
1
h4

)
−
(

ρΩ2V2

4π
+ 2γV

)
1
h2 . (16)

5. The Squeezing Problem

In this section, we focus on the case F > 0. We use a change of variables to rewrite (16) as:

dX2

dT
= 1 + λX, X(0) = 1, (17)
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where





X = h2
0/h2 = a4/a4

0

T = t/t0

t0 = 3µV2/(8πFh4
0)

λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0
=

πρΩ2a4
0

4F +
2π2a4

0γ
VF .

(18)

This is very similar to the ODE found by Moffatt et al. (2021) [4] for the corresponding
problem in the non-rotating case; however, the parameter λ has now been increased by a
quantity proportional to Ω2. We can solve the equation to determine the implicit solution

T =
2

λ2

[
λ(X− 1)− log

(
1 + λX
1 + λ

)]
. (19)

6. The Contraction Problem

We find a more interesting difference when we investigate the contraction problem,
F < 0. We can, again, use a change of variables to rewrite the ODE as

dX2

dT
= −1 + |λ|X, X(0) = 1, (20)

where





X = h2
0/h2 = a4/a4

0

T = t/|t0|
t0 = 3µV2/(8πFh4

0)

λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0
=

πρΩ2a4
0

4F +
2π2a4

0γ
VF .

(21)

But we now note that the system can be forced to remain at X = 1 (i.e., h = h0, a = a0)
if we choose Ω such that λ = −1. The critical value of Ω which achieves this is

Ωc =

(
4|F|
πρa4

o
− 8πγ

ρV

) 1
2
. (22)

This indicates that, by spinning the plates at Ω = Ωc, we can prevent the contraction
force from pulling the plates apart. If Ω < Ωc, then the plates pull apart; if Ω > Ωc, then the

plates are pushed together. We note that Ωc does not necessarily exist: if a0 > ac =
(

V|F|
2π2γ

) 1
4 ,

then |λ| > 1 and hence the plates are always pushed together.

7. Stability of Squeezing Problem

Other differences from the non-rotating case arise when we carry out a linear stability
analysis. As noted in the introduction, the contraction problem, F < 0, is expected to
develop complicated Saffman-Taylor instabilities at the interface between the air and the
fluid. Therefore, we will focus on the squeezing problem, F > 0. We consider perturbing
the boundary by:

ã(θ, t) = a(t) + εα(t)cos(nθ), (23)

where 0 < ε << 1 and n ≥ 2 is an integer, (24)

and we consider a perturbed pressure field given by

p̃(r, θ, t) = p(r, t) + εp1(r, t)cos(nθ). (25)

As in the paper by Moffatt et al. (2021) [4], we find ∇2[p1cos(nθ)] = 0 and hence
p1(r, t) = k(t)rn. Thus, we have

p̃(r, θ, t) = p(r, t) + εk(t)rncos(nθ). (26)
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We now find k(t), using the condition p̃(ã, θ, t) = pa − 2γ/h,

k(t) = −a(t)α(t)
1

a(t)n cos(nθ)

(
6µ

h(t)3 + ρΩ2
)

. (27)

Hence:

p̃(r, θ, t) =
[
r2 − a2 − 2εaα

( r
a

)n
cos(nθ)

][3µ

h3
dh
dt

+
1
2

ρΩ2
]
+ pa − 2γ/h (28)

and
∂ p̃
∂r

=

[
r− nεα

( r
a

)n−1
cos(nθ)

][
6µ

h3
dh
dt

+ ρΩ2
]

. (29)

We recall (11) and observe that ū(ã, t) = ∂ã
∂t = da

dt + ε dα
dt cos(nθ). Hence, evaluating ∂p

∂r
at r = ã, we obtain

da
dt

+ ε
dα

dt
cos(nθ) = − a

2h
dh
dt

+ εαcos(nθ)

(
1

2h
dh
dt

(n− 1) +
ρΩ2h2

12µ
n
)
+ O

(
ε2
)

. (30)

Therefore, as in Moffatt et al. (2021) [4], at leading order we simply see a statement of
the conservation of V = πa2h. At order ε, we find

dα

dt
= α

[
1

2h
dh
dt

(n− 1) +
ρΩ2h2

12µ
n
]

. (31)

This equation governs the stability of the basic state. It is different to the corresponding
equation in Moffatt et al. (2021) [4] due to the Ω term. Hence:

|α| is decreasing (i.e., the nth mode is stable)⇔ 1
2h

dh
dt

(n− 1) +
ρΩ2h2

12µ
n < 0. (32)

We can rewrite this condition using X and T as

nth mode is stable⇔ dX
dT

>
n

n− 1
ρΩ2h2

0t0

3µ
. (33)

Equation (17) tells us that dX
dT = 1

2X + λ
2 , where λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0

. We also recall that

t0 = 3µV2

8πFh4
0

and, hence , we can rewrite the stability condition as

nth mode is stable⇔ h2 >
1

n− 1
ρΩ2V2

4πF
− 2γV

F
. (34)

Therefore, we can see that the system is always stable if γ ≥ ρΩ2V
8π ; equivalently, the

system is always stable if Ω ≤ Ωs =
(

8πγ
ρV

) 1
2 . Otherwise, we can rewrite (34) in terms of

the radius of the drop as:

nth mode is stable⇔ V2

π2a4 >
1

n− 1
ρΩ2V2

4πF
− 2γV

F
, (35)

which we can rearrange as

nth mode is stable⇔ a <

(
1

n− 1
πρΩ2

4F
− 2π2γ

VF

)− 1
4

. (36)
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Hence, if we let an =
(

1
n−1

πρΩ2

4F −
2π2γ
VF

)− 1
4
, then the nth mode is stable until the

drop’s radius reaches the critical value an.
These values are increasing as n increases so we observe that if a ≤ a2, then the drop

is symmetrical and stable under any perturbation. Therefore, a2 is the critical radius of the
drop at which the system becomes unstable, which we can explicitly write as

a2 =

(
πρΩ2

4F
− 2π2γ

VF

)− 1
4

=

(
4VF

πρΩ2V − 8π2γ

) 1
4
. (37)

The above results are consistent with the results found by Moffatt et al. (2021) [4]
because in their analysis Ω = 0 so the condition Ω ≤ Ωs is satisfied and hence the motion is
always stable. These results also incorporate surface tension which is crucial for calculating
Ωs but is less relevant in the non-rotating case.

We also observe that a2 is decreasing as a function of Ω so the system becomes unstable
at a smaller critical radius when it is rotated at a faster rate.

8. Instability of Contraction Problem

If we use the same linear perturbation model as in the investigation of the squeezing
problem, then again we arrive at (32). There is a difference when we rewrite this equation
in terms of X and T (because T = t/|t0| = −t/t0 ) so we find that

the system is stable⇔ dX
dT

> − n
n− 1

ρΩ2h2
0t0

3µ
. (38)

Equation (20) tells us that dX
dT = − 1

2X − λ
2 , where λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0

. We also recall that

t0 = 3µV2

8πFh4
0

and, hence, we can rewrite the stability condition as

nth mode is stable⇔ h2 <
2γV
|F| −

1
n− 1

ρΩ2V2

4π|F| . (39)

Therefore, we can see that the system is always unstable if γ ≤ ρΩ2V
8π ; equivalently, the

system is always unstable if: Ω ≥ Ωs =
(

8πγ
ρV

) 1
2 . Otherwise, we can rewrite (39) in terms

of the radius of the drop as:

nth mode is stable⇔ V2

π2a4 <
2γV
|F| −

1
n− 1

ρΩ2V2

4π|F| , (40)

which we can rearrange as

nth mode is stable⇔ a >

(
2π2γ

V|F| −
1

n− 1
πρΩ2

4|F|

)− 1
4

. (41)

We recall an =
(

1
n−1

πρΩ2

4F −
2π2γ
VF

)− 1
4
=
(

2π2γ
V|F| − 1

n−1
πρΩ2

4|F|
)− 1

4
; thus the nth mode is

unstable if a ≤ an but it is stable if a > an.

As before, an is increasing in n and we can calculate lim
n→∞

an =
(

V|F|
2π2γ

) 1
4
= ac thus,

if Ω < Ωs and a ≥ ac, then the system is stable. At first glance, this may appear to be
inconsistent with Saffman and Taylor (1958) [6]. However, we recall that, if a0 ≥ ac, then
the plates are not pulled apart, hence no Saffman-Taylor instabilities develop. Indeed, there
is an equivalence between the statements a0 ≥ ac and a ≥ ac because a0 ≥ ac ⇔ a ≥ a0 (as
the plates are pushed together).
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In the case of non-rotating plates, the necessary and sufficient condition for stability
simply reduces to a0 ≥ ac which is equivalent to the plates not pulling apart.

9. Numerical Values

In this section we will use the following parameters to calculate the predicted critical
values [these were the experimental values used by Moffatt et al. (2021) [4]].

ρ = 1.41× 103 kg m−3, µ = 64.3 kg s−1m−1, V = 5× 10−6 m3, (42)

|F| = 11.04 kgms−2, γ = 0.07 kg s−2, a0 = 30.72× 10−3 m. (43)

Therefore, we can calculate the critical values identified earlier in the paper.

Ωc = 105 s−1 = 999 rpm, (44)

Ωs = 15.8 s−1 = 151 rpm, (45)

ac = 0.0795 m = 79.5 mm (46)

These values give a useful insight into how plausible it would be to stabilise the
motion of an expanding drop and to force two contracting plates together. Using these
values we can also calculate a2 for a range of values of Ω and accordingly construct phase
diagram showing the different regions where the system is either stable (and will remain
axisymmetric) or unstable (and will not) for the squeezing problem. The result of this is
shown in Figure 1.

Figure 1. Regions of stability in the Ω− a phase plane under a squeezing force.

We can also plot the corresponding regions for the contraction problem, which is
shown in Figure 2.
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Figure 2. Regions of stability in the Ω− a phase plane under a contraction force.

10. Conclusions

We have identified the key equations for an axisymmetric viscous drop under com-
pressing and contracting forces in a rotating system and the critical values at which the
symmetry breaks down. In particular, we have shown that, under a squeezing force, the
rotating viscous drop maintains its axisymmetry unless Ω ≥ Ωs and the radius grows to be
larger than a2, where:

Ωs =

(
8πγ

ρV

) 1
2
, (47)

and:

a2 =

(
4VF

πρΩ2V − 8π2γ

) 1
4
; (48)

whereas, under a contraction force, symmetry breaks down if Ω < Ωs or if the drop starts
at an initial radius less than

ac =

(
V|F|
2π2γ

) 1
4
. (49)

We have also found that the critical rotation rate which prevents a contracting force
from pulling apart two plates joined by a viscous drop is:

Ωc =

(
4|F|
πρa4

o
− 8πγ

ρV

) 1
2
, (50)

which exists given that a0 ≤ ac. Further research may be done in a laboratory to experimen-
tally confirm these results.
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Abstract: We present the results of a theoretical investigation of the stability and collective vibrations
of a two-dimensional hydrodynamic lattice comprised of millimetric droplets bouncing on the surface
of a vibrating liquid bath. We derive the linearized equations of motion describing the dynamics of a
generic Bravais lattice, as encompasses all possible tilings of parallelograms in an infinite plane-filling
array. Focusing on square and triangular lattice geometries, we demonstrate that for relatively low
driving accelerations of the bath, only a subset of inter-drop spacings exist for which stable lattices
may be achieved. The range of stable spacings is prescribed by the structure of the underlying
wavefield. As the driving acceleration is increased progressively, the initially stationary lattices
destabilize into coherent oscillatory motion. Our analysis yields both the instability threshold and the
wavevector and polarization of the most unstable vibrational mode. The non-Markovian nature of
the droplet dynamics renders the stability analysis of the hydrodynamic lattice more rich and subtle
than that of its solid state counterpart.

Keywords: bouncing droplets; Faraday waves; lattice instability; normal-mode analysis; phonons

1. Introduction

The collective vibrations of atoms within a crystal lattice, referred to as phonons,
are of fundamental interest in materials science and solid-state physics, and govern bulk
properties of the crystal such as the heat capacity, thermal and electrical conductivity,
and elastic modulus [1–4]. Complementary insight into lattice dynamics is often gained
through consideration of macroscopic analog systems, including mass-and-spring net-
works [5,6] and more complex metamaterials [7,8]. Numerous hydrodynamic analogues of
crystals have been explored, from Bragg’s packed bubbles at an air–liquid interface [9] to
more recent studies of vibrations in lattices of colloidal particles [10–14] and microfluidic
droplets [15–18]. We here consider theoretically the dynamics of a two-dimensional lattice
comprised of millimetric droplets that bounce on the surface of a vibrating liquid bath and
are coupled through an underlying Faraday wavefield.

A fluid bath vibrating vertically with acceleration γ sin(2π f t) will destabilize into
a subharmonic field of standing Faraday waves, characterized by period TF = 2/ f and
wavelength λF (as is related to ωF = π f through the standard water-wave dispersion
relation), when the vibrational acceleration γ exceeds a critical value γF known as the Fara-
day threshold [19,20]. Below γF, but above the bouncing threshold γB < γF, a millimetric
droplet may bounce indefinitely on the bath’s surface, generating a spatially extended,
temporally decaying wavefield at each impact [21,22]. As γ is gradually increased beyond
γB, the droplet’s bouncing period increases until eventually becoming twice that of the
vibrational driving, thus achieving resonance with the Faraday wavefield and prompting a
substantial increase of the system’s wave energy. In this period-doubled bouncing regime,
droplets may bounce in either low- or high-energy states, as distinguished by bouncing
amplitude and denoted by (2, 1)1 and (2, 1)2, respectively [23]. Such period-doubled drops
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may bounce either in phase or out of phase with respect to each other. For γ > γW , the
walking threshold, a single droplet destabilizes from stationary bouncing into steady hori-
zontal motion, propelled through a resonant interaction with its own wavefield [24,25]. As
γ approaches γF, the persistence time of the waves increases and the droplet’s dynamics
become more strongly influenced by its past trajectory, and the system has heightened
‘path memory’ [26,27]. The resulting non-Markovian nature of the droplet dynamics gives
rise to numerous features reminiscent of quantum systems; consequently, this system has
provided the basis for the burgeoning field of hydrodynamic quantum analogues [28–31].

Multiple droplets may organize into static and dynamic bound states by virtue of their
shared wavefield. Specifically, the static bound states of droplet pairs [32], free rings [33],
and radially confined rings (modelling a one-dimensional periodic lattice) [34] have inter-
drop spacings related to the Faraday wavelength λF. As the vibrational acceleration is
increased, droplet pairs destabilize into either in-line oscillations, or orbital or promenading
(side by side) motion, depending on the droplet size and inter-drop distance [32]. Radially
confined rings destabilize into out-of-phase angular oscillations or propagating soliton-like
waves [34], and free rings exhibit additional radial vibrational modes [33]. The stability
and resonant oscillations of forced chains with a free end have also been considered theo-
retically [35]. Pairs of identical walking drops may form dynamic bound states consisting
of either orbital [24,25,36,37] or promenading motion [38,39].

A variety of two-dimensional bound structures have been studied, including the
rotational [40] and translational instabilities of droplet aggregates [41]. Eddi et al. [42]
constructed eight of the eleven possible Archimedean tilings of the plane, some of which
required tuning the relative bouncing phase of neighbouring droplets. Eddi et al. [43]
considered square and triangular lattices and observed the emergence of coherent modes of
oscillation, a hydrodynamic analog of phonons, beyond a critical vibrational acceleration.
Only one lattice spacing was considered for each geometry and a full characterization of
the emergent oscillations as a function of the lattice spacing was not undertaken. Edge
effects were seen to influence the observed lattice dynamics owing to their finite size. To
rationalize their experimental observations, Eddi et al. [43] proposed a phenomenological,
one-dimensional model in which each droplet was connected to its nearest neighbours via
an effective spring force proportional to the wave amplitude. Notably, their model did not
include an explicit waveform or the influence of the system memory, which precluded a
quantitative characterization of the lattice stability.

A detailed linear stability analysis of an infinite one-dimensional droplet lattice was
performed by Thomson et al. [44], using the stroboscopic model of Oza et al. [45], in order
to rationalize the observed dynamics of a periodic droplet chain [34]. In this configuration,
only certain lattice spacings were found to remain stable below the instability threshold of
a single drop γW , and the lattice subsequently destabilized via either super- or sub-critical
Hopf bifurcations as the driving acceleration was increased. This linear stability analysis
was then extended to investigate both weakly nonlinear oscillations and solitary waves [46].

We here build upon the work of Eddi et al. [43] and Thomson et al. [44] by developing
a theoretical framework for studying the stability and dynamics of two-dimensional droplet
lattices, which one expects to exhibit a richer set of instabilities than their one-dimensional
counterparts. Specifically, we consider the Bravais lattice, a theoretical construct used
in solid-state physics to describe regular crystalline structures. The defining feature of
the Bravais lattice is its discrete translational symmetry, which allows its lattice points to
be expressed as integer multiples of two basis vectors. The Bravais lattice thus appears
to be identical from each constituent lattice point [4]. In two dimensions, five possible
geometries satisfy this required symmetry, specifically, square, triangular, rectangular,
centred rectangular, and oblique lattices.

In Section 2, we use the theoretical model of Couchman et al. [32] to derive the disper-
sion relation governing the stability of a generic Bravais lattice. In Section 3, we focus on
the square and triangular geometries, which admit analytical simplifications due to their
rotational symmetry. For these geometries, we predict the stability threshold and mode of
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vibrational instability that emerge as the bath’s vibrational acceleration is increased progres-
sively. Our theoretical predictions are compared to the experimental results of Eddi et al. [43].
In Section 4, we summarize our results and propose future avenues of investigation.

2. Normal Mode Analysis

In this section, we characterize the linear stability of a Bravais droplet lattice. In Section 2.1,
we review the variable-phase stroboscopic model of Couchman et al. [32] for the dynamics of
multiple interacting droplets, which provides the basis of our analysis. Definitions of relevant
variables and parameters are provided in Table 1. In Section 2.2, we then characterize the base
state of the Bravais lattice and, in Section 2.3, perturb the base state to derive the dispersion
relation governing the lattice’s stability and normal modes of vibration.

Table 1. Definitions of relevant variables and parameters.

Symbol Definition

Fluid
ρ, σ, νe Density, surface tension, effective kinematic viscosity [47]
f , TF = 2/ f , λF , kF = 2π/λF Bath driving frequency, Faraday period, wavelength, wavenumber
γ, γW , γ∗, γF Peak driving acceleration of bath, walking threshold of single drop, lattice instability threshold, Faraday

threshold

Trajectory equation
x = (x, y), t, g Horizontal position, time, gravitational acceleration
R, m = 4πρR3/3 Droplet radius, mass
h(x, t) Wave amplitude strobed at bouncing period TF
f (r) Wave kernel
Td = 1/

(
νek2

F
)

Wave decay timescale [47]
Me =

Td
TF(1−γ/γF)

Memory parameter

A =
√

νe TF
2π

mgk3
F

3k2
Fσ+ρg

Wave-amplitude coefficient

α = ε2

2νe(1+2ε2)
, ε = 2π f ρνekF

3k2
F σ+ρg

Spatio-temporal damping coefficient, viscosity induced wavenumber correction [48]

ζ = 2
kF

√
α

TF Me
Non-dimensional spatial-damping coefficient

D = 0.17mg
√

ρR
σ + 6πRµa, µa Horizontal drag coefficient [47], air viscosity

κ = m
TF D Non-dimensional droplet mass

β =
mgATF k2

F
D Non-dimensional wave-force coefficient

S , C Impact phase parameters (see Appendix A) [32]

Lattice
a, b Basis vectors defining geometry of Bravais lattice
dmn = ma + nb Horizontal position of droplets in base lattice, (m, n) ∈ Z
k, ξ, ωk Wave vector, polarization vector, complex-valued frequency of vibrational mode

2.1. Review of Theoretical Model

Throughout this work, we choose physical parameters for the drop and bath liquids
corresponding to silicone oil with kinematic viscosity ν = 20 cSt, density ρ = 949 kg m−3,
and surface tension σ = 20.6× 10−3 N m−1, which have been widely used in experimental
and theoretical studies of droplet–droplet interactions [32,33,37,39]. In a deep bath vibrating
vertically at f = 80 Hz, such a fluid will be characterized by a Faraday wavelength
λF ≈ 4.75 mm and Faraday threshold γF ≈ 4.25g, where g denotes the gravitational
acceleration. We assume that all droplets have radius R = 0.36 mm and bounce in phase
with each other at the Faraday period TF in the higher-energy (2, 1)2 mode, as assumed in
the prior analysis of free rings [33]. An example of a triangular droplet lattice constructed
in the laboratory is shown in Figure 1a.

The trajectory equation for walking droplets was developed by Moláček and Bush [47].
The ‘stroboscopic’ trajectory equation of Oza et al. [45] is a simplification thereof, so called
because it effectively eliminates the vertical droplet motion from consideration by averaging
the drop dynamics over a bouncing period, and so describes the horizontal dynamics visible
in the laboratory when the system is strobed at the Faraday period [49]. We here employ the
variable-phase stroboscopic model of Couchman et al. [32], an extension of the stroboscopic
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model that accounts for variations in the phase of impact between the droplet and bath.
Consideration of such variations has been found to be necessary in order to rationalize the
observed stability of multi-drop systems [48], including bound droplet pairs [32] and rings [33].

5 mm

Figure 1. (a) An oblique view of a triangular lattice of millimetric droplets bouncing on the surface of
a vertically vibrating liquid bath. The droplets are coupled by a shared wavefield, as is visualized by
illuminating the bath with a striped pattern of coloured light [49]. We note that beneath each drop, the
drop’s reflection from the bath surface is visible. (b) A Bravais lattice is generated via enumeration
of the points dmn = ma + nb, (m, n) ∈ Z, with point (m, n) = (2, 1) highlighted for illustration. The
basis vectors describing the triangular lattice shown here are a = a(1, 0) and b = a(−1/2,

√
3/2),

where a has units of length and sets the lattice spacing. We study the response of the lattice to
perturbations δx away from its base state.

The variable-phase stroboscopic model predicts that the horizontal positions, xmn, of
interacting drops of mass m in the lattice evolve according to

mẍmn + Dẋmn = −mgCmn∇h(xmn, t), (1)

where overdots denote time derivatives, and the wavefield h is described by

h(x, t) = A ∑
pq

∫ t

−∞
Spq f (kF|x− xpq(s)|)e−(t−s)/(TF Me)ds, (2)

with wave kernel
f (r) = J0(r)

(
1 + (K1(ζr)ζr− 1)e−r−2

)
, (3)

where J0 and K1 denote Bessel functions of the first kind and modified second kind, respectively.
In Equation (1), drop motion is driven by a wave force, proportional to the local

gradient of the underlying wavefield h, and resisted by a linear drag force with coefficient
D. The wavefield, defined in Equation (2), is modelled as the superposition of waves of
spatial form f (r) generated by each droplet along its past trajectory, as summed over all of
the droplets in the lattice. The wave kernel f (r) is based on the wave model of Moláček
and Bush [47] but more accurately captures the experimentally observed far-field decay
of the wavefield [50], and so the long-range interactions between droplets [32,48,50,51].
For r < 1, f (r) is well approximated by J0(r), but then decays more rapidly than J0(r)
for r > 1, as prescribed by the spatial damping factor ζ which is defined in terms of
fluid parameters in Table 1. The memory timescale TF Me ∼ (1− γ/γF)

−1 appearing in
Equation (2) characterizes the temporal decay of the waves, with higher values of the
memory parameter Me indicating waves that decay more slowly and thus have a greater
influence on the lattice’s evolution.

The phase factors S and C capture the phase shift between the resonant oscillations of
the drop and wavefield, which may vary as a function of the system parameters. Such a
phase shift influences both the wave amplitude generated by each droplet at impact (as
captured by S) and the horizontal wave force imparted to the droplet (as captured by C).
Couchman et al. [32] determined the dependence of these phase factors on the droplet
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radius, local wave height, and vibrational acceleration. They also found that, for drops in
the (2, 1)2 bouncing mode [52] commonly used in experiments and treated here, neglecting
variations in these phase factors may lead to the prediction that bound states destabilize
below the walking threshold of a single droplet γW , a prediction at odds with experimental
observations of drop–drop interactions [32–34,37,39]. Further details concerning the phase
parameters S and C, and their explicit functional forms, may be found in Appendix A.

By introducing the following non-dimensional variables x̄ = kFx, h̄ = h/A, t̄ = t/TF
for horizontal position, wave height, and time, respectively, the governing Equations (1)–(2)
take the following non-dimensional form:

κ ¨̄xmn + ˙̄xmn = −βCmn∇h̄(x̄mn, t̄), (4)

h̄(x̄, t̄) = ∑
pq

∫ t̄

−∞
Spq f (|x̄− x̄pq(s̄)|)e−(t̄−s̄)/Me ds̄. (5)

Expressions for the non-dimensional mass κ and waveforce coefficient β are given in Table 1.
For the remainder of the paper, we drop the overbars denoting non-dimensional variables
for the sake of notational simplicity.

2.2. Base State of the Bravais Lattice

The unperturbed Bravais lattice has droplets located at horizontal positions

dmn = ma + nb, (6)

where m and n are integers and a and b are the basis vectors that define the lattice geometry,
commonly referred to as ‘primitive vectors’ (see Figure 1b). We first demonstrate that a
generic Bravais lattice is a stationary solution to Equation (4). Substituting xmn(t) = dmn
into Equation (5) yields the wavefield for the Bravais lattice,

h(x, t) = Me ∑
pq
S(γ, h(dpq)) f (|x− dpq|). (7)

We note that the lattice symmetry ensures that all drops encounter the same wave height
h(dpq) = h0, so their phase factors are likewise identical, S(h0) = S0. Evaluating Equa-
tion (7) at the lattice points yields an implicit expression for the local wave amplitude,

h0 = MeS(γ, h0)∑
pq

f (
∣∣dpq

∣∣). (8)

Making use of the functional form for S presented in Equation (A2), one may solve the
implicit Equation (8) numerically to obtain h0. Having obtained h0, the phase parameters
S0 = S(γ, h0) and C0 = C(γ, h0) may be computed using Equations (A2) and (A3), re-
spectively. In Section 3, it will be shown that the values S0 and C0 depend on the initial
geometry of the Bravais lattice, which in turn strongly influence the lattice stability.

Having solved for the base state wavefield, it is immediately evident that xmn(t) = dmn
satisfies Equation (4) when ∇h(dmn, t) = 0, which may be written explicitly as

∑
pq

f ′(|dpq|)
dpq

|dpq|
= 0. (9)

Physically, Equation (9) signifies that the net waveforce on each droplet must vanish, or
equivalently that the slope of the wavefield beneath each droplet is zero. Noting that
d(−p,−q) = −d(p,q), the pairwise terms (p, q) and (−p,−q) cancel in Equation (9), leaving
only the (p, q) = (0, 0) term which vanishes because the wave kernel is even and so
f ′(0) = 0 (see Equation (3)). It is thus apparent that, by virtue of its translational symmetry,
any Bravais lattice is a stationary solution of the trajectory equation.
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2.3. Dispersion Relation of the Perturbed Lattice

We may now assess the stability of the Bravais lattice by studying the growth of small
perturbations to the base state, xmn(t) = dmn + εδxmn(t), where ε � 1. Substituting this
perturbation into Equation (4), using the equilibrium condition (9), and expanding to first order
in ε, yields the following linearized equations of motion governing the perturbations δxmn(t),

κδ̈xmn + δ̇xmn = −ϕ ∑
pq

∫ t

−∞
H f
(
dpq
)
·
(
δxmn(t)− δxpq(s)

)
e−(t−s)/Me ds, (10)

where
ϕ = βS0C0, (11)

and H f denotes the Hessian matrix of the radially symmetric wave kernel f (Equation (3)),

H f (x) =




∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂x∂y

∂2 f
∂y2




x

. (12)

The elements of H f may be expressed explicitly as

∂2 f
∂x2 (x) =

f ′′(r)
r2 x2 +

f ′(r)
r3 y2, (13)

∂2 f
∂y2 (x) =

f ′′(r)
r2 y2 +

f ′(r)
r3 x2, (14)

∂2 f
∂x∂y

(x) =

(
f ′′(r)

r2 − f ′(r)
r3

)
xy, (15)

where x = (x, y) and r = |x|.
In deriving Equation (10), we note that variations in the phase parameters around the

base values S0, C0 are of O(ε2) and so can be neglected. To see this, note that

S(γ, h(dmn + εδxmn)) = S
(

γ, h(dmn) + ε∇h(dmn) · δxmn +O
(

ε2
))

, (16)

but ∇h(dmn) = 0 in the base state (Equation (9)). Therefore, the impact phase parameters
only enter our linear analysis through their base values S0, C0, which influence the resulting
stability of the lattice through the parameter ϕ (Equation (11)) that scales the waveforce in
Equation (10).

To derive the dispersion relation governing the linear stability of the lattice, we
substitute the following normal mode perturbation into Equation (10)

δxmn = ξeik·dmn+ωkt + c.c., (17)

where c.c. denotes the complex conjugate of the preceding exponential term. Equation (17)
represents a plane wave characterized by wavevector k, polarization vector ξ, and com-
plex frequency ωk. The real and imaginary components of ωk represent the mode’s
growth rate and oscillation frequency, respectively. Making use of the following inte-
gral,

∫ t
−∞ eωse−(t−s)/Me ds = Meeωt/(1 + Meω), we thus obtain the dispersion relation

[(
κω2

k + ωk

)
I + ϕMe

(
H(0) − H(k)

1 + Meωk

)]

︸ ︷︷ ︸
Dk(ωk)

ξ = 0, (18)
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where I denotes the identity matrix and

H(k) = 2 ∑
pq

H f (dpq) cos(k · dpq) (19)

may be recognized as the elementwise discrete cosine transform of the Hessian matrix
over the lattice. For k = 0, H(0) is the Hessian matrix of the net wavefield at the origin, as
characterizes the wavefield’s local curvature.

Non-trivial solutions (ξ 6= 0) to the dispersion relation (18) exist when

det Dk(ωk) = 0, (20)

which takes the form of a sextic polynomial in the complex-valued frequency ωk and may
be solved numerically. If a wavevector k exists such that any root ω∗k of Equation (20) has
a positive real part, then the associated mode will grow and the lattice will destabilize. If
no such k exist, the lattice remains stable. For an initially stable lattice, as the vibrational
forcing γ is increased, the instability threshold γ∗ is reached when there exists at least one
k∗ such that Re(ω∗k) ≥ 0. The polarization vector ξ∗ associated with the unstable mode k∗

may then be found by solving Dk(ω
∗
k)ξ
∗ = 0 (Equation (18)). We note that the polarization

vector ξ must be real-valued as Dk is a symmetric matrix.
It is noteworthy that, owing to the discrete translational symmetry of the Bravais lattice,

not all wavevectors k produce physically distinguishable oscillations when substituted
into the normal mode ansatz (17). For example, consider a square lattice characterized by
dmn = a(mx̂ + nŷ) and two wavevectors k =

(
kx, ky

)
and k′ =

(
kx + 2π/a, ky + 2π/a

)
.

Substituting k′ into Equation (17) yields

δxmn = ξe2πi(m+n)eik·dmn+ωkt = ξeik·dmn+ωkt, (21)

an oscillation characterized by wavevector k. Therefore, k′ and k result in the same physical
oscillation. It thus suffices to consider only wavevectors k in the lattice’s so-called Brillouin
zone, defined as the smallest set of k required to describe all distinguishable vibrations
of the discrete lattice [4]. The Brillouin zones for the square and triangular geometries
considered in Section 3 are illustrated in Figure 2, and the procedure for generating the
Brillouin zone for a generic Bravais lattice may be found in standard reference texts on
solid-state physics [4].

Figure 2. The extent of the Brillouin zone in wavevector space (kx, ky) for (a) square and (b) triangular
Bravais lattices with lattice spacing a [4]. Wavevectors k′ outside the Brillouin zone are paired with
an equivalent k within the Brillouin zone such that k′ and k yield the same physical vibration once
substituted into the normal mode ansatz (17), a result of the discrete translational symmetry of the
lattice. In characterizing lattice stability, it thus suffices to consider only modes with wavevectors k
within the Brillouin zone.
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3. Results
3.1. Square and Triangular Lattices

We first consider the stability of square and triangular lattices, as are characterized by
a single inter-drop spacing a with droplets at the base state positions

d(square)
mn = a(mx̂ + nŷ), (22)

d(triangle)
mn = a

(
mx̂ + (n/2)

(
−x̂ +

√
3ŷ
))

, (23)

respectively. As is demonstrated in Appendix B, the four- and six-fold symmetry of the
square and triangular geometries, respectively, result in the Hessian matrix for the net
wavefield H(0) (Equation (19), with k = 0) reducing to a scalar multiple of the identity
matrix I,

H(0) = η0I, (24)

where η0 is the unique (repeated) eigenvalue of H(0). Geometrically, Equation (24) sig-
nifies that the curvature of the local wavefield beneath each droplet in the square and
triangular base lattices is isotropic, having the same value in all horizontal directions.
Using Equation (24), the general dispersion relation (18) reduces to the simpler eigenvalue
problem,

H(k)ξ =

[
1

ϕMe
(1 + Meωk)

(
κω2

k + ωk + ϕη0Me

)]
ξ, (25)

which admits non-trivial solutions when ξ is an eigenvector of H(k) with corresponding
eigenvalue ηk. When such is the case, one may equate ηk with the bracketed term on the
right-hand side of Equation (25), yielding

P1(ωk) ≡ κω3
k +

(
1 +

κ

Me

)
ω2

k +

(
1

Me
+ Me ϕη0

)
ωk + ϕ(η0 − ηk) = 0, (26)

which may be solved for the three ωk associated with each of the two eigenvalues ηk. Since
κ > 0 and P1(ωk)→ ∞ as ωk → ∞, the intermediate value theorem guarantees a positive
real root whenever P1(0) < 0, i.e., ϕ(η0 − ηk) < 0. We thus deduce that a lattice is always
unstable if there are any wavevectors k such that either eigenvalue ηk of H(k) is greater
than η0.

Based on Equation (26), we now have a simple procedure for assessing whether a
square or triangular lattice is unstable at the initial vibrational acceleration γ = 0.7γF,
which is below the walking threshold of a single drop γW and corresponds approximately
to the lowest γ at which the droplets bounce in a period-doubled mode [52]. Specifically,
we compute the eigenvalues η0 and ηk of H(k) (Equation (19)) numerically, noting that
there are two ηk for each wave vector k in the Brillouin zone, and plot their dependence
on the lattice spacing a for both the square (Figure 3a) and triangular (Figure 4a) lattice
geometries. Intervals of a where ηk > η0 for all k are shaded in red, indicating that the
lattice is already unstable at γ = 0.7γF. We observe that for both the square and triangular
geometries, there are only discrete intervals of a for which the lattice is initially stable,
which roughly correspond to geometries in which drops bounce in minima of the local
wave amplitude (see Figures 3e and 4e). We note that this behaviour is in accord with
previous studies reporting that bound states are most stable when each drop bounces in
a minimum of the net wavefield produced by its neighbours [32,33]. Thomson et al. [44]
found similar swaths of initial instability as a function of the lattice spacing for infinite
one-dimensional droplet chains at low vibrational accelerations, which they referred to as
‘geometric instabilities’.

For the set of lattices that are initially stable at γ = 0.7γF, we may then determine the
instability threshold γ∗ > 0.7γF at which destabilization occurs. At γ∗, the real part of ωk
will vanish and the imaginary part will correspond to the frequency of the destabilizing
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oscillation. Substituting ωk = iΩ (Ω ∈ R) into Equation (26), separating the complex
polynomial into real and imaginary parts, and eliminating Ω yields

Pk(Me) ≡ ϕη0M3
e + ϕκηk M2

e + Me + κ = 0. (27)

Noting that κ > 0, ϕ > 0 and η0 < 0, we observe that Pk(Me) = 0 has at least one
positive real root, the minimum of which corresponds to the memory M∗e at which the
lattice destabilizes. Because Qk(Me) ≡ Pk(Me) − CM2

e < Pk(Me) for every non-zero
Me provided C > 0, we infer that Qk must have a root at a lower Me than does Pk.
Furthermore, if there is a wavevector k′ such that ηk′ < ηk, then since Pk(Me)−Pk′(Me) =
ϕκM2

e (ηk − ηk′) > 0, the smallest real positive root of Pk′(Me) must be smaller than that of
Pk(Me). We thus conclude that the wave vector k that goes unstable at the lowest memory
value Me, corresponds to that k with the minimum eigenvalue ηk.

We may thus gain additional insight from the curves ηk plotted in Figures 3a and 4a for
the square and triangular geometries, respectively. Namely, in the initially stable intervals
of a, the lowermost curve ηk corresponds to the destabilizing vibrational wavemode k
that will emerge at the instability threshold γ∗. In Figures 3 and 4, we plot the instability
thresholds γ∗ (panel b), and the magnitude and direction of the wavevector characterizing
this destabilizing mode (panels c and d, respectively) as a function of the lattice spacing a.
In all cases, we find that the polarization vector ξ is parallel to the wave vector k, signifying
that the lattices always destabilize into longitudinal, as opposed to transverse, oscillations.

For both the square and triangular geometries, the instability threshold of the lattice,
γ∗, is almost always greater than the walking threshold γW of a single drop. The lattices
are most stable when the constituent drops bounce in the deepest minima of the wavefield
produced by their neighbours, as was the case for droplet pairs and rings [32,33]. This effect
is a direct result of variations in the impact phase, with the product S0C0 (see Equations (10)
and (11)) decreasing with decreasing local wave amplitude (see Figures 3e and 4e) and
thus reducing the horizontal waveforce exerted on each droplet at impact. Conversely,
we note that in their theoretical analysis of a one-dimensional lattice, Thomson et al. [44]
predicted destabilization below γW , despite the fact that experimentally such lattices were
found to remain stable above γW [34]. This mismatch followed from their assumption of
a constant impact phase, and highlights the importance of accounting for variations in
the vertical dynamics by using a variable-impact-phase model when considering droplet–
droplet interactions. In Figures 3b and 4b we observe that γ∗ approaches γW in the limit
of large a, consistent with the droplets in the lattice becoming effectively uncoupled from
their neighbours at sufficiently large distances.

In Figure 3c,d, we highlight two dominant modes of vibration for the square lattice,
as are further illustrated in Figure 5. The first mode (green) corresponds to out-of-phase
oscillations of neighbouring lattice planes along either the x̂ or ŷ directions, which are
equivalent given the four-fold rotational symmetry of the square lattice. We note that Eddi
et al. [43] observed a superposition of such oscillations in the x̂ and ŷ directions, resulting in
the appearance of each droplet exhibiting roughly circular orbits around its base point (see
Figure 4a of [43]). In magenta, we highlight a separate mode characterized by out-of-phase
oscillations along 45 degree planes in the lattice with a wavelength of

√
2a, corresponding

to the diagonal of a square cell. Apart from these two readily identifiable modes, the scaled
wavevector a|k|/π (Figure 3c) varies approximately linearly with the scaled lattice spacing
a/λF, thus representing an oscillation wavelength that is no longer solely governed by a,
but is now also influenced by the Faraday wavelength λF that characterizes the underlying
wavefield.
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Figure 3. The square lattice. (a) The eigenvalues ηk of the matrix H(k) (19), governing the lattice
stability, are plotted as a function of the inter-drop spacing a, normalized by the Faraday wavelength
λF. In intervals of a where η0 is greater than all ηk, the lattice is initially stable at γ/γF = 0.7.
Otherwise, the lattice is already unstable as denoted by red shading. Curves ηk for two common
modes of instability are highlighted. There are two eigenvalues ηk for a single mode k, denoted
by dashed and solid lines of the same colour. We note that the two magenta curves are virtually
indistinguishable. For a given a, the most negative ηk corresponds to the destabilizing wave mode.
(b) The instability threshold γ∗, normalized by the walking threshold for a single drop γW , for
initially stable spacings a. The corresponding wavevector magnitude |k|, normalized by π/a (see
Figure 2a), and wave angle with respect to the x-axis, are shown for the destabilizing mode in panels
(c,d), respectively. Green and magenta points indicate spacings a where one of the two wave modes
highlighted in panel (a) are found to be destabilizing. These modes are further illustrated in Figure 5.
(e) The black curve indicates the dependence on lattice spacing of the local wave amplitude h0

beneath each droplet in the base lattice, normalized by the drop radius R. The orange curve denotes
the corresponding product of impact phases S0C0 that influences the lattice stability through ϕ in
Equation (10).
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Figure 4. The triangular lattice. Quantities characterizing the stability of a triangular lattice are
plotted as a function of the lattice spacing a, in the same manner as for the square lattice in Figure 3.
The dominant mode of instability is highlighted in magenta in panels (c,d), and is illustrated in
Figure 6.

In Figure 4c,d, we highlight the dominant mode of vibration for the triangular lattice
(magenta) which, as illustrated in Figure 6, corresponds to out-of-phase oscillations of
neighbouring lattice planes along the π/6 direction (or equivalently, the π/6 + n(π/3),
n = (1, 2, . . . , 5) directions given the six-fold rotational symmetry of the lattice). This mode
is consistent with that reported by Eddi et al. [43] (see Figure 4b of [43]). We note that
in their experiments, Eddi et al. [43] used different drop sizes and fluid parameters than
considered here, so we cannot present a quantitative comparison between their results and
our theoretical predictions.
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a)

c) d)

b)

Figure 5. Common vibrational modes of the square lattice corresponding to longitudinal waves along
high-symmetry lattice directions. (a) An illustration of the k = (π/a, 0) wave mode highlighted by
green markers in Figure 3, corresponding to the out-of-phase oscillations of neighbouring planes
along the x̂ direction with wavelength λ = 2a. (b) The maximum real part of the eigenvalues ηk are
shown for a lattice spacing a/λF = 3.40, with the most unstable modes k = (π/a, 0) and (0, π/a)
marked by crosses. (c,d) Analogous plots for the wave mode k = (π/a, π/a), highlighted by magenta
markers in Figure 3, corresponding to the out-of-phase oscillations of neighbouring planes along the
45 degree diagonal, with wavelength λ =

√
2a.

a) b)

Figure 6. Common vibrational mode of the triangular lattice. (a) An illustration of the k = 2π√
3a
(
√

3
2 , 1

2 )

wave mode highlighted by magenta markers in Figure 4, corresponding to the out-of-phase oscilla-
tions of neighbouring planes along a line 30 degrees to the horizontal, with wavelength λ =

√
3a.

(b) The maximum real part of the eigenvalues ηk for the lattice spacing a/λF = 2.5. The Brillouin
zone boundary is traced in black (see Figure 2b), and crosses indicate the most unstable modes:

k = 2π√
3a
(
√

3
2 , 1

2 ) and π/3 rotations thereof.
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3.2. Geometric Instabilities in the Low-Memory Limit

We have demonstrated that, for the relatively low driving acceleration γ = 0.7γF,
square and triangular lattices are already unstable for certain values of the lattice spacing a.
Following Thomson et al. [44], we refer to such lattices as being ‘geometrically unstable’.
We proceed by demonstrating a method for predicting whether a generic Bravais lattice is
geometrically unstable on the basis of the shape of the lattice-induced wavefield. In the
low-memory limit Me � 1, the dispersion relation (18) reduces to the eigenvalue problem

(
H(0) −H(k)

)
ξ =

[
− 1

ϕMe

(
κω2

k + ωk

)]
ξ, (28)

which admits non-trivial solutions when ξ is an eigenvector of the matrix
(

H(0) −H(k)
)

with corresponding eigenvalue αk. When such is the case, one may equate αk with the
bracketed term on the right-hand side of Equation (28), yielding

P2(ωk) ≡ κω2
k + ωk + ϕMeαk = 0, (29)

which may be solved to obtain the two ωk associated with each of the two eigenvalues αk.
We note that P2(ωk)→ ∞ as ωk → ∞. In the case αk < 0, we also have P2(0) < 0, and so
the intermediate value theorem guarantees the existence of a positive real root. Therefore,
αk < 0 is a sufficient condition for the geometric instability of a generic Bravais lattice;
while we have derived this result in the low-memory limit, one expects that increasing the
memory will tend to promote lattice destabilization. Thus, a lattice that is geometrically
unstable in the low-memory limit should remain so at higher memories.

In Figure 7, we use the above criterion to determine the regions of initial stability
of a rectangular lattice, as is described by two lattice spacings a and b. We note that the
diagonal line a = b in Figure 7 yields the intervals of stability shown in Figure 3b. As was
the case for the square and triangular geometries, the pockets of stability are correlated
with minima in the local wave amplitude. Having identified the regions of initial stability,
the dispersion relation (18) could then be used to characterize the instability threshold and
most unstable vibrational mode for each lattice.
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0.07
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0.09

0.1

0.11

Figure 7. The rectangular lattice is parameterised by two lattice spacings, a and b. Regions of initial
stability at low memory are shaded in green. All other lattices are geometrically unstable. The colourmap
corresponds to the local wave amplitude beneath each drop h0, normalized by the drop radius R. Stable
regions are roughly correlated with minima in h0. The diagonal line a = b corresponds to the square lattice,
where the regions of initial stability correspond to those presented in Figure 3.
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4. Discussion

We have used the variable-phase stroboscopic model of Couchman et al. [32] to con-
sider the linear stability of a group of droplets arranged in a Bravais lattice. All Bravais
lattices are stationary solutions to the stroboscopic model, since the lattice’s discrete trans-
lational symmetry ensures that the net waveforce on each droplet vanishes. By considering
the response of the lattice to normal mode perturbations, our analysis yielded an implicit
dispersion relation relating the vibrational mode’s wavevector k to its complex frequency
ωk, as captures both the mode’s growth rate and oscillation frequency. Particular attention
was given to the square and triangular Bravais geometries, for which the rotational symme-
try of the lattice allowed our general dispersion relation to be reduced to a form similar to
that considered by Thomson et al. [44] in their investigation of a one-dimensional droplet
chain. A distinctive feature of our analysis is the inclusion of variations in the drop’s
vertical motion, as are required to capture the stabilizing influence of droplet–droplet inter-
actions that allow lattices to remain stable above the walking threshold of the individual
constituent drops. This stabilizing phenomenon has also been reported for a variety of
other bound states [32–34,37,39].

While all lattices are stationary solutions to the trajectory equation, not all are stable
at low vibrational accelerations; indeed, the majority are geometrically unstable [44]. For
the square and triangular lattices, we deduced a criterion for geometric instability solely
in terms of the local wave curvature beneath each droplet. This criterion predicts discrete
intervals of stability in the lattice spacing. These stable regions correspond roughly to
geometries that minimize the local wave amplitude beneath each droplet, a feature also
reported in bound droplet pairs [32], rings [33], and one-dimensional lattices [44]. By
considering the low-memory limit of our dispersion relation, we deduced a similar criterion
for assessing the geometric instability of a generic Bravais lattice, which we used to identify
the initial regions of stability for the rectangular lattice.

Consistent with the experimental observations reported by Eddi et al. [43], increas-
ing the memory causes an initially stable lattice to destabilize into phonon-like motions
characterized by coherent small-amplitude oscillations. The most unstable modes were
longitudinal waves in all cases and were usually aligned along high-symmetry directions
of the lattice; shear modes only destabilize at higher vibrational forcings. We numerically
computed the instability threshold of the most unstable modes, and found that they typi-
cally arise above the walking threshold γW for a single droplet, as highlights the stability
imparted by neighbouring droplets. Furthermore, we found local maxima for the instability
threshold at the centre of the initially stable regions, corresponding to minima in the local
wave amplitude, a result not captured in the theoretical modelling of the one-dimensional
lattice [44] where variable phase factors were neglected.

The hydrodynamic lattice exhibits certain features that are distinct from canonical
models of phonons in crystalline lattices, such as those analysed by Blackman [53] and
Montroll [54]. In these models, a discrete lattice of masses is connected to their nearest and
next-nearest neighbours via a linear spring force. If we were to remove the damping term
from our dispersion relation (18), and take the low-memory limit considered in Section 3.2,
we would recover a dispersion relation of the same form as that of Blackman and Montroll,
for which all modes are neutrally stable. For droplet lattices accessible in the laboratory, the
damping term in the trajectory Equation (1) dominates the inertia term in the low-memory
limit, resulting in overdamped oscillations. In our system, neutrally stable oscillations only
arise when the stabilizing effects of damping precisely balance the destabilizing effects
of memory.

In the low-memory limit, the potential landscape is a sum of wave kernels centred
at each droplet of the lattice. This potential induces a linear spring force with the local
curvature playing the role of the spring constant. Since the wave kernel is oscillatory, an
individual droplet may contribute a negative curvature (analogously, a negative spring
constant) to this sum, depending on the inter-droplet distance. This effect is not seen in a
canonical mass-spring lattice, as the springs are only perturbed about their equilibrium
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lengths. The oscillatory wave kernel of the hydrodynamic lattice thus gives rise to much
richer dynamics than arise in generic crystal lattices, including the discrete windows of
initial stability.

Our linear theory for the hydrodynamic lattice cannot predict the amplitude of the
emergent oscillations. A weakly nonlinear extension of our theory, which parallels that
developed for a one-dimensional hydrodynamic lattice [46], could yield insight into the
more complex oscillations reported by Eddi et al. [43]. The potential for further theoretical
explorations abound. For example, one might consider how the introduction of defects,
such as holes or an additional droplet, might modify the resulting lattice dynamics [55].

In solid-state physics, more complex lattice geometries arise, for example, in ionic
lattices comprised of more than one type of atom. In such cases, the ‘unit cell’ constitutes
the smallest non-repeating subcomponent of the lattice, and the structure may be defined
in terms of a Bravais lattice of such unit cells. As is well established in the phonon
literature, having more than one element per unit cell is a prerequisite for optical modes
and band gaps [4,56], frequency ranges in which no vibrational states arise. In our study, we
restricted our attention to the case where there is a single droplet per unit cell, and focused
on relatively simple geometries. In the future, one might extend this framework to describe
lattices tiled by unit cells containing multiple droplets, thereby describing arbitrary lattices
in the plane. We note that for such arrangements, the equilibrium condition ∇h(dmn) = 0
(Equation (9)) would not necessarily be satisfied for all arbitrary unit cells. Nevertheless, an
extended theoretical framework might enable an investigation of the Archimedian tilings
that Eddi et al. [42] were unable to access in the laboratory, such as the truncated hexagonal
and great rhombi-trihexagonal lattices.
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Appendix A. Impact-Phase Parameters

The strobing of the trajectory equation of Moláček and Bush [47] at the vertical bounc-
ing period TF introduces two impact-phase parameters,

S =

∫ t+TF
t FN(t′) sin(π f t′)dt′
∫ t+TF

t FN(t′)dt′
, C =

∫ t+TF
t FN(t′) cos(π f t′)dt′

∫ t+TF
t FN(t′)dt′

, (A1)

that represent averages of the sine and cosine of the bath’s phase of oscillation over the
duration of droplet impact, weighted by the vertical contact force FN exerted on the drop
by the bath [47]. The impact phase directly scales both the wave amplitude generated at
each impact (see Equation (2)) and the horizontal wave force imparted to the drop by the
bath (see Equation (1)), as captured by S and C, respectively. While the phase parameters
are often combined into a constant fitting parameter sinΦ, modulations in a drop’s impact
phase have been shown to be critically important in accurately capturing the stability of
bound droplet states [32,33,37,39]. Couchman et al. [32] thus derived functional forms
for the dependencies of S and C on the bath’s vibrational acceleration γ, the local wave
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amplitude beneath each drop h0 = h(x0, t), and the drop radius R. To ensure that our
theoretical predictions may provide the best possible comparison with future experimental
studies, we here include these variable-phase parameters in our analysis, noting that the
product SC may be set to a constant for a simpler description of the system.

The functional dependencies of S and C on the bath’s vibrational acceleration γ, local-
wave amplitude h0, and droplet radius R, are presented in Table 2 of Couchman et al. [32].
To obtain the explicit results presented in Section 3, we here focus our theoretical analysis
on drops of radius R = 0.36 mm bouncing in a (2, 1)2 mode, as are typical parameters for
experimental studies [32,33,37,39]. In this case, the impact phase functions take the form

S(γ, h0) = 1− 1.32 exp{−3.52(γ/g− 5.73h0/R− 2)}, (A2)

C(γ, h0) = 1.98 exp{−2.37(γ/g− 5.86h0/R− 2)}, (A3)

where the gravitational acceleration g and drop radius R are used to non-dimensionalize γ
and h0, respectively.

Appendix B. Rotational Symmetries of the Square and Triangular Lattices

We here derive the simplification H(0) = η0I (Equation (24)) which holds for the
square and triangular lattices, due to their respective four- and six-fold symmetries (see
Figure A1). We adopt the notation

cpq ≡ xpq/
∣∣dpq

∣∣, spq ≡ ypq/
∣∣dpq

∣∣, (A4)

where dpq =
(

xpq, ypq
)
, and cpq and spq thus represent the cosine and sine of the angle

between the position vector dpq and the x-axis. Equation (19), using k = 0, thus yields

H(0) = 2 ∑
pq




f ′′(|dpq|)
[

c2
pq cpqspq

cpqspq s2
pq

]

︸ ︷︷ ︸
A1

+
f ′(|dpq|)
|dpq|

[
s2

pq −cpqspq

−cpqspq c2
pq

]

︸ ︷︷ ︸
A2




. (A5)

For both the square and triangular geometries, we now demonstrate that the right-hand
side of Equation (A5) is proportional to the identity matrix I.

Figure A1. Square (a) and triangular (b) lattices exhibit four- and six-fold symmetry, respectively,
and may be generated by rotating the bolded points around the origin in increments of π/2 and π/3.

Appendix B.1. Square Lattice

Consider performing the sums in Equation (A5) by grouping four points at a time,
selected by rotating an initial point (p, q) in the first quadrant of Figure A1a through angles
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of θ = lπ/2, l ∈ [0, 3]. Importantly, each of these four points maintains the same distance
|dpq| from the origin. Using the identities

3

∑
l=0

sin2(θ0 + lπ/2) =
3

∑
l=0

cos2(θ0 + lπ/2) = 2, (A6)

3

∑
l=0

sin(θ0 + lπ/2) cos(θ0 + lπ/2) = 0, (A7)

yields

3

∑
l=0

A1 =
3

∑
l=0

(
c2

l clsl
clsl s2

l

)
=

(
2 0
0 2

)
, (A8)

3

∑
l=0

A2 =
3

∑
l=0

(
s2

l −clsl
−clsl c2

l

)
=

(
2 0
0 2

)
. (A9)

Thus, the right-hand side of Equation (A5) is proportional to the identity matrix I.

Appendix B.2. Triangular Lattice

Performing an analogous procedure as for the square lattice, we now evaluate the
sums in Equation (A5) by grouping six points at a time, selected by rotating an initial point
(p, q) in the bolded sixth of Figure A1b through angles of θ = lπ/3, l ∈ [0, 5]. Using the
identities

5

∑
l=0

sin2(θ0 + lπ/3) =
5

∑
l=0

cos2(θ0 + lπ/3) = 3, (A10)

5

∑
l=0

sin(θ0 + lπ/3) cos(θ0 + lπ/3) = 0, (A11)

yields

5

∑
l=0

A1 =
5

∑
l=0

(
c2

l clsl
clsl s2

l

)
=

(
3 0
0 3

)
, (A12)

5

∑
l=0

A2 =
5

∑
l=0

(
s2

l −clsl
−clsl c2

l

)
=

(
3 0
0 3

)
. (A13)

Thus, once again, the right-hand side of Equation (A5) is proportional to the identity
matrix I.
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Abstract: We investigate qualitatively a uniform non-Brownian sedimenting suspension in a station-
ary state. As a base of our analysis we take the BBGKY hierarchy derived from the Liouville equation.
We then show that assumption of the plasma-like screening relations can cancel some long-range
terms in the hierarchy but it does not provide integrable solutions for correlation functions. This
suggests breaking the translational symmetry of the system. Therefore a non-uniform structure can
develop to suppress velocity fluctuations and make the range of correlations finite.

Keywords: non-Brownian sedimentation; stability; BBGKY hierarchy; hydrodynamic screening;
correlation functions; low-Reynolds-number hydrodynamics

1. Introduction

Sedimentation is a process of falling of particles in a fluid due to gravity (the particles
are more dense then the fluid). Considerations in this paper are restricted to the limit of
vanishing Reynolds number and infinite Peclet number. Reynolds number is given by

Re = aη−1ρlUS, (1)

where a is radius of a particle, η is dynamic viscosity coefficient of the fluid, ρl is density
of the fluid and US is the Stokes velocity of a single particle falling in unbounded fluid
motionless at infinity. When Re → 0, the fluid flow instantly adjusts to the boundary
conditions. Peclet number is given by

Pe = aD−1US, (2)

where D is diffusion coefficient of a single particle in a fluid. In case of Pe → ∞, Brow-
nian motion is negligible compared to the motion caused by gravity and hydrodynamic
interactions. In such a system there are difficulties with divergent expressions due to
hydrodynamic field disturbance slowly decaying over distance (inversely proportional to
distance—same as electric potential produced by an isolated charge in a vacuum). Chal-
lenges of theoretical approach to system with vanishing Reynolds number (and divergent
Peclet number) are known for more than hundred years. In 1911, Smoluchowski [1,2]
investigated a particle surrounded by other particles suspended in a Newtonian fluid. His
observation was that, considering larger and larger systems leads to a divergent expression
for the particle falling velocity, caused by the long-range velocity disturbance produced by
other particles. Now this is known in literature as the Smoluchowski paradox [3]. Solution
of this paradox was given by Batchelor [4] sixty years after the work of Smoluchowski and
then reanalyzed by Beenakker and Mazur [5].

Batchelor’s main idea was to calculate the average velocity of suspended particles 〈U〉
relative to the flow 〈v〉 of the whole suspension which resulted in 〈U〉 − 〈v〉 where cancel-
lation of divergent terms secures that the average relative velocity is finite. Nevertheless
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there is another problem within physics of such a system: calculation of the sedimentation
velocity variance. This one was noticed by Caflisch and Luke [6] in 1985. They showed that
fluctuations in general should grow with linear dimension L of a system which is again a
result of a slowly decaying flow disturbance around a particle. One can spot that if this
flow disturbance is inversely proportional to distance then integrating square of it leads
to linear divergence with L. To solve that conundrum, Koch and Shaqfeh [7] proposed in
1991 that pair probability has to obey the screening relation like in plasma (as it is with
the Debye–Hückel screening), namely that it has to reflect a net deficit of one particle in
the vicinity of each particle. This condition corresponds to vanishing structure factor for
vanishing k wave vector, S(k → 0) = 0. The idea of screening is that hydrodynamic
interaction between particles results in lower probability of finding a close pair of particles.
When screening occurs this effect is finely tuned in such a way that effective hydrodynamic
interaction between particles within a pair has a much faster decay with the inter-particle
distance—a power law is replaced by an exponential decay. Moreover, the change is such
that integral of the correlation function reflects the average lack of exactly one neighboring
particle around a test particle. This leads to cancellation of the leading long-range terms
and results in convergent expressions for velocity fluctuations. An example of such a
cancellation owing to the screening effect will be provided in Section 3.1.

Nevertheless, the idea of the screening condition being satisfied was a subject of a
substantial critique [8–11] which was mainly focused on showing no evidence of screening
in simulations of a sedimenting suspension. In order to cope with fluctuations many ideas
were given. Some were pointing to the crucial role of walls [12], some were focusing on
stratification [13] or its critique [14,15], some were considering additional shear flow [16],
and others even tried to look for a solution in non-zero Re number [17]. Good scope of
troubles with finding solution to fluctuation problem is given in review articles [18–20].

In this paper, the screening idea is analyzed and it is shown that the BBGKY (Bo-
goliubov, Born, Green, Kirkwood, Yvon) hierarchy for the correlation functions between
sedimenting particles [21] in a uniform stationary state has no screening solutions at all.
This is a significant problem since BGGKY hierarchy is derived straightforwardly from the
Liouville equation which cannot be violated.

In the Section 2, the theoretical framework is presented. In Section 3 it is shown that
even if some of long range terms in hierarchy are regularized by screening conditions,
there are still other ones which cannot be screened at all. This leads to contradiction since
assuming screening still leads to equations which give non-integrable solutions for the
correlation functions. This suggests that the system becomes non-uniform and symmetry
with respect to translations is broken. As pointed out in Section 4, this finding gives a novel,
unique theoretical explanation of a non-uniform structure of non-Brownian sedimenting
suspensions, previously reported in experiments and numerical simulations [13,19,22–32].

2. Methods
2.1. System and Its Theoretical Description

System consists of N identical rigid spherical particles (mono-disperse suspension)
immersed in a Newtonian fluid of viscosity η. Particle radius a is small enough and
viscosity of fluid is sufficiently large to ensure Reynolds number (Re) is much smaller than
unity. Then one can set Re = 0 which reduces Navier–Stokes equations for the fluid flow
to the Stokes equations [33]. Simultaneously a is large enough to keep Peclet number (Pe)
much larger then 1 so Brownian motion can be neglected. Particles are uniform, spherically
symmetric and their density ρp is larger than the density ρ f of the surrounding fluid, which
results in settling of those particles under gravity. Macroscopically system is assumed to be
uniform and stationary.
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The fluid flow is governed by the Stokes equations. The Green tensor for an un-
bounded system, with condition that fluid velocity is zero at infinity, is represented by the
Oseen tensor T of the form [34]:

T (r) = 1
8πηr

(I+ r̂r̂). (3)

Velocities of the fluid and particles are determined by external forces (By external
forces one should understand those which are not a result of an interaction with the fluid)
and boundary conditions at infinity and at the particles. It is important to solve the so-called
mobility problem which is stated as below: determine velocities of the particles given their
positions and total external forces acting upon them, in the absence of any external torques
on the particles. The solution is represented by 3×3 Cartesian mobility matrices µij, with
the particle labels i, j = 1, ..., N [35],

U i(X) =
N

∑
j=1

µij(X)F j, (4)

where
X = {R1, . . . , RN} (5)

is the set of positions Ri of all the particle centers, U i is the velocity of i-th particle, F j
is the external force, e.g., gravity, acting on particle j. In this paper all the forces are
identical, F j = F. In general, mobility matrices µij depend on positions of all the particles
X. Although µij have many-body character, they can be expressed as an infinite sum of
sequences of two-particle interactions. Such a scattering expansion [36–39], analogous to
the reflection method [33], can be written as,

µij =

(
µ0 + µ0Z0G

[
∞

∑
k=0

(
−Ẑ0G

)k
]
Z0µ0

)

ij

. (6)

At the RHS of the above equation, we use the operators, defined, e.g., in [38,40,41]
and briefly described below. The single particle operators: mobility µ0, friction Z0 and
convective friction Ẑ are diagonal in the particle labels i, and identical for each value of i
because the particles are identical. Their meaning is the following,

µ0 : force on a particle 7→ velocity of that particle (7)

Z0 : incoming fluid velocity field at a particle

7→ force density induced on that particle (8)

Ẑ0 : incoming fluid velocity field at a freely moving particle

7→ force density induced on that particle (9)

The difference between the operators Z0 and

Ẑ0 = Z0 −Z0µ0Z0 (10)

is that in case of Z0, the particle translational and rotational velocities are given, while in
case of Ẑ0, the particle moves freely, what by definition means that the total induced force
and torque on that particle vanish [38,40,41].

The off-diagonal operator G contains as its elements propagators based on the Oseen
tensor given by Equation (3). The elements Gij are propagators between different particles
i 6= j, and they represent single hydrodynamic interactions. The element Gij depends only
on the relative position Rij = Ri − Rj, and it acts in the following way,

Gij(Rij) : force density on j-th particle at Rj 7→ generated fluid velocity at Ri (11)
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In general, the operators µ0, Z0, Ẑ0 and G are complicated but one can simplify
description by expressing those elements in terms of vector solid harmonics [34] as base
functions given by irreducible representations of the SO(3) group. It results in multipole
expansion of hydrodynamic interactions [33,42–45] which is one of among other successful
applications of multipole formalism like in electromagnetism [46] or gravity [47]. The base
multipole functions are characterized by three indices l, m, σ, with l = 1, 2, . . . , m = −l, . . . , l
and σ = 0, 1, 2. Using them, one can represent each operator as a large matrix with the
particle labels and the multipole indices, ilmσ. In this way, superposition of the operators in
Equation (6) should be understood as multiplication of the corresponding large matrices. In
particular, Gilmσ,jl′m′σ′ describes the coupling between l′m′σ′ force multipole on j-th particle
and lmσ velocity multipole on i-th particle. Using the multipole representation is very
convenient for asymptotic analysis since the dependence of G elements on distance is very
simple [44],

Gilmσ,jl′m′σ′ ∝ R−l−l′−σ−σ′+1
ij . (12)

To proceed with further analysis it is needed to point out the crucial difference between
the multipole elements of Z0 and Ẑ0. Both operators are diagonal in pairs of indices l, l′,
and m, m′. For l ≥ 2 their multipole elements are identical. However, they are different
for l = 1. In this case, the operator Ẑ0 has the only non-zero element for (σ, σ′) = (2, 2),
determined by the relation (10).

Therefore, when Gij is between operators Ẑ0 in a scattering sequence given by
Equation (6), the slowest possible decay of the interaction is for (l, l′) = (2, 2) and
(σ, σ′) = (0, 0) which, according to Equation (12), scales as 1/R3

ij. This specific term
corresponds to coupling between symmetric vector dipole moments (l = 2, σ = 0) so it can
be called a dipole-dipole interaction.

Using the multipole representation, it is now easier to understand the scattering
expansion (6). Taking into account that the large matrices representing the single particle
operators µ0, Z0 and Ẑ0 are diagonal in the particle labels, and the diagonal elements
are identical for each particle, from now on we will redefine the symbols µ0, Z0 and Ẑ0
to denote the corresponding diagonal elements, which are matrices in the space of the
multipole indices. In the new notation, the first term in the bracket at the RHS of (6) is µ0δij.
The second term is the single-scattering sequence µ0Z0GijZ0µ0, with multiplication of the
consecutive multipole matrices. The third term is the sum of the two-scattering sequences,
−µ0Z0GimẐ0GmjZ0µ0, with respect to m 6= i and m 6= j, and so on.

2.2. BBGKY Hierarchy of Equations for Correlation Functions

To derive the BBGKY hierarchy of equations for the correlation functions of sediment-
ing particles one needs to consider the Liouville equation for the system. For a stationary
state it reads [21]:

N

∑
i=1

∂

∂Ri
· [U i(X)ρ(X)] = 0. (13)

where ρ(X) is the probability distribution function for particle positions. To proceed further
one needs to introduce m-particle microscopic density operator

n̂m(m, X) =
,

∑
j1,j2,...,jm

m

∏
i=1

δ(ri − Rji ), (14)

where m is set of positions
m = {r1, . . . , rm}, (15)

also abbreviated to {1, . . . , m}. The sum
,

∑ is taken over all m-particle subsets and their

permutations which results in sums with respect to ji where i = 1, . . . , m and there is no
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duplicating indices ∀i,k ji 6= jk (see equation (3.1.20) in [48]). When averaged over positions
X one obtains m-particle density functions

nm(m) =
∫

dXρ(X)n̂m(m, X) = 〈n̂m〉, (16)

with
〈. . . 〉 =

∫
dXρ(X) . . . (17)

In case of identical particles one can also recover the well-known formula,

nm(m) =
N!

(N −m)!

∫
dXρ(X)δ(r1 − R1) · · · · · δ(rm − Rm). (18)

Averaging for m = 1 one gets concentration n1(1) = n = N/V where N is the number
of particles and V is the volume of the system. Following [48], we introduce k-particle
correlation functions hk(k), defining them by the relations,

n2(1, 2) = n2(1 + h2(1, 2)) (19)

n3(1, 2, 3) = n3(1 + h2(1, 2) + h2(2, 3) + h2(1, 3) + h3(1, 2, 3)) (20)

n4(1, 2, 3, 4) = n4(1 + h2(1, 2) + h2(1, 3) + h2(1, 4) + h2(2, 3) + h2(2, 4) + h2(3, 4)

+h2(1, 2)h2(3, 4) + h2(1, 3)h2(2, 4) + h2(1, 4)h2(2, 3)

+h3(1, 2, 3) + h3(1, 2, 4) + h3(2, 3, 4) + h4(1, 2, 3, 4)) (21)
...

Now multiplying the Liouville Equation (13) by density operator n̂m and averaging
over all positions X results in generation of the following BBGKY hierarchy of equations for
m-particle density functions (It can be transformed to connected hierarchy for correlation
functions [21], but for the purpose of this work it is enough to consider this hierarchy as
it is.):

m

∑
i=1

∂

∂ri
· 〈U in̂m〉(m) = 0, with m = 2, 3, . . . . (22)

Explicitly,

∂

∂r1
· 〈U1n̂2〉(2) +

∂

∂r2
· 〈U2n̂2〉(2) = 0 (23)

∂

∂r1
· 〈U1n̂3〉(3) +

∂

∂r2
· 〈U2n̂3〉(3) +

∂

∂r3
· 〈U3n̂3〉(3) = 0 (24)

∂

∂r1
· 〈U1n̂4〉(4) +

∂

∂r2
· 〈U2n̂4〉(4) +

∂

∂r3
· 〈U3n̂4〉(4) +

∂

∂r4
· 〈U4n̂4〉(4) = 0 (25)

...

For two identical particles, the LHS of Equation (23) is always zero due to the symmetry
with respect to interchanging the particle labels, and the translational symmetry of the
system. In case of two different particles, Equation (23) was solved by Batchelor [49,50],
with the use of the expansion in powers of the concentration n. In case of three particles
Cichocki and Sadlej [51] proposed a scheme to deal with the long range terms, but limited
to mono-disperse case. The problem of long-range terms in Equations (24) and (25), and
also higher order equations, will be discussed in the next section.
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3. Results
3.1. Long-Range Terms and Screening

Hierarchy of the Equations (22) describes the conditions for particle current diver-
gences which represent the law of mass conservation. By considering an increasing number
of particles and performing the cluster analysis [21,39] one can obtain equations for the
correlation functions. In these equations, there appear long-range terms which scale with
the inter-particle distances r as 1/r, 1/r2 and 1/r3 which makes them non-integrable in
the thermodynamic limit, defined as N, V → ∞ and n = N/V = const. Without imposing
additional conditions, this would lead to non-integrable correlation functions. However,
integrability of the correlation functions is necessary for stability of the system. As it is
mentioned in the introduction, Koch and Shaqfeh proposed a screening mechanism for
the system under consideration, similar as in a one component plasma, as condition (2.14)
in [7]. This condition, formulated in terms of the pair probability g, can be written in terms
of the two-particle correlation function h2 = g/n− 1 as:

n
∫

drh2(r) = −1, (26)

For the higher order correlation functions this should be generalized to [52]:

n
∫

drk+1hk+1(r1, r2, . . . , rk+1) = −khk(r1, . . . , rk), k = 2, 3, ... (27)

Those conditions will lead to finite velocity fluctuations in the thermodynamic limit.
One can try to apply the conditions (26) and (27) to eliminate (regularize) long-range terms
also in the BBGKY hierarchy. However, as it will be shown below, the screening conditions
eliminate many but not all long-range terms in the hierarchy. Nevertheless, the screening
conditions (26) and (27) can be satisfied only if all the correlation functions have a finite
range. Therefore, we will face a contradiction.

In the following, we will first provide an example how the screening condition (26)
leads to cancellation of some long-range terms. Then we will show another example of
long-range terms which remain unaffected by screening.

Equations (24) and (25), . . . of the BBGKY hierarchy for three, four and more particles
contain long-range terms. We will focus on Equation (24) and identify such terms. To this
goal, one should do substitutions using the expressions (4) for the particle velocities U i in
terms of the mobilities µij, given as the series (6) of scattering sequences. Each sequence
linking particles i and j consists of a certain number of scatterings, generated by the
force F acting on particle j. The scattering sequences are next averaged, what leads to
multiplication by certain correlation functions. It is useful to remember that the density
operator n̂m sets positions of particles 1, 2, . . . , m regardless whether they are included in
a particular scattering sequence for U i or not, with U i given by Equations (4) and (6). It
means that if there are particle positions in a certain BBGKY hierarchy term 〈U in̂m〉(m)
which are being integrated then they must appear in a scattering sequence of U i.

We will now provide the first example. In the expression (24) there exists a term with
the single interaction G12 between particles 12, the single interaction G23 between particles
23 and the pair correlation h2(r12) between the particles 12. This term can be written as
follows,

n3 ∂

∂r1
·
[
µ0Z0G12Ẑ0G23Z0µ0Fh2(r12)

]
. (28)

The slowest decaying part of this term is proportional to r−2
23 since it is between opera-

tors Z0 and Ẑ0, and we know how G23 can vary with distance given (12). If n
∫

drh2(r) =
−1 holds then the expression (28) can be screened by another term from Equation (24),
involving in addition a fourth particle and containing integration with respect to its position
r4. This term contains the single interaction G12 between particles 12, the single interaction
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G24 between particles 24, the pair correlation functions h2(r12) and h2(r34) between pairs
of particles 12 and 34,

n4 ∂

∂r1
·
[∫

dr4µ0Z0G12Ẑ0G24Z0µ0Fh2(r12)h2(r34)

]
. (29)

In this term G24 can be expanded in the following way,

Gik = Gij + r jk ·
∂

∂rij
Gij + . . . , (30)

with i, j, k = 2, 3, 4. Such an expansion, when plugged into Equation (29), is justified since,
according to our assumption, the correlation function h2(r34) has short range. When taking
into account the first term of (30), the expression (29) reads

n3 ∂

∂r1
·
[

µ0Z0G12Ẑ0G23Z0µ0Fh2(r12)n
∫

dr4h2(r34)

]
. (31)

with the screening condition (26), the expressions (28) and (31) cancel each other. The second
term of (30) gives no contribution to expression (29) because, due to symmetry of correlation
function,

∫
rh2(r)dr = 0. The correlation function has to obey general symmetry of the

system, first one with respect to the rotation around vertical axis and second one with
respect to parity in the direction of that axis. Higher order terms in (30) lead in Equation (29)
to the hydrodynamic interaction between particles 2 and 3 which decays at least as fast as
r−4

23 so it is then of a short range. Ability to construct a screening pair of terms is based on the
fact that those screened interactions are the first from the right in the scattering sequence.

Such a construction is not possible otherwise which gives rise to examples contradict-
ing the possibility of screening of all terms. An example of such term can be found in the
hierarchy Equation (25) for 4 particles. This term is written below,

n4 ∂

∂r1
·
[
µ0Z0G12Ẑ0G23Ẑ0G34Z0µ0Fh(r12)h(r34)

]
. (32)

Above, the expression Ẑ0G23Ẑ0 decays as r−3
23 and therefore corresponds to infinite

range of interaction as it was explained below Equation (12). In analogous way to formation
of the pair (28) and (31) the term (32) can be paired with the following one,

n5 ∂

∂r1
·
[∫

dr5µ0Z0G12Ẑ0G25Ẑ0G54Z0µ0Fh(r12)h3(r34, r35)

]
. (33)

In this case, one has to expand two hydrodynamic interaction propagators, G25 and
G54 using (30), with i, j, k equal to 2, 3, 5 and 5, 3, 4 respectively. However, this operation
together with the screening condition (27) for k = 2 does not lead to cancellation of infinitely
long range interactions like it was with a pair of (28) and (31).

In general, such a dipole–dipole part of the hydrodynamic interaction Gij inside
a scattering sequence, which gives rise to long range behavior of correlations, cannot
be screened by the plasma-like screening conditions (27). This is due to the fact that
construction of a screening pair requires also expanding preceding interaction which is
on the right side of Gij. This situation results in an inability to cancel the slowest r−3

ij
term because one gets integrals which contains both correlations and interactions and they
cannot be reduced by screening conditions. It means that screening can only affect first
from right interaction in the scattering sequence. Therefore, only some long range terms
are canceled by (27). Other ones still remain, as illustrated in the above example. This leads
to a contradiction with the assumption that correlation functions are integrable.

This means that one will not obtain for correlations an integrable solution of the
BBGKY hierarchy. This contradicts screening relations leading to instability of a uniform
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system due to divergent expressions for velocity fluctuations in the thermodynamic limit.
It suggest that system has to break the translational symmetry and that it has to develop
some non-uniform structure like stratification or swirls [22] which can change the velocity
fluctuations magnitude [13]. However, for numerical simulations of small systems in
periodic boundary conditions [9,53] fluctuations are small enough to keep the stationary
state uniform. In those systems mechanism proposed by Cichocki and Sadlej [51] to
regularize long range interactions may be a hint to find a solution for correlation functions.

4. Conclusions

In this article, it has been shown that in the BBGKY hierarchy [21] for the correlation
function in a sedimenting uniform non-Brownian suspension there is no solution that
obeys plasma-like screening relations. This was done by assuming validity of screening
conditions and showing that this hypothesis cannot eliminate all long-range terms in the
BBGKY hierarchy, and therefore it leads to a contradiction with our assumption. Our results
suggest that there is no uniform steady state in the thermodynamic limit. The problem
cannot be solved by a system invariant to translations. Our finding is that the uniformity is
broken at least on a certain length scale [19,22,23]. This seems to be in an agreement with
experimental and numerical investigations. They show that non-uniform structures like
swirls [13,24–29] or stratification [30–32] are likely to develop in sedimenting suspensions.
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Abstract: The ‘fluid mechanical sewing machine’ is a device in which a thin thread of viscous fluid
falls onto a horizontal belt moving in its own plane, creating a rich variety of ‘stitch’ patterns depend-
ing on the fall height and the belt speed. This review article surveys the complex phenomenology
of the patterns, their symmetries, and the mathematical models that have been used to understand
them. The various patterns obey different symmetries that include (slightly imperfect) fore–aft
symmetry relative to the direction of belt motion and invariance under reflection across a vertical
plane containing the velocity vector of the belt, followed by a shift of one-half the wavelength. As
the belt speed decreases, the first (Hopf) bifurcation is to a ‘meandering’ state whose frequency is
equal to the frequency Ωc of steady coiling on a motionless surface. More complex patterns can be
studied using direct numerical simulation via a novel ‘discrete viscous threads’ algorithm that yields
the Fourier spectra of the longitudinal and transverse components of the motion of the contact point
of the thread with the belt. The most intriguing case is the ‘alternating loops’ pattern, the spectra of
which are dominated by the first five multiples of Ωc/3. A reduced (three-degrees-of-freedom) model
succeeds in predicting the sequence of patterns observed as the belt speed decreases for relatively low
fall heights for which inertia in the thread is negligible. Patterns that appear at greater fall heights
seem to owe their existence to weakly nonlinear interaction between different ‘distributed pendulum’
modes of the quasi-vertical ‘tail’ of the thread.

Keywords: viscous threads; coiling instability; fluid mechanical sewing machine

1. Introduction

Everyone is familiar with the beautiful ‘liquid thread coiling’ instability (also known
as ‘liquid rope coiling’) that occurs when a thin stream of honey falls onto a piece of toast
(Figure 1a). Liquid coiling is a classic example of a symmetry-breaking bifurcation. In
this case, the basic state is an axisymmetric stagnation flow (Figure 1b). When the fall
height H exceeds a critical value (for small heights) or the volumetric flow rate Q becomes
less than a critical value (for large heights), the stagnation flow becomes unstable to small
lateral perturbations (incipient bending) of the thread’s axis. The instability eventually
saturates to form a coil with a finite radius R that rotates about the vertical with an angular
frequency Ω. The resulting structure comprises three distinct parts in general: an upper
quasi-vertical ‘tail’, the ‘coil’ in which the thread is strongly bent, and an underlying ‘pile’ of
fluid previously laid down by the coiling. The essential difference between the tail and the
coil is that deformation of the former is dominated by stretching, whereas the deformation
of the coil is dominated by bending. Since the equations that describe bending are of higher
order in the arcwise derivatives than those describing stretching, the coil can be thought of
as a boundary layer that ensures the satisfaction of all the relevant boundary conditions at
the contact point with the pile.
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Figure 1. Behaviors of a viscous thread falling onto a motionless surface. (a) Steady coiling for
ν = 6150 cS, Q = 0.032 mL s−1, and H = 7 cm. The definitions of the coil radius R and the radius a1

of the thread at the contact point are shown. The structure comprises a long and nearly vertical tail,
the coil, and a pile of fluid previously laid down by the coiling. (b) Axisymmetric stagnation flow for
ν = 3450 cS, Q = 3.55 mL s−1, and H = 23.5 cm. (c) Coiling with an unstable pile for ν = 3450 cS,
Q = 0.68 mL s−1, and H = 25 cm.

In laboratory experiments, the formation of a pile on the surface is unavoidable. Under
some conditions, this pile is a steady-state feature (Figure 1a), while under others it is itself
unstable to small perturbations, leading to periodic collapse or quasi-steady secondary
buckling (Figure 1c). Especially in these latter cases, the time-dependence of the pile
corresponds to a rather ‘dirty’ unsteady boundary condition at the bottom of the freely
coiling thread. It is thus natural to ask: what would happen if we could continuously
remove all the fluid laid down by the coiling, thereby doing away with the pile? An easy
way to do this comes to mind: it is to let the fluid fall, not onto a motionless surface, but onto
a surface moving with a constant horizontal speed V. The result is the “fluid mechanical
sewing machine” (FMSM), a name first coined by Chiu-Webster and Lister [1].

Figure 2 shows a simple laboratory apparatus that realizes the FMSM. A fluid thread
ejected at a constant volumetric rate Q from a nozzle falls onto a belt in the form of a
closed loop that is kept in motion by two rollers. When V is sufficiently high, the thread is
stretched in the downstream direction and remains confined to a vertical plane, as shown
in Figure 2. However, when V is less than a critical value, the thread becomes unstable to
out-of-plane oscillations. This oscillatory motion leaves complex traces of fluid on the belt
that resemble stitch patterns when viewed from above, hence the name FMSM.
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Figure 2. A laboratory apparatus for studying the FMSM. The units on the ruler are centimeters
(left) and inches (right). Photograph courtesy of J. R. Lister.

The first investigations of the dynamics of threads of viscous fluid falling onto sur-
faces were the experimental studies of liquid thread coiling by G. Barnes and collabora-
tors [2,3]. Since then, liquid thread coiling has been studied in depth using laboratory
experiments [4–14] linear stability analysis [11,15,16], scaling analysis [8], asymptotic anal-
ysis [17], and numerical analysis based on slender-thread theory [9–14,18]. Interest in the
more complicated case of a moving surface—the FMSM—began with the pioneering study
of Chiu-Webster and Lister [1], who performed laboratory experiments and proposed a
theoretical model in which the thread deforms by stretching alone, without bending. In
the same year, Ribe et al. [19] proposed a theoretical model that included bending. They
performed a linear stability analysis of the steady dragged state of the thread, and found
that the predicted critical belt speed and frequency for the onset of out-of-plane oscillations
(meandering) agreed closely with the experimental measurements of [1]. Extensive labo-
ratory experiments with improved apparatus were performed by Morris et al. [20], who
determined a detailed phase diagram of the stitch patterns as a function of fall height and
belt speed. They showed that the onset of meandering is a Hopf bifurcation, and applied
equivariant bifurcation theory together with symmetry constraints to determine generic
amplitude equations for interacting modes of the thread’s motion. Blount and Lister [21]
used matched asymptotic expansions to determine the structure and stability of a dragged
viscous thread in the limit of extreme slenderness. Brun et al. [22] performed numerical
simulations of the FMSM patterns using an algorithm based on a discrete formulation of
the slender-thread equations, and classified the different patterns according to their Fourier
spectra. Finally, Brun et al. [23] proposed a reduced (three-degrees-of-freedom) model for
non-inertial FMSM patterns, and showed that the model equations accurately predict the
sequence of bifurcations that occur as the belt speed changes.

This review article begins in Section 2 by surveying the complex phenomenology of
the stitch patterns and classifying them according to their symmetries. Section 3 reviews
liquid thread coiling on a motionless surface, the physics of which underlies the FMSM.
Section 4 examines the initial bifurcation from a steady dragged thread to meandering via
a linear stability analysis based on the theory of slender viscous threads. Section 5 presents
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direct numerical simulations of the stitch patterns using a ‘discrete viscous threads’ (DVT)
numerical model. Section 6 presents a spectral analysis of selected stitch patterns based
on DVT simulations. Section 7 discusses a reduced model for inertia-free stitch patterns
that explains several curious features of the more complicated DVT simulations. Finally,
Section 8 discusses the (slightly imperfect) fore–aft symmetry of many of the patterns, and
closes with some suggestions for further research.

2. Stitch Patterns

Figure 3 shows an essentially complete catalog of the stitch patterns observed exper-
imentally in the FMSM. In this preliminary presentation, the patterns are shown ‘all in
a jumble’, with no attempt to indicate the relationships between them. Apart from the
disordered pattern and the steady dragged thread, all the other patterns are periodic in the
coordinate x parallel to the belt’s motion, with a well-defined primary wavelength λ.

�at (steady dragged thread)

meanders

double meanders

   bunched meanders braiding

translated coiling

1 cm

sidekicks

alternating loops

slanted loops

two by two

disordered

W pattern

bunched double coiling

Figure 3. Stitch patterns observed in the FMSM. Photographs courtesy of J.R. Lister.

It is instructive to classify the patterns by their different symmetries. Let y be the
horizontal coordinate normal to the direction of the belt’s motion, with origin on the
line below the center of the nozzle. Because not all patterns are graphs y(x), we de-
scribe each pattern by the pair of functions x(s), y(s), where s is the arclength along the
thread’s axis. Let λs be the ‘arcwise wavelength’, i.e., the total arclength of the thread
contained within one wavelength λ in the x-direction. Table 1 shows the symmetries of
the patterns. The most highly symmetric pattern is of course the steady dragged thread
with y(s) = 0, which exhibits (trivial) mirror symmetry across the vertical plane y = 0.
Among the periodic patterns, three (meanders, alternating loops, and two-by-two) have the
symmetry y(s + λs/2) = −y(s). This corresponds to reflecting the pattern across the line
y = 0 and then shifting it longitudinally by an amount λs/2. Next comes the symmetry
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y(s0 − s) = y(s) for some s0, which corresponds to fore–aft symmetry with respect to the
direction of belt motion. In addition to the patterns already mentioned, translated coiling
and the W-pattern exhibit this symmetry. Finally, the lowest symmetry is simple periodicity
such that y(s + λs) = y(s). All the patterns except the disordered one are periodic.

Table 1. Symmetries of stitch patterns observed experimentally. An X indicates a pattern having the
symmetry shown at the top of each column.

Pattern y(s) = 0 y(s + λs/2) = −y(s) y(s0 − s) = y(s) y(s + λs) = y(s)

Flat (dragged thread) X X X X
Meanders − X X X
Alternating loops − X X X
Two-by-two − X X X
Translated coiling − − X X
W pattern − − X X
Bunched meanders − − − X
Braiding − − − X
Bunched double coiling − − − X
Slanted loops − − − X
Double meanders − − − X
Sidekicks − − − X
Disordered − − − −

To understand better the relationships among the patterns, it is helpful to examine a
phase diagram showing where each pattern is observed in the space of belt speed and fall
height. Figure 4 shows such a diagram for the values of the viscosity ν and the flow rate
Q given in the caption. For fall heights H ≤ 5.5 cm, the patterns appear in the order flat -
meanders - alternating loops - translated coiling as the belt speed decreases. For greater
fall heights, alternating loops disappear, only to reappear again around H = 7.8 cm. The
phase diagram is particularly rich for H ≥ 7.2 cm, where additional patterns such as the
W-pattern, double coiling, biperiodic meanders, and slanted loops are seen. Much of the
region H ≥ 7.2 cm is given over to disordered patterns, which occur in ‘patches’ in the H-V
space bounded by regions of periodic patterns.
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Figure 4. Stitch patterns of the FMSM as a function of fall height H and belt speed V, for silicone oil
with ν = 277 S and Q = 0.027 cm3 s−1. Upright and inverted triangles indicate observations made
while increasing and decreasing the belt speed, respectively. Grey shaded regions indicate ranges of
H for which the frequency of liquid thread coiling, calculated for the parameters of the experiment
using the method of Ribe [18], is multivalued. Figure adapted from figure 3 of [20].
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3. Basics of Liquid Thread Coiling

As the dynamics of liquid thread coiling underly those of the FMSM, it is important
to start by developing a basic understanding of the former. Liquid thread coiling can best
be understood by considering how its angular frequency Ω depends on the fall height H,
which is the main control parameter. Figure 5 shows a typical variation of Ω as a function
of H. As H increases, the relative importance of the viscous, gravitational, and inertial
forces acting on the coiled portion of the thread changes, leading to four distinct regimes
of liquid thread coiling. At very low fall heights, both gravity and inertia are negligible
compared to viscous forces. The coiling in this ‘viscous’ (V) regime is purely kinematic,
driven by the forced extrusion of the fluid from a nozzle, and the coiling frequency scales
as [18]

ΩV ∼
U1

H
(1)

where U1 = Q/(πa2
1) is the typical axial velocity of the fluid and a1 is (to recall) the thread

radius at the top of the pile. At somewhat larger fall heights, the viscous forces are balanced
by gravity while inertia remains negligible. In this ‘gravitational’ (G) regime, the coiling
frequency scales as [17]

ΩG ∼
U1

δ

(
ln

H
δ

)−1/2
(2)

where δ ∼ (νQ/g)1/4 is the length scale over which gravity balances viscous forces in
the coil and ν is the kinematic viscosity. The logarithmic term appears because the tail
behaves like a catenary, which is deflected by an amount ∝ F| ln F| by a horizontal force F
associated with bending in the coil. At very large fall heights, the dominant forces in the
coil are viscous forces and inertia. This is the ‘inertial’ (I) regime, in which Ω scales as [8]

ΩI ∼
(

Q4

νa10
1

) 1
3

(3)
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Figure 5. Coiling frequency Ω as a function of the fall height H for ρ = 0.97 g cm−3, ν = 105

cS, γ = 21.5 dyne cm−1, d = 0.068 cm and Q = 0.00215 mL s−1. The red curve was calculated
numerically using the method of Ribe [18]. Portions of the curve corresponding to the different steady
coiling regimes are indicated: V (viscous), G (gravitational), IG (inertiogravitational), and I (inertial).
Dotted portions of the curve represent coiling that is unstable to small perturbations. Dashed lines
with slope −1/2 are the first three pendulum frequencies of the tail of the thread, with the order of
each mode indicated by the number to the left.
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At fall heights intermediate between the G and I regimes, there appears an ‘inertio-
gravitational’ (IG) regime in which Ω is a multivalued function of H. In this regime the
tail of the thread behaves as a distributed pendulum that enters into resonance with the
coil whenever the frequency ΩG fixed by the coil is close to one of the natural oscillation
frequencies of the tail. These frequencies are [10]

Ω(n) = Cn

( g
H

)1/2
, n = 1, 2, ... (4)

where Cn are constants of proportionality. The coiling frequency ΩIG(H) in this regime
defines a set of resonance peaks centered on lines with slope −1/2 on a log–log plot of Ω
vs. H (Figure 5).

Finally, the relation between a1 and H depends on the dimensionless fall height
Ĥ ≡ H(g/ν2)1/3. For Ĥ < 2, the weight of the fluid in the tail is balanced primarily by
the viscous resistance to stretching, and a1 ∼ (νQ/gH2)1/2. For Ĥ > 10, the weight is
balanced primarily by the vertical momentum flux, and a1 ∼ (Q2/gH)1/4.

4. Onset of Meandering

We now examine more closely the first bifurcation in the FMSM from a steady dragged
thread to meandering. This bifurcation was studied experimentally by Chiu-Webster and
Lister [1] and Morris et al. [20], and theoretically by Ribe et al. [19], Morris et al. [20],
and Blount and Lister [21]. Figure 6a compares experimental measurements (circles) of
the critical belt speed Vc [1] with the prediction (solid line) of a numerical linear stability
analysis of the equations governing the motion of a slender viscous thread with inertia
deforming by stretching, bending, and twisting [19]. The parameters of the experiment are
given in the figure caption. The experiments and the numerics agree remarkably well.
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Figure 6. Onset of meandering for golden syrup (ρ = 1.438 g cm−3, ν = 350 S), Q = 0.044 cm3

s−1, and d = 1.0 cm. (a) Critical belt speed Vc as a function of fall height. Circles: experimental
measurements. Solid line: prediction of the linear stability analysis described in the text. Dotted line
(nearly indistinguishable from the solid line): axial velocity U1 = Q/πa2

1 at the bottom of a thread
coiling on a motionless surface for the same experimental parameters. (b) Angular frequency of
oscillation σi as a function of fall height. Circles: experimental measurements. Solid line: prediction
of the linear stability analysis. Dotted line: angular frequency Ω of steady liquid thread coiling on a
motionless surface for the same experimental parameters. Figure adapted from figures 5 and 7 of [19].

To understand the origin of the critical belt speed, it is revealing to compare the
quantity Vc with the vertical speed U1 ≡ Q/(πa2

1) of a coiling viscous thread that has
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fallen through a distance H onto a stationary surface. The function U1(H), calculated
numerically using the method of Ribe [18] for the parameters of the FMSM experiment in
question, is shown by the dashed line in Figure 6a. The solid and dashed lines are nearly
indistinguishable, indicating that Vc = U1 with negligible error. This result has a simple
kinematical interpretation: meandering begins when the belt speed becomes too slow to
advect away in a straight line the fluid falling onto it.

Further insight can be obtained by comparing the angular frequency σi of incipient
meandering (i.e., the imaginary part of the growth rate predicted by linear stability analysis)
with the angular frequency Ω of liquid thread coiling with the same parameters. These two
quantities are shown as functions of H by solid and dashed lines in Figure 6b, respectively.
The two curves track each other closely apart from a small systematic offset. This means
that for a given fall height the frequency of incipient meandering is nearly equal to the
frequency of liquid thread coiling on a motionless surface.

Deeper physical insight into the mechanism of incipient meandering is provided by
the asymptotic stability analysis of Blount and Lister [21]. These authors focus on the
‘gravitational heel’ structure of the lowermost part of the thread when V ≈ U1. The shape
of this heel (Figure 7) results from a steady balance of the weight of the fluid and the viscous
forces that resist bending of the thread. The asymptotic analysis shows that the thread is
stable to meandering if bending forces in the heel pull the tail in the same direction as the
belt motion, and unstable if the tail is pushed against the belt motion. Blount and Lister [21]
liken the latter situation to the heel ‘losing its balance’.

1.0

0.5

0.0

0.00 0.02 0.04

x/H

z/H

V

Figure 7. ‘Gravitational heel’ shape of a dragged viscous thread at the onset of meandering, for the
parameters of the experiment of Figure 6. The shape was calculated numerically using the method
of Ribe et al. [19]. The horizontal scale is exaggerated by a factor of 15 relative to the vertical scale.
Figure adapted from figure 6 of [19].
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The linear stability analyses discussed above are limited to meandering of infinites-
imal amplitude. Finite-amplitude meandering was studied by Morris et al. [20] using a
phenomenological model in which the amplitude A of the meandering is governed by a
Landau equation

τȦ = εA− µA|A|2 + h.o.t. (5)

where ε = (Vc −V)/Vc is the degree of supercriticality, τ is a time scale related to the linear
growth rate of the instability, and h.o.t. denotes higher-order terms. For small amplitudes
A � 1, we can write down perturbation expansions for the position (x(t), y(t)) of the
contact point. Now the reflectional symmetry of the catenary implies that the out-of-plane
variable y(t) must be an odd function of A, while the in-plane variable x(t) must be an
even function of A. Thus the position of the contact point must have the form

y(t) = A sin ωt + O(A3), (6)

x(t) = x0 + B cos(2ωt + φ) + O(A4) (7)

where B = O(A2), ω = ωc + O(A2), ωc is the frequency of the onset of meandering, φ is
a constant phase, and x0 is the unperturbed displacement to within an O(A2) correction.
The absolute speed W(t) of the contact point is

W2 = (ẋ−V)2 + ẏ2 = V2 + 4BωV sin(2ωt + φ) +
A2ω2

2
(1 + cos 2ωt) + O(A4). (8)

We now assume that W is constant and equal to the free-fall speed U1, which is in turn
equal to the critical belt speed Vc. Setting W = Vc in (8), we find

V2
c = V2 +

A2ω2

2
+ O(A4), (9)

B =
A2ω

8V
+ O(A4), φ =

π

2
+ O(A2). (10)

Rearranging (9), we obtain

A2 =
2(V2

c −V2)

ω2 ≈ 4V2
c

ω2
c

Vc −V
Vc

, (11)

which when compared with the steady form of (5) gives

µ = (ωc/2Vc)
2. (12)

This generic argument yields the amplitude of the meanders close to threshold.
Morris et al. [20] showed in their Figure 8 that the kinematic estimate (12) agreed closely
with experimental measurements for fall heights H > 5.5 cm.

5. Direct Numerical Simulation

Brun et al. [22] performed a direct numerical simulation of the FMSM using a ‘discrete
viscous threads’ (DVT) algorithm that is most fully discussed in Audoly et al. [24]. Such
simulations allow one rapidly to construct a phase diagram of the FMSM patterns by
varying adiabatically the fall height H and the belt speed V. Brun et al. [22] presented their
phase diagrams in the space of dimensionless fall height Ĥ and belt speed V̂ defined by

Ĥ = H
( g

ν2

)1/3
, V̂ = V(νg)−1/3. (13)
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A given phase diagram is uniquely identified by the values of the following three
dimensionless groups that are independent of both H and V:

Π1 =

(
ν5

gQ3

)1/5

, Π2 =

(
νQ
gd4

)1/4
, Π3 =

γd2

ρνQ
. (14)

Figure 8 shows the phase diagram predicted using DVT for Π1 = 670, Π2 = 0.37, and
Π3 = 1.84 (vertical lines), together with experimental data from Morris et al. [20] for the
same parameters (circles). The fall heights Ĥ ≤ 0.8 here are ‘low’ values in the sense that
inertia is negligible throughout the thread. The agreement between the numerics and the
experiments is quite good, although a tendency for the predicted boundaries to be slightly
higher than the experimental ones is noticeable.

Experimental

0.50 0.55 0.60 0.65 0.70 0.75
0.00

0.01

0.02
Numerical

Figure 8. Phase diagram for the patterns at low fall heights Ĥ ≤ 0.8. Numerically predicted
and experimentally observed patterns as functions of Ĥ and V̂ are indicated by vertical lines and
circles, respectively. The patterns corresponding to each color are shown as insets. White spaces
between vertical bars of different colors indicate ranges of belt speeds for which the automatic pattern
recognition gave ambiguous results. Figure adapted from figure 6 of [22].

For fall heights Ĥ > 0.8, Brun et al. [22] encountered numerical difficulties if surface
tension was present (Π3 > 0). Accordingly, they assumed Π3 = 0 in order to be able
to construct a phase diagram for Ĥ up to 1.5. Figure 9 compares this phase diagram
(main portion) with the experimentally determined phase diagram for the same values of
Π1 and Π2, but Π3 = 1.84 (inset). The topology of the two diagrams is broadly similar.
Nevertheless, it should be noted that the maximum values of Ĥ in the two diagrams are
different, such that a given pattern appears at larger values of Ĥ in the laboratory (where
surface tension is unavoidable) than in the numerics with Π3 = 0. There are also a number
of significant differences in detail. In particuliar, the W, slanted loop, and alternating loop
patterns are observed in the experiments for Ĥ > 1.7, but do not occur in the high-Ĥ
portion of the numerical phase diagram.

60



Symmetry 2022, 14, 772

0.05

0.10

0.15

0.6 0.8 1.0 1.2 1.4
0.0

1.5

3.0

Single Valued

Multi-Valued

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.00

0.05

0.10

0.15
Experimental data (*)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

1.0

2.0

3.0

H

A

B

C

D

E

F

I

Figure 9. Main portion: phase diagram of the FMSM constructed using DVT for Π1 = 670, Π2 = 0.37,
and no surface tension (Π3 = 0). The patterns shown as insets include translated coiling (A, red), me-
anders (B, blue), alternating loops (C, green), disordered patterns (D, grey), double coiling (E, pink),
double meanders (F, purple), and stretched coiling (H, yellow). The dimensionless frequency Ω̂c(Ĥ)

of liquid thread coiling is shown beneath the phase diagram, with multivalued intervals highlighted.
Inset: phase diagram determined experimentally [20] with Π1 = 670, Π2 = 0.37 and Π3 = 1.84 (top).
Additional patterns include the W pattern (yellow circled in black) and slanted loops (blue circled in
black). The corresponding coiling frequency Ω̂c(Ĥ) is also shown (bottom). Figure adapted from
figure 7 of [22].

6. Spectral Analysis of the Patterns

A revealing way to characterize the different FMSM patterns is to calculate the Fourier
spectra of the time-varying longitudinal coordinate x(t) and transverse coordinate y(t) of
the contact point of the thread with the belt. Figure 10 illustrates the spectral characteristics
of three FMSM patterns: translated coiling (A), alternating loops (B), and double coiling (C).
In each of the three panels, part (a) shows the trace on the belt calculated using DVT (left)
and the trajectory of the contact point in the frame of the nozzle (right). Part (b), ‘Spectral
analysis’, shows the Fourier transforms of the longitudinal (red) and transverse (blue)
motion of the contact point (top), together with the corresponding steady coiling frequency
Ω̂(Ĥ) (bottom). Translated coiling, the simplest of the three patterns, is characterized by
a quasi-circular movement of the contact point around the center of the nozzle. Both the
longitudinal and transverse motions are dominated by the same single frequency, which is
close to the steady coiling frequency for the height in question (Ĥ ≈ 1.3). Turning to the
more complicated alternating loops pattern, we see that the longitudinal and transverse
spectra are now dominated by different frequencies, with five distinct peaks in total. The
largest peak occurs for longitudinal motion, with a frequency locked to the value 2Ωc/3.
There is also a secondary peak at 4Ωc/3. The transverse motion on the other hand has
dominant frequencies Ωc/3, Ωc, and 5Ωc/3. Finally, for the double coiling pattern both
the longitudinal and transverse motions are dominated by the same two frequencies in the
ratio 2:1. These frequencies are very close to the two steady coiling frequencies that coexist
at the height in question (Ĥ ≈ 1.42).
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Figure 10. Spectral characteristics of three FMSM patterns: translated coiling (A), alternating loops
(B), and double coiling (C). See the main text for a detailed discussion. Figure adapted from figure 10
of [22].

As a final step in our analysis, we reconstruct the patterns by summing the first few
terms in a Fourier expansion of the form

x(t) + iy(t) =
Nx

∑
j=1

αj cos(ωx
j t + φx

j ) + i
Ny

∑
j=1

β j cos(ωy
j t + φ

y
j ). (15)

where i =
√
−1. In (15), ωx

j , φx
j , and αj are the angular frequency, phase, and amplitude

of mode j of the longitudinal motion of the contact point, while ω
y
j , φ

y
j , and β j are the

analogous quantities for the transverse motion. It turns out that all the patterns can
be reconstructed accurately by retaining at most two frequencies in each direction, i.e.,
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Nx ≤ 2 and Ny ≤ 2. Table 2 presents the values of the relative frequencies, phases, and
approximate amplitudes for seven selected FMSM patterns, including the three discussed
in the previous paragraph. A frequency of unity is assigned to the largest peak in either
the longitudinal or the transverse spectrum. Returning now to Figure 10, we focus on part
(c) of each panel, which shows the reconstructed trace (left) and contact point trajectory
(right) predicted in (15) with the parameters given in Table 2. No attempt has been made
to match the wavelength of the patterns in parts (a). In all three cases, the reconstructed
traces and contact-point trajectories are idealized versions of the (slightly) less regular
traces/trajectories predicted by the full DVT simulations. The kinematic reconstructions
of these three patterns exhibit perfect fore–aft symmetry, as do those of the other patterns
considered by Brun et al. [22] (meanders, double meanders, stretched coiling, and the
W pattern).

Table 2. Spectral characteristics of several FMSM patterns. The parameters shown are those that
appear in the kinematic model (15). The frequency 1 is assigned to the peak in the spectrum with the
largest amplitude. A star indicates a frequency that is locked to the steady coiling frequency Ω̂c.

Pattern ωx
1 ωx

2 ω
y
1 ω

y
2 φx

1 φx
2 φ

y
1 φ

y
2 α1 α2 β1 β2

translated coiling 1 * − 1 * − 0 − 0 − 1.0 − 1.0 −
meanders 2 − 1 * − 0 − π/4 − 0.2 − 1.0 −

alternating loops 1 − 1/2 3/2 * π/2 − 0 0 1.0 − 0.5 0.5
double coiling 1/2 1 * 1/2 1 * π/2 π/2 0 0 0.5 1.5 0.1 1.5

double meanders 1/2 − − 1 * π/4 − 0 − 1.0 0.0 0.0 1.5
stretched coiling 1 2 * 1 2 * π/2 π/2 0 0 1.0 0.1 0.5 0.1

W pattern 1 2 * 1 2 * π/2 π/2 0 0 1.0 0.2 0.2 0.5

7. A Reduced Model for Non-Inertial Patterns

At this point, we have a self-consistent and fairly complete description of the FMSM
patterns based on direct numerical simulation. However, the very high spatial order (= 21) of
the system of differential equations governing unsteady viscous threads leads us to ask: is
it possible to formulate a reduced model for the FMSM with only a few degrees of freedom
that can predict the patterns? The answer turns out to be yes, at least for the patterns
observed at low fall heights that do not involve inertia. Figure 4 shows that for H ≤ 5.5
cm, the sequence of patterns that occur as the belt speed decreases is flat→meanders→
alternating loops→ translated coiling. Moreover, DVT simulations show additionally that
the W-pattern occurs in a narrow range of belt speeds between meanders and alternating
loops, but only if V is increasing and not if it is decreasing. The experiments and the DVT
simulations together therefore suggest that the complete order of the stitch patterns is
translated coiling→ alternating loops→W-pattern→meanders→ flat if V is increasing,
but flat→meanders→ alternating loops→ translated coiling if V is decreasing.

To understand these transitions, Brun et al. [23] proposed a reduced model with three
degrees of freedom. As previously, we denote by U1 the speed at which the falling thread
impinges on the belt. Let s be the arclength along the trace of the thread on the belt, such
that s = 0 is the point that was laid down on the belt at time t = 0 and s = U1t is the
current point of contact r. Then the position on the belt q(s, t) of the point s at time t is

q(s, t) = r(s) + V(t− s/U1)ex (16)

where the second term represents the change of position due to advection by the belt
velocity Vex. The unit tangent vector at the point of contact is

t ≡ ∂sq|s=U1t = r′(s)− (V/U1)ex. (17)
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Now let {r(s), ψ(s)} be the polar coordinates of the contact point r(s), and let θ(s) be
the angle between ex and t. Referring to Figure 11, we resolve t, r′, and ex into the polar
basis (er, eψ). The two components of (17) then take the form

r′ = cos(θ − ψ) +
V
U1

cos ψ, (18)

rψ′ = sin(θ − ψ)− V
U1

sin ψ. (19)

We need one more equation to close the system. To find it, we note that the DVT model
predicts that the curvature θ′ of the trace at the contact point depends only on r and θ − ψ
to a good approximation:

θ′ = κ(r, θ − ψ). (20)

The function κ is determined by fitting to the predictions of the DVT model [23].

Figure 11. Geometry of a falling viscous thread in the vicinity of its contact point with a moving belt.
Figure adapted from figure 3 of [23].

Equation (7) are three coupled nonlinear autonomous first-order differential equations
for r(s), ψ(s) and θ(s). They involve only a single parameter, the dimensionless belt
speed V/U1. The equations remain unchanged when r and s are nondimensionalized
by, e.g., the radius Rc of steady coiling on a motionless surface. We call Equation (7) the
‘geometric model’ (GM). The GM equations were solved using the NDSolve function of
Mathematica [25]. The parameter V/U1 was varied quasi-statically during the simulations,
over a time scale large compared with the dominant period of the patterns. Additional
solutions were obtained using the continuation and bifurcation analysis software package
AUTO-07p [26] to determine the type of each bifurcation encountered as V/U1 was varied.
The convergence of the solutions was verified by showing that they remained essentially
identical when the tolerance parameters were increased by an order of magnitude.

Figure 12 presents a detailed comparison of the GM (green) and DVT (brown) predic-
tions. Part (a) shows the orbits r(s) for the four periodic patterns in the frame of the nozzle
as predicted by the GM. Part (b) shows the corresponding patterns q(s, t) predicted by both
DVT and the GM for four different values of V/U1 = 0.28 (meanders), 0.52 (alternating
loops), 0.66 (W pattern) and 0.83 (meanders). The GM captures all the patterns originally
predicted by the DVT simulations, in the proper order as V/U1 varies. The horizontal
lines in part (c) show the stability ranges of the patterns. In the original DVT simulations,
bifurcations between the patterns were found to be hysteretic: the value of V/U1 at which
each transition occurs depends on whether V/U1 is increasing or decreasing. This feature
of the solutions is reproduced by the GM, which in addition allows one to characterize the
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type of bifurcation involved in each case. The bifurcations are fold points, except for two:
a torus bifurcation from translated coiling to alternating loops as V/U1 increases, and a
period-doubling bifurcation from the W pattern to alternating loops as V/U1 decreases.
Finally, the GM explains why the W pattern was observed in DVT simulations with an
increasing belt velocity, but not with a decreasing one.

Figure 12. Comparison of the predictions of the GM (green) and full DVT simulations (brown). See
the main text for a detailed discussion. Figure adapted from figure 5 of [23].

8. Discussion

A striking feature of many of the FMSM patterns is their fore–aft symmetry with
respect to the direction of motion of the belt. Experimentally observed patterns having this
symmetry include meanders, alternating loops, two-by-two, translated coiling, and the
W pattern. Moreover, kinematic reconstructions reveal that other patterns belong to this
group, including double coiling, double meanders, and stretched coiling. Viewing such
patterns from above provides no indication of which way the belt is moving. The situation
for patterns lacking fore–aft symmetry is quite different: once any of these patterns have
been associated with a direction of belt motion by means of one observation, subsequent
observations will always be able to indicate which way the belt is moving.

Figure 3 and Table 1 shows that several patterns lack fore–aft symmetry: bunched
meanders, braiding, bunched double coiling, slanted loops, double meanders, and side-
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kicks. Different factors seem to be responsible for this. First, in some of these patterns
(braiding, bunched double coiling, slanted loops), the free part of the falling thread makes
contact with an ‘earlier’ portion of the thread that was previously laid down on the belt.
Such self-interaction does not occur in the DVT simulations, where the fluid laid down
on the belt is continuously ‘whisked away’ to make the boundary condition clean. In
laboratory experiments, however, self-interaction in the case of certain patterns cannot be
avoided, and breaks the fore–aft symmetry. A second symmetry-breaking factor is a large
amplitude of the pattern relative to its wavelength. An example is bunched meanders,
which weakly break the fore–aft symmetry of their smaller-amplitude counterparts (i.e.,
normal meanders). A third potential symmetry-breaking factor may be the presence of two
dominant frequencies, as in double meanders.

However, a closer look shows that fore–aft symmetry is always imperfect even for
patterns that look symmetric to the naked eye. This is clear from the DVT spectra of the
longitudinal motion (red lines) shown in the right-hand colum of Figure 10. These all
have noticeable power at zero frequency, indicating a constant offset of the contact point
trajectory in the x-direction relative to the center of the nozzle. This offset is visible in
the contact point trajectories shown at upper right in each panel of the left-hand column
of Figure 10. Physically, the offset reflects the fact that the gravitational heel structure
of the thread near the belt (Figure 7) does not itself have fore–aft symmetry, because the
thread is dragged in only one direction by the belt. In this context it is worth noting that
kinematic reconstructions of the DVT contact point trajectories that neglect the power at
zero frequency do exhibit fore–aft symmetry (left-hand column of Figure 10, lower-right
portion of each panel).

While existing studies provide significant physical insight, much remains to be done be-
fore we fully understand the FMSM. On the experimental side, observations obtained using
much higher values of the dimensionless parameter Π1 = (ν5/gQ3)1/5 would be desirable.
The reason is that the multivaluedness of the steady coiling frequency Ω(H) increases
with Π1 [10]. Values of Π1 ≈ 105 are easy to achieve in the laboratory using high-viscosity
silicone oil and very low flow rates [11]. A greater degree of multivaluedness indicates
a greater number of possible nonlinear interactions among the inertio-gravitational pen-
dulum modes. Such interactions should lead to an even richer phase diagram of FMSM
patterns than the one we have studied here. From the theoretical point of view, the FMSM
can be regarded as a weakly forced nonlinear oscillator. An ambitious but worthy goal
would be to develop an asymptotic nonlinear oscillator theory for the FMSM patterns by
considering the mode interactions mentioned above.
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Abstract: A rotational version of the fluid-mechanical sewing machine (FMSM) is investigated
experimentally. A thin thread of silicon oil was dispensed at a constant flow rate Q from a height H
and fell on a table rotating at an angular speed ω, at a distance R from the axis. In all experimental
runs, the values of Q and H were kept constant while the radius R was changed manually after
each full rotation. Preliminary results show that the usual stitching patterns ensue as the local linear
speed V = ωR approaches the critical transition speeds seen in the FMSM scenario but with subtle
asymmetries introduced by rotational (centrifugal) effects. In some instances, arcs and loops of
the traces were noticeably more pronounced when directed outward compared to those pointing
toward the axis of rotation. Moreover, we observed stitching patterns not reported before. Overall,
the symmetry-breaking features, while clearly visible, were rather subtle. Their morphological
characteristics, such as differences in local curvature of traces relative to those in FMSM, are estimated
to be below 10% in most cases.

Keywords: viscous flows; coiling instability; free-surface flows; rotating fluids

1. Introduction

In 2006, Chiu-Webster and Lister [1] discovered and investigated the fascinating be-
havior of a viscous thread falling onto a translating surface. The phenomenon has attracted
sustained attention since then and because a variety of intricate “stitching” patterns could
be obtained—depending on the flow rate, fall height, the speed of the belt, and the material
properties of the liquid—it was dubbed the fluid-mechanical sewing machine (FMSM).

The FMSM can be regarded as a generalization of the more familiar coiling effect,
first described in detail by Barnes and Woodcock [2]. The behavior of a viscous stream
falling on a planar surface is itself a highly complex phenomenon which has only recently
been understood to comprise four distinct modes, with the corresponding four scaling
laws: viscous, gravitational, inertial-gravitational, and inertial [3–6]. Indeed, at belt speed
zero, the FMSM “simply” becomes coiling instability. At increased belt speed, a phase
space of FMSM patterns emerges that has been elucidated in detail experimentally [7].
In order to rationalize experimental observations, numerous theoretical works explored
the onset of stability of the falling thread [8], also in the asymptotic limit of an extremely
slender thread [9], providing insights into the nature of the instability. Further numerical
studies [10–12] elucidated the sequence of bifurcations seen when the belt speed changes.
A comprehensive review [13] is included in this issue.

An aspect which has received scant attention thus far are the phenomena arising when,
instead of falling from a stationary source onto a moving surface, the viscous thread’s
source is translating and the stream falls onto a stationary substrate. The two scenarios are
not equivalent. In the former case, the disturbance of the thread originates at the low end of
the stream and propagates upwards; in the latter, the disturbance is imparted at the upper
end and propagates downwards. The second scenario is, in fact, commonplace (think of
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maple syrup poured on toast) and has been identified in artistic explorations of abstract
expressionist painter Jackson Pollock [14], who poured viscous pigment while moving the
source in the air above a horizontally stretched canvas—effectively painting in the air.

It should be emphasized that in all investigations of FMSM to date, the focus has been
on the steady-state motion at a constant belt speed. In experimental studies, transitions
from one fixed speed to another have clearly been observed and documented in numerous
videos, but theoretical and numerical analyses have yet to address the case when the belt
is accelerating.

The present contribution is a preliminary experimental investigation of a viscous
thread falling on a rotating, rather than translating, platform. In this case, the stream
is dragged by a moving surface, which is rotating about a fixed axis and is thus locally
subject to centripetal acceleration. The situation has an interesting practical application.
In Chinese culinary tradition, Shangdong pancake is a giant crispy crepe, 30–40 cm in
diameter, which is made on a spinning wheel; during the process, sweet (and very viscous)
syrup is sometimes poured, in a thin stream, over the pancake. The real motivation for this
study, however, came from a suggestion, inspired by the FMSM, that Pollock’s painting
technique could lead to novel artistic effects when inverted, so that a stream of viscous
pigment issuing from a fixed source would be falling on a moving canvas. In such a case, a
spinning circular canvas would be the most practical solution and the resulting painting
would presumably be a tondo [15].

The remainder of this paper is organized as follows. In Section 2, the details of the
experimental procedure are given. In Section 3, selected recorded traces are presented
for various groups of dimensionless parameters. In Section 4, experimental results are
compared to those obtained in previous FMSM experiments. Brief concluding remarks
follow in Section 5.

2. Experimental Setup

A photo of the experimental apparatus is shown in Figure 1. The main component is
a stainless steel rotating table of diameter 55 cm. A thin (0.5 cm thick) Plexiglas plate of
slightly smaller diameter is attached on the top to provide a smooth substrate for paper with
circular and radial gridlines, onto which the viscous thread falls. The ruled papers served
three functions: they could be quickly changed, obviating the need to scrape and clean the
rotating table between experimental runs; they were used to measure the rotational speed
of the table from the videos; and they were used to measure radial positions of the recorded
traces. For more accurate measurements of the angular speed, a simple tachometer was
employed, which clocked the passing of bright markers affixed to the rim of the table. The
rotating table was powered by a rubber belt, which was connected to an electric step motor
(FPN Warszawa, Poland, model 182, 40 W power). The range of stable angular speeds
obtainable with this apparatus was ω = 0.09–0.25 Hz. At a given setting of the motor, the
system maintained the angular speed with the accuracy of about 5%, as measured using the
tachometer. A ruled piece of paper was placed on the rotating table to record the motion
of the stream as it fell on the surface. A new sheet was placed on the table after each
experimental run.

The flow of viscous fluid was ensured by a syringe equipped with the adjustable
automatic dispenser (New Era Instruments NE-1000 syringe pump). The syringe was
connected through a tube to a copper nozzle outlet of diameter d = 4× 10−3 m and could
be moved radially over the table along a metal rail. In all experimental runs, the vertical
position of the nozzle and the flow rate were kept constant, with the volume flux Q of
either 2 or 3 mL/min. The nozzle height above the rotating surface was in the range of
H = 4–10 ×10−2 m. During experiments, the distance of the nozzle from the rotation axis,
R, was adjusted manually.
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Figure 1. Photograph of the experimental system. The rotating table is connected to a motor by a
yellow rubber band. Constant flux of silicon oil was maintained by the syringe pump on the left. The
metal rail over the table allowed the nozzle to be moved radially.

Following Morris et al. [7], silicon oil (manufactured by Tornado) was used as the
working liquid. Experiments were conducted at room temperature, which was about 21 ◦C
with variations below one degree. Properties of the silicon oil were not measured but were
assumed to be those reported by the manufacturer: density ρ = 996 kg/m3, kinematic
viscosity ν = 0.03 m2/s, and surface tension σ = 21.5× 10−3 N/m.

Since there are six fixed physical parameters (d, Q, ρ, ν, σ, g), and three base SI units
are needed (kg, m, s), the setup can be characterized by three dimensionless parameters, as
guaranteed by the Buckingham Π theorem. Following [7], the three parameters and their
approximate values (for Q = 3 mL/min = 5× 10−8 m3/s) are given as

Π1 =

(
ν5

gQ3

)1/5

≈ 456, Π2 =

(
νQ
gd4

)1/4
≈ 0.879, Π3 =

σd2

ρνQ
≈ 0.23. (1)

The first parameter, Π1, is smaller but within 9% of the value reported in [7]. The other
two dimensionless parameters differ by a factor of 2.4 and 0.13, respectively, primarily due
to the different nozzle diameter d, which was twice as large in [7] as here.

In any particular experimental run, while the syringe pump was dispensing liquid at
a constant rate, the two variable flow parameters, H and ω, were kept constant, while the
distance to the axis of rotation, R, was varied. In each case, once a constant angular speed
ω was ensured, it was necessary to reach the steady-state behavior of the viscous thread,
which required waiting for a few seconds from the moment the stream was released onto
the rotating table. It was also necessary to prevent the doubling-up of the viscous thread
on itself (i.e., its falling on the trace laid-down earlier) by changing the radius R after each
full rotation. The two requirements severely limited useful observation time, particularly
for smaller radii R and at faster rotation rates.
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In what follows, the four variable parameters are reported in dimensionless forms,
defined as

Ĥ =
H
L′

, R̂ =
R
L′

, ω̂ =
ω

ω′
, Q̂ =

Q
Q′

. (2)

with the characteristic length and angular frequency for our system

L′ =
(

ν2

g

)1/3

= 4.51 cm, ω′ =
(

g2

ν

)1/3

= 0.067 Hz. (3)

Furthermore, there are two ways of introducing the normalizing flow rate Q′, based
on dimensionless Π1 or Π2. We chose the latter, as we expect that the natural length scale
for the flow rate is the diameter of the nozzle d. Thus, the characteristic flow rate is

Q′ =
gd4

ν
= 5.02 mL/min, (4)

and it is based on the length scale independent of L′. The approximate corresponding
ranges for the experiments reported here were

4 < H < 8 cm, or 0.9 < Ĥ < 1.8, (5)

0.5 < R < 14 cm, or 0.1 < R̂ < 3.1, (6)

0.09 < ω < 0.22 Hz, or 1.3 < ω̂ < 3.2, (7)

Q ∈ {2, 3}mL/min, or Q̂ ∈ {0.40, 0.60}. (8)

3. Experimental Results

Experiments were carried out for two flow rates, Q̂ = 0.40 and Q̂ = 0.60, four
heights, Ĥ = 0.89, 1.11, 1.40, and 1.73, and eight angular speeds, ω̂ = 1.33, 1.43, 1.82,
1.88, 1.92, 2.20, 2.56, and 3.22. It was not possible to set an a priori selected angular speed
because the simple electrical motor used did not have a fine speed adjustment or a speed
(or voltage) indicator. After setting the speed to the approximate value required, it was
measured repeatedly using a tachometer until the system stabilized and twenty consecutive
measurements of ω differed by the minimal fluctuation obtainable, which also provided a
measure of uncertainty; only then did experimental runs commence. This method accounts
for a relatively large and variable experimental uncertainty in ω, as indicated by the gray
vertical strips in Figures 2 and 3.

All experimental runs were filmed from above and the videos were used to delineate
the transitions between different “stitching” patterns. Figure 4, extracted from a film of a
single experimental run at Ĥ = 1.7, ω̂ = 2.20± 0.05, and R decreasing from approximately
8 to 2 cm, shows a typical sequence of patterns, from the flat trace (no instabilities), to
sidekicks, meanders or alternating meanders, and translated coiling.

Disordered patterns, as shown in Figure 4b, appeared between meanders or alternating
meanders and translated coiling. Such chaotic behavior is transitory and occurs between
more stable patterns, usually after the system is disturbed, for example, by dragging the
thread radially inward or outward. The phase–space plots for this case are shown, for the
two values of flow rate Q̂, in Figure 5.

Figure 2 displays results as a function of angular speed for Q̂ = 0.40 at two slightly
different heights, Ĥ = 0.9 and Ĥ = 1.1. At these two smaller heights, a similar sequence
of stitching patterns was generated as the radius was decreased, transitioning from flat
trace to meanders, alternating loops, and translated coiling. Distinct sidekicks were not
observed, while sustained chaotic patterns appeared only at the larger height and lower
rotational rates, consistent with the trends encapsulated in Figure 5.

71



Symmetry 2022, 14, 1550

Figure 2. Comparison of patterns obtained at different radial distances (a,c) and thus different veloci-
ties V̂ = ω̂ R̂ (b,d) for a selection of angular speeds ω̂ for two similar heights of Ĥ = 0.9 (a,b) and
Ĥ = 1.1 (c,d) for a constant flow rate Q̂ = 0.40. Shaded areas show the standard deviation of the
measured angular velocity.

Figure 3. Phase diagram of patterns obtained at different radial distances (a) and different veloci-
ties (b) for a selection of angular speeds ω̂ for the height Ĥ = 1.4 at the higher flow rate Q̂ = 0.60.
Shaded areas show the standard deviation of the measured angular velocity.

Some of the data corresponding to translated coiling in Figure 2, for Q̂ = 0.40, Ĥ = 1.1,
and ω̂ = 1.33, are illustrated in the photographs of Figure 6. Panel (a) shows the traces
created at R = 0.7 cm (R̂ = 0.16); panel (b) at R = 1.5 cm (R̂ = 0.33); and panel (c) at
R = 3 cm (R̂ = 0.67). A striking feature of this sequence is the reversal of the direction
of coiling from panel (b) to panel (c), and the corresponding shift from outward (radially
away from the axis) to inward (radially toward the axis) loops. Whether this transition was
forced by the circular geometry itself, the impact of pulling the stream radially out, or a
combination of the two effects remains to be investigated. The falling stream is certainly
prone to disturbances which are amplified and determine the transient patterns until
fluctuations are damped and a stable pattern emerges.

Behavior at the larger of two flow rates, Q̂ = 0.60 and Ĥ = 1.4, is summarized in
Figure 3. Only two sustained stitching patterns, meanders and translated coiling, were

72



Symmetry 2022, 14, 1550

observed in this case; double meanders, sidekicks, and alternating loops were not observed.
It is possible that even at this larger height, as compared to Ĥ = 0.9 and Ĥ = 1.1 in the
experiments of Figure 2, the larger flow rate damped-out these particular stitching patterns.

(a) flat (steady dragged thread) (b) disordered

(c) sidekicks

(d) meanders (e) translated coiling

(f) alternating meanders

Figure 4. Some examples of stitch patterns of the spinning FMSM observed in a single experimental
run with Ĥ = 1.7, ω̂ = 2.20 ± 0.05, and Q̂ = 0.40. Radial spokes are drawn every 10◦, while
concentric circles are drawn at a radial distance of 0.5 cm from each other. See Figure 5 for details of
radii R̂ and velocities V̂ at which these patterns were obtained.

Figure 5. Comparison of patterns obtained at different radial distances (a) or velocities V̂ (b) for a
nozzle positioned at Ĥ = 1.7 at a fixed angular velocity ω̂ = 2.2 and two different flow rates.

73



Symmetry 2022, 14, 1550

 Inward looping  Outward looping 

(a) (b) (c)

Figure 6. Geometric details of alternating loops patterns within a single experiment with Ĥ = 1.1,
ω̂ = 1.33± 0.08, and Q̂ = 0.40. (a,b) At closer distances from the axis, “outward looping” coils are
seen, which means that the angular velocity of the coiling stream (indicated by blue arrows) is of
the same sign as the angular velocity of the spinning table (black arrow). (c) Further away from the
center, the direction of local rotation of the coiling stream reverses.

4. Comparison with FMSM

The phase diagrams of Figures 2 and 3 indicate that the clearly observed patterns, while
fewer in number, generally followed a similar order for decreasing V̂, as in classical (linear)
FMSM [1,7,10,13], with meanders, sidekicks, and translated coils as the most common forms.
The “missing” forms, such as slanted loops, two-by-two, bunched double coiling, bunched
meanders, braiding, and W pattern (in the terminology of Chiu-Webster and Lister [1])
were not reliably captured in the experimental runs reported here. Conceivably, these forms
might have been missed or suppressed within the limited parameter space explored.

Several stitching patterns were observed only briefly, after the experimental conditions
were adjusted and the system was transitioning towards a new pattern. This happened
in particular when the radius was changed while other parameters were kept constant.
Indeed, the stitching patterns were extremely sensitive to the initial conditions and also
subject to hysteresis. A significant limitation of the apparatus was the absence of an oil
scraping mechanism. This meant that reliable observations for any given conditions could
only be carried out over one full rotation of the table. For larger angular speeds, and smaller
radii, this constituted a severe constraint and is probably the reason why some “classical”
patterns were not seen.

Quantitative comparisons with the classical FMSM can be only approximate since
the experiments reported here did not reproduce the exact conditions of the earlier inves-
tigations. The principal difference lies in the initial diameter of the stream, which was
d = 4 mm in the present investigation and d = 8 mm in [7]. The initial speeds of the stream
exiting the nozzle were also different, approximately 0.3 cm/s (or 0.4 cm/s for the larger
flow rate) in the rotating system and 0.05 cm/s in the linear case, respectively. Finally, flow
rates in dimensional terms differed by about 20% (30%).

However, a rough comparison of the thresholds between different stitching patterns
can be attempted, relying on the transition from the flat trace to meanders, the most robust
indicator. Choosing Figure 2c, wherein highly consistent data for three different values
of angular speed are provided at a smaller value of Q, at H = 5 cm, this first transition
occurred at the local translational speed of the turntable V ∼ 0.8 cm/s. For the same height,
Figure 4 in [13] (adopted from Figure 3 in [7]) indicates the belt speed of V ∼ 2 cm/s. We
conjecture that at smaller flow rates and doubled diameter of the oil dispensing nozzle,
the stream in [7] must have been much thinner at contact with the surface than in our
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experiments. For a conclusive comparison, the same fluid dispensing mechanism should
ideally be used in both linear and rotational experiments.

In the regular, translational FMSM apparatus, the circulation of the viscous thread, as
in the Magnus effect, breaks the transverse symmetry of the flow. This raises the question of
the additional breaking of symmetry due to the local centripetal acceleration of the rotating
surface. There are, conceivably, three separate classes of symmetry-breaking manifestations.
The first would be a deformation of the shapes of the arcs with respect to the “classical”
FMSM traces; the second, additional breaking of the symmetry with respect to the center
line of the trace; the third, evidence that either outward or inward arcs or loops become
more likely.

For the range of parameters accessible with the present apparatus, the effect of circular
geometry on the form of the traces, and their transverse (inward–outward) asymmetry,
was subtle and, in most cases, difficult to discern. All the same, some of the transitory
patterns observed have apparently not been seen before. The two most conspicuous novel
forms are shown in Figure 7. The first, in panel (a), is a pattern with pairs of inward loops
separated by an outward loop, which we call two-by-one in analogy to the two-by-two
pattern seen earlier (Figure 3 in [13]). Whether a two-by-one pattern can be obtained
in a translational FMSM remains to be verified. The second, which we call asymmetric
alternating loops, corresponds to the alternating loops seen before, but with an evident
symmetry-breaking feature. Here, the S-shaped links connecting subsequent loops display
a pronounced centrifugal bulge in the outward-pointing arcs preceding inward loops.

(b) asymmetric alternating loops(a) two by one

Figure 7. Novel FMSM stitch patterns observed in spinning table experiments. We call the pattern
(a) two-by-one, since each two inward loops are succeeded by an outward loop. It was observed for
Ĥ = 0.89, ω̂ = 1.42± 0.03, and Q̂ = 0.40. The pattern (b), seen here for Ĥ = 1.1, ω̂ = 1.92± 0.10,
and Q̂ = 0.40, is the analogue of alternating loops in the linear case but its details are affected by
centrifugal effects.

It remains uncertain whether in the rotating system outward pointing loops are more
likely to occur than inward facing ones (or vice versa). Some of the recorded runs, such as
the one illustrated in Figure 6, appear to indicate a tendency to form outward coils at smaller
radii, when centrifugal effects at a given V would be expected to be the strongest. Further
systematic experiments will be needed to elucidate these effects, if they are indeed present.

5. Concluding Remarks

The present study is a preliminary experimental exploration of a rotational version of
the fluid-mechanical sewing machine. Although limited in scope, it is the first investigation
of a viscous thread falling on a locally accelerating surface. The photographs of the traces
shown in Figures 4, 6 and 7, taken by a fixed camera above the turntable, therefore depict a
non-inertial reference frame.

As in previous FMSM studies, a single working liquid was used, silicon oil, and the
diameter of the nozzle d was kept the same in all experiments, while the flow rate Q was
limited to two values. The remaining flow parameters, ω, R, and H, were varied over a
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small range of discrete values. However, even within this limited dataset, a number of new
results can be extracted.

Since the observational time was limited to one period of revolution (2π/ω) for any
fixed radius R in any given experimental run, some of the stitching patterns documented
in earlier experiments were missed. Nevertheless, the sequence of patterns observed at
decreasing V = ωR qualitatively followed the usual order for translational FMSM: flat line,
meanders, alternating loops (when present), and translated coiling.

The rotational effects in the form of the stitching patterns proved, in general, subtle.
Symmetry-breaking features, such as differences in morphology relative to the equivalent
traces in FMSM, for example, local curvature, are estimated to be below 10% in most cases.
One notable exception was an asymmetric variant of the alternating loop pattern observed
at Ĥ = 1.1, ω = 1.92, R̂ = 0.5, and Q̂ = 0.4, Figure 7b, wherein centrifugal deformations
are clearly discernible—the arcs connecting loops directed away from the axis are more
pronounced than those toward the axis, while the outward loops are more elongated than
the inward loops. Again, additional experiments will be needed to elucidate this new form
and search for other symmetry-breaking features, expected to be more evident at larger
values of R and ω, and for a given V, at decreasing R.

The distinction between inward and outward loops is enabled by the circular geometry
of the setup. Similar distinction arises when a solid, elastic rope falls on a rotating platform
and undergoes buckling instability. Amnuanpol explored this scenario [16] and found
two new modes of coiling: circles with outward loops (hypotrochoids) and circles with
inward loops (epitrochoids). The former dominate for large fall height, feeding speed, and
angular speed, whereas the latter is transitional between outward loops and circles. A
similar transition for a liquid rope is documented in Figure 6, but we do not have sufficient
data to ascertain whether the two phenomena are close analogues.

Detailed quantitative comparisons with the “classical” FMSM will require additional
systematic experiments, with three dimensionless parameters delineating the dynamics, Π1,
Π2, and Π3, matching those in [7] more closely, and also a similar mechanism for dispensing
the liquid. Adding a scraping mechanism would allow much longer observation times
under any given conditions so that the system could reliably reach steady-state equilibrium.
This would be particularly useful at large heights, H, when the thread is very thin and thus
extremely susceptible to external perturbations.

We conclude by noting that a painting technique based on the scenario described here
could perhaps open new artistic opportunities within the abstract idiom. Imagine a few
paint dispensers suspended and movable over a spinning circular canvas. By carefully
varying their radial positions, an intricate network of meandering and looping skeins
could be obtained. A subtle interplay of symmetric and asymmetric patterns would then
naturally emerge.
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Abstract: The natural simplifying assumptions often put forward in the theoretical investigations of
the magnetohydrodynamic turbulence are that the turbulent flow is statistically isotropic, homoge-
neous and stationary. Of course, the natural turbulence in the planetary interiors, such as the liquid
core of the Earth is neither, which has important consequences for the dynamics of the planetary
magnetic fields generated via the hydromagnetic dynamo mechanism operating in the interiors of
the planets. Here we concentrate on the relaxation of the assumption of statistical stationarity of the
turbulent flow and study the effect of turbulent wave fields in the Earth’s core, which induces non-
stationarity, on the turbulent resistivity in the non-reflectionally symmetric flow and the geodynamo
effect. It is shown that the electromotive force, including the so-called α-effect and the turbulent
magnetic diffusivity η̄, induced by non-stationary turbulence, evolves slowly in time. However,
the turbulent ᾱ coefficient, responsible for the dynamo action and η̄ evolve differently in time, thus
creating periods of enhanced and suppressed turbulent diffusion and dynamo action somewhat
independently. In particular, periods of enhanced ᾱ may coincide with periods of suppressed diffu-
sion, leading to a stable and strong field period. On the other hand, it is shown that when enhanced
diffusion occurs simultaneously with suppression of the α-effect, this leads to a sharp drop in the
intensity of the large-scale field, corresponding to a geomagnetic excursion.

Keywords: magnetohydrodynamics; non-stationary turbulence; dynamo theory; geomagnetic excur-
sions; geomagnetic reversals

1. Introduction

The terrestrial magnetic field is generated by the hydromagnetic dynamo action in the
Earth’s liquid core driven thermally and compositionally [1–3]. The turbulent mechanism
of dynamo action, which is typically invoked as responsible for the generation of large-scale
fields, is the so-called α-effect, based on nonlinear interactions of the small-scale fluctuating
components of the non-reflectionally symmetric turbulent state, which generate the large-
scale electromotive force (EMF). For dynamo action to occur, the wave field must exhibit
chirality, i.e., lack of reflectional symmetry [4–6]. The turbulent flow in the core of the Earth
contains a rich wave field composed of nonlinearly interacting magnetohydrodynamic
waves such as, e.g., the inertial waves [7], the so-called MAC waves [8,9] or magnetic
Rossby waves [10]; for a more complete review see [11] on the dynamics of the core. These
interactions could have a profound effect on the dynamics of the core, in particular the
dynamo process as they practically rule out statistical stationarity of the core turbulence—a
feature often invoked in theoretical investigations of magnetohydrodynamic turbulence, as
it greatly simplifies the mathematical approach.

In fact, non-stationarity has been recently shown by [12–15], as an effective mechanism
of generation of the large-scale electromotive force through interactions of waves with
distinct but close frequencies of oscillations (the beating effect). Such an EMF slowly
evolves on timescales comparable or larger than the typical time scales of variation of the
large-scale field. It is shown here that statistically non-stationary, helical turbulence induces
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a slowly varying in time α-effect and turbulent magnetic diffusion, and their variations are
out of phase.

Some well-known features of the evolution of the geomagnetic field are the so-called
geomagnetic excursions and polarity reversals, the former being the periods of a significant
drop in the large-scale field’s intensity. In fact, from the point of view of the possible impact
that such a phenomenon could have on the high-tech human civilization, it is the decrease
in the intensity of the geomagnetic dipole, which is crucial, since it is the dipolar field
that greatly prevents the solar wind from entering the atmosphere. Whether or not the
actual polarity reversal takes place is of much less importance and hence in here, for short,
under the term ’excursion’, we will contain both the actual excursions and reversals. The
aim of this paper is to comment on the phenomenon of geomagnetic excursions in light
of the non-stationarity of the core turbulence induced by wave-interactions and the slow
time evolution of the α-effect and turbulent diffusion. This evolution is shown to create
periods of enhanced diffusion, which may be correlated with suppression of the α-effect,
thus creating favourable conditions for the excursions.

Numerical simulations do not reveal any significant large-scale alterations in the
flow of the conducting liquid during a reversal [16–18], although it must be said that
the currently available computer power does not allow to reach the strongly constrained
Earth-like parameter regime. The first stage of a polarity reversal in simulations by [18]
is associated with local intensification of turbulence, where the vigorous flow twists and
bends the field lines to locally reverse the magnetic field direction. The enhanced turbulence
intensifies the reversed field, which spreads into surrounding regions until the polarity
in the core becomes mixed and the dipole moment is weakened. This suggests that
the magnetic excursions and polarity reversals are manifestations of a chaotic turbulent
behaviour of the liquid core, which is in qualitative agreement with the temporal variations
of turbulent transport coefficients conjectured here.

2. Mathematical Formulation of the Mean Field Dynamo Problem

Evolution of the large-scale magnetic fields induced by the complex flow of an incom-
pressible conducting fluid is governed by the following dynamical equations

∂U
∂t

+ (U · ∇)U = F−∇Π +
1

µ0ρ
(B · ∇)B + ν∇2U, (1a)

∂B
∂t

+ (U · ∇)B = (B · ∇)U + η∇2B, (1b)

∇ ·U = 0 ∇ · B = 0, (1c)

where the velocity field of the fluid flow is denoted by U(t, x), the magnetic field by B(t, x)
and the total pressure

Π =
p
ρ
+

B2

2µ0ρ
. (2)

Without loss of generality, we may assume solenoidal forcing

∇ · F = 0, (3)

and for the purpose of simplicity, we rescale the magnetic field in the following way

〈B〉√
µ0ρ
→ 〈B〉,

so that the prefactor 1/µ0ρ in the Lorentz-force term in the Navier–Stokes (1a) equation
is lost.

Next, denoting by angular brackets the ensemble mean,

〈·〉 − ensemble mean
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let us introduce the standard Reynolds decomposition

U = 〈U〉+ u, B = 〈B〉+ b, p = 〈p〉+ p′, (4)

and write down separately the equations for the mean fields 〈U〉 and 〈B〉 and the turbulent
fluctuations u and b; this yields

∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉 =〈F〉 −∇〈Π〉+ (〈B〉 · ∇)〈B〉+ ν∇2〈U〉
−∇ · (〈uu〉 − 〈bb〉), (5a)

∂〈B〉
∂t

= ∇× (〈U〉 × 〈B〉) +∇× 〈u× b〉+ η∇2〈B〉, (5b)

∇ · 〈B〉 = 0, ∇ · 〈U〉 = 0. (5c)

where
E = 〈u× b〉 (6)

is the large-scale electromotive force (EMF) and

∂u
∂t
− ν∇2u + (〈U〉 · ∇)u + (u · ∇)〈U〉 − (〈B〉 · ∇)b− (b · ∇)〈B〉+∇Π′

= f−∇ · (uu− bb) +∇ · (〈uu〉 − 〈bb〉), (7a)

∂b
∂t
− η∇2b + (〈U〉 · ∇)b− (〈B〉 · ∇)u + (u · ∇)〈B〉 − (b · ∇)〈U〉

= ∇× (u× b− 〈u× b〉), (7b)

∇ · b = 0, ∇ · u = 0. (7c)

Furthermore, we adopt the “first-order smoothing approximation” [6] in which
squares and products of fluctuating quantities are ignored

∂u
∂t
− ν∇2u + (〈U〉 · ∇)u + (u · ∇)〈U〉 − (〈B〉 · ∇)b− (b · ∇)〈B〉+∇Π′ =f, (8a)

∂b
∂t
− η∇2b + (〈U〉 · ∇)b− (〈B〉 · ∇)u + (u · ∇)〈B〉 − (b · ∇)〈U〉 = 0, (8b)

∇ · b = 0, ∇ · u = 0. (8c)

Introducing

Gij =
∂〈U〉i

∂xj
, Gij =

∂〈B〉i
∂xj

, (9)

taking the Fourier transforms of (8a)–(8c) and eliminating the pressure from the Fourier
transformed velocity equation with the use of the projection operator

Pij(k) = δij −
kik j

k2 , (10)

one obtains
[
−i(ω− k · 〈U〉) + νk2

]
û + P ·G · û− ik · 〈B〉b̂− P ·G · b̂ =f̂ (11a)

[
−i(ω− k · 〈U〉) + ηk2

]
b̂ = ik · 〈B〉û−G · û + G · b̂, (11b)

k · b̂ = 0, k · û = 0, (11c)
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where we have already used (11c) in projecting the velocity equation on the plane perpen-
dicular to the wave vector k. Next we rearrange the terms to put all the terms involving
gradients of means on the right hand side

û =
1

γu
f̂− 1

γu
P ·G · û− (k · 〈B〉)2

γuγ2
η

G · û− ik · 〈B〉
γuγη

G · û + i
k · 〈B〉
γuγη

P ·G · û, (12a)

b̂ = i
k · 〈B〉

γη
û− 1

γη
G · û +

1
γη

G · b̂, (12b)

where
γν = −i(ω− k · 〈U〉) + νk2, γη = −i(ω− k · 〈U〉) + ηk2, (13a)

γu = γν +
(k · 〈B〉)2

γη
. (13b)

and assume scale separation between the means and the fluctuations, so that the gradients
of means can be assumed small and treated in a perturbational manner. The large scale
EMF, by the use of (6) and (12b), can be expressed in the following way

εijk

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
= i

k′n〈B〉n
γ′η

εijk
〈
ûjû′k

〉

− εijk
∂〈B〉k
∂xp

1
γ′η

〈
ûjû′p

〉
+ εijk

∂〈U〉k
∂xp

1
γ′η

〈
ûj b̂′p

〉
, (14)

where we have used a short notation û′j = ûj(ω
′, k′). On substituting once again for b̂′p

from (12b) we obtain at the leading order

εijk

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
= i

k′n〈B〉n
γ′η

εijk
〈
ûjû′k

〉

− εijk
∂〈B〉k
∂xp

1
γ′η

〈
ûjû′p

〉
+ iεijk〈B〉n

∂〈U〉k
∂xp

k′n
γ′2η

〈
ûjû′p

〉
, (15)

where higher-order terms in the gradients G and G have been neglected.

3. Simple Kinematic Theory for Homogeneous Turbulence

It is a common practice to assume that the background small scale turbulence has
statistical properties that are given beforehand, and thus the situation becomes kinematic.
For example, we may assume that the turbulence is homogeneous and isotropic and thus
the turbulence correlation tensor takes the general form

〈
ûi(k, ω)ûj(k′, ω′)

〉
=
[

E
(
ω, ω′, k

)
Pij(k) + iH

(
ω, ω′, k

)
εijkkk

]
δ(k + k′), (16)

where the H(ω, ω′, k) is responsible for the lack of reflectional symmetry required for the
large-scale dynamo process [6]. Since the mean velocity 〈U〉 only creates a shift of the
frequency ω → ω − k · 〈U〉, we simply absorb it into the frequency. The electromotive
force takes the form
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εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉

=
8π

3
〈B〉l

∫
dk
∫

dω
∫

dω′e−i(ω+ω′)t k4

γ′η
H
(
ω, ω′, k

)

− 8π

3
[∇× 〈B〉]l

∫
dk
∫

dω
∫

dω′e−i(ω+ω′)t k2

γ′η
E
(
ω, ω′, k

)

− 4π

3

[
(∇〈U〉)T · 〈B〉

]
l

∫
dk
∫

dω
∫

dω′e−i(ω+ω′)t k4

γ′2η
H
(
ω, ω′, k

)
, (17)

where we have used (15), (16), (A8a) and (A8b) in Appendix B and we have also introduced
a short notation

q = (ω, k), d4q = d3k dω. (18)

Next we consider the case of non-stationary turbulence and assume the following

E
(
ω, ω′, k

)
= e

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, H

(
ω, ω′, k

)
= h

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, (19)

where the ’non-stationarity’ function

∆
(
ω, ω′; ω̃, Γ

)
= δ(ω + ω′) + Γ

δ(ω + ω′ + ω̃)− δ(ω + ω′ − ω̃)

2i
, (20)

with Γ = const, is chosen in such a way so that the correlations in the real space have a
simple sinusoidal time dependence

〈
ui(x, t)ui(x′, t)

〉
∼ 1 + Γ sin(ω̃t). (21)

Let us set for simplicity 〈U〉 = 0, though it is straightforward to include it, and
concentrate on the α-effect only. Consequently, for the EMF in the real space, we obtain

εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉

=
8π

3
η〈B〉l

∫
dk
∫

dω
k6h
(
ω2, k

)
∣∣γη

∣∣2

− i
4πΓ

3
〈B〉l

∫
dk
∫

dωk4h
(

ω2, k
)[ eiω̃t

i(ω + ω̃) + ηk2 −
e−iω̃t

i(ω− ω̃) + ηk2

]

− 8π

3
η[∇× 〈B〉]l

∫
dk
∫

dω
k4e
(
ω2, k

)
∣∣γη

∣∣2

+ i
4πΓ

3
[∇× 〈B〉]l

∫
dk
∫

dωk2e
(

ω2, k
)[ eiω̃t

i(ω + ω̃) + ηk2 −
e−iω̃t

i(ω− ω̃) + ηk2

]

=
{

η
[

I(α)1 + ΓI(α)2 sin(ω̃t)
]
+ Γω̃I(α)3 cos(ω̃t)

}
〈B〉l

−
{

η
[

I(η)1 + ΓI(η)2 sin(ω̃t)
]
+ Γω̃I(η)3 cos(ω̃t)

}
[∇× 〈B〉]l (22)

where we have made use of the fact that for any even function of ω, say fe(ω), the integral∫ ∞
−∞ ω fe(ω)dω = 0 vanishes and the integrals I(α)j , I(η)j , for j = 1, 2, 3 are given in the

Appendix A. In other words, the full EMF, including the molecular diffusion, takes the
following form

E tot = ᾱ〈B〉 − η̄∇× 〈B〉, (23)

where

ᾱ = η I(α)1 +
ηΓI(α)2
cos φα

sin(ω̃t + φα), (24a)
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η̄ = η + η I(η)1 +
ηΓI(η)2
cos φη

sin
(
ω̃t + φη

)
, (24b)

tan φα =
ω̃I(α)3

η I(α)2

, tan φη =
ω̃I(η)3

η I(η)2

. (24c)

Clearly, there is a significant phase shift between the ᾱ coefficient and the turbulent
diffusion η̄.

The excursions and in particular polarity reversals have been observed in numerical
simulations, although none of the numerical models were able to reach the very demanding,
extreme parameter regime of the core. It was reported, however, that increasing the vigour
of convection tends to increase the frequency of polarity reversals [16,17]. In simulations
of [18], the first stage of a polarity reversal is characterised by intensification of turbulence
in some region of the core where the vigorous flow twists and bends the field lines to locally
reverse the magnetic field direction. Since the magnitude of the turbulent flow in that
region is particularly vigorous, so is the local magnetic Reynolds number, thus favouring
conditions for amplification of the reversed field, which spreads into surrounding regions
until the polarity in the core becomes mixed. This implies a sharp decay of the dipole
moment. Consequently, we may expect that the magnetic excursions and polarity reversals
are manifestations of a chaotic turbulent behaviour of the liquid core and no significant
large-scale phenomena seem to take place during excursions.

The real core turbulence is obviously bound to be non-stationary, including propaga-
tion of well-known waves such as the inertial waves [7], MAC-waves [8,9] or the magnetic
Rossby waves [10], likely forming wave packets. These wave fields interact nonlinearly
to form the turbulent electromotive force (EMF), and interactions of waves with distinct
but close frequencies were shown to be effective in creation of the EMF by [12–14]. For
simplicity, we will neglect higher-order interactions and include two-wave interactions
only, so that in the simplest case when only two waves with distinct frequencies but the
same wave vector are present (homogeneity but non-stationarity), the turbulent point
correlations at time t can be written as

〈u(x, t)u(x, t)〉
=
〈[

û1ei(ω1t+k·x) + û2ei(ω2t+k·x) + c.c.
][

û∗1e−i(ω1t+k·x) + û∗2e−i(ω2t+k·x) + c.c.
]〉

=
〈

û1û∗2eiω̃t
〉
+
〈

û2û∗1e−iω̃t
〉
+ 〈û1û∗1〉+ 〈û2û∗2〉, (25)

where
ω̃ = ∆ω = ω1 −ω2, (26)

c.c. means the complex conjugate, and we have assumed that the means of quantities
oscillating with frequencies ω1, ω2 and ω1 + ω2, which correspond to mean field variations
on the timescales from days to decades can be assumed to vanish (without loss of generality,
we may assume ω1 > 0, ω2 > 0). However, since the core perturbations often possess
close frequencies of oscillation, the frequency difference ω̃ can be small and even smaller
than the typical frequencies of oscillations of the large-scale field; in such a case, the first
two terms in the second line of (25) cannot be neglected and lead to long time variations
of the turbulence correlation tensor. This is in keeping with the chosen form of the ’non-
stationarity’ function (20), which leads to correlations in the form (21), corresponding to
the form based on two-wave interactions.

In reality even such two-wave interactions lead to more than one (say N) ω̃-mode, be-
cause the turbulent wave field consists of a number of distinct waves so that more generally

〈
ui(x, t)ui(x′, t)

〉
∼ 1 +

N

∑
n=1

Γn sin(ω̃nt + ψn), (27)
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where the phase shift ψn accounts for both the sine-type and cosine-type time dependence
of the correlation tensor.

4. Dynamic Theory

Instead of assuming some given form of the turbulence correlation tensor, we can use
Equation (12a) to express it in the following form

〈
ûi(q)ûj(q′)

〉
=

1
γuγ′u

〈
f̂i f̂ ′j
〉

−
[

1
γuγ′2u

P′jsGsp +
(k′ · 〈B〉)2

γuγ′2u γ′2η
Gjp + i

k′ · 〈B〉
γuγ′2u γ′η

k′jk
′
s

k′2
Gsp

]〈
f̂i f̂ ′p
〉

−
[

1
γ2

uγ′u
PisGsp +

(k · 〈B〉)2

γ2
uγ2

ηγ′u
Gip + i

k · 〈B〉
γ2

uγηγ′u

kiks

k2 Gsp

]〈
f̂p f̂ ′j

〉
(28)

where higher-order terms in the gradients G and G have been neglected, and we have used
the short notation q = (ω, k). The EMF can then be calculated with the use of (15) and (28)
and on assuming the force correlations in a statistically homogeneous form

〈
f̂i(k, ω) f̂ j(k′, ω′)

〉
=
[

F0
(
ω, ω′, k

)
Pij(k) + iF1

(
ω, ω′, k

)
εijkkk

]
δ(k + k′), (29)

we have derived the formula for the mean EMF in Appendix B. This involves the mean
velocity gradients, which within the considered model correspond to effects such as the
cross-helicity dynamo or the shear-current effect [19–21]. Although it is straightforward to
include them in the calculations, for clarity, we drop all the mean velocity terms (we set
〈U〉 = 0) and concentrate only on the α-effect and the effects of turbulent diffusion. For
simplicity, we will also consider the case when ∇〈B〉2 × 〈B〉 is negligible, hence the mean
EMF is reduced to (cf. Appendix B)

El =εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉

=I1

(
ν, η, 〈B〉2

)
〈B〉l −

[
I2

(
ν, η, 〈B〉2

)
+ 〈B〉2I3

(
ν, η, 〈B〉2

)]
[∇× 〈B〉]l , (30)

where the integrals I1, I2 and I3 are provided in (A10a)–(A10c) in Appendix B.
Note that lack of reflectional symmetry is introduced here by the term proportional

to F1(ω, ω′, k) in the force corrections (29), hence it is crucial for calculation of the α-effect,
which is not generated by reflectionally symmetric flows [6]. In natural systems, the reflec-
tional symmetry is broken by the presence of background rotation, which introduces the
Coriolis force into the dynamics. However, rapidly rotating flows are naturally anisotropic;
thus for simplicity, we have chosen an isotropic model.

4.1. Stationary Turbulence

First let us explicitly demonstrate the simplest result obtained for stationary turbu-
lence, when

F0
(
ω, ω′, k

)
= F0

(
ω2, k

)
δ(ω + ω′), F1

(
ω, ω′, k

)
= F1

(
ω2, k

)
δ(ω + ω′), (31)

i.e., the force correlations are given by
〈

f̂i(k, ω) f̂ j(k′, ω′)
〉
=
[
F0

(
ω2, k

)
Pij(k) + iF1

(
ω2, k

)
εijkkk

]
δ(k + k′)δ(ω + ω′). (32)

In such a case, the integrals in (30) can be calculated to yield

I (st)
1

(
ν, η, 〈B〉2

)
= 4πη

∫
dk
∫ 1

−1
dX

∫
dω

k6X2F1
(
ω2, k

)

|γu|2
∣∣γη

∣∣2 , (33a)
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I (st)
2

(
ν, η, 〈B〉2

)
= πη

∫
dk
∫ 1

−1
dX

∫
dω

k4(1 + X2)F0
(
ω2, k

)

|γu|2
∣∣γη

∣∣2 , (33b)

I (st)
3

(
ν, η, 〈B〉2

)

= πη
∫

dk
∫ 1

−1
dX

∫
dω

k6F0
(
ω2, k

)

|γu|4
∣∣γη

∣∣4
(

ω2 − νηk4 − (k · 〈B〉)2
)(

13X4 − 10X2 + 1
)

, (33c)

where X = cos θ and θ is the polar angle in the spherical coordinates (k, θ, φ) in the
wave-vector space, hence the induction equation takes the following form

∂〈B〉
∂t

= ∇× (ᾱst〈B〉)−∇× (η̄st∇× 〈B〉), (34)

with

ᾱst = 4πη
∫

dk
∫ 1

−1
dX

∫
dω

k6X2F1
(
ω2, k

)

|γu|2
∣∣γη

∣∣2 , (35a)

η̄st = η

{
1 + π

∫
dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)

|γu|2
∣∣γη

∣∣2

[
1 + X2

+〈B〉2
k2
(

ω2 − νηk4 − k2〈B〉2X2
)(

13X4 − 10X2 + 1
)

|γu|2
∣∣γη

∣∣2





, (35b)

where we have made use of the fact that for any even function of ω, say fe(ω) the integral∫ ∞
−∞ ω fe(ω)dω = 0 vanishes.

4.2. Non-Stationary Turbulence

The dynamics of the Earth’s core is strongly influenced by the wave field, composed
of the fundamental modes such as the inertial waves, the MAC waves and the magnetic
Rossby waves. These waves are described by different dispersion relations, which imply
the existence of a large number of waves with distinct frequencies of oscillation. As argued
at the end of Section 3, their interactions lead to a time-dependent turbulent correlation
tensor. We consider the simplest case of only two-wave interactions and introduce a simple
model by postulating that the turbulence is forced by the following isotropic, homogeneous
but non-stationary forcing (cf. (20))

F0
(
ω, ω′, k

)
= F0

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, F1

(
ω, ω′, k

)
= F1

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, (36)

i.e.,
〈

f̂i(k, ω) f̂ j(k′, ω′)
〉

=
[
F0

(
ω2, k

)
Pij(k) + iF1

(
ω2, k

)
εijkkk

]
δ(k + k′)∆

(
ω, ω′; ω̃, Γ

)
. (37)

In the above, the function ∆(ω, ω′; ω̃, Γ) is the ’non-stationarity’ function given in (20),
so that indeed the two-wave interaction form

〈
fi(x, t) fi(x′, t)

〉
∼ 1 + Γ sin(ω̃t) (38)

is preserved. Of course, equally well, one could choose this to be a cosine-type time
dependence. The parameter ω̃ has the physical interpretation of frequency shift between
distinct modes, i.e., MAC or magnetic Rossby waves. The calculation of the mean EMF
in the non-stationary turbulence is postponed until Appendix C. Although the limit is
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not geophysically relevant because of very small viscosity of the core, to make analytical
progress, we have considered

ω̃ � νk2, ηk2, (39)

hence
ω̃

2ΩE`
� 1, E` =

ν

2Ω`2 , (40)

where E` is the Ekman number based on the length scale ` corresponding to most energetic
turbulent eddies in the core. The induction equation then reads

∂〈B〉
∂t

= ∇× (ᾱns〈B〉)−∇× (η̄ns∇× 〈B〉), (41)

where, again, η̄ns is the full effective magnetic diffusivity, including molecular effects and

ᾱns = ᾱst + ᾱstΓ sin(ω̃t)− ᾱ∆ωΓ cos(ω̃t), (42a)

η̄ns = η + η̄st + η̄stΓ sin(ω̃t)− η̄∆ωΓ cos(ω̃t), (42b)

where the coefficients ᾱst and η̄st are given in (35a) and (35b), respectively, whereas formulae
for ᾱ∆ω and η̄∆ω can be found in (A24), (A26), (A27a) and (A27b) in Appendix C. The latter
expressions can be rearranged to yield

ᾱns = ᾱst +
ᾱstΓ

cos φα
sin(ω̃t− φα), (43a)

η̄ns = η + η̄st +
η̄stΓ

cos φη
sin
(
ω̃t− φη

)
, (43b)

where
tan φα =

ᾱ∆ω

ᾱst
, tan φη =

η̄∆ω

η̄st
. (44)

5. The Mean EMF in Non-Stationary, Low-Pm Turbulence

Let us introduce the Hartmann number based on characteristic fluctuational length
scale M and a new variable v,

M 2(k) =
〈B〉2
νηk2 , v =

ω√
νηk2 . (45)

We can evaluate the integrals expressing the turbulent diffusivity and the α-effect in
non-stationary turbulence (cf. Appendix C) in the geophysically relevant limit of a strong
magnetic field

M 2 =
〈B〉2
νηk2 � 1, (46)

however, on top of this assumption we will also need

∀k PmM 2(k)� 1, (47)

in order to make analytical progress. This means we assume large Hartmann numbers
(strong field), but low magnetic Prandtl numbers Pm = ν/η � 1. Since in the Earth’s core
the Hartmann number

M =
〈B〉L√

νη
, (48)

based on the core depth L is of the order 107, and Pm ≈ 5× 10−7, the latter assumption
PmM 2(k)� 1 for the Hartmann number M (k) based on fluctuational wavelengths is not
necessarily satisfied. Still, it is reasonable at least in a large part of the short-wavelength
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spectrum, and thus, it is put forward in order to simplify the calculations. Note that
since we consider the strong field limit, it is not applicable to a linear dynamo regime,
i.e., quenching of the electromotive force is significant. Let us take the following simple
statistical model (cf. e.g., [22,23], etc.)

F0

(
ω2, k

)
=

D0

k3 , F1

(
ω2, k

)
=

D1

k5 , (49)

with D0 = const > 0, D1 = const ≤ kminD0 [6], and introduce explicitly the scale separa-
tion, i.e., we introduce the scale of the largest/most energetic turbulent eddies ` = 2π/kmin,
where kmin is the smallest fluctuational wave number. This allows to calculate the relations
between coefficients ᾱst, η̄st and ᾱ∆ω, η̄∆ω (see Appendix C for general formulae), which
yields

ᾱ∆ω ≈
πω̃

12kmin
√

Pm〈B〉
ᾱst, η̄∆ω ≈

15ω̃

28k2
minν

η̄st, (50)

and we recall here the assumptions that led to the final form of the transport coefficients
√

ηνkmin

〈B〉 =
1

M (kmin)
� 1,

ω̃

νk2
min
� 1, PmM 2(kmin)� 1. (51)

Note, however, that these assumptions were only necessary to clearly demonstrate
how the turbulent diffusivity and the α coefficient can be calculated in non-stationary
turbulence, and in particular, we have shown that the significant phase shift in the slow
time dependence between the turbulent diffusivity and the α coefficient is a rather gen-
eral feature of non-stationary turbulence. Under the current assumptions (51) the phase
shifts (44) can be calculated to yield

tan φα =
ᾱ∆ω

ᾱst
≈ ω̃`

24
√

Pm〈B〉
=

1
24

ω̃`2

ν

√
νη

〈B〉` =
1

24
ω̃`2

ν

1
M`

, (52a)

tan φη =
η̄∆ω

η̄st
≈ 15

112π2
ω̃`2

ν
, (52b)

where

M` =
〈B〉`√

νη
� 1, (53)

is the Hartmann number based on the maximal fluctuational lengthscale, which in the
Earth’s core can be expected to be at the order of 104 or even 105. It follows that φα ≈ 0
is negligibly small and the phase shift between the α-effect and the turbulent magnetic
diffusivity is entirely determined by φη , which is at least a few orders of magnitude larger

φη � φα. (54)

We emphasise that φη is proportional to the frequency shift ω̃ between the slowly
evolving MAC/magnetic Rossby waves, which is not uniquely determined, and in fact,
more realistically, the non-stationary turbulence should be modelled with a superposition
of at least a few (say N) distinct values ω̃n, n = 1, . . . , N, each generating a different phase
shift φη n between the α-effect and the turbulent diffusivity.

Toy Model-Energy of a Force-Free Mode at 〈U〉 = 0

The aim of the simple calculation shown in this section is to demonstrate how a phase
shift between the field-amplifying α-effect and the resistive decay can lead to magnetic
field excursions, through an explicit numerical solution obtained for a force-free mode
defined by

∇× 〈B〉 = κ(x)〈B〉, (55)
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where κ(x) is a scalar function of position; this ensures 〈B〉 × (∇× 〈B〉) = 0. Such force-
free states are known to exist and have been intensively investigated, e.g., in seminal works
of [24,25] (cf. also more recent works of [26,27]). On defining the magnetic energy

Em =
1
2
〈B〉2, (56)

the induction equation in the absence of large-scale flows, 〈U〉 = 0, yields for the energy

∂Em

∂t
= 2ᾱκ(x)Em − 2η̄κ(x)2Em. (57)

Based on the previous analysis we may propose the following

ᾱ =
ᾱ0

1 + ĀE2
m
[1 + Γ cos(ω̃t− φα)], η̄ = η +

η̄0

1 + ĀE2
m

[
1 + Γ cos

(
ω̃t− φη

)]
, (58)

where instead of the magnetic field dependence obtained in the strong field limit with
Pm � 1 considered in previous sections, we added a standard quenching factor, which
models action of the Lorentz force in the simplest way (cf. [28,29]), with Ā = const. Taking

φα = 0, φη = π, (59)

gives a well-suited case study, since it implies that the maximal enhancement of the field
takes place when the effect of the resistive decay is the weakest and vice versa—the
strongest resistive decay of the mean field is associated with the weakest amplification
by the α-effect; the latter situation leads to possible excursions (field decay), whereas the
former one to ’stable’ periods with a strong magnetic field. In such a case, we obtain

∂Em

∂t
=2ᾱ0κ(1 + cos ω̃t)

Em

1 + ĀE2
m

,

− 2κ2
[
η
(

1 + ĀE2
m

)
+ η̄0 − η̄0 cos(ω̃t)

] Em

1 + ĀE2
m

, (60)

where we have inserted Γ = 1. A selected solution of the latter equation is shown on
Figure 1, where indeed regular short-lived excursions are manifested in the evolution of
the magnetic energy, i.e., short periods with a suppressed magnetic field.

Figure 1. Evolution of the magnetic energy in non-stationary turbulence according to Equation (60),
when non-stationary force correlations 〈 fi(x, t) fi(x′, t)〉 ∼ 1 + sin(ω̃t) are defined by a single-mode
time dependence with the frequency ω̃ = 0.0001; the remaining parameters are η = 0.001, η̄ = 0.1,
ᾱ = 1, Ā = 1, κ = 1. The plot is shown in diffusive time units 1/κ2η = 103.

More generally, accounting for the possibility of a more complex time dependence of
the force correlations with more than one slow ω̃-mode, the magnetic energy evolution
equation can be rewritten in the form
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∂Em

∂t
=2ᾱ0κ

[
1 + ∑

n
Γn cos(ω̃nt + ψn)

]
Em

1 + ĀE2
m

− 2κ2

[
η
(

1 + ĀE2
m

)
+ η̄0 + η̄0 ∑

n
Γn cos(ω̃nt + φn)

]
Em

1 + ĀE2
m

. (61)

Selected solutions are shown in Figure 2 for the cases of two and three ω̃-modes.
Especially in the latter case, it is evident that longer periods of relative stability of the
magnetic energy are separated by much shorter excursions.

(a) (b)

Figure 2. Evolution of the magnetic energy in non-stationary turbulence according to Equation (61)
with ψn = 0, φn = π, when non-stationary force correlations 〈 fi(x, t) fi(x′, t)〉 are defined by a two-
mode time dependence with the frequencies ω̃1 = 0.0001 and ω̃2 = 0.000085 (a) and a three-mode
time dependence with ω̃1 = 0.0001, ω̃2 = 0.000085 and ω̃3 = 0.00007 (b); the remaining parameters
are η = 0.001, η̄ = 0.1, ᾱ = 1, Ā = 1, κ = 1. The plot is shown in diffusive time units 1/κ2η = 103.

6. Discussion of Relevance of the Results to the Problem of Geomagnetic Excursions

The presented toy model is obviously a great simplification. Firstly, it considers force-
free modes, but it also relies on derivations obtained under restrictive assumptions of
statistic homogeneity and isotropy. The toy model, however, is only used to visualise the
studied effect of non-stationarity of the turbulent coefficients ᾱ and η̄, which is generic and
independent of the simplifying assumptions.

It needs to be stressed that in the presented analysis, the large-scale EMF is calculated
with the use of fluctuational equations, but then we concentrate on the evolution of the
large-scale field, leaving the dynamics of the small-scale component of the magnetic field
unexplored. It follows that temporal enhancement of turbulent magnetic diffusivity does
not need to suppress the small-scale dynamo, which in reality is actually rather expected to
be vividly operating on much shorter timescales, largely independently of the large-scale
process. Furthermore, as stated above, the problem is greatly simplified from the start
by the assumption of isotropy and neglection of the strongly anisotropic effect of the
background rotation and density stratification. At first, a rough estimate of the anisotropy
leads to a separation between horizontal and vertical turbulent ᾱ and η̄ coefficients. It is
also known that in the weak seed field limit (linear stage of growth of the mean magnetic
field) the mean induction equation with anisotropic ᾱij = ᾱhδij + (ᾱv − ᾱh)δi3δj3 and η̄ij =
η̄hδij + (η̄v − η̄h)δi3δj3 (say rotation is along the z-axis) separates the evolution of even and
odd modes, thus dipolar parity evolves independently with the quadrupolar one. Moreover,
one should bear in mind that the reality is even more complex—not only non-stationary
but also inhomogeneous, leading to spatially dependent turbulent coefficients, which
further differentiates the evolution of different spatial modes. Summarising, the small-scale
dynamo is by no means excluded during the periods of enhanced turbulent diffusion,
and the simple isotropic, homogeneous model obviously does not grasp the complexity
of the strongly anisotropic Earth’s core turbulence and the mean-field evolution; and it
is the anisotropy and inhomogeneity (rotation, stratification, buoyancy, inhomogeneous
wave interactions, etc.) that lead to significant differences in the evolution of the mean
dipolar and quadrupolar fields. Although theoretical models, including non-stationarity,
inhomogeneity and anisotropy, may be too cumbersome to investigate, it could be of
interest to utilise DNS to study the long time evolution of turbulent coefficients in spherical,
rapidly rotating shells and its dynamical connection to magnetic excursions.
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Furthermore, there is a number of other important models, which identify and study
other effects as underlying mechanisms of the geomagnetic reversals/excursions and
present a more general approach to the problem. The dynamics of reversals has been
modelled with sets of nonlinear ODE’s involving supercritical bifurcations and describing
the evolution of field modes with different parities, e.g., by [30] or [31]. Later, ref. [32]
attempted to grasp the main features of evolution of the planetary field by ODE models
with a stochastic noise. A saddle-node-bifurcation model capturing the dynamical features
of the geomagnetic field evolution and those of the field obtained in the VKS experiment
(cf. [33]) was developed by [34]. A group of nonlinear, one-dimensional evolutional models,
which also reported Earth-like features were represented by [35–37]. In short, the described
models point to nonlinearities causing chaotic behaviour of the system as the mechanism
of generation of reversals/excursions in the system evolution. Of course this does not
exclude non-stationarity of the mean-field coefficients as a trigger of the excursion events.

7. Conclusions

Although obviously no decisive conclusion about predictions of geomagnetic excur-
sions can be made from the presented analysis, the paper points to the non-stationarity
of the turbulent transport coefficients ᾱ and η̄, which are likely to slowly evolve in time
due to the non-stationarity of the entire background turbulence in the core. Their evolu-
tion was shown to be out of phase, implying the existence of periods of enhanced and
suppressed turbulent dynamo process, which may correlate or not with periods of en-
hanced/suppressed diffusion. In particular, enhancement of the α-effect may coincide
with suppression of diffusion (stable field) and vice versa, enhancement of diffusion may
coincide with suppression of the dynamo effect (field decay). It would be instructive to
study such temporal characteristics of the turbulent diffusivity and the α-effect in numeri-
cal simulations, in particular the correlations between the value of the ratio η̄/ᾱ and the
occurrences of excursions.

The magnetic diffusion in the Earth’s core is thought to be η = 2 m2/s (cf. e.g., [38]),
which implies the magnetic diffusion time of about 104 years. The non-stationary tur-
bulence can, however, enhance the effective magnetic diffusion of the large-scale dipole
to make it a few times larger, which decreases the magnetic diffusion time to a value of
a few thousand years, which is in line with the realistic time scales of the geomagnetic
excursions/reversals. As shown, in a non-stationary turbulence, such an enhancement of
diffusion can be correlated with simultaneous suppression of the α-effect, in which case it
is likely to result in a sharp drop of the geomagnetic field intensity, i.e., the excursion. With
such a picture, the geomagnetic excursions are manifestations of the chaotic core turbu-
lence and their occurrences are also bound to be chaotic, and no characteristic, significant
alterations in the core large-scale flow are expected during excursions, in accordance with
results of numerical simulations [16–18]. Perhaps with the development of the available
computational abilities and power, in the future, it may become possible to numerically
study the Earth-like parameter regime and construct reliable fits to the geomagnetic data
in order to provide estimates of the turbulent magnetic diffusivity and the α-effect, which
could then be monitored since a drop in the value of the ratio ᾱ/η̄ for the outer core could
indicate a higher possibility for a geomagnetic excursion.
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Appendix A

The integrals that appear in Equation (22) take the form

I(α)1 =
8π

3

∫
dk
∫

dω
k6h
(
ω2, k

)
∣∣γη

∣∣2 , I(α)2 =
8π

3

∫
dk
∫

dω
k6h
(
ω2, k

)(
ω̃2 + ω2 + η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

, (A1)

I(α)3 =
8π

3

∫
dk
∫

dω
k4h
(
ω2, k

)(
ω2 − ω̃2 − η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

, (A2)

I(η)1 =
8π

3

∫
dk
∫

dω
k4e
(
ω2, k

)
∣∣γη

∣∣2 , I(η)2 =
8π

3

∫
dk
∫

dω
k4e
(
ω2, k

)(
ω̃2 + ω2 + η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

, (A3)

I(η)3 =
8π

3

∫
dk
∫

dω
k2e
(
ω2, k

)(
ω2 − ω̃2 − η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

. (A4)

Appendix B

Here we present the explicit calculation of the large-scale EMF (30) given in Section 4.
By the use of (15) and (28) we write down

εl jk

〈
ûj(q)b̂k

(
q′
)〉

=i
k′n〈B〉n

γ′η
εl jk

1
γuγ′u

〈
f̂ j f̂ ′k
〉

+ 〈B〉n〈B〉rεl jk
1

γuγ′2u γ′2η

k′nk′rk′kk′s
k′2

∂〈B〉s
∂xp

〈
f̂ j f̂ ′p

〉

+ 〈B〉n〈B〉rεl jk
1

γ2
uγηγ′ηγ′u

k′nkrk jks

k2
∂〈B〉s
∂xp

〈
f̂p f̂ ′k

〉

− εl jk
∂〈B〉k
∂xp

1
γuγ′uγ′η

〈
f̂ j f̂ ′p

〉

− i
k′n〈B〉n

γ′η
εl jk

[
1

γuγ′2u
P′ks

∂〈U〉s
∂xp

+
(k′ · 〈B〉)2

γuγ′2u γ′2η

∂〈U〉k
∂xp

]〈
f̂ j f̂ ′p

〉

− i
k′n〈B〉n

γ′η
εl jk

[
1

γ2
uγ′u

Pjs
∂〈U〉s

∂xp
+

(k · 〈B〉)2

γ2
uγ2

ηγ′u

∂〈U〉j
∂xp

]〈
f̂p f̂ ′k

〉

+ iεl jk〈B〉n
∂〈U〉k

∂xp

k′n
γuγ′uγ′2η

〈
f̂ j f̂ ′p

〉
, (A5)

where, again, higher-order terms in the gradients G and G have been neglected. We assume
the force correlation tensor in the following isotropic and homogeneous form

〈
f̂i(k, ω) f̂ j(k′, ω′)

〉
=
[

F0
(
ω, ω′, k

)
Pij(k) + iF1

(
ω, ω′, k

)
εijkkk

]
δ(k + k′). (A6)

After the change of variables ω → ω− k · 〈U〉, we return to the real space to obtain
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εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉

= 2〈B〉n
∫

d4q
∫

dω′e−i(ω+ω′)t knkl
γuγ′uγ′η

F1

− εl jk
∂〈B〉k
∂xp

∫
d4q

∫
dω′e−i(ω+ω′)t 1

γuγ′uγ′η
F0Pjp(k)

+ 〈B〉n〈B〉r
∂〈B〉s

∂xj
εl jk

∫
d4q

∫
dω′e−i(ω+ω′)t 1

γuγ′2u γ′2η

knkrkkks

k2 F0

+ 〈B〉n〈B〉r
∂〈B〉s

∂xj
εl jk

∫
d4q

∫
dω′e−i(ω+ω′)t 1

γ2
uγ′uγηγ′η

knkrkkks

k2 F0

+ 〈B〉n
∫

d4q
∫

dω′e−i(ω+ω′)t

[
knklkkks

k2γuγ′2u γ′η

∂〈U〉s
∂xk

+
knkkkrkw

γuγ′2u γ′3η
〈B〉r〈B〉w

∂〈U〉k
∂xl

]
F1

+ 〈B〉n
∫

d4q
∫

dω′e−i(ω+ω′)t

[
knklkkks

k2γ2
uγ′uγ′η

∂〈U〉s
∂xk

+
knkkkrkw

γ2
uγ2

ηγ′uγ′η
〈B〉r〈B〉w

∂〈U〉k
∂xl

]
F1

− 〈B〉n
∂〈U〉k

∂xl

∫
d4q

∫
dω′e−i(ω+ω′)t knkk

γuγ′uγ′2η
F1. (A7)

Next, using the following formulae

∫ kj

k
f
(

cos2 θ
)

dΩ̊ = 0,
∫ kikjkk

k3 f (cos θ)dΩ̊ = 0, (A8a)

∫ kjkn

k2 f
(

cos2 θ
)

dΩ̊ = π
∫ 1

−1
f (X2)

{
δjn

(
1− X2

)
+ δj3δn3

(
3X2 − 1

)}
dX, (A8b)

∫ kikjkmkn

k4 f
(

cos2 θ
)

dΩ̊ =
π

4

(
δijδmn + δimδjn + δinδjm

) ∫ 1

−1
f (X2)

(
1− X2

)2
dX

− π

4

(
δijδm3δn3 + δimδj3δn3 + δinδj3δm3 + δjmδi3δn3

+δjnδi3δm3 + δmnδi3δj3

) ∫ 1

−1
f (X2)

(
5X4 − 6X2 + 1

)
dX

+
π

4
δi3δj3δm3δn3

∫ 1

−1
f (X2)

(
35X4 − 30X2 + 3

)
dX, (A8c)

where Ω̊ denotes the solid angle and the spherical coordinates (k, θ, φ) have been used
(with a substitution X = cos θ) one obtains

εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉

= I1

(
ν, η, 〈B〉2

)
〈B〉l −

[
I2

(
ν, η, 〈B〉2

)
+ 〈B〉2I3

(
ν, η, 〈B〉2

)]
[∇× 〈B〉]l

− I4

(
ν, η, 〈B〉2

)[
∇〈B〉2 × 〈B〉

]
l

+
{
I6

(
ν, η, 〈B〉2

)
+ I8

(
ν, η, 〈B〉2

)
〈B〉2 − I5

(
ν, η, 〈B〉2

)}[
(∇〈U〉)s · 〈B〉

]
l

+ I7

(
ν, η, 〈B〉2

)
〈B〉l
〈B〉 · (∇〈U〉)s · 〈B〉

〈B〉2

−
{
I8

(
ν, η, 〈B〉2

)
〈B〉2 − I5

(
ν, η, 〈B〉2

)}
[(∇× 〈U〉)× 〈B〉]l , (A9)

with

I1

(
ν, η, 〈B〉2

)
= 4π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4X2F1(ω, ω′, k)

γuγ′uγ′η
, (A10a)
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I2

(
ν, η, 〈B〉2

)
= π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k2(1 + X2)F0

γuγ′uγ′η
, (A10b)

I3

(
ν, η, 〈B〉2

)
=

π

2

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F0

γuγ′uγ′η

[
1

γ′uγ′η
+

1
γuγη

]
g3(X), (A10c)

I4

(
ν, η, 〈B〉2

)
=

π

4

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F0

γuγ′uγ′η

[
1

γ′uγ′η
+

1
γuγη

]
g4(X), (A10d)

I5

(
ν, η, 〈B〉2

)
= 2π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4X2F1

γuγ′uγ′2η
, (A10e)

I6

(
ν, η, 〈B〉2

)
= 2π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F1

γuγ′uγ′η

(
1

γ′u
+

1
γu

)
g6(X), (A10f)

I7

(
ν, η, 〈B〉2

)
= π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F1

γuγ′uγ′η

(
1

γ′u
+

1
γu

)
g7(X), (A10g)

I8

(
ν, η, 〈B〉2

)
= 2π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k6X4F1

γuγ′uγ′η

(
1

γ′uγ′2η
+

1
γuγ2

η

)
, (A10h)

where
g3(x) = −13X4 + 10X2 − 1, (A11a)

g4(X) = 9X4 − 10X2 + 1, (A11b)

g6(X) = X2
(

1− X2
)

, (A11c)

g7(X) = X2
(

5X2 − 3
)

. (A11d)

The mean velocity gradients within the considered model correspond to effects such as
the cross-helicity dynamo or the shear-current effect [19–21], but for clarity, we will exclude
them here. Hence, we now set 〈U〉 = 0 and concentrate only on the α-effect and the effects
of turbulent diffusion. For simplicity, we will also consider the case when ∇〈B〉2 × 〈B〉 is
negligible, hence the mean EMF is reduced to

εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
=I1

(
ν, η, 〈B〉2

)
〈B〉l

−
[
I2

(
ν, η, 〈B〉2

)
+ 〈B〉2I3

(
ν, η, 〈B〉2

)]
[∇× 〈B〉]l . (A12)

Appendix C

The calculation of the explicit relations between the coefficients ᾱst, η̄st and ᾱ∆ω, η̄∆ω

is presented here. The integrals (A10a)–(A10c) take the following form

I1

(
ν, η, 〈B〉2

)
= I (st)

1

(
ν, η, 〈B〉2

)

− i2πΓ
∫

dk
∫ 1

−1
dX

∫
dω

k4X2F1
(
ω2, k

)

γu
W(ω; ω̃, ν, η), (A13a)

I2

(
ν, η, 〈B〉2

)
= I (st)

2

(
ν, η, 〈B〉2

)

− i
π

2
Γ
∫

dk
∫ 1

−1
dX

∫
dω

k2(1 + X2)F0
(
ω2, k

)

γu
W(ω; ω̃, ν, η), (A13b)
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I3

(
ν, η, 〈B〉2

)
= I (st)

3

(
ν, η, 〈B〉2

)

− i
π

4
Γ
∫

dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)

γ2
uγη

(
−13X4 + 10X2 − 1

)
W(ω; ω̃, ν, η)

− i
π

4
Γ
∫

dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)

γu

(
−13X4 + 10X2 − 1

)
W(ω; ω̃, ν, η), (A13c)

where

W(ω; ω̃, ν, η) =
eiω̃t

γu(−ω− ω̃)γη(−ω− ω̃)
− e−iω̃t

γu(−ω + ω̃)γη(−ω + ω̃)
, (A14a)

W(ω; ω̃, ν, η) =
eiω̃t

γ2
u(−ω− ω̃)γ2

η(−ω− ω̃)
− e−iω̃t

γ2
u(−ω + ω̃)γ2

η(−ω + ω̃)
, (A14b)

and I (st)
3

(
ν, η, 〈B〉2

)
is given in (33c). To make analytical progress, we now consider the

following asymptotic limit

∀k ω̃ � νk2, ηk2, PmM 2(k)� 1, Pm =
ν

η
� 1, (A15)

where we have defined

M 2(k) =
〈B〉2
νηk2 , (A16)

so that

γu(−ω− ω̃)γη(−ω− ω̃)

=

{
νk2 + ηk2 (k · 〈B〉)2

∣∣γη

∣∣2 + i(−ω− ω̃)

[
(k · 〈B〉)2

∣∣γη

∣∣2 − 1

]}(
ηk2 − i(−ω− ω̃)

)

= νηk4 − (ω + ω̃)2 + (k · 〈B〉)2 + i(ω + ω̃)(ν + η)k2

≈ νηk4 −ω2 + (k · 〈B〉)2 + iω(ν + η)k2 + ω̃
[
i(ν + η)k2 − 2ω

]
, (A17)

1
γu(−ω− ω̃)γη(−ω− ω̃)

≈ 1
γu(−ω)γη(−ω)

− ω̃
i(ν + η)k2 − 2ω

γ2
u(−ω)γ2

η(−ω)
. (A18)

On introducing the following new variable

ω =
√

νηk2v, (A19)

we obtain

|γu(ω)|2
∣∣γη(ω)

∣∣2 =ω4 + ω2
[
k4
(

ν2 + η2
)
− 2(k · 〈B〉)2

]
+
(

νηk4 + (k · 〈B〉)2
)2

=ν2η2k8
{

v4 + v2
[(

Pm + Pm−1
)
− 2M 2X2

]
+
(

1 +M 2X2
)2
}

, (A20)

and hence with the use of
〈

f̂i(k, ω) f̂ j(k′, ω′)
〉
=

[
D0

k3 Pij(k) + i
D1

k5 εijkkk

]
δ(k + k′)∆

(
ω, ω′; ω̃, Γ

)
, (A21)

where D0, D1 and Γ are constants, one obtains

I1

(
ν, η, 〈B〉2

)
= ᾱst + ᾱstΓ sin(ω̃t)− ᾱ∆ωΓ cos(ω̃t) (A22a)
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I2

(
ν, η, 〈B〉2

)
= η̄1 st + η̄1 stΓ sin(ω̃t)− η̄1 ∆ωΓ cos(ω̃t), (A22b)

〈B〉2I3

(
ν, η, 〈B〉2

)
= −η̄2 st − η̄2 stΓ sin(ω̃t) + η̄2 ∆ωΓ cos(ω̃t), (A22c)

where

ᾱst =
4πD1

ν
√

νη

∫ dk
k5

∫ 1

−1
dX

∫
dv

X2

v4 + v2[(Pm + Pm−1)− 2M 2X2] + (1 +M 2X2)
2

≈ 4πD1

ν
√

νη

∫ dk
k5

∫ 1

−1
dX

∫
dv

X2

v2(Pm−1 − 2M 2X2) + (1 +M 2X2)
2 , (A23)

ᾱ∆ω =− 4πω̃
∫

dk
∫ 1

−1
dX

∫
dω

k4X2F1
(
ω2, k

)

|γu|4
∣∣γη

∣∣4
{

2ω4 + ω2
[
ν(ν− η)k4 − 2k2〈B〉2X2

]

−(ν + η)ηk4
[
νηk4 + k2〈B〉2X2

]}

≈4πD1ω̃

(νη)3/2

∫ dk
k7

∫ 1

−1
dX

∫
dv

X2[Pm−1(1 +M 2X2)+ 2v2M 2X2]
{

v2(Pm−1 − 2M 2X2) + (1 +M 2X2)
2
}2 , (A24)

η̄st ≈πη〈B〉2
∫

dk
∫ 1

−1
dX

∫
dω

k6g3(X)F0
(
ω2, k

)

|γu|4
∣∣γη

∣∣4
(

ω2 − νηk4 − k2〈B〉2X2
)

≈πD0〈B〉2

ν(νη)3/2

∫ dk
k7

∫ 1

−1
dX

∫
dv

(
13X4 − 10X2 + 1

)(
1 +M 2X2)

{
v2(Pm−1 − 2M 2X2) + (1 +M 2X2)

2
}2 , (A25)

η̄∆ω ≈−
3π

2
ω̃〈B〉2

∫
dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)

|γu|4
∣∣γη

∣∣4 g3(X)
[
2ω2 + (ν + η)ηk4

]

+ 2π(ν + η)(ν + 3η)ω̃〈B〉2
∫

dk
∫ 1

−1
dX

∫
dω

k8ω2F0
(
ω2, k

)

|γu|6
∣∣γη

∣∣4 g3(X)

+ 2π
(

ν2 − η2
)

ω̃〈B〉2
∫

dk
∫ 1

−1
dX

∫
dω

k8ω2F0
(
ω2, k

)

|γu|6
∣∣γη

∣∣6 g3(X)
[
2(ν + η)ηk4

+k2〈B〉2X2
]

≈ 3πD0ω̃〈B〉2

2(νη)5/2Pm

∫ dk
k9

∫ 1

−1
dX

∫
dv

(
13X4 − 10X2 + 1

)
{

v2(Pm−1 − 2M 2X2) + (1 +M 2X2)
2
}2

+
2πD0ω̃〈B〉2

(νη)5/2Pm

∫ dk
k9

∫ 1

−1
dX

∫
dv

g3(X)v2(Pm−1 −M 2X2)
{

v2(Pm−1 − 2M 2X2) + (1 +M 2X2)
2
}3 . (A26)

The above integrals can be evaluated in the asymptotic limit (A15) in a straightforward
manner, leading to

ᾱst

ᾱ∆ω
≈

8〈B〉
√

Pm
∫ K

kmin
dk
k3

πω̃
∫ K

kmin
dk
k4

≈ 12〈B〉
√

Pmkmin

πω̃
, (A27a)

η̄st

η̄∆ω
≈

4ν
∫ K

kmin
dk
k6

3ω̃
∫ K

kmin
dk
k8

≈ 28νk2
min

15ω̃
, (A27b)
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where K denotes the short-wavelength dissipative cut-off of the Fourier spectrum and we
have assumed k` � K. The induction equation can be cast in the following form

∂〈B〉
∂t

= ∇× (ᾱns〈B〉)−∇× (η̄ns∇× 〈B〉), (A28)

with
ᾱns = ᾱst + ᾱstΓ sin(ω̃t)− ᾱ∆ωΓ cos(ω̃t), (A29a)

η̄ns = η + η̄st + η̄stΓ sin(ω̃t)− η̄∆ωΓ cos(ω̃t). (A29b)

The Equations (A29a) and (A29b) can be easily rearranged into

ᾱns = ᾱst +
ᾱstΓ

cos φα
sin(ω̃t− φα), (A30a)

η̄ns = η + η̄st +
η̄stΓ

cos φη
sin
(
ω̃t− φη

)
, (A30b)

where
tan φα =

ᾱ∆ω

ᾱst
, tan φη =

η̄∆ω

η̄st
. (A31)
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Abstract: Numerous combustion applications are concerned with the stabilization of diffusion flames
formed by injecting gaseous fuels into a co-flowing stream containing an oxidizer. The smooth
operation of these devices depends on the attachment and lift-off characteristics of the edge flame
at the base of the diffusion flame. In this paper, we address fundamental issues pertinent to the
structure and dynamics of edge flames, which have attributes of both premixed and diffusion flames.
The adopted configuration is the mixing layer established in the wake of a splitter plate where two
streams, one containing fuel and the other oxidizer, merge. The analysis employs a diffusive-thermal
model which, although it excludes effects of gas expansion, systematically includes the influences
of the overall flow rate, unequal strain rates in the incoming streams, stoichiometry, differential
and preferential diffusion, heat loss and gas–solid thermal interaction, and their effect on the edge
structure, speed, and temperature. Conditions when the edge flame is anchored to the plate, lifted-off
and stabilized in the flow, or blown-off, are identified. Two stable modes of stabilization are observed
for lifted flames; the edge flame either remains stationary at a specified location or undergoes
spontaneous oscillations along a direction that coincides with the trailing diffusion flame.

Keywords: edge flames; lifted diffusion flames; tribrachial flames; triple flames; edge speed; oscillat-
ing flames; gas–solid thermal interactions; diffusive-thermal model; diffusive-thermal instabilities

1. Introduction

Combustion phenomena are commonly classified as premixed or non-premixed, de-
pending on whether the fuel and oxidizer are already mixed at the molecular level when
introduced into the combustion chamber or are individually supplied from different ori-
gins. When ignition occurs in a premixed system, a premixed flame propagates throughout
the mixture, consuming the reactants and generating heat. In a non-premixed system,
the fuel and oxidizer are introduced from separate streams to a common region where,
upon ignition, mixing and reaction take place simultaneously. Since diffusion plays an
essential role in mixing the reactants, the flame in non-premixed systems is referred to
as a diffusion flame. The distinction between premixed and diffusion flames is a useful
way to globally characterize combustion systems. There are circumstances, however, in
which burning occurs in a hybrid mode; fuel and oxidizer enter separately but partially
mix at the outset and combustion takes place in a stratified ambience once the mixture
is ignited. Consider, for example, a jet of fuel burning into an environment containing
an oxidizer, reproduced in Figure 1a from the experiments of Chung and Lee [1]. At low
speeds, chemical reaction occurs in the immediate vicinity of the injection port and extends
downstream along a diffusion flame that separates a region where there is primarily fuel
from a region containing mainly oxidizer. At higher speeds, the flame lifts off and stabilizes
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within the jet away from the injector. The base of the lifted flame, referred to as an edge flame,
separates a burning from a non-burning state; it has a distinct tribrachial structure that
combines characteristics of both premixed and diffusion flames as illustrated in Figure 1b.
The highly curved lower part is a premixed flame, which is sustained by the stratified
mixture of fuel and oxidizer that has been generated near the injection port. It has two
arms: a fuel-rich branch extending towards the fuel side and a fuel-lean branch extending
towards the oxidizer side. The diffusion flame that stretches out downstream emanates
from the point where the mixture is locally in stoichiometric proportion. This structure has
been often referred to in the literature as a tribrachial flame or a triple flame.

Edge flames play a crucial role in the stabilization of lifted diffusion flames. In large
industrial boilers that typically run at high flow rates, the diffusion flame is lifted off the
injector, which is favorable because it prevents thermal contact that could lead to erosion of
the burner material. The disadvantage is that the freely standing edge flame may be subject
to instabilities and possible blow-off. Another example is the diffusion flame separating
streams of gaseous hydrogen and liquid oxygen in a liquid rocket engine. The diffusion
flame seen in the vicinity of the high-speed gaseous stream further downstream is actually
stabilized in the neighborhood of the oxygen injector lip. Once established, the diffusion
flame cannot be easily extinguished because the strain rate encountered in practical op-
eration conditions is typically too small and cannot cause its extinction [2]. The main
problem, therefore, reduces to anchoring the edge flame near the injector lip. Anchoring
and stabilizing lifted diffusion flames, conditioned on the properties of the edge flames at
their base, are essential for the safe, efficient, and smooth operation of combustion devices.
Poor stabilization may lead to disastrous consequences.
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Figure 1. Lifted jet diffusion flame; the fuel issued from a narrow tube is burning in an environment
containing an oxidizer. The photograph on the left is taken from [1]; the sketch on the right illustrates
the structure of the partially premixed edge flames formed at the base of the diffusion flame.

The symmetric flame structure illustrated in Figure 1 would result under idealized
conditions. Various factors, such as streams of unequal strain rates, fuel and oxidizer of
unequal molecular diffusivity or supplied in off-stoichiometric proportions, heat losses,
and unequal reactant consumption rates would all lead to asymmetric flames. In this study,
we focus on the various factors that affect the structure and dynamics of the edge flames
supporting the lifted diffusion flames. To this end, we examine the combustion field in the
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wake of a thin splitter plate where two initially separated streams, one containing fuel and
the other an oxidizer, merge. Despite its apparent simplicity, the mathematical problem
is rather complex; the flow and combustion fields are strongly coupled due to the heat
released by the chemical reactions and the equations governing this intricate process must
be solved in an infinite domain that mimics the region ahead and behind the plate trailing
edge in order to properly allow for upstream diffusion and accurately capture the far-field
asymptotic behavior in the wake region. To simplify the description, we adopt a diffusive-
thermal model that filters out the hydrodynamic disturbances induced by gas expansion,
practically adopting a constant-density model. Accordingly, the flow field is determined
a priori by solving the Navier–Stokes equations with a constant (average) density and
used thereafter in the heat and mass transport equations to determine the combustion
field. The merging shear flow model considered here, which as formulated by Liñán [3]
represents the near-wake flow structure for large Reynolds numbers, has successfully
captured the intricate edge flame structure sustained near the plate, the attachment and lift-
off behavior of the diffusion flame, and a revelation of the flame stability properties leading
to oscillations, blow-off, and/or extinction. In addition, we have provided a comprehensive
parametric study describing the influence of a wide range of practical parameters, including
mass-flow rate, diffusion properties of the fuel and oxidizer, stoichiometry, radiative heat
loss, and thermal characteristics of the splitter plate. Comparison with experimental
observations confirms the relevance of our results to the anchoring and stabilization of
lifted diffusion flames in various practical settings.

Edge flames have also been studied in other contexts, such as weakly curved premixed
flames in stratified mixtures [4–7] and in strained mixing layers in premixed [8–11] and non-
premixed [12,13] systems, and have been addressed in a number of model problems [14–16].
They are also relevant to studies of turbulent diffusion flames acting as an agent for re-
establishing combustion in a hole formed on the flame surface [17]. Although they share
some common features with edge flames examined in the present article, the mathematical
problems are fundamentally different. Further details can be found in the review articles
of Buckmaster [18], Chung [19], Lyons [20] and Matalon [21].

The mathematical formulation is presented next. In the subsequent sections, we
provide a review and extension of studies concerned with edge flames in mixing layers.

2. Model and Formulation

The oxidation of practical fuels involves a complex network of chemical reactions with
a multitude of parameters that are not all well known. Although reduced mechanisms
have been suggested for common fuels, they typically involve many elementary reactions
and a large number of intermediate species that need to be tracked over a wide range of
time scales. This complicates analysis of the governing equations appreciably and could
only be used in numerical simulations intended to address the burning of a particular fuel
under specified conditions. For fundamental understanding, it is preferable to model the
chemical activity by an overall step of the form

Fuel + s Oxidizer→ (1 + s)Products + {Q},

implying that a mass s of an oxidizer is consumed for every unit mass of fuel, producing
a mass 1 + s of products and liberating an amount Q of heat. The fuel consumption,
or reaction rate, is then given by

ω = B( ρYF)
nF ( ρYO)

nO e−E/RT ,

where ρ and T are the density and temperature of the mixture, YF and YO are the mass
fractions of the fuel and oxidizer, E is the activation energy, R the universal gas constant, B
is a pre-exponential factor, and nF , nO are reaction orders that are empirically determined
to accommodate different mixture combinations; see, for example, [22]. To minimize the
number of parameters and refrain from dealing with a particular fuel under specified
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conditions, we assume below that nF = nO = 1. The implication of this assumption will be
outlined below.

We consider below the two-dimensional merging-flow configuration, which is shown
in Figure 2 for a symmetric setup. Two streams are separated far upstream by an infinites-
imally thin semi-infinite splitter plate; one contains a fuel, with initial mass fraction YF0

,
and the other an oxidizer, with initial mass fraction YO0

. The ratio between the initial
mass fraction of fuel and that of oxidizer, normalized by their stoichiometric proportion,
represents the initial mixture strength of the system, φ = sYF0

/YO0
(similar to the equiva-

lence ratio in a fuel and oxidizer premixture). A lean system corresponds to φ < 1, and a
rich system to φ > 1. The ambient temperature and the temperature in both streams are
constant and equal to T0. The incoming streams begin to merge beyond the tip of the plate,
bringing the fuel and oxidizer together and forming in the wake of the plate a velocity shear
layer and a much wider mixing layer that extends upstream. A Cartesian coordinate system
(Oxy) is established with the origin coinciding with the tip of the plate, the x-axis parallel
to the plate, and the y-axis perpendicular to the plate pointing toward the fuel stream. For
large Reynolds number, the incoming flow along the plate is asymptotically equivalent to
two infinite streams of uniform but not necessarily equal strain rates, corresponding to the
local velocity gradients of the Blasius boundary layers generated by the plate. The flow
extends laterally towards the lower deck of the triple-deck structure that characterizes
the flow in the near wake region; for more details, see the description in [3,23]. Hence,
the velocity field v = (u, v) as x → −∞ is given by

v = 0, u =

{
Ay, for y > 0 ,

−αAy, for y < 0 ,

where A and αA are the (constant) shear strain rates in the incoming fuel and oxidizer
streams, respectively. The parameter α characterizes the skewness of the merging flow field;
the case α ≤ 1 corresponds to a co-flowing setup, which is often used in experiments to sta-
bilize the flame [24], while α→ 0 mimics a fuel jet injecting into a quiescent gas [1], where
the oxidizer is totally entrained into the mixing layer from the surroundings. Upon success-
ful ignition, a diffusion flame stabilized by an edge flame at its base is established in the
flow field.

FUEL

OXIDIZER

Figure 2. A symmetric edge flame stabilized in the wake of two merging streams of initially uniform
and constant strain rates. The edge flame is represented by reaction-rate contours and the flow field
is illustrated by equally spaced streamlines. The shaded areas correspond to the velocity shear layer
(inner region) and the mixing layer (outer region), respectively.
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The combustion process is described by conservation statements of mass, momentum,
and energy of the entire mixture and mass balance equations for the fuel and oxidizer.
For constant properties, these equations take the form

∂ρ

∂t
+∇ · (ρv) = 0 ,

ρ
(∂v

∂t
+ v · ∇v

)
= −∇p + µ∇2v ,

ρcp
(∂T

∂t
+ v · ∇T

)
= λ∇2T + Qω−QR ,

ρ
(∂YF

∂t
+ v · ∇YF

)
= ρDF∇2YF −ω ,

ρ
(∂YO

∂t
+ v · ∇YO

)
= ρDO∇2YO − sω ,

where t is time and p is the dynamic pressure. The coefficients µ, cp, and λ are the viscosity,
specific heat (at constant pressure) and conductivity of the mixture, and DF, DO are the
mass diffusivities of the fuel and oxidizer. The volumetric heat loss rate by gas radiation,
for an optically thin gas, takes the form

QR = 4σl−1
p (T4 − T4

0 )

where σ is the Stefan–Boltzmann constant and lp is the Planck mean-absorption length.
These equations must be supplemented by an appropriate equation of state, relating the
density of the mixture to the temperature. Deflagration waves are low-Mach-number
processes and nearly isobaric, such that the density is inversely proportional to the temper-
ature. The small pressure variations from the constant ambient pressure are only necessary
to balance the equally small momentum changes.

The aforementioned equations display a strong coupling between the flow and com-
bustion fields because of the density variations associated with the increase in temperature
that results from the heat released by the chemical reactions. The gas expansion modifies
the velocity field which, in turn, affects the transport of energy and chemical species. A no-
table simplification results if the density is assumed constant by adopting, for example,
an average value. The constant-density, or diffusive-thermal, model can be obtained formally
by assuming that the heat release is small compared to the initial enthalpy of the mixture.
As a result, the temperature rise is small and the density in the fluid-mechanic equations is,
with respect to leading order, the constant ambient value. A small heat release, however, is
not a characteristic of combustion systems. Using instead the constant-density assumption
with an average value for the density is more appealing. Using this approximation, the
flow field is determined a priori and then used in the energy- and mass-balance equations
to determine the combustion field. The results presented below will be examined within
this framework.

To express the equations in dimensionless form, we scale velocities with respect to
a characteristic speed of an edge flame chosen as the laminar flame speed correspond-
ing to a stoichiometric premixture, namely a mixture consisting of YF0

/(1 + φ) fuel and
φYO0

/(1 + φ) oxidizer, of unity fuel and oxidizer Lewis numbers. An expression for lami-
nar flame speed SL of a stoichiometric mixture (of arbitrary Lewis numbers) derived in the
limit of large activation energies [25] is given by

SL =

√
4BρDT φYO0

β3Le−1
F Le−1

O (1+φ)
e−E/2RTa , (1)

where DT = λ/ρcp is the thermal diffusivity of the mixture, Ta = T0 + QYF0
/cp(1 + φ) is

the adiabatic flame temperature, LeF = DT/DF and LeO = DT/DO are the Lewis numbers,
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representing the ratios of the thermal diffusivity of the mixture to the molecular diffusivities
of the fuel and oxidizer, and β = E(Ta−T0)/RT2

a is the activation-energy parameter, or Zel-
dovich number. The laminar flame speed corresponding to unity fuel and oxidizer Lewis
numbers is identified with superscript 0, i.e., denoted S0

L. Using S0
L as a unit speed, length

and time are scaled by the diffusion length DT/S0
L and diffusion time DT/S0

L
2, and pressure

by ρS0
L

2. The steady flow resulting from the merging streams illustrated in Figure 2 is
described by

∇ · v = 0 ,

v · ∇v = −∇p + Pr∇2v ,
(2)

using the same symbols for the dimensionless velocity and pressure, where Pr = µcp/λ is
the Prandtl number, or the reciprocal of the corresponding Reynolds number. For the re-
maining equations, it is convenient to normalize the fuel and oxidizer mass fractions by their
initial supply values, YF0

and YO0
, and define a scaled temperature θ = (T − T0)/(Ta − T0).

The combustion field is then described by

∂θ

∂t
+ v · ∇θ = ∇2θ + (1 + φ)Ω− H

[
(1 + qθ)4 − 1

]
,

∂YF

∂t
+ v · ∇YF = Le−1

F ∇2YF −Ω ,

∂YO

∂t
+ v · ∇YO = Le−1

O ∇2YO − φ Ω ,

(3)

using the same symbols for the normalized mass fractions. The parameters in these
equations, in addition to the initial mixture strength φ and the Lewis numbers LeF and
LeO, are the heat release or thermal expansion parameter q = (Ta − T0)/T0, and the
volumetric heat-loss coefficient H = 4σT4

0 /ρcplp(Ta−T0)S0
L

2. The dimensionless reaction
rate is given by

Ω = Dβ3YFYO exp
{

β(1 + q)(θ − 1)
(1 + qθ)

}
, (4)

where the factor β3 was introduced solely for convenience, being the proper scaling in the
asymptotic treatment of both premixed [25] and diffusion flames [26]. The coefficient

D =
1
β3

DT/S0
L

2

(
ρYO0

B e−E/RTa
)−1 =

1 + φ

4φ
, (5)

which represents the ratio of the diffusion to chemical reaction times, depends only on
the initial mixture strength and may be considered as the local Damköhler number that
characterizes the conditions near the edge flame. The ratio of the flow to the chemical
reaction times,

D =
Pr
β3

A−1

(
ρYO0

B e−E/RTa
)−1 (6)

is the global Damköhler number, which serves in this study as a primary parameter that
controls the flow conditions; decreasing D corresponds to increasing the strain rate A or,
equivalently, increasing the overall mass-flow rate. Below, we refer to D as the Damköhler
number. The Prandtl number was included in (6) for consistency with the definition used
in previous studies.

The boundary conditions associated with these equations, which confirm the descrip-
tion shown in Figure 2 are:

as x → −∞ : u = Ãy, v = 0, YF = 1, YO = 0, θ = 0, for y > 0 ,
u = −αÃy, v = 0, YF = 0, YO = 1, θ = 0, for y < 0 ,
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as y→ +∞ : u = Ãy, YF = 1, YO = 0, θ = 0 ,
as y→ −∞ : u = −αÃy, YF = 0, YO = 1, θ = 0 ,

where
Ã =

ADT

S0
L

2 =
1 + φ

4φ

Pr
D

is the dimensionless strain rate, inversely proportional to the Damköhler number D. We
note that although the shear flow extends to infinity in the lateral directions, the vertical
velocity component v can be made to vanish only far upstream. Elsewhere, we require

as y→ ±∞ : ∂v/∂y = ∂p/∂y = 0 ,

a constraint that results from the pressure gradient induced by the displacement effect
of the boundary layer along the plate, as discussed in [27–29]. The conditions along the
splitter plate are:

along y = 0 for x < 0 : u = v = 0,
∂YF

∂y
=

∂YO

∂y
= 0, θ = θs ,

where θs is the temperature of the solid plate; they correspond to no-slip conditions,
the impermeability of the solid plate to fuel and oxidizer, and local thermal equilibrium
between the solid and gas phases. The temperature θs depends on the nature of the plate
and the thermal interaction between the solid and gaseous phases. Energy conservation,
for a thin plate of thickness h, yields the following heat-conduction equation

1
rD

∂θs

∂t
=

∂2θs

∂x2 +
1

r
λ
h

[[
∂θ

∂y

]]
,

where r
λ

and rD are, respectively, the ratios of thermal conductivity and thermal diffusiv-
ity between the solid and the gas, and [[∂θ/∂y]] = ∂θ/∂y|y=0+ − ∂θ/∂y|y=0− is the heat
conducted laterally from the plate to the gaseous mixture. The limit r

λ
→ ∞, which cor-

responds to infinite conductivity of the plate’s material, or vanishing thermal resistance,
implies that θs = 0 and represents a (cold) isothermal plate. The other extreme, r

λ
→ 0,

which corresponds to the vanishing conductivity of the plate’s material, or infinite thermal
resistance, implies that [[∂θ/∂y]] = 0 and represents an adiabatic plate. At the tip of the
plate, x = y = 0, we impose

u = v = 0,
∂YF

∂x
=

∂YO

∂x
= 0, θ = θs,

∂θ

∂x
= r

λ

∂θs

∂x
.

Finally, far downstream the temperature and mass fractions are expected to evolve into a
uniform state such that

as x → ∞ :
∂θ

∂x
=

∂YF

∂x
=

∂YO

∂x
= 0 .

The conditions on the velocity field will be discussed below.

3. The Fast Chemistry Limit

We begin with an examination of the diffusion flame in the fast chemistry limit, first
envisaged by Burke and Schumann [30]. We also assume that the combustion system
is adiabatic, by neglecting heat losses, i.e., H = 0, and considering an adiabatic plate,
i.e., r

λ
= 0. For the sake of analytical treatment, we momentarily put aside the merging

shear flow and replace it with a simple uniform flow along the x-direction. If the uniform
axial velocity U is used as a reference speed, the temperature and mass fraction equations
for steady conditions simplify to
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∂θ

∂x
= ∇2θ + (1 + φ)Ω ,

∂YF

∂x
= Le−1

F ∇2YF −Ω ,

∂YO

∂x
= Le−1

O ∇2YO − φ Ω ,

(7)

where the numerator in the definition of D appears in the reaction rate term Ω, and similarly
in the definition of D, it is replaced by the characteristic flow time DT/U2. The fast
chemistry limit corresponds to an infinitely large Damköhler number, namely when a
chemical reaction proceeds much faster than the flow. Formally, D → ∞ implies that
YFYO = 0 throughout the combustion field, which can only be achieved if both reactants
are consumed instantaneously along a sheet that separates a region where there is fuel
but no oxidizer, from a region where there is only oxidizer. Then Ω = 0 on either side
of the reaction sheet (also known as the Burke–Schumann flame sheet), and the resulting
reaction-free equations must be solved subject to the following jump conditions across
the sheet:

[[θ]] = [[YF]] = [[YO]] = 0 ,
[[

∂θ

∂n

]]
= −1 + φ

LeF

[[
∂YF

∂n

]]
= −1 + φ

φLeO

[[
∂YO

∂n

]]
,

(8)

where ∂/∂n is the derivative along the normal to the sheet, and [[•]] = •|n=0+ − •|n=0− is
the jump operator. These conditions state that all variables are continuous across the sheet,
that fuel and oxidizer flow into the sheet from opposite sides in stoichiometric proportions,
and that heat is conducted proportionately to the fuel and oxidizer regions. They are
sufficient for the mathematical description of the combustion field, including the shape and
location of the reaction sheet, as discussed by Cheatham and Matalon [26].

The distribution of the reactant mass fractions is often determined in terms of the
mixture fraction, defined as

Z =
1 + φYF −YO

1 + φ
, (9)

which varies from Z = 1 in the fuel region (where there is no oxidizer) to Z = 0 in the
oxidizer region (where there is no fuel). In the present case, Z varies smoothly from Z = 0
to Z = 1 when y extends from −∞ to +∞. The mixture fraction is a useful property when
the fuel and oxidizer have equal Lewis numbers, i.e., LeF = LeO = Le because, according
to Equation (7), it satisfies

∂Z
∂x

= Le−1∇2Z , (10)

which contains no source terms, so that Z is a conserved scalar; namely, a quantity
that is neither created nor destroyed by chemical reactions. The mixture fraction can
then be determined a priori, with the mass fractions expressed in terms of Z from the
definition (9). The reaction sheet, along which YF = YO = 0, corresponds to Z = Zst, where
Zst = 1/(1 + φ) is the stoichiometric value of the mixture fraction. The distributions of the
fuel and oxidizer mass fractions are given by

YF =

{
φ−1[(1 + φ)Z− 1] , Zst < Z < 1

0 , 0 < Z ≤ Zst
(11)

YO =

{
0 , Zst < Z < 1

1− (1 + φ)Z , 0 < Z ≤ Zst ,
(12)

where (here and below) the upper/lower expressions correspond to the fuel/oxidizer
regions. Note that the stoichiometric surface Z(x, y) = Zst is also the surface prescribed by
the stoichiometric condition φYF = YO in a non-reacting environment.
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The temperature field cannot be simply expressed in terms of the mixture fraction, un-
less Le = 1. For unity Lewis numbers, the combinations θ + (1 + φ)YF and φθ + (1 + φ)YO
are also conserved scalars that can be expressed in terms of the mixture fraction as follows:

θ + (1 + φ)YF = (1 + φ)Z ,

φθ + (1 + φ)YO = (1 + φ)(1− Z) .

Consequently, the temperature is given by

for Le = 1 : θ =

{
φ−1(1 + φ)(1− Z)] , Zst < Z < 1

(1 + φ)Z , 0 < Z ≤ Zst ,
(13)

with θ = 1 along the stoichiometric surface. Indeed, for unity Lewis numbers, the tempera-
ture along the Burke–Schumann flame sheet is the adiabatic temperature T = Ta.

It is important to note that the mass fractions admit the simple form (11) and (12)
only for equal Lewis numbers, and the temperature can be simply expressed in terms
of the mixture fraction Z if, in addition, Le = 1. The usefulness of the mixture fraction
formulation, however, is limited to situations where the combustion field depends on
one coordinate which can be easily transformed to Z. Otherwise, one needs to solve an
appropriate equation, such as (10) in the present case, to determine Z in terms of the
physical coordinates.

We proceed with the case of equal but non-unity Lewis numbers and introduce the
following parabolic coordinate transformation:

ξ =

{
1
2
(√

x2 + y2 + x
)}1

2
, η = ±

{
1
2
(√

x2 + y2 − x
)}1

2
,

where η ≶ 0 corresponds to y ≶ 0, respectively. Conversely, the Cartesian coordinates are
related to the parabolic coordinates through the relations

x = ξ2 − η2, y = 2ξη,

for 0 ≤ ξ < ∞, and −∞ < η < ∞. In terms of the parabolic coordinates (ξ, η), the splitter
plate lies along ξ = 0, and Equation (10) transforms into

2ξ
∂Z
∂ξ
− 2η

∂Z
∂η

= Le−1
(

∂2Z
∂ξ2 +

∂2Z
∂η2

)
,

with the boundary conditions:

∂Z
∂ξ

= 0, for ξ = 0,
∣∣∣∣
∂Z
∂ξ

∣∣∣∣ < ∞, as ξ → ∞,

Z = 0, as η → −∞, Z = 1, as η → ∞.

We note that the boundary conditions are identically satisfied when ∂Z/∂ξ = 0 and,
consequently, the solution that depends on η only, is

Z =
1
2
[
1 + erf

(√
Le η

)]
. (14)
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The mass fractions (11) and (12) can now be easily expressed in terms of (x, y). Solution (14)
implies that the contours of Z(x, y) coincide with the coordinate lines η, and for a constant η
are parabolas of the form x = y2/4η2− η2. The stoichiometric surface, or Burke–Schumann
flame-sheet location, is obtained from Z = Zst, and given by

ηst =
1√
Le

erf−1
(1− φ

1 + φ

)
.

When the fuel and oxidizer are supplied in stoichiometric proportions, i.e., φ = 1, the flame
sheet coincides with the axis y = 0 and the combustion field is symmetric with respect to
the axis. An asymmetric flame results otherwise; for a lean system (φ < 1) it lies in the fuel
region and for a rich system (φ > 1) in the oxidizer region.

Although the temperature cannot be simply expressed in terms of the mixture fraction,
a solution can be obtained by recognizing that θ on either side of the reaction sheet satisfies
an equation similar to Z, with Le−1 in front of the Laplacian replaced by 1. The solution
that vanishes as η ±∞ is

θ =





θst

1− erf ηst
(1− erf η), for η > ηst

θst

1 + erf ηst
(1 + erf η), for η < ηst ,

(15)

where θst is the temperature along the diffusion flame sheet η = ηst. The jump condition (8)
relating the gradients of temperature and mass fractions yields

θst =
(1 + φ)2

4φ
√

Le
(1− erf 2ηst) e(1−Le)η2

st . (16)

For unity Lewis numbers, θst = 1 as noted earlier, and the temperature along the
Burke–Schumann flame sheet is the adiabatic flame temperature Ta. For non-unity Lewis
numbers, the temperature along the Burke–Schumann flame sheet, or the stoichiomet-
ric temperature, differs from the adiabatic flame temperature and depends on the Lewis
number, as first recognized by Cheatham and Matalon [26] and discussed in [31] for a
counterflow diffusion flame. This remains true even for φ = 1, namely, when the flame
sheet lies along the y-axis and the combustion field is symmetric with respect to the center-
line. The result θst = Le−1/2 in this case implies that for the same stoichiometric mixture,
the flame temperature of a diffusion flame consuming all the fuel and oxidizer is larger
than the flame temperature of a premixed flame by a factor Le−1/2. It will be demonstrated
in later sections that this distinction plays a significant role in determining the temperature
and propagation speed of edge flames. The insight gained from the explicit Formula (16)
helps in understanding the more complex effects of Lewis number and initial mixture
strength on edge flames in merging shear flows.

The dependence of the stoichiometric temperature on the Lewis number and ini-
tial mixture strength is illustrated in Figure 3 by contours of θst with respect to Le and
φ/(1 + φ). The initial mixture strength has been normalized as suggested by Law [32] for
the equivalence ratio in premixed combustion. In terms of φ/(1 + φ), lean/rich conditions
are distributed in a symmetric way below/above the stoichiometric value φ/(1 + φ) = 0.5
(dashed horizontal line). In general, the stoichiometric temperature increases on decreasing
the Lewis number, namely when the mass diffusivities of the fuel and oxidizer are signif-
icantly larger than the thermal diffusivity of the mixture. The symmetric distribution of
θst relative to stoichiometry is expected, because the flow is uniform and for equal Lewis
numbers the roles of fuel and oxidizer are interchangeable.
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Figure 3. Contours of the Burke–Schumann diffusion-flame temperature, or stoichiometric tem-
perature θst, in the parameter plane characterized by the Lewis number Le of the mixture and the
normalized initial mixture strength, φ/(1 + φ), for a constant uniform flow.

4. The Merging Shear Flow

The merging of two uniform shear flows downstream of the trailing edge of a semi-
infinite flat plate has been the subject of past investigations [33–35], primarily in the
aerodynamic field. For large Reynolds numbers, the flow is described by the boundary
layer equations and admits a similarity solution which, when expressed in terms of the
streamfunction, takes the form

ψ(x, y) = x2/3F(η),

where η = y/x1/3 is the similarity variable (not to be confused with the notation in the
previous section). For unequal initial strain rates, F(η) is the solution of the boundary
value problem

3F′′′ + 2FF′′ − F′2 = 2c,

F(η) ∼ 1
2

η2 + c, as η → +∞,

F(η) ∼ −1
2

αη2 − c
α

, as η → −∞,

where primes denote differentiation with respect to η and c is an eigenvalue. The corre-
sponding velocity components are given by

u = x1/3F′, v =
1

3x1/3 (ηF′ − 2F) . (17)

The solution of this problem was reexamined recently by Lu and Matalon [23] evaluating the
constant c and displaying profiles of the u(η) and v(η) for various values of the strain rate
ratio α. The similarity solution exhibits a singularity at the plate’s trailing edge, as attested
by the behavior of the vertical velocity v as x → 0, which invalidates the boundary layer
approximation exactly in the region where fuel and oxidizer begin mixing and the base of
the diffusion flame is expected to be stabilized. The underlying flow that supports the edge
flame must therefore be based on the Navier–Stokes Equation (2), and the solution must
asymptotically match the profiles (17) far downstream, namely with u ∼ x1/3 and v ∼ x−1/3

as x → ∞. The flow field that adheres to this condition was determined numerically for
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various values of α using a vorticity-streamfunction formulation. The equations were
discretized in a rectangular domain on a uniform mesh with ∆x = ∆y = 0.05, which
were found sufficient to meet the requirements of grid independence. Derivatives were
approximated via a second-order central difference scheme, and the resulting difference
equations were solved using a Gauss–Seidel iteration with successive over-relaxation.

Figure 4 shows the flow field for two representative values of α, for Pr = 0.72. When
α = 1, the flow field is symmetric with respect to the horizontal centerline, which coincides
with the dividing streamline that emanates from the trailing edge of the plate. When α = 0.1,
the imbalance in vorticity in the incoming streams causes the dividing streamline to deviate
from the centerline toward the fuel side, indicative of fluid entrainment from the oxidizer
region. Results for different α’s indicate that the deviation of the dividing streamline
increases as α decreases, implying an enhancement in the oxidizer entrainment. Evidently,
in both cases shown in the figure, the flow past the trailing edge of the plate undergoes
acceleration in the near-wake region. For a symmetric structure, the stabilization of the
edge flame in the mixing layer is significantly affected by the streamwise-velocity gradient
but when α decreases, the role of diffusion becomes more pronounced, as discussed below.
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Figure 4. The flow field of two merging shear flows for two representative strain rate ratios: (a) α = 1,
and (b) α = 0.1, both at Damköhler number D = 10, represented by streamlines that correspond to
equally spaced streamfunction values.

5. The Edge-Flame Structure

Given the velocity field v(x, y), as determined in the preceding section, we now
address Equation (3) for the description of the combustion field. Among all the parameters
involved, we have fixed q = 5 and β = 10, which correspond to the combustion reaction
of typical hydrocarbon fuels under standard conditions, and examined the influence of
the remaining parameters. These include the Damköhler number D, the fuel and oxygen
Lewis numbers LeF and LeO, the initial strain rate ratio α, the initial mixture strength φ,
the thermo-physical properties of the splitter plate, r

λ
and rD , and the volumetric heat-loss

coefficient H, which will be examined separately. For consistency, the combustion field
was determined numerically in the same rectangular domain and on the same mesh as
the flow field. The governing equations and boundary conditions were discretized via a
second-order finite-difference scheme and solved using the Gauss–Seidel iteration method
with successive over-relaxation. For steady solutions, an intermediate temperature value
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was chosen and fixed at a specified grid point to capture all possible solutions, stable
and unstable. The stability of the computed states was assessed by examining the time
evolution of small perturbations superimposed to a given steady state. The time-dependent
calculations were carried out with appropriate time steps ∆t, ensuring that the required
temporal precision was satisfied. Further details can be found in [23] and the references
cited therein.

5.1. Symmetric Edge Flames

Figure 5 illustrates the structure of a symmetric flame, stabilized in the near wake
of two merging streams of equal strain rates, α = 1, and a flow rate corresponding to
D = 10, with the parameter values: LeF = LeO = 1, φ = 1, H = 0, r

λ
= ∞. We refer to

this case as the baseline case and, unless otherwise stated, hereinafter when varying one of
the parameters it is implicitly assumed that all the other parameters remain unchanged.
The flame structure in the figure is represented by contours of reaction rate Ω, temperature
θ, and fuel and oxidizer mass fractions, YF and YO, respectively. Because the flow field is
symmetric with respect to the x-axis, and the fuel and oxidizer of equal diffusivities are
supplied in the incoming streams in stoichiometric proportion, the resulting edge flame
formed in the wake of the splitter plate is also symmetric. The flame has an apparent
tribrachial structure; it consists of a curved premixed flame at the front with fuel-rich and
fuel-lean branches extending above and below, which is referred to as the edge flame, and a
straight diffusion flame trailing downstream along the centerline. An enlarged picture of
an edge flame can be seen in one of the figures shown below. The temperature and mass
fraction distributions shown in the figure illustrate the extent and width of the thermal and
mixing layers. For the isothermal plate considered here, the thermal layer develops beyond
the trailing edge of the plate, while the mixing layer extends behind the plate as a result of
upstream diffusion.

Figure 5. An edge flame stabilized in the near wake of two merging streams of equal initial strain rates,
for unity Lewis numbers, stoichiometry, and adiabatic conditions—the baseline case. The structure
of the edge flame is illustrated by contours of (a) reaction rate Ω, (b) temperature θ, (c) fuel mass
fraction YF, and (d) oxidizer mass fraction YO.

The discussion below necessitates a precise and unambiguous definition of the edge-
flame position. To this end, we define its coordinates, xe and ye, as the location where the
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reaction rate Ω attains its maximum value. The axial distance between the edge flame and
the tip of the plate, i.e., xe, will be referred to as the flame-standoff distance.

Figure 6 shows that the flame-standoff distance is strongly affected by the overall flow
rate, i.e., variations in the Damköhler number D, and by the disparity between heat and
mass diffusivities, or variations in the Lewis number Le. In general, when decreasing D
from relatively large values, the edge flame moves towards the plate, i.e., down the velocity
gradient, in order to reach a new balance with the local flow velocity for its stabilization.
The standoff distance, however, reaches a minimum value because heat loss to the cold
plate prevents the edge flame from getting closer. The response of the edge flame when
approaching the plate and the minimum standoff distance depend on the Lewis number. To
retain the symmetry, the fuel and oxidizer Lewis numbers were assumed to have a common
value, i.e., LeF = LeO = Le. The figure shows the dependence of the standoff distance
xe of steady solutions on the Damköhler number, for 0.8 ≤ Le ≤ 1.6. Depending on the
Lewis number, the response curves exhibit one of two behaviors: a C-shaped response for
relatively low Lewis numbers, as exemplified by Le = 0.8, 1.0, and 1.2, and a U-shaped
response for higher values, as exemplified by Le = 1.4 and 1.6. The C-shaped curve consists
of two branches with a turning point corresponding to a minimum Damköhler number,
D = Dext, below which no solution exists. For D > Dext, the solution is multivalued. Steady
solutions along the lower branch (solid curve) are stable with respect to small perturbations;
when perturbed, the flame recedes back in time to its initial state. Solutions along the upper
branch (dotted curve) are unstable; when perturbed, the flame advances or retreats from
its initial equilibrium position indefinitely. Since only stable states are realized physically,
the turning point Dext defines an adiabatic extinction limit. In practical situations, when
increasing the mass-flow rate by decreasing the Damköhler number starting with large
values, the edge flame will first approach the plate along the stable lower branch, reach
a minimum standoff distance, and then lift slightly up to Dext. When further increasing
the mass-flow rate, the flame gets blown off. Both the Damköhler number and the flame-
standoff distance at extinction show a decreasing trend when Le decreases, suggesting that
under otherwise similar conditions flames with lower Lewis numbers (e.g., light fuels) can
survive higher flow rates.
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Figure 6. Response curves showing the dependence of the edge-flame-standoff distance xe on the
Damköhler number D for five representative values of Le. The solid segments correspond to stable
steady states, the dotted segments to unstable steady states, and the dashed segment to oscillatory
states. The filled circles ‘•’ mark the marginal stability boundaries between stable steady states and
stable oscillatory states, and the open circles ‘◦’ marked by (a–d), which correspond to Damköhler
numbers D = 25, 30, 50, and 110, respectively, are oscillatory states described in Figure 7.
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Figure 7. Edge-flame oscillation represented by time evolution of the flame-standoff distance xe,
for four representative Damköhler numbers marked by (a–d) on the response curve corresponding to
Le = 1.6 in Figure 6. The dashed line marks the initial equilibrium standoff distance of the edge flame.

Different from the C-shaped response, the U-shaped curve associated with high-Lewis-
number flames shows that a single steady solution exists for all D; the response curve
does not have a turning point or an explicit extinction limit. In practical situations, when
increasing the mass-flow rate by decreasing the Damköhler number starting with a large
value, the edge flame will first approach the plate, reach a minimum standoff distance,
and then lift off and stabilize further downstream. The flame lifts off to significantly
large distances by increasing the mass-flow rate only slightly. Both the minimum standoff
distance and the lift-off distance show an increasing trend when Le increases, suggesting
that, under otherwise similar conditions, flames with higher Lewis numbers (e.g., heavy
fuels) can stabilize sufficiently far from the plate. The stabilization mode, however, depends
on the Lewis number. For Le = 1.4, the entire response curve corresponds to stable steady
states. For Le = 1.6, an intermediate range of Damköhler numbers associated with unstable
states exist (dashed curve) between the stable states corresponding to smaller and larger
values of D. When a steady state within this range is slightly perturbed, the edge flame
is observed to move back and forth along the centerline relative to its initial equilibrium
position. Because these oscillations persist in time, the flame remains practically stabilized
near the plate but not in a steady fashion. The marginal states separating stable steady
states from stable oscillatory states are marked along the response curve by a ‘•’ symbol.
Figure 7 shows typical oscillations for four representative values of the Damköhler number
marked in Figure 6 by (a)–(d). The amplitude and frequency, as well as the nature of
the oscillations, vary with D. For example, oscillations of smaller amplitude are seen in
(a), while a complex oscillation pattern of multiple frequencies is seen in (b). A closer
examination shows that during its motion, the edge flame drags along the trailing diffusion
flame, but oscillations along the diffusion flame decay quickly when moving further
downstream [23,36]. The oscillations, which begin in the premixed segment of the edge
flame, are presumed to share a similar underlying mechanism with the well-known large-
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Lewis-number pulsation of premixed flames attributed to a diffusive-thermal instability.
Further results show that the ranges of both the Damköhler number D and the flame-
standoff distance xe corresponding to oscillatory states expand on increasing the Lewis
number [23].

The influence of the Lewis number on the structural characteristics of edge flames is
further illustrated in Figure 8, where temperature profiles along the centerline are plotted
for the same five representative Lewis numbers used earlier in Figure 6. For the sake of
comparison, the Damköhler number corresponding to each of these five cases was selected
such that the temperature decays to the ambient value (θ = 0) at approximately the same
position (x ≈ 11). We observe that when increasing Le the temperature on the trailing
diffusion flame falls consistently while the thickness of the preheat zone preceding the
edge flame increases. The reason lies in the different effects that the Lewis number has
on the temperature of diffusion and premixed flames, as discussed in Section 3. Unlike
the temperature of a premixed flame which remains the adiabatic flame temperature for
all Lewis numbers, the flame temperature of a diffusion flame, or the stoichiometric tem-
perature, decreases when increasing Le. The structure of an edge flame, which combines
characteristics of both premixed and diffusion flames, is influenced by the Lewis number
through the thermal interaction between the leading premixed segment and the trailing
diffusion flame. When Le = 1, the temperature of both the edge flame and the diffusion
flame, is the adiabatic flame temperature. When Le < 1, the temperature of the diffusion
flame exceeds the adiabatic flame temperature; the inherent heat transfer from the diffusion
flame toward the premixed segment yields a super-adiabatic edge temperature. The oppo-
site is true when Le > 1; heat is directed from the premixed segment towards the diffusion
flame resulting in a sub-adiabatic edge temperature.
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Figure 8. Temperature profiles for Le = 0.8, 1.0, 1.2, 1.4, 1.6, at D = 2.004, 4.073, 7.853, 14.495, 25.360,
respectively. The different values of D were judiciously selected to enable comparison of the preheat
zone and trailing diffusion-flame temperature between the various profiles.

The significant variations in edge temperature associated with the Lewis number have
implications on both the edge propagation speed Se and the thickness of the preheat zone
preceding the edge flame. The edge speed, similar to the edge temperature, is expected to
increase with decreasing Le. Because a stable stationary edge flame assumes the location
where the edge speed Se balances the incoming flow, a larger flow rate (smaller D) would
be required to stabilize the low-Lewis-number flames corresponding to a smaller standoff
distance. Indeed, the flow rate required to stabilize the edge flame with Le = 0.8 is
significantly higher than that required to stabilize an edge flame with Le = 1.6, as indicated
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in the caption of Figure 8. The same reasoning applies to the thickness of the preheat zone
preceding the edge flame. Assuming an exponential decay θ ∼ exp{Se(x− xe)}, which
is the typical profile of a premixed flame, the characteristic thickness of the preheat zone
proportional to S−1

e increases on increasing the Lewis number, as observed in Figure 8.
The insights gained from the two distinct types of responses identified for edge flames

and the role played by the Lewis number may be exploited to understand the stabilization
of laminar jet diffusion flames relative to the nozzle rim. As evident from Figure 6, the flame-
standoff distance of low-Lewis-number edge flames characterized by C-shaped response
curves is generally small in magnitude, on the order of the flame thickness. From a practical
perspective, the edge flame is effectively attached to the tip of the plate. This attachment
behavior persists when continuously increasing the flow rate until blow-off occurs. This
implies that substantial lift-off is virtually impossible for low-Lewis-number edge flames.
By contrast, for high-Lewis-number flames characterized by U-shaped response curves,
the edge flame may be lifted and stabilized at substantially large distances from the plate by
gradually increasing the flow rate. Note that both stabilization modes, namely the stationary
mode which corresponds to an edge flame held stationary at a well-defined distance,
and the oscillatory mode which corresponds to an edge flame moving back and forth
relative to a mean position, can be realized in practice and thus are considered globally stable.
Such distinct attachment and lift-off behaviors of edge flames have been experimentally
observed by Chung and Lee [1], who proposed a Schmidt-number-based criterion to
predict the transition between the attached and lifted regimes of jet diffusion flames. Their
prediction based on flow and concentration profiles of cold jets, naturally involves a
Schmidt number. When converted to a Lewis number, using the relation Sc = Pr · Le, their
condition is in good agreement with the transition between attached and lifted edge flames
predicted in our mixing layer model, as discussed in [23]. Choosing the Lewis number as
the primary control parameter describing the stabilization of jet diffusion flames seems
more appropriate, considering the fundamental and direct role it plays in determining
the characteristics of edge flames, as discussed in the preceding paragraph. It is also
worth mentioning that experiments on jet diffusion flames have also observed U-shaped
responses of flame-standoff distance with respect to the flow rate [37] and sustained flame
oscillations [38,39]. These experimental findings have been attributed to buoyancy effects,
which are fundamentally different from the present numerical predictions exclusively
associated with diffusive-thermal influences. Systematic microgravity experiments in
conjunction with numerical simulations accounting for buoyancy convection are therefore
desired to elucidate the unique influence of these different mechanisms.

5.2. Asymmetric Edge Flames

The symmetric structure of the edge and trailing diffusion flames described above
was obtained for selected conditions that constitute the baseline case and its symmetric
variants. Streams of unequal initial strain rates (α 6= 1), fuel and oxidizer supplied in off-
stoichiometric proportions (φ 6= 1), preferential diffusion of fuel and oxidizer (LeF 6= LeO)
would all lead to asymmetric flames. In the following, we examine some of these cases.

Figure 9 illustrates an asymmetric edge flame stabilized within the flow and resulting
purely from preferential diffusion, i.e., unequal diffusivities of fuel and oxidizer, with
LeF = 1.8 and LeO = 1.0. The significantly larger diffusivity of the oxidizer offsets the
balanced transport of the two reactants such that the trailing diffusion flame as a whole
deviates from the centerline toward the fuel side. For the same reason, the premixed flame
branches of the tribrachial edge structure are no longer symmetrically distributed on the
two sides of the diffusion flame; the fuel-rich branch appears longer and the entire edge,
measured relative to the normal direction, is deflected toward the fuel side. Meanwhile,
in line with the trends identified in Figures 6 and 8, for a given overall mass-flow rate (same
Damköhler number), an increase in the fuel Lewis number leads to an appreciable increase
in the flame-standoff distance and decrease in flame temperature.
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Figure 9. Asymmetric edge and trailing diffusion flames resulting from preferential diffusion,
with LeF = 1.8 and LeO = 1.0. The edge flame is illustrated in (a) by contours of the reaction rate Ω,
while (b) shows the temperature distribution θ.

Figure 10 shows an asymmetric edge flame stabilized within the flow and resulting
purely from unequal strain rates in the incoming streams, i.e., with α = 0.1. As the charac-
teristic flow velocity originating from the oxidizer stream is considerably lower than that
originating from the fuel stream, the diffusion flame deviates from the centerline toward
the oxidizer stream to facilitate its intake of oxygen and the two premixed flame branches of
the tribrachial structure are, for the same reason, no longer symmetric. The flame-standoff
distance and temperature distribution along the diffusion flame appear, for this equal-
Lewis-number case, to be scarcely influenced by a change in the flow field at the given
Damköhler number. However, from an overall perspective, diffusion will play a more
significant role when decreasing the strain rate ratio α, leading to a leftward shift of the
entire edge flame response curve, and implying a delay in the blow-off conditions for
low-Lewis-number flames and in the lift-off conditions of high-Lewis-number flames [23].

Figure 10. Asymmetric edge and trailing diffusion flames resulting from incoming streams of unequal
strain rates, with α = 0.1. The edge flame is illustrated in (a) by contours of the reaction rate Ω, while
(b) shows the temperature distribution θ.

The extent to which unequal strain rates combined with inter-diffusion of reactants
influence the edge-flame position is shown in Figure 11 for α = 0.1 and unequal Lewis num-
bers. The oxidizer Lewis number is assumed equal to one, as appropriate for air, and two
values of the fuel Lewis number are considered; a low value LeF = 0.4 corresponding to a
relatively light fuel, and a high value LeF = 2.0 corresponding to a relatively heavy fuel. It
should be noted that diluting one or both streams with an inert one can significantly affect
the corresponding Lewis number due to changes in the mixture thermal diffusivity; see,
for example, [24]. In addition to the edge flame, illustrated in the figure by reaction-rate
contours, the stoichiometric surface Z = Zst is shown as a dashed line. Although for α = 0.1
considered here the oxidizer is entrained into the mixing layer and the dividing streamline
is deflected towards the fuel region, the edge and diffusion flames deviate towards the
oxidizer region when LeF = 0.4 due to the high mobility of the fuel. When LeF = 2.0,
the inclination is towards the fuel region. The diffusion flame trailing behind the edge
flame always aligns itself with the stoichiometric surface. We note parenthetically that due
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to preferential diffusion (LeF 6= LeO) the mixture fraction Z is not a conserved scalar and,
as a result, Z = Zst is not a smooth curve; its determination that accounts for the sharp
deflection observed across the curved part of the edge flame will be discussed below in
Section 6.

Figure 11. Asymmetric edge and trailing diffusion flames resulting from incoming streams of unequal
strain rates, with α = 0.1, and preferential diffusion. In both cases, LeO = 1.0, with (a) corresponding
to LeF = 0.4 and D = 0.0332, and (b) to LeF = 2.0 and D = 13.782. The edge flame is illustrated by
contours of the reaction rate Ω, and the stoichiometric surface Z = Zst = 0.5 is delineated by the
dashed line.

Figure 12 illustrates a situation of asymmetry resulting from fuel and oxidizer supplied
in the incoming streams in off-stoichiometric proportions, with an initial mixture strength
φ = 5. Because the fuel is in excess, the reaction is dominated by the supply of oxygen to
the reaction zone. As a response, the diffusion flame adjusts its shape and position and
finally stabilizes itself in the oxidizer stream, in an effort to balance the transport of the two
reactants. A notable difference compared to the previous two non-symmetric cases is that
now the edge flame loses its tribrachial structure; instead, it takes on a hook-like shape
with only the fuel-rich branch retained, while the fuel-lean branch appears to completely
degenerate into the diffusion flame.

Figure 12. Asymmetric edge and trailing diffusion flames in a rich system corresponding to an initial
mixture strength φ = 5. The edge flame is illustrated in (a) by contours of the reaction rate Ω, while
(b) shows the temperature distribution θ.

Asymmetry in the combustion field can also result from chemistry imbalance, for exam-
ple, unequal reaction orders as demonstrated by Juanos and Sirignano [7] for a propane–air
mixture with nF = 0.1 and nO = 1.65, or from the interaction of two adjacent flames as
illustrated by Kurdyumov and Jimenez [40].

6. The Edge-Flame Speed

Similar to the definition of flame speed, the edge speed Se is defined as the propagation
of the edge flame along its normal, relative to the flow. When held stationary, Se is equal to
the velocity component of the incoming gas normal to the edge flame, namely normal to
the curved premixed flame front formed at the base of the diffusion flame. The edge speed
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is expected to depend on the reactant concentrations immediately ahead of the flame front,
due to their direct influence on the edge-flame temperature, and on their distributions
in the transverse direction which determine the local curvature of the premixed flame
surface. The Lewis number is expected to play a significant role because, as seen in
Section 5, the edge temperature is influenced by the heat transfer to/from the trailing
diffusion flame wherein the Lewis number serves as a key parameter. Before attempting
to provide an accurate definition of the edge speed, we first examine means by which the
local distribution of the reactants near a general edge flame (not necessarily symmetric) can
be quantified.

The distribution of the fuel and oxidizer mass fractions ahead of the edge flame can be
conveniently described in terms of the mixture fraction Z defined in Equation (9) which,
using the mass fraction Equation (3), must satisfy

∂Z
∂t

+ v · ∇Z− Le−1
F ∇2Z = (Le−1

F − Le−1
O )∇2YO . (18)

For equal Lewis numbers LeF = LeO, the source term on the right-hand side vanishes
and the mixture fraction Z is a conserved scalar that satisfies a reaction-free equation;
namely, it is neither created nor destroyed by chemical reactions. The stoichiometric sur-
face Z(x, y) = Zst can therefore be determined a priori throughout the combustion field.
The trailing diffusion flame, located where the fuel and oxidizer fluxes are in stoichiomet-
ric proportions, lies approximately along this surface. Exact overlapping occurs in the
asymptotic limit D → ∞. For unequal Lewis numbers, the mixture fraction Z is no longer a
conserved scalar; it may no longer be determined a priori and must be solved for as part of
the overall solution. The stoichiometric surface Z(x, y) = Zst, which still approximates the
location of the trailing diffusion flame, is no longer coincident with the equivalent surface
in the reaction-free mixing region ahead of the edge flame. As a consequence, the sto-
ichiometric surface originating near the tip of the plate will be deflected when passing
through the edge flame in order to make a smooth connection with the trailing diffusion
flame. This situation is exemplified in Figure 13 by the case corresponding to LeF = 0.4
and LeO = 1.0, which shows contours of the mixture fraction Z computed a posteriori
from the definition (9) after solving for the mass fractions YF and YO. Because of the larger
diffusivity of fuel, the diffusion flame as a whole deviates from the centerline toward the
oxidizer stream, and the stoichiometric surface shown by a dashed curve bends down
from its initial location ahead of the edge flame to align with the diffusion flame further
downstream. One also notes the asymmetry in the distribution of the mixture fraction Z
on both sides of the diffusion flame; the contours are sparser on the fuel side and denser
on the oxidizer side, indicating a sharper gradient of oxidizer towards the flame which is
necessary to achieve the proper mass fluxes of fuel and oxidizer into the diffusion flame.

The accurate evaluation of the edge speed necessitates unambiguously identifying
the direction normal to the curved premixed flame front at the base of the diffusion flame.
This may be done by determining the plane tangential to the premixed flame front, but this
choice is ambivalent because one or both wings of the edge flame often degenerate into the
diffusion flame, making the tangential plane hard to identify. A more satisfactory method,
which is applicable to edge flames of various structures, with two or one arms or even a
single nucleus, is to identify the normal to the edge flame with the direction of steepest
descent of the reaction rate contours [23,41]. Consequently, the unit normal n is defined as

n = − (∇Ω)max

|(∇Ω)max|
(19)

at the edge position (xe, ye), and the edge speed is given by Se = −ve · n, where ve is the
local gas velocity. Likewise, the tangential component of the local mixture fraction gradient
is given by

(∇Z)e⊥ = (∇Z)e −
[
(∇Z)e · n

]
n , (20)
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where the subscript ‘⊥’ represents the direction tangential to the flame front. Using these
prescriptions, we show in Figure 14 an enlargement of the edge flame corresponding to
Figure 13 along with the unit normal n and the associated edge speed Se, as well as the
local mixture fraction gradient (∇Z)e and its tangential component (∇Z)e⊥.
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Figure 13. Contours of the mixture fraction Z, for an asymmetric edge flame resulting from unequal
fuel and oxidizer Lewis numbers, LeF = 0.4 and LeO = 1.0, at Damköhler number D = 0.49.
Numbers labelled on the contour lines indicate the values of Z. The dashed line corresponds to the
value Z = Zst = 0.5. The flame is represented by reaction rate contours.
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Figure 14. A schematic illustration of the local properties of the edge flame corresponding to Figure 13,
showing the unit normal n, the local mixture fraction gradient ∇Z and its tangential component
(∇Z)⊥, and the edge speed Se, all evaluated at the edge location (xe, ye).

To quantitatively delineate the dynamical properties of edge flames, we seek a rela-
tionship that exhibits the dependence of the edge speed Se on (∇Z)e⊥, which characterizes
the transverse distribution of the reactants ahead of the edge flame, and on the Lewis
number, which influences the edge speed through the edge temperature. To this end, we
first examine the distribution of the edge location (xe, ye) when varying the Damköhler
number D, as shown in Figure 15a for representative values of the fuel Lewis number
LeF and LeO = 1. The curves in this figure correspond to the phase portraits of the edge
location when the Damköhler number is varied along the response curve that traces the
dependence of the edge location on D. The overall trend when D is decreased from large
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values is for the edge to converge toward the tip of the plate, a change manifested by a
decrease in ye from positive values when LeF > 1 and an increase in ye from negative
values when LeF < 1, and in both cases a decrease in xe (except for very small LeF). Once a
minimum standoff distance is reached and the flame lifts off, the trajectory exhibits large
variations in xe with relatively small changes in ye. The phase portrait data of Figure 15a is
used to extract the local edge speed and its dependence on the tangential component of the
local mixture fraction gradient.
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Figure 15. (a) The distributions of the edge location (xe, ye), and (b) the dependence of the normalized
edge-flame speed Se/SL on the tangential component of the local mixture fraction gradient (∇Z)e⊥,
for several representative values of the fuel Lewis number LeF and LeO = 1.

Figure 15b shows the dependence of the edge speed on the tangential component of
the local mixture fraction gradient, after normalizing the edge speed Se by the laminar
flame speed corresponding to a stoichiometric mixture equivalent to the one in the mixing
zone preceding the edge flame of the same Lewis number, namely SL =

√
LeF S0

L as per
Equation (1). For each LeF, the dependence of Se on (∇Z)e⊥ consists of two branches.
The lower branch corresponds to relatively small standoff distances, where the edge
flames are subjected to substantial conductive heat loss to the plate. Note that the curves
corresponding to different fuel Lewis numbers collapse onto a common envelope when
(∇Z)e⊥ → 0, implying that within that range conductive heat losses to the plate dominate
over Lewis-number effects. This collapse is rather remarkable considering that the edge
locations corresponding to different Lewis numbers are rather scattered in space, as seen in
Figure 15a. The common limit corresponds to the fast chemistry limit, D → ∞, when the
flame becomes attached to the plate and the edge-flame speed approaches zero. The upper
branch tracing the dependence of Se on (∇Z)e⊥ corresponds to edge flames at comparatively
large standoff distances, which are essentially free of thermal interaction with the plate.
Evidently, Lewis number effects here are dominant. As can be seen, the normalized edge
speed corresponding to such freely standing flames displays an overall increasing trend
with decreasing LeF. This is expected, because a decrease in the Lewis number leads to an
enhancement in the edge temperature and concurrently in the edge speed Se, along with
a diminution in the corresponding laminar flame speed SL. The approach (∇Z)e⊥ → 0
along the upper branch is realized when the edge-flame-standoff distance is infinitely large,
a limit not amenable in calculations performed thus far. Nevertheless, it can be presumed
that in this limit the edge flame degenerates into a planar premixed flame, such that for all
Lewis numbers Se/SL → 1.

7. Volumetric Heat Loss

In this section, we examine the effect of heat loss on the structure of the edge flame
and its stabilization. Figure 16 depicts an edge flame with parameters corresponding to
the baseline case, but with H = 2.71× 10−4. The figure shows the edge flame depicted
by reaction contours, and the distributions of temperature and mass fractions. When
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compared to the adiabatic case shown in Figure 5, we observe that the reaction rate and
temperature decay rapidly in the downstream direction, the edge flame is stabilized at a
distance further away from the tip of the plate, and the trailing diffusion flame has a finite
length. The asymptotic behavior for large x, examined by Kurdyumov and Matalon [42] in
a similar configuration, shows that far downstream the solution is necessarily the frozen
state (θ = 0), which confirms that the diffusion flame cannot extend to infinity.

Figure 16. An edge flame corresponding to the baseline case and subject to volumetric heat loss with
H = 2.71× 10−4. The structure of the edge flame is illustrated by contours of (a) reaction rate Ω,
and (b) temperature θ.

Figure 17 illustrates the response of steady edge flames to heat loss by displaying
the dependence of the flame-standoff distance xe on the heat-loss coefficient H, for three
representative values of the Lewis number Le at a fixed Damköhler number D = 10.
The response curve consists of two distinct branches with a turning point at H = Hext.
Two steady states exist for H < Hext and none for H > Hext, so that the maximum value of
the heat-loss coefficient defines a non-adiabatic extinction limit. We observe that the extinction
limit increases when decreasing the Lewis number, suggesting that, under otherwise similar
conditions, low-Lewis-number edge flames are generally less vulnerable to external heat
loss. This tendency is in line with the trend exhibited by the adiabatic extinction limit
shown in Figure 6, both limits being attributed to the influence of differential diffusion
manifested by the Lewis number.
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Figure 17. The dependence of the flame-standoff distance xe on the heat-loss coefficient H for three
representative values of the Lewis number, at a fixed Damköhler number D = 10. Steady states
on the lower branch of the response curves (solid curves) are stable and those on the upper branch
(dotted curves) are unstable; solutions on the lower branch beyond the ‘•’ symbol (dashed segment)
correspond to stable oscillatory states.
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Of greater importance is the stability of the steady states, which shows dissimilar
inferences for the high and low Lewis numbers considered. For Le = 1.0 and 1.2, steady
states on the lower branch of the response curve are stable with respect to small pertur-
bations. When solutions on the upper branch are slightly perturbed, the flame-standoff
distance increases or decreases indefinitely; the corresponding states are unstable and
therefore physically unrealistic. The marginal stability state corresponds to the turning
point H = Hext. Hence, in practice, when the heat-loss intensity is gradually increased for
a given flow rate (constant Damköhler number), the edge flame will continuously retreat
from the plate and extinguish when H exceeds Hext.

Steady states on the upper branch of the response curve remain unstable and physically
unrealistic, for low-Lewis-number flames as well. But unlike the high-Lewis-number flames,
steady states on the lower branch of the response curve are stable only for H smaller than a
critical value Hc < Hext; for Le = 0.8, the critical value Hc ≈ 5.006× 10−4 is marked in the
figure by a ‘•’ symbol. For H > Hc, when a steady solution is slightly perturbed, the edge
flame evolves into a stable state exhibiting sustained oscillations of constant amplitude
and frequency, relative to the initial equilibrium position, as exemplified in Figure 18.
The amplitude of the oscillations is found to grow rapidly on increasing H, presumably
becoming infinitely large when H → Hext. The nature of the oscillations observed here
is different than those predicted in Section 5; due to substantial heat loss, the edge flame
strives to survive, moving from a burning state to one which is nearly extinguished, while
at high Lewis number (no heat loss) by moving back and forth the edge flame simply
attempts to find an equilibrium position.
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Figure 18. Time evolution of a slightly perturbed steady state (dashed line) corresponding to Le = 0.8
and H = 5.487× 10−4. The curve shows the flame-standoff distance xe as a function of time.

8. Thermally Active Splitter Plate

The discussion so far has assumed that the splitter plate separating the two streams
is retained at a constant temperature equal to the temperature of the two streams. This
ideal situation corresponds to a plate with infinitely large thermal conductivity. In practical
circumstances, however, the thermal conductivity of the plate is finite and there is a thermal
interaction between the plate and the gaseous mixture which may significantly influence
the dynamical properties of the edge flame stabilized in its wake. Figure 19 illustrates
the temperature distributions of edge flames stabilized in the vicinity of four plates of
various thermal conductivity, under otherwise identical conditions. In addition to the “cold
isothermal” plate corresponding to r

λ
→ ∞, and the “adiabatic” plate which constitutes

the other extreme with r
λ
= 0, two cases with finite values of r

λ
are displayed. The case

corresponding to r
λ
= 35 mimics a plate made of glass, while the case corresponding

to r
λ
= 1, i.e., the “virtual-gas” plate, is a hypothetical case of a plate with the same

thermo-physical properties as the gas phase. Commonly used materials, such as aluminum
and stainless steel, have considerable large values of r

λ
and have not been analyzed due

to the high computational cost, as discussed in [36]. The edge flames in the wake of
these four plates are stabilized at different distances, resulting from the extent of thermal
interactions with the plates. Figure 20 shows the temperature profiles along y = 0 for
the four plates considered in Figure 19, with the temperature for x ≤ 0 corresponding to
θs. The cold isothermal plate, which retains a constant temperature θs = 0, acts as a heat
sink extracting heat from the combustion field. The adiabatic plate precludes any thermal
interaction with the flame but holds the heat conducted to it from the edge flame so as to
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raise its temperature. In the other two cases, the heat conducted from the edge flame to the
plate elevates the temperature θs to a different extent and a different distance upstream.
The heated plate then relays the heat it receives to the fuel and oxidizer streams through its
lateral surfaces. The preheated reactants raise the temperature in the mixing region ahead
of the edge flame, resulting in an edge temperature that exceeds its stoichiometric value.

The heat-recirculation cycle, absent in the cold and adiabatic plates, would support
stabilization and delay possible flame blow-off. Such a mechanism may explain the favor-
able effect of certain materials on the stabilization of jet diffusion flames [43,44]. In [36], we
provided a quantitative measure that characterizes the heat recirculation and its efficiency,
relying not only on the total recirculated heat but also on its distribution along the plate.
As an experimentally measurable quantity, it can be exploited in practice for the selection
of appropriate nozzle materials that optimize the stabilization of jet diffusion flames.

Figure 19. Temperature distribution corresponding to edge flames stabilized in the vicinity of four
distinct plates: (a) isothermal cold plate (rλ = ∞), (b) glass plate (rλ = 35), (c) virtual-gas plate
(rλ = 1), (d) adiabatic plate (rλ = 0), under otherwise identical conditions, i.e., D = 81.615 and
Le = 1.6. The flame-standoff distances corresponding to these plates are xe = 22.64, 8.94, 2.30,
and 4.84, respectively.
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Figure 20. Temperature profiles along the centerline (y = 0) corresponding to the four plates
considered in Figure 19: isothermal cold plate (CP), glass plate (GP), virtual-gas plate (V-GP),
and adiabatic plate (AP), at D = 81.615 and Le = 1.6.

9. Concluding Remarks

The combustion behavior in a mixing layer that develops when two separate streams
of reactants merge is a canonical problem that provides fundamental insight into prac-
tical problems such as jet diffusion flames, or diffusion flames in co-flowing systems.
Although the diffusion flame itself in such applications is typically robust and may not
be easily extinguished, its endurance depends crucially on the stabilization of the edge
flame at its base and the interaction of the edge flame with the fuel injector or nozzle rim.
Poor stabilization will have consequences on the entire flame. Using a diffusive-thermal
framework that decouples the flow and combustion fields for mathematical simplicity, we
have systematically investigated in this paper the structural characteristics and dynamical
properties of an edge flame sustained in the wake of a plate separating two merging shear
flows, one with fuel and the other with an oxidizer, and supporting the diffusion flame
that extends downstream. We provide a comprehensive discussion of the relevant physical
parameters affecting the sustenance and stability of the edge flame, including the overall
mass-flow rate and the strain rates in the separate streams, the initial fuel and oxidizer stoi-
chiometric proportions, the distinct diffusion properties of the fuel and oxidizer compared
to the thermal diffusivity of the mixture, influences of volumetric heat loss, and thermal
interaction between the gaseous mixture and the splitter plate. Conditions leading to
idealized symmetric flames and those resulting in asymmetric structures were delineated.

In addition to a substantial flow, which is necessary to bring the fuel and oxidizer
together, the fuel Lewis number representing the ratio of the thermal diffusivity of the
mixture to the molecular diffusivity of the fuel, is perhaps the most important parameter
that controls the stabilization of the diffusion flame. Taking combustion in air as an example,
the Lewis number of oxygen is near one and has a limited influence. Due to their high
molecular mobility, light fuels (low Lewis numbers) combine and react with the oxidizer
in the immediate vicinity of the splitter plate. For moderate flow rates, the resulting edge
flame remains practically attached to the plate, supporting the diffusion flame in its wake.
At high flow rates, the edge and diffusion flames get blown off by the flow, which precludes
flame liftoff. By contrast, heavy fuels (high Lewis numbers) which diffuse slowly travel
further into the mixing region to meet and react with the oxidizer, and the resulting edge
flame is established at a distance further away from the plate. When increasing the flow rate,
the edge and diffusion flames gradually lift from the plate and stabilize in the flow at larger
and larger distances. Two modes of stabilization have been identified for sufficiently high
Lewis numbers: a stationary mode, where the edge flame is held at a well-defined distance,
and an oscillatory mode, where the edge flame undergoes sustained oscillations relative to
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a mean location. The dependence of flame attachment and liftoff on the Lewis number may
also be attributed to its effect on the edge temperature and consequently on the edge speed
that must balance the velocity of the incoming flow. The edge temperature is dictated by
the stoichiometric temperature of the diffusion flame, which increases on decreasing the
Lewis number, resulting in super-adiabatic temperatures for low-Lewis-number flames and
sub-adiabatic temperatures for high-Lewis-number flames. Faster propagating edge flames
can therefore balance a higher velocity in the accelerating flow that emerges immediately
beyond the splitter plate.

Evidently, the most significant simplification adopted in this study is the constant-
density assumption. Gas expansion resulting from the large change in density that results
from the heat released by the chemical reaction has two main effects on the edge flame.
It causes a deflection of the streamlines crossing the curved frontal segment of the edge
flame, leading to an increase in the edge speed [45,46], and it induces a lateral growth of the
mixing layer, which affects the local mixture fraction gradient near the edge flame. These
effects will have a quantitative effect on the edge position and edge speed, but will not
undo the fundamental physics of diffusive-thermal nature discovered in this study.
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Abstract: This study presents the detailed experimental results of fine structures and dynamics in
a stratified flow past a sphere, which is towed with constant velocity in a transparent basin. We
developed experimental procedures based on the complete solutions of the truncated fundamental
fluid equations. These complete solutions describe the waves and fine accompanying ligaments, as
well as the vortices and other flow structures. To visualize the flow, a variety of classical schlieren and
electrolytic precipitation procedures were used. Ligaments appear in the schlieren images of the flow
as fine interfaces and fibers. They strengthen the influence of the relatively weak density gradient in
a continuously stratified fluid (CSF). The symmetry in the wake is discrete at small Froude numbers
with the domination of buoyancy effects. At increased velocity and high Froude numbers, when the
inertial and non-linear effects turn out to be significant, an axial symmetry becomes continuous.

Keywords: stratified fluid; towing sphere; schlieren instrument; electrolytic precipitation; internal
waves; prismatic wake; vortex column; rings

1. Introduction

Denser particles sink, while lighter particles float under the impact of buoyancy forces.
Naturally, a stratification in a heterogeneous liquid or gas occurs (a stratification is a
continuous variation of density ρ(z) over depth z).

The stratification is discrete when the density changes abruptly. It happens at the
boundaries of immiscible media; for example, between the atmosphere and
the hydrosphere.

With density changes, we observe the variations of such physical properties as the
velocity of sound propagation, the refractive index of light [1]. They allow observing the
patterns of flows in the bulk or on the surface of a liquid either with the naked eye [2] or
using optical [3,4] and acoustic instruments [5].

The development of space technologies for remote sensing has opened up new ways
for tracking the temporal variability of naturally occurring structures in the atmosphere
and the oceans [6]. The received images of natural phenomena are useful for further
development of the theory of fluid flows, and for the improvement of their numerical
simulation and laboratory modeling.

The natural length scale Λ = |d ln ρ(z)/dz|−1, the frequency N =
√

g/Λ, or the
buoyancy period Tb = 2π/N are applied to describe the continuous stratification of
incompressible liquids in environmental, industrial, or laboratory settings.

Natural oscillations of stratified media were noticed as early as the 18th century [2]
and their frequency was calculated a century later [7]. There are two types of continuous
stratification. Strong stratification, with N ∼ 1 s−1, is typical for laboratory conditions, and
the weak one with N ∼ 0.01 s−1 characterizes the ocean and planetary atmospheres, as well
as two types of uniform density fluids that are nearly homogeneous ( N → 0 ∼ 10−5 6= 0)
or actually homogeneous, with N ≡ 0. The condition of an actually uniform density
ρ ≡ 0 leads to the degeneration of the fundamental equations system and to a confusing of
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“motion” and “flow” concepts. The motion, which is considered to be a transformation of a
metric space into itself, and the flow, which is a physical process of matter, momentum, and
energy transfer, become mathematically undistinguishable in approximation of an actually
homogeneous liquid [8].

A standard classification of flows, including laminar (layered) and irregular (turbulent)
flows [9,10], is based on the characteristic structural features of flow patterns. Specific
forms of phenomena at a smaller scale allow distinguishing waves and vortices [9,10]. They
were visualized with a pen and brush beginning with the expressive drawings of Leonardo
da Vinci and other Renaissance artists [11], and then by optical instruments [12].

Numerous experiments [12] showed that at low velocities the symmetries of homoge-
neous fluid flows around obstacles depend on the shape of the body even in the case of a
spatially uniform flow.

The aesthetic aspect of the symmetric flow patterns influences positively the mathe-
matical description with the reduced dimension of the problem.

Correspondingly, the solutions of classical flow problems are significantly simplified
(in particular, for the flows around a sphere or a disk [9,10]). The natural flow pattern in
the bulk of a homogeneous liquid does not depend on the directions of the velocity vector
with respect to the gravity acceleration vector.

Surprisingly, even if the stratification is weak (i.e., the density variations on the body
size can hardly be registered by modern instruments), it is noticed both in the dynamics
and in the structure of the flow.

In a heterogeneous medium there are directions, with the gradients of a gravitational
force potential, g = −∇Φ, determining the free-fall acceleration g and the density gradient
∇ρ. The action of noncollinear gradients directly produces vorticity in the liquid flow [13].

The greatest gradients are placed near the surface of the submerged body, where
the action of various anisotropic mechanisms of energy and matter transfer is the most
pronounced. In a moving fluid the energy is transferred by macroscopic processes (by the
flows with the local velocity v and different waves with the group velocity cg), as well as
by microscopic processes (the slow atomic–molecular diffusion as well as fast processes of
direct transfer of internal energy into thin flow components [8]).

The calculations show that the stratification removes the degeneracy in the singular
components of the complete solution of the linearized set of fundamental equations (i.e.,
the multiplicity of the dispersion equation roots for homogeneous liquids [8]).

Simultaneously, it elucidates a number of hydrodynamic paradoxes [14].
The anisotropy of the stratified media affects the redistribution of energy between

the structural components in a thin layer near the surface of the submerged body. The
purpose of our study is to reveal the influence of a continuous stratification on the symmetry
breaking in the flow past a sphere—a perfectly symmetric body.

2. A Brief History of Flow around a Sphere Studies

There were a number of theoretical and practical reasons why scientists took interest
in studying the flow around a uniformly moving sphere.

For many centuries, balls made of various materials (from natural stones to metal
alloys) served as artillery shells and moveable parts in many transport mechanisms. In
the middle of the 18th century, with the development of universities, the problem of flow
around a sphere became the object of intensive theoretical and experimental research. The
studies were carried out inquisitively, as a consequence of scientific development logic, and
under government contracts in Russia [15], UK [16], Germany [17], and France [18]. The
result of this research work was the creation of the continuity equation for an incompressible
fluid and a compressible gas [19] and the formulation of the first closed system of equations
for ideal fluid flows [20]. Paradoxical results of their application to the drag on a sphere
problem were established very soon.

New energy transfer equations (for heat transfer [21]) contributed to the development
of Navier’s theory of fluid motion, incorporating shear stresses caused by viscous fric-
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tion [22]. G.G. Stokes re-derived Navier’s equations of a viscous fluid motion in terms of
the continuous medium conception [23].

Analyzing the damping of oscillations of a pendulum gravimeter, he calculated the
drag on a sphere in axial symmetric flow [24] in a linear approximation and created the
basis of subsequent experimental and theoretical studies.

In experiments, marking impurities in the form of small immiscible liquid drops, solid
particles or gas bubbles were introduced to discrete visualization of the flow pattern in
a homogeneous liquid [12]. Schlieren instruments, sensitive to variations in the density
gradient, were used for continuous visualization of the flow patterns in a stratified medium
in addition to separated markers [4,25]. The method was chosen based on the analysis of
the system of governing equations and in agreement with traditional approaches.

3. System of Stratified Fluid Mechanics Equations

The effects of compressibility and heat transfer are usually neglected in the case of
slow, compared to the velocity of sound, flows of low-viscosity liquids with high heat
capacity [10,26].

The equations of state for the Gibbs potential and the thermal diffusivity equation are
omitted from the general system of equations as well [8]. The unperturbed (initial) density
profile ρ0(z) replaces the equation of state (in a coordinate frame used further axis z is
vertical and opposed to the gravity acceleration g; the body moves along axis x).

The main physical quantities characterizing the state and flow of stratified media
are density (ρ(x, t)), momentum (p = ρv), or velocity (v = p/ρ), defined as the ratio
of invariant parameters, concentrations of the stratifying S = S0(z) + s, and visualizing
c components. The truncated system of equations for an incompressible stratified fluid
with the linearized equation of state includes the equations of continuity, momentum
transfer, diffusion for the stratifying component, and visualizing impurity, in the Boussinesq
approximation, and takes the following form [8,10,26]

div v = 0; ρ = ρ00

(
1− z

Λ
+ s + c

)
;

∂v
∂t

+ v(∇·v) = − 1
ρ00
∇P + ν∆v− (s + c)g; (1)

∂s
∂t

+ v·∇s = κS∆s +
vz

Λ
;

∂c
∂t

+ v·∇c = κC∆c.

Here, ν is the kinematic viscosity, κS and κc are stratifying agent and the impurity
diffusion coefficients, ρ00 is the density on a reference level, and s and c are the density
and impurity perturbations (contraction coefficients are included in the definition). The
boundary conditions on the surface of a fixed or a uniformly moving sphere with velocity
U are traditional. They are no-slip for velocity and impermeability for substances on the
surface of the sphere or the surface flux for a visualizing component jn = jc [8,27].

System (1) is characterized by a set of physical parameters, transforming into a number
of temporal and spatial scales. The density profile defines the scale of stratification Λ. The
ratio of a sphere diameter D to velocity U forms the kinematic time scale τD = D/U. The
attached internal wavelength is ň= UTb.

Kinetic coefficients determine a relatively large viscous wave scale LνN = 3
√

gν/N as
well as a fine scale Lνg = 3

√
ν2/g and transverse scales of the ligaments due to viscosity

δνN =
√
ν/N or diffusivity of the stratifying δκs

N =
√
κs/N and of the visualizing impurity

δκc
N =

√
κc/N.

The thicknesses of an additional group of ligaments depend directly on the body
velocity δνU = ν/U, δκs

U = κs/U, δκc
U = κc/U [8,27]. The dynamics of the fine components

is characterized by a small intrinsic time scale, τνU = δνU/U, reflecting a possible ability
of fast rearrangement of the flow pattern. A large number of small scales (for laboratory
conditions δνN ∼ δνω ∼ 1 mm, δκN ∼ 0.05 mm, δνU ∼0.1 mm for N ∼ 1 s−1, kinematic
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viscosity ν = 0.01 cm2/s, and a table salt diffusion coefficient κ ∼ 1.4·10−5 cm2/s) show
the complexity of the fine structures of stratified flows. It requires their investigation
methods and instruments with a high temporal and spatial resolution.

Ratios of scales define the traditional dimensionless combinations, which are the
Reynolds number, Re = D/δνU = UD/ν (and its analogues—Peclet number with diffusion
coefficients Pe = UD/κ); Froude number, Fr = (λ/2πD)2 = (U/ND)2, equaling the re-
ciprocal value of the energetic criterion; Richardson number, Ri = ω2

U/N2,ωU = (∂U/∂z),
which is widely used in the theory of stratified turbulent flows [28]; a large length scale
ratio, C = Λ/D; Schmidt number, Sc = ν/κs; and others not so frequently used.

The classification of flow components is based on a complete solution of the linearized
system (1), followed from implementations of the compatibility condition [29]. It includes
waves and supplementary ligaments.

Internal waves in the bulk of a CSF are visualized by schlieren instruments [4,25].
Registered variations in the magnitude and gradient of the optical refractive index illustrate
the displacements of fluid particles from equilibrium positions [30].

The schlieren images of the internal waves coincide with the calculations based on the
linear theory of the amplitude-phase properties of the attached waves. These waves are
created by a horizontally moving sphere and along an inclined trajectory [31–33].

Ligaments are described by the singular components of the complete solutions of
fundamental equations system [8,10,26] and its reduced version (1). They correspond to
thin high-gradient interfaces and fibers in the wake past an obstacle [34]. A special class
of fine flows (diffusion-induced flows (DiF)) is formed due to the inhomogeneity of the
molecular transfer of the stratifying component and interruption of the transfer on the
impermeable surface of a rigid body. We can observe them near a motionless body in a fluid
at rest [9,35], but when the motion starts, DiF transform into fine disturbances. These fine
disturbances in the vicinity of a moving body are drawn out by the shear flow as interfaces
and filaments in the wake. They are extended by the mean flow and slowly widened under
the action of molecular processes [36].

The formation of each structural component, which is the wake as a whole, vortices,
and internal waves, as well as the general and fine deformation of the density profile,
contributes to the drag force. A relatively small contribution of wave effects to a total drag
coefficient at large values of the Froude number increases with a decreasing sphere velocity,
reaching the maximum in the interval 0.7 < Fr < 1 or 4.4 < (λ/D) < 6.3 [31,37,38] and
decreases further when the body velocity grows. It follows from the theory of linear
internal waves. Moreover, the results agree with measurements [37–40]. Additional
simplifications, including the assumption of the absence of diffusion κS = 0 [41] or the
equality of dissipative coefficients of kinematic viscosity and diffusivity Sc = ν/κS = 1 [42],
are made when constructing the numerical solutions of a complex multiscale system (1).

The system (1) turns into the classical Navier–Stokes equations with the approximation
of an actually constant density, in which the diffusion equations and the term with the force
of gravity in the momentum transfer equation are excluded [10]. The patterns of pressure
fields, velocity, and vorticity components determine the laminar or turbulent nature of
the flow. The detailed calculations of the streamlines, pressure, and the vorticity fields in
the wake past the sphere in the mode of a toroidal rear vortex formation, as well as the
shape and position of the separation line, were carried out [43].The determination of the
position of singular points on the flow separation line and the classification of the shapes of
vortex elements in the wake supplement the calculations of forces acting on the sphere [44].
The calculated flow pattern past the sphere in the range 20 < Re < 400 gave the angular
position of the circular separation line of the wake with the vortex structure [45].

Fine visualization of the vortex structure of the axisymmetric dyed wake past the
sphere at low Reynolds numbers (the soluble dye was washed off the surface of a freely
falling body) helps register the attached rear toroidal vortex outer shape. Its axisymmetric
envelope gradually changes from a concave form into a conical and convex forms with an
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increasing velocity [46]. Comparison with the previous experiments shows that the rear
vortex exists at Re ∼ 10 and even lower values of velocity Re ≈ 3.5.

Difficulties in studying flows with low body velocities are associated with uncon-
trolled background fluid motions. They occur because of the temperature or atmospheric
pressure variations and mechanical movements of the basin excited by street traffic. For the
visualization of the liquid flow pattern around a sphere, a soluble dye as well as lumines-
cent compositions have been applied, which glow brightly in ultraviolet light, highlighting
hydrogen bubbles and small particles. These small particles allow the recording of the flow
velocity and flow patterns with 2D and 3D PIV tools.

Oil slicks, smoke, small particles, drops, and silk threads are used in wind tunnels
in approximation that the impurity is “passive”; i.e., it is completely carried by the flow.
However, this assumption should be confirmed in each specific case, taking into account the
difference in the molecular properties of the studied and visualizing media, the Brownian
motion of small particles, as well as the transfer and rotation of free solids in the shear flow.

At high velocities, when compressibility effects are evident, the schlieren instrument [3,4]
becomes the most effective tool for the visualization of a general flow pattern and singular
fine components such as shock waves, wake envelopes, sharp interfaces, and thin fibers
(ligaments), which transfer energy, momentum, and density perturbations from the body
boundary into shock waves and the wake [47,48].

4. Visualization of a Stratified Flow around a Sphere

The study of the stratification effects is usually carried out in a transparent basin
filled with a sodium chloride solution of variable concentration using the “continuous
displacement” method [49,50]. The linear relationship of background density and the
optical refractive index [51] allow the application of various optical imaging methods,
which accompany the techniques for homogeneous media [3,4,12]. The direct shadow and
various versions of the schlieren methods, both the classical ones with a slit diaphragm and
the Foucault knife [3,4,51,52] and technically more simple “synthetic” or moiré schlieren
methods, have been applied to the study of stratified flows [53,54]. Although classical
schlieren instruments have a higher sensitivity and spatial resolution than moiré tools, in
practice the latter have become more widespread due to the consistency with modern PC
image processing.

The high chemical activity of the NaCl solution was used for visualization in an
“electrolytic precipitation” method; i.e., electrochemical anodic oxidation of lead, tin, or
their alloys under the action of direct electric current [55,56]. Small particles of metal oxides
and chlorates with a size of about one micrometer, formed as a result of a complex of
chemical reactions, produce a white translucent suspension. The shape and location of
the electrodes determine the position of the source and the density of the suspension The
flow pattern resembles the tinting of flows with smoke or microdrops in wind tunnels and
soluble dyes in the aquatic environment [12].

In the process of studying the effect of stratification on the flow pattern around a
sphere, we mainly paid attention to the description of internal waves, which caused the
displacements of fluid particles from equilibrium positions [30,31] as well as high gradient
interfaces and fibrous. Fine flow components characterizing ligaments were not identified
by most of the traditional imaging methods [12], including moiré or “synthetic schlieren”
methods [53,54], nor suspended particles, because of the limited spatial and temporal
resolution (the impact of temporal resolution importance was illustrated in [12] as well).

5. Laboratory Experiment Technique

The studies of the flow patterns around a sphere towed in a CSF or homogeneous fluid
were carried out on the setups “Wave Fields Fine Structure Modeling (WFF) and “Labora-
tory Mobile Tank (LMT)”, as a part of the Unique Science Facility “Hydrophysical Complex
of the IPMech RAS”. This complex was used for the modeling of hydrodynamic processes
in the environment, their impact on underwater technical objects, as well as the distribution
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of impurities in the ocean and atmosphere (USF HPC IPMech) [57]. The setups differ in
the size of the working basins (0.7 × 0.25 × 0.7 m3 for WFF and 2.20 × 0.40 × 0.60 m3

for LMT) and a number of auxiliary mechanisms. A photo of the WFF setup is shown in
Figure 1; a detailed description of the LMT setup is given in [28]. The models are towed
by one movable or two thin threads (tight, stabilizing the trajectory, and a towing wire)
with constant and variable velocities. Schlieren images of the flows were produced by the
IAB-458 instrument (a field view is 23 cm).
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Figure 1. Experimental setup WFF USF of the “HPC IPMech RAS”.

The basin was filled with an aqueous solution of common salt of variable concentration
with a selected density profile by the continuous displacement method [49,50]. Flow
patterns were observed around a sphere made of Plexiglas with a diameter of D =1, 2, 3, 4,
5 cm, which was placed (U = 0) in the tank or towed at a constant velocity U. A tin belt or
segment was placed on some sphere surfaces (Figure 2). Formed particles from monoxide
and oxide of tin, tin dichloride, and tin acids with a size of about 1 µm under the action of a
direct electric current were transported by the flow. When the electric current increased, the
larger particles were formed and the wake containing them began to sink as a whole, which
was especially noticeable in a homogeneous liquid. The surface of the sphere was carefully
polished before each experiment and the traces of the metal oxidation were removed.
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Figure 2. Spheres with anodes of various shapes.

The main stratification parameter, the buoyancy period Tb, was measured with an
optical instrument [58] or an electrical conductivity sensor [59] in a short internal wave
field around a density marker—a vertical wake past a rising gas bubble or a sinking crystal
(salt or sugar). The bubble floated (the crystal sank) vertically if the Reynolds number,
determined by its diameter D and velocity U, satisfied the condition Re = UD/ν < 201.
In these experiments, the buoyancy period was in the range 3.5 < Tb < 14 s.

A vertical slit was installed in the illumination part of the IAB-458, and a Foucault knife
or Maksutov’s thread was placed in the receiving part of the instrument to visualize the
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fields of the horizontal component of the refractive index and density gradient, respectively.
A colored schlieren method (“natural rainbow” schlieren [52]) with a horizontal slit and a
linear grating in the receiving part visualized the vertical component of the refractive index
gradient. With auxiliary optics, the spatial resolution of the instrument was better than
0.01 cm.

6. Laboratory Studies of Stratified Flows

The center of mass of the stratified fluid layer is located below the geometric center
in the gravity field. It means that a non-equilibrium medium with the density profile
has supplies of available potential energy. The latent energy is converted into the kinetic
energy of the liquid flow in a thin layer of DiF near an inclined impermeable surface, on
which the molecular transfer of the stratifying component is interrupted. There is flow if
the gravity field is formed, even in the absence of additional external forcing. The nature
of such flows is the difference between atomic–molecular interactions in the bulk of a
liquid and near a solid body boundary. The mechanism of fine flow structure formation by
interruption of the diffusion flux is universal and exists in all types of non-uniform density
liquid and gas flows. Firstly, the theory of stationary DiF on an infinite inclined plane was
developed [9,35]. The profiles of salinity and velocity of this stationary flow are similar

and characterized by a common combination scale, δ = 4
√
νκS/N2 sin2 α, where α is the

inclination angle of the plane to the horizon. The solution diverges at small values of the
angle α of plane inclination.

The salinity and velocity perturbation profiles are characterized by different transverse
length scales for salinity and velocity perturbations in asymptotic solutions for small-time
approximation, presented firstly in [60] and in first terms of the exact solution expansions
constructed in [61].

In the local coordinate frame (ξ, ζ), axis ζ is normal to the plane; the asymptotic
solution in the small-time approximation for salinity perturbations is characterized by
the length scale δκS

N =
√
κS/N, where time t is normalized by the buoyancy period

τ = t/Tb [60],

s′ = −2
δ
κS
N
√
τ

Λ
ierfc
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)
, (2)

The asymptotic expression for the velocity of the induced velocity is described by both
scales δκS
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√
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(3)

The flow components with incommensurable length scale values show the total un-
steadiness of the phenomena.

The flow pattern consists of a sequence of counter flows with rapidly decaying am-
plitude. Due to the smallness of the transverse scales, it does not practically depend on
the shape of the body everywhere, except for its poles, which are the extreme points of the
obstacle in the vertical plane [62]. Thin DiF are not resolved by the mostly used methods of
a flow visualization.

The geometry of the problem and the consistency of the diffusion flux on the over-
hanging surface (an excess of salt accumulates on this surface) form a directed downward
flow.

The flow is directed upward on an open inclined surface where a salt deficit is observed.
Accordingly, the flow around the sphere is symmetric with respect to the vertical axis and
is antisymmetric with respect to the plane of the horizontal equator. Asymptotic and
numerical solutions of the system (1) for DiF on a sphere are presented in [63].
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Here, the sections of the sequence of emerging toroidal vortices, which form conver-
gent and divergent jets near the upper pole of the sphere, are shown in Figure 3. Amplitudes
of perturbations rapidly decay with distance from the body surface.
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The results of the numerical and analytical solution of the system (1) agree quite well. 

In the non-stationary pose, new circular cells appear subsequently near the pole of the 

sphere with a buoyancy period. Each new cell shifts the entire system of perturbations 

that have arisen earlier onto the sphere surface. The general shape of the flow structure 

does not depend on the size of the sphere; however, the thickness of the cells and the flow 
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The comparison of calculations of the flow pattern at short and long times (Figures 3 

and 4) shows that the number of cells, as well as the value of the maximum velocity, stead-

ily increases, and the rate of change gradually fades. However, the flow does not have a 

stationary limit. The free symmetric body remains motionless on the horizon of neutral 

buoyancy due to the geometry of the flow. 

Figure 3. Pattern of the DiF flow on a fixed sphere of a small diameter (d = 2 cm, Tb = 6.34 s):
(a,b)—streamlines from the analytical solution and numerical simulation t = 0.5 Tb; (c,d)—salinity
disturbance isolines and streamlines, t = Tb.

The results of the numerical and analytical solution of the system (1) agree quite well.
In the non-stationary pose, new circular cells appear subsequently near the pole of the
sphere with a buoyancy period. Each new cell shifts the entire system of perturbations
that have arisen earlier onto the sphere surface. The general shape of the flow structure
does not depend on the size of the sphere; however, the thickness of the cells and the flow
velocity increase with the growth of the body diameter.

The comparison of calculations of the flow pattern at short and long times (Figures 3 and 4)
shows that the number of cells, as well as the value of the maximum velocity, steadily
increases, and the rate of change gradually fades. However, the flow does not have a
stationary limit. The free symmetric body remains motionless on the horizon of neutral
buoyancy due to the geometry of the flow.
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duced by diffusion on a motionless wedge includes the area of pressure deficit in front of 

its apex (Figure 6a). It causes self-motion of the asymmetric body [65,66].  

The fact that the height of the pressure deficit area even somewhat exceeds the height 

of the body base, ensures the efficiency of its action. In this case, the variations in velocity, 

salinity, and the horizontal component of its gradient are concentrated in thin layers ad-

jacent to the lateral surface of the wedge (Figure 6b).  

Figure 4. Central section of a DiF pattern on the upper half of the sphere (Tb = 6.34 s): (a,b)—D =

2, 4 cm, τ = t/Tb = 1662, 1075; there are salinity disturbances on the left side of the figures, and
streamlines on the right side (image scales are different).

In the schlieren photographs of the flow around a motionless sphere, the symmetrical
pattern contains a sequence of widening dark and light bands near the poles. The angle
of inclination of the bands to the horizon monotonically decreases with distance from the
source (Figure 5a,b). The shape of the flow near the poles of a sphere, which indicates a
noticeable change in the density gradient in a thin layer, is in good agreement with the
calculation [63]. A geometrically similar flow is located at the edge of a cell of thermocon-
centration convection over a localized (“point”) heat source in a CSF. It was interpreted as
“dissipative-gravitational waves” in [64].
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Figure 5. Schlieren pattern of DiF, Tb = 6 s: (a,b)—on a sphere D = 5 cm (Maksutov’s thread and
Foucault knife), and (c) on a wedge of length L = 10 cm and the base height h = 2 cm suspended on
the horizon of neutral buoyancy.

A general change in the density distribution influences the molecular diffusion in
the flow fluid near the inclined surface of an impermeable body. The intensification of
the density gradient in an almost resting liquid confirms the non-stationarity and spatial
inhomogeneity of the process of a flow formation. It transforms a weak mean gradient into
a stronger one in the thin layer. Numerical calculations of the DiF were carried out on the
basis of the system of Equation (1) near various bodies that are an inclined plate [62], a
sphere [63], or a horizontal wedge [65–67].

DiF transport the substance along the side faces of the wedge and creates a deficit
of mass ahead of the apex. The asymmetric distribution of pressure in the flow pattern
induced by diffusion on a motionless wedge includes the area of pressure deficit in front of
its apex (Figure 6a). It causes self-motion of the asymmetric body [65,66].
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converging with distance.  

Figure 6. Calculated DiF pattern near a fixed wedge (length L = 10 cm, shelf height h = 2 cm) in
CSF at rest, Tb = 6.3 s: (a,b)—disturbances of the pressure and the horizontal component of the
density gradient.

The fact that the height of the pressure deficit area even somewhat exceeds the height
of the body base, ensures the efficiency of its action. In this case, the variations in velocity,
salinity, and the horizontal component of its gradient are concentrated in thin layers
adjacent to the lateral surface of the wedge (Figure 6b).

In the experiment, the interfaces are weakly expressed ahead of the body apex and
are distinctly expressed at the edges of the base, as is shown in the schlieren image of the
flow in Figure 5c. The self-motion of a wedge is experimentally demonstrated in [65,67]; a
detailed calculation and schlieren visualization of the flow pattern is given in [66].

7. Rectangular Cross-Section of the Density Wake Past a Sphere at Low
Froude Number

As the sphere starts to move in the horizontal plane, the pattern of DiF as a whole and
its symmetry changes radically. To visualize the fine structure of the wake past the sphere
and its spatial shape we used sensitive schlieren methods and electrolytic precipitation.

Careful examination of the images in Figure 7 shows that the axisymmetric DiF near
the poles of the sphere is transformed into unsteady upstream internal waves that are
continuations of the attached waves past and above the sphere. Ligaments correspond to
extended double light/dark stripes adjoining the poles past the sphere in Figure 7a,c [8].
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Figure 7. Schlieren images of the flow around a sphere moving slowly from right to left in CSF:
(a,b)—Tb = 8.0 s, N = 0.785 s−1, D = 4 cm, U = 0.04; 0.06 cm/c, Fr = U2/N2D2 = 1.6 × 10−4,
Re = 16; 24, conventional and natural rainbow schlieren methods; (c)—Tb = 4.5 s, N = 1.4 s−1,
D = 5 cm, U = 0.08 cm/s, Re = 40, Fr = 1.3 × 10−4 (vertical slit—Foucault knife).

DiF are transformed into the inclined beams of non-stationary internal waves, which
are oriented in the direction of the sphere motion in front of the body. Light bands near
the upper and the lower poles ahead of the sphere in Figure 7a,c, outline the blocked fluid
moving together with the body. The blocked fluid is characterized with a more uniform
density profile than the initial one. The boundaries of the blocking zone are better expressed
in the color schlieren image of the flow in Figure 7b (“natural rainbow” method). Here they
are represented by an inclined blue strip, extending from the lower pole of the sphere and
pale from the upper pole, oriented in the direction of the body’s velocity; it is converging
with distance.

Contractions and expansions of the colored bands in a schlieren image of above the
sphere flow (Figure 7b) visualize the crests and troughs of the attached internal waves. On
the whole, according to linear theory, the calculations of the phase surfaces of the internal
wave shapes [30,31,68] are consistent with the visualization images, even at the smallest
values of the body velocity [69]. Here and below, the ligaments are presented by thin
interfaces separating the internal waves and density wake.

The images of the electrolytic precipitation suspension, shown in Figure 8, illustrate
the spatial geometry of the density wake past a slowly moving sphere (and small value of
the Froude number, respectively). Fine particles are formed on the transverse tin belt.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 25 
 

 

Contractions and expansions of the colored bands in a schlieren image of above the 

sphere flow (Figure 7b) visualize the crests and troughs of the attached internal waves. 

On the whole, according to linear theory, the calculations of the phase surfaces of the in-

ternal wave shapes [30,31,68] are consistent with the visualization images, even at the 

smallest values of the body velocity [69]. Here and below, the ligaments are presented by 

thin interfaces separating the internal waves and density wake. 

The images of the electrolytic precipitation suspension, shown in Figure 8, illustrate 

the spatial geometry of the density wake past a slowly moving sphere (and small value of 

the Froude number, respectively). Fine particles are formed on the transverse tin belt.  

  
(a) (b) 

Figure 8. Patterns of electrolytic precipitation suspension past a slowly moving sphere in CSF, 

4.5bT = s, 
-11.4 sN = , 5D =  cm, U = 0.03 cm/s, Re / 15UD=  = , 5Fr 1.8 10−=  ; (a,b) top 

and side view. 

In the top view, the dense suspension is distributed evenly over the surface of the 

sphere and the plane wake. In the side view, only the edges of the wake are colored. They 

are in contact with the sphere poles. The sharpness of the separation lines on the sphere 

surface indicates the planar geometry of the shells bounding the wake. They are formed 

by converging flows, which sharpen DiF on the impermeable sphere surface. The general 

shape and the narrowness of the colored wake in the horizontal plane as well as the high 

altitude in the vertical plane determine the selection of a rectangle for approximating the 

cross-sectional shape of the density wake [69,70]. The maximum suspension concentration 

is observed on the edges of the rectangular flow section.  

The discrete symmetry of the cross-section shape of the wake with respect to the hor-

izontal and vertical planes, which passes through the motion line of the body center, in-

dicates the dominance of the buoyancy effects over inertial and nonlinear effects. Their 

symmetry reflects the perfect continuous symmetry of the body. The initial density gradi-

ent intensification in the vicinity of the body enhances the consequences of buoyancy ef-

fects in the creeping flow mode. At low velocities of the sphere, the liquid mainly flows 

around an obstacle along isopycnal (close to horizontal) lines.  

Structural differences in the geometry of the flow components become more distinct 

with an increasing sphere velocity [70]. In the schlieren flow pattern in Figure 9a, the 

blocked fluid is visualized by dark and light spots in front of the body. They are bounded 

by tilted rays of non-stationary internal waves extending from the poles of the sphere.  

Curvilinear bands extending from the separation points of sharp almost horizontal 

interfaces on the rear part of the sphere represent attached internal waves. The fine inter-

faces outline the density wake. The sharpness of the boundaries separating the domains 

with different kinds of a flow demonstrates strong interaction between the fine ligaments 

with more long internal waves [71] in different flow regimes past a sphere [69,72]. 

The three successive curved vertical lines in Figure 9a are deformed markers, which 

create the arising gas bubbles [59]. The vertical line is the initial bubble wake deformed 

by the shear flow with time. A profile with an almost uniform central part surrounded by 

two inclined sections visualizes the constant velocity in the center of the wake inside two 

Figure 8. Patterns of electrolytic precipitation suspension past a slowly moving sphere in CSF,
Tb = 4.5 s, N = 1.4 s−1, D = 5 cm, U =0.03 cm/s, Re = UD/ν = 15, Fr = 1.8 × 10−5; (a,b) top and
side view.

In the top view, the dense suspension is distributed evenly over the surface of the
sphere and the plane wake. In the side view, only the edges of the wake are colored. They
are in contact with the sphere poles. The sharpness of the separation lines on the sphere
surface indicates the planar geometry of the shells bounding the wake. They are formed
by converging flows, which sharpen DiF on the impermeable sphere surface. The general
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shape and the narrowness of the colored wake in the horizontal plane as well as the high
altitude in the vertical plane determine the selection of a rectangle for approximating the
cross-sectional shape of the density wake [69,70]. The maximum suspension concentration
is observed on the edges of the rectangular flow section.

The discrete symmetry of the cross-section shape of the wake with respect to the
horizontal and vertical planes, which passes through the motion line of the body center,
indicates the dominance of the buoyancy effects over inertial and nonlinear effects. Their
symmetry reflects the perfect continuous symmetry of the body. The initial density gradient
intensification in the vicinity of the body enhances the consequences of buoyancy effects in
the creeping flow mode. At low velocities of the sphere, the liquid mainly flows around an
obstacle along isopycnal (close to horizontal) lines.

Structural differences in the geometry of the flow components become more distinct
with an increasing sphere velocity [70]. In the schlieren flow pattern in Figure 9a, the
blocked fluid is visualized by dark and light spots in front of the body. They are bounded
by tilted rays of non-stationary internal waves extending from the poles of the sphere.
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Figure 9. Schlieren images of a stratified flow around a uniformly moving sphere at small Froude
numbers: (a) Tb = 12.0 s, N = 0.52 s−1, D = 4 cm, U = 0.43 cm/s, Re = 132, Fr = 0.04,
(b)Tb = 3.0 s, N = 2.09 s−1, D = 5 cm, U = 0.5 cm/s, Re = 250, Fr = 0.002.

Curvilinear bands extending from the separation points of sharp almost horizontal
interfaces on the rear part of the sphere represent attached internal waves. The fine
interfaces outline the density wake. The sharpness of the boundaries separating the
domains with different kinds of a flow demonstrates strong interaction between the fine
ligaments with more long internal waves [71] in different flow regimes past a sphere [69,72].

The three successive curved vertical lines in Figure 9a are deformed markers, which
create the arising gas bubbles [59]. The vertical line is the initial bubble wake deformed
by the shear flow with time. A profile with an almost uniform central part surrounded
by two inclined sections visualizes the constant velocity in the center of the wake inside
two wide shear layers. The third marker line directly adjacent to the surface of the body
illustrates the patterns of velocity distribution on the boundaries of the wake. Here, the
heights of the velocity shear layers and the thickness of the ligaments submerged in their
central parts differ in more than an order of magnitude, as in the nonstationary DiF
(Formulas (2) and (3)).

With a further increase in the velocity of the body, the length and amplitude of the
attached waves grow. A group of five attached waves is presented in Figure 9b. The
shapes of the color bands ahead and past a sphere reflect the difference in upstream and
downstream density profiles. A more homogeneous domain of a blocking fluid is bounded
by non-stationary waves. Behind the body, the ligaments forming the density wake en-
velopes are expressed. The linear theory for the uniform motion of the sphere satisfactorily
describes the phase surfaces of the attached waves, both along a horizontal [31,68] and an
inclined trajectory [32]. The selection of the position and the intensity of the model sources
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and sinks allows achieving satisfactory agreement between the numerical and measured
displacement amplitudes [32,68].

With an increase in the body velocity at Fr << 1, the length and amplitude of all types of
internal waves increase. It concerns non-stationary upstream waves, attached downstream,
and trapped waves inside a density wake with their own profiles of velocity and density.
The trapped waves inside the wake correspond to a set of tilted antisymmetric dark and
light bands past the body, limited by high-gradient diverging interfaces in Figure 10a.
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Figure 10. Schlieren images of a stratified flow around a uniformly moving sphere: (a) Tb = 3.0 s,
N = 2.09 s−1, D = 5 cm, U = 0.76 cm/s, Fr = 0.005, Re = 384; (b) Tb = 12.0 s, N = 0.52 s−1,
D = 4 cm, U = 0.8 cm/s, Re = 256, Fr = 0.15.

The curvilinear phase surfaces of the attached waves adjoin the wake boundaries
almost vertically. Their contour is distorted by the shear flow at the wake boundary, the
height of which noticeably exceeds the thickness of the interfaces.

A further increase in the body velocity enhances the generation of waves, sharpens
the gradients in the wake envelope, and activates the interaction between the various
components of the flow. At first the wake expands uniformly with distance from the body
and then contracts in accordance with the wave pattern (Figure 10b). The wake envelopes
become wavy with sharpened crests and flattened troughs.

The deformation of the density marker indicates that the flow velocity profile in
the wake changes from a stepped profile (in Figure 9a) to a profile of Poiseuille’s type
(in Figure 10b). At the same time, the retained sharpness of the envelopes maintains a
generally rectangular cross-sectional shape of the density wake. The shear flow at the top
of the wake expansion folds its high-gradient envelopes into pronounced flat vortices with
a horizontal axis (Figure 10b).

Although the thickness of the ligaments, which confine the wave field, is much smaller
than the length of waves, they limit the propagation of waves rather efficiently. The
sharpness of the boundary indicates the effectiveness of the interaction of the different
length-scale components of the flows. They are waves and ligaments consisting of a
complete solution of the system of fundamental equations [8,27,71].

The spatial structure of the flow in this range of parameters is illustrated by patterns of
electrolytic precipitation, shown in Figure 11. Plane convex separation lines on the surface
of the sphere outline the flatness of the upper horizontal “lids” of the density wake. Two
vertical convex separation lines, indicating the flatness of the lateral border of the density
wake, are also distinct.
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Figure 11. Electrolytic precipitation of a stratified flow past a uniformly moving sphere at small
Froude numbers: (a)Tb = 4.5 s, N = 1.4 s−1, D = 5 cm, U = 0.7 cm/s, Re = 350, Fr = 0.01;
(b) Tb = 5.0 s, N = 1.3 s−1, D = 5 cm, U = 0.76 cm/s, Re = 380, Fr = 0.013; (c) a homogeneous
fluid, N = 0, D = 5 cm, U = 0.70 cm/s, Re = 350.

As the sphere velocity increases, the horizontal planes of the wake boundary approach
each other, while the vertical ones diverge (Figure 10b). Here, the shape of the wake
cross-section is close to a squared one. Four extended edges are formed by contacting flat
upper horizontal and lateral envelopes of the wake. Their convex lines of intersection with
the surface of the sphere and the straightness of the extended edges allow us to consider
the shape of the density wake as a vertically compressed prism.

At the right boundary of the wake, the leading parts of the vertical “vortex columns”,
separated from the sidewalls of the density wake, are visible.

The electrolytic precipitation visualization of the spatial structure of the flow past a
uniformly moving sphere in a homogeneous fluid at close values of the Reynolds number
is shown for comparison in Figure 11c.

Here, the suspension carried by the flows from the transverse equatorial annular belt
is uniformly distributed over the surface of the sphere and forms an annular separation
line. In the vicinity of the separation line, the uniformity of the suspension is disturbed;
it is redistributed in the form of more densely colored line segments and empty intervals
between them. We have to study further whether the flow pattern indicates the formation of
a “grooved” shape of the separation line of the cylindrical density wake, or whether such an
impression is created by the play of light and shadows on the unevenly distributed density
of the suspension, and thus the cylindrical shell itself is smooth. The circular contraction
of the right edge of the suspension in the wake specifies the action of an axisymmetric
toroidal vortex behind the sphere, which was repeatedly observed in the visualization of
flows in experiments [12] and numerical simulations [44].

The prismatic wake in this flow regime is filled with pairs of “vertical vortex columns”
(Figure 12a). Vortices are cut from below and above by the ligaments, which are the
horizontal interfaces shown in the schlieren images (Figure 10). The flow in the wake has
a complex three-dimensional character: individual, brightly colored fibers and surfaces
with a complex shape and variable curvature, twisting into spirals, are distinguished in a
distribution pattern in the visualized suspension. The vortex columns with flattened inner
walls are separated by a faster narrow jet in the central part of the wake (see Figure 12b).

Successive frames of the flow pattern show that the entire vortex structure is stretched
in a longitudinal direction and slowly oscillates in a transverse direction (Figure 13). We
observe the proper structuralization of the suspension, which is initially uniformly dis-
tributed along the surface of the sphere. Here, dense threads are pronounced on weakly
colored curvilinear surfaces.
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Figure 12. Pattern of electrolytic precipitation suspension in “vertical vortex columns” in the wake
past a sphere (Tb = 4.5 s; N = 1.4 s−1; D = 5 cm) : (a) side view U = 0.7 cm/s, Re = 350; Fr = 0.01;
(b) top view U = 0.62 cm/s; Re = 310; Fr = 0.008.
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Figure 13. Evolution of an electrolytic precipitation suspension pattern in the wake past a sphere in
CSF (top view): Tb = 8.0 s, N = 0.785 s−1, D = 5 cm, U = 0.65 cm/s, Re = 325; Fr = 0.027; time
interval between frames ∆t = 1 s.

The flow pattern loses regularity with a further increase in the flow velocity. The
vertical separation line of the suspension from the surface of the sphere begins to elongate
and approaches the separation point of the edges from above, forming the characteristic
intersection of the dyed lines (Figure 14).
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As the sphere velocity and Froude number increase, the vortex with a horizontal axis 

thickens and captures an increasing part of the “vortex bubble” (Figure 15a). Pronounced 

edges and individual lines emphasize the flatness of the wake boundaries. With distance, 

the flow degenerates with the formation of elongated horizontal interfaces and fibers 

throughout the volume of the wake. The inner structure and outer contour of the wake 

are visualized by the suspension of electrical precipitation in Figure 15b.  

The black-and-white replica of the color schlieren image (Figure 16) shows that after 

the collapse of the “vortex bubble”, the surface of the wake remains wavy [72]. The flow 

degenerates with the formation of elongated horizontal interfaces and filaments through-
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Figure 14. The shape of the separation lines of the suspension from the sphere and the edges of the
wake in the “expanding rectangle” stage in transient regime: (a,b) Tb = 4.5; 9.0 s, N = 1.4; 0.7 s−1,
D = 5 cm, U =1.08; 1.96 cm/s, Re = 540; 980 Fr = 0.02; 0.32.

The structure of the vortices in the wake is reconstructed with an increase in the sphere
velocity and a decrease in the flow separation region height. In this case, a thin layer at the
upper and lower envelopes of the wake expansion areas is firstly twisted into a spiral, the
position of which is synchronized with the phase of the attached internal wave (crest in the
upper hemi-space and trough in the lower one in Figures 10b and 15a).
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Figure 15. Formation of a “vortex bubble” frozen in the field of attached internal waves by a
pair of vortices with a horizontal axis: (a) conventional schlieren image with Foucault knife:
Tb = 3.0 s; N = 2.09 s−1; D = 4 cm; U = 1.37 cm/s, Re = 750, Fr = U2/N2D2 = 0.03;
(b) electrolytic precipitation Tb = 9 s, N = 0.7 s−1; D = 5 cm; U = 1.38 cm/s, Re = 690, Fr = 0.15.

As the sphere velocity and Froude number increase, the vortex with a horizontal axis
thickens and captures an increasing part of the “vortex bubble” (Figure 15a). Pronounced
edges and individual lines emphasize the flatness of the wake boundaries. With distance,
the flow degenerates with the formation of elongated horizontal interfaces and fibers
throughout the volume of the wake. The inner structure and outer contour of the wake are
visualized by the suspension of electrical precipitation in Figure 15b.

The black-and-white replica of the color schlieren image (Figure 16) shows that after
the collapse of the “vortex bubble”, the surface of the wake remains wavy [72]. The flow
degenerates with the formation of elongated horizontal interfaces and filaments throughout
the volume of the wake.
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position of the inner vortex structures is determined predominantly by dynamic condi-
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Figure 16. Black and white replica of the color schlieren image of the flow in the wake of the sphere:
Tb = 3.0 s, N = 2.09 s−1, D = 4 cm, U = 1.45 cm/s, Re = 780, Fr = 0.03.

The shapes of waves and vortices in the colored schlieren images differ significantly
from the traditional schlieren patterns with the Foucault knife (Figure 15). It allows
estimating the position of the high-gradient interfaces and the general deformation of the
density profile.

8. Cylindrical Shape of the Wake Past a Sphere at High Froude Number

A further increase in the flow velocity is accompanied by a qualitative change in the
flow structure. The inertial and nonlinear effects gradually become more pronounced and
dominate over the effects of stratification, and they even enhance with the formation of
high-gradient interfaces. The large length of the internal wave, which exceeds the diameter
of the sphere in Figure 17 at almost an order of magnitude, indicates a violation of the
spatial synchronism condition, which is necessary for the effective generation of waves.
The attached wave amplitude decreases rapidly with a further-increasing Froude number.
The weakening of the attached wave does not ensure the fulfillment of the condition of
their spatial synchronization with the wake boundary geometry, which is defined by the
positons of the vortices.
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Figure 17. Schlieren images of periodically separating axisymmetric vortices from the flow at the
rear part of the sphere in a weakly CSF: Tb = 12 s, N = 0.52 s−1, D = 4 cm, U = 2.1 cm/s, Re = 840,
Fr = 1.02; (a,b) t = 0; 4.5 s.

The length of the region of increased vorticity in the rear part of the sphere increases.
Having reached a critical size, the bottom vortex splits up and its outer part is thrown
into the wake in the form of a toroidal ring with a conical front part (Figure 17). Here, the
position of the inner vortex structures is determined predominantly by dynamic conditions.
Moving separated vortices covered by sharp envelopes emit internal waves similar to the
waves of a solid body. Bands, visualized in black-and-white images, of the internal waves
around the wake are tilted in the direction of the body motion (the geometry and dynamics
of a free laminar vortex ring motion in a CSF were studied in detail in [73]).

As the density gradient increases, so does the frequency of vortex shedding, the
intensity of short internal waves generated by the separate vortices, and the degree of
manifestation of fine structures. The resulting ligaments, which correspond to the fibers
and interfaces in the schlieren image (Figure 18), extend in the direction of body motion.
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Figure 18. Coalescence of separated vortices into density wake with irregular envelope:
Tb = 3.5 s, N = 1.8 s−1, D = 3 cm, U = 6.8 cm/s, Re = 2040, Fr = 1.6.

The difference between the attached internal waves generated by the body itself [68],
with the length proportional to its velocity λ = UTb, and the short non-stationary waves
emitted by vortices in the wake, are clearly expressed in the flow pattern in Figures 17 and 18.

With a further increase in velocity, the structure of the wake boundary changes and the
vortices are merged into a single wake with a continuous envelope (Figure 19). However,
the existence and the periodicity of the location of radiating vortices in the wake indicate
the regularity of the pattern of short internal waves.
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Figure 19. Irregular axisymmetric vortex wake past a sphere: Tb = 3 s, N = 2.09 s−1, D = 4 cm,
U = 8.7 cm/s, Re = 3488, Fr = 1.1, ∆t = 1.5 s.
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An oscillating wake is observed behind a uniformly moving sphere along with an
axisymmetric pulsating wake. In this regime, vortices periodically separate from a flow
directly past a sphere and propagate along a sloping trajectory at the separation region
(Figure 19). Perfect axial symmetry of the wake is lost. When the excess lateral momentum
is carried away by the radiated internal waves, the detached vortex rings return to the
center of the flow. In this case, as well as in previously considered flow patterns, the
ligaments, which are high-gradient envelopes, form a boundary separating the vortices
from the radiated waves. Here, the mechanical action of the ligaments is equivalent to the
surface of a solid body impact.

Consideration of the data presented in Figures 7–20 shows that two types of symme-
tries are distinguished in the wake flow past a uniformly moving sphere. A rectangular
wake with a discrete symmetry is observed at small Froude numbers (Fr << 1). A round
wake is formed at large Froude numbers (Fr > 1).
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Figure 20. Oscillating vortex wake behind a sphere of a small diameter in CSF: Tb = 3.5 s,
N = 1.8 s−1, D = 1 cm, U = 7.4 cm/s, Re = 742, Fr = 17.

The scheme of the flow past a sphere at intermediate Froude and Reynolds numbers is
close to a rectangular form. A transverse cross-sectional view of the density wake is shown
in Figure 21. The position of the long side depends on the value of the Froude number (or
velocity for a constant body diameter).
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Figure 21. Scheme of the vortex flow past a sphere, (a) rectangular density wake, (b) wake with
submerged vertical vortex columns, (c) wake with horizontal rotors.

At the smallest values of the sphere velocity, when buoyancy effects dominate, the
rectangle is elongated vertically. If the generation of vorticity in a shear flow at the vertical
boundaries of the wake is supplemented by the action of the baroclinic mechanism due to
the multidirectional pressure and density gradient vectors [13], it leads to the formation of
vortex pairs.

In this flow, the particles move mainly along isopycnal trajectories. The axes of the
downstream symmetric “vortex columns” are oriented vertically.

Flat inner boundaries of the vortices in Figures 12b and 13 visualize the central back jet
in the wake. With increasing velocity, inertial effects pull the upper and lower separation
lines to the center and push the side faces apart (a wake scheme with a square section is
shown in Figure 2a). Gradually, slides of the vertical envelopes are separated and twisted
in vertical vortex columns, as shown in Figure 2b.

Increased stratification on the horizontal wake “lids” hinders the formation of large
eddies with a horizontal axis that moves fluid to the horizons of neutral buoyancy. Devia-
tions in the position of the boundary from the horizontal axis practically stop the removal
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of the vorticity from the wake. The vorticity turns out to be “frozen” in the wake, as in case
of the particles of the suspension being transferred.

A gradual increase in velocity and Froude number leads to further contraction of the
separation region height and “twisting” into a thin vortex curl of high-gradient interfaces
at the horizontal boundaries of the wake. Vorticity in horizontal rotors is higher than in the
“vertical vortex columns”. Large vertical vortices are destroyed and replaced by intensive
horizontal rotors (Figure 21c). A more intense vortex motion leads to the destruction of
corners and edges of the wake and the formation of a toroidal bottom vortex behind the
sphere, as in a homogeneous liquid.

The dependence of the angular position of the horizontal separation lines on the
surface of a sphere with a diameter of 4 cm in a weakly CSF with a buoyancy period
of = 12 s on the Froude number is shown in Figure 22 (the angle is measured from the
horizontal position). Measurements of the separation angles of the wake envelopes in
the central vertical plane were made according to three types of schlieren visualization:
traditional (vertical slot—Foucault knife), slot-thread set at an angle of 45o, and color
schlieren method. On the decreasing and increasing parts of the curve, the data of the
independent measurements agree with each other.
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plane, it does not exceed 15°, which corresponds to the vertical rectangle for the cross-
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Figure 22. Separation angle of the density wake envelope on a sphere in a weakly CSF versus Froude
number (Tb = 12 s D = 4 cm): visualization: 1—slit-Foucault knife; 2—slit-thread; 3—“natural
rainbow” color schlieren method.

Particularly, the separation angle variations in the density wake on spheres of different
diameters in the side schlieren view are shown in Figures 23 and 24. At the lowest values
of the Froude number, the separation angle of the wake envelope from the sphere in the
vertical plane is close to the normal quantity, θ ∼90◦, and in the horizontal plane it does
not exceed ϕ < 15◦, which corresponds to the vertical rectangle for the cross-section of the
wake. As the body velocity increases, the separation angle in the vertical plane decreases,
and in the horizontal plane it increases, and exceeds the vertical one, θ ∼45◦, and ϕ = 67◦

at Fr = 0.03. The shape of the wake cross-section is a rectangle, elongated horizontally.
The experimental data in these figures are approximated by power-law functions of

the form θ = AR(Re)r and θ = AF(Fr)m. Exponents and coefficients in these formulas
depend on other parameters of the problem.

In the interval of the Froude number, when the height of the separation region de-
creases with the velocity increases, their values are distinguished and equal: r = −1.25,
m = −0.66 (Tb = 12c, D = 4 cm); r = −1.7, m = −077 (Tb = 3 c, D = 2 cm); r = −0.48,
m = −0.35 (Tb = 3 c, D = 4 cm).
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Figure 23. Separation angle of the density wake envelope on a sphere versus Reynolds number:
curves (1–3)—Tb = 3 s, D = 2, 3, 4 cm; (4)—Tb = 12 s, D = 4 cm.
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Having reached critical values, the vortex, contoured by high-gradient envelopes, 

breaks off and drifts in the wake. It remains connected to the flow past a sphere by a con-

ical set of ligaments. Moving vortices radiate transient internal waves. Their rays, which 

represent phase surfaces, are oriented to the body motion. The vortices are gradually 

slowed down, deformed, and pulled out by the unsteady flow in the wake. The spiral 
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9. Results and Discussion  

The results of the first regular studies of the stratified fluid flows around 2D and 3D 

obstacles focused on visualizing the spatial structure of dispersive internal waves. They 

have been summarized in monographs [30,74], which maintained their cognitive value. 

An extensive series of experimental studies of the flow around a sphere uniformly moving 
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Figure 24. Separation angle of the density wake envelope on a sphere versus Froude number: curves
1 Tb = 3.5 s, D = 4 cm; 2—Tb = 4.5 s, D = 4 cm; 3—Tb = 12.0 s, D = 4 cm; 4—Tb = 3.0 s, D = 2 cm;
5—Tb = 4.1 s, D = 2 cm.

If the Froude number exceeds the critical value of the minimum wake height, the
exponents is m = 0.5 in the approximation of the separation angle on the Reynolds and
Froude numbers in all experiments performed at various values of the buoyancy period
and sphere diameter.

At the lowest values of the Froude number, the separation angle of the wake envelope
from the sphere in the vertical plane is close to normal, θ ∼90◦, and in the horizontal plane,
it does not exceed ϕ < 15◦, which corresponds to the vertical rectangle for the cross-section
of the wake. As the body velocity increases, the separation angle in the vertical plane
decreases; in the horizontal plane it increases, and exceeds the value in vertical plane
θ ∼45◦ and ϕ = 67◦ at Fr = 0.03. The shape of the wake cross-section is a rectangle, which
is elongated horizontally.

The given values of the separation angle of the wake from a sphere for different values
of the Froude and Reynolds numbers are consistent with the results [40] obtained for a
sphere with a diameter D = 6.36 cm/s.

The clarity of the shape is ensured by an increased concentration of the suspension on
the edges of the wake and the small thickness of its boundaries (horizontally and vertically
oriented high-gradient interfaces). The dependences of the boundary parameters and fine
geometry of the flow on the properties of the medium and the conditions of motion of the
body require a more detailed study.

At high body velocities, when the Froude number becomes greater than one, a cylin-
drical wake, filled with small-scale disturbances, is formed. The wake is separated from
the annular toroidal vortex in the rear part of the sphere (Figure 19).
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Having reached critical values, the vortex, contoured by high-gradient envelopes,
breaks off and drifts in the wake. It remains connected to the flow past a sphere by a
conical set of ligaments. Moving vortices radiate transient internal waves. Their rays,
which represent phase surfaces, are oriented to the body motion. The vortices are gradually
slowed down, deformed, and pulled out by the unsteady flow in the wake. The spiral
interfaces of the vortex are elongated; they form line structures that connect the remains of
the vortex rings into a single system.

9. Results and Discussion

The results of the first regular studies of the stratified fluid flows around 2D and
3D obstacles focused on visualizing the spatial structure of dispersive internal waves.
They have been summarized in monographs [30,74], which maintained their cognitive
value. An extensive series of experimental studies of the flow around a sphere uniformly
moving in a pool filled with a stratified fluid were independently carried out in several
countries: the USSR [34,68–72], the USA [75–78], France [79–82], and Great Britain [33,38].
In the experiments, flow patterns were visualized using high-resolution classical [3,4] and
modified schlieren methods [25], including the density gradient registration instruments,
modified for background continuous density distribution [34]; direct shadowgraph obser-
vations [75]; dyeing by common and fluorescent impurities; particle tracing (particle streak
photograph) [76–78]; and electrolytic precipitation [69,70].

The experiments have shown that at low values of the Froude number, when the
buoyancy effects dominate, the density wake has a prismatic shape. It is elongated vertically
at first, then its cross-section becomes square [69], and, finally, it becomes flattened under
the action of inertial effects at a range of Froude numbers, 0.03 < Fr < 0.09. The observed
discrete symmetry of the wake is consistently reproduced in independent experiments.

The flat boundaries of such a density wake are formed by ligaments, i.e., high-gradient
interfaces that arise in the flow in the vicinity of the sphere surface. The interfaces are
located inside a thicker shear layer of velocity. The height of the shear layer in a liquid
with a large Schmidt number (Sc = 700 for an aqueous solution of sodium chloride, which
is used in most experiments) is at least an order of magnitude greater than the ligaments
thickness. Similar ratios of heights were observed in an unsteady DiF on the impermeable
obstacle. The effects of amplification of the gradients at the wake boundaries have been
registered in [34].

Classical schlieren methods have the highest sensitivity and spatial resolution among
those listed above. These methods enable us to record disturbance patterns in the entire
range of flow parameters (from the slowest ones induced by diffusion on topography to
fast vortex flows) and to resolve all structural components in the studied flows. The low
sensitivity of the direct shadow and moiré methods does not let us visualize weak internal
waves and fine high-gradient interfaces, which was noted in [75]. The discrete nature of
a number of flow visualization methods, in particular, using tracing particles for velocity
measurement and the flow visualization (particle streak photograph) [78–80], does not
allow us to register thin interfaces and assess their effect on the flow structure.

As the Froude number increases, the sidewalls of a rectangular wake begin to split,
and form two and more vertical vortex columns [72] (lee-side eddies in the terminology
of [75]) in the downstream wake.

The joint action of the velocity shear and pressure perturbations in the field of intense
attached internal waves leads to the formation of “vortex bubbles” with a horizontal axis of
symmetry. The sets of complete solutions of the system of fundamental Equation (1) contain
functions that describe both periodic components—waves and vortices—as well as a large
number of ligaments that characterize the thin high-gradient interfaces and fibers [8,27].

As vorticity accumulates in the rear part of the flow past the body, the wake faces
become rounded and take a cylindrical shape. All the structural components, including
ligaments, take part in nonlinear interactions with each other, with waves and mean flow.
It provides a variety of available scenarios for the evolution of stratified flows.
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The classification of the sequence of the vortex structures in the transitional flow
regime was first presented in [75]. The pattern of the vortex structure near and far from
the obstacle has been described in great detail in subsequent experiments [81,82]. The
evolution of the fine structure of the density profiles downstream in the wake, revealed
by a high-resolution electrical conductivity sensor, enabled studies of the dynamics of
submerged vortices [83]. In a number of experiments, the pattern of internal waves [84]
and the global structure of the vortex and turbulent wake were elucidated [85,86].

Analytical [87], numerical [88–91], and experimental studies [41,42] of the internal
wave field and the generally round turbulent wake behind a rapidly moving sphere in a
CSF are being actively pursued using various approaches.

10. Conclusions

Fluid stratification, even if it is weak, significantly affects the structure, symmetry, and
dynamics of the flow past a uniformly towed sphere. At low values of the Froude number,
ligaments that are high-gradient interfaces enhance the effect of stratification. Horizontal
and vertical envelopes bound a narrow prismatic density wake past a slowly moving body.

With an increase in sphere velocity, the shape of the transverse cross-section of the
wake transforms from a vertically elongated rectangle into a square and then into a narrow
horizontally elongated rectangle. In a high wake, paired vertical vortex columns are
formed. They are enclosed between the horizontal interfaces and form envelopes of the
density wake.

Vortices with a horizontal axis, which are immersed in a horizontally stretched wake,
lead to a periodic increase in its vertical size. The position of the wake expansion and
compression regions is consistent with the phase pattern of the attached internal waves.

At large values of the Froude number, the accumulation of vorticity, accompanied by
the formation of a toroidal vortex in the rear part of the sphere, causes a rearrangement
of the discrete symmetry of the density wake into a continuous axisymmetric one. In
the phase of flow restructuring, various forms of vortex components, contoured by thin
high-gradient envelopes, are observed in the wake.
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Abstract: We investigate a simple model for a self-propelled swimmer, which consists of a fluctuating
force acting at a point on a rigid body. The rigid body is subject to Newton’s equations with linear
friction, corresponding to drag in a viscous fluid. The force has zero time average, so net motion is
challenging. We show that the swimmer can inch forward by shaking from side to side and exploiting
friction coupled with nonlinearity. For large enough forcing amplitude it can reverse direction and
swim backward.

Keywords: microswimmers; linear damping; swimming efficiency

1. Introduction

Microorganisms are all around us, and many self-propel through a fluid medium.
Understanding their mechanism of locomotion is key to the understanding of biological
processes, and is an interesting fundamental question in itself. As famously noted by [1],
the net motion of a swimmer in a viscous fluid in the limit of zero Reynolds number is
impossible without imposing a time-asymmetric forcing. Simple models of zero Reynolds
number swimmers include Taylor’s swimming sheet and Purcell’s scallop [2]. But it is well-
known that even a small amount of inertia can lead to a net motion for reciprocal swimmers,
as can other effects such as viscoelasticity of the fluid [3–5] and fluid vibrations [6].

Here we investigate a very simple toy model of a swimmer subjected to a force with
zero time average, so it is not a priori clear that the swimmer will experience any net
motion. We will show that, somewhat paradoxically, the swimmer can make net progress
by shaking from side to side, as long as the force is not acting at its center of mass. The
motion will require a small amount of angular inertia, but no translational inertia is needed
for it to occur (though, of course, it is also present). The mechanism also crucially depends
on drag.

2. Model

Consider a disk of radius a of uniform density subjected to a mean-zero fluctuating
force f (t) (see Figure 1). We envisage the force is due to some propulsion mechanism, such
as a flagellum for the case of a microswimmer. The line from the center of the disk to the
point of application of the force defines a geometric symmetry line for the system. We
assume the dynamics are governed by

ẋ = u, mu̇ = −σu + f ; (1a)

φ̇ = ω, Iω̇ = −κω + τ, (1b)

where x(t) is the position of the disk’s center, u(t) its velocity, and m its mass. The force is
acting in the plane of the disk ( f · ẑ = 0) at a fixed point in the disk’s reference frame, a
distance ` from its center. The disk’s angular speed is ω, its moment of inertia is I, and the
force creates a torque τẑ. We assume a linear damping in (1), with damping coefficient σ for
translation and κ for rotation. The damping could come from the disk being immersed in a
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viscous fluid, or from friction with a surface. (In the former case, we neglect the fluid inertia,
which is appropriate when the swimmer has a large density compared to the fluid [7,8]).

f

Figure 1. Disk of radius a with a force acting at a distance ` from its geometric center.

The force can be decomposed as

f (t) = fφ(t) φ̂ + fr(t) r̂, (2)

with the unit vectors

φ̂(φ) =

(− sin φ
cos φ

)
, r̂(φ) =

(
cos φ
sin φ

)
. (3)

We refer to φ̂ and r̂ as the lateral and longitudinal directions, respectively. The torque is
then a vector out of the plane, with component

τ(t) = ` fφ(t) (4)

where 0 ≤ ` ≤ a is the distance from the center of the disk.
We define the long-time average of a bounded function F(t) as

F = lim
T→∞

1
T

∫ t0+T

t0

F(s)ds. (5)

The long-time average is independent of t0. (For periodic F(t) we can drop the limit T → ∞
and take T to be the period.) The asymptotic net velocity of the disk is

(
U
V

)
= (ẋ) = lim

T→∞

1
T

∫ T

0
ẋ(s)ds. (6)

We take the imposed force to have components with zero long-time average:

fr = fφ = τ̄ = 0. (7)

The question we wish to answer is whether the disk can ‘swim’, that is, can a translational
motion in the longitudinal (r̂) direction be achieved by the fluctuating force. We will see
that this is not possible with a purely longitudinal force ( fr 6= 0, fφ = 0), but it does occur
for a purely lateral force ( fr = 0, fφ 6= 0). That is, the disk can have net forward motion
by ‘shaking’ from side-to-side, as long as I, σ, κ, and ` are all nonzero. For small force
amplitude, the motion is to the right in Figure 1, but for large enough amplitude the motion
can reverse direction.

3. Longitudinal Forcing

First take
f (t) = fr(t) r̂(φ), (8)
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that is, the force is longitudinal along the symmetry direction. Then there is no torque
(τ = 0), and φ → const. after a transient of duration I/κ. We take φ ≡ 0 without loss of
generality, and it follows from (1a) that y ≡ 0. The remaining equation is

mẍ = −σẋ + fr(t). (9)

Since fr(t) has zero mean, we can write fr(t) = mB′(t), where B(t) also has zero mean.
After a transient, x(t) achieves the asymptotic solution

x(t) =
∫ t

−∞
e−σ(t−s)/m B(s)ds =

∫ 0

−∞
eσs/m B(t + s)ds. (10)

Clearly, x(t) has zero mean:

x =
∫ 0

−∞
eσs/m B(·+ s)ds = 0, (11)

which implies that the net speed U = 0. A purely longitudinal mean-zero forcing will thus
not lead to net motion, perhaps supporting our intuition. To relate to the title of the paper:
shaking front to back (with zero mean) will not cause forward motion, even with inertia.

4. Lateral Forcing: Dimensionless Scaling

We saw in Section 3 that a mean-zero longitudinal force will never lead to net propul-
sion. The next natural question is whether a purely lateral forcing can lead to propulsion
along the longitudinal direction. We set

f (t) = fφ(t) φ̂(φ). (12)

It will be convenient to use dimensionless variables from now on. We choose the mass,
length, and time scales respectively as

M = Iσ/κ, L =
√

κ/σ, T = I/κ. (13)

The time scale is the rotational damping time, and the length scale is roughly the radius of
the disk. We do not introduce new symbols for dimensionless variables; we simply treat all
variables as dimensionless from now, with the definitions (13) implying

κ = σ = I = 1. (14)

Equation (1) can then be rewritten as coupled second-order ODEs:

mẍ = −ẋ + `−1 A′(t)φ̂; (15a)

φ̈ = −φ̇ + A′(t), (15b)

where we defined for later convenience

fφ(t) = `−1 A′(t), (16)

with

`A(t) =
∫ t

0
fφ(s)ds−

∫ t

0
fφ(s)ds (17)

such that A = 0. We implicitly assumed that A(t) is bounded, which requires
∣∣∣∣
∫ t

0
fφ(s)ds

∣∣∣∣ < M, t ∈ R, (18)

for some positive constant M.
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5. Temporal Evolution of the Angle

The solution to (15b) is

φ(t) = φ0 + (1− e−(t−t0))ω0 +
∫ t

t0

e−(t−s)A(s)ds (19)

where φ(t0) = φ0 and φ′(t0) = ω0. We are really only interested in what happens after an
initial transient of O(1) duration (I/κ in dimensional variables), so we take the limit t0 →
−∞ in (19) and drop some constants to obtain

φ(t) =
∫ t

−∞
e−(t−s)A(s)ds =

∫ 0

−∞
es A(t + s)ds. (20)

The form (20) is such that that φ = 0, which follows from A = 0 in the same manner as
for Equation (11).

We shall work in the limit where the damping time I/κ = 1 is small compared to the
typical time scale for changes in A(t). This means that A� A′ � A′′ . . . . In that case the
integral in (20) can be evaluated as a series using Watson’s lemma:

φ(t) =
∞

∑
n=0

(−1)n A(n)(t). (21)

The series converges for A(t) smooth enough.
For the case where fφ(t) is periodic with period T, the boundedness condition (18)

requires ∫ T

0
fφ(t)dt = 0 (22)

and it follows that A(t) is also T-periodic, as well as φ(t).

6. Temporal Evolution of Position

Following a similar approach to Section 5, we see that the asymptotic solution to
Equation (15a) is

`ẋ(t) =
∫ t

−∞
e−(t−s)/m A′(s) φ̂(s)ds. (23)

We substitute the unit vector (3) with the expansion (21) in the ẋ integral (23), and again
using Watson’s lemma solve for the slow time evolution:

`ẋ = (A′)2 cos A +
(
cos A + mA′ sin A

)′
+ O(A′′′), (24a)

`ẏ = (A′)2 sin A +
(
sin A−mA′ cos A

)′
+ O(A′′′). (24b)

The second term on the right of both equations in (24) is an exact derivative, so its long-time
average vanishes. Hence, the components in (6) are

(
U
V

)
= lim

T→∞

1
`T

(∫ T

0
(A′(t))2

(
cos A(t)
sin A(t)

)
dt + O(A′′′)

)
. (25)

The simplest case is to take the forcing A(t) to be a periodic function:

A(t) = A0 sin(Ωt). (26)

The integral (25) can be taken over a period T = 2π/Ω and the limit dropped, to obtain

U = A0Ω2`−1 J1(A0) + O(Ω3), V = 0, (27)

153



Symmetry 2022, 14, 620

where J1 is a Bessel function of the first kind. (V is zero to all orders, by symmetry, since A(t)
is odd.) Restoring dimensional variables,

U =
A0 IΩ2

σ`
J1(A0) + O((ΩI/κ)3)

=
IΩ fφ0

σκ
J1
(
` fφ0/Ωκ

)
+ O((ΩI/κ)3). (28)

where fφ0 = A0Ω/κ` is the amplitude of the fluctuating force (see Equation (16)). The
dimensional form makes it clear that the net velocity goes to zero for ` = 0 (no torque).

Figure 2 shows some numerical trajectories for the forcing (26), for a few different
amplitudes A0.

Figure 2. Trajectories for A(t) = A0 cos(Ωt) and ` = 1, Ω = 0.1.

Note that the disk moves to the right (with the convention as in Figure 1) with a speed
that increases with A0. In Figure 3 we confirm Formula (27) by finding the asymptotic
swimming speed as a function of A0.

Note that the swimmer can reverse its direction of motion with a large enough ‘shaking’
amplitude. This corresponds to the swimmer shaking hard enough that it completely
reverses its direction in one half-period (see Figure 2, bottom). Clearly, this regime is
unrealistic, but is interesting to note nonetheless.

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

15 10-3

Figure 3. The mean speed U for numerical simulations with ` = 1, Ω = 0.1 (solid line) and the
asymptotic form Equation (27).
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7. Efficient Motion

A natural question to ask is: what is the optimal forcing to progress forward as
rapidly as possible? This is a popular endeavor in the world of microswimmers; see for
instance [9–17]. As we see below, we cannot completely answer this question here without
some extra assumptions.

7.1. Power

From (15), we can get energy equations

1
2 m

d
dt
‖u‖2 = −‖u‖2 + u · f , 1

2
d
dt

ω2 = −ω2 + ωτ. (29)

The left-hand sides of (29) are the rate of change of kinetic energy; the right-hand sides
include negative quadratic dissipation terms, and power expenditure terms

Pu(t) = u · f , Pω(t) = ωτ. (30)

Averaging (29) gives the balance between power expended and dissipated:

Pu = u · f = ‖u‖2, Pω = ωτ = ω2. (31)

If we use the overdamped approximation (24a) for u and the asymptotic solution (21) for φ,
we have

P(t) =
(

1 + `−2
)
(A′)2 + O(A′A′′). (32)

Taking the long-time average yields

P = (1 + `−2)(A′)2 + O((A′′)2). (33)

For convenience we absorb the prefactor to define

P = P/(1 + `−2). (34)

7.2. Optimizing the Speed of Motion

From Equation (25), assuming a periodic forcing A(t + T) = A(t),

U = (A′)2 cos A

= P− (A′)2 (1− cos A) ≤ P, (35)

where we neglected higher derivatives of A by assuming the period T is long. It is clear
from (35) that the power P is an absolute limit to the net speed of motion. A natural
question is whether there is an optimal periodic A(t) that leads to the fastest speed. For
simplicity we take A(t) to be an odd function of t, so that V = 0 in Equation (25). Consider
the particular choice of a triangular function

A(t) =

{√
P t, − 1

4 T ≤ t ≤ 1
4 T,√

P ( 1
2 T − t), 1

4 T ≤ t ≤ 3
4 T,

(36)

defined on [− 1
4 T, 3

4 T] and extended periodically (Figure 4). This piecewise linear function
has constant power P = (A′)2, so P = P. The speed for this periodic forcing is

U = P
4
T

∫ T/4

0
cos(
√

P t)dt = P sinc(
√

P T/4) (37)
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where sinc x := x−1 sin x. But now we replace T by a sub-period T/2k, and we can see
that U → P as k → ∞. The maximum net speed U = P is thus achieved by a constant-
power forcing that ‘switches’ infinitely rapidly with a very small amplitude (Figure 4,
bottom). This is not very natural, but still suggests what kinds of motions lead to most
efficient propulsion. A follow-up investigation could involve a constraint with a second
derivative of A in order to regularize the problem, but this requires introducing additional
physics or biology.

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

Figure 4. Top: The periodically-extended triangular function (36) for P = T = 1. Bottom: The same
function with T replaced by T/4. The two functions have the same constant power P = (A′)2, but
the bottom function has smaller amplitude.

8. Discussion

In this paper, we introduced a very simple mechanical model where it’s not initially
clear that a swimmer can make forward progress. A mean-zero the forward-backward
motion does not lead to net motion, but somewhat surprisingly a sideways motion can do
so, as long as it is driven by a force that also exerts a torque. A small amount of rotational
inertia is necessary, as is some damping mechanism such as linear drag or friction with a
surface. It is likely that the mechanism would still exist in a more realistic model, though
this has yet to be verified.

In practice, the forward progress made by the swimmer is extremely slow, so this toy
model is probably not a practical means of motion. Nevertheless, it is instructive to explore
the full range of possibilities when it comes to self-propelled motion since nature often
surprises us. Moreover, the setup described here could probably be easily realized with a
simple mechanical robot.

The choice of a disk for the shape is fairly immaterial: the only consequence of the
disk shape that was used here is the isotropy of the drag. A nonisotropic drag law (with a
resistance matrix) could be used, but would complicate the math. In closing, we note that it
is also possible to solve a stochastic version of this problem [18].
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Abstract: Drag reduction by injecting air is a promising engineering method for improving ship
performance. A novel automatic air intake drag reduction strut structure based on the Venturi
effect is proposed for the high-speed small water-plane area twin hull vessels in the present study.
The drag reduction strut can achieve the function of automatic air intake when the vehicle is moving
at high speed, and the air inhaled and the incoming flow form bubbly flows to cover the strut
surface, effectively reducing the drag of the strut. Considering the longitudinal symmetry of the
strut structure, a two-dimensional single-chip drag reduction strut structure is designed to facilitate
analysis and a solution. The volume of fluid model is combined with the k-ω SST turbulence model,
and a numerical simulation is carried out to investigate the variation of the air inflow, the air volume
fraction in the bubbly flows of the strut and the drag reduction rate of the strut for different sailing
speeds. The analysis result shows that when the proposed model reaches a certain speed, the external
air is inhaled by the strut intake duct, and the bubbly flows are formed with the incoming flow
covering the surface of the strut, thereby reducing the drag coefficient. Meanwhile, it is found that
as the sailing speed increases, the drag reduction rate of the strut gradually rises and its maximum
value reaches about 30%. For high sailing speeds, the drag reduction rate is affected by wave-making
resistance so that it gradually declines.

Keywords: symmetry; numerical investigation; strut drag reduction; bubbly flows; Venturi effect;
air inflow

1. Introduction

A new type of high-speed surface vehicle similar to the small water-plane area twin
hull (SWATH) [1] has attracted people’s attention. Forming supercavities on the SWATH
vessels via artificial ventilation can lower resistance by reducing the wetting surface of the
submerged bodies by applying supercavitation techniques [2]. However, as the strut passes
through the water, supercavities cannot be formed on its surface. The skin friction drag of
the strut surface can account for almost half of the total drag of the ship. Considering the
effects of skin friction drag of the strut on the total resistance of the vehicle, drag reduction
by bubbly flows is an effective way of strut drag reduction.

Various methods have been explored to reduce the skin friction drag in the past.
One such method—drag reduction by bubbly flows—has recently become a focus in the
expectation that it might be applicable to ships. Early reporting of drag reduction by bubbly
flows was by Mccormick [3]. They observed viscous drag reduction of a fully submerged
body by creating hydrogen gas on the hull by electrolysis. Murai [4] developed the study
of the mechanism of drag reduction using relatively large air bubbles compared to the
boundary layer thickness in a horizontal turbulent channel flow and indicated that there is
a negative correlation between the local skin friction and the local void fraction.

A common method to form bubbly flows is gas injection into the liquid boundary
layer. Such injection results in the formation of bubbles that produce drag reduction. Drag
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reduction by injecting air can be categorized into microbubble drag reduction (MBDR) and
air layer drag reduction (ALDR), according to the shape and distribution of air bubbles.

In MBDR, a number of experiments and numerical studies have been carried out
to investigate. Madavan et al. [5] indicated that microbubbles can cause a reduction of
high-frequency shear-stress fluctuations and a destruction of some of the turbulence in
the near-wall region by spectral measurements. Kodama et al. [6] carried out the mi-
crobubble experiments using a circulating water tunnel specially designed for microbubble
experiments, and skin friction reduction by microbubbles of up to 40% was obtained.
Sayyaadi et al. [7] estimated a simple formulation for calculating an efficient injection
rate by considering the main parameters of the ship by the model test results of a 70 cm
catamaran model. The test results showed that excessive air injection decreases the drag
reduction effect, while suitable injection reduces total drag by about 5–8%. Paik et al. [8]
developed the study of a bubbly turbulent boundary layer. The behaviors of the mi-
crobubbles were visualized quantitatively by using the conventional PIV technique with a
field-of-view of 200 mm2. The velocity fields of the bubbles showed that the PIV technique
is highly effective in reducing skin friction by decreasing Reynolds stress. Because the
direct numerical simulation for bubbly flows can provide insight into the physics of bubbly
boundary layer flows, numerical simulations have been widely performed to predict the
observed MBDR. Kanai et al. [9] clarified the structure of the turbulent boundary layer
containing microbubbles and the mechanism of frictional drag reduction by conducting
direct numerical simulation (DNS) for bubbly flows. Kawamura et al. [10] presented a
new computational method for investigating interactions between bubbles and turbulence,
which is applied to a direct numerical simulation of a fully developed turbulent channel
flow containing bubbles. Xu et al. [11] conducted a series of numerical simulations of small
bubbles seeded in a turbulent channel flow at average volume fractions of up to 8%. These
results showed that an initial transient drag reduction can occur as bubbles disperse into
the flow and that small spherical bubbles will produce a sustained level of drag reduction
over time. Ferrante et al. [12] conducted numerical simulations for a microbubble-laden
spatially developing turbulent boundary layer and compared skin friction due to the pres-
ence of the bubbles for two Reynolds numbers: Reθ = 1430 and Reθ = 2900. The results
showed that increasing the Reynolds number decreases the percentage of drag reduction.
Mohanarangam et al. [13] investigated the phenomenon of drag reduction by the injection
of microbubbles into the turbulent boundary layer by using an Eulerian–Eulerian two-fluid
model. Feng et al. [14] investigated effects of the parameters of microbubbles, including
the gravity, the injection height and the volume fraction, on friction drag in a turbulent
boundary layer by using large-eddy simulation. Yanuar et al. [15] developed a comparison
between MBDR and ALDR for a self-propelled barge. The results showed that the ship
model using the air layer has greater drag reduction than microbubbles.

ALDR is another form of air injection drag reduction. As opposed to MBDR, ALDR
occurs when a continuous or nearly continuous layer of air is formed between a solid
surface and the outer liquid flow [16]. Shen et al. [17] and Murai et al. [18] studied the
possibility and mechanism of drag reduction using relatively large air bubbles compared
to the boundary layer thickness in a horizontal turbulent channel flow. Choi et al. [19]
described a numerical method based on the boundary element method, which is used
to establish trends of the total resistance and its dependence on the Froude number. On
this basis, Choi et al. [20] addressed the issue of unsteadiness of the air layer free surface
with regards to the ship motion and the upstream conditions for future practical hulls
with air layers. Elbing et al. [16] conducted the ALDR experiments, and it was concluded
that (i) drag reduction with injection of air can be divided into three distinct regions:
a BDR zone, a “transition zone” and an ALDR zone; (ii) the “critical” gas injection rate
required to form a persistent air layer is approximately proportional to the square of the
free-stream liquid velocity and (iii) ALDR may have persistence lengths much greater than
the lengths of the current test model. Kim et al. [21] performed direct numerical simulations
in order to examine the stability and mechanism of ALDR for different air injection rates
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and investigated the stability of the air layer theoretically by solving the Orr–Sommerfeld
equations in both phases in order to find the stabilizing parameters and stability conditions
for ALDR. Zhao et al. [22] investigated the differences between MBDR and ALDR by using
the Eulerian—Eulerian two-fluid model and the volume of fluid (VOF) model. It was
concluded that the Eulerian—Eulerian two-fluid model and the VOF model are suitable for
MBDR and ALDR, respectively. Kim et al. [23] investigated flow change of the horizontal
channel flow including large bubbles and presented the numerical procedure of how to
inject large bubbles into turbulent channel flow. Zhao et al. [24] investigated the ALDR
of an axisymmetric body in oscillatory motions. The results showed that the variation of
the drag reduction is related to the morphological change of the air layer, and the heave
motion is more likely to reduce the effects of the ALDR than the pitch motion.

ALDR can be realized on the strut surface by artificial ventilation. Furthermore, a
large amount of ventilation power is also needed. In the present study, an approach to drag
reduction by using natural air flow to form bubbly flows of the strut is explored for the
SWATH vessel. Based on the Venturi effect, the strut drag reduction structure is designed,
and a numerical analysis is carried out to study the variation law of the air inflow amount,
the air volume fraction in bubbly flows as well as the strut drag reduction rate with the
sailing speed.

2. Description of the Physical Model

The Venturi effect is defined as the flow through the cross-section of the passage,
where the flow velocity increases continuously. The flow velocity is inversely proportional
to the passage cross-section. Moreover, Bernoulli’s law indicates that the increment in
the flow velocity is accompanied by a decrease in the fluid pressure. Therefore, when
the fluid flows through a nozzle with an expanding cross-section, the pressure of the
trailing edge is lower than that of the incoming flow. Figure 1 displays the process of the
strut’s automatic air intake. In Figure 1, the strut of the SWATH vessel is a longitudinal
symmetrical structure. An intake duct is designed on the strut. The opening at one end of
the intake duct is connected to the surrounding atmosphere, while that at the other end is
below the waterline. During the vehicle sailing, since the pressure at the opening below
the waterline is lower than the external atmospheric pressure, the automatic air intake can
be realized based on the Venturi effect. The implementation of Venturi effect in the design
scheme can be theoretically verified in the following.

Figure 2 shows the planform of the strut’s automatic air intake. As can be seen from
Figure 2, the bubbly flows form on the strut surface in the state of the strut’s automatic air
intake when the vehicle is moving at high speed. Consider the portion from the leading
edge to the air outlet of the strut as the control body, as shown in Figure 3. In the control
body of Figure 3, water flows through the control plane ∑1 and the control plane ∑2. The
Bernoulli equation is established as follows:

Z1 +
p1

ρg
+

v2
1

2g
= Z2 +

p2

ρg
+

v2
2

2g
(1)

where p1 and p2 are the pressure of the control plane ∑1 and the control plane ∑2, re-
spectively; Z1 and Z2 are the depth of the control plane ∑1 and the control plane ∑2,
respectively; v1 and v2 are the velocity of the control plane ∑1 and the control plane ∑2,
respectively; ρ is the density of water and g is acceleration of gravity.

Considering the equal depths of control planes ∑1 and ∑2 and the continuity of the
fluid, it can be obtained that {

Z1 = Z2
v1 A∑1

= v2 A∑2
.

(2)

where A∑1
and A∑2

are the area of the control plane ∑1 and the control plane ∑2, respectively.
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Substituting Equation (2) into Equation (1), it can be obtained that

p2 = p1 +
ρv2

1
2

[
1− (

A∑1

A∑2

)
2
]
< p1 (3)
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According to Equation (3), the pressure at the expansion control plane ∑2 is lower
than that at the control plane ∑1 of the incoming flow. In the design of this paper, the end
of the control plane ∑2 is connected with the external atmosphere through an intake duct.
When the vehicle reaches a certain speed, once the pressure p2 of the control plane ∑2 is
lower than atmospheric pressure, automatic air intake can be realized.

Because of the longitudinal symmetry of the SWATH vessel’s struts, the bubbly flows
that form on the surface of the struts are also symmetrical during navigation. Adopting a
two-dimensional single-chip connection strut model provides a better understanding as
well as simpler analytical and numerical solutions for studying ALDR of the struts.

Figure 4 shows the layout of the strut in the proposed model. As can be seen from
Figure 4, the proposed model consists of the strut and the submerged vehicle. A groove
is designed in the underwater part of the rear side of the leading edge of the strut. The
process of the strut’s automatic air intake is shown in Figure 1. When the vehicle moves, a
low-pressure zone appears in the section with the groove, and the air outlet of the intake
duct is placed in this low-pressure zone. The air inlet of the intake duct is designed on the
top of the strut and connected to the external atmosphere. In this case, due to the Venturi
effect, the external air is blended with the incoming flow through the air outlet of the intake
duct. Moreover, the resultant air–water mixture propagates backwards along the diffusion
surface, covering the underwater surface of the strut and having the effect of drag reduction
by bubbly flows.
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The structural dimensions of the proposed model are L = 2320 mm, L1 = 1000 mm,
L2 = 90 mm, L3 = 300 mm, H2 = 290 mm, H = 140 mm, H3 = 120 mm, D = 120 mm and
W2 = 10 mm.

In order to evaluate the drag reduction effect of the proposed model, a control model
is designed for comparison. The appearance and the dimension of the control model are
consistent with those of the proposed model. The only difference between these two models
is that the intake duct and the diffusion surface are absent in the control model so that the
leading edge is smoothly joined to the side surface.

3. Numerical Model
3.1. Basic Governing Equation

Both water and air phases are treated as incompressible fluids, and the continuity of
stress is implemented at the interface. According to the homogenous equalized multi-phase
theory, the continuity equation and the momentum conservation equation of the mixed
media can be written as follows [25]:

∂ρm

∂t
+

∂

∂xi
(ρmui) = 0. (4)

∂

∂t
(ρmuj) +

∂

∂xi
(ρmuiuj) = −

∂p
∂xj

+ ρmg +
∂

∂xi

[
(µm + µt)

(
∂ui
∂xj

+
∂uj

∂xi

)]
(5)
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where t is time; p is pressure; g is acceleration of gravity; ui is the velocity component and
ρm and µm are the density and the dynamic viscosity of the mixed media, respectively. They
can be obtained by weighted averaging the volume components as follows:

ρm = αlρl + αgρg, µm = αlµl + αgµg (6)

where µt is the dynamic viscosity of turbulent flow, ρl is the liquid density, ρg is the gas
density, αl is the liquid fraction, αg is the gas volume fraction, µl is the liquid dynamic
viscosity and µg is the gas dynamic viscosity.

The volume components of various phases should satisfy:

αl + αg = 1 (7)

In this study, numerical simulation is performed on both the bubbly flows covering
the surface of struts and the wave-making when the strut of the vehicle passes through
the water surface. While the VOF model [26] is suitable for solving the motion rules of the
multiphase intersection interface, when the air flow ratio is high, it is suitable for ALDR [22].
Therefore, the VOF model is selected for conducting numerical simulation on the change
observed in the bubbly flows’ formation.

In the VOF model, the method of tracing the inter-phase boundary is achieved by
solving the volume fraction continuity equation. As for the qth phase, the volume fraction
equation is [26]:

∂αq
∂t

+
∂

∂xi
(αqui) = 0. (8)

where the subscript q = l, g denotes the liquid phase and the gas phase, respectively.
In addition, due to the speed (≤14 m/s) of the proposed model in the study, although

there is local low pressure in the outlet area of the air intake duct, the pressure is not enough
to vaporize water, so the natural cavitation phenomenon is ignored.

3.2. Turbulence Model

It should be emphasized that for high air flow rate, a stable air layer is formed on the
solid surface, whereas, in the case of low air flow rate, the air layer breaks up and ALDR is
not achieved [27]. Due to the sailing speed (≥5 m/s) of the proposed model in this study
during the automatic air intake of the strut, the pressure difference between the air outlet
and the air inlet of the intake duct is enough to ensure high air flow rate, so the air volume
fraction of the formed bubbly flows is above 60%. Therefore, it can be considered that drag
reduction by bubbly flows adopted in this study conforms to the ALDR model.

In handling turbulent bubbly flows, the SST k−ω model developed by Menter [28] is
employed in the present study. The SST k−ω model is the combination of the k− ε and
k−ω models, which eliminates errors arising from the empirical wall function and thus
provides high simulation precision for the ALDR model [22].

The turbulent kinetic energy and the specific dissipation rate can be calculated by [28]:

∂(ρk)
∂t

+
∂

∂xj
(ρkuj) = τij

∂ui
∂xj
− β∗ρkω +

∂

∂xj

[(
µ +

µt

σk3

)
∂k
∂xj

]
(9)

∂(ρω)

∂t
+

∂(ρωuj)

∂xj
=

ω

k
(α3τij

∂ui
∂xj

)− β3ρω2 +
∂

∂xj

[(
µ +

µt
σω3

)
∂ω

∂xj

]
+ 2(1− F1)

ρ

σω2 ω

∂k
∂xj

∂ω

∂xj
(10)

τij = µt(2sij −
2
3

∂uk
∂xk

δij)−
2
3

ρkδij. (11)

sij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
). (12)
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where the model parameters such as α3, β3, σk3 and σω3 are the linear combinations of the
corresponding coefficients in k−ω and the modified k− ε turbulence model as follows:

ψ = F1ψkω + (1− F1)ψkε, α3 = F1α1 + (1− F1)α2. (13)

k−ω: α1 = 5/9, β1 = 3/40, σk1 = 2, σω1 = 2, β∗ = 9/100 (14)

k− ε: α2 = 0.44, β2 = 0.0828, σk2 = 1, σω2 = 1/0.856, Cµ = 0.09 (15)

µt is the vortex viscosity, which can be described as:

µt = ρ
k

max(ω, SF2)
(16)

where S is the invariant measure of the strain rate and the values of the above coefficients
come from [29]: 




F1 = tanh(Γ4)

Γ = min(max(
√

k
β∗ωy ; 500ν

ωy2 );
4ρσω2k
CDkωy2 )

CDkω = max
(

2ρσω2
1
ω

∂k
∂xj

∂ω
∂xj , 10−20

)

F2 = tanh(Γ2
2)

Γ2 = max( 2
√

k
β∗ωy , 500v

ωy2 )

(17)

where y is the distance to the nearest wall.

3.3. Computational Domain and Boundary Conditions

The study uses STAR-CCM+, a commercial computational fluid dynamics (CFD)
software. The computing domain and boundary conditions are shown in Figure 5. Figure 5a
displays the computational domain and the related grid division. The cross-sectional area
is 50D × 21D and the length is 6 L. The inlet and outlet of the computational domain are
defined as the velocity inlet and pressure outlet, respectively. The velocity inlet is 1.2 L
away from the head of the vehicle, and the pressure outlet is located 3.8 L away from the
tail of the vehicle. Parameter settings of the solver are shown in Table 1.

As part of the vehicle’s strut is above the water surface, the influence of the water
surface cannot be ignored. An appropriate two-phase flow region is created in STAR-CCM+
based on the VOF model. The upper and lower halves of the velocity inlet are air and water,
respectively. The inlet pressure and the outlet pressure vary in accordance with the water
depth variation rule p = ρl gh. A no-slip wall surface boundary condition is adopted for the
wall of the vehicle. The grids on the wall surface of the vehicle are refined in Figure 5b, and
mesh refinement is applied along the water-depth direction at the air–water multi-phase
flow interface, as shown in Figure 5c.

3.4. Evaluation of Mesh Independence

The grid quality has an important influence on the calculation results, and the results
will be more accurate if the grids are refined. In this study, three different sets of meshes
with different sizes (namely, fine, moderate and coarse meshes) are generated on the surface
of the control model for further mesh convergence analysis. By varying the basic mesh size,
the time step is calculated, and the Courant number remains unchanged. Table 2 lists the
detailed mesh parameters.

Under different grid conditions, the strut drag of the control model is calculated at the
sailing speed of 8 m/s. Table 3 lists simulation results under different mesh conditions.

The mesh independence analysis results can be calculated [2] and listed in Table 4.
It can thus be concluded that when mesh S1 is adopted, 0 < Rk < 1 and the monotone
convergence condition is satisfied. The error of the strut drag of the control model is
3.3%. According to mesh independence analysis results, fine mesh (S1) is used in the
numerical simulation.
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Table 1. Parameter settings of the solver.

Parameter Inlet Velocity
(m/s)

Outlet
Pressure (Pa)

Turbulence
Intensity

Time Step
(s)

Basic
Pressure (Pa)

Setting value 5–14 Hydrostatic
Pressure 0.01 0.0004 101,325

Table 2. Mesh parameters.

Mesh
Generation

Meshing Size
(mm)

Grid Number
(×104)

Time Step
(s)

Courant
Number

Fine mesh (S1 ) 3.2 140 0.0004 1
Moderate mesh (S2 ) 4.8 90 0.0006 1
Coarse mesh (S3 ) 6.4 50 0.0008 1

Table 3. Drag simulation results for the control model.

Mesh Conditions S1 S2 S3

Strut Drag (N) 43.56 44.98 51.02
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Table 4. Mesh independence analysis results.

Analysis Parameter Rk Ck δ∗k1 (%) Uk (%) UkC (%) SC

Convergence 0.235 3.247 3.3% 5.5% 2.3% 44.98

4. Simulation Results and Analysis
4.1. Analysis of the Air Inflow Amount of the Strut Intake Duct

Since the sailing speed of the SWATH vessel in actual conditions is usually below
80 kn and considering the scale ratio of the model to be 1:9, the speed of the proposed
model is set to be in the range of 1–14 m/s in the working conditions. Table 5 presents the
air inflow amount of the outlet of the intake duct for each working condition.

Table 5. Air inflow amount for different sailing speeds.

Sailing Speed (m/s) 1–4 5 6 7 8 9 10 12 14

Air Inflow Amount (kg/h) 0 5.58 9.25 12.47 14.51 16.60 19.91 29.52 38.66

It is observed from Table 5 that when the sailing speed is 1–4 m/s the air inflow
amount is 0. The reason for this is that at a lower sailing speed, the pressure difference
between the outlet and the inlet of the duct induced by the Venturi effect is insufficient
to overcome the hydrostatic pressure at the outlet as well as the pressure loss caused by
the frictional drag when the air flows through the duct, with no air flowing out. However,
when the sailing speed is above 4 m/s, the pressure difference between the outlet and the
inlet of the duct can overcome the above-mentioned pressure loss. Therefore, the air starts
flowing through the outlet of the duct. It should be indicated that higher sailing speed
results in greater pressure difference and consequently more air inflow. Figure 6 illustrates
the correlation between the air inflow amount and sailing speeds according to the data
in Table 5. As can be seen from Figure 6, it is observed that the air inflow amount of the
intake duct has a positive linear correlation with sailing speeds. Therefore, by adjusting the
dimensions of the leading edge of the strut and appropriately designing the width of the
intake duct, the optimal intake amount is obtained to realize the maximization of the strut
drag reduction.
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4.2. Analysis for the Volume Content of Air on the Surface of the Strut

As the sailing speed changes, the varying intake amount of the intake duct of the strut
leads to a variable air volume fraction in the bubbly flows covering the underwater strut
surface. The air volume fraction cloud diagram of the bubbly flows on the surface of the
strut of the proposed model at different sailing speeds is shown in Figure 7.
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It is found from Figure 7a–h that the external air is inhaled by the intake duct and
blended with the incoming flow, and the resultant bubbly flows cover the underwater strut
surface. The air volume fraction of the formed bubbly flows in the front of the strut is
relatively higher. However, around the medium and the rear of the strut, the air volume
fraction gradually declines as the inhaled air is persistently blended with water. As the
sailing speed increases, the air amount of the intake duct suction increases and the air
volume fraction of the formed bubbly flows increases gradually. When the sailing speed
reaches 10 m/s, the air volume fraction of the bubbly flows around the front of the strut in
Figure 7f is close to 1. As the speed increases further, the air volume fraction of the bubbly
flows on the entire strut surface in Figure 7h is close to 1. Then, the covering effect on the
strut is at its strongest.
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Meanwhile, Figure 7a–h show that as the sailing speed increases, the wave-making
is extended. It should be indicated that the part between the red part and the water-
line in Figure 7 is the wave-making. It is worth noting that at a lower sailing speed, the
wave-making is small. In Figure 7a, the wave-making above the waterline has a relatively
considerable distance from the top of the strut. Therefore, the wet area of the strut above
the waterline is relatively limited. As the sailing speed increases, the wave-making continu-
ously increases. When the sailing speed reaches 14 m/s, the wave-making is considerable,
and the wave-making above the waterline in Figure 7h almost reaches the top of the strut
so that the part of the strut above the waterline is mostly wet.

4.3. Analysis for the Strut Drag

In this section, in order to evaluate the effect of drag reduction of the proposed model,
comparative analysis is conducted on strut drags of the control model and the proposed
model at different sailing speeds. Table 6 presents the strut drags at different sailing speeds.

Table 6. Strut drags at different sailing speeds.

Sailing Speed (m/s) Model Type Strut Drag (N) Drag Reduction Rate (%)

1
Control model 0.60 −20.00Proposed model 0.72

2
Control model 3.35 −9.25Proposed model 3.66

3
Control model 6.79 −7.51Proposed model 7.30

4
Control model 11.67 −2.66Proposed model 11.98

5
Control model 17.36

17.22Proposed model 14.37

6
Control model 24.16

22.10Proposed model 18.82

7
Control model 33.03

25.95Proposed model 24.46

8
Control model 43.56

28.21Proposed model 31.27

9
Control model 56.30

28.29Proposed model 40.37

10
Control model 70.47

28.03Proposed model 50.72

12
Control model 104.79

26.95Proposed model 76.55

14
Control model 144.55

25.94Proposed model 107.05

It is observed from Table 4 that when the sailing speed is 1–4 m/s, the strut structure
of the proposed model does not only reduce the drag but also enhances the drag. This
is because, on one hand, the intake duct does not inhale air and the bubbly flows are not
formed on the strut surface. On the other hand, the design of the duct and diffusion surface
in the proposed model extend the wet surface of the strut in comparison to the appearance
of the control model so that the frictional drag is increased. When the sailing speed is above
4 m/s, the intake duct initiates inhaling air and the bubbly flows are formed on the surface
of the strut. The existence of the bubbly flows leads to reduction in the frictional drag.
Moreover, as the speed increases, the air content in the bubbly flows and the drag reduction
rate gradually increases. When the speed is 9 m/s, the drag reduction rate reaches its
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maximum at 28.29%. Figure 8 shows the variation of the drag reduction rate of the strut at
different sailing speeds according to the data in Table 6.
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It is observed from Figure 8 that before the sailing speed reaches 9 m/s, the drag
reduction rate tends to rise linearly. However, it gradually declines when the speed reaches
9 m/s. This is because, as can be seen in Figure 5, although the increment of the air content
in the bubbly flows causes the frictional drag of the strut to gradually decline as the sailing
speed increases, the drag of the wave-making of the strut gradually rises. When the sailing
speed is below 8 m/s, the drag reduced by formation of the bubbly flows is greater than
the drag caused by the wave-making, and the drag reduction rate of the strut gradually
grows. When the sailing speed reaches 8–9 m/s, the drag reduced by the bubbly flows
is balanced with the drag caused by the wave-making, so the drag reduction rate of the
strut remains constant. When the sailing speed is greater than 9 m/s, the drag reduced by
the bubbly flows is lower than the drag caused by the wave-making. Therefore, the drag
reduction rate of the strut gradually declines as the speed increases. It should be indicated
that the strut drag reduction structure should be designed according to the range of the
SWATH vessel speeds to achieve the best drag reduction effect.

5. Conclusions

A novel drag reduction approach to an automatic air intake strut structure is proposed
in the present study. Based on the Venturi effect, a drag reduction strut structure for the
SWATH vessel is designed, and a numerical study is carried out to investigate the variation
of the air inflow amount, the air volume fraction in the bubbly flows and the drag reduction
rate of the strut for different sailing speeds. Through analysis, the following conclusions
are drawn:

(1) As the sailing speed increases, the external air flows through the air outlet of the
intake duct and it is blended with the incoming flow, forming bubbly flows on the
surface of the strut and reducing the frictional drag of the strut.

(2) The air volume content of the bubbly flows on the surface of the strut increases as
the sailing speed increases, which leads to the continuous increment of the drag
reduction rate of the strut. The maximum drag reduction rate can reach about 30%,
demonstrating a favorable drag reduction effect.

(3) As the sailing speed increases, the drag of the wave-making of the strut gradually in-
creases. When a certain speed range is reached, the drag reduces due to the formation
of bubbly flows being gradually balanced with the drag caused by the wave-making,
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and the drag reduction rate does not increase anymore. Further increment of the
speed results in a gradual decrease in the drag reduction rate.

Compared with the existing drag reduction approaches by injecting air, the proposed
scheme is based on the Venturi effect with the utilization of the pressure difference between
the air outlet and the air inlet of the intake duct to inhale air, not requiring artificial
ventilation, which saves considerable energy and demonstrates a favorable drag reduction
effect. In the future, we will continue to study the influence of the immersion depth and
the shape of the automatic air intake strut structure on the air inflow amount and the drag
reduction rate of the strut, and we will further design the test model of the drag reduction
strut to carry out experimental verification. In a word, the proposed the automatic air
intake drag reduction strut has good application prospects for achieving the targets of
ship energy conservation and emission reduction. The approach of drag reduction by
bubbly flows proposed in the present study provides a useful reference for the study of
drag reduction of similar types of ships.
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