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Abstract: As an effective multicast application mechanism, the application layer multicast (ALM)
determines the path of data transmission through a routing tree. In practical applications, multiple
multicast sessions often occur simultaneously; however, few studies have considered this situation.
A feasible solution is to sequentially optimize each co-existing ALM routing tree. However, this
approach can lead to node congestion, and, even if the node out-degree reservation strategy is
adopted, an optimal solution may not be obtained. In this study, to solve the problem of routing
tree construction for multiple co-existing application layer multicast sessions, an optimization model
that minimizes the overall delay and instability is constructed, and a one-off optimization method
based on the discrete artificial fish swarm algorithm (DAFSA) is proposed. First, Steiner node sets
corresponding to the multicast sessions are selected. Then, the routing trees for each multicast session
are obtained through the improved spanning tree algorithm based on the complete graph composed
of Steiner node sets. The experimental results show that the proposed method can simultaneously
obtain multiple co-existing ALM routing trees with a low total delay and low instability. Even if
the input is a single multicast session, it can lead to ALM routing trees with a lower delay and less
instability than other algorithms, and the introduction of a penalty function can effectively avoid the
problem of excessive replication and forwarding loads on some end-hosts. In addition, the proposed
algorithm is insensitive to parameter changes and exhibits good stability and convergence properties
for networks of different sizes.

Keywords: multiple co-existing ALM routing trees; node congestion; one-off optimization; DAFSA

1. Introduction

With the increasing number of Internet users and the constantly updating and evolving
forms of Internet, the proportion of real-time multimedia transmission application scenarios
has increased significantly, leading to higher requirements for information transmission.
Under the current application requirements, IP multicast technology has developed rapidly.
As a one-to-many communication mode, IP multicast technology can effectively save
network bandwidth and reduce the network load. It is suitable for applications that are
centralized in time and distributed in space, such as video conferencing, streaming media,
and so on. However, due to the charging mechanisms and technical limitations of Internet
service providers (ISPs), the popularity of IP multicasting [1,2] on the Internet is restricted.
In contrast, the application layer multicast (ALM) [3] migrates multicast data transmission
from the IP layer to the application layer; data are replicated and forwarded through
end-hosts. Furthermore, such approaches have the advantages of being easy to deploy
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and economical, as communication between the underlying layers of ALM sessions is still
based on the very widespread unicast technology.

The key in application layer multicast communication is the construction of an ALM
routing tree, which is mainly used to determine the tree structure in which data are deliv-
ered from the sender to all the receivers in the group. ALM routing trees are composed
of user nodes, which may exit or fail. This uncontrollability can lead to instability in the
ALM routing tree, thus affecting the ability of users to receive multicast data [4]. Many
researchers have attempted to reduce the instability caused by user nodes’ behavior by opti-
mizing the topology of ALM routing trees [5]. End-hosts with high stability are more easily
used as core nodes to transmit the data based on the behavior and attributes of the user
nodes. To optimize the ALM routing tree topology, Cao et al. have established an instan-
taneous stability model for the application layer multicast [6] and successfully addressed
the bounded-delay and high-stability model challenges [7]. In application layer multicast
optimization, the delay is also an important optimization objective. Huo et al. proposed an
algorithm based on the stability probability and contribution link of nodes (CL-S) [8]. This
approach incorporates considerations for node out-degree and edge delay. Mercan et al.
proposed the virtual direction multicast (VDM) [9] and noted that, as long as the virtual
distance is based on the delay and the stability, the VDM can construct a stable ALM routing
tree with a low transmission delay. Li et al. have noted that in the coverage network, apart
from the link delay, the replication delay of user nodes in processing messages should also
be considered [10]. Liao et al. have proposed an ALM model based on the node potential
(NP) and a topological index (TI), which is suitable for applications in large-scale, real-time
multimedia environments [11]. Li et al. have proposed a class of algorithms that create a
greedy multicast tree based on the ratio of fan-out to delay (RFD) and the probability of
terminal stability to obtain a high performance in multicast sessions [12]. This problem
belongs to the class of combinatorial optimization problems, which is characterized by a
high degree of complexity and computational difficulty. However, intelligent algorithms
have some significant advantages in this regard. Some scholars have utilized neural net-
works to solve similar problems [13,14]. Some scholars have used evolutionary algorithms
to solve it. For example, Pan et al. have designed a genetic algorithm to minimize the
end-to-end delay under the out-degree constraint [15]. In addition to the delay, Ma et al.
have considered the average path stretch and used the artificial fish swarm algorithm to
solve the problem [16]. Based on previous research, Liu et al. have further considered the
instability index of an ALM routing tree and designed an encoding-free non-dominated
sorting genetic algorithm to simultaneously optimize the total delay and instability of the
ALM routing tree [5].

The above algorithms mainly optimize the delay and stability of ALM routing trees;
however, several problems remain to be solved. The existing research has been optimized
under a single conversation scenario. However, multiple multicast sessions existing si-
multaneously is fairly common. At present, studies on the simultaneous optimization of
multiple co-existing ALM routing trees are rare. One feasible method for achieving this is
to use a single ALM routing tree construction method multiple times; that is, the algorithms
are used sequentially to construct each ALM routing tree. It is worth noting that, to improve
the stability of data transmission, when constructing the ALM routing tree, the user nodes
with a higher stability are preferentially selected as the core nodes for data forwarding.
However, if these user nodes appear in multiple co-existing ALM routing trees at the same
time, these user nodes’ out-degree (the number of times end-hosts copy and forward the
data) significantly increases. Due to the limitations in the ability of end-hosts to copy
and forward data, when the out-degree of user nodes is too large, node congestion will
occur. This is especially relevant for forwarding nodes that are close to the source and may
experience massive stress issues [17], further affecting the stability of the ALM routing tree.
Therefore, when multiple ALM routing trees are optimized at the same time, the out-degree
of the user nodes in each ALM routing tree needs to be reasonably distributed to ensure
that the total out-degree of each end-host does not exceed their capability.
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This study aims to obtain multiple co-existing ALM routing trees based on multiple
co-existing multicast sessions while striking a balance between minimizing the total delay
and instability of these ALM routing trees. We introduce the node out-degree as a constraint
to prevent the instability of multicast sessions caused by node congestion. First, a low
delay and low instability model of multiple co-existing ALM routing trees is established.
To achieve the optimization goal, a one-off solution method is proposed in this study. In
this method, the encoding of the DAFSA represents the selection scheme of Steiner node
sets for multiple multicast sessions, and then multiple ALM routing trees are obtained
from the complete graph corresponding to the multiple Steiner node sets through the use
of the spanning tree algorithm. The fitness function in the DAFSA is used to evaluate
the generated ALM routing tree, which is iterated continuously to find the optimal ALM
routing tree. Node congestion analysis is performed on the designed algorithm to verify
the effectiveness of the algorithm in dealing with the node out-degree constraints, and the
performance of the algorithm is verified through detailed simulation experiments. Due to
the large difference in the importance of the two objective functions—namely, the delay
and the instability—a weight selection method is used to assist in decision making.

The rest of this paper is organized as follows. In Section 2, the constructed application
layer multicast stability model is introduced. In Section 3, the idea to solve the model of
the problem is introduced, which is divided into two parts: selecting the Steiner point sets
and improving the spanning tree algorithm. In Section 4, the design of the DAFSA and
the improvement of Prim’s spanning tree algorithm are described in detail. In Section 5,
exhaustive simulation experiments are shown, and the obtained results are analyzed.
In Section 6, the experimental results and the design approach of this paper are discussed.
In Section 7, a summary is given.

2. Optimization Model for Multiple Co-Existing ALM Routing Trees

The application layer network can be expressed as G = (V, E), consisting of a vertex set
V and an edge set E. v ∈ V represents a user node and e ∈ E represents the communication
channel between two user nodes. For a communication channel e, the transmission delay is
denoted as d(e), and the delay caused by message processing in the user node is denoted
as d(v). The user node v has a probability p(v) of leaving from graph G. For a user node
v, the out-degree is denoted as Odv (which cannot exceed Dv), and the number of its
descendants is denoted as Ndv. In this paper, we mainly optimize the delay and instability
of ALM routing trees. The routing tree for a single multicast session, including one source
and multiple destinations, can be denoted as Tk =

{
VTk , ETk

}
. The optimization model for

multiple co-existing ALM routing trees needs to be based on K groups as the source and
M destinations, generating K ALM routing trees, which are denoted as T1, T2, · · · Tk, · · · TK.
The out-degree of user node vTk

i in ALM routing tree Tk is denoted as Od
v

Tk
i

.

2.1. Delay

Delay refers to the time required for data to travel from a source node to a destination
node. In an application layer multicast session, the intermediate nodes that forward data
are the end-hosts. The equipment of the end-hosts has a limited forwarding capability,
so the processing delay cannot be ignored. Therefore, the delay in this paper includes
two parts: the transmission delay and the processing delay in end-hosts. The delay of the
ALM routing tree Tk is denoted as f1(Tk), and the total delay is calculated as shown in
Equation (1).

min
K

∑
k=1

f1(Tk) =
K

∑
k=1


 ∑

e
Tk
i ∈ETk

d(eTk
i ) + ∑

v
Tk
i ∈VTk

d(vTk
i )Od

v
Tk
i


 (1)
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2.2. Instability

Instability mainly focuses on the exit and failure of user nodes. Node exiting means
that a user node voluntarily leaves the application layer multicast session, while user
node failure means that a user node leaves the application layer multicast session without
notifying any other user nodes. In the ALM routing tree, the exit and failure behaviors of
non-leaf nodes cause their descendant nodes to lose connectivity with the root node of the
multicast tree.

2.2.1. Reducing the Impact of User Nodes’ Exiting Behavior

User nodes exiting is a spontaneous behavior. As the distribution of the online times
for the end-hosts in multicast sessions shows a heavy-tailed phenomenon [7,18], this study
pays more attention to the probability of user nodes exiting and uses the average number
of descendant user nodes affected by the exit of the user nodes to measure the instability
of ALM routing trees. The instability of ALM routing tree Tk is denoted as f2(Tk), and the
total instability is calculated as shown in Equation (2).

min
K

∑
k=1

f2(Tk) =
K

∑
k=1


 1

1 + NdsourceTk
∑

v
Tk
i ∈VTk

p(vTk
i )Nd

v
Tk
i


 (2)

2.2.2. Reducing the Risk of User Nodes’ Failure

User node failure is a passive behavior, which usually occurs as user nodes lose the ability
to forward data due to experiencing a heavy load. Therefore, in this study, the out-degree of a
node is limited to reduce the load on the end-host. Equation (3) is the constraint.

s.t.
K

∑
k=1

Od
v

Tk
i
≤ Dv (3)

In this study, the delay and instability are considered as the optimization objectives.
However, these two objective functions may be in conflict. To find an appropriate trade-off in
the multi-objective problem, weights for the objective functions are introduced to convert the
multi-objective problem into a single-objective problem. Equation (4) is the specific formula.

min w1

K

∑
k=1

f1(Tk) + w2

K

∑
k=1

f2(Tk) (4)

3. One-Off Optimization

The problem of ALM routing tree construction is essentially the Steiner tree problem in
graph theory [19,20]. This problem requires finding the optimal tree that contains specified
terminal nodes. However, solving this problem is very complicated: it has been proven
to be NP-complete [21], which means that there is no effective algorithm for solving it in
polynomial time, and the solution space can be searched only with methods of exponential
or even factorial complexity.

In the construction of multiple co-existing ALM routing trees, multiple co-existing
application layer multicast sessions correspond to multiple Steiner trees. This further
escalates the difficulty of solving the problem, as different multicast sessions may share
nodes, and the out-degree of a node needs to be guaranteed not to exceed the performance
limit of the node.

Although the co-existing Steiner tree optimization problem is difficult to solve, the span-
ning tree problem is relatively simple, which involves finding a single tree that contains
all the vertices. This has been studied in depth and includes the minimum spanning tree
problem [22,23], the degree-constrained minimum spanning tree problem [24], the multi-
objective spanning tree problem [25], and so on.

4
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In addition, it is very difficult to rationally allocate the out-degree of nodes between
multiple co-existing ALM routing trees, which often results in an inability to obtain a
feasible solution. However, the good adaptability and global search ability of the DAFSA
enable it to perform well when dealing with problems involving complex constraints [26].
At present, the processing methods for infeasible solutions include the use of penalty
functions, repair methods, and so on.

In this study, the problem is decomposed into the following two parts.

3.1. Evolution: Using the DAFSA, Based on the Actual Source Nodes and the Destination Nodes,
an Appropriate Set of Steiner Nodes Is Selected through a Population Iteration

The key to solving the considered problem is selecting the other user nodes that are
not the source and the destinations (Steiner nodes) instead of user nodes. These nodes
serve as the core nodes that connect the destination nodes. The positions and numbers of
these nodes usually vary, according to the nature of the problem and the optimization goal.
A trade-off needs to be struck between low node instability and a low delay between the
source and the destinations while also considering the out-degree constraints of the user
nodes to rationally distribute the Steiner nodes in each tree. These nodes, the source nodes,
and the destination nodes are combined into a complete subgraph.

The discrete artificial fish swarm algorithm is a swarm intelligence algorithm. The basic
idea of this algorithm is to simulate the behavior of individual fish in a fish swarm, such
that the whole swarm can cooperatively find an optimal solution in the solution space.
Each artificial fish represents a candidate solution in the solution space, and they exchange
information and adjust their positions to find an optimal solution. Owing to a number of
salient properties, which include flexibility, a fast convergence, and insensitivity to the initial
parameter settings, the AFSA family has emerged as an effective swarm intelligence (SI)
methodology that has been widely applied to solving real-world optimization problems [27].
One of its main advantages is the ability to perform a global search in the search space and
avoid becoming trapped in local optimal solutions.

The algorithm contains a series of behavior rules, such as foraging, following, ran-
domly moving, and so on. These rules simulate the behavior of individual artificial fish
when searching for food and avoiding danger:

(1) Randomly moving behavior: The individual randomly moves in various directions
within its step limit.

(2) Foraging behavior: The individual randomly explores a new position within its
visual limit. If the new position has a better fitness, it moves toward this position within
its step limit; otherwise, if a position with a better fitness cannot be found within a limited
number of try_number times, it will move randomly.

(3) Following behavior: The individual perceives the optimal individual within its
visual limit and moves toward that individual if the surrounding area is not crowded;
otherwise, the individual performs foraging.

In this study, the artificial fish school behavior strategy designed by Ma et al. [16] was
used. First, whether the artificial fish (AF) are crowded or not is determined. If not, the fish
perform the following behavior and the algorithm ends. Otherwise, the individual enters
into foraging behavior.

3.2. Evaluation: Based on the Spanning Tree Algorithm, the Complete Subgraph Is Converted into
an ALM Routing Tree, and the Fitness Value Is Calculated

For this part, an ALM routing tree must be constructed based on the obtained complete
subgraph; that is, all of the terminal nodes are connected using Steiner nodes, ensuring
that the objective function is optimized. This problem is similar to the minimum spanning
tree problem.

Prim’s algorithm [22] has the advantages of simplicity and efficiency in processing
the minimum spanning tree problem, the basic idea of which is to start from an initial
node and gradually select the shortest edge connected to the current spanning tree until
all the nodes are covered. According to the objective function defined above, this study

5
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improves Prim’s algorithm to heuristically construct an ALM routing tree with a low delay
and better stability.

4. One-Off Optimization Method for Multiple Co-Existing Application Layer
Multicast Trees

In this study, the DAFSA is used as the core method for the optimization of multiple
co-existing ALM routing trees. First, based on the input multicast session, multiple sets of
suitable Steiner node sets are selected to form a complete subgraph, as shown in Figure 1.
Then, multiple subgraphs are converted into ALM routing trees using the improved span-
ning tree algorithm. Subsequently, evaluation and updating of the bulletin board (used to
store the set of optimal routing trees) was performed. The optimal ALM routing trees were
ultimately obtained through continuous iteration. It is worth noting that the improved
spanning tree algorithm is a deterministic algorithm, and the selected Steiner node set
directly affects the fitness function used to evaluate the ALM routing tree.

Figure 1. Optimization framework for multiple co-existing ALM routing trees.

4.1. Application of DAFSA in Multiple Co-Existing ALM Routing Trees
4.1.1. Encoding

The genotypes of the artificial fish are represented using matrix coding, where each
row represents a Steiner node selection scheme for a multicast session, and this set of nodes

6
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forms a complete subgraph subGj. Equation (5) represents the code for artificial fish X
(AF-X).

X =




subG1
· · ·

subGj
· · ·

subGK



=




x1,1 · · · x1,i · · · x1,|V|
· · ·

xj,1 · · · xj,i · · · xj,|V|
· · ·

xK,1 · · · xK,i · · · xK,|V|




(5)

where each row has |V| elements and each element can only be 0 or 1. If the complete
subgraph subGj contains vertex i, then xj,i = 1; otherwise, xj,i = 0. All the elements in any
subGj corresponding to the source and destinations should always be 1, as all potential
complete subgraphs must contain the source and destinations.

4.1.2. Fitness Function

The fitness function is used to evaluate the quality of the artificial fish. To address the
artificial fish that do not satisfy the constraints, a penalty value is introduced into the fitness
function. The artificial fish that do not meet the constraints are eliminated in the iterative
process when the fitness function takes a large value. This strategy helps to emphasize the
importance of satisfying the constraint conditions and guides the algorithm to find suitable
solutions in the search space. The formula for the Fitness is as follows:

Fitness = w1

K

∑
k=1

f1(Tk) + w2

K

∑
k=1

f2(Tk) + p · ∑
vi∈V

Q(vi) (6)

Q(vi) =





∑K
k=1 Od

v
Tk
i
− Dv, ∑K

k=1 Od
v

Tk
i

> Dv

0, ∑K
k=1 Od

v
Tk
i

< Dv
(7)

where p in Equation (6) is the penalty factor and Q(vi) in Equation (7) represents the
number of out-degree of node vi that exceeds the degree constraint.

4.1.3. Behavior of Artificial Fish

The artificial fishes cooperatively search the solution space through the execution of
behaviors. Specifically, optimal behavior is realized through a change in spatial position.
As the solution space is discrete, the Hamming distance [28] is used to measure the distance
between two artificial fishes. In this study, the behaviors used in the DAFSA were designed
as follows:

(1) Randomly moving behavior

The encoding method used in this study is binary encoding. To implement this
behavior, we only need to randomly flip the elements that do not correspond to the source
and destinations used in the encoding matrix of AF-X, in the manner of xj,i = 1− xj,i.

(2) Foraging behavior

Suppose the current position of an AF is X. Then, the AF randomly moves to a new
position X

′
. If the foraging behavior is successful (i.e., Fitness(X

′
) < Fitness(X)), then the

AF will randomly select r(r ∈ [1, step]) different elements between X and X
′

in X to cover
the corresponding elements in X

′
; otherwise, the AF will perform random movement.

(3) Following behavior

Following (or tail-chasing) is a behavior that imitates other AFs, especially those that
perform well. Suppose that, within the visual range of AF-X, there are n AFs and Xp
is the solution with the optimal fitness. Assume that the Hamming distance between
X and Xp is equal to Nd, which means there are Nd elements in the encoding matrix of
X that differ from the corresponding ones in Xp. The fitness function is satisfied if and
only if Fitness(X) > Fitness(Xp) and n < N × δ, in which case the following behav-
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ior will be executed. The specific way in which this is executed is to randomly select
r(r ∈ [1, min(step, Nd)]) elements from the above Nd elements in Xp to cover the corre-
sponding elements in the AF, such that the distance between the two AFs will decrease and
the similarity will increase.

4.2. Improved Spanning Tree Algorithm

During the decoding of an individual artificial fish, a tree that connects all the nodes
needs to be obtained based on a complete graph. To make the constructed tree more
stable with less delay under the condition that the out-degree constraint of the user node is
satisfied, this study improves Prim’s algorithm by comprehensively considering the delay
and the instability, instead of using the edge weights, to weigh the order of joining in the
minimum spanning tree. We used the contributions of the delay and the instability (DIC),
calculated as follows:

DIC = min{w1(d(evi ) + d(vi)) + w2 · lvi · p(vi)} (8)

In Equation (8), lvi represents the corresponding depth when node vi joins the tree,
d(evi ) represents the corresponding edge delay after node vi is added to the tree, d(vi)
represents the replication delay of node vi, and p(vi) represents the probability of node vi
leaving a multicast session.

The node depth refers to the number of nodes that pass from the source node to a
given node. The greater the depth of a node, the more unstable the data transmission path
is, as the departure of any of the node’s ancestor nodes will cause it to receive no data.
Therefore, to increase the stability of the entire tree, the depth of each node should be kept
as small as possible.

When the delays of the end-hosts are the same, the preference is to choose the end-
hosts with a low leaving rate, as the nodes that are preferentially added to the tree are
more likely to serve as transit nodes for data forwarding. In this way, the overall stability
of the multicast tree can be increased. Similarly, when nodes have the same probability
of leaving, the node with the shortest delay is selected first, which can reduce the overall
delay. Smaller DIC nodes should be at the upper level of the multicast tree, in order to take
full advantage of their low delay and low instability, thus improving the two target values
of the ALM routing tree.

By borrowing ideas from Prim’s algorithm, a preliminary ALM routing tree can be
obtained that connects all the nodes in the complete graph. However, in the process of
generating the tree, the phenomenon of node redundancy may occur due to improper
selection of the Steiner node set; that is, non-destination nodes may appear at leaf nodes
and are only involved in receiving data, not in forwarding it. The data transmission
corresponding to this part has no practical significance and will only increase the delay and
instability. These redundant branches need to be pruned, in order to ensure that the leaf
nodes only contain the destination nodes of the session.
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The improved spanning tree algorithm based on Prim’s algorithm is constructed in
Algorithm 1.

Algorithm 1: DIC-based tree generation algorithm

Data: Complete subgraph subG(V, E)
Result: ALM routing tree
Initialize an empty tree T, add the source node to T ;
while |T| != |V| do

Generate alternative edges sets according to node in T;
Calculate DIC of nodes in T and sort the them;
Choose the DIC smallest node vi in T, add it and its corresponding edge evi to

T;
The available out-degree of node vi minus one;
Update the collection T, T;

Prune the tree T.

4.3. Algorithm Process

(1) The application layer network G = (V, E) is input, and the relevant sources and
destinations in K co-existing multicast sessions are specified;

(2) The algorithm-related parameters, such as the popsize, visual, step, try_number, δ, and
p are set;

(3) Individual artificial fish execute the behavior strategy and obtain multiple Steiner
node sets;

(4) The improved spanning tree algorithm is used to obtain the co-existing ALM routing
trees corresponding to the multiple Steiner node sets obtained for the AF;

(5) The fitness of the AF individuals are evaluated by calculating the delay and instability
of multiple co-existing ALM routing trees. The current best AF individual is compared
with those recorded on the bulletin board, and if its fitness is better, the bulletin is
updated;

(6) It is determined whether the algorithm termination condition has been met. If not,
steps (3)–(6) are repeated; otherwise, the ALM routing tree corresponding to the
multicast sessions is output.

5. Simulation Experiment Analysis

The DAFSA approach designed in this paper was written and tested in C++. The sim-
ulations were run on a computer (AMD Ryzen 7 5700U) with an 1.80 GHz Radeon GPU,
16.00 GB of RAM, and the Windows 7 (x64) operating system. The parameter settings
were as follows: popsize = 20, visual = 20, step = 6, trynumber = 100, δ = 0.5, p = 1,
iteration = 200, Dv = 5, w1 = 1, and w2 = 0.0001. These parameters are chosen experimen-
tally. The detailed discussion on parameter settings will be given in Sections 5.4 and 5.5.

Figure 2 shows the IP network diagram. The circles in the diagram represent the user
nodes, and the squares represent the router nodes. Each user node has two transmission
parameters: the node replication delay and the departure probability. The weights between
nodes represent the data transfer delays. Although the application layer multicast approach
uses user nodes to transmit data, the underlying layer was still propagated through a
routing node unicast approach. The edge delay between each pair of user nodes was
obtained using the Dijkstra shortest path algorithm.

The session results for the optimization of four co-existing multicast sessions, each
with one source node and eight destination nodes, are shown in Table 1, and the ALM
routing trees obtained using the proposed algorithm are shown in Figure 3. For each ALM
multicast tree corresponding to a multicast session, the out-degrees of all the nodes in
Figure 3 satisfied the constraint. The out-degrees of nodes 8, 30, 38, and 24 were all 5,
as the instability probabilities of nodes 8, 30, and 38 were very low (i.e., two orders of
magnitude lower than those of the other nodes). Therefore, when constructing the ALM
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routing tree, these three nodes were preferentially selected as the transfer nodes for data
transmission. The out-degree of node 24 was also 5, as the out-degrees of nodes 8, 30,
and 38 were allocated and because the data could only be forwarded through other nodes.
However, the other nodes had a high probability of instability and, thus, were not suitable
as transfer nodes. Therefore, the root node was directly used to transmit data to reduce the
depth of the entire tree, thereby reducing the instability of the ALM routing tree.

Table 2 lists the delay and instability of the ALM routing tree for the four multicast
sessions. As analyzed above, ALM trees a, b, and c used nodes 8, 30, and 38 as the transit
nodes, respectively, which effectively reduced the instability. However, to satisfy the node
out-degree constraint, the algorithm eventually selected some transit nodes (i.e., non-source
and non-destination Steiner nodes), resulting in an increase in the link delay. In contrast,
although ALM tree d (corresponding to multicast session 4) achieved a lower delay, it paid
a higher price with its instability, which further illustrates that the algorithm made a certain
trade-off between delay and stability.

Figure 2. IP network instance.

Table 1. Multicast session information.

Multicast Session Source Destination

1 8 2, 14, 22, 24, 26, 28, 29, 31
2 2 1, 29, 31, 32, 41, 37, 36, 42
3 14 2, 6, 21, 31, 33, 35, 36, 40
4 24 28, 29, 32, 34, 36, 39, 40, 41

10
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(a) ALM routing tree 1 (b) ALM routing tree 2

(c) ALM routing tree 3 ( d) ALM routing tree 4

Figure 3. Obtained ALM routing trees.

Table 2. ALM routing tree information.

Multicast Session Replication Delay (ms) Link Delay (ms) Instability Total Delay (ms)

1 121 832 0.010 953
2 141 659 0.124 800
3 201 586 0.153 787
4 124 578 0.326 702

Total 587 2655 0.614 3242

In fact, the routing tree obtained with the algorithm was based on the application layer,
and the actual data forwarding process used by the routing nodes to forward the data was
in the form of an IP unicast. Taking ALM tree b from session 2 as an example, the actual
data transmission process is shown in Figure 4. The transmission path between each pair
of nodes was the transmission path with the lowest delay.
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Figure 4. Actual data transmission path in multicast session 2. The red arrow indicates a path for the
user node 2 to transmit data, the blue arrow indicates a path for the user node 38 to transmit data, the
orange arrow indicates a path for the user node 36 to transmit data, and the green arrow indicates a
path for the user node 32 to transmit data.

5.1. Comparison Between One-Off Optimization and Sequential Optimization
5.1.1. Comparison of Sequential Optimization That Does Not Consider the
Out-Degree Constraint

In sequential optimization without considering the out-degree constraint, only one
multicast session is optimized at a time, and the out-degree constraint on nodes is not con-
sidered. In one-off optimization, multiple multicast sessions are considered simultaneously
to yield all multicast session transmission schemes. Different numbers of multicast sessions
and destination nodes in each multicast session were set, and the node congestion under
the two approaches described above was analyzed.

Figure 5 shows the fitting curves under sequential optimization and one-off optimiza-
tion. The black dots indicate the out-degree violations under the two algorithms. The fitting
surface shows that the node out-degree violation under sequential optimization increased
exponentially with the number of multicast sessions and destination nodes, while one-off
optimization presented no node constraint violations.

Figure 5. Violation of the out-degree constraint fitting surface under one-off optimization and
sequential optimization approaches. The color represents the value that is out of bounds, the lighter
the color the more out of bounds it is.
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From the above analysis, as nodes 8, 30, and 38 were suitable transit nodes for for-
warding data, their out-degree easily exceeded the constraint. For further analysis, we
designed each session to contain five destination nodes and tested the out-degree of these
three nodes under different numbers of multicast sessions.

Figure 6 shows that, in sequential optimization, when the number of multicast sessions
was greater than four, the out-degree of node 30 exceeded the constraint, and when the
number of multicast sessions was greater than six, the out-degree of node 38 exceeded
the constraint; meanwhile, for node 8, the out-degree was basically maintained at 3 and
was within the constraint. With an increase in the number of sessions, the out-degree of
nodes 30 and 38 increased significantly. In addition, we found that the sum of the out-
degree violation levels for nodes 30 and 38 and of all the nodes was equal, indicating that,
under the considered experimental conditions, these two nodes caused the ALM routing
tree to fail to satisfy the constraints.

Figure 6. The out-degree in multiple multicast sessions with five destination nodes.

In contrast, in one-off optimization, when the number of sessions reached four, the out-
degrees of nodes 8, 30, and 38 were all 5, equal to the critical constraint value. However, as the
number of multicast sessions increased, the out-degree of these three nodes did not exceed
the constraint. This indicates that the one-off optimization method can make full use of the
out-degree of core nodes and obtain an optimal solution under the constraint conditions.

5.1.2. Comparison with Sequential Optimization While Considering the
Out-Degree Constraint

The above experiments provided in-depth information on the impact of not intro-
ducing constraint processing technology in sequential optimization. Notably, sequential
optimization can also consider the out-degree of a node as a constraint condition. We
adopted the node out-degree reservation strategy; that is, each time the optimization of an
ALM routing tree is completed, the out-degree of the corresponding node is purposefully
reduced. In the next optimization of the ALM routing tree, we can choose only those nodes
that still have a valid out-degree. However, this strategy may trap the entire ALM routing
tree in a local optimal solution.

This occurs because, during the construction of the ALM routing tree, better nodes
are initially selected. As the out-degree of such core nodes is exhausted, the subsequent
ALM routing tree can use only other nodes with a greater delay and a greater instability,
resulting in a sharp increase in the instability and delay of the whole tree.

Table 3 shows the optimization results obtained for four multicast sessions. The num-
ber of destination nodes for each session was five, and the out-degree of each node was
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two. Although the one-off optimization method was not as good as the sequential opti-
mization method in the construction of the first ALM routing tree, the results of the one-off
optimization method showed a lower delay and instability when constructing the third
and fourth ALM routing trees. When considering multiple co-existing ALM routing trees,
the overall delay and stability were significantly better than those of the trees constructed
using the sequential optimization method.

Table 3. Comparison of the one-off optimization and sequential optimization results.

Sessions
Sequentially Optimizing One-Off Optimizing

Delay (ms) Instability Delay (ms) Instability

1 671 0.0167 732 0.0514
2 501 0.135 501 0.135
3 588 0.235 494 0.17
4 580 0.376 555 0.326

total 2340 0.762 2282 0.682

As can be seen from Figure 7, in the first ALM routing tree, nodes 8, 30, and 38 were
used, which decreased the delay and instability. However, in the third and fourth ALM
routing trees, as the out-degrees of the selected core nodes 8, 30, and 38 had been used up,
the other nodes were selected only to transmit data, resulting in significant increases in
delay and instability in the two routing trees.

Figure 7. Routing trees obtained through sequential optimization.

In contrast, Figure 8 shows the results of one-off optimization. Through the rational
distribution of nodes—for example, by using the out-degree of nodes 14 and 38 in ALM
routing trees 3 and 4—the delay and instability of ALM routing trees 3 and 4 were reduced.
Although this optimized allocation slightly increased the delay and instability of the first
routing tree, it reduced the delay and instability of the multiple ALM routing trees as a
whole. This result further clarifies the limitations of independently optimizing the ALM
routing tree for each session. In contrast, the one-off optimization method used in this
paper can more effectively optimize the overall performance.

Figure 8. Routing trees obtained through one-off optimization.
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5.2. Validation of the Penalty Function Mechanism

For the optimization of multiple co-existing ALM multicast routing trees, violating
the out-degree constraint of nodes may cause failure of data transmission. Therefore,
determining how to guide individual artificial fish to search in the feasible solution domain
is highly important. In this study, a penalty mechanism was introduced to eliminate
solutions that do not satisfy the constraints. In Figure 9, we compare the effect of the
algorithm with and without the use of the penalty mechanism regarding the out-degree
violation of nodes.

Figure 9. Fitted surfaces with and without penalty function for out-degree violations. The color
represents the value that is out of bounds, the lighter the color the more out of bounds it is.

As the scale of the multicast sessions increased, among the results obtained with the
algorithm without a penalty mechanism, a greater node out-degree violation indicated
that a very large number of destination nodes needed to copy and forward the data in
large quantities. When the performance limit of a node is exceeded, the end-host will be
down, which will cause the session to fail. On the other hand, when the penalty mechanism
was used, the results obtained with the algorithm did not include nodes exceeding the
degree constraint. This demonstrates that the penalty mechanism can effectively solve
the out-degree constraint problem. In particular, when the scale of multicast sessions
increases, the algorithm with the penalty mechanism performed better in terms of reducing
the out-degree violations of nodes.

5.3. Algorithm Convergence Analysis

The execution of various behaviors enables the artificial fish swarm to perform
more flexible and diverse searches in the solution space. However, under some circum-
stances—especially when the problem is complex and the solution space is large—these
behavior modes may cause the algorithm to converge slowly, and the algorithm may be
prone to becoming trapped in local optimal solutions. To verify the convergence and
accuracy of the algorithm for the optimization problem in this paper, we conducted an
analysis of scenarios using networks containing 25, 50, and 75 randomly distributed user
nodes. In these networks, four multicast sessions were input, where each multicast session
contained one source node and eight destination nodes.

The randomness of the artificial fish swarm algorithm may make the algorithm unsta-
ble. To reduce the impact of randomness on the algorithm results, multicast optimization
was performed for each network 50 times, and a box plot was generated to show the
locations of the distribution centers of these results and the distribution range. As shown
in Figure 10, for the networks with 25 and 50 user nodes, the box plot appears as a straight
line; as such, the maximum and minimum values are the same, and there are no outlier
values. When the network size increased to 75, the convergence stability of the algorithm
decreased slightly, with a maximum value of 0.74014 and a minimum value of 0.73346,
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comprising a difference of only 0.9%. This indicates that the algorithm had relatively good
stability under different network sizes.

Figure 10. Fitness box plots under different network sizes. Black indicates the edge, red the upper
quartile, and blue the lower quartile.

To further verify the convergence ability of the algorithm, the fitness values of the
50 results were summed and averaged, and the obtained iteration diagram is shown
in Figure 11a. With network sizes of 25, 50, and 75 user nodes, the fitness value de-
creased rapidly at the beginning of the iteration, as the algorithm eliminated infeasible
solutions. When the number of iterations reached approximately 10, the increase in the
fitness value slowed down, as the solutions listed in the bulletin board already satisfied
the constraints and its fitness function was low. Subsequently, as shown in Figure 11a–c,
the algorithm approached the optimal solution as it iterated and converged at 81, 98,
and 191 iterations, respectively.

Figure 11. Algorithm evolution diagrams under different network sizes.

5.4. Parameter Sensitivity Analysis

Swarm intelligence algorithms usually exhibit good adaptability. However, setting
reasonable parameters is still a key task when using optimization algorithms. The appro-
priate selection of parameters can significantly improve the performance of the algorithm.
The main parameters of the artificial fish swarm algorithm include the population size
popsize, the field of view visual, the step size step, the number of attempts try_number,
and the degree of congestion δ. Figure 12 shows the results of the algorithm from 20 to
200 iterations under different parameter settings.

Regarding the effect of the population size on the algorithm, as shown in Figure 12a,
when the population size increased, the number of iterations needed for the algorithm to
converge decreased. However, in each iteration, the number of AFs participating in the
optimization search increased. Therefore, this parameter had no significant impact on the
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overall convergence time. As can be seen from Figure 12b–e, setting different values for the
other parameters affected only the iterative process of the algorithm and had a relatively
insignificant impact on the final convergence result, which indicates that the algorithm is
insensitive to parameter changes and has good robustness.

Figure 12. Comparison of the effect of each parameter on the performance of the algorithm.

5.5. Selection of Weights

In this study, the optimization of the ALM routing tree involves two objectives, namely,
the delay and the instability, with corresponding weights w1 and w2, respectively. The se-
lection of these weights directly affects the performance of the algorithm and search results.
In the experiments, the magnitude of the observed delay was much greater than that of the
instability. This may have caused the delay to be too significant in the overall optimization
process, leading to the contribution of instability being ignored. By adjusting the weights,
the influence of the different objectives during the optimization process can be controlled.

The weights w1 and w2 can be determined in a number of ways. For example, the sub-
jective judgment method [29], statistical method [30], and sensitivity analysis [31] can be
used. However, neither of the first two methods is applicable; the subjective judgment
method requires an expert’s deep understanding of the problem and an accurate estima-
tion of the contribution of each objective. Statistical methods require a large amount of
supporting data; however, the resulting data of this problem are related to the number of
source nodes, the destination nodes, the number of multicast sessions, and the network
distribution and size, making this method costly. In contrast, sensitivity analysis, which
directly assesses the impact of input parameters on the model output, is a simple and
intuitive approach that requires less data and is easy to understand and implement.

Therefore, we used sensitivity analysis, and different weight combinations were used
to cover the possible weight value ranges. The influences of these weights on the final
optimization result were investigated, as shown in Figure 13. In general, there was an
increase in the weight ratio (w2/w2) as the instability of the ALM routing tree gradually
increased, while the total delay continuously decreased. This is due to the increase in the
value of the weight w1; that is, the contribution of the delay increased.
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Figure 13. Comparison of results obtained under different weights.

In the process of gradually increasing the weight ratio, several inflection points ap-
peared, indicated by the red points (a, b, c, and d) in the figure. These points are the
turning points where the rate of decrease in the delay became slower, the rate of increase
in the instability became greater, or both. Table 4 lists the results under the weight ratios
corresponding to these points. By analyzing these points, we could obtain a locally optimal
weight ratio; that is, a significant reduction in the instability or delay can be obtained
without a significant increase in the delay or instability, respectively.

Table 4. Comparison of optimization results with different weights.

Weight Total Delay (ms) Instability

0:1 3633 0.567
a 0.00005:1 3242 0.614
b 0.001:1 2965 0.720
c 0.005:1 2823 1.019
d 0.05:1 2735 1.239

1:0 2788 2.266

For example, consider the process from point a to point b: the delay was sharply
reduced, while the instability increased slightly. Therefore, choosing point a will be less
unstable than choosing any point between a and b, and the delay will not increase much as
the delay does not change sharply. Meanwhile, the delay is lower when point b is selected,
and the increase in instability is not significant.

When only the instability was optimized, the instability value reached 0.567. Mean-
while, when only the total delay was optimized, the total delay reached 2788 ms. These
results provide a reference for weight selection under different optimization objectives,
such that the algorithm can be flexibly adapted to the specific needs of a given application.
Decision makers can consider the importance of each objective to the overall goal and
determine the optimal combination of weights by considering the practicality, expertise,
and relevant interests.

5.6. Analysis of Solution to the Routing Tree Problem for a Single Multicast Session

Although this study is optimizing the multiple co-existence application layer multicast
routing tree structure problem, the method is equivalent to optimizing a single multicast
session when we set the input to only one multicast session. To evaluate the performance of
the proposed algorithm regarding the optimization of a single multicast session, a multicast
session in which the number of source nodes was 8 and the numbers of destination nodes
were 2, 3, 14, 26, 24, 37, 22, 35, 28, 29, and 31 was set up. The algorithm in this paper
was compared with three single multicast session multi-objective optimization algorithms,
namely, Cao’s algorithm [7], the CL-S [8], and the VDM [9]; all three algorithms are for
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single multicast sessions. Because of the differences between their optimization models and
the one we formulated, we set the end-to-end latency constraint and the degree constraint in
Cao’s algorithm to 300 and 5 and made the CL-S take the form of transmission delay in our
formulated optimization model and constructed the virtual distance for the VDM based on
our objective. Such a modification ensures comparability but will not alter the performance.
Table 5 shows that the proposed algorithm was superior to the three algorithms used for
comparison, in terms of its total delay and instability.

Table 5. Comparison of ALM routing tree optimization results.

Algorithm Total Delay (ms) Instability

CL-S 1346 0.070
VDM 1359 0.073
CAO 1411 0.042

DAFSA 1075 0.016

6. Discussion

We investigate a key limitation of existing application layer multicast (ALM) routing
optimization algorithms, namely, that these algorithms mainly focus on the optimization of
individual multicast routing trees, whereas sequential one-by-one optimization is usually
required when dealing with multiple co-existing multicast sessions. However, as the
experimental results show, this sequential optimization approach can very easily lead to an
excessive out-degree of user nodes suitable for forwarding data, triggering node congestion.
And this phenomenon will be more serious with increases in the multicast session size,
which will lead to a failure of data transmission in the session. Moreover, it is also difficult
to make reasonable use of the node out-degree if we want to take into account the node
out-degree constraints in the sequential optimization. The node out-degree reservation
strategy mentioned in the previous section is a simple method of out-degree allocation,
but it only ensures that all nodes can satisfy the constraints, which can easily lead to falling
into a local optimum. Specifically, the routing tree optimized first performs well, while
the performance of the routing tree optimized later gets worse. For multiple co-existing
multicast sessions, such an allocation appears to be extremely unfair, and the performance
of all multicast sessions cannot be optimized.

The discrete artificial fish swarming algorithm we designed takes multiple co-existing
multicast sessions as a whole and achieves the optimization of the objective function values
of multiple co-existing application layer multicast routing trees by continuously evolving
artificial fish with higher fitness functions. Due to the introduction of a penalty function
mechanism, this approach helps the algorithm filter the solutions that do not satisfy the
node out-degree constraints and avoids session instability caused by node congestion.
Experimental results show that the algorithm achieves satisfactory results, with trade-offs
in node allocation across multicast sessions and a reduced overall delay and reduced
instability. In addition, we note that our proposed algorithm is also effective in optimizing
individual multicast sessions. Steiner nodes, selected by the DAFSA, have been proven
to be very suitable as intermediate nodes for forwarding data, thus guaranteeing the
performance of individual multicast sessions.

However, the present algorithm also has limitations. First, in setting the weights,
when the network structure changes significantly, such as when the number of multiple
co-existing application layer multicast sessions increases or the nodes of each session
become complex, we are unable to find the optimal weighting parameter through multiple
experiments because of the huge cost involved. This is mainly due to the fact that single-
objective weighting methods are very sensitive to the choice of weights and are usually
difficult to adapt to new contexts or changes in objectives. To overcome these problems, we
propose to consider using a multi-objective decision-making approach [32] to optimize the
relationship between multiple objectives more comprehensively. Further, this study deals
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with node out-degree constraints using a penalty function, but the effect of the penalty
function is highly dependent on the chosen penalty parameter, which adds to the complexity
of the problem [33]. In solving these problems, an improved spanning tree algorithm
ensures that the nodes in the current multicast session do not exceed the constraints.
But how to consider multiple co-existing complete graphs and generate application layer
multicast routing trees that satisfy the constraints to avoid the use of the penalty function
remains a problem that requires in-depth research.

Moreover, the application layer multicast routing tree construction problem is usu-
ally dynamic in nature. That is, the network topology, multicast session members, etc.,
may change over time. The swarm intelligence algorithm has difficulty in dealing with
dynamically changing problems at the time of application, and as the problems become
more complex, its search space becomes larger, which can easily lead to a decreased search
efficiency. In contrast, trained neural networks have the ability to generalize to unseen
situations and can adapt to the complexity of the problem by learning patterns and features
of the data without the need for explicit rules [34]. Therefore, we will include neural
network methods in our future research.

7. Conclusions

In this paper, a one-off optimization method based on the discrete artificial fish swarm
algorithm was proposed, which optimizes multiple co-existing application layer multicast
sessions simultaneously, rather than optimizing them sequentially and independently.
The contributions of this paper can be summarized as follows:

(1) The use of the DAFSA was proposed for the determination of multiple co-existing
ALM routing trees. Compared with the sequential optimization algorithm, the multi-
ple ALM routing trees obtained presented a better performance in terms of delays and
stability. For the optimization of a single ALM routing tree, the proposed algorithm
also outperformed other existing algorithms.

(2) In terms of degree constraint processing, a penalty function was used to ensure that
the out-degree of nodes in the entire ALM routing tree did not exceed the constraint
limit, effectively preventing the algorithm from obtaining infeasible solutions.

(3) In the evaluation section, we improved Prim’s algorithm such that an ALM routing
tree with a low delay and a low stability could be obtained from the subgraph. This
process can be understood as the decoding process of the DAFSA such that this
algorithm can be applied to the considered problem; in this way, a better ALM routing
tree scheme can be iteratively generated.

(4) When processing application layer networks of various scales, the system quickly and
reliably reached the optimal solution or a state close to the optimal solution. This stable
convergence helps to improve the applicability and effectiveness of the algorithm in
various network scenarios.

(5) Even under different parameter settings, the proposed method still reached a stable
convergence state after a relatively short number of iterations, which helps to improve
the reliability and applicability of the algorithm in practical problems.

(6) We have provided a variety of applicable weight determinations that can help provide
more practically applicable decision support.

However, there are still some directions worthy of further exploration and improvement:

(1) When converting a multi-objective problem into a single-objective problem, we faced
problems such as weight selection and information loss. To better retain the trade-
off relationships between the objectives, a multi-objective optimization algorithm,
such as the multi-objective genetic algorithm, can be introduced. Directly addressing
multi-objective problems is a direction worth exploring.

(2) When dealing with constrained problems, a penalty function-based algorithm is
often used. However, the introduction of a penalty function may complicate the
calculation of the evaluation process, and determining the penalty factor is difficult.
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For this problem, the use of an adaptive penalty function or other advanced constraint-
processing techniques can be considered, in order to more effectively address the
constraint conditions and reduce the complexity of the search space.

Author Contributions: Conceptualization, Y.L., N.W. and Q.L.; data curation, Y.L., N.W. and W.Z.;
methodology. Y.L., N.W. and F.L.; validation, F.L., W.Z. and N.W.; investigation, N.W., Y.L. and W.Z.;
writing—original draft preparation, N.W.; writing—review and editing, Y.L., N.W., Q.L. and F.L.;
visualization, W.Z., N.W. and Q.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The code for the DAFSA can be provided upon request from the
corresponding author, Feng Liu.

Conflicts of Interest: Author Wei Zhang was employed by the company China Mobile System
Integration Co., Ltd. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Deering, S.E. Multicast routing in internetworks and extended LANs. In Proceedings of the Symposium Proceedings on

Communications Architectures and Protocols, Stanford, CA, USA, 16–18 August 1988; pp. 55–64.
2. Deering, S.E. Host Extensions for IP Multicasting; Stanford University: Stanford, CA, USA, 1988.
3. Chu, Y.h.; Rao, S.G.; Seshan, S.; Zhang, H. A case for end system multicast. IEEE J. Sel. Areas Commun. 2002, 20, 1456–1471.

[CrossRef]
4. Su, J.; Cao, J.; Zhang, B. A survey of the research on ALM stability enhancement. Chin. J Comput. 2009, 32, 576–590.
5. Liu, Q.; Tang, R.; Ren, H.; Pei, Y. Optimizing multicast routing tree on application layer via an encoding-free non-dominated

sorting genetic algorithm. Appl. Intell. 2020, 50, 759–777. [CrossRef]
6. Cao, J.; Su, J.; Wu, C. Modeling and analyzing the instantaneous stability for application layer multicast. In Proceedings of the

2008 IEEE Asia-Pacific Services Computing Conference, IEEE, Yilan, Taiwan, 9–12 December 2008; pp. 217–224.
7. Cao, J.; Su, J. Delay-bounded and high stability spanning tree algorithm for application layer multicast. J. Softw. 2010,

21, 3151–3164. [CrossRef]
8. Lin Hou, D.L.a.T. Algorithms of Spanning Tree Based on the Stability Probability and Contribution Link of Nodes for Application

Layer Multicast. J. Comput. Res. Dev. 2012, 49, 2559–2567.
9. Mercan, S.; Yuksel, M. Virtual direction multicast: An efficient overlay tree construction algorithm. J. Commun. Netw. 2016,

18, 446–459. [CrossRef]
10. Lin, H.C.; Lin, T.M.; Wu, C.F. Constructing application-layer multicast trees for minimum-delay message distribution. Inf. Sci.

2014, 279, 433–445. [CrossRef]
11. Xiaofei, L.; Yiliang, X.; Xuance, S.; Demin, L. Application Layer Multicast Model with Low Delay and High Stability. J. Donghua

Univ. 2023, 40, 74.
12. Li, D.; Wang, Z.; Wei, Y.; Yao, J.; Tan, Y.; Yang, Q.; Wang, Z.; Cao, X. Generation of Low-Delay and High-Stability Multicast Tree.

Comput. Mater. Contin. 2023, 76, 561–572. [CrossRef]
13. Chen, H.; Wang, S.; Li, J.; Li, Y. A hybrid of artificial fish swarm algorithm and particle swarm optimization for feedforward

neural network training. In Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering 2007,
Chengdu, China, 15–16 October 2007; Atlantis Press: Amstelkade, The Netherlands, 2007; pp. 1025–1028.

14. Sheverdin, A.; Monticone, F.; Valagiannopoulos, C. Photonic inverse design with neural networks: The case of invisibility in the
visible. Phys. Rev. Appl. 2020, 14, 024054. [CrossRef]

15. Pan, Y.; Yu, Z.; Wang, L. Genetic Algorithm for Solving Application Level Multicast Routing Problems. Mini-Micro Syst. 2009,
26, 55–58.

16. Ma, X.; Tang, R.; Kang, J.; Liu, Q. Optimizing application layer multicast routing via artificial fish swarm algorithm. In
Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), IEEE, Changsha, China, 13–15 August 2016; pp. 115–120.

17. Vik, K.H.; Halvorsen, P.; Griwodz, C. Evaluating Steiner-tree heuristics and diameter variations for application layer multicast.
Comput. Netw. 2008, 52, 2872–2893. [CrossRef]

18. Popescu, A.; Constantinescu, D.; Erman, D.; Ilie, D. A Survey of Reliable Multicast Communication; IEEE: Piscataway, NJ, USA, 2007.
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Abstract: Gas turbines are widely used in industry, and the combustion chamber, compressor, and
turbine are known as their three important components. In the design process of the combustion
chamber, computational fluid dynamics simulation takes up a lot of time. In order to accelerate the
design speed of the combustion chamber, this article proposes a combustion chamber design method
that combines an artificial neural network (ANN) and computational fluid dynamics (CFD). CFD
results are used as raw data to establish a fast prediction model using ANN and eXtreme Gradient
Boosting (XGBoost). The results show that the mean squared error (MSE) of the ANN is 0.0019,
and the MSE of XGBoost is 0.0021, so the ANN’s prediction performance is slightly better. This fast
prediction method combines CFD and the ANN, which can greatly shorten CFD calculation time,
improve the efficiency of gas turbine combustion chamber design, and provide the possibility of
achieving digital twins of gas turbine combustion chambers.

Keywords: gas turbine; combustion chamber; artificial neural network

1. Introduction

The gas turbine is a complex multidisciplinary coupling device that transforms the
energy of fuel into useful work by using a continuous flow of gas as the working mass
to drive the impeller to rotate at high speed. It is known as the jewel in the crown of the
equipment manufacturing industry. Gas turbines are used in a wide range of applications,
including ship power, aviation power, energy generation, and many other fields. Due
to its low pollution, high efficiency, and reliability, the advanced gas turbine is the most
competitive way to provide clean, environmentally friendly, high-quality, and efficient
power generation and combined heat and power generation, and it has become the core of
industrial technology in the 21st century. Since the world’s first gas turbine was built in
Switzerland in 1939, there have been more than 21,000 gas turbines for power generation of
more than 1 MW worldwide, with a total capacity of more than 1000 GW, and gas turbines
account for 1/5 of the world’s total power generation [1].

The combustion chamber is the heart of the gas turbine, which needs to maintain a
stable working state for a long time under the harsh conditions of high temperature and
high pressure. However, the combustion chamber of an aeroengine faces the problem of
rapidly variable and dynamic characteristics [2]. Furthermore, the development process of
the combustion chamber has the characteristics of great difficulty, a long cycle, and high
cost. Plus, in order to meet the increasing requirements and technical indicators of the
engine, the complexity of the engine system has increased significantly, and the combustion
chamber design is also facing the challenge of leapfrog development [3].

The combustion chamber design system mainly consists of one- or two-dimensional
thermal design and three-dimensional combustion simulation. Combustion is a complex
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combination of chemical reaction and turbulent flow, and the combustion chamber needs
to rely on a large number of tests for continuous iterative design. The main goal of gas
turbine combustion chamber design is to achieve low emission, as well as transient and
highly stable combustion under high-temperature and -pressure conditions, while having
the ability to burn multiple fuels, including low-calorific-value fuels such as blast furnace
gas with hydrogen doping, especially pure hydrogen fuel with zero carbon emissions.
Computational fluid dynamics (CFD) is an important simulation design tool, the difficulties
of which lie in thermoacoustic oscillations and fluid–thermal coupling. Three-dimensional
design simulation has been more widely used, and full four-dimensional non-constant
design simulation is in the development and research stage. As numerical simulation tests
use a number of assumptions and fixed boundary conditions, which cannot map all the
characteristics of the physical object, a wise and prudent use of numerical simulation tests,
combined with physical test verification, can effectively avoid the risk of misdirection
brought about by numerical tests. At the same time, the increasing number of meshes in
CFD simulation calculations makes it difficult to reduce the combustion chamber design
cycle further. Intelligent algorithms such as machine learning can instead be used to
mine big simulation data, not only to share some of the computational tasks to speed up
the simulation calculation process but also to perform well in predicting non-constant
phenomena in flow and heat transfer [4].

Machine learning methods can be divided into two aspects: traditional machine
learning and deep learning. In the early stages of applying machine learning to scien-
tific discoveries, scientists generally used traditional machine learning methods due to
limitations in data volume and computational power. Based on the classic model, appro-
priate adjustments are made to the input, hyperparameters, structure, etc., of the model
according to specific problems, in order to achieve the best results in classification and
regression tasks [5,6]. Naive Bayes, logistic regression, K-nearest neighbors, and decision
trees are relatively simple methods that have the characteristics of being intuitive and easy
to implement [7–9].

Deep learning methods directly mine raw data and are adept at exploring the hidden
structures and correlations of high-dimensional data. They can learn complex features
and patterns that cannot be clearly extracted at the moment, break through the limitations
of manual feature extraction, avoid deviations, and reduce the time required to calculate
features. Compared to traditional machine learning methods, they have achieved better
results. However, due to the complex structure and lack of interpretability of deep learn-
ing models, their application is to some extent limited [10,11]. Therefore, deep learning
methods are suitable for scenarios with sufficient computing and data resources, complex
problems, and poor performance in manually extracting features. Among them, common
convolutional neural network structures include LeNet [12], AlexNet [13], ResNet [14], etc.;
common recurrent neural network structures include LSTM [15] and GRU [16]; and com-
mon deep generation models include the variational autoencoder (VAE) [17] and generative
adversarial network (GAN) [18].

The use of a neural network approach to build a fast prediction model for combustion
chamber parameters can shorten the combustion chamber design cycle by omitting complex
physical relationship calculations as it is fully data-driven. In addition, with sufficient data,
it is possible to predict the state of a gas turbine combustion chamber entity using a fast
prediction model of the combustion chamber. Therefore, the application of neural network
methods to the field of combustion chamber design is very practical and has great potential.

Zhao Gang [19] of Zhengzhou Gas Power Generation Co., Ltd. used a single-hidden-
layer artificial neural network to build a NOx emission prediction model and trained the
model using gas turbine plant operating data to achieve prediction of four operating param-
eters, namely unit power, NOx concentration, combustion chamber vibration acceleration,
and combustion chamber pressure pulsation. Warren G. Lamont [20] performed artificial
neural network (ANN) modeling of a gas turbine combustion unit to predict gas turbine ex-
haust gas emissions and combustion chamber outlet temperature. Qian Wang [21] realized
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the regression model of unsteady flow through proper orthogonal decomposition (POD)
and a feedforward neural network (NN). Gianmarco Aversano [22] combined principal
component analysis (PCA) with Kriging’s method to determine accurate low-order models.
In this approach, PCA is used to identify and separate the invariants of the system, and
then the Kriging method is used to find a response surface for these coefficients, thus
generating a proxy model that allows parametric operations to be performed at a lower
computational cost. Woojin Lee [23] used the proper orthogonal decomposition (POD) as
well as the Kriging method and radial-basis-function neural network (RBFN) to perform
a regression model, in which 500 MWe tangentially fired pulverized coal boilers were re-
gressed and a reduced order model (ROM) was constructed. Wu Yifan et al. [24] combined
the elementary cascade method and random forest method to achieve the prediction of
compressor outlet temperature and pressure. Part of the feature data was collected using
the primitive cascade method, and historical data were inputted into a model based on the
random forest method to train and output the compressor outlet temperature and pressure.
The average relative errors of the total pressure ratio and variable efficiency calculated by
the model were −0.13% and 0.04%, respectively. The maximum relative errors were 2.11%
and 1.90%, respectively. Gu X [25] and others used performance deviation models and
extreme value function theory to monitor turbine exhaust temperature, mainly including
backpropagation neural network (BPNN) models and performance deviation models. By
training the BPNN model to output the performance deviation between the predicted and
measured values of the turbine exhaust temperature, the normal or abnormal state can
be determined. This method has an accuracy of up to 99.85%. The RBF neural network
prediction model for combustion chamber emissions established by Sun Jihao [26] can
accurately and quickly predict combustion chamber outlet emissions under different struc-
tural parameters. The maximum error in predicting NOx is 12.28%, and the average error
is 4.58%. The maximum error in predicting CO is 2.75%, and the average error is 0.97%.
Fentaye A D [27] combined the artificial neural network (ANN) and SVM to achieve multi-
component fouling and erosion gas path fault diagnosis for compressors, power turbines,
and gas generators. After inputting data into ANN for sample classification, the SVM
model is used for diagnosis. Compared with multilayer perception (MLP), the classifica-
tion accuracy of this method is more than 10% higher, and the classification accuracy for
three component faults is 99.4%. Montazeri Gh M et al. [28] combined a growth neural
network (GNN) and residual compensation limit learning machine (RCELM) to learn the
fault characteristic map (FCM) of components to diagnose fouling and erosion faults in
compressors, gas generators, and power turbines. The user inputs known measurement
parameters into an extreme learning machine (ELM) to train and output health status bias.
After modeling and compensating for the residual, the robust signal is input into the GNN
network for detection, isolation, and recognition. The accuracies of fault detection and
isolation are 99.97% and 97.74%, respectively.

At present, most scholars apply machine learning methods to two aspects of the
gas turbine field, namely gas turbine outlet parameter prediction and gas turbine fault
detection. There are relatively few cases where machine learning methods are applied to
predict the internal flow field of gas turbines. Therefore, based on existing research, this
article studies the application of ANN in predicting the internal flow field of gas turbine
combustion chambers, and it proposes a rapid design method combining ANN and CFD
for gas turbine combustion chambers.

2. ANN and XGBoost
2.1. ANN

Figure 1 shows a schematic diagram of a single-hidden-layer ANN.
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Figure 1. Single-hidden-layer artificial neural network.

The input layer has n neurons from x1 to xn, representing each of the n input variables
in the dataset. The output layer has m neurons from y1 to ym, representing each of the m
output variables in the dataset. The hidden layer has p neurons from a1 to ap, and passes
the data into the output layer after activation by the activation function tanh(x).

tanh(x) =
ex − e−x

ex + e−x (1)

From the input layer to the hidden layer, the i-th neuron input to the hidden layer is ai:

ai =
n

∑
k=0

wikxk (2)

In the above equation, wik is the weight of the k-th neuron in the input layer to the i-th
neuron in the hidden layer.

The output of the i-th neuron of the hidden layer is zi:

zi = g(ai) (3)

From the hidden layer to the output layer, the j-th neuron input to the output layer
is bj:

bj =
p

∑
i=0

wjizi (4)

In the above equation, wji is the weight of the i-th neuron in the hidden layer to the
j-th neuron in the output layer.

The output layer activation function is the Leaky ReLU function f (x):

f (x) =
{

λx, x < 0
x, x ≥ 0

(5)

The output of the j-th neuron of the output layer is yj:

yj = r
(
bj
)

(6)

According to the above algorithm, the neural network propagates forward from the
input layer to the output layer, and the value of the output layer can be calculated from the
original input data of the dataset and the weights between neurons. The value calculated
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by the output layer is compared with the value in the dataset, and the neural network node
connection weights are continuously updated by using the error backpropagation method
(BP algorithm), so as to continuously reduce the error between the model output and the
dataset output and optimize the fitting effect. The final output model includes the structure
of the neural network, the selection of the neuron activation function, and the connection
weight between neurons.

2.2. XGBoost

XGBoost [29] is an efficient gradient boosting decision tree algorithm. It has been
improved on the basis of the original GBDT (gradient boosting decision tree), greatly raising
the model performance. As a forward addition model, its core is to adopt the integration
idea of boosting, which integrates multiple weak learners into a strong learner through
certain methods. Multiple trees are used to make joint decisions, and the results of each
tree are the difference between the target value and the predicted results of all previous
trees. By accumulating all the results, the final result is obtained, thereby improving the
overall model performance.

XGBoost is composed of multiple CARTs (classification and regression trees), so it can
handle problems such as classification and regression.

The prediction model for XGBoost is

ŷi =
K

∑
k=1

fk(xi) (7)

In Equation (7), K represents the number of decision trees, fk represents the k-th
decision tree, and ŷi represents the prediction result of xi.

Initialization (there is no decision tree in the model, and its prediction result is 0):

ŷ(0)i = 0 (8)

Add the first decision tree to the model:

ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi) (9)

Add the second decision tree to the model:

ŷ(2)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi) (10)

Add the t-th decision tree to the model:

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (11)

The loss function of XGBoost consists of two parts, namely the training error repre-
sented by l and the regularization item represented by Ω:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (12)

Every time a decision tree is added to the model, the loss function changes. When the
t-th decision tree is added, the previous t-1 decision trees have completed training, and
the training error and regularization item of the previous t-1 decision trees have become
constants. Therefore, the loss function can also be written as

Obj =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) + C (13)
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The regularization item can be rewritten as

Ω( ft) = γT +
1
2

λ
T

∑
j=1

wj
2 (14)

In the above equation, T is the number of leaf nodes, and w is the score of the leaf nodes.
Substituting Equation (14) into Equation (13) yields

Obj =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ γT +

1
2

λ
T

∑
j=1

wj
2 + C (15)

Perform second-order Taylor expansion on Equation (15), and make the follo-
wing assumptions:

gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

(16)

hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
(17)

Gj = ∑
i∈Ij

gi (18)

Hj = ∑
i∈Ij

hi (19)

The Ij in Equations (18) and (19) represents the sample on the j-th leaf node.
The loss function can be written as

Obj =
T

∑
j=1

[
Gjwj +

1
2
(

Hj + λ
)
wj

2
]
+ γT (20)

As shown in Equation (20), the loss function can be seen as a quadratic function about
wj, where there exists a wj that minimizes the loss function:

w∗j = − Gj

Hj + λ
(21)

3. Prediction of Combustion Chamber Parameters
3.1. CFD Calculation

The data used in this paper are from CFD simulations of a single-tube micro-hybrid
combustion chamber. The geometry of the single-tube combustion chamber is well defined
and the internal flow state is relatively simple, making it suitable for prediction of its internal
parameters by artificial neural networks. The development of micro-mix combustion, a
combustion technology proposed in recent years for hydrogen-rich fuel combustion, has
resulted in smaller gas turbines and more efficient mixing. The principle is to reduce the
mixing time by reducing the mixing scale through several simplified micro-nozzles instead
of the traditional large-diameter nozzle structure [30].

The structure of the combustion chamber is shown in Figure 2. The main body length
of the combustion chamber is 300 mm, the cross-section of the chamber is square, and the
side length is 40 mm. The combustion chamber consists of four cylindrical nozzles with a
diameter of 12 mm and a length of 64 mm.
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Using Ansys Fluent 2022R1 for CFD calculation and Reynolds averaged Navier–Stokes
(RANS) simulation for combustion chamber flow field, the control equation system cannot
be closed due to the introduction of additional stress. Therefore, the Realizable k− ε model
widely used in the field of micro mixed combustion is used. The combustion model adopts
Flamelet Generated Manifold (FGM). The continuity equation, momentum equation, and
energy equation in the RANS simulation control equation are as follows:
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In the above equations, ui represents Reynolds average velocity, σij represents stress
tensor, −ρu′iu

′
j represents Reynolds stress, k represents turbulent kinetic energy, and u′i

represents pulsating velocity.
The mole fractions of fuel and oxidant, as well as the boundary conditions for CFD

solution, are shown in Tables 1 and 2:

Table 1. Mole fraction of fuel and oxidant.

Species Fuel Oxid

O2 0 0.21
CH4 0.9623 0
CO2 0.0047 0
C2H6 0.0233 0

N2 0.0097 0.79
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Table 2. Boundary conditions in Ansys Fluent 2022R1.

Boundary Condition Option

Inlet Mass Flow Rate [kg/s] 0.07286
Inlet Turbulent Intensity [%] 20
Inlet Hydraulic Diameter [m] 0.012

Outlet Backflow Turbulent Intensity [%] 5
Outlet Backflow Turbulent Viscosity Ratio 10

Wall Motion Stationary Wall
Shear Condition No Slip

Wall Roughness Model Standard
Ignition Temperature [K] 2000

3.2. Dataset Preprocessing

The raw dataset contains 42 physical parameters on 941,774 grid points in the combus-
tion chamber, containing pressure, density, x-axis direction velocity, temperature, oxygen
molar fraction, nitrogen molar fraction, and nitrogen oxide molar fraction. In order to
simplify the calculation, the 3D coordinates of the 941,774 grid points of the combustion
chamber are chosen as the input X to the artificial neural network in this paper:

X =




c1
x · · · c941,774

x

c1
y · · · c941,774

y

c1
z · · · c941,774

z


 (25)

In the above equation, c1
x to c941,774

x are the x-axis coordinates on all grid points; c1
y to

c941,774
y are the y-axis coordinates on all grid points; c1

z to c941,774
z are the z-axis coordinates

on all grid points.
The five parameters corresponding to pressure, density, velocity in the x-axis direction,

temperature, and molar fraction of oxygen are chosen as the outputs of the artificial neural
network Y:

Y =




p1

d1
· · ·
· · ·

p941,774

d941,774

v1
x

t1

o1
2

· · ·
· · ·
· · ·

v941,774
x

t941,774

o941,774
2




(26)

In the above equation, p1 to p941,774 are the pressure values on all grid points; d1 to
d941,774 are the density values on all grid points; v1

x to v941,774
x are the velocity values in the

x-axis direction on all grid points; t1 to t941,774 are the temperature values on all grid points;
and o1

2 to o941,774
2 are the oxygen molar fractions on all grid points.

Data preprocessing consists of two main aspects: outlier processing and normalization.
The dataset is scanned for outliers using the box line diagram method. As shown in

Figure 4, data that are not determined to be outliers are not processed and data that are
determined to be outliers are replaced with an upper limit if it is greater than the upper
limit of the box plot method and a lower limit if it is less than the lower limit of the box
plot method. The first quartile (Q1), also known as the ‘lower quartile’ or ‘lower quartile’,
is equal to the 25th percentile of all values in the sample in descending order. The second
quartile (Q2), also known as the ‘median’, is equal to the 50th percentile of all values in the
sample from the smallest to the largest. The third quartile (Q3), also known as the ‘greater
quartile’ or ‘upper quartile’, is equal to the 75th percentile of all the values in the sample
from the smallest to the largest. Data less than the lower quartile Q1–1.5 × IQR or greater
than the upper quartile Q3+1.5 × IQR are considered outliers and are replaced by the lower
and upper quartiles, respectively, with the remaining normal values being left untreated.
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The input and output data have different scale units with large differences in order of
magnitude, which is neither conducive to the convergence of the neural network nor to the
evaluation of errors in the subsequent process. The dataset is linearly normalized by scaling
the input data to [−1, 1] and the output data to [0, 1], as shown in Equations (27) and (28):

x′ =
x−mean(x)

max(x)−min(x)
(27)

y′ =
y−min(y)

max(y)−min(y)
(28)

The training set is used to update the weights to fit the network and to continuously
improve the accuracy. The validation and test sets are used to check how well the model
matches the data not involved in the training, i.e., to check the generalization ability of the
model trained from the training set. Due to the large amount of raw data, the partition
ratio of the training set, validation set, and testing set is 98:1:1.

3.3. Training of ANN

Firstly, the network structure of the neural network is determined, which mainly
includes the number of hidden layers, the number of hidden-layer neurons, the training
algorithm, and the activation function of each layer. Theoretically, the structure of multiple
hidden layers has a better fitting effect on multivariate non-linear mapping relationships.
The number of neurons in the hidden layer is similar to the number of layers in the hidden
layer. Increasing the number of neurons can better fit the non-linear relationship, but at
the same time increases the possibility of overfitting and time cost, so the number of nodes
should be reduced as much as possible while considering the number of input and output
features and ensuring the accuracy of the fit. The optimization algorithm is an algorithm
that adjusts the connection weights of the neural network nodes according to the error,
and the Adam algorithm is chosen. By adjusting its initial learning rate, it can ensure
that the update step size is limited to an approximate range, and at the same time can
achieve automatic adjustment of the learning rate, which is very suitable for the application
scenarios of large-scale data in this paper. The tanh (1) is chosen for the hidden layer, which

31



Electronics 2023, 12, 4774

has a strong learning capability and is a good fit for multivariate non-linear problems with
output values in (0, 1). The Leaky ReLU (5) is chosen for the output layer, which can further
accelerate the convergence speed.

The mean square error (MSE) was chosen as the loss function, and the ANN model
with different numbers of hidden layers, different numbers of neurons, and different initial
learning rates was trained 20 times, each time with 2000 epochs. The lowest value of
the MSE was taken for comparison to select the artificial neural network model with the
best prediction effect. The code for the ANN was written in Python3.9 and PyCharm
Community Edition 2023.2.1.

3.4. Training of XGBoost

To simplify the model, only manual adjustments were made to the hyperparameters
of learning rate and number of decision trees. The range of learning rate values was 0.01 to
0.2, and the adjustment range for the number of decision trees was 100 to 500. In theory, a
small learning rate and a small number of decision trees can lead to poor model accuracy,
while large ones carry a greater risk of overfitting. During the hyperparameter adjustment
process, if the MSE of the test set no longer decreases as the learning rate and number
of decision trees increase, it indicates that the optimal hyperparameter combination has
been found.

4. Results Analysis
4.1. Number of ANN Hidden-Layer Neurons and Learning Rate

Theoretically, as the number of hidden layers and neurons increases, artificial neural
networks become more capable of extracting the non-linear mapping relationship between
input and output. However, in practice, too many layers of hidden layers or the number of
neurons can also bring about overfitting problems. In order to obtain the optimal artificial
neural network structure, this section explores the effect of different numbers of hidden
layers and different numbers of neurons in each hidden layer on the error. As shown in
Figure 5, the MSE of the validation set tends to decrease and then increase as the number of
neurons increases when only a single hidden layer is used. When 30 neurons are included,
the MSE is the smallest, at 0.0108.
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As shown in Figure 6, with the use of double hidden layers, the MSE of the validation
set is significantly larger when the first hidden layer has 5 and 10 neurons. When the first
hidden layer has 15, 20, 25, and 30 neurons, the MSE is relatively well distributed between
0.01 and 0.002. In particular, when the first hidden layer contains 20 neurons and the second
hidden layer contains 10 neurons, the mean squared error is the smallest at 0.0019.
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As shown in Figure 7, 5*10 in the legend represents that the first hidden layer contains
5 neurons and the second hidden layer contains 10 neurons. In the case of using three
hidden layers, when the numbers of neurons in the first hidden layer and the second hidden
layer are both 5, and when the first hidden layer and the second hidden layer contain
5 and 10 neurons, respectively, the MSE of the validation set is greater than 0.025, which is
significantly larger. When the first hidden layer contains 10 neurons, the second hidden
layer contains 5 neurons, and the third hidden layer contains 15 neurons, the MSE is the
smallest, reaching 0.0035.
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In summary, the minimum MSE in learning 2000 epochs is 0.0108 for the single-hidden-
layer structure and 0.0019 for the double-hidden-layer structure. The minimum MSE for
the triple-hidden-layer structure is 0.0035. Therefore, the optimal structure is the double-
hidden-layer structure, where the first hidden layer contains 20 neurons and the second
hidden layer contains 10 neurons.

The learning rate affects the speed of convergence of the error. The larger the learning
rate, the faster the error decreases, but it may oscillate back and forth around the minimum
or even fail to converge. In order to arrive at the most appropriate initial learning rate for
the optimal ANN structure explored in the previous section, this paper goes on to compare
the effect of different initial learning rates on the error.

As shown in Figure 8, when the initial learning rate is 0.05, 0.01, or 0.005, the mean
squared error of the validation set drops to less than 0.01 at 500 epochs of training, and the
convergence rate is relatively fast. When the initial learning rate is 0.01, the validation set
MSE is the smallest, and the error value is 0.0019 when trained to 2000 epochs.
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4.2. XGBoost

The hyperparameters of learning rate and number of decision trees have a significant
impact on the error of XGBoost regression. The higher the learning rate, the higher the
model accuracy but the greater the tendency for overfitting; the smaller the learning rate,
the lower the overfitting tendency of the model, but the lower the accuracy. The more
decision trees there are, the more complex the model becomes and the more prone it is
to overfitting. As shown in Figure 9, as the learning rate and number of decision trees
continue to increase, the MSE of XGBoost on the test set shows a decreasing trend. When the
learning rate is 0.2, XGBoost regression has the best effect, but when the number of decision
trees exceeds 200, the downward trend of MSE is no longer significant and ultimately
reaches 0.0021.
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4.3. Visualization

Predictions of the combustion chamber parameters were made using artificial neural
networks based on the studies in the previous two sections. Fourteen groups of CFD
raw data and predicted values in the test set were randomly intercepted and compared,
as shown in Figures 10–14. Overall, the artificial neural network predictions for the five
parameters of pressure, density, x-axis direction velocity, temperature, and oxygen molar
fraction are relatively close to the CFD raw data, indicating that the prediction of the
combustion chamber parameters using artificial neural networks is feasible.
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As shown in Figure 10, except for how the predicted value of the 5th group of pressure
is slightly higher than the original data, the other 13 groups of data are very close. In
Figure 11, the density prediction value of group 6 is slightly higher than the original data.
In Figure 12, the predicted value of the 10th group of x-axis speed is slightly higher than
the original data. As shown in Figure 13, the 14 groups of predicted temperature values are
close to the original data. In Figure 14, the predicted oxygen mole fraction values of groups
5 and 6 are slightly less than those in the original data.

In order to explore the reasons for the deviation between the above individual pre-
dicted values and the original data, the training epoch of the neural network was increased
from 2000 to 5000, but there was no change in the experimental results, indicating that the
training epoch of the neural network was independent of the deviation. Further conjecture
is that there are individual outliers in the original data, and the impact of this aspect needs
to be further studied.

For a more intuitive comparison of the prediction accuracies of artificial neural net-
works, as shown in Figures 15–19, we plotted the original data and predicted values of the
test set into point cloud maps. From the results, it can be seen that there are outliers in
the point clouds of the raw data of each parameter that differ significantly from the values
of nearby grid points, while there are basically no outliers in the predicted point clouds.
Overall, the CFD raw data are highly consistent with the ANN predicted values, indicating
that outliers in the raw data have a small impact on the ANN predicted results, and the
ANN predicted results are in line with expectations.
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5. Conclusions

This article applies the CFD calculation results to the training of the ANN and XGBoost
for a single-tube micro mixed combustion chamber model. By inputting three-dimensional
positional coordinates, we predict the distribution of five parameters in the combustion
chamber: pressure, density, x-axis velocity, temperature, and oxygen mole fraction. This
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article investigates the effects of the number of hidden layers and neurons, as well as the
number of decision trees, on two fast prediction models based on the ANN and XGBoost.
Research has shown that compared with the CFD calculation results, the MSE of the ANN
predicted value is 0.0019, which is better than XGBoost, and the outliers in the predicted
value are significantly less than the CFD calculation results. Moreover, the training duration
of the ANN is only 6 min, which is much shorter than the calculation duration of CFD,
which often takes several hours. Therefore, the fast prediction method of combustion
chamber parameters based on artificial neural networks can assist in CFD calculation
during the combustion chamber design process, greatly accelerating the calculation speed
while ensuring accuracy.

The current research is a preliminary exploration of digital twins in gas turbine com-
ponents. The research can be extended to the prediction of multiple operating conditions in
the combustion chamber, and the fast prediction model can be connected in series with the
combustion chamber control system to achieve true digital twins at the component level or
even the entire machine level.

Author Contributions: Conceptualization, C.S. and Y.L.; methodology, C.S., Y.L. and Z.Z.; software,
C.S. and F.L.; validation, C.S.; formal analysis, C.S.; investigation, J.F.; resources, Y.L. and F.L.; data
curation, C.S. and F.L.; writing—original draft preparation, C.S.; writing—review and editing, C.S.
and Y.L.; visualization, C.S.; supervision, Y.L. and J.F.; project administration, Y.L.; funding acquisition,
Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study and the code are available on request
from the corresponding author.

Acknowledgments: The authors wish to acknowledge the energy and power research center of the
Institute of Engineering Thermophysics, Chinese Academy of Sciences for its assistance in the CFD
calculation of combustion chamber data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiang, H. Promote Heavy Duty Gas Turbine Core Technology Development and Industrial Application in China. J. Chin. Soc.

Power Eng. 2011, 31, 563–566.
2. Suo, J.; Feng, X.; Liang, H. Numerical Simulation for Research and Development of Aero Engine Combustor. Aerosp. Power 2021,

2, 61–65.
3. Cao, J. Status Challenges and Perspectives of Aero-Engine Simulation Technology. J. Propuls. Technol. 2018, 39, 961–970.
4. National Academies of Sciences, Engineering, and Medicine. Advanced Technologies for Gas Turbines; National Academies Press:

Washington, DC, USA, 2020.
5. Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016.
6. Li, H. Statistical Learning Methods, 2nd ed.; Tsinghua University Press: Beijing, China, 2019.
7. Raccuglia, P.; Elbert, K.; Adler, P.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J. Machine-

learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73–76. [CrossRef] [PubMed]
8. Shandiz, M.; Gauvin, R. Application of machine learning methods for the prediction of crystal system of cathode materials in

lithium-ion batteries. Comput. Mater. Sci. 2016, 117, 270–278. [CrossRef]
9. Sendek, A.; Yang, Q.; Cubuk, E.; Duerloo, K.-A.N.; Cui, Y.; Reed, E.J. Holistic computational structure screening of more than

12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 2017, 10, 306–320. [CrossRef]
10. Tao, Y.; Cui, C.; Zhang, Y.; Xu, Y.; Fan, W.; Han, X.; Han, J.; Li, C.; He, B.; Li, S.; et al. The Application and Improvement of Deep

Learning in Astronomy. Prog. Astron. 2020, 38, 168–188.
11. Chen, Y.; Zou, B.; Zhang, M.; Liao, W.; Huang, J.; Zhu, C. A review on deep learning interpretability in medical image processing.

J. Zhejiang Univ. (Sci. Ed.) 2021, 48, 18–29.
12. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
13. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

40



Electronics 2023, 12, 4774

15. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
16. Cho, K.; Van Merriënboer, M.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.
17. Kingma, D.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
18. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. Adv.

Neural Inf. Process. Syst. 2014, 27, 2672–2680.
19. Zhao, G.; Zhu, H.; Li, S.; Min, Z.; Xiaofeng, W. NOx Emission Prediction and Optimization for Gas Turbines Based on Data and

Neural Network. J. Chin. Soc. Power Eng. 2021, 41, 22–27.
20. Lamont, W.; Roa, M.; Lucht, R. Application of artificial neural networks for the prediction of pollutant emissions and outlet

temperature in a fuel-staged gas turbine combustion rig. Turbo Expo: Power for Land, Sea, and Air. In Proceedings of the
American Society of Mechanical Engineers 2014, Düsseldorf, Germany, 16–20 June 2014.

21. Wang, Q.; Hesthaven, J.; Ray, D. Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with
application to a combustion problem. J. Comput. Phys. 2019, 384, 289–307. [CrossRef]

22. Aversano, G.; Bellemans, A.; Li, Z.; Coussement, A.; Gicquel, O.; Parente, A. Application of reduced-order models based on PCA
& Kriging for the development of digital twins of reacting flow applications. Comput. Chem. Eng. 2019, 121, 422–441.

23. Lee, W.; Jang, K.; Han, W.; Huh, K.Y. Model order reduction by proper orthogonal decomposition for a 500 MWe tangentially
fired pulverized coal boiler. Case Stud. Therm. Eng. 2021, 28, 101414. [CrossRef]

24. Wu, Y.; Wu, X.; Rui, X.; Tian, R.; Qiu, L.; Yan, J. Study on Characteristics Analysis of Heavy-Duty Gas Turbine Axial Compressor
Under off-Design Condition. Gas Turbine Technol. 2019, 32, 12–15+67.

25. Gu, X.; Yang, S.; Sui, Y.; Papatheou, E.; Ball, A.D.; Gu, F. Real-time novelty detection of an industrial gas turbine using performance
deviation model and extreme function theory. Measurement 2021, 178, 109339. [CrossRef]

26. Sun, J.; Song, Y.; Shi, Y.; Zhao, N.; Zheng, H. Prediction of the pollutant generation of a natural gas-powered coaxial staged
combustor. J. Tsinghua Univ. (Sci. Technol.) 2023, 63, 649–659.

27. Fentaye, A.; Ul-Haq Gilani, S.; Baheta, A.; Li, Y.-G. Performance-based fault diagnosis of a gas turbine engine using an integrated
support vector machine and artificial neural network method. Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 233, 786–802.
[CrossRef]

28. Montazeri-Gh, M.; Nekoonam, A.; Yazdani, S. A novel approach to gas turbine fault diagnosis based on learning of fault
characteristic maps using hybrid residual compensation extreme learning machine-growing neural gas model. J. Braz. Soc. Mech.
Sci. Eng. 2021, 43, 430. [CrossRef]

29. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794.

30. Yunoki, K.; Murota, T.; Asai, T.; Okazaki, T. Large Eddy Simulation of a Multiple-Injection Dry Low NOx Combustor for
Hydrogen-Rich Syngas Fuel at High Pressure. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical
Conference and Exposition, Seoul, Republic of Korea, 13–17 June 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

41



Citation: Wang, X.; Qiao, M.; Li, Y.;

Tavares, A.; Qiao, Q.; Liang, Y.

Deep-Learning-Based Water Quality

Monitoring and Early Warning

Methods: A Case Study of Ammonia

Nitrogen Prediction in Rivers.

Electronics 2023, 12, 4645. https://

doi.org/10.3390/electronics12224645

Academic Editor: Ping-Feng Pai

Received: 16 October 2023

Revised: 10 November 2023

Accepted: 12 November 2023

Published: 14 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Deep-Learning-Based Water Quality Monitoring and Early
Warning Methods: A Case Study of Ammonia Nitrogen
Prediction in Rivers
Xianhe Wang 1,2, Mu Qiao 2, Ying Li 1,2, Adriano Tavares 2, Qian Qiao 1 and Yanchun Liang 3,4,*

1 School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519041, China;
wxh@zcst.edu.cn (X.W.)

2 Department of Industrial Electronics, School of Engineering, University of Minho, 4704-553 Braga, Portugal
3 School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
4 Key Laboratory of Symbol Computation and Knowledge Engineering of the Ministry of Education,

College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
* Correspondence: ycliang@jlu.edu.cn

Abstract: In line with rapid economic development and accelerated urbanization, the increasing
discharge of wastewater and agricultural fertilizer usage has led to a gradual rise in ammonia
nitrogen levels in rivers. High concentrations of ammonia nitrogen pose a significant challenge,
causing eutrophication and adversely affecting the aquatic ecosystems and sustainable utilization
of water resources. Traditional ammonia nitrogen detection methods suffer from limitations such
as cumbersome sample handling and analysis, low sensitivity, and lack of real-time and dynamic
feedback. In contrast, automated monitoring and ammonia nitrogen prediction technologies of-
fer more efficient methods and accurate solutions. However, existing approaches still have some
shortcomings, including sample processing complexity, interference issues, and the absence of real-
time and dynamic information feedback. Consequently, deep learning techniques have emerged as
promising methods to address these challenges. In this paper, we propose the application of a neural
network model based on Long Short-Term Memory (LSTM) to analyze and model ammonia nitrogen
monitoring data, enabling high-precision prediction of ammonia nitrogen indicators. Moreover,
through correlation analysis between water quality parameters and ammonia nitrogen indicators, we
identify a set of key feature indicators to enhance prediction efficiency and reduce costs. Experimental
validation demonstrates the potential of our proposed approach to improve the accuracy, timeliness,
and precision of ammonia nitrogen monitoring and prediction, which could provide support for
environmental management and water resource governance.

Keywords: artificial intelligence; LSTM model; neural networks; deep learning; applications of
computational intelligence

1. Introduction

In recent years, rapid economic development and accelerated urbanization have led to
improvements in industrial and agricultural production, as well as the living standards of
urban residents. However, this progress has resulted in increased wastewater discharge
and agricultural fertilizer usage, leading to a gradual rise in the concentration of ammonia
nitrogen in rivers [1]. While ammonia nitrogen is an essential nutrient in river water,
excessive levels can cause environmental issues, with water eutrophication being one of
the most serious problems [2]. Eutrophication refers to the excessive nutrient content in
river water, which triggers a rapid increase in biomass and fundamental changes in the
aquatic ecosystem [3]. High concentrations of ammonia nitrogen promote the growth
of algae and other aquatic plants, leading to an abundance of algae and phytoplankton,
discoloration, and the emergence of harmful algae such as “Blue-Green Algae”. The
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proliferation and death of these organisms result in a sharp decline in dissolved oxygen,
deteriorating water quality and creating “Dead Zones”. These not only affect the river’s
aquatic ecosystem but also have significant negative consequences for water resource
utilization and ecological conservation. Moreover, excessive ammonia nitrogen levels pose
risks to other organisms, including fish and invertebrates, affecting their respiratory and
reproductive systems, and potentially causing respiratory difficulties, toxin accumulation,
and even death. Additionally, ammonia nitrogen can react with other substances in water
to form compounds such as nitrites and nitrates, which can harm human and animal
health [4–6].

As a result, monitoring ammonia nitrogen concentrations in rivers has become a crucial
task for environmental management. By monitoring ammonia nitrogen levels, pollution
in river water can be promptly detected, enabling appropriate measures to be taken to
prevent water eutrophication and other environmental problems. Furthermore, monitoring
ammonia nitrogen levels provides scientific evidence for environmental management
and protection, serving as a basis for formulating environmental protection policies and
supporting sustainable water resource utilization [7–9].

To address water quality concerns, various water quality monitoring technologies,
including ammonia nitrogen detection and early warning techniques, have been devel-
oped [10–12]. Traditional methods for ammonia nitrogen detection, such as the Nessler
method, evaporation determination method, indicator method, and fluorescence method,
have limitations in terms of cumbersome operations, low sensitivity, and limited accuracy.
In recent years, automated monitoring technologies such as chromatography, electrochem-
ical methods, optical methods, and biosensors have been widely adopted for ammonia
nitrogen detection [13,14]. These methods offer advantages such as simplified operations,
high efficiency, and improved accuracy, some of which enable real-time monitoring of
water quality. Additionally, current ammonia nitrogen early warning technologies utilize
a combination of monitoring instruments and information systems to achieve real-time
monitoring and early warning of water quality conditions through data collection, trans-
mission, processing, and analysis. Despite the numerous studies conducted on surface
water ammonia nitrogen monitoring and early warning, practical applications still face
limitations. Traditional chemical analysis methods involve laborious sample handling
and analysis procedures, leading to potential errors. Novel techniques such as biosensors
exhibit high sensitivity but encounter interference issues in complex environments. Fur-
thermore, conventional monitoring methods often provide static data information and
lack real-time and dynamic information feedback [15]. Therefore, improving the accuracy,
timeliness, and precision of ammonia nitrogen monitoring and early warning in surface
water remains an important research direction [16–18].

With the rapid development of artificial intelligence, machine learning has emerged
as a popular technology in environmental and water resource management. Traditional
machine learning methods have many advantages, such as ease of understanding and
interpretation, visual analysis, and easy extraction of rules. In a relatively short period of
time, these methods can produce feasible and effective results on large data sources and
can handle both categorical and numerical data. They are suitable for handling missing
samples and have a fast running speed when testing the dataset. However, there are also
obvious disadvantages to machine learning, such as difficulties in handling missing data,
the tendency to overfit, and ignoring the correlation between attributes in the dataset. Prac-
tical applications have shown that deep learning outperforms traditional machine learning
and statistical methods in many tasks [19]. For example, deep learning models can learn
and capture complex features of data, including nonlinear relationships and high-order
interactions, which provides deep learning with greater flexibility and an advantage in deal-
ing with complex, dynamic, and unknown data. It has strong representational power, and
is able to handle data with high-dimensional features, nonlinear relationships, and complex
patterns. It also has a high tolerance for noise and outliers, better adaptability to real-world
applications, and improved robustness and generalization capabilities. As the amount of
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data increases, traditional machine learning methods may encounter problems such as the
curse of dimensionality. However, deep learning models have excellent scalability and
can easily handle large-scale datasets, allowing them to learn more complex patterns from
a large amount of data. It has strong memory capabilities, and is able to store and recall
a large amount of information. This provides deep learning with a great advantage in
application scenarios that require long-term memory and historical information. Finally,
in many application scenarios, deep learning can achieve higher prediction accuracy than
traditional machine learning methods; in particular, in the field of water quality prediction,
deep learning algorithms perform significantly better than traditional machine learning al-
gorithms [20]. In this study, a deep learning model called Long Short-Term Memory (LSTM)
was employed to process water quality monitoring data and achieved high-precision pre-
diction of ammonia nitrogen indicators through data analysis and modeling [21–23]. LSTM
is a recursive neural network (RNN) that solves the problem of gradient disappearance
or explosion that exists in traditional RNNs when dealing with long-sequence data by
introducing memory units, allowing better capture of the time-series characteristics of the
data when dealing with long-sequence data. At the same time, the gate control mechanism
in the LSTM model can effectively control the flow of information, avoiding gradient disap-
pearance or explosion problems. Therefore, when dealing with water quality data, LSTM
can better capture the long-term dependence relationship between water quality indicators
and improve predictive performance through forward and reverse information flow, thus
more accurately predicting water quality data [24–26]. Furthermore, correlation analysis
between different water quality indicators and ammonia nitrogen indicators helps in the
identification of key feature indicators for model input, enhancing prediction efficiency and
reducing costs [12,22]. To achieve these objectives, a series of experiments were conducted
using historical monitoring data from the Qianshan River in Zhuhai City.

2. Materials and Methods
2.1. Study Area and Data Collection

The Qianshan River waterway plays a vital role as a major inland transportation route
in Zhuhai City, China. It is located at 21◦48′~22◦27′ north latitude and 113◦03′~114◦19′ east
longitude, in the south of Guangdong Province, on the west bank of the Pearl River estuary.
Its source can be traced back to Lianshiwan in Tantou Town, Zhongshan City, where water
is introduced from the Madaomen waterway and flows eastward, passing through Tantou
Town and Qianshan Street in Zhuhai City, until it merges into the Pearl River Estuary at
Wanzai Shikaoju lock. With a total length of approximately 23 km, the river encompasses a
stretch of about 15 km in Tantou Town, Zhongshan, and varies in width from 58 to 220 m.
In Zhuhai, the river extends for about 8 km with a width ranging from 200 to 300 m. The
Qianshan River basin covers a watershed area of around 338 km2, experiencing an annual
runoff volume of 1.54 billion cubic meters, an average annual runoff depth of 1100 mm, and
an average runoff coefficient of 0.58. The river basin predominantly consists of sedimentary
plain landforms, sloping from the northeast to the southwest.

Since 2015, the Qianshan River basin has experienced a total of 107 industrial pollution
sources. Out of these, 20 are located in Sanxiang Town, Zhongshan City, representing
18.7% of the total sources, while 45 are situated in Tantou Town, accounting for 42.1%.
Additionally, the Zhuhai area hosts 42 industrial pollution sources, making up 39.3% of
the overall count. Urban domestic pollution primarily consists of sewage from urban
villages and scattered old villages along the river. Figure 1 shows the specific locations of
monitoring areas and monitoring stations.

For the purpose of this study, water quality data was collected from the Shijiaoju
monitoring point within the Qianshan Street waterway network. The dataset spans from
8 November 2020 to 28 February 2023, providing historical water quality data at four-hour
intervals. The dataset comprises a total of 5058 samples, encompassing nine water quality
parameters: ammonia nitrogen (NH3-N), water temperature (Temp), potential of hydrogen
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(pH), dissolved oxygen (DO), potassium permanganate index (KMnO4), total phosphorus
(TP), total nitrogen (TN), conductivity (Cond), and turbidity (Turb).
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2.2. Data Preprocessing

During the operation of automated water quality monitoring stations, various factors,
including sensor malfunctions, network failures, and unexpected events such as pollutant
leaks or extreme weather conditions, can lead to data loss and anomalies. The objective of
data preprocessing is to cleanse the raw data by eliminating outliers, noise, and missing
values, thereby improving the performance and reliability of water quality prediction
models. Thorough data preprocessing ensures that the models are built upon high-quality
data, enhancing prediction accuracy and providing a more dependable scientific foundation
for water quality monitoring and management decisions [27–29].

In the context of handling missing values, two primary approaches, namely single im-
putation (SI) and multiple imputation (MI), are commonly used. While MI is more complex
in operation and relatively costly, this study, considering the nature of the Qianshan River
water quality data, adopts linear interpolation as the method for filling missing values.
Linear interpolation, widely employed for filling missing values, is particularly suitable
for data with a time dimension, such as time series data. Its fundamental concept involves
estimating the missing values by performing linear interpolation between the preceding
and subsequent observed values [30,31].

To implement linear interpolation, the positions of the missing values within the
time series, referred to as interpolation positions, must be determined. Subsequently, the
interpolation values are calculated by applying linear interpolation based on the available
observed values, thereby obtaining estimates for the missing values [26,27]. Finally, it is
essential to verify the interpolation results by ensuring that the post-interpolation data
align with the actual situation, adhere to data distribution characteristics, and maintain
consistency with other variables.

Let (X1, Y1) represent the preceding observed value of the missing value, (X2, Y2)
represent the subsequent observed value, and X0 represent the position of the missing
value. The estimated missing value Y0 can be calculated using the following formula:

Y0 = Y1 + (X0 − X1) × (Y2 − Y1)/(X2 − X1) (1)
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Here, Y1 and Y2 represent the values of the observed values preceding and following
the missing value, respectively, while X1 and X2 represent the corresponding time or
position information. X0 represents the position of the missing value [32]. Figure 2 and
Table 1 show the basic situation of the water quality data.
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Figure 2. Temporal variation curves of water quality parameters.

Table 1. Summary statistics of water quality parameters.

Variables Units Max Min Mean Std

NH3-N mg/L 3.095 0.025 0.462 0.462
Temp ◦C 32.630 13.400 24.617 4.754

pH - 9.445 6.406 7.610 0.572
DO mg/L 28.241 1.010 8.254 3.889

KMnO4 mg/L 10.470 1.120 3.781 1.626
TP mg/L 0.319 0.031 0.111 0.050
TN mg/L 5.755 1.945 3.276 0.685

Cond µs/cm 2988.800 214.301 1261.352 977.574
Turb NTU 268.377 5.302 53.190 34.524

2.3. Feature Dataset

The dataset was thoroughly analyzed prior to model construction to gain insights into
the relationships among variables, particularly focusing on the correlations between the
input variables and the output variable [33]. Strong correlations between input and output
variables indicate that the input values can effectively predict the output values, enabling
the model to utilize this information during the modeling process [34]. Consequently, the
model is expected to exhibit superior predictive performance by accurately capturing the
relationships between inputs and outputs [22]. Conversely, weak correlations between
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input and output variables imply limited predictive capability of the input variables for the
output variables [35]. In such cases, the model may struggle to capture these relationships,
resulting in restricted predictive performance as it fails to extract sufficient information
from the input variables to accurately predict the output variables.

In this paper, the Pearson correlation coefficient, a widely used measure for assessing
linear correlations between random variables, was employed to analyze the correlations
among input variables and between input variables and the output variables. By calculating
the Pearson correlation coefficient, we were able to evaluate the strength of correlations
among input variables and the association between the input variables and the output
variable [36]. This data analysis facilitated the identification of strong correlations among
input variables, addressing the issue of redundant information and enhancing the model’s
efficiency [23]. Table 2 shows the calculation results of Pearson correlation coefficient.

Table 2. Pearson correlation coefficient table.

Variables NH3-N Temp pH DO KMnO4 TP TN Cond Turb

NH3-N 1
Temp 0.026 1

pH −0.420 −0.331 1
DO −0.394 −0.568 0.790 1

KMnO4 0.209 −0.326 0.527 0.511 1
TP 0.613 0.426 −0.409 −0.485 0.140 1
TN 0.447 −0.199 0.199 0.057 0.547 0.466 1

Cond −0.038 −0.617 0.627 0.628 0.760 −0.243 0.420 1
Turb −0.022 0.362 −0.345 −0.354 −0.203 0.333 −0.149 −0.418 1

The Table 2 analysis revealed significant correlations between NH3-N and six parame-
ters, namely pH, DO, KMnO4, TP, TN, and Cond. Specifically, the correlation coefficient
between NH3-N and pH was −0.420, demonstrating a significant negative correlation
(p < 0.01) between NH3-N and pH. Similarly, NH3-N and DO exhibited a correlation coeffi-
cient of −0.394, indicating a significant negative correlation (p < 0.01) between NH3-N and
DO. In contrast, NH3-N and KMnO4 showed a correlation coefficient of 0.209, suggesting
a significant positive correlation (p < 0.01) between NH3-N and KMnO4. The correlation
coefficient between NH3-N and TP was 0.613, indicating a significant positive correlation
(p < 0.01) between NH3-N and TP. Moreover, NH3-N and TN had a correlation coefficient of
0.447, signifying a significant positive correlation (p < 0.01) between NH3-N and TN. Lastly,
NH3-N and Cond exhibited a correlation coefficient of −0.038, indicating a significant
negative correlation (p < 0.01) between NH3-N and Cond.

Conversely, no significant correlations (p > 0.05) were observed between NH3-N
and Temp or Turb, suggesting no significant relationship between NH3-N and these
two parameters.

Based on the results of the correlation analysis, each parameter was ranked according
to the magnitude of their correlation coefficients. The parameters were then divided into
nine groups, with increasing correlation coefficient values, as visually depicted in Figure 3.
This grouping allows for a better understanding of the relationships between NH3-N
and other parameters, with parameters exhibiting higher correlation coefficients being
considered more strongly associated with NH3-N levels.
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2.4. LSTM Model
2.4.1. Model Construction and Training

The design and training stages of deep learning models are pivotal in water quality
modeling and prediction. Given the multifaceted influences and the temporal-spatial
patterns inherent in NH3-N concentrations in surface water, the adoption of the Long
Short-Term Memory (LSTM) model, a prominent type of recurrent neural network (RNN),
is judicious. Notably, LSTM boasts memory prowess, facilitating adept capture of long-term
dependencies inherent in time series data [37]. Especially in the field of water quality pre-
diction, the LSTM algorithm represents a significant improvement compared to traditional
machine learning algorithms [38].

During the model training phase, historical NH3-N monitoring data necessitate parti-
tioning into training, validation, and testing sets, designated for model training, validation,
and testing, respectively. This partitioning can be realized through either time-series-based
or random division, ensuring that the data in these subsets remain representative both
temporally and spatially. In this work, the validation set encompassed 10% of the dataset,
totaling 506 samples, while the testing set comprised 5% of the dataset, amounting to
253 samples. The remaining samples were allocated for model training.

For model construction, training, and optimization, renowned deep learning frame-
works such as TensorFlow and Keras come to the fore, streamlining efficient model design
and training. Techniques including grid search and cross-validation prove instrumental
in hyperparameter tuning. Grid search entails training and validating the model with as-
sorted hyperparameter combinations within specified ranges, culminating in the selection
of the optimal combination via validation set performance. In contrast, cross-validation
involves segmenting the training set into multiple folds, training the model on each fold,
validating on the remaining folds, and averaging performance metrics to temper evaluation
randomness and bolster generalization proficiency. It is prudent to acknowledge that grid
search may dictate considerable computational resources and time, mandating judicious
hyperparameter range selection and prudent resource allocation to streamline effective
hyperparameter tuning [22,23].

LSTM models typically encompass input layers, LSTM layers, and output layers,
among other constituents. Model structure can be tailored to data attributes by adjusting
parameters such as the number of LSTM neurons and activation functions. During the
model training process, setting appropriate hyperparameters—such as learning rate and
batch size—assumes significance. Learning rate governs the magnitude of weight updates
per iteration, with extremes preventing convergence or inducing local optima. Batch size
dictates the number of samples per parameter update, with excessively large batches caus-
ing aggressive updates, while overly small batches yield unstable adjustments. Pragmatic
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experimentation and optimization are indispensable to ascertain suitable hyperparameter
values, fostering superior model performance.

In this work, an LSTM model was crafted within the TensorFlow-GPU 2.9 framework.
This model comprises three layers: an input layer, an LSTM layer with 50 neurons; a
subsequent LSTM layer with 80 neurons; and the ultimate output layer, featuring a single
fully connected neuron for prediction output. Sample data from the past 30 time periods are
used to predict data for the next 1 time period. A dropout layer, characterized by a dropout
rate of 0.2, intervenes between the second and third layers, systematically discarding a
fraction of neuron outputs during model training, thus tempering overfitting risks.

2.4.2. Model Evaluation

The assessment of a model’s predictive performance holds paramount importance in
affirming its efficacy. Appropriate evaluation metrics must be used to quantitatively gauge
the model’s predicted outcomes. In this study, the mean square error (MSE) and coefficient
of determination (R2) emerge as primary indices to scrutinize the predictive prowess of the
model [39]. Furthermore, the average absolute error (MAE) and root mean square error
(RMSE) are also invoked, furnishing a holistic comprehension of the model’s predictive
capacity pertaining to ammonia nitrogen concentration [40–42].

These four evaluation methods are briefly introduced as follows:

1. Mean square error (MSE): MSE encapsulates the average of squared differences be-
tween predicted values and actual values. It provides a measure of prediction accuracy,
with lower MSE values denoting enhanced precision in the model’s predictions.

2. Coefficient of determination (R2): R2 quantifies the proportion of the variability in the
dependent variable that can be explicated by the model. It ranges from 0 to 1, with
higher R2 values indicating stronger model performance in explaining the variance in
the data.

3. Average absolute error (MAE): MAE computes the average absolute differences be-
tween predicted values and actual values. MAE offers insights into the average predic-
tion error magnitude, with lower MAE values reflecting superior prediction accuracy.

4. Root mean square error (RMSE): RMSE calculates the square root of the average of
squared prediction errors. It provides an estimation of the model’s predictive error
spread, with smaller RMSE values signifying improved prediction precision.

By leveraging these evaluation metrics, the model’s performance in forecasting ammo-
nia nitrogen concentration can be rigorously assessed, affording a comprehensive under-
standing of its predictive capabilities.

2.4.3. Model Optimization

In the realm of model optimization, the consideration of model interpretability as-
sumes significance. Deep learning models are often perceived as “black-box” entities,
challenging the explanation of the rationale behind their predictions. To address this
challenge, visualization techniques and feature importance analysis can be harnessed to
unveil the model’s prediction process. This augments model interpretability, streamlining
model application and refinement. It is imperative to recognize that model evaluation and
optimization represent iterative processes. Depending on the context, multiple cycles of
evaluation and optimization may be warranted, entailing continuous adjustments to model
design and parameters until the desired performance benchmarks are met.

In this study, optimization efforts entailed the utilization of grid search and cross-
validation methodologies. The model was encapsulated as a regressor via KerasRegressor,
thereby enabling its seamless integration with scikit-learn. A GridSearchCV object was
instantiated to orchestrate grid search and cross-validation within the designated parameter
space. This parameter space encompassed batch size, epochs, and the optimizer. The
“cv” parameter dictated the number of folds for cross-validation, set to 2 in this instance,
indicating deployment of 2-fold cross-validation [43–45]. After rigorous experimental
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comparisons, the following hyperparameters were judiciously selected: a batch size of 32,
50 epochs, and a RMSprop optimizer (root mean square propagation).

RMSprop serves as an optimization algorithm for training neural network models.
Operating as an adaptive learning rate technique rooted in the gradient descent algorithm,
RMSprop leverages exponentially weighted moving averages of gradients to dynamically
adjust the learning rate. In contrast to conventional gradient descent approaches, RMSprop
employs the moving average of squared gradients to modulate the learning rate. The
central steps of RMSprop entail:

1. Parameter initialization: Weights of the model and exponentially weighted moving
average of squared gradients are initialized.

2. Iterative training:

• Gradients of the model’s loss function concerning the weights are computed.
• The exponentially weighted moving average of squared gradients is updated.
• Adjustment value for the learning rate is computed based on the moving average.
• Weights are updated based on the learning rate adjustment value and gradients.
• The above steps are reiterated until a termination criterion is satisfied, such as

reaching the maximum number of iterations or convergence of the loss function.

RMSprop brings forth several merits, including:

1. Adaptive learning rate: RMSprop dynamically tunes the learning rate in response
to gradient changes. Large gradients prompt diminished learning rates, curbing
parameter updates, while smaller gradients engender augmented learning rates,
hastening parameter updates.

2. Applicability to non-stationary data: RMSprop excels in scenarios with non-stationary
gradients, augmenting model training stability and convergence pace.

3. Ameliorating gradient explosion and vanishing: Through the utilization of exponen-
tially weighted moving averages of gradients, RMSprop mitigates the adverse effects
of gradient explosion and vanishing, thereby amplifying model training effectiveness.

It remains pivotal to acknowledge that RMSprop mandates manual hyperparameter
configuration, including of the initial learning rate and decay coefficient. Additionally,
RMSprop may not universally serve as the optimal optimization algorithm, and alternatives
such as Adam or Adagrad could outperform RMSprop for specific problems [46–48].

3. Results
3.1. Analysis of Spatiotemporal Variation in NH3-N Content in River Water Quality

Figure 4 illustrates the fluctuations in NH3-N concentrations within the Qianshan
River. The average NH3-N concentration follows a discernible diurnal rhythm, culminating
in the early morning hours (4:00–08:00) and ebbing during the afternoon (16:00–20:00).
This diurnal oscillation can be attributed to the urban lifestyle rhythm. The morning
surge in NH3-N concentration arises from activities such as waking and personal hygiene,
which augment the discharge of organic wastewater, subsequently elevating NH3-N lev-
els. Conversely, afternoon hours, dedicated to work and studies, witness a reduction
in organic wastewater discharge, thereby leading to a decline in NH3-N concentration.
Temperature variations between these periods may further contribute. Nighttime features
lower water temperatures, which retard microbial metabolic activities, facilitating NH3-N
accumulation. Daytime warmth, in contrast, accelerates microbial metabolism, promoting
NH3-N consumption.

Furthermore, the sway of photosynthesis emerges as a potential influence on NH3-N
fluctuations. Aquatic phytoplankton, through photosynthesis, convert carbon dioxide
and water into organic matter and oxygen. This process necessitates NH3-N and other
inorganic nitrogen compounds, thereby ushering a dip in NH3-N concentration during
robust photosynthetic phases in daylight. Subsequently, the absence of photosynthesis
during nighttime leads to increased NH3-N concentration.
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The daily average NH3-N concentration typically registers an elevation during the
middle and upper segments of each month, peaking around the 14th and 15th, while
receding during the middle and lower segments, hitting lows around the 18th and 19th.
This pattern is intricately intertwined with pollutant emissions and environmental ele-
ments. These segments mark peaks for domestic and industrial water usage, leading to
wastewater discharge bearing higher NH3-N content and correspondingly elevated NH3-N
concentration. Towards the end of the month, as environmental factors and pollutant
sources dwindle, NH3-N concentration also gradually diminishes.

Monthly NH3-N concentration averages tend to surge in August and dip in April. This
phenomenon likely stems from temperature and climatic alterations. Summer temperatures
expedite water chemical reactions, spur bacterial proliferation, and yield additional NH3-N
through organic matter decomposition, culminating in heightened NH3-N concentration.

51



Electronics 2023, 12, 4645

Conversely, spring’s cooler temperatures deter chemical reactions and bacterial growth,
translating to decreased NH3-N concentration. Further factors such as increased sum-
mer temperatures, reduced rainfall, and slower water flow fostering biological growth
and heightened microbial metabolic activity play a role in augmenting NH3-N concentra-
tion. Spring’s lower temperatures, amplified rainfall, and swifter water flow, conversely,
engender a decline in NH3-N concentration.

The distinct NH3-N concentration trends across varied time spans underscore its cyclic
variations in the Qianshan River. The multifaceted factors influencing NH3-N concentra-
tion warrant comprehensive consideration for the formulation of effective management
strategies against NH3-N pollution. Moreover, these analytical insights provide pivotal
reference points, guiding the development, forecasting, and refinement of subsequent deep
learning models.

3.2. Evaluation of NH3-N Prediction Performance Based on the LSTM Model

The effectiveness of the developed NH3-N concentration model was rigorously evalu-
ated through the application of key metrics, namely R2, MSE, and MAE, which were all
applied to the validation dataset. The outcomes of this evaluation validate the proficiency
of the LSTM model within the research domain, as depicted in Figure 5.
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The model’s trajectory of convergence and stability was observed within a span of
50 iterations. This achievement was coupled with an impressively low MAE that remained
below 0.045, accompanied by a MSE that maintained itself below 0.004. This portrayal
in Figure 5 succinctly underscores the model’s efficacy in predicting ammonia nitrogen
concentrations. The proximity of these metrics to their respective minima enforces the
LSTM model’s competence in forecasting ammonia nitrogen concentration.

Furthermore, the predictive outcomes gleaned from the model, as aptly showcased
in Figure 5c, manifest a remarkable alignment with the actual measured values. This
agreement is further underscored by the calculated R2 value of 0.89. In totality, the LSTM
model deftly captures the nuanced concentration variations of NH3-N coursing through
the Qianshan River, thus emerging as a robust and adept predictive model.

3.3. Comparison of NH3-N Prediction Performance Based on Different Feature Sets

In order to identify the key input variables combinations that influence the prediction
results of ammonia nitrogen concentrations, the LSTM model was utilized with different
combinations of the nine input variables to predict ammonia nitrogen levels on the test
dataset. Based on the strength of the correlation between the input variables and the
target output, the nine input variables were sorted in descending order of their correlation
coefficient values with the target output. The input feature combinations were gradually
formed by cumulatively adding the correlation coefficient values, as shown in Figure 3.

In the sphere of evaluation metrics, the R-squared (R2) value emerged as a cardi-
nal yardstick, affording substantive insights into the model’s capacity to explain the
target variable. Spanning the continuum from 0 to 1, an R2 value approaching unity
connoted heightened explanatory efficacy of the model relative to the target variable. Our
meticulous scrutiny of R2 values unveiled the preeminence of feature combination 6, a
composition encompassing six variables, which secured the acme R2 value of 0.82. This
pronounced R2 value underscored the compelling explanatory prowess wielded by feature
combination 6 over the target variable.

Furthermore, our scrutiny extended to mean squared error (MSE) and root mean
squared error (RMSE), metrics poised to gauge the dissonance between the model’s prog-
nostications and the empirical observations. Remarkably, feature combination 6 evidenced
commendable proficiency, yielding nominal error values of 0.0047 and 0.0655 for MSE
and RMSE, respectively, thereby accentuating the model’s prowess in delivering refined
predictive accuracy.

Concomitantly, the focus converged on mean absolute error (MAE), a barometer of
the average absolute divergence between the model’s prognoses and the actual obser-
vations. In this purview, feature combination 6 preserved its ascendancy, manifesting a
modest absolute error value of 0.0460, an indication of its robust capacity to attenuate
prediction bias.

A comprehensive synthesis of Figure 6 and Table 3 unveils compelling revelations.
Feature combination 1, characterized by a single indicator, boasted an elevated R2 value of
0.79, alongside mitigated MSE, RMSE, and MAE values. This configuration accentuated
the salience of a single feature’s explanatory potential with regard to the target variable,
indicating a heightened predictive accuracy. In contrast, feature combinations 2, 3, 4, and
7 followed a trajectory marked by diminished R2 values and accentuated MSE, RMSE,
and MAE values—reflective of dwindling explanatory efficacy and curtailed predictive
precision. Feature combinations 5, 8, and 9 presented consistent performance, exhibiting
amplified R2 values juxtaposed against marginally inflated MSE, RMSE, and MAE values
with regard to feature combination 6. This nuanced differentiation intimates a marginal
reduction in predictive accuracy for these configurations.

A holistic assimilation of the aforesaid analysis unequivocally elevates feature com-
bination 6—a composite of six variables—as an exemplar of superlative performance, as
evidenced across a spectrum of evaluation metrics. Supported by an improved R2 value,
reduced MSE, RMSE, and MAE values, as well as enhanced predictive precision, feature
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combination 6 emerges as a compelling set of input variables, deserving of thorough
investigation in future research initiatives and practical implementations.
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Table 3. Summary statistics of feature sets and their corresponding evaluation metric values.

Indicator Combination R2 MSE RMSE MAE

Combination 1 0.79 0.0045 0.0674 0.0453
Combination 2 0.74 0.0053 0.0730 0.0503
Combination 3 0.73 0.0048 0.0695 0.0518
Combination 4 0.75 0.0052 0.0722 0.0543
Combination 5 0.75 0.0067 0.0816 0.0629
Combination 6 0.82 0.0047 0.0655 0.0460
Combination 7 0.75 0.0066 0.0814 0.0630
Combination 8 0.72 0.0081 0.0900 0.0695
Combination 9 0.78 0.0057 0.0752 0.0576

4. Discussion
4.1. Feasibility of Using the LSTM Model with Easily Measurable Water Quality Data to Predict
Ammonia Nitrogen Concentrations in Water Quality

The LSTM model developed in this study has effectively established a nonlinear map-
ping relationship between readily measurable water quality parameters (NH3-N, Temp, pH,
DO, KMnO4, TP, TN, Cond, and Turb) and the target variable (NH3-N). This achievement
helps to accurately predict the concentration of ammonia nitrogen in river systems. The
model’s predicted NH3-N concentrations closely align with observed values acquired from
real-time data collected at river water monitoring sites, attaining an average R2 value of
0.82. This reflects the strong ability of the model to predict the peak concentration of NH3-
N, which can provide reliable early warnings to mitigate the impact of elevated NH3-N
levels on water quality. This ability is of great significance for intelligent monitoring and
management of aquatic environments.

It is worth noting that, unlike the accuracy of predicting concentration peaks, the
model exhibits a slight decrease in its effectiveness in predicting NH3-N concentration
valleys within specific time intervals, as shown in Figure 6c–i. The model did not fully learn
the complexity of data attributes during the training phase NH3-N concentration trough,
making it impossible to accurately predict the trough value. Moreover, the limited NH3-N
concentrations within water quality samples during valley periods, coupled with potential
measurement deviations in Internet of Things (IoT) real-time monitoring devices, may
engender diminished accuracy in raw data. These exceptional circumstances inevitably
contribute to the attenuation of training data accuracy, consequently influencing the model’s
predictive performance. Hence, the acquisition of high-fidelity training data assumes
critical importance to reinforce prognostic precision. Furthermore, predicated upon the
findings presented in Figure 6, the incorporation of supplementary input variables that
wield substantive influence over the output variable could potentially ameliorate model
prediction accuracy. Thus, delving into additional potential indicators that affect NH3-
N concentrations within river water quality can serve to augment the model’s efficacy,
presenting a meaningful avenue for enhancing predictive capabilities.

4.2. Potential for Reducing Model Prediction Costs

In contrast to conventional mechanistic models, the data-driven prediction methodolo-
gies surmount the temporal limitations associated with sample procurement, analysis, and
detection, concurrently reducing the demand for substantial human, financial, and material
resources. However, when scrutinizing indicators that are measurable within brief time-
frames of minutes to a day, the adoption of sensors having high temporal resolution might
entail elevated costs, notably in terms of instrument probe maintenance. Thus, it is impera-
tive to identify pivotal variables for model training that exhibit a minimal compromise on
prediction performance. This understanding may significantly improve the operational ef-
ficiency of the model, thereby reducing computational energy consumption and prediction
expenses. Empirical findings indicate that using a separate input–output paradigm in the
prediction model to achieve accurate NH3-N prediction is not sufficient. Additionally, the

55



Electronics 2023, 12, 4645

iterative approach of progressively augmenting input variables to discern the optimal input
combination yielding superior NH3-N prediction accuracy entails notable temporal and
operational investments. Conversely, the methodological application of Pearson correlation
coefficient analysis effectively identifies a subset of input variables characterized by robust
interactions that materially contribute to the model’s output. Notably, the current study
demonstrates the relevance of NH3-N, pH, DO, KMnO4, TP, and TN (as delineated in
Figure 3). Therefore, the composition of input variables is amenable to adjustment contin-
gent upon the ordering of their correlations, thereby engendering the identification of an
optimal input indicator combination predicated upon prediction performance.

5. Conclusions

In this investigation, a data-driven Long Short-Term Memory (LSTM) model was
designed to predict NH3-N concentrations in river water networks. This model shows
good accuracy in predicting NH3-N concentration. Primarily, an exploratory examination
was undertaken to assess the aptitude of deep learning methodologies in NH3-N predic-
tion. The outcomes manifestly underscored the data-driven NH3-N prediction model’s
robust generalization potential, led by an impressive R2 value of 0.82 for the optimal
input indicator amalgamation. Furthermore, the model’s performance was amenable to
enhancement through judiciously modulating the number of layers and neurons within the
LSTM framework. Equally noteworthy, the employment of Pearson correlation coefficient
analysis expeditiously illuminated and quantified the multi-faceted contributions of diverse
input variables to the model’s predictive outcomes. This analytical framework significantly
enriched our comprehension of deep learning results and facilitated model optimization.
Overall, the proposed LSTM-based NH3-N prediction model effectively overcomes the
limitations of traditional monitoring methods in terms of time and economic costs and
enables fast modeling at low costs. This provides a feasible solution for early warning of
high NH3-N concentrations in river water, enabling water environmental management
departments to develop inspection plans and reduce incidents of water quality hazards
caused by excessive NH3-N concentrations.

However, the proposed model has some limitations. Rooted in the underpinnings of
the deep learning algorithm, modeling efficacy hinges upon the interplay between input
and output variables. This study predominantly accentuated the correlation existing be-
tween input and output variables, thereby inadvertently disregarding the latent interplay
amongst the input variables themselves. This analytical disposition could potentially lead
to the inadvertent omission of pivotal variables, given the plausible existence of inherent
correlations amongst the input variables. It is plausible that certain features might furnish
supplementary insights that underpin enhanced predictive capabilities. The inadvertent
oversight of internal feature correlations could yield the exclusion of such salient features,
impinging upon the model’s precision and performance. Additionally, the introduction of
redundant features—features with a high degree of correlation—might entail unwarranted
complexities, hampering model training and generalization proficiencies. In scenarios
wherein inter-feature correlations exist, the model may inadvertently assign disproportion-
ate weights to features exhibiting elevated correlations, inadvertently sidelining features
characterized by lower correlations. This asymmetry in feature weighting can engender
biased feature attributions and potentially compromise the model’s adeptness in harnessing
the complete spectrum of available information. Neglecting the intrinsic feature correla-
tions further augments the model’s tendency to disproportionately depend on specific
features during the training phase, thereby amplifying the risk of overfitting. Consequently,
in the realm of feature engineering, a judicious consideration of both the correlation be-
tween input–output variables and the internal inter-feature correlations is indispensable,
potentially culminating in more exhaustive and precise predictive models.

In summary, the future research should focus on improving model performance,
expanding application domains, streamlining workflows, and further enhancing model
interpretability to better support various aspects of water quality environmental man-
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agement and governance. To better understand the model’s performance variations at
different times, we plan to incorporate seasonality and other temporal patterns as input
features. This step will enable us to more accurately capture the seasonal variations in
water quality, providing precise data support for water quality management. Further-
more, we will actively investigate various data processing and feature selection methods,
such as principal component analysis and causal analysis, to gain a deeper understand-
ing of the reasons behind performance differences. By continually optimizing the model,
enhancing its generalization capabilities and robustness, we will ensure that the model
performs excellently under diverse conditions [49]. Simultaneously, we will compare the
performance of different deep learning models, streamline model algorithms, and improve
model interpretability. By quantifying model costs, we will maintain efficient workflows
while enhancing performance. This approach will better serve the needs of water quality
prediction and water quality environmental management.
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Abstract: With the rapid development of very-high-resolution (VHR) remote-sensing technology,
automatic identification and extraction of building footprints are significant for tracking urban
development and evolution. Nevertheless, while VHR can more accurately characterize the details
of buildings, it also inevitably enhances the background interference and noise information, which
degrades the fine-grained detection of building footprints. In order to tackle the above issues, the
attention mechanism is intensively exploited to provide a feasible solution. The attention mechanism
is a computational intelligence technique inspired by the biological vision system capable of rapidly
and automatically catching critical information. On the basis of the a priori frequency difference
of different ground objects, we propose the denoising frequency attention network (DFANet) for
building footprint extraction in VHR images. Specifically, we design the denoising frequency attention
module and pyramid pooling module, which are embedded into the encoder–decoder network
architecture. The denoising frequency attention module enables efficient filtering of high-frequency
noises in the feature maps and enhancement of the frequency information related to buildings. In
addition, the pyramid pooling module is leveraged to strengthen the adaptability and robustness of
buildings at different scales. Experimental results of two commonly used real datasets demonstrate
the effectiveness and superiority of the proposed method; the visualization and analysis also prove
the critical role of the proposal.

Keywords: computational intelligence; neural networks; building footprint extraction; attention
mechanism; remote-sensing images

1. Introduction

With the rapid development of satellite, aircraft, and UAV technology, it has become
easier to obtain high-resolution and very-high-resolution (VHR) remote-sensing images [1].
Based on these high-quality remote-sensing images, the detailed information of ground
objects can be clearly depicted, which facilitates many remote-sensing tasks, including but
not limited to land-cover classification [2], object detection [3], change detection [4], etc.
Among the ground objects covered by VHR images, buildings, as the carrier of human
production and living activities, are of vital significance to the human living environment,
and are good indicators of population aggregation, energy consumption intensity, and
regional development [5]. Therefore, the accurate extraction of buildings from remote-
sensing images is conducive to the study of urban dynamic expansion and population
distribution patterns, promoting the digital construction and management of cities, and
enhancing the sustainable development of cities [6].
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Although some research progress has been made in building footprint extraction in
recent years, the diversity of remote-sensing image sources and the complexity of the
environment still bring many challenges to this task, mainly including:

(a) In optical remote-sensing images, buildings have small inter-class variance and large
intra-class variance [7]. For example, non-buildings such as roads, playgrounds, and
parking lots have similar characteristics (such as spectrum, shape, size, structure, etc.),
which are easy to confuse the extraction method [8].

(b) Due to the different imaging angles of sensors, high-rise buildings often produce
different degrees of geometric distortion, which increases the difficulty of algorithm
recognition [9].

(c) Due to the difference in the sun’s altitude angle when shooting, buildings tend to
produce shadow areas at different angles, which not only interferes with the coverage
area of the building itself, but also easily conceals the characteristics of other buildings
covered by shadows [10].

In recent years, deep learning methods represented by the convolutional neural net-
work (CNN) have shown great potential in the fields of computer vision [11,12] and
remote-sensing image interpretation [13,14]. With the powerful ability to extract high-level
features, CNN-based building footprint extraction methods alleviate the above-mentioned
problems to a certain extent. Most of these methods adopt the fully convolutional architec-
ture of the encoder–decoder. For example, Ji et al. proposed a Siamese U-shaped network
named SiU-Net for building extraction, which enhances the robustness of buildings of
different scales by simultaneously processing original images and downsampled low-
resolution images [15]. The method proposed by Sun et al. improves the detection accuracy
of building edge by combining CNN with active contour model [16]. Yuan et al. designed a
CNN with a simple structure, which integrates pixel-level prediction activated by multiple
layers and introduces a symbolic distance function to establish boundaries to represent the
output, which has a stronger representation ability [17,18]. In addition, BRRNet proposed
by Shao et al. introduced the atrous convolution of different dilation rates to extract more
global features by gradually increasing the receiving field in the feature extraction process
and the residual refinement module to further refine the residual between the result of
the prediction module and the real result [19]. However, existing approaches still suffer
from challenges and limitations. Most of the methods above are an extension of the gen-
eral end-to-end semantic segmentation method, do not carry out targeted analysis of the
characteristics of the building itself, and do not filter the noise effectively.

Inspired by the human visual attention mechanism and the frequency characteristics
of different ground objects, in this paper, we propose a denoising frequency attention
network (DFANet) for building footprint extraction in VHR images. The whole network
still adopts the fully convolutional architecture of encoder–decoder, but introduces two
designed modules, namely the denoising frequency attention block (DFAB) and pyramid
pooling module (PPM). Specifically, DFAB is parameter-free and is embedded in each
layer of the network to better extract architectural footprints by refining the feature maps
of different layers. It first uses a low-pass filter to filter out high-frequency noise in the
feature map. Then, the feature map is reweighted in the transform domain to enhance the
information more relevant to the building, and finally, a high-pass filter is used to reduce
the loss of details. For the PPM, it is inserted in the middle of the encoder and decoder,
which builds multi-scale feature maps by using different sizes of adaptive average pooling
layers, and then stacks them together to obtain Better multi-scale object recognition. In
this way, the proposed DFANet can effectively filter the background noise interference
while enhancing the frequency details of buildings, highlighting the characteristics of the
building itself and improving the extraction accuracy. We conduct extensive experiments
on two commonly used real-world datasets, and the results demonstrate the validity and
superiority of our proposal. The visualization and ablation analyses further demonstrate
the critical role of our method. The main contributions of this paper can be summarized
as follows:
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(1) We propose a novel denoising frequency attention network (DFANet) for building
footprint extraction in VHR images. It contributes to the enhancement of the frequency
details of the building while filtering out the background noise interference, which in
turn greatly improves the building extraction capability.

(2) We specifically design the denoising frequency attention block and pyramid pooling
module to enable better extraction of building footprints by refining the feature
mapping of different layers and constructing multi-scale fusion feature maps with
adaptive average pooling layers of different sizes.

(3) Numerous experiments on public datasets demonstrate the advanced performance
achieved by our method. In addition, both visualization analysis and ablation ex-
periments confirm that our proposed DFAB and PPM have a positive effect on the
improvement results.

The rest of this paper is organized as follows. Section 2 introduces some related work.
Section 3 expounds the proposed approach in detail. In Sections 4 and 5, experimental
results are reported and discussed. The conclusion and future work are in Section 6.

2. Related Works

Remote-sensing imagery can provide effective data support for humans to reform
nature, and it has been widely used in Earth observation [20–22]. With the rapid devel-
opment of aerial photography technology such as satellite and aviation, high-resolution
remote-sensing images allow for observing detailed ground targets such as buildings, roads,
and vehicles. In particular, building footprint extraction is of great significance for urban
development planning and urban disaster prevention and mitigation, since buildings are
one of the main man-made targets for humans to transform the Earth’s surface [23–26].
Building footprint extraction has been a constant concern by scholars, and many building
footprint extraction methods have been proposed in the past decade. These methods can
be grouped into the following two categories: conventional building footprint extraction
methods and deep-learning-based building footprint extraction methods. Here, we briefly
review these methods as follows.

2.1. Conventional Building Footprint Extraction Methods

Building footprint extraction plays an important role in the interpretation and appli-
cation of remote-sensing images [27]. In the early stage, scholars worked on extracting
building footprints through different mathematical models or combining multiple types of
data information. For instance, Reference [28] designed a fully automatic building footprint
extraction approach from the differential morphological profile of high-resolution satellite
imagery. In Reference [29], a Bayesian-based approach is proposed to extract building
footprints through aerial LiDAR data. This method employs the shortest path algorithm
and maximizes the posterior probability using linear optimization to automatically obtain
building footprints. Sahar et al. utilized vector parcel geometries and their attributes to
extract building footprints by using integrated aerial imagery and geographic information
system (GIS) data [23]. These methods often require different types of data support to
achieve building footprint extraction, and the results are not reliable enough [30,31]. In
addition, scholars have devoted themselves to designing various hand-crafted features
to automatically extract building footprints from high-resolution remote-sensing images.
Zhang et al. devised a pixel shape index to extract buildings by classifying the shape
and contour information of pixels [32]. Huang et al. proposed a morphological building
index for automatic building extraction in [33]. Similarly, Huang et al. also developed a
morphological shadow index for building extraction from high-resolution remote-sensing
images [34]. Moreover, some methods use morphological attributes to achieve building foot-
print extraction [35,36]. In summary, these conventional approaches have been exploited to
extract building footprints from high-resolution remote-sensing images.
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2.2. Deep-Learning-Based Building Footprint Extraction Methods

Computational intelligence (CI) is a biology- and linguistics-driven computational
paradigm [37,38]. In recent years, deep learning technology, as a main pillar, has been
widely used in remote-sensing image interpretation with powerful layer-by-layer learning
and nonlinear fitting capabilities, such as change detection [14], scene classification [39],
semantic segmentation [40], object detection [41,42], etc. In this context, the building
footprint extraction method based on deep learning has attracted the attention of many
scholars. The building footprint extraction task can be treated as a single-objective semantic
segmentation task [43]. Therefore, the direct idea is to use a deep learning-based semantic
segmentation network for building footprint extraction, which can fully utilize mainstream
deep neural networks (such as VGGNet [44], ResNet [45], etc.) to mine deep semantic
features to recognize buildings. For example, compared with conventional methods,
semantic segmentation networks such as fully convolutional network (FCN) [46] and U-
Net [47] based on VGGNet can achieve a substantial improvement in the performance of
building footprint extraction [17]. These methods promote the research of deep-learning-
based building footprint extraction methods. According to this, recently, many deep-
learning-based approaches have been proposed for building footprint extraction from high-
resolution remote-sensing images in an end-to-end manner [43]. These recent methods can
be broadly reviewed as follows.

As the spatial resolution of images continues to increase, the features of various
building styles, such as material, color, texture, shape, scale, and distribution, have more
obvious differences, which makes it difficult to accurately extract pixel-wise building
footprints by using conventional semantic segmentation networks [48]. To overcome the
above challenges, many novel networks based on multi-scale and attention structures have
been proposed for building footprint extraction. For example, Ji et al. proposed a Siamese
U-Net (SiU-Net) for multi-source building extraction [15]. SiU-Net [15] trains the network
by inputting the down-sampled counterparts as the input of another Siamese branch to
enhance the multi-scale perception ability of the network and improve the performance of
building extraction. In [49], a novel network with an encoder–decoder structure, named
building residual refine network (BRRNet), is devised for building extraction, which
introduces a residual refinement module to enlarge the receptive field of the network, thus
improving the performance of building extraction with various scales. Chen et al. proposed
a context feature enhancement network (CFENet) to extract building footprints [50], which
builds a spatial fusion module and focus enhancement module for enhancing multi-scale
feature representation. Other similar networks can be found in [51,52]. In addition to
these networks with multi-scale structures, attention-based networks have been able to
enhance multi-scale feature representation, thus effectively improving building footprint
extraction accuracy. For instance, Guo et al. developed a U-Net with an attention block for
building extraction in [53]. In Reference [54], a scene-driven multitask parallel attention
convolutional network is promoted for building extraction from high-resolution remote-
sensing images. An attention-gate-based and pyramid network (AGPNet) with an encoder–
decoder structure is designed for building extraction in [55], which is integrated with a
grid-based attention gate and atrous spatial pyramid pooling module to enhance multi-
scale features. Other attention-based building footprint extraction methods are available
in [56–59].

Recently, some methods have introduced edge information and frequency information
to enhance the recognition ability of buildings [48,60]. For instance, Zhu et al. proposed an
edge-detail network for building extraction [61], which can consider the edge information
of the images to enhance the identification ability to build footprints. In [62], a multi-
task frequency–spatial learning network is promoted for building extraction. Zhao et al.
adopted a multi-scale attention-guided UNet++ with edge constraint to achieve accurate
building footprint segmentation in [63]. For other related papers, one can refer to the
following studies [64–66]. In addition, advanced transformer-based networks have also
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received attention for building extraction, such as References [57,67,68]. These methods
have largely contributed to the development of building footprint extraction.

3. Methodology

In this section, the proposed denoising frequency attention network (DFANet) is
introduced in detail. Firstly, the overview of DFANet is demonstrated in Section 3.1.
Then, the proposed denoising frequency attention block (DFAB) is illustrated in detail in
Section 3.2. Finally, we introduce the pyramid pooling module (PPM) [69] in Section 3.3,
which is a widely used module to better extract multi-scale objects.

3.1. Overview

To extract a fine building footprint in remote-sensing imagery, we employ the U-shape
encoder–decoder architecture with skip connections as the backbone of DFANet, which
is well proven in similar image segmentation tasks [47], as shown in Figure 1. It is well
known that skip connections can help preserve detailed information in the deeper layers
of the network, which can benefit the segmentation performance. Considering that there
are plenty of small building objects that need to be well extracted, the backbone with such
features can promote the detection of these objects.
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Figure 1. Overview of the proposed DFANet.

In terms of details, the backbone consists of four different blocks, i.e., the input block,
the encoder block, the decoder block, and the output block. The input block contains two
3 × 3 convolutional layers with batch normalization (BN) and a rectified linear unit (ReLU)
activation function, which fit the input remote-sensing image into the DFANet. The encoder
block has two convolutional layers with the kernel size of 3 × 3, followed by BN and ReLU,
too. The difference between them is that the latter has a 2 × 2 max pooling layer, which
decreases the spatial size. The decoder block has the same convolutional layers as that of
the encoder block, but with different convolutional configurations, i.e., input and output
channel sizes. Different from the encoder block, the decoder block has a 2 × 2 bilinear
interpolation layer instead of the max pooling layers. Moreover, the output block has
only one 1 × 1 convolutional layer without BN and ReLU to generate the raw prediction
of DFANet.
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Apart from the backbone, the proposed DFAB is stacked in the network to acquire
a better building footprint by refining the feature maps of different layers. To achieve
this, the DFAB first utilizes a low-pass filter to filter out the noises in feature maps, since
noises are usually in the high-frequency spectrum. Then, the feature maps are reweighted
in the transformation domain to enhance the relevant information for building footprint
extraction. Finally, since some detailed information is weakened by the low-pass filter, we
employ a high-pass filter to avoid the loss of details. Moreover, the DFAB works without
the parameters that need to be trained, and we can refine the feature maps of DFANet at a
lower cost.

Moreover, to better deal with buildings of varied shapes and sizes, we employ the
widely used PPM [69] to increase the receptive field of DFANet and acquire better cognition
of multi-scale objects. The proposed DFAB and employed PPM will be demonstrated in
detail below.

3.2. Denoising Frequency Attention Block

Attention-based techniques have been time-tested in the remote-sensing field and
similar applications, such as building change detection [8] and building extraction [48].
These attention mechanisms usually obtain the attention scores or masks based on the data
distribution of the feature maps in networks, and try to utilize acquired scores to reweight
the feature maps for better performance. Notably, the features in networks contain the
noises caused by input data and premature feature mapping at the early stage of training,
based on which we can potentially poison the generated attention scores and downgrade
the performance. Moreover, to acquire capable ability, most attention mechanisms need to
be guided and adjusted through training over specific tasks, which limits their usability.
Moreover, most building footprint extraction methods with attention techniques refine
their features with spatial and channel attention mechanisms, which can be affected by the
noises inside feature maps. And it is notable that frequency-based attention mechanisms
have been invented and are well proven for change detection [60]. Based on these facts, the
proposed DFAB makes efforts to utilize the transformation-based attention mechanism and
kernel filters to refine the features of DFANet without training, which can potentially avoid
the aforementioned limitations, as shown in Figure 2. In general, DFAB is parameter-free
and is embedded in each layer of the network to better extract architectural footprints by
refining the feature maps of different layers. It first uses a low-pass filter to filter out high-
frequency noise in the feature map. Then, the feature map is reweighted in the transform
domain to enhance the information more relevant to the building, and finally, a high-pass
filter is used to reduce the loss of details.

The mathematical style of the DFAB can be shown as follows: firstly, let the input
feature maps of DFAB be fi ∈ RC×H×W , where C, H, and W represent the channel, height,
and width sizes of fi, respectively. To lower the high-frequency noise of input features, we
utilize a low-pass filter, a Gaussian filter, to process the input feature maps. Different from
other widely used low-pass filters, a Gaussian filter can preserve more detailed information
due to its structure. And for fine-grained feature representation, we utilize a Gaussian filter
with a size of 3 × 3 to suppress the noises, which can be denoted as:

fL = Gaussian( fi) (1)

where Gaussian(·) represents the 3 × 3 Gaussian kernel filter. Then, we use discrete cosine
transform (DCT) and global average pooling (GAP) to screen the informative feature
maps [70] and further lower the impact of the noises, which can be represented as follows:

As = So f tmax(GAP(DCT( fL))) (2)
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where DCT(·) and GAP(·) denote the channel-wise DCT and GAP, respectively. Notably,
the Softmax function is employed to further emphasize the relevant informative features
and suppress the irrelevant features, which is represented as So f tmax(·). With these
procedures, the attention score As ∈ RC×1×1 is obtained. Considering that the low-pass
filter inevitably damages the high-frequency information of the input features, we employ a
high-pass filter, the Laplacian filter, to extract and enhance the detailed information, which
can be represented as:

fH = Laplacian( fL ⊗ As) (3)

where Laplacian(·) indicates a 3× 3 Laplacian kernel filter, and⊗ denotes the channel-wise
multiplication. Finally, we utilize a residual path to make the output more stable and avoid
gradient vanishing [45], which can be denoted as:

fo = fi ⊕ fH (4)

where ⊕ denotes the pixel-wise addition.
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Figure 2. The illustration of the proposed DFAB.

To sum up, the DFAB proposed in this paper attempts to achieve a better fine-grained
feature representation by utilizing an attention mechanism based on a parameter-free
transformation and a kernel filter. Through DFAB, the refined feature maps with less noise
and more informative details can potentially benefit the building extraction performance of
the proposed DFANet.

3.3. Pyramid Pooling Module

Convolutional neural-network-based methods usually suffer from a limited receptive
field, which downgrades the performance when detecting multi-scale objects. To alleviate
this problem, the PPM was proposed in [69], which greatly improves the segmentation
performance. Encouraged by its success in natural image segmentation tasks, we employ
the PPM in the building footprint extraction tasks to tackle buildings with varied scales.
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The PPM mainly utilizes the adaptive average pooling (AAP) layers of different sizes
to construct multi-scale feature maps and then stacks them together to acquire better
recognition of multi-scale objects. In the proposed DFANet, the PPM uses the same
configuration as that of its original work. The detailed process of the PPM is shown in
Figure 3, which also can be represented in mathematical style as follows:

Let the input feature maps of the PPM be FI ∈ RC×H×W , where C, H, and W, denote
the sizes of channel, height, and weight, respectively. The input features will be processed
by AAP layers of four different sizes, i.e., 1 × 1, 2 × 2, 3 × 3, and 6 × 6, which can be
represented as:

Fx = AAPn(FI) (5)

where Fx ∈ RC×n×n {x = 1, 2, 3, 4|n = 1, 2, 3, 6} is the processed features, and AAPn(·)
denotes AAP with an output size of n × n. Then, all of them will be compressed in channel
dimension and up-sampled to H ×W by convolutional layers and bilinear interpolation,
respectively, which can be denoted as:

FxO = Upsample(convx(Fx)) (6)

where convx(·) and Upsample(·) indicate 1 × 1 convolutional layers and the bilinear
interpolation, respectively. Finally, the feature maps with multi-scale information are
stacked together with the input feature to better detect multi-scale objects, which can be
demonstrated as:

FO = FI } F1O } F2O } F3O } F4O (7)

where } denotes the channel-wise concatenation.
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Figure 3. Architecture of the PPM.

To conclude, the PPM can increase the receptive field of convolutional neural networks
by multi-scale pooling layers and better capture objects with varied sizes. As a result,
we attempt to employ the PPM in the proposed DFANet to better deal with multi-scale
building objects and further improve the building detection performance.
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4. Experimental Results

In this section, we implement extensive experiments and ablation analysis to demon-
strate the superior performance of the proposed method. First, the dataset, evaluation
metrics, and implementation details are provided, and then six comparison algorithms
are used to show that our method is able to achieve state-of-the-art performance, and
finally, ablation analysis is implemented to demonstrate that each module contributes to
the improvement of the results.

4.1. Datasets and Evaluation Metrics

In the experiments, two benchmark building detection datasets are employed to
demonstrate the effectiveness of our proposed DFANet, namely the Massachusetts
dataset [71] and the East Asia Dataset [15].

The Massachusetts dataset [71] was collected in the Boston area of the United States,
which is approximately 340 square kilometers. This dataset contains a total of 151 aerial
images of 1500 × 1500 pixels with a 1 m spatial resolution. In the original dataset version,
173, 4, and 10 of these images were used as training, validation, and test sets, respectively.
In these experiments, consistent with [48], we sequentially crop each image into four non-
overlapping 300 tiles of size 512 × 512. Therefore, the training set, validation set, and test
set are composed of 548, 16, and 40 aerial image tiles, respectively. Some aerial image
blocks are shown in Figure 4a. It can be seen that there are dense and sparse buildings
in the Massachusetts dataset in the complex background at the same time, which puts
forward strict requirements for the building extraction ability of the model in multiple
scene categories.

Image

Ground 
Truth

Image

Ground 
Truth

(a)

Image

Ground 
Truth

Image

Ground 
Truth

(b)

Figure 4. Some examples of two benchmark datasets: (a) Massachusetts dataset; (b) East Asia Dataset.
The first row in each subplot is the aerial image tile, and the second row is the ground truth.
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The East Asia Dataset [15] contains an area of 550 square kilometers in East Asia,
collected from six adjacent satellite images with a spatial resolution of 2.7 m. The image
size of this dataset is 512 × 512, and some aerial image tiles are shown in Figure 4b. In
this experiments, consistent with [48], We selected the parts with buildings from the whole
dataset, containing 3153 tiles and 903 tiles in the training and testing sets, respectively.
Since these images are collected from different data sources but have similar architectural
styles in the same geographical area, this dataset can be leveraged to accurately test and
evaluate the generalization ability of deep models for building extraction.

In terms of evaluation metrics, four commonly used building detection indicators,
namely Precision, Recall, F1-Score, and Intersection over Union (IOU), are employed
to measure the performance of all the methods. Precision and Recall are the two most
commonly used quantitative indicators. Precision refers to the percentage of buildings
predicted to extract correctly, while Recall is the proportion of positive pixels in the building
that extract ground truths that are predicted to be correct. Due to the imbalance between
the number of building pixels and the number of non-building pixels in the dataset, the two
comprehensive indicators of F1-Score and IOU are also considered, which more objectively
reflects the ability of the model to handle the building detection task. Their detailed
definitions are as follows:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1-Score =
2× Recall × Precision

Recall + Precision
, (10)

IOU =
TP

TP + FN + FP
. (11)

where TP and FP are the number of true-positive and false-positive pixels, respectively.
Similarly, TN and FN represent the number of true-negative and false-negative pixels,
respectively.

4.2. Implementation Details

In the experiments, we reproduced all the comparison methods and performed them
under the same experimental conditions to ensure the fairness of the comparison with
DFANet. We performed DFANet on the Pytorch platform of CUDA 11.6 by using a single
NVIDIA RTX 3090 GPU with 24 GB video memory.

In the setting of hyperparameters, the batch size is set to 4, and the Adam optimizer
is employed. In addition, the initial learning rate is set to 10−4, with a weight decay
rate of 10−5. In addition, a multi-step learning rate delay is deployed to progressively
update the learning rate during the training with gamma set to 0.9 and milestone set to
[30, 35, 40, 45, 50, 55, 60, 65, 70]. It is worth mentioning that the experiments do not employ
data augmentation strategies.

4.3. Comparison with Other Methods
4.3.1. Comparative Algorithms

To verify the effectiveness of our proposed DFANet, six excellent peers are selected as
comparative algorithms, which are detailed as follows.

(1) U-Net [47] is built on the basis of FCN8s [46], which mainly includes a contraction path
for extracting image features or context and an expansion path for precise segmentation.
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(2) PANet [72] proposed a pyramid attention network to exploit the influence of global
context information in semantic segmentation, and introduced feature pyramid atten-
tion and global attention upsampling to overcome the loss of localization information.

(3) SiU-Net [15] is designed based on a Siamese fully convolutional network, where the
two branches of the network share weights, and the original image and its downsam-
pled counterpart are used as input.

(4) BRRNet [49] consists of a prediction module and a residual refinement module. The pre-
diction module obtains a larger receptive field by introducing dilated convolutions with
different dilation rates, while the residual refinement module takes the output of the
prediction module as input to improve the accuracy of building segmentation.

(5) AGPNet [55] is one of the state-of-the-art methods designed for architectural segmen-
tation. It is an encoder–decoder structure that combines a grid-based attention gate
and an atrous-space pyramid pooling module.

(6) Res2-Unet [73] is an end-to-end building detection network that employs granular-
level multi-scale learning to expand the receptive field size of each bottleneck layer,
focusing on pixels in complex background boundary regions.

4.3.2. Results on the Massachusetts Dataset

Table 1 shows the quantitative analysis results compared with various building ex-
traction algorithms. It can be observed that in the two quantitative indicators of Precision
and Recall, DFANet is behind the state-of-the-art (SOTA) algorithm (i.e., BRRNet), by
1.75% in Recall, but lags behind the SOTA, (i.e., U-Net) in the Precision indicator 5.24%.
However, due to the data imbalance in quite a few images, these two indicators alone are
not enough to reflect the performance of the algorithms. On two comprehensive indicators,
DFANet can achieve the SOTA, outperforming BRRNet in F1-Score and IOU by 1.06% and
1.50%, respectively.

Table 1. Quantitative results of DFANet and comparative methods on the Massachusetts dataset. The
best and second best results are marked in bold and underlined, respectively.

Methods Precision (%) Recall (%) F1-Score (%) IOU (%)

U-Net [47] (2015) 88.66 72.19 79.58 66.09

PANet [72] (2018) 85.05 42.02 56.25 39.13

SiU-Net [15] (2019) 84.82 75.80 80.06 66.74

BRRNet [49] (2020) 79.48 81.46 80.46 67.31

AGPNet [55] (2021) 84.72 74.86 79.48 65.95

Res2-Unet [73] (2022) 81.04 65.65 72.64 56.91

DFANet (Ours) 83.42 79.71 81.52 68.81

In addition to quantitative analysis, we also provide visual results for some cases in the
Massachusetts dataset, as shown in Figure 5. It can be observed from the visualized results
that DFANet has a more robust monitoring ability for the buildings, whether it is dense
building changes or sparse building scenes. Take the first case in Figure 5 to illustrate that
for the building scene similar to the background, other comparison algorithms inevitably
have a large number of missing or false detection pixels, while our proposed DFANet
can accurately detect most of the buildings.In addition, we can also conclude from the
visualization results that the correct detection in building edges of DFANet is significantly
better than other comparison algorithms.
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Image Ground 
Truth

U-Net PANet SiU-Net BRRNet AGPNet Res2-Unet DFANet 
(Ours)

   

Figure 5. Some case visualization results of the Massachusetts dataset. Each column from left to right
is the image, T2 image, ground truth, U-Net, PANet, SiU-Net, BRRNet, AGPNet, Res2-Unet and our
proposed DFANet.

4.3.3. Results of the East Asia Dataset

Table 2 shows the quantitative results of DFANet and comparative methods of the
East Asia dataset. Although DFANet does not perform well in the indicator of Precision on
the East Asia dataset, it leads the previous SOTA by 2.80% in the Recall indicator. However,
these two indicators cannot be directly related to the effectiveness of the algorithms due to
the problem of data imbalance. On the other hand, in terms of comprehensive indicators,
DFANet can still reach the SOTA and exceeds AGPNet 0.18% in F1-Score and 0.25% in IOU.

Table 2. Quantitative results of DFANet and comparative methods of the East Asia dataset. The best
and second-best results are marked in bold and underlined, respectively.

Methods Precision (%) Recall (%) F1-Score (%) IOU (%)

U-Net [47] (2015) 88.41 71.22 78.89 65.14

PANet [72] (2018) 86.29 66.60 75.18 60.23

SiU-Net [15] (2019 88.29 70.85 78.62 64.77

BRRNet [49] (2020) 84.06 78.02 80.93 67.97

AGPNet [55] (2021) 86.37 76.59 81.19 68.34

Res2-Unet [73] (2022) 84.07 69.14 75.88 61.14

DFANet (Ours) 81.93 80.82 81.37 68.59

Some cases of visualization results of the East Asia dataset are shown in Figure 6.
As shown in the fourth case in Figure 6, the buildings are actually quite similar to the
background scene, and it is even difficult to distinguish them with human eyes. Algorithms
such as PANet, SiU-Net, BRRNet, and Res2-Unet missed detection, while only U-Net,
AGPNet, and DFANet can accurately identify the buildings to a large extent. But compared
with U-Net and AGPNet, DFANet is more excellent in building edge detection. For densely
building scenes, DFANet also outperforms other comparative algorithms.
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Figure 6. Some case visualization results of the East Asia dataset. Each column from left to right is
the image, T2 image, ground truth, U-Net, PANet, SiU-Net, BRRNet, AGPNet, Res2-Unet, and our
proposed DFANet.

5. Discussion

During the implementation of DFANet, it is still challenging to visualize the criti-
cal role that our proposed modules play in detection performance. In other words, we
would like to actively explore the relationship between the proposed modules and the
improvement of building footprint extraction accuracy. We evaluate and analyze the pro-
posed DFAB and PPM modules on two benchmark datasets with four quantitative metrics
(i.e., Precision, Recall, F1-Score, and IOU). The quantitative results of the ablation experi-
ments in the Massachusetts dataset and the East Asia dataset are shown in Tables 3 and 4,
respectively. It can be clearly concluded that compared with the backbone, the design
of the DFAB and PPM both can improve the overall performance of the network, and
the combination of these two contributions further improves the ability of the model to
detect the buildings, rather than influencing each other. Specifically, in terms of two key
comprehensive indicators, the DFAB, PPM, and their combination are, respectively, 1.26%,
0.68%, and 2.36% in F1-Score and 1.75%, 0.93%, and 3.30% in IOU higher than the backbone
in the Massachusetts dataset. Meanwhile, in the East Asia dataset, the DFAB, PPM, and
their combination are, respectively, 0.34%, 0.79%, and 0.86% in F1-Score and 0.49%, 1.13%,
and 1.22% in IOU, better than the backbone.
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Table 3. Ablation study of the proposed DFANet on Massachusetts dataset. Notation: the best results
are marked in bold.

Methods Precision (%) Recall (%) F1-Score (%) IOU (%)

Backbone 80.63 77.74 79.16 65.51

Backbone + DFAB 81.48 79.39 80.42 67.26

Backbone + PPM 84.20 75.90 79.84 66.44

Backbone + DFAB + PPM (DFANet) 83.42 79.71 81.52 68.81

Table 4. Ablation study of the proposed DFANet on East Asia dataset. Notation: the best results are
marked in bold.

Methods Precision (%) Recall (%) F1-Score (%) IOU (%)

Backbone 86.68 75.02 80.51 67.37

Backbone + DFAB 84.73 77.31 80.85 67.86

Backbone + PPM 83.83 78.93 81.30 68.50

Backbone + DFAB + PPM (DFANet) 81.93 80.82 81.37 68.59

In addition to the analysis of quantitative results, some case visualization results
of feature map and heat map of the East Asia dataset are shown in Figure 7. It can be
observed that the PPM can better capture building features of different shapes and sizes
in the backbone network, while the DFAB can enhance the relevant information of the
building to refine the feature map of each floor at a lower cost.

Backbone

Backbone
+DFAB

Backbone
+PPM

Backbone
+DFAB
+PPM 

(DFANet )
(a) (b)

Figure 7. Visualization results of feature map and heat map of two cases (a,b) in the East Asia dataset.
Notation: in each subgraph, the left one is the feature map, and the right one is the heat map.
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6. Conclusions

In this article, a novel denoising frequency attention network (DFANet) is proposed
for building footprint extraction in VHR remote-sensing images. The proposed DFANet
contains three parts: a U-shape backbone network, a denoising frequency attention block
(DFAB), and a pyramid pooling module (PPM). In the proposed DFANet, we devised a
parameter-free DFAB, which can enhance the relevant information about buildings, thereby
refining the feature maps of each layer at a lower cost. In addition, in order to better capture
building features of varied shapes and sizes, we also introduced a widely used PPM to
enlarge the receptive field of our proposed DFANet. Experiments on two publicly available
large building footprint extraction datasets demonstrate that our proposed DFANet is able
to achieve competitive performance compared to other state-of-the-art methods. Moreover,
sufficient ablation experiments show that introducing our designed parameter-free DFAB
can effectively improve the building detection performance. In future work, we will further
study this method from the following two aspects. On the one hand, we will use more
building extraction datasets to further verify the robustness of the method. On the other
hand, we will test the feasibility of the DFAB in other tasks.
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Abstract: Micro‑expressions are a type of real emotional expression, which are unconscious and dif‑
ficult to hide. Identifying these expressions has great potential applications in areas such as civil
aviation security, criminal interrogation, and clinical medicine. However, because of their charac‑
teristics such as short duration, low intensity, and sparse action units, this makes micro‑expression
spotting difficult. To address this problem and inspired by object detection methods, we propose a
VoVNet‑based micro‑expression spotting model, driven by multi‑scale features. Firstly, VoVNet is
used to achieve the extraction and reuse of different scale perceptual field features to improve the
feature extraction capability. Secondly, multi‑scale features are extracted and fused using the Fea‑
ture Pyramid Network module, incorporating optical flow features, and by realizing the interactive
fusion of fine‑grained feature information and semantic feature information. Finally, the model is
trained and optimized on CAS(ME)2 and SAMM Long Video. The experimental results show that
the F1 score of the proposed model is improved by 0.1963 and 0.2441 on the two datasets compared
with the baseline method, which outperforms the most popular spotting methods.

Keywords: micro‑expression spotting; multi‑scale; optical flow

1. Introduction
Facial expressions aremainlydivided intomicro‑expressions andmacro‑expressions [1].

Micro‑expressions are facial expressions that are unconsciously revealed byhumans. When
micro‑expressions occur, the changes to the facial features are insignificant, mainly char‑
acterized by short duration, low intensity, and sparse facial action units. However, com‑
pared with macro‑expressions, they can realistically reveal people’s emotions. Therefore,
micro‑expression research has a large application value in the fields of civil aviation secu‑
rity screening [2], criminal interrogation [3], and clinical medicine [4].

Research related tomicro‑expressions is divided into two categories: micro‑expression
spotting and micro‑expression recognition. Micro‑expression spotting refers to locating
the clips of micro‑expressions in a video. Micro‑expression recognition refers to the clas‑
sification of a detected micro‑expression slice, and then the classification results are ap‑
plied to different clips. Micro‑expression recognition research ismoremature, whilemicro‑
expression spotting is still in the preliminary research stage. In this paper, inspired by ob‑
ject detection methods, a multi‑scale feature fusion method is applied to micro‑expression
spotting to improve the accuracy of the micro‑expression spotting model.

The object detection method consists of three parts: backbone, neck, and head [5].
The backbone part serves to perform feature extraction, where high quality features retain
more information in the image and make subsequent detection more accurate. The neck
part serves to perform feature fusion, which aims to fuse different features and enrich the
feature connotation. The head part is used to predict the results, such as the location and
the classification of the result. Similar to object detection, in micro‑expression spotting,
facial features are extracted in the backbone part, the extracted features are fused in the
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neck part, and finally the location and category of the micro‑expressions are output in the
head part.

In feature extraction, a simple backbone network will ignore the detailed informa‑
tion of micro‑expressions, while a complex backbone network will slow down the model’s
speed. Therefore, we use VoVNet [6] for feature extraction and to concatenate the feature
maps of each layer in the end, which not only achieves feature reuse and improves feature
extraction capability, but also reduces the model parameters and improves the model’s
training speed. Different levels of feature maps have different focuses. The shallow fea‑
ture maps mainly reflect the content, such as the light and dark of an image; the deep
feature maps express the overall structural information. Therefore, in the neck part, the
Feature Pyramid Network (FPN) [7] is applied to fuse the deep‑level features with the
shallow‑level features, making the whole feature richer.

The optical flowmethod is widely used in the computer field, which can provide key
information for many vision tasks and help to improve performance. As an important
method in computer vision and image processing, optical flow can provide dynamic fea‑
tures about facial motion, combining temporal and spatial information to improve the ac‑
curacy of micro‑expression spotting. At the same time, the optical flowmethod is robust to
common factors such as facial occlusion, illumination change, and noise. It enables the net‑
work to be more able to deal with various interference factors in the actual scene. Optical
flow is incorporated into the features, and the motion information is extracted by analyz‑
ing the pixel changes between consecutive frames, which can better capture the change in
micro‑expressions.

The organizational structure of this paper is as follows: the first section introduces the
background and significance of this paper; the second section introduces the current sta‑
tus of micro‑expression spotting; the third section, the micro‑expression spotting based on
VoVNet, driven bymulti‑scale features is introduced in detail; the fourth section shows the
analysis of the experimental results; and the fifth section summarizes the work of this pa‑
per.

2. Related Work
In the early stage of micro‑expression spotting, the algorithms were mainly focused

on traditional methods. Shreve [8] calculated the optical flow from the onset frame to each
frame of the video sequence and determined themicro‑expression interval according to the
magnitude of the optical flow change. Moilanen [9] used a local binary pattern (LBP) to
analyze the feature difference between consecutive frames for micro‑expression spotting.
Patel [10] computed optical flowover local spatial regions and used a heuristic algorithm to
filter out non‑micro‑expressions. This could detect the onset frame, the vertex frame, and
the offset frame. Li [11] proposed using a local temporal pattern (LTP) and a local binary
pattern (LBP) formicro‑expression spotting and used them as the benchmark for theMicro‑
Expression Spotting Challenge, 2019. Later, He Y [12] proposed the MDMDmethod using
the maximum difference of optical flow features to detect micro‑expressions.

In recent years, deep learning methods have been widely used in various fields, and
more and more experts and scholars are exploring the use of deep learning methods for
micro‑expression spotting and recognition. Xia [13] applied machine learning to micro‑
expression spotting and considered the relationship between frames and used adaboost to
predict the probability of a certain frame as a micro‑expression. Hong [14] used a sliding
window to detect micro‑expressions in samples with a fixed number of frames and treated
micro‑expression spotting as a binary classification task. Nag [15] proposed a joint architec‑
ture of temporal and spatial information to detect the onset frame and offset frame ofmicro‑
expressions. Verburg M [16] applied the computed HOOF features into a recurrent neural
network (RNN) for micro‑expression localization, which combined deep learning and tra‑
ditional methods and applied them to micro‑expression spotting. Pan et al. [17] proposed
putting each frame of a video into the local bilinear convolutional neural network (LBCNN)
to judge whether each frame belonged to a micro‑expression, a macro‑expression, or a nat‑
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ural expression. Yap et al. [18] proposed a 3D‑CNN model that compared each frame
with a reference frame, which is a pure deep learning scheme. Liong et al. [19] proposed
a shallow optical flow three‑stream CNN (SOFTNet), which used different optical flow
components in three channels to capture different motion information. Fang Y [20] used
the phase calculated by the Riesz Pyramid to represent motion and used CNN to calcu‑
late the probability that each frame is a micro‑expression. Many of these micro‑expression
spotting methods draw on the idea of micro‑expression recognition to judge whether a
clip or a certain frame in a video is a micro‑expression. This is essentially a classification
problem and does not locate the clips in the video where the micro‑expression occurs. Li
J et al. [21] first introduced the self‑supervised learning method into the construction of
the micro‑expression spotting model. By using auxiliary tasks in a large number of un‑
supervised videos, a model with temporal and spatial features of micro‑expressions was
constructed. Cao [22] designed a micro‑expression spotting framework based on outlier
spotting. Song [23] proposed a BERT network‑based micro‑expression spotting algorithm
composed of candidate fragment generation, a spatio‑temporal feature extraction module,
and a grouping module.

Object detection methods based on deep learning are widely used in areas such as
facial detection [24], pedestrian detection [25], and license plate detection [26]. Inspired by
object detection, some scholars began to apply themethods of object detection in the spatial
dimension to micro‑expression spotting in the temporal dimension. For example, Yu et al.
proposed using the detection method for micro‑expression spotting and achieved good re‑
sults in the Facial Micro‑Expression (FME) Challenge. In this paper, we draw on the meth‑
ods and ideas of object detection to carry out micro‑expression spotting research and pro‑
pose a VoVNet‑based micro‑expression spotting method driven by multi‑scale features.

3. Proposed Method
3.1. Micro‑Expression Spotting Method Based on VoVNet

Although micro‑expressions are short in duration, there is still a process of facial
change. Here, we define the starting point where the micro‑expression occurs as the on‑
set frame, the frame where the micro‑expression changes most significantly as the apex
frame, and the offset frame of the micro‑expression as the offset frame. The main task
of micro‑expression spotting is to locate the apex frame and offset frame of the micro‑
expression. Figure 1 shows the structure of the micro‑expression spotting model. Firstly,
the micro‑expression samples and the corresponding optical flow are concatenated and in‑
put into the VoVNet for feature extraction. Secondly, the fusion of the extracted features
is performed by the FPN module. Finally, the micro‑expression spotting results are out‑
put. In the whole process, feature extraction and fusion play a key role in ensuring the
accuracy of the micro‑expression spotting. Figure 1 shows the network structure of the
micro‑expression spotting.
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Figure 1. Structure of the micro‑expression spotting model.
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3.2. Optical Flow
Optical flow is the displacement of pixels due to the motion of objects in a continuous

sequence of image frames. Calculating the optical flowbetweendifferent frames can obtain
the motion trajectory of the object in the image sequence because the micro‑expressions
occur as tiny details and are not easy to find; however, optical flow has good performance
for the estimation of motion in a small range. Tiny movements in specific areas of the
face can be detected by calculating optical flow. Micro‑expressions are continuous actions,
and optical flow can extract rich features from continuous image frames and capture the
temporal correlation of local areas in the image. Comparedwith static images, optical flow
can provide dynamic change information and capture the motion information of an image
sequence. By combining optical flow features with raw video, micro‑expressions can be
spotted more accurately.

The optical flow method is based on three assumptions: (1) that the illumination re‑
mains constant between two frames; (2) that the motion of the same pixel between two
frames is small; and (3) that the motion of adjacent pixels is similar. Let I(x,y,t) be the
brightness value at the position (x,y) at time t, and the distance the pixel moves in dt time
be (dx,dy). Because the brightness value between two frames is unchanged, we can achieve
Equation (1).

I(x, y, t) = I(x + dx, y + dy, t + dt), (1)

Equation (1) is expanded by the Taylor series, and Equation (2) is obtained by remov‑
ing the general terms and dividing by dt.

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0, (2)

If p,q are the horizontal and vertical directions of the pixel to obtain the velocity com‑
ponent then:

p =
dx
dt

, q =
dy
dt

(3)

By bringing p and q into Equation (2), the optical flow change of each pixel of the
picture can be obtained.

According to Liong S T et al. [27], the TVL1 optical flow method is more robust and
accurate than other methods in the study of micro‑expression. Therefore, this article also
uses the TVL1 method.

3.3. VoVNet Module
Related studies haveproven that featureswithmultiple receptivefields can capture richer

visual information [28–30]. Since the features are inconspicuous when micro‑expressions oc‑
cur, they are mainly manifested in the weak intensity of facial muscle changes and sparse
facial action units. Therefore, to improve the extraction capability of micro‑expression fea‑
tures, VOVNet is used. By fusing the features of different receptive fields, VoVNet can
extract the relevant features of the long‑range facial action unit and improve the perfor‑
mance of micro‑expression spotting. VoVNet is mainly composed of One‑Shot Aggrega‑
tion (OSA) modules, as shown in Figure 2. The OSA module consists of multiple convolu‑
tion layers, each of which is bi‑directionally connected. One is used to connect to the next
convolution layer to generate features with a larger receptive field, and the other is used to
connect to the last layer to achieve feature splicing and reuse. This structure is designed to
enhance the feature extraction capability of the network by fusing features with different
receptive fields. It does not cause redundancy of features and improves the efficiency of
the model.
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Memory Access Cost (MAC) is an important measure of model processing speed.
VoVNet is not only strong in feature extraction, but also fast in computation, mainly be‑
cause of the small MAC. The MAC is calculated as shown in Equation (4). Let the number
of input and output channels of one convolution layer of the OSA module be c1 and c2, re‑
spectively, and the size of the feature map is h × w; then, the FLOPs of 1 × 1 convolution
is B = h×w× c1 × c2. Equation (5) is derived from the mean inequality and the MAC is
minimized when c1 = c2. Therefore, when the number of input and output channels in the
middle layer of the OSAmodule is the same, the model MAC is minimized and the model
processing speed is fastest.

MAC = h×w× (c1 +c2) + c1 × c2 , (4)

MAC ≥ 2
√

h × w × B +
B

h × w,
(5)

VoVNet consists of three convolution layers and four OSA modules. Each OSA mod‑
ule consists of five convolution layerswith the same input and output channels tominimize
the value of the MAC. The number of feature channels is gradually increased by superim‑
posing multiple OSA modules, and the superposition of feature maps of different sizes
makes the features more abundant. Feature fusion is performed after feature extraction.
The specific network structure is shown in Table 1.

Table 1. VoVNet network architecture.

Type VoVNet

Inception 3 × 3conv, 64, stride = 2
3 × 3conv, 128, stride = 2

OSA 1 3 × 3conv, 64, ×5
concat: 1 × 1conv, 128

OSA 2 3 × 3conv, 80, ×5
concat: 1 × 1conv, 256

OSA 3 3×3conv, 96, ×5
concat: 1 × 1conv, 384

OSA 4 3 × 3conv, 112, ×5
concat: 1 × 1conv, 1

3.4. FPN Module
In object detection, feature fusion can effectively improve model performance and

generalization ability. FPN, as a common feature fusion module in object detection, im‑
proves detection accuracy by constructing a feature pyramid structure, extracting and fus‑
ing multi‑scale features from different levels.

The feature pyramid consists of multiple levels, each with a different resolution and
receptive field. This design enables the model to analyze and process micro‑expression
sequences at different scales. The bottom pyramid layers contain features at lower levels,
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while the features at higher levels are more abstract and semantic. Combining these fea‑
tures can obtainmore comprehensive and accurate features, which can help to improve the
accuracy of micro‑expression detection. Each level will extract the features of the micro‑
expression sequence, which can improve the ability to understand and analyze the micro‑
expression sequence by transferring information. Low‑level features can provide back‑
ground and global information for higher‑level features so that the model can better de‑
tect micro‑expressions. Because features at different levels obtain information at different
scales, they are robust in detection.

Thepyramidmodel canobtain featuremapsof different scales throughone‑dimensional
convolution, and rich multi‑scale and multi‑level feature representations can be obtained
throughmulti‑level feature extractionandcombination. Thus, the accuracyofmicro‑expression
spotting is improved. The specific network structure is shown in Table 2.

Table 2. FPN network architecture.

Type FPN

layer 1 3 × 1conv, 512 × 64, stride = 2

layer 2 3 × 1conv, 1024 × 32, stride = 2

layer3 3 × 1conv, 1024 × 16, stride = 2

layer4 3 × 1conv, 1024 × 8, stride = 2

layer5 3 × 1conv, 2048 × 4, stride = 2

3.5. Loss Function
The loss function can calculate the difference between the predicted result and the

true label. The lower the loss value, the stronger the ability of micro‑expression training.
Classification loss, boundary frame loss, and IOU loss are calculated, respectively, inmicro‑
expression spotting.

The first is classification loss, which is a measure of the ability to classify the target
species. Because there are more macro‑expressions than micro‑expressions in the video
sample, focal loss [31] is used to solve the category imbalance problem. Focal loss intro‑
duced w and pt to adjust the weights of samples to be unequal, reduce the emphasis on
easily identifiable samples, and increase the emphasis on samples that are difficult to clas‑
sify. The alph is a balancing parameter standing at 0.25 and w changes the weight of the
sample. The proportion of different samples in the equation is different, which makes
the model pay more attention to the small number of samples. Pt reduces the weight of
samples that are easy to classify and increases the weight of samples that are difficult to
classify by calculating probabilities. This makes the model pay more attention to those
samples that are difficult to classify, improving the model’s learning ability for difficult
samples. Equation (6) is the calculation equation for focal loss.

Focal_loss = −w(1 − pt)2 × log(pt), (6)

pt =
{

p positive sample
1 − p negative sample

, (7)

w =

{
alph positive sample

1 − alph negative sample
, (8)

In addition to classification losses, positioning losses are used to measure the differ‑
ence between the predicted bounding box and the true bounding box. This difference is
optimized to better regulate the location of the predicted bounding box. When the abso‑
lute difference between the predicted value and the target value is large, the smooth L1
loss function adopts the square function, and the loss growth rate slows down. It is more
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robust in the face of outliers and large error boundary boxes. The equation for the smooth
L1 loss function is as follows:

L1_loss =
{

1/2x2 t < 1
|x| − 0.5 t ≥ 1

, (9)

Finally, IOU loss is a simple and intuitive method to calculate the overlap between
the predicted bounding box and the real bounding box. It is not affected by the shape and
size of the target and only considers the overlap degree of the two bounding boxes, which
is suitable for different targets. By minimizing the IOU loss, the model parameters can be
optimized tomake the predicted bounding box closer to the real bounding box. Let the left
abscissa of the predicted and true bounding boxes be xp1 and xt1, and the right abscissa of
the bounding boxes be xp2 and xt2. Equation (10) is the equation of IOU loss function.

IOU_loss = inter/union,
Inter = min(xt2 , xp2)−max

(
xp1 , xt1,

Union =
(
xp2 −xp1) + (xt2 −xt1)− inter,

(10)

Loss = Focal_loss + L1_loss + IOU_loss, (11)

The combination of classification loss, positioning loss, and IOU loss can comprehen‑
sively evaluate the performance of object detection. Classification loss is used to evalu‑
ate the accuracy of the model for target classification. Positioning loss is used to assess
the accuracy of the model for the target position. IOU loss assesses the accuracy of the
boundary box matching. Equation (11) is the calculation equation of the final loss func‑
tion. Target spotting usually requires the accurate classification of targets and the accurate
location of targets. Combining these loss functions can simplify the model training pro‑
cess. It can improve the stability and convergence of training, and reduce the difficulty of
hyper‑parameter adjustment so that the model has the ability to perform classification and
positioning at the same time.

4. Experiment
4.1. Dataset

Currently, the available micro‑expression datasets are very limited and differ in res‑
olution, frame rate, and generation methods. Authoritative datasets that have been re‑
leasedmainly include CASME [32], SMIC [33], CASME II [34], SAMM [35], CAS(ME)2 [36],
SAMM Long Videos [37], MMEW [38], and CASME III [39]. The CASME, CASME II,
SMIC, and SAMM only contain micro‑expression samples, while the CAS(ME)2, CASME
III, SAMMLongVideos, andMMEWcontain not onlymicro‑expression video samples but
also macro‑expression video samples. CAS(ME)2 was released by the Chinese Academy
of Sciences in 2018. The subjects of CAS(ME)2 are 22 Asians, and the data are divided
into two parts: part A and part B. Part A includes 87 long videos of micro‑expressions and
macro‑expressions. Part B includes 300 croppedmacro‑expression samples and 57 cropped
micro‑expression samples. The average duration of each video is 148 s. CASME III manu‑
ally labeled 1030micro‑expressions and 2264macro‑expressions. The SAMMLong Videos
are extended from the SAMM and include a total of 147 long videos. Compared with
CAS(ME)2, SAMM Long Videos have a longer video duration with higher resolution and
frame rates. The MMEW was released in 2021 and contains 300 micro‑expression video
samples and 900 macro‑expression video samples. Table 3 shows the details of the com‑
monly used datasets of macro‑expressions and micro‑expressions.

CAS(ME)2 and SAMM Long Videos were used in the Facial Micro‑Expression (FME)
Challenge [40] to validate the micro‑expression spotting model. Therefore, in order to
ensure the comparability of the results, CAS(ME)2 and SAMM Long Videos were also se‑
lected as the micro‑expression spotting dataset in this paper.
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Table 3. Micro‑expression dataset details.

Dataset Time Resolution Frame Rate Number of
Participants

Number of
Samples

Number of
Emotions

CAS(ME)2 2018 640 × 480 30 22 300 (macro)
57 (micro) 4

SAMM Long Videos 2019 2040 × 1088 200 29 343 (macro)
159 (micro) /

MMEW 2021 1920 × 1080 90 36 900 (macro)
300 (micro) 7

CASME III
A

2022 1280 × 720 30
100 3364 (macro)

1030 (micro) 7B 116
C 31

The dataset is divided into two categories: micro‑expression and macro‑expression.
Micro‑expressions are extremely brief and tiny changes in human facial expressions, typ‑
ically lasting between 1/25 and 1/5 of a second. These small facial changes are often very
rapid and imperceptible and often occur when people are trying to mask or hide their true
feelings. Macro‑expression is relative to micro‑expression, which refers to the expression
changes that are more significant and last longer. Whether micro‑expression or macro‑
expression, both are expressions of the human face in different emotional or psychological
states, and all involve the movement and change of the facial muscles. Figure 3 shows
micro‑expression and macro‑expression samples in the SAMM Long Videos dataset. The
human eye is difficult to distinguish, and a computer is needed for recognition.
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Figure 3. (a)MMEWdatasetmacro‑expression sample; (b)MMEWdatasetmicro‑expression sample.

4.2. Experimental Environment and Hyper‑Parameters
The configurations of the computer used for training and validation of the micro‑

expression spotting model are as follows:
(1) Operating system: 64‑bit Ubuntu16.04.1.;
(2) Development environment: PyTorch1.2.0.;
(3) CPU: Intel® Xeon(R) Gold 5218R CPU @ 2.10 GHz × 46;
(4) GPU: Quadro RTX5000;
(5) Memory: 128 GB.
The hyper‑parameters of the micro‑expression spotting model are as follows:
(1) Optimizer: Adam;
(2) Learning rate: 0.005;
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(3) Batch size: the batch size of CAS(ME)2 is 32, and the batch size of SAMM Long
Videos is 2.

4.3. Evaluation Metrics
Intersection over Union (IOU) [41] is used in object detection. IOU is the intersection

of the predicted box and the real box divided by their union. When the value of IOU
is greater than a certain threshold, it proves that the target is correctly boxed. Equation
12 shows the equation for micro‑expression spotting IOU. Where, Wspotted is the micro‑
expression clips obtained by the micro‑expression spotting model, WgroundTrut is the clips
of the real micro‑expression, k is the threshold of IOU, which is generally set to a constant.
When the intersection of Wspotted and WgroundTrut divided by their union is greater than k,
it proves that the micro‑expression clips are detected correctly.

Wspotted ∩ WgroundTrut

Wspotted ∪ WgroundTrut
≥ k, (12)

As shown in Figure 4, AC are the clips where a micro‑expression occurs and BD are
the clips detected by the micro‑expression model. BC is the intersection of Wspotted and
WgroundTrut, AD is the union of Wspotted and WgroundTrut.
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Figure 4. Micro‑expression spotting IoU.

The micro‑expression spotting performance is evaluated with an F1 score. The equa‑
tion of the F1 score is shown in Figure 4. TP is the number of positive samples correctly
identified. FP is the number of negative samples predicted as positive samples, i.e., the
number of false detections. TN is the number of negative samples correctly identified. FN
is the number of positive samples detected as negative samples, i.e., the number of missed
detections. There are two main reasons for using the F1 score as the evaluation metric of
the micro‑expression spotting model:

(1) If there is no micro‑expression in a single video or no micro‑expression is detected
in the video, the denominator of recall or precision will be 0. Using the F1 score as the
evaluation metric will avoid this situation;

(2) Since the databases are apparently unbalanced, the sample size ofmicro‑expressions
is smaller than that of the macro‑expressions. An F1 score will give us a fair evaluation
of how well the model performs on all the classes rather than biasing only a few certain
classes [36].

F1‑score = 2 × recall × precision
recallprecision

=
2TP

2TPFPFN,
(13)

Recall =
TP

TPFN,
(14)

Precision =
TP

TPFP
(15)
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4.4. Results and Discussion
Following [1], we use Leave‑One‑Subject‑Out (LOSO) cross‑validation to report the

performance on micro‑expression spotting. One micro‑expression video sample is taken
as the test set and the remaining samples are used as the training set.

The loss value of a model training can intuitively measure the quality of model train‑
ing. Figure 5 shows the change of loss value when the model is trained on two datasets,
respectively. From Figure 5, it can be seen that the loss value of the model decreases and
converges as the number of iterations increases, and finally converges to a smooth state.
This indicates that the model can reach a smooth convergence state.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14 
 

 

4.4. Results and Discussion 
Following [1], we use Leave-One-Subject-Out (LOSO) cross-validation to report the 

performance on micro-expression spotting. One micro-expression video sample is taken 
as the test set and the remaining samples are used as the training set.  

The loss value of a model training can intuitively measure the quality of model train-
ing. Figure 5 shows the change of loss value when the model is trained on two datasets, 
respectively. From Figure 5, it can be seen that the loss value of the model decreases and 
converges as the number of iterations increases, and finally converges to a smooth state. 
This indicates that the model can reach a smooth convergence state.  

  
(a) (b) 

Figure 5. (a) Describes the changes in loss for the SAMM Long Video dataset; (b) describes the 
changes in loss for the CAS(ME)2 dataset. 

To evaluate the model performance, the proposed method is compared with the base-
line method of the Facial Micro-Expression (FME) Challenge, traditional methods, and 
deep learning methods. Table 4 provides a detailed comparison of the models. With the 
SAMM Long Video, compared with the baseline method, the performance of the proposed 
method is significantly improved for both macro- and micro-expression spotting, with an 
improvement of 0.1986 and 0.1217 in the F1 score, respectively. With the CAS(ME)2, com-
pared with the baseline method, the proposed method improves the F1 score of macro- 
and micro-expression spotting by 0.2597 and 0.0571. In the overall performance of both 
macro- and micro-expression spotting, the method proposed in this paper outperforms 
the most popular spotting methods, such as MDMD, STCAN, and SOFTNet.  

Table 4. Experimental results. 

Model 
SAMM Long Video CAS(ME)2 

MaE ME Overall MaE ME Overall 
Baseline [11] 0.1863 0.0409 0.1193 0.0401 0.0118 0.0304 
MDMD [12] 0.0629 0.0364 0.445 0.1196 0.0082 0.0376 
STCAN [42] 0.1469 0.0125 0.1257 0.1250 0.0250 0.1168 

SOFTNet [19] 0.2169 0.1520 0.1881 0.2410 0.1173 0.2022 
Article 0.3849 0.1626 0.3156 0.2998 0.0689 0.2745 

 

4.5. Ablation Experiment 

Figure 5. (a) Describes the changes in loss for the SAMM Long Video dataset; (b) describes the
changes in loss for the CAS(ME)2 dataset.

To evaluate the model performance, the proposed method is compared with the base‑
line method of the Facial Micro‑Expression (FME) Challenge, traditional methods, and
deep learning methods. Table 4 provides a detailed comparison of the models. With the
SAMMLong Video, comparedwith the baselinemethod, the performance of the proposed
method is significantly improved for both macro‑ and micro‑expression spotting, with an
improvement of 0.1986 and 0.1217 in the F1 score, respectively. With the CAS(ME)2, com‑
paredwith the baselinemethod, the proposedmethod improves the F1 score ofmacro‑ and
micro‑expression spotting by 0.2597 and 0.0571. In the overall performance of both macro‑
and micro‑expression spotting, the method proposed in this paper outperforms the most
popular spotting methods, such as MDMD, STCAN, and SOFTNet.

Table 4. Experimental results.

Model
SAMM Long Video CAS(ME)2

MaE ME Overall MaE ME Overall

Baseline [11] 0.1863 0.0409 0.1193 0.0401 0.0118 0.0304

MDMD [12] 0.0629 0.0364 0.445 0.1196 0.0082 0.0376

STCAN [42] 0.1469 0.0125 0.1257 0.1250 0.0250 0.1168

SOFTNet [19] 0.2169 0.1520 0.1881 0.2410 0.1173 0.2022

Article 0.3849 0.1626 0.3156 0.2998 0.0689 0.2745

4.5. Ablation Experiment
The ablation experiment in this experiment verifies the influence of different mod‑

ules on the model and reflects the superiority of the network. We perform replacement
experiments on the optical flow module and feature extraction separately.

87



Electronics 2023, 12, 4459

Optical flow features provide temporal dimension information for micro‑expression
detection. We compare the results of only the video featureswith the results of adding opti‑
cal flow features. In the SAMMLong Video dataset, the F1 score of the method with an op‑
tical flow module increased by 0.1986 for macro‑expression spotting and 0.2597 for micro‑
expression spotting. In the CAS(ME)2 dataset, the F1 score of the method with the opti‑
cal flow module increased by 0.0115 for macro‑expression spotting and 0.0345 for micro‑
expression spotting. The results show that optical flow improves the micro‑expression
detection ability. Table 5 shows the effect of the optical flow module.

Table 5. Optical flow module ablation experiment.

Type
SAMM Long Video CAS(ME)2

MaE ME Overall MaE ME Overall

No optical flow 0.2500 0.0696 0.2162 0.2883 0.0344 0.2620

Optical flow 0.3849 0.1626 0.3156 0.2998 0.0689 0.2745

The second stage is feature extraction, which is compared with the feature extraction
network with better performance in target detection. ResNet shows good performance in
target detection [43]. Residual links help train deeper networks in object detection. They
also help solve degradation problems and are more stable in model performance. Dense
connectivity in DenseNet enables features from each layer to interact directly with subse‑
quent layers, enabling feature reuse. It can improve the detection performance. ResNet
and DenseNet can extract richer and more meaningful features, and their structure is sim‑
ilar to VoVNet. Therefore, VoVNet is compared with ResNet and DenseNet.

A SAMM Long Video sample occupies a large storage space, and DenseNet training
requires a large number of parameters. Due to the limitation of server GPU memory, we
only used the CAS(ME)2 dataset for progressive ablation experiments. Table 6 shows the
results of VoVNet compared with other models in detail. The results show that VoVNet
has the best feature extraction ability in micro‑expression detection.

Table 6. Feature extraction module ablation experiment.

Model
CAS(ME)2

MaE ME Overall

ResNet 0.2495 0.0421 0.2253

DenseNet 0.3026 0.0459 0.2596

VoVNet 0.2998 0.0689 0.2745

5. Discussion
To address the problem thatmicro‑expressions are difficult to detect, a VoVNet‑based

micro‑expression spotting model driven by multi‑scale features is proposed in this paper.
VoVNet is used for feature extraction; it integrates the features of different receptive fields
to improve the model’s performance. The FPN model is used in feature fusion to fuse
features of different sizes and achieve deep fusion of fine‑grained and semantic features,
which reduces the loss of feature information and improves model robustness. Finally, the
LOSO cross‑validation is used to evaluate the performance of themodel. The experimental
results show that compared with other popular methods, the micro‑expression spotting
method proposed in this paper can improve the performance of micro‑expression spotting
to a certain extent. In addition to micro‑expression spotting, the method proposed in this
paper can also be applied to video behavior recognition tasks, such as abnormal behavior
detection, action recognition, and gesture recognition in surveillance videos. It can also be
applied to medical image processing, such as lesion detection, disease classification, and

88



Electronics 2023, 12, 4459

diagnosis. By extracting and analyzing the features in medical images, it can assist doctors
in the diagnosis and treatment of diseases.

Since micro‑expression and macro‑expression samples are not balanced, we used at‑
tentionmechanisms and other methods to compensate for this deficiency. Due to the large
dataset and many model parameters, our next step will explore the use of a lighter model
for feature extraction. What is more, the importance of the three loss functions will be con‑
sidered. These losses can beweighted, and theweights can be optimized to take advantage
of the results.
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Abstract: Among recent state-of-the-art realistic image super-resolution (SR) intelligent algorithms,
generative adversarial networks (GANs) have achieved impressive visual performance. However,
there has been the problem of unsatisfactory perception of super-scored pictures with unpleasant
artifacts. To address this issue and further improve visual quality, we proposed a perception-design-
oriented PSRGAN with double perception turbos for real-world SR. The first-perception turbo in
the generator network has a three-level perception structure with different convolution kernel sizes,
which can extract multi-scale features from four 1

4 size sub-images sliced by original LR image.
The slice operation expands adversarial samples to four and could alleviate artifacts during GAN
training. The extracted features will be eventually concatenated in later 3 × 2 upsampling processes
through pixel shuffle to restore SR image with diversified delicate textures. The second-perception
turbo in discriminators has cascaded perception turbo blocks (PTBs), which could further perceive
multi-scale features at various spatial relationships and promote the generator to restore subtle
textures driven by GAN. Compared with recent SR methods (BSRGAN, real-ESRGAN, PDM_SR,
SwinIR, LDL, etc.), we conducted an extensive test with a ×4 upscaling factor on various datasets
(OST300, 2020track1, RealSR-Canon, RealSR-Nikon, etc.). We conducted a series of experiments that
show that our proposed PSRGAN based on generative adversarial networks outperforms current
state-of-the-art intelligent algorithms on several evaluation metrics, including NIQE, NRQM and
PI. In terms of visualization, PSRGAN generates finer and more natural textures while suppressing
unpleasant artifacts and achieves significant improvements in perceptual quality.

Keywords: perception design; image super resolution; generative adversarial network; artifact
suppression; intelligent computing

1. Introduction

Single-image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image
from a low-resolution (LR) one. The traditional methods for solving the SR problems
are mainly interpolation-based methods [1–4] and reconstruction-based methods [5–7].
Intelligent computing has also been applied in the field of image super-resolution. Super-
resolution methods based on genetic algorithms, guided by imaging models, utilize opti-
mization techniques to seek the optimal estimation of the original image. At its core, this
approach transforms the problem of reconstructing multiple super-resolved images into a
linear system of equations. The convolutional neural network (CNN) has greatly promoted
the vigorous development of SR field and demonstrates vast superiority over traditional
methods. The main reason it achieves good results is due to its strong capability of learning
rich features from big data in an end-to-end manner [8]. CNN-based SR methods often use
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PSNR as the evaluation metric; although some SR methods achieve good results for PSNR,
it is still not completely satisfactory in terms of perception.

The generative adversarial network (GAN) [9] has achieved impressive visual perfor-
mance in the field of super-resolution (SR) since the pioneering work of SRGAN [10]. GANs
have proven their capability to generate more realistic images with high perceptual quality.
In pursuit of further enhancing visual quality, Wang et al. proposed ESRGAN [11]. Given
the challenges of collecting well-paired datasets in real-world scenarios, unsupervised
GANs have been introduced [12,13]. BSRGAN [14] and real-ESRGAN [15] are dedicated to
simulating the practical degradation process to obtain better visual results on real datasets.

However, perceptual dissatisfaction accompanied by unpleasant artifacts still exists in
GAN-based SR models because of insufficient design in either generators or discriminators.
In GAN-based SR methods, it is obvious that the decisive capability to recover naturally
finer textures in generators is dependent largely on the guidance of discriminators through
GAN training, but discriminators are usually cloned from well-known networks (U-net [16],
VGG [17], etc.) suitable for image segmentation or classification, which might not fully lead
generators to restore subtle textures in SR. Moreover, the design of generators should be
perceptive enough to extract multi-scale image features from low-resolution (LR) images
and mitigate artifacts.

Research hypotheses and questions: Perceived quality improvement: How can we
design a network structure of PSRGAN to suppress artifact generation in images, and how
can we achieve the effect of suppressing artifacts? Generative adversarial network image
quality assessment: Which evaluation metrics are used to assess the generated images to
ensure their perceived quality is enhanced? Adversarial training stability: How can we
ensure the stability and convergence of our PSRGAN training? To address these issues
and further improve the visual quality of the restored SR images, we redesigned both
generators and discriminators; the contributions of this paper are mainly in four aspects:

• We present a novel perception-design-oriented PSRGAN with double perception
turbos, which can generate real-world SR images with naturally finer textures while
suppressing unpleasant artifacts by ×4 upscaling factors (see Figure 1).

• We design the first-perception turbo in the generator network, characterized by slice
operation and a three-level perception structure, which can extract multi-scale features
from sliced sub-images and mitigate artifacts.

• We propose the second-perception turbo in the discriminator network with cas-
caded perception turbo blocks, which can further promote the generator to restore
subtle textures.

• We demonstrate that the proposed PSRGAN has achieved state-of-the-art perceptual
capabilities calculated by NIQE, NRQM, and PI.

LR Image BSRGAN Real-ESRGAN+ PSRGAN

Figure 1. Comparisons of visual quality among BSRGAN [14], real-ESRGAN+ [1], and PSRGAN on
real-life images by ×4 upscaling. The PSRGAN can generate naturally finer textures and remove or
alleviate annoying artifacts for real-world images. Zoom in for best view.
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2. Related Work

Single-image super-resolution: SRCNN [18] is the first method to apply deep learning
to SR reconstruction, and a series of learning-based works are subsequently proposed [19–23].
ESPCN [24] introduces an efficient sub-pixel convolution layer to perform the feature
extraction stages in the LR space instead of HR space. VDSR [19] uses a very deep con-
volutional network. EDSR [25] removes the batch normalization layers from the network.
SRGAN [10] first uses the GAN network for the SR problem and proposes perceptual loss,
including adversarial loss and content loss. Based on human perceptual characteristics,
the residual in the residual dense block strategy (RRDB) is exploited to implement various
depths in network architectures [11,26]. ESRGAN [11] introduces the residual-in-residual
dense block (RRDB) into the generator. RealSR [27] estimates various blur kernels and real
noise distributions to synthesize different LR images. CDC [28] proposes a divide-and-
conquer SR network. Luo et al., in [29], propose a probabilistic degradation model (PDM).
Shao et al., in [30], propose a sub-pixel convolutional neural network (SPCNN) for image
SR reconstruction.

Perceptual-driven approaches: The PSNR-oriented approaches lead to overly smooth
results and a lack of high-frequency details, and the results sometimes do not agree with the
subjective human perception. In order to improve the perceptual quality of SR results, the
perceptual-driven approach is proposed. Based on the idea of perceptual similarity [31], Li
Feifei et al. propose perceptual loss in [32]. Then, textures matching loss [33] and contextual
loss [34] are introduced. ESRGAN [11] improves the perceptual loss by using the features
before activation and wins the PIRM perceptual super-resolution challenge [35]. Christian
Szegedy et al. propose inception [36], which can extract more features with the same
amount of computation, thus improving the training results. For the purpose of extracting
multi-scale information and enhance the feature discriminability, RFB-ESRGAN [8] applies
the receptive field block (RFB) [37] to super resolution and wins the NTIRE 2020 perceptual
extreme super-resolution challenge. There is still plenty of room for perceptual quality
improvement [38].

The design of discriminator networks: The discriminator in SRGAN is VGG-style,
which is trained to distinguish between SR images and GT images [10]. ESRGAN borrows
ideas from relativistic GAN to improve the discriminator in SRGAN [11]. Real-ESRGAN
improves the VGG-style discriminator in ESRGAN to an U-Net design [15]. In [39], Alejan-
dro et al. propose a novel convolutional network architecture named “stacked hourglass”,
which captures and consolidates information across all scales of the image. Inspired by [39],
we propose a new discriminator structure, which can guide the generator to recover
finer textures. All the related work as Table 1 shows.

Table 1. Related work on design of discriminator networks.

Different Methods Design of Discriminator Networks

SRGAN VGG-style, which is trained to distinguish between SR images

ESRGAN borrows ideas from relativistic GAN to improve the discriminator in SRGAN

Real-ESRGAN proposed an U-Net design

RFB-ESRGAN proposed stacked hourglass network which captures and consolidates information across all scales of the image

Artifact suppression: The instability of the training of GANs often leads to the introduc-
tion of many perceptually unpleasant artifacts while generating details in the GAN-based
SR networks [40]. There have been several SR models focusing on solving the problem.
Zhang et al. propose a supervised pixel-wise generative adversarial network (SPGAN) to
obtain higher-quality face images [41]. Gong et al., in [42], overcome the effect of artifacts
in the super-resolution of remote sensing images using self-supervised hierarchical per-
ceptual loss. Real-ESRGAN uses spectral normalization (SN) regularization to stabilize
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the training dynamics [15]. We propose a algorithm named “image slice and multi-scale
feature extraction”, which can generate more delicate textures and suppress artifacts.

The evaluation metrics: The DCNN-based SR approaches have two main optimization
objectives: the distortion metric (e.g., PSNR, SSIM, IFC, and VIF [43–45]) and percep-
tual quality (e.g., the human opinion score; no-reference quality measures such as Ma’s
score [46], NIQE [47], BRISQUE [48], and PI [49]) [50]. Yochai et al. in [49] have revealed
that distortion and perceptual quality are contradictory and there is always a trade-off be-
tween the two. Algorithms that are superior in terms of perceptual quality tend to be poorer
in terms of, e.g., PSNR and SSIM. However, sometimes there is also inconsistency between
the results observed by human eyes and these perceptual quality metrics. Because the
no-reference metrics do not always match perceptual visual quality [51], some SR models
such as SRGAN perform mean-opinion-score (MOS) tests to quantify the perceptual ability
of different methods [10]. We use NIQE, NRQM, and PI as our image quality metrics, which
do not depend on the GT image to measure the perceptual quality of the reconstructed
image [52]. The related work on evaluation metrics as Table 2 shows.

Table 2. Related work on evaluation metrics.

Evaluation Metrics Advantage Disadvantage

Distortion metrics Simple calculation Greater inconsistency with perceived quality

Human opinion score Consistent with visual perception High labor costs

No-reference quality
measures

Balancing consistency with perceived quality and
computational cost There is some inconsistency with visual perception

The transformer: Vaswani et al. in [36] propose a new simple network architecture,
transformer, based solely on attention mechanisms, dispensing with recurrence and convo-
lutions entirely. Transformer continues to show amazing capabilities in the NLP domain.
Many researches have started to try to apply the powerful modeling ability of transformer
to the field of computer vision [53]. In [54], Yang et al. propose TTSR, in which LR and
HR images are formulated as queries and keys in transformer, respectively, to encourage
joint feature learning across LR and HR images. Swin transformer [55] combines the ad-
vantages of convolution and transformer. Liang et al. in [56] propose SwinIR based on
Swin transformer. Vision transformer is computationally expensive and consumes high
GPU memory, so Lu et al. in [57] propose ESRT, which uses efficient transformers (ET), a
lightweight version of the transformer structure.

3. Proposed Methods

To further improve perceptual quality as well as mitigate artifacts in SISR, we pro-
posed a novel perception-design-oriented super resolution generative adversarial network
(PSRGAN) with double perception turbos. In this section, we first introduce the generator
network-containing first-perception turbo (GPT) and then describe the construction of the
discriminator network with the second-perception turbo (DPT). At last, we discuss the
perceptual loss function used.

3.1. Generator Network

The generator network consists of two components: first-perception turbo, and the
feature blending and upsampling component (FBUC) as shown in Figure 2.
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Figure 2. Architecture of generator network with corresponding kernel size (k), number of feature
maps (n), and stride (s) indicated for each convolutional layer, where F1, F2, and F3 are multi-scale
features extracted by MFEB described in Figure 3.
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Figure 3. Design of MFEB in first-perception turbo.

The first perception turbo has two major blocks: the image slice block (ISB) and the
multi-scale feature-extraction block (MFEB). The image slice block (ISB) produces four
1
4 size sub-images (I1

sub, I2
sub, I3

sub, and I4
sub) from the low-resolution image ILR via pixel

reassembly. Specifically, suppose ILR has the resolution of 2m · 2n pixels or padding to
2m · 2n pixels; the sliced sub-images are m · n pixels. If the upper left pixel is denoted as
(0, 0), and the lower right pixel is denoted as (2m− 1, 2n− 1), the relationship of the pixels
between ILR and the sub-images can be formulated as below.





ILR = {(k, t) | 0 ≤ k < 2m, 0 ≤ t < 2n, k, t ∈ N ∪ 0}
I1
sub = {(2p, 2q) | 0 ≤ p < m, 0 ≤ q < n, p, q ∈ N ∪ 0}

I2
sub = {(2p + 1, 2q) | 0 ≤ p < m, 0 ≤ q < n}

I3
sub = {(2p, 2q + 1) | 0 ≤ p < m, 0 ≤ q < n}

I4
sub = {(2p + 1, 2q + 1)|0 ≤ p < m, 0 ≤ q < n}

(1)

The slice method above has the following characteristics:

• The slice splits the LR image to multiple detail adversarial sub-images while preserving
the pixel integrity of the LR image.

• The subsequent MFEB could extract multi-scale features from smaller adversarial
samples; thus, the generator is capable of generating diverse and delicate textures.

• The slice weakens the correlations among noisy pixels in ILR, which can effectively
reduce noises and further alleviate artifacts in the restored SR image. Although the
correlations among adjacent pixels might be also impaired, the meaningful semantic
features will be eventually recovered in the SR image through GAN training.
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The multi-scale feature extraction block (MFEB, Figure 3): It has been proven that each
learned filter has its specific functionality and that a reasonably larger filter size could grasp
richer structural information, which in turn could lead to better results [18]. The MFEB is
perceptually designed to extract diverse image features from the LR image by three groups
of convolutional layers inspired by inception networks [36], as depicted in Figure 3. Please
refer to Appendix B for more detail.

The first convolution group has a tiny receptive field, used to retain micro subtle
features, denoted as k1-n64-s1.

The second convolution group has a medium receptive field, used to capture moderate
features, denoted as k1-n32-s1, k3-n64-s1.

The third convolution group has a large receptive field, used to seize macro features,
denoted as k1-n32-s1, k3-n48-s1, k3-n64-s1.

The outputs of the three convolution groups are activated using the Sigmoid weighted
liner unit (SiLU) and then ×2 upsampled via pixel-shuffle to obtain multi-scale features
F1, F2, F3. The process can be formulated as:

Fi = [SiLU(Convsi(xsub))] ↑s, i ∈ {1, 2, 3}. (2)

where Convsi(xsub), i ∈ {1, 2, 3} denote the three convolution groups, SiLU is the activation
function, ↑ denotes upsampling, s denotes the scale factor and s = 2 in this block, and
Fi, i ∈ {1, 2, 3} indicate the 3-scale feature maps extracted. Subsequently, the obtained
feature maps F1, F2, F3 are added in the channel dimension as input, residual in residual
dense block (RRDB) [11] is adopted to further capture semantic information and improve
the recovered textures, and the output is denoted as F. The formal processing in the
first-perception turbo is described in Algorithm 1.

Algorithm 1 Image slice and multi-scale feature extraction

Input: LR images set X .
Output: Multi-scale features F1, F2, F3, deeper features F.

1: for all ILR such that ILR ∈ X do
2: generate I1

sub,I2
sub,I3

sub,I4
sub through slice operation from ILR.

3: Get xsub by merging the four sub-images I1
sub,I2

sub,I3
sub,I4

sub in color channel dimen-
sion.

4: for all i such that 1 ≤ i ≤ 3 do
5: input xsub to Convsi,SiLU,2UP obtain Fi,
6: end for
7: generate F = RRDB(F1 + F2 + F3),
8: end forreturn F1, F2, F3, F.

Feature blending and upsampling component (FBUC, Figure 2): The FBUC reassembles
the obtained multi-scale features to generate the corresponding ISR counterpart of ILR. In
the upsampling phase, the FBUC upsamples ILR with diversfied features F as the input via
pixel shuffle and gradually blends the features extracted by the MFEB. The upsampling
process can be formulated as follows:

Ff inal = fConv−SiLU( fConv−SiLU( fConv−SiLU((F + F3) ↑s +(F2) ↑s) + (F1) ↑s) ↑s) (3)

where ‘+’ denotes concatenation operation, ↑ denotes upsampling, s denotes the scale
factor, and s = 2. fConv−SiLU denotes one convolutional kernel, SiLU is the activation
function, and Ff inal denotes the final features obtained from the FBUC. Ff inal is passed
through a triple convolutional layer with the kernel size of 3× 3 and finally outputs ISR,
which is ×4 upscaling according to the original ILR.
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3.2. Discriminator Network

We proposed a novel discriminator containing the pre-processing block, cascaded
perception turbo blocks (PTBs), and the post-processing block. The structure of the discrim-
inator is depicted in Figure 4.
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Figure 4. Discriminator network structure with second-perception turbo. The structure of CSR, Res1,
and Res2 are shown in Figure 5.
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Figure 5. (Left): Differences between BRC and CSR; (right): structure of Res1 and Res2 in PTBs.

The pre-processing block is utilized for the initial feature perception of ISR and IHR.
As shown in Figure 4, it includes a CSR block, two residual blocks, and a downsampling
layer. The CSR block consists of a convolution layer, an SN layer, and a ReLU activation
function. The specific structure of the two residual blocks Res1 and Res2 is shown in the
Figure 5.

The second-perception turbo is the core structure of this discriminator, which consists
of cascaded PTBs. In order to further promote the generator to restore subtle textures, we
proposed the PTB structure and made the following four improvements on the basis of
hour-glass module [39]:

• As shown in the Figure 5, we adopt the CSR structure instead of BRC, which consists
of the BN layer, the ReLU activation function, and the convolutional layer. It has been
proven that removing the BN layers can prevent BN artifacts of SR images, improve the
performance, and reduce the computational complexity in the SR task [25]. In addition,
we improve the perceptual loss by using the features before activation, which could
provide stronger supervision for brightness consistency and texture recovery [11].

• In the upsampling procedure, we use pixel-shuffle instead of nearest neighbor inter-
polation, which may lose pixel information.

• In the downsampling layer, we use convolution instead of Maxpool2d operation,
which may lose the integrity of feature map.

• We enlarge the input channels of PTB to 128, which improves the perceptive capabili-
ties of the discriminator.

The post-processing block consists of three convolutional layers to further learn fea-
tures and output a feature map that benefits the computation of adversarial loss.

Based on the above improvements, the discriminator could further perceive multi-scale
features at various spatial relationships and promote the generator to restore subtle textures
driven by GAN.

3.3. Perception Loss

We introduced the loss function similar to ESRGAN, which is a hybrid weighted loss
function that takes into account pixel-level recovery and visual perception effects and is
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able to achieve better super-resolution quality. Therefore, the total loss function of the
generator LG is a weighted combination of several losses: the adversarial loss LGAN , pixel
loss LPixel , and perceptual loss LPercep. The loss function of the discriminator LD is the
adversarial loss LGAN . The LG is described as follows:

LG = αLGAN + βLPixel + γLPercep (4)

where LPixel = Exi ‖ G(xi)− y ‖1 is the one-norm distance between the recovered image
G(xi) and HR image y; it thus evaluates the average degree of approximation of ISR and
IHR over pixels. α, β, γ are coefficients to balance different loss terms. Moreover, LPercep
is gained by introducing a fine-tuned VGG19 network to calculate the one-norm distance
between the recovered image G(xi) and high-level features of y. It is used to evaluate
the approximation of ISR and IHR in human perception. The perceptual loss is calculated
as follows:

LPercep = Exi ‖ VGG(G(xi))−VGG(y) ‖1 (5)

LGAN aims to distinguish the SR image from the HR image by the superior perceptive
capability of the discriminator, which could help to learn sharper edges and more detailed
textures; it can be formulated as follows:

LGAN = −Exhr [log(1− D(xhr, xsr))]−Exsr [log(D(xsr, xhr))] (6)

4. Experiments

In this section, we will discuss our PSRGAN model trained in RGB three channels.

4.1. Training Details

The experiments are performed with a scaling factor of×4 between LR and HR images;
we obtain corresponding four-times smaller LR images by degrading the HR pictures, which
are cropped to size 400× 400 using the high-order [15] algorithm. Meanwhile, the patch
size of cropped HR is 256× 256, and the patch size of LR is 64× 64. When training, the
batch size is set to 12× 2, which means that we use two GPUs and the batch size per GPU
is 12.

The training process is divided into two stages. One is the pre-training generator,
and the other is conducting GAN training combined with the generator and discriminator.
First, in the pre-training process, we purely train the generator with the L1 loss. The
learning rate is 2× 10−4, and the sum of the iteration is 0.4 million. Then, we employ the
pre-training generator model as an initialization for the generator. The GAN is trained
with a combination of L1 loss, perception loss, and GAN loss, with weights of 1, 1, and 0.1,
respectively. The learning rate is set to 1× 10−4 for both the generator and discriminator,
and the sum of iteration is 0.28 million. Pre-training with L1 loss is beneficial to obtain more
visually pleasing results by avoiding undesired local optima for the generator. Moreover, it
can help the discriminator to distinguish more on the textures part so that the discriminator
can receive relatively better super-resolved images during GAN training.

For optimization, we use Adam [58] with β1 = 0.9, β2 = 0.99. We alternately
update the generator and discriminator network until the model converges. We implement
our models with the PyTorch framework and train them using NVIDIA GeForce RTX
3090 GPUs.

4.2. Data

For training, we use the DIV2K dataset [59], the Flickr2K dataset [21], and the Out-
doorSceneTraining(OST) dataset [60] as training datasets. We employ these large datasets with
rich textures, which help to generate SR pictures with more natural and subtle textures [11].

We evaluate our models on widely used benchmark datasets, including OST300 [60],
PIRM Self val [35], 2020track1 [51], RealSR-Canon [61], DRealSR Test x4 [28], and RealSR-
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Nikon [61]. In particular, the images from RealSR-Canon and RealSR-Nikon are the center
subimages of original images, and those larger than 1K× 1K are cropped to 1K× 1K.

4.3. Qualitative Results

Due to the accessibility of SR methods, we compare our PSRGAN with several state-
of-the-art methods, including BSRGAN, PDM SR, SwinIR [56], LDL [40], ESRGAN, and
real-ESRGAN+. We have shown some representative qualitative results with NIQE in
Figure 6 and Table 3. More detailed results calculated by NRQM and PI are presented in
Tables 4–6. It can be observed from the figure that the results of our proposed PSRGAN
outperforms previous approaches in both details and clearness, with fewer artifacts. For
instance, PSRGAN can produce clearer, more natural lion fur (see 0901) and more detailed
wall structures (see OST 278) than BSRGAN and LDL, whose textures are unnatural,
skewed, and contain unpleasing noise. Compared with PSRGAN, ESRGAN and real-
ESRGAN+ fail to produce enough details. Moreover, PSRGAN is capable of boosting
visual sharpness (see DSC 1454 x1), while other methods either produce blurry structures
(ESRGAN, PDM SR, and SwinIR) or do not generate enough details (BSRGAN). In addition,
previous GAN-based methods sometimes introduced unpleasant artifacts such as BSRGAN
and real-ESRGAN+. Our PSRGAN eliminates these artifacts and obtains cleaner results
(see Canon 40 x1).

Table 3. NIQE scores on diverse testing datasets—the lower, the better. Colors R, G, and B indicate
the best first, second, and third NIQE results among models on each dataset row. The calculation
method of NIQE is derived from the basic SR package of PyTorch 1.11.0 + cu113.

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 7.600 3.309 4.319 2.921 2.817 3.501 2.806 2.735
DRealSR Test x4 9.772 4.803 7.667 4.698 5.250 8.644 4.846 4.533
RealSR-Canon 13.480 5.998 10.015 4.956 5.637 13.096 5.352 4.499
RealSR-Nikon 13.017 6.377 9.544 4.819 5.712 12.443 5.180 5.164
PIRM Self val 7.747 3.808 5.132 3.683 3.539 3.516 3.350 3.330
2020track1 7.596 3.783 4.101 3.618 3.958 7.440 3.820 3.411

Table 4. NIQE scores on diverse testing datasets—the lower, the better. Colors R, G, and B indicate
the best first, second, and third NIQE results among models on each dataset row. The calculation
method of NIQE is in PIRM2018 derived from https://github.com/roimehrez/PIRM2018 (accessed
on 1 June 2023).

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 7.612 3.414 4.308 3.034 4.56 3.551 2.929 2.826
DRealSR Test x4 9.766 4.818 7.635 9.765 8.372 8.632 4.848 4.543
RealSR-Canon 13.442 6.046 10.008 4.985 13.187 13.101 5.346 4.512
RealSR-Nikon 13.006 6.435 9.537 4.834 12.39 12.446 5.176 5.169
PIRM Self val 7.746 3.838 5.195 3.716 2.986 3.511 3.363 3.311
2020track1 7.606 3.813 4.096 7.606 3.249 7.217 3.835 3.423

Table 5. NRQM scores on diverse testing datasets—the higher, the better. Colors R, G, and B indicate
the best first, second, and third NRQM results among models on each dataset row. The calculation
method of NRQM is in PIRM2018 derived from https://github.com/roimehrez/PIRM2018 (accessed
on 1 June 2023).

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 3.266 6.319 5.737 6.58 5.683 6.236 6.576 6.714
DRealSR Test x4 2.576 5.264 3.536 2.576 3.317 3.244 5.295 5.551
RealSR-Canon 2.337 4.571 2.484 4.861 2.548 2.476 5.743 6.131
RealSR-Nikon 2.366 4.635 2.597 5.249 2.866 2.681 5.69 5.839
PIRM Self val 3.76 8.091 6.096 8.191 8.393 8.401 8.347 8.524
2020track1 3.307 6.219 5.99 3.307 6.493 6.591 6.133 6.504
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Table 6. PI scores on diverse testing datasets—the lower, the better. Colors R, G, and B indicate the
best first, second, and third PI results among models on each dataset row. The calculation method of
PI is in PIRM2018 derived from https://github.com/roimehrez/PIRM2018 (accessed on 1 June 2023).

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 7.173 3.548 4.286 3.227 4.438 3.658 3.176 3.056
DRealSR Test x4 8.595 4.777 7.05 8.595 7.527 7.694 4.777 4.495
RealSR-Canon 10.552 5.738 8.762 5.062 10.319 10.313 4.802 4.191
RealSR-Nikon 10.32 5.9 8.47 4.793 9.762 9.883 4.743 4.665
PIRM Self val 6.994 2.874 4.549 2.763 2.297 2.555 2.509 2.394
2020track1 7.15 3.797 4.053 7.15 3.378 5.313 3.851 3.459

Bicubic(9.77)

DSC_1454_x1 from DRealSR_test_x4(NIQE) PSRGAN(3.11)

BSRGAN(4.71) LDL(8.46) Real-ESRGAN+(3.80)

PDM_SR(7.39) SwinIR(4.98) ESRGAN(8.64)

Bicubic(9.79)

Canon_40_x1 from DRealSR_test_x4(NIQE) PSRGAN(3.84)

BSRGAN(3.85) LDL(8.41) Real-ESRGAN+(3.95)

PDM_SR(7.44) SwinIR(3.92) ESRGAN(8.32)

Bicubic(7.87)

0901 from 2020track1(NIQE) PSRGAN(3.56)

BSRGAN(3.60) LDL(3.56) Real-ESRGAN+(3.96)

PDM_SR(3.60) SwinIR(3.44) ESRGAN(10.04)

Bicubic(7.52)

OST_278 from OST300(NIQE) PSRGAN(2.52)

BSRGAN(2.91) LDL(5.08) Real-ESRGAN+(2.69)

PDM_SR(4.33) SwinIR(2.83) ESRGAN(3.34)

Figure 6. Qualitative results of PSRGAN. PSRGAN produces more subtle textures and clearer
structures, e.g., animal texture and building structure, as well as fewer unpleasant artifacts, e.g.,
artifacts in fonts. Zoom in for best view.
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Although the NIQE score of PSRGAN is not always best, we still believe that exploring
the effect of focusing on the human visual perception of real pictures is crucial for SR;
after all, the existing perception indexes do not reflect all the problems. Please refer to
Appendix C for more qualitative results.

4.4. Ablation Study

In order to study the effects of each component in the proposed PSRGAN, we grad-
ually modify the discriminators of PSRGAN and compare their differences. The overall
visual comparison is illustrated in Figure 7. Each column represents a model with its
configurations shown at the top. The red sign indicates the best performance. A detailed
discussion is provided as Table 7 follows.

Table 7. Model with different configurations.

Second Third Fourth Fifth

PTBs 3 5 5 7
Channels 128 128 256 128

OST_049 from OST300

OST_198 from OST300

92 from PIRM_Self_Val

OST_278 from OST300

Figure 7. Visual comparisons of different configurations in PSRGAN. The red sign indicates the
best performance.
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Number of PTBs: The discriminator with the optimal number of cascaded PTBs has a
strong representation capacity to capture semantic information, which can further improve
the recovered textures, especially for regular structures like the wall of image OST 278
in Figure 6. We set the order of the number to 2, 3, 4, 5, 6, and 7 for experimentation,
respectively. For simplisity, we only demonstrate the results of 3, 5, and 7 numbers; the
experimental results are depicted in Figure 7. As shown, when the number is 5, the
results are relatively sharper with richer textures than others. For some cases, a prominent
difference can be observed from the second, third and fifth column in Figure 7.

Channel size of PTB: The different channel sizes of PTB influence the perceptive
capabilities of the discriminator. We have tested on 3, 128, and 256 channels. For simplisity,
we only demonstrate the results of 128 and 256 channels, as shown in Figure 7. When the
channel size is 128, the results are clearer and have fewer artifacts.

Cross verification between PTBs and U-net: Please refer to Appendix A for details.

4.5. Running Times

Our method achieves moderate GPU run times for both training and testing, thanks to
its design characteristics. Our model achieves outstanding super-resolution performance,
reaching a superior level of quality after a rigorous training regimen of 490 k iterations.
Our model exhibits test times on multiple datasets that are comparable to existing state-of-
the-art models. Notably, when compared to SwinIR and LDL, our model demonstrates a
significant advantage in test time efficiency. The algorithms were trained and tested on a
server with NVIDIA GeForce RTX 3090 GPUs. Tables 8 and 9 compare the running times of
different state-of-the-art models.

Table 8. The GPU run times for training of different networks. The unit is the number of iterators,
and k represents thousands. Since Bicubic is not an adversarial neural network, there is no number
of iterators.

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-ESRGAN+ PSRGAN

GAN Training Times (iters) None 1000 k 200 k 500 k 400 k 400 k 400 k 490 k

Table 9. The GPU run times of different networks on diverse datasets. The unit is time, where m
stands for minutes and s stands for seconds.

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-ESRGAN+ PSRGAN

OST300 54 s 5 m 4 s 5 m 13 s 23 m 54 s 7 m 15 s 5 m 36 s 5 m 16 s 5 m 29 s
DRealSR Test x4 1 m 2 s 5 m 47 s 5 m 46 s 21 m 56 s 8 m 34 s 6 m 21 s 5 m 58 s 6 m 20 s
RealSR-Canon 17 s 2 m 2 m 1 s 9 m 6 s 2 m 20 s 2 m 2 m 3 s 2 m 9 s
RealSR-Nikon 22 s 2 m 31 s 2 m 30 s 9 m 26 s 3 m 12 s 2 m 31 s 2 m 34 s 2 m 42 s
PIRM Self val 1 s 6 s 6 s 17 s 19 s 5 s 7 s 7 s

2020track1 10 s 53 s 54 s 2 m 56 s 1 m 18 s 55 s 56 s 58 s

5. Discussion

In this study, we present the perception-design-oriented image super resolution gen-
erative adversarial network (PSRGAN), an innovative approach that fuses generative
adversarial networks (GANs) and human perceptual insights. Through extensive experi-
ments and analysis of the model, we have achieved the following major achievement.

Perceptually guided super-resolution enhancement: We successfully combined human
perceptual insights and used them to guide super-resolution processes. This resulted in
sharper, more realistic, and more human-perceivable high-resolution image generation,
as illustrated by Figure 6, where our PSRGAN generates more detailed textures of animal
hairs, fewer artifacts, and a sharper edge in text-related images.

The experimental results: Our extensive experiments show that PSRGAN achieves
significant performance gains on multiple datasets and tasks. Quantitative evaluations
show that PSRGAN outperforms traditional super-resolution methods (real-ESRGAN+,
ESRGAN, and BSRGAN) on multiple standard image quality metrics such as NIQE, NRQM,
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and PI. More encouragingly, the images generated by PSRGAN are closer to the high-
resolution original images in terms of human perception.

Limitations: Despite our satisfactory achievements, we have to recognize some limita-
tions of PSRGAN. Computational requirements: the training and inference of PSRGAN
requires a large number of computational resources, which may be a challenge for some
applications. Data diversity: while our model performs well on multiple datasets, perfor-
mance may be degraded in specific domains or with uneven data distribution.

In my opinion, the SR network will definitely develop in the direction of breaking
through its current limitations in the future, and the trend of super-resolution application
is to reduce the computational burden and to apply it to diversified datasets.

6. Conclusions

We have presented a PSRGAN model that achieves superior perceptual quality both
in terms of evaluation metrics and visual effects. According to the experimental results,
our proposed PSRGAN based on generative adversarial networks outperforms current
state-of-the-art intelligent algorithms (BSRGAN, real-ESRGAN, PDM_SR, SwinIR, LDL,
etc.) on several evaluation metrics (NIQE, NRQM and PI), with a ×4 upscaling factor on
various datasets (OST300, DRealSR_Test_x4, RealSR-Canon, etc.). The PSRGAN model
mainly consists of two kinds of perception turbo (PT), GPT in the generator network, and
DPT in the discriminator network. In terms of visual effects, the proposed image slice
block mitigates the artifacts and noise in the reconstructed image, the three-level perception
structure in GPT which could extract diversified textures. The cascaded PTBs in DPT could
further promote the generator to restore subtle textures.
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Appendix A. Cross Verification between PTBs and U-Net

In PSRGAN, we now call its generator network PSRNet and its discriminator network
PTBs. In this section, we further compare the differences between two kinds of GANs,
PSRNet+PTBs, and PSRNet+U-net on diverse testing datasets. From the results in Table A1,
we can conclude that using PTBs can promote the generator to restore more perceptive SR
images driven by GAN; more qualitative comparisons are shown in Figure A1.

OST_99 from OST300(NIQE) Bicubic(7.52) PSRNet+U-net(2.69) PSRGAN(2.48)

OST_164 from OST300(NIQE) Bicubic(7.87) PSRNet+U-net(3.35) PSRGAN(3.01)

Figure A1. Qualitative comparisons on representative real-world samples with ×4 upscaling factors.
PSRNet+PTBs outperforms PSRNet+U-net in terms of both restoring texture details (See OST 99) and
producing clearer results (See OST 164).

Table A1. NIQE scores on several diverse testing datasets. The lower, the better.

PIRM self val OST300 RealSR-Nikon RealSR-Canon

PSRNet+U-net 3.527 2.830 5.673 5.896
PSRGAN (PSRNet+PTBs) 3.330 2.735 5.164 4.499

Appendix B. Structure of Multi-Scale Feature Extraction Block

We conducted experiments on the number of convolutional groups for multi-scale
feature-extraction block (MFEB) in the generator network. As the experimental results in
Table A2 show, the SR results show better performance when the number of convolutional
groups is three.

Table A2. NIQE scores of feature extraction block at different scales on diverse testing datasets; the
lower, the better. The calculation method of NIQE is derived from the basic SR package of PyTorch
1.11.0+cu113.

Groups 1 2 3 4 5

OST300 6.650362 6.635382 6.520303 6.626211 6.61622
DRealSR Test x4 7.892549 7.932709 7.818715 7.993731 7.821493
RealSR-Canon 10.179904 10.313314 10.208351 10.32831 10.3463
RealSR-Nikon 10.445691 10.491598 10.409443 10.582925 10.378877
PIRM Self val 6.717716 6.717983 6.653905 6.699813 6.694974

2020track1 6.596391 6.583975 6.46227 6.60103 6.526587

105



Electronics 2023, 12, 4420

Appendix C. More Qualitative Results

Bicubic(7.97)

OST_298 from OST300(NIQE) PSRGAN(2.56)

BSRGAN(3.22) ESRGAN(3.34) Real-ESRGAN+(2.63)

PDM_SR(3.93) DAN(7.21) RealSR(3.76)

Bicubic(8.20)

OST_189 from OST300(NIQE) PSRGAN(2.92)

BSRGAN(3.92) ESRGAN(5.69) Real-ESRGAN+(3.68)

PDM_SR(5.83) DAN(7.33) RealSR(3.72)

Bicubic(7.91)

0968 from 2020track1(NIQE) PSRGAN(2.29)

BSRGAN(3.43) ESRGAN(5.89) Real-ESRGAN+(2.35)

PDM_SR(4.13) DAN(6.55) RealSR(4.20)

Bicubic(7.42)

OST_032 from OST300(NIQE) PSRGAN(3.53)

BSRGAN(4.06) ESRGAN(3.82) Real-ESRGAN+(3.85)

PDM_SR(4.19) DAN(5.70) RealSR(3.75)

Figure A2. More qualitative results of PSRGAN and NIQE are provided for reference. [×4 upscaling].
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Abstract: In the context of long-term infectious disease epidemics, guaranteeing the dispatch of
materials is important to emergency management. The epidemic situation is constantly changing;
it is necessary to build a reasonable mechanism to dispatch emergency resources and materials to
meet demand. First, to evaluate the unpredictability of demand during an epidemic, gray prediction
is inserted into the proposed model, named the Multi-catalog Schedule Considering Costs and
Requirements Under Uncertainty, to meet the material scheduling target. The model uses the gray
prediction method based on pre-epidemic data to forecast the possible material demand when the
disease appears. With the help of the forecast results, the model is able to achieve cross-regional
material scheduling. The key objective of material scheduling is, of course, to reach a balance between
the cost and the material support rate. In order to fulfil this important requirement, a multi-objective
function, which aims to minimize costs and maximize the material support rate, is constructed. Then,
an ant colony algorithm, suitable for time and region problems, is employed to provide a solution to
the constructed function. Finally, the validity of the model is verified via a case study. The results
show that the model can coordinate and deploy a variety of materials from multiple sources according
to changes in an epidemic situation and provide reliable support in decisions regarding the dynamic
dispatch of emergency materials during an epidemic period.

Keywords: emergency material scheduling; gray prediction; ant colony algorithm; demand forecasting;
multi-objective optimization

1. Introduction

COVID-19 is a severe global public health emergency that has had a profound impact
on medical systems and social economies [1]. During the outbreak of large-scale infectious
diseases, the scheduling of emergency supplies is necessary to ensure medical treatment
and the continuation of normal life. Thus, it is important to establish an emergency
resources supply system fully tailored to the epidemic process. Among the issues linked
with emergencies, methods of efficiently dispatching resources require attention. There are
many factors affecting dispatching, including external factors, such as region and time, and
internal factors, such as material supply and demand. A state of uncertainty and emergency
increases the difficulty of dispatching materials. Therefore, the first factor that must be
considered is the prediction of the possible demand through scientific methods. A two-
stage location-routing model has been proposed for guiding resource allocation when the
requirements and infrastructure are unknown [2]. The model has a lower computational
cost because of its simple calculation process. Then, case-based reasoning (CBR) and
the Dempster–Shafer theory have been employed to improve the accuracy in forecasting
emergency material demand [3]. A good method is necessary not only for estimating
demand but also for the organization of the supply chain and the coordination of the
relationship between the parties in order to enhance the effectiveness of the material
distribution. A two-stage MADA-B mechanism was designed to research the supply and
demand of multi-attribute emergency materials, which combines a multi-attribute double
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auction (MADA) with bargaining and can perfectly match buyers with sellers through
the game playing of the transaction price and quantity [4]. After demand matching is
completed, the subsequent production plan becomes the new focus. Then, a fuzzy linear
programming model was provided to solve the aggregate production planning problem. Its
advantage is the incorporation of uncertainty of the customer demands, and unit holding
and backordering costs of the production plan [5]. In one work, a method based on
the timed-colored Petri net (TCPN) model was proposed to model the cooperation of
actions with time analysis [6]. After the production of materials, timeliness needs to be
considered in the selection of transportation methods. After an in-depth discussion of
the cold chain model selection problem, taking into account economic and environmental
objectives from both business and financial aspects, a value-based management method
is provided as a new shipping approach [7]. The method effectively solves material
planning by cutting out unnecessary actions. Other methods focus on the quick construction
of the supply chain according to the criterion of reaction speed. Based on this idea, a
hybrid algorithm combining artificial immunity with ant colony optimization has been
developed, the transportation scheme of which has a shorter response time and covers
more demand points [8]. With the hierarchical timed color Petri net (HTCPN) model and
the skyline operator, a multi-objective optimization (MOO) model for a fire emergency
response was established, which not only shortened the response time but also reduced
resource consumption [9]. It must be noted that the above methods assume that materials
are directly transported from the supply side to the demand side. They do not take
into account cross-regional transportation, which is more likely in epidemic situations.
To overcome this disadvantage, an inter-regional emergency cooperation network that
includes system construction, organization and coordination, and mechanism design is
proposed to offer an optimal countermeasure for city cooperation [10]. Transit points
need to be considered when cross-regional issues are involved. The location of transit
points will affect transportation efficiency. Considering this, a multi-objective optimization
model for the selection of rescue stations has been established to improve efficiency [11]. In
the research into transit points for cross-regional issues, the requirement for warehouses
becomes obvious because it is nearly impossible to match the rate of supply with the
rate of consumption. A mixed-integer programming model for uncertain requirements
controlled by time and cost provides a helpful solution for emergency warehouse location
and distribution [12]. Additionally, when stocks are available, a simulation–optimization
approach based on the stochastic counterpart or sample path has been shown to optimize
the pharmaceutical supply chain by managing the records of the stocks [13]. Due to the
uncertainty of epidemics and the timeliness of drugs, medical demand is difficult to predict
and handle. For that, a deterministic MILP model and a robust optimization model are
used to deal with the demand uncertainty while integrating warehouse selection, inventory
strategy and delivery route optimization of the VMI [14].

The above examples from the literature show different solutions for emergency events.
However, all of them ignore the fact that the degrees of urgency of different requirements
play a role in the response, especially when the emergency supplies are not enough to meet
all of the requirements. In this situation, the distribution of materials has to consider the
degree of urgency. An optimization model combines the location hazard index (LHI) with
the response time; the LHI measures the potential hazard of a location, while the response
time provides resource allocation in response to an emergency situation [15]. From the
observation of multiple independent emergency events, a deep ensemble multitask model
integrating four subnetworks has been proposed. It can improve the medical dispatch
process by classifying the degree of emergency based on clinical data, environmental
data and other factors [16]. In the case of an epidemic outbreak, a hybrid multi-verse
optimizer algorithm based on the multi-verse optimization algorithm and the differential
evolution algorithm can effectively reduce the distribution cost by considering the urgency
of the demand for emergency supplies [17]. Numerous studies have comprehensively
discussed good solutions for dispatching materials by recreating the scene of the emergency.
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The pre-emergency warning process has become another research hotspot. A study has
formulated a multi-objective mixed-integer non-linear programming model to determine
the location and number of relief centers, with their prepositioned inventory level, in
the pre-emergency stage. The decision provided by the model can minimize costs and
transportation distances [18].

The above literature examples discuss the various factors that support a reasonable
resource-scheduling solution to advance the development of emergency management.
However, most of the studies concentrate on static analysis to optimize resource scheduling,
which means that the variations in the requirements and degrees of emergency are totally
ignored in the process. In addition, the works mainly focus on the post-stage response,
and the pre-stage early warning mechanism is rarely involved. In order to offer a solution
incorporating all factors, a coordinated allocation model of multiple materials based on the
gray prediction model is proposed in this work and is named the Multi-catalog Schedule
Considering Costs and Requirements Under Uncertainty. If the number of infectious
members of the population can be forecast, then the materials that will subsequently be
required can be prepared. Thus, by collecting information on historical infectious diseases,
the model uses a gray prediction algorithm to predict the number of infectious diseases in
the future. According to the prediction results, the demand relative to infectious disease
is determined, and this includes both medical materials and general goods. At the same
time, the cost is also considered. With the goal of reducing the cost and meeting demand, a
multi-object function is defined and takes into consideration the type of relief material, the
time difference, and trans-regional coordination. This model contains numerous variables
from different angles, meaning it is difficult to set the initial solutions. The ant colony
model does not require much for the initial solutions and has few parameters, meaning that
it is suitable for combinational optimization problems such as material dispatch. Therefore,
an ant colony model is designed to solve our problem. The contributions of this work are
as follows:

(1) The gray prediction algorithm is used to predict the number of confirmed cases at
various times. Then, the degree of emergency can be estimated, and the predicted data can
be used to guide material scheduling. The application of this prediction module means
that our model can play a certain role in early warning systems.

(2) Both external and internal factors are considered in order to expand the scope
of the model’s application and improve the satisfaction of the solution provided by the
proposed model. External factors include distances and the time of transportation. The
internal factor comprises the maximum level of production. Then, an objective function for
cross-regional scheduling is defined, in which the uncertainty of requirements and different
types of goods in a period of time are taken into account.

(3) In order to obtain the final schedule, the model uses the ant colony algorithm to
solve the objective function. There are numerous integer variables in the function, and the
initial solution is a three-dimensional matrix. Thus, the model records the directions of
each ant’s action in each dimension in the matrix and defines a utility function, which is
used to calculate the effect of the ant’s every choice. Unlike the pheromone, the calculated
results will help shorten the time required to obtain the result of the model by adjusting the
probability of picking the direction in the course of each ant’s actions.

This paper consists of five sections. Section 1 mainly describes the latest achievements
regarding the research issues in this paper and discusses their advantages and disadvan-
tages. Then, the model and the research value proposed in this paper are briefly introduced.
Section 2 provides a detailed introduction to the theories used in the model. Section 3
consists of the building and solving processes of the model. The results of the model are
verified and presented using examples in Section 4. Finally, the conclusions are discussed
in Section 5.
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2. Preliminaries
2.1. Gray Prediction

The gray prediction method GM(1,1) is a prediction system that can contain both
known and unknown information. Based on the rule of data change, it generates a sequence
with strong regularity and then the corresponding differential equation is built to predict
the developed values of the data. Compared with other prediction methods, the gray
prediction model only needs a few samples to drive, which is suitable to deal with the
emergency because emergency always happens in a short time, and it is hard to gather
enough observations during it. Therefore, in this paper, the gray prediction model is used
to complete the prediction job [19]. The model is defined as follows [20].

We assume that the reference data column is x0 =
(

x0(1), x0(2), . . . , x0(n)
)
, whose

1-AGO is as follows:
x(1) =

(
x(1)(1), x(1)(2), . . . , x(1)(n)

)
(1)

x(1) =

(
x(0)(1),

2

∑
i=1

x(0)(i) . . . ,
n

∑
i=1

x(0)(i)

)
(2)

Formula (1) is the accumulating generation operator (1-AGO) of the reference data col-
umn, and it is obtained via Formula (2). In Formula (2), x(1)(k) = ∑k

i=1 x(0)(i), k = 1, 2, . . . , n.
n is the number of observations. The mean generated sequence of x(1) is z(1), where
k = 2, 3, . . . , n:

z(1) =
(

z(1)(2), z(1)(3), . . . , z(1)(n)
)

(3)

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k− 1) (4)

The gray differential equation is established:

x(0)(k) + az(1)(k) = b, k = 2, 3, . . . n (5)

In Formula (5), a, b are the parameters of the equation. The values of a, b are calculated
by the immediate mean of the original data series. It is worth noting that when performing
the immediate mean calculation, since the first data point does not have the previous
data point, it needs to be averaged with the second data point. The whitening differential
equation corresponding to Formula (5) is as follows:

dx(1)

dt
+ ax(1)(t) = b (6)

u = [a, b]T (7)

Y =
[

x(0)(2), x(0)(3), . . . , x(0)(n)
]T

(8)

B =




−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1




(9)
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According to least squares, the estimated value of u for minimizing J(u) = (Y− Bu)T

(Y− Bu) is obtained as û =
[

â, b̂
]T

=
(
BTB

)−1BTY. To solve the whitening differential
equation, the formula is as follows:

x̂(1)(k + 1) =

(
x(0)(1)− b̂

â

)
e−âk +

b̂
â

(10)

k = 0, 1, . . . , n− 1

The model accuracy is mainly verified using three items: a residual test, a correlation
test, and a posterior error test. The residual test refers to the point-by-point comparison
of the residual difference between the calculated value and the actual value. First, we
calculate x̂(1)(k + 1) according to the method. Then, the predicted value of the original
sequence is calculated according to Formula (11).

x̂(0)(k) = x̂(1)(k)− x̂(1)(k− 1) (11)

∆(0)(k) =
∣∣∣x(0)(k)− x̂(0)(k)

∣∣∣ (12)

ϕk =
∆(0)(k)
x(0)(k)

(13)

Φ = n−1
n

∑
k=1

ϕk (14)

k = 1, 2, . . . , n

The absolute residual sequence ∆(0) is formed from the results of Formulas (11) and (12).
The relative residual sequence Φ is formed from the results of Formula (13). Then, the
average relative residual is shown in Formula (14). For the given α, the model can be
regarded as qualified when Φ < α and ϕn < α are both true.

The correlation degree test refers to the comparison of the similarities between the
computed sequence curves and real sequence curves. The correlation coefficient is defined
as Formula (17):

X̂ = {x̂(1), x̂(2), . . . , x̂(n)} (15)

Xi = {xi(1), xi(2), . . . , xi(n)} (16)

ηi(k) =
minmin|x̂(k)− xi(k)|+ρmaxmax|x̂(k)− xi(k)|
|x̂(k)− xi(k)|+ ρmaxmax|x̂(k)− xi(k)|

(17)

i = 1, 2, . . . , m; k = 1, 2, . . . , n

|x̂(k)− xi(k)| is the absolute error of sequence X̂ and Xi at k point. min|x̂(k)− xi(k)|
represents the minimum distance between the corresponding points in sequence X̂ and
X when i remains the same. minmin|x̂(k)− xi(k)| aims to traverse i to find the minimum
value in the result of min|x̂(k)− xi(k)|. The calculation process of maxmax|x̂(k)− xi(k)|
is the same as minmin|x̂(k)− xi(k)|, except that maxmax|x̂(k)− xi(k)| is looking for the
maximum. ρ(0 < ρ < 1) is the resolution. Usually, when ρ = 0.5 and ηi(k) > 0.6 where
i = 1, 2, . . . , m, the model is considered as qualified.

The posteriori error test refers to testing the statistical characteristics of the resid-
ual distribution. A series of statistical indicators needs to be calculated. The following
Formula (18) is the average of the original sequence. Formula (19) is the standard deviation
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of the original sequence. Formula (20) is the mean of the residual. Formula (21) is the
standard deviation of the residual:

x(0) = n−1
n

∑
i=1

x(0)(i) (18)

S1 =

√√√√√√




∑n
i=1

[
x(0)(i)− x(0)

]2

n− 1


 (19)

∆(0) = n−1
n

∑
i=1

∆(0)(i) (20)

S2 =

√√√√√√




∑n
i=1

[
∆(0)(i)− ∆(0)

]2

n− 1


 (21)

Calculate the variance ratio: C = S2 × S1
−1. S1 is the variance calculated from

the original sequence x0. S2 is the variance calculated from the residual sequence ∆(0).

Calculate the small residual probability: p = P
{∣∣∣∆(0)(i)− ∆(0)

∣∣∣ < 0.6745S1

}
. Generally,

when C < 0.65 and p > 0.7, the model is acceptable.

2.2. Ant Colony Algorithm

The ant colony algorithm is an intelligent optimization algorithm. The basic ACO
model is described by the following three formulas [21]:

Pij(t) =





[
τij(t)

]α
η

β
ij

∑l∈Ak
[τil(t)]

αη
β
il

, i f sj ∈ Ak

0, otherwise

(22)

τij(t + 1) = ρτij(t) +
m

∑
k=1

∆τk
ij(t) (23)

∆τk
ij(t) =

{
1
Lk

, i f ant k moves f rom si to sj at step t

0, otherwise
(24)

In the ant colony algorithm, an ant chooses the next destination at each iteration until
it has completed its journey. For example, at iteration t, the ant k moves from si to sj. sj
belongs to the set Ak for the feasible location. Pij(t) is the probability that the ant will go
from si to sj at time t. The heuristic values ηij = 1/dij, where dij is the distance between
si and sj. The amount of pheromone trail τij(t) maintained at the connection between si
and sj represents the learned desirability of choosing sj when at si point. τij(t + 1) is the
pheromone concentration on the si to sj route in the next time period. It is calculated via the
addition of the heuristic values and the experience acquired by the ants. The possibility of
this step follows Formula (22), where α and β are positive constants. The pheromone trail
on the path from si to sj is updated as Formula (23) where ρ is the pheromone evaporation
coefficient expressed by a constant within interval (0, 1) and m is the total number of ants.
∆τk

ij(t) is the pheromone trail deposited by ant k as in Formula (24). Lk is the length of the
tour taken by ant k at step t. If ant k does not go from si to sj at time t, then the pheromone
left by ant k along this path is 0.
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3. Problem Description and Optimal Model
3.1. Problem Description

Due to the large number of viruses and the constant emergence of new variants,
epidemic outbreaks have the characteristic of being sudden and uncertain. According to
the scale of the epidemic, it can be divided into two stages: a stable period and an outbreak
period [22]. As shown in Figure 1, the number of cases increased significantly in April 2022;
the data for this period are about nine times higher than those for March 2022 and about
fourteen times higher than those for April 2021. Then, the number of cases fall back to the
normal range in May 2022. Therefore, April 2022 can be classified as the outbreak period.
The remaining months are classified as stable.
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Figure 1. The report of legal infectious diseases in Shanghai.

The difference in the data in April between the two years is very large in Figure 1,
which verifies the uncertainty feature of the outbreak. Because of the uncertainty of the
outbreak, the additional demand for resources with an outbreak is difficult to estimate.
For example, in order to solve the problem of material distribution during the peak in
April 2022, an e-commerce platform first added 3246 couriers to Shanghai. However, it was
found that the increase in staff was not enough. Then, another 1754 staff members were
reassigned to Shanghai. It can be seen that the uncertain requirements and the dynamic
situation of the epidemic are the main difficulties in resource allocation.

This paper focuses on solving the problem by coordinating the dispatch of various
anti-epidemic materials in multiple regions and multiple periods, considering the changes
in the emergency situation and the premise of uncertain demand.

3.2. Model Building

The following assumptions are made for the model: (1) There are three parties involved
in the emergency supply system, including responsible organizations in the epidemic
areas, suppliers of class A resources and suppliers of class B resources. (2) Three types of
supplies—daily necessities, medical supplies and testing materials—are needed. Class A
suppliers can provide daily necessities and testing materials; class B suppliers can provide
medical supplies and daily necessities. (3) The threshold of requirements is set as per%,
which means that at least per% of materials on the demand list must be met. (4) The
production cycle of the suppliers is a unit time t, and the entire epidemic period is T.
The process from producing goods to delivering them is shown in Figure 2, and the time
difference between the production of a resource and its delivery is shown in Figure 3. The
model parameters are shown in Table 1.
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Table 1. Model parameters’ definition.

Variables Introduction Variable Types

n n ∈ N, N is the set of the epidemic areas

Index variables
m m ∈ M, M is the set of suppliers in class A
k k ∈ K, K is the set of suppliers in class B
t Time t, t = 0, 1, 2, . . . , T

pn(t) The number of confirmed cases in area n at time t

Parameter variables

lqmn(t) The transportation volume of testing materials provided by the suppliers in class A
cqmn(t) The transportation volume of daily necessities provided by the suppliers in class A
mqkn(t) The transportation volume of medical supplies provided by the suppliers in class B
tqkn(t) The transportation volume of daily necessities provided by the suppliers in class B

alm The unit price of testing materials for class A
acm The unit price of daily necessities for class A
bck The unit price of daily necessities for class B
bmk The unit price of medical supplies for class B
apm The shipment price of one item provided by class A for one kilometer
bpk The shipment price of one item provided by class B for one kilometer
sin Distance, i = m, k

ldn(t) The requirement for testing materials in epidemic areas
mdn(t) The requirement for medical supplies in affected areas
cdn(t) The requirement for daily necessities in affected areas
maxjm The maximum production capacity provided by suppliers in class A.
maxjk The maximum production capacity provided by suppliers in class B.

ε j The penalty factor dependent on the difference between the requirement and real provision of goods.

Decision variables
αm When Class A suppliers produce test materials, αm = 1; otherwise, αm = 0.
βk When Class B suppliers produce medical supplies, βk = 1; otherwise, βk = 0.

j j = 1, 2, 3 where j represents three kinds of materials. This is set as: 1 indicating testing materials, 2
indicating medical supplies, and 3 indicating daily necessities.

117



Electronics 2023, 12, 4337

The responsible organizations in the epidemic areas issue detailed information to the
suppliers cataloged into A and B in stages according to the material demand according to
type and quantity. The suppliers produce and transport the materials based on the orders,
and the organizations pay the bill when the materials are delivered. The costs are computed
as follows:

CA1 = ∑m∈M lqmn(t)αm(alm + smnapm) (25)

CA3 = ∑m∈M cqmn(t)(1− αm)(acm + smnapm) (26)

CB2 = ∑k∈K mqkn(t)βk(bmk + sknbpk) (27)

CB3 = ∑k∈K tqkn(t)(1− βk)(bck + sknbpk) (28)

There are two situations that can arise in the process of material supply, namely
material shortage and material oversupply. The shortage of materials is not conducive
to the implementation of emergency measures, while the oversupply of materials will
generate carrying costs. The penalty cost is employed to describe the impact of these two
scenarios and is calculated as follows:

CF1 =
∣∣∣ldn(t)−∑m∈M lqmn(t)

∣∣∣ε1 (29)

CF2 =
∣∣∣mdn(t)−∑k∈K mqkn(t)

∣∣∣ε2 (30)

CF3 =
∣∣∣cdn(t)−∑m∈M cqmn(t)−∑k∈K tqkn(t)

∣∣∣ε3 (31)

A good solution should be generated via the selection of suitable suppliers to meet
requirements at a low cost. Based on this idea, the objective functions are defined as follows:

min f cost = ∑T
t CA1 + CA2 + CB2 + CB3 (32)

min f punish = ∑T
t ∑n∈N CF1 + CF2 + CF3 (33)

s.t.

lqmn(t) ≤ max1m (34)

mqkn(t) ≤ max2k (35)

cqmn(t) ≤ max3m (36)

tqkn(t) ≤ max3k (37)

per%× ldn(t + 1) ≤ lqmn(t) (38)

per%×mdn(t + 1) ≤ mqkn(t) (39)

per%× cdn(t + 1) ≤ cqmn(t) + tqkn(t) (40)
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αm, βk ∈ {0, 1} (41)

t = 0, 1, 2, . . . , T − 1, ∀m ∈ M, n ∈ N, k ∈ K

Formulas (34)–(37) indicate the amount of materials transported by category A and B
suppliers. They suggest that the amount of all the materials should not exceed their own
production capacity. Formulas (38)–(40) indicate that all the materials transported by the
suppliers in category A and B should meet at least per% of the needs of the epidemic area.
Formula (41) indicates the decision variables by which materials are produced by class A
and B suppliers.

3.3. Model Analysis

First, the model is built to achieve the goal of reducing costs while meeting material
requirements. The cost is represented by money, an entity whose value as a commodity
is equal to its value as money. Thus, the numerical value of currency can represent the
value of goods [23]. However, this is a very complex problem that needs to consider
both economic factors and living security. With a limited budget, it is helpful to consider
economic factors, and living security is crucial. Therefore, two objective functions min fcost
and min fpunish are respectively defined to minimize the cost and the difference between
of supply quantity and the required quantity. To sum up, the problem studied in this
paper is still an optimization problem in essence. In order to solve it, there are two main
ways to build the framework of the model: one is called predict-then-optimize, and the
other is called Smart “Predict, then Optimize” (SPO) [24]. These two modes have different
focuses on prediction. Predict-then-Optimize attaches great importance to the accuracy of
prediction, while SPO pays more attention to the bias cost of decisions in similar situations.
Considering that the prediction part of the paper aims at material demand, the accurate
matching of material demand and supply is one of the most important requirements in
the rescue process, so this paper chose the predict-then-optimize framework to establish
the model.

Second, the number of confirmed cases, denoted as pn(t), is a dynamic variable af-
fected by time; as a sequenced result, the amount of various emergency materials expressed
as ldn(t), mdn(t), cdn(t) are also changed. This improves the uncertainty and increases the
difficulty of this problem. In this work, the number of confirmed cases at time t is set as
the first parameter affecting others because the requirement for supplies at a given time in
the epidemic area is mainly affected by the number of infected people [25]. Formula (42) is
the prediction formula where pn(t) is the result of the gray prediction model. To obtain
the value of pn(t), the number of confirmed patients in θ periods before time t is taken as
the input for the gray prediction method, which is used to predict the possible number of
confirmed patients at the following times. Adjusting θ can change the input number of
variables in the gray prediction model so as to adjust the prediction results. The specific
adjustment analysis is discussed in the subsequent experiment. Then, the material require-
ment is obtained by converting the predicted results through Formulas (43)–(45). ldn(t),
mdn(t) and cdn(t) are determined by pn(t). xd, yd, and zd are respectively the demand
coefficients of the three types of materials.

pn(t) = fGM(1,1)(pn(t− θ)) (42)

ldn(t) = xd·pn(t) (43)

mdn(t) = yd·pn(t) (44)

cdn(t) = zd·pn(t) (45)
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The model randomly generates several groups of feasible solutions and uses the ant
colony algorithm to optimize each group of feasible solutions. Finally, we compare the
optimization results to obtain the resource procurement allocation scheme. The original
ant colony algorithm mentioned above relies on the experience of all ants to drive. This
method is limited to high-dimensional problems because the large solution space weak-
ens the effect of the rule of thumb of ants. Therefore, for high-dimensional problems,
randomness is added to help expand the search scope of the solution while consider-
ing the experience accumulation of ants [26]. Inspired by this, this paper proposes an
alternative treatment to help ants explore the solution space. The process of optimizing
feasible solutions is as follows. In the optimization process, the model aims to achieve
lower costs by changing the transportation schedule at time t. So, at time t, the model sets
LQ(t) =

{
lqij(t)

∣∣∣i ∈ M, K; j ∈ N
}

as the transport matrix, and lqij(t) represents the amount
of materials transported by supplier i to responsible organization j, which is also the num-
ber of orders issued by responsible organization j to supplier i. The difference between the
transportation volume before adjustment and the volume after is ∆lqij(t). The adjustment
directions are divided into three categories: increase, decrease and unchanged. lqij

′(t) is
set as the transportation volume at time t after adjustment, and its relationship with lqij(t)
is shown in Formula (46).

lqij
′(t) = lqij(t) + dij × ∆lqij(t) (46)

Dt =
{

dij
∣∣i ∈ M, K; j ∈ N

}
(47)

dij denotes the direction of adjustment, which belongs to {1, 0,−1}. Dt is the set of dij
at time t. If we assume TD = {td} is the set of all the directions that the ant can choose,
then Dt belongs to TD. The initial solution should be able to explain the origin and the
end of the transportation and the transportation volumes at any moment, meaning that it
should be a three-dimensional matrix. In the original ant colony algorithm, each iteration
indicates that each ant has finished its journey. For this model, it signifies that every lqij(t)
in the solution has changed, where t ∈ T, i ∈ M, K, j ∈ N. However, there are so many
variables that it is hard for the model to obtain the final scheme, even with the help of
the remaining pheromone trail. Therefore, this paper sets another utility function to lead
an ant to reach its destination faster. Formulas (48)–(55) explain the mechanism of the
utility function.

fant

(
lqij(t)

)
= γ fcost(t) + ω fpunish(t) (48)

∆ fant = fant

(
lqij
′(t)
)
− fant

(
lqij(t)

)
(49)

gant =

{
1, ∆ fant > 0
0, ∆ fant ≤ 0

(50)

P
(

Dt+1 = td
)
= Ptd(c) + gant × ∆ fant × fant

(
lqij(t)

)−1
(51)

Ptd′ 6=td

(
Dt+1 = td′

)
= Ptd(c)− gant × ∆ fant ×

(
fant

(
lqij(t)

)
× (|TD| − 1)

)−1
(52)

∆τant
td (c) =

{
∑t,Dt=td ∆ fant, i f ant choose td at time t during step c

0, otherwise
(53)

τtd(c + 1) = ρτtd(c) +
∑ant ∆τant

td (c)
∑td∈TD ∑ant ∆τant

td (c)
(54)
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Ptd(c) =
τtd(c)

αη
β
td

∑td∈TD τtd(c)
αη

β
td

(55)

If the ant chooses the direction td at time t, then Dt = td. fant

(
lqij(t)

)
is the util-

ity function that consists of fcost(t) and fpunish(t). γ, ω are used to adjust the weight.
∆ fant is the difference in the transportation volume before and after the change at time
t. gant represents the effect of ant making this change. P

(
Dt+1 = td

)
is the probability of

choosing direction td at time t + 1. At the same time, the probability of picking the other
directions decrease equally as Formula (52). c represents the number of iterations of the
optimization process. Then, as in Formulas (53)–(55), after all ants have finished their
journey, they exchange experiences and then move on to the next iteration. The solution
process for the algorithm is shown in Figure 4.
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Now, the complete model named the Multi-catalog Schedule Considering Costs and
Requirements Under Uncertainty (MS-CR-U) has been introduced. First, the uncertainty
caused by the dynamic characteristics of epidemics is measured through the gray prediction
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method. A multi-catalog model means that the types of materials and catalogs of suppliers
are both partitioned because most of the suppliers focus on fixed goods. The production
ability, cost and requirements are taken into the objective functions defined by the model
to improve the application. Finally, the ant colony algorithm is employed to provide the
solution for the model. The details of the model designed based on the ant colony algorithm
are as follows:

Step 1: Enter the number of infectious disease cases from t0 to tk.
Step 2: After the gray prediction method predicts the number of cases from tk+1 to tk+n, the
requirement based on the prediction results is generated according to Formulas (42)–(45).
Step 3: Initialize parameters, including the maximum iterations, stopping conditions
and the number of ants. Randomly generate initial feasible solutions based on resource
constraints according to Formulas (34)–(41).
Step 4: Establish the direction set based on the full array combination between the suppliers
and the epidemic areas and the mentioned directions of the adjustment. Choose a set of
adjustable directions for all feasible solutions.
Step 5: Randomly assign ants to the positions and ensure that there is one ant in
each position.
Step 6: Each ant randomly selects the direction from the set.
Step 7: Each ant chooses the adjustment direction of the next delivery time according to the
Formulas (50)–(52), until t = T.
Step 8: All ants finish their journey and update the pheromone according to the Formulas (53)–(55).
Step 9: Check the stopping criterion. If yes, go to Step 11; otherwise, go to Step 10.
Step 10: Check whether the upper limit is reached. If yes, continue; otherwise, go to Step 5.
Step 11: Output the result.

4. Data Analysis and Prediction Results

The problem solved using the MS-CR-U is to build a complete method for coordinating
and dispatching multiple anti-epidemic materials under the condition of varied require-
ments during the epidemic period. In order to foresee possible situations, the number of
historical infectious disease cases is used to sum up past experience. Additionally, it should
be noted that climate is an important factor affecting the occurrence and spread of infectious
diseases [27]. Thus, the mean temperature and precipitation data from 2020 to 2022 for
34 cities are shown in Figure 5. After observing the data, three types of characteristic
climate items can be described, which are called the south type, north type and north–south
junction. As the spread of infectious diseases is also related to the population size, in order
to control the variables, this paper selects three cities with similar population sizes from
the three climate types to collect statistics for infectious diseases. The data came from the
websites of the health commissions of the three cities. As the date of the earliest data in
the three cities is not consistent, the data from January 2018 to August 2022 are uniformly
utilized for collation.

122



Electronics 2023, 12, 4337Electronics 2023, 12, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 5. Heat map of precipitation and average temperature. 

4.1. Data Analysis 
As shown in Figure 6a, in January 2019, there was a peak in the outbreak of infectious 

diseases in City 3. Within one month, the growth rate of infectious disease was as high as 
425.5%. According to a public report, from December 2018 to January 2019, the 
temperatures of City 3 dropped significantly. In early December 2018, the temperature in 
City 3 remained around 10 to 20 degrees, but in early January 2019, the temperature 
dropped to −1 to 5 degrees. Within a month, the average temperature dropped by 52.25% 
and the Air Quality Index (AQI) increased by 19.15%. Based on the situation that climate 
change is predicted to increase the frequency and intensity of extreme weather events, 
amplifying air pollution levels and exacerbating respiratory diseases [28], and many 
people were infected with influence because they could not adapt to the temperature 
change. That is why the number of cases in City 3 soared within a month. Between the 
end of 2019 and the beginning of 2020, there was a small peak in Cities 2 and 3. Due to a 
series of epidemic prevention measures taken after the outbreak, the total number of 
infectious diseases in the three cities decreased by 57.7% in 2020. People adopted the habit 
of wearing masks, which effectively limited the spread of infectious diseases. During 2022, 
the number of cases in Cities 2 and 3 increased slightly at different time points. On account 
of the continuous mutations in the novel coronavirus in the process of transmission, the 
spread of new strains led to repeated outbreaks. 

 
(a) The number of infectious disease cases. 

Figure 5. Heat map of precipitation and average temperature.

4.1. Data Analysis

As shown in Figure 6a, in January 2019, there was a peak in the outbreak of infectious
diseases in City 3. Within one month, the growth rate of infectious disease was as high as
425.5%. According to a public report, from December 2018 to January 2019, the temperatures
of City 3 dropped significantly. In early December 2018, the temperature in City 3 remained
around 10 to 20 degrees, but in early January 2019, the temperature dropped to −1 to
5 degrees. Within a month, the average temperature dropped by 52.25% and the Air
Quality Index (AQI) increased by 19.15%. Based on the situation that climate change is
predicted to increase the frequency and intensity of extreme weather events, amplifying
air pollution levels and exacerbating respiratory diseases [28], and many people were
infected with influence because they could not adapt to the temperature change. That is
why the number of cases in City 3 soared within a month. Between the end of 2019 and
the beginning of 2020, there was a small peak in Cities 2 and 3. Due to a series of epidemic
prevention measures taken after the outbreak, the total number of infectious diseases in the
three cities decreased by 57.7% in 2020. People adopted the habit of wearing masks, which
effectively limited the spread of infectious diseases. During 2022, the number of cases in
Cities 2 and 3 increased slightly at different time points. On account of the continuous
mutations in the novel coronavirus in the process of transmission, the spread of new strains
led to repeated outbreaks.

As shown in Figure 6b, various indicators in the data for the three cities are discussed.
From 2018 to 2021, the mean, median and standard deviation for City 1 were significantly
lower than those for Cities 2 and 3, indicating that the epidemic scale in City 1 was smaller
than in the others, on the whole. Vertically, the three indexes for City 1 are close, meaning
that the distribution of the number of cases in each month is relatively average and the
outbreak scale is relatively stable. The annual mean and median for Cities 2 and 3 are
similar, and the difference between them and the standard deviation is large. This means
that the number of cases in each month fluctuates within a similar amplitude and the scale
of outbreaks is highly variable.
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4.2. Demand Forecasting

After the analysis of infectious disease data in these three cities, the gray prediction
method is used to predict the number of cases in the three cities from August 2021 to
August 2022. The model and prediction results are evaluated. The results are reached
in two ways. (1) In order to compare the results, gray prediction, SVM [29], the random
forest model [30] and LSTM [31] are used to predict the data. The three criteria of the mean
absolute error (MAE), mean absolute percentage error (MAPE), and root-mean-square
percentage error (RMSPE) is set to measure the performance. (2) The gray prediction model
is also evaluated via its own three test methods. The test results are shown in Table 2.

Table 2. Comparison of the test indexes among the prediction methods.

Methods
City 1 City 2 City 3

MAE MAPE RMSPE MAE MAPE RMSPE MAE MAPE RMSPE

SVM 5520 1.66 0.95 15,261 1.60 0.87 11,642 0.41 0.17
RF 2660 0.86 0.49 5069 0.67 0.39 11,992 0.52 0.29

LSTM 1152 0.43 0.27 6705 0.95 0.46 8235 0.29 0.13
GM(1,1) 618 0.18 0.08 4040 0.40 0.18 5936 0.24 0.16

For City 1 and City 2, the three indicators of the gray prediction are superior to the
other three methods. For City 3, the root-mean-square of the gray prediction is slightly
inferior to that of LSTM, but other indicators are also superior to those of other models.
Because the gray prediction model relies on the analysis of the change rule in the short
term to realize the prediction of the next stage, further analysis is conducted on the data
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for the three cities. It is found that the growth rate of the number of cases in City 3 from
October 2018 to January 2019 is not only higher than the average growth rate of City 1 and
City 2 but is also higher than the average growth rate of City 3 from January to September
2018. The change rule of data is broken in a short period of time, which means that the
root-mean-square percentage of the gray prediction was slightly higher than that of the
LSTM model. However, LSTM requires a large number of samples in the training process
to improve its accuracy, while the gray prediction method only needs a small number of
samples to complete the prediction. In addition, the gray prediction model outperforms
LSTM in two of the three indexes. Given that the sample size is small, gray prediction has
more advantages in dealing with this paper.

In addition to the above three indicators, gray prediction has three special testing
methods. The results of the three testing methods are shown in Table 3. For the posterior
difference test, when C < 0.65, p > 0.7, the method is qualified; for the residual test, when
α = 0.05 and the residual test value is less than α, the method is tested. For the correlation
degree test, when ρ = 0.5 and η(k) is greater than 0.6, it is qualified. With the results in
Table 3, the values of the three indicators all meet the standards, proving that the model
is suitable for this topic. The predicted results given by the gray prediction model of the
number of cases in the three cities from August 2021 to August 2022 are shown in Figure 7.

Table 3. The results of the three test criteria for gray prediction.

City 1 City 2 City 3

posterior-variance-test C = 0.46, p = 0.81 C = 0.40, p = 0.73 C = 0.42, p = 0.76
residual test ( α = 0.05) Φ = 0.034 Φ = 0.045 Φ = 0.049

correlation test ( ρ = 0.5) η(k) = 0.71 η(k) = 0.88 η(k) = 0.81
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Compared with the above indicators, this paper uses the gray prediction model to
complete the prediction job in the model. Considering that there are two parameters in the
gray prediction model, the paper studied their influence on the gray prediction model by
adjusting them, and the results are shown in Figure 8.
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Figure 8. The difference between the true and predicted values when y = 1.

The two parameters of the gray prediction model are the number of input variables
x and the number of outputs y. As shown in Figure 8, we changed the value of x and fix
y. The results generally indicate that when y is fixed, the larger x is, the larger the gap is
between the true and predicted values. It is concluded that for every unit increase in x,
MAE will increase by 25.52% on average. Since the degree of dispersion is more obvious
when x = 6 and 7, the remaining three cases are chosen for further analysis. Figure 9 shows
that a change in y also causes a change in prediction accuracy. Increasing y will decrease
the accuracy of gray prediction model. For every additional unit of y, MAPE increases by
0.55 on average. By comparing the MAE and MAPE of each group x and y, x = 4 and y = 1
are finally selected.
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Figure 9. (a) It shows the effect of changing x on the error when y = 1; (b–d) show the effect of
changing y on prediction accuracy when x is fixed.
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4.3. Experimental Design

As shown in Figure 7, the number of cases in City 2 increased significantly from
November 2021 to December 2021 and reached 232.76% within a month. After four months,
the number of infectious diseases fell back into the original range, which implies the
epidemic broke out suddenly, in a short period of time. This situation is consistent with
the problems discussed in this paper. Therefore, we chose City 2 as the discussed site. The
period T of the epidemic is set from September 2021 to April 2022, for which the unit of
time t denotes one month. The period from September 2021 to November 2021 is treated as
the pre-stage, and the period from December 2021 to April 2022 is treated as the post-stage.
Nine cities are randomly selected as the locations of suppliers, among which five are the
locations of suppliers in class A and four are the locations of class B suppliers. Table 4
shows the monthly demand for materials in the epidemic area. Tables 5 and 6 show class
A and class B suppliers’ production capacity, material pricing and the distance between
epidemic area and them. The gray prediction model is used to predict the number of cases
from October 2021 to April 2022. According to the predicted results, the monthly demand
for daily essential materials, testing materials and medical materials in epidemic areas
is obtained.

Table 4. The demand for materials per unit of time in the epidemic areas.

T
Type of Materials

Daily Necessities Test Materials Medical Supplies

t1 11,221 748 3740
t2 13,264 884 4421
t3 48,769 3251 16,256
t4 81,906 5460 27,302
t5 77,244 5149 25,748
t6 40,638 2709 13,546
t7 9033 602 3011

Table 5. Class A suppliers’ production capacity, material pricing and transportation distance.

Daily Necessities Test Materials Transportation Cost

Productive
Capacity

Material
Pricing

Productive
Capacity

Material
Pricing

Transport
Distance

Shipping
Unit Price

A1 25,000 34 2400 6.5 1171 18
A2 25,000 40 2500 8 1293 12
A3 26,000 45 2800 7 1021 17
A4 22,000 35 2500 5.5 1090 16
A5 28,000 43 2600 6 1397 19

Table 6. Class B suppliers’ production capacity, material pricing and transportation distance.

Daily Necessities Medical Materials Transportation Cost

Productive
Capacity

Material
Pricing

Productive
Capacity

Material
Pricing

Transport
Distance

Shipping
Unit Price

B1 24,000 33 12,000 148 695 13
B2 27,000 37 18,000 128 692 12
B3 26,000 37 16,000 185 821 14
B4 25,000 30 14,000 160 721 15

The penalty function in the objective function contains the weight coefficients. Sen-
sitivity analysis of parameters was performed before weights were determined and the
result is presented as Figure 10. ST values of ε1, ε2, ε3 are 0.36, 0.33 and 0.31, and the S1
values are the same as ST. It is concluded that ε1, ε2, ε3 generally has the same influence on
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the penalty value. In order to ensure that each material is of similar importance, we set
per = 80 and ε1 = ε2 = ε3 = γ = ω = 1. Then, the solution for the model is compared
with the solution for the random configuration model.
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Heuristic algorithms should find a balance between intensification and diversifica-
tion [32]. Therefore, extensive parameter tuning and sensitivity analysis are needed for
algorithmic design. In ACO, the number of ants affect the performance of the algorithm
to some extent. This paper adjusts the number of ants to compare the optimization per-
formance and optimization time of the algorithm. Figure 11 shows the results of the
comparison. Generally, as the ant population increases, the cost of the emergency plan
decreases but the algorithm takes longer. The optimization results and optimization time
increase by an average of 6.8% and 21.19% for each increase of 10 ants. Finally, this paper
determine that the number of ants is 50. In total, 50 groups of solutions satisfying the
constraint conditions are randomly generated, and these 50 groups of feasible solutions
are taken as the solutions for the stochastic resource allocation model. The costs of these
50 schemes are calculated. The resource procurement allocation scheme provided by the
MS-CR-U is compared with the original random scheme. At the same time, we calculate the
demand satisfaction rate of the MS-CR-U to further verify the feasibility of the solution. The
results are shown in Table 7. The optimization process is shown in Figure 12. Compared
with the random resource allocation model, the cost of the procurement allocation scheme
provided by the MS-CR-U decrease by 55.59% on average.
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Figure 11. The optimization performance and optimization time of the algorithm. (a) The cost of
different solutions obtained by adjusting the ant population. (b) The time taken to solve the model
under different ant population.
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Table 7. Comparison of the cost results of the different models.

Unit:×108 CNY
Random Resource
Allocation Model MS-CR-U

Maximum cost 139.75 67.46
Minimum cost 72.85 41.75
Average cost 108.60 48.23
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αM = {αm|m = 1, 2, 3, 4, 5} is the set of decision variables for class A suppliers.
When class A suppliers produce test materials, αm = 1; otherwise, αm = 0. βK =
{βk|k = 1, 2, 3, 4}. When class B suppliers produce medical supplies, βk = 1; otherwise,
βk = 0. Formula (56) shows the production arrangements reached by the suppliers in class
A and B and the responsible organizations. Formula (57) is the cost of the solution given by
the model. Formula (58) is the penalty cost calculated using the model. The final solution
given by the MS-CR-U is shown in Table 8. At this time, the required cost of the solution is
CNY 4.175 billion. The penalty cost means that the solution is short of 4124 items, including
41 testing material items, 1321 medical material items, and 2762 daily essential items.

αM = [1, 1, 1, 0, 1], βM = [1, 0, 0, 1] (56)

min f cost = 41.75× 108 (57)

min f punish = 4124 (58)

Table 8. A and B supplier emergency materials transportation plans during the epidemic period.

Time A1 A2 A3 A4 A5 B1 B2 B3 B4

t0 0 742 0 0 0 3738 11,218 0 0
t1 0 856 0 0 0 4415 13,256 0 0
t2 0 2472 776 0 0 11,984 26,982 21,781 4272
t3 158 2489 2782 22,000 35 12,000 27,000 26,000 14,000
t4 63 2479 2600 22,000 10 11,976 27,000 26,000 13,772
t5 0 2482 223 0 0 12,000 27,000 13,644 1554
t6 0 561 34 0 0 2992 9017 0 0
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To summarize, the MS-CR-U in this paper can be used to predict the number of cases
in the future based on historical epidemic information and can convert the prediction
results in order to obtain the demand for different materials. The requirements for various
materials are taken as the input for the proposed model to generate a reasonable schedule.
Thus, it is helpful in the procurement and allocation plan of emergency supplies before and
after the outbreak of an epidemic. The results show that the MS-CR-U is superior to the
random resource allocation model in terms of cost. Furthermore, the demand satisfaction
rate of three types of emergency materials is calculated, with the guaranteed rate of living
essentials being about 99.26%, the guaranteed rate of testing materials being approximately
99.27%, and the guaranteed rate of medical materials being about 99.27%. The total results
prove that the scheme given by the MS-CR-U is feasible.

5. Conclusions

This paper mainly studies the method of coordinating suppliers to complete the
scheduling of multiple materials in a period of time under the circumstances of uncertain
demand and a dynamic epidemic situation. This paper considers the two stages, the
stable period and the outbreak period, aiming to minimize the cost and meet material
demand, and proposes a coordinated allocation model of multiple materials based on
the gray prediction model. In view of uncertain demand, the gray prediction method
is used to predict the number of confirmed cases in the following time period, and this
number is utilized to estimate the possible emergency demand. Then, the Multi-catalog
Schedule Considering Costs and Requirements Under Uncertainty is completed to find
the final solution, which is based on the ant colony algorithm. In the proposed model, the
optimization direction is represented by the adjacency matrix. The effect of selection by a
single ant each time is calculated via the establishment of a utility function to adjust the
probability of each direction and screen out the optimal direction. Finally, examples and
related indicators demonstrate the qualifications of the model. We found that the cost of the
material scheduling model is superior to other models when material demand is guaranteed.
Thus, the model can provide support in decisions regarding material scheduling during an
epidemic. The main consideration of this paper is the problem of demand uncertainty in
emergencies. Considering the impact of emergency events on the market, the future work
plan will be further discussed and studied on the influence of material price changes on
decision-making based on the paper.
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Abstract: The Industrial Internet of Things (IIoT) is used in various industries to achieve industrial
automation and intelligence. Therefore, it is important to assess the network security situation of the
IIoT. The existing network situation assessment methods do not take into account the particularity of
the IIoT’s network security requirements and cannot achieve accurate assessment. In addition, IIoT
transmits a lot of heterogeneous data, which is subject to cyber attacks, and existing classification
methods cannot effectively deal with unbalanced data. To solve the above problems, this paper
first considers the special network security requirements of the IIoT, and proposes a quantitative
evaluation method of network security based on the Analytic Hierarchy Process (AHP). Then, the
average under-/oversampling (AUOS) method is proposed to solve the problem of unbalance of
network attack data. Finally, an IIoT network security situation assessment classifier based on the
eXtreme Gradient Boosting (XGBoost) is constructed. Experiments show that the situation assessment
method proposed in this paper can more accurately characterize the network security state of the
IIoT. The AUOS method can achieve data balance without generating too much data, and does not
burden the training of the model. The classifier constructed in this paper is superior to the traditional
classification algorithm.
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1. Introduction

The Internet of Things (IoT) is one of the fastest-growing technologies. With the
development of IoT technology, information from various fields can be integrated into
comprehensive applications [1]. The IIoT combines the emerging technologies of the
IoT with industrial control systems (ICS) to enable an intelligent industrial ecosystem
by providing potential solutions for automating manufacturing processes and effectively
controlling production chains, significantly increasing manufacturing efficiency, improving
product quality, and reducing costs and resource consumption. However, web-dependent
IIoT faces huge challenges in terms of cybersecurity [2]. By the end of 2022, the China
National Vulnerability Database (CNVD) had recorded 3141 industrial system vulnera-
bilities and 1443 IoT end device vulnerabilities. According to the “2019 China Internet
Network Security Situation Overview” released by the National Computer Network Emer-
gency Response Technical Team/Coordination Center of China (CNCERT/TT), about
41% of the existing IIoT devices in China have high-risk vulnerabilities in their sys-
tems. The most serious problems are exposed in electric power systems and urban rail
transportation industries.

In 1988, Endsley [3] proposed situation awareness as acquiring and understanding
environmental factors and predicting future states under certain spatial and temporal
conditions. Cyberspace situational awareness (CSA) was first proposed by Tim Bass [4] in
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1999. Network situation awareness is to determine the current network security states and
predict its future state trends by analyzing the environmental factors of the system [5]. The
process can be divided into four steps: data collection, situation understanding, situation
assessment, and situation prediction. Network security situation assessment (NSSA) is the
core of network situation awareness, which can analyze the current network security states
in real time [6]. NSSA enables early detection of security risks and threats in the network
so that measures can be taken to stop these threats before they occur [7]. The research of
NSSA for the IIoT is very important to ensure the stable operation, data confidentiality, and
environmental security of the IIoT.

There have been relatively few NSSA studies on IIoT. IIoT systems have different
requirements for information confidentiality, system availability, and data security than
information systems. The NSSA of traditional information systems does not take into
account its particularities, and is therefore not well suited to assessing the network condition
of the IIoT. IIoT integrates various networks and devices, and the network environment
is complex, so the amount of data collected by IIoT is large and the data distribution is
uneven. Large-scale network data cannot be directly used as NSSA, which will affect the
efficiency of evaluation [8]. Both undersampling and oversampling can only deal with the
data imbalance problem of binary classification, and cannot realize the balanced sampling
of multi-class data [9]. Aiming at the above problems, this paper first studies NSSA for
the IIoT based on the AHP. Then, the average under-/oversampling method is proposed
to deal with the imbalance of different attack data volumes. Finally, the IIoT network
security situation assessment classifier is constructed based on the XGBoost to improve the
effectiveness of the model. A ToN-IoT dataset was used in the experiment. The dataset is
derived from a test bench created for the Industry 4.0 network.

The major contributions of this paper are as follows:

(1) An NSSA method for the IIoT is proposed, which uses binary classification and multi-
classification results of attack traffic to quantify the network situation and uses the
AHP to obtain influence weights of each attack type for the IIoT.

(2) Using the XGBoost algorithm to build a classification model to judge whether the IIoT
has been attacked, and what the type of attack is. An average under-/oversampling
method is proposed to solve the problem of attack data imbalance, and the sampling
method used for a certain type of attack data is determined by the ratio of its data
volume to the average value of the total data volume.

(3) Experiments show that the NSSA method proposed in this paper is more suitable
for industrial control systems, and the attack classification model constructed in
this paper has high accuracy under the condition of a large amount of data and
imbalance of various types of data, laying a foundation for effective network security
situation assessment.

The rest of this article is organized as follows. Section 2 gives an overview of some
related work. Section 3 describes the theory related to the construction of an IIoT network
situational assessor. Section 4 details the quantification and evaluation methods of NSSA for
the IIoT. The experimental results are presented in Section 5. Finally, Section 6 summarizes
this paper and discusses future work.

2. Related Works

Today, a number of prominent studies on network security situational assessment
techniques for traditional security areas have been performed, and the assessment methods
are relatively mature, but the research on situational assessment for the IIoT is still in the
development stage.

Liu et al. [10] studied the characteristics of wireless networks and proposed an NSSA
method based on BIPMU to improve the performance and accuracy of NSSA. Zhao et al. [11]
analyzed NSSA in the big data environment, selected multi-source data in the big data
environment, proposed a parallel reduction algorithm based on an attribute importance
matrix to reduce the number of attributes of data sources, and used the particle swarm

133



Electronics 2023, 12, 3458

optimization algorithm to calculate the situation value of a wavelet neural network.
Nikoloudakis et al. [12] proposed a situation awareness framework based on machine
learning to handle heterogeneous attack data. This framework used the real-time aware-
ness function provided by the SDN paradigm to detect network entities and evaluate
known vulnerabilities. Experiments showed that this framework improved the accuracy
of threat detection. Zhang et al. [13] used a combination of long- and short-term memory
networks and decision tree algorithms to assess the time series problem of security posture.
The method improved the accuracy of the algorithm, but without taking into account the
existence of data category imbalance, meaning that the experimental results were not well
optimized. Chen et al. [14] used SVM and gravitational search algorithms to design an
NSSA method with better global optimization function. Han et al. [15] designed a quantita-
tive NSSA method for wirelessly connected intelligent robot clusters using convolutional
neural networks.

Khaleghi et al. [16] built a three-layer SMM by embedding context-dynamic quanti-
tative security measures (QSM) into the security measurement model (SMM). The model
considered the network’s deterrence against threats, resilience against attacks, and ability to
withstand shocks, and accurately measured the security effectiveness of the entire network
and its context components. Cai et al. [17] established a three-layer distribution Internet
of Things (PDIoT) security evaluation index system and used the entropy weight method
and cloud model theory to evaluate the security risks of PDIoT. Venkataramanan et al. [18]
proposed a model for detecting the resistance of microgrids to attacks. The model consid-
ered all cyber-physical layers of the microgrid and quantified the state of cyber-physical
security using theories such as graph theory analysis, availability probability models, and
attack graph metrics. The model was used experimentally to assess the resilience of the
microgrid after an attack. Basumallik et al. [19] studied the state of large-scale power sys-
tem outages caused by coordinated attacks and evaluated the state of the power grid after
attacks by using the semi-Markov method and defined three indicators. Sarkar et al. [20]
proposed a power system framework consisting of a computing system, a SCADA system,
and other software systems and created a concrete example based on this framework, for
use in evaluating the cyber-physical impact of the power system under different cyber
attacks. Zhang et al. [21] used a fuzzy reasoning algorithm to mine and identify network
attack correlation, and realized the perception and control of network security situation.
Li et al. [22] combined the entropy weight method and grey correlation analysis method
to put forward the ADN situation assessment index systems and assessment method con-
sidering network attack. This method avoided the dependence of traditional assessment
on expert experience and took into account the differences in assessment in different sce-
narios. Umunnakwe et al. [23] proposed a model for ranking the importance of multiple
components, which integrated industry vulnerabilities into the network risk assessment
of power systems. Experiments showed that the model provided operators with different
system protection strategies. Fan et al. [24] used the multi-observation Hidden Markov
Model (HMM) based on the attack characteristics to quantify the network state and obtain
the security status evaluation value of the software-defined network. Liu et al. [25] used
the D-S evidence theory to fuse the measured indicators and obtain the device threat value.
Then, AHP was used to calculate the weights of different devices, and finally, the net-
work threat situation value was obtained using a weighted method. Based on fuzzy AHP,
Zheng et al. [26] conducted hierarchical modeling of industrial control system equipment
and attack behavior, carried out security risk assessment and analysis, calculated system
risk value, and deployed more effective defense measures. Shang et al. [27] adopted a
method based on the attack tree model to model the industrial control system, calculated
the node interval probability by fuzzy reasoning, and obtained the probability of each
attack path in the system. Spyridon et al. [28] adopted the method of fuzzy probabilistic
Bayesian networks to conduct the dynamic security risk assessment of industrial control
systems from the perspective of dynamic characteristics, which is more in line with the
application of actual systems. Dong et al. [29] used object-oriented Bayesian networks
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(OOBN) for structural modeling and designed a prototype of the power information test
systems. Experiments showed that this method could be effectively applied to the security
risk assessment of the power systems network.

Bhandari et al. [30] proposed feature selection during the data preprocessing stage,
combining sequencer search and Chi-square attribute evaluation, and then using Bayesian
networks to identify attack types. Yang et al. [31] proposed an NSSA method for network
attack behavior classification, aiming at the problems whereby it is difficult to extract
features using traditional network security situation assessment methods, and with poor
timeliness. Sen et al. [32] proposed a multi-stage network attack detection framework.
Introducing the DOMCA correlation method constructs a multi-source intelligence knowl-
edge base for use in reconstructing complex attack activities, improving detection accuracy.
Experiments demonstrated that DOMCA could reliably detect multi-stage network attacks.
Al Ghazo et al. [33] studied the interdependencies between vulnerabilities, proposed an
automatic attack graph generator, and conducted experiments in a SCADA network. The
experiments showed that the attack graph generator was able to take into account the vul-
nerability exploitation conditions and other security properties in detail. Based on the idea
of artificial immunity, Wang et al. [34] proposed a dynamic network intrusion detection and
prediction model based on a fuzzy fractional ordinary differential equation. Tian et al. [35]
proposed a network attack detection method based on URL analysis to address the problem
whereby there are increased numbers of attacks on network servers in the case of cloud
Internet of Things systems. This method normalizes the URLs of edge devices, integrates
multiple concurrent depth models to analyze URLs, and performs web attack detection.
Experiments showed that this method was able to effectively improve the accuracy of
network attack detection. Tang et al. [36] proposed an optimized cloud model based on
the impact function to evaluate DDoS attacks. In this method, a V support vector machine
(V-SVM) was established to identify DDoS attacks. Xi et al. [37] proposed a framework
for NSSA by analyzing three dimensions: threat, vulnerability, and stability, in which the
decision layer incorporated the results of the sub-assessments and quantified impact factors
such as threats based on CVSS. The experiments demonstrated the effectiveness of the
framework using alert information.

In summary, although existing IIoT network security situation assessment methods
have achieved certain results, the following problems are still present:

• NSSA methods based on machine learning usually feature high precision, but existing
situation assessment models based on machine learning do not fully consider the
industrial characteristics of the IIoT systems, and their assessment results are not
applicable to IIoT systems.

• The IIoT network connects a variety of heterogeneous networks with complex struc-
tures and a huge amount of data. The modeling of industrial control systems, and
then the analysis of the model from different angles to evaluate the network security
of the system, required a lot of logical and mathematical operations, resulting in
the efficiency of NSSA realization being low, and possessing certain limitations. In
addition, system modeling relies on expert experience, and there is a lack of reason-
able quantitative standards, meaning that there is a certain subjectivity to the process
of evaluation.

• In some studies analyzing network security from threat detection, the researchers
did not process the unbalanced sample data in the industrial control dataset, result-
ing in a small number of samples with low extraction accuracy, thus affecting the
overall effect.

Based on the existing research on industrial control system network risk assessment
methods, this paper considers the impact of the confrontation between attackers and
defenders on industrial control system network security, and further studies risk assessment
methods. Considering the unbalanced characteristics of industrial control data samples,
this paper proposes a multi-class sampling method.
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3. Theoretical Research on NSSA for the IIoT
3.1. Design of the AHP for the IIoT

The IIoT has many features that are different from those of information systems. In
information systems, the key assets to be protected include information, such as bank
account data, credit card records, customer records, and so on. The security of information
systems mainly refers to the confidentiality of data, and sometimes it may be necessary
to shut down the network for hours, no matter the cost, in order to protect data security.
In contrast, the key asset of the IIoT is the availability of the plant or infrastructure. For
example, the plant must run continuously without shutting down the network.

Confidentiality (C), Integrity (I), and Availability (A) are three basic attributes of
network security. Availability has the highest priority in the IIoT [38,39]. Considering
the differences in cybersecurity characteristics between the IIoT and information systems,
Table 1 shows the different rankings of CIA between the IIoT and information systems.

Table 1. CIA Ranking.

Feature Information Systems IIoT

Confidentiality Low High
Integrity Medium Medium

Availability High Low

AHP is a subjective evaluation method suitable for analyzing multi-factor and multi-
level problems [40]. This paper uses AHP and IIoT security features to determine the CIA
weight coefficients of various attack impact values. The operation steps of this method can
be divided into four aspects, as follows:

1. Establishment of hierarchical structure model: The purpose of decision making, and
decisive factors are analyzed, and a hierarchical structure diagram is constructed
according to the relationship between them.

2. Construction of a judgment matrix: The decision factors are compared in pairs to
determine the value of the relatively important factors among them, which is generally
determined using the nine-point method.

3. Hierarchical sorting: The weight of each decision factor is solved by the sum-product
method using the judgment matrix.

• Each column of the judgment matrix B is normalized;
• The values of each column of the normalized judgment matrix are added to

obtain a one-dimensional vector;
• The one-dimensional vector is normalized to obtain the approximate solution

W of the desired feature vector. The maximum characteristic root λmax of the
judgment matrix is calculated according to (1), where n is the dimension of the
judgment matrix, and wi is the weight of the ith decision factor.

λmax =
1
n

n

∑
i=1

BW
wi

(1)

4. Consistency check: The CR value is calculated to determine whether the values of
paired decision factors in the judgment matrix have been correctly defined.

• The calculation of CI is shown in (2);
• The random consistency RI values are listed in Table 2;
• CR is calculated as shown in (3). Smaller values of CR indicate better consistency

of the judgment matrix. Generally, if the CR value is less than 0.1, the judgment
matrix meets the consistency test.
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Table 2. Random consistency, RI.

n 3 4 5 6 7 8 9

RI 0.52 0.89 1.12 1.26 1.36 1.41 1.46

CI =
λmax − n

n− 1
(2)

CR =
CI
RI

(3)

3.2. Average Under-/Oversampling (AUOS)

IIoT systems in different industries are subject to different types of attacks. When
studying attack traffic, it is common to encounter unbalanced data distributions. When
training models using multiple types of data, if the amount of data in a particular category
is too small, the model cannot fully learn the characteristics of that type of data, which
leads to a decrease in model accuracy. If the amount of data of a certain type is too large,
the model may be over-fitted, and the learning ability of the model will be weakened.

The traditional multiclass data undersampling method reduces the number of other
classes based on the class with the smallest amount of data. If the amount of data in
a category is extremely small, the total data volume will drop dramatically, which is
not conducive to model learning. The traditional multiclass data oversampling method
increases the number of other categories according to the category with the largest data
volume, resulting in a sharp increase in the total data volume, causing difficulties in
model learning, and a decrease in the operation rate. To solve this problem, an average
under-/oversampling method is proposed in this paper to balance the data. The steps of
the method are as follows:

1. Calculate the threshold value.

• Suppose that the size of the dataset S is m, there are j types, and the data size of
each class is xj;

• Calculate the average data volume average of the dataset according to (4).

average =
m
j

(4)

2. Perform data sampling.

• The data of type i{i ∈ (1, 2, . . . , j)} are extracted from S and denoted as Si, and
the remaining dataset is S1−i;

• The train–test–split method is used in Python to divide the dataset S1−i and
extract the average size of the dataset, denoted as S train

1−i ;
• All types of data in S train

1−i are converted into the same label, and the label is not i;
• S train

1−i and Si are combined into S train
i . The sampling method of the dataset S train

i
is judged according to step 3, and the data of type i in the sampled S train

i are
extracted and recorded as Sdeal.

3. Judge the sampling methods with the threshold: If wi > 2, undersampling is used for
this type. if wi < 0.5, oversampling is used for this type. If wi = average, no processing
is performed for this type of data;

• The coefficient factor wi of each class is calculated according to (5);

wi =
xi

average
(5)

• The random undersampling method is used for undersampling;
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• The SMOTE (Synthetic Minority Oversampling Technique) method is used
for oversampling

4. Merge the datasets: The unprocessed categories of data in S keep their original labels
and quantities, and the label of Sdeal is restored to i. The unprocessed data in S and
Sdeal are combined as the training set Strain.

The AUOS algorithm is shown in Algorithm 1.

Algorithm 1: AUOS algorithm pseudo code

Input: original train dataset S
Output: resampled dataset Strain
1 m, j, xj← S;
2 average = m/j;
3 for (i = 1; i ≤ j; i++) do
4 wi = xi/average
5 if wi 6=1 then
6 Si, S1−i← S; //The data of type i is extracted from S.
7 S train

1−i ← S1−i; //S1−i size is average extracted from S1−i using the
8 //train-test-split method.
9 S train

1−i ← S train
1−i ;

10 S train
i ← S train

1−i + Si;
11 if wi > 2 then
12 Sdeal← S train

i ;
13 end if
14 if wi < 0.5 then
15 Sdeal← S train

i ;
16 end if
17 end if
18 if wi = 1 then
19 Si← Si;
20 end if
21 Strain← Si, Sdeal;
22 end for
23 return Strain

3.3. Construction of NSSA Classifier for the IIoT

The IIoT combines the emerging technologies related to the IoT with ICS, and while it
greatly improves the efficiency and automation of production, it also increases its potential
to be attacked. Given the characteristics of high-dimensional attack data and large sample
size, in this paper, the XGBoost strong classifier is designed to improve the accuracy
of NSSA.

XGBoost is characterized by high accuracy, strong flexibility, and prevention of over-
fitting. It is often used in data mining [41]. XGBoost belongs to the ensemble learning
boosting algorithms, and is composed of multiple Gradient Boosting Decision trees (GBDT).

The algorithm structure of XGBoost is shown in Figure 1. XGBoost is a boosted tree
model. The idea of the XGBoost algorithm is to keep adding trees and to keep splitting
features to grow a tree. Each time a tree is added, a new function is learned to fit the
residuals of the last prediction. The parameters of the nodes of the already-trained tree
remain unchanged, and a new tree is added. The features of a sample fall to a correspond-
ing leaf node in each tree, each leaf node corresponds to a score, and finally, the scores
corresponding to each tree are added to the predicted value of the sample.
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Assume that the collected data sample is S = {(x 1, y1), (x 2, y2) . . . , (x n, yn)}. There
are n samples, each of which has m-dimension characteristics, and the predicted value of a
single sample is:

∼
yi =

t

∑
k=1

fk(xi) = y
∼
t−1
i + ft(xi) (6)

f (xi) = wq(xi)
(7)

where wq(xi)
is the fraction of sample xi in a leaf node q(x i), q(x i) represents the leaf node

of sample xi after judgment, and fk(x i) represents the leaf node values of kth regression
tree in a single sample xi.

XGBoost adopts a greedy algorithm to perform optimization tree by tree. Supposing
the current regression tree has T base learners in total, then the objective function of the
XGBoost will be:

obj =
n

∑
i=1

l(yi,
∼
yi) +

T

∑
t=1

Ω( ft) (8)

Ω( ft) = γT +
1
2

λ
T

∑
t=1

w2
t (9)

The first half of (8) represents the error between the predicted values and the true
values, and the second half is the increased regularization term, as specified in (9).

γ is the penalty parameter for controlling the depth of the tree, and λ controls the
leaf node score wt to prevent overfitting. The optimization objective of a single tree is
as follows:

argmin[
n

∑
i=1

l(yi,
∼
yi) +

T

∑
t=1

Ω( ft)] (10)

Bring Formulas (6) and (7) into Formula (8) to expand:

obj = γT +
T

∑
t=1

[∑
i∈n

l(yi, y
∼
t−1
i + wt)] +

1
2

λw2
t (11)

The loss function is obtained by Taylor second-order expansion:

obj ≈ γT +
T

∑
t=1

[wtGi +
1
2

w2
t (λ + Hi)] (12)

Gi = ∑
i∈n

gi (13)

Hi = ∑
i∈n

hi (14)
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where gi is the first step gradient and hi is the second step gradient, both of which are
constants. The optimization objective at this time is:

argmin[
T

∑
t=1

(wtGi +
1
2

w2
t (λ + Hi))] (15)

Calculating the quadratic Equation (15) yields:

wi = −
Gi

Hi + λ
(16)

The objective function of XGBoost can be divided into two parts. The first half is the
error between the predicted and true values, and the second half is the regularization term,
which controls the complexity of the model. By transforming the objective function, a
quadratic function about the fraction of a leaf node can be obtained, and the optimal w and
the objective function value can be solved.

When XGBoost is used to implement classification, the selection of the decision tree
number, maximum tree depth, and learning rate has an important influence on the classifi-
cation effect.

• The number of decision trees refers to the maximum number of iterations. The larger
the value, the stronger the learning ability of the model and the easier it is to overfit;

• The maximum tree depth is used to control model overfitting;
• The learning rate determines the step size when iterating the decision tree and controls

the iteration rate. The slower the rate, the more likely the model is to find the best
value more accurately.

4. Proposed NSSA Model for the IIoT
4.1. NSSA Framework

The NSSA model designed for the IIoT in this paper is shown in Figure 2. The model
can be divided into three parts.
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1. Situation acquisition.

Traffic acquisition modules are deployed in the control layer, information management
layer, and Internet edge of the IIoT, respectively, to collect normal and attack events. The
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collected traffic is processed by removing redundancy, simplifying features, filling defaults,
converting data formats, and so on.

2. Situation understanding.

The threat detection model is used to train the dataset. Binary classification is used to
determine whether each piece of data constitutes external attack traffic in order to determine
attack probability, and multiple classification is used to determine the attack type in order
to determine attack influence. The combination of the two is used to calculate the network
security situation value.

3. Situation quantitative assessment.

The AHP is used, in combination with the characteristics of the IIoT, to determine the
influence weight coefficients of various attacks. The classification results of the detection
model are combined in order to quantify the cybersecurity situation of the IIoT. Network
security situation assessment is performed by dividing the network risk level.

4.2. Network Situation Quantification

In this paper, the network security situation of the IIoT is studied, and the threat
severity and influence of network attacks arising from attack traffic are determined.

1. Severity of threat:

The threat severity is determined by the attack probability within a time, as shown in
(17). If the data in clause i is normal traffic, Ii is marked with 0; otherwise, it is marked
with 1; M represents the total network traffic within a time.

p =
∑M

i=1 Ii

M
(17)

2. Threat influence.

Due to the differences in structural characteristics and security requirements between
IIoT and information systems, quantitative assessments of threat influence used in informa-
tion systems networks cannot be fully applied to IIoT networks. Therefore, the formula for
calculating the IIoT network threat influence in this paper is as follows:

vi = ε(xCi + yIi + zAi) (18)

where C, I and A represent the CIA scores of specific attack types, and x, y and z are
determined by the AHP analysis of the IIoT characteristics. Since the scores of C, I, and A
are all reduced after multiplying by their weights, in order to control the security situation
value to within the interval [0, 1], vi is expanded ε times. ε is the reciprocal value of the
maximum value of cumulative CIA score.

This paper focuses on the security of the IIoT network environment represented by
ToN-IoT dataset. Different types of attack have different impacts on the system. The ToN-
IoT dataset contains nine types of attack traffic. Table 3, below, presents an overview of the
nine types of attack and determines the CIA rating of each attack based on its characteristics.
The specific levels and scoring settings are shown in Table 3 [42], where h represents high
impact, l represents low impact, and n represents no impact.

3. Network security situation value.

The IIoT network security situation value calculation is shown in (19) [43].

V =
p×∑n

i=1 vi × ti

M−m
(19)

where m indicates the normal traffic within this period, n indicates the attack type within
this period, vi indicates the influence score of a specific attack type, and ti indicates the
duration of a specific attack.
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Table 3. Attack characteristics.

Attack Type Attack Impact Confidentiality Integrity Availability

backdoor
Attackers use backdoors to secretly access other systems,

and backdoors are also used by intruders as
vulnerabilities to attack other systems.

h h l

ddos This type of attack causes servers or multiple hosts to fail
to communicate with each other. n n h

dos The victim host cannot receive and process external
requests or respond to external requests promptly. n n h

injection
The attack causes database information leakage, remote
control of the server, the installation of a backdoor, and

other hazards.
h h l

mitm
Intruders place themselves between clients and servers
to intercept confidential data or manipulate incorrect

information within it.
h n l

password The attack may result in the disclosure of user
information or the inability to send emails. l l n

ransomware Dissemination of sensitive information to extort money
from victims, resulting in leakage of user information. h n n

scanning The attacker obtains port information by scanning for the
next attack. l n n

xss
The attack can launch damaging behaviors such as

leaking user data, tampering with website pages, and
ddos attacks.

h h l

h represents high impact, l represents low impact, and n represents no impact.

4.3. Network Situation Severity Levels

The security risks faced by IIoT networks are divided into five levels, as shown in
Table 4. When the quantitative security situation value is 0, the network has no attack
traffic and is in a secure condition. The higher the situation value, the worse the network
security condition.

Table 4. Network security situation evaluation level.

Low Lower Medium Higher High

[0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1]

5. Experiment and Result Analysis
5.1. Simulation Environment

Most of the research on NSSA has focused on datasets such as NSL-KDD, CICIDS2017,
KDDCup-99, and UNSW_NB15. These datasets are huge and redundant and do not come
from industrial control system networks.

The ToN_IoT dataset was collected from a large-scale network of Industry 4.0 testbeds
designed by Cyber Range and IoT LABS in collaboration with others. The Industry 4.0
testbed is deployed using multiple virtual machines and hosts with the Windows, Linux,
and Kali operating systems to simulate the interconnect between the Internet of Things, the
cloud, and Edge/Fog three-tier systems. The data in ToN_IoT are collected from network
traffic, the Windows audit trail, the Linux audit trail, and telemetry data from IoT services,
and can be used to test AI for a variety of cybersecurity applications, such as in intrusion
detection systems, threat intelligence, and threat search. In this experiment, ToN_IoT’s
Train_Test_Network traffic packet is used, which has a file size of 66.6 MB and contains
400,000 pieces of data, including nine types of common industrial network attack traffic
and normal traffic.
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PyCharm Community Edition 2021 is used to simulate the experiment. The hardware
environment consisted of a 3 GHz CPU and 16 GB memory, and the operating system was
Windows 10.

5.2. Data Preprocessing

1. Feature numeralization and default processing.

In the Train_Test_Network packet, some of the classification features are in the form
of characters, and there are a large number of default values in the data. In the experiment,
the LabelEncoder package of scikit-learn is used to quickly convert each feature into 0, 1, 2,
. . ., and the default value is set to 0.

2. Data sampling and partitioning.

The Train_Test_Network packet contains more than 400,000 pieces of traffic, which
is a huge amount of data. To speed up model training, in this experiment, the data are
simplified to 165,976 pieces through stratified sampling according to attack categories. The
raw data distribution is shown in Figure 3.
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In a binary classification, the ratio of normal traffic to attack traffic is about 2:1. The
difference between the two does not cause huge errors in model classification. In multiple
classification, by observing the original data distribution in Figure 3, it can be found that
the amount of mitm attack traffic data is too small and the amount of normal traffic data is
too large. Therefore, the average undersampling method proposed in this paper is adopted
to balance the various kinds of data, and the data distribution after processing is shown
in Figure 3.

In this experiment, the Python package train_test_split is used to divide the dataset
into the training set and the test set according to a ratio of 0.2. The training set contains
132,780 pieces of data, and the test set contains 33,196 pieces of data.

3. Feature normalization.

To avoid there being a large gap between the maximum value and the minimum value
of some classification features, which would affect the classification effect of the model,
Equation (20) is used in the experiment to normalize each feature data and summarize it
within the interval [0, 1].

x =
x− xmin

xmax − xmin
(20)

where xmax, xmin are the maximum and minimum values of this feature, respectively.

5.3. Binary Classification

Binary classification can be used to determine whether the traffic is attack traffic. In
this experiment, four indexes, including recall rate, precision rate, F1, and training duration
T, are used to judge the efficiency of a binary classification model. The higher the value of
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recall rate, precision rate, and F1, the better the training effect of the model; and the shorter
the training duration, the higher the efficiency of the model.

The recall rate refers to the probability of all samples being correctly predicted from
among the actual positive samples, calculated as shown in (21).

recall =
TP

TP + FN
(21)

The precision rate refers to the probability of all samples predicted to be positive being
positive, calculated as shown in (22).

precision =
TP

TP + FP
(22)

The recall rate and precision rate are inversely proportional to each other. To synthesize
the performance of the two, a balance point should be found between them. F1 can be used
to evaluate the performance of them both together. It can be calculated as shown in (23).

F1 =
2× precision× recall

precision + recall
(23)

TP (True Positive): indicates the amount of normal traffic that was judged to be
normal traffic.

FN (False Negative): indicates the amount of normal traffic that was judged to be
attack traffic.

TN (True Negative): indicates the amount of actual attack traffic that was judged to be
attack traffic.

FP (False Positive): indicates the amount of attack traffic that was judged to be
normal traffic.

In this paper, the effectiveness of four classification algorithms—Support Vector Ma-
chine (SVM), K-Nearest Neighbour (KNN), Random Forest (RF) and XGBoost—is compared
using the ToN_IoT dataset. For each model, we empirically selected the parameters that
had the greatest impact on its classification effectiveness for tuning, using a mesh search
combined with cross-validation to determine the optimal parameters for each model. The
optimal parameter settings for each model are shown in Table 5. The binary classification
results for the four models are shown in Table 6.

Table 5. Optimal parameters for each model.

Model Parameter Setting

SVM C: 10; kernel: rbf; gamma: 0.1
KNN n_neighbors: 35; p: 1; weights: distance

RF n_estimators: 40; min_samples_leaf: 1; max_depth: 10
XGBoost n_estimators: 40; learning_rate: 0.5; max_depth: 10

Table 6. Results of model binary classification.

Model Recall Precision F1 T

SVM 0.944 0.864 0.912 1246 s 871 ms
KNN 0.986 0.966 0.976 30 ms

RF 0.995 0.983 0.989 3 s 672 ms
XGBoost 0.998 0.998 0.998 2 s 611 ms

From Table 6, it can be seen that SVM has the worst binary classification effect. SVM
involves the calculation of a matrix of the order M (where m is the number of samples)
when solving for the support vector. As this experiment adopts big data training, SVM
classification consumes a large amount of memory space, the training time is too long, and
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the training accuracy is poor. The shortest time required for big data classification can be
seen for KNN, while XGBoost achieves the best classification effect. Compared with RF,
which is also composed of decision trees, the time required is also relatively short.

5.4. Multiple Classification

The model can use multiple classification to determine the specific attack type of attack
traffic. In this experiment, the recall rate, precision rate, and F1 of each attack type are used
to judge the multi-classification efficiency of each model. The multi-classification effects
of the four models are shown in Figures 4–6. The confusion matrix generated by using
XGBoost combined with the average under-/oversampling method designed in this paper
for processing multiple classifications is shown in Figure 7.
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Figures 4–6 describe the precision rates, recall rates, and F1 scores for each of the four
models. As can be seen from the figures, the SVM model has a low detection precision for
small data, where the precision for mitm-type attacks is only 5.2%, and the F1 score is 9.7%.
Due to the lack of available training data, SVM models are not sensitive to such attacks.
Compared with the other three classification models, the XGBoost model built in this
paper demonstrates improved detection precision for mitm-type attacks, reaching 67%. In
addition, when detecting normal traffic, it achieves high scores of 99% for precision, recall
and F1. Compared with the SVM, KNN and RF models, the proposed model improves the
F-score by 26%, 8% and 3%, respectively.
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The experimental results show that the proposed model is superior to the other models
in terms of precision rate, recall rate and F1 score, and the detection precision of small-
data attack categories is improved without decreasing the detection performance for most
attack categories.

After performing sampling using the AUOS method proposed in this paper, the
data volume for nine types of attack attains a balance. This is because a large number of
samples in the dataset used in this paper have a portion of their features missing, and
the sparse perception algorithm adopted by XGBoost is able to automatically learn the
splitting direction of the sample. XGBoost adds a regular term to the objective function and
performs second-order Taylor expansion to improve the classification effect of the model.

5.5. NSSA Results

1. Quantification of NSSA for the IIoT

The judgment matrix is determined by combining Table 1 and the nine-point scale
method of the AHP. The weight value of CIA is generated using the sum-product method.
The results are shown in Table 7.
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Table 7. CIA weighting factors.

Feature Weight λmax CI RI CR

Confidentiality 10.616%
3.039 0.019 0.520 0.037Integrity 26.050%

Availability 63.335%

In this experiment, the data in the training and testing package are reduced to
300,000 pieces and divided into 60 groups, on average. The data distribution of some
of the groups is shown in Figure 8. In combination with the CIA weighting generated in
Table 7, Formulas (17)–(19) are used to calculate the situation value of each group. The
security situation curves are shown for each stage of the IIoT, as well as for information
systems, in Figure 9.
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From the analysis presented in Figures 8 and 9, it can be seen that most of the data in
the first group represent normal traffic, with only a small number of mitm and ransomware
attacks, and the security risk of this group is very low. All of the data of the 10th group
represent normal traffic, and so its security status is good. The traffic in group 23 all
represents dos attacks, so the security risk faced by IIoT is much higher than in the case of
information systems. In group 25, most of the traffic represents injection attacks, while a
small amount represents dos attacks. In this case, information systems face a higher level
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of risk. The traffic in group 36 mainly comprises password attacks, but a small portion is
normal traffic. Password attacks do not affect the availability of the attacked host, but the
information integrity and confidentiality of the host are affected. Therefore, the security risk
of the system is lower at this time, and the level of risk faced by the IIoT is lower than in the
case of information systems. The traffic in group 55 consists entirely of backdoor attacks.
The successful use of backdoor attacks can seriously affect the integrity and confidentiality
of the host’s information, and can also impact the availability of the host. At this point,
the system faces a high level of risk, and the level of risk faced by information systems is
higher than that faced by the IIoT.

From the above analysis, it can be seen that the method of NSSA for the IIoT based on
AHP proposed in this study has good application value. Compared with the quantitative
evaluation method for the traditional network situation, this method considers the network
characteristics of the IIoT and can more fully describe the network security situation of
the IIoT.

2. Quantification of NSSA for each classification model

In this experiment, the test set data are divided into 43 groups. The IIoT network
situation curve drawn using the classification results of different models is shown in
Figure 10. Each dataset in the test set uniformly contains a very small number of different
attacks. In this case, the network security status value is very low, and the risk to the
network is very low. Compared with each curve, the NSSA results obtained using the
XGBoost model designed in this paper are closest to the real values, while the evaluation
effect of SVM is the worst.
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6. Conclusions

To date, many studies have been performed on NSSA, including attack detection
and situation assessment. However, there are relatively few studies on IIoT network
posture. On the one hand, the complexity of the IIoT networks makes it difficult to
obtain posture elements. On the other hand, IIoT has extensvie requirements in terms of
achieving real-time performance. Because IIoT networks connect a variety of heterogeneous
networks, there are a lot of logical and mathematical operations required in order to perform
network security situation assessment based on knowledge-based reasoning, leading to
low efficiency and certain limitations when implementing NSSA. In addition, in some
industrial system situation acquisition studies, unbalanced data samples in industrial
control datasets are not balanced, leading to there being a small number of samples with
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low extraction accuracy, thus affecting the overall effect. This paper undertakes further
research on existing risk assessment methods for industrial control systems.

First of all, in this paper, the characteristics of the IIoT were analyzed, the AHP method
was used to analyze the impact factors of the IIoT systems with respect to network security
requirements, and the situation assessment results were quantified. Then, XGBoost was
used to build a classification model to judge whether the IIoT has been subject to attack,
and to determine the category of the attack. In order to solve the problem of unbalanced
attack data, an average under-/oversampling method was proposed. The average data
volume is taken as the threshold to determine the sampling method for different categories
of data, so that the sample data volume will not have too much influence on the efficiency
of the model. The experimental results showed that the NSSA method proposed in this
paper is able to improve the accuracy of the IIoT network security situation assessment.
Under conditions including unbalanced data categories and large sample sizes, the attack
classification model constructed in this paper has high accuracy, thus laying a foundation
for effective network security situation assessment.

At present, our analysis of the IIoT features only addresses the security of information
assets. Using the NSSA model in this paper, it is possible to better understand the destruc-
tive power of cyber attacks on IIoT information assets that threaten their stable operation.
In the future, we will study the characteristics of the IIoT more comprehensively, optimize
its quantitative security metrics, and integrate various factors in order to determine the
overall security of the IIoT networks. In addition, the complete dataset of ToN_IoT is
used in this paper, and the data volume is large. Reducing the dimensionality of the data
will be considered in the future, and the use of other advanced deep learning algorithms,
such as CNN, will be continued for conducting experiments and optimizing the threat
detection model.
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Abstract: In the continuous progress of mobile internet technology, medical image processing tech-
nology is also always being upgraded and improved. In this field, digital watermarking technology
is significant and provides a strong guarantee for medical image information security. This paper
offers a robustness zero watermarking strategy for medical pictures based on an Improved NasNet-
Mobile convolutional neural network and the discrete cosine transform (DCT) to address the lack of
robustness of existing medical image watermarking algorithms. First, the structure of the pre-training
network NasNet-Mobile is adjusted by using a fully connected layer with 128 output and a regression
layer instead of the original Softmax layer and classification layer, thus generating a regression
network with 128 output, whereby the 128 features are extracted from the medical images using
the NasNet-Mobile network with migration learning. Migration learning is then performed on the
modified NasNet-Mobile network to obtain the trained network, which is then used to extract medical
image features, and finally the extracted image features are subjected to DCT transform to extract
low frequency data, and the perceptual hashing algorithm processes the extracted data to obtain a
32-bit binary feature vector. Before performing the watermark embedding, the watermark data is
encrypted using the chaos mapping algorithm to increase data security. Next, the zero watermarking
technique is used to allow the algorithm to embed and extract the watermark without changing the
information contained in the medical image. The experimental findings demonstrate the algorithm’s
strong resistance to both conventional and geometric assaults. The algorithm offers some practical
application value in the realm of medicine when compared to other approaches.

Keywords: NasNet-Mobile network; DCT; chaotic encryption; zero watermarking; migration learning

1. Introduction

The network is disseminating more data as communication technology advances,
whereby digital watermarking technology is being updated and iterated regularly to stop
the leaking of user information, and it is gradually becoming a trend to protect the privacy
of user information with the help of digital watermarking technology to provide security
for personal information [1]. Medical images in medical diagnoses play a crucial role in
medical diagnosis, treatment, and scientific research, providing a wealth of clinical data that
helps doctors make more accurate diagnoses and more effective treatment plans [2]. The
development of technology has promoted the integration of modern information technology
with medical care, and more and more physicians and patients are using telemedicine to
diagnose [3]. However, with the widespread dissemination of medical image information
on the internet, the security and integrity of patient information faces serious challenges [4].
In this context, medical image watermarking technology has emerged to provide technical
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support for protecting the privacy of patient information. By embedding invisible or
imperceptible watermark data in medical images, medical image watermarking technology
achieves copyright protection, integrity verification, and content authentication of medical
images [5]. This technique requires embedding watermarks without affecting image quality
and diagnostic accuracy and good robustness and invisibility to resist common image
attack processing [6].

Spatial domain watermarking technique and frequency domain watermarking tech-
nique are two common traditional watermarking techniques [7]. Spatial domain watermark-
ing uses techniques like least significant bit (LSB) replacement and pixel value mapping
to insert watermarking information directly in the original data [8]. Such methods are
relatively simple, but vulnerable to image attacks. Wang, Huanying et al. proposed a
color image watermarking method to obtain the elements of OR decomposition in the
spatial domain and perform watermark embedding and extraction in the spatial domain [9].
Basha, Shaik Hedayath et al. used ESP algorithm to compute Euclidean spatial points for
watermark embedding process and used Diffie-Hellman key exchange protocol to recover
the watermark, wherein the algorithm has some resistance to JPEG compression, cropping,
rotation, and other attacks [10]. Cao, H. et al. used quantization technique for watermark
embedding extraction by studying the relationship between the DFT DC component and
the domain pixel values [11]. The frequency domain watermarking technique converts the
original data to the frequency domain and then embeds the watermark information in the
converted data [12]. The frequency domain watermarking approach is considerably more
secure and attack-resistant than the spatial domain watermarking method [13]. Tang, Ming
et al. proposed a robust watermarking algorithm based on DWT and SVD by first applying
FRFT transform to the original image and the watermarked image to obtain the magnitude
of the image, next applying DWT transform to it, and finally applying SVD to the low
frequency sub-band of the second level DWT of the original image and the magnitude of
the watermarked image to construct a new matrix to embed the watermark using singular
values, and using FRFT transform for watermark encryption to improve the algorithm
security, which has good robustness in attacks such as rotation, clipping, Gaussian filtering,
and median filtering [14]. Jing, Liu. et al. combine the use of DTCWT-DCT transform
and perceptual hashing technique to achieve watermark embedding and extraction using
zero watermarking technique. The suggested method performs well against geometric and
conventional assaults, and particularly good at resisting geometric attacks [15].

With the development of image local feature extraction algorithms, more and more
researchers are applying feature extraction algorithms in the field of watermarking tech-
nology [16]. The traditional local feature extraction algorithms mainly include SIFT, SURF,
KAZE, etc. [17–19]. They have excellent rotation invariance and scale invariance in image
feature extraction and matching. Binary feature extraction algorithms have faster run
speeds, and the mainstream ones include BRIEF, ORB, BRISK, etc. [20–22]. Watermarking
researchers often combine feature extraction algorithms with frequency domain water-
marking techniques. Hamidi, Mohamed. et al. exploit SIFT’s geometric invariance to
improve watermarking’s robustness against geometric attacks and the proposed algorithm
combining DWT-DCT and SIFT has good robustness [23]. Soualmi et al. proposed an imper-
ceptible watermarking method for medical image tampering detection by combining SURF
descriptors with Weber descriptors (WD) and Arnold algorithm, applying SURF technique
to the region of interest (ROI) of medical images and then selecting the region around the
SURF points to insert the watermark, thus embedding and extracting the watermark using
Weber descriptors [24]. Cheng, Zeng et al. used the KAZE feature extraction algorithm
to extract original image features. The extracted features were then DCT transformed to
obtain the feature sequence of medical images using perceptual hashing, while embedding
and extracting watermarks using the zero-watermarking technique. The proposed KAZE-
DCT algorithm has better resistance to geometric attacks, but less resistant to conventional
attacks [25].
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In recent years, deep learning-based watermarking algorithms have gradually become
popular among watermarking technology researchers [26]. Deep learning models for image
processing are used in image watermarking systems [27]. Compared with traditional
watermarking methods, deep learning-based algorithms can better adapt to different image
contents and provide higher robustness and security [28]. Yu, Fan et al. used Inception V3
convolutional neural network to extract image features and then encrypted the embedded
watermark using the chaotic mapping system. The algorithm is resistant to a wide range of
geometric attacks but is less resistant to conventional attacks [29]. Wenxing, Zhang et al.
proposed a method to train the GoogLeNet network using migration learning, and the
trained network is used to extract the image features and encrypts the watermark using
two-dimensional Henon chaos cryptography, and the proposed GoogLeNet-DCT algorithm
has strong resistance to geometric attacks [30].

Based on the studies above, at the current stage, most medical image algorithms still
do not fully mitigate the problem of ownership protection, and most of these algorithms
can only defend against a small number of attacks. Therefore, watermarking researchers
should investigate new robust watermarking algorithms that can cope with more types of
attacks. The algorithm proposed in this paper is highly resistant to many conventional and
geometric attacks.

The main contributions of this study are as follows:

(1) Proposed a zero-watermarking algorithm for medical images based on improved
NasNet-Mobile and DCT.

(2) Double encryption of the watermark using Chen chaos mapping and Arnold trans-
form dislocation.

(3) Changing the NasNet-Mobile network structure to train the medical image dataset
and extract robust features.

(4) The proposed algorithm can withstand most of the conventional and geometric attacks
and the algorithm is robust.

2. Fundamental Principles
2.1. NasNet-Mobile Convolutional Neural Network

NasNet-Mobile is a lightweight neural network architecture [31] to achieve high-
performance, low-latency image recognition tasks. Developed by the Google Brain team
and based on Neural Architecture Search (NAS) technology, NasNet-Mobile’s network
architecture aims to maintain accuracy while significantly reducing computational resource
requirements and power consumption. Compared with the original version of NasNet,
NasNet-Mobile is optimized in terms of network hierarchy and parameters to provide
better performance while reducing computational complexity. The NasNet-Mobile network
structure consists of basic modules (Cells), NASNet search space, reinforcement learning,
and transfer (Skip) connections. In this paper, the NasNet-Mobile network is applied to
digital watermarking.

In NasNet-Mobile, the basic components are Cell structures, and there exist two types
of Cell structures called Normal Cells and Reduction Cells, which are a sub-network of
multiple convolutional layers with reusable and combinable characteristics. NasNet-Mobile
forms the entire network by stacking these basic modules (Normal Cells and Reduction
Cells) together. This modular design allows NasNet-Mobile to be highly flexible and can
be adapted to different task requirements and resource constraints. The network model
architecture is depicted in Figure 1 and the best-performing Normal Cell and Reduction
Cell structures are depicted in Figure 2.
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2.2. Discrete Cosine Transform (DCT)

The DCT transform is commonly used for lossy data compression of images with sepa-
rability and energy concentration. The principle of 1D-DCT is shown in Equation (1). In this
case, 2D-DCT applies the one-dimensional discrete cosine transform to two-dimensional
data, dividing the two-dimensional image into several small blocks, and then applying the
discrete cosine transform to each block to convert the high-frequency signals in the small
blocks into low-frequency signals. The 2D-DCT is shown in Equation (3):
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2.3. Chen Chaotic System

The Chen chaotic system is a particular type of three-dimensional nonlinear dynamical
system. Equation (6) is used to define the Chen chaotic system. Encrypting images with
the Chen chaotic system is common, mainly by generating a sequence of random numbers
to obfuscate and permute the image pixels for data protection.

dx
dt = a(y− x)

dy
dt = (c− a)x− xz + cy

dz
dt = xy− bz

(6)

where a, b, and c are the parameters of the Chen chaotic system, and x, y, and z denote the
three state variables of the system, respectively.

2.4. Arnold Mapping

Arnold mapping is a discrete-time mapping widely used in studying dynamical sys-
tems and chaos theory. Arnold mapping is a linear mapping defined in a two-dimensional
toroidal space as shown in Equation (7). Arnold mapping mainly achieves the encryption
of the original image by dislocating the pixels of the image and using a key to control the
number of iterations, thus making the original image unrecognizable.

(
xn+1
yn+1

)
=

(
1 b
a ab + 1

)(
xn
yn

)
modN (7)

where (xn, yn) is the coordinate of the original point, (xn+1, yn+1) is the coordinate of the
mapped point, a, b, N should be positive integers, and N is the image pixel size.

3. Zero Watermark Algorithm

This paper proposes a robust zero watermarking algorithm for medical images based
on an improved NasNet-Mobile convolutional neural network and discrete cosine trans-
form (DCT), combining NasNet-Mobile network, DCT transform, and perceptual hash
function, watermarked image encryption using Chen chaotic system and Arnold transform
dislocation dual encryption algorithm, using zero watermarking technique to embed and
extract watermark, which has good effect in geometric attacks and some conventional
attacks, and can blindly extract watermark.

3.1. NasNet-Mobile Pre-Trained Network Migration Learning
3.1.1. NasNet-Mobile Network Restructuring

The NasNet-Mobile network structure uses the idea of repetitive stacking, and the
network itself has a strong feature extraction capability. To further improve the accuracy of
image feature extraction, we adapt the structure of the pre-trained network NasNet-Mobile
by using a fully connected layer with 128 output and a regression layer instead of the
original Softmax layer and classification layer, thus generating a regression network with
128 output, and selecting the fully connected layer with output value of 128 for extracting
feature values of medical images, as shown in Figure 3. After experiments, the improved
network has better feature extraction capability.
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3.1.2. Dataset Creation

The datasets in this paper are sourced from Medical Imaging Park and the American
Institutes for Research, employing the datasets from the categories of the brain, abdomen,
chest, bones, and muscles. We selected 350 original medical images as the training set,
150 original medical images as the validation set, and 100 original medical images as the
test set, and some of the medical images are shown in Figure 4. To improve the algorithmis
capacity to extract visual features, we perform data enhancement on the selected dataset
as shown in Table 1. Because the NasNet-Mobile pre-training network requires the input
image pixels to be 224 × 244, the image size needs to be set to 224 × 224, so that we get
37,450 training sets with 224 × 224 pixels and 16,050 validation sets. We perform 2D-DCT
transform on the training and test set images and select 128 low-frequency components of
16 × 8 as the data set labels.

3.1.3. Training Network

The programming Matlab 2022b was used for this experiment and the NasNet-Mobile
pre-trained network from the Neural Network Toolbox was selected. The computer con-
figuration used for the experiments was a processor (AMD Ryzen7 5800H with Radeon
Graphics), a graphics card (NVIDIA GeForce RTX 3060 Laptop GPU 6 G), and memory
(Samsung DDR4 3200 MHz 16 G). We trained the NasNet-Mobile pre-trained network.
During training, the initial learning rate is set at 0.001. At each iteration, the model will use
thirty samples for weight update and is trained for four rounds. At the beginning of each
round, the training data will be reordered randomly, and after every 1000 iterations, the
model will be evaluated using validation data. After the training, we save the well-trained
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grid and use the fully connected layer with an output value of 128 at the tail end of the
network as the feature values for image feature extraction.
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Table 1. Data Set Enhancement Methods.

Enhanced Type Intensity Number of New
Images

JPEG compression (%) 5, 10, 15, 20 4
Gaussian noise (%) 2, 4, 6, 8, 10, 12, 14, 16 8

Median filter [3 × 3] (times) 5, 10, 15, 20 4
Median filter [5 × 5] (times) 5, 10, 15, 20 4
Median filter [7 × 7] (times) 5, 10, 15, 20 4

Clockwise rotation (◦) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 12
Anticlockwise rotation (◦) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 12

Y-axis shear (%) 5, 10, 15, 20, 25, 30, 35, 40 8
Scaling 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 10

Right-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8
Left-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8

Down-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8
X-axis shear (%) 5, 10, 15, 20, 25, 30, 35, 40 8

Up-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8
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3.2. NasNet-Mobile Feature Extraction

In this paper, we use a trained NasNet-Mobile network to extract medical image
features and get 128 feature values N(i, j), after DCT transformation of the extracted
eigenvalues, 128 DCT transformed feature values D(i, j) are obtained, then select the
32 low frequency coefficients V(i, j) of feature values D(i, j), perform sign transformation
on the low frequency coefficients V(i, j), set the elements greater than 0 in the matrix to 1
and the other elements to 0 to get the 32 bit hash value H(i, j), and H(i, j) for the binary
feature sequence. The specific steps are shown in Figure 5.
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3.3. Watermark Encryption

Chen chaos system and Arnold chaos mapping are used to encrypt the picture twice
in order to improve the anti-interference and security of the embedded watermark. Firstly,
the initial values of the Chen chaos system are set as follows: x = 2, y = 1, z = 3, a = 35, b = 3,
c = 28. Subsequently, the system enters the chaotic state to obtain the chaotic sequence,
and then the chaos matrix is obtained by binarization. XOR operation is performed on
the chaotic matrix and the original watermark to obtain the watermark encrypted by the
Chen chaos system C(i, j), and finally, the watermark C(i, j) is dislocated by Arnold chaos
mapping to obtain the encrypted watermark L(i, j). The parameters of Arnold chaos
mapping in this paper are set as a = 3, b = 5, and the number of iterations is 10. The
watermark encryption process is shown in Figure 6.

3.4. Embedding Watermarks

We embed the encrypted watermark into the medical image, whereby first the trained
NasNet-Mobile network performs feature extraction on the original image to obtain the
hash value H(i, j), and then the binary feature sequence is XOR operation with the en-
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crypted watermark to obtain the logical key used to extract the watermark K(i, j). This
embedding watermark method uses the zero-watermark embedding technique, which
does not alter the original image. The specific embedding watermark steps are shown
in Figure 7.
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3.5. Watermark Extraction and Decryption

Finally, watermark extraction and decryption are performed. Firstly, the trained
NasNet-Mobile network is used to extract features from the image after the attack and
obtain the hash value H′(i, j), the extracted encrypted watermark L′(i, j) is obtained by
performing the XOR operation between H′(i, j) and the logical key K(i, j), the encrypted
watermark L′(i, j) is obtained by the Arnold inverse transformation to the watermark
encrypted by Chen chaos system C′(i, j). Finally, the watermark is restored by the initial
value of Chen chaos system. The specific watermark extraction step is shown in Figure 8.
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4. Experiments and Results

This paper uses MATLAB 2022b software to simulate and experiment on medical
images. Since the network input image pixel is 224 × 224, the medical image pixel used
for testing is 224 × 224. In this paper, three medical images from the test set are chosen
at random for testing, and the watermark image pixel size is chosen as 32 × 32, as seen
in Figure 9. The normalized correlation coefficient (NC), as shown in Equation (8), is
employed to determine how well the method can withstand assault by comparing how
similar the original watermark is to the watermark that was retrieved from the picture after
attack. The peak signal-to-noise ratio (PSNR), as shown in Equation (9), is used to represent
the quality of the image. In the case of medical images without any attacks, the NC values
are all 1.

NC =

∑
i

∑
j
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Figure 9. Tested images and watermarks. Brain image (a), palm image (b), abdominal image (c),
watermark image (d).
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4.1. Testing Different Images

Before testing the anti-attack performance of medical images, we first need to test ten
different medical images with the algorithm, as shown in Figure 10. At the same time,
their correlation coefficients are calculated to verify whether the algorithm can distinguish
different medical images. The outcomes of the experiment are displayed in Table 2. The
outcomes demonstrate that the NasNet-Mobile-DCT algorithm’s NC values for different
medical pictures are less than 0.5, which proves that the algorithm can distinguish different
medical images.
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Figure 10. Different medical images within the test (a–j).

Table 2. Correlation coefficient values between different images (32 bits).

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(a) 1.00
(b) 0.14 1.00
(c) 0.42 0.25 1.00
(d) 0.39 0.22 0.37 1.00
(e) 0.18 0.30 0.33 0.34 1.00
(f) 0.41 0 0.41 0.41 0.27 1.00
(g) 0.43 0.07 0.05 0.24 0.07 0.10 1.00
(h) 0.23 0.29 0.27 0.21 0.43 0.38 0.32 1.00
(i) 0.39 0.03 0.17 0.35 0.06 0.18 0.33 0.39 1.00
(j) 0.30 0.03 0.14 0.10 0.03 0.23 0.31 0.23 0.32 1.00

4.2. Conventional Attacks

The NasNet-Mobil-DCT algorithm is used to perform different levels of conventional
attacks on medical images that already contain encrypted watermarks, and then the wa-
termarks are extracted, and Figure 11 displays the conventionally attacked images along
with the extracted watermarks. Then the algorithm’s robustness for conventional attacks
is observed, and Table 3 displays the trial outcomes. The findings demonstrate that the
Gaussian attack strength is 0.02 and 0.04, the NC value is greater than 0.85, even if the
Gaussian attack strength is 0.10, the NC value is greater than 0.55, which indicates that the
proposed algorithm has certain ability to resist Gaussian attack. The NC value is greater
than 0.85 even when the JPEG compression quality is 5%, and when the quality of the JPEG
compression is greater than 20%, the NC value is 1, which indicates that the proposed
algorithm has good robustness to JPEG compression attack. When the attack strength is
20 times [5 × 5] median filtering, the measured NC values are higher than 0.74, even if the
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attack intensity is 10 times [7 × 7] median filter, the NC value is greater than 0.70, and this
shows that the algorithm is effectively resistant to median filtering. Experimental results
show that the algorithm proposed in this paper has good resistance to conventional attacks.
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Figure 11. Medical images and watermarks for conventional attacks. (a–c) denote medical images
and extracted watermarks after a Gaussian attack intensity of 0.06; (d–f) denote medical images and
extracted watermarks at a compression quality of 5%; (g–i) denote medical images and extracted
watermarks after 20 Me-dian filtering [5 × 5] attacks.

Table 3. Experimental data of watermarking based on conventional attacks.

Conventional
Attacks

PSNR (dB) NC

Intensity Img1 Img2 Img3 Img1 Img2 Img3

Gaussian noise

0.02 17.81 16.76 17.29 1.00 0.93 0.94
0.04 15.12 14.06 14.55 0.86 0.93 0.89
0.06 13.65 12.55 13.04 0.85 0.88 0.82
0.08 12.66 11.42 12.04 0.67 0.87 0.76
0.10 11.86 10.67 11.21 0.56 0.85 0.63

JPEG
compression

25% 33.39 32.03 34.27 1.00 1.00 1.00
20% 32.51 31.17 33.39 1.00 1.00 1.00
15% 31.25 30.03 32.37 0.90 0.94 1.00
10% 29.26 28.39 30.65 0.95 1.00 0.88
5% 26.46 25.16 27.68 0.95 0.86 0.88

Median
filtering [5 × 5]

5 (times) 25.13 27.00 28.35 1.00 0.86 0.83
10 (times) 24.29 25.99 27.60 0.92 0.92 0.83
15 (times) 23.86 25.48 27.24 0.89 0.92 0.83
20 (times) 23.56 25.09 27.07 0.84 0.92 0.75

Median filtering
[7 × 7]

5 (times) 22.49 24.75 26.61 1.00 0.86 0.83
10 (times) 21.77 23.14 25.70 0.72 0.86 0.83

4.3. Geometric Attacks

The NasNet-Mobil-DCT algorithm is robust under conventional attacks and the fol-
lowing tests are performed on geometric attacks. The medical images that already contain
the encrypted watermark are subjected to different degrees of rotation attack, scaling at-
tack, translation attack, X-axis shearing attack, and Y-axis shearing after extracting the
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watermark, and Figure 12 displays the extracted watermark and medical images following
the geometric attack. Following that, the algorithm’s resistance to geometrical assaults is
seen, and the experimental findings are displayed in Table 4. The experimental findings
demonstrate that the NC values were higher than 0.85 when the images were rotated by 5,
15, and 30 degrees, even after rotating the observed picture by 60 degrees, the NC value
remains higher than 0.80, it shows that the algorithm can effectively fend against rotational
attacks. When the scaling ratio is equal to 0.3 and 2.0, the NC value exceeds 0.86, and
this suggests that the algorithm is rather resistant to scaling attacks. When the measured
cryptomedical images were shifted upwards by 5%, the NC values were all greater than
0.92, the NC value exceeds to 0.75 when it is shifted to the up by 35%, the NC value is
higher than or equal to 0.75 when the measured encrypted medical image is shifted to the
right by 25%, demonstrating the algorithm’s strong robustness to translation attacks. When
the encrypted medical images are cut by 20% on the Y-axis, the NC value is greater than
0.85, even when the encrypted medical image is cropped 40% on the Y-axis, the NC value
is greater than 0.82, when they are cut by 40% on the X-axis, the NC values are greater than
0.80, indicating that the algorithm has strong resistance to shear attacks. In conclusion, the
algorithm proposed in this paper performs well against multiple geometric attacks.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

the encrypted watermark are subjected to different degrees of rotation attack, scaling at-
tack, translation attack, X-axis shearing attack, and Y-axis shearing after extracting the 
watermark, and Figure 12 displays the extracted watermark and medical images follow-
ing the geometric attack. Following that, the algorithm’s resistance to geometrical assaults 
is seen, and the experimental findings are displayed in Table 4. The experimental findings 
demonstrate that the NC values were higher than 0.85 when the images were rotated by 
5, 15, and 30 degrees, even after rotating the observed picture by 60 degrees, the NC value 
remains higher than 0.80, it shows that the algorithm can effectively fend against rota-
tional attacks. When the scaling ratio is equal to 0.3 and 2.0, the NC value exceeds 0.86, 
and this suggests that the algorithm is rather resistant to scaling attacks. When the meas-
ured cryptomedical images were shifted upwards by 5%, the NC values were all greater 
than 0.92, the NC value exceeds to 0.75 when it is shifted to the up by 35%, the NC value 
is higher than or equal to 0.75 when the measured encrypted medical image is shifted to 
the right by 25%, demonstrating the algorithm’s strong robustness to translation attacks. 
When the encrypted medical images are cut by 20% on the Y-axis, the NC value is greater 
than 0.85, even when the encrypted medical image is cropped 40% on the Y-axis, the NC 
value is greater than 0.82, when they are cut by 40% on the X-axis, the NC values are 
greater than 0.80, indicating that the algorithm has strong resistance to shear attacks. In 
conclusion, the algorithm proposed in this paper performs well against multiple geomet-
ric attacks. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

 
(g) 

 

 
(h) 

 

 
(i) 

 

 
(j) 

 

 
(k) 

 

 
(l) 

Figure 12. Medical images and watermarks for geometric attacks. (a–c) represent the medical image 
and extracted watermark after a 60-degree clockwise rotation attack; (d–f) represent the medical 
image and extracted watermark at a scaling of 0.3; (g–i) represent the medical image and extracted 
watermark after a 25% right shift; (j–l) denote the medical image and extracted watermark after a 
20% X-axis clipping of the medical image and the extracted watermark. 
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Figure 12. Medical images and watermarks for geometric attacks. (a–c) represent the medical image
and extracted watermark after a 60-degree clockwise rotation attack; (d–f) represent the medical
image and extracted watermark at a scaling of 0.3; (g–i) represent the medical image and extracted
watermark after a 25% right shift; (j–l) denote the medical image and extracted watermark after a
20% X-axis clipping of the medical image and the extracted watermark.

Table 4. Experimental data of watermarking based on geometric attacks.

Geometric Attacks
PSNR (dB) NC

Intensity Img1 Img2 Img3 Img1 Img2 Img3

Rotation
(clockwise)

5◦ 18.36 14.63 22.50 0.95 0.94 0.94
15◦ 15.05 10.06 19.58 0.95 0.87 0.94
30◦ 14.56 9.14 18.11 1.00 0.86 1.00
45◦ 13.99 8.24 17.72 1.00 0.80 0.93
60◦ 13.68 7.44 17.03 0.95 0.94 0.83

Scaling

0.3 20.97 21.32 25.67 1.00 0.88 0.88
0.6 27.13 27.25 29.70 1.00 1.00 0.94
1.5 46.44 43.72 45.19 1.00 1.00 0.93
2.0 46.40 43.61 44.94 1.00 1.00 0.93
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Table 4. Cont.

Geometric Attacks
PSNR (dB) NC

Intensity Img1 Img2 Img3 Img1 Img2 Img3

Right translation

5% 14.60 10.37 19.13 1.00 1.00 0.93
15% 12.98 8.12 16.04 0.95 0.92 0.89
25% 11.34 6.62 15.25 0.90 0.92 0.75
40% 10.11 5.75 14.50 0.90 0.80 0.82

Up translation

5% 14.67 13.42 17.99 0.95 0.92 1.00
15% 13.17 8.81 15.08 1.00 0.92 0.82
25% 11.97 7.08 14.32 1.00 0.73 0.82
35% 11.08 6.06 13.34 1.00 0.92 0.76

Y-axis cropping

10% 15.66 15.14 18.75 1.00 0.86 1.00
20% 15.26 12.27 16.21 1.00 0.86 0.89
30% 14.95 11.29 15.02 1.00 0.86 0.83
40% 14.69 10.57 14.48 0.95 0.94 0.83

X-axis cropping

10% 14.70 10.00 19.52 1.00 0.94 1.00
20% 13.14 8.80 18.07 1.00 0.81 0.94
30% 12.55 7.48 17.04 1.00 0.75 0.86
40% 12.14 7.70 16.67 1.00 0.81 0.88

4.4. Algorithm Comparison

To demonstrate the robustness of the NasNet-Mobil-DCT algorithm and use this
algorithm to compare with other algorithms, this comparison experiment uses a brain
image as the experimental object, as shown in Figure 9a, because this image is often used by
a wide range of medical image watermarking researchers in comparative experiments and
is representative. The comparison data are shown in Figure 13, in which black represents
the DCT algorithm [32], green represents the DWT-DCT algorithm [33], blue represents
the SIFT-DCT algorithm [34], purple represents the KAZE-DCT algorithm [25], orange
represents the Inception V3-DCT algorithm [34], and red represents the NasNet-Mobil-
DCT algorithm proposed in this paper. The NasNet-Mobil-DCT algorithm offers strong
resilience to conventional and geometric attacks, as observed from the experimental data.
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5. Conclusions

In this paper, we propose a robust zero watermarking algorithm for medical images
based on improved NasNet-Mobile convolutional neural network and discrete cosine trans-
form (DCT), which uses deep learning algorithm, chaotic encryption technique, perceptual
hashing algorithm, and zero watermarking technique to provide security for medical im-
age watermarking information. Before watermark embedding, Chen chaotic system and
Arnold mapping algorithm are used to double encrypt the watermarked data, which im-
proves the security of the data, and then migration learning is carried out on the improved
NasNet-Mobile network to get the trained medical image feature extraction network, and
finally, the extracted image features are subjected to DCT transformation to extract the
low-frequency data and the extracted data are processed by the perceptual hash algorithm
to get the 32-bit binary feature vectors, and finally, the zero-watermarking technology is uti-
lized for encrypting the medical images. The experimental results show that the algorithm
proposed in this paper can resist a variety of conventional attacks, and at the same time, it
is excellent in resisting geometric attacks such as rotation, translation, scaling, shearing,
etc., and shows strong robustness. Therefore, the algorithm can be used for medical images.
In the next research, we will improve the algorithm and look for algorithms that can extract
image features more effectively to cope with the watermarking techniques’ weak resistance
against various attacks.
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Abstract: To solve the problem of robustness of encrypted medical image watermarking algorithms,
a zero watermarking algorithm based on the discrete cosine transform (DCT) and an improved
DarkNet53 convolutional neural network is proposed. The algorithm targets medical images in the
encrypted domain. In this algorithm, DCT is performed on the encrypted medical image to extract
32-bit features as feature 1. DarkNet53, a pre-trained network, was chosen for migration learning
for the network model. The network uses a fully connected layer and a regression layer instead
of the original Softmax layer and classification layer, changing the original classification network
into a regression network with an output of 128. With these transformations, 128-bit features can be
extracted from encrypted medical images by this network, and then DCT is performed to extract
32-bit features as feature 2. The fusion of features 1 and 2 can effectively improve the robustness of
the algorithm. The experimental results show that the algorithm can accurately distinguish different
encrypted medical images and can effectively restore the original information from the encrypted
watermarked information under traditional and geometric attacks. Compared with other algorithms,
the proposed method demonstrates better robustness and invisibility.

Keywords: cryptographic medical images; convolutional neural network; DarkNet53; migration
learning; DCT

1. Introduction

With the gradual digitization of current medical technology, a large amount of medical
information needs to be transmitted via the internet. Watermarking technology is effective
for concealing patient information in images and facilitating transmission. However, this
puts the patient’s information at risk of leakage. The use of digital image watermarking
technology in the medical industry is steadily becoming more widespread [1,2], thanks
to the rapid advancements that have been made in artificial intelligence, computer vision,
image processing, and other areas of study. At this time, the vast majority of patient
information, including images of patients, must be transmitted online. Researchers must
devise a method to safeguard the patients’ information and prevent it from being stolen.
The digital watermarking technique offers a potentially useful solution to the problem
described above [3]. This is because the technology is undetectable, and it also has the
capacity to continually upgrade and improve upon older encryption methods. Because of
this capability, sensitive patient information can be concealed within medical images.

Since the unique qualities of medical images mean that the watermark will not inter-
fere with the doctor’s ability to diagnose the original image, zero watermark technology
is an excellent solution to this issue [4]. Currently, most digital picture watermarking
methods are designed for use in the plaintext domain, where they can be embedded and
later extracted. However, the patient’s private information could be stolen if the medical
image in the plaintext domain is intercepted in transit. Therefore, the original image cannot
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be guaranteed to be secure using the digital watermarking process in the plaintext domain,
especially when transmitting medical images. It has been shown that the digital water-
marking approach in the ciphertext domain is superior at resolving the aforementioned
issue [5].

By embedding and extracting the watermark in the ciphertext domain, the information
carried by the carrier image will be effectively hidden, significantly improving the carrier
image’s security. Moreover, homomorphic encryption can safely hand over the encrypted
carrier image and watermark to a third party for processing, so there is no need to worry
about security risks such as information theft and alteration [6]. The zero watermarking
technique is implemented by taking advantage of the vital resources of third parties. The
original image needs to be encrypted first for embedding and extracting watermarks in
the ciphertext domain. Researchers have provided a large number of image encryption
algorithms, such as Yang et al.’s proposed image encryption algorithm based on adaptive
two-dimensional compression perception and a chaotic system, which improves the visual
security of encrypted images and can effectively enhance the embedding rate [7]. Musanna
et al. proposed an image encryption algorithm based on fractional chaos and cellular neural
networks [8]. Zhong et al. proposed a multi-image encryption algorithm based on wavelet
transform and 3D shuffle scrambling by performing a wavelet transform on each layer of
the reconstructed image cube and then using a 3D shuffle algorithm and heteroskedastic
operation to achieve encryption, achieving high operation speed and resistance to attack [9].
Kamil et al. [10] proposed block-wise reversible watermarking technique for security of
images using dynamic reversible blocks. The work of Sahu et al. [11] shows the significance
of tools used for the security of data from tempering and highlights the forensic techniques
to further improve data security. While previous research has focused on securing 2D
mesh fog data, the work of Raghunandan et al. [12] presents an innovative method of
securing 3D point fog data. Initially, the sequence produced by the chaotic behavior is
used to transform the coordinates of the fog data. The expanded scope of the suggested
map is then represented via bifurcation analysis. Then, the Lyapunov exponent and the
approximate entropy are used to evaluate the proposed chaotic system.

There are two basic categories for watermark embedding: spatial domain and trans-
form domain [13]. Medical image watermarking strategies are typically studied in the
transform domain because it is more challenging to demonstrate improved resilience for
spatial domain embedding and extraction procedures. To implement transform domain-
based image watermarking, several transform techniques are applied to the carrier image
to extract the transform coefficients, which are then modified to embed the watermark.
Conventional transform techniques include the discrete cosine transform (DCT), the dis-
crete wavelet transform (DWT), the singular value decomposition (SVD), etc. [14–16]. A
technique for zero watermarking images using DCT and DFT was proposed by S. Xing
et al. [17]. To create the zero-watermark image, we first perform a discrete Fourier transfor-
mation (DFT) on the image to obtain the coefficient matrix, then a discrete cosine transform
(DCT) to select the low-frequency coefficients as the feature image of the original image,
and finally, an exclusive-or (XOR) operation on the encrypted watermark data. Using 2D
discrete wavelet transforms, SVDs, and chaotic maps, Wang Kunshu et al. [18] proposed a
safe method of watermarking two-color images. First, a color space transformation (RGB
to NTSC) is performed on the original image and the encrypted watermark, and then a
multi-level 2D discrete wavelet transform (DWT) is performed. Ultimately, the encrypted
watermark is embedded by altering the single values of the original image’s low-frequency
sub-bands.

The expanding applications of deep learning have led to its increasing popularity
among researchers as the go-to method for addressing complex problems [19]. Deep
learning shows excellent performance even in computer vision tasks such as pedestrian
recognition, image categorization, etc. [20,21]. As one of the most popular network models,
convolutional neural networks leverage their formidable processing capability to reli-
ably extract deep information. Recently, Liu et al. [22] suggested an undetectable and
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robust watermarking approach employing convolutional neural networks to address the
shortcomings of digital watermarking techniques in the face of geometric attacks. Zero-
watermarking algorithms for medical images using the VGG-19 deep convolutional neural
network were proposed by Han et al. [23]. The algorithm first extracts deep features from
medical images using a pre-trained VGG19 network, then uses the Fourier transform on
the extracted features, selects the transformed 64-bit low-frequency coefficients to construct
the feature matrix, then uses the hash transform to generate a binary sequence, and finally
uses the encrypted watermarked image and the binary sequence to perform calculations to
achieve zero watermarking. When compared to conventional algorithms, this one performs
better in geometric attacks.

In summary, although many watermarking algorithms have been studied, water-
marking algorithms for encrypted medical images are still inadequate, and even fewer
algorithms can achieve better robustness, especially against geometric attacks. Therefore, in
this paper, we propose an encrypted medical image watermarking algorithm based on DCT
and an improved DarkNet53 convolutional neural network, which has the primary purpose
of authentication and privacy information protection [24]. Firstly, DarkNet53′s pre-trained
network needs to be improved and trained. The medical images are then encrypted, and
the encrypted medical images are subjected to DCT to extract features 1 and 2. At the
same time, the encrypted medical image is fed into the improved DarkNet53 convolutional
neural network to extract feature 2. Secondly, the watermarked image is encrypted using
chaos encryption. Finally, features 1 and 2 are simply fused, and an aliasing operation is
performed on the encrypted watermark to achieve watermark embedding and extraction.

The main contributions of this study are as follows:

(1) It is proposed that DCT and an improved DarkNet53 convolutional neural network
can be used to make a robust zero-watermarking algorithm for cryptographic medi-
cal images;

(2) Encrypting both the carrier image and the watermark information ensures that the
carrier image information is safe and that the watermark information is safe and easy
to see;

(3) The network’s structure is changed and trained with a certain set of data so that robust
features can be extracted;

(4) The algorithm has high robustness against both geometric and conventional attacks.

2. Basic Theory
2.1. DarkNet53 Convolutional Neural Network

DarkNet53 is the backbone feature extraction network used by the target detection
network YOLOv3 for extracting features with 8, 16, and 32-fold downsampling, respec-
tively [25]. The network structure of DarkNet53 is shown in Figure 1, and this network
model combines the deep residual network with DarkNet19, the feature extraction network
used by YOLOv2 [26]. This network partly makes extensive use of 1 × 1 convolution
and 3 × 3 convolution, where 1 × 1 is mainly applied to the expansion and reduction of
channels. The overall convolutional network uses a structural model of a convolutional
layer + batch normalization (BN) layer + Leaky ReLU layer.

2.2. Tent Map

The tent map is a segmented linear mapping in mathematics with a tent-like function
image, as shown in Figure 2 [27]. It is also a two-dimensional chaotic mapping, which
is widely used in chaotic cryptosystems (e.g., image encryption) and is often used in the
generation of chaotic spreading codes, in the construction of chaotic cryptosystems, and in
the implementation of chaotic preference algorithms. The chaotic sequences generated by
its mapping have good statistical properties. The formula is as follows:

Xn =

{
Xn
α , 0 ≤ Xn < α

1−Xn
1−α , α ≤ Xn < 1

(1)

171



Electronics 2023, 12, 1554Electronics 2023, 12, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Structure of DarkNet53 network model. 

2.2. Tent Map 
The tent map is a segmented linear mapping in mathematics with a tent-like function 

image, as shown in Figure 2 [27]. It is also a two-dimensional chaotic mapping, which is 
widely used in chaotic cryptosystems (e.g., image encryption) and is often used in the 
generation of chaotic spreading codes, in the construction of chaotic cryptosystems, and 
in the implementation of chaotic preference algorithms. The chaotic sequences generated 
by its mapping have good statistical properties. The formula is as follows: 

, 0

1 , 1
1

n
n

n
n

X X
X

X X

 ≤ <=  − ≤ <
 −

n

α
α

α
α

  (1)

The mapping is in a chaotic state when α ∈ (0, 1) and has a uniform distribution func-
tion on (0, 1). 

 
Figure 2. Tent map bifurcation diagram [28]. 

Figure 1. Structure of DarkNet53 network model.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Structure of DarkNet53 network model. 

2.2. Tent Map 
The tent map is a segmented linear mapping in mathematics with a tent-like function 

image, as shown in Figure 2 [27]. It is also a two-dimensional chaotic mapping, which is 
widely used in chaotic cryptosystems (e.g., image encryption) and is often used in the 
generation of chaotic spreading codes, in the construction of chaotic cryptosystems, and 
in the implementation of chaotic preference algorithms. The chaotic sequences generated 
by its mapping have good statistical properties. The formula is as follows: 

, 0

1 , 1
1

n
n

n
n

X X
X

X X

 ≤ <=  − ≤ <
 −

n

α
α

α
α

  (1)

The mapping is in a chaotic state when α ∈ (0, 1) and has a uniform distribution func-
tion on (0, 1). 

 
Figure 2. Tent map bifurcation diagram [28]. Figure 2. Tent map bifurcation diagram [28].

The mapping is in a chaotic state when α ∈ (0, 1) and has a uniform distribution
function on (0, 1).

2.3. Discrete Cosine Transform (DCT)

A commonly used one-dimensional DCT transformation formula is as follows:

F(u) = c(u)
N−1

∑
i=0

f (i) cos[
(i + 0.5)π

N
u] (2)

Among them, c(u) =





√
1
N , u = 0√
1
N , u 6= 0

, c(u) is a coefficient and N is the total number of f (x).
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The two-dimensional discrete cosine transform formula is as follows:

F(u, v) = C(u)C(v)
M−1
∑

x=0

N−1
∑

y=0
f (x, y) cos[ (x+0.5)uπ

M ] cos[ (y+0.5)vπ
N ]

u = 0, 1, . . . , M− 1; v = 0, 1, . . . , N − 1
(3)

Among them, C(u) =





√
1
M , u = 0√
2
M , u 6= 0

, C(v) =





√
1
N , v = 0√
2
N , v 6= 0

, f (x, y) is the pixel

value of point (x, y), and F(u, v) is the 2D-DCT transform coefficient of f (x, y). DCT is
preferred in digital image processing as compared to other transformations, such as DFT or
FFT, because signal will “lose its form” if the representation coefficients are truncated in
DFT because the signal is represented periodically. Due to the continuous periodic structure
in DCT, however, the signal can withstand larger amounts of coefficient truncation while
still maintaining the desired shape [29].

2.4. Logistic Map

The logistic map is one of the most famous chaotic mappings, a simple dynamic
nonlinear regression with chaotic behavior, as shown in Figure 3 [30]. Its mathematical
definition can be expressed as follows:

Xk+1 = µ · Xk · (1− Xk) (4)

Among them, Xk ∈ (0, 1), 0 < µ ≤ 4.
Experiments show that when 3.5699456 < µ ≤ 4, the logistic mapping enters a chaotic

state and the logistic chaotic sequence can be used as an ideal key sequence.
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3. The Proposed Algorithm

In this paper, we propose a robust watermarking algorithm for encrypted medical
images based on DCT and an improved DarkNet53 convolutional neural network [32]. The
main parts are: improvement of the network, migration learning, encryption of medical
images and watermark information, feature extraction of images and embedding, and
extraction of watermarks.

3.1. Medical Image Encryption

This paper opts to embed and remove the watermark in the ciphertext domain due
to the unique nature of medical photographs, and the corresponding encryption method
is depicted in Figure 4. Firstly, the coefficient matrix D(i, j) is obtained by DCT of the
original image; secondly, the tent mapping chaotic sequence X(j) is extracted and binarized
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to obtain C(i, j); and finally, the dot product operation is performed on D(i, j) and C(i, j) to
obtain ED′(i, j). Finally, the IDCT transform of ED′(i, j) is performed to obtain the encrypted
medical image.
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3.2. Improved DarkNet53 Network Model
3.2.1. Improvement of Network Structure

Since convolutional neural networks have powerful feature extraction abilities and
can effectively extract stable features of images, they are of high research value for medical
image watermarking algorithms. In this paper, the DarkNet53 convolutional neural net-
work, which has been trained on more than one million natural images in the ImageNet
database, is selected for its inherently good feature extraction ability. In order to achieve
strong robustness in the watermarking algorithm, this paper makes a simple change to the
network. First, the Softmax layer and classification layer of the DarkNet53 convolutional
neural network are removed, then a fully connected layer with 128 values of output is
added, and finally a regression output layer is connected after the fully connected layer
so that the modified network can complete the regression task and the output of the fully
connected layer is used as our extracted medical image features.

3.2.2. Data Set Creation

The medical image data selected for this paper comes from the Medical Imaging Park
and American Research Institute, Inc., which contains tens of thousands of medical images.
In this paper, we selected 125 medical images in each of the five major categories of brain,
pelvis, bone and muscle, colon, and chest from the website as dataset 1, and encrypted these
125 medical images to obtain 125 encrypted medical images as dataset 2. Some of these
250 images are shown in Figure 5. Data sets 1 and 2 are completely disrupted, respectively,
and then divided into three parts in the ratio of 3:1:1: the training set, validation set, and test
set. In order to improve the robustness of the network in extracting features, in this paper,
the training set and the validation set are enhanced with the data separately, as shown in
Table 1. Thus, we obtained 12,850 images as the total dataset for this training. Because the
input size of the DarkNet53 convolutional neural network is 2,562,563, all medical images
are resized to 2,562,563 here. For the production of dataset labels, this paper first performs
DCT on the images of the training and validation sets and then selects the 128-bit feature
vectors of the low-frequency part as labels.
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Table 1. Specific implementation operations for data enhancement.

Enhancement Methods Intensity Number of New Images

Gaussian noise (%) 3, 6, 9, 12, 15 5
JPEG compression (%) 5, 10, 15, 20, 25 5
Median filter (10 times) 3 × 3, 5 × 5, 7 × 7 3
Clockwise rotation (◦) 5, 10, 15, 20, 25, 30, 35, 40 8

Scaling 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 6
Down-shift (%) 5, 10, 15, 20, 25, 30 6

Up-shift (%) 5, 10, 15, 20, 25, 30 6
Y-axis shear (%) 5, 10, 15, 20, 25, 30 6
X-axis shear (%) 5, 10, 15, 20, 25, 30 6

Left-shift (%) 5, 10, 15, 20, 25, 30 6
Right-shift (%) 5, 10, 15, 20, 25, 30 6

3.2.3. Training Network

The computer configuration used for this experiment was an NVIDIA GeForce GTX
1050Ti 4GB graphics card (Santa Clara, CA, USA) and Intel@RCoreTM i5-8300H CPU @
2.30GHz4 (Santa Clara, CA, USA). The software uses the neural network toolbox that comes
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with Matlab 2022a, and the network selected was the DarkNet53 pre-trained network. In
this paper, the DarkNet53 pre-trained network is trained by first setting the learning rate of
1:84 layers to 0 to “freeze” the weights of these layers, because the parameters of the frozen
layers will not be updated during the whole training process. Next, the initial learning rate
is set to 0.001, the MiniBatchSize is set to 30, and the Epochs are set to 8 for training. Finally,
the trained network is saved as a key part of the watermarking algorithm.

3.3. Encryption of Watermarks

In this research, we make use of a chaotic system of logistic mapping to create an
encrypted watermarked image through the utilization of chaotic dislocation. The water-
marking process will now be more secure and resistant to interference as a result of this
change. The first thing that needs to be done in order to generate the encrypted water-
marked image is to enter the chaotic system by providing values for the coefficients and
the initial state. This is done so that the system can begin to generate the image. To begin
the process of decrypting the image, we will first need to use the chaotic system to create
a chaotic sequence. After we have obtained this sequence, we will need to perform a
bit-by-bit XOR operation between it and the binary image that has been watermarked
with it. The intricate algorithmic structure of the watermark chaos encryption is shown in
Figure 6.
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3.4. Feature Extraction of Encrypted Medical Images

Traditional watermarking algorithms mainly embed watermarks directly into medical
images, which may not only change the quality of the images but also their resistance
to attacks, especially geometric attacks, which often do not have good robustness. In
this paper, we perform DCT on encrypted medical images and select the 32-bit feature
vector of the low-frequency part for hash transform as feature 1, denoted as V1(i, j) [33].
Meanwhile, the 128-bit feature matrix of the fully connected layer is extracted from the
encrypted medical image using a DarkNet53 convolutional neural network after migration
learning, and then DCT is performed on this 128-bit feature matrix, and the 32-bit feature
vector of the low-frequency part is extracted for the hash transform as feature 2, denoted as
V2(i, j). Finally, the feature set V(i, j) is established, which can be better combined with the
zero-watermarking technique. The specific steps are shown in Figure 7.
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3.5. Encrypted Watermark Embedding

The process of watermark embedding in this paper is primarily broken down into the
following steps: the feature vectors V1(i, j) and V2(i, j) in the feature set and each row of the
encrypted watermark BW(i, j) are each subjected to bit-by-bit XOR operations, respectively;
the watermark information can then be hidden in the medical image. Additionally, when
embedding a watermark using this method, there is no change to the pixel values in the
original image, achieving a zero watermark. The specific watermark embedding process is
shown in Figure 8.
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3.6. Extraction of Watermarks

The steps for watermark extraction are identical to those for the watermark embedding
process, where V1′(i, j) is the feature vector extracted by DCT and V2′(i, j) is the feature
vector extracted by DarkNet-DCT, and the specific operation flow is shown in Figure 9.
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3.7. Decryption of Watermark

The decryption of the watermark is consistent with the chaotic sequence X(j) used in
the encryption method of the watermark, and X(j) and the encrypted watermarks BW1′(i, j)
and BW2′(i, j) are subjected to the XOR operation to obtain the decrypted watermarks
W1′(i, j) and W2′(i, j), respectively. Calculate the correlation coefficients NC1 and NC2
of W(i, j) and W′(i, j), then discriminate NC1 and NC2, and output the larger correlation
coefficient and the corresponding watermark image. The specific flow of watermark
extraction and decryption is shown in Figure 10.
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4. Experimental Results and Analysis

In this research, a medical image and a 32 × 32 watermarked image carrying infor-
mation from the test set were randomly selected for the Matlab 2022a simulation platform
to study and test the robustness of the mentioned watermarking algorithm. To improve
the security, we used tent chaos mapping to encrypt the medical image and logistic chaos
encryption to encrypt the watermarked image, as shown in Figure 11.
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4.1. Performance Index

In this paper, the robustness of the algorithm is reflected by the normalized correla-
tion coefficient (NC) and the peak signal-to-noise ratio (PSNR). Where NC indicates the
similarity between the original watermark and the extracted watermark, and the closer its
value is to 1, the higher the correlation between the two and the better the robustness of the
algorithm. The calculation formula is shown in (5). PSNR indicates the degree of distortion
of the image containing the watermark, and a smaller value means a greater degree of
distortion of the original image; the calculation formula is shown in Equation (6).

NC =

∑
i

∑
j

W(i,j)W ′(i,j)

∑
i

∑
j

W2
(i,j)

(5)

PSNR = 10lg




MNmax
i,j

(I(i, j))2

∑
i

∑
j

(
I(i, j)− I′(i, j)

)2


 (6)

4.2. Reliability Analysis

In order to prove that the deep-learning algorithm proposed in this paper has certain
reliability, eight medical images were randomly selected from the test set for testing, as
shown in Figure 12. The NC is used to calculate the correlation between different images,
and when the NC < 0.5, it indicates that the correlation between different image feature
vectors is low, and the feature vectors extracted by this algorithm are representative. Table 2
shows the NC values between eight different cryptographic medical images. Since the
absolute values of NC values of different images are less than 0.5 and the NC value of the
same image is 1, the algorithm can distinguish different encrypted medical images and
is reliable.
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Table 2. NC between different encrypted images.

Image 1 2 3 4 5 6 7 8

1 1
2 0.32 1
3 0.22 0.22 1
4 0.26 0.04 0.12 1
5 0.25 0.07 0.17 0.24 1
6 0.01 0.16 0.01 0.22 0.49 1
7 0.12 0.07 0.17 0.11 0.12 0.24 1
8 0.37 0.05 0.36 0.39 0.25 0.11 0.25 1

4.3. Conventional Attacks

To test the robustness of the algorithm against conventional attacks, three conventional
attacks—Gaussian noise, JPEG compression, and median filtering—were selected for testing
in this paper. The NC value between the original watermark and the extracted watermark
was calculated, with larger values indicating better robustness. The experimental results
are shown in Table 3. It can be seen that when the Gaussian attack reaches 13%, the NC
value is 1.00; when the JPEG compression quality is 5%, the NC value is 0.85; and when
the median filtering [7 × 7] is 10 times, the NC value is 1.00. Figure 13 shows some of the
experimental results. It shows that the watermark information can be effectively recovered
with good robustness in the face of all three conventional attacks.
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Table 3. Experimental data under conventional attack.

Attacks Intensity PSNR(dB) NC

Gaussian noise (%)

3 15.37 0.91
7 12.27 1.00
9 11.47 0.94

13 10.43 1.00

JPEG compression (%)
5 26.46 0.85

15 31.36 0.91
30 34.32 1.00

Median filter
[3 × 3] 31.35 1.00
[5 × 5] 26.10 1.00
[7 × 7] 23.95 1.00
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Figure 13. Encrypted medical images and extracted watermarks after some conventional attacks.
Images after 13% attack of Gaussian noise and corresponding extracted watermarks (a,b), images
after 5% attack of JPEG compression and corresponding extracted watermarks (c,d), and images after
10 attacks of median filtering [7 × 7] and corresponding extracted watermarks (e,f).

4.4. Geometric Attacks

As geometric attacks are a more difficult problem for existing algorithms to solve, this
paper tests the robustness of the algorithm after rotation, scaling, and shear attacks. The
NC value between the original watermark and the extracted watermark was calculated,
with larger values indicating that the algorithm is more resistant to geometric attacks. The
experimental results are shown in Table 4. It can be seen that the NC value was 0.62 when
rotating 30◦ counterclockwise. When rotating 50◦ clockwise, the NC value was 0.53. When
the scaling factor was between 0.1 and 2, the NC value was 1. When shifting 30% left, the
NC value was 0.62. When shifting 40% right, the NC value was 0.64. When shifting 40% up,
the NC value was 0.72. When shifting 40% down, the NC value was 0.58. When shearing
40% along the X-axis, the NC value was 0.55. When shearing 40% along the Y-axis, the NC
value was 0.67. When shearing 40% along the X-axis direction, the NC was 0.55. When
shearing 40% along the Y-axis direction, the NC was 0.67. The watermark information
could be effectively recovered for all the above geometric attacks. Figure 14 shows the
experimental results after partial geometric attacks.
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Table 4. Experimental data under geometric attack.

Attacks Intensity PSNR(dB) NC

Anticlockwise Rotation
(◦)

10 15.43 0.78
20 13.90 0.62
30 13.16 0.62

Clockwise Rotation (◦)
10 15.14 0.85
30 13.21 0.80
50 12.73 0.53

Scaling Factor
0.1 - 1.00
0.5 - 1.00
2 - 1.00

Translation Left (%)
10 13.32 0.81
20 11.01 0.63
30 9.64 0.62

Translation Right (%)
5 16.16 0.80
20 11.57 0.81
40 8.90 0.64

Translation Up (%)
10 13.28 0.85
20 10.92 0.75
40 8.46 0.72

Translation Down (%)
5 15.94 0.86
20 11.82 0.81
40 8.84 0.58

X-axis Crop (%)
10 - 0.85
20 - 0.87
40 - 0.55

Y-axis Crop (%)
10 - 0.85
20 - 0.76
40 - 0.67

4.5. Comparison between Different Algorithms

In order to better verify the robustness of this algorithm, this paper compares the more
classical watermarking algorithms, Inception V3-DCT, PHTs-DCT, KAZE-DCT, DWT-DCT,
and Curvelet-DCT, in recent years [34–38]. During the experiments, the same medical
image and watermarked image were selected for testing in order to ensure the consistency
of the conclusions. The results of the comparison experiments are shown in Table 5 and
Figure 15. It can be seen that DWT-DCT and Curvelet-DCT have the best results in the
face of traditional attacks. Facing the geometric attack, the algorithm proposed in this
paper shows strong robustness. In a comprehensive comparison, the algorithm proposed
in this paper demonstrates stronger robustness in the face of different geometric attacks
and conventional attacks.

Table 5. Comparison of NC values between different algorithms.

Attacks Intensity
Inception
V3-DCT

[34]
PHTs-DCT

[35]
KAZE-DCT

[36]
DWT-DCT

[37]
Curvelet-DCT

[38] Proposed

Gussian Noise 13 0.35 0.45 0.32 1.00 1.00 0.94
JPEG Compression 10 0.63 0.63 0.76 1.00 1.00 0.94

Median Filter [7 × 7] 0.29 0.55 0.40 0.84 1.00 1.00
Rotation (◦) 30 0.05 0.62 0.42 0.46 0.41 0.80

Scaling ×0.1 0.32 - 0.43 0.90 0.90 1.00
Right Translation (%) 40 0.39 0.49 0.04 0.13 0.20 0.64

Up Translation (%) 40 0.39 0.31 0.20 0.02 0.02 0.72
Cropping
(X-axis) 20 0.76 0.59 0.68 0.31 0.30 0.87

Cropping
(Y-axis) 15 0.68 0.45 0.62 0.65 0.74 0.81

Note: The bold part indicates that the algorithm has the best robustness compared to these three algorithms.
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Figure 14. Encrypted medical images and extracted watermarks after some geometric attacks. Image
and extracted watermark after 30◦ counterclockwise rotation (a), image and extracted watermark
after 50◦ clockwise rotation (b), image and extracted watermark after 0.1 times scaling (c), image
and extracted watermark after 30% left-shift (d), image and extracted watermark after 40% right-
shift (e), image and extracted watermark after 40% up-shift (f), image and extracted watermark after
40% down-shift (g), image and extracted watermark after 40% clipping in X-axis direction (h), and
image and extracted watermark after 40% clipping in Y-axis direction watermark (i).
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5. Conclusions

In this paper, we propose an encrypted medical image watermarking algorithm that is
based on DCT and Darknet53 convolutional neural networks. This algorithm combines
migration learning, DCT, Tent Map, Logistic Map, hash transform, and zero watermarking
techniques. The algorithm is designed to protect medical images from unauthorized
use. Improving the Darknet53 pre-trained network was the first step in the experimental
procedure. Next, migration learning was performed on the improved network in order
to extract features from encrypted medical images. After that, the medical images and
watermark information were encrypted with Tent Map and Logistic Map. Finally, the
zero-watermarking technique was used to embed the watermark information and then
extract it. The findings of the experiments demonstrate that the method has a high degree
of robustness when subjected to both conventional and geometric attacks. As a result, the
technique may prove to be superior for use with encrypted medical photos. Naturally,
there is still a great deal of space for development of this method, and in order to enhance
the performance of the algorithm, we will continue to tune the neural network in order to
extract characteristics that are more reflective of the whole.
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Abstract: Knowledge Graph Embedding (KGE) is a powerful way to express Knowledge Graphs
(KGs), which can help machines learn patterns hidden in the KGs. Relation patterns are useful hidden
patterns, and they usually assist machines to predict unseen facts. Many existing KGE approaches can
model some common relation patterns like symmetry/antisymmetry, inversion, and commutative
composition patterns. However, most of them are weak in modeling noncommutative composition
patterns. It means these approaches can not distinguish a lot of composite relations like “father’s
mother” and “mother’s father”. In this work, we propose a new KGE method called QuatRotatScalE
(QRSE) to overcome this weakness, since it utilizes rotation and scaling transformations of quaternions
to design the relation embedding. Specifically, we embed the relations and entities into a quaternion
vector space under the difference norm KGE framework. Since the multiplication of quaternions does
not satisfy the commutative law, QRSE can model noncommutative composition patterns naturally.
The experimental results on the synthetic dataset also support that QRSE has this ability. In addition,
the experimental results on real-world datasets show that QRSE reaches state-of-the-art in link
prediction problem.

Keywords: knowledge graph; knowledge graph embedding; link prediction; quaternion; relation pattern

1. Introduction

Knowledge Graph (KG) is composed by structured, objective facts. The facts are
usually expressed in the form of triples as (h, r, t), where h, r, and t express the head
entity, the relation, and the tail entity, respectively. For example, (China, located_in, Asia).
Knowledge graphs have successfully supported many applications in various fields, such
as recommender systems [1], question answering [2], information retrieval [3], and natural
language processing [4]. KGs have also attracted increased attention from both industry
and academic communities. However, real-world knowledge graphs, such as Dbpedia [5],
Freebase [6], Yago [7], and WordNet [8], are usually incomplete, which restricts their
applications. Thus, knowledge graph completion has become a widely studied subject.
This subject is usually formulated as a link prediction problem, i.e., predicting the missing
links that should be in the knowledge graph. Generally speaking, it asks us to design an
agent that takes the query as input and outputs some entities. The query may contain a
head entity and a relation or a tail entity and a relation. Every outputted entity should be
able to form a plausible triple together with the query.

So far, the fundamental way to deal with the link prediction problem is Knowledge
Graph Embedding (KGE) in industry and academia [9–13]. In this way, the agent needs
to learn a low-dimensional vector representation, also called embedding, for each entity
and relation. We have to design a scorer that can grade any triple in the embedding form
for its plausibility. When predicting the unknown entity, the agent only needs to grade
all possible triples (composed by the query with each candidate entity) and then take the
candidate entities of high score triples as the predicted result.
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There are two reasons why these knowledge-graph embedding methods can tackle
the link prediction problem effectively. On the one hand, there are many utilizable relation
patterns in real-world KGs, such as symmetry/antisymmetry, inversion, and composition.
These relation patterns are generally presented as natural redundancies in KGs, such as
triple (China, located_in, Asia) and triple (Asia, includes, China) may exist in some KGs
simultaneously, and they are describing the same fact. Here, located_in and includes
are inverse relations for each other. On the other hand, existing KGE models have been
able to model most relation patterns, i.e., evaluate the plausibility of triples by utilizing the
relation patterns. For example, TransE [10] can model inversion patterns. When there are
many natural redundancies relevant to located_in and includes in training KG, even if it
has only seen triple (China, located_in, Asia) but not seen triple (Asia, includes, China),
the TransE model can still mark a high plausibility score for triple (Asia, includes, China).

However, as far as we know, almost none of the existing KGE models can perfectly
model the aforementioned relation patterns. For example, RotatE [13] declares that it
can model all of the relation patterns, but it still has a fatal defect in modeling the com-
position patterns: It can only model commutative composition patterns, but can not model
noncommutative composition patterns. This defect is also existing in some other KGE models
which claim themselves can model composition patterns, such as TransE. Briefly speak-
ing, a composition pattern implies the relation pattern that in the shape of r1 ⊕ r2 = r3,
where ⊕means the ordered composition of r1 and r2. If composition pattern r1 ⊕ r2 = r3
exists in some KG, it means that KG has frequent natural redundancies in the form of
[(e1, r1, e2), (e2, r2, e3), (e1, r3, e3)], ei(i = 1, 2, 3) can be any entity. If r1 ⊕ r2 = r3 and
r2 ⊕ r1 = r3 are both in a KG, we call r1 ⊕ r2 = r3 a commutative composition pat-
tern, such as is_on_the_east_of ⊕ is_on_the_north_of = is_on_the_northeast_of
and is_on_the_north_of⊕is_on_the_east_of = is_on_the_northeast_of. Otherwise,
if only r1 ⊕ r2 = r3 is in the KG, it is a noncommutative composition pattern, such as
is_the_husband_of⊕ is_the_mother_of = is_the_father_of.

Both of RotatE and TransE model the noncommutative composition pattern as the
commutative composition pattern by mistake. This mistake will bring severely ridicu-
lous inferences. For example, they will infer (i.e., mark a high score for) triple (Mary,
is_the_father_of, Barbara) based on existing triples (Mary, is_the_mother_of, James)
and (James, is_the_husband_of, Barbara). The primary cause of this mistake is that they
have not taken the design inspiration of their models carefully. They both expect to express
a fact triple (h, r, t) through an equation relevant to the embeddings of h, r, and t (noted as
boldface letters h, r, and t): h� r = t, where � is some binary operation. Thus, they design
the score function in the form of −‖h� r− t‖, and we can see that the closer the equation
is to hold, the higher the plausibility score is. TransE embeds entities and relations into the
real number vector space and takes the addition in that space as �, while RotatE replaces
the real numbers with the complex numbers and takes the element-wise multiplication as
�. Since these two operations both satisfy the commutative law, the corresponding two
models can only model commutative composition patterns.

Inspired by QuatE [14], which will be discussed in Section 2.1.2, we propose a new
KGE model called QuatRotatScalE (or QRSE, for short) in this paper. The main difference
from TransE and RotatE is it embeds entities and relations into the quaternion [15] vector
space and takes the element-wise multiplication in that space as �. Because the quaternion
multiplication generally does not satisfy the commutative law (but there are special cases
where the law holds), QRSE can model both composition patterns. Furthermore, we can
prove that QRSE can also model the rest relation patterns. Thus it has become one of
the KGE models that can model most relation patterns up to now. We evaluated QRSE
and compared it with many baselines in two well-established and widely used real-world
datasets FB15k-237 [16] and WN18RR [17]. The results indicate our method has reached
the state-of-the-art in link prediction problem.
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2. Related Work

At present, there are two classes of methods to solve the knowledge graph completion
or link prediction problem. One class of methods is the KGE methods, and the other is the
path-finding methods. Both of them are introduced below:

2.1. KGE Method

Embedding methods are widely used in many fields of machine learning since the
embeddings of sentences, graphs, and many other data types can be easily transferred
to various downstream tasks with only a little task-specific fine-tuning. For example,
studies [18,19] first learn the embeddings of sentences and then use these embeddings
to perform sentiment classification. Study [20] first learns an embedding for each graph,
then use these embeddings to predict the missing labels of graphs. In addition, some
other studies learn an embedding vector for each object (i.e., the node in a graph) of
a given Heterogeneous Information Network (HIN) in a (semi-)supervised [21] or self-
supervised [22] manner. Taking advantage of the learned embeddings of objects, they can
fulfill many tasks, e.g., object classification, clustering, and visualization.

In knowledge graph completion or link prediction problem, Knowledge Graph Em-
bedding methods are also the most studied methods. Let us use E to represent the set
of all entities and useR to represent the set of all relations in KG. KGE methods need to
assign a vector representation to every entity e ∈ E and relation r ∈ R, noted in boldface
letters e and r, respectively. e or r is also called the embedding of e or r. In addition to
this, KGE methods still need to design a score function fr(h, t) to mark the plausibility of
the triple (h, r, t). The objective of optimization is to mark high scores for the true triples
and low scores for the false triples. Based on the type of score function, we can further
divide the KGE methods into two sorts, KGE based on difference norm and KGE based on
semantic matching:

2.1.1. KGE Based on Difference Norm

The common motivation of this sort of method is they want to use a triple approximate
equation f1(h, r) ≈ f2(t, r) to describe any triple (h, r, t), and the strict equation should hold
for fact triples. As for the unknown triples, they think the proximity of the two sides can
reflect the plausibility of the triple. Thus, the score functions of these methods are always
in the form of fr(h, t) = −‖ f1(h, r)− f2(t, r)‖.

Among them, there is a kind of method that is widely studied, called translational
methods. We call them “translational” because the origin of this kind of method, TransE,
uses the translation transformation to design the triple approximate equation. Precisely, it
chooses the real number vector space Rk as the embedding space and regards the relation
embedding r as a translation transformation from head entity embedding h to tail entity
embedding t. So it designs the triple approximate equation as h + r ≈ t. Following TransE,
many improvements have emerged. TransH [23] claims it is better to assign a hyperplane in
embedding space for every relation (the hyperplane’s normal vector noted as rp), and only
regards r as a translation from the projection of h to the projection of t on that hyperplane.
Hence the triple approximate equation of TransH is (I− rpr>p )h + r ≈ (I− rpr>p )t, where
I is the identity matrix. TransR [24] generalizes TransH, it assigns a linear map to every
relation r, noted as transfer matrix Wr. This linear map maps h and t into the relation
space. Then TransR utilizes the images of h and t in the relation space with r to design
the triple approximate equation in TransE’s style: Wrh + r ≈ Wrt. Further, StransE [25]
assigns each relation r two different transfer matrices Wr,1 and Wr,2. Similarly, the triple
approximate equation is designed as Wr,1h + r ≈ Wr,2t. These derivative methods of
TransE are collectively known as TransX. Their score functions can be written in the form of
fr(h, t) = −‖gr,1(h) + r− gr,2(t)‖, where gr,i(·) denotes a matrix multiplication concerning
relation r.

Since the large number of the derivative methods of TransE, some literature uses the
translational methods to refer to KGE based on difference norm in general. But this is
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not accurate enough. Some other methods do not turn to translation transformation to
design their triple approximate equations, such as TorusE [26] and RotatE. TorusE chooses
a compact Lie group as its embedding space and can be regarded as a special case of RotatE
when the embedding modulus are fixed [13]. RotatE embeds entities and relations into the
complex number vector space Ck. It wants to replace the translation in Rk with the rotation
in Ck. Specifically, for each element ri (1 ≤ i ≤ k) of r, RotatE fixes it as a unitary complex
number (i.e., |ri| = 1). Hence the complex multiplication between the i-th element of h (i.e.,
hi) and ri means hi rotates in its complex plane with angle Arg(ri) (i.e., the argument of
complex ri). Let us use ◦ to denote the Hadamard (element-wise) product between two
complex vectors, the triple approximate equation of RotatE is h ◦ r ≈ t.

There are some KGE methods with score functions belonging to a special case of
difference norm, which is in the form of −‖h� r− t‖, where � is some binary operation.
When the ideal optimization is achieved, the triple approximate equations of these methods
hold: h� r = t. This property is useful to explain some abilities to model relation patterns.
For example, TransE and RotatE are two of these methods, and because their binary
operations are both associative and commutative, they can only model commutative
composition patterns. For more details, please see Section 5.

2.1.2. KGE Based on Semantic Matching

The intuition of this sort of method is to measure the plausibility of a triple by inspect-
ing the matching degree of the latent semantics of the two entities and the relation.

There is a family of methods called bilinear models that design score functions as
bilinear maps of head and tail entities. RESCAL [9] may be the first bilinear model. It
selects real vector space Rk as the embedding space of entities and assigns a k × k real
matrix Wr to each relation r. Then it directly applies Wr to define a bilinear map as the
score function. To reduce the complexity of Wr, DistMult [11] restricts Wr to be a diagonal
matrix. So DistMult can express Wr as a vector r in Rk and rewrite the score function in
the form of the multi-linear dot product of h, r, and t. To overcome DistMult’s weakness
in modeling antisymmetry relation pattern, ComplEx [12] extends the embedding space
into the complex vector space Ck, and modifies the score function. QuatE [14] further
develops ComplEx, it extends the embedding space into the quaternion vector space to
obtain better expression ability. DualE [27] uses the dual quaternion vectors to design the
embeddings of entities and relations, and chooses the dual quaternion inner product as
the score function. DihEdral [28] designs entity embeddings with real vectors, and designs
relation embeddings with dihedral group vectors, where each dihedral group is expressed
as a second-order discrete real matrix. Although its score function is a bilinear form, which
belongs to the type of semantic matching, it is theoretically proven that this score function
is equivalent to a difference norm function in the form of −‖h� r− t‖ for optimizing
relation embeddings. So DihEdral has the ability to model composition patterns like
TransE and RotatE. Furthermore, since the multiplication of dihedral groups generally
does not satisfy the commutative law, DihEdral can model noncommutative composition
patterns. However, because the relation embeddings take discrete values, DihEdral has
to use special treatments of the relation embeddings during the training process, and the
actual performance is easily affected by special treatments. As for QuatE and DualE, their
relation embeddings have the potential to model noncommutative composition patterns
for the (dual) quaternion multiplication generally does not satisfy the commutative law.
Nevertheless, because their score functions belong to the type of semantic matching and
lack the theoretical equivalence to a difference norm function in the form of −‖h� r− t‖
like DihEdral at present, their abilities to model the composition patterns have no strict
theoretical guarantees. More precisely, their triple approximate equations, if any, do not
necessarily hold when the ideal optimization is achieved, which is a crucial but easily
overlooked step for a rigorous proof.
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Apart from bilinear models, some models based on neural networks emerged recently.
Such as ConvE [17] and ConvKB [29] take the convolutional neural networks to construct
the score functions.

Some mentioned KGE methods are listed in Table 1 with their score functions. Their
abilities to model the relation patterns are shown in Table 2. We can see that our QRSE can
model all relation patterns, which is a rare ability.

Table 1. Score functions and embedding spaces of several KGE models. 〈a, b, c〉 .
= ∑k

i=1 aibici

means the multi-linear dot product of vector a, b, andc; ·̄ denotes conjugate for a complex or
quaternion vectors; Re(·) denotes the real part of a complex number or quaternion; ⊗ indicates
the Hadamard (element-wise) product between two quaternion vectors. Note that we report an
equivalent formulation for QuatE to show the inheritance relationship with ComplEx.

Model Score Function Embedding Space

TransE −‖h + r− t‖ h, r, t ∈ Rk

TransX −‖gr,1(h) + r− gr,2(t)‖ h, r, t ∈ Rk

RotatE −‖h ◦ r− t‖ h, r, t ∈ Ck, |ri| = 1

RESCAL h>Wrt h, t ∈ Rk, Wr ∈ Rk×k

DistMult 〈h, r, t〉 h, r, t ∈ Rk

ComplEx Re(〈h, r, t̄〉) h, r, t ∈ Ck

QuatE Re(〈h, r, t̄〉) h, r, t ∈ Hk, |ri| = 1

QRSE −‖h⊗ r− t‖ h, r, t ∈ Hk

Table 2. The modeling ability comparison for various relation patterns among different models
(partial reference from [13]).

Model Symmetry Anti-
Symmetry Inversion Commutative

Composition
Noncommutative

Composition

TransE × √ √ √ ×
TransX

√ √ × × ×
RotatE

√ √ √ √ ×
RESCAL

√ √ √ × ×
DistMult

√ × × × ×
ComplEx

√ √ √ × ×
QuatE

√ √ √ × ×
QRSE

√ √ √ √ √

Additionally, “supervised relation composition” [30] is a method that can model
composition patterns under supervision. But it is not a KGE method. Its goal is to design
and train a function model that can take the embeddings of two relations as input and
output the embedding of the composite relation of these two relations. The relation
embeddings used are provided by an existing KGE model and are fixed once obtained.
The supervisory information used for training is mined from the original KGs by another
method. This method and the KGE models mentioned before belong to different research
directions. The direction of KGE models studies how to directly model relation patterns
(including composition patterns) by training entity and relation embeddings from the
original KGs.
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2.2. Path-Finding Method

This class of methods does not need score function to predict unknown entities, such
as MINERVA [31], MultiHopKG [32], and DeepPath [33]. Instead, they should start from
the query entity node and follow the direction implied by the query relation to search the
KG for the unknown entity. Compared with KGE methods, their results are explainable to
some extent since they can provide the inference paths as evidence, but the lack of precision
is their weakness at present.

3. Preliminaries

Before introducing our proposed method, let us briefly explain the related concepts
and geometric meaning of quaternions.

3.1. A Brief Introduction of Quaternion

As an extened number system from the complex numbers C, quaternions H [15] have
to import three fundamental quaternion units i, j, and k, which are not existing in the real
numbers. Each quaternion q can be expressed as q = a + bi + cj + dk, where a, b, c, and d
are all real numbers. The addition of quaternions is defined as (a1 + b1i + c1j + d1k) +
(a2 + b2i+ c2j+ d2k) .

= (a1 + a2) + (b1 + b2)i+ (c1 + c2)j+ (d1 + d2)k. The multiplication
between any two fundamental quaternion units are defined as i2 = j2 = k2 = −1 and
ij = −ji = k, jk = −kj = i, ki = −ik = j. Obviously, this multiplication is associative but
not commutative. For completeness, we also confirm the multiplication between any one
in {i, j, k}, and a real number is commutative and associative. To obey the distributive law,
we consequently get the multiplication between two arbitrary quaternions as:

(a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k)
.
= a1a2 − b1b2 − c1c2 − d1d2

+ (a1b2 + b1a2 + c1d2 − d1c2)i

+ (a1c2 + c1a2 + d1b2 − b1d2)j

+ (a1d2 + d1a2 + b1c2 − c1b2)k .

(1)

We can conclude that the multiplication of quaternions (also known as the Hamilton
product) holds the associative and distributive law, but does not hold the commutative law
in general. Nevertheless, there are some special cases where the commutative law holds.

Some useful concepts of quaternions are listed as follows (let q = a + bi + cj + dk):
Modulus: The modulus of q is written as |q| and is defined as |q| .

=
√

a2 + b2 + c2 + d2.
Since the set of quaternions H is a linear space isomorphic to R4 with basis (1, i, j, k), mod-
ulus means the length of q intuitively. In addition, if |q| = 1, q is called a unit quaternion.

Real and imaginary part: Similar to complex numbers, real number a is the real part
of q, and real vector v .

= (b, c, d)> is the imaginary part of q. Sometimes we would like
to express q in the form of [a, v] for convenience. Then, the multiplication of quaternions
can be written as [a1, v1][a2, v2] = [a1a2 − v1 · v2, a1v2 + a2v1 + v1 × v2], where · is the dot
product and × is the cross product.

Conjugate: The conjugate of q is the quaternion q̄ .
= a − bi− cj− dk. It has thses

properties: (1) q1q2 = q̄2q̄1; (2)qq̄ = q̄q = |q|2, and from (1), (2) we get (3) |q1||q2| = |q1q2|.
As a corollary, the product of two unit quaternions is also a unit quaternion.

Reciprocal: If q 6= 0, the reciprocal of q is the quaternion q−1 such that qq−1 = q−1q =

1, and it is equivalent to define q−1 .
= q̄/|q|2.

3.2. The Geometric Meaning of the Multiplication of Quaternions

To see the geometric meaning of the multiplication of quaternions, we have to view
the H as a linear space isomorphic to R4 with an orthonormal basis (1, i, j, k). Any q in H
can be expressed in the form as ρ[cos θ, sin θn], where ρ ≥ 0 and ‖n‖ = 1. This is because if
q 6= 0 we could set ρ = |q|, θ = arccos (a/|q|), and n = v/‖v‖, whereas if q = 0 we could
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set ρ = 0 and choose θ and n arbitrarily. Note that [cos θ, sin θn] is a unit quaternion and
implies the direction of q, while ρ implies the length of q.

Take another quaternion p = [s, u] from H, then the product pq = ρ(p[cos θ, sin θn])
means a new quaternion reached via two steps from p : (1) changing the direction of p
according to [cos θ, sin θn], (2) stretching the length by ρ times. So we only have to see what
is the change implied by p[cos θ, sin θn].

Without loss of generality, we suppose u 6= 0 and u is not parallel with n. Thus
we can find another orthonormal basis of H: ([1, 0], [0, n], [0, n⊥], [0, n×]). Here, n⊥

.
=

(u− (u · n)n)/‖u− (u · n)n‖ and n×
.
= n⊥ × n. Besides, we confirm the coordinates of p

under this basis is (s, l, l⊥, 0)>, where l = u · n and l⊥ = ‖u− (u · n)n‖. Thus we can split
p into two parts: p = p1 + p2, where p1 = [s, ln] and p2 = [0, l⊥n⊥]. So we only have to
see what do p1[cos θ, sin θn] and p2[cos θ, sin θn] mean.

Since p1[cos θ, sin θn] = [s cos θ − l sin θ, (s sin θ + l cos θ)n], this product and p1 are
both in the plane with basis ([1, 0], [0, n]). And we can show the transformation from p1 to
the product by their coordinates under basis ([1, 0], [0, n]) as:

p1 → p1[cos θ, sin θn] :
(

s
l

)
−→

(
s cos θ − l sin θ
s sin θ + l cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
s
l

)
. (2)

So p1[cos θ, sin θn] means p1 rotates with angle θ counterclockwise in plane span([1, 0], [0, n]).
In the same way, since p2[cos θ, sin θn] = [0, l⊥ cos θn⊥ + l⊥ sin θn×], this product and p2
are both in the plane with basis ([0, n⊥], [0, n×]). And we can show the transformation
from p2 to the product by their coordinates under basis ([0, n⊥], [0, n×]) as:

p2 → p2[cos θ, sin θn] :
(

l⊥
0

)
−→

(
l⊥ cos θ
l⊥ sin θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
l⊥
0

)
. (3)

So p2[cos θ, sin θn] means p2 rotates with angle θ counterclockwise in plane
span([0, n⊥], [0, n×]).

In a word, the change implied by p[cos θ, sin θn] is: (1) Split p into two components
p1 and p2, where p1 is in plane span([1, 0], [0, n]) and p2 is in plane span([0, n⊥], [0, n×]);
(2) Rotate p1 and p2 with angle θ counterclockwise in each plane simultaneously, as shown
in Figure 1; (3) Add two new components together.

Figure 1. How do p1 and p2 rotate when they are multiplied by [cos θ, sin θn] on the right.

As a special case, when u = 0 or u is parallel with n, p = p1. Thus at that time,
p[cos θ, sin θn] only means the rotation in plane span([1, 0], [0, n]). Moreover, the geometric
meaning of qp is almost the same with pq, except that the rotation for p2 is clockwise.

4. Proposed Method

Now we start to introduce our proposed KGE model. The embedding spaces of entities
E and relationsR are both the quaternion vector space Hk. For any e ∈ E and r ∈ R, their
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embeddings are noted as e and r in lower case bold letters, respectively. The i-th elements
of e and r are written as ei (ei ∈ H) and ri (ri ∈ H) for every integer i from 1 to k. Our model
is based on difference norm, so we first define its triple approximate equation as h⊗ r ≈ t
for any triple (h, r, t). Here, ⊗ denotes the Hadamard (element-wise) product between two
quaternion vectors. So this triple approximate equation is equivalent to asking for hiri ≈ ti
for all i (1 ≤ i ≤ k). In consequence, we get our score function:

fr(h, t) .
= −‖h⊗ r− t‖ . (4)

Here, ‖q‖ is the abbreviation of ‖q‖p,1
.
= ∑k

i=1 (|ai|p + |bi|p + |ci|p + |di|p)
1
p , for any quater-

nion vector q (qi = ai + bii + cij + dik, 1 ≤ i ≤ k). p (p ≥ 1) is a hyperparameter.
According to the geometric meaning of the quaternion multiplication, we can explain

the purpose of this triple approximate equation intuitively: We treat each element of
relation embedding ri (written in the form of ρi[cos θi, sin θini]) as a two-step transformation
from hi to ti: (1) Rotate hi in two planes (span([1, 0], [0, ni]) and span([0, ni,⊥], [0, ni,×]))
counterclockwise with angle θi; (2) Stretch hi with scaling factor ρi. Thus we refer to our
model as QuatRotatScalE (or QRSE, for short) due to we use Quaternions with Rotation
and Scaling transformations to design the Embedding model.

Optimization

The general objective of KGE models is to return high scores for true triples and
low scores for false triples. We adopt negative sampling as our training style to avoid
the efficiency loss brought by the huge number of entities like most of the other KGE
methods. The training KG usually only contains true triples (positive samples, noted as Ω)
without false triples (negative samples). Thus we apply a common way (i.e., corrupting
the positive samples) to obtain the negative samples. Suppose (h, r, t) is a positive sample,
we can get two sets of negative samples by replacing the head or tail entity with other
entities: Nh(r, t) .

= {(h′, r, t) | h′ is uniformly sampled from E s.t. (h′, r, t) /∈ Ω} and
Nt(h, r) .

= {(h, r, t′) | t′ is uniformly sampled from E s.t. (h, r, t′) /∈ Ω}. The size of
negative samples Nh(r, t) and Nt(h, r) is fixed and much smaller than |E |.

Following RotatE [13], we use the loss function on each triple (h, r, t) in the training
KG as

L = − log σ(γ + fr(h, t))− ∑
(h′ ,r,t′)∈N

p(h′, r, t′) log σ(−γ− fr(h′, t′)) (5)

where σ is the sigmoid function, γ is a fixed margin, and N is Nh(r, t) or Nt(h, r). In
practice, N is regenerated in the same way (Nh(r, t) or Nt(h, r)) for every positive sample
in one training batch. Once it turns to the next training batch, N should switch the regener-
ating way. p(h′, r, t′) is the distribution of self-adversarial negative sampling proposed by
RotatE [13] and is defined as

p(h′, r, t′) =
exp(α fr(h′, t′))

∑(h′ ,r,t′)∈N exp(α fr(h′, t′))
(6)

where α is the temperature of sampling. The self-adversarial negative sampling can mod-
erate the low efficiency of the uniform negative sampling. We also take Adam as our
optimizer. Moreover, p(h′, r, t′) plays a role of importance sampling ratio in L, so it need
not backpropagate gradients through it.

5. Theoretic Analysis
5.1. Relation Patterns

As mentioned in introduction Section 1, modeling (i.e., identifying and utilizing) the
relation patterns in KGs are the fundamental for KGE models to solve the link prediction
problem. There are three types of relation patterns, which are very powerful and widely
exist in various KGs [12,13,16,34,35]:
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Symmetry/antisymmetry: A relation r is symmetric (antisymmetric) if ∀e1, e2 ∈ E ,
(e1, r, e2)⇒ (e2, r, e1) ((e1, r, e2)⇒ ¬(e2, r, e1)).

Inversion: Relation r1 is inverse to relation r2 if ∀e1, e2 ∈ E , (e1, r2, e2)⇒ (e2, r1, e1).
Composition: Relation r1 is composed of relation r2 and relation r3 if ∀e1, e2, e3 ∈ E ,

(e1, r2, e2) ∧ (e2, r3, e3) ⇒ (e1, r1, e3). We adopt form r2 ⊕ r3 = r1 to describe this composi-
tion pattern for simplicity. Moreover, if both of r2 ⊕ r3 = r1 and r3 ⊕ r2 = r1 make sense,
r2 ⊕ r3 = r1 is a commutative composition pattern. Otherwise, if only r2 ⊕ r3 = r1 holds, it
is a noncommutative composition pattern.

5.2. Abilities to Model Relation Patterns

In this subsection , we prove that QRSE can model symmetry/antisymmetry, inver-
sion, and composition patterns. Additionally, TransE and RotatE are unable to model
noncommutative composition patterns. Next, if triple (h, r, t) is in the knowledge graph,
we write it in the embedding space as h⊗ r = t for QRSE because its score function is a
special case of difference norm −‖h⊗ r− t‖ and when the ideal optimization is achieved,
we can directly get h⊗ r = t (we can replace ⊗ with + or ◦ for TransE or RotatE for the
same reason).

• QRSE can model symmetry/antisymmetry patterns:
Suppose e2 ⊗ r = e1 and e1 ⊗ r = e2. We can get e1 ⊗ r⊗ r = e1. It means for any
i (1 ≤ i ≤ k), e1,iriri = e1,i. If e1,i = 0, ri can be any quaternion. But if e1,i 6= 0, ri
must satisfies:

e1,iriri = e1,i ⇐⇒ e−1
1,i e1,iriri = e−1

1,i e1,i ⇐⇒ riri = 1 ⇐⇒ ri = r−1
i . (7)

∵ ∀q1, q2 ∈ H, |q1||q2| = |q1q2|, ∴ |ri| = 1. ∵ ∀q ∈ H, q−1 = q̄/|q|2, ∴ ri = r̄i. Thus
ri is 1 or −1. In a word, if r satisfies ri ∈ {1,−1} (1 ≤ i ≤ k), r models a symmetry
pattern, otherwise, it models a antisymmetry pattern.

• QRSE can model inversion patterns:
Suppose e2 ⊗ r1 = e1 and e1 ⊗ r2 = e2. We can get e1 ⊗ r2 ⊗ r1 = e1. It means for any
i (1 ≤ i ≤ k), e1,ir2,ir1,i = e1,i. If e1,i = 0, r2,i and r1,i can be any quaternions. But if
e1,i 6= 0, r2,i and r1,i must satisfy:

e1,ir2,ir1,i = e1,i ⇐⇒ e−1
1,i e1,ir2,ir1,i = e−1

1,i e1,i

⇐⇒ r2,ir1,i = 1 ⇐⇒ r1,i = r−1
2,i .

(8)

Define q−1 .
= (q−1

1 , q−1
2 , ..., q−1

k )
>

for all q ∈ Hk, qi 6= 0 (1 ≤ i ≤ k). We can conclude
that if r1 = r−1

2 , r1 and r2 model an inversion pattern.
• QRSE can model composition patterns:

Suppose e1⊗ r2 = e2, e2⊗ r3 = e3, and e1⊗ r1 = e3. We can get e1⊗ r2⊗ r3 = e1⊗ r1.
It means for any i (1 ≤ i ≤ k), e1,ir2,ir3,i = e1,ir1,i. If e1,i = 0, r2,i, r3,i, and r1,i can be
any quaternions. But if e1,i 6= 0, r2,i, r3,i, and r1,i must satisfy:

e1,ir2,ir3,i = e1,ir1,i ⇐⇒ e−1
1,i e1,ir2,ir3,i = e−1

1,i e1,ir1,i ⇐⇒ r2,ir3,i = r1,i . (9)

Moreover, if we still suppose e4 ⊗ r3 = e5, e5 ⊗ r2 = e6, and e4 ⊗ r1 = e6. Then if
e4,i 6= 0 for all i (1 ≤ i ≤ k), r3,i, r2,i, and r1,i must satisfy: r3,ir2,i = r1,i. This means
r2,ir3,i = r3,ir2,i. If we note r2,i = [a2,i, v2,i] and r3,i = [a3,i, v3,i], then we get:

[a2,ia3,i − v2,i · v3,i, a2,iv3,i + a3,iv2,i + v2,i × v3,i]

=[a3,ia2,i − v3,i · v2,i, a3,iv2,i + a2,iv3,i + v3,i × v2,i]

⇐⇒ v2,i × v3,i = v3,i × v2,i

⇐⇒ v2,i = 0 or v3,i = λv2,i (λ ∈ R) .

(10)

194



Electronics 2023, 12, 1348

We can conclude that if r2 ⊗ r3 = r1, r2, r3, and r1 model a composition pattern.
Moreover, if v2,i is parallel with v3,i for all i(1 ≤ i ≤ k), it is a commutative composition
pattern, otherwise, it is a noncommutative composition pattern.

• TransE and RotatE can not model noncommutative composition patterns, and they
can only model commutative composition patterns:
For TransE, we suppose e1 + r2 = e2, e2 + r3 = e3, e1 + r1 = e3, e4 + r3 = e5,
e5 + r2 = e6, but e4 + r1 6= e6, which means the composition of relation r2 and r3 is
noncommutative. From the first three equations we get r2 + r3 = r1, and from the
fourth and fifth equations we get e4 + r3 + r2 = e6. Because r2 + r3 = r3 + r2, we
get e4 + r1 = e6, which contradicts the condition. Therefore TransE can not model
noncommutative composition patterns. If we replace the condition e4 + r1 6= e6
with e4 + r1 = e6, then the composition of relation r2 and r3 becomes commutative
composition. In this case the previous contradiction disappears, which means TransE
can model commutative composition patterns.
As for RotatE, we suppose e1 ◦ r2 = e2, e2 ◦ r3 = e3, e1 ◦ r1 = e3, e4 ◦ r3 = e5,
e5 ◦ r2 = e6, but e4 ◦ r1 6= e6, which means the composition of relation r2 and r3
is noncommutative. Since r2 ◦ r3 = r3 ◦ r2 (the multiplication of complex numbers
satisfies the commutative law), we can get e4 ◦ r1 = e6 in the same way as TransE,
which contradicts the condition. So RotatE can not model noncommutative compo-
sition patterns . If we replace the condition e4 ◦ r1 6= e6 with e4 ◦ r1 = e6, then the
composition of relation r2 and r3 becomes commutative composition. In this case
the previous contradiction disappears, which means RotatE can model commutative
composition patterns.

6. Experiments

In this section, we first evaluate QRSE with RotatE on a small knowledge graph
made up of two families. This experiment will verify the superiority of QRSE in modeling
noncommutative composition relation patterns. Then we evaluate QRSE and compare it
with many baselines in two well-established and widely used real-world datasets.

6.1. Experiment on a KG about Two Families

There are 10 entities and 4 relations in the training KG. Each entity is a member of
one family, and each relation is a type of kinship. Such as triple (Am1, son, Am2) means Am1
has a son called Am2. All of the triples in the training KG are shown in Figure 2, where
each directed edge represents a triple, and its direction is from the head entity to the tail
entity. Furthermore, the test set contains two triples: (Bm1, daughter_of_son, Bw3) and
(Bm1, son_of_daughter, Bm3). We let models predict the head or tail entity for each test
triple, so there are 4 queries during the test process.

Figure 2. The structure of the training KG, where each directed edge represents a triple.

Since we need 2 and 4 real numbers to determine a complex number and a quaternion
respectively, we take C10 (i.e., embedding dimension k = 10) and H5 (i.e., k = 5) as
the entity embedding spaces for RotatE and QRSE. Thus in practice, we can express the
entity embeddings of RotatE and QRSE as 20-D real vectors. Except for the embedding
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dimension k, we keep other hyperparameters the same for two models: batch size b = 10,
self-adversarial sampling temperature α = 0, fixed margin γ = 0, learning rate η = 0.001,
negative sampling size |N | = 2, and the order of norm in score function p = 2.

We use Hit@1 to measure the performance of models, which means the proportion of
the correctly answered queries (i.e., the true answer’s score is ranked first) among all test
queries. The test performances of RotatE and QRSE are shown in Figure 3. We can see that
QRSE gets the best Hit@1 value 1.00 quickly, and after that, it keeps this Hit@1 value all the
time during the training process. RotatE also gets the best Hit@1 value quickly; however,
after that, it’s Hit@1 value is always fluctuating between 0.5 and 1.00 randomly. To explain
this phenomenon, we inspected the detailed scores and embeddings at step 16,000, which
is large enough to ensure the convergence of the two models.

Figure 3. The Hit@1 performance of RotatE and QRSE on the test set along with the training process.

The top 3 scores for all test queries are shown in Table 3. For the two queries to predict
the head entity Bm1, the scores of Bm1 are much higher than the second candidate entities
for both RotatE and QRSE. However for the two queries to predict the tail entities Bm3
and Bw3, only QRSE keeps the large gap between the first and the second score, whereas
RotatE gives very close scores for the top 2 candidate entities on both of the two queries.
This result reveals that, for RotatE, the score ranks for the top 2 candidates are unstable
and easily affected by the random noise on the two queries to predict the tail. That is why
the Hit@1 of RotatE fluctuates during training. Moreover, for RotatE, the top 2 candidate
entities are Bm3 and Bw3 for both of the two tail queries. Thus we guess the embeddings of
these two entities are also very close.

Table 3. The detailed test results of RotatE and QRSE at training step 16000.

Model Test Triple Entity to Predict Ranked Scores for Top 3 Candidate Entities

RotatE

(Bm1, son_of_daughter, Bm3)
Bm1 Bm1: −0.0224, Am2: −5.4026, Bm3: −5.6849

Bm3 Bm3: −0.0224, Bw3: −0.0227, Bm1: −5.6840

(Bm1, daughter_of_son, Bw3)
Bm1 Bm1: −0.0178, Am2: −5.3975, Bm3: −5.6668

Bw3 Bw3: −0.0178, Bm3: −0.0179, Bm1: −5.6654

QRSE

(Bm1, son_of_daughter, Bm3)
Bm1 Bm1: −0.00087, Aw2: −4.8535, Aw3: −4.9947

Bm3 Bm3: −0.00087, Aw3: −5.2716, Bw3: −5.3903

(Bm1, daughter_of_son, Bw3)
Bm1 Bm1: −0.00094, Aw2: −4.8532, Aw3: −4.9948

Bw3 Bw3: −0.00094, Bm3: −5.3905, Am2: −5.8095

Figure 4 shows the embeddings of Bm3 and Bw3 in RotatE and QRSE. As we guessed,
the two embeddings are very close in RotatE but different in QRSE. This result verified that
RotatE is unable to model noncommutative composition patterns, but QRSE can. Let us
use the bold type to indicate the embeddings as before. For RotatE, along with the training
process, Bw3 will close to Bm2 ◦ daughter, and Bm2 will close to Bm1 ◦ son. Hence Bw3
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will close to Bm1 ◦ son ◦ daughter. Similarly, Bm3 will close to Bm1 ◦ daughter ◦ son.
Because daughter ◦ son = son ◦ daughter, Bw3 will close to Bm3. For QRSE, daughter⊗
son 6= son⊗ daughter in general, so Bw3 will not close to Bm3.

Figure 4. The entity embeddings of RotatE and QRSE on training step 16,000. The 10-D complex or
5-D quaternion vectors are expressed in the corresponding 20-D real vectors.

We can also show this fact by directly inspecting the relation embeddings of the two mod-
els in Figure 5. Note that daughter⊕ son and son⊕ daughter are not the relations in KG but
the combinations made up of the relations in KG. Their “embeddings” are calculated from the
embeddings of some relations (e.g., the “embedding” of daughter⊕ son is daughter⊗ son in
QRSE). Obviously, the embeddings of son_of_daughter and daughter_of_son are almost
the same in RotatE, since they are both approaching daughter ◦ son during training. How-
ever, they are different in QRSE since the embeddings of son_of_daughter is approaching
daughter⊗ son while the other is approaching son⊗ daughter during training.

Figure 5. The relation embeddings of RotatE and QRSE on training step 16,000. A relation embedding
of RotatE has 10 complex numbers with modulus 1, which are determined by their 10 arguments.
Thus we express it by its 10 arguments in angle degrees. For QRSE, we continue use the corresponding
20-D real vectors for each relation embedding.

6.2. Experiment on Real-World Datasets
6.2.1. Experimental Setting

We still evaluated our method on two well-established and widely used real-world
knowledge graphs, FB15k-237 [16] and WN18RR [17], with several strong baselines.

FB15k-237 is selected from FB15k [10], which is a subset of Freebase and mainly
records the facts about movies, actors, and sports. Because FB15k suffers from test leakage
through inverse relations: there are too many inversion patterns in KG, which are too
easy to model, and even a simple rule-based model can perform well [17]. To make the
results more reliable, FB15k-237 removed these inverse patterns. The statistics of FB15k-237
are 14,541 entities, 237 relations, 272,115 training triples, 17,535 validation triples, and
20,466 test triples.
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WN18RR is selected from WN18 [10], which is a subset of WordNet and records lexical
relations between words. WN18 also suffers from test leakage through inverse relations, so
WN18RR removed its inverse patterns too. The statistics of WN18RR are 40,943 entities,
11 relations, 86,835 training triples, 3034 validation triples, and 3134 test triples.

The ranges of the hyperparameters for the grid search are following RotatE as em-
bedding dimension k ∈ {125, 250, 500, 1000} , batch size b ∈ {512, 1024, 2048}, and fixed
margin γ ∈ {3, 6, 9, 12, 18, 24, 30}. Moreover, we searched self-adversarial sampling temper-
ature α in {0.5, 1.0, 1.5}, learning rate η in {0.00005, 0.0001, 0.0002}, negative sampling size
|N | in {16, 32, 64, 128}, and the order p of norm in score function in {2, 3, 4, 5, 6, 7}. The
embeddings are also uniformly initialized.

From each test triple (h, r, t), we generate two queries: (?, r, t) and (h, r, ?). Given each
query, we can make a candidate triple by placing a candidate entity on the place of the
entity to predict. The score of each candidate entity is just the score of its corresponding
candidate triple. While ranking all the scores, we omit the scores of those candidate triples
that already exist in training, validation, and test set, except the true answer for the query.
This process is called “filtered” in some literature and is widely adopted in existing methods
to avoid possibly flawed evaluation.

6.2.2. Results

We adopt these standard evaluation measures for both of the datasets: the mean
reciprocal rank of the true answers (MRR), the proportion of queries whose true answers
are ranked in the top k (Hit@k).

The link prediction results on real-world datasets are shown in Table 4. The result
of TransE is taken from [29]. The results of DistMult, ComplEx, and ConvE are taken
from [17]. The results of RotatE and DualE are taken from [13,27], respectively. The results
of DihEdral(STE) and DihEdral(Gumbel) are taken from [28], where STE and Gumbel
are two special treatments of the discrete relation embeddings. The results of QuatE and
QuatE(TC) are taken from [14], where TC indicates the corresponding model using type
constraints [36]. From this table, we can see that QRSE outperforms RotatE largely on all
datasets and evaluation measures. This result supports our analysis of the modeling ability
of the composition patterns. Compared with DihEdral(STE) and DihEdral(Gumbel), we
find QRSE outperforms both of them on the two real-world datasets, whereas DihEdral(STE)
is better than DihEdral(Gumbel) on FB15k-237 and just the opposite on WN18RR. This
means the performance of DihEdral is easily affected by special treatments, and DihEdral
can not perform well on the two real-world datasets simultaneously. Compared with
DualE and QuatE, we find QRSE outperforms both of them too. This means that among all
methods using (dual) quaternions so far, QRSE has explored the greatest potential of the
(dual) quaternion space in the implementation of knowledge graph embedding. Because
type constraints [36] can integrate prior knowledge into various KGE models and can
significantly improve their performance in link prediction tasks, QRSE and most baselines
display the results without it for fairness except QuatE(TC). Surprisingly, we can even see
that QRSE is superior to QuatE with type constraints overall slightly. The success on this
unfair comparison further demonstrates the excellence of QRSE. Overall, our QRSE has
reached the state-of-the-art in link prediction problem on real-world datasets.
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Table 4. Link prediction results on the FB15k-237 and WN18RR datasets. Numbers in boldface are
the best, and underlined numbers are the second best.

Model
FB15k-237 WN18RR

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.294 - - 0.465 0.226 - - 0.501

DistMult 0.241 0.155 0.263 0.419 0.43 0.39 0.44 0.49

ComplEx 0.247 0.158 0.275 0.428 0.44 0.41 0.46 0.51

ConvE 0.325 0.237 0.356 0.501 0.43 0.40 0.44 0.52

RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571

DualE 0.330 0.237 0.363 0.518 0.482 0.440 0.500 0.561

DihEdral(STE) 0.320 0.230 0.353 0.502 0.480 0.452 0.491 0.536

DihEdral(Gumbel) 0.300 0.204 0.332 0.496 0.486 0.442 0.505 0.557

QuatE 0.311 0.221 0.342 0.495 0.481 0.436 0.500 0.564

QuatE(TC) 0.348 0.248 0.382 0.550 0.488 0.438 0.508 0.582

QRSE 0.350 0.252 0.390 0.548 0.491 0.443 0.508 0.581

7. Conclusions and Future Work

We proposed a novel knowledge graph embedding model QRSE based on quaternions.
QRSE is a KGE model that can model the noncommutative composition patterns. Besides,
it can also model many other relation patterns, such as symmetry/antisymmetry, inversion,
and commutative composition patterns. We varified these properties by theoretical proofs
and experiments. From the definition of the triple approximate equation of QRSE, we can
easily see that QRSE is a generalization of RotatE. Conversely, in some special cases, QRSE
will degenerate to RotatE. For example, the case when the coefficients of j and k are fixed
as 0 for all quaternions in all embeddings, and the modulus of all quaternions in relation
embeddings are fixed as 1. Before QRSE, QuatE has already generalized ComplEx through
replacing the complex numbers with quaternions. However, QuatE only takes advantage
of that quaternions are more expressive than complex numbers. While our method not
only leverages the expression advantage but also exploits the noncommutative property of
quaternion multiplication to model the noncommutative composition patterns. The results
of experiments on real-world datasets show that QRSE reaches the state-of-the-art on the
link prediction problem. For future work, our plan is to combine QRSE with deep models
for natural language processing. With its help, we expect deep models to achieve higher
accuracy on question answering tasks and make the model’s answers more interpretable.
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